MyArxiv
Computation and Language
☆ Are AI Detectors Good Enough? A Survey on Quality of Datasets With Machine-Generated Texts
The rapid development of autoregressive Large Language Models (LLMs) has significantly improved the quality of generated texts, necessitating reliable machine-generated text detectors. A huge number of detectors and collections with AI fragments have emerged, and several detection methods even showed recognition quality up to 99.9% according to the target metrics in such collections. However, the quality of such detectors tends to drop dramatically in the wild, posing a question: Are detectors actually highly trustworthy or do their high benchmark scores come from the poor quality of evaluation datasets? In this paper, we emphasise the need for robust and qualitative methods for evaluating generated data to be secure against bias and low generalising ability of future model. We present a systematic review of datasets from competitions dedicated to AI-generated content detection and propose methods for evaluating the quality of datasets containing AI-generated fragments. In addition, we discuss the possibility of using high-quality generated data to achieve two goals: improving the training of detection models and improving the training datasets themselves. Our contribution aims to facilitate a better understanding of the dynamics between human and machine text, which will ultimately support the integrity of information in an increasingly automated world.
☆ SudoLM: Learning Access Control of Parametric Knowledge with Authorization Alignment
Existing preference alignment is a one-size-fits-all alignment mechanism, where the part of the large language model (LLM) parametric knowledge with non-preferred features is uniformly blocked to all the users. However, this part of knowledge can be useful to advanced users whose expertise qualifies them to handle these information. The one-size-fits-all alignment mechanism undermines LLM's utility for these qualified users. To address this problem, we propose SudoLM, a framework that lets LLMs learn access control over specific parametric knowledge for users with different credentials via authorization alignment. SudoLM allows authorized users to unlock their access to all the parametric knowledge with an assigned SUDO key while blocking access to non-qualified users. Experiments on two application scenarios demonstrate that SudoLM effectively controls the user's access to the parametric knowledge and maintains its general utility.
☆ Enhancing Large Language Models' Situated Faithfulness to External Contexts
Large Language Models (LLMs) are often augmented with external information as contexts, but this external information can sometimes be inaccurate or even intentionally misleading. We argue that robust LLMs should demonstrate situated faithfulness, dynamically calibrating their trust in external information based on their confidence in the internal knowledge and the external context. To benchmark this capability, we evaluate LLMs across several QA datasets, including a newly created dataset called RedditQA featuring in-the-wild incorrect contexts sourced from Reddit posts. We show that when provided with both correct and incorrect contexts, both open-source and proprietary models tend to overly rely on external information, regardless of its factual accuracy. To enhance situated faithfulness, we propose two approaches: Self-Guided Confidence Reasoning (SCR) and Rule-Based Confidence Reasoning (RCR). SCR enables models to self-access the confidence of external information relative to their own internal knowledge to produce the most accurate answer. RCR, in contrast, extracts explicit confidence signals from the LLM and determines the final answer using predefined rules. Our results show that for LLMs with strong reasoning capabilities, such as GPT-4o and GPT-4o mini, SCR outperforms RCR, achieving improvements of up to 24.2% over a direct input augmentation baseline. Conversely, for a smaller model like Llama-3-8B, RCR outperforms SCR. Fine-tuning SCR with our proposed Confidence Reasoning Direct Preference Optimization (CR-DPO) method improves performance on both seen and unseen datasets, yielding an average improvement of 8.9% on Llama-3-8B. In addition to quantitative results, we offer insights into the relative strengths of SCR and RCR. Our findings highlight promising avenues for improving situated faithfulness in LLMs. The data and code are released.
☆ NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples NeurIPS 24
Vision-language models (VLMs) have made significant progress in recent visual-question-answering (VQA) benchmarks that evaluate complex visio-linguistic reasoning. However, are these models truly effective? In this work, we show that VLMs still struggle with natural images and questions that humans can easily answer, which we term natural adversarial samples. We also find it surprisingly easy to generate these VQA samples from natural image-text corpora using off-the-shelf models like CLIP and ChatGPT. We propose a semi-automated approach to collect a new benchmark, NaturalBench, for reliably evaluating VLMs with 10,000 human-verified VQA samples. Crucially, we adopt a $\textbf{vision-centric}$ design by pairing each question with two images that yield different answers, preventing blind solutions from answering without using the images. This makes NaturalBench more challenging than previous benchmarks that can be solved with commonsense priors. We evaluate 53 state-of-the-art VLMs on NaturalBench, showing that models like LLaVA-OneVision, Cambrian-1, Llama3.2-Vision, Molmo, Qwen2-VL, and even GPT-4o lag 50%-70% behind human performance (over 90%). We analyze why NaturalBench is hard from two angles: (1) Compositionality: Solving NaturalBench requires diverse visio-linguistic skills, including understanding attribute bindings, object relationships, and advanced reasoning like logic and counting. To this end, unlike prior work that uses a single tag per sample, we tag each NaturalBench sample with 1 to 8 skill tags for fine-grained evaluation. (2) Biases: NaturalBench exposes severe biases in VLMs, as models often choose the same answer regardless of the image. Lastly, we apply our benchmark curation method to diverse data sources, including long captions (over 100 words) and non-English languages like Chinese and Hindi, highlighting its potential for dynamic evaluations of VLMs.
comment: Accepted to NeurIPS 24; We open-source our dataset at: https://huggingface.co/datasets/BaiqiL/NaturalBench; Project page at: https://linzhiqiu.github.io/papers/naturalbench/
☆ MiCEval: Unveiling Multimodal Chain of Thought's Quality via Image Description and Reasoning Steps
Multimodal Chain of Thought (MCoT) is a popular prompting strategy for improving the performance of multimodal large language models (MLLMs) across a range of complex reasoning tasks. Despite its popularity, there is a notable absence of automated methods for evaluating the quality of reasoning steps in MCoT. To address this gap, we propose Multimodal Chain-of-Thought Evaluation (MiCEval), a framework designed to assess the correctness of reasoning chains by evaluating the quality of both the description and each reasoning step. The evaluation of the description component focuses on the accuracy of the image descriptions, while the reasoning step evaluates the quality of each step as it is conditionally generated based on the preceding steps. MiCEval is built upon a fine-grained dataset with annotations that rate each step according to correctness, relevance, and informativeness. Extensive experiments on four state-of-the-art MLLMs show that step-wise evaluations using MiCEval align more closely with human judgments compared to existing methods based on cosine similarity or fine-tuning approaches. MiCEval datasets and code can be found in https://github.com/alenai97/MiCEval.
comment: 40 pages
☆ DiscoGraMS: Enhancing Movie Screen-Play Summarization using Movie Character-Aware Discourse Graph
Summarizing movie screenplays presents a unique set of challenges compared to standard document summarization. Screenplays are not only lengthy, but also feature a complex interplay of characters, dialogues, and scenes, with numerous direct and subtle relationships and contextual nuances that are difficult for machine learning models to accurately capture and comprehend. Recent attempts at screenplay summarization focus on fine-tuning transformer-based pre-trained models, but these models often fall short in capturing long-term dependencies and latent relationships, and frequently encounter the "lost in the middle" issue. To address these challenges, we introduce DiscoGraMS, a novel resource that represents movie scripts as a movie character-aware discourse graph (CaD Graph). This approach is well-suited for various downstream tasks, such as summarization, question-answering, and salience detection. The model aims to preserve all salient information, offering a more comprehensive and faithful representation of the screenplay's content. We further explore a baseline method that combines the CaD Graph with the corresponding movie script through a late fusion of graph and text modalities, and we present very initial promising results.
☆ Real-time Fake News from Adversarial Feedback
We show that existing evaluations for fake news detection based on conventional sources, such as claims on fact-checking websites, result in an increasing accuracy over time for LLM-based detectors -- even after their knowledge cutoffs. This suggests that recent popular political claims, which form the majority of fake news on such sources, are easily classified using surface-level shallow patterns. Instead, we argue that a proper fake news detection dataset should test a model's ability to reason factually about the current world by retrieving and reading related evidence. To this end, we develop a novel pipeline that leverages natural language feedback from a RAG-based detector to iteratively modify real-time news into deceptive fake news that challenges LLMs. Our iterative rewrite decreases the binary classification AUC by an absolute 17.5 percent for a strong RAG GPT-4o detector. Our experiments reveal the important role of RAG in both detecting and generating fake news, as retrieval-free LLM detectors are vulnerable to unseen events and adversarial attacks, while feedback from RAG detection helps discover more deceitful patterns in fake news.
☆ Distance between Relevant Information Pieces Causes Bias in Long-Context LLMs
Positional bias in large language models (LLMs) hinders their ability to effectively process long inputs. A prominent example is the "lost in the middle" phenomenon, where LLMs struggle to utilize relevant information situated in the middle of the input. While prior research primarily focuses on single pieces of relevant information, real-world applications often involve multiple relevant information pieces. To bridge this gap, we present LongPiBench, a benchmark designed to assess positional bias involving multiple pieces of relevant information. Thorough experiments are conducted with five commercial and six open-source models. These experiments reveal that while most current models are robust against the "lost in the middle" issue, there exist significant biases related to the spacing of relevant information pieces. These findings highlight the importance of evaluating and reducing positional biases to advance LLM's capabilities.
comment: work in progress
☆ GenEOL: Harnessing the Generative Power of LLMs for Training-Free Sentence Embeddings
Training-free embedding methods directly leverage pretrained large language models (LLMs) to embed text, bypassing the costly and complex procedure of contrastive learning. Previous training-free embedding methods have mainly focused on optimizing embedding prompts and have overlooked the benefits of utilizing the generative abilities of LLMs. We propose a novel method, GenEOL, which uses LLMs to generate diverse transformations of a sentence that preserve its meaning, and aggregates the resulting embeddings of these transformations to enhance the overall sentence embedding. GenEOL significantly outperforms the existing training-free embedding methods by an average of 2.85 points across several LLMs on the sentence semantic text similarity (STS) benchmark. Our analysis shows that GenEOL stabilizes representation quality across LLM layers and is robust to perturbations of embedding prompts. GenEOL also achieves notable gains on multiple clustering, reranking and pair-classification tasks from the MTEB benchmark.
☆ Diverging Preferences: When do Annotators Disagree and do Models Know?
We examine diverging preferences in human-labeled preference datasets. We develop a taxonomy of disagreement sources spanning 10 categories across four high-level classes -- task underspecification, response style, refusals, and annotation errors. We find that the majority of disagreements are in opposition with standard reward modeling approaches, which are designed with the assumption that annotator disagreement is noise. We then explore how these findings impact two areas of LLM development: reward modeling and evaluation. In our experiments, we demonstrate how standard reward modeling methods, like the Bradley-Terry model, fail to differentiate whether a given preference judgment is the result of unanimous agreement among annotators or the majority opinion among diverging user preferences. We also find that these tendencies are also echoed by popular LLM-as-Judge evaluation methods, which consistently identify a winning response in cases of diverging preferences. These findings highlight remaining challenges in LLM evaluations, which are greatly influenced by divisive features like response style, and in developing pluralistically aligned LLMs. To address these issues, we develop methods for identifying diverging preferences to mitigate their influence on evaluation and training.
☆ CELI: Controller-Embedded Language Model Interactions
We introduce Controller-Embedded Language Model Interactions (CELI), a framework that integrates control logic directly within language model (LM) prompts, facilitating complex, multi-stage task execution. CELI addresses limitations of existing prompt engineering and workflow optimization techniques by embedding control logic directly within the operational context of language models, enabling dynamic adaptation to evolving task requirements. Our framework transfers control from the traditional programming execution environment to the LMs, allowing them to autonomously manage computational workflows while maintaining seamless interaction with external systems and functions. CELI supports arbitrary function calls with variable arguments, bridging the gap between LMs' adaptive reasoning capabilities and conventional software paradigms' structured control mechanisms. To evaluate CELI's versatility and effectiveness, we conducted case studies in two distinct domains: code generation (HumanEval benchmark) and multi-stage content generation (Wikipedia-style articles). The results demonstrate notable performance improvements across a range of domains. CELI achieved a 4.9 percentage point improvement over the best reported score of the baseline GPT-4 model on the HumanEval code generation benchmark. In multi-stage content generation, 94.4% of CELI-produced Wikipedia-style articles met or exceeded first draft quality when optimally configured, with 44.4% achieving high quality. These outcomes underscore CELI's potential for optimizing AI-driven workflows across diverse computational domains.
comment: 26 pages, 2 figures
☆ You Shall Know a Tool by the Traces it Leaves: The Predictability of Sentiment Analysis Tools
If sentiment analysis tools were valid classifiers, one would expect them to provide comparable results for sentiment classification on different kinds of corpora and for different languages. In line with results of previous studies we show that sentiment analysis tools disagree on the same dataset. Going beyond previous studies we show that the sentiment tool used for sentiment annotation can even be predicted from its outcome, revealing an algorithmic bias of sentiment analysis. Based on Twitter, Wikipedia and different news corpora from the English, German and French languages, our classifiers separate sentiment tools with an averaged F1-score of 0.89 (for the English corpora). We therefore warn against taking sentiment annotations as face value and argue for the need of more and systematic NLP evaluation studies.
☆ DiSCo Meets LLMs: A Unified Approach for Sparse Retrieval and Contextual Distillation in Conversational Search
Conversational Search (CS) is the task of retrieving relevant documents from a corpus within a conversational context, combining retrieval with conversational context modeling. With the explosion of Large Language Models (LLMs), the CS field has seen major improvements with LLMs rewriting user queries, accounting for conversational context. However, engaging LLMs at inference time harms efficiency. Current methods address this by distilling embeddings from human-rewritten queries to learn the context modeling task. Yet, these approaches predominantly focus on context modeling, and only treat the contrastive component of the retrieval task within a distillation-independent loss term. To address these limitations, we propose a new distillation method, as a relaxation of the previous objective, unifying retrieval and context modeling. We relax the existing training objectives by distilling similarity scores between conversations and documents, rather than relying solely on representation learning. Our proposed distillation objective allows for more freedom in the representation space and leverages the contrastive nature of document relevance. Through experiments on Learned Sparse Retrieval (LSR) across 5 CS datasets, our approach demonstrates substantial improvements in both in-domain and out-of-domain retrieval performance, outperforming state-of-the-art with gains of up to 6 points in recall for out-of-domain datasets. Additionally, through the relaxation of the objective, we propose a multi-teacher distillation, using multiple LLMs as teachers, yielding additional gains, and outperforming the teachers themselves in in-domain experiments. Finally, analysis of the sparsity of the models reveals that our distillation allows for better control over the sparsity of the trained models.
☆ Teaching Models to Balance Resisting and Accepting Persuasion
Large language models (LLMs) are susceptible to persuasion, which can pose risks when models are faced with an adversarial interlocutor. We take a first step towards defending models against persuasion while also arguing that defense against adversarial (i.e. negative) persuasion is only half of the equation: models should also be able to accept beneficial (i.e. positive) persuasion to improve their answers. We show that optimizing models for only one side results in poor performance on the other. In order to balance positive and negative persuasion, we introduce Persuasion-Balanced Training (or PBT), which leverages multi-agent recursive dialogue trees to create data and trains models via preference optimization to accept persuasion when appropriate. PBT consistently improves resistance to misinformation and resilience to being challenged while also resulting in the best overall performance on holistic data containing both positive and negative persuasion. Crucially, we show that PBT models are better teammates in multi-agent debates. We find that without PBT, pairs of stronger and weaker models have unstable performance, with the order in which the models present their answers determining whether the team obtains the stronger or weaker model's performance. PBT leads to better and more stable results and less order dependence, with the stronger model consistently pulling the weaker one up.
comment: Code: https://github.com/esteng/persuasion_balanced_training
☆ Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases
Recent advancements in tool-equipped Agents (LLMs) have enabled complex tasks like secure database interactions and multi-agent code development. However, scaling tool capacity beyond agent reasoning or model limits remains a challenge. In this paper, we address these challenges by introducing Toolshed Knowledge Bases, a tool knowledge base (vector database) designed to store enhanced tool representations and optimize tool selection for large-scale tool-equipped Agents. Additionally, we propose Advanced RAG-Tool Fusion, a novel ensemble of tool-applied advanced retrieval-augmented generation (RAG) techniques across the pre-retrieval, intra-retrieval, and post-retrieval phases, without requiring model fine-tuning. During pre-retrieval, tool documents are enhanced with key information and stored in the Toolshed Knowledge Base. Intra-retrieval focuses on query planning and transformation to increase retrieval accuracy. Post-retrieval refines the retrieved tool documents and enables self-reflection. Furthermore, by varying both the total number of tools (tool-M) an Agent has access to and the tool selection threshold (top-k), we address trade-offs between retrieval accuracy, agent performance, and token cost. Our approach achieves 46%, 56%, and 47% absolute improvements on the ToolE single-tool, ToolE multi-tool and Seal-Tools benchmark datasets, respectively (Recall@5).
☆ Dialetto, ma Quanto Dialetto? Transcribing and Evaluating Dialects on a Continuum
There is increasing interest in looking at dialects in NLP. However, most work to date still treats dialects as discrete categories. For instance, evaluative work in variation-oriented NLP for English often works with Indian English or African-American Venacular English as homogeneous categories (Faisal et al., 2024; Ziems et al., 2023), yet even within one variety there is substantial variation. We examine within-dialect variation and show that performance critically varies within categories. We measure speech-to-text performance on Italian dialects, and empirically observe a geographical performance disparity. This disparity correlates substantially (-0.5) with linguistic similarity to the highest performing dialect variety. We cross-examine our results against dialectometry methods, and interpret the performance disparity to be due to a bias towards dialects that are more similar to the standard variety in the speech-to-text model examined. We additionally leverage geostatistical methods to predict zero-shot performance at unseen sites, and find the incorporation of geographical information to substantially improve prediction performance, indicating there to be geographical structure in the performance distribution.
☆ Do LLMs estimate uncertainty well in instruction-following?
Large language models (LLMs) could be valuable personal AI agents across various domains, provided they can precisely follow user instructions. However, recent studies have shown significant limitations in LLMs' instruction-following capabilities, raising concerns about their reliability in high-stakes applications. Accurately estimating LLMs' uncertainty in adhering to instructions is critical to mitigating deployment risks. We present, to our knowledge, the first systematic evaluation of the uncertainty estimation abilities of LLMs in the context of instruction-following. Our study identifies key challenges with existing instruction-following benchmarks, where multiple factors are entangled with uncertainty stems from instruction-following, complicating the isolation and comparison across methods and models. To address these issues, we introduce a controlled evaluation setup with two benchmark versions of data, enabling a comprehensive comparison of uncertainty estimation methods under various conditions. Our findings show that existing uncertainty methods struggle, particularly when models make subtle errors in instruction following. While internal model states provide some improvement, they remain inadequate in more complex scenarios. The insights from our controlled evaluation setups provide a crucial understanding of LLMs' limitations and potential for uncertainty estimation in instruction-following tasks, paving the way for more trustworthy AI agents.
☆ Optimizing Attention with Mirror Descent: Generalized Max-Margin Token Selection
Attention mechanisms have revolutionized several domains of artificial intelligence, such as natural language processing and computer vision, by enabling models to selectively focus on relevant parts of the input data. While recent work has characterized the optimization dynamics of gradient descent (GD) in attention-based models and the structural properties of its preferred solutions, less is known about more general optimization algorithms such as mirror descent (MD). In this paper, we investigate the convergence properties and implicit biases of a family of MD algorithms tailored for softmax attention mechanisms, with the potential function chosen as the $p$-th power of the $\ell_p$-norm. Specifically, we show that these algorithms converge in direction to a generalized hard-margin SVM with an $\ell_p$-norm objective when applied to a classification problem using a softmax attention model. Notably, our theoretical results reveal that the convergence rate is comparable to that of traditional GD in simpler models, despite the highly nonlinear and nonconvex nature of the present problem. Additionally, we delve into the joint optimization dynamics of the key-query matrix and the decoder, establishing conditions under which this complex joint optimization converges to their respective hard-margin SVM solutions. Lastly, our numerical experiments on real data demonstrate that MD algorithms improve generalization over standard GD and excel in optimal token selection.
☆ Large Language Models Are Overparameterized Text Encoders
Large language models (LLMs) demonstrate strong performance as text embedding models when finetuned with supervised contrastive training. However, their large size balloons inference time and memory requirements. In this paper, we show that by pruning the last $p\%$ layers of an LLM before supervised training for only 1000 steps, we can achieve a proportional reduction in memory and inference time. We evaluate four different state-of-the-art LLMs on text embedding tasks and find that our method can prune up to 30\% of layers with negligible impact on performance and up to 80\% with only a modest drop. With only three lines of code, our method is easily implemented in any pipeline for transforming LLMs to text encoders. We also propose $\text{L}^3 \text{Prune}$, a novel layer-pruning strategy based on the model's initial loss that provides two optimal pruning configurations: a large variant with negligible performance loss and a small variant for resource-constrained settings. On average, the large variant prunes 21\% of the parameters with a $-0.3$ performance drop, and the small variant only suffers from a $-5.1$ decrease while pruning 74\% of the model. We consider these results strong evidence that LLMs are overparameterized for text embedding tasks, and can be easily pruned.
comment: 8 pages of content + 1 for limitations and ethical considerations, 14 pages in total including references and appendix, 5+1 figures
☆ MomentumSMoE: Integrating Momentum into Sparse Mixture of Experts NeurIPS 2024
Sparse Mixture of Experts (SMoE) has become the key to unlocking unparalleled scalability in deep learning. SMoE has the potential to exponentially increase parameter count while maintaining the efficiency of the model by only activating a small subset of these parameters for a given sample. However, it has been observed that SMoE suffers from unstable training and has difficulty adapting to new distributions, leading to the model's lack of robustness to data contamination. To overcome these limitations, we first establish a connection between the dynamics of the expert representations in SMoEs and gradient descent on a multi-objective optimization problem. Leveraging our framework, we then integrate momentum into SMoE and propose a new family of SMoEs named MomentumSMoE. We theoretically prove and numerically demonstrate that MomentumSMoE is more stable and robust than SMoE. In particular, we verify the advantages of MomentumSMoE over SMoE on a variety of practical tasks including ImageNet-1K object recognition and WikiText-103 language modeling. We demonstrate the applicability of MomentumSMoE to many types of SMoE models, including those in the Sparse MoE model for vision (V-MoE) and the Generalist Language Model (GLaM). We also show that other advanced momentum-based optimization methods, such as Adam, can be easily incorporated into the MomentumSMoE framework for designing new SMoE models with even better performance, almost negligible additional computation cost, and simple implementations.
comment: 10 pages in the main text. Published at NeurIPS 2024. The code is available at https://github.com/rachtsy/MomentumSMoE
☆ RAG-ConfusionQA: A Benchmark for Evaluating LLMs on Confusing Questions
Conversational AI agents use Retrieval Augmented Generation (RAG) to provide verifiable document-grounded responses to user inquiries. However, many natural questions do not have good answers: about 25\% contain false assumptions~\cite{Yu2023:CREPE}, and over 50\% are ambiguous~\cite{Min2020:AmbigQA}. RAG agents need high-quality data to improve their responses to confusing questions. This paper presents a novel synthetic data generation method to efficiently create a diverse set of context-grounded confusing questions from a given document corpus. We conduct an empirical comparative evaluation of several large language models as RAG agents to measure the accuracy of confusion detection and appropriate response generation. We contribute a benchmark dataset to the public domain.
comment: under review
☆ Tell me what I need to know: Exploring LLM-based (Personalized) Abstractive Multi-Source Meeting Summarization
Meeting summarization is crucial in digital communication, but existing solutions struggle with salience identification to generate personalized, workable summaries, and context understanding to fully comprehend the meetings' content. Previous attempts to address these issues by considering related supplementary resources (e.g., presentation slides) alongside transcripts are hindered by models' limited context sizes and handling the additional complexities of the multi-source tasks, such as identifying relevant information in additional files and seamlessly aligning it with the meeting content. This work explores multi-source meeting summarization considering supplementary materials through a three-stage large language model approach: identifying transcript passages needing additional context, inferring relevant details from supplementary materials and inserting them into the transcript, and generating a summary from this enriched transcript. Our multi-source approach enhances model understanding, increasing summary relevance by ~9% and producing more content-rich outputs. We introduce a personalization protocol that extracts participant characteristics and tailors summaries accordingly, improving informativeness by ~10%. This work further provides insights on performance-cost trade-offs across four leading model families, including edge-device capable options. Our approach can be extended to similar complex generative tasks benefitting from additional resources and personalization, such as dialogue systems and action planning.
☆ Do LLMs "know" internally when they follow instructions?
Instruction-following is crucial for building AI agents with large language models (LLMs), as these models must adhere strictly to user-provided constraints and guidelines. However, LLMs often fail to follow even simple and clear instructions. To improve instruction-following behavior and prevent undesirable outputs, a deeper understanding of how LLMs' internal states relate to these outcomes is required. Our analysis of LLM internal states reveal a dimension in the input embedding space linked to successful instruction-following. We demonstrate that modifying representations along this dimension improves instruction-following success rates compared to random changes, without compromising response quality. Further investigation reveals that this dimension is more closely related to the phrasing of prompts rather than the inherent difficulty of the task or instructions. This discovery also suggests explanations for why LLMs sometimes fail to follow clear instructions and why prompt engineering is often effective, even when the content remains largely unchanged. This work provides insight into the internal workings of LLMs' instruction-following, paving the way for reliable LLM agents.
☆ SignAttention: On the Interpretability of Transformer Models for Sign Language Translation NeurIPS 2024
This paper presents the first comprehensive interpretability analysis of a Transformer-based Sign Language Translation (SLT) model, focusing on the translation from video-based Greek Sign Language to glosses and text. Leveraging the Greek Sign Language Dataset, we examine the attention mechanisms within the model to understand how it processes and aligns visual input with sequential glosses. Our analysis reveals that the model pays attention to clusters of frames rather than individual ones, with a diagonal alignment pattern emerging between poses and glosses, which becomes less distinct as the number of glosses increases. We also explore the relative contributions of cross-attention and self-attention at each decoding step, finding that the model initially relies on video frames but shifts its focus to previously predicted tokens as the translation progresses. This work contributes to a deeper understanding of SLT models, paving the way for the development of more transparent and reliable translation systems essential for real-world applications.
comment: Accepted at IAI Workshop @ NeurIPS 2024
☆ Combining Entropy and Matrix Nuclear Norm for Enhanced Evaluation of Language Models
As large language models (LLMs) continue to advance, the need for precise and efficient evaluation metrics becomes more pressing. Traditional approaches, while informative, often face limitations in computational demands and interpretability. In this paper, we introduce a novel hybrid evaluation method that integrates two established techniques: entropy derived from covariance matrices and the Matrix Nuclear Norm (MNN). Our method begins by normalizing hidden states from LLMs, then computes the covariance matrix and MNN from these representations. We further calculate the entropy of the covariance matrix to capture uncertainty and redundancy in the model's outputs. By combining these metrics into a composite score, we offer a comprehensive evaluation framework that balances accuracy with computational efficiency. Additionally, our approach allows for flexibility in adjusting the weightings between entropy and MNN, tailoring the evaluation for different objectives. Through a series of experiments on various LLMs, we demonstrate the robustness and efficacy of our method, offering deeper insights into model performance. This work contributes to the ongoing development of LLM evaluation and opens avenues for future innovations in model assessment techniques.
comment: The method is currently under experimentation
☆ A Systematic Study of Cross-Layer KV Sharing for Efficient LLM Inference
Recently, sharing key-value (KV) cache across layers has been found effective in efficient inference of large language models (LLMs). To systematically investigate different techniques of cross-layer KV sharing, we propose a unified framework that covers several recent methods and their novel variants. We conduct comprehensive experiments on all the configurations of the framework, evaluating their generation throughput and performance in language modeling and downstream tasks. We find that when reducing the size of the KV cache by 2x, most configurations can achieve competitive performance to and higher throughput than standard transformers, but when further reducing the size of the KV cache, pairing queries of all layers with KVs of upper layers can better maintain performance, although it also introduces additional training cost and prefilling latency. We hope that this work will help users choose the appropriate approach according to their requirements and facilitate research on the acceleration of LLM inference.
☆ Unlearning Backdoor Attacks for LLMs with Weak-to-Strong Knowledge Distillation
Parameter-efficient fine-tuning (PEFT) can bridge the gap between large language models (LLMs) and downstream tasks. However, PEFT has been proven vulnerable to malicious attacks. Research indicates that poisoned LLMs, even after PEFT, retain the capability to activate internalized backdoors when input samples contain predefined triggers. In this paper, we introduce a novel weak-to-strong unlearning algorithm to defend against backdoor attacks based on feature alignment knowledge distillation, named W2SDefense. Specifically, we first train a small-scale language model through full-parameter fine-tuning to serve as the clean teacher model. Then, this teacher model guides the large-scale poisoned student model in unlearning the backdoor, leveraging PEFT. Theoretical analysis suggests that W2SDefense has the potential to enhance the student model's ability to unlearn backdoor features, preventing the activation of the backdoor. We conduct experiments on text classification tasks involving three state-of-the-art language models and three different backdoor attack algorithms. Our empirical results demonstrate the outstanding performance of W2SDefense in defending against backdoor attacks without compromising model performance.
☆ Fact Recall, Heuristics or Pure Guesswork? Precise Interpretations of Language Models for Fact Completion
Previous interpretations of language models (LMs) miss important distinctions in how these models process factual information. For example, given the query "Astrid Lindgren was born in" with the corresponding completion "Sweden", no difference is made between whether the prediction was based on having the exact knowledge of the birthplace of the Swedish author or assuming that a person with a Swedish-sounding name was born in Sweden. In this paper, we investigate four different prediction scenarios for which the LM can be expected to show distinct behaviors. These scenarios correspond to different levels of model reliability and types of information being processed - some being less desirable for factual predictions. To facilitate precise interpretations of LMs for fact completion, we propose a model-specific recipe called PrISM for constructing datasets with examples of each scenario based on a set of diagnostic criteria. We apply a popular interpretability method, causal tracing (CT), to the four prediction scenarios and find that while CT produces different results for each scenario, aggregations over a set of mixed examples may only represent the results from the scenario with the strongest measured signal. In summary, we contribute tools for a more granular study of fact completion in language models and analyses that provide a more nuanced understanding of how LMs process fact-related queries.
☆ SylloBio-NLI: Evaluating Large Language Models on Biomedical Syllogistic Reasoning
Syllogistic reasoning is crucial for Natural Language Inference (NLI). This capability is particularly significant in specialized domains such as biomedicine, where it can support automatic evidence interpretation and scientific discovery. This paper presents SylloBio-NLI, a novel framework that leverages external ontologies to systematically instantiate diverse syllogistic arguments for biomedical NLI. We employ SylloBio-NLI to evaluate Large Language Models (LLMs) on identifying valid conclusions and extracting supporting evidence across 28 syllogistic schemes instantiated with human genome pathways. Extensive experiments reveal that biomedical syllogistic reasoning is particularly challenging for zero-shot LLMs, which achieve an average accuracy between 70% on generalized modus ponens and 23% on disjunctive syllogism. At the same time, we found that few-shot prompting can boost the performance of different LLMs, including Gemma (+14%) and LLama-3 (+43%). However, a deeper analysis shows that both techniques exhibit high sensitivity to superficial lexical variations, highlighting a dependency between reliability, models' architecture, and pre-training regime. Overall, our results indicate that, while in-context examples have the potential to elicit syllogistic reasoning in LLMs, existing models are still far from achieving the robustness and consistency required for safe biomedical NLI applications.
☆ Generative AI, Pragmatics, and Authenticity in Second Language Learning
There are obvious benefits to integrating generative AI (artificial intelligence) into language learning and teaching. Those include using AI as a language tutor, creating learning materials, or assessing learner output. However, due to how AI systems under-stand human language, based on a mathematical model using statistical probability, they lack the lived experience to be able to use language with the same social aware-ness as humans. Additionally, there are built-in linguistic and cultural biases based on their training data which is mostly in English and predominantly from Western sources. Those facts limit AI suitability for some language learning interactions. Stud-ies have clearly shown that systems such as ChatGPT often do not produce language that is pragmatically appropriate. The lack of linguistic and cultural authenticity has important implications for how AI is integrated into second language acquisition as well as in instruction targeting development of intercultural communication compe-tence.
☆ Analyzing Context Utilization of LLMs in Document-Level Translation
Large language models (LLM) are increasingly strong contenders in machine translation. We study document-level translation, where some words cannot be translated without context from outside the sentence. We investigate the ability of prominent LLMs to utilize context by analyzing models' robustness to perturbed and randomized document context. We find that LLMs' improved document-translation performance is not always reflected in pronoun translation performance. We highlight the need for context-aware finetuning of LLMs with a focus on relevant parts of the context to improve their reliability for document-level translation.
comment: 4 pages, 2 figures, 2 tables
☆ How Do Multilingual Models Remember? Investigating Multilingual Factual Recall Mechanisms
Large Language Models (LLMs) store and retrieve vast amounts of factual knowledge acquired during pre-training. Prior research has localized and identified mechanisms behind knowledge recall; however, it has primarily focused on English monolingual models. The question of how these processes generalize to other languages and multilingual LLMs remains unexplored. In this paper, we address this gap by conducting a comprehensive analysis of two highly multilingual LLMs. We assess the extent to which previously identified components and mechanisms of factual recall in English apply to a multilingual context. Then, we examine when language plays a role in the recall process, uncovering evidence of language-independent and language-dependent mechanisms.
☆ Fine-Tuning Pre-trained Language Models for Robust Causal Representation Learning
The fine-tuning of pre-trained language models (PLMs) has been shown to be effective across various domains. By using domain-specific supervised data, the general-purpose representation derived from PLMs can be transformed into a domain-specific representation. However, these methods often fail to generalize to out-of-domain (OOD) data due to their reliance on non-causal representations, often described as spurious features. Existing methods either make use of adjustments with strong assumptions about lack of hidden common causes, or mitigate the effect of spurious features using multi-domain data. In this work, we investigate how fine-tuned pre-trained language models aid generalizability from single-domain scenarios under mild assumptions, targeting more general and practical real-world scenarios. We show that a robust representation can be derived through a so-called causal front-door adjustment, based on a decomposition assumption, using fine-tuned representations as a source of data augmentation. Comprehensive experiments in both synthetic and real-world settings demonstrate the superior generalizability of the proposed method compared to existing approaches. Our work thus sheds light on the domain generalization problem by introducing links between fine-tuning and causal mechanisms into representation learning.
☆ Efficiently Computing Susceptibility to Context in Language Models
One strength of modern language models is their ability to incorporate information from a user-input context when answering queries. However, they are not equally sensitive to the subtle changes to that context. To quantify this, Du et al. (2024) gives an information-theoretic metric to measure such sensitivity. Their metric, susceptibility, is defined as the degree to which contexts can influence a model's response to a query at a distributional level. However, exactly computing susceptibility is difficult and, thus, Du et al. (2024) falls back on a Monte Carlo approximation. Due to the large number of samples required, the Monte Carlo approximation is inefficient in practice. As a faster alternative, we propose Fisher susceptibility, an efficient method to estimate the susceptibility based on Fisher information. Empirically, we validate that Fisher susceptibility is comparable to Monte Carlo estimated susceptibility across a diverse set of query domains despite its being $70\times$ faster. Exploiting the improved efficiency, we apply Fisher susceptibility to analyze factors affecting the susceptibility of language models. We observe that larger models are as susceptible as smaller ones.
☆ Critical Questions Generation: Motivation and Challenges CoNLL 2024
The development of Large Language Models (LLMs) has brought impressive performances on mitigation strategies against misinformation, such as counterargument generation. However, LLMs are still seriously hindered by outdated knowledge and by their tendency to generate hallucinated content. In order to circumvent these issues, we propose a new task, namely, Critical Questions Generation, consisting of processing an argumentative text to generate the critical questions (CQs) raised by it. In argumentation theory CQs are tools designed to lay bare the blind spots of an argument by pointing at the information it could be missing. Thus, instead of trying to deploy LLMs to produce knowledgeable and relevant counterarguments, we use them to question arguments, without requiring any external knowledge. Research on CQs Generation using LLMs requires a reference dataset for large scale experimentation. Thus, in this work we investigate two complementary methods to create such a resource: (i) instantiating CQs templates as defined by Walton's argumentation theory and (ii), using LLMs as CQs generators. By doing so, we contribute with a procedure to establish what is a valid CQ and conclude that, while LLMs are reasonable CQ generators, they still have a wide margin for improvement in this task.
comment: 14 pages, 3 figures, 7 tables, to be published in the 28th Conference on Computational Natural Language Learning (CoNLL 2024)
☆ LoGU: Long-form Generation with Uncertainty Expressions
While Large Language Models (LLMs) demonstrate impressive capabilities, they still struggle with generating factually incorrect content (i.e., hallucinations). A promising approach to mitigate this issue is enabling models to express uncertainty when unsure. Previous research on uncertainty modeling has primarily focused on short-form QA, but realworld applications often require much longer responses. In this work, we introduce the task of Long-form Generation with Uncertainty(LoGU). We identify two key challenges: Uncertainty Suppression, where models hesitate to express uncertainty, and Uncertainty Misalignment, where models convey uncertainty inaccurately. To tackle these challenges, we propose a refinement-based data collection framework and a two-stage training pipeline. Our framework adopts a divide-and-conquer strategy, refining uncertainty based on atomic claims. The collected data are then used in training through supervised fine-tuning (SFT) and direct preference optimization (DPO) to enhance uncertainty expression. Extensive experiments on three long-form instruction following datasets show that our method significantly improves accuracy, reduces hallucinations, and maintains the comprehensiveness of responses.
☆ SwaQuAD-24: QA Benchmark Dataset in Swahili
This paper proposes the creation of a Swahili Question Answering (QA) benchmark dataset, aimed at addressing the underrepresentation of Swahili in natural language processing (NLP). Drawing from established benchmarks like SQuAD, GLUE, KenSwQuAD, and KLUE, the dataset will focus on providing high-quality, annotated question-answer pairs that capture the linguistic diversity and complexity of Swahili. The dataset is designed to support a variety of applications, including machine translation, information retrieval, and social services like healthcare chatbots. Ethical considerations, such as data privacy, bias mitigation, and inclusivity, are central to the dataset development. Additionally, the paper outlines future expansion plans to include domain-specific content, multimodal integration, and broader crowdsourcing efforts. The Swahili QA dataset aims to foster technological innovation in East Africa and provide an essential resource for NLP research and applications in low-resource languages.
☆ EcomEdit: An Automated E-commerce Knowledge Editing Framework for Enhanced Product and Purchase Intention Understanding
Knowledge Editing (KE) aims to correct and update factual information in Large Language Models (LLMs) to ensure accuracy and relevance without computationally expensive fine-tuning. Though it has been proven effective in several domains, limited work has focused on its application within the e-commerce sector. However, there are naturally occurring scenarios that make KE necessary in this domain, such as the timely updating of product features and trending purchase intentions by customers, which necessitate further exploration. In this paper, we pioneer the application of KE in the e-commerce domain by presenting ECOMEDIT, an automated e-commerce knowledge editing framework tailored for e-commerce-related knowledge and tasks. Our framework leverages more powerful LLMs as judges to enable automatic knowledge conflict detection and incorporates conceptualization to enhance the semantic coverage of the knowledge to be edited. Through extensive experiments, we demonstrate the effectiveness of ECOMEDIT in improving LLMs' understanding of product descriptions and purchase intentions. We also show that LLMs, after our editing, can achieve stronger performance on downstream e-commerce tasks.
☆ REEF: Representation Encoding Fingerprints for Large Language Models
Protecting the intellectual property of open-source Large Language Models (LLMs) is very important, because training LLMs costs extensive computational resources and data. Therefore, model owners and third parties need to identify whether a suspect model is a subsequent development of the victim model. To this end, we propose a training-free REEF to identify the relationship between the suspect and victim models from the perspective of LLMs' feature representations. Specifically, REEF computes and compares the centered kernel alignment similarity between the representations of a suspect model and a victim model on the same samples. This training-free REEF does not impair the model's general capabilities and is robust to sequential fine-tuning, pruning, model merging, and permutations. In this way, REEF provides a simple and effective way for third parties and models' owners to protect LLMs' intellectual property together. The code is available at https://github.com/tmylla/REEF.
☆ MoDification: Mixture of Depths Made Easy
Long-context efficiency has recently become a trending topic in serving large language models (LLMs). And mixture of depths (MoD) is proposed as a perfect fit to bring down both latency and memory. In this paper, however, we discover that MoD can barely transform existing LLMs without costly training over an extensive number of tokens. To enable the transformations from any LLMs to MoD ones, we showcase top-k operator in MoD should be promoted to threshold-p operator, and refinement to architecture and data should also be crafted along. All these designs form our method termed MoDification. Through a comprehensive set of experiments covering model scales from 3B to 70B, we exhibit MoDification strikes an excellent balance between efficiency and effectiveness. MoDification can achieve up to ~1.2x speedup in latency and ~1.8x reduction in memory compared to original LLMs especially in long-context applications.
comment: 12 pages, 9 figures, 5 tables, work in progress
☆ Good Parenting is all you need -- Multi-agentic LLM Hallucination Mitigation
This study explores the ability of Large Language Model (LLM) agents to detect and correct hallucinations in AI-generated content. A primary agent was tasked with creating a blog about a fictional Danish artist named Flipfloppidy, which was then reviewed by another agent for factual inaccuracies. Most LLMs hallucinated the existence of this artist. Across 4,900 test runs involving various combinations of primary and reviewing agents, advanced AI models such as Llama3-70b and GPT-4 variants demonstrated near-perfect accuracy in identifying hallucinations and successfully revised outputs in 85% to 100% of cases following feedback. These findings underscore the potential of advanced AI models to significantly enhance the accuracy and reliability of generated content, providing a promising approach to improving AI workflow orchestration.
☆ Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement
The rapid development of large language models (LLMs), like ChatGPT, has resulted in the widespread presence of LLM-generated content on social media platforms, raising concerns about misinformation, data biases, and privacy violations, which can undermine trust in online discourse. While detecting LLM-generated content is crucial for mitigating these risks, current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-AI collaboration. To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content. This approach introduces two novel tasks: LLM Role Recognition (LLM-RR), a multi-class classification task that identifies specific roles of LLM in content generation, and LLM Influence Measurement (LLM-IM), a regression task that quantifies the extent of LLM involvement in content creation. To support these tasks, we propose LLMDetect, a benchmark designed to evaluate detectors' performance on these new tasks. LLMDetect includes the Hybrid News Detection Corpus (HNDC) for training detectors, as well as DetectEval, a comprehensive evaluation suite that considers five distinct cross-context variations and multi-intensity variations within the same LLM role. This allows for a thorough assessment of detectors' generalization and robustness across diverse contexts. Our empirical validation of 10 baseline detection methods demonstrates that fine-tuned PLM-based models consistently outperform others on both tasks, while advanced LLMs face challenges in accurately detecting their own generated content. Our experimental results and analysis offer insights for developing more effective detection models for LLM-generated content. This research enhances the understanding of LLM-generated content and establishes a foundation for more nuanced detection methodologies.
comment: Social Media, Large Language Models, LLM-generated Text Detection, AI-assisted News Detection
☆ Nova: An Iterative Planning and Search Approach to Enhance Novelty and Diversity of LLM Generated Ideas
Scientific innovation is pivotal for humanity, and harnessing large language models (LLMs) to generate research ideas could transform discovery. However, existing LLMs often produce simplistic and repetitive suggestions due to their limited ability in acquiring external knowledge for innovation. To address this problem, we introduce an enhanced planning and search methodology designed to boost the creative potential of LLM-based systems. Our approach involves an iterative process to purposely plan the retrieval of external knowledge, progressively enriching the idea generation with broader and deeper insights. Validation through automated and human assessments indicates that our framework substantially elevates the quality of generated ideas, particularly in novelty and diversity. The number of unique novel ideas produced by our framework is 3.4 times higher than without it. Moreover, our method outperforms the current state-of-the-art, generating at least 2.5 times more top-rated ideas based on 170 seed papers in a Swiss Tournament evaluation.
☆ Synthesizing Post-Training Data for LLMs through Multi-Agent Simulation
Post-training is essential for enabling large language models (LLMs) to follow human instructions. Inspired by the recent success of using LLMs to simulate human society, we leverage multi-agent simulation to automatically generate diverse text-based scenarios, capturing a wide range of real-world human needs. We propose MATRIX, a multi-agent simulator that creates realistic and scalable scenarios. Leveraging these outputs, we introduce a novel scenario-driven instruction generator MATRIX-Gen for controllable and highly realistic data synthesis. Extensive experiments demonstrate that our framework effectively generates both general and domain-specific data. Notably, on AlpacaEval 2 and Arena-Hard benchmarks, Llama-3-8B-Base, post-trained on datasets synthesized by MATRIX-Gen with just 20K instruction-response pairs, outperforms Meta's Llama-3-8B-Instruct model, which was trained on over 10M pairs; see our project at https://github.com/ShuoTang123/MATRIX-Gen.
☆ Addressing Blind Guessing: Calibration of Selection Bias in Multiple-Choice Question Answering by Video Language Models
Evaluating Video Language Models (VLMs) is a challenging task. Due to its transparency, Multiple-Choice Question Answering (MCQA) is widely used to measure the performance of these models through accuracy. However, existing MCQA benchmarks fail to capture the full reasoning capabilities of VLMs due to selection bias, when models disproportionately favor certain answer options based on positional patterns observed during training. In this work, we conduct a comprehensive empirical analysis of several VLM architectures across major datasets designed to assess complex video-focused reasoning. We identify where the bias is most pronounced and demonstrate to what extent model responses reflect genuine understanding of video content and related questions, as opposed to reliance on arbitrary patterns or superficial cues, such as answer position. By decomposing the MCQA task and adapting fairness bias metrics to VLMs, we introduce a post-processing calibration technique BOLD to balance this bias. Our results show that reducing selection bias improves not only debiasing metrics but also overall model performance, including Accuracy and F1 Mean score. Our method, by suppressing "blind guessing", offers a more cost- and time-effective approach to mitigating selection bias compared to existing techniques. This study represents the first focused investigation of selection bias in video-to-text LLM-powered models.
☆ A Novel Method to Metigate Demographic and Expert Bias in ICD Coding with Causal Inference
ICD(International Classification of Diseases) coding involves assigning ICD codes to patients visit based on their medical notes. Considering ICD coding as a multi-label text classification task, researchers have developed sophisticated methods. Despite progress, these models often suffer from label imbalance and may develop spurious correlations with demographic factors. Additionally, while human coders assign ICD codes, the inclusion of irrelevant information from unrelated experts introduces biases. To combat these issues, we propose a novel method to mitigate Demographic and Expert biases in ICD coding through Causal Inference (DECI). We provide a novel causality-based interpretation in ICD Coding that models make predictions by three distinct pathways. And based counterfactual reasoning, DECI mitigate demographic and expert biases. Experimental results show that DECI outperforms state-of-the-art models, offering a significant advancement in accurate and unbiased ICD coding.
☆ Towards Robust Knowledge Representations in Multilingual LLMs for Equivalence and Inheritance based Consistent Reasoning
Reasoning and linguistic skills form the cornerstone of human intelligence, facilitating problem-solving and decision-making. Recent advances in Large Language Models (LLMs) have led to impressive linguistic capabilities and emergent reasoning behaviors, fueling widespread adoption across application domains. However, LLMs still struggle with complex reasoning tasks, highlighting their systemic limitations. In this work, we focus on evaluating whether LLMs have the requisite representations to reason using two foundational relationships: "equivalence" and "inheritance". We introduce novel tasks and benchmarks spanning six languages and observe that current SOTA LLMs often produce conflicting answers to the same questions across languages in 17.3-57.5% of cases and violate inheritance constraints in up to 37.2% cases. To enhance consistency across languages, we propose novel "Compositional Representations" where tokens are represented as composition of equivalent tokens across languages, with resulting conflict reduction (up to -4.7%) indicating benefits of shared LLM representations.
☆ Unveiling Large Language Models Generated Texts: A Multi-Level Fine-Grained Detection Framework
Large language models (LLMs) have transformed human writing by enhancing grammar correction, content expansion, and stylistic refinement. However, their widespread use raises concerns about authorship, originality, and ethics, even potentially threatening scholarly integrity. Existing detection methods, which mainly rely on single-feature analysis and binary classification, often fail to effectively identify LLM-generated text in academic contexts. To address these challenges, we propose a novel Multi-level Fine-grained Detection (MFD) framework that detects LLM-generated text by integrating low-level structural, high-level semantic, and deep-level linguistic features, while conducting sentence-level evaluations of lexicon, grammar, and syntax for comprehensive analysis. To improve detection of subtle differences in LLM-generated text and enhance robustness against paraphrasing, we apply two mainstream evasion techniques to rewrite the text. These variations, along with original texts, are used to train a text encoder via contrastive learning, extracting high-level semantic features of sentence to boost detection generalization. Furthermore, we leverage advanced LLM to analyze the entire text and extract deep-level linguistic features, enhancing the model's ability to capture complex patterns and nuances while effectively incorporating contextual information. Extensive experiments on public datasets show that the MFD model outperforms existing methods, achieving an MAE of 0.1346 and an accuracy of 88.56%. Our research provides institutions and publishers with an effective mechanism to detect LLM-generated text, mitigating risks of compromised authorship. Educators and editors can use the model's predictions to refine verification and plagiarism prevention protocols, ensuring adherence to standards.
☆ Few-Shot Joint Multimodal Entity-Relation Extraction via Knowledge-Enhanced Cross-modal Prompt Model ACM MM 2024
Joint Multimodal Entity-Relation Extraction (JMERE) is a challenging task that aims to extract entities and their relations from text-image pairs in social media posts. Existing methods for JMERE require large amounts of labeled data. However, gathering and annotating fine-grained multimodal data for JMERE poses significant challenges. Initially, we construct diverse and comprehensive multimodal few-shot datasets fitted to the original data distribution. To address the insufficient information in the few-shot setting, we introduce the \textbf{K}nowledge-\textbf{E}nhanced \textbf{C}ross-modal \textbf{P}rompt \textbf{M}odel (KECPM) for JMERE. This method can effectively address the problem of insufficient information in the few-shot setting by guiding a large language model to generate supplementary background knowledge. Our proposed method comprises two stages: (1) a knowledge ingestion stage that dynamically formulates prompts based on semantic similarity guide ChatGPT generating relevant knowledge and employs self-reflection to refine the knowledge; (2) a knowledge-enhanced language model stage that merges the auxiliary knowledge with the original input and utilizes a transformer-based model to align with JMERE's required output format. We extensively evaluate our approach on a few-shot dataset derived from the JMERE dataset, demonstrating its superiority over strong baselines in terms of both micro and macro F$_1$ scores. Additionally, we present qualitative analyses and case studies to elucidate the effectiveness of our model.
comment: accepted by ACM MM 2024
☆ Paths-over-Graph: Knowledge Graph Enpowered Large Language Model Reasoning
Large Language Models (LLMs) have achieved impressive results in various tasks but struggle with hallucination problems and lack of relevant knowledge, especially in deep complex reasoning and knowledge-intensive tasks. Knowledge Graphs (KGs), which capture vast amounts of facts in a structured format, offer a reliable source of knowledge for reasoning. However, existing KG-based LLM reasoning methods face challenges like handling multi-hop reasoning, multi-entity questions, and effectively utilizing graph structures. To address these issues, we propose Paths-over-Graph (PoG), a novel method that enhances LLM reasoning by integrating knowledge reasoning paths from KGs, improving the interpretability and faithfulness of LLM outputs. PoG tackles multi-hop and multi-entity questions through a three-phase dynamic multi-hop path exploration, which combines the inherent knowledge of LLMs with factual knowledge from KGs. In order to improve the efficiency, PoG prunes irrelevant information from the graph exploration first and introduces efficient three-step pruning techniques that incorporate graph structures, LLM prompting, and a pre-trained language model (e.g., SBERT) to effectively narrow down the explored candidate paths. This ensures all reasoning paths contain highly relevant information captured from KGs, making the reasoning faithful and interpretable in problem-solving. PoG innovatively utilizes graph structure to prune the irrelevant noise and represents the first method to implement multi-entity deep path detection on KGs for LLM reasoning tasks. Comprehensive experiments on five benchmark KGQA datasets demonstrate PoG outperforms the state-of-the-art method ToG across GPT-3.5-Turbo and GPT-4, achieving an average accuracy improvement of 18.9%. Notably, PoG with GPT-3.5-Turbo surpasses ToG with GPT-4 by up to 23.9%.
☆ Montessori-Instruct: Generate Influential Training Data Tailored for Student Learning
Synthetic data has been widely used to train large language models, but their generative nature inevitably introduces noisy, non-informative, and misleading learning signals. In this paper, we propose Montessori-Instruct, a novel data synthesis framework that tailors the data synthesis ability of the teacher language model toward the student language model's learning process. Specifically, we utilize local data influence of synthetic training data points on students to characterize students' learning preferences. Then, we train the teacher model with Direct Preference Optimization (DPO) to generate synthetic data tailored toward student learning preferences. Experiments with Llama3-8B-Instruct (teacher) and Llama3-8B (student) on Alpaca Eval and MT-Bench demonstrate that Montessori-Instruct significantly outperforms standard synthesis methods by 18.35\% and 46.24\% relatively. Our method also beats data synthesized by a stronger teacher model, GPT-4o. Further analysis confirms the benefits of teacher's learning to generate more influential training data in the student's improved learning, the advantages of local data influence in accurately measuring student preferences, and the robustness of Montessori-Instruct across different student models. Our code and data are open-sourced at https://github.com/cxcscmu/Montessori-Instruct.
comment: Codes and data are open-sourced at https://github.com/cxcscmu/Montessori-Instruct
☆ MediTOD: An English Dialogue Dataset for Medical History Taking with Comprehensive Annotations EMNLP2024
Medical task-oriented dialogue systems can assist doctors by collecting patient medical history, aiding in diagnosis, or guiding treatment selection, thereby reducing doctor burnout and expanding access to medical services. However, doctor-patient dialogue datasets are not readily available, primarily due to privacy regulations. Moreover, existing datasets lack comprehensive annotations involving medical slots and their different attributes, such as symptoms and their onset, progression, and severity. These comprehensive annotations are crucial for accurate diagnosis. Finally, most existing datasets are non-English, limiting their utility for the larger research community. In response, we introduce MediTOD, a new dataset of doctor-patient dialogues in English for the medical history-taking task. Collaborating with doctors, we devise a questionnaire-based labeling scheme tailored to the medical domain. Then, medical professionals create the dataset with high-quality comprehensive annotations, capturing medical slots and their attributes. We establish benchmarks in supervised and few-shot settings on MediTOD for natural language understanding, policy learning, and natural language generation subtasks, evaluating models from both TOD and biomedical domains. We make MediTOD publicly available for future research.
comment: EMNLP2024 Camera Ready Version
☆ Rationale Behind Essay Scores: Enhancing S-LLM's Multi-Trait Essay Scoring with Rationale Generated by LLMs
Existing automated essay scoring (AES) has solely relied on essay text without using explanatory rationales for the scores, thereby forgoing an opportunity to capture the specific aspects evaluated by rubric indicators in a fine-grained manner. This paper introduces Rationale-based Multiple Trait Scoring (RMTS), a novel approach for multi-trait essay scoring that integrates prompt-engineering-based large language models (LLMs) with a fine-tuning-based essay scoring model using a smaller large language model (S-LLM). RMTS uses an LLM-based trait-wise rationale generation system where a separate LLM agent generates trait-specific rationales based on rubric guidelines, which the scoring model uses to accurately predict multi-trait scores. Extensive experiments on benchmark datasets, including ASAP, ASAP++, and Feedback Prize, show that RMTS significantly outperforms state-of-the-art models and vanilla S-LLMs in trait-specific scoring. By assisting quantitative assessment with fine-grained qualitative rationales, RMTS enhances the trait-wise reliability, providing partial explanations about essays.
☆ E3D-GPT: Enhanced 3D Visual Foundation for Medical Vision-Language Model
The development of 3D medical vision-language models holds significant potential for disease diagnosis and patient treatment. However, compared to 2D medical images, 3D medical images, such as CT scans, face challenges related to limited training data and high dimension, which severely restrict the progress of 3D medical vision-language models. To address these issues, we collect a large amount of unlabeled 3D CT data and utilize self-supervised learning to construct a 3D visual foundation model for extracting 3D visual features. Then, we apply 3D spatial convolutions to aggregate and project high-level image features, reducing computational complexity while preserving spatial information. We also construct two instruction-tuning datasets based on BIMCV-R and CT-RATE to fine-tune the 3D vision-language model. Our model demonstrates superior performance compared to existing methods in report generation, visual question answering, and disease diagnosis. Code and data will be made publicly available soon.
☆ Supervised Chain of Thought
Large Language Models (LLMs) have revolutionized natural language processing and hold immense potential for advancing Artificial Intelligence. However, the core architecture of most mainstream LLMs -- the Transformer -- has inherent limitations in computational depth, rendering them theoretically incapable of solving many reasoning tasks that demand increasingly deep computations. Chain of Thought (CoT) prompting has emerged as a technique to address these architectural limitations, as evidenced by several theoretical studies. It offers a promising approach to solving complex reasoning tasks that were previously beyond the capabilities of these models. Despite its successes, CoT and its variants (such as Tree of Thought, Graph of Thought, etc.) rely on a "one-prompt-for-all" approach, using a single prompt structure (e.g., "think step by step") for a wide range of tasks -- from counting and sorting to solving mathematical and algorithmic problems. This approach poses significant challenges for models to generate the correct reasoning steps, as the model must navigate through a vast prompt template space to find the appropriate template for each task. In this work, we build upon previous theoretical analyses of CoT to demonstrate how the one-prompt-for-all approach can negatively affect the computability of LLMs. We partition the solution search space into two: the prompt space and the answer space. Our findings show that task-specific supervision is essential for navigating the prompt space accurately and achieving optimal performance. Through experiments with state-of-the-art LLMs, we reveal a gap in reasoning performance when supervision is applied versus when it is not.
☆ Speciesism in Natural Language Processing Research
Natural Language Processing (NLP) research on AI Safety and social bias in AI has focused on safety for humans and social bias against human minorities. However, some AI ethicists have argued that the moral significance of nonhuman animals has been ignored in AI research. Therefore, the purpose of this study is to investigate whether there is speciesism, i.e., discrimination against nonhuman animals, in NLP research. First, we explain why nonhuman animals are relevant in NLP research. Next, we survey the findings of existing research on speciesism in NLP researchers, data, and models and further investigate this problem in this study. The findings of this study suggest that speciesism exists within researchers, data, and models, respectively. Specifically, our survey and experiments show that (a) among NLP researchers, even those who study social bias in AI, do not recognize speciesism or speciesist bias; (b) among NLP data, speciesist bias is inherent in the data annotated in the datasets used to evaluate NLP models; (c) OpenAI GPTs, recent NLP models, exhibit speciesist bias by default. Finally, we discuss how we can reduce speciesism in NLP research.
comment: This article is a preprint and has not been peer-reviewed. The postprint has been accepted for publication in AI and Ethics. Please cite the final version of the article once it is published
☆ MetaAlign: Align Large Language Models with Diverse Preferences during Inference Time
Large Language Models (LLMs) acquire extensive knowledge and remarkable abilities from extensive text corpora, making them powerful tools for various applications. To make LLMs more usable, aligning them with human preferences is essential. Existing alignment techniques, such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO), typically embed predefined preferences directly within the model's parameters. These methods, however, often result in a static alignment that can not account for the diversity of human preferences in practical applications. In response to this challenge, we propose an effective method, \textbf{MetaAlign}, which aims to help LLMs dynamically align with various explicit or implicit preferences specified at inference time. Experimental results show that LLMs optimized on our meticulously constructed MetaAlign Dataset can effectively align with any preferences specified at the inference stage, validating the feasibility of MetaAlign. We hope that our work can provide some insights into the alignment of language models.
comment: 19 pages, 6 figures
☆ LabSafety Bench: Benchmarking LLMs on Safety Issues in Scientific Labs
Laboratory accidents pose significant risks to human life and property, underscoring the importance of robust safety protocols. Despite advancements in safety training, laboratory personnel may still unknowingly engage in unsafe practices. With the increasing reliance on large language models (LLMs) for guidance in various fields, including laboratory settings, there is a growing concern about their reliability in critical safety-related decision-making. Unlike trained human researchers, LLMs lack formal lab safety education, raising questions about their ability to provide safe and accurate guidance. Existing research on LLM trustworthiness primarily focuses on issues such as ethical compliance, truthfulness, and fairness but fails to fully cover safety-critical real-world applications, like lab safety. To address this gap, we propose the Laboratory Safety Benchmark (LabSafety Bench), a comprehensive evaluation framework based on a new taxonomy aligned with Occupational Safety and Health Administration (OSHA) protocols. This benchmark includes 765 multiple-choice questions verified by human experts, assessing LLMs and vision language models (VLMs) performance in lab safety contexts. Our evaluations demonstrate that while GPT-4o outperforms human participants, it is still prone to critical errors, highlighting the risks of relying on LLMs in safety-critical environments. Our findings emphasize the need for specialized benchmarks to accurately assess the trustworthiness of LLMs in real-world safety applications.
comment: 50 pages, 19 figures
☆ XForecast: Evaluating Natural Language Explanations for Time Series Forecasting
Time series forecasting aids decision-making, especially for stakeholders who rely on accurate predictions, making it very important to understand and explain these models to ensure informed decisions. Traditional explainable AI (XAI) methods, which underline feature or temporal importance, often require expert knowledge. In contrast, natural language explanations (NLEs) are more accessible to laypeople. However, evaluating forecast NLEs is difficult due to the complex causal relationships in time series data. To address this, we introduce two new performance metrics based on simulatability, assessing how well a human surrogate can predict model forecasts using the explanations. Experiments show these metrics differentiate good from poor explanations and align with human judgments. Utilizing these metrics, we further evaluate the ability of state-of-the-art large language models (LLMs) to generate explanations for time series data, finding that numerical reasoning, rather than model size, is the main factor influencing explanation quality.
☆ MultiChartQA: Benchmarking Vision-Language Models on Multi-Chart Problems
Multimodal Large Language Models (MLLMs) have demonstrated impressive abilities across various tasks, including visual question answering and chart comprehension, yet existing benchmarks for chart-related tasks fall short in capturing the complexity of real-world multi-chart scenarios. Current benchmarks primarily focus on single-chart tasks, neglecting the multi-hop reasoning required to extract and integrate information from multiple charts, which is essential in practical applications. To fill this gap, we introduce MultiChartQA, a benchmark that evaluates MLLMs' capabilities in four key areas: direct question answering, parallel question answering, comparative reasoning, and sequential reasoning. Our evaluation of a wide range of MLLMs reveals significant performance gaps compared to humans. These results highlight the challenges in multi-chart comprehension and the potential of MultiChartQA to drive advancements in this field. Our code and data are available at https://github.com/Zivenzhu/Multi-chart-QA
comment: 18 pages, 9 figures
☆ LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems
Interestingly, LLMs yet struggle with some basic tasks that humans find trivial to handle, e.g., counting the number of character r's in the word "strawberry". There are several popular conjectures (e.g., tokenization, architecture and training data) regarding the reason for deficiency of LLMs in simple word-based counting problems, sharing the similar belief that such failure stems from model pretraining hence probably inevitable during deployment. In this paper, we carefully design multiple evaluation settings to investigate validity of prevalent conjectures. Meanwhile, we measure transferability of advanced mathematical and coding reasoning capabilities from specialized LLMs to simple counting tasks. Although specialized LLMs suffer from counting problems as well, we find conjectures about inherent deficiency of LLMs invalid and further seek opportunities to elicit knowledge and capabilities from LLMs that are beneficial to counting tasks. Compared with strategies such as finetuning and in-context learning that are commonly adopted to enhance performance on new or challenging tasks, we show that engaging reasoning is the most robust and efficient way to help LLMs better perceive tasks with more accurate responses. We hope our conjecture validation design could provide insights into the study of future critical failure modes of LLMs. Based on challenges in transferring advanced capabilities to much simpler tasks, we call for more attention to model capability acquisition and evaluation. We also highlight the importance of cultivating consciousness of "reasoning before responding" during model pretraining.
☆ Automated Genre-Aware Article Scoring and Feedback Using Large Language Models
This paper focuses on the development of an advanced intelligent article scoring system that not only assesses the overall quality of written work but also offers detailed feature-based scoring tailored to various article genres. By integrating the pre-trained BERT model with the large language model Chat-GPT, the system gains a deep understanding of both the content and structure of the text, enabling it to provide a thorough evaluation along with targeted suggestions for improvement. Experimental results demonstrate that this system outperforms traditional scoring methods across multiple public datasets, particularly in feature-based assessments, offering a more accurate reflection of the quality of different article types. Moreover, the system generates personalized feedback to assist users in enhancing their writing skills, underscoring the potential and practical value of automated scoring technologies in educational contexts.
☆ Beyond Autoregression: Discrete Diffusion for Complex Reasoning and Planning
Autoregressive language models, despite their impressive capabilities, struggle with complex reasoning and long-term planning tasks. We introduce discrete diffusion models as a novel solution to these challenges. Through the lens of subgoal imbalance, we demonstrate how diffusion models effectively learn difficult subgoals that elude autoregressive approaches. We propose Multi-granularity Diffusion Modeling (MDM), which prioritizes subgoals based on difficulty during learning. On complex tasks like Countdown, Sudoku, and Boolean Satisfiability Problems, MDM significantly outperforms autoregressive models without using search techniques. For instance, MDM achieves 91.5\% and 100\% accuracy on Countdown and Sudoku, respectively, compared to 45.8\% and 20.7\% for autoregressive models. Our work highlights the potential of diffusion-based approaches in advancing AI capabilities for sophisticated language understanding and problem-solving tasks.
☆ Towards Faithful Natural Language Explanations: A Study Using Activation Patching in Large Language Models
Large Language Models (LLMs) are capable of generating persuasive Natural Language Explanations (NLEs) to justify their answers. However, the faithfulness of these explanations should not be readily trusted at face value. Recent studies have proposed various methods to measure the faithfulness of NLEs, typically by inserting perturbations at the explanation or feature level. We argue that these approaches are neither comprehensive nor correctly designed according to the established definition of faithfulness. Moreover, we highlight the risks of grounding faithfulness findings on out-of-distribution samples. In this work, we leverage a causal mediation technique called activation patching, to measure the faithfulness of an explanation towards supporting the explained answer. Our proposed metric, Causal Faithfulness quantifies the consistency of causal attributions between explanations and the corresponding model outputs as the indicator of faithfulness. We experimented across models varying from 2B to 27B parameters and found that models that underwent alignment tuning tend to produce more faithful and plausible explanations. We find that Causal Faithfulness is a promising improvement over existing faithfulness tests by taking into account the model's internal computations and avoiding out of distribution concerns that could otherwise undermine the validity of faithfulness assessments. We release the code in \url{https://github.com/wj210/Causal-Faithfulness}
comment: Under review
☆ SRAP-Agent: Simulating and Optimizing Scarce Resource Allocation Policy with LLM-based Agent
Public scarce resource allocation plays a crucial role in economics as it directly influences the efficiency and equity in society. Traditional studies including theoretical model-based, empirical study-based and simulation-based methods encounter limitations due to the idealized assumption of complete information and individual rationality, as well as constraints posed by limited available data. In this work, we propose an innovative framework, SRAP-Agent (Simulating and Optimizing Scarce Resource Allocation Policy with LLM-based Agent), which integrates Large Language Models (LLMs) into economic simulations, aiming to bridge the gap between theoretical models and real-world dynamics. Using public housing allocation scenarios as a case study, we conduct extensive policy simulation experiments to verify the feasibility and effectiveness of the SRAP-Agent and employ the Policy Optimization Algorithm with certain optimization objectives. The source code can be found in https://github.com/jijiarui-cather/SRAPAgent_Framework
☆ Utilizing Large Language Models for Event Deconstruction to Enhance Multimodal Aspect-Based Sentiment Analysis
With the rapid development of the internet, the richness of User-Generated Contentcontinues to increase, making Multimodal Aspect-Based Sentiment Analysis (MABSA) a research hotspot. Existing studies have achieved certain results in MABSA, but they have not effectively addressed the analytical challenges in scenarios where multiple entities and sentiments coexist. This paper innovatively introduces Large Language Models (LLMs) for event decomposition and proposes a reinforcement learning framework for Multimodal Aspect-based Sentiment Analysis (MABSA-RL) framework. This framework decomposes the original text into a set of events using LLMs, reducing the complexity of analysis, introducing reinforcement learning to optimize model parameters. Experimental results show that MABSA-RL outperforms existing advanced methods on two benchmark datasets. This paper provides a new research perspective and method for multimodal aspect-level sentiment analysis.
☆ Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment
The recent advancements in large language models (LLMs) and pre-trained vision models have accelerated the development of vision-language large models (VLLMs), enhancing the interaction between visual and linguistic modalities. Despite their notable success across various domains, VLLMs face challenges in modality alignment, which can lead to issues like hallucinations and unsafe content generation. Current alignment techniques often rely on coarse feedback and external datasets, limiting scalability and performance. In this paper, we propose FiSAO (Fine-Grained Self-Alignment Optimization), a novel self-alignment method that utilizes the model's own visual encoder as a fine-grained verifier to improve vision-language alignment without the need for additional data. By leveraging token-level feedback from the vision encoder, FiSAO significantly improves vision-language alignment, even surpassing traditional preference tuning methods that require additional data. Through both theoretical analysis and experimental validation, we demonstrate that FiSAO effectively addresses the misalignment problem in VLLMs, marking the first instance of token-level rewards being applied to such models.
comment: 23 pages
☆ CAPE: A Chinese Dataset for Appraisal-based Emotional Generation using Large Language Models
Generating emotionally appropriate responses in conversations with large language models presents a significant challenge due to the complexities of human emotions and cognitive processes, which remain largely underexplored in their critical role in social interactions. In this study, we introduce a two-stage automatic data generation framework to create CAPE, a Chinese dataset named Cognitive Appraisal theory-based Emotional corpus. This corpus facilitates the generation of dialogues with contextually appropriate emotional responses by accounting for diverse personal and situational factors. We propose two tasks utilizing this dataset: emotion prediction and next utterance prediction. Both automated and human evaluations demonstrate that agents trained on our dataset can deliver responses that are more aligned with human emotional expressions. Our study shows the potential for advancing emotional expression in conversational agents, paving the way for more nuanced and meaningful human-computer interactions.
☆ A Lightweight Multi Aspect Controlled Text Generation Solution For Large Language Models
Large language models (LLMs) show remarkable abilities with instruction tuning. However, they fail to achieve ideal tasks when lacking high-quality instruction tuning data on target tasks. Multi-Aspect Controllable Text Generation (MCTG) is a representative task for this dilemma, where aspect datasets are usually biased and correlated. Existing work exploits additional model structures and strategies for solutions, limiting adaptability to LLMs. To activate MCTG ability of LLMs, we propose a lightweight MCTG pipeline based on data augmentation. We analyze bias and correlations in traditional datasets, and address these concerns with augmented control attributes and sentences. Augmented datasets are feasible for instruction tuning. In our experiments, LLMs perform better in MCTG after data augmentation, with a 20% accuracy rise and less aspect correlations.
☆ Coherence-Driven Multimodal Safety Dialogue with Active Learning for Embodied Agents
When assisting people in daily tasks, robots need to accurately interpret visual cues and respond effectively in diverse safety-critical situations, such as sharp objects on the floor. In this context, we present M-CoDAL, a multimodal-dialogue system specifically designed for embodied agents to better understand and communicate in safety-critical situations. The system leverages discourse coherence relations to enhance its contextual understanding and communication abilities. To train this system, we introduce a novel clustering-based active learning mechanism that utilizes an external Large Language Model (LLM) to identify informative instances. Our approach is evaluated using a newly created multimodal dataset comprising 1K safety violations extracted from 2K Reddit images. These violations are annotated using a Large Multimodal Model (LMM) and verified by human annotators. Results with this dataset demonstrate that our approach improves resolution of safety situations, user sentiment, as well as safety of the conversation. Next, we deploy our dialogue system on a Hello Robot Stretch robot and conduct a within-subject user study with real-world participants. In the study, participants role-play two safety scenarios with different levels of severity with the robot and receive interventions from our model and a baseline system powered by OpenAI's ChatGPT. The study results corroborate and extend the findings from automated evaluation, showing that our proposed system is more persuasive and competent in a real-world embodied agent setting.
☆ ViConsFormer: Constituting Meaningful Phrases of Scene Texts using Transformer-based Method in Vietnamese Text-based Visual Question Answering
Text-based VQA is a challenging task that requires machines to use scene texts in given images to yield the most appropriate answer for the given question. The main challenge of text-based VQA is exploiting the meaning and information from scene texts. Recent studies tackled this challenge by considering the spatial information of scene texts in images via embedding 2D coordinates of their bounding boxes. In this study, we follow the definition of meaning from linguistics to introduce a novel method that effectively exploits the information from scene texts written in Vietnamese. Experimental results show that our proposed method obtains state-of-the-art results on two large-scale Vietnamese Text-based VQA datasets. The implementation can be found at this link.
♻ ☆ Locate-then-edit for Multi-hop Factual Recall under Knowledge Editing
The locate-then-edit paradigm has shown significant promise for knowledge editing (KE) in Large Language Models (LLMs). While previous methods perform well on single-hop fact recall tasks, they consistently struggle with multi-hop factual recall tasks involving newly edited knowledge. In this paper, leveraging tools in mechanistic interpretability, we first identify that in multi-hop tasks, LLMs tend to retrieve implicit subject knowledge from deeper MLP layers, unlike single-hop tasks, which rely on earlier layers. This distinction explains the poor performance of current methods in multi-hop queries, as they primarily focus on editing shallow layers, leaving deeper layers unchanged. To address this, we propose IFMET, a novel locate-then-edit KE approach designed to edit both shallow and deep MLP layers. IFMET employs multi-hop editing prompts and supplementary sets to locate and modify knowledge across different reasoning stages. Experimental results demonstrate that IFMET significantly improves performance on multi-hop factual recall tasks, effectively overcoming the limitations of previous locate-then-edit methods.
comment: 21 pages
♻ ☆ System 2 thinking in OpenAI's o1-preview model: Near-perfect performance on a mathematics exam
The processes underlying human cognition are often divided into System 1, which involves fast, intuitive thinking, and System 2, which involves slow, deliberate reasoning. Previously, large language models were criticized for lacking the deeper, more analytical capabilities of System 2. In September 2024, OpenAI introduced the o1 model series, designed to handle System 2-like reasoning. While OpenAI's benchmarks are promising, independent validation is still needed. In this study, we tested the o1-preview model twice on the Dutch 'Mathematics B' final exam. It scored a near-perfect 76 and 74 out of 76 points. For context, only 24 out of 16,414 students in the Netherlands achieved a perfect score. By comparison, the GPT-4o model scored 66 and 62 out of 76, well above the Dutch average of 40.63 points. Neither model had access to the exam figures. Since there was a risk of model contamination (i.e., the knowledge cutoff of o1-preview and GPT-4o was after the exam was published online), we repeated the procedure with a new Mathematics B exam that was published after the cutoff date. The results again indicated that o1-preview performed strongly (97.8th percentile), which suggests that contamination was not a factor. We also show that there is some variability in the output of o1-preview, which means that sometimes there is 'luck' (the answer is correct) or 'bad luck' (the output has diverged into something that is incorrect). We demonstrate that a self-consistency approach, where repeated prompts are given and the most common answer is selected, is a useful strategy for identifying the correct answer. It is concluded that while OpenAI's new model series holds great potential, certain risks must be considered.
♻ ☆ Liger Kernel: Efficient Triton Kernels for LLM Training
Training Large Language Models (LLMs) efficiently at scale presents a formidable challenge, driven by their ever-increasing computational demands and the need for enhanced performance. In this work, we introduce Liger-Kernel, an open-sourced set of Triton kernels developed specifically for LLM training. With kernel optimization techniques like kernel operation fusing and input chunking, our kernels achieve on average a 20% increase in training throughput and a 60% reduction in GPU memory usage for popular LLMs compared to HuggingFace implementations. In addition, Liger-Kernel is designed with modularity, accessibility, and adaptability in mind, catering to both casual and expert users. Comprehensive benchmarks and integration tests are built in to ensure compatibility, performance, correctness, and convergence across diverse computing environments and model architectures. The source code is available under a permissive license at: github.com/linkedin/Liger-Kernel.
comment: 17 pages, 12 figures
♻ ☆ Contextual Document Embeddings
Dense document embeddings are central to neural retrieval. The dominant paradigm is to train and construct embeddings by running encoders directly on individual documents. In this work, we argue that these embeddings, while effective, are implicitly out-of-context for targeted use cases of retrieval, and that a contextualized document embedding should take into account both the document and neighboring documents in context - analogous to contextualized word embeddings. We propose two complementary methods for contextualized document embeddings: first, an alternative contrastive learning objective that explicitly incorporates the document neighbors into the intra-batch contextual loss; second, a new contextual architecture that explicitly encodes neighbor document information into the encoded representation. Results show that both methods achieve better performance than biencoders in several settings, with differences especially pronounced out-of-domain. We achieve state-of-the-art results on the MTEB benchmark with no hard negative mining, score distillation, dataset-specific instructions, intra-GPU example-sharing, or extremely large batch sizes. Our method can be applied to improve performance on any contrastive learning dataset and any biencoder.
♻ ☆ Learning Linear Attention in Polynomial Time
Previous research has explored the computational expressivity of Transformer models in simulating Boolean circuits or Turing machines. However, the learnability of these simulators from observational data has remained an open question. Our study addresses this gap by providing the first polynomial-time learnability results (specifically strong, agnostic PAC learning) for single-layer Transformers with linear attention. We show that linear attention may be viewed as a linear predictor in a suitably defined RKHS. As a consequence, the problem of learning any linear transformer may be converted into the problem of learning an ordinary linear predictor in an expanded feature space, and any such predictor may be converted back into a multiheaded linear transformer. Moving to generalization, we show how to efficiently identify training datasets for which every empirical risk minimizer is equivalent (up to trivial symmetries) to the linear Transformer that generated the data, thereby guaranteeing the learned model will correctly generalize across all inputs. Finally, we provide examples of computations expressible via linear attention and therefore polynomial-time learnable, including associative memories, finite automata, and a class of Universal Turing Machine (UTMs) with polynomially bounded computation histories. We empirically validate our theoretical findings on three tasks: learning random linear attention networks, key--value associations, and learning to execute finite automata. Our findings bridge a critical gap between theoretical expressivity and learnability of Transformers, and show that flexible and general models of computation are efficiently learnable.
♻ ☆ One size doesn't fit all: Predicting the Number of Examples for In-Context Learning
In-context learning (ICL) refers to the process of adding a small number of localized examples (ones that are semantically similar to the input) from a training set of labelled data to an LLM's prompt with an objective to effectively control the generative process seeking to improve the downstream task performance. Existing ICL approaches use an identical number of examples (a pre-configured hyper-parameter) for each data instance. Our work alleviates the limitations of this 'one fits all' approach by dynamically predicting the number of examples for each data instance to be used in few-shot inference with LLMs. In particular, we employ a multi-label classifier, the parameters of which are fitted using a training set, where the label for each instance in the training set indicates if using a specific value of k (number of most similar examples from 0 up to a maximum value) leads to correct k-shot downstream predictions. Our experiments on a number of text classification benchmarks show that AICL substantially outperforms standard ICL by up to 17%.
♻ ☆ Movie101v2: Improved Movie Narration Benchmark
Automatic movie narration aims to generate video-aligned plot descriptions to assist visually impaired audiences. Unlike standard video captioning, it involves not only describing key visual details but also inferring plots that unfold across multiple movie shots, presenting distinct and complex challenges. To advance this field, we introduce Movie101v2, a large-scale, bilingual dataset with enhanced data quality specifically designed for movie narration. Revisiting the task, we propose breaking down the ultimate goal of automatic movie narration into three progressive stages, offering a clear roadmap with corresponding evaluation metrics. Based on our new benchmark, we baseline a range of large vision-language models, including GPT-4V, and conduct an in-depth analysis of the challenges in narration generation. Our findings highlight that achieving applicable movie narration generation is a fascinating goal that requires significant research.
♻ ☆ MCQG-SRefine: Multiple Choice Question Generation and Evaluation with Iterative Self-Critique, Correction, and Comparison Feedback
Automatic question generation (QG) is essential for AI and NLP, particularly in intelligent tutoring, dialogue systems, and fact verification. Generating multiple-choice questions (MCQG) for professional exams, like the United States Medical Licensing Examination (USMLE), is particularly challenging, requiring domain expertise and complex multi-hop reasoning for high-quality questions. However, current large language models (LLMs) like GPT-4 struggle with professional MCQG due to outdated knowledge, hallucination issues, and prompt sensitivity, resulting in unsatisfactory quality and difficulty. To address these challenges, we propose MCQG-SRefine, an LLM self-refine-based (Critique and Correction) framework for converting medical cases into high-quality USMLE-style questions. By integrating expert-driven prompt engineering with iterative self-critique and self-correction feedback, MCQG-SRefine significantly enhances human expert satisfaction regarding both the quality and difficulty of the questions. Furthermore, we introduce an LLM-as-Judge-based automatic metric to replace the complex and costly expert evaluation process, ensuring reliable and expert-aligned assessments.
comment: Equal contribution for the first two authors
♻ ☆ Advocating Character Error Rate for Multilingual ASR Evaluation
Automatic speech recognition (ASR) systems have traditionally been evaluated using English datasets, with the word error rate (WER) serving as the predominant metric. WER's simplicity and ease of interpretation have contributed to its widespread adoption, particularly for English. However, as ASR systems expand to multilingual contexts, WER fails in various ways, particularly with morphologically complex languages or those without clear word boundaries. Our work documents the limitations of WER as an evaluation metric and advocates for the character error rate (CER) as the primary metric in multilingual ASR evaluation. We show that CER avoids many of the challenges WER faces and exhibits greater consistency across writing systems. We support our proposition by conducting human evaluations of ASR transcriptions in three languages: Malayalam, English, and Arabic, which exhibit distinct morphological characteristics. We show that CER correlates more closely with human judgments than WER, even for English. To facilitate further research, we release our human evaluation dataset for future benchmarking of ASR metrics. Our findings suggest that CER should be prioritized, or at least supplemented, in multilingual ASR evaluations to account for the varying linguistic characteristics of different languages.
comment: 4 pages
♻ ☆ English offensive text detection using CNN based Bi-GRU model
Over the years, the number of users of social media has increased drastically. People frequently share their thoughts through social platforms, and this leads to an increase in hate content. In this virtual community, individuals share their views, express their feelings, and post photos, videos, blogs, and more. Social networking sites like Facebook and Twitter provide platforms to share vast amounts of content with a single click. However, these platforms do not impose restrictions on the uploaded content, which may include abusive language and explicit images unsuitable for social media. To resolve this issue, a new idea must be implemented to divide the inappropriate content. Numerous studies have been done to automate the process. In this paper, we propose a new Bi-GRU-CNN model to classify whether the text is offensive or not. The combination of the Bi-GRU and CNN models outperforms the existing model.
comment: 5 pages and 6 figures
♻ ☆ Improving Reward Models with Synthetic Critiques
Reward models (RMs) play a critical role in aligning language models through the process of reinforcement learning from human feedback. RMs are trained to predict a score reflecting human preference, which requires significant time and cost for human annotation. Additionally, RMs tend to quickly overfit on superficial features in the training set, hindering their generalization performance on unseen distributions. We propose a novel approach using synthetic natural language critiques generated by large language models to provide additional feedback, evaluating aspects such as instruction following, correctness, and style. This offers richer signals and more robust features for RMs to assess and score on. We demonstrate that high-quality critiques improve the performance and data efficiency of RMs initialized from different pretrained models, reducing the reliance on costly human annotations. Furthermore, incorporating critiques improves both the interpretability and robustness of RM training.
♻ ☆ With Ears to See and Eyes to Hear: Sound Symbolism Experiments with Multimodal Large Language Models EMNLP 2024
Recently, Large Language Models (LLMs) and Vision Language Models (VLMs) have demonstrated aptitude as potential substitutes for human participants in experiments testing psycholinguistic phenomena. However, an understudied question is to what extent models that only have access to vision and text modalities are able to implicitly understand sound-based phenomena via abstract reasoning from orthography and imagery alone. To investigate this, we analyse the ability of VLMs and LLMs to demonstrate sound symbolism (i.e., to recognise a non-arbitrary link between sounds and concepts) as well as their ability to "hear" via the interplay of the language and vision modules of open and closed-source multimodal models. We perform multiple experiments, including replicating the classic Kiki-Bouba and Mil-Mal shape and magnitude symbolism tasks, and comparing human judgements of linguistic iconicity with that of LLMs. Our results show that VLMs demonstrate varying levels of agreement with human labels, and more task information may be required for VLMs versus their human counterparts for in silico experimentation. We additionally see through higher maximum agreement levels that Magnitude Symbolism is an easier pattern for VLMs to identify than Shape Symbolism, and that an understanding of linguistic iconicity is highly dependent on model size.
comment: Accepted to EMNLP 2024 (Camera Ready)
♻ ☆ Crossroads of Continents: Automated Artifact Extraction for Cultural Adaptation with Large Multimodal Models
We present a comprehensive three-phase study to examine (1) the cultural understanding of Large Multimodal Models (LMMs) by introducing DalleStreet, a large-scale dataset generated by DALL-E 3 and validated by humans, containing 9,935 images of 67 countries and 10 concept classes; (2) the underlying implicit and potentially stereotypical cultural associations with a cultural artifact extraction task; and (3) an approach to adapt cultural representation in an image based on extracted associations using a modular pipeline, CultureAdapt. We find disparities in cultural understanding at geographic sub-region levels with both open-source (LLaVA) and closed-source (GPT-4V) models on DalleStreet and other existing benchmarks, which we try to understand using over 18,000 artifacts that we identify in association to different countries. Our findings reveal a nuanced picture of the cultural competence of LMMs, highlighting the need to develop culture-aware systems. Dataset and code are available at https://github.com/iamshnoo/crossroads
comment: under review
♻ ☆ What's under the hood: Investigating Automatic Metrics on Meeting Summarization
Meeting summarization has become a critical task considering the increase in online interactions. While new techniques are introduced regularly, their evaluation uses metrics not designed to capture meeting-specific errors, undermining effective evaluation. This paper investigates what the frequently used automatic metrics capture and which errors they mask by correlating automatic metric scores with human evaluations across a broad error taxonomy. We commence with a comprehensive literature review on English meeting summarization to define key challenges like speaker dynamics and contextual turn-taking and error types such as missing information and linguistic inaccuracy, concepts previously loosely defined in the field. We examine the relationship between characteristic challenges and errors by using annotated transcripts and summaries from Transformer-based sequence-to-sequence and autoregressive models from the general summary QMSum dataset. Through experimental validation, we find that different model architectures respond variably to challenges in meeting transcripts, resulting in different pronounced links between challenges and errors. Current default-used metrics struggle to capture observable errors, showing weak to mid-correlations, while a third of the correlations show trends of error masking. Only a subset reacts accurately to specific errors, while most correlations show either unresponsiveness or failure to reflect the error's impact on summary quality.
♻ ☆ On Debiasing Text Embeddings Through Context Injection
Current advances in Natural Language Processing (NLP) have made it increasingly feasible to build applications leveraging textual data. Generally, the core of these applications rely on having a good semantic representation of text into vectors, via embedding models. However, it has been shown that these embeddings capture and perpetuate biases already present in text. While a few techniques have been proposed to debias embeddings, they do not take advantage of the recent advances in context understanding of modern embedding models. In this paper, we fill this gap by conducting a review of 19 embedding models by quantifying their biases and how well they respond to context injection as a mean of debiasing. We show that higher performing models are more prone to capturing biases, but are also better at incorporating context. Surprisingly, we find that while models can easily embed affirmative semantics, they fail at embedding neutral semantics. Finally, in a retrieval task, we show that biases in embeddings can lead to non-desirable outcomes. We use our new-found insights to design a simple algorithm for top $k$ retrieval, where $k$ is dynamically selected. We show that our algorithm is able to retrieve all relevant gendered and neutral chunks.
♻ ☆ Train & Constrain: Phonologically Informed Tongue-Twister Generation from Topics and Paraphrases
Previous work in phonologically and phonetically grounded language generation has mainly focused on domains such as puns and poetry. In this article, we present new work on the generation of English tongue twisters - a form of language that is required to be conditioned on a phoneme level to maximize sound overlap, while maintaining semantic consistency with an input topic or phrase and still being grammatically correct. We present TwisterLister, a pipeline for generating phonologically informed tongue twisters from large language models (LLMs) that we use to generate TwistList 2.0, the largest annotated dataset of tongue twisters to date, consisting of 17K+ examples from a combination of human and LLM authors. Our generation pipeline involves the use of a phonologically constrained vocabulary alongside LLM prompting to generate novel, non-derivative tongue twister examples. We additionally present the results of automatic and human evaluation of smaller models trained on our generated dataset to demonstrate the extent to which phonologically motivated language types can be generated without explicit injection of phonological knowledge. Additionally, we introduce a phoneme-aware constrained decoding module (PACD) that can be integrated into an autoregressive language model and demonstrate that this method generates good quality tongue twisters both with and without fine-tuning the underlying language model. We also design and implement a range of automatic metrics for the task of tongue twister generation that is phonologically motivated and captures the unique essence of tongue twisters, primarily based on phonemic edit distance (PED)
comment: Accepted Final Version to Computational Linguistics
♻ ☆ Error Span Annotation: A Balanced Approach for Human Evaluation of Machine Translation
High-quality Machine Translation (MT) evaluation relies heavily on human judgments. Comprehensive error classification methods, such as Multidimensional Quality Metrics (MQM), are expensive as they are time-consuming and can only be done by experts, whose availability may be limited especially for low-resource languages. On the other hand, just assigning overall scores, like Direct Assessment (DA), is simpler and faster and can be done by translators of any level, but is less reliable. In this paper, we introduce Error Span Annotation (ESA), a human evaluation protocol which combines the continuous rating of DA with the high-level error severity span marking of MQM. We validate ESA by comparing it to MQM and DA for 12 MT systems and one human reference translation (English to German) from WMT23. The results show that ESA offers faster and cheaper annotations than MQM at the same quality level, without the requirement of expensive MQM experts.
♻ ☆ BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking of Large Language Models
While large language models (LLMs) exhibit remarkable capabilities across various tasks, they encounter potential security risks such as jailbreak attacks, which exploit vulnerabilities to bypass security measures and generate harmful outputs. Existing jailbreak strategies mainly focus on maximizing attack success rate (ASR), frequently neglecting other critical factors, including the relevance of the jailbreak response to the query and the level of stealthiness. This narrow focus on single objectives can result in ineffective attacks that either lack contextual relevance or are easily recognizable. In this work, we introduce BlackDAN, an innovative black-box attack framework with multi-objective optimization, aiming to generate high-quality prompts that effectively facilitate jailbreaking while maintaining contextual relevance and minimizing detectability. BlackDAN leverages Multiobjective Evolutionary Algorithms (MOEAs), specifically the NSGA-II algorithm, to optimize jailbreaks across multiple objectives including ASR, stealthiness, and semantic relevance. By integrating mechanisms like mutation, crossover, and Pareto-dominance, BlackDAN provides a transparent and interpretable process for generating jailbreaks. Furthermore, the framework allows customization based on user preferences, enabling the selection of prompts that balance harmfulness, relevance, and other factors. Experimental results demonstrate that BlackDAN outperforms traditional single-objective methods, yielding higher success rates and improved robustness across various LLMs and multimodal LLMs, while ensuring jailbreak responses are both relevant and less detectable.
♻ ☆ Improving Retrieval in Sponsored Search by Leveraging Query Context Signals EMNLP 2024
Accurately retrieving relevant bid keywords for user queries is critical in Sponsored Search but remains challenging, particularly for short, ambiguous queries. Existing dense and generative retrieval models often fail to capture nuanced user intent in these cases. To address this, we propose an approach to enhance query understanding by augmenting queries with rich contextual signals derived from web search results and large language models, stored in an online cache. Specifically, we use web search titles and snippets to ground queries in real-world information and utilize GPT-4 to generate query rewrites and explanations that clarify user intent. These signals are efficiently integrated through a Fusion-in-Decoder based Unity architecture, enabling both dense and generative retrieval with serving costs on par with traditional context-free models. To address scenarios where context is unavailable in the cache, we introduce context glancing, a curriculum learning strategy that improves model robustness and performance even without contextual signals during inference. Extensive offline experiments demonstrate that our context-aware approach substantially outperforms context-free models. Furthermore, online A/B testing on a prominent search engine across 160+ countries shows significant improvements in user engagement and revenue.
comment: Accepted to EMNLP 2024 Industry Track. 10 pages, 10 tables, 1 figure
♻ ☆ Model Internals-based Answer Attribution for Trustworthy Retrieval-Augmented Generation EMNLP 2024
Ensuring the verifiability of model answers is a fundamental challenge for retrieval-augmented generation (RAG) in the question answering (QA) domain. Recently, self-citation prompting was proposed to make large language models (LLMs) generate citations to supporting documents along with their answers. However, self-citing LLMs often struggle to match the required format, refer to non-existent sources, and fail to faithfully reflect LLMs' context usage throughout the generation. In this work, we present MIRAGE --Model Internals-based RAG Explanations -- a plug-and-play approach using model internals for faithful answer attribution in RAG applications. MIRAGE detects context-sensitive answer tokens and pairs them with retrieved documents contributing to their prediction via saliency methods. We evaluate our proposed approach on a multilingual extractive QA dataset, finding high agreement with human answer attribution. On open-ended QA, MIRAGE achieves citation quality and efficiency comparable to self-citation while also allowing for a finer-grained control of attribution parameters. Our qualitative evaluation highlights the faithfulness of MIRAGE's attributions and underscores the promising application of model internals for RAG answer attribution.
comment: Accepted by EMNLP 2024 Main Conference. Code and data released at https://github.com/Betswish/MIRAGE
♻ ☆ A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus ACL 2024
Natural language inference (NLI), the task of recognizing the entailment relationship in sentence pairs, is an actively studied topic serving as a proxy for natural language understanding. Despite the relevance of the task in building conversational agents and improving text classification, machine translation and other NLP tasks, to the best of our knowledge, there is no publicly available NLI corpus for the Romanian language. To this end, we introduce the first Romanian NLI corpus (RoNLI) comprising 58K training sentence pairs, which are obtained via distant supervision, and 6K validation and test sentence pairs, which are manually annotated with the correct labels. We conduct experiments with multiple machine learning methods based on distant learning, ranging from shallow models based on word embeddings to transformer-based neural networks, to establish a set of competitive baselines. Furthermore, we improve on the best model by employing a new curriculum learning strategy based on data cartography. Our dataset and code to reproduce the baselines are available at https://github.com/Eduard6421/RONLI.
comment: Accepted at ACL 2024 (Main)
♻ ☆ Towards Lifelong Dialogue Agents via Relation-aware Memory Construction and Timeline-augmented Response Generation
To achieve lifelong human-agent interaction, dialogue agents need to constantly memorize perceived information and properly retrieve it for response generation (RG). While prior work focuses on getting rid of outdated memories to improve retrieval quality, we argue that such memories provide rich, important contextual cues for RG (e.g., changes in user behaviors) in long-term conversations. We present Theanine, a framework for LLM-based lifelong dialogue agents. Theanine discards memory removal and manages large-scale memories by linking them based on their temporal and cause-effect relation. Enabled by this linking structure, Theanine augments RG with memory timelines - series of memories representing the evolution or causality of relevant past events. Along with Theanine, we introduce TeaFarm, a counterfactual-driven evaluation scheme, addressing the limitation of G-Eval and human efforts in measuring memory-augmented dialogue agents. A supplementary video for Theanine and data for TeaFarm are at https://huggingface.co/spaces/ResearcherScholar/Theanine.
comment: Work in Progress
♻ ☆ Large Language Models, scientific knowledge and factuality: A framework to streamline human expert evaluation
The paper introduces a framework for the evaluation of the encoding of factual scientific knowledge, designed to streamline the manual evaluation process typically conducted by domain experts. Inferring over and extracting information from Large Language Models (LLMs) trained on a large corpus of scientific literature can potentially define a step change in biomedical discovery, reducing the barriers for accessing and integrating existing medical evidence. This work explores the potential of LLMs for dialoguing with biomedical background knowledge, using the context of antibiotic discovery. The framework involves of three evaluation steps, each assessing different aspects sequentially: fluency, prompt alignment, semantic coherence, factual knowledge, and specificity of the generated responses. By splitting these tasks between non-experts and experts, the framework reduces the effort required from the latter. The work provides a systematic assessment on the ability of eleven state-of-the-art models LLMs, including ChatGPT, GPT-4 and Llama 2, in two prompting-based tasks: chemical compound definition generation and chemical compound-fungus relation determination. Although recent models have improved in fluency, factual accuracy is still low and models are biased towards over-represented entities. The ability of LLMs to serve as biomedical knowledge bases is questioned, and the need for additional systematic evaluation frameworks is highlighted. While LLMs are currently not fit for purpose to be used as biomedical factual knowledge bases in a zero-shot setting, there is a promising emerging property in the direction of factuality as the models become domain specialised, scale-up in size and level of human feedback.
comment: Accepted at the Journal of Biomedical Informatics, Volume 158, October 2024, 104724
♻ ☆ Multi-LLM QA with Embodied Exploration
Large language models (LLMs) have grown in popularity due to their natural language interface and pre trained knowledge, leading to rapidly increasing success in question-answering (QA) tasks. More recently, multi-agent systems with LLM-based agents (Multi-LLM) have been utilized increasingly more for QA. In these scenarios, the models may each answer the question and reach a consensus or each model is specialized to answer different domain questions. However, most prior work dealing with Multi-LLM QA has focused on scenarios where the models are asked in a zero-shot manner or are given information sources to extract the answer. For question answering of an unknown environment, embodied exploration of the environment is first needed to answer the question. This skill is necessary for personalizing embodied AI to environments such as households. There is a lack of insight into whether a Multi-LLM system can handle question-answering based on observations from embodied exploration. In this work, we address this gap by investigating the use of Multi-Embodied LLM Explorers (MELE) for QA in an unknown environment. Multiple LLM-based agents independently explore and then answer queries about a household environment. We analyze different aggregation methods to generate a single, final answer for each query: debating, majority voting, and training a central answer module (CAM). Using CAM, we observe a $46\%$ higher accuracy compared against the other non-learning-based aggregation methods. We provide code and the query dataset for further research.
comment: 16 pages, 9 Figures, 5 Tables
♻ ☆ MolecularGPT: Open Large Language Model (LLM) for Few-Shot Molecular Property Prediction
Molecular property prediction (MPP) is a fundamental and crucial task in drug discovery. However, prior methods are limited by the requirement for a large number of labeled molecules and their restricted ability to generalize for unseen and new tasks, both of which are essential for real-world applications. To address these challenges, we present MolecularGPT for few-shot MPP. From a perspective on instruction tuning, we fine-tune large language models (LLMs) based on curated molecular instructions spanning over 1000 property prediction tasks. This enables building a versatile and specialized LLM that can be adapted to novel MPP tasks without any fine-tuning through zero- and few-shot in-context learning (ICL). MolecularGPT exhibits competitive in-context reasoning capabilities across 10 downstream evaluation datasets, setting new benchmarks for few-shot molecular prediction tasks. More importantly, with just two-shot examples, MolecularGPT can outperform standard supervised graph neural network methods on 4 out of 7 datasets. It also excels state-of-the-art LLM baselines by up to 15.7% increase on classification accuracy and decrease of 17.9 on regression metrics (e.g., RMSE) under zero-shot. This study demonstrates the potential of LLMs as effective few-shot molecular property predictors. The code is available at https://github.com/NYUSHCS/MolecularGPT.
♻ ☆ A Fundamental Trade-off in Aligned Language Models and its Relation to Sampling Adaptors EMNLP 2024
The relationship between the quality of a string, as judged by a human reader, and its probability, $p(\boldsymbol{y})$ under a language model undergirds the development of better language models. For example, many popular algorithms for sampling from a language model have been conceived with the goal of manipulating $p(\boldsymbol{y})$ to place higher probability on strings that humans deem of high quality. In this article, we examine the probability--quality relationship in language models explicitly aligned to human preferences, e.g., through reinforcement learning through human feedback. We show that, when sampling corpora from an aligned language model, there exists a trade-off between the strings' average reward and average log-likelihood under the prior language model, i.e., the same model before alignment with human preferences. We provide a formal treatment of this phenomenon and demonstrate how a choice of sampling adaptor allows for a selection of how much likelihood we exchange for the reward.
comment: EMNLP 2024
♻ ☆ Entity Matching using Large Language Models EDBT
Entity matching is the task of deciding whether two entity descriptions refer to the same real-world entity. Entity matching is a central step in most data integration pipelines. Many state-of-the-art entity matching methods rely on pre-trained language models (PLMs) such as BERT or RoBERTa. Two major drawbacks of these models for entity matching are that (i) the models require significant amounts of task-specific training data and (ii) the fine-tuned models are not robust concerning out-of-distribution entities. This paper investigates using generative large language models (LLMs) as a less task-specific training data-dependent and more robust alternative to PLM-based matchers. The study covers hosted and open-source LLMs which can be run locally. We evaluate these models in a zero-shot scenario and a scenario where task-specific training data is available. We compare different prompt designs and the prompt sensitivity of the models. We show that there is no single best prompt but that the prompt needs to be tuned for each model/dataset combination. We further investigate (i) the selection of in-context demonstrations, (ii) the generation of matching rules, as well as (iii) fine-tuning LLMs using the same pool of training data. Our experiments show that the best LLMs require no or only a few training examples to perform comparably to PLMs that were fine-tuned using thousands of examples. LLM-based matchers further exhibit higher robustness to unseen entities. We show that GPT4 can generate structured explanations for matching decisions and can automatically identify potential causes of matching errors by analyzing explanations of wrong decisions. We demonstrate that the model can generate meaningful textual descriptions of the identified error classes, which can help data engineers to improve entity matching pipelines.
comment: Published in Proceedings of the 28th International Conference on Extending Database Technology (EDBT), 25th March-28th March, 2025, ISBN 978-3-89318-098-1 on OpenProceedings.org
♻ ☆ 2D-TPE: Two-Dimensional Positional Encoding Enhances Table Understanding for Large Language Models
Tables are ubiquitous across various domains for concisely representing structured information. Empowering large language models (LLMs) to reason over tabular data represents an actively explored direction. However, since typical LLMs only support one-dimensional~(1D) inputs, existing methods often flatten the two-dimensional~(2D) table structure into a sequence of tokens, which can severely disrupt the spatial relationships and result in an inevitable loss of vital contextual information. In this paper, we first empirically demonstrate the detrimental impact of such flattening operations on the performance of LLMs in capturing the spatial information of tables through two elaborate proxy tasks. Subsequently, we introduce a simple yet effective positional encoding method, termed ``2D-TPE'' (Two-Dimensional Table Positional Encoding), to address this challenge. 2D-TPE enables each attention head to dynamically select a permutation order of tokens within the context for attending to them, where each permutation represents a distinct traversal mode for the table, such as column-wise or row-wise traversal. 2D-TPE effectively mitigates the risk of losing essential spatial information while preserving computational efficiency, thus better preserving the table structure. Extensive experiments across five benchmarks demonstrate that 2D-TPE outperforms strong baselines, underscoring the importance of preserving the table structure for accurate table comprehension. Comprehensive analysis further reveals the substantially better scalability of 2D-TPE to large tables than baselines.
♻ ☆ FAME: Towards Factual Multi-Task Model Editing EMNLP 2024
Large language models (LLMs) embed extensive knowledge and utilize it to perform exceptionally well across various tasks. Nevertheless, outdated knowledge or factual errors within LLMs can lead to misleading or incorrect responses, causing significant issues in practical applications. To rectify the fatal flaw without the necessity for costly model retraining, various model editing approaches have been proposed to correct inaccurate knowledge within LLMs in a cost-efficient way. To evaluate these model editing methods, previous work introduced a series of datasets. However, most of the previous datasets only contain fabricated data in a single format, which diverges from real-world model editing scenarios, raising doubts about their usability in practice. To facilitate the application of model editing in real-world scenarios, we propose the challenge of practicality. To resolve such challenges and effectively enhance the capabilities of LLMs, we present FAME, an factual, comprehensive, and multi-task dataset, which is designed to enhance the practicality of model editing. We then propose SKEME, a model editing method that uses a novel caching mechanism to ensure synchronization with the real world. The experiments demonstrate that SKEME performs excellently across various tasks and scenarios, confirming its practicality.
comment: 9 pages, 3 figures. This paper has been accepted by EMNLP 2024
♻ ☆ Prompt Tuning of Deep Neural Networks for Speaker-adaptive Visual Speech Recognition
Visual Speech Recognition (VSR) aims to infer speech into text depending on lip movements alone. As it focuses on visual information to model the speech, its performance is inherently sensitive to personal lip appearances and movements, and this makes the VSR models show degraded performance when they are applied to unseen speakers. In this paper, to remedy the performance degradation of the VSR model on unseen speakers, we propose prompt tuning methods of Deep Neural Networks (DNNs) for speaker-adaptive VSR. Specifically, motivated by recent advances in Natural Language Processing (NLP), we finetune prompts on adaptation data of target speakers instead of modifying the pre-trained model parameters. Different from the previous prompt tuning methods mainly limited to Transformer variant architecture, we explore different types of prompts, the addition, the padding, and the concatenation form prompts that can be applied to the VSR model which is composed of CNN and Transformer in general. With the proposed prompt tuning, we show that the performance of the pre-trained VSR model on unseen speakers can be largely improved by using a small amount of adaptation data (e.g., less than 5 minutes), even if the pre-trained model is already developed with large speaker variations. Moreover, by analyzing the performance and parameters of different types of prompts, we investigate when the prompt tuning is preferred over the finetuning methods. The effectiveness of the proposed method is evaluated on both word- and sentence-level VSR databases, LRW-ID and GRID.
comment: IEEE TPAMI
♻ ☆ BANTH: A Multi-label Hate Speech Detection Dataset for Transliterated Bangla
The proliferation of transliterated texts in digital spaces has emphasized the need for detecting and classifying hate speech in languages beyond English, particularly in low-resource languages. As online discourse can perpetuate discrimination based on target groups, e.g. gender, religion, and origin, multi-label classification of hateful content can help in comprehending hate motivation and enhance content moderation. While previous efforts have focused on monolingual or binary hate classification tasks, no work has yet addressed the challenge of multi-label hate speech classification in transliterated Bangla. We introduce BanTH, the first multi-label transliterated Bangla hate speech dataset comprising 37.3k samples. The samples are sourced from YouTube comments, where each instance is labeled with one or more target groups, reflecting the regional demographic. We establish novel transformer encoder-based baselines by further pre-training on transliterated Bangla corpus. We also propose a novel translation-based LLM prompting strategy for transliterated text. Experiments reveal that our further pre-trained encoders are achieving state-of-the-art performance on the BanTH dataset, while our translation-based prompting outperforms other strategies in the zero-shot setting. The introduction of BanTH not only fills a critical gap in hate speech research for Bangla but also sets the stage for future exploration into code-mixed and multi-label classification challenges in underrepresented languages.
♻ ☆ Understanding Likelihood Over-optimisation in Direct Alignment Algorithms
Direct Alignment Algorithms (DAAs), such as Direct Preference Optimisation (DPO) and Identity Preference Optimisation (IPO), have emerged as alternatives to online Reinforcement Learning from Human Feedback (RLHF) algorithms such as Proximal Policy Optimisation (PPO) for aligning language models to human preferences, without the need for explicit reward modelling. These methods generally aim to increase the likelihood of generating better (preferred) completions while discouraging worse (non-preferred) ones, while staying close to the original model's behaviour. In this work, we explore the relationship between completion likelihood and model performance in state-of-the-art DAAs, and identify a critical issue of likelihood over-optimisation. Contrary to expectations, we find that higher likelihood of better completions and larger margins between better and worse completion likelihoods do not necessarily lead to better performance, and may even degrade it. Our analysis reveals that while higher likelihood correlates with better memorisation of factual knowledge patterns, a slightly lower completion likelihood tends to improve output diversity, thus leading to better generalisation to unseen scenarios. Moreover, we identify two key indicators that signal when over-optimised output diversity begins to harm performance: Decreasing Entropy over Top-k Tokens and Diminishing Top-k Probability Mass. Our experimental results validate that these indicators are reliable signs of declining performance under different regularisations, helping prevent over-optimisation and improve alignment with human preferences.
comment: Preprint Version
♻ ☆ MaiBaam Annotation Guidelines
This document provides the annotation guidelines for MaiBaam, a Bavarian corpus manually annotated with part-of-speech (POS) tags, syntactic dependencies, and German lemmas. MaiBaam belongs to the Universal Dependencies (UD) project, and our annotations elaborate on the general and German UD version 2 guidelines. In this document, we detail how to preprocess and tokenize Bavarian data, provide an overview of the POS tags and dependencies we use, explain annotation decisions that would also apply to closely related languages like German, and lastly we introduce and motivate decisions that are specific to Bavarian grammar.
comment: Updated for UD v2.15 (German lemmas added)
♻ ☆ Evaluating Semantic Variation in Text-to-Image Synthesis: A Causal Perspective
Accurate interpretation and visualization of human instructions are crucial for text-to-image (T2I) synthesis. However, current models struggle to capture semantic variations from word order changes, and existing evaluations, relying on indirect metrics like text-image similarity, fail to reliably assess these challenges. This often obscures poor performance on complex or uncommon linguistic patterns by the focus on frequent word combinations. To address these deficiencies, we propose a novel metric called SemVarEffect and a benchmark named SemVarBench, designed to evaluate the causality between semantic variations in inputs and outputs in T2I synthesis. Semantic variations are achieved through two types of linguistic permutations, while avoiding easily predictable literal variations. Experiments reveal that the CogView-3-Plus and Ideogram 2 performed the best, achieving a score of 0.2/1. Semantic variations in object relations are less understood than attributes, scoring 0.07/1 compared to 0.17-0.19/1. We found that cross-modal alignment in UNet or Transformers plays a crucial role in handling semantic variations, a factor previously overlooked by a focus on textual encoders. Our work establishes an effective evaluation framework that advances the T2I synthesis community's exploration of human instruction understanding. Our benchmark and code are available at https://github.com/zhuxiangru/SemVarBench .
comment: The only change in the current version update is the replacement of the template with a more precise one
♻ ☆ I run as fast as a rabbit, can you? A Multilingual Simile Dialogue Dataset ACL 2023
A simile is a figure of speech that compares two different things (called the tenor and the vehicle) via shared properties. The tenor and the vehicle are usually connected with comparator words such as "like" or "as". The simile phenomena are unique and complex in a real-life dialogue scene where the tenor and the vehicle can be verbal phrases or sentences, mentioned by different speakers, exist in different sentences, or occur in reversed order. However, the current simile research usually focuses on similes in a triplet tuple (tenor, property, vehicle) or a single sentence where the tenor and vehicle are usually entities or noun phrases, which could not reflect complex simile phenomena in real scenarios. In this paper, we propose a novel and high-quality multilingual simile dialogue (MSD) dataset to facilitate the study of complex simile phenomena. The MSD is the largest manually annotated simile data ($\sim$20K) and it contains both English and Chinese data. Meanwhile, the MSD data can also be used on dialogue tasks to test the ability of dialogue systems when using similes. We design 3 simile tasks (recognition, interpretation, and generation) and 2 dialogue tasks (retrieval and generation) with MSD. For each task, we provide experimental results from strong pre-trained or state-of-the-art models. The experiments demonstrate the challenge of MSD and we have released the data/code on GitHub.
comment: 13 Pages, 1 Figure, 12 Tables, ACL 2023 findings
♻ ☆ Can Few-shot Work in Long-Context? Recycling the Context to Generate Demonstrations
Despite recent advancements in Large Language Models (LLMs), their performance on tasks involving long contexts remains sub-optimal. In-Context Learning (ICL) with few-shot examples may be an appealing solution to enhance LLM performance in this scenario; However, na\"ively adding ICL examples with long context introduces challenges, including substantial token overhead added for each few-shot example and context mismatch between the demonstrations and the target query. In this work, we propose to automatically generate few-shot examples for long context QA tasks by recycling contexts. Specifically, given a long input context (1-3k tokens) and a query, we generate additional query-output pairs from the given context as few-shot examples, while introducing the context only once. This ensures that the demonstrations are leveraging the same context as the target query while only adding a small number of tokens to the prompt. We further enhance each demonstration by instructing the model to explicitly identify the relevant paragraphs before the answer, which improves performance while providing fine-grained attribution to the answer source. We apply our method on multiple LLMs and obtain substantial improvements (+16 absolute points on average across models) on various QA datasets with long context, especially when the answer lies within the middle of the context. Surprisingly, despite introducing only single-hop ICL examples, LLMs also successfully generalize to multi-hop long-context QA using our approach.
♻ ☆ Towards Verifiable Text Generation with Evolving Memory and Self-Reflection EMNLP 2024
Despite the remarkable ability of large language models (LLMs) in language comprehension and generation, they often suffer from producing factually incorrect information, also known as hallucination. A promising solution to this issue is verifiable text generation, which prompts LLMs to generate content with citations for accuracy verification. However, verifiable text generation is non-trivial due to the focus-shifting phenomenon, the intricate reasoning needed to align the claim with correct citations, and the dilemma between the precision and breadth of retrieved documents. In this paper, we present VTG, an innovative framework for Verifiable Text Generation with evolving memory and self-reflection. VTG introduces evolving long short-term memory to retain both valuable documents and recent documents. A two-tier verifier equipped with an evidence finder is proposed to rethink and reflect on the relationship between the claim and citations. Furthermore, active retrieval and diverse query generation are utilized to enhance both the precision and breadth of the retrieved documents. We conduct extensive experiments on five datasets across three knowledge-intensive tasks and the results reveal that VTG significantly outperforms baselines.
comment: EMNLP 2024 Main Conference
♻ ☆ Harnessing Webpage UIs for Text-Rich Visual Understanding
Text-rich visual understanding-the ability to process environments where dense textual content is integrated with visuals-is crucial for multimodal large language models (MLLMs) to interact effectively with structured environments. To enhance this capability, we propose synthesizing general multimodal instructions from webpage UIs using text-based large language models (LLMs). Despite lacking direct visual input, text-based LLMs are able to process structured text representations from webpage accessibility trees. These instructions are then paired with UI screenshots to train multimodal models. We introduce MultiUI, a dataset containing 7.3 million samples from 1 million websites, covering diverse multimodal tasks and UI layouts. Models trained on MultiUI not only excel in web UI tasks-achieving up to a 48% improvement on VisualWebBench and a 19.1% boost in element accuracy on a web agent dataset Mind2Web-but also generalize surprisingly well to non-web UI tasks and even to non-UI domains, such as document understanding, OCR, and chart interpretation. These results highlight the broad applicability of web UI data for advancing text-rich visual understanding across various scenarios.
♻ ☆ Dating ancient manuscripts using radiocarbon and AI-based writing style analysis
Determining the chronology of ancient handwritten manuscripts is essential for reconstructing the evolution of ideas. For the Dead Sea Scrolls, this is particularly important. However, there is an almost complete lack of date-bearing manuscripts evenly distributed across the timeline and written in similar scripts available for palaeographic comparison. Here, we present Enoch, a state-of-the-art AI-based date-prediction model, trained on the basis of new radiocarbon-dated samples of the scrolls. Enoch uses established handwriting-style descriptors and applies Bayesian ridge regression. The challenge of this study is that the number of radiocarbon-dated manuscripts is small, while current machine learning requires an abundance of training data. We show that by using combined angular and allographic writing style feature vectors and applying Bayesian ridge regression, Enoch could predict the radiocarbon-based dates from style, supported by leave-one-out validation, with varied MAEs of 27.9 to 30.7 years relative to the radiocarbon dating. Enoch was then used to estimate the dates of 135 unseen manuscripts, revealing that 79 per cent of the samples were considered 'realistic' upon palaeographic post-hoc evaluation. We present a new chronology of the scrolls. The radiocarbon ranges and Enoch's style-based predictions are often older than the traditionally assumed palaeographic estimates. In the range of 300-50 BCE, Enoch's date prediction provides an improved granularity. The study is in line with current developments in multimodal machine-learning techniques, and the methods can be used for date prediction in other partially-dated manuscript collections. This research shows how Enoch's quantitative, probability-based approach can be a tool for palaeographers and historians, re-dating ancient Jewish key texts and contributing to current debates on Jewish and Christian origins.
comment: 16 pages of main article, 103 pages of supplementary materials; the first version of this article is originally prepared in July 2023 after the completion of all the experiments
♻ ☆ Conversational Recommender System and Large Language Model Are Made for Each Other in E-commerce Pre-sales Dialogue EMNLP 2023
E-commerce pre-sales dialogue aims to understand and elicit user needs and preferences for the items they are seeking so as to provide appropriate recommendations. Conversational recommender systems (CRSs) learn user representation and provide accurate recommendations based on dialogue context, but rely on external knowledge. Large language models (LLMs) generate responses that mimic pre-sales dialogues after fine-tuning, but lack domain-specific knowledge for accurate recommendations. Intuitively, the strengths of LLM and CRS in E-commerce pre-sales dialogues are complementary, yet no previous work has explored this. This paper investigates the effectiveness of combining LLM and CRS in E-commerce pre-sales dialogues, proposing two collaboration methods: CRS assisting LLM and LLM assisting CRS. We conduct extensive experiments on a real-world dataset of Ecommerce pre-sales dialogues. We analyze the impact of two collaborative approaches with two CRSs and two LLMs on four tasks of Ecommerce pre-sales dialogue. We find that collaborations between CRS and LLM can be very effective in some cases.
comment: EMNLP 2023 Findings
♻ ☆ Unraveling and Mitigating Retriever Inconsistencies in Retrieval-Augmented Large Language Models ACL 2024
Although Retrieval-Augmented Large Language Models (RALMs) demonstrate their superiority in terms of factuality, they do not consistently outperform the original retrieval-free Language Models (LMs). Our experiments reveal that this example-level performance inconsistency exists not only between retrieval-augmented and retrieval-free LM but also among different retrievers. To understand this phenomenon, we investigate the degeneration behavior of RALMs and theoretically decompose it into four categories. Further analysis based on our decomposition reveals that the innate difference in knowledge sources and the unpredictable degeneration of the reader model contribute most to the inconsistency. Drawing from our analysis, we introduce Ensemble of Retrievers (EoR), a trainable framework that can adaptively retrieve from different knowledge sources and effectively decrease unpredictable reader errors. Our experiments on Open Domain Question Answering show that EoR substantially improves performance over the RALM with a single retriever by considerably reducing inconsistent behaviors.
comment: ACL 2024 (findings)
♻ ☆ PARIKSHA: A Large-Scale Investigation of Human-LLM Evaluator Agreement on Multilingual and Multi-Cultural Data EMNLP 2024
Evaluation of multilingual Large Language Models (LLMs) is challenging due to a variety of factors -- the lack of benchmarks with sufficient linguistic diversity, contamination of popular benchmarks into LLM pre-training data and the lack of local, cultural nuances in translated benchmarks. In this work, we study human and LLM-based evaluation in a multilingual, multi-cultural setting. We evaluate 30 models across 10 Indic languages by conducting 90K human evaluations and 30K LLM-based evaluations and find that models such as GPT-4o and Llama-3 70B consistently perform best for most Indic languages. We build leaderboards for two evaluation settings - pairwise comparison and direct assessment and analyze the agreement between humans and LLMs. We find that humans and LLMs agree fairly well in the pairwise setting but the agreement drops for direct assessment evaluation especially for languages such as Bengali and Odia. We also check for various biases in human and LLM-based evaluation and find evidence of self-bias in the GPT-based evaluator. Our work presents a significant step towards scaling up multilingual evaluation of LLMs.
comment: Accepted to EMNLP 2024
♻ ☆ Graph Neural Network Enhanced Retrieval for Question Answering of LLMs
Retrieval augmented generation has revolutionized large language model (LLM) outputs by providing factual supports. Nevertheless, it struggles to capture all the necessary knowledge for complex reasoning questions. Existing retrieval methods typically divide reference documents into passages, treating them in isolation. These passages, however, are often interrelated, such as passages that are contiguous or share the same keywords. Therefore, it is crucial to recognize such relatedness for enhancing the retrieval process. In this paper, we propose a novel retrieval method, called GNN-Ret, which leverages graph neural networks (GNNs) to enhance retrieval by exploiting the relatedness between passages. Specifically, we first construct a graph of passages by connecting passages that are structure-related or keyword-related. A graph neural network (GNN) is then leveraged to exploit the relationships between passages and improve the retrieval of supporting passages. Furthermore, we extend our method to handle multi-hop reasoning questions using a recurrent graph neural network (RGNN), named RGNN-Ret. At each step, RGNN-Ret integrates the graphs of passages from previous steps, thereby enhancing the retrieval of supporting passages. Extensive experiments on benchmark datasets demonstrate that GNN-Ret achieves higher accuracy for question answering with a single query of LLMs than strong baselines that require multiple queries, and RGNN-Ret further improves accuracy and achieves state-of-the-art performance, with up to 10.4% accuracy improvement on the 2WikiMQA dataset.
comment: Under review
♻ ☆ On the Use of Large Language Models to Generate Capability Ontologies
Capability ontologies are increasingly used to model functionalities of systems or machines. The creation of such ontological models with all properties and constraints of capabilities is very complex and can only be done by ontology experts. However, Large Language Models (LLMs) have shown that they can generate machine-interpretable models from natural language text input and thus support engineers / ontology experts. Therefore, this paper investigates how LLMs can be used to create capability ontologies. We present a study with a series of experiments in which capabilities with varying complexities are generated using different prompting techniques and with different LLMs. Errors in the generated ontologies are recorded and compared. To analyze the quality of the generated ontologies, a semi-automated approach based on RDF syntax checking, OWL reasoning, and SHACL constraints is used. The results of this study are very promising because even for complex capabilities, the generated ontologies are almost free of errors.
comment: \c{opyright} 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Toward a Method to Generate Capability Ontologies from Natural Language Descriptions
To achieve a flexible and adaptable system, capability ontologies are increasingly leveraged to describe functions in a machine-interpretable way. However, modeling such complex ontological descriptions is still a manual and error-prone task that requires a significant amount of effort and ontology expertise. This contribution presents an innovative method to automate capability ontology modeling using Large Language Models (LLMs), which have proven to be well suited for such tasks. Our approach requires only a natural language description of a capability, which is then automatically inserted into a predefined prompt using a few-shot prompting technique. After prompting an LLM, the resulting capability ontology is automatically verified through various steps in a loop with the LLM to check the overall correctness of the capability ontology. First, a syntax check is performed, then a check for contradictions, and finally a check for hallucinations and missing ontology elements. Our method greatly reduces manual effort, as only the initial natural language description and a final human review and possible correction are necessary, thereby streamlining the capability ontology generation process.
comment: \c{opyright} 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Large Language Model Based Generative Error Correction: A Challenge and Baselines for Speech Recognition, Speaker Tagging, and Emotion Recognition
Given recent advances in generative AI technology, a key question is how large language models (LLMs) can enhance acoustic modeling tasks using text decoding results from a frozen, pretrained automatic speech recognition (ASR) model. To explore new capabilities in language modeling for speech processing, we introduce the generative speech transcription error correction (GenSEC) challenge. This challenge comprises three post-ASR language modeling tasks: (i) post-ASR transcription correction, (ii) speaker tagging, and (iii) emotion recognition. These tasks aim to emulate future LLM-based agents handling voice-based interfaces while remaining accessible to a broad audience by utilizing open pretrained language models or agent-based APIs. We also discuss insights from baseline evaluations, as well as lessons learned for designing future evaluations.
comment: IEEE SLT 2024. The initial draft version has been done in December 2023. Post-ASR Text Processing and Understanding Community and LlaMA-7B pre-training correction model: https://huggingface.co/GenSEC-LLM/SLT-Task1-Llama2-7b-HyPo-baseline
♻ ☆ VLFeedback: A Large-Scale AI Feedback Dataset for Large Vision-Language Models Alignment EMNLP 2024
As large vision-language models (LVLMs) evolve rapidly, the demand for high-quality and diverse data to align these models becomes increasingly crucial. However, the creation of such data with human supervision proves costly and time-intensive. In this paper, we investigate the efficacy of AI feedback to scale supervision for aligning LVLMs. We introduce VLFeedback, the first large-scale vision-language feedback dataset, comprising over 82K multi-modal instructions and comprehensive rationales generated by off-the-shelf models without human annotations. To evaluate the effectiveness of AI feedback for vision-language alignment, we train Silkie, an LVLM fine-tuned via direct preference optimization on VLFeedback. Silkie showcases exceptional performance regarding helpfulness, visual faithfulness, and safety metrics. It outperforms its base model by 6.9\% and 9.5\% in perception and cognition tasks, reduces hallucination issues on MMHal-Bench, and exhibits enhanced resilience against red-teaming attacks. Furthermore, our analysis underscores the advantage of AI feedback, particularly in fostering preference diversity to deliver more comprehensive improvements. Our dataset, training code and models are available at https://vlf-silkie.github.io.
comment: EMNLP 2024 Main Conference camera-ready version (fixed small typos). This article supersedes arXiv:2312.10665
♻ ☆ WaterMax: breaking the LLM watermark detectability-robustness-quality trade-off
Watermarking is a technical means to dissuade malfeasant usage of Large Language Models. This paper proposes a novel watermarking scheme, so-called WaterMax, that enjoys high detectability while sustaining the quality of the generated text of the original LLM. Its new design leaves the LLM untouched (no modification of the weights, logits, temperature, or sampling technique). WaterMax balances robustness and complexity contrary to the watermarking techniques of the literature inherently provoking a trade-off between quality and robustness. Its performance is both theoretically proven and experimentally validated. It outperforms all the SotA techniques under the most complete benchmark suite. Code available at https://github.com/eva-giboulot/WaterMax.
♻ ☆ LLM Critics Help Catch Bugs in Mathematics: Towards a Better Mathematical Verifier with Natural Language Feedback
In recent progress, mathematical verifiers have achieved success in mathematical reasoning tasks by validating the correctness of solutions generated by policy models. However, existing verifiers are trained with binary classification labels, which are not informative enough for the model to accurately assess the solutions. To mitigate the aforementioned insufficiency of binary labels, we introduce step-wise natural language feedback as rationale labels, that is, the correctness of each step and the detailed explanations. In this paper, we propose Math-Minos, a natural language feedback-enhanced verifier by constructing automatically generated training data and a two-stage training paradigm for effective training and efficient inference. Our experiments reveal that a small set of natural language feedback can significantly boost the performance of the verifier in both verification and reinforcement learning. We have released the code and data for further exploration.
comment: 15 pages
♻ ☆ PertEval: Unveiling Real Knowledge Capacity of LLMs with Knowledge-Invariant Perturbations NeurIPS '24
Expert-designed close-ended benchmarks are indispensable in assessing the knowledge capacity of large language models (LLMs). Despite their widespread use, concerns have mounted regarding their reliability due to limited test scenarios and an unavoidable risk of data contamination. To rectify this, we present PertEval, a toolkit devised for in-depth probing of LLMs' knowledge capacity through \textbf{knowledge-invariant perturbations}. These perturbations employ human-like restatement techniques to generate on-the-fly test samples from static benchmarks, meticulously retaining knowledge-critical content while altering irrelevant details. Our toolkit further includes a suite of \textbf{response consistency analyses} that compare performance on raw vs. perturbed test sets to precisely assess LLMs' genuine knowledge capacity. Six representative LLMs are re-evaluated using PertEval. Results reveal significantly inflated performance of the LLMs on raw benchmarks, including an absolute 25.8% overestimation for GPT-4. Additionally, through a nuanced response pattern analysis, we discover that PertEval retains LLMs' uncertainty to specious knowledge, and reveals their potential rote memorization to correct options which leads to overestimated performance. We also find that the detailed response consistency analyses by PertEval could illuminate various weaknesses in existing LLMs' knowledge mastery and guide the development of refinement. Our findings provide insights for advancing more robust and genuinely knowledgeable LLMs. Our code is available at \url{https://github.com/aigc-apps/PertEval}.
comment: Accepted by NeurIPS '24 D&B Spotlight; 28 pages, 15 figures, 14 tables
♻ ☆ SciAssess: Benchmarking LLM Proficiency in Scientific Literature Analysis
Recent breakthroughs in Large Language Models (LLMs) have revolutionized scientific literature analysis. However, existing benchmarks fail to adequately evaluate the proficiency of LLMs in this domain, particularly in scenarios requiring higher-level abilities beyond mere memorization and the handling of multimodal data. In response to this gap, we introduce SciAssess, a benchmark specifically designed for the comprehensive evaluation of LLMs in scientific literature analysis. It aims to thoroughly assess the efficacy of LLMs by evaluating their capabilities in Memorization (L1), Comprehension (L2), and Analysis \& Reasoning (L3). It encompasses a variety of tasks drawn from diverse scientific fields, including biology, chemistry, material, and medicine. To ensure the reliability of SciAssess, rigorous quality control measures have been implemented, ensuring accuracy, anonymization, and compliance with copyright standards. SciAssess evaluates 11 LLMs, highlighting their strengths and areas for improvement. We hope this evaluation supports the ongoing development of LLM applications in scientific literature analysis. SciAssess and its resources are available at \url{https://github.com/sci-assess/SciAssess}.
♻ ☆ Does Mapo Tofu Contain Coffee? Probing LLMs for Food-related Cultural Knowledge
Recent studies have highlighted the presence of cultural biases in Large Language Models (LLMs), yet often lack a robust methodology to dissect these phenomena comprehensively. Our work aims to bridge this gap by delving into the Food domain, a universally relevant yet culturally diverse aspect of human life. We introduce FmLAMA, a multilingual dataset centered on food-related cultural facts and variations in food practices. We analyze LLMs across various architectures and configurations, evaluating their performance in both monolingual and multilingual settings. By leveraging templates in six different languages, we investigate how LLMs interact with language-specific and cultural knowledge. Our findings reveal that (1) LLMs demonstrate a pronounced bias towards food knowledge prevalent in the United States; (2) Incorporating relevant cultural context significantly improves LLMs' ability to access cultural knowledge; (3) The efficacy of LLMs in capturing cultural nuances is highly dependent on the interplay between the probing language, the specific model architecture, and the cultural context in question. This research underscores the complexity of integrating cultural understanding into LLMs and emphasizes the importance of culturally diverse datasets to mitigate biases and enhance model performance across different cultural domains.
comment: cultural bias analysis, cultural knowledge probing, large language models, cultural NLP
♻ ☆ Synergizing In-context Learning with Hints for End-to-end Task-oriented Dialog Systems EMNLP2024
End-to-end Task-Oriented Dialog (TOD) systems typically require extensive training datasets to perform well. In contrast, large language model (LLM) based TOD systems can excel even with limited data due to their ability to learn tasks through in-context exemplars. However, these models lack alignment with the style of responses in training data and often generate comprehensive responses, making it difficult for users to grasp the information quickly. In response, we propose SyncTOD that synergizes LLMs with task-specific hints to improve alignment in low-data settings. SyncTOD employs small auxiliary models to provide hints and select exemplars for in-context prompts. With ChatGPT, SyncTOD achieves superior performance compared to LLM-based baselines and SoTA models in low-data settings, while retaining competitive performance in full-data settings.
comment: EMNLP2024 Camera-Ready Version
♻ ☆ Hyper-multi-step: The Truth Behind Difficult Long-context Tasks
Long-context language models (LCLM), characterized by their extensive context window, is becoming increasingly popular. Meanwhile, many long-context benchmarks present challenging tasks that even the most advanced LCLMs struggle to complete. However, the underlying sources of various challenging long-context tasks have seldom been studied. To bridge this gap, we conduct experiments to indicate their difficulty stems primarily from two basic issues: "multi-matching retrieval," which requires the simultaneous retrieval of multiple items, and "logic-based retrieval," which necessitates logical judgment within retrieval criteria. These two problems, while seemingly straightforward, actually exceed the capabilities of LCLMs because they are proven to be hyper-multi-step (demanding numerous steps to solve) in nature. This finding could explain why LLMs struggle with more advanced long-context tasks, providing a more accurate perspective for rethinking solutions for them.
comment: Our code is publicly available at https://github.com/yuyijiong/hard_retrieval_for_llm and the datasets is at https://huggingface.co/datasets/yuyijiong/difficult_retrieval
♻ ☆ Fisher Information-based Efficient Curriculum Federated Learning with Large Language Models EMNLP 2024
As a promising paradigm to collaboratively train models with decentralized data, Federated Learning (FL) can be exploited to fine-tune Large Language Models (LLMs). While LLMs correspond to huge size, the scale of the training data significantly increases, which leads to tremendous amounts of computation and communication costs. The training data is generally non-Independent and Identically Distributed (non-IID), which requires adaptive data processing within each device. Although Low Rank Adaptation (LoRA) can significantly reduce the scale of parameters to update in the fine-tuning process, it still takes unaffordable time to transfer the low-rank parameters of all the layers in LLMs. In this paper, we propose a Fisher Information-based Efficient Curriculum Federated Learning framework (FibecFed) with two novel methods, i.e., adaptive federated curriculum learning and efficient sparse parameter update. First, we propose a fisher information-based method to adaptively sample data within each device to improve the effectiveness of the FL fine-tuning process. Second, we dynamically select the proper layers for global aggregation and sparse parameters for local update with LoRA so as to improve the efficiency of the FL fine-tuning process. Extensive experimental results based on 10 datasets demonstrate that FibecFed yields excellent performance (up to 45.35% in terms of accuracy) and superb fine-tuning speed (up to 98.61% faster) compared with 17 baseline approaches).
comment: 27 pages, 8 figures, 14 tables, to appear in EMNLP 2024
♻ ☆ QUIS: Question-guided Insights Generation for Automated Exploratory Data Analysis
Discovering meaningful insights from a large dataset, known as Exploratory Data Analysis (EDA), is a challenging task that requires thorough exploration and analysis of the data. Automated Data Exploration (ADE) systems use goal-oriented methods with Large Language Models and Reinforcement Learning towards full automation. However, these methods require human involvement to anticipate goals that may limit insight extraction, while fully automated systems demand significant computational resources and retraining for new datasets. We introduce QUIS, a fully automated EDA system that operates in two stages: insight generation (ISGen) driven by question generation (QUGen). The QUGen module generates questions in iterations, refining them from previous iterations to enhance coverage without human intervention or manually curated examples. The ISGen module analyzes data to produce multiple relevant insights in response to each question, requiring no prior training and enabling QUIS to adapt to new datasets.
comment: Accepted for ENLP 2024 Industry Track
♻ ☆ SciLitLLM: How to Adapt LLMs for Scientific Literature Understanding
Scientific literature understanding is crucial for extracting targeted information and garnering insights, thereby significantly advancing scientific discovery. Despite the remarkable success of Large Language Models (LLMs), they face challenges in scientific literature understanding, primarily due to (1) a lack of scientific knowledge and (2) unfamiliarity with specialized scientific tasks. To develop an LLM specialized in scientific literature understanding, we propose a hybrid strategy that integrates continual pre-training (CPT) and supervised fine-tuning (SFT), to simultaneously infuse scientific domain knowledge and enhance instruction-following capabilities for domain-specific tasks.cIn this process, we identify two key challenges: (1) constructing high-quality CPT corpora, and (2) generating diverse SFT instructions. We address these challenges through a meticulous pipeline, including PDF text extraction, parsing content error correction, quality filtering, and synthetic instruction creation. Applying this strategy, we present a suite of LLMs: SciLitLLM, specialized in scientific literature understanding. These models demonstrate promising performance on scientific literature understanding benchmarks. Our contributions are threefold: (1) We present an effective framework that integrates CPT and SFT to adapt LLMs to scientific literature understanding, which can also be easily adapted to other domains. (2) We propose an LLM-based synthesis method to generate diverse and high-quality scientific instructions, resulting in a new instruction set -- SciLitIns -- for supervised fine-tuning in less-represented scientific domains. (3) SciLitLLM achieves promising performance improvements on scientific literature understanding benchmarks.
♻ ☆ SeerAttention: Learning Intrinsic Sparse Attention in Your LLMs
Attention is the cornerstone of modern Large Language Models (LLMs). Yet its quadratic complexity limits the efficiency and scalability of LLMs, especially for those with a long-context window. A promising approach addressing this limitation is to leverage the sparsity in attention. However, existing sparsity-based solutions predominantly rely on predefined patterns or heuristics to approximate sparsity. This practice falls short to fully capture the dynamic nature of attention sparsity in language-based tasks. This paper argues that attention sparsity should be learned rather than predefined. To this end, we design SeerAttention, a new Attention mechanism that augments the conventional attention with a learnable gate that adaptively selects significant blocks in an attention map and deems the rest blocks sparse. Such block-level sparsity effectively balances accuracy and speedup. To enable efficient learning of the gating network, we develop a customized FlashAttention implementation that extracts the block-level ground truth of attention map with minimum overhead. SeerAttention not only applies to post-training, but also excels in long-context fine-tuning. Our results show that at post-training stages, SeerAttention significantly outperforms state-of-the-art static or heuristic-based sparse attention methods, while also being more versatile and flexible to adapt to varying context lengths and sparsity ratios. When applied to long-context fine-tuning with YaRN, SeerAttention can achieve a remarkable 90% sparsity ratio at a 32k context length with minimal perplexity loss, offering a 5.67x speedup over FlashAttention-2.
♻ ☆ P3: A Policy-Driven, Pace-Adaptive, and Diversity-Promoted Framework for data pruning in LLM Training
In the rapidly advancing field of Large Language Models (LLMs), effectively leveraging existing datasets during fine-tuning to maximize the model's potential is of paramount importance. This paper introduces P3, an adaptive framework aimed at optimizing the task-specific fine-tuning process through iterative data pruning. P3 consists of three key components: (1) Policy-driven Difficulty Measurement, which dynamically assesses data difficulty based on the model's real-time performance, replacing static metrics with adaptable evaluations; (2) Pace-Adaptive Selection, leveraging self-paced learning to progressively introduce more challenging data, thereby enhancing model capability; (3) Diversity Promotion, incorporating Determinantal Point Process (DPP) to ensure data diversity across epochs, enriching the learning process. We validate P3 on the reasoning scenarios, APPS and MATH, demonstrating significant improvements over traditional data pruning methods. By advancing dynamic data selection and utilization strategies, P3 contributes both a theoretical framework and concrete approach to fully exploit existing data for LLMs' performance improvement, offering utility across diverse tasks.
♻ ☆ LatentExplainer: Explaining Latent Representations in Deep Generative Models with Multi-modal Foundation Models
Deep generative models like VAEs and diffusion models have advanced various generation tasks by leveraging latent variables to learn data distributions and generate high-quality samples. Despite the field of explainable AI making strides in interpreting machine learning models, understanding latent variables in generative models remains challenging. This paper introduces \textit{LatentExplainer}, a framework for automatically generating semantically meaningful explanations of latent variables in deep generative models. \textit{LatentExplainer} tackles three main challenges: inferring the meaning of latent variables, aligning explanations with inductive biases, and handling varying degrees of explainability. Our approach perturbs latent variables, interpreting changes in generated data, and uses multi-modal large language models (MLLMs) to produce human-understandable explanations. We evaluate our proposed method on several real-world and synthetic datasets, and the results demonstrate superior performance in generating high-quality explanations for latent variables. The results highlight the effectiveness of incorporating inductive biases and uncertainty quantification, significantly enhancing model interpretability.
♻ ☆ Supervised Fine-Tuning Achieve Rapid Task Adaption Via Alternating Attention Head Activation Patterns
LLMs' performance on complex tasks is still unsatisfactory. A key issue is that presently LLMs learn in a data-driven schema, while the instructions about these complex tasks are both scarce and hard to collect or construct. On the contrary, a prominent phenomenon is that LLMs can learn rather fast on simpler tasks with adequate prior knowledge captured during pretraining stage. Thus, if the prerequisite and mechanism of such rapid generalization could be elucidated, it could enhance the efficiency and effectiveness of the LLM's ability to learn complex tasks. Thus, in this paper, we employ a gradient-based method, to dissect the process that the SFT process adapts LLMs to downstream tasks via the perspective of attention patterns. We find that: (1) LLMs selectively activate task-specific attention heads during SFT; (2) activation patterns for complex tasks are combinations of basic task patterns; and (3) changes in a few parameters can significantly impact activation patterns after SFT on a small number of samples.Based on these insights, experiments are conducted to actually enhance the efficiency and effectiveness of SFT.
comment: in review
♻ ☆ From Introspection to Best Practices: Principled Analysis of Demonstrations in Multimodal In-Context Learning
Motivated by in-context learning (ICL) capabilities of Large Language models (LLMs), multimodal LLMs with additional visual modality are also exhibited with similar ICL abilities when multiple image-text pairs are provided as demonstrations. However, relatively less work has been done to investigate the principles behind how and why multimodal ICL works. We conduct a systematic and principled evaluation of multimodal ICL for models of different scales on a broad spectrum of new yet critical tasks. Through perturbations over different modality information, we show that modalities matter differently across tasks in multimodal ICL. Guided by task-specific modality impact, we recommend modality-driven demonstration strategies to boost ICL performance. We also find that models may follow inductive biases from multimodal ICL even if they are rarely seen in or contradict semantic priors from pretraining data. Our principled analysis provides a comprehensive way of understanding the role of demonstrations in multimodal in-context learning, and sheds light on effectively improving multimodal ICL on a wide range of tasks.
♻ ☆ Everything is Editable: Extend Knowledge Editing to Unstructured Data in Large Language Models
Recent knowledge editing methods have primarily focused on modifying structured knowledge in large language models. However, this task setting overlooks the fact that a significant portion of real-world knowledge is stored in an unstructured format, characterized by long-form content, noise, and a complex yet comprehensive nature. Techniques like local layer key-value storage and term-driven optimization, as used in previous methods like MEMIT, are not effective for handling unstructured knowledge. To address these challenges, we propose a novel Unstructured Knowledge Editing method, namely UnKE, which extends previous assumptions in the layer dimension and token dimension. Firstly, in the layer dimension, we propose non-local block key-value storage to replace local layer key-value storage, increasing the representation ability of key-value pairs and incorporating attention layer knowledge. Secondly, in the token dimension, we replace term-driven optimization with cause-driven optimization, which edits the last token directly while preserving context, avoiding the need to locate terms and preventing the loss of context information. Results on newly proposed unstructured knowledge editing dataset (UnKEBench) and traditional structured datasets demonstrate that UnKE achieves remarkable performance, surpassing strong baselines. In addition, UnKE has robust batch editing and sequential editing capabilities.
♻ ☆ Amphista: Bi-directional Multi-head Decoding for Accelerating LLM Inference
Large Language Models (LLMs) inherently use autoregressive decoding, which lacks parallelism in inference and results in significantly slow inference speed. While methods such as Medusa constructs parallelized heads, they lack adequate information interaction across different prediction positions. To overcome this limitation, we introduce Amphista, an enhanced speculative decoding framework that builds upon Medusa. Specifically, Amphista models an Auto-embedding Block capable of parallel inference, incorporating bi-directional attention to enable interaction between different drafting heads. Additionally, Amphista integrates Staged Adaptation Layers, which ensure a seamless transition of semantic information from the target model's autoregressive inference to the drafting heads' non-autoregressive inference, effectively achieving paradigm shift and feature fusion. Experimental results on Vicuna models using MT-Bench and Spec-Bench demonstrate that Amphista achieves substantial acceleration while maintaining generation quality. On MT-Bench, Amphista delivers up to 2.75$\times$ speedup over vanilla autoregressive decoding and 1.40$\times$ over Medusa on Vicuna 33B in wall-clock time.
♻ ☆ LayerSkip: Enabling Early Exit Inference and Self-Speculative Decoding ACL 2024
We present LayerSkip, an end-to-end solution to speed-up inference of large language models (LLMs). First, during training we apply layer dropout, with low dropout rates for earlier layers and higher dropout rates for later layers, and an early exit loss where all transformer layers share the same exit. Second, during inference, we show that this training recipe increases the accuracy of early exit at earlier layers, without adding any auxiliary layers or modules to the model. Third, we present a novel self-speculative decoding solution where we exit at early layers and verify and correct with remaining layers of the model. Our proposed self-speculative decoding approach has less memory footprint than other speculative decoding approaches and benefits from shared compute and activations of the draft and verification stages. We run experiments on different Llama model sizes on different types of training: pretraining from scratch, continual pretraining, finetuning on specific data domain, and finetuning on specific task. We implement our inference solution and show speedups of up to 2.16x on summarization for CNN/DM documents, 1.82x on coding, and 2.0x on TOPv2 semantic parsing task. We open source our code and checkpoints at https://github.com/facebookresearch/LayerSkip.
comment: ACL 2024
♻ ☆ A Tighter Complexity Analysis of SparseGPT
In this work, we improved the analysis of the running time of SparseGPT [Frantar, Alistarh ICML 2023] from $O(d^{3})$ to $O(d^{\omega} + d^{2+a+o(1)} + d^{1+\omega(1,1,a)-a})$ for any $a \in [0, 1]$, where $\omega$ is the exponent of matrix multiplication. In particular, for the current $\omega \approx 2.371$ [Alman, Duan, Williams, Xu, Xu, Zhou 2024], our running time boils down to $O(d^{2.53})$. This running time is due to the analysis of the lazy update behavior in iterative maintenance problems such as [Deng, Song, Weinstein 2022; Brand, Song, Zhou ICML 2024].
♻ ☆ A Comprehensive Study of Multilingual Confidence Estimation on Large Language Models
The tendency of Large Language Models (LLMs) to generate hallucinations raises concerns regarding their reliability. Therefore, confidence estimations indicating the extent of trustworthiness of the generations become essential. However, current LLM confidence estimations in languages other than English remain underexplored. This paper addresses this gap by introducing a comprehensive investigation of Multilingual Confidence estimation (MlingConf) on LLMs, focusing on both language-agnostic (LA) and language-specific (LS) tasks to explore the performance and language dominance effects of multilingual confidence estimations on different tasks. The benchmark comprises four meticulously checked and human-evaluate high-quality multilingual datasets for LA tasks and one for the LS task tailored to specific social, cultural, and geographical contexts of a language. Our experiments reveal that on LA tasks English exhibits notable linguistic dominance in confidence estimations than other languages, while on LS tasks, using question-related language to prompt LLMs demonstrates better linguistic dominance in multilingual confidence estimations. The phenomena inspire a simple yet effective native-tone prompting strategy by employing language-specific prompts for LS tasks, effectively improving LLMs' reliability and accuracy on LS tasks.
comment: Comments: n pages; Previously this version appeared as arXiv:2410.12478 which was submitted as a new work by accident
♻ ☆ ExACT: Teaching AI Agents to Explore with Reflective-MCTS and Exploratory Learning
Autonomous agents have demonstrated significant potential in automating complex multistep decision-making tasks. However, even state-of-the-art vision-language models (VLMs), such as GPT-4o, still fall short of human-level performance, particularly in intricate web environments and long-horizon tasks. To address these limitations, we present ExACT, an approach to combine test-time search and self-learning to build o1-like models for agentic applications. We first introduce Reflective Monte Carlo Tree Search (R-MCTS), a novel test time algorithm designed to enhance AI agents' ability to explore decision space on the fly. R-MCTS extends traditional MCTS by 1) incorporating contrastive reflection, allowing agents to learn from past interactions and dynamically improve their search efficiency; and 2) using multi-agent debate for reliable state evaluation. Next, we introduce Exploratory Learning, a novel learning strategy to teach agents to search at inference time without relying on any external search algorithms. On the challenging VisualWebArena benchmark, our GPT-4o based R-MCTS agent achieves a 6% to 30% relative improvement across various tasks compared to the previous state-of-the-art. Additionally, we show that the knowledge and experience gained from test-time search can be effectively transferred back to GPT-4o via fine-tuning. After Exploratory Learning, GPT-4o 1) demonstrates the ability to explore the environment, evaluate a state, and backtrack to viable ones when it detects that the current state cannot lead to success, and 2) matches 87% of R-MCTS's performance while using significantly less compute. Notably, our work demonstrates the compute scaling properties in both training - data collection with R-MCTS - and testing time. These results suggest a promising research direction to enhance VLMs' capabilities for agentic applications via test-time search and self-learning.
♻ ☆ MlingConf: A Comprehensive Study of Multilingual Confidence Estimation on Large Language Models
The tendency of Large Language Models (LLMs) to generate hallucinations raises concerns regarding their reliability. Therefore, confidence estimations indicating the extent of trustworthiness of the generations become essential. However, current LLM confidence estimations in languages other than English remain underexplored. This paper addresses this gap by introducing a comprehensive investigation of Multilingual Confidence estimation (MlingConf) on LLMs, focusing on both language-agnostic (LA) and language-specific (LS) tasks to explore the performance and language dominance effects of multilingual confidence estimations on different tasks. The benchmark comprises four meticulously checked and human-evaluate high-quality multilingual datasets for LA tasks and one for the LS task tailored to specific social, cultural, and geographical contexts of a language. Our experiments reveal that on LA tasks English exhibits notable linguistic dominance in confidence estimations than other languages, while on LS tasks, using question-related language to prompt LLMs demonstrates better linguistic dominance in multilingual confidence estimations. The phenomena inspire a simple yet effective native-tone prompting strategy by employing language-specific prompts for LS tasks, effectively improving LLMs' reliability and accuracy on LS tasks.
comment: Comments: This work was intended as a replacement of arXiv:2402.13606 and any subsequent updates will appear there
♻ ☆ $\textbf{Only-IF}$:Revealing the Decisive Effect of Instruction Diversity on Generalization
Understanding and accurately following instructions is critical for large language models (LLMs) to be effective across diverse tasks. In this work, we rigorously examine the key factors that enable models to generalize to unseen instructions, providing insights to guide the collection of data for instruction-tuning. Through controlled experiments, inspired by the Turing-complete Markov algorithm, we demonstrate that such generalization $\textbf{only emerges}$ when training data is diversified enough across semantic domains. Our findings also reveal that merely diversifying within limited domains fails to ensure robust generalization. In contrast, cross-domain data diversification, even under constrained data budgets, significantly enhances a model's adaptability. We further extend our analysis to real-world scenarios, including fine-tuning of $\textit{$\textbf{specialist}$}$ and $\textit{$\textbf{generalist}$}$ models. In both cases, we demonstrate that 1) better performance can be achieved by increasing the diversity of an established dataset while keeping the data size constant, and 2) when scaling up the data, diversifying the semantics of instructions is more effective than simply increasing the quantity of similar data. Our research provides important insights for dataset collation, particularly when optimizing model performance by expanding training data for both specialist and generalist scenarios. We show that careful consideration of data diversification is key: training specialist models with data extending beyond their core domain leads to significant performance improvements, while generalist models benefit from diverse data mixtures that enhance their overall instruction-following capabilities across a wide range of applications. Our results highlight the critical role of strategic diversification and offer clear guidelines for improving data quality.
comment: Fix formatting issues
♻ ☆ BenTo: Benchmark Task Reduction with In-Context Transferability
Evaluating large language models (LLMs) is costly: it requires the generation and examination of LLM outputs on a large-scale benchmark of various tasks. This paper investigates how to efficiently reduce the tasks used to benchmark LLMs without affecting the evaluation quality. Our study reveals that task transferability and relevance provide critical information to identify the most representative subset of tasks via optimizing a facility location function. We propose a practically efficient metric for estimating the transferability between two tasks via in-context learning (ICL). By analyzing the pairwise transferability, we can reduce tasks in a modern LLM benchmark (e.g., MMLU or FLAN) to 5% while inducing only a <4% difference to the evaluation on the original benchmark. Compared to prior works, our method is training-free, gradient-free, and highly efficient requiring ICL only.
comment: https://github.com/tianyi-lab/bento
♻ ☆ GraphInsight: Unlocking Insights in Large Language Models for Graph Structure Understanding
Although Large Language Models (LLMs) have demonstrated potential in processing graphs, they struggle with comprehending graphical structure information through prompts of graph description sequences, especially as the graph size increases. We attribute this challenge to the uneven memory performance of LLMs across different positions in graph description sequences, known as ''positional biases''. To address this, we propose GraphInsight, a novel framework aimed at improving LLMs' comprehension of both macro- and micro-level graphical information. GraphInsight is grounded in two key strategies: 1) placing critical graphical information in positions where LLMs exhibit stronger memory performance, and 2) investigating a lightweight external knowledge base for regions with weaker memory performance, inspired by retrieval-augmented generation (RAG). Moreover, GraphInsight explores integrating these two strategies into LLM agent processes for composite graph tasks that require multi-step reasoning. Extensive empirical studies on benchmarks with a wide range of evaluation tasks show that GraphInsight significantly outperforms all other graph description methods (e.g., prompting techniques and reordering strategies) in understanding graph structures of varying sizes.
♻ ☆ AutoPal: Autonomous Adaptation to Users for Personal AI Companionship
Previous research has demonstrated the potential of AI agents to act as companions that can provide constant emotional support for humans. In this paper, we emphasize the necessity of autonomous adaptation in personal AI companionship, an underexplored yet promising direction. Such adaptability is crucial as it can facilitate more tailored interactions with users and allow the agent to evolve in response to users' changing needs. However, imbuing agents with autonomous adaptability presents unique challenges, including identifying optimal adaptations to meet users' expectations and ensuring a smooth transition during the adaptation process. To address them, we devise a hierarchical framework, AutoPal, that enables controllable and authentic adjustments to the agent's persona based on user interactions. A personamatching dataset is constructed to facilitate the learning of optimal persona adaptations. Extensive experiments demonstrate the effectiveness of AutoPal and highlight the importance of autonomous adaptability in AI companionship.
♻ ☆ Efficiently Quantifying and Mitigating Ripple Effects in Model Editing
Large Language Models have revolutionized numerous tasks with their remarkable efficacy. However, editing these models, crucial for rectifying outdated or erroneous information, often leads to a complex issue known as the ripple effect in the hidden space. While difficult to detect, this effect can significantly impede the efficacy of model editing tasks and deteriorate model performance. This paper addresses this scientific challenge by proposing a novel evaluation methodology, Graphical Impact Evaluation(GIE), which quantitatively evaluates the adaptations of the model and the subsequent impact of editing. Furthermore, we introduce the Selective Impact Revision(SIR), a model editing method designed to mitigate this ripple effect. Our comprehensive evaluations reveal that the ripple effect in the hidden space is a significant issue in all current model editing methods. However, our proposed methods, GIE and SIR, effectively identify and alleviate this issue, contributing to the advancement of LLM editing techniques.
♻ ☆ MoR: Mixture of Ranks for Low-Rank Adaptation Tuning
Low-Rank Adaptation (LoRA) drives research to align its performance with full fine-tuning. However, significant challenges remain: (1) Simply increasing the rank size of LoRA does not effectively capture high-rank information, which leads to a performance bottleneck.(2) MoE-style LoRA methods substantially increase parameters and inference latency, contradicting the goals of efficient fine-tuning and ease of application. To address these challenges, we introduce Mixture of Ranks (MoR), which learns rank-specific information for different tasks based on input and efficiently integrates multi-rank information. We firstly propose a new framework that equates the integration of multiple LoRAs to expanding the rank of LoRA. Moreover, we hypothesize that low-rank LoRA already captures sufficient intrinsic information, and MoR can derive high-rank information through mathematical transformations of the low-rank components. Thus, MoR can reduces the learning difficulty of LoRA and enhances its multi-task capabilities. MoR achieves impressive results, with MoR delivering a 1.31\% performance improvement while using only 93.93\% of the parameters compared to baseline methods.
comment: 11 pages, 7 figures
♻ ☆ UniAutoML: A Human-Centered Framework for Unified Discriminative and Generative AutoML with Large Language Models
Automated Machine Learning (AutoML) has simplified complex ML processes such as data pre-processing, model selection, and hyper-parameter searching. However, traditional AutoML frameworks focus solely on discriminative tasks, often falling short in tackling AutoML for generative models. Additionally, these frameworks lack interpretability and user engagement during the training process, primarily due to the absence of human-centered design. It leads to a lack of transparency in final decision-making and limited user control, potentially reducing trust and adoption of AutoML methods. To address these limitations, we introduce UniAutoML, a human-centered AutoML framework that leverages Large Language Models (LLMs) to unify AutoML for both discriminative (e.g., Transformers and CNNs for classification or regression tasks) and generative tasks (e.g., fine-tuning diffusion models or LLMs). The human-centered design of UniAutoML innovatively features a conversational user interface (CUI) that facilitates natural language interactions, providing users with real-time guidance, feedback, and progress updates for better interpretability. This design enhances transparency and user control throughout the AutoML training process, allowing users to seamlessly break down or modify the model being trained. To mitigate potential risks associated with LLM generated content, UniAutoML incorporates a safety guardline that filters inputs and censors outputs. We evaluated UniAutoML's performance and usability through experiments on eight diverse datasets and user studies involving 25 participants, demonstrating that UniAutoML not only enhances performance but also improves user control and trust. Our human-centered design bridges the gap between AutoML capabilities and user understanding, making ML more accessible to a broader audience.
♻ ☆ ACCEPT: Adaptive Codebook for Composite and Efficient Prompt Tuning EMNLP
Prompt Tuning has been a popular Parameter-Efficient Fine-Tuning method attributed to its remarkable performance with few updated parameters on various large-scale pretrained Language Models (PLMs). Traditionally, each prompt has been considered indivisible and updated independently, leading the parameters increase proportionally as prompt length grows. To address this issue, we propose Adaptive Codebook for Composite and Efficient Prompt Tuning (ACCEPT). In our method, we refer to the concept of product quantization (PQ), allowing all soft prompts to share a set of learnable codebook vectors in each subspace, with each prompt differentiated by a set of adaptive weights. We achieve the superior performance on 17 diverse natural language tasks including natural language understanding (NLU) and question answering (QA) tasks by tuning only 0.3% of parameters of the PLMs. Our approach also excels in few-shot and large model settings, highlighting its significant potential.
comment: EMNLP Findings 2024
♻ ☆ On Subjective Uncertainty Quantification and Calibration in Natural Language Generation
Applications of large language models often involve the generation of free-form responses, in which case uncertainty quantification becomes challenging. This is due to the need to identify task-specific uncertainties (e.g., about the semantics) which appears difficult to define in general cases. This work addresses these challenges from a perspective of Bayesian decision theory, starting from the assumption that our utility is characterized by a similarity measure that compares a generated response with a hypothetical true response. We discuss how this assumption enables principled quantification of the model's subjective uncertainty and its calibration. We further derive a measure for epistemic uncertainty, based on a missing data perspective and its characterization as an excess risk. The proposed methods can be applied to black-box language models. We illustrate the methods on question answering and machine translation tasks. Our experiments provide a principled evaluation of task-specific calibration, and demonstrate that epistemic uncertainty offers a promising deferral strategy for efficient data acquisition in in-context learning.
♻ ☆ An Evolved Universal Transformer Memory
Prior methods propose to offset the escalating costs of modern foundation models by dropping specific parts of their contexts with hand-designed rules, while attempting to preserve their original performance. We overcome this trade-off with Neural Attention Memory Models (NAMMs), introducing a learned network for memory management that improves both the performance and efficiency of transformers. We evolve NAMMs atop pre-trained transformers to provide different latent contexts focusing on the most relevant information for individual layers and attention heads. NAMMs are universally applicable to any model using self-attention as they condition exclusively on the values in the produced attention matrices. Learning NAMMs on a small set of problems, we achieve substantial performance improvements across multiple long-context benchmarks while cutting the model's input contexts up to a fraction of the original sizes. We show the generality of our conditioning enables zero-shot transfer of NAMMs trained only on language to entirely new transformer architectures even across input modalities, with their benefits carrying over to vision and reinforcement learning.
comment: 29 pages, 14 figures. Preprint, under submission. Source code is available at https://github.com/SakanaAI/evo-memory
Computer Vision and Pattern Recognition
☆ BiGR: Harnessing Binary Latent Codes for Image Generation and Improved Visual Representation Capabilities
We introduce BiGR, a novel conditional image generation model using compact binary latent codes for generative training, focusing on enhancing both generation and representation capabilities. BiGR is the first conditional generative model that unifies generation and discrimination within the same framework. BiGR features a binary tokenizer, a masked modeling mechanism, and a binary transcoder for binary code prediction. Additionally, we introduce a novel entropy-ordered sampling method to enable efficient image generation. Extensive experiments validate BiGR's superior performance in generation quality, as measured by FID-50k, and representation capabilities, as evidenced by linear-probe accuracy. Moreover, BiGR showcases zero-shot generalization across various vision tasks, enabling applications such as image inpainting, outpainting, editing, interpolation, and enrichment, without the need for structural modifications. Our findings suggest that BiGR unifies generative and discriminative tasks effectively, paving the way for further advancements in the field.
comment: Project page: https://haoosz.github.io/BiGR
☆ NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples NeurIPS 24
Vision-language models (VLMs) have made significant progress in recent visual-question-answering (VQA) benchmarks that evaluate complex visio-linguistic reasoning. However, are these models truly effective? In this work, we show that VLMs still struggle with natural images and questions that humans can easily answer, which we term natural adversarial samples. We also find it surprisingly easy to generate these VQA samples from natural image-text corpora using off-the-shelf models like CLIP and ChatGPT. We propose a semi-automated approach to collect a new benchmark, NaturalBench, for reliably evaluating VLMs with 10,000 human-verified VQA samples. Crucially, we adopt a $\textbf{vision-centric}$ design by pairing each question with two images that yield different answers, preventing blind solutions from answering without using the images. This makes NaturalBench more challenging than previous benchmarks that can be solved with commonsense priors. We evaluate 53 state-of-the-art VLMs on NaturalBench, showing that models like LLaVA-OneVision, Cambrian-1, Llama3.2-Vision, Molmo, Qwen2-VL, and even GPT-4o lag 50%-70% behind human performance (over 90%). We analyze why NaturalBench is hard from two angles: (1) Compositionality: Solving NaturalBench requires diverse visio-linguistic skills, including understanding attribute bindings, object relationships, and advanced reasoning like logic and counting. To this end, unlike prior work that uses a single tag per sample, we tag each NaturalBench sample with 1 to 8 skill tags for fine-grained evaluation. (2) Biases: NaturalBench exposes severe biases in VLMs, as models often choose the same answer regardless of the image. Lastly, we apply our benchmark curation method to diverse data sources, including long captions (over 100 words) and non-English languages like Chinese and Hindi, highlighting its potential for dynamic evaluations of VLMs.
comment: Accepted to NeurIPS 24; We open-source our dataset at: https://huggingface.co/datasets/BaiqiL/NaturalBench; Project page at: https://linzhiqiu.github.io/papers/naturalbench/
☆ Parallel Backpropagation for Inverse of a Convolution with Application to Normalizing Flows
Inverse of an invertible convolution is an important operation that comes up in Normalizing Flows, Image Deblurring, etc. The naive algorithm for backpropagation of this operation using Gaussian elimination has running time $O(n^3)$ where $n$ is the number of pixels in the image. We give a fast parallel backpropagation algorithm with running time $O(\sqrt{n})$ for a square image and provide a GPU implementation of the same. Inverse Convolutions are usually used in Normalizing Flows in the sampling pass, making them slow. We propose to use Inverse Convolutions in the forward (image to latent vector) pass of the Normalizing flow. Since the sampling pass is the inverse of the forward pass, it will use convolutions only, resulting in efficient sampling times. We use our parallel backpropagation algorithm for optimizing the inverse convolution layer resulting in fast training times also. We implement this approach in various Normalizing Flow backbones, resulting in our Inverse-Flow models. We benchmark Inverse-Flow on standard datasets and show significantly improved sampling times with similar bits per dimension compared to previous models.
comment: Preprint
☆ Swiss Army Knife: Synergizing Biases in Knowledge from Vision Foundation Models for Multi-Task Learning
Vision Foundation Models (VFMs) have demonstrated outstanding performance on numerous downstream tasks. However, due to their inherent representation biases originating from different training paradigms, VFMs exhibit advantages and disadvantages across distinct vision tasks. Although amalgamating the strengths of multiple VFMs for downstream tasks is an intuitive strategy, effectively exploiting these biases remains a significant challenge. In this paper, we propose a novel and versatile "Swiss Army Knife" (SAK) solution, which adaptively distills knowledge from a committee of VFMs to enhance multi-task learning. Unlike existing methods that use a single backbone for knowledge transfer, our approach preserves the unique representation bias of each teacher by collaborating the lightweight Teacher-Specific Adapter Path modules with the Teacher-Agnostic Stem. Through dynamic selection and combination of representations with Mixture-of-Representations Routers, our SAK is capable of synergizing the complementary strengths of multiple VFMs. Extensive experiments show that our SAK remarkably outperforms prior state of the arts in multi-task learning by 10% on the NYUD-v2 benchmark, while also providing a flexible and robust framework that can readily accommodate more advanced model designs.
☆ MultiOrg: A Multi-rater Organoid-detection Dataset
High-throughput image analysis in the biomedical domain has gained significant attention in recent years, driving advancements in drug discovery, disease prediction, and personalized medicine. Organoids, specifically, are an active area of research, providing excellent models for human organs and their functions. Automating the quantification of organoids in microscopy images would provide an effective solution to overcome substantial manual quantification bottlenecks, particularly in high-throughput image analysis. However, there is a notable lack of open biomedical datasets, in contrast to other domains, such as autonomous driving, and, notably, only few of them have attempted to quantify annotation uncertainty. In this work, we present MultiOrg a comprehensive organoid dataset tailored for object detection tasks with uncertainty quantification. This dataset comprises over 400 high-resolution 2d microscopy images and curated annotations of more than 60,000 organoids. Most importantly, it includes three label sets for the test data, independently annotated by two experts at distinct time points. We additionally provide a benchmark for organoid detection, and make the best model available through an easily installable, interactive plugin for the popular image visualization tool Napari, to perform organoid quantification.
☆ DRACO-DehazeNet: An Efficient Image Dehazing Network Combining Detail Recovery and a Novel Contrastive Learning Paradigm
Image dehazing is crucial for clarifying images obscured by haze or fog, but current learning-based approaches is dependent on large volumes of training data and hence consumed significant computational power. Additionally, their performance is often inadequate under non-uniform or heavy haze. To address these challenges, we developed the Detail Recovery And Contrastive DehazeNet, which facilitates efficient and effective dehazing via a dense dilated inverted residual block and an attention-based detail recovery network that tailors enhancements to specific dehazed scene contexts. A major innovation is its ability to train effectively with limited data, achieved through a novel quadruplet loss-based contrastive dehazing paradigm. This approach distinctly separates hazy and clear image features while also distinguish lower-quality and higher-quality dehazed images obtained from each sub-modules of our network, thereby refining the dehazing process to a larger extent. Extensive tests on a variety of benchmarked haze datasets demonstrated the superiority of our approach. The code repository for this work will be available soon.
comment: Submitted to a journal and currently under review. Once the paper is accepted and published, the copyright will be transferred to the corresponding journal
☆ MomentumSMoE: Integrating Momentum into Sparse Mixture of Experts NeurIPS 2024
Sparse Mixture of Experts (SMoE) has become the key to unlocking unparalleled scalability in deep learning. SMoE has the potential to exponentially increase parameter count while maintaining the efficiency of the model by only activating a small subset of these parameters for a given sample. However, it has been observed that SMoE suffers from unstable training and has difficulty adapting to new distributions, leading to the model's lack of robustness to data contamination. To overcome these limitations, we first establish a connection between the dynamics of the expert representations in SMoEs and gradient descent on a multi-objective optimization problem. Leveraging our framework, we then integrate momentum into SMoE and propose a new family of SMoEs named MomentumSMoE. We theoretically prove and numerically demonstrate that MomentumSMoE is more stable and robust than SMoE. In particular, we verify the advantages of MomentumSMoE over SMoE on a variety of practical tasks including ImageNet-1K object recognition and WikiText-103 language modeling. We demonstrate the applicability of MomentumSMoE to many types of SMoE models, including those in the Sparse MoE model for vision (V-MoE) and the Generalist Language Model (GLaM). We also show that other advanced momentum-based optimization methods, such as Adam, can be easily incorporated into the MomentumSMoE framework for designing new SMoE models with even better performance, almost negligible additional computation cost, and simple implementations.
comment: 10 pages in the main text. Published at NeurIPS 2024. The code is available at https://github.com/rachtsy/MomentumSMoE
☆ Multi-modal Pose Diffuser: A Multimodal Generative Conditional Pose Prior
The Skinned Multi-Person Linear (SMPL) model plays a crucial role in 3D human pose estimation, providing a streamlined yet effective representation of the human body. However, ensuring the validity of SMPL configurations during tasks such as human mesh regression remains a significant challenge , highlighting the necessity for a robust human pose prior capable of discerning realistic human poses. To address this, we introduce MOPED: \underline{M}ulti-m\underline{O}dal \underline{P}os\underline{E} \underline{D}iffuser. MOPED is the first method to leverage a novel multi-modal conditional diffusion model as a prior for SMPL pose parameters. Our method offers powerful unconditional pose generation with the ability to condition on multi-modal inputs such as images and text. This capability enhances the applicability of our approach by incorporating additional context often overlooked in traditional pose priors. Extensive experiments across three distinct tasks-pose estimation, pose denoising, and pose completion-demonstrate that our multi-modal diffusion model-based prior significantly outperforms existing methods. These results indicate that our model captures a broader spectrum of plausible human poses.
☆ A Hybrid Feature Fusion Deep Learning Framework for Leukemia Cancer Detection in Microscopic Blood Sample Using Gated Recurrent Unit and Uncertainty Quantification
Acute lymphoblastic leukemia (ALL) is the most malignant form of leukemia and the most common cancer in adults and children. Traditionally, leukemia is diagnosed by analyzing blood and bone marrow smears under a microscope, with additional cytochemical tests for confirmation. However, these methods are expensive, time consuming, and highly dependent on expert knowledge. In recent years, deep learning, particularly Convolutional Neural Networks (CNNs), has provided advanced methods for classifying microscopic smear images, aiding in the detection of leukemic cells. These approaches are quick, cost effective, and not subject to human bias. However, most methods lack the ability to quantify uncertainty, which could lead to critical misdiagnoses. In this research, hybrid deep learning models (InceptionV3-GRU, EfficientNetB3-GRU, MobileNetV2-GRU) were implemented to classify ALL. Bayesian optimization was used to fine tune the model's hyperparameters and improve its performance. Additionally, Deep Ensemble uncertainty quantification was applied to address uncertainty during leukemia image classification. The proposed models were trained on the publicly available datasets ALL-IDB1 and ALL-IDB2. Their results were then aggregated at the score level using the sum rule. The parallel architecture used in these models offers a high level of confidence in differentiating between ALL and non-ALL cases. The proposed method achieved a remarkable detection accuracy rate of 100% on the ALL-IDB1 dataset, 98.07% on the ALL-IDB2 dataset, and 98.64% on the combined dataset, demonstrating its potential for accurate and reliable leukemia diagnosis.
☆ Less is More: Selective Reduction of CT Data for Self-Supervised Pre-Training of Deep Learning Models with Contrastive Learning Improves Downstream Classification Performance
Self-supervised pre-training of deep learning models with contrastive learning is a widely used technique in image analysis. Current findings indicate a strong potential for contrastive pre-training on medical images. However, further research is necessary to incorporate the particular characteristics of these images. We hypothesize that the similarity of medical images hinders the success of contrastive learning in the medical imaging domain. To this end, we investigate different strategies based on deep embedding, information theory, and hashing in order to identify and reduce redundancy in medical pre-training datasets. The effect of these different reduction strategies on contrastive learning is evaluated on two pre-training datasets and several downstream classification tasks. In all of our experiments, dataset reduction leads to a considerable performance gain in downstream tasks, e.g., an AUC score improvement from 0.78 to 0.83 for the COVID CT Classification Grand Challenge, 0.97 to 0.98 for the OrganSMNIST Classification Challenge and 0.73 to 0.83 for a brain hemorrhage classification task. Furthermore, pre-training is up to nine times faster due to the dataset reduction. In conclusion, the proposed approach highlights the importance of dataset quality and provides a transferable approach to improve contrastive pre-training for classification downstream tasks on medical images.
comment: Published in Computers in Biology and Medicine
☆ CLIP-VAD: Exploiting Vision-Language Models for Voice Activity Detection
Voice Activity Detection (VAD) is the process of automatically determining whether a person is speaking and identifying the timing of their speech in an audiovisual data. Traditionally, this task has been tackled by processing either audio signals or visual data, or by combining both modalities through fusion or joint learning. In our study, drawing inspiration from recent advancements in visual-language models, we introduce a novel approach leveraging Contrastive Language-Image Pretraining (CLIP) models. The CLIP visual encoder analyzes video segments composed of the upper body of an individual, while the text encoder handles textual descriptions automatically generated through prompt engineering. Subsequently, embeddings from these encoders are fused through a deep neural network to perform VAD. Our experimental analysis across three VAD benchmarks showcases the superior performance of our method compared to existing visual VAD approaches. Notably, our approach outperforms several audio-visual methods despite its simplicity, and without requiring pre-training on extensive audio-visual datasets.
☆ LEAD: Latent Realignment for Human Motion Diffusion
Our goal is to generate realistic human motion from natural language. Modern methods often face a trade-off between model expressiveness and text-to-motion alignment. Some align text and motion latent spaces but sacrifice expressiveness; others rely on diffusion models producing impressive motions, but lacking semantic meaning in their latent space. This may compromise realism, diversity, and applicability. Here, we address this by combining latent diffusion with a realignment mechanism, producing a novel, semantically structured space that encodes the semantics of language. Leveraging this capability, we introduce the task of textual motion inversion to capture novel motion concepts from a few examples. For motion synthesis, we evaluate LEAD on HumanML3D and KIT-ML and show comparable performance to the state-of-the-art in terms of realism, diversity, and text-motion consistency. Our qualitative analysis and user study reveal that our synthesized motions are sharper, more human-like and comply better with the text compared to modern methods. For motion textual inversion, our method demonstrates improved capacity in capturing out-of-distribution characteristics in comparison to traditional VAEs.
☆ Neural Real-Time Recalibration for Infrared Multi-Camera Systems
Currently, there are no learning-free or neural techniques for real-time recalibration of infrared multi-camera systems. In this paper, we address the challenge of real-time, highly-accurate calibration of multi-camera infrared systems, a critical task for time-sensitive applications. Unlike traditional calibration techniques that lack adaptability and struggle with on-the-fly recalibrations, we propose a neural network-based method capable of dynamic real-time calibration. The proposed method integrates a differentiable projection model that directly correlates 3D geometries with their 2D image projections and facilitates the direct optimization of both intrinsic and extrinsic camera parameters. Key to our approach is the dynamic camera pose synthesis with perturbations in camera parameters, emulating realistic operational challenges to enhance model robustness. We introduce two model variants: one designed for multi-camera systems with onboard processing of 2D points, utilizing the direct 2D projections of 3D fiducials, and another for image-based systems, employing color-coded projected points for implicitly establishing correspondence. Through rigorous experimentation, we demonstrate our method is more accurate than traditional calibration techniques with or without perturbations while also being real-time, marking a significant leap in the field of real-time multi-camera system calibration. The source code can be found at https://github.com/theICTlab/neural-recalibration
comment: real-time camera calibration, infrared camera, neural calibration
☆ An Integrated Deep Learning Model for Skin Cancer Detection Using Hybrid Feature Fusion Technique
Skin cancer is a serious and potentially fatal disease caused by DNA damage. Early detection significantly increases survival rates, making accurate diagnosis crucial. In this groundbreaking study, we present a hybrid framework based on Deep Learning (DL) that achieves precise classification of benign and malignant skin lesions. Our approach begins with dataset preprocessing to enhance classification accuracy, followed by training two separate pre-trained DL models, InceptionV3 and DenseNet121. By fusing the results of each model using the weighted sum rule, our system achieves exceptional accuracy rates. Specifically, we achieve a 92.27% detection accuracy rate, 92.33% sensitivity, 92.22% specificity, 90.81% precision, and 91.57% F1-score, outperforming existing models and demonstrating the robustness and trustworthiness of our hybrid approach. Our study represents a significant advance in skin cancer diagnosis and provides a promising foundation for further research in the field. With the potential to save countless lives through earlier detection, our hybrid deep-learning approach is a game-changer in the fight against skin cancer.
☆ How Do Training Methods Influence the Utilization of Vision Models? NeurIPS 2024
Not all learnable parameters (e.g., weights) contribute equally to a neural network's decision function. In fact, entire layers' parameters can sometimes be reset to random values with little to no impact on the model's decisions. We revisit earlier studies that examined how architecture and task complexity influence this phenomenon and ask: is this phenomenon also affected by how we train the model? We conducted experimental evaluations on a diverse set of ImageNet-1k classification models to explore this, keeping the architecture and training data constant but varying the training pipeline. Our findings reveal that the training method strongly influences which layers become critical to the decision function for a given task. For example, improved training regimes and self-supervised training increase the importance of early layers while significantly under-utilizing deeper layers. In contrast, methods such as adversarial training display an opposite trend. Our preliminary results extend previous findings, offering a more nuanced understanding of the inner mechanics of neural networks. Code: https://github.com/paulgavrikov/layer_criticality
comment: Accepted at the Interpretable AI: Past, Present and Future Workshop at NeurIPS 2024
☆ LUDVIG: Learning-free Uplifting of 2D Visual features to Gaussian Splatting scenes
We address the task of uplifting visual features or semantic masks from 2D vision models to 3D scenes represented by Gaussian Splatting. Whereas common approaches rely on iterative optimization-based procedures, we show that a simple yet effective aggregation technique yields excellent results. Applied to semantic masks from Segment Anything (SAM), our uplifting approach leads to segmentation quality comparable to the state of the art. We then extend this method to generic DINOv2 features, integrating 3D scene geometry through graph diffusion, and achieve competitive segmentation results despite DINOv2 not being trained on millions of annotated masks like SAM.
☆ Toward Generalizing Visual Brain Decoding to Unseen Subjects
Visual brain decoding aims to decode visual information from human brain activities. Despite the great progress, one critical limitation of current brain decoding research lies in the lack of generalization capability to unseen subjects. Prior works typically focus on decoding brain activity of individuals based on the observation that different subjects exhibit different brain activities, while it remains unclear whether brain decoding can be generalized to unseen subjects. This study aims to answer this question. We first consolidate an image-fMRI dataset consisting of stimulus-image and fMRI-response pairs, involving 177 subjects in the movie-viewing task of the Human Connectome Project (HCP). This dataset allows us to investigate the brain decoding performance with the increase of participants. We then present a learning paradigm that applies uniform processing across all subjects, instead of employing different network heads or tokenizers for individuals as in previous methods, which can accommodate a large number of subjects to explore the generalization capability across different subjects. A series of experiments are conducted and we have the following findings. First, the network exhibits clear generalization capabilities with the increase of training subjects. Second, the generalization capability is common to popular network architectures (MLP, CNN and Transformer). Third, the generalization performance is affected by the similarity between subjects. Our findings reveal the inherent similarities in brain activities across individuals. With the emerging of larger and more comprehensive datasets, it is possible to train a brain decoding foundation model in the future.Codes and models can be found at https://github.com/Xiangtaokong/TGBD.
☆ FashionR2R: Texture-preserving Rendered-to-Real Image Translation with Diffusion Models NeurIPS 2024
Modeling and producing lifelike clothed human images has attracted researchers' attention from different areas for decades, with the complexity from highly articulated and structured content. Rendering algorithms decompose and simulate the imaging process of a camera, while are limited by the accuracy of modeled variables and the efficiency of computation. Generative models can produce impressively vivid human images, however still lacking in controllability and editability. This paper studies photorealism enhancement of rendered images, leveraging generative power from diffusion models on the controlled basis of rendering. We introduce a novel framework to translate rendered images into their realistic counterparts, which consists of two stages: Domain Knowledge Injection (DKI) and Realistic Image Generation (RIG). In DKI, we adopt positive (real) domain finetuning and negative (rendered) domain embedding to inject knowledge into a pretrained Text-to-image (T2I) diffusion model. In RIG, we generate the realistic image corresponding to the input rendered image, with a Texture-preserving Attention Control (TAC) to preserve fine-grained clothing textures, exploiting the decoupled features encoded in the UNet structure. Additionally, we introduce SynFashion dataset, featuring high-quality digital clothing images with diverse textures. Extensive experimental results demonstrate the superiority and effectiveness of our method in rendered-to-real image translation.
comment: Accepted by NeurIPS 2024
☆ Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life. This study demonstrates the potential of retinal optical coherence tomography (OCT) imaging combined with fundus photographs for identifying future adverse cardiac events. We used data from 977 patients who experienced CVD within a 5-year interval post-image acquisition, alongside 1,877 control participants without CVD, totaling 2,854 subjects. We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not. Our model, trained on both imaging modalities, achieved promising results (AUROC 0.78 +/- 0.02, accuracy 0.68 +/- 0.002, precision 0.74 +/- 0.02, sensitivity 0.73 +/- 0.02, and specificity 0.68 +/- 0.01), demonstrating its efficacy in identifying patients at risk of future CVD events based on their retinal images. This study highlights the potential of retinal OCT imaging and fundus photographs as cost-effective, non-invasive alternatives for predicting cardiovascular disease risk. The widespread availability of these imaging techniques in optometry practices and hospitals further enhances their potential for large-scale CVD risk screening. Our findings contribute to the development of standardized, accessible methods for early CVD risk identification, potentially improving preventive care strategies and patient outcomes.
comment: Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15155))
☆ Variable Aperture Bokeh Rendering via Customized Focal Plane Guidance
Bokeh rendering is one of the most popular techniques in photography. It can make photographs visually appealing, forcing users to focus their attentions on particular area of image. However, achieving satisfactory bokeh effect usually presents significant challenge, since mobile cameras with restricted optical systems are constrained, while expensive high-end DSLR lens with large aperture should be needed. Therefore, many deep learning-based computational photography methods have been developed to mimic the bokeh effect in recent years. Nevertheless, most of these methods were limited to rendering bokeh effect in certain single aperture. There lacks user-friendly bokeh rendering method that can provide precise focal plane control and customised bokeh generation. There as well lacks authentic realistic bokeh dataset that can potentially promote bokeh learning on variable apertures. To address these two issues, in this paper, we have proposed an effective controllable bokeh rendering method, and contributed a Variable Aperture Bokeh Dataset (VABD). In the proposed method, user can customize focal plane to accurately locate concerned subjects and select target aperture information for bokeh rendering. Experimental results on public EBB! benchmark dataset and our constructed dataset VABD have demonstrated that the customized focal plane together aperture prompt can bootstrap model to simulate realistic bokeh effect. The proposed method has achieved competitive state-of-the-art performance with only 4.4M parameters, which is much lighter than mainstream computational bokeh models. The contributed dataset and source codes will be released on github https://github.com/MoTong-AI-studio/VABM.
☆ Dynamic Negative Guidance of Diffusion Models ICLR 2025
Negative Prompting (NP) is widely utilized in diffusion models, particularly in text-to-image applications, to prevent the generation of undesired features. In this paper, we show that conventional NP is limited by the assumption of a constant guidance scale, which may lead to highly suboptimal results, or even complete failure, due to the non-stationarity and state-dependence of the reverse process. Based on this analysis, we derive a principled technique called Dynamic Negative Guidance, which relies on a near-optimal time and state dependent modulation of the guidance without requiring additional training. Unlike NP, negative guidance requires estimating the posterior class probability during the denoising process, which is achieved with limited additional computational overhead by tracking the discrete Markov Chain during the generative process. We evaluate the performance of DNG class-removal on MNIST and CIFAR10, where we show that DNG leads to higher safety, preservation of class balance and image quality when compared with baseline methods. Furthermore, we show that it is possible to use DNG with Stable Diffusion to obtain more accurate and less invasive guidance than NP.
comment: Paper currently under review. Submitted to ICLR 2025
☆ SurgeryV2: Bridging the Gap Between Model Merging and Multi-Task Learning with Deep Representation Surgery ICML 2024
Model merging-based multitask learning (MTL) offers a promising approach for performing MTL by merging multiple expert models without requiring access to raw training data. However, in this paper, we examine the merged model's representation distribution and uncover a critical issue of "representation bias". This bias arises from a significant distribution gap between the representations of the merged and expert models, leading to the suboptimal performance of the merged MTL model. To address this challenge, we first propose a representation surgery solution called Surgery. Surgery is a lightweight, task-specific module that aligns the final layer representations of the merged model with those of the expert models, effectively alleviating bias and improving the merged model's performance. Despite these improvements, a performance gap remains compared to the traditional MTL method. Further analysis reveals that representation bias phenomena exist at each layer of the merged model, and aligning representations only in the last layer is insufficient for fully reducing systemic bias because biases introduced at each layer can accumulate and interact in complex ways. To tackle this, we then propose a more comprehensive solution, deep representation surgery (also called SurgeryV2), which mitigates representation bias across all layers, and thus bridges the performance gap between model merging-based MTL and traditional MTL. Finally, we design an unsupervised optimization objective to optimize both the Surgery and SurgeryV2 modules. Our experimental results show that incorporating these modules into state-of-the-art (SOTA) model merging schemes leads to significant performance gains. Notably, our SurgeryV2 scheme reaches almost the same level as individual expert models or the traditional MTL model. The code is available at \url{https://github.com/EnnengYang/SurgeryV2}.
comment: This paper is an extended version of our previous work [arXiv:2402.02705] presented at ICML 2024
☆ AnomalyNCD: Towards Novel Anomaly Class Discovery in Industrial Scenarios
In the industrial scenario, anomaly detection could locate but cannot classify anomalies. To complete their capability, we study to automatically discover and recognize visual classes of industrial anomalies. In terms of multi-class anomaly classification, previous methods cluster anomalies represented by frozen pre-trained models but often fail due to poor discrimination. Novel class discovery (NCD) has the potential to tackle this. However, it struggles with non-prominent and semantically weak anomalies that challenge network learning focus. To address these, we introduce AnomalyNCD, a multi-class anomaly classification framework compatible with existing anomaly detection methods. This framework learns anomaly-specific features and classifies anomalies in a self-supervised manner. Initially, a technique called Main Element Binarization (MEBin) is first designed, which segments primary anomaly regions into masks to alleviate the impact of incorrect detections on learning. Subsequently, we employ mask-guided contrastive representation learning to improve feature discrimination, which focuses network attention on isolated anomalous regions and reduces the confusion of erroneous inputs through re-corrected pseudo labels. Finally, to enable flexible classification at both region and image levels during inference, we develop a region merging strategy that determines the overall image category based on the classified anomaly regions. Our method outperforms the state-of-the-art works on the MVTec AD and MTD datasets. Compared with the current methods, AnomalyNCD combined with zero-shot anomaly detection method achieves a 10.8% $F_1$ gain, 8.8% NMI gain, and 9.5% ARI gain on MVTec AD, 12.8% $F_1$ gain, 5.7% NMI gain, and 10.8% ARI gain on MTD. The source code is available at https://github.com/HUST-SLOW/AnomalyNCD.
☆ Impact of imperfect annotations on CNN training and performance for instance segmentation and classification in digital pathology
Segmentation and classification of large numbers of instances, such as cell nuclei, are crucial tasks in digital pathology for accurate diagnosis. However, the availability of high-quality datasets for deep learning methods is often limited due to the complexity of the annotation process. In this work, we investigate the impact of noisy annotations on the training and performance of a state-of-the-art CNN model for the combined task of detecting, segmenting and classifying nuclei in histopathology images. In this context, we investigate the conditions for determining an appropriate number of training epochs to prevent overfitting to annotation noise during training. Our results indicate that the utilisation of a small, correctly annotated validation set is instrumental in avoiding overfitting and maintaining model performance to a large extent. Additionally, our findings underscore the beneficial role of pre-training.
☆ 2D-3D Deformable Image Registration of Histology Slide and Micro-CT with ML-based Initialization
Recent developments in the registration of histology and micro-computed tomography ({\mu}CT) have broadened the perspective of pathological applications such as virtual histology based on {\mu}CT. This topic remains challenging because of the low image quality of soft tissue CT. Additionally, soft tissue samples usually deform during the histology slide preparation, making it difficult to correlate the structures between histology slide and {\mu}CT. In this work, we propose a novel 2D-3D multi-modal deformable image registration method. The method uses a machine learning (ML) based initialization followed by the registration. The registration is finalized by an analytical out-of-plane deformation refinement. The method is evaluated on datasets acquired from tonsil and tumor tissues. {\mu}CTs of both phase-contrast and conventional absorption modalities are investigated. The registration results from the proposed method are compared with those from intensity- and keypoint-based methods. The comparison is conducted using both visual and fiducial-based evaluations. The proposed method demonstrates superior performance compared to the other two methods.
comment: 12 pages, 4 figures
☆ Zero-shot Action Localization via the Confidence of Large Vision-Language Models
Precise action localization in untrimmed video is vital for fields such as professional sports and minimally invasive surgery, where the delineation of particular motions in recordings can dramatically enhance analysis. But in many cases, large scale datasets with video-label pairs for localization are unavailable, limiting the opportunity to fine-tune video-understanding models. Recent developments in large vision-language models (LVLM) address this need with impressive zero-shot capabilities in a variety of video understanding tasks. However, the adaptation of image-based LVLMs, with their powerful visual question answering capabilities, to action localization in long-form video is still relatively unexplored. To this end, we introduce a true ZEro-shot Action Localization method (ZEAL). Specifically, we leverage the built-in action knowledge of a large language model (LLM) to inflate actions into highly-detailed descriptions of the archetypal start and end of the action. These descriptions serve as queries to LVLM for generating frame-level confidence scores which can be aggregated to produce localization outputs. The simplicity and flexibility of our method lends it amenable to more capable LVLMs as they are developed, and we demonstrate remarkable results in zero-shot action localization on a challenging benchmark, without any training.
☆ Evaluating the evaluators: Towards human-aligned metrics for missing markers reconstruction
Animation data is often obtained through optical motion capture systems, which utilize a multitude of cameras to establish the position of optical markers. However, system errors or occlusions can result in missing markers, the manual cleaning of which can be time-consuming. This has sparked interest in machine learning-based solutions for missing marker reconstruction in the academic community. Most academic papers utilize a simplistic mean square error as the main metric. In this paper, we show that this metric does not correlate with subjective perception of the fill quality. We introduce and evaluate a set of better-correlated metrics that can drive progress in the field.
☆ Croc: Pretraining Large Multimodal Models with Cross-Modal Comprehension
Recent advances in Large Language Models (LLMs) have catalyzed the development of Large Multimodal Models (LMMs). However, existing research primarily focuses on tuning language and image instructions, ignoring the critical pretraining phase where models learn to process textual and visual modalities jointly. In this paper, we propose a new pretraining paradigm for LMMs to enhance the visual comprehension capabilities of LLMs by introducing a novel cross-modal comprehension stage. Specifically, we design a dynamically learnable prompt token pool and employ the Hungarian algorithm to replace part of the original visual tokens with the most relevant prompt tokens. Then, we conceptualize visual tokens as analogous to a "foreign language" for the LLMs and propose a mixed attention mechanism with bidirectional visual attention and unidirectional textual attention to comprehensively enhance the understanding of visual tokens. Meanwhile, we integrate a detailed caption generation task, leveraging rich descriptions to further facilitate LLMs in understanding visual semantic information. After pretraining on 1.5 million publicly accessible data, we present a new foundation model called Croc. Experimental results demonstrate that Croc achieves new state-of-the-art performance on massive vision-language benchmarks. To support reproducibility and facilitate further research, we release the training code and pre-trained model weights at https://github.com/deepglint/Croc.
comment: 18 pages, 11 figures
☆ Fast proxy centers for Jeffreys centroids: The Jeffreys-Fisher-Rao and the inductive Gauss-Bregman centers
The symmetric Kullback-Leibler centroid also called the Jeffreys centroid of a set of mutually absolutely continuous probability distributions on a measure space provides a notion of centrality which has proven useful in many tasks including information retrieval, information fusion, and clustering in image, video and sound processing. However, the Jeffreys centroid is not available in closed-form for sets of categorical or normal distributions, two widely used statistical models, and thus need to be approximated numerically in practice. In this paper, we first propose the new Jeffreys-Fisher-Rao center defined as the Fisher-Rao midpoint of the sided Kullback-Leibler centroids as a plug-in replacement of the Jeffreys centroid. This Jeffreys-Fisher-Rao center admits a generic formula for uni-parameter exponential family distributions, and closed-form formula for categorical and normal distributions, matches exactly the Jeffreys centroid for same-mean normal distributions, and is experimentally observed in practice to be close to the Jeffreys centroid. Second, we define a new type of inductive centers generalizing the principle of Gauss arithmetic-geometric double sequence mean for pairs of densities of any given exponential family. This center is shown experimentally to approximate very well the Jeffreys centroid and is suggested to use when the Jeffreys-Fisher-Rao center is not available in closed form. Moreover, this Gauss-Bregman inductive center always converges and matches the Jeffreys centroid for sets of same-mean normal distributions. We report on our experiments demonstrating the use of the Jeffreys-Fisher-Rao and Gauss-Bregman centers instead of the Jeffreys centroid. Finally, we conclude this work by reinterpreting these fast proxy centers of Jeffreys centroids under the lens of dually flat spaces in information geometry.
comment: 35 pages, 10 figures
☆ HiCo: Hierarchical Controllable Diffusion Model for Layout-to-image Generation NeurIPS2024
The task of layout-to-image generation involves synthesizing images based on the captions of objects and their spatial positions. Existing methods still struggle in complex layout generation, where common bad cases include object missing, inconsistent lighting, conflicting view angles, etc. To effectively address these issues, we propose a \textbf{Hi}erarchical \textbf{Co}ntrollable (HiCo) diffusion model for layout-to-image generation, featuring object seperable conditioning branch structure. Our key insight is to achieve spatial disentanglement through hierarchical modeling of layouts. We use a multi branch structure to represent hierarchy and aggregate them in fusion module. To evaluate the performance of multi-objective controllable layout generation in natural scenes, we introduce the HiCo-7K benchmark, derived from the GRIT-20M dataset and manually cleaned. https://github.com/360CVGroup/HiCo_T2I.
comment: NeurIPS2024
☆ Advanced Underwater Image Quality Enhancement via Hybrid Super-Resolution Convolutional Neural Networks and Multi-Scale Retinex-Based Defogging Techniques
The difficulties of underwater image degradation due to light scattering, absorption, and fog-like particles which lead to low resolution and poor visibility are discussed in this study report. We suggest a sophisticated hybrid strategy that combines Multi-Scale Retinex (MSR) defogging methods with Super-Resolution Convolutional Neural Networks (SRCNN) to address these problems. The Retinex algorithm mimics human visual perception to reduce uneven lighting and fogging, while the SRCNN component improves the spatial resolution of underwater photos.Through the combination of these methods, we are able to enhance the clarity, contrast, and colour restoration of underwater images, offering a reliable way to improve image quality in difficult underwater conditions. The research conducts extensive experiments on real-world underwater datasets to further illustrate the efficacy of the suggested approach. In terms of sharpness, visibility, and feature retention, quantitative evaluation which use metrics like the Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR) demonstrates notable advances over conventional techniques.In real-time underwater applications like marine exploration, underwater robotics, and autonomous underwater vehicles, where clear and high-resolution imaging is crucial for operational success, the combination of deep learning and conventional image processing techniques offers a computationally efficient framework with superior results.
☆ Takin-ADA: Emotion Controllable Audio-Driven Animation with Canonical and Landmark Loss Optimization
Existing audio-driven facial animation methods face critical challenges, including expression leakage, ineffective subtle expression transfer, and imprecise audio-driven synchronization. We discovered that these issues stem from limitations in motion representation and the lack of fine-grained control over facial expressions. To address these problems, we present Takin-ADA, a novel two-stage approach for real-time audio-driven portrait animation. In the first stage, we introduce a specialized loss function that enhances subtle expression transfer while reducing unwanted expression leakage. The second stage utilizes an advanced audio processing technique to improve lip-sync accuracy. Our method not only generates precise lip movements but also allows flexible control over facial expressions and head motions. Takin-ADA achieves high-resolution (512x512) facial animations at up to 42 FPS on an RTX 4090 GPU, outperforming existing commercial solutions. Extensive experiments demonstrate that our model significantly surpasses previous methods in video quality, facial dynamics realism, and natural head movements, setting a new benchmark in the field of audio-driven facial animation.
comment: under review
☆ You Only Look Twice! for Failure Causes Identification of Drill Bits
Efficient identification of the root causes of drill bit failure is crucial due to potential impacts such as operational losses, safety threats, and delays. Early recognition of these failures enables proactive maintenance, reducing risks and financial losses associated with unforeseen breakdowns and prolonged downtime. Thus, our study investigates various causes of drill bit failure using images of different blades. The process involves annotating cutters with their respective locations and damage types, followed by the development of two YOLO Location and Damage Cutter Detection models, as well as multi-class multi-label Decision Tree and Random Forests models to identify the causes of failure by assessing the cutters' location and damage type. Additionally, RRFCI is proposed for the classification of failure causes. Notably, the cutter location detection model achieved a high score of 0.97 mPA, and the cutter damage detection model yielded a 0.49 mPA. The rule-based approach over-performed both DT and RF in failure cause identification, achieving a macro-average F1-score of 0.94 across all damage causes. The integration of the complete automated pipeline successfully identified 100\% of the 24 failure causes when tested on independent sets of ten drill bits, showcasing its potential to efficiently assist experts in identifying the root causes of drill bit damages.
☆ ClearSR: Latent Low-Resolution Image Embeddings Help Diffusion-Based Real-World Super Resolution Models See Clearer
We present ClearSR, a new method that can better take advantage of latent low-resolution image (LR) embeddings for diffusion-based real-world image super-resolution (Real-ISR). Previous Real-ISR models mostly focus on how to activate more generative priors of text-to-image diffusion models to make the output high-resolution (HR) images look better. However, since these methods rely too much on the generative priors, the content of the output images is often inconsistent with the input LR ones. To mitigate the above issue, in this work, we explore using latent LR embeddings to constrain the control signals from ControlNet, and extract LR information at both detail and structure levels. We show that the proper use of latent LR embeddings can produce higher-quality control signals, which enables the super-resolution results to be more consistent with the LR image and leads to clearer visual results. In addition, we also show that latent LR embeddings can be used to control the inference stage, allowing for the improvement of fidelity and generation ability simultaneously. Experiments demonstrate that our model can achieve better performance across multiple metrics on several test sets and generate more consistent SR results with LR images than existing methods. Our code will be made publicly available.
☆ HYPNOS : Highly Precise Foreground-focused Diffusion Finetuning for Inanimate Objects ACCV
In recent years, personalized diffusion-based text-to-image generative tasks have been a hot topic in computer vision studies. A robust diffusion model is determined by its ability to perform near-perfect reconstruction of certain product outcomes given few related input samples. Unfortunately, the current prominent diffusion-based finetuning technique falls short in maintaining the foreground object consistency while being constrained to produce diverse backgrounds in the image outcome. In the worst scenario, the overfitting issue may occur, meaning that the foreground object is less controllable due to the condition above, for example, the input prompt information is transferred ambiguously to both foreground and background regions, instead of the supposed background region only. To tackle the issues above, we proposed Hypnos, a highly precise foreground-focused diffusion finetuning technique. On the image level, this strategy works best for inanimate object generation tasks, and to do so, Hypnos implements two main approaches, namely: (i) a content-centric prompting strategy and (ii) the utilization of our additional foreground-focused discriminative module. The utilized module is connected with the diffusion model and finetuned with our proposed set of supervision mechanism. Combining the strategies above yielded to the foreground-background disentanglement capability of the diffusion model. Our experimental results showed that the proposed strategy gave a more robust performance and visually pleasing results compared to the former technique. For better elaborations, we also provided extensive studies to assess the fruitful outcomes above, which reveal how personalization behaves in regard to several training conditions.
comment: 26 pages, 12 figures, to appear on the Rich Media with Generative AI workshop in conjunction with Asian Conference on Computer Vision (ACCV) 2024
☆ Vision-Language Navigation with Energy-Based Policy
Vision-language navigation (VLN) requires an agent to execute actions following human instructions. Existing VLN models are optimized through expert demonstrations by supervised behavioural cloning or incorporating manual reward engineering. While straightforward, these efforts overlook the accumulation of errors in the Markov decision process, and struggle to match the distribution of the expert policy. Going beyond this, we propose an Energy-based Navigation Policy (ENP) to model the joint state-action distribution using an energy-based model. At each step, low energy values correspond to the state-action pairs that the expert is most likely to perform, and vice versa. Theoretically, the optimization objective is equivalent to minimizing the forward divergence between the occupancy measure of the expert and ours. Consequently, ENP learns to globally align with the expert policy by maximizing the likelihood of the actions and modeling the dynamics of the navigation states in a collaborative manner. With a variety of VLN architectures, ENP achieves promising performances on R2R, REVERIE, RxR, and R2R-CE, unleashing the power of existing VLN models.
☆ ERDDCI: Exact Reversible Diffusion via Dual-Chain Inversion for High-Quality Image Editing
Diffusion models (DMs) have been successfully applied to real image editing. These models typically invert images into latent noise vectors used to reconstruct the original images (known as inversion), and then edit them during the inference process. However, recent popular DMs often rely on the assumption of local linearization, where the noise injected during the inversion process is expected to approximate the noise removed during the inference process. While DM efficiently generates images under this assumption, it can also accumulate errors during the diffusion process due to the assumption, ultimately negatively impacting the quality of real image reconstruction and editing. To address this issue, we propose a novel method, referred to as ERDDCI (Exact Reversible Diffusion via Dual-Chain Inversion). ERDDCI uses the new Dual-Chain Inversion (DCI) for joint inference to derive an exact reversible diffusion process. By using DCI, our method effectively avoids the cumbersome optimization process in existing inversion approaches and achieves high-quality image editing. Additionally, to accommodate image operations under high guidance scales, we introduce a dynamic control strategy that enables more refined image reconstruction and editing. Our experiments demonstrate that ERDDCI significantly outperforms state-of-the-art methods in a 50-step diffusion process. It achieves rapid and precise image reconstruction with an SSIM of 0.999 and an LPIPS of 0.001, and also delivers competitive results in image editing.
☆ PReP: Efficient context-based shape retrieval for missing parts
In this paper we study the problem of shape part retrieval in the point cloud domain. Shape retrieval methods in the literature rely on the presence of an existing query object, but what if the part we are looking for is not available? We present Part Retrieval Pipeline (PReP), a pipeline that creatively utilizes metric learning techniques along with a trained classification model to measure the suitability of potential replacement parts from a database, as part of an application scenario targeting circular economy. Through an innovative training procedure with increasing difficulty, it is able to learn to recognize suitable parts relying only on shape context. Thanks to its low parameter size and computational requirements, it can be used to sort through a warehouse of potentially tens of thousand of spare parts in just a few seconds. We also establish an alternative baseline approach to compare against, and extensively document the unique challenges associated with this task, as well as identify the design choices to solve them.
☆ Pseudo-label Refinement for Improving Self-Supervised Learning Systems
Self-supervised learning systems have gained significant attention in recent years by leveraging clustering-based pseudo-labels to provide supervision without the need for human annotations. However, the noise in these pseudo-labels caused by the clustering methods poses a challenge to the learning process leading to degraded performance. In this work, we propose a pseudo-label refinement (SLR) algorithm to address this issue. The cluster labels from the previous epoch are projected to the current epoch cluster-labels space and a linear combination of the new label and the projected label is computed as a soft refined label containing the information from the previous epoch clusters as well as from the current epoch. In contrast to the common practice of using the maximum value as a cluster/class indicator, we employ hierarchical clustering on these soft pseudo-labels to generate refined hard-labels. This approach better utilizes the information embedded in the soft labels, outperforming the simple maximum value approach for hard label generation. The effectiveness of the proposed SLR algorithm is evaluated in the context of person re-identification (Re-ID) using unsupervised domain adaptation (UDA). Experimental results demonstrate that the modified Re-ID baseline, incorporating the SLR algorithm, achieves significantly improved mean Average Precision (mAP) performance in various UDA tasks, including real-to-synthetic, synthetic-to-real, and different real-to-real scenarios. These findings highlight the efficacy of the SLR algorithm in enhancing the performance of self-supervised learning systems.
☆ Storyboard guided Alignment for Fine-grained Video Action Recognition
Fine-grained video action recognition can be conceptualized as a video-text matching problem. Previous approaches often rely on global video semantics to consolidate video embeddings, which can lead to misalignment in video-text pairs due to a lack of understanding of action semantics at an atomic granularity level. To tackle this challenge, we propose a multi-granularity framework based on two observations: (i) videos with different global semantics may share similar atomic actions or appearances, and (ii) atomic actions within a video can be momentary, slow, or even non-directly related to the global video semantics. Inspired by the concept of storyboarding, which disassembles a script into individual shots, we enhance global video semantics by generating fine-grained descriptions using a pre-trained large language model. These detailed descriptions capture common atomic actions depicted in videos. A filtering metric is proposed to select the descriptions that correspond to the atomic actions present in both the videos and the descriptions. By employing global semantics and fine-grained descriptions, we can identify key frames in videos and utilize them to aggregate embeddings, thereby making the embedding more accurate. Extensive experiments on various video action recognition datasets demonstrate superior performance of our proposed method in supervised, few-shot, and zero-shot settings.
☆ MambaSCI: Efficient Mamba-UNet for Quad-Bayer Patterned Video Snapshot Compressive Imaging NeurIPS 2024
Color video snapshot compressive imaging (SCI) employs computational imaging techniques to capture multiple sequential video frames in a single Bayer-patterned measurement. With the increasing popularity of quad-Bayer pattern in mainstream smartphone cameras for capturing high-resolution videos, mobile photography has become more accessible to a wider audience. However, existing color video SCI reconstruction algorithms are designed based on the traditional Bayer pattern. When applied to videos captured by quad-Bayer cameras, these algorithms often result in color distortion and ineffective demosaicing, rendering them impractical for primary equipment. To address this challenge, we propose the MambaSCI method, which leverages the Mamba and UNet architectures for efficient reconstruction of quad-Bayer patterned color video SCI. To the best of our knowledge, our work presents the first algorithm for quad-Bayer patterned SCI reconstruction, and also the initial application of the Mamba model to this task. Specifically, we customize Residual-Mamba-Blocks, which residually connect the Spatial-Temporal Mamba (STMamba), Edge-Detail-Reconstruction (EDR) module, and Channel Attention (CA) module. Respectively, STMamba is used to model long-range spatial-temporal dependencies with linear complexity, EDR is for better edge-detail reconstruction, and CA is used to compensate for the missing channel information interaction in Mamba model. Experiments demonstrate that MambaSCI surpasses state-of-the-art methods with lower computational and memory costs. PyTorch style pseudo-code for the core modules is provided in the supplementary materials.
comment: NeurIPS 2024
☆ Shape Transformation Driven by Active Contour for Class-Imbalanced Semi-Supervised Medical Image Segmentation
Annotating 3D medical images demands expert knowledge and is time-consuming. As a result, semi-supervised learning (SSL) approaches have gained significant interest in 3D medical image segmentation. The significant size differences among various organs in the human body lead to imbalanced class distribution, which is a major challenge in the real-world application of these SSL approaches. To address this issue, we develop a novel Shape Transformation driven by Active Contour (STAC), that enlarges smaller organs to alleviate imbalanced class distribution across different organs. Inspired by curve evolution theory in active contour methods, STAC employs a signed distance function (SDF) as the level set function, to implicitly represent the shape of organs, and deforms voxels in the direction of the steepest descent of SDF (i.e., the normal vector). To ensure that the voxels far from expansion organs remain unchanged, we design an SDF-based weight function to control the degree of deformation for each voxel. We then use STAC as a data-augmentation process during the training stage. Experimental results on two benchmark datasets demonstrate that the proposed method significantly outperforms some state-of-the-art methods. Source code is publicly available at https://github.com/GuGuLL123/STAC.
☆ Text-to-Image Representativity Fairness Evaluation Framework
Text-to-Image generative systems are progressing rapidly to be a source of advertisement and media and could soon serve as image searches or artists. However, there is a significant concern about the representativity bias these models embody and how these biases can propagate in the social fabric after fine-tuning them. Therefore, continuously monitoring and evaluating these models for fairness is important. To address this issue, we propose Text-to-Image (TTI) Representativity Fairness Evaluation Framework. In this framework, we evaluate three aspects of a TTI system; diversity, inclusion, and quality. For each aspect, human-based and model-based approaches are proposed and evaluated for their ability to capture the bias and whether they can substitute each other. The framework starts by suggesting the prompts for generating the images for the evaluation based on the context and the sensitive attributes under study. Then the three aspects are evaluated using the proposed approaches. Based on the evaluation, a decision is made regarding the representativity bias within the TTI system. The evaluation of our framework on Stable Diffusion shows that the framework can effectively capture the bias in TTI systems. The results also confirm that our proposed model based-approaches can substitute human-based approaches in three out of four components with high correlation, which could potentially reduce costs and automate the process. The study suggests that continual learning of the model on more inclusive data across disadvantaged minorities such as Indians and Middle Easterners is essential to mitigate current stereotyping and lack of inclusiveness.
☆ E3D-GPT: Enhanced 3D Visual Foundation for Medical Vision-Language Model
The development of 3D medical vision-language models holds significant potential for disease diagnosis and patient treatment. However, compared to 2D medical images, 3D medical images, such as CT scans, face challenges related to limited training data and high dimension, which severely restrict the progress of 3D medical vision-language models. To address these issues, we collect a large amount of unlabeled 3D CT data and utilize self-supervised learning to construct a 3D visual foundation model for extracting 3D visual features. Then, we apply 3D spatial convolutions to aggregate and project high-level image features, reducing computational complexity while preserving spatial information. We also construct two instruction-tuning datasets based on BIMCV-R and CT-RATE to fine-tune the 3D vision-language model. Our model demonstrates superior performance compared to existing methods in report generation, visual question answering, and disease diagnosis. Code and data will be made publicly available soon.
☆ Rethinking Transformer for Long Contextual Histopathology Whole Slide Image Analysis NeurIPS-2024
Histopathology Whole Slide Image (WSI) analysis serves as the gold standard for clinical cancer diagnosis in the daily routines of doctors. To develop computer-aided diagnosis model for WSIs, previous methods typically employ Multi-Instance Learning to enable slide-level prediction given only slide-level labels. Among these models, vanilla attention mechanisms without pairwise interactions have traditionally been employed but are unable to model contextual information. More recently, self-attention models have been utilized to address this issue. To alleviate the computational complexity of long sequences in large WSIs, methods like HIPT use region-slicing, and TransMIL employs approximation of full self-attention. Both approaches suffer from suboptimal performance due to the loss of key information. Moreover, their use of absolute positional embedding struggles to effectively handle long contextual dependencies in shape-varying WSIs. In this paper, we first analyze how the low-rank nature of the long-sequence attention matrix constrains the representation ability of WSI modelling. Then, we demonstrate that the rank of attention matrix can be improved by focusing on local interactions via a local attention mask. Our analysis shows that the local mask aligns with the attention patterns in the lower layers of the Transformer. Furthermore, the local attention mask can be implemented during chunked attention calculation, reducing the quadratic computational complexity to linear with a small local bandwidth. Building on this, we propose a local-global hybrid Transformer for both computational acceleration and local-global information interactions modelling. Our method, Long-contextual MIL (LongMIL), is evaluated through extensive experiments on various WSI tasks to validate its superiority. Our code will be available at github.com/invoker-LL/Long-MIL.
comment: NeurIPS-2024. arXiv admin note: text overlap with arXiv:2311.12885
☆ Neural Signed Distance Function Inference through Splatting 3D Gaussians Pulled on Zero-Level Set NeurIPS 2024
It is vital to infer a signed distance function (SDF) in multi-view based surface reconstruction. 3D Gaussian splatting (3DGS) provides a novel perspective for volume rendering, and shows advantages in rendering efficiency and quality. Although 3DGS provides a promising neural rendering option, it is still hard to infer SDFs for surface reconstruction with 3DGS due to the discreteness, the sparseness, and the off-surface drift of 3D Gaussians. To resolve these issues, we propose a method that seamlessly merge 3DGS with the learning of neural SDFs. Our key idea is to more effectively constrain the SDF inference with the multi-view consistency. To this end, we dynamically align 3D Gaussians on the zero-level set of the neural SDF using neural pulling, and then render the aligned 3D Gaussians through the differentiable rasterization. Meanwhile, we update the neural SDF by pulling neighboring space to the pulled 3D Gaussians, which progressively refine the signed distance field near the surface. With both differentiable pulling and splatting, we jointly optimize 3D Gaussians and the neural SDF with both RGB and geometry constraints, which recovers more accurate, smooth, and complete surfaces with more geometry details. Our numerical and visual comparisons show our superiority over the state-of-the-art results on the widely used benchmarks.
comment: Accepted by NeurIPS 2024. Project page: https://wen-yuan-zhang.github.io/GS-Pull/
☆ MultiChartQA: Benchmarking Vision-Language Models on Multi-Chart Problems
Multimodal Large Language Models (MLLMs) have demonstrated impressive abilities across various tasks, including visual question answering and chart comprehension, yet existing benchmarks for chart-related tasks fall short in capturing the complexity of real-world multi-chart scenarios. Current benchmarks primarily focus on single-chart tasks, neglecting the multi-hop reasoning required to extract and integrate information from multiple charts, which is essential in practical applications. To fill this gap, we introduce MultiChartQA, a benchmark that evaluates MLLMs' capabilities in four key areas: direct question answering, parallel question answering, comparative reasoning, and sequential reasoning. Our evaluation of a wide range of MLLMs reveals significant performance gaps compared to humans. These results highlight the challenges in multi-chart comprehension and the potential of MultiChartQA to drive advancements in this field. Our code and data are available at https://github.com/Zivenzhu/Multi-chart-QA
comment: 18 pages, 9 figures
☆ Feature Augmentation based Test-Time Adaptation
Test-time adaptation (TTA) allows a model to be adapted to an unseen domain without accessing the source data. Due to the nature of practical environments, TTA has a limited amount of data for adaptation. Recent TTA methods further restrict this by filtering input data for reliability, making the effective data size even smaller and limiting adaptation potential. To address this issue, We propose Feature Augmentation based Test-time Adaptation (FATA), a simple method that fully utilizes the limited amount of input data through feature augmentation. FATA employs Normalization Perturbation to augment features and adapts the model using the FATA loss, which makes the outputs of the augmented and original features similar. FATA is model-agnostic and can be seamlessly integrated into existing models without altering the model architecture. We demonstrate the effectiveness of FATA on various models and scenarios on ImageNet-C and Office-Home, validating its superiority in diverse real-world conditions.
comment: 10 pages
☆ Learning autonomous driving from aerial imagery IROS 2024
In this work, we consider the problem of learning end to end perception to control for ground vehicles solely from aerial imagery. Photogrammetric simulators allow the synthesis of novel views through the transformation of pre-generated assets into novel views.However, they have a large setup cost, require careful collection of data and often human effort to create usable simulators. We use a Neural Radiance Field (NeRF) as an intermediate representation to synthesize novel views from the point of view of a ground vehicle. These novel viewpoints can then be used for several downstream autonomous navigation applications. In this work, we demonstrate the utility of novel view synthesis though the application of training a policy for end to end learning from images and depth data. In a traditional real to sim to real framework, the collected data would be transformed into a visual simulator which could then be used to generate novel views. In contrast, using a NeRF allows a compact representation and the ability to optimize over the parameters of the visual simulator as more data is gathered in the environment. We demonstrate the efficacy of our method in a custom built mini-city environment through the deployment of imitation policies on robotic cars. We additionally consider the task of place localization and demonstrate that our method is able to relocalize the car in the real world.
comment: Presented at IROS 2024
☆ DaRePlane: Direction-aware Representations for Dynamic Scene Reconstruction
Numerous recent approaches to modeling and re-rendering dynamic scenes leverage plane-based explicit representations, addressing slow training times associated with models like neural radiance fields (NeRF) and Gaussian splatting (GS). However, merely decomposing 4D dynamic scenes into multiple 2D plane-based representations is insufficient for high-fidelity re-rendering of scenes with complex motions. In response, we present DaRePlane, a novel direction-aware representation approach that captures scene dynamics from six different directions. This learned representation undergoes an inverse dual-tree complex wavelet transformation (DTCWT) to recover plane-based information. Within NeRF pipelines, DaRePlane computes features for each space-time point by fusing vectors from these recovered planes, then passed to a tiny MLP for color regression. When applied to Gaussian splatting, DaRePlane computes the features of Gaussian points, followed by a tiny multi-head MLP for spatial-time deformation prediction. Notably, to address redundancy introduced by the six real and six imaginary direction-aware wavelet coefficients, we introduce a trainable masking approach, mitigating storage issues without significant performance decline. To demonstrate the generality and efficiency of DaRePlane, we test it on both regular and surgical dynamic scenes, for both NeRF and GS systems. Extensive experiments show that DaRePlane yields state-of-the-art performance in novel view synthesis for various complex dynamic scenes.
comment: arXiv admin note: substantial text overlap with arXiv:2403.02265
☆ Optimal DLT-based Solutions for the Perspective-n-Point
We propose a modified normalized direct linear transform (DLT) algorithm for solving the perspective-n-point (PnP) problem with much better behavior than the conventional DLT. The modification consists of analytically weighting the different measurements in the linear system with a negligible increase in computational load. Our approach exhibits clear improvements -- in both performance and runtime -- when compared to popular methods such as EPnP, CPnP, RPnP, and OPnP. Our new non-iterative solution approaches that of the true optimal found via Gauss-Newton optimization, but at a fraction of the computational cost. Our optimal DLT (oDLT) implementation, as well as the experiments, are released in open source.
comment: 8 pages, 6 figures, 2 tables
☆ Unlabeled Action Quality Assessment Based on Multi-dimensional Adaptive Constrained Dynamic Time Warping
The growing popularity of online sports and exercise necessitates effective methods for evaluating the quality of online exercise executions. Previous action quality assessment methods, which relied on labeled scores from motion videos, exhibited slightly lower accuracy and discriminability. This limitation hindered their rapid application to newly added exercises. To address this problem, this paper presents an unlabeled Multi-Dimensional Exercise Distance Adaptive Constrained Dynamic Time Warping (MED-ACDTW) method for action quality assessment. Our approach uses an athletic version of DTW to compare features from template and test videos, eliminating the need for score labels during training. The result shows that utilizing both 2D and 3D spatial dimensions, along with multiple human body features, improves the accuracy by 2-3% compared to using either 2D or 3D pose estimation alone. Additionally, employing MED for score calculation enhances the precision of frame distance matching, which significantly boosts overall discriminability. The adaptive constraint scheme enhances the discriminability of action quality assessment by approximately 30%. Furthermore, to address the absence of a standardized perspective in sports class evaluations, we introduce a new dataset called BGym.
☆ Assessing Open-world Forgetting in Generative Image Model Customization
Recent advances in diffusion models have significantly enhanced image generation capabilities. However, customizing these models with new classes often leads to unintended consequences that compromise their reliability. We introduce the concept of open-world forgetting to emphasize the vast scope of these unintended alterations, contrasting it with the well-studied closed-world forgetting, which is measurable by evaluating performance on a limited set of classes or skills. Our research presents the first comprehensive investigation into open-world forgetting in diffusion models, focusing on semantic and appearance drift of representations. We utilize zero-shot classification to analyze semantic drift, revealing that even minor model adaptations lead to unpredictable shifts affecting areas far beyond newly introduced concepts, with dramatic drops in zero-shot classification of up to 60%. Additionally, we observe significant changes in texture and color of generated content when analyzing appearance drift. To address these issues, we propose a mitigation strategy based on functional regularization, designed to preserve original capabilities while accommodating new concepts. Our study aims to raise awareness of unintended changes due to model customization and advocates for the analysis of open-world forgetting in future research on model customization and finetuning methods. Furthermore, we provide insights for developing more robust adaptation methodologies.
comment: Project page: https://hecoding.github.io/open-world-forgetting/
☆ Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment
The recent advancements in large language models (LLMs) and pre-trained vision models have accelerated the development of vision-language large models (VLLMs), enhancing the interaction between visual and linguistic modalities. Despite their notable success across various domains, VLLMs face challenges in modality alignment, which can lead to issues like hallucinations and unsafe content generation. Current alignment techniques often rely on coarse feedback and external datasets, limiting scalability and performance. In this paper, we propose FiSAO (Fine-Grained Self-Alignment Optimization), a novel self-alignment method that utilizes the model's own visual encoder as a fine-grained verifier to improve vision-language alignment without the need for additional data. By leveraging token-level feedback from the vision encoder, FiSAO significantly improves vision-language alignment, even surpassing traditional preference tuning methods that require additional data. Through both theoretical analysis and experimental validation, we demonstrate that FiSAO effectively addresses the misalignment problem in VLLMs, marking the first instance of token-level rewards being applied to such models.
comment: 23 pages
☆ Preview-based Category Contrastive Learning for Knowledge Distillation
Knowledge distillation is a mainstream algorithm in model compression by transferring knowledge from the larger model (teacher) to the smaller model (student) to improve the performance of student. Despite many efforts, existing methods mainly investigate the consistency between instance-level feature representation or prediction, which neglects the category-level information and the difficulty of each sample, leading to undesirable performance. To address these issues, we propose a novel preview-based category contrastive learning method for knowledge distillation (PCKD). It first distills the structural knowledge of both instance-level feature correspondence and the relation between instance features and category centers in a contrastive learning fashion, which can explicitly optimize the category representation and explore the distinct correlation between representations of instances and categories, contributing to discriminative category centers and better classification results. Besides, we introduce a novel preview strategy to dynamically determine how much the student should learn from each sample according to their difficulty. Different from existing methods that treat all samples equally and curriculum learning that simply filters out hard samples, our method assigns a small weight for hard instances as a preview to better guide the student training. Extensive experiments on several challenging datasets, including CIFAR-100 and ImageNet, demonstrate the superiority over state-of-the-art methods.
comment: 14 pages, 8 figures, Journal
☆ ProReason: Multi-Modal Proactive Reasoning with Decoupled Eyesight and Wisdom
Large vision-language models (LVLMs) have witnessed significant progress on visual understanding tasks. However, they often prioritize language knowledge over image information on visual reasoning tasks, incurring performance degradation. To tackle this issue, we first identify the drawbacks of existing solutions (i.e., insufficient and irrelevant visual descriptions, and limited multi-modal capacities). We then decompose visual reasoning process into two stages: visual perception (i.e., eyesight) and textual reasoning (i.e., wisdom), and introduce a novel visual reasoning framework named ProReason. This framework features multi-run proactive perception and decoupled vision-reasoning capabilities. Briefly, given a multi-modal question, ProReason iterates proactive information collection and reasoning until the answer can be concluded with necessary and sufficient visual descriptions. Notably, the disassociation of capabilities allows seamless integration of existing large language models (LLMs) to compensate for the reasoning deficits of LVLMs. Our extensive experiments demonstrate that ProReason outperforms both existing multi-step reasoning frameworks and passive peer methods on a wide range of benchmarks for both open-source and closed-source models. In addition, with the assistance of LLMs, ProReason achieves a performance improvement of up to 15% on MMMU benchmark. Our insights into existing solutions and the decoupled perspective for feasible integration of LLMs illuminate future research on visual reasoning techniques, especially LLM-assisted ones.
☆ ViConsFormer: Constituting Meaningful Phrases of Scene Texts using Transformer-based Method in Vietnamese Text-based Visual Question Answering
Text-based VQA is a challenging task that requires machines to use scene texts in given images to yield the most appropriate answer for the given question. The main challenge of text-based VQA is exploiting the meaning and information from scene texts. Recent studies tackled this challenge by considering the spatial information of scene texts in images via embedding 2D coordinates of their bounding boxes. In this study, we follow the definition of meaning from linguistics to introduce a novel method that effectively exploits the information from scene texts written in Vietnamese. Experimental results show that our proposed method obtains state-of-the-art results on two large-scale Vietnamese Text-based VQA datasets. The implementation can be found at this link.
☆ Deep Learning Applications in Medical Image Analysis: Advancements, Challenges, and Future Directions
Medical image analysis has emerged as an essential element of contemporary healthcare, facilitating physicians in achieving expedited and precise diagnosis. Recent breakthroughs in deep learning, a subset of artificial intelligence, have markedly revolutionized the analysis of medical pictures, improving the accuracy and efficiency of clinical procedures. Deep learning algorithms, especially convolutional neural networks (CNNs), have demonstrated remarkable proficiency in autonomously learning features from multidimensional medical pictures, including MRI, CT, and X-ray scans, without the necessity for manual feature extraction. These models have been utilized across multiple medical disciplines, including pathology, radiology, ophthalmology, and cardiology, where they aid in illness detection, classification, and segmentation tasks......
☆ Extreme Precipitation Nowcasting using Multi-Task Latent Diffusion Models
Deep learning models have made remarkable strides in precipitation prediction, yet they continue to struggle with capturing the spatial details of the features of radar images, particularly over high precipitation intensity areas. This shortcoming is evident in the form of low forecast accuracy in the spatial positioning of radar echo images across varying precipitation intensity regions. To address this challenge, we introduce the multi-task latent diffusion model(MTLDM), a novel approach for precipitation prediction. The basic concept of the MTLDM is based on the understanding that the radar image representing precipitation is the result of multiple factors. Therefore, we adopt a divide-and-conquer approach, that is, we decompose the radar image using decomposition technology and then predict the decomposed sub-images separately. We conceptualize the precipitation image as a composition of various components corresponding to different precipitation intensities. The MTLDM decomposes the precipitation image into these distinct components and employs a dedicated task to predict each one. This method enables spatiotemporally consistent prediction of real-world precipitation areas up to 5-80 min in advance, outperforming existing state-of-the-art techniques across multiple evaluation metrics.
comment: 12 pages, 6figures
☆ Enhancing In-vehicle Multiple Object Tracking Systems with Embeddable Ising Machines
A cognitive function of tracking multiple objects, needed in autonomous mobile vehicles, comprises object detection and their temporal association. While great progress owing to machine learning has been recently seen for elaborating the similarity matrix between the objects that have been recognized and the objects detected in a current video frame, less for the assignment problem that finally determines the temporal association, which is a combinatorial optimization problem. Here we show an in-vehicle multiple object tracking system with a flexible assignment function for tracking through multiple long-term occlusion events. To solve the flexible assignment problem formulated as a nondeterministic polynomial time-hard problem, the system relies on an embeddable Ising machine based on a quantum-inspired algorithm called simulated bifurcation. Using a vehicle-mountable computing platform, we demonstrate a realtime system-wide throughput (23 frames per second on average) with the enhanced functionality.
comment: 18 pages, 7 figures, 2 tables
♻ ☆ Learning Generative Interactive Environments By Trained Agent Exploration
World models are increasingly pivotal in interpreting and simulating the rules and actions of complex environments. Genie, a recent model, excels at learning from visually diverse environments but relies on costly human-collected data. We observe that their alternative method of using random agents is too limited to explore the environment. We propose to improve the model by employing reinforcement learning based agents for data generation. This approach produces diverse datasets that enhance the model's ability to adapt and perform well across various scenarios and realistic actions within the environment. In this paper, we first release the model GenieRedux - an implementation based on Genie. Additionally, we introduce GenieRedux-G, a variant that uses the agent's readily available actions to factor out action prediction uncertainty during validation. Our evaluation, including a replication of the Coinrun case study, shows that GenieRedux-G achieves superior visual fidelity and controllability using the trained agent exploration. The proposed approach is reproducable, scalable and adaptable to new types of environments. Our codebase is available at https://github.com/insait-institute/GenieRedux .
♻ ☆ EVER: Exact Volumetric Ellipsoid Rendering for Real-time View Synthesis
We present Exact Volumetric Ellipsoid Rendering (EVER), a method for real-time differentiable emission-only volume rendering. Unlike recent rasterization based approach by 3D Gaussian Splatting (3DGS), our primitive based representation allows for exact volume rendering, rather than alpha compositing 3D Gaussian billboards. As such, unlike 3DGS our formulation does not suffer from popping artifacts and view dependent density, but still achieves frame rates of $\sim\!30$ FPS at 720p on an NVIDIA RTX4090. Since our approach is built upon ray tracing it enables effects such as defocus blur and camera distortion (e.g. such as from fisheye cameras), which are difficult to achieve by rasterization. We show that our method is more accurate with fewer blending issues than 3DGS and follow-up work on view-consistent rendering, especially on the challenging large-scale scenes from the Zip-NeRF dataset where it achieves sharpest results among real-time techniques.
comment: Project page: https://half-potato.gitlab.io/posts/ever
♻ ☆ Movie101v2: Improved Movie Narration Benchmark
Automatic movie narration aims to generate video-aligned plot descriptions to assist visually impaired audiences. Unlike standard video captioning, it involves not only describing key visual details but also inferring plots that unfold across multiple movie shots, presenting distinct and complex challenges. To advance this field, we introduce Movie101v2, a large-scale, bilingual dataset with enhanced data quality specifically designed for movie narration. Revisiting the task, we propose breaking down the ultimate goal of automatic movie narration into three progressive stages, offering a clear roadmap with corresponding evaluation metrics. Based on our new benchmark, we baseline a range of large vision-language models, including GPT-4V, and conduct an in-depth analysis of the challenges in narration generation. Our findings highlight that achieving applicable movie narration generation is a fascinating goal that requires significant research.
♻ ☆ Harnessing Shared Relations via Multimodal Mixup Contrastive Learning for Multimodal Classification NeurIPS 2024
Deep multimodal learning has shown remarkable success by leveraging contrastive learning to capture explicit one-to-one relations across modalities. However, real-world data often exhibits shared relations beyond simple pairwise associations. We propose M3CoL, a Multimodal Mixup Contrastive Learning approach to capture nuanced shared relations inherent in multimodal data. Our key contribution is a Mixup-based contrastive loss that learns robust representations by aligning mixed samples from one modality with their corresponding samples from other modalities thereby capturing shared relations between them. For multimodal classification tasks, we introduce a framework that integrates a fusion module with unimodal prediction modules for auxiliary supervision during training, complemented by our proposed Mixup-based contrastive loss. Through extensive experiments on diverse datasets (N24News, ROSMAP, BRCA, and Food-101), we demonstrate that M3CoL effectively captures shared multimodal relations and generalizes across domains. It outperforms state-of-the-art methods on N24News, ROSMAP, and BRCA, while achieving comparable performance on Food-101. Our work highlights the significance of learning shared relations for robust multimodal learning, opening up promising avenues for future research.
comment: RK and RS contributed equally to this work, 20 Pages, 8 Figures, 9 Tables. Another version of the paper accepted at NeurIPS 2024 Workshop on Unifying Representations in Neural Models (UniReps)
♻ ☆ IncEventGS: Pose-Free Gaussian Splatting from a Single Event Camera
Implicit neural representation and explicit 3D Gaussian Splatting (3D-GS) for novel view synthesis have achieved remarkable progress with frame-based camera (e.g. RGB and RGB-D cameras) recently. Compared to frame-based camera, a novel type of bio-inspired visual sensor, i.e. event camera, has demonstrated advantages in high temporal resolution, high dynamic range, low power consumption and low latency. Due to its unique asynchronous and irregular data capturing process, limited work has been proposed to apply neural representation or 3D Gaussian splatting for an event camera. In this work, we present IncEventGS, an incremental 3D Gaussian Splatting reconstruction algorithm with a single event camera. To recover the 3D scene representation incrementally, we exploit the tracking and mapping paradigm of conventional SLAM pipelines for IncEventGS. Given the incoming event stream, the tracker firstly estimates an initial camera motion based on prior reconstructed 3D-GS scene representation. The mapper then jointly refines both the 3D scene representation and camera motion based on the previously estimated motion trajectory from the tracker. The experimental results demonstrate that IncEventGS delivers superior performance compared to prior NeRF-based methods and other related baselines, even we do not have the ground-truth camera poses. Furthermore, our method can also deliver better performance compared to state-of-the-art event visual odometry methods in terms of camera motion estimation. Code is publicly available at: https://github.com/wu-cvgl/IncEventGS.
comment: Code Page: https://github.com/wu-cvgl/IncEventGS
♻ ☆ Scalable Drift Monitoring in Medical Imaging AI
The integration of artificial intelligence (AI) into medical imaging has advanced clinical diagnostics but poses challenges in managing model drift and ensuring long-term reliability. To address these challenges, we develop MMC+, an enhanced framework for scalable drift monitoring, building upon the CheXstray framework that introduced real-time drift detection for medical imaging AI models using multi-modal data concordance. This work extends the original framework's methodologies, providing a more scalable and adaptable solution for real-world healthcare settings and offers a reliable and cost-effective alternative to continuous performance monitoring addressing limitations of both continuous and periodic monitoring methods. MMC+ introduces critical improvements to the original framework, including more robust handling of diverse data streams, improved scalability with the integration of foundation models like MedImageInsight for high-dimensional image embeddings without site-specific training, and the introduction of uncertainty bounds to better capture drift in dynamic clinical environments. Validated with real-world data from Massachusetts General Hospital during the COVID-19 pandemic, MMC+ effectively detects significant data shifts and correlates them with model performance changes. While not directly predicting performance degradation, MMC+ serves as an early warning system, indicating when AI systems may deviate from acceptable performance bounds and enabling timely interventions. By emphasizing the importance of monitoring diverse data streams and evaluating data shifts alongside model performance, this work contributes to the broader adoption and integration of AI solutions in clinical settings.
♻ ☆ Fundus to Fluorescein Angiography Video Generation as a Retinal Generative Foundation Model
Fundus fluorescein angiography (FFA) is crucial for diagnosing and monitoring retinal vascular issues but is limited by its invasive nature and restricted accessibility compared to color fundus (CF) imaging. Existing methods that convert CF images to FFA are confined to static image generation, missing the dynamic lesional changes. We introduce Fundus2Video, an autoregressive generative adversarial network (GAN) model that generates dynamic FFA videos from single CF images. Fundus2Video excels in video generation, achieving an FVD of 1497.12 and a PSNR of 11.77. Clinical experts have validated the fidelity of the generated videos. Additionally, the model's generator demonstrates remarkable downstream transferability across ten external public datasets, including blood vessel segmentation, retinal disease diagnosis, systemic disease prediction, and multimodal retrieval, showcasing impressive zero-shot and few-shot capabilities. These findings position Fundus2Video as a powerful, non-invasive alternative to FFA exams and a versatile retinal generative foundation model that captures both static and temporal retinal features, enabling the representation of complex inter-modality relationships.
♻ ☆ Video-XL: Extra-Long Vision Language Model for Hour-Scale Video Understanding
Although current Multi-modal Large Language Models (MLLMs) demonstrate promising results in video understanding, processing extremely long videos remains an ongoing challenge. Typically, MLLMs struggle with handling thousands of visual tokens that exceed the maximum context length, and they suffer from the information decay due to token aggregation. Another challenge is the high computational cost stemming from the large number of video tokens. To tackle these issues, we propose Video-XL, an extra-long vision language model designed for efficient hour-scale video understanding. Specifically, we argue that LLMs can be adapted as effective visual condensers and propose Visual Context Latent Summarization which condenses visual contexts into highly compact forms. Extensive experiments demonstrate that our model achieves promising results on popular long video understanding benchmarks. For example, Video-XL outperforms the current state-of-the-art method on VNBench by nearly 10\% in accuracy. Moreover, Video-XL presents an impressive balance between efficiency and effectiveness, processing 2048 frames on a single 80GB GPU while achieving nearly 95% accuracy in the Needle-in-a-Haystack evaluation.
♻ ☆ On Efficient Variants of Segment Anything Model: A Survey
The Segment Anything Model (SAM) is a foundational model for image segmentation tasks, known for its strong generalization across diverse applications. However, its impressive performance comes with significant computational and resource demands, making it challenging to deploy in resource-limited environments such as edge devices. To address this, a variety of SAM variants have been proposed to enhance efficiency while keeping accuracy. This survey provides the first comprehensive review of these efficient SAM variants. We begin by exploring the motivations driving this research. We then present core techniques used in SAM and model acceleration. This is followed by a detailed exploration of SAM acceleration strategies, categorized by approach, and a discussion of several future research directions. Finally, we offer a unified and extensive evaluation of these methods across various hardware, assessing their efficiency and accuracy on representative benchmarks, and providing a clear comparison of their overall performance.
♻ ☆ Deep Implicit Optimization for Robust and Flexible Image Registration
Deep Learning in Image Registration (DLIR) methods have been tremendously successful in image registration due to their speed and ability to incorporate weak label supervision at training time. However, DLIR methods forego many of the benefits of classical optimization-based methods. The functional nature of deep networks do not guarantee that the predicted transformation is a local minima of the registration objective, the representation of the transformation (displacement/velocity field/affine) is fixed, and the networks are not robust to domain shift. Our method aims to bridge this gap between classical and learning methods by incorporating optimization as a layer in a deep network. A deep network is trained to predict multi-scale dense feature images that are registered using a black box iterative optimization solver. This optimal warp is then used to minimize image and label alignment errors. By implicitly differentiating end-to-end through an iterative optimization solver, our learned features are registration and label-aware, and the warp functions are guaranteed to be local minima of the registration objective in the feature space. Our framework shows excellent performance on in-domain datasets, and is agnostic to domain shift such as anisotropy and varying intensity profiles. For the first time, our method allows switching between arbitrary transformation representations (free-form to diffeomorphic) at test time with zero retraining. End-to-end feature learning also facilitates interpretability of features, and out-of-the-box promptability using additional label-fidelity terms at inference.
♻ ☆ Quantization Effects on Neural Networks Perception: How would quantization change the perceptual field of vision models?
Neural network quantization is a critical technique for deploying models on resource-limited devices. Despite its widespread use, the impact of quantization on model perceptual fields, particularly in relation to class activation maps (CAMs), remains underexplored. This study investigates how quantization influences the spatial recognition abilities of vision models by examining the alignment between CAMs and visual salient objects maps across various architectures. Utilizing a dataset of 10,000 images from ImageNet, we conduct a comprehensive evaluation of six diverse CNN architectures: VGG16, ResNet50, EfficientNet, MobileNet, SqueezeNet, and DenseNet. Through the systematic application of quantization techniques, we identify subtle changes in CAMs and their alignment with Salient object maps. Our results demonstrate the differing sensitivities of these architectures to quantization and highlight its implications for model performance and interpretability in real-world applications. This work primarily contributes to a deeper understanding of neural network quantization, offering insights essential for deploying efficient and interpretable models in practical settings.
comment: Accepted & presented at IPTA 2024
♻ ☆ MicroDreamer: Efficient 3D Generation in $\sim$20 Seconds by Score-based Iterative Reconstruction
Optimization-based approaches, such as score distillation sampling (SDS), show promise in zero-shot 3D generation but suffer from low efficiency, primarily due to the high number of function evaluations (NFEs) required for each sample and the limitation of optimization confined to latent space. This paper introduces score-based iterative reconstruction (SIR), an efficient and general algorithm mimicking a differentiable 3D reconstruction process to reduce the NFEs and enable optimization in pixel space. Given a single set of images sampled from a multi-view score-based diffusion model, SIR repeatedly optimizes 3D parameters, unlike the single-step optimization in SDS. With other improvements in training, we present an efficient approach called MicroDreamer that generally applies to various 3D representations and 3D generation tasks. In particular, MicroDreamer is 5-20 times faster than SDS in generating neural radiance field while retaining a comparable performance and takes about 20 seconds to create meshes from 3D Gaussian splatting on a single A100 GPU, halving the time of the fastest optimization-based baseline DreamGaussian with significantly superior performance compared to the measurement standard deviation. Our code is available at https://github.com/ML-GSAI/MicroDreamer.
♻ ☆ Similarity and Quality Metrics for MR Image-To-Image Translation
Image-to-image translation can create large impact in medical imaging, as images can be synthetically transformed to other modalities, sequence types, higher resolutions or lower noise levels. To ensure patient safety, these methods should be validated by human readers, which requires a considerable amount of time and costs. Quantitative metrics can effectively complement such studies and provide reproducible and objective assessment of synthetic images. If a reference is available, the similarity of MR images is frequently evaluated by SSIM and PSNR metrics, even though these metrics are not or too sensitive regarding specific distortions. When reference images to compare with are not available, non-reference quality metrics can reliably detect specific distortions, such as blurriness. To provide an overview on distortion sensitivity, we quantitatively analyze 11 similarity (reference) and 12 quality (non-reference) metrics for assessing synthetic images. We additionally include a metric on a downstream segmentation task. We investigate the sensitivity regarding 11 kinds of distortions and typical MR artifacts, and analyze the influence of different normalization methods on each metric and distortion. Finally, we derive recommendations for effective usage of the analyzed similarity and quality metrics for evaluation of image-to-image translation models.
comment: 21 pages, 8 figures, supplement with 16 pages, 10 figures, submitted to Nature Scientific Reports
♻ ☆ LED: Light Enhanced Depth Estimation at Night
Nighttime camera-based depth estimation is a highly challenging task, especially for autonomous driving applications, where accurate depth perception is essential for ensuring safe navigation. We aim to improve the reliability of perception systems at night time, where models trained on daytime data often fail in the absence of precise but costly LiDAR sensors. In this work, we introduce Light Enhanced Depth (LED), a novel cost-effective approach that significantly improves depth estimation in low-light environments by harnessing a pattern projected by high definition headlights available in modern vehicles. LED leads to significant performance boosts across multiple depth-estimation architectures (encoder-decoder, Adabins, DepthFormer) both on synthetic and real datasets. Furthermore, increased performances beyond illuminated areas reveal a holistic enhancement in scene understanding. Finally, we release the Nighttime Synthetic Drive Dataset, a new synthetic and photo-realistic nighttime dataset, which comprises 49,990 comprehensively annotated images.
comment: Preprint. Code and dataset available on the project page : https://simondemoreau.github.io/LED/
♻ ☆ DiTFastAttn: Attention Compression for Diffusion Transformer Models
Diffusion Transformers (DiT) excel at image and video generation but face computational challenges due to the quadratic complexity of self-attention operators. We propose DiTFastAttn, a post-training compression method to alleviate the computational bottleneck of DiT. We identify three key redundancies in the attention computation during DiT inference: (1) spatial redundancy, where many attention heads focus on local information; (2) temporal redundancy, with high similarity between the attention outputs of neighboring steps; (3) conditional redundancy, where conditional and unconditional inferences exhibit significant similarity. We propose three techniques to reduce these redundancies: (1) Window Attention with Residual Sharing to reduce spatial redundancy; (2) Attention Sharing across Timesteps to exploit the similarity between steps; (3) Attention Sharing across CFG to skip redundant computations during conditional generation. We apply DiTFastAttn to DiT, PixArt-Sigma for image generation tasks, and OpenSora for video generation tasks. Our results show that for image generation, our method reduces up to 76% of the attention FLOPs and achieves up to 1.8x end-to-end speedup at high-resolution (2k x 2k) generation.
♻ ☆ Prompt Tuning of Deep Neural Networks for Speaker-adaptive Visual Speech Recognition
Visual Speech Recognition (VSR) aims to infer speech into text depending on lip movements alone. As it focuses on visual information to model the speech, its performance is inherently sensitive to personal lip appearances and movements, and this makes the VSR models show degraded performance when they are applied to unseen speakers. In this paper, to remedy the performance degradation of the VSR model on unseen speakers, we propose prompt tuning methods of Deep Neural Networks (DNNs) for speaker-adaptive VSR. Specifically, motivated by recent advances in Natural Language Processing (NLP), we finetune prompts on adaptation data of target speakers instead of modifying the pre-trained model parameters. Different from the previous prompt tuning methods mainly limited to Transformer variant architecture, we explore different types of prompts, the addition, the padding, and the concatenation form prompts that can be applied to the VSR model which is composed of CNN and Transformer in general. With the proposed prompt tuning, we show that the performance of the pre-trained VSR model on unseen speakers can be largely improved by using a small amount of adaptation data (e.g., less than 5 minutes), even if the pre-trained model is already developed with large speaker variations. Moreover, by analyzing the performance and parameters of different types of prompts, we investigate when the prompt tuning is preferred over the finetuning methods. The effectiveness of the proposed method is evaluated on both word- and sentence-level VSR databases, LRW-ID and GRID.
comment: IEEE TPAMI
♻ ☆ Harnessing Webpage UIs for Text-Rich Visual Understanding
Text-rich visual understanding-the ability to process environments where dense textual content is integrated with visuals-is crucial for multimodal large language models (MLLMs) to interact effectively with structured environments. To enhance this capability, we propose synthesizing general multimodal instructions from webpage UIs using text-based large language models (LLMs). Despite lacking direct visual input, text-based LLMs are able to process structured text representations from webpage accessibility trees. These instructions are then paired with UI screenshots to train multimodal models. We introduce MultiUI, a dataset containing 7.3 million samples from 1 million websites, covering diverse multimodal tasks and UI layouts. Models trained on MultiUI not only excel in web UI tasks-achieving up to a 48% improvement on VisualWebBench and a 19.1% boost in element accuracy on a web agent dataset Mind2Web-but also generalize surprisingly well to non-web UI tasks and even to non-UI domains, such as document understanding, OCR, and chart interpretation. These results highlight the broad applicability of web UI data for advancing text-rich visual understanding across various scenarios.
♻ ☆ Dating ancient manuscripts using radiocarbon and AI-based writing style analysis
Determining the chronology of ancient handwritten manuscripts is essential for reconstructing the evolution of ideas. For the Dead Sea Scrolls, this is particularly important. However, there is an almost complete lack of date-bearing manuscripts evenly distributed across the timeline and written in similar scripts available for palaeographic comparison. Here, we present Enoch, a state-of-the-art AI-based date-prediction model, trained on the basis of new radiocarbon-dated samples of the scrolls. Enoch uses established handwriting-style descriptors and applies Bayesian ridge regression. The challenge of this study is that the number of radiocarbon-dated manuscripts is small, while current machine learning requires an abundance of training data. We show that by using combined angular and allographic writing style feature vectors and applying Bayesian ridge regression, Enoch could predict the radiocarbon-based dates from style, supported by leave-one-out validation, with varied MAEs of 27.9 to 30.7 years relative to the radiocarbon dating. Enoch was then used to estimate the dates of 135 unseen manuscripts, revealing that 79 per cent of the samples were considered 'realistic' upon palaeographic post-hoc evaluation. We present a new chronology of the scrolls. The radiocarbon ranges and Enoch's style-based predictions are often older than the traditionally assumed palaeographic estimates. In the range of 300-50 BCE, Enoch's date prediction provides an improved granularity. The study is in line with current developments in multimodal machine-learning techniques, and the methods can be used for date prediction in other partially-dated manuscript collections. This research shows how Enoch's quantitative, probability-based approach can be a tool for palaeographers and historians, re-dating ancient Jewish key texts and contributing to current debates on Jewish and Christian origins.
comment: 16 pages of main article, 103 pages of supplementary materials; the first version of this article is originally prepared in July 2023 after the completion of all the experiments
♻ ☆ Distribution Guidance Network for Weakly Supervised Point Cloud Semantic Segmentation
Despite alleviating the dependence on dense annotations inherent to fully supervised methods, weakly supervised point cloud semantic segmentation suffers from inadequate supervision signals. In response to this challenge, we introduce a novel perspective that imparts auxiliary constraints by regulating the feature space under weak supervision. Our initial investigation identifies which distributions accurately characterize the feature space, subsequently leveraging this priori to guide the alignment of the weakly supervised embeddings. Specifically, we analyze the superiority of the mixture of von Mises-Fisher distributions (moVMF) among several common distribution candidates. Accordingly, we develop a Distribution Guidance Network (DGNet), which comprises a weakly supervised learning branch and a distribution alignment branch. Leveraging reliable clustering initialization derived from the weakly supervised learning branch, the distribution alignment branch alternately updates the parameters of the moVMF and the network, ensuring alignment with the moVMF-defined latent space. Extensive experiments validate the rationality and effectiveness of our distribution choice and network design. Consequently, DGNet achieves state-of-the-art performance under multiple datasets and various weakly supervised settings.
♻ ☆ SatSwinMAE: Efficient Autoencoding for Multiscale Time-series Satellite Imagery
Recent advancements in foundation models have significantly impacted various fields, including natural language processing, computer vision, and multi-modal tasks. One area that stands to benefit greatly is Earth observation, where these models can efficiently process large-scale, unlabeled geospatial data. In this work we extend the SwinMAE model to integrate temporal information for satellite time-series data. The architecture employs a hierarchical 3D Masked Autoencoder (MAE) with Video Swin Transformer blocks to effectively capture multi-scale spatio-temporal dependencies in satellite imagery. To enhance transfer learning, we incorporate both encoder and decoder pretrained weights, along with skip connections to preserve scale-specific information. This forms an architecture similar to SwinUNet with an additional temporal component. Our approach shows significant performance improvements over existing state-of-the-art foundation models for all the evaluated downstream tasks: land cover segmentation, building density prediction, flood mapping, wildfire scar mapping and multi-temporal crop segmentation. Particularly, in the land cover segmentation task of the PhilEO Bench dataset, it outperforms other geospatial foundation models with a 10.4% higher accuracy.
♻ ☆ TotalVibeSegmentator: Full Body MRI Segmentation for the NAKO and UK Biobank
Objectives: To present a publicly available torso segmentation network for large epidemiology datasets on volumetric interpolated breath-hold examination (VIBE) images. Materials & Methods: We extracted preliminary segmentations from TotalSegmentator, spine, and body composition networks for VIBE images, then improved them iteratively and retrained a nnUNet network. Using subsets of NAKO (85 subjects) and UK Biobank (16 subjects), we evaluated with Dice-score on a holdout set (12 subjects) and existing organ segmentation approach (1000 subjects), generating 71 semantic segmentation types for VIBE images. We provide an additional network for the vertebra segments 22 individual vertebra types. Results: We achieved an average Dice score of 0.89 +- 0.07 overall 71 segmentation labels. We scored > 0.90 Dice-score on the abdominal organs except for the pancreas with a Dice of 0.70. Conclusion: Our work offers a detailed and refined publicly available full torso segmentation on VIBE images.
comment: https://github.com/robert-graf/TotalVibeSegmentator
♻ ☆ Enhanced Prompt-leveraged Weakly Supervised Cancer Segmentation based on Segment Anything
This work proposes a novel approach beyond supervised learning for effective pathological image analysis, addressing the challenge of limited robust labeled data. Pathological diagnosis of diseases like cancer has conventionally relied on the evaluation of morphological features by physicians and pathologists. However, recent advancements in compute-aided diagnosis (CAD) systems are gaining significant attention as diagnostic support tools. Although the advancement of deep learning has improved CAD significantly, segmentation models typically require large pixel-level annotated dataset, and such labeling is expensive. Existing studies not based on supervised approaches still struggle with limited generalization, and no practical approach has emerged yet. To address this issue, we present a weakly supervised semantic segmentation (WSSS) model by combining class activation map and Segment Anything Model (SAM)-based pseudo-labeling. For effective pretraining, we adopt the SAM-a foundation model that is pretrained on large datasets and operates in zero-shot configurations using only coarse prompts. The proposed approach transfer enhanced Attention Dropout Layer's knowledge to SAM, thereby generating pseudo-labels. To demonstrate the superiority of the proposed method, experimental studies are conducted on histopathological breast cancer datasets. The proposed method outperformed other WSSS methods across three datasets, demonstrating its efficiency by achieving this with only 12GB of GPU memory during training. Our code is available at : https://github.com/QI-NemoSong/EPLC-SAM
comment: 10 pages, 7 figures
♻ ☆ Encode-Store-Retrieve: Augmenting Human Memory through Language-Encoded Egocentric Perception
We depend on our own memory to encode, store, and retrieve our experiences. However, memory lapses can occur. One promising avenue for achieving memory augmentation is through the use of augmented reality head-mounted displays to capture and preserve egocentric videos, a practice commonly referred to as lifelogging. However, a significant challenge arises from the sheer volume of video data generated through lifelogging, as the current technology lacks the capability to encode and store such large amounts of data efficiently. Further, retrieving specific information from extensive video archives requires substantial computational power, further complicating the task of quickly accessing desired content. To address these challenges, we propose a memory augmentation agent that involves leveraging natural language encoding for video data and storing them in a vector database. This approach harnesses the power of large vision language models to perform the language encoding process. Additionally, we propose using large language models to facilitate natural language querying. Our agent underwent extensive evaluation using the QA-Ego4D dataset and achieved state-of-the-art results with a BLEU score of 8.3, outperforming conventional machine learning models that scored between 3.4 and 5.8. Additionally, we conducted a user study in which participants interacted with the human memory augmentation agent through episodic memory and open-ended questions. The results of this study show that the agent results in significantly better recall performance on episodic memory tasks compared to human participants. The results also highlight the agent's practical applicability and user acceptance.
♻ ☆ Object Pose Estimation via the Aggregation of Diffusion Features CVPR2024
Estimating the pose of objects from images is a crucial task of 3D scene understanding, and recent approaches have shown promising results on very large benchmarks. However, these methods experience a significant performance drop when dealing with unseen objects. We believe that it results from the limited generalizability of image features. To address this problem, we have an in-depth analysis on the features of diffusion models, e.g. Stable Diffusion, which hold substantial potential for modeling unseen objects. Based on this analysis, we then innovatively introduce these diffusion features for object pose estimation. To achieve this, we propose three distinct architectures that can effectively capture and aggregate diffusion features of different granularity, greatly improving the generalizability of object pose estimation. Our approach outperforms the state-of-the-art methods by a considerable margin on three popular benchmark datasets, LM, O-LM, and T-LESS. In particular, our method achieves higher accuracy than the previous best arts on unseen objects: 97.9% vs. 93.5% on Unseen LM, 85.9% vs. 76.3% on Unseen O-LM, showing the strong generalizability of our method. Our code is released at https://github.com/Tianfu18/diff-feats-pose.
comment: Accepted to CVPR2024, fix typo
♻ ☆ VLFeedback: A Large-Scale AI Feedback Dataset for Large Vision-Language Models Alignment EMNLP 2024
As large vision-language models (LVLMs) evolve rapidly, the demand for high-quality and diverse data to align these models becomes increasingly crucial. However, the creation of such data with human supervision proves costly and time-intensive. In this paper, we investigate the efficacy of AI feedback to scale supervision for aligning LVLMs. We introduce VLFeedback, the first large-scale vision-language feedback dataset, comprising over 82K multi-modal instructions and comprehensive rationales generated by off-the-shelf models without human annotations. To evaluate the effectiveness of AI feedback for vision-language alignment, we train Silkie, an LVLM fine-tuned via direct preference optimization on VLFeedback. Silkie showcases exceptional performance regarding helpfulness, visual faithfulness, and safety metrics. It outperforms its base model by 6.9\% and 9.5\% in perception and cognition tasks, reduces hallucination issues on MMHal-Bench, and exhibits enhanced resilience against red-teaming attacks. Furthermore, our analysis underscores the advantage of AI feedback, particularly in fostering preference diversity to deliver more comprehensive improvements. Our dataset, training code and models are available at https://vlf-silkie.github.io.
comment: EMNLP 2024 Main Conference camera-ready version (fixed small typos). This article supersedes arXiv:2312.10665
♻ ☆ X-Fi: A Modality-Invariant Foundation Model for Multimodal Human Sensing
Human sensing, which employs various sensors and advanced deep learning technologies to accurately capture and interpret human body information, has significantly impacted fields like public security and robotics. However, current human sensing primarily depends on modalities such as cameras and LiDAR, each of which has its own strengths and limitations. Furthermore, existing multi-modal fusion solutions are typically designed for fixed modality combinations, requiring extensive retraining when modalities are added or removed for diverse scenarios. In this paper, we propose a modality-invariant foundation model for all modalities, X-Fi, to address this issue. X-Fi enables the independent or combinatory use of sensor modalities without additional training by utilizing a transformer structure to accommodate variable input sizes and incorporating a novel "X-fusion" mechanism to preserve modality-specific features during multimodal integration. This approach not only enhances adaptability but also facilitates the learning of complementary features across modalities. Extensive experiments conducted on the MM-Fi and XRF55 datasets, employing six distinct modalities, demonstrate that X-Fi achieves state-of-the-art performance in human pose estimation (HPE) and human activity recognition (HAR) tasks. The findings indicate that our proposed model can efficiently support a wide range of human sensing applications, ultimately contributing to the evolution of scalable, multimodal sensing technologies.
♻ ☆ Suppress Content Shift: Better Diffusion Features via Off-the-Shelf Generation Techniques
Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely, diffusion feature. We discover that diffusion feature has been hindered by a hidden yet universal phenomenon that we call content shift. To be specific, there are content differences between features and the input image, such as the exact shape of a certain object. We locate the cause of content shift as one inherent characteristic of diffusion models, which suggests the broad existence of this phenomenon in diffusion feature. Further empirical study also indicates that its negative impact is not negligible even when content shift is not visually perceivable. Hence, we propose to suppress content shift to enhance the overall quality of diffusion features. Specifically, content shift is related to the information drift during the process of recovering an image from the noisy input, pointing out the possibility of turning off-the-shelf generation techniques into tools for content shift suppression. We further propose a practical guideline named GATE to efficiently evaluate the potential benefit of a technique and provide an implementation of our methodology. Despite the simplicity, the proposed approach has achieved superior results on various tasks and datasets, validating its potential as a generic booster for diffusion features. Our code is available at https://github.com/Darkbblue/diffusion-content-shift.
comment: arXiv admin note: substantial text overlap with arXiv:2410.03558
♻ ☆ Not All Diffusion Model Activations Have Been Evaluated as Discriminative Features
Diffusion models are initially designed for image generation. Recent research shows that the internal signals within their backbones, named activations, can also serve as dense features for various discriminative tasks such as semantic segmentation. Given numerous activations, selecting a small yet effective subset poses a fundamental problem. To this end, the early study of this field performs a large-scale quantitative comparison of the discriminative ability of the activations. However, we find that many potential activations have not been evaluated, such as the queries and keys used to compute attention scores. Moreover, recent advancements in diffusion architectures bring many new activations, such as those within embedded ViT modules. Both combined, activation selection remains unresolved but overlooked. To tackle this issue, this paper takes a further step with a much broader range of activations evaluated. Considering the significant increase in activations, a full-scale quantitative comparison is no longer operational. Instead, we seek to understand the properties of these activations, such that the activations that are clearly inferior can be filtered out in advance via simple qualitative evaluation. After careful analysis, we discover three properties universal among diffusion models, enabling this study to go beyond specific models. On top of this, we present effective feature selection solutions for several popular diffusion models. Finally, the experiments across multiple discriminative tasks validate the superiority of our method over the SOTA competitors. Our code is available at https://github.com/Darkbblue/generic-diffusion-feature.
♻ ☆ UniG: Modelling Unitary 3D Gaussians for View-consistent 3D Reconstruction
In this work, we present UniG, a view-consistent 3D reconstruction and novel view synthesis model that generates a high-fidelity representation of 3D Gaussians from sparse images. Existing 3D Gaussians-based methods usually regress Gaussians per-pixel of each view, create 3D Gaussians per view separately, and merge them through point concatenation. Such a view-independent reconstruction approach often results in a view inconsistency issue, where the predicted positions of the same 3D point from different views may have discrepancies. To address this problem, we develop a DETR (DEtection TRansformer)-like framework, which treats 3D Gaussians as decoder queries and updates their parameters layer by layer by performing multi-view cross-attention (MVDFA) over multiple input images. In this way, multiple views naturally contribute to modeling a unitary representation of 3D Gaussians, thereby making 3D reconstruction more view-consistent. Moreover, as the number of 3D Gaussians used as decoder queries is irrespective of the number of input views, allow an arbitrary number of input images without causing memory explosion. Extensive experiments validate the advantages of our approach, showcasing superior performance over existing methods quantitatively (improving PSNR by 4.2 dB when trained on Objaverse and tested on the GSO benchmark) and qualitatively. The code will be released at https://github.com/jwubz123/UNIG.
♻ ☆ ViLCo-Bench: VIdeo Language COntinual learning Benchmark NeurIPS
Video language continual learning involves continuously adapting to information from video and text inputs, enhancing a model's ability to handle new tasks while retaining prior knowledge. This field is a relatively under-explored area, and establishing appropriate datasets is crucial for facilitating communication and research in this field. In this study, we present the first dedicated benchmark, ViLCo-Bench, designed to evaluate continual learning models across a range of video-text tasks. The dataset comprises ten-minute-long videos and corresponding language queries collected from publicly available datasets. Additionally, we introduce a novel memory-efficient framework that incorporates self-supervised learning and mimics long-term and short-term memory effects. This framework addresses challenges including memory complexity from long video clips, natural language complexity from open queries, and text-video misalignment. We posit that ViLCo-Bench, with greater complexity compared to existing continual learning benchmarks, would serve as a critical tool for exploring the video-language domain, extending beyond conventional class-incremental tasks, and addressing complex and limited annotation issues. The curated data, evaluations, and our novel method are available at https://github.com/cruiseresearchgroup/ViLCo.
comment: 14 pages, 4 figures, 8 tables, Accepted at NeurIPS Dataset and Benchmark Track 2024
♻ ☆ MK-SGN: A Spiking Graph Convolutional Network with Multimodal Fusion and Knowledge Distillation for Skeleton-based Action Recognition
In recent years, skeleton-based action recognition, leveraging multimodal Graph Convolutional Networks (GCN), has achieved remarkable results. However, due to their deep structure and reliance on continuous floating-point operations, GCN-based methods are energy-intensive. We propose an innovative Spiking Graph Convolutional Network with Multimodal Fusion and Knowledge Distillation (MK-SGN) to address this issue. By merging the energy efficiency of Spiking Neural Network (SNN) with the graph representation capability of GCN, the proposed MK-SGN reduces energy consumption while maintaining recognition accuracy. Firstly, we convert Graph Convolutional Networks (GCN) into Spiking Graph Convolutional Networks (SGN) establishing a new benchmark and paving the way for future research exploration. During this process, we introduce a spiking attention mechanism and design a Spiking-Spatio Graph Convolution module with a Spatial Global Spiking Attention mechanism (SA-SGC), enhancing feature learning capability. Secondly, we propose a Spiking Multimodal Fusion module (SMF), leveraging mutual information to process multimodal data more efficiently. Lastly, we delve into knowledge distillation methods from multimodal GCN to SGN and propose a novel, integrated method that simultaneously focuses on both intermediate layer distillation and soft label distillation to improve the performance of SGN. MK-SGN outperforms the state-of-the-art GCN-like frameworks on three challenging datasets for skeleton-based action recognition in reducing energy consumption. It also outperforms the state-of-the-art SNN frameworks in accuracy. Specifically, our method reduces energy consumption by more than 98% compared to typical GCN-based methods, while maintaining competitive accuracy on the NTU-RGB+D 60 cross-subject split using 4-time steps.
♻ ☆ Hard Region Aware Network for Remote Sensing Change Detection
Change detection (CD) is essential for various real-world applications, such as urban management and disaster assessment. Numerous CD methods have been proposed, and considerable results have been achieved recently. However, detecting changes in hard regions, i.e., the change boundary and irrelevant pseudo changes caused by background clutters, remains difficult for these methods, since they pose equal attention for all regions in bi-temporal images. This paper proposes a novel change detection network, termed as HRANet, which provides accurate change maps via hard region mining. Specifically, an online hard region estimation branch is constructed to model the pixel-wise hard samples, supervised by the error between predicted change maps and corresponding ground truth during the training process. A cross-layer knowledge review module is introduced to distill temporal change information from low-level to high-level features, thereby enhancing the feature representation capabilities. Finally, the hard region aware features extracted from the online hard region estimation branch and multi-level temporal difference features are aggregated into a unified feature representation to improve the accuracy of CD. Experimental results on two benchmark datasets demonstrate the superior performance of HRANet in the CD task.
♻ ☆ Signal-SGN: A Spiking Graph Convolutional Network for Skeletal Action Recognition via Learning Temporal-Frequency Dynamics
In skeletal-based action recognition, Graph Convolutional Networks (GCNs) based methods face limitations due to their complexity and high energy consumption. Spiking Neural Networks (SNNs) have gained attention in recent years for their low energy consumption, but existing methods combining GCNs and SNNs fail to fully utilize the temporal characteristics of skeletal sequences, leading to increased storage and computational costs. To address this issue, we propose a Signal-SGN(Spiking Graph Convolutional Network), which leverages the temporal dimension of skeletal sequences as the spiking timestep and treats features as discrete stochastic signals. The core of the network consists of a 1D Spiking Graph Convolutional Network (1D-SGN) and a Frequency Spiking Convolutional Network (FSN). The SGN performs graph convolution on single frames and incorporates spiking network characteristics to capture inter-frame temporal relationships, while the FSN uses Fast Fourier Transform (FFT) and complex convolution to extract temporal-frequency features. We also introduce a multi-scale wavelet transform feature fusion module(MWTF) to capture spectral features of temporal signals, enhancing the model's classification capability. We propose a pluggable temporal-frequency spatial semantic feature extraction module(TFSM) to enhance the model's ability to distinguish features without increasing inference-phase consumption. Our numerous experiments on the NTU RGB+D, NTU RGB+D 120, and NW-UCLA datasets demonstrate that the proposed models not only surpass existing SNN-based methods in accuracy but also reduce computational and storage costs during training. Furthermore, they achieve competitive accuracy compared to corresponding GCN-based methods, which is quite remarkable.
♻ ☆ Scene Prior Filtering for Depth Super-Resolution
Multi-modal fusion is vital to the success of super-resolution of depth maps. However, commonly used fusion strategies, such as addition and concatenation, fall short of effectively bridging the modal gap. As a result, guided image filtering methods have been introduced to mitigate this issue. Nevertheless, it is observed that their filter kernels usually encounter significant texture interference and edge inaccuracy. To tackle these two challenges, we introduce a Scene Prior Filtering network, SPFNet, which utilizes the priors surface normal and semantic map from large-scale models. Specifically, we design an All-in-one Prior Propagation that computes the similarity between multi-modal scene priors, i.e., RGB, normal, semantic, and depth, to reduce the texture interference. In addition, we present a One-to-one Prior Embedding that continuously embeds each single-modal prior into depth using Mutual Guided Filtering, further alleviating the texture interference while enhancing edges. Our SPFNet has been extensively evaluated on both real and synthetic datasets, achieving state-of-the-art performance.
comment: 13 pages
♻ ☆ LatentExplainer: Explaining Latent Representations in Deep Generative Models with Multi-modal Foundation Models
Deep generative models like VAEs and diffusion models have advanced various generation tasks by leveraging latent variables to learn data distributions and generate high-quality samples. Despite the field of explainable AI making strides in interpreting machine learning models, understanding latent variables in generative models remains challenging. This paper introduces \textit{LatentExplainer}, a framework for automatically generating semantically meaningful explanations of latent variables in deep generative models. \textit{LatentExplainer} tackles three main challenges: inferring the meaning of latent variables, aligning explanations with inductive biases, and handling varying degrees of explainability. Our approach perturbs latent variables, interpreting changes in generated data, and uses multi-modal large language models (MLLMs) to produce human-understandable explanations. We evaluate our proposed method on several real-world and synthetic datasets, and the results demonstrate superior performance in generating high-quality explanations for latent variables. The results highlight the effectiveness of incorporating inductive biases and uncertainty quantification, significantly enhancing model interpretability.
♻ ☆ From Introspection to Best Practices: Principled Analysis of Demonstrations in Multimodal In-Context Learning
Motivated by in-context learning (ICL) capabilities of Large Language models (LLMs), multimodal LLMs with additional visual modality are also exhibited with similar ICL abilities when multiple image-text pairs are provided as demonstrations. However, relatively less work has been done to investigate the principles behind how and why multimodal ICL works. We conduct a systematic and principled evaluation of multimodal ICL for models of different scales on a broad spectrum of new yet critical tasks. Through perturbations over different modality information, we show that modalities matter differently across tasks in multimodal ICL. Guided by task-specific modality impact, we recommend modality-driven demonstration strategies to boost ICL performance. We also find that models may follow inductive biases from multimodal ICL even if they are rarely seen in or contradict semantic priors from pretraining data. Our principled analysis provides a comprehensive way of understanding the role of demonstrations in multimodal in-context learning, and sheds light on effectively improving multimodal ICL on a wide range of tasks.
♻ ☆ PAPL-SLAM: Principal Axis-Anchored Monocular Point-Line SLAM
In point-line SLAM systems, the utilization of line structural information and the optimization of lines are two significant problems. The former is usually addressed through structural regularities, while the latter typically involves using minimal parameter representations of lines in optimization. However, separating these two steps leads to the loss of constraint information to each other. We anchor lines with similar directions to a principal axis and optimize them with $n+2$ parameters for $n$ lines, solving both problems together. Our method considers scene structural information, which can be easily extended to different world hypotheses while significantly reducing the number of line parameters to be optimized, enabling rapid and accurate mapping and tracking. To further enhance the system's robustness and avoid mismatch, we have modeled the line-axis probabilistic data association and provided the algorithm for axis creation, updating, and optimization. Additionally, considering that most real-world scenes conform to the Atlanta World hypothesis, we provide a structural line detection strategy based on vertical priors and vanishing points. Experimental results and ablation studies on various indoor and outdoor datasets demonstrate the effectiveness of our system.
comment: 8 pages, 4 figures
♻ ☆ PredFormer: Transformers Are Effective Spatial-Temporal Predictive Learners
Spatiotemporal predictive learning methods generally fall into two categories: recurrent-based approaches, which face challenges in parallelization and performance, and recurrent-free methods, which employ convolutional neural networks (CNNs) as encoder-decoder architectures. These methods benefit from strong inductive biases but often at the expense of scalability and generalization. This paper proposes PredFormer, a pure transformer-based framework for spatiotemporal predictive learning. Motivated by the Vision Transformers (ViT) design, PredFormer leverages carefully designed Gated Transformer blocks, following a comprehensive analysis of 3D attention mechanisms, including full-, factorized-, and interleaved-spatial-temporal attention. With its recurrent-free, transformer-based design, PredFormer is both simple and efficient, significantly outperforming previous methods by large margins. Extensive experiments on synthetic and real-world datasets demonstrate that PredFormer achieves state-of-the-art performance. On Moving MNIST, PredFormer achieves a 51.3% reduction in MSE relative to SimVP. For TaxiBJ, the model decreases MSE by 33.1% and boosts FPS from 533 to 2364. Additionally, on WeatherBench, it reduces MSE by 11.1% while enhancing FPS from 196 to 404. These performance gains in both accuracy and efficiency demonstrate PredFormer's potential for real-world applications. The source code will be released at https://github.com/yyyujintang/PredFormer .
comment: 15 pages, 7 figures
♻ ☆ Biometric Authentication Based on Enhanced Remote Photoplethysmography Signal Morphology
Remote photoplethysmography (rPPG) is a non-contact method for measuring cardiac signals from facial videos, offering a convenient alternative to contact photoplethysmography (cPPG) obtained from contact sensors. Recent studies have shown that each individual possesses a unique cPPG signal morphology that can be utilized as a biometric identifier, which has inspired us to utilize the morphology of rPPG signals extracted from facial videos for person authentication. Since the facial appearance and rPPG are mixed in the facial videos, we first de-identify facial videos to remove facial appearance while preserving the rPPG information, which protects facial privacy and guarantees that only rPPG is used for authentication. The de-identified videos are fed into an rPPG model to get the rPPG signal morphology for authentication. In the first training stage, unsupervised rPPG training is performed to get coarse rPPG signals. In the second training stage, an rPPG-cPPG hybrid training is performed by incorporating external cPPG datasets to achieve rPPG biometric authentication and enhance rPPG signal morphology. Our approach needs only de-identified facial videos with subject IDs to train rPPG authentication models. The experimental results demonstrate that rPPG signal morphology hidden in facial videos can be used for biometric authentication. The code is available at https://github.com/zhaodongsun/rppg_biometrics.
comment: accepted by IJCB 2024, Best Paper Runner-Up Award
♻ ☆ DAWN: Dynamic Frame Avatar with Non-autoregressive Diffusion Framework for Talking Head Video Generation
Talking head generation intends to produce vivid and realistic talking head videos from a single portrait and speech audio clip. Although significant progress has been made in diffusion-based talking head generation, almost all methods rely on autoregressive strategies, which suffer from limited context utilization beyond the current generation step, error accumulation, and slower generation speed. To address these challenges, we present DAWN (Dynamic frame Avatar With Non-autoregressive diffusion), a framework that enables all-at-once generation of dynamic-length video sequences. Specifically, it consists of two main components: (1) audio-driven holistic facial dynamics generation in the latent motion space, and (2) audio-driven head pose and blink generation. Extensive experiments demonstrate that our method generates authentic and vivid videos with precise lip motions, and natural pose/blink movements. Additionally, with a high generation speed, DAWN possesses strong extrapolation capabilities, ensuring the stable production of high-quality long videos. These results highlight the considerable promise and potential impact of DAWN in the field of talking head video generation. Furthermore, we hope that DAWN sparks further exploration of non-autoregressive approaches in diffusion models. Our code will be publicly available at https://github.com/Hanbo-Cheng/DAWN-pytorch.
♻ ☆ Diffusion Curriculum: Synthetic-to-Real Generative Curriculum Learning via Image-Guided Diffusion
Low-quality or scarce data has posed significant challenges for training deep neural networks in practice. While classical data augmentation cannot contribute very different new data, diffusion models opens up a new door to build self-evolving AI by generating high-quality and diverse synthetic data through text-guided prompts. However, text-only guidance cannot control synthetic images' proximity to the original images, resulting in out-of-distribution data detrimental to the model performance. To overcome the limitation, we study image guidance to achieve a spectrum of interpolations between synthetic and real images. With stronger image guidance, the generated images are similar to the training data but hard to learn. While with weaker image guidance, the synthetic images will be easier for model but contribute to a larger distribution gap with the original data. The generated full spectrum of data enables us to build a novel "Diffusion Curriculum (DisCL)". DisCL adjusts the image guidance level of image synthesis for each training stage: It identifies and focuses on hard samples for the model and assesses the most effective guidance level of synthetic images to improve hard data learning. We apply DisCL to two challenging tasks: long-tail (LT) classification and learning from low-quality data. It focuses on lower-guidance images of high-quality to learn prototypical features as a warm-up of learning higher-guidance images that might be weak on diversity or quality. Extensive experiments showcase a gain of 2.7% and 2.1% in OOD and ID macro-accuracy when applying DisCL to iWildCam dataset. On ImageNet-LT, DisCL improves the base model's tail-class accuracy from 4.4% to 23.64% and leads to a 4.02% improvement in all-class accuracy.
comment: 23 pages, including references and appendix. Code is available at http://github.com/tianyi-lab/DisCL
♻ ☆ ExACT: Teaching AI Agents to Explore with Reflective-MCTS and Exploratory Learning
Autonomous agents have demonstrated significant potential in automating complex multistep decision-making tasks. However, even state-of-the-art vision-language models (VLMs), such as GPT-4o, still fall short of human-level performance, particularly in intricate web environments and long-horizon tasks. To address these limitations, we present ExACT, an approach to combine test-time search and self-learning to build o1-like models for agentic applications. We first introduce Reflective Monte Carlo Tree Search (R-MCTS), a novel test time algorithm designed to enhance AI agents' ability to explore decision space on the fly. R-MCTS extends traditional MCTS by 1) incorporating contrastive reflection, allowing agents to learn from past interactions and dynamically improve their search efficiency; and 2) using multi-agent debate for reliable state evaluation. Next, we introduce Exploratory Learning, a novel learning strategy to teach agents to search at inference time without relying on any external search algorithms. On the challenging VisualWebArena benchmark, our GPT-4o based R-MCTS agent achieves a 6% to 30% relative improvement across various tasks compared to the previous state-of-the-art. Additionally, we show that the knowledge and experience gained from test-time search can be effectively transferred back to GPT-4o via fine-tuning. After Exploratory Learning, GPT-4o 1) demonstrates the ability to explore the environment, evaluate a state, and backtrack to viable ones when it detects that the current state cannot lead to success, and 2) matches 87% of R-MCTS's performance while using significantly less compute. Notably, our work demonstrates the compute scaling properties in both training - data collection with R-MCTS - and testing time. These results suggest a promising research direction to enhance VLMs' capabilities for agentic applications via test-time search and self-learning.
♻ ☆ Double-Condensing Attention Condenser: Leveraging Attention in Deep Learning to Detect Skin Cancer from Skin Lesion Images
Skin cancer is the most common type of cancer in the United States and is estimated to affect one in five Americans. Recent advances have demonstrated strong performance on skin cancer detection, as exemplified by state of the art performance in the SIIM-ISIC Melanoma Classification Challenge; however these solutions leverage ensembles of complex deep neural architectures requiring immense storage and compute costs, and therefore may not be tractable. A recent movement for TinyML applications is integrating Double-Condensing Attention Condensers (DC-AC) into a self-attention neural network backbone architecture to allow for faster and more efficient computation. This paper explores leveraging an efficient self-attention structure to detect skin cancer in skin lesion images and introduces a deep neural network design with DC-AC customized for skin cancer detection from skin lesion images. The final model is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer. Future work of this research includes iterating on the design of the selected network architecture and refining the approach to generalize to other forms of cancer.
♻ ☆ Residual-INR: Communication Efficient On-Device Learning Using Implicit Neural Representation
Edge computing is a distributed computing paradigm that collects and processes data at or near the source of data generation. The on-device learning at edge relies on device-to-device wireless communication to facilitate real-time data sharing and collaborative decision-making among multiple devices. This significantly improves the adaptability of the edge computing system to the changing environments. However, as the scale of the edge computing system is getting larger, communication among devices is becoming the bottleneck because of the limited bandwidth of wireless communication leads to large data transfer latency. To reduce the amount of device-to-device data transmission and accelerate on-device learning, in this paper, we propose Residual-INR, a fog computing-based communication-efficient on-device learning framework by utilizing implicit neural representation (INR) to compress images/videos into neural network weights. Residual-INR enhances data transfer efficiency by collecting JPEG images from edge devices, compressing them into INR format at the fog node, and redistributing them for on-device learning. By using a smaller INR for full image encoding and a separate object INR for high-quality object region reconstruction through residual encoding, our technique can reduce the encoding redundancy while maintaining the object quality. Residual-INR is a promising solution for edge on-device learning because it reduces data transmission by up to 5.16 x across a network of 10 edge devices. It also facilitates CPU-free accelerated on-device learning, achieving up to 2.9 x speedup without sacrificing accuracy. Our code is available at: https://github.com/sharclab/Residual-INR.
comment: This paper has been accepted by ICCAD 2024
♻ ☆ Embedded Prompt Tuning: Towards Enhanced Calibration of Pretrained Models for Medical Images
Foundation models pre-trained on large-scale data have been widely witnessed to achieve success in various natural imaging downstream tasks. Parameter-efficient fine-tuning (PEFT) methods aim to adapt foundation models to new domains by updating only a small portion of parameters in order to reduce computational overhead. However, the effectiveness of these PEFT methods, especially in cross-domain few-shot scenarios, e.g., medical image analysis, has not been fully explored. In this work, we facilitate the study of the performance of PEFT when adapting foundation models to medical image classification tasks. Furthermore, to alleviate the limitations of prompt introducing ways and approximation capabilities on Transformer architectures of mainstream prompt tuning methods, we propose the Embedded Prompt Tuning (EPT) method by embedding prompt tokens into the expanded channels. We also find that there are anomalies in the feature space distribution of foundation models during pre-training process, and prompt tuning can help mitigate this negative impact. To explain this phenomenon, we also introduce a novel perspective to understand prompt tuning: Prompt tuning is a distribution calibrator. And we support it by analyzing patch-wise scaling and feature separation operations contained in EPT. Our experiments show that EPT outperforms several state-of-the-art fine-tuning methods by a significant margin on few-shot medical image classification tasks, and completes the fine-tuning process within highly competitive time, indicating EPT is an effective PEFT method. The source code is available at github.com/zuwenqiang/EPT.
comment: 16 pages, 7 figures. arXiv admin note: text overlap with arXiv:2306.09579, arXiv:2203.12119 by other authors
♻ ☆ Polyhedral Complex Derivation from Piecewise Trilinear Networks NeurIPS 2024
Recent advancements in visualizing deep neural networks provide insights into their structures and mesh extraction from Continuous Piecewise Affine (CPWA) functions. Meanwhile, developments in neural surface representation learning incorporate non-linear positional encoding, addressing issues like spectral bias; however, this poses challenges in applying mesh extraction techniques based on CPWA functions. Focusing on trilinear interpolating methods as positional encoding, we present theoretical insights and an analytical mesh extraction, showing the transformation of hypersurfaces to flat planes within the trilinear region under the eikonal constraint. Moreover, we introduce a method for approximating intersecting points among three hypersurfaces contributing to broader applications. We empirically validate correctness and parsimony through chamfer distance and efficiency, and angular distance, while examining the correlation between the eikonal loss and the planarity of the hypersurfaces.
comment: Accepted at NeurIPS 2024. Updated with the camera-ready version
♻ ☆ MOS: Model Synergy for Test-Time Adaptation on LiDAR-Based 3D Object Detection
LiDAR-based 3D object detection is crucial for various applications but often experiences performance degradation in real-world deployments due to domain shifts. While most studies focus on cross-dataset shifts, such as changes in environments and object geometries, practical corruptions from sensor variations and weather conditions remain underexplored. In this work, we propose a novel online test-time adaptation framework for 3D detectors that effectively tackles these shifts, including a challenging cross-corruption scenario where cross-dataset shifts and corruptions co-occur. By leveraging long-term knowledge from previous test batches, our approach mitigates catastrophic forgetting and adapts effectively to diverse shifts. Specifically, we propose a Model Synergy (MOS) strategy that dynamically selects historical checkpoints with diverse knowledge and assembles them to best accommodate the current test batch. This assembly is directed by our proposed Synergy Weights (SW), which perform a weighted averaging of the selected checkpoints, minimizing redundancy in the composite model. The SWs are computed by evaluating the similarity of predicted bounding boxes on the test data and the independence of features between checkpoint pairs in the model bank. To maintain an efficient and informative model bank, we discard checkpoints with the lowest average SW scores, replacing them with newly updated models. Our method was rigorously tested against existing test-time adaptation strategies across three datasets and eight types of corruptions, demonstrating superior adaptability to dynamic scenes and conditions. Notably, it achieved a 67.3% improvement in a challenging cross-corruption scenario, offering a more comprehensive benchmark for adaptation. The source code will be made publicly available.
♻ ☆ Action Selection Learning for Multi-label Multi-view Action Recognition
Multi-label multi-view action recognition aims to recognize multiple concurrent or sequential actions from untrimmed videos captured by multiple cameras. Existing work has focused on multi-view action recognition in a narrow area with strong labels available, where the onset and offset of each action are labeled at the frame-level. This study focuses on real-world scenarios where cameras are distributed to capture a wide-range area with only weak labels available at the video-level. We propose the method named Multi-view Action Selection Learning (MultiASL), which leverages action selection learning to enhance view fusion by selecting the most useful information from different viewpoints. The proposed method includes a Multi-view Spatial-Temporal Transformer video encoder to extract spatial and temporal features from multi-viewpoint videos. Action Selection Learning is employed at the frame-level, using pseudo ground-truth obtained from weak labels at the video-level, to identify the most relevant frames for action recognition. Experiments in a real-world office environment using the MM-Office dataset demonstrate the superior performance of the proposed method compared to existing methods. The source code is available at https://github.com/thanhhff/MultiASL/.
comment: ACM Multimedia Asia 2024
Information Retrieval
☆ SIMformer: Single-Layer Vanilla Transformer Can Learn Free-Space Trajectory Similarity
Free-space trajectory similarity calculation, e.g., DTW, Hausdorff, and Frechet, often incur quadratic time complexity, thus learning-based methods have been proposed to accelerate the computation. The core idea is to train an encoder to transform trajectories into representation vectors and then compute vector similarity to approximate the ground truth. However, existing methods face dual challenges of effectiveness and efficiency: 1) they all utilize Euclidean distance to compute representation similarity, which leads to the severe curse of dimensionality issue -- reducing the distinguishability among representations and significantly affecting the accuracy of subsequent similarity search tasks; 2) most of them are trained in triplets manner and often necessitate additional information which downgrades the efficiency; 3) previous studies, while emphasizing the scalability in terms of efficiency, overlooked the deterioration of effectiveness when the dataset size grows. To cope with these issues, we propose a simple, yet accurate, fast, scalable model that only uses a single-layer vanilla transformer encoder as the feature extractor and employs tailored representation similarity functions to approximate various ground truth similarity measures. Extensive experiments demonstrate our model significantly mitigates the curse of dimensionality issue and outperforms the state-of-the-arts in effectiveness, efficiency, and scalability.
☆ Enhancing AI Accessibility in Veterinary Medicine: Linking Classifiers and Electronic Health Records
In the rapidly evolving landscape of veterinary healthcare, integrating machine learning (ML) clinical decision-making tools with electronic health records (EHRs) promises to improve diagnostic accuracy and patient care. However, the seamless integration of ML classifiers into existing EHRs in veterinary medicine is frequently hindered by the rigidity of EHR systems or the limited availability of IT resources. To address this shortcoming, we present Anna, a freely-available software solution that provides ML classifier results for EHR laboratory data in real-time.
☆ DiSCo Meets LLMs: A Unified Approach for Sparse Retrieval and Contextual Distillation in Conversational Search
Conversational Search (CS) is the task of retrieving relevant documents from a corpus within a conversational context, combining retrieval with conversational context modeling. With the explosion of Large Language Models (LLMs), the CS field has seen major improvements with LLMs rewriting user queries, accounting for conversational context. However, engaging LLMs at inference time harms efficiency. Current methods address this by distilling embeddings from human-rewritten queries to learn the context modeling task. Yet, these approaches predominantly focus on context modeling, and only treat the contrastive component of the retrieval task within a distillation-independent loss term. To address these limitations, we propose a new distillation method, as a relaxation of the previous objective, unifying retrieval and context modeling. We relax the existing training objectives by distilling similarity scores between conversations and documents, rather than relying solely on representation learning. Our proposed distillation objective allows for more freedom in the representation space and leverages the contrastive nature of document relevance. Through experiments on Learned Sparse Retrieval (LSR) across 5 CS datasets, our approach demonstrates substantial improvements in both in-domain and out-of-domain retrieval performance, outperforming state-of-the-art with gains of up to 6 points in recall for out-of-domain datasets. Additionally, through the relaxation of the objective, we propose a multi-teacher distillation, using multiple LLMs as teachers, yielding additional gains, and outperforming the teachers themselves in in-domain experiments. Finally, analysis of the sparsity of the models reveals that our distillation allows for better control over the sparsity of the trained models.
☆ RAG-ConfusionQA: A Benchmark for Evaluating LLMs on Confusing Questions
Conversational AI agents use Retrieval Augmented Generation (RAG) to provide verifiable document-grounded responses to user inquiries. However, many natural questions do not have good answers: about 25\% contain false assumptions~\cite{Yu2023:CREPE}, and over 50\% are ambiguous~\cite{Min2020:AmbigQA}. RAG agents need high-quality data to improve their responses to confusing questions. This paper presents a novel synthetic data generation method to efficiently create a diverse set of context-grounded confusing questions from a given document corpus. We conduct an empirical comparative evaluation of several large language models as RAG agents to measure the accuracy of confusion detection and appropriate response generation. We contribute a benchmark dataset to the public domain.
comment: under review
☆ SPFresh: Incremental In-Place Update for Billion-Scale Vector Search SOSP 23
Approximate Nearest Neighbor Search (ANNS) is now widely used in various applications, ranging from information retrieval, question answering, and recommendation, to search for similar high-dimensional vectors. As the amount of vector data grows continuously, it becomes important to support updates to vector index, the enabling technique that allows for efficient and accurate ANNS on vectors. Because of the curse of high dimensionality, it is often costly to identify the right neighbors of a single new vector, a necessary process for index update. To amortize update costs, existing systems maintain a secondary index to accumulate updates, which are merged by the main index by global rebuilding the entire index periodically. However, this approach has high fluctuations of search latency and accuracy, not even to mention that it requires substantial resources and is extremely time-consuming for rebuilds. We introduce SPFresh, a system that supports in-place vector updates. At the heart of SPFresh is LIRE, a lightweight incremental rebalancing protocol to split vector partitions and reassign vectors in the nearby partitions to adapt to data distribution shift. LIRE achieves low-overhead vector updates by only reassigning vectors at the boundary between partitions, where in a high-quality vector index the amount of such vectors are deemed small. With LIRE, SPFresh provides superior query latency and accuracy to solutions based on global rebuild, with only 1% of DRAM and less than 10% cores needed at the peak compared to the state-of-the-art, in a billion scale vector index with 1% of daily vector update rate.
comment: SOSP 23
☆ ChartifyText: Automated Chart Generation from Data-Involved Texts via LLM
Text documents with numerical values involved are widely used in various applications such as scientific research, economy, public health and journalism. However, it is difficult for readers to quickly interpret such data-involved texts and gain deep insights. To fill this research gap, this work aims to automatically generate charts to accurately convey the underlying data and ideas to readers, which is essentially a challenging task. The challenges originate from text ambiguities, intrinsic sparsity and uncertainty of data in text documents, and subjective sentiment differences. Specifically, we propose ChartifyText, a novel fully-automated approach that leverages Large Language Models (LLMs) to convert complex data-involved texts to expressive charts. It consists of two major modules: tabular data inference and expressive chart generation. The tabular data inference module employs systematic prompt engineering to guide the LLM (e.g., GPT-4) to infer table data, where data ranges, uncertainties, missing data values and corresponding subjective sentiments are explicitly considered. The expressive chart generation module augments standard charts with intuitive visual encodings and concise texts to accurately convey the underlying data and insights. We extensively evaluate the effectiveness of ChartifyText on real-world data-involved text documents through case studies, in-depth interviews with three visualization experts, and a carefully-designed user study with 15 participants. The results demonstrate the usefulness and effectiveness of ChartifyText in helping readers efficiently and effectively make sense of data-involved texts.
☆ Graph Neural Patching for Cold-Start Recommendations
The cold start problem in recommender systems remains a critical challenge. Current solutions often train hybrid models on auxiliary data for both cold and warm users/items, potentially degrading the experience for the latter. This drawback limits their viability in practical scenarios where the satisfaction of existing warm users/items is paramount. Although graph neural networks (GNNs) excel at warm recommendations by effective collaborative signal modeling, they haven't been effectively leveraged for the cold-start issue within a user-item graph, which is largely due to the lack of initial connections for cold user/item entities. Addressing this requires a GNN adept at cold-start recommendations without sacrificing performance for existing ones. To this end, we introduce Graph Neural Patching for Cold-Start Recommendations (GNP), a customized GNN framework with dual functionalities: GWarmer for modeling collaborative signal on existing warm users/items and Patching Networks for simulating and enhancing GWarmer's performance on cold-start recommendations. Extensive experiments on three benchmark datasets confirm GNP's superiority in recommending both warm and cold users/items.
comment: 13 pages, accepted by Australasian Database Conference 2024. arXiv admin note: substantial text overlap with arXiv:2209.12215
☆ Personalized Image Generation with Large Multimodal Models
Personalized content filtering, such as recommender systems, has become a critical infrastructure to alleviate information overload. However, these systems merely filter existing content and are constrained by its limited diversity, making it difficult to meet users' varied content needs. To address this limitation, personalized content generation has emerged as a promising direction with broad applications. Nevertheless, most existing research focuses on personalized text generation, with relatively little attention given to personalized image generation. The limited work in personalized image generation faces challenges in accurately capturing users' visual preferences and needs from noisy user-interacted images and complex multimodal instructions. Worse still, there is a lack of supervised data for training personalized image generation models. To overcome the challenges, we propose a Personalized Image Generation Framework named Pigeon, which adopts exceptional large multimodal models with three dedicated modules to capture users' visual preferences and needs from noisy user history and multimodal instructions. To alleviate the data scarcity, we introduce a two-stage preference alignment scheme, comprising masked preference reconstruction and pairwise preference alignment, to align Pigeon with the personalized image generation task. We apply Pigeon to personalized sticker and movie poster generation, where extensive quantitative results and human evaluation highlight its superiority over various generative baselines.
☆ Optimizing Retrieval-Augmented Generation with Elasticsearch for Enhanced Question-Answering Systems
This study aims to improve the accuracy and quality of large-scale language models (LLMs) in answering questions by integrating Elasticsearch into the Retrieval Augmented Generation (RAG) framework. The experiment uses the Stanford Question Answering Dataset (SQuAD) version 2.0 as the test dataset and compares the performance of different retrieval methods, including traditional methods based on keyword matching or semantic similarity calculation, BM25-RAG and TF-IDF- RAG, and the newly proposed ES-RAG scheme. The results show that ES-RAG not only has obvious advantages in retrieval efficiency but also performs well in key indicators such as accuracy, which is 0.51 percentage points higher than TF-IDF-RAG. In addition, Elasticsearch's powerful search capabilities and rich configuration options enable the entire question-answering system to better handle complex queries and provide more flexible and efficient responses based on the diverse needs of users. Future research directions can further explore how to optimize the interaction mechanism between Elasticsearch and LLM, such as introducing higher-level semantic understanding and context-awareness capabilities, to achieve a more intelligent and humanized question-answering experience.
☆ Towards Robust Transcription: Exploring Noise Injection Strategies for Training Data Augmentation
Recent advancements in Automatic Piano Transcription (APT) have significantly improved system performance, but the impact of noisy environments on the system performance remains largely unexplored. This study investigates the impact of white noise at various Signal-to-Noise Ratio (SNR) levels on state-of-the-art APT models and evaluates the performance of the Onsets and Frames model when trained on noise-augmented data. We hope this research provides valuable insights as preliminary work toward developing transcription models that maintain consistent performance across a range of acoustic conditions.
comment: Accepted to the Late-Breaking Demo Session of the 25th International Society for Music Information Retrieval (ISMIR) Conference, 2024
♻ ☆ EasyRec: Simple yet Effective Language Models for Recommendation
Deep neural networks have become a powerful technique for learning representations from user-item interaction data in collaborative filtering (CF) for recommender systems. However, many existing methods heavily rely on unique user and item IDs, which limits their ability to perform well in practical zero-shot learning scenarios where sufficient training data may be unavailable. Inspired by the success of language models (LMs) and their strong generalization capabilities, a crucial question arises: How can we harness the potential of language models to empower recommender systems and elevate its generalization capabilities to new heights? In this study, we propose EasyRec - an effective and easy-to-use approach that seamlessly integrates text-based semantic understanding with collaborative signals. EasyRec employs a text-behavior alignment framework, which combines contrastive learning with collaborative language model tuning, to ensure a strong alignment between the text-enhanced semantic space and the collaborative behavior information. Extensive empirical evaluations across diverse real-world datasets demonstrate the superior performance of EasyRec compared to state-of-the-art alternative models, particularly in the challenging text-based zero-shot recommendation scenarios. Furthermore, the study highlights the potential of seamlessly integrating EasyRec as a plug-and-play component into text-enhanced collaborative filtering frameworks, thereby empowering existing recommender systems to elevate their recommendation performance and adapt to the evolving user preferences in dynamic environments. For better result reproducibility of our EasyRec framework, the model implementation details, source code, and datasets are available at the link: https://github.com/HKUDS/EasyRec.
♻ ☆ Improving Retrieval in Sponsored Search by Leveraging Query Context Signals EMNLP 2024
Accurately retrieving relevant bid keywords for user queries is critical in Sponsored Search but remains challenging, particularly for short, ambiguous queries. Existing dense and generative retrieval models often fail to capture nuanced user intent in these cases. To address this, we propose an approach to enhance query understanding by augmenting queries with rich contextual signals derived from web search results and large language models, stored in an online cache. Specifically, we use web search titles and snippets to ground queries in real-world information and utilize GPT-4 to generate query rewrites and explanations that clarify user intent. These signals are efficiently integrated through a Fusion-in-Decoder based Unity architecture, enabling both dense and generative retrieval with serving costs on par with traditional context-free models. To address scenarios where context is unavailable in the cache, we introduce context glancing, a curriculum learning strategy that improves model robustness and performance even without contextual signals during inference. Extensive offline experiments demonstrate that our context-aware approach substantially outperforms context-free models. Furthermore, online A/B testing on a prominent search engine across 160+ countries shows significant improvements in user engagement and revenue.
comment: Accepted to EMNLP 2024 Industry Track. 10 pages, 10 tables, 1 figure
♻ ☆ Revisiting BPR: A Replicability Study of a Common Recommender System Baseline RecSys '24
Bayesian Personalized Ranking (BPR), a collaborative filtering approach based on matrix factorization, frequently serves as a benchmark for recommender systems research. However, numerous studies often overlook the nuances of BPR implementation, claiming that it performs worse than newly proposed methods across various tasks. In this paper, we thoroughly examine the features of the BPR model, indicating their impact on its performance, and investigate open-source BPR implementations. Our analysis reveals inconsistencies between these implementations and the original BPR paper, leading to a significant decrease in performance of up to 50% for specific implementations. Furthermore, through extensive experiments on real-world datasets under modern evaluation settings, we demonstrate that with proper tuning of its hyperparameters, the BPR model can achieve performance levels close to state-of-the-art methods on the top-n recommendation tasks and even outperform them on specific datasets. Specifically, on the Million Song Dataset, the BPR model with hyperparameters tuning statistically significantly outperforms Mult-VAE by 10% in NDCG@100 with binary relevance function.
comment: This paper is accepted at the Reproducibility track of the ACM RecSys '24 conference
♻ ☆ Generate and Instantiate What You Prefer: Text-Guided Diffusion for Sequential Recommendation
Recent advancements in generative recommendation systems, particularly in the realm of sequential recommendation tasks, have shown promise in enhancing generalization to new items. Among these approaches, diffusion-based generative recommendation has emerged as an effective tool, leveraging its ability to capture data distributions and generate high-quality samples. Despite effectiveness, two primary challenges have been identified: 1) the lack of consistent modeling of data distribution for oracle items; and 2) the difficulty in scaling to more informative control signals beyond historical interactions. These issues stem from the uninformative nature of ID embeddings, which necessitate random initialization and limit the incorporation of additional control signals. To address these limitations, we propose iDreamRec to involve more concrete prior knowledge to establish item embeddings, particularly through detailed item text descriptions and advanced Text Embedding Models (TEM). More importantly, by converting item descriptions into embeddings aligned with TEM, we enable the integration of intention instructions as control signals to guide the generation of oracle items. Experimental results on four datasets demonstrate that iDreamRec not only outperforms existing diffusion-based generative recommenders but also facilitates the incorporation of intention instructions for more precise and effective recommendation generation.
♻ ☆ Conversational Recommender System and Large Language Model Are Made for Each Other in E-commerce Pre-sales Dialogue EMNLP 2023
E-commerce pre-sales dialogue aims to understand and elicit user needs and preferences for the items they are seeking so as to provide appropriate recommendations. Conversational recommender systems (CRSs) learn user representation and provide accurate recommendations based on dialogue context, but rely on external knowledge. Large language models (LLMs) generate responses that mimic pre-sales dialogues after fine-tuning, but lack domain-specific knowledge for accurate recommendations. Intuitively, the strengths of LLM and CRS in E-commerce pre-sales dialogues are complementary, yet no previous work has explored this. This paper investigates the effectiveness of combining LLM and CRS in E-commerce pre-sales dialogues, proposing two collaboration methods: CRS assisting LLM and LLM assisting CRS. We conduct extensive experiments on a real-world dataset of Ecommerce pre-sales dialogues. We analyze the impact of two collaborative approaches with two CRSs and two LLMs on four tasks of Ecommerce pre-sales dialogue. We find that collaborations between CRS and LLM can be very effective in some cases.
comment: EMNLP 2023 Findings
♻ ☆ Starbucks: Improved Training for 2D Matryoshka Embeddings
Effective approaches that can scale embedding model depth (i.e. layers) and embedding size allow for the creation of models that are highly scalable across different computational resources and task requirements. While the recently proposed 2D Matryoshka training approach can efficiently produce a single embedding model such that its sub-layers and sub-dimensions can measure text similarity, its effectiveness is significantly worse than if smaller models were trained separately. To address this issue, we propose Starbucks, a new training strategy for Matryoshka-like embedding models, which encompasses both the fine-tuning and pre-training phases. For the fine-tuning phase, we discover that, rather than sampling a random sub-layer and sub-dimensions for each training steps, providing a fixed list of layer-dimension pairs, from small size to large sizes, and computing the loss across all pairs significantly improves the effectiveness of 2D Matryoshka embedding models, bringing them on par with their separately trained counterparts. To further enhance performance, we introduce a new pre-training strategy, which applies masked autoencoder language modelling to sub-layers and sub-dimensions during pre-training, resulting in a stronger backbone for subsequent fine-tuning of the embedding model. Experimental results on both semantic text similarity and retrieval benchmarks demonstrate that the proposed pre-training and fine-tuning strategies significantly improved the effectiveness over 2D Matryoshka models, enabling Starbucks models to perform more efficiently and effectively than separately trained models.
♻ ☆ Graph Neural Network Enhanced Retrieval for Question Answering of LLMs
Retrieval augmented generation has revolutionized large language model (LLM) outputs by providing factual supports. Nevertheless, it struggles to capture all the necessary knowledge for complex reasoning questions. Existing retrieval methods typically divide reference documents into passages, treating them in isolation. These passages, however, are often interrelated, such as passages that are contiguous or share the same keywords. Therefore, it is crucial to recognize such relatedness for enhancing the retrieval process. In this paper, we propose a novel retrieval method, called GNN-Ret, which leverages graph neural networks (GNNs) to enhance retrieval by exploiting the relatedness between passages. Specifically, we first construct a graph of passages by connecting passages that are structure-related or keyword-related. A graph neural network (GNN) is then leveraged to exploit the relationships between passages and improve the retrieval of supporting passages. Furthermore, we extend our method to handle multi-hop reasoning questions using a recurrent graph neural network (RGNN), named RGNN-Ret. At each step, RGNN-Ret integrates the graphs of passages from previous steps, thereby enhancing the retrieval of supporting passages. Extensive experiments on benchmark datasets demonstrate that GNN-Ret achieves higher accuracy for question answering with a single query of LLMs than strong baselines that require multiple queries, and RGNN-Ret further improves accuracy and achieves state-of-the-art performance, with up to 10.4% accuracy improvement on the 2WikiMQA dataset.
comment: Under review
♻ ☆ FINED: Feed Instance-Wise Information Need with Essential and Disentangled Parametric Knowledge from the Past
Recommender models play a vital role in various industrial scenarios, while often faced with the catastrophic forgetting problem caused by the fast shifting data distribution. To alleviate this problem, a common approach is to reuse knowledge from the historical data. However, preserving the vast and fast-accumulating data is hard, which causes dramatic storage overhead. Memorizing old data through a parametric knowledge base is then proposed, which compresses the vast amount of raw data into model parameters. Despite the flexibility, how to improve the memorization and generalization capabilities of the parametric knowledge base and suit the flexible information need of each instance are challenging. In this paper, we propose FINED to Feed INstance-wise information need with Essential and Disentangled parametric knowledge from past data for recommendation enhancement. Concretely, we train a knowledge extractor that extracts knowledge patterns of arbitrary order from past data and a knowledge encoder that memorizes the arbitrary order patterns, which serves as the retrieval key generator and memory network respectively in the following knowledge reusing phase. The whole process is regularized by the proposed two constraints, which improve the capabilities of the parametric knowledge base without increasing the size of it. The essential principle helps to compress the input into representative vectors that capture the task-relevant information and filter out the noisy information. The disentanglement principle reduces the redundancy of stored information and pushes the knowledge base to focus on capturing the disentangled invariant patterns. These two rules together promote rational compression of information for robust and generalized knowledge representations. Extensive experiments on two datasets justify the effectiveness of the proposed method.
Machine Learning
Self-supervised contrastive learning performs non-linear system identification
Self-supervised learning (SSL) approaches have brought tremendous success across many tasks and domains. It has been argued that these successes can be attributed to a link between SSL and identifiable representation learning: Temporal structure and auxiliary variables ensure that latent representations are related to the true underlying generative factors of the data. Here, we deepen this connection and show that SSL can perform system identification in latent space. We propose DynCL, a framework to uncover linear, switching linear and non-linear dynamics under a non-linear observation model, give theoretical guarantees and validate them empirically.
☆ Decomposing The Dark Matter of Sparse Autoencoders
Sparse autoencoders (SAEs) are a promising technique for decomposing language model activations into interpretable linear features. However, current SAEs fall short of completely explaining model performance, resulting in "dark matter": unexplained variance in activations. This work investigates dark matter as an object of study in its own right. Surprisingly, we find that much of SAE dark matter--about half of the error vector itself and >90% of its norm--can be linearly predicted from the initial activation vector. Additionally, we find that the scaling behavior of SAE error norms at a per token level is remarkably predictable: larger SAEs mostly struggle to reconstruct the same contexts as smaller SAEs. We build on the linear representation hypothesis to propose models of activations that might lead to these observations, including postulating a new type of "introduced error"; these insights imply that the part of the SAE error vector that cannot be linearly predicted ("nonlinear" error) might be fundamentally different from the linearly predictable component. To validate this hypothesis, we empirically analyze nonlinear SAE error and show that 1) it contains fewer not yet learned features, 2) SAEs trained on it are quantitatively worse, 3) it helps predict SAE per-token scaling behavior, and 4) it is responsible for a proportional amount of the downstream increase in cross entropy loss when SAE activations are inserted into the model. Finally, we examine two methods to reduce nonlinear SAE error at a fixed sparsity: inference time gradient pursuit, which leads to a very slight decrease in nonlinear error, and linear transformations from earlier layer SAE outputs, which leads to a larger reduction.
comment: Code at https://github.com/JoshEngels/SAE-Dark-Matter
☆ Stochastic Gradient Descent Jittering for Inverse Problems: Alleviating the Accuracy-Robustness Tradeoff
Inverse problems aim to reconstruct unseen data from corrupted or perturbed measurements. While most work focuses on improving reconstruction quality, generalization accuracy and robustness are equally important, especially for safety-critical applications. Model-based architectures (MBAs), such as loop unrolling methods, are considered more interpretable and achieve better reconstructions. Empirical evidence suggests that MBAs are more robust to perturbations than black-box solvers, but the accuracy-robustness tradeoff in MBAs remains underexplored. In this work, we propose a simple yet effective training scheme for MBAs, called SGD jittering, which injects noise iteration-wise during reconstruction. We theoretically demonstrate that SGD jittering not only generalizes better than the standard mean squared error training but is also more robust to average-case attacks. We validate SGD jittering using denoising toy examples, seismic deconvolution, and single-coil MRI reconstruction. The proposed method achieves cleaner reconstructions for out-of-distribution data and demonstrates enhanced robustness to adversarial attacks.
☆ DiscoGraMS: Enhancing Movie Screen-Play Summarization using Movie Character-Aware Discourse Graph
Summarizing movie screenplays presents a unique set of challenges compared to standard document summarization. Screenplays are not only lengthy, but also feature a complex interplay of characters, dialogues, and scenes, with numerous direct and subtle relationships and contextual nuances that are difficult for machine learning models to accurately capture and comprehend. Recent attempts at screenplay summarization focus on fine-tuning transformer-based pre-trained models, but these models often fall short in capturing long-term dependencies and latent relationships, and frequently encounter the "lost in the middle" issue. To address these challenges, we introduce DiscoGraMS, a novel resource that represents movie scripts as a movie character-aware discourse graph (CaD Graph). This approach is well-suited for various downstream tasks, such as summarization, question-answering, and salience detection. The model aims to preserve all salient information, offering a more comprehensive and faithful representation of the screenplay's content. We further explore a baseline method that combines the CaD Graph with the corresponding movie script through a late fusion of graph and text modalities, and we present very initial promising results.
☆ Online Reinforcement Learning with Passive Memory
This paper considers an online reinforcement learning algorithm that leverages pre-collected data (passive memory) from the environment for online interaction. We show that using passive memory improves performance and further provide theoretical guarantees for regret that turns out to be near-minimax optimal. Results show that the quality of passive memory determines sub-optimality of the incurred regret. The proposed approach and results hold in both continuous and discrete state-action spaces.
☆ A Large Language Model-Driven Reward Design Framework via Dynamic Feedback for Reinforcement Learning
Large Language Models (LLMs) have shown significant potential in designing reward functions for Reinforcement Learning (RL) tasks. However, obtaining high-quality reward code often involves human intervention, numerous LLM queries, or repetitive RL training. To address these issues, we propose CARD, a LLM-driven Reward Design framework that iteratively generates and improves reward function code. Specifically, CARD includes a Coder that generates and verifies the code, while a Evaluator provides dynamic feedback to guide the Coder in improving the code, eliminating the need for human feedback. In addition to process feedback and trajectory feedback, we introduce Trajectory Preference Evaluation (TPE), which evaluates the current reward function based on trajectory preferences. If the code fails the TPE, the Evaluator provides preference feedback, avoiding RL training at every iteration and making the reward function better aligned with the task objective. Empirical results on Meta-World and ManiSkill2 demonstrate that our method achieves an effective balance between task performance and token efficiency, outperforming or matching the baselines across all tasks. On 10 out of 12 tasks, CARD shows better or comparable performance to policies trained with expert-designed rewards, and our method even surpasses the oracle on 3 tasks.
☆ Harnessing Causality in Reinforcement Learning With Bagged Decision Times
We consider reinforcement learning (RL) for a class of problems with bagged decision times. A bag contains a finite sequence of consecutive decision times. The transition dynamics are non-Markovian and non-stationary within a bag. Further, all actions within a bag jointly impact a single reward, observed at the end of the bag. Our goal is to construct an online RL algorithm to maximize the discounted sum of the bag-specific rewards. To handle non-Markovian transitions within a bag, we utilize an expert-provided causal directed acyclic graph (DAG). Based on the DAG, we construct the states as a dynamical Bayesian sufficient statistic of the observed history, which results in Markovian state transitions within and across bags. We then frame this problem as a periodic Markov decision process (MDP) that allows non-stationarity within a period. An online RL algorithm based on Bellman-equations for stationary MDPs is generalized to handle periodic MDPs. To justify the proposed RL algorithm, we show that our constructed state achieves the maximal optimal value function among all state constructions for a periodic MDP. Further we prove the Bellman optimality equations for periodic MDPs. We evaluate the proposed method on testbed variants, constructed with real data from a mobile health clinical trial.
☆ Bridging the Training-Inference Gap in LLMs by Leveraging Self-Generated Tokens
Language models are often trained to maximize the likelihood of the next token given past tokens in the training dataset. However, during inference time, they are utilized differently, generating text sequentially and auto-regressively by using previously generated tokens as input to predict the next one. Marginal differences in predictions at each step can cascade over successive steps, resulting in different distributions from what the models were trained for and potentially leading to unpredictable behavior. This paper proposes two simple approaches based on model own generation to address this discrepancy between the training and inference time. Our first approach is Batch-Scheduled Sampling, where, during training, we stochastically choose between the ground-truth token from the dataset and the model's own generated token as input to predict the next token. This is done in an offline manner, modifying the context window by interleaving ground-truth tokens with those generated by the model. Our second approach is Reference-Answer-based Correction, where we explicitly incorporate a self-correction capability into the model during training. This enables the model to effectively self-correct the gaps between the generated sequences and the ground truth data without relying on an external oracle model. By incorporating our proposed strategies during training, we have observed an overall improvement in performance compared to baseline methods, as demonstrated by our extensive experiments using summarization, general question-answering, and math question-answering tasks.
☆ EvoPress: Towards Optimal Dynamic Model Compression via Evolutionary Search
The high computational costs of large language models (LLMs) have led to a flurry of research on LLM compression, via methods such as quantization, sparsification, or structured pruning. A new frontier in this area is given by \emph{dynamic, non-uniform} compression methods, which adjust the compression levels (e.g., sparsity) per-block or even per-layer in order to minimize accuracy loss, while guaranteeing a global compression threshold. Yet, current methods rely on heuristics for identifying the "importance" of a given layer towards the loss, based on assumptions such as \emph{error monotonicity}, i.e. that the end-to-end model compression error is proportional to the sum of layer-wise errors. In this paper, we revisit this area, and propose a new and general approach for dynamic compression that is provably optimal in a given input range. We begin from the motivating observation that, in general, \emph{error monotonicity does not hold for LLMs}: compressed models with lower sum of per-layer errors can perform \emph{worse} than models with higher error sums. To address this, we propose a new general evolutionary framework for dynamic LLM compression called EvoPress, which has provable convergence, and low sample and evaluation complexity. We show that these theoretical guarantees lead to highly competitive practical performance for dynamic compression of Llama, Mistral and Phi models. Via EvoPress, we set new state-of-the-art results across all compression approaches: structural pruning (block/layer dropping), unstructured sparsity, as well as quantization with dynamic bitwidths. Our code is available at https://github.com/IST-DASLab/EvoPress.
☆ HR-Bandit: Human-AI Collaborated Linear Recourse Bandit
Human doctors frequently recommend actionable recourses that allow patients to modify their conditions to access more effective treatments. Inspired by such healthcare scenarios, we propose the Recourse Linear UCB ($\textsf{RLinUCB}$) algorithm, which optimizes both action selection and feature modifications by balancing exploration and exploitation. We further extend this to the Human-AI Linear Recourse Bandit ($\textsf{HR-Bandit}$), which integrates human expertise to enhance performance. $\textsf{HR-Bandit}$ offers three key guarantees: (i) a warm-start guarantee for improved initial performance, (ii) a human-effort guarantee to minimize required human interactions, and (iii) a robustness guarantee that ensures sublinear regret even when human decisions are suboptimal. Empirical results, including a healthcare case study, validate its superior performance against existing benchmarks.
comment: 18 pages
☆ Convergence of Manifold Filter-Combine Networks NeurIPS
In order to better understand manifold neural networks (MNNs), we introduce Manifold Filter-Combine Networks (MFCNs). The filter-combine framework parallels the popular aggregate-combine paradigm for graph neural networks (GNNs) and naturally suggests many interesting families of MNNs which can be interpreted as the manifold analog of various popular GNNs. We then propose a method for implementing MFCNs on high-dimensional point clouds that relies on approximating the manifold by a sparse graph. We prove that our method is consistent in the sense that it converges to a continuum limit as the number of data points tends to infinity.
comment: Accepted to NeurIPS Workshop on Symmetry and Geometry in Neural Representations (Extended Abstract Track)
☆ Parallel Backpropagation for Inverse of a Convolution with Application to Normalizing Flows
Inverse of an invertible convolution is an important operation that comes up in Normalizing Flows, Image Deblurring, etc. The naive algorithm for backpropagation of this operation using Gaussian elimination has running time $O(n^3)$ where $n$ is the number of pixels in the image. We give a fast parallel backpropagation algorithm with running time $O(\sqrt{n})$ for a square image and provide a GPU implementation of the same. Inverse Convolutions are usually used in Normalizing Flows in the sampling pass, making them slow. We propose to use Inverse Convolutions in the forward (image to latent vector) pass of the Normalizing flow. Since the sampling pass is the inverse of the forward pass, it will use convolutions only, resulting in efficient sampling times. We use our parallel backpropagation algorithm for optimizing the inverse convolution layer resulting in fast training times also. We implement this approach in various Normalizing Flow backbones, resulting in our Inverse-Flow models. We benchmark Inverse-Flow on standard datasets and show significantly improved sampling times with similar bits per dimension compared to previous models.
comment: Preprint
☆ On the Regularization of Learnable Embeddings for Time Series Processing
In processing multiple time series, accounting for the individual features of each sequence can be challenging. To address this, modern deep learning methods for time series analysis combine a shared (global) model with local layers, specific to each time series, often implemented as learnable embeddings. Ideally, these local embeddings should encode meaningful representations of the unique dynamics of each sequence. However, when these are learned end-to-end as parameters of a forecasting model, they may end up acting as mere sequence identifiers. Shared processing blocks may then become reliant on such identifiers, limiting their transferability to new contexts. In this paper, we address this issue by investigating methods to regularize the learning of local learnable embeddings for time series processing. Specifically, we perform the first extensive empirical study on the subject and show how such regularizations consistently improve performance in widely adopted architectures. Furthermore, we show that methods preventing the co-adaptation of local and global parameters are particularly effective in this context. This hypothesis is validated by comparing several methods preventing the downstream models from relying on sequence identifiers, going as far as completely resetting the embeddings during training. The obtained results provide an important contribution to understanding the interplay between learnable local parameters and shared processing layers: a key challenge in modern time series processing models and a step toward developing effective foundation models for time series.
☆ SIMformer: Single-Layer Vanilla Transformer Can Learn Free-Space Trajectory Similarity
Free-space trajectory similarity calculation, e.g., DTW, Hausdorff, and Frechet, often incur quadratic time complexity, thus learning-based methods have been proposed to accelerate the computation. The core idea is to train an encoder to transform trajectories into representation vectors and then compute vector similarity to approximate the ground truth. However, existing methods face dual challenges of effectiveness and efficiency: 1) they all utilize Euclidean distance to compute representation similarity, which leads to the severe curse of dimensionality issue -- reducing the distinguishability among representations and significantly affecting the accuracy of subsequent similarity search tasks; 2) most of them are trained in triplets manner and often necessitate additional information which downgrades the efficiency; 3) previous studies, while emphasizing the scalability in terms of efficiency, overlooked the deterioration of effectiveness when the dataset size grows. To cope with these issues, we propose a simple, yet accurate, fast, scalable model that only uses a single-layer vanilla transformer encoder as the feature extractor and employs tailored representation similarity functions to approximate various ground truth similarity measures. Extensive experiments demonstrate our model significantly mitigates the curse of dimensionality issue and outperforms the state-of-the-arts in effectiveness, efficiency, and scalability.
☆ Enhancing AI Accessibility in Veterinary Medicine: Linking Classifiers and Electronic Health Records
In the rapidly evolving landscape of veterinary healthcare, integrating machine learning (ML) clinical decision-making tools with electronic health records (EHRs) promises to improve diagnostic accuracy and patient care. However, the seamless integration of ML classifiers into existing EHRs in veterinary medicine is frequently hindered by the rigidity of EHR systems or the limited availability of IT resources. To address this shortcoming, we present Anna, a freely-available software solution that provides ML classifier results for EHR laboratory data in real-time.
☆ syren-new: Precise formulae for the linear and nonlinear matter power spectra with massive neutrinos and dynamical dark energy
Current and future large scale structure surveys aim to constrain the neutrino mass and the equation of state of dark energy. We aim to construct accurate and interpretable symbolic approximations to the linear and nonlinear matter power spectra as a function of cosmological parameters in extended $\Lambda$CDM models which contain massive neutrinos and non-constant equations of state for dark energy. This constitutes an extension of the syren-halofit emulators to incorporate these two effects, which we call syren-new (SYmbolic-Regression-ENhanced power spectrum emulator with NEutrinos and $W_0-w_a$). We also obtain a simple approximation to the derived parameter $\sigma_8$ as a function of the cosmological parameters for these models. Our results for the linear power spectrum are designed to emulate CLASS, whereas for the nonlinear case we aim to match the results of EuclidEmulator2. We compare our results to existing emulators and $N$-body simulations. Our analytic emulators for $\sigma_8$, the linear and nonlinear power spectra achieve root mean squared errors of 0.1%, 0.3% and 1.3%, respectively, across a wide range of cosmological parameters, redshifts and wavenumbers. We verify that emulator-related discrepancies are subdominant compared to observational errors and other modelling uncertainties when computing shear power spectra for LSST-like surveys. Our expressions have similar accuracy to existing (numerical) emulators, but are at least an order of magnitude faster, both on a CPU and GPU. Our work greatly improves the accuracy, speed and range of applicability of current symbolic approximations to the linear and nonlinear matter power spectra. We provide publicly available code for all symbolic approximations found.
comment: 18 pages, 15 figures
☆ JAMUN: Transferable Molecular Conformational Ensemble Generation with Walk-Jump Sampling
Conformational ensembles of protein structures are immensely important both to understanding protein function, and for drug discovery in novel modalities such as cryptic pockets. Current techniques for sampling ensembles are computationally inefficient, or do not transfer to systems outside their training data. We present walk-Jump Accelerated Molecular ensembles with Universal Noise (JAMUN), a step towards the goal of efficiently sampling the Boltzmann distribution of arbitrary proteins. By extending Walk-Jump Sampling to point clouds, JAMUN enables ensemble generation at orders of magnitude faster rates than traditional molecular dynamics or state-of-the-art ML methods. Further, JAMUN is able to predict the stable basins of small peptides that were not seen during training.
☆ Benchmarking Deep Reinforcement Learning for Navigation in Denied Sensor Environments
Deep Reinforcement learning (DRL) is used to enable autonomous navigation in unknown environments. Most research assume perfect sensor data, but real-world environments may contain natural and artificial sensor noise and denial. Here, we present a benchmark of both well-used and emerging DRL algorithms in a navigation task with configurable sensor denial effects. In particular, we are interested in comparing how different DRL methods (e.g. model-free PPO vs. model-based DreamerV3) are affected by sensor denial. We show that DreamerV3 outperforms other methods in the visual end-to-end navigation task with a dynamic goal - and other methods are not able to learn this. Furthermore, DreamerV3 generally outperforms other methods in sensor-denied environments. In order to improve robustness, we use adversarial training and demonstrate an improved performance in denied environments, although this generally comes with a performance cost on the vanilla environments. We anticipate this benchmark of different DRL methods and the usage of adversarial training to be a starting point for the development of more elaborate navigation strategies that are capable of dealing with uncertain and denied sensor readings.
comment: 31 pages, 19 figures. For associated code, see https://github.com/mazqtpopx/cranfield-navigation-gym
☆ Asymptotically Optimal Change Detection for Unnormalized Pre- and Post-Change Distributions
This paper addresses the problem of detecting changes when only unnormalized pre- and post-change distributions are accessible. This situation happens in many scenarios in physics such as in ferromagnetism, crystallography, magneto-hydrodynamics, and thermodynamics, where the energy models are difficult to normalize. Our approach is based on the estimation of the Cumulative Sum (CUSUM) statistics, which is known to produce optimal performance. We first present an intuitively appealing approximation method. Unfortunately, this produces a biased estimator of the CUSUM statistics and may cause performance degradation. We then propose the Log-Partition Approximation Cumulative Sum (LPA-CUSUM) algorithm based on thermodynamic integration (TI) in order to estimate the log-ratio of normalizing constants of pre- and post-change distributions. It is proved that this approach gives an unbiased estimate of the log-partition function and the CUSUM statistics, and leads to an asymptotically optimal performance. Moreover, we derive a relationship between the required sample size for thermodynamic integration and the desired detection delay performance, offering guidelines for practical parameter selection. Numerical studies are provided demonstrating the efficacy of our approach.
☆ Streaming Deep Reinforcement Learning Finally Works
Natural intelligence processes experience as a continuous stream, sensing, acting, and learning moment-by-moment in real time. Streaming learning, the modus operandi of classic reinforcement learning (RL) algorithms like Q-learning and TD, mimics natural learning by using the most recent sample without storing it. This approach is also ideal for resource-constrained, communication-limited, and privacy-sensitive applications. However, in deep RL, learners almost always use batch updates and replay buffers, making them computationally expensive and incompatible with streaming learning. Although the prevalence of batch deep RL is often attributed to its sample efficiency, a more critical reason for the absence of streaming deep RL is its frequent instability and failure to learn, which we refer to as stream barrier. This paper introduces the stream-x algorithms, the first class of deep RL algorithms to overcome stream barrier for both prediction and control and match sample efficiency of batch RL. Through experiments in Mujoco Gym, DM Control Suite, and Atari Games, we demonstrate stream barrier in existing algorithms and successful stable learning with our stream-x algorithms: stream Q, stream AC, and stream TD, achieving the best model-free performance in DM Control Dog environments. A set of common techniques underlies the stream-x algorithms, enabling their success with a single set of hyperparameters and allowing for easy extension to other algorithms, thereby reviving streaming RL.
☆ Learning to Control the Smoothness of Graph Convolutional Network Features
The pioneering work of Oono and Suzuki [ICLR, 2020] and Cai and Wang [arXiv:2006.13318] initializes the analysis of the smoothness of graph convolutional network (GCN) features. Their results reveal an intricate empirical correlation between node classification accuracy and the ratio of smooth to non-smooth feature components. However, the optimal ratio that favors node classification is unknown, and the non-smooth features of deep GCN with ReLU or leaky ReLU activation function diminish. In this paper, we propose a new strategy to let GCN learn node features with a desired smoothness -- adapting to data and tasks -- to enhance node classification. Our approach has three key steps: (1) We establish a geometric relationship between the input and output of ReLU or leaky ReLU. (2) Building on our geometric insights, we augment the message-passing process of graph convolutional layers (GCLs) with a learnable term to modulate the smoothness of node features with computational efficiency. (3) We investigate the achievable ratio between smooth and non-smooth feature components for GCNs with the augmented message-passing scheme. Our extensive numerical results show that the augmented message-passing schemes significantly improve node classification for GCN and some related models.
comment: 48 pages
☆ How Does Data Diversity Shape the Weight Landscape of Neural Networks?
To enhance the generalization of machine learning models to unseen data, techniques such as dropout, weight decay ($L_2$ regularization), and noise augmentation are commonly employed. While regularization methods (i.e., dropout and weight decay) are geared toward adjusting model parameters to prevent overfitting, data augmentation increases the diversity of the input training set, a method purported to improve accuracy and calibration error. In this paper, we investigate the impact of each of these techniques on the parameter space of neural networks, with the goal of understanding how they alter the weight landscape in transfer learning scenarios. To accomplish this, we employ Random Matrix Theory to analyze the eigenvalue distributions of pre-trained models, fine-tuned using these techniques but using different levels of data diversity, for the same downstream tasks. We observe that diverse data influences the weight landscape in a similar fashion as dropout. Additionally, we compare commonly used data augmentation methods with synthetic data created by generative models. We conclude that synthetic data can bring more diversity into real input data, resulting in a better performance on out-of-distribution test instances.
☆ Contractivity and linear convergence in bilinear saddle-point problems: An operator-theoretic approach
We study the convex-concave bilinear saddle-point problem $\min_x \max_y f(x) + y^\top Ax - g(y)$, where both, only one, or none of the functions $f$ and $g$ are strongly convex, and suitable rank conditions on the matrix $A$ hold. The solution of this problem is at the core of many machine learning tasks. By employing tools from operator theory, we systematically prove the contractivity (in turn, the linear convergence) of several first-order primal-dual algorithms, including the Chambolle-Pock method. Our approach results in concise and elegant proofs, and it yields new convergence guarantees and tighter bounds compared to known results.
☆ A Lipschitz spaces view of infinitely wide shallow neural networks
We revisit the mean field parametrization of shallow neural networks, using signed measures on unbounded parameter spaces and duality pairings that take into account the regularity and growth of activation functions. This setting directly leads to the use of unbalanced Kantorovich-Rubinstein norms defined by duality with Lipschitz functions, and of spaces of measures dual to those of continuous functions with controlled growth. These allow to make transparent the need for total variation and moment bounds or penalization to obtain existence of minimizers of variational formulations, under which we prove a compactness result in strong Kantorovich-Rubinstein norm, and in the absence of which we show several examples demonstrating undesirable behavior. Further, the Kantorovich-Rubinstein setting enables us to combine the advantages of a completely linear parametrization and ensuing reproducing kernel Banach space framework with optimal transport insights. We showcase this synergy with representer theorems and uniform large data limits for empirical risk minimization, and in proposed formulations for distillation and fusion applications.
comment: 39 pages, 1 table
☆ Learning With Multi-Group Guarantees For Clusterable Subpopulations
A canonical desideratum for prediction problems is that performance guarantees should hold not just on average over the population, but also for meaningful subpopulations within the overall population. But what constitutes a meaningful subpopulation? In this work, we take the perspective that relevant subpopulations should be defined with respect to the clusters that naturally emerge from the distribution of individuals for which predictions are being made. In this view, a population refers to a mixture model whose components constitute the relevant subpopulations. We suggest two formalisms for capturing per-subgroup guarantees: first, by attributing each individual to the component from which they were most likely drawn, given their features; and second, by attributing each individual to all components in proportion to their relative likelihood of having been drawn from each component. Using online calibration as a case study, we study a \variational algorithm that provides guarantees for each of these formalisms by handling all plausible underlying subpopulation structures simultaneously, and achieve an $O(T^{1/2})$ rate even when the subpopulations are not well-separated. In comparison, the more natural cluster-then-predict approach that first recovers the structure of the subpopulations and then makes predictions suffers from a $O(T^{2/3})$ rate and requires the subpopulations to be separable. Along the way, we prove that providing per-subgroup calibration guarantees for underlying clusters can be easier than learning the clusters: separation between median subgroup features is required for the latter but not the former.
☆ Neuro-Symbolic Traders: Assessing the Wisdom of AI Crowds in Markets
Deep generative models are becoming increasingly used as tools for financial analysis. However, it is unclear how these models will influence financial markets, especially when they infer financial value in a semi-autonomous way. In this work, we explore the interplay between deep generative models and market dynamics. We develop a form of virtual traders that use deep generative models to make buy/sell decisions, which we term neuro-symbolic traders, and expose them to a virtual market. Under our framework, neuro-symbolic traders are agents that use vision-language models to discover a model of the fundamental value of an asset. Agents develop this model as a stochastic differential equation, calibrated to market data using gradient descent. We test our neuro-symbolic traders on both synthetic data and real financial time series, including an equity stock, commodity, and a foreign exchange pair. We then expose several groups of neuro-symbolic traders to a virtual market environment. This market environment allows for feedback between the traders belief of the underlying value to the observed price dynamics. We find that this leads to price suppression compared to the historical data, highlighting a future risk to market stability. Our work is a first step towards quantifying the effect of deep generative agents on markets dynamics and sets out some of the potential risks and benefits of this approach in the future.
comment: 8 pages, 4 figures, ACM format
☆ Neural Combinatorial Clustered Bandits for Recommendation Systems
We consider the contextual combinatorial bandit setting where in each round, the learning agent, e.g., a recommender system, selects a subset of "arms," e.g., products, and observes rewards for both the individual base arms, which are a function of known features (called "context"), and the super arm (the subset of arms), which is a function of the base arm rewards. The agent's goal is to simultaneously learn the unknown reward functions and choose the highest-reward arms. For example, the "reward" may represent a user's probability of clicking on one of the recommended products. Conventional bandit models, however, employ restrictive reward function models in order to obtain performance guarantees. We make use of deep neural networks to estimate and learn the unknown reward functions and propose Neural UCB Clustering (NeUClust), which adopts a clustering approach to select the super arm in every round by exploiting underlying structure in the context space. Unlike prior neural bandit works, NeUClust uses a neural network to estimate the super arm reward and select the super arm, thus eliminating the need for a known optimization oracle. We non-trivially extend prior neural combinatorial bandit works to prove that NeUClust achieves $\widetilde{O}\left(\widetilde{d}\sqrt{T}\right)$ regret, where $\widetilde{d}$ is the effective dimension of a neural tangent kernel matrix, $T$ the number of rounds. Experiments on real world recommendation datasets show that NeUClust achieves better regret and reward than other contextual combinatorial and neural bandit algorithms.
☆ Optimizing Attention with Mirror Descent: Generalized Max-Margin Token Selection
Attention mechanisms have revolutionized several domains of artificial intelligence, such as natural language processing and computer vision, by enabling models to selectively focus on relevant parts of the input data. While recent work has characterized the optimization dynamics of gradient descent (GD) in attention-based models and the structural properties of its preferred solutions, less is known about more general optimization algorithms such as mirror descent (MD). In this paper, we investigate the convergence properties and implicit biases of a family of MD algorithms tailored for softmax attention mechanisms, with the potential function chosen as the $p$-th power of the $\ell_p$-norm. Specifically, we show that these algorithms converge in direction to a generalized hard-margin SVM with an $\ell_p$-norm objective when applied to a classification problem using a softmax attention model. Notably, our theoretical results reveal that the convergence rate is comparable to that of traditional GD in simpler models, despite the highly nonlinear and nonconvex nature of the present problem. Additionally, we delve into the joint optimization dynamics of the key-query matrix and the decoder, establishing conditions under which this complex joint optimization converges to their respective hard-margin SVM solutions. Lastly, our numerical experiments on real data demonstrate that MD algorithms improve generalization over standard GD and excel in optimal token selection.
☆ Towards Unsupervised Validation of Anomaly-Detection Models
Unsupervised validation of anomaly-detection models is a highly challenging task. While the common practices for model validation involve a labeled validation set, such validation sets cannot be constructed when the underlying datasets are unlabeled. The lack of robust and efficient unsupervised model-validation techniques presents an acute challenge in the implementation of automated anomaly-detection pipelines, especially when there exists no prior knowledge of the model's performance on similar datasets. This work presents a new paradigm to automated validation of anomaly-detection models, inspired by real-world, collaborative decision-making mechanisms. We focus on two commonly-used, unsupervised model-validation tasks -- model selection and model evaluation -- and provide extensive experimental results that demonstrate the accuracy and robustness of our approach on both tasks.
☆ Large Language Models Are Overparameterized Text Encoders
Large language models (LLMs) demonstrate strong performance as text embedding models when finetuned with supervised contrastive training. However, their large size balloons inference time and memory requirements. In this paper, we show that by pruning the last $p\%$ layers of an LLM before supervised training for only 1000 steps, we can achieve a proportional reduction in memory and inference time. We evaluate four different state-of-the-art LLMs on text embedding tasks and find that our method can prune up to 30\% of layers with negligible impact on performance and up to 80\% with only a modest drop. With only three lines of code, our method is easily implemented in any pipeline for transforming LLMs to text encoders. We also propose $\text{L}^3 \text{Prune}$, a novel layer-pruning strategy based on the model's initial loss that provides two optimal pruning configurations: a large variant with negligible performance loss and a small variant for resource-constrained settings. On average, the large variant prunes 21\% of the parameters with a $-0.3$ performance drop, and the small variant only suffers from a $-5.1$ decrease while pruning 74\% of the model. We consider these results strong evidence that LLMs are overparameterized for text embedding tasks, and can be easily pruned.
comment: 8 pages of content + 1 for limitations and ethical considerations, 14 pages in total including references and appendix, 5+1 figures
☆ MomentumSMoE: Integrating Momentum into Sparse Mixture of Experts NeurIPS 2024
Sparse Mixture of Experts (SMoE) has become the key to unlocking unparalleled scalability in deep learning. SMoE has the potential to exponentially increase parameter count while maintaining the efficiency of the model by only activating a small subset of these parameters for a given sample. However, it has been observed that SMoE suffers from unstable training and has difficulty adapting to new distributions, leading to the model's lack of robustness to data contamination. To overcome these limitations, we first establish a connection between the dynamics of the expert representations in SMoEs and gradient descent on a multi-objective optimization problem. Leveraging our framework, we then integrate momentum into SMoE and propose a new family of SMoEs named MomentumSMoE. We theoretically prove and numerically demonstrate that MomentumSMoE is more stable and robust than SMoE. In particular, we verify the advantages of MomentumSMoE over SMoE on a variety of practical tasks including ImageNet-1K object recognition and WikiText-103 language modeling. We demonstrate the applicability of MomentumSMoE to many types of SMoE models, including those in the Sparse MoE model for vision (V-MoE) and the Generalist Language Model (GLaM). We also show that other advanced momentum-based optimization methods, such as Adam, can be easily incorporated into the MomentumSMoE framework for designing new SMoE models with even better performance, almost negligible additional computation cost, and simple implementations.
comment: 10 pages in the main text. Published at NeurIPS 2024. The code is available at https://github.com/rachtsy/MomentumSMoE
☆ Building Trust in Black-box Optimization: A Comprehensive Framework for Explainability
Optimizing costly black-box functions within a constrained evaluation budget presents significant challenges in many real-world applications. Surrogate Optimization (SO) is a common resolution, yet its proprietary nature introduced by the complexity of surrogate models and the sampling core (e.g., acquisition functions) often leads to a lack of explainability and transparency. While existing literature has primarily concentrated on enhancing convergence to global optima, the practical interpretation of newly proposed strategies remains underexplored, especially in batch evaluation settings. In this paper, we propose \emph{Inclusive} Explainability Metrics for Surrogate Optimization (IEMSO), a comprehensive set of model-agnostic metrics designed to enhance the transparency, trustworthiness, and explainability of the SO approaches. Through these metrics, we provide both intermediate and post-hoc explanations to practitioners before and after performing expensive evaluations to gain trust. We consider four primary categories of metrics, each targeting a specific aspect of the SO process: Sampling Core Metrics, Batch Properties Metrics, Optimization Process Metrics, and Feature Importance. Our experimental evaluations demonstrate the significant potential of the proposed metrics across different benchmarks.
☆ Understanding the difficulty of low-precision post-training quantization of large language models
Large language models of high parameter counts are computationally expensive, yet can be made much more efficient by compressing their weights to very low numerical precision. This can be achieved either through post-training quantization by minimizing local, layer-wise quantization errors, or through quantization-aware fine-tuning by minimizing the global loss function. In this study, we discovered that, under the same data constraint, the former approach nearly always fared worse than the latter, a phenomenon particularly prominent when the numerical precision is very low. We further showed that this difficulty of post-training quantization arose from stark misalignment between optimization of the local and global objective functions. Our findings explains limited utility in minimization of local quantization error and the importance of direct quantization-aware fine-tuning, in the regime of large models at very low precision.
☆ Measuring Diversity: Axioms and Challenges
The concept of diversity is widely used in various applications: from image or molecule generation to recommender systems. Thus, being able to properly measure diversity is important. This paper addresses the problem of quantifying diversity for a set of objects. First, we make a systematic review of existing diversity measures and explore their undesirable behavior in some cases. Based on this review, we formulate three desirable properties (axioms) of a reliable diversity measure: monotonicity, uniqueness, and continuity. We show that none of the existing measures has all three properties and thus these measures are not suitable for quantifying diversity. Then, we construct two examples of measures that have all the desirable properties, thus proving that the list of axioms is not self-contradicting. Unfortunately, the constructed examples are too computationally complex for practical use, thus we pose an open problem of constructing a diversity measure that has all the listed properties and can be computed in practice.
comment: 17 pages, 7 figures
☆ Boosting K-means for Big Data by Fusing Data Streaming with Global Optimization
K-means clustering is a cornerstone of data mining, but its efficiency deteriorates when confronted with massive datasets. To address this limitation, we propose a novel heuristic algorithm that leverages the Variable Neighborhood Search (VNS) metaheuristic to optimize K-means clustering for big data. Our approach is based on the sequential optimization of the partial objective function landscapes obtained by restricting the Minimum Sum-of-Squares Clustering (MSSC) formulation to random samples from the original big dataset. Within each landscape, systematically expanding neighborhoods of the currently best (incumbent) solution are explored by reinitializing all degenerate and a varying number of additional centroids. Extensive and rigorous experimentation on a large number of real-world datasets reveals that by transforming the traditional local search into a global one, our algorithm significantly enhances the accuracy and efficiency of K-means clustering in big data environments, becoming the new state of the art in the field.
☆ Diffusion-based Semi-supervised Spectral Algorithm for Regression on Manifolds
We introduce a novel diffusion-based spectral algorithm to tackle regression analysis on high-dimensional data, particularly data embedded within lower-dimensional manifolds. Traditional spectral algorithms often fall short in such contexts, primarily due to the reliance on predetermined kernel functions, which inadequately address the complex structures inherent in manifold-based data. By employing graph Laplacian approximation, our method uses the local estimation property of heat kernel, offering an adaptive, data-driven approach to overcome this obstacle. Another distinct advantage of our algorithm lies in its semi-supervised learning framework, enabling it to fully use the additional unlabeled data. This ability enhances the performance by allowing the algorithm to dig the spectrum and curvature of the data manifold, providing a more comprehensive understanding of the dataset. Moreover, our algorithm performs in an entirely data-driven manner, operating directly within the intrinsic manifold structure of the data, without requiring any predefined manifold information. We provide a convergence analysis of our algorithm. Our findings reveal that the algorithm achieves a convergence rate that depends solely on the intrinsic dimension of the underlying manifold, thereby avoiding the curse of dimensionality associated with the higher ambient dimension.
☆ Comparing Differentiable and Dynamic Ray Tracing: Introducing the Multipath Lifetime Map
With the increasing presence of dynamic scenarios, such as Vehicle-to-Vehicle communications, radio propagation modeling tools must adapt to the rapidly changing nature of the radio channel. Recently, both Differentiable and Dynamic Ray Tracing frameworks have emerged to address these challenges. However, there is often confusion about how these approaches differ and which one should be used in specific contexts. In this paper, we provide an overview of these two techniques and a comparative analysis against two state-of-the-art tools: 3DSCAT from UniBo and Sionna from NVIDIA. To provide a more precise characterization of the scope of these methods, we introduce a novel simulation-based metric, the Multipath Lifetime Map, which enables the evaluation of spatial and temporal coherence in radio channels only based on the geometrical description of the environment. Finally, our metrics are evaluated on a classic urban street canyon scenario, yielding similar results to those obtained from measurement campaigns.
comment: 5 pages, 5 figures, 1 table, submitted to EuCAP 2025
☆ The Traveling Bandit: A Framework for Bayesian Optimization with Movement Costs
This paper introduces a framework for Bayesian Optimization (BO) with metric movement costs, addressing a critical challenge in practical applications where input alterations incur varying costs. Our approach is a convenient plug-in that seamlessly integrates with the existing literature on batched algorithms, where designs within batches are observed following the solution of a Traveling Salesman Problem. The proposed method provides a theoretical guarantee of convergence in terms of movement costs for BO. Empirically, our method effectively reduces average movement costs over time while maintaining comparable regret performance to conventional BO methods. This framework also shows promise for broader applications in various bandit settings with movement costs.
☆ Using Sentiment and Technical Analysis to Predict Bitcoin with Machine Learning
Cryptocurrencies have gained significant attention in recent years due to their decentralized nature and potential for financial innovation. Thus, the ability to accurately predict its price has become a subject of great interest for investors, traders, and researchers. Some works in the literature show how Bitcoin's market sentiment correlates with its price fluctuations in the market. However, papers that consider the sentiment of the market associated with financial Technical Analysis indicators in order to predict Bitcoin's price are still scarce. In this paper, we present a novel approach for predicting Bitcoin price movements by combining the Fear & Greedy Index, a measure of market sentiment, Technical Analysis indicators, and the potential of Machine Learning algorithms. This work represents a preliminary study on the importance of sentiment metrics in cryptocurrency forecasting. Our initial experiments demonstrate promising results considering investment returns, surpassing the Buy & Hold baseline, and offering valuable insights about the combination of indicators of sentiment and market in a cryptocurrency prediction model.
☆ Domain Adaptive Safety Filters via Deep Operator Learning
Learning-based approaches for constructing Control Barrier Functions (CBFs) are increasingly being explored for safety-critical control systems. However, these methods typically require complete retraining when applied to unseen environments, limiting their adaptability. To address this, we propose a self-supervised deep operator learning framework that learns the mapping from environmental parameters to the corresponding CBF, rather than learning the CBF directly. Our approach leverages the residual of a parametric Partial Differential Equation (PDE), where the solution defines a parametric CBF approximating the maximal control invariant set. This framework accommodates complex safety constraints, higher relative degrees, and actuation limits. We demonstrate the effectiveness of the method through numerical experiments on navigation tasks involving dynamic obstacles.
comment: 63rd IEEE Conference on Decision and Control (CDC)
☆ Rethinking Distance Metrics for Counterfactual Explainability
Counterfactual explanations have been a popular method of post-hoc explainability for a variety of settings in Machine Learning. Such methods focus on explaining classifiers by generating new data points that are similar to a given reference, while receiving a more desirable prediction. In this work, we investigate a framing for counterfactual generation methods that considers counterfactuals not as independent draws from a region around the reference, but as jointly sampled with the reference from the underlying data distribution. Through this framing, we derive a distance metric, tailored for counterfactual similarity that can be applied to a broad range of settings. Through both quantitative and qualitative analyses of counterfactual generation methods, we show that this framing allows us to express more nuanced dependencies among the covariates.
comment: 13 pages, 3 figures, 1 table
☆ Efficient Annotator Reliability Assessment and Sample Weighting for Knowledge-Based Misinformation Detection on Social Media
Misinformation spreads rapidly on social media, confusing the truth and targetting potentially vulnerable people. To effectively mitigate the negative impact of misinformation, it must first be accurately detected before applying a mitigation strategy, such as X's community notes, which is currently a manual process. This study takes a knowledge-based approach to misinformation detection, modelling the problem similarly to one of natural language inference. The EffiARA annotation framework is introduced, aiming to utilise inter- and intra-annotator agreement to understand the reliability of each annotator and influence the training of large language models for classification based on annotator reliability. In assessing the EffiARA annotation framework, the Russo-Ukrainian Conflict Knowledge-Based Misinformation Classification Dataset (RUC-MCD) was developed and made publicly available. This study finds that sample weighting using annotator reliability performs the best, utilising both inter- and intra-annotator agreement and soft-label training. The highest classification performance achieved using Llama-3.2-1B was a macro-F1 of 0.757 and 0.740 using TwHIN-BERT-large.
comment: 8 pages, 3 figures, 3 tables. Code available here: https://github.com/MiniEggz/ruc-misinfo
☆ An Integrated Deep Learning Model for Skin Cancer Detection Using Hybrid Feature Fusion Technique
Skin cancer is a serious and potentially fatal disease caused by DNA damage. Early detection significantly increases survival rates, making accurate diagnosis crucial. In this groundbreaking study, we present a hybrid framework based on Deep Learning (DL) that achieves precise classification of benign and malignant skin lesions. Our approach begins with dataset preprocessing to enhance classification accuracy, followed by training two separate pre-trained DL models, InceptionV3 and DenseNet121. By fusing the results of each model using the weighted sum rule, our system achieves exceptional accuracy rates. Specifically, we achieve a 92.27% detection accuracy rate, 92.33% sensitivity, 92.22% specificity, 90.81% precision, and 91.57% F1-score, outperforming existing models and demonstrating the robustness and trustworthiness of our hybrid approach. Our study represents a significant advance in skin cancer diagnosis and provides a promising foundation for further research in the field. With the potential to save countless lives through earlier detection, our hybrid deep-learning approach is a game-changer in the fight against skin cancer.
☆ ANT: Adaptive Noise Schedule for Time Series Diffusion Models NeurIPS 2024
Advances in diffusion models for generative artificial intelligence have recently propagated to the time series (TS) domain, demonstrating state-of-the-art performance on various tasks. However, prior works on TS diffusion models often borrow the framework of existing works proposed in other domains without considering the characteristics of TS data, leading to suboptimal performance. In this work, we propose Adaptive Noise schedule for Time series diffusion models (ANT), which automatically predetermines proper noise schedules for given TS datasets based on their statistics representing non-stationarity. Our intuition is that an optimal noise schedule should satisfy the following desiderata: 1) It linearly reduces the non-stationarity of TS data so that all diffusion steps are equally meaningful, 2) the data is corrupted to the random noise at the final step, and 3) the number of steps is sufficiently large. The proposed method is practical for use in that it eliminates the necessity of finding the optimal noise schedule with a small additional cost to compute the statistics for given datasets, which can be done offline before training. We validate the effectiveness of our method across various tasks, including TS forecasting, refinement, and generation, on datasets from diverse domains. Code is available at this repository: https://github.com/seunghan96/ANT.
comment: NeurIPS 2024
☆ CaTs and DAGs: Integrating Directed Acyclic Graphs with Transformers and Fully-Connected Neural Networks for Causally Constrained Predictions
Artificial Neural Networks (ANNs), including fully-connected networks and transformers, are highly flexible and powerful function approximators, widely applied in fields like computer vision and natural language processing. However, their inability to inherently respect causal structures can limit their robustness, making them vulnerable to covariate shift and difficult to interpret/explain. This poses significant challenges for their reliability in real-world applications. In this paper, we introduce Causal Fully-Connected Neural Networks (CFCNs) and Causal Transformers (CaTs), two general model families designed to operate under predefined causal constraints, as specified by a Directed Acyclic Graph (DAG). These models retain the powerful function approximation abilities of traditional neural networks while adhering to the underlying structural constraints, improving robustness, reliability, and interpretability at inference time. This approach opens new avenues for deploying neural networks in more demanding, real-world scenarios where robustness and explainability is critical.
☆ Transfer Reinforcement Learning in Heterogeneous Action Spaces using Subgoal Mapping
In this paper, we consider a transfer reinforcement learning problem involving agents with different action spaces. Specifically, for any new unseen task, the goal is to use a successful demonstration of this task by an expert agent in its action space to enable a learner agent learn an optimal policy in its own different action space with fewer samples than those required if the learner was learning on its own. Existing transfer learning methods across different action spaces either require handcrafted mappings between those action spaces provided by human experts, which can induce bias in the learning procedure, or require the expert agent to share its policy parameters with the learner agent, which does not generalize well to unseen tasks. In this work, we propose a method that learns a subgoal mapping between the expert agent policy and the learner agent policy. Since the expert agent and the learner agent have different action spaces, their optimal policies can have different subgoal trajectories. We learn this subgoal mapping by training a Long Short Term Memory (LSTM) network for a distribution of tasks and then use this mapping to predict the learner subgoal sequence for unseen tasks, thereby improving the speed of learning by biasing the agent's policy towards the predicted learner subgoal sequence. Through numerical experiments, we demonstrate that the proposed learning scheme can effectively find the subgoal mapping underlying the given distribution of tasks. Moreover, letting the learner agent imitate the expert agent's policy with the learnt subgoal mapping can significantly improve the sample efficiency and training time of the learner agent in unseen new tasks.
☆ Spectral Representations for Accurate Causal Uncertainty Quantification with Gaussian Processes
Accurate uncertainty quantification for causal effects is essential for robust decision making in complex systems, but remains challenging in non-parametric settings. One promising framework represents conditional distributions in a reproducing kernel Hilbert space and places Gaussian process priors on them to infer posteriors on causal effects, but requires restrictive nuclear dominant kernels and approximations that lead to unreliable uncertainty estimates. In this work, we introduce a method, IMPspec, that addresses these limitations via a spectral representation of the Hilbert space. We show that posteriors in this model can be obtained explicitly, by extending a result in Hilbert space regression theory. We also learn the spectral representation to optimise posterior calibration. Our method achieves state-of-the-art performance in uncertainty quantification and causal Bayesian optimisation across simulations and a healthcare application.
☆ Backdoored Retrievers for Prompt Injection Attacks on Retrieval Augmented Generation of Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating coherent text but remain limited by the static nature of their training data. Retrieval Augmented Generation (RAG) addresses this issue by combining LLMs with up-to-date information retrieval, but also expand the attack surface of the system. This paper investigates prompt injection attacks on RAG, focusing on malicious objectives beyond misinformation, such as inserting harmful links, promoting unauthorized services, and initiating denial-of-service behaviors. We build upon existing corpus poisoning techniques and propose a novel backdoor attack aimed at the fine-tuning process of the dense retriever component. Our experiments reveal that corpus poisoning can achieve significant attack success rates through the injection of a small number of compromised documents into the retriever corpus. In contrast, backdoor attacks demonstrate even higher success rates but necessitate a more complex setup, as the victim must fine-tune the retriever using the attacker poisoned dataset.
comment: 12 pages, 5 figures
☆ Laplace Transform Based Low-Complexity Learning of Continuous Markov Semigroups
Markov processes serve as a universal model for many real-world random processes. This paper presents a data-driven approach for learning these models through the spectral decomposition of the infinitesimal generator (IG) of the Markov semigroup. The unbounded nature of IGs complicates traditional methods such as vector-valued regression and Hilbert-Schmidt operator analysis. Existing techniques, including physics-informed kernel regression, are computationally expensive and limited in scope, with no recovery guarantees for transfer operator methods when the time-lag is small. We propose a novel method that leverages the IG's resolvent, characterized by the Laplace transform of transfer operators. This approach is robust to time-lag variations, ensuring accurate eigenvalue learning even for small time-lags. Our statistical analysis applies to a broader class of Markov processes than current methods while reducing computational complexity from quadratic to linear in the state dimension. Finally, we illustrate the behaviour of our method in two experiments.
comment: 35 pages
☆ Enhancing Cryptocurrency Market Forecasting: Advanced Machine Learning Techniques and Industrial Engineering Contributions
Cryptocurrencies, as decentralized digital assets, have experienced rapid growth and adoption, with over 23,000 cryptocurrencies and a market capitalization nearing \$1.1 trillion (about \$3,400 per person in the US) as of 2023. This dynamic market presents significant opportunities and risks, highlighting the need for accurate price prediction models to manage volatility. This chapter comprehensively reviews machine learning (ML) techniques applied to cryptocurrency price prediction from 2014 to 2024. We explore various ML algorithms, including linear models, tree-based approaches, and advanced deep learning architectures such as transformers and large language models. Additionally, we examine the role of sentiment analysis in capturing market sentiment from textual data like social media posts and news articles to anticipate price fluctuations. With expertise in optimizing complex systems and processes, industrial engineers are pivotal in enhancing these models. They contribute by applying principles of process optimization, efficiency, and risk mitigation to improve computational performance and data management. This chapter highlights the evolving landscape of cryptocurrency price prediction, the integration of emerging technologies, and the significant role of industrial engineers in refining predictive models. By addressing current limitations and exploring future research directions, this chapter aims to advance the development of more accurate and robust prediction systems, supporting better-informed investment decisions and more stable market behavior.
comment: 63 pages, 6 figures
☆ How Do Training Methods Influence the Utilization of Vision Models? NeurIPS 2024
Not all learnable parameters (e.g., weights) contribute equally to a neural network's decision function. In fact, entire layers' parameters can sometimes be reset to random values with little to no impact on the model's decisions. We revisit earlier studies that examined how architecture and task complexity influence this phenomenon and ask: is this phenomenon also affected by how we train the model? We conducted experimental evaluations on a diverse set of ImageNet-1k classification models to explore this, keeping the architecture and training data constant but varying the training pipeline. Our findings reveal that the training method strongly influences which layers become critical to the decision function for a given task. For example, improved training regimes and self-supervised training increase the importance of early layers while significantly under-utilizing deeper layers. In contrast, methods such as adversarial training display an opposite trend. Our preliminary results extend previous findings, offering a more nuanced understanding of the inner mechanics of neural networks. Code: https://github.com/paulgavrikov/layer_criticality
comment: Accepted at the Interpretable AI: Past, Present and Future Workshop at NeurIPS 2024
☆ Flow-based Sampling for Entanglement Entropy and the Machine Learning of Defects
We introduce a novel technique to numerically calculate R\'enyi entanglement entropies in lattice quantum field theory using generative models. We describe how flow-based approaches can be combined with the replica trick using a custom neural-network architecture around a lattice defect connecting two replicas. Numerical tests for the $\phi^4$ scalar field theory in two and three dimensions demonstrate that our technique outperforms state-of-the-art Monte Carlo calculations, and exhibit a promising scaling with the defect size.
comment: 10 pages, 9 figures
☆ Electrocardiogram-Language Model for Few-Shot Question Answering with Meta Learning
Electrocardiogram (ECG) interpretation requires specialized expertise, often involving synthesizing insights from ECG signals with complex clinical queries posed in natural language. The scarcity of labeled ECG data coupled with the diverse nature of clinical inquiries presents a significant challenge for developing robust and adaptable ECG diagnostic systems. This work introduces a novel multimodal meta-learning method for few-shot ECG question answering, addressing the challenge of limited labeled data while leveraging the rich knowledge encoded within large language models (LLMs). Our LLM-agnostic approach integrates a pre-trained ECG encoder with a frozen LLM (e.g., LLaMA and Gemma) via a trainable fusion module, enabling the language model to reason about ECG data and generate clinically meaningful answers. Extensive experiments demonstrate superior generalization to unseen diagnostic tasks compared to supervised baselines, achieving notable performance even with limited ECG leads. For instance, in a 5-way 5-shot setting, our method using LLaMA-3.1-8B achieves accuracy of 84.6%, 77.3%, and 69.6% on single verify, choose and query question types, respectively. These results highlight the potential of our method to enhance clinical ECG interpretation by combining signal processing with the nuanced language understanding capabilities of LLMs, particularly in data-constrained scenarios.
☆ The Propensity for Density in Feed-forward Models
Does the process of training a neural network to solve a task tend to use all of the available weights even when the task could be solved with fewer weights? To address this question we study the effects of pruning fully connected, convolutional and residual models while varying their widths. We find that the proportion of weights that can be pruned without degrading performance is largely invariant to model size. Increasing the width of a model has little effect on the density of the pruned model relative to the increase in absolute size of the pruned network. In particular, we find substantial prunability across a large range of model sizes, where our biggest model is 50 times as wide as our smallest model. We explore three hypotheses that could explain these findings.
☆ Learning to refine domain knowledge for biological network inference
Perturbation experiments allow biologists to discover causal relationships between variables of interest, but the sparsity and high dimensionality of these data pose significant challenges for causal structure learning algorithms. Biological knowledge graphs can bootstrap the inference of causal structures in these situations, but since they compile vastly diverse information, they can bias predictions towards well-studied systems. Alternatively, amortized causal structure learning algorithms encode inductive biases through data simulation and train supervised models to recapitulate these synthetic graphs. However, realistically simulating biology is arguably even harder than understanding a specific system. In this work, we take inspiration from both strategies and propose an amortized algorithm for refining domain knowledge, based on data observations. On real and synthetic datasets, we show that our approach outperforms baselines in recovering ground truth causal graphs and identifying errors in the prior knowledge with limited interventional data.
☆ A Bioinformatic Approach Validated Utilizing Machine Learning Algorithms to Identify Relevant Biomarkers and Crucial Pathways in Gallbladder Cancer
Gallbladder cancer (GBC) is the most frequent cause of disease among biliary tract neoplasms. Identifying the molecular mechanisms and biomarkers linked to GBC progression has been a significant challenge in scientific research. Few recent studies have explored the roles of biomarkers in GBC. Our study aimed to identify biomarkers in GBC using machine learning (ML) and bioinformatics techniques. We compared GBC tumor samples with normal samples to identify differentially expressed genes (DEGs) from two microarray datasets (GSE100363, GSE139682) obtained from the NCBI GEO database. A total of 146 DEGs were found, with 39 up-regulated and 107 down-regulated genes. Functional enrichment analysis of these DEGs was performed using Gene Ontology (GO) terms and REACTOME pathways through DAVID. The protein-protein interaction network was constructed using the STRING database. To identify hub genes, we applied three ranking algorithms: Degree, MNC, and Closeness Centrality. The intersection of hub genes from these algorithms yielded 11 hub genes. Simultaneously, two feature selection methods (Pearson correlation and recursive feature elimination) were used to identify significant gene subsets. We then developed ML models using SVM and RF on the GSE100363 dataset, with validation on GSE139682, to determine the gene subset that best distinguishes GBC samples. The hub genes outperformed the other gene subsets. Finally, NTRK2, COL14A1, SCN4B, ATP1A2, SLC17A7, SLIT3, COL7A1, CLDN4, CLEC3B, ADCYAP1R1, and MFAP4 were identified as crucial genes, with SLIT3, COL7A1, and CLDN4 being strongly linked to GBC development and prediction.
☆ FashionR2R: Texture-preserving Rendered-to-Real Image Translation with Diffusion Models NeurIPS 2024
Modeling and producing lifelike clothed human images has attracted researchers' attention from different areas for decades, with the complexity from highly articulated and structured content. Rendering algorithms decompose and simulate the imaging process of a camera, while are limited by the accuracy of modeled variables and the efficiency of computation. Generative models can produce impressively vivid human images, however still lacking in controllability and editability. This paper studies photorealism enhancement of rendered images, leveraging generative power from diffusion models on the controlled basis of rendering. We introduce a novel framework to translate rendered images into their realistic counterparts, which consists of two stages: Domain Knowledge Injection (DKI) and Realistic Image Generation (RIG). In DKI, we adopt positive (real) domain finetuning and negative (rendered) domain embedding to inject knowledge into a pretrained Text-to-image (T2I) diffusion model. In RIG, we generate the realistic image corresponding to the input rendered image, with a Texture-preserving Attention Control (TAC) to preserve fine-grained clothing textures, exploiting the decoupled features encoded in the UNet structure. Additionally, we introduce SynFashion dataset, featuring high-quality digital clothing images with diverse textures. Extensive experimental results demonstrate the superiority and effectiveness of our method in rendered-to-real image translation.
comment: Accepted by NeurIPS 2024
☆ Predicting time-varying flux and balance in metabolic systems using structured neural-ODE processes
We develop a novel data-driven framework as an alternative to dynamic flux balance analysis, bypassing the demand for deep domain knowledge and manual efforts to formulate the optimization problem. The proposed framework is end-to-end, which trains a structured neural ODE process (SNODEP) model to estimate flux and balance samples using gene-expression time-series data. SNODEP is designed to circumvent the limitations of the standard neural ODE process model, including restricting the latent and decoder sampling distributions to be normal and lacking structure between context points for calculating the latent, thus more suitable for modeling the underlying dynamics of a metabolic system. Through comprehensive experiments ($156$ in total), we demonstrate that SNODEP not only predicts the unseen time points of real-world gene-expression data and the flux and balance estimates well but can even generalize to more challenging unseen knockout configurations and irregular data sampling scenarios, all essential for metabolic pathway analysis. We hope our work can serve as a catalyst for building more scalable and powerful models for genome-scale metabolic analysis. Our code is available at: \url{https://github.com/TrustMLRG/SNODEP}.
☆ Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life. This study demonstrates the potential of retinal optical coherence tomography (OCT) imaging combined with fundus photographs for identifying future adverse cardiac events. We used data from 977 patients who experienced CVD within a 5-year interval post-image acquisition, alongside 1,877 control participants without CVD, totaling 2,854 subjects. We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not. Our model, trained on both imaging modalities, achieved promising results (AUROC 0.78 +/- 0.02, accuracy 0.68 +/- 0.002, precision 0.74 +/- 0.02, sensitivity 0.73 +/- 0.02, and specificity 0.68 +/- 0.01), demonstrating its efficacy in identifying patients at risk of future CVD events based on their retinal images. This study highlights the potential of retinal OCT imaging and fundus photographs as cost-effective, non-invasive alternatives for predicting cardiovascular disease risk. The widespread availability of these imaging techniques in optometry practices and hospitals further enhances their potential for large-scale CVD risk screening. Our findings contribute to the development of standardized, accessible methods for early CVD risk identification, potentially improving preventive care strategies and patient outcomes.
comment: Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15155))
☆ Asymptotic non-linear shrinkage formulas for weighted sample covariance
We compute asymptotic non-linear shrinkage formulas for covariance and precision matrix estimators for weighted sample covariances, in the spirit of Ledoit and P\'ech\'e. We detail explicitly the formulas for exponentially-weighted sample covariances. Those new tools pave a way for applying non-linear shrinkage methods on weighted sample covariance. We show experimentally the performance of the asymptotic shrinkage formulas. Finally, we test the robustness of the theory to a heavy-tailed distributions.
☆ An explainable machine learning approach for energy forecasting at the household level
Electricity forecasting has been a recurring research topic, as it is key to finding the right balance between production and consumption. While most papers are focused on the national or regional scale, few are interested in the household level. Desegregated forecast is a common topic in Machine Learning (ML) literature but lacks explainability that household energy forecasts require. This paper specifically targets the challenges of forecasting electricity use at the household level. This paper confronts common Machine Learning algorithms to electricity household forecasts, weighing the pros and cons, including accuracy and explainability with well-known key metrics. Furthermore, we also confront them in this paper with the business challenges specific to this sector such as explainability or outliers resistance. We introduce a custom decision tree, aiming at providing a fair estimate of the energy consumption, while being explainable and consistent with human intuition. We show that this novel method allows greater explainability without sacrificing much accuracy. The custom tree methodology can be used in various business use cases but is subject to limitations, such as a lack of resilience with outliers.
☆ WeSpeR: Population spectrum retrieval and spectral density estimation of weighted sample covariance
The spectrum of the weighted sample covariance shows a asymptotic non random behavior when the dimension grows with the number of samples. In this setting, we prove that the asymptotic spectral distribution $F$ of the weighted sample covariance has a continuous density on $\mathbb{R}^*$. We address then the practical problem of numerically finding this density. We propose a procedure to compute it, to determine the support of $F$ and define an efficient grid on it. We use this procedure to design the $\textit{WeSpeR}$ algorithm, which estimates the spectral density and retrieves the true spectral covariance spectrum. Empirical tests confirm the good properties of the $\textit{WeSpeR}$ algorithm.
☆ SNAC: Multi-Scale Neural Audio Codec
Neural audio codecs have recently gained popularity because they can represent audio signals with high fidelity at very low bitrates, making it feasible to use language modeling approaches for audio generation and understanding. Residual Vector Quantization (RVQ) has become the standard technique for neural audio compression using a cascade of VQ codebooks. This paper proposes the Multi-Scale Neural Audio Codec, a simple extension of RVQ where the quantizers can operate at different temporal resolutions. By applying a hierarchy of quantizers at variable frame rates, the codec adapts to the audio structure across multiple timescales. This leads to more efficient compression, as demonstrated by extensive objective and subjective evaluations. The code and model weights are open-sourced at https://github.com/hubertsiuzdak/snac.
☆ Debug Smarter, Not Harder: AI Agents for Error Resolution in Computational Notebooks EMNLP 2024
Computational notebooks became indispensable tools for research-related development, offering unprecedented interactivity and flexibility in the development process. However, these benefits come at the cost of reproducibility and an increased potential for bugs. With the rise of code-fluent Large Language Models empowered with agentic techniques, smart bug-fixing tools with a high level of autonomy have emerged. However, those tools are tuned for classical script programming and still struggle with non-linear computational notebooks. In this paper, we present an AI agent designed specifically for error resolution in a computational notebook. We have developed an agentic system capable of exploring a notebook environment by interacting with it -- similar to how a user would -- and integrated the system into the JetBrains service for collaborative data science called Datalore. We evaluate our approach against the pre-existing single-action solution by comparing costs and conducting a user study. Users rate the error resolution capabilities of the agentic system higher but experience difficulties with UI. We share the results of the study and consider them valuable for further improving user-agent collaboration.
comment: Accepted to EMNLP 2024 System Demonstrations
☆ Personalizing Low-Rank Bayesian Neural Networks Via Federated Learning
To support real-world decision-making, it is crucial for models to be well-calibrated, i.e., to assign reliable confidence estimates to their predictions. Uncertainty quantification is particularly important in personalized federated learning (PFL), as participating clients typically have small local datasets, making it difficult to unambiguously determine optimal model parameters. Bayesian PFL (BPFL) methods can potentially enhance calibration, but they often come with considerable computational and memory requirements due to the need to track the variances of all the individual model parameters. Furthermore, different clients may exhibit heterogeneous uncertainty levels owing to varying local dataset sizes and distributions. To address these challenges, we propose LR-BPFL, a novel BPFL method that learns a global deterministic model along with personalized low-rank Bayesian corrections. To tailor the local model to each client's inherent uncertainty level, LR-BPFL incorporates an adaptive rank selection mechanism. We evaluate LR-BPFL across a variety of datasets, demonstrating its advantages in terms of calibration, accuracy, as well as computational and memory requirements.
☆ SurgeryV2: Bridging the Gap Between Model Merging and Multi-Task Learning with Deep Representation Surgery ICML 2024
Model merging-based multitask learning (MTL) offers a promising approach for performing MTL by merging multiple expert models without requiring access to raw training data. However, in this paper, we examine the merged model's representation distribution and uncover a critical issue of "representation bias". This bias arises from a significant distribution gap between the representations of the merged and expert models, leading to the suboptimal performance of the merged MTL model. To address this challenge, we first propose a representation surgery solution called Surgery. Surgery is a lightweight, task-specific module that aligns the final layer representations of the merged model with those of the expert models, effectively alleviating bias and improving the merged model's performance. Despite these improvements, a performance gap remains compared to the traditional MTL method. Further analysis reveals that representation bias phenomena exist at each layer of the merged model, and aligning representations only in the last layer is insufficient for fully reducing systemic bias because biases introduced at each layer can accumulate and interact in complex ways. To tackle this, we then propose a more comprehensive solution, deep representation surgery (also called SurgeryV2), which mitigates representation bias across all layers, and thus bridges the performance gap between model merging-based MTL and traditional MTL. Finally, we design an unsupervised optimization objective to optimize both the Surgery and SurgeryV2 modules. Our experimental results show that incorporating these modules into state-of-the-art (SOTA) model merging schemes leads to significant performance gains. Notably, our SurgeryV2 scheme reaches almost the same level as individual expert models or the traditional MTL model. The code is available at \url{https://github.com/EnnengYang/SurgeryV2}.
comment: This paper is an extended version of our previous work [arXiv:2402.02705] presented at ICML 2024
☆ Unscrambling disease progression at scale: fast inference of event permutations with optimal transport NeurIPS 2024
Disease progression models infer group-level temporal trajectories of change in patients' features as a chronic degenerative condition plays out. They provide unique insight into disease biology and staging systems with individual-level clinical utility. Discrete models consider disease progression as a latent permutation of events, where each event corresponds to a feature becoming measurably abnormal. However, permutation inference using traditional maximum likelihood approaches becomes prohibitive due to combinatoric explosion, severely limiting model dimensionality and utility. Here we leverage ideas from optimal transport to model disease progression as a latent permutation matrix of events belonging to the Birkhoff polytope, facilitating fast inference via optimisation of the variational lower bound. This enables a factor of 1000 times faster inference than the current state of the art and, correspondingly, supports models with several orders of magnitude more features than the current state of the art can consider. Experiments demonstrate the increase in speed, accuracy and robustness to noise in simulation. Further experiments with real-world imaging data from two separate datasets, one from Alzheimer's disease patients, the other age-related macular degeneration, showcase, for the first time, pixel-level disease progression events in the brain and eye, respectively. Our method is low compute, interpretable and applicable to any progressive condition and data modality, giving it broad potential clinical utility.
comment: Pre-print of version accepted to NeurIPS 2024
☆ Investigating the Capabilities of Deep Learning for Processing and Interpreting One-Shot Multi-offset GPR Data: A Numerical Case Study for Lunar and Martian Environments
Ground-penetrating radar (GPR) is a mature geophysical method that has gained increasing popularity in planetary science over the past decade. GPR has been utilised both for Lunar and Martian missions providing pivotal information regarding the near surface geology of Terrestrial planets. Within that context, numerous processing pipelines have been suggested to address the unique challenges present in planetary setups. These processing pipelines often require manual tuning resulting to ambiguous outputs open to non-unique interpretations. These pitfalls combined with the large number of planetary GPR data (kilometers in magnitude), highlight the necessity for automatic, objective and advanced processing and interpretation schemes. The current paper investigates the potential of deep learning for interpreting and processing GPR data. The one-shot multi-offset configuration is investigated via a coherent numerical case study, showcasing the potential of deep learning for A) reconstructing the dielectric distribution of the the near surface of Terrestrial planets, and B) filling missing or bad-quality traces. Special care was taken for the numerical data to be both realistic and challenging. Moreover, the generated synthetic data are properly labelled and made publicly available for training future data-driven pipelines and contributing towards developing pre-trained foundation models for GPR.
☆ Dual-Label LearningWith Irregularly Present Labels
In multi-task learning, we often encounter the case when the presence of labels across samples exhibits irregular patterns: samples can be fully labeled, partially labeled or unlabeled. Taking drug analysis as an example, multiple toxicity properties of a drug molecule may not be concurrently available due to experimental limitations. It triggers a demand for a new training and inference mechanism that could accommodate irregularly present labels and maximize the utility of any available label information. In this work, we focus on the two-label learning task, and propose a novel training and inference framework, Dual-Label Learning (DLL). The DLL framework formulates the problem into a dual-function system, in which the two functions should simultaneously satisfy standard supervision, structural duality and probabilistic duality. DLL features a dual-tower model architecture that explicitly captures the information exchange between labels, aimed at maximizing the utility of partially available labels in understanding label correlation. During training, label imputation for missing labels is conducted as part of the forward propagation process, while during inference, labels are regarded as unknowns of a bivariate system of equations and are solved jointly. Theoretical analysis guarantees the feasibility of DLL, and extensive experiments are conducted to verify that by explicitly modeling label correlation and maximizing the utility of available labels, our method makes consistently better predictions than baseline approaches by up to a 10% gain in F1-score or MAPE. Remarkably, our method provided with data at a label missing rate as high as 60% can achieve similar or even better results than baseline approaches at a label missing rate of only 10%.
☆ Fine-Tuning Pre-trained Language Models for Robust Causal Representation Learning
The fine-tuning of pre-trained language models (PLMs) has been shown to be effective across various domains. By using domain-specific supervised data, the general-purpose representation derived from PLMs can be transformed into a domain-specific representation. However, these methods often fail to generalize to out-of-domain (OOD) data due to their reliance on non-causal representations, often described as spurious features. Existing methods either make use of adjustments with strong assumptions about lack of hidden common causes, or mitigate the effect of spurious features using multi-domain data. In this work, we investigate how fine-tuned pre-trained language models aid generalizability from single-domain scenarios under mild assumptions, targeting more general and practical real-world scenarios. We show that a robust representation can be derived through a so-called causal front-door adjustment, based on a decomposition assumption, using fine-tuned representations as a source of data augmentation. Comprehensive experiments in both synthetic and real-world settings demonstrate the superior generalizability of the proposed method compared to existing approaches. Our work thus sheds light on the domain generalization problem by introducing links between fine-tuning and causal mechanisms into representation learning.
☆ A Scientific Machine Learning Approach for Predicting and Forecasting Battery Degradation in Electric Vehicles
Carbon emissions are rising at an alarming rate, posing a significant threat to global efforts to mitigate climate change. Electric vehicles have emerged as a promising solution, but their reliance on lithium-ion batteries introduces the critical challenge of battery degradation. Accurate prediction and forecasting of battery degradation over both short and long time spans are essential for optimizing performance, extending battery life, and ensuring effective long-term energy management. This directly influences the reliability, safety, and sustainability of EVs, supporting their widespread adoption and aligning with key UN SDGs. In this paper, we present a novel approach to the prediction and long-term forecasting of battery degradation using Scientific Machine Learning framework which integrates domain knowledge with neural networks, offering more interpretable and scientifically grounded solutions for both predicting short-term battery health and forecasting degradation over extended periods. This hybrid approach captures both known and unknown degradation dynamics, improving predictive accuracy while reducing data requirements. We incorporate ground-truth data to inform our models, ensuring that both the predictions and forecasts reflect practical conditions. The model achieved MSE of 9.90 with the UDE and 11.55 with the NeuralODE, in experimental data, a loss of 1.6986 with the UDE, and a MSE of 2.49 in the NeuralODE, demonstrating the enhanced precision of our approach. This integration of data-driven insights with SciML's strengths in interpretability and scalability allows for robust battery management. By enhancing battery longevity and minimizing waste, our approach contributes to the sustainability of energy systems and accelerates the global transition toward cleaner, more responsible energy solutions, aligning with the UN's SDG agenda.
☆ Evaluating the evaluators: Towards human-aligned metrics for missing markers reconstruction
Animation data is often obtained through optical motion capture systems, which utilize a multitude of cameras to establish the position of optical markers. However, system errors or occlusions can result in missing markers, the manual cleaning of which can be time-consuming. This has sparked interest in machine learning-based solutions for missing marker reconstruction in the academic community. Most academic papers utilize a simplistic mean square error as the main metric. In this paper, we show that this metric does not correlate with subjective perception of the fill quality. We introduce and evaluate a set of better-correlated metrics that can drive progress in the field.
☆ Fast proxy centers for Jeffreys centroids: The Jeffreys-Fisher-Rao and the inductive Gauss-Bregman centers
The symmetric Kullback-Leibler centroid also called the Jeffreys centroid of a set of mutually absolutely continuous probability distributions on a measure space provides a notion of centrality which has proven useful in many tasks including information retrieval, information fusion, and clustering in image, video and sound processing. However, the Jeffreys centroid is not available in closed-form for sets of categorical or normal distributions, two widely used statistical models, and thus need to be approximated numerically in practice. In this paper, we first propose the new Jeffreys-Fisher-Rao center defined as the Fisher-Rao midpoint of the sided Kullback-Leibler centroids as a plug-in replacement of the Jeffreys centroid. This Jeffreys-Fisher-Rao center admits a generic formula for uni-parameter exponential family distributions, and closed-form formula for categorical and normal distributions, matches exactly the Jeffreys centroid for same-mean normal distributions, and is experimentally observed in practice to be close to the Jeffreys centroid. Second, we define a new type of inductive centers generalizing the principle of Gauss arithmetic-geometric double sequence mean for pairs of densities of any given exponential family. This center is shown experimentally to approximate very well the Jeffreys centroid and is suggested to use when the Jeffreys-Fisher-Rao center is not available in closed form. Moreover, this Gauss-Bregman inductive center always converges and matches the Jeffreys centroid for sets of same-mean normal distributions. We report on our experiments demonstrating the use of the Jeffreys-Fisher-Rao and Gauss-Bregman centers instead of the Jeffreys centroid. Finally, we conclude this work by reinterpreting these fast proxy centers of Jeffreys centroids under the lens of dually flat spaces in information geometry.
comment: 35 pages, 10 figures
☆ Debiasing Mini-Batch Quadratics for Applications in Deep Learning
Quadratic approximations form a fundamental building block of machine learning methods. E.g., second-order optimizers try to find the Newton step into the minimum of a local quadratic proxy to the objective function; and the second-order approximation of a network's loss function can be used to quantify the uncertainty of its outputs via the Laplace approximation. When computations on the entire training set are intractable - typical for deep learning - the relevant quantities are computed on mini-batches. This, however, distorts and biases the shape of the associated stochastic quadratic approximations in an intricate way with detrimental effects on applications. In this paper, we (i) show that this bias introduces a systematic error, (ii) provide a theoretical explanation for it, (iii) explain its relevance for second-order optimization and uncertainty quantification via the Laplace approximation in deep learning, and (iv) develop and evaluate debiasing strategies.
comment: Main text (including references): 13 pages, 6 figures; Supplements: 25 pages, 13 figures
☆ Optimizing importance weighting in the presence of sub-population shifts
A distribution shift between the training and test data can severely harm performance of machine learning models. Importance weighting addresses this issue by assigning different weights to data points during training. We argue that existing heuristics for determining the weights are suboptimal, as they neglect the increase of the variance of the estimated model due to the finite sample size of the training data. We interpret the optimal weights in terms of a bias-variance trade-off, and propose a bi-level optimization procedure in which the weights and model parameters are optimized simultaneously. We apply this optimization to existing importance weighting techniques for last-layer retraining of deep neural networks in the presence of sub-population shifts and show empirically that optimizing weights significantly improves generalization performance.
comment: Preprint. Currently under review
☆ PTR: A Pre-trained Language Model for Trajectory Recovery
Spatiotemporal trajectory data is vital for web-of-things services and is extensively collected and analyzed by web-based hardware and platforms. However, issues such as service interruptions and network instability often lead to sparsely recorded trajectories, resulting in a loss of detailed movement data. As a result, recovering these trajectories to restore missing information becomes essential. Despite progress, several challenges remain unresolved. First, the lack of large-scale dense trajectory data hampers the performance of existing deep learning methods, which rely heavily on abundant data for supervised training. Second, current methods struggle to generalize across sparse trajectories with varying sampling intervals, necessitating separate re-training for each interval and increasing computational costs. Third, external factors crucial for the recovery of missing points are not fully incorporated. To address these challenges, we propose a framework called PTR. This framework mitigates the issue of limited dense trajectory data by leveraging the capabilities of pre-trained language models (PLMs). PTR incorporates an explicit trajectory prompt and is trained on datasets with multiple sampling intervals, enabling it to generalize effectively across different intervals in sparse trajectories. To capture external factors, we introduce an implicit trajectory prompt that models road conditions, providing richer information for recovering missing points. Additionally, we present a trajectory embedder that encodes trajectory points and transforms the embeddings of both observed and missing points into a format comprehensible to PLMs. Experimental results on two public trajectory datasets with three sampling intervals demonstrate the efficacy and scalability of PTR.
☆ Stochastic Quasi-Newton Optimization in Large Dimensions Including Deep Network Training
Our proposal is on a new stochastic optimizer for non-convex and possibly non-smooth objective functions typically defined over large dimensional design spaces. Towards this, we have tried to bridge noise-assisted global search and faster local convergence, the latter being the characteristic feature of a Newton-like search. Our specific scheme -- acronymed FINDER (Filtering Informed Newton-like and Derivative-free Evolutionary Recursion), exploits the nonlinear stochastic filtering equations to arrive at a derivative-free update that has resemblance with the Newton search employing the inverse Hessian of the objective function. Following certain simplifications of the update to enable a linear scaling with dimension and a few other enhancements, we apply FINDER to a range of problems, starting with some IEEE benchmark objective functions to a couple of archetypal data-driven problems in deep networks to certain cases of physics-informed deep networks. The performance of the new method vis-\'a-vis the well-known Adam and a few others bears evidence to its promise and potentialities for large dimensional optimization problems of practical interest.
comment: 19 pages, 12 figures, 3 tables
☆ On time series clustering with k-means
There is a long history of research into time series clustering using distance-based partitional clustering. Many of the most popular algorithms adapt k-means (also known as Lloyd's algorithm) to exploit time dependencies in the data by specifying a time series distance function. However, these algorithms are often presented with k-means configured in various ways, altering key parameters such as the initialisation strategy. This variability makes it difficult to compare studies because k-means is known to be highly sensitive to its configuration. To address this, we propose a standard Lloyd's-based model for TSCL that adopts an end-to-end approach, incorporating a specialised distance function not only in the assignment step but also in the initialisation and stopping criteria. By doing so, we create a unified structure for comparing seven popular Lloyd's-based TSCL algorithms. This common framework enables us to more easily attribute differences in clustering performance to the distance function itself, rather than variations in the k-means configuration.
☆ MoDification: Mixture of Depths Made Easy
Long-context efficiency has recently become a trending topic in serving large language models (LLMs). And mixture of depths (MoD) is proposed as a perfect fit to bring down both latency and memory. In this paper, however, we discover that MoD can barely transform existing LLMs without costly training over an extensive number of tokens. To enable the transformations from any LLMs to MoD ones, we showcase top-k operator in MoD should be promoted to threshold-p operator, and refinement to architecture and data should also be crafted along. All these designs form our method termed MoDification. Through a comprehensive set of experiments covering model scales from 3B to 70B, we exhibit MoDification strikes an excellent balance between efficiency and effectiveness. MoDification can achieve up to ~1.2x speedup in latency and ~1.8x reduction in memory compared to original LLMs especially in long-context applications.
comment: 12 pages, 9 figures, 5 tables, work in progress
☆ Revisiting SLO and Goodput Metrics in LLM Serving
Large language models (LLMs) have achieved remarkable performance and are widely deployed in various applications, while the serving of LLM inference has raised concerns about user experience and serving throughput. Accordingly, service level objectives (SLOs) and goodput-the number of requests that meet SLOs per second-are introduced to evaluate the performance of LLM serving. However, existing metrics fail to capture the nature of user experience. We observe two ridiculous phenomena in existing metrics: 1) delaying token delivery can smooth the tail time between tokens (tail TBT) of a request and 2) dropping the request that fails to meet the SLOs midway can improve goodput. In this paper, we revisit SLO and goodput metrics in LLM serving and propose a unified metric framework smooth goodput including SLOs and goodput to reflect the nature of user experience in LLM serving. The framework can adapt to specific goals of different tasks by setting parameters. We re-evaluate the performance of different LLM serving systems under multiple workloads based on this unified framework and provide possible directions for future optimization of existing strategies. We hope that this framework can provide a unified standard for evaluating LLM serving and foster researches in the field of LLM serving optimization to move in a cohesive direction.
☆ RAZOR: Refining Accuracy by Zeroing Out Redundancies
In many application domains, the proliferation of sensors and devices is generating vast volumes of data, imposing significant pressure on existing data analysis and data mining techniques. Nevertheless, an increase in data volume does not inherently imply an increase in informational content, as a substantial portion may be redundant or represent noise. This challenge is particularly evident in the deep learning domain, where the utility of additional data is contingent on its informativeness. In the absence of such, larger datasets merely exacerbate the computational cost and complexity of the learning process. To address these challenges, we propose RAZOR, a novel instance selection technique designed to extract a significantly smaller yet sufficiently informative subset from a larger set of instances without compromising the learning process. RAZOR has been specifically engineered to be robust, efficient, and scalable, making it suitable for large-scale datasets. Unlike many techniques in the literature, RAZOR is capable of operating in both supervised and unsupervised settings. Experimental results demonstrate that RAZOR outperforms recent state-of-the-art techniques in terms of both effectiveness and efficiency.
comment: 17 pages, 3 figures
☆ Pseudo-label Refinement for Improving Self-Supervised Learning Systems
Self-supervised learning systems have gained significant attention in recent years by leveraging clustering-based pseudo-labels to provide supervision without the need for human annotations. However, the noise in these pseudo-labels caused by the clustering methods poses a challenge to the learning process leading to degraded performance. In this work, we propose a pseudo-label refinement (SLR) algorithm to address this issue. The cluster labels from the previous epoch are projected to the current epoch cluster-labels space and a linear combination of the new label and the projected label is computed as a soft refined label containing the information from the previous epoch clusters as well as from the current epoch. In contrast to the common practice of using the maximum value as a cluster/class indicator, we employ hierarchical clustering on these soft pseudo-labels to generate refined hard-labels. This approach better utilizes the information embedded in the soft labels, outperforming the simple maximum value approach for hard label generation. The effectiveness of the proposed SLR algorithm is evaluated in the context of person re-identification (Re-ID) using unsupervised domain adaptation (UDA). Experimental results demonstrate that the modified Re-ID baseline, incorporating the SLR algorithm, achieves significantly improved mean Average Precision (mAP) performance in various UDA tasks, including real-to-synthetic, synthetic-to-real, and different real-to-real scenarios. These findings highlight the efficacy of the SLR algorithm in enhancing the performance of self-supervised learning systems.
☆ Almost-Linear RNNs Yield Highly Interpretable Symbolic Codes in Dynamical Systems Reconstruction NeurIPS 2024
Dynamical systems (DS) theory is fundamental for many areas of science and engineering. It can provide deep insights into the behavior of systems evolving in time, as typically described by differential or recursive equations. A common approach to facilitate mathematical tractability and interpretability of DS models involves decomposing nonlinear DS into multiple linear DS separated by switching manifolds, i.e. piecewise linear (PWL) systems. PWL models are popular in engineering and a frequent choice in mathematics for analyzing the topological properties of DS. However, hand-crafting such models is tedious and only possible for very low-dimensional scenarios, while inferring them from data usually gives rise to unnecessarily complex representations with very many linear subregions. Here we introduce Almost-Linear Recurrent Neural Networks (AL-RNNs) which automatically and robustly produce most parsimonious PWL representations of DS from time series data, using as few PWL nonlinearities as possible. AL-RNNs can be efficiently trained with any SOTA algorithm for dynamical systems reconstruction (DSR), and naturally give rise to a symbolic encoding of the underlying DS that provably preserves important topological properties. We show that for the Lorenz and R\"ossler systems, AL-RNNs discover, in a purely data-driven way, the known topologically minimal PWL representations of the corresponding chaotic attractors. We further illustrate on two challenging empirical datasets that interpretable symbolic encodings of the dynamics can be achieved, tremendously facilitating mathematical and computational analysis of the underlying systems.
comment: 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
☆ Unified Convergence Analysis for Score-Based Diffusion Models with Deterministic Samplers
Score-based diffusion models have emerged as powerful techniques for generating samples from high-dimensional data distributions. These models involve a two-phase process: first, injecting noise to transform the data distribution into a known prior distribution, and second, sampling to recover the original data distribution from noise. Among the various sampling methods, deterministic samplers stand out for their enhanced efficiency. However, analyzing these deterministic samplers presents unique challenges, as they preclude the use of established techniques such as Girsanov's theorem, which are only applicable to stochastic samplers. Furthermore, existing analysis for deterministic samplers usually focuses on specific examples, lacking a generalized approach for general forward processes and various deterministic samplers. Our paper addresses these limitations by introducing a unified convergence analysis framework. To demonstrate the power of our framework, we analyze the variance-preserving (VP) forward process with the exponential integrator (EI) scheme, achieving iteration complexity of $\tilde O(d^2/\epsilon)$. Additionally, we provide a detailed analysis of Denoising Diffusion Implicit Models (DDIM)-type samplers, which have been underexplored in previous research, achieving polynomial iteration complexity.
comment: 68 pages
☆ G-NeuroDAVIS: A Neural Network model for generalized embedding, data visualization and sample generation
Visualizing high-dimensional datasets through a generalized embedding has been a challenge for a long time. Several methods have shown up for the same, but still, they have not been able to generate a generalized embedding, which not only can reveal the hidden patterns present in the data but also generate realistic high-dimensional samples from it. Motivated by this aspect, in this study, a novel generative model, called G-NeuroDAVIS, has been developed, which is capable of visualizing high-dimensional data through a generalized embedding, and thereby generating new samples. The model leverages advanced generative techniques to produce high-quality embedding that captures the underlying structure of the data more effectively than existing methods. G-NeuroDAVIS can be trained in both supervised and unsupervised settings. We rigorously evaluated our model through a series of experiments, demonstrating superior performance in classification tasks, which highlights the robustness of the learned representations. Furthermore, the conditional sample generation capability of the model has been described through qualitative assessments, revealing a marked improvement in generating realistic and diverse samples. G-NeuroDAVIS has outperformed the Variational Autoencoder (VAE) significantly in multiple key aspects, including embedding quality, classification performance, and sample generation capability. These results underscore the potential of our generative model to serve as a powerful tool in various applications requiring high-quality data generation and representation learning.
comment: 15 pages, 8 figures
☆ Formal Explanations for Neuro-Symbolic AI
Despite the practical success of Artificial Intelligence (AI), current neural AI algorithms face two significant issues. First, the decisions made by neural architectures are often prone to bias and brittleness. Second, when a chain of reasoning is required, neural systems often perform poorly. Neuro-symbolic artificial intelligence is a promising approach that tackles these (and other) weaknesses by combining the power of neural perception and symbolic reasoning. Meanwhile, the success of AI has made it critical to understand its behaviour, leading to the development of explainable artificial intelligence (XAI). While neuro-symbolic AI systems have important advantages over purely neural AI, we still need to explain their actions, which are obscured by the interactions of the neural and symbolic components. To address the issue, this paper proposes a formal approach to explaining the decisions of neuro-symbolic systems. The approach hinges on the use of formal abductive explanations and on solving the neuro-symbolic explainability problem hierarchically. Namely, it first computes a formal explanation for the symbolic component of the system, which serves to identify a subset of the individual parts of neural information that needs to be explained. This is followed by explaining only those individual neural inputs, independently of each other, which facilitates succinctness of hierarchical formal explanations and helps to increase the overall performance of the approach. Experimental results for a few complex reasoning tasks demonstrate practical efficiency of the proposed approach, in comparison to purely neural systems, from the perspective of explanation size, explanation time, training time, model sizes, and the quality of explanations reported.
☆ Comparative Evaluation of Clustered Federated Learning Method
Over recent years, Federated Learning (FL) has proven to be one of the most promising methods of distributed learning which preserves data privacy. As the method evolved and was confronted to various real-world scenarios, new challenges have emerged. One such challenge is the presence of highly heterogeneous (often referred as non-IID) data distributions among participants of the FL protocol. A popular solution to this hurdle is Clustered Federated Learning (CFL), which aims to partition clients into groups where the distribution are homogeneous. In the literature, state-of-the-art CFL algorithms are often tested using a few cases of data heterogeneities, without systematically justifying the choices. Further, the taxonomy used for differentiating the different heterogeneity scenarios is not always straightforward. In this paper, we explore the performance of two state-of-theart CFL algorithms with respect to a proposed taxonomy of data heterogeneities in federated learning (FL). We work with three image classification datasets and analyze the resulting clusters against the heterogeneity classes using extrinsic clustering metrics. Our objective is to provide a clearer understanding of the relationship between CFL performances and data heterogeneity scenarios.
☆ Montessori-Instruct: Generate Influential Training Data Tailored for Student Learning
Synthetic data has been widely used to train large language models, but their generative nature inevitably introduces noisy, non-informative, and misleading learning signals. In this paper, we propose Montessori-Instruct, a novel data synthesis framework that tailors the data synthesis ability of the teacher language model toward the student language model's learning process. Specifically, we utilize local data influence of synthetic training data points on students to characterize students' learning preferences. Then, we train the teacher model with Direct Preference Optimization (DPO) to generate synthetic data tailored toward student learning preferences. Experiments with Llama3-8B-Instruct (teacher) and Llama3-8B (student) on Alpaca Eval and MT-Bench demonstrate that Montessori-Instruct significantly outperforms standard synthesis methods by 18.35\% and 46.24\% relatively. Our method also beats data synthesized by a stronger teacher model, GPT-4o. Further analysis confirms the benefits of teacher's learning to generate more influential training data in the student's improved learning, the advantages of local data influence in accurately measuring student preferences, and the robustness of Montessori-Instruct across different student models. Our code and data are open-sourced at https://github.com/cxcscmu/Montessori-Instruct.
comment: Codes and data are open-sourced at https://github.com/cxcscmu/Montessori-Instruct
☆ Flexi-Fuzz least squares SVM for Alzheimer's diagnosis: Tackling noise, outliers, and class imbalance
Alzheimer's disease (AD) is a leading neurodegenerative condition and the primary cause of dementia, characterized by progressive cognitive decline and memory loss. Its progression, marked by shrinkage in the cerebral cortex, is irreversible. Numerous machine learning algorithms have been proposed for the early diagnosis of AD. However, they often struggle with the issues of noise, outliers, and class imbalance. To tackle the aforementioned limitations, in this article, we introduce a novel, robust, and flexible membership scheme called Flexi-Fuzz. This scheme integrates a novel flexible weighting mechanism, class probability, and imbalance ratio. The proposed flexible weighting mechanism assigns the maximum weight to samples within a specific proximity to the center, with a gradual decrease in weight beyond a certain threshold. This approach ensures that samples near the class boundary still receive significant weight, maintaining their influence in the classification process. Class probability is used to mitigate the impact of noisy samples, while the imbalance ratio addresses class imbalance. Leveraging this, we incorporate the proposed Flexi-Fuzz membership scheme into the least squares support vector machines (LSSVM) framework, resulting in a robust and flexible model termed Flexi-Fuzz-LSSVM. We determine the class-center using two methods: the conventional mean approach and an innovative median approach, leading to two model variants, Flexi-Fuzz-LSSVM-I and Flexi-Fuzz-LSSVM-II. To validate the effectiveness of the proposed Flexi-Fuzz-LSSVM models, we evaluated them on benchmark UCI and KEEL datasets, both with and without label noise. Additionally, we tested the models on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset for AD diagnosis. Experimental results demonstrate the superiority of the Flexi-Fuzz-LSSVM models over baseline models.
☆ xPerT: Extended Persistence Transformer
A persistence diagram provides a compact summary of persistent homology, which captures the topological features of a space at different scales. However, due to its nature as a set, incorporating it as a feature into a machine learning framework is challenging. Several methods have been proposed to use persistence diagrams as input for machine learning models, but they often require complex preprocessing steps and extensive hyperparameter tuning. In this paper, we propose a novel transformer architecture called the \textit{Extended Persistence Transformer (xPerT)}, which is highly scalable than the compared to Persformer, an existing transformer for persistence diagrams. xPerT reduces GPU memory usage by over 90\% and improves accuracy on multiple datasets. Additionally, xPerT does not require complex preprocessing steps or extensive hyperparameter tuning, making it easy to use in practice. Our code is available at https://github.com/sehunfromdaegu/ECG_JEPA.
♻ ☆ Locate-then-edit for Multi-hop Factual Recall under Knowledge Editing
The locate-then-edit paradigm has shown significant promise for knowledge editing (KE) in Large Language Models (LLMs). While previous methods perform well on single-hop fact recall tasks, they consistently struggle with multi-hop factual recall tasks involving newly edited knowledge. In this paper, leveraging tools in mechanistic interpretability, we first identify that in multi-hop tasks, LLMs tend to retrieve implicit subject knowledge from deeper MLP layers, unlike single-hop tasks, which rely on earlier layers. This distinction explains the poor performance of current methods in multi-hop queries, as they primarily focus on editing shallow layers, leaving deeper layers unchanged. To address this, we propose IFMET, a novel locate-then-edit KE approach designed to edit both shallow and deep MLP layers. IFMET employs multi-hop editing prompts and supplementary sets to locate and modify knowledge across different reasoning stages. Experimental results demonstrate that IFMET significantly improves performance on multi-hop factual recall tasks, effectively overcoming the limitations of previous locate-then-edit methods.
comment: 21 pages
♻ ☆ A Distance-based Anomaly Detection Framework for Deep Reinforcement Learning
In deep reinforcement learning (RL) systems, abnormal states pose significant risks by potentially triggering unpredictable behaviors and unsafe actions, thus impeding the deployment of RL systems in real-world scenarios. It is crucial for reliable decision-making systems to have the capability to cast an alert whenever they encounter unfamiliar observations that they are not equipped to handle. In this paper, we propose a novel Mahalanobis distance-based (MD) anomaly detection framework, called \textit{MDX}, for deep RL algorithms. MDX simultaneously addresses random, adversarial, and out-of-distribution (OOD) state outliers in both offline and online settings. It utilizes Mahalanobis distance within class-conditional distributions for each action and operates within a statistical hypothesis testing framework under the Gaussian assumption. We further extend it to robust and distribution-free versions by incorporating Robust MD and conformal inference techniques. Through extensive experiments on classical control environments, Atari games, and autonomous driving scenarios, we demonstrate the effectiveness of our MD-based detection framework. MDX offers a simple, unified, and practical anomaly detection tool for enhancing the safety and reliability of RL systems in real-world applications.
comment: 19 pages, 21 figures
♻ ☆ Liger Kernel: Efficient Triton Kernels for LLM Training
Training Large Language Models (LLMs) efficiently at scale presents a formidable challenge, driven by their ever-increasing computational demands and the need for enhanced performance. In this work, we introduce Liger-Kernel, an open-sourced set of Triton kernels developed specifically for LLM training. With kernel optimization techniques like kernel operation fusing and input chunking, our kernels achieve on average a 20% increase in training throughput and a 60% reduction in GPU memory usage for popular LLMs compared to HuggingFace implementations. In addition, Liger-Kernel is designed with modularity, accessibility, and adaptability in mind, catering to both casual and expert users. Comprehensive benchmarks and integration tests are built in to ensure compatibility, performance, correctness, and convergence across diverse computing environments and model architectures. The source code is available under a permissive license at: github.com/linkedin/Liger-Kernel.
comment: 17 pages, 12 figures
♻ ☆ Learning Linear Attention in Polynomial Time
Previous research has explored the computational expressivity of Transformer models in simulating Boolean circuits or Turing machines. However, the learnability of these simulators from observational data has remained an open question. Our study addresses this gap by providing the first polynomial-time learnability results (specifically strong, agnostic PAC learning) for single-layer Transformers with linear attention. We show that linear attention may be viewed as a linear predictor in a suitably defined RKHS. As a consequence, the problem of learning any linear transformer may be converted into the problem of learning an ordinary linear predictor in an expanded feature space, and any such predictor may be converted back into a multiheaded linear transformer. Moving to generalization, we show how to efficiently identify training datasets for which every empirical risk minimizer is equivalent (up to trivial symmetries) to the linear Transformer that generated the data, thereby guaranteeing the learned model will correctly generalize across all inputs. Finally, we provide examples of computations expressible via linear attention and therefore polynomial-time learnable, including associative memories, finite automata, and a class of Universal Turing Machine (UTMs) with polynomially bounded computation histories. We empirically validate our theoretical findings on three tasks: learning random linear attention networks, key--value associations, and learning to execute finite automata. Our findings bridge a critical gap between theoretical expressivity and learnability of Transformers, and show that flexible and general models of computation are efficiently learnable.
♻ ☆ One size doesn't fit all: Predicting the Number of Examples for In-Context Learning
In-context learning (ICL) refers to the process of adding a small number of localized examples (ones that are semantically similar to the input) from a training set of labelled data to an LLM's prompt with an objective to effectively control the generative process seeking to improve the downstream task performance. Existing ICL approaches use an identical number of examples (a pre-configured hyper-parameter) for each data instance. Our work alleviates the limitations of this 'one fits all' approach by dynamically predicting the number of examples for each data instance to be used in few-shot inference with LLMs. In particular, we employ a multi-label classifier, the parameters of which are fitted using a training set, where the label for each instance in the training set indicates if using a specific value of k (number of most similar examples from 0 up to a maximum value) leads to correct k-shot downstream predictions. Our experiments on a number of text classification benchmarks show that AICL substantially outperforms standard ICL by up to 17%.
♻ ☆ Modular Boundaries in Recurrent Neural Networks
Recent theoretical and experimental work in neuroscience has focused on the representational and dynamical character of neural manifolds --subspaces in neural activity space wherein many neurons coactivate. Importantly, neural populations studied under this "neural manifold hypothesis" are continuous and not cleanly divided into separate neural populations. This perspective clashes with the "modular hypothesis" of brain organization, wherein neural elements maintain an "all-or-nothing" affiliation with modules. In line with this modular hypothesis, recent research on recurrent neural networks suggests that multi-task networks become modular across training, such that different modules specialize for task-general dynamical motifs. If the modular hypothesis is true, then it would be important to use a dimensionality reduction technique that captures modular structure. Here, we investigate the features of such a method. We leverage RNNs as a model system to study the character of modular neural populations, using a community detection method from network science known as modularity maximization to partition neurons into distinct modules. These partitions allow us to ask the following question: do these modular boundaries matter to the system? ...
♻ ☆ TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs NeurIPS 2024
Multi-relational temporal graphs are powerful tools for modeling real-world data, capturing the evolving and interconnected nature of entities over time. Recently, many novel models are proposed for ML on such graphs intensifying the need for robust evaluation and standardized benchmark datasets. However, the availability of such resources remains scarce and evaluation faces added complexity due to reproducibility issues in experimental protocols. To address these challenges, we introduce Temporal Graph Benchmark 2.0 (TGB 2.0), a novel benchmarking framework tailored for evaluating methods for predicting future links on Temporal Knowledge Graphs and Temporal Heterogeneous Graphs with a focus on large-scale datasets, extending the Temporal Graph Benchmark. TGB 2.0 facilitates comprehensive evaluations by presenting eight novel datasets spanning five domains with up to 53 million edges. TGB 2.0 datasets are significantly larger than existing datasets in terms of number of nodes, edges, or timestamps. In addition, TGB 2.0 provides a reproducible and realistic evaluation pipeline for multi-relational temporal graphs. Through extensive experimentation, we observe that 1) leveraging edge-type information is crucial to obtain high performance, 2) simple heuristic baselines are often competitive with more complex methods, 3) most methods fail to run on our largest datasets, highlighting the need for research on more scalable methods.
comment: 29 pages, 8 figures, 11 tables, accepted at NeurIPS 2024 Track on Datasets and Benchmarks
♻ ☆ Scalable Drift Monitoring in Medical Imaging AI
The integration of artificial intelligence (AI) into medical imaging has advanced clinical diagnostics but poses challenges in managing model drift and ensuring long-term reliability. To address these challenges, we develop MMC+, an enhanced framework for scalable drift monitoring, building upon the CheXstray framework that introduced real-time drift detection for medical imaging AI models using multi-modal data concordance. This work extends the original framework's methodologies, providing a more scalable and adaptable solution for real-world healthcare settings and offers a reliable and cost-effective alternative to continuous performance monitoring addressing limitations of both continuous and periodic monitoring methods. MMC+ introduces critical improvements to the original framework, including more robust handling of diverse data streams, improved scalability with the integration of foundation models like MedImageInsight for high-dimensional image embeddings without site-specific training, and the introduction of uncertainty bounds to better capture drift in dynamic clinical environments. Validated with real-world data from Massachusetts General Hospital during the COVID-19 pandemic, MMC+ effectively detects significant data shifts and correlates them with model performance changes. While not directly predicting performance degradation, MMC+ serves as an early warning system, indicating when AI systems may deviate from acceptable performance bounds and enabling timely interventions. By emphasizing the importance of monitoring diverse data streams and evaluating data shifts alongside model performance, this work contributes to the broader adoption and integration of AI solutions in clinical settings.
♻ ☆ Learning diffusion at lightspeed NeurIPS 2024
Diffusion regulates numerous natural processes and the dynamics of many successful generative models. Existing models to learn the diffusion terms from observational data rely on complex bilevel optimization problems and model only the drift of the system. We propose a new simple model, JKOnet*, which bypasses the complexity of existing architectures while presenting significantly enhanced representational capabilities: JKOnet* recovers the potential, interaction, and internal energy components of the underlying diffusion process. JKOnet* minimizes a simple quadratic loss and outperforms other baselines in terms of sample efficiency, computational complexity, and accuracy. Additionally, JKOnet* provides a closed-form optimal solution for linearly parametrized functionals, and, when applied to predict the evolution of cellular processes from real-world data, it achieves state-of-the-art accuracy at a fraction of the computational cost of all existing methods. Our methodology is based on the interpretation of diffusion processes as energy-minimizing trajectories in the probability space via the so-called JKO scheme, which we study via its first-order optimality conditions.
comment: Accepted for presentation at, and publication in the proceedings of, the 38th Conference on Neural Information Processing Systems (NeurIPS 2024, oral)
♻ ☆ English offensive text detection using CNN based Bi-GRU model
Over the years, the number of users of social media has increased drastically. People frequently share their thoughts through social platforms, and this leads to an increase in hate content. In this virtual community, individuals share their views, express their feelings, and post photos, videos, blogs, and more. Social networking sites like Facebook and Twitter provide platforms to share vast amounts of content with a single click. However, these platforms do not impose restrictions on the uploaded content, which may include abusive language and explicit images unsuitable for social media. To resolve this issue, a new idea must be implemented to divide the inappropriate content. Numerous studies have been done to automate the process. In this paper, we propose a new Bi-GRU-CNN model to classify whether the text is offensive or not. The combination of the Bi-GRU and CNN models outperforms the existing model.
comment: 5 pages and 6 figures
♻ ☆ Retraining with Predicted Hard Labels Provably Increases Model Accuracy
The performance of a model trained with \textit{noisy labels} is often improved by simply \textit{retraining} the model with its own predicted \textit{hard} labels (i.e., $1$/$0$ labels). Yet, a detailed theoretical characterization of this phenomenon is lacking. In this paper, we theoretically analyze retraining in a linearly separable setting with randomly corrupted labels given to us and prove that retraining can improve the population accuracy obtained by initially training with the given (noisy) labels. To the best of our knowledge, this is the first such theoretical result. Retraining finds application in improving training with local label differential privacy (DP) which involves training with noisy labels. We empirically show that retraining selectively on the samples for which the predicted label matches the given label significantly improves label DP training at \textit{no extra privacy cost}; we call this \textit{consensus-based retraining}. As an example, when training ResNet-18 on CIFAR-100 with $\epsilon=3$ label DP, we obtain $6.4\%$ improvement in accuracy with consensus-based retraining.
♻ ☆ Clustering of timed sequences -- Application to the analysis of care pathways
Improving the future of healthcare starts by better understanding the current actual practices in hospital settings. This motivates the objective of discovering typical care pathways from patient data. Revealing typical care pathways can be achieved through clustering. The difficulty in clustering care pathways, represented by sequences of timestamped events, lies in defining a semantically appropriate metric and clustering algorithms. In this article, we adapt two methods developed for time series to the clustering of timed sequences: the drop-DTW metric and the DBA approach for the construction of averaged time sequences. These methods are then applied in clustering algorithms to propose original and sound clustering algorithms for timed sequences. This approach is experimented with and evaluated on synthetic and real-world data.
♻ ☆ On Debiasing Text Embeddings Through Context Injection
Current advances in Natural Language Processing (NLP) have made it increasingly feasible to build applications leveraging textual data. Generally, the core of these applications rely on having a good semantic representation of text into vectors, via embedding models. However, it has been shown that these embeddings capture and perpetuate biases already present in text. While a few techniques have been proposed to debias embeddings, they do not take advantage of the recent advances in context understanding of modern embedding models. In this paper, we fill this gap by conducting a review of 19 embedding models by quantifying their biases and how well they respond to context injection as a mean of debiasing. We show that higher performing models are more prone to capturing biases, but are also better at incorporating context. Surprisingly, we find that while models can easily embed affirmative semantics, they fail at embedding neutral semantics. Finally, in a retrieval task, we show that biases in embeddings can lead to non-desirable outcomes. We use our new-found insights to design a simple algorithm for top $k$ retrieval, where $k$ is dynamically selected. We show that our algorithm is able to retrieve all relevant gendered and neutral chunks.
♻ ☆ Inferring Change Points in High-Dimensional Regression via Approximate Message Passing ICML 2024
We consider the problem of localizing change points in a generalized linear model (GLM), a model that covers many widely studied problems in statistical learning including linear, logistic, and rectified linear regression. We propose a novel and computationally efficient Approximate Message Passing (AMP) algorithm for estimating both the signals and the change point locations, and rigorously characterize its performance in the high-dimensional limit where the number of parameters $p$ is proportional to the number of samples $n$. This characterization is in terms of a state evolution recursion, which allows us to precisely compute performance measures such as the asymptotic Hausdorff error of our change point estimates, and allows us to tailor the algorithm to take advantage of any prior structural information on the signals and change points. Moreover, we show how our AMP iterates can be used to efficiently compute a Bayesian posterior distribution over the change point locations in the high-dimensional limit. We validate our theory via numerical experiments, and demonstrate the favorable performance of our estimators on both synthetic and real data in the settings of linear, logistic, and rectified linear regression.
comment: 43 pages, 9 figures. A preliminary version of this paper appeared in ICML 2024
♻ ☆ Kernel Density Estimators in Large Dimensions
This paper studies Kernel Density Estimation for a high-dimensional distribution $\rho(x)$. Traditional approaches have focused on the limit of large number of data points $n$ and fixed dimension $d$. We analyze instead the regime where both the number $n$ of data points $y_i$ and their dimensionality $d$ grow with a fixed ratio $\alpha=(\log n)/d$. Our study reveals three distinct statistical regimes for the kernel-based estimate of the density $\hat \rho_h^{\mathcal {D}}(x)=\frac{1}{n h^d}\sum_{i=1}^n K\left(\frac{x-y_i}{h}\right)$, depending on the bandwidth $h$: a classical regime for large bandwidth where the Central Limit Theorem (CLT) holds, which is akin to the one found in traditional approaches. Below a certain value of the bandwidth, $h_{CLT}(\alpha)$, we find that the CLT breaks down. The statistics of $\hat\rho_h^{\mathcal {D}}(x)$ for a fixed $x$ drawn from $\rho(x)$ is given by a heavy-tailed distribution (an alpha-stable distribution). In particular below a value $h_G(\alpha)$, we find that $\hat\rho_h^{\mathcal {D}}(x)$ is governed by extreme value statistics: only a few points in the database matter and give the dominant contribution to the density estimator. We provide a detailed analysis for high-dimensional multivariate Gaussian data. We show that the optimal bandwidth threshold based on Kullback-Leibler divergence lies in the new statistical regime identified in this paper. As known by practitioners, when decreasing the bandwidth a Kernel-estimated estimated changes from a smooth curve to a collections of peaks centred on the data points. Our findings reveal that this general phenomenon is related to sharp transitions between phases characterized by different statistical properties, and offer new insights for Kernel density estimation in high-dimensional settings.
♻ ☆ Deep Implicit Optimization for Robust and Flexible Image Registration
Deep Learning in Image Registration (DLIR) methods have been tremendously successful in image registration due to their speed and ability to incorporate weak label supervision at training time. However, DLIR methods forego many of the benefits of classical optimization-based methods. The functional nature of deep networks do not guarantee that the predicted transformation is a local minima of the registration objective, the representation of the transformation (displacement/velocity field/affine) is fixed, and the networks are not robust to domain shift. Our method aims to bridge this gap between classical and learning methods by incorporating optimization as a layer in a deep network. A deep network is trained to predict multi-scale dense feature images that are registered using a black box iterative optimization solver. This optimal warp is then used to minimize image and label alignment errors. By implicitly differentiating end-to-end through an iterative optimization solver, our learned features are registration and label-aware, and the warp functions are guaranteed to be local minima of the registration objective in the feature space. Our framework shows excellent performance on in-domain datasets, and is agnostic to domain shift such as anisotropy and varying intensity profiles. For the first time, our method allows switching between arbitrary transformation representations (free-form to diffeomorphic) at test time with zero retraining. End-to-end feature learning also facilitates interpretability of features, and out-of-the-box promptability using additional label-fidelity terms at inference.
♻ ☆ Overcoming Slow Decision Frequencies in Continuous Control: Model-Based Sequence Reinforcement Learning for Model-Free Control
Reinforcement learning (RL) is rapidly reaching and surpassing human-level control capabilities. However, state-of-the-art RL algorithms often require timesteps and reaction times significantly faster than human capabilities, which is impractical in real-world settings and typically necessitates specialized hardware. Such speeds are difficult to achieve in the real world and often requires specialized hardware. We introduce Sequence Reinforcement Learning (SRL), an RL algorithm designed to produce a sequence of actions for a given input state, enabling effective control at lower decision frequencies. SRL addresses the challenges of learning action sequences by employing both a model and an actor-critic architecture operating at different temporal scales. We propose a "temporal recall" mechanism, where the critic uses the model to estimate intermediate states between primitive actions, providing a learning signal for each individual action within the sequence. Once training is complete, the actor can generate action sequences independently of the model, achieving model-free control at a slower frequency. We evaluate SRL on a suite of continuous control tasks, demonstrating that it achieves performance comparable to state-of-the-art algorithms while significantly reducing actor sample complexity. To better assess performance across varying decision frequencies, we introduce the Frequency-Averaged Score (FAS) metric. Our results show that SRL significantly outperforms traditional RL algorithms in terms of FAS, making it particularly suitable for applications requiring variable decision frequencies. Additionally, we compare SRL with model-based online planning, showing that SRL achieves superior FAS while leveraging the same model during training that online planners use for planning.
♻ ☆ Sample Compression Scheme Reductions
We present novel reductions from sample compression schemes in multiclass classification, regression, and adversarially robust learning settings to binary sample compression schemes. Assuming we have a compression scheme for binary classes of size $f(d_\mathrm{VC})$, where $d_\mathrm{VC}$ is the VC dimension, then we have the following results: (1) If the binary compression scheme is a majority-vote or a stable compression scheme, then there exists a multiclass compression scheme of size $O(f(d_\mathrm{G}))$, where $d_\mathrm{G}$ is the graph dimension. Moreover, for general binary compression schemes, we obtain a compression of size $O(f(d_\mathrm{G})\log|Y|)$, where $Y$ is the label space. (2) If the binary compression scheme is a majority-vote or a stable compression scheme, then there exists an $\epsilon$-approximate compression scheme for regression over $[0,1]$-valued functions of size $O(f(d_\mathrm{P}))$, where $d_\mathrm{P}$ is the pseudo-dimension. For general binary compression schemes, we obtain a compression of size $O(f(d_\mathrm{P})\log(1/\epsilon))$. These results would have significant implications if the sample compression conjecture, which posits that any binary concept class with a finite VC dimension admits a binary compression scheme of size $O(d_\mathrm{VC})$, is resolved (Littlestone and Warmuth, 1986; Floyd and Warmuth, 1995; Warmuth, 2003). Our results would then extend the proof of the conjecture immediately to other settings. We establish similar results for adversarially robust learning and also provide an example of a concept class that is robustly learnable but has no bounded-size compression scheme, demonstrating that learnability is not equivalent to having a compression scheme independent of the sample size, unlike in binary classification, where compression of size $2^{O(d_\mathrm{VC})}$ is attainable (Moran and Yehudayoff, 2016).
♻ ☆ BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking of Large Language Models
While large language models (LLMs) exhibit remarkable capabilities across various tasks, they encounter potential security risks such as jailbreak attacks, which exploit vulnerabilities to bypass security measures and generate harmful outputs. Existing jailbreak strategies mainly focus on maximizing attack success rate (ASR), frequently neglecting other critical factors, including the relevance of the jailbreak response to the query and the level of stealthiness. This narrow focus on single objectives can result in ineffective attacks that either lack contextual relevance or are easily recognizable. In this work, we introduce BlackDAN, an innovative black-box attack framework with multi-objective optimization, aiming to generate high-quality prompts that effectively facilitate jailbreaking while maintaining contextual relevance and minimizing detectability. BlackDAN leverages Multiobjective Evolutionary Algorithms (MOEAs), specifically the NSGA-II algorithm, to optimize jailbreaks across multiple objectives including ASR, stealthiness, and semantic relevance. By integrating mechanisms like mutation, crossover, and Pareto-dominance, BlackDAN provides a transparent and interpretable process for generating jailbreaks. Furthermore, the framework allows customization based on user preferences, enabling the selection of prompts that balance harmfulness, relevance, and other factors. Experimental results demonstrate that BlackDAN outperforms traditional single-objective methods, yielding higher success rates and improved robustness across various LLMs and multimodal LLMs, while ensuring jailbreak responses are both relevant and less detectable.
♻ ☆ IncidentResponseGPT: Generating Traffic Incident Response Plans with Generative Artificial Intelligence
The proposed IncidentResponseGPT framework - a novel system that applies generative artificial intelligence (AI) to potentially enhance the efficiency and effectiveness of traffic incident response. This model allows for synthesis of region-specific incident response guidelines and generates incident response plans adapted to specific area, aiming to expedite decision-making for traffic management authorities. This approach aims to accelerate incident resolution times by suggesting various recommendations (e.g. optimal rerouting strategies, estimating resource needs) to minimize the overall impact on the urban traffic network. The system suggests specific actions, including dynamic lane closures, optimized rerouting and dispatching appropriate emergency resources. We utilize the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to rank generated response plans based on criteria like impact minimization and resource efficiency based on their proximity to an human-proposed solution.
♻ ☆ Model Internals-based Answer Attribution for Trustworthy Retrieval-Augmented Generation EMNLP 2024
Ensuring the verifiability of model answers is a fundamental challenge for retrieval-augmented generation (RAG) in the question answering (QA) domain. Recently, self-citation prompting was proposed to make large language models (LLMs) generate citations to supporting documents along with their answers. However, self-citing LLMs often struggle to match the required format, refer to non-existent sources, and fail to faithfully reflect LLMs' context usage throughout the generation. In this work, we present MIRAGE --Model Internals-based RAG Explanations -- a plug-and-play approach using model internals for faithful answer attribution in RAG applications. MIRAGE detects context-sensitive answer tokens and pairs them with retrieved documents contributing to their prediction via saliency methods. We evaluate our proposed approach on a multilingual extractive QA dataset, finding high agreement with human answer attribution. On open-ended QA, MIRAGE achieves citation quality and efficiency comparable to self-citation while also allowing for a finer-grained control of attribution parameters. Our qualitative evaluation highlights the faithfulness of MIRAGE's attributions and underscores the promising application of model internals for RAG answer attribution.
comment: Accepted by EMNLP 2024 Main Conference. Code and data released at https://github.com/Betswish/MIRAGE
♻ ☆ Hip Fracture Patient Pathways and Agent-based Modelling
Increased healthcare demand is significantly straining European services. Digital solutions including advanced modelling techniques offer a promising solution to optimising patient flow without impacting day-to-day healthcare provision. In this work we outline an ongoing project that aims to optimise healthcare resources using agent-based simulations.
comment: 6 pages, 2 figures
♻ ☆ Are High-Degree Representations Really Unnecessary in Equivariant Graph Neural Networks?
Equivariant Graph Neural Networks (GNNs) that incorporate E(3) symmetry have achieved significant success in various scientific applications. As one of the most successful models, EGNN leverages a simple scalarization technique to perform equivariant message passing over only Cartesian vectors (i.e., 1st-degree steerable vectors), enjoying greater efficiency and efficacy compared to equivariant GNNs using higher-degree steerable vectors. This success suggests that higher-degree representations might be unnecessary. In this paper, we disprove this hypothesis by exploring the expressivity of equivariant GNNs on symmetric structures, including $k$-fold rotations and regular polyhedra. We theoretically demonstrate that equivariant GNNs will always degenerate to a zero function if the degree of the output representations is fixed to 1 or other specific values. Based on this theoretical insight, we propose HEGNN, a high-degree version of EGNN to increase the expressivity by incorporating high-degree steerable vectors while maintaining EGNN's efficiency through the scalarization trick. Our extensive experiments demonstrate that HEGNN not only aligns with our theoretical analyses on toy datasets consisting of symmetric structures, but also shows substantial improvements on more complicated datasets such as $N$-body and MD17. Our theoretical findings and empirical results potentially open up new possibilities for the research of equivariant GNNs.
♻ ☆ A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus ACL 2024
Natural language inference (NLI), the task of recognizing the entailment relationship in sentence pairs, is an actively studied topic serving as a proxy for natural language understanding. Despite the relevance of the task in building conversational agents and improving text classification, machine translation and other NLP tasks, to the best of our knowledge, there is no publicly available NLI corpus for the Romanian language. To this end, we introduce the first Romanian NLI corpus (RoNLI) comprising 58K training sentence pairs, which are obtained via distant supervision, and 6K validation and test sentence pairs, which are manually annotated with the correct labels. We conduct experiments with multiple machine learning methods based on distant learning, ranging from shallow models based on word embeddings to transformer-based neural networks, to establish a set of competitive baselines. Furthermore, we improve on the best model by employing a new curriculum learning strategy based on data cartography. Our dataset and code to reproduce the baselines are available at https://github.com/Eduard6421/RONLI.
comment: Accepted at ACL 2024 (Main)
♻ ☆ Plug-and-Play Posterior Sampling under Mismatched Measurement and Prior Models
Posterior sampling has been shown to be a powerful Bayesian approach for solving imaging inverse problems. The recent plug-and-play unadjusted Langevin algorithm (PnP-ULA) has emerged as a promising method for Monte Carlo sampling and minimum mean squared error (MMSE) estimation by combining physical measurement models with deep-learning priors specified using image denoisers. However, the intricate relationship between the sampling distribution of PnP-ULA and the mismatched data-fidelity and denoiser has not been theoretically analyzed. We address this gap by proposing a posterior-L2 pseudometric and using it to quantify an explicit error bound for PnP-ULA under mismatched posterior distribution. We numerically validate our theory on several inverse problems such as sampling from Gaussian mixture models and image deblurring. Our results suggest that the sensitivity of the sampling distribution of PnP-ULA to a mismatch in the measurement model and the denoiser can be precisely characterized.
♻ ☆ Multi-LLM QA with Embodied Exploration
Large language models (LLMs) have grown in popularity due to their natural language interface and pre trained knowledge, leading to rapidly increasing success in question-answering (QA) tasks. More recently, multi-agent systems with LLM-based agents (Multi-LLM) have been utilized increasingly more for QA. In these scenarios, the models may each answer the question and reach a consensus or each model is specialized to answer different domain questions. However, most prior work dealing with Multi-LLM QA has focused on scenarios where the models are asked in a zero-shot manner or are given information sources to extract the answer. For question answering of an unknown environment, embodied exploration of the environment is first needed to answer the question. This skill is necessary for personalizing embodied AI to environments such as households. There is a lack of insight into whether a Multi-LLM system can handle question-answering based on observations from embodied exploration. In this work, we address this gap by investigating the use of Multi-Embodied LLM Explorers (MELE) for QA in an unknown environment. Multiple LLM-based agents independently explore and then answer queries about a household environment. We analyze different aggregation methods to generate a single, final answer for each query: debating, majority voting, and training a central answer module (CAM). Using CAM, we observe a $46\%$ higher accuracy compared against the other non-learning-based aggregation methods. We provide code and the query dataset for further research.
comment: 16 pages, 9 Figures, 5 Tables
♻ ☆ Learning Social Cost Functions for Human-Aware Path Planning
Achieving social acceptance is one of the main goals of Social Robotic Navigation. Despite this topic has received increasing interest in recent years, most of the research has focused on driving the robotic agent along obstacle-free trajectories, planning around estimates of future human motion to respect personal distances and optimize navigation. However, social interactions in everyday life are also dictated by norms that do not strictly depend on movement, such as when standing at the end of a queue rather than cutting it. In this paper, we propose a novel method to recognize common social scenarios and modify a traditional planner's cost function to adapt to them. This solution enables the robot to carry out different social navigation behaviors that would not arise otherwise, maintaining the robustness of traditional navigation. Our approach allows the robot to learn different social norms with a single learned model, rather than having different modules for each task. As a proof of concept, we consider the tasks of queuing and respect interaction spaces of groups of people talking to one another, but the method can be extended to other human activities that do not involve motion.
♻ ☆ An algorithm for clustering with confidence-based must-link and cannot-link constraints
We study here the semi-supervised $k$-clustering problem where information is available on whether pairs of objects are in the same or in different clusters. This information is either available with certainty or with a limited level of confidence. We introduce the PCCC (Pairwise-Confidence-Constraints-Clustering) algorithm, which iteratively assigns objects to clusters while accounting for the information provided on the pairs of objects. Our algorithm uses integer programming for the assignment of objects which allows to include relationships as hard constraints that are guaranteed to be satisfied or as soft constraints that can be violated subject to a penalty. This flexibility distinguishes our algorithm from the state-of-the-art in which all pairwise constraints are either considered hard, or all are considered soft. We developed an enhanced multi-start approach and a model-size reduction technique for the integer program that contributes to the effectiveness and the efficiency of the algorithm. Unlike existing algorithms, our algorithm scales to large-scale instances with up to 60,000 objects, 100 clusters, and millions of cannot-link constraints (which are the most challenging constraints to incorporate). We compare the PCCC algorithm with state-of-the-art approaches in an extensive computational study. Even though the PCCC algorithm is more general than the state-of-the-art approaches in its applicability, it outperforms the state-of-the-art approaches on instances with all hard or all soft constraints both in terms of runtime and various metrics of solution quality. The code of the PCCC algorithm is publicly available on GitHub.
comment: To appear in INFORMS Journal on Computing
♻ ☆ Explaining Modern Gated-Linear RNNs via a Unified Implicit Attention Formulation
Recent advances in efficient sequence modeling have led to attention-free layers, such as Mamba, RWKV, and various gated RNNs, all featuring sub-quadratic complexity in sequence length and excellent scaling properties, enabling the construction of a new type of foundation models. In this paper, we present a unified view of these models, formulating such layers as implicit causal self-attention layers. The formulation includes most of their sub-components and is not limited to a specific part of the architecture. The framework compares the underlying mechanisms on similar grounds for different layers and provides a direct means for applying explainability methods. Our experiments show that our attention matrices and attribution method outperform an alternative and a more limited formulation that was recently proposed for Mamba. For the other architectures for which our method is the first to provide such a view, our method is effective and competitive in the relevant metrics compared to the results obtained by state-of-the-art Transformer explainability methods. Our code is publicly available.
♻ ☆ MolecularGPT: Open Large Language Model (LLM) for Few-Shot Molecular Property Prediction
Molecular property prediction (MPP) is a fundamental and crucial task in drug discovery. However, prior methods are limited by the requirement for a large number of labeled molecules and their restricted ability to generalize for unseen and new tasks, both of which are essential for real-world applications. To address these challenges, we present MolecularGPT for few-shot MPP. From a perspective on instruction tuning, we fine-tune large language models (LLMs) based on curated molecular instructions spanning over 1000 property prediction tasks. This enables building a versatile and specialized LLM that can be adapted to novel MPP tasks without any fine-tuning through zero- and few-shot in-context learning (ICL). MolecularGPT exhibits competitive in-context reasoning capabilities across 10 downstream evaluation datasets, setting new benchmarks for few-shot molecular prediction tasks. More importantly, with just two-shot examples, MolecularGPT can outperform standard supervised graph neural network methods on 4 out of 7 datasets. It also excels state-of-the-art LLM baselines by up to 15.7% increase on classification accuracy and decrease of 17.9 on regression metrics (e.g., RMSE) under zero-shot. This study demonstrates the potential of LLMs as effective few-shot molecular property predictors. The code is available at https://github.com/NYUSHCS/MolecularGPT.
♻ ☆ Timeseria: an object-oriented time series processing library
Timeseria is an object-oriented time series processing library implemented in Python, which aims at making it easier to manipulate time series data and to build statistical and machine learning models on top of it. Unlike common data analysis frameworks, it builds up from well defined and reusable logical units (objects), which can be easily combined together in order to ensure a high level of consistency. Thanks to this approach, Timeseria can address by design several non-trivial issues often underestimated, such as handling data losses, non-uniform sampling rates, differences between aggregated data and punctual observations, time zones, daylight saving times, and more. Timeseria comes with a comprehensive set of base data structures, common data manipulation operations, and extensible models for data reconstruction, forecasting and anomaly detection. It also integrates a powerful plotting engine capable of handling even millions of data points.
♻ ☆ Spectral and Rhythm Features for Audio Classification with Deep Convolutional Neural Networks
Convolutional neural networks (CNNs) are widely used in computer vision. They can be used not only for conventional digital image material to recognize patterns, but also for feature extraction from digital imagery representing spectral and rhythm features extracted from time-domain digital audio signals for the acoustic classification of sounds. Different spectral and rhythm feature representations like mel-scaled spectrograms, mel-frequency cepstral coefficients (MFCCs), cyclic tempograms, short-time Fourier transform (STFT) chromagrams, constant-Q transform (CQT) chromagrams and chroma energy normalized statistics (CENS) chromagrams are investigated in terms of the audio classification performance using a deep convolutional neural network. It can be clearly shown that the mel-scaled spectrograms and the mel-frequency cepstral coefficients (MFCCs) perform significantly better than the other spectral and rhythm features investigated in this research for audio classification tasks using deep CNNs. The experiments were carried out with the aid of the ESC-50 dataset with 2,000 labeled environmental audio recordings.
♻ ☆ Distributionally and Adversarially Robust Logistic Regression via Intersecting Wasserstein Balls
Adversarially robust optimization (ARO) has become the de facto standard for training models to defend against adversarial attacks during testing. However, despite their robustness, these models often suffer from severe overfitting. To mitigate this issue, several successful approaches have been proposed, including replacing the empirical distribution in training with: (i) a worst-case distribution within an ambiguity set, leading to a distributionally robust (DR) counterpart of ARO; or (ii) a mixture of the empirical distribution with one derived from an auxiliary dataset (e.g., synthetic, external, or out-of-domain). Building on the first approach, we explore the Wasserstein DR counterpart of ARO for logistic regression and show it admits a tractable convex optimization reformulation. Adopting the second approach, we enhance the DR framework by intersecting its ambiguity set with one constructed from an auxiliary dataset, which yields significant improvements when the Wasserstein distance between the data-generating and auxiliary distributions can be estimated. We analyze the resulting optimization problem, develop efficient solutions, and show that our method outperforms benchmark approaches on standard datasets.
comment: 33 pages, 3 color figures, under review at a conference
♻ ☆ Predicting Accurate Lagrangian Multipliers for Mixed Integer Linear Programs
Lagrangian relaxation stands among the most efficient approaches for solving a Mixed Integer Linear Programs (MILP) with difficult constraints. Given any duals for these constraints, called Lagrangian Multipliers (LMs), it returns a bound on the optimal value of the MILP, and Lagrangian methods seek the LMs giving the best such bound. But these methods generally rely on iterative algorithms resembling gradient descent to maximize the concave piecewise linear dual function: the computational burden grows quickly with the number of relaxed constraints. We introduce a deep learning approach that bypasses the descent, effectively amortizing the local, per instance, optimization. A probabilistic encoder based on a graph convolutional network computes high-dimensional representations of relaxed constraints in MILP instances. A decoder then turns these representations into LMs. We train the encoder and decoder jointly by directly optimizing the bound obtained from the predicted multipliers. Numerical experiments show that our approach closes up to 85~\% of the gap between the continuous relaxation and the best Lagrangian bound, and provides a high quality warm-start for descent based Lagrangian methods.
♻ ☆ 3-D Magnetotelluric Deep Learning Inversion Guided by Pseudo-Physical Information
Magnetotelluric deep learning (DL) inversion methods based on joint data-driven and physics-driven have become a hot topic in recent years. When mapping observation data (or forward modeling data) to the resistivity model using neural networks (NNs), incorporating the error (loss) term of the inversion resistivity's forward modeling response--which introduces physical information about electromagnetic field propagation--can significantly enhance the inversion accuracy. To efficiently achieve data-physical dual-driven MT deep learning inversion for large-scale 3-D MT data, we propose using DL forward modeling networks to compute this portion of the loss. This approach introduces pseudo-physical information through the forward modeling of NN simulation, further guiding the inversion network fitting. Specifically, we first pre-train the forward modeling networks as fixed forward modeling operators, then transfer and integrate them into the inversion network training, and finally optimize the inversion network by minimizing the multinomial loss. Theoretical experimental results indicate that despite some simulation errors in DL forward modeling, the introduced pseudo-physical information still enhances inversion accuracy and significantly mitigates the overfitting problem during training. Additionally, we propose a new input mode that involves masking and adding noise to the data, simulating the field data environment of 3-D MT inversion, thereby making the method more flexible and effective for practical applications.
♻ ☆ A Survey of Mamba
As one of the most representative DL techniques, Transformer architecture has empowered numerous advanced models, especially the large language models (LLMs) that comprise billions of parameters, becoming a cornerstone in deep learning. Despite the impressive achievements, Transformers still face inherent limitations, particularly the time-consuming inference resulting from the quadratic computation complexity of attention calculation. Recently, a novel architecture named Mamba, drawing inspiration from classical state space models (SSMs), has emerged as a promising alternative for building foundation models, delivering comparable modeling abilities to Transformers while preserving near-linear scalability concerning sequence length. This has sparked an increasing number of studies actively exploring Mamba's potential to achieve impressive performance across diverse domains. Given such rapid evolution, there is a critical need for a systematic review that consolidates existing Mamba-empowered models, offering a comprehensive understanding of this emerging model architecture. In this survey, we therefore conduct an in-depth investigation of recent Mamba-associated studies, covering three main aspects: the advancements of Mamba-based models, the techniques of adapting Mamba to diverse data, and the applications where Mamba can excel. Specifically, we first review the foundational knowledge of various representative deep learning models and the details of Mamba-1&2 as preliminaries. Then, to showcase the significance of Mamba for AI, we comprehensively review the related studies focusing on Mamba models' architecture design, data adaptability, and applications. Finally, we present a discussion of current limitations and explore various promising research directions to provide deeper insights for future investigations.
♻ ☆ Optimization Dynamics of Equivariant and Augmented Neural Networks
We investigate the optimization of neural networks on symmetric data, and compare the strategy of constraining the architecture to be equivariant to that of using data augmentation. Our analysis reveals that that the relative geometry of the admissible and the equivariant layers, respectively, plays a key role. Under natural assumptions on the data, network, loss, and group of symmetries, we show that compatibility of the spaces of admissible layers and equivariant layers, in the sense that the corresponding orthogonal projections commute, implies that the sets of equivariant stationary points are identical for the two strategies. If the linear layers of the network also are given a unitary parametrization, the set of equivariant layers is even invariant under the gradient flow for augmented models. Our analysis however also reveals that even in the latter situation, stationary points may be unstable for augmented training although they are stable for the manifestly equivariant models.
comment: v4: Some discussions added, along with an updated experiment section. v3: Completely revised manuscript: New framework for neural nets, new main result (involving compability condition), new experiments, new author. v2: Revised manuscript. Mostly small edits, apart from new experiments (see Appendix E)
♻ ☆ Entity Matching using Large Language Models EDBT
Entity matching is the task of deciding whether two entity descriptions refer to the same real-world entity. Entity matching is a central step in most data integration pipelines. Many state-of-the-art entity matching methods rely on pre-trained language models (PLMs) such as BERT or RoBERTa. Two major drawbacks of these models for entity matching are that (i) the models require significant amounts of task-specific training data and (ii) the fine-tuned models are not robust concerning out-of-distribution entities. This paper investigates using generative large language models (LLMs) as a less task-specific training data-dependent and more robust alternative to PLM-based matchers. The study covers hosted and open-source LLMs which can be run locally. We evaluate these models in a zero-shot scenario and a scenario where task-specific training data is available. We compare different prompt designs and the prompt sensitivity of the models. We show that there is no single best prompt but that the prompt needs to be tuned for each model/dataset combination. We further investigate (i) the selection of in-context demonstrations, (ii) the generation of matching rules, as well as (iii) fine-tuning LLMs using the same pool of training data. Our experiments show that the best LLMs require no or only a few training examples to perform comparably to PLMs that were fine-tuned using thousands of examples. LLM-based matchers further exhibit higher robustness to unseen entities. We show that GPT4 can generate structured explanations for matching decisions and can automatically identify potential causes of matching errors by analyzing explanations of wrong decisions. We demonstrate that the model can generate meaningful textual descriptions of the identified error classes, which can help data engineers to improve entity matching pipelines.
comment: Published in Proceedings of the 28th International Conference on Extending Database Technology (EDBT), 25th March-28th March, 2025, ISBN 978-3-89318-098-1 on OpenProceedings.org
♻ ☆ A Survey of Multi-Agent Deep Reinforcement Learning with Communication
Communication is an effective mechanism for coordinating the behaviors of multiple agents, broadening their views of the environment, and to support their collaborations. In the field of multi-agent deep reinforcement learning (MADRL), agents can improve the overall learning performance and achieve their objectives by communication. Agents can communicate various types of messages, either to all agents or to specific agent groups, or conditioned on specific constraints. With the growing body of research work in MADRL with communication (Comm-MADRL), there is a lack of a systematic and structural approach to distinguish and classify existing Comm-MADRL approaches. In this paper, we survey recent works in the Comm-MADRL field and consider various aspects of communication that can play a role in designing and developing multi-agent reinforcement learning systems. With these aspects in mind, we propose 9 dimensions along which Comm-MADRL approaches can be analyzed, developed, and compared. By projecting existing works into the multi-dimensional space, we discover interesting trends. We also propose some novel directions for designing future Comm-MADRL systems through exploring possible combinations of the dimensions.
comment: 34 pages, 5 figures, 13 tables; published on Autonomous Agents and Multi-Agent Systems
♻ ☆ Understanding Likelihood Over-optimisation in Direct Alignment Algorithms
Direct Alignment Algorithms (DAAs), such as Direct Preference Optimisation (DPO) and Identity Preference Optimisation (IPO), have emerged as alternatives to online Reinforcement Learning from Human Feedback (RLHF) algorithms such as Proximal Policy Optimisation (PPO) for aligning language models to human preferences, without the need for explicit reward modelling. These methods generally aim to increase the likelihood of generating better (preferred) completions while discouraging worse (non-preferred) ones, while staying close to the original model's behaviour. In this work, we explore the relationship between completion likelihood and model performance in state-of-the-art DAAs, and identify a critical issue of likelihood over-optimisation. Contrary to expectations, we find that higher likelihood of better completions and larger margins between better and worse completion likelihoods do not necessarily lead to better performance, and may even degrade it. Our analysis reveals that while higher likelihood correlates with better memorisation of factual knowledge patterns, a slightly lower completion likelihood tends to improve output diversity, thus leading to better generalisation to unseen scenarios. Moreover, we identify two key indicators that signal when over-optimised output diversity begins to harm performance: Decreasing Entropy over Top-k Tokens and Diminishing Top-k Probability Mass. Our experimental results validate that these indicators are reliable signs of declining performance under different regularisations, helping prevent over-optimisation and improve alignment with human preferences.
comment: Preprint Version
♻ ☆ GLANCE: Global Actions in a Nutshell for Counterfactual Explainability
The widespread deployment of machine learning systems in critical real-world decision-making applications has highlighted the urgent need for counterfactual explainability methods that operate effectively. Global counterfactual explanations, expressed as actions to offer recourse, aim to provide succinct explanations and insights applicable to large population subgroups. Effectiveness is measured by the fraction of the population that is provided recourse, ensuring that the actions benefit as many individuals as possible. Keeping the cost of actions low ensures the proposed recourse actions remain practical and actionable. Limiting the number of actions that provide global counterfactuals is essential to maximize interpretability. The primary challenge, therefore, is balancing these trade-offs, i.e., maximizing effectiveness, minimizing cost, while maintaining a small number of actions. We introduce GLANCE, a versatile and adaptive framework, comprising two algorithms, that allows the careful balancing of the trade-offs among the three key objectives, with the size objective functioning as a tunable parameter to keep the actions few and easy to interpret. C-GLANCE employs a clustering approach that considers both the feature space and the space of counterfactual actions, thereby accounting for the distribution of points in a way that aligns with the structure of the model. T-GLANCE provides additional features to enhance flexibility. It employs a tree-based approach, that allows users to specify split features, to build a decision tree with a single counterfactual action at each node that can be used as a subgroup policy. Our extensive experimental evaluation demonstrates that our method consistently shows greater robustness and performance compared to existing methods across various datasets and models.
♻ ☆ Dating ancient manuscripts using radiocarbon and AI-based writing style analysis
Determining the chronology of ancient handwritten manuscripts is essential for reconstructing the evolution of ideas. For the Dead Sea Scrolls, this is particularly important. However, there is an almost complete lack of date-bearing manuscripts evenly distributed across the timeline and written in similar scripts available for palaeographic comparison. Here, we present Enoch, a state-of-the-art AI-based date-prediction model, trained on the basis of new radiocarbon-dated samples of the scrolls. Enoch uses established handwriting-style descriptors and applies Bayesian ridge regression. The challenge of this study is that the number of radiocarbon-dated manuscripts is small, while current machine learning requires an abundance of training data. We show that by using combined angular and allographic writing style feature vectors and applying Bayesian ridge regression, Enoch could predict the radiocarbon-based dates from style, supported by leave-one-out validation, with varied MAEs of 27.9 to 30.7 years relative to the radiocarbon dating. Enoch was then used to estimate the dates of 135 unseen manuscripts, revealing that 79 per cent of the samples were considered 'realistic' upon palaeographic post-hoc evaluation. We present a new chronology of the scrolls. The radiocarbon ranges and Enoch's style-based predictions are often older than the traditionally assumed palaeographic estimates. In the range of 300-50 BCE, Enoch's date prediction provides an improved granularity. The study is in line with current developments in multimodal machine-learning techniques, and the methods can be used for date prediction in other partially-dated manuscript collections. This research shows how Enoch's quantitative, probability-based approach can be a tool for palaeographers and historians, re-dating ancient Jewish key texts and contributing to current debates on Jewish and Christian origins.
comment: 16 pages of main article, 103 pages of supplementary materials; the first version of this article is originally prepared in July 2023 after the completion of all the experiments
♻ ☆ MixEval-X: Any-to-Any Evaluations from Real-World Data Mixtures
Perceiving and generating diverse modalities are crucial for AI models to effectively learn from and engage with real-world signals, necessitating reliable evaluations for their development. We identify two major issues in current evaluations: (1) inconsistent standards, shaped by different communities with varying protocols and maturity levels; and (2) significant query, grading, and generalization biases. To address these, we introduce MixEval-X, the first any-to-any, real-world benchmark designed to optimize and standardize evaluations across diverse input and output modalities. We propose multi-modal benchmark mixture and adaptation-rectification pipelines to reconstruct real-world task distributions, ensuring evaluations generalize effectively to real-world use cases. Extensive meta-evaluations show our approach effectively aligns benchmark samples with real-world task distributions. Meanwhile, MixEval-X's model rankings correlate strongly with that of crowd-sourced real-world evaluations (up to 0.98) while being much more efficient. We provide comprehensive leaderboards to rerank existing models and organizations and offer insights to enhance understanding of multi-modal evaluations and inform future research.
♻ ☆ FLEdge: Benchmarking Federated Machine Learning Applications in Edge Computing Systems
Federated Learning (FL) has become a viable technique for realizing privacy-enhancing distributed deep learning on the network edge. Heterogeneous hardware, unreliable client devices, and energy constraints often characterize edge computing systems. In this paper, we propose FLEdge, which complements existing FL benchmarks by enabling a systematic evaluation of client capabilities. We focus on computational and communication bottlenecks, client behavior, and data security implications. Our experiments with models varying from 14K to 80M trainable parameters are carried out on dedicated hardware with emulated network characteristics and client behavior. We find that state-of-the-art embedded hardware has significant memory bottlenecks, leading to 4x longer processing times than on modern data center GPUs.
comment: Paper accepted for publication at the ACM/IFIP Middleware Conference 2024. Please cite the published version via https://doi.org/10.1145/3652892.3700751
♻ ☆ Context-Enhanced Multi-View Trajectory Representation Learning: Bridging the Gap through Self-Supervised Models
Modeling trajectory data with generic-purpose dense representations has become a prevalent paradigm for various downstream applications, such as trajectory classification, travel time estimation and similarity computation. However, existing methods typically rely on trajectories from a single spatial view, limiting their ability to capture the rich contextual information that is crucial for gaining deeper insights into movement patterns across different geospatial contexts. To this end, we propose MVTraj, a novel multi-view modeling method for trajectory representation learning. MVTraj integrates diverse contextual knowledge, from GPS to road network and points-of-interest to provide a more comprehensive understanding of trajectory data. To align the learning process across multiple views, we utilize GPS trajectories as a bridge and employ self-supervised pretext tasks to capture and distinguish movement patterns across different spatial views. Following this, we treat trajectories from different views as distinct modalities and apply a hierarchical cross-modal interaction module to fuse the representations, thereby enriching the knowledge derived from multiple sources. Extensive experiments on real-world datasets demonstrate that MVTraj significantly outperforms existing baselines in tasks associated with various spatial views, validating its effectiveness and practical utility in spatio-temporal modeling.
♻ ☆ The Model Openness Framework: Promoting Completeness and Openness for Reproducibility, Transparency, and Usability in Artificial Intelligence
Generative artificial intelligence (AI) offers numerous opportunities for research and innovation, but its commercialization has raised concerns about the transparency and safety of frontier AI models. Most models lack the necessary components for full understanding, auditing, and reproducibility, and some model producers use restrictive licenses whilst claiming that their models are "open source". To address these concerns, we introduce the Model Openness Framework (MOF), a three-tiered ranked classification system that rates machine learning models based on their completeness and openness, following open science principles. For each MOF class, we specify code, data, and documentation components of the model development lifecycle that must be released and under which open licenses. In addition, the Model Openness Tool (MOT) provides a user-friendly reference implementation to evaluate the openness and completeness of models against the MOF classification system. Together, the MOF and MOT provide timely practical guidance for (i) model producers to enhance the openness and completeness of their publicly-released models, and (ii) model consumers to identify open models and their constituent components that can be permissively used, studied, modified, and redistributed. Through the MOF, we seek to establish completeness and openness as core tenets of responsible AI research and development, and to promote best practices in the burgeoning open AI ecosystem.
comment: 28 pages, 4 figures, 2 tables
♻ ☆ TotalVibeSegmentator: Full Body MRI Segmentation for the NAKO and UK Biobank
Objectives: To present a publicly available torso segmentation network for large epidemiology datasets on volumetric interpolated breath-hold examination (VIBE) images. Materials & Methods: We extracted preliminary segmentations from TotalSegmentator, spine, and body composition networks for VIBE images, then improved them iteratively and retrained a nnUNet network. Using subsets of NAKO (85 subjects) and UK Biobank (16 subjects), we evaluated with Dice-score on a holdout set (12 subjects) and existing organ segmentation approach (1000 subjects), generating 71 semantic segmentation types for VIBE images. We provide an additional network for the vertebra segments 22 individual vertebra types. Results: We achieved an average Dice score of 0.89 +- 0.07 overall 71 segmentation labels. We scored > 0.90 Dice-score on the abdominal organs except for the pancreas with a Dice of 0.70. Conclusion: Our work offers a detailed and refined publicly available full torso segmentation on VIBE images.
comment: https://github.com/robert-graf/TotalVibeSegmentator
♻ ☆ Boosting Graph Pooling with Persistent Homology NeurIPS 2024
Recently, there has been an emerging trend to integrate persistent homology (PH) into graph neural networks (GNNs) to enrich expressive power. However, naively plugging PH features into GNN layers always results in marginal improvement with low interpretability. In this paper, we investigate a novel mechanism for injecting global topological invariance into pooling layers using PH, motivated by the observation that filtration operation in PH naturally aligns graph pooling in a cut-off manner. In this fashion, message passing in the coarsened graph acts along persistent pooled topology, leading to improved performance. Experimentally, we apply our mechanism to a collection of graph pooling methods and observe consistent and substantial performance gain over several popular datasets, demonstrating its wide applicability and flexibility.
comment: Published at NeurIPS 2024
♻ ☆ Communication-Efficient Distributed Deep Learning via Federated Dynamic Averaging EDBT 2025
Driven by the ever-growing volume and decentralized nature of data, coupled with the need to harness this data and generate knowledge from it, has led to the extensive use of distributed deep learning (DDL) techniques for training. These techniques rely on local training that is performed at the distributed nodes based on locally collected data, followed by a periodic synchronization process that combines these models to create a global model. However, frequent synchronization of DL models, encompassing millions to many billions of parameters, creates a communication bottleneck, severely hindering scalability. Worse yet, DDL algorithms typically waste valuable bandwidth, and make themselves less practical in bandwidth-constrained federated settings, by relying on overly simplistic, periodic, and rigid synchronization schedules. These drawbacks also have a direct impact on the time required for the training process, necessitating excessive time for data communication. To address these shortcomings, we propose Federated Dynamic Averaging (FDA), a communication-efficient DDL strategy that dynamically triggers synchronization based on the value of the model variance. In essence, the costly synchronization step is triggered only if the local models, which are initialized from a common global model after each synchronization, have significantly diverged. This decision is facilitated by the communication of a small local state from each distributed node/worker. Through extensive experiments across a wide range of learning tasks we demonstrate that FDA reduces communication cost by orders of magnitude, compared to both traditional and cutting-edge communication-efficient algorithms. Additionally, we show that FDA maintains robust performance across diverse data heterogeneity settings.
comment: Accepted as research paper at EDBT 2025
♻ ☆ FedECA: A Federated External Control Arm Method for Causal Inference with Time-To-Event Data in Distributed Settings
External control arms (ECA) can inform the early clinical development of experimental drugs and provide efficacy evidence for regulatory approval. However, the main challenge in implementing ECA lies in accessing real-world or historical clinical trials data. Indeed, regulations protecting patients' rights by strictly controlling data processing make pooling data from multiple sources in a central server often difficult. To address these limitations, we develop a new method, 'FedECA' that leverages federated learning (FL) to enable inverse probability of treatment weighting (IPTW) for time-to-event outcomes on separate cohorts without needing to pool data. To showcase the potential of FedECA, we apply it in different settings of increasing complexity culminating with a real-world use-case in which FedECA provides evidence for a differential effect between two drugs that would have otherwise gone unnoticed. By sharing our code, we hope FedECA will foster the creation of federated research networks and thus accelerate drug development.
comment: code available at: https://github.com/owkin/fedeca, bug in SMD computation present in v1 and v2 has been fixed, many experiments on real data have been added + fix in YODA experiments using imputed data instead of raw data as well as typos and affiliations fix
♻ ☆ Simple Opinion Dynamics for No-Regret Learning
We study a cooperative multi-agent bandit setting in the distributed GOSSIP model: in every round, each of $n$ agents chooses an action from a common set, observes the action's corresponding reward, and subsequently exchanges information with a single randomly chosen neighbor, which may inform its choice in the next round. We introduce and analyze families of memoryless and time-independent protocols for this setting, inspired by opinion dynamics that are well-studied for other algorithmic tasks in the GOSSIP model. For stationary reward settings, we prove for the first time that these simple protocols exhibit best-of-both-worlds behavior, simultaneously obtaining constant cumulative regret scaling like $R(T)/T = \widetilde O(1/T)$, and also reaching consensus on the highest-mean action within $\widetilde O(\sqrt{n})$ rounds. We obtain these results by showing a new connection between the global evolution of these decentralized protocols and a class of zero-sum multiplicative weights update} processes. Using this connection, we establish a general framework for analyzing the population-level regret and other properties of our protocols. Finally, we show our protocols are also surprisingly robust to adversarial rewards, and in this regime we obtain sublinear regret scaling like $R(T)/T = \widetilde O(1/\sqrt{T})$ as long as the number of rounds does not grow too fast as a function of $n$.
♻ ☆ Integrating spoken instructions into flight trajectory prediction to optimize automation in air traffic control
The booming air transportation industry inevitably burdens air traffic controllers' workload, causing unexpected human factor-related incidents. Current air traffic control systems fail to consider spoken instructions for traffic prediction, bringing significant challenges in detecting human errors during real-time traffic operations. Here, we present an automation paradigm integrating controlling intent into the information processing loop through the spoken instruction-aware flight trajectory prediction framework. A 3-stage progressive multi-modal learning paradigm is proposed to address the modality gap between the trajectory and spoken instructions, as well as minimize the data requirements. Experiments on a real-world dataset show the proposed framework achieves flight trajectory prediction with high predictability and timeliness, obtaining over 20% relative reduction in mean deviation error. Moreover, the generalizability of the proposed framework is also confirmed by various model architectures. The proposed framework can formulate full-automated information processing in real-world air traffic applications, supporting human error detection and enhancing aviation safety.
comment: This paper has been accepted in principle by Nature Communications
♻ ☆ Large Language Model Based Generative Error Correction: A Challenge and Baselines for Speech Recognition, Speaker Tagging, and Emotion Recognition
Given recent advances in generative AI technology, a key question is how large language models (LLMs) can enhance acoustic modeling tasks using text decoding results from a frozen, pretrained automatic speech recognition (ASR) model. To explore new capabilities in language modeling for speech processing, we introduce the generative speech transcription error correction (GenSEC) challenge. This challenge comprises three post-ASR language modeling tasks: (i) post-ASR transcription correction, (ii) speaker tagging, and (iii) emotion recognition. These tasks aim to emulate future LLM-based agents handling voice-based interfaces while remaining accessible to a broad audience by utilizing open pretrained language models or agent-based APIs. We also discuss insights from baseline evaluations, as well as lessons learned for designing future evaluations.
comment: IEEE SLT 2024. The initial draft version has been done in December 2023. Post-ASR Text Processing and Understanding Community and LlaMA-7B pre-training correction model: https://huggingface.co/GenSEC-LLM/SLT-Task1-Llama2-7b-HyPo-baseline
♻ ☆ WaterMax: breaking the LLM watermark detectability-robustness-quality trade-off
Watermarking is a technical means to dissuade malfeasant usage of Large Language Models. This paper proposes a novel watermarking scheme, so-called WaterMax, that enjoys high detectability while sustaining the quality of the generated text of the original LLM. Its new design leaves the LLM untouched (no modification of the weights, logits, temperature, or sampling technique). WaterMax balances robustness and complexity contrary to the watermarking techniques of the literature inherently provoking a trade-off between quality and robustness. Its performance is both theoretically proven and experimentally validated. It outperforms all the SotA techniques under the most complete benchmark suite. Code available at https://github.com/eva-giboulot/WaterMax.
♻ ☆ Towards Satellite Non-IID Imagery: A Spectral Clustering-Assisted Federated Learning Approach
Low Earth orbit (LEO) satellites are capable of gathering abundant Earth observation data (EOD) to enable different Internet of Things (IoT) applications. However, to accomplish an effective EOD processing mechanism, it is imperative to investigate: 1) the challenge of processing the observed data without transmitting those large-size data to the ground because the connection between the satellites and the ground stations is intermittent, and 2) the challenge of processing the non-independent and identically distributed (non-IID) satellite data. In this paper, to cope with those challenges, we propose an orbit-based spectral clustering-assisted clustered federated self-knowledge distillation (OSC-FSKD) approach for each orbit of an LEO satellite constellation, which retains the advantage of FL that the observed data does not need to be sent to the ground. Specifically, we introduce normalized Laplacian-based spectral clustering (NLSC) into federated learning (FL) to create clustered FL in each round to address the challenge resulting from non-IID data. Particularly, NLSC is adopted to dynamically group clients into several clusters based on cosine similarities calculated by model updates. In addition, self-knowledge distillation is utilized to construct each local client, where the most recent updated local model is used to guide current local model training. Experiments demonstrate that the observation accuracy obtained by the proposed method is separately 1.01x, 2.15x, 1.10x, and 1.03x higher than that of pFedSD, FedProx, FedAU, and FedALA approaches using the SAT4 dataset. The proposed method also shows superiority when using other datasets.
comment: 10 pages, 5 figures
♻ ☆ Node Identifiers: Compact, Discrete Representations for Efficient Graph Learning
We present a novel end-to-end framework that generates highly compact (typically 6-15 dimensions), discrete (int4 type), and interpretable node representations, termed node identifiers (node IDs), to tackle inference challenges on large-scale graphs. By employing vector quantization, we compress continuous node embeddings from multiple layers of a Graph Neural Network (GNN) into discrete codes, applicable under both self-supervised and supervised learning paradigms. These node IDs capture high-level abstractions of graph data and offer interpretability that traditional GNN embeddings lack. Extensive experiments on 34 datasets, encompassing node classification, graph classification, link prediction, and attributed graph clustering tasks, demonstrate that the generated node IDs significantly enhance speed and memory efficiency while achieving competitive performance compared to current state-of-the-art methods.
♻ ☆ ScoreFusion: fusing score-based generative models via Kullback-Leibler barycenters
We introduce ScoreFusion, a theoretically grounded method for fusing multiple pre-trained diffusion models that are assumed to generate from auxiliary populations. ScoreFusion is particularly useful for enhancing the generative modeling of a target population with limited observed data. Our starting point considers the family of KL barycenters of the auxiliary populations, which is proven to be an optimal parametric class in the KL sense, but difficult to learn. Nevertheless, by recasting the learning problem as score matching in denoising diffusion, we obtain a tractable way of computing the optimal KL barycenter weights. We prove a dimension-free sample complexity bound in total variation distance, provided that the auxiliary models are well fitted for their own task and the auxiliary tasks combined capture the target well. We also explain a connection of the practice of checkpoint merging in AI art creation to an approximation of our KL-barycenter-based fusion approach. However, our fusion method differs in key aspects, allowing generation of new populations, as we illustrate in experiments.
comment: 53 pages, 15 figures
♻ ☆ FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks
Recently, a large number of Low Earth Orbit (LEO) satellites have been launched and deployed successfully in space by commercial companies, such as SpaceX. Due to multimodal sensors equipped by the LEO satellites, they serve not only for communication but also for various machine learning applications, such as space modulation recognition, remote sensing image classification, etc. However, the ground station (GS) may be incapable of downloading such a large volume of raw sensing data for centralized model training due to the limited contact time with LEO satellites (e.g. 5 minutes). Therefore, federated learning (FL) has emerged as the promising solution to address this problem via on-device training. Unfortunately, to enable FL on LEO satellites, we still face three critical challenges that are i) heterogeneous computing and memory capabilities, ii) limited uplink rate, and iii) model staleness. To this end, we propose FedSN as a general FL framework to tackle the above challenges, and fully explore data diversity on LEO satellites. Specifically, we first present a novel sub-structure scheme to enable heterogeneous local model training considering different computing, memory, and communication constraints on LEO satellites. Additionally, we propose a pseudo-synchronous model aggregation strategy to dynamically schedule model aggregation for compensating model staleness. To further demonstrate the effectiveness of the FedSN, we evaluate it using space modulation recognition and remote sensing image classification tasks by leveraging the data from real-world satellite networks. Extensive experimental results demonstrate that FedSN framework achieves higher accuracy, lower computing, and communication overhead than the state-of-the-art benchmarks and the effectiveness of each components in FedSN.
comment: 15 pages, 17 figures
♻ ☆ Social Dynamics of Consumer Response: A Unified Framework Integrating Statistical Physics and Marketing Dynamics
Understanding how consumers react to advertising inputs is essential for marketers aiming to optimize advertising strategies and improve campaign effectiveness. This study examines the complex nature of consumer behaviour by applying theoretical frameworks derived from physics and social psychology. We present an innovative equation that captures the relation between spending on advertising and consumer response, using concepts such as symmetries, scaling laws, and phase transitions. By validating our equation against well-known models such as the Michaelis-Menten and Hill equations, we prove its effectiveness in accurately representing the complexity of consumer response dynamics. The analysis emphasizes the importance of key model parameters, such as marketing effectiveness, response sensitivity, and behavioural sensitivity, in influencing consumer behaviour. The work explores the practical implications for advertisers and marketers, as well as discussing the limitations and future research directions. In summary, this study provides a thorough framework for comprehending and forecasting consumer reactions to advertising, which has implications for optimizing advertising strategies and allocating resources.
♻ ☆ Theories of synaptic memory consolidation and intelligent plasticity for continual learning
Humans and animals learn throughout life. Such continual learning is crucial for intelligence. In this chapter, we examine the pivotal role plasticity mechanisms with complex internal synaptic dynamics could play in enabling this ability in neural networks. By surveying theoretical research, we highlight two fundamental enablers for continual learning. First, synaptic plasticity mechanisms must maintain and evolve an internal state over several behaviorally relevant timescales. Second, plasticity algorithms must leverage the internal state to intelligently regulate plasticity at individual synapses to facilitate the seamless integration of new memories while avoiding detrimental interference with existing ones. Our chapter covers successful applications of these principles to deep neural networks and underscores the significance of synaptic metaplasticity in sustaining continual learning capabilities. Finally, we outline avenues for further research to understand the brain's superb continual learning abilities and harness similar mechanisms for artificial intelligence systems.
comment: An introductory-level book chapter. 35 pages, 14 figures
Multimedia
☆ Parallel Backpropagation for Inverse of a Convolution with Application to Normalizing Flows
Inverse of an invertible convolution is an important operation that comes up in Normalizing Flows, Image Deblurring, etc. The naive algorithm for backpropagation of this operation using Gaussian elimination has running time $O(n^3)$ where $n$ is the number of pixels in the image. We give a fast parallel backpropagation algorithm with running time $O(\sqrt{n})$ for a square image and provide a GPU implementation of the same. Inverse Convolutions are usually used in Normalizing Flows in the sampling pass, making them slow. We propose to use Inverse Convolutions in the forward (image to latent vector) pass of the Normalizing flow. Since the sampling pass is the inverse of the forward pass, it will use convolutions only, resulting in efficient sampling times. We use our parallel backpropagation algorithm for optimizing the inverse convolution layer resulting in fast training times also. We implement this approach in various Normalizing Flow backbones, resulting in our Inverse-Flow models. We benchmark Inverse-Flow on standard datasets and show significantly improved sampling times with similar bits per dimension compared to previous models.
comment: Preprint
☆ RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks. MLLMs involve significant external knowledge within their parameters; however, it is challenging to continually update these models with the latest knowledge, which involves huge computational costs and poor interpretability. Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs. In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs. Considering the redundant information within vision modality, we first leverage the question to instruct the extraction of visual information through interactions with one set of learnable queries, minimizing irrelevant interference during retrieval and generation. Besides, we introduce a pre-trained multimodal adaptive fusion module to achieve question text-to-multimodal retrieval and integration of multimodal knowledge by projecting visual and language modalities into a unified semantic space. Furthermore, we present an Adaptive Selection Knowledge Generation (ASKG) strategy to train the generator to autonomously discern the relevance of retrieved knowledge, which realizes excellent denoising performance. Extensive experiments on open multimodal question-answering datasets demonstrate that RA-BLIP achieves significant performance and surpasses the state-of-the-art retrieval-augmented models.
comment: 10 pages, 6 figures, Journal
♻ ☆ Movie101v2: Improved Movie Narration Benchmark
Automatic movie narration aims to generate video-aligned plot descriptions to assist visually impaired audiences. Unlike standard video captioning, it involves not only describing key visual details but also inferring plots that unfold across multiple movie shots, presenting distinct and complex challenges. To advance this field, we introduce Movie101v2, a large-scale, bilingual dataset with enhanced data quality specifically designed for movie narration. Revisiting the task, we propose breaking down the ultimate goal of automatic movie narration into three progressive stages, offering a clear roadmap with corresponding evaluation metrics. Based on our new benchmark, we baseline a range of large vision-language models, including GPT-4V, and conduct an in-depth analysis of the challenges in narration generation. Our findings highlight that achieving applicable movie narration generation is a fascinating goal that requires significant research.
♻ ☆ Perceptual Quality Assessment of Octree-RAHT Encoded 3D Point Clouds
No-reference bitstream-layer point cloud quality assessment (PCQA) can be deployed without full decoding at any network node to achieve real-time quality monitoring. In this work, we focus on the PCQA problem dedicated to Octree-RAHT encoding mode. First, to address the issue that existing PCQA databases have a small scale and limited distortion levels, we establish the WPC5.0 database which is the first one dedicated to Octree-RAHT encoding mode with a scale of 400 distorted point clouds (PCs) including 4 geometric multiplied by 5 attitude distortion levels. Then, we propose the first PCQA model dedicated to Octree-RAHT encoding mode by parsing PC bitstreams without full decoding. The model introduces texture bitrate (TBPP) to predict texture complexity (TC) and further derives the texture distortion factor. In addition, the Geometric Quantization Parameter (PQS) is used to estimate the geometric distortion factor, which is then integrated into the model along with the texture distortion factor to obtain the proposed PCQA model named streamPCQ-OR. The proposed model has been compared with other advanced PCQA methods on the WPC5.0, BASICS and M-PCCD databases, and experimental results show that our model has excellent performance while having very low computational complexity, providing a reliable choice for time-critical applications. To facilitate subsequent research, the database and source code will be publicly released at https://github.com/qdushl/Waterloo-Point-Cloud-Database-5.0.
♻ ☆ Evaluating Semantic Variation in Text-to-Image Synthesis: A Causal Perspective
Accurate interpretation and visualization of human instructions are crucial for text-to-image (T2I) synthesis. However, current models struggle to capture semantic variations from word order changes, and existing evaluations, relying on indirect metrics like text-image similarity, fail to reliably assess these challenges. This often obscures poor performance on complex or uncommon linguistic patterns by the focus on frequent word combinations. To address these deficiencies, we propose a novel metric called SemVarEffect and a benchmark named SemVarBench, designed to evaluate the causality between semantic variations in inputs and outputs in T2I synthesis. Semantic variations are achieved through two types of linguistic permutations, while avoiding easily predictable literal variations. Experiments reveal that the CogView-3-Plus and Ideogram 2 performed the best, achieving a score of 0.2/1. Semantic variations in object relations are less understood than attributes, scoring 0.07/1 compared to 0.17-0.19/1. We found that cross-modal alignment in UNet or Transformers plays a crucial role in handling semantic variations, a factor previously overlooked by a focus on textual encoders. Our work establishes an effective evaluation framework that advances the T2I synthesis community's exploration of human instruction understanding. Our benchmark and code are available at https://github.com/zhuxiangru/SemVarBench .
comment: The only change in the current version update is the replacement of the template with a more precise one
♻ ☆ MixEval-X: Any-to-Any Evaluations from Real-World Data Mixtures
Perceiving and generating diverse modalities are crucial for AI models to effectively learn from and engage with real-world signals, necessitating reliable evaluations for their development. We identify two major issues in current evaluations: (1) inconsistent standards, shaped by different communities with varying protocols and maturity levels; and (2) significant query, grading, and generalization biases. To address these, we introduce MixEval-X, the first any-to-any, real-world benchmark designed to optimize and standardize evaluations across diverse input and output modalities. We propose multi-modal benchmark mixture and adaptation-rectification pipelines to reconstruct real-world task distributions, ensuring evaluations generalize effectively to real-world use cases. Extensive meta-evaluations show our approach effectively aligns benchmark samples with real-world task distributions. Meanwhile, MixEval-X's model rankings correlate strongly with that of crowd-sourced real-world evaluations (up to 0.98) while being much more efficient. We provide comprehensive leaderboards to rerank existing models and organizations and offer insights to enhance understanding of multi-modal evaluations and inform future research.
♻ ☆ Synthesizing Sentiment-Controlled Feedback For Multimodal Text and Image Data
The ability to generate sentiment-controlled feedback in response to multimodal inputs comprising text and images addresses a critical gap in human-computer interaction. This capability allows systems to provide empathetic, accurate, and engaging responses, with useful applications in education, healthcare, marketing, and customer service. To this end, we have constructed a large-scale Controllable Multimodal Feedback Synthesis (CMFeed) dataset and propose a controllable feedback synthesis system. The system features an encoder, decoder, and controllability block for textual and visual inputs. It extracts features using a transformer and Faster R-CNN networks, combining them to generate feedback. The CMFeed dataset includes images, texts, reactions to the posts, human comments with relevance scores, and reactions to these comments. These reactions train the model to produce feedback with specified sentiments, achieving a sentiment classification accuracy of 77.23\%, which is 18.82\% higher than the accuracy without controllability. The system also incorporates a similarity module for assessing feedback relevance through rank-based metrics and an interpretability technique to analyze the contributions of textual and visual features during feedback generation. Access to the CMFeed dataset and the system's code is available at https://github.com/MIntelligence-Group/CMFeed.
Computer Vision and Pattern Recognition
☆ MMAD-Purify: A Precision-Optimized Framework for Efficient and Scalable Multi-Modal Attacks
Neural networks have achieved remarkable performance across a wide range of tasks, yet they remain susceptible to adversarial perturbations, which pose significant risks in safety-critical applications. With the rise of multimodality, diffusion models have emerged as powerful tools not only for generative tasks but also for various applications such as image editing, inpainting, and super-resolution. However, these models still lack robustness due to limited research on attacking them to enhance their resilience. Traditional attack techniques, such as gradient-based adversarial attacks and diffusion model-based methods, are hindered by computational inefficiencies and scalability issues due to their iterative nature. To address these challenges, we introduce an innovative framework that leverages the distilled backbone of diffusion models and incorporates a precision-optimized noise predictor to enhance the effectiveness of our attack framework. This approach not only enhances the attack's potency but also significantly reduces computational costs. Our framework provides a cutting-edge solution for multi-modal adversarial attacks, ensuring reduced latency and the generation of high-fidelity adversarial examples with superior success rates. Furthermore, we demonstrate that our framework achieves outstanding transferability and robustness against purification defenses, outperforming existing gradient-based attack models in both effectiveness and efficiency.
☆ Your Interest, Your Summaries: Query-Focused Long Video Summarization
Generating a concise and informative video summary from a long video is important, yet subjective due to varying scene importance. Users' ability to specify scene importance through text queries enhances the relevance of such summaries. This paper introduces an approach for query-focused video summarization, aiming to align video summaries closely with user queries. To this end, we propose the Fully Convolutional Sequence Network with Attention (FCSNA-QFVS), a novel approach designed for this task. Leveraging temporal convolutional and attention mechanisms, our model effectively extracts and highlights relevant content based on user-specified queries. Experimental validation on a benchmark dataset for query-focused video summarization demonstrates the effectiveness of our approach.
comment: To appear at the 18th International Conference on Control, Automation, Robotics and Vision (ICARCV), December 2024, Dubai, UAE
☆ Self Supervised Deep Learning for Robot Grasping
Learning Based Robot Grasping currently involves the use of labeled data. This approach has two major disadvantages. Firstly, labeling data for grasp points and angles is a strenuous process, so the dataset remains limited. Secondly, human labeling is prone to bias due to semantics. In order to solve these problems we propose a simpler self-supervised robotic setup, that will train a Convolutional Neural Network (CNN). The robot will label and collect the data during the training process. The idea is to make a robot that is less costly, small and easily maintainable in a lab setup. The robot will be trained on a large data set for several hundred hours and then the trained Neural Network can be mapped onto a larger grasping robot.
☆ SAMReg: SAM-enabled Image Registration with ROI-based Correspondence
This paper describes a new spatial correspondence representation based on paired regions-of-interest (ROIs), for medical image registration. The distinct properties of the proposed ROI-based correspondence are discussed, in the context of potential benefits in clinical applications following image registration, compared with alternative correspondence-representing approaches, such as those based on sampled displacements and spatial transformation functions. These benefits include a clear connection between learning-based image registration and segmentation, which in turn motivates two cases of image registration approaches using (pre-)trained segmentation networks. Based on the segment anything model (SAM), a vision foundation model for segmentation, we develop a new registration algorithm SAMReg, which does not require any training (or training data), gradient-based fine-tuning or prompt engineering. The proposed SAMReg models are evaluated across five real-world applications, including intra-subject registration tasks with cardiac MR and lung CT, challenging inter-subject registration scenarios with prostate MR and retinal imaging, and an additional evaluation with a non-clinical example with aerial image registration. The proposed methods outperform both intensity-based iterative algorithms and DDF-predicting learning-based networks across tested metrics including Dice and target registration errors on anatomical structures, and further demonstrates competitive performance compared to weakly-supervised registration approaches that rely on fully-segmented training data. Open source code and examples are available at: https://github.com/sqhuang0103/SAMReg.git.
☆ Efficient Vision-Language Models by Summarizing Visual Tokens into Compact Registers
Recent advancements in vision-language models (VLMs) have expanded their potential for real-world applications, enabling these models to perform complex reasoning on images. In the widely used fully autoregressive transformer-based models like LLaVA, projected visual tokens are prepended to textual tokens. Oftentimes, visual tokens are significantly more than prompt tokens, resulting in increased computational overhead during both training and inference. In this paper, we propose Visual Compact Token Registers (Victor), a method that reduces the number of visual tokens by summarizing them into a smaller set of register tokens. Victor adds a few learnable register tokens after the visual tokens and summarizes the visual information into these registers using the first few layers in the language tower of VLMs. After these few layers, all visual tokens are discarded, significantly improving computational efficiency for both training and inference. Notably, our method is easy to implement and requires a small number of new trainable parameters with minimal impact on model performance. In our experiment, with merely 8 visual registers--about 1% of the original tokens--Victor shows less than a 4% accuracy drop while reducing the total training time by 43% and boosting the inference throughput by 3.3X.
☆ FaceSaliencyAug: Mitigating Geographic, Gender and Stereotypical Biases via Saliency-Based Data Augmentation
Geographical, gender and stereotypical biases in computer vision models pose significant challenges to their performance and fairness. {In this study, we present an approach named FaceSaliencyAug aimed at addressing the gender bias in} {Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). Leveraging the salient regions} { of faces detected by saliency, the propose approach mitigates geographical and stereotypical biases } {in the datasets. FaceSaliencyAug} randomly selects masks from a predefined search space and applies them to the salient region of face images, subsequently restoring the original image with masked salient region. {The proposed} augmentation strategy enhances data diversity, thereby improving model performance and debiasing effects. We quantify dataset diversity using Image Similarity Score (ISS) across five datasets, including Flickr Faces HQ (FFHQ), WIKI, IMDB, Labelled Faces in the Wild (LFW), UTK Faces, and Diverse Dataset. The proposed approach demonstrates superior diversity metrics, as evaluated by ISS-intra and ISS-inter algorithms. Furthermore, we evaluate the effectiveness of our approach in mitigating gender bias on CEO, Engineer, Nurse, and School Teacher datasets. We use the Image-Image Association Score (IIAS) to measure gender bias in these occupations. Our experiments reveal a reduction in gender bias for both CNNs and ViTs, indicating the efficacy of our method in promoting fairness and inclusivity in computer vision models.
comment: Accepted at Image Signal and Video processing
☆ On Partial Prototype Collapse in the DINO Family of Self-Supervised Methods BMVC 2024
A prominent self-supervised learning paradigm is to model the representations as clusters, or more generally as a mixture model. Learning to map the data samples to compact representations and fitting the mixture model simultaneously leads to the representation collapse problem. Regularizing the distribution of data points over the clusters is the prevalent strategy to avoid this issue. While this is sufficient to prevent full representation collapse, we show that a partial prototype collapse problem still exists in the DINO family of methods, that leads to significant redundancies in the prototypes. Such prototype redundancies serve as shortcuts for the method to achieve a marginal latent class distribution that matches the prescribed prior. We show that by encouraging the model to use diverse prototypes, the partial prototype collapse can be mitigated. Effective utilization of the prototypes enables the methods to learn more fine-grained clusters, encouraging more informative representations. We demonstrate that this is especially beneficial when pre-training on a long-tailed fine-grained dataset.
comment: First version of the paper appeared in OpenReview on 22 Sep 2023. Accepted to BMVC 2024
☆ Learning Multimodal Cues of Children's Uncertainty SIGDIAL 2023
Understanding uncertainty plays a critical role in achieving common ground (Clark et al.,1983). This is especially important for multimodal AI systems that collaborate with users to solve a problem or guide the user through a challenging concept. In this work, for the first time, we present a dataset annotated in collaboration with developmental and cognitive psychologists for the purpose of studying nonverbal cues of uncertainty. We then present an analysis of the data, studying different roles of uncertainty and its relationship with task difficulty and performance. Lastly, we present a multimodal machine learning model that can predict uncertainty given a real-time video clip of a participant, which we find improves upon a baseline multimodal transformer model. This work informs research on cognitive coordination between human-human and human-AI and has broad implications for gesture understanding and generation. The anonymized version of our data and code will be publicly available upon the completion of the required consent forms and data sheets.
comment: SIGDIAL 2023
☆ Human Action Anticipation: A Survey
Predicting future human behavior is an increasingly popular topic in computer vision, driven by the interest in applications such as autonomous vehicles, digital assistants and human-robot interactions. The literature on behavior prediction spans various tasks, including action anticipation, activity forecasting, intent prediction, goal prediction, and so on. Our survey aims to tie together this fragmented literature, covering recent technical innovations as well as the development of new large-scale datasets for model training and evaluation. We also summarize the widely-used metrics for different tasks and provide a comprehensive performance comparison of existing approaches on eleven action anticipation datasets. This survey serves as not only a reference for contemporary methodologies in action anticipation, but also a guideline for future research direction of this evolving landscape.
comment: 30 pages, 9 figures, 12 tables
☆ Segmentation of Pediatric Brain Tumors using a Radiologically informed, Deep Learning Cascade
Monitoring of Diffuse Intrinsic Pontine Glioma (DIPG) and Diffuse Midline Glioma (DMG) brain tumors in pediatric patients is key for assessment of treatment response. Response Assessment in Pediatric Neuro-Oncology (RAPNO) guidelines recommend the volumetric measurement of these tumors using MRI. Segmentation challenges, such as the Brain Tumor Segmentation (BraTS) Challenge, promote development of automated approaches which are replicable, generalizable and accurate, to aid in these tasks. The current study presents a novel adaptation of existing nnU-Net approaches for pediatric brain tumor segmentation, submitted to the BraTS-PEDs 2024 challenge. We apply an adapted nnU-Net with hierarchical cascades to the segmentation task of the BraTS-PEDs 2024 challenge. The residual encoder variant of nnU-Net, used as our baseline model, already provides high quality segmentations. We incorporate multiple changes to the implementation of nnU-Net and devise a novel two-stage cascaded nnU-Net to segment the substructures of brain tumors from coarse to fine. Using outputs from the nnU-Net Residual Encoder (trained to segment CC, ED, ET and NET tumor labels from T1w, T1w-CE, T2w and T2-FLAIR MRI), these are passed to two additional models one classifying ET versus NET and a second classifying CC vs ED using cascade learning. We use radiological guidelines to steer which multi parametric MRI (mpMRI) to use in these cascading models. Compared to a default nnU-Net and an ensembled nnU-net as baseline approaches, our novel method provides robust segmentations for the BraTS-PEDs 2024 challenge, achieving mean Dice scores of 0.657, 0.904, 0.703, and 0.967, and HD95 of 76.2, 10.1, 111.0, and 12.3 for the ET, NET, CC and ED, respectively.
☆ Probabilistic U-Net with Kendall Shape Spaces for Geometry-Aware Segmentations of Images
One of the fundamental problems in computer vision is image segmentation, the task of detecting distinct regions or objects in given images. Deep Neural Networks (DNN) have been shown to be very effective in segmenting challenging images, producing convincing segmentations. There is further need for probabilistic DNNs that can reflect the uncertainties from the input images and the models into the computed segmentations, in other words, new DNNs that can generate multiple plausible segmentations and their distributions depending on the input or the model uncertainties. While there are existing probabilistic segmentation models, many of them do not take into account the geometry or shape underlying the segmented regions. In this paper, we propose a probabilistic image segmentation model that can incorporate the geometry of a segmentation. Our proposed model builds on the Probabilistic U-Net of \cite{kohl2018probabilistic} to generate probabilistic segmentations, i.e.\! multiple likely segmentations for an input image. Our model also adopts the Kendall Shape Variational Auto-Encoder of \cite{vadgama2023kendall} to encode a Kendall shape space in the latent variable layers of the prior and posterior networks of the Probabilistic U-Net. Incorporating the shape space in this manner leads to a more robust segmentation with spatially coherent regions, respecting the underlying geometry in the input images.
comment: 22 pages, 13 figures
☆ Reproducibility study of "LICO: Explainable Models with Language-Image Consistency"
The growing reproducibility crisis in machine learning has brought forward a need for careful examination of research findings. This paper investigates the claims made by Lei et al. (2023) regarding their proposed method, LICO, for enhancing post-hoc interpretability techniques and improving image classification performance. LICO leverages natural language supervision from a vision-language model to enrich feature representations and guide the learning process. We conduct a comprehensive reproducibility study, employing (Wide) ResNets and established interpretability methods like Grad-CAM and RISE. We were mostly unable to reproduce the authors' results. In particular, we did not find that LICO consistently led to improved classification performance or improvements in quantitative and qualitative measures of interpretability. Thus, our findings highlight the importance of rigorous evaluation and transparent reporting in interpretability research.
comment: 15 pages, 2 figures, Machine Learning Reproducibility Challenge 2024
☆ Debiasing Large Vision-Language Models by Ablating Protected Attribute Representations NeurIPS
Large Vision Language Models (LVLMs) such as LLaVA have demonstrated impressive capabilities as general-purpose chatbots that can engage in conversations about a provided input image. However, their responses are influenced by societal biases present in their training datasets, leading to undesirable differences in how the model responds when presented with images depicting people of different demographics. In this work, we propose a novel debiasing framework for LVLMs by directly ablating biased attributes during text generation to avoid generating text related to protected attributes, or even representing them internally. Our method requires no training and a relatively small amount of representative biased outputs (~1000 samples). Our experiments show that not only can we can minimize the propensity of LVLMs to generate text related to protected attributes, but we can even use synthetic data to inform the ablation while retaining captioning performance on real data such as COCO. Furthermore, we find the resulting generations from a debiased LVLM exhibit similar accuracy as a baseline biased model, showing that debiasing effects can be achieved without sacrificing model performance.
comment: NeurIPS workshop on SafeGenAI, 10 pages, 2 figures
☆ Satellite Streaming Video QoE Prediction: A Real-World Subjective Database and Network-Level Prediction Models
Demand for streaming services, including satellite, continues to exhibit unprecedented growth. Internet Service Providers find themselves at the crossroads of technological advancements and rising customer expectations. To stay relevant and competitive, these ISPs must ensure their networks deliver optimal video streaming quality, a key determinant of user satisfaction. Towards this end, it is important to have accurate Quality of Experience prediction models in place. However, achieving robust performance by these models requires extensive data sets labeled by subjective opinion scores on videos impaired by diverse playback disruptions. To bridge this data gap, we introduce the LIVE-Viasat Real-World Satellite QoE Database. This database consists of 179 videos recorded from real-world streaming services affected by various authentic distortion patterns. We also conducted a comprehensive subjective study involving 54 participants, who contributed both continuous-time opinion scores and endpoint (retrospective) QoE scores. Our analysis sheds light on various determinants influencing subjective QoE, such as stall events, spatial resolutions, bitrate, and certain network parameters. We demonstrate the usefulness of this unique new resource by evaluating the efficacy of prevalent QoE-prediction models on it. We also created a new model that maps the network parameters to predicted human perception scores, which can be used by ISPs to optimize the video streaming quality of their networks. Our proposed model, which we call SatQA, is able to accurately predict QoE using only network parameters, without any access to pixel data or video-specific metadata, estimated by Spearman's Rank Order Correlation Coefficient (SROCC), Pearson Linear Correlation Coefficient (PLCC), and Root Mean Squared Error (RMSE), indicating high accuracy and reliability.
☆ Fluid: Scaling Autoregressive Text-to-image Generative Models with Continuous Tokens
Scaling up autoregressive models in vision has not proven as beneficial as in large language models. In this work, we investigate this scaling problem in the context of text-to-image generation, focusing on two critical factors: whether models use discrete or continuous tokens, and whether tokens are generated in a random or fixed raster order using BERT- or GPT-like transformer architectures. Our empirical results show that, while all models scale effectively in terms of validation loss, their evaluation performance -- measured by FID, GenEval score, and visual quality -- follows different trends. Models based on continuous tokens achieve significantly better visual quality than those using discrete tokens. Furthermore, the generation order and attention mechanisms significantly affect the GenEval score: random-order models achieve notably better GenEval scores compared to raster-order models. Inspired by these findings, we train Fluid, a random-order autoregressive model on continuous tokens. Fluid 10.5B model achieves a new state-of-the-art zero-shot FID of 6.16 on MS-COCO 30K, and 0.69 overall score on the GenEval benchmark. We hope our findings and results will encourage future efforts to further bridge the scaling gap between vision and language models.
comment: Tech report
☆ UniDrive: Towards Universal Driving Perception Across Camera Configurations
Vision-centric autonomous driving has demonstrated excellent performance with economical sensors. As the fundamental step, 3D perception aims to infer 3D information from 2D images based on 3D-2D projection. This makes driving perception models susceptible to sensor configuration (e.g., camera intrinsics and extrinsics) variations. However, generalizing across camera configurations is important for deploying autonomous driving models on different car models. In this paper, we present UniDrive, a novel framework for vision-centric autonomous driving to achieve universal perception across camera configurations. We deploy a set of unified virtual cameras and propose a ground-aware projection method to effectively transform the original images into these unified virtual views. We further propose a virtual configuration optimization method by minimizing the expected projection error between original cameras and virtual cameras. The proposed virtual camera projection can be applied to existing 3D perception methods as a plug-and-play module to mitigate the challenges posed by camera parameter variability, resulting in more adaptable and reliable driving perception models. To evaluate the effectiveness of our framework, we collect a dataset on Carla by driving the same routes while only modifying the camera configurations. Experimental results demonstrate that our method trained on one specific camera configuration can generalize to varying configurations with minor performance degradation.
comment: Preprint; 14 pages, 5 figures, 2 tables; Code at https://github.com/ywyeli/UniDrive
☆ DepthSplat: Connecting Gaussian Splatting and Depth
Gaussian splatting and single/multi-view depth estimation are typically studied in isolation. In this paper, we present DepthSplat to connect Gaussian splatting and depth estimation and study their interactions. More specifically, we first contribute a robust multi-view depth model by leveraging pre-trained monocular depth features, leading to high-quality feed-forward 3D Gaussian splatting reconstructions. We also show that Gaussian splatting can serve as an unsupervised pre-training objective for learning powerful depth models from large-scale unlabelled datasets. We validate the synergy between Gaussian splatting and depth estimation through extensive ablation and cross-task transfer experiments. Our DepthSplat achieves state-of-the-art performance on ScanNet, RealEstate10K and DL3DV datasets in terms of both depth estimation and novel view synthesis, demonstrating the mutual benefits of connecting both tasks. Our code, models, and video results are available at https://haofeixu.github.io/depthsplat/.
comment: Project page: https://haofeixu.github.io/depthsplat/
☆ PUMA: Empowering Unified MLLM with Multi-granular Visual Generation
Recent advancements in multimodal foundation models have yielded significant progress in vision-language understanding. Initial attempts have also explored the potential of multimodal large language models (MLLMs) for visual content generation. However, existing works have insufficiently addressed the varying granularity demands of different image generation tasks within a unified MLLM paradigm - from the diversity required in text-to-image generation to the precise controllability needed in image manipulation. In this work, we propose PUMA, emPowering Unified MLLM with Multi-grAnular visual generation. PUMA unifies multi-granular visual features as both inputs and outputs of MLLMs, elegantly addressing the different granularity requirements of various image generation tasks within a unified MLLM framework. Following multimodal pretraining and task-specific instruction tuning, PUMA demonstrates proficiency in a wide range of multimodal tasks. This work represents a significant step towards a truly unified MLLM capable of adapting to the granularity demands of various visual tasks. The code and model will be released in https://github.com/rongyaofang/PUMA.
comment: Project page: https://rongyaofang.github.io/puma/
☆ VLM-Grounder: A VLM Agent for Zero-Shot 3D Visual Grounding
3D visual grounding is crucial for robots, requiring integration of natural language and 3D scene understanding. Traditional methods depending on supervised learning with 3D point clouds are limited by scarce datasets. Recently zero-shot methods leveraging LLMs have been proposed to address the data issue. While effective, these methods only use object-centric information, limiting their ability to handle complex queries. In this work, we present VLM-Grounder, a novel framework using vision-language models (VLMs) for zero-shot 3D visual grounding based solely on 2D images. VLM-Grounder dynamically stitches image sequences, employs a grounding and feedback scheme to find the target object, and uses a multi-view ensemble projection to accurately estimate 3D bounding boxes. Experiments on ScanRefer and Nr3D datasets show VLM-Grounder outperforms previous zero-shot methods, achieving 51.6% Acc@0.25 on ScanRefer and 48.0% Acc on Nr3D, without relying on 3D geometry or object priors. Codes are available at https://github.com/OpenRobotLab/VLM-Grounder .
comment: CoRL 2024 Camera Ready. 25 pages. A novel zero-shot 3D visual grounding framework based solely on 2D images
☆ $γ-$MoD: Exploring Mixture-of-Depth Adaptation for Multimodal Large Language Models
Despite the significant progress in multimodal large language models (MLLMs), their high computational cost remains a barrier to real-world deployment. Inspired by the mixture of depths (MoDs) in natural language processing, we aim to address this limitation from the perspective of ``activated tokens''. Our key insight is that if most tokens are redundant for the layer computation, then can be skipped directly via the MoD layer. However, directly converting the dense layers of MLLMs to MoD layers leads to substantial performance degradation. To address this issue, we propose an innovative MoD adaptation strategy for existing MLLMs called $\gamma$-MoD. In $\gamma$-MoD, a novel metric is proposed to guide the deployment of MoDs in the MLLM, namely rank of attention maps (ARank). Through ARank, we can effectively identify which layer is redundant and should be replaced with the MoD layer. Based on ARank, we further propose two novel designs to maximize the computational sparsity of MLLM while maintaining its performance, namely shared vision-language router and masked routing learning. With these designs, more than 90% dense layers of the MLLM can be effectively converted to the MoD ones. To validate our method, we apply it to three popular MLLMs, and conduct extensive experiments on 9 benchmark datasets. Experimental results not only validate the significant efficiency benefit of $\gamma$-MoD to existing MLLMs but also confirm its generalization ability on various MLLMs. For example, with a minor performance drop, i.e., -1.5%, $\gamma$-MoD can reduce the training and inference time of LLaVA-HR by 31.0% and 53.2%, respectively.
☆ Can MLLMs Understand the Deep Implication Behind Chinese Images?
As the capabilities of Multimodal Large Language Models (MLLMs) continue to improve, the need for higher-order capability evaluation of MLLMs is increasing. However, there is a lack of work evaluating MLLM for higher-order perception and understanding of Chinese visual content. To fill the gap, we introduce the **C**hinese **I**mage **I**mplication understanding **Bench**mark, **CII-Bench**, which aims to assess the higher-order perception and understanding capabilities of MLLMs for Chinese images. CII-Bench stands out in several ways compared to existing benchmarks. Firstly, to ensure the authenticity of the Chinese context, images in CII-Bench are sourced from the Chinese Internet and manually reviewed, with corresponding answers also manually crafted. Additionally, CII-Bench incorporates images that represent Chinese traditional culture, such as famous Chinese traditional paintings, which can deeply reflect the model's understanding of Chinese traditional culture. Through extensive experiments on CII-Bench across multiple MLLMs, we have made significant findings. Initially, a substantial gap is observed between the performance of MLLMs and humans on CII-Bench. The highest accuracy of MLLMs attains 64.4%, where as human accuracy averages 78.2%, peaking at an impressive 81.0%. Subsequently, MLLMs perform worse on Chinese traditional culture images, suggesting limitations in their ability to understand high-level semantics and lack a deep knowledge base of Chinese traditional culture. Finally, it is observed that most models exhibit enhanced accuracy when image emotion hints are incorporated into the prompts. We believe that CII-Bench will enable MLLMs to gain a better understanding of Chinese semantics and Chinese-specific images, advancing the journey towards expert artificial general intelligence (AGI). Our project is publicly available at https://cii-bench.github.io/.
comment: 32 pages,18 figures. Project Page: https://cii-bench.github.io/ Code: https://github.com/MING_X/CII-Bench Dataset: https://huggingface.co/datasets/m-a-p/CII-Bench
☆ Retrospective Learning from Interactions
Multi-turn interactions between large language models (LLMs) and users naturally include implicit feedback signals. If an LLM responds in an unexpected way to an instruction, the user is likely to signal it by rephrasing the request, expressing frustration, or pivoting to an alternative task. Such signals are task-independent and occupy a relatively constrained subspace of language, allowing the LLM to identify them even if it fails on the actual task. This creates an avenue for continually learning from interactions without additional annotations. We introduce ReSpect, a method to learn from such signals in past interactions via retrospection. We deploy ReSpect in a new multimodal interaction scenario, where humans instruct an LLM to solve an abstract reasoning task with a combinatorial solution space. Through thousands of interactions with humans, we show how ReSpect gradually improves task completion rate from 31% to 82%, all without any external annotation.
☆ Differentiable Robot Rendering
Vision foundation models trained on massive amounts of visual data have shown unprecedented reasoning and planning skills in open-world settings. A key challenge in applying them to robotic tasks is the modality gap between visual data and action data. We introduce differentiable robot rendering, a method allowing the visual appearance of a robot body to be directly differentiable with respect to its control parameters. Our model integrates a kinematics-aware deformable model and Gaussians Splatting and is compatible with any robot form factors and degrees of freedom. We demonstrate its capability and usage in applications including reconstruction of robot poses from images and controlling robots through vision language models. Quantitative and qualitative results show that our differentiable rendering model provides effective gradients for robotic control directly from pixels, setting the foundation for the future applications of vision foundation models in robotics.
comment: Project Page: https://drrobot.cs.columbia.edu/
☆ Janus: Decoupling Visual Encoding for Unified Multimodal Understanding and Generation
In this paper, we introduce Janus, an autoregressive framework that unifies multimodal understanding and generation. Prior research often relies on a single visual encoder for both tasks, such as Chameleon. However, due to the differing levels of information granularity required by multimodal understanding and generation, this approach can lead to suboptimal performance, particularly in multimodal understanding. To address this issue, we decouple visual encoding into separate pathways, while still leveraging a single, unified transformer architecture for processing. The decoupling not only alleviates the conflict between the visual encoder's roles in understanding and generation, but also enhances the framework's flexibility. For instance, both the multimodal understanding and generation components can independently select their most suitable encoding methods. Experiments show that Janus surpasses previous unified model and matches or exceeds the performance of task-specific models. The simplicity, high flexibility, and effectiveness of Janus make it a strong candidate for next-generation unified multimodal models.
comment: Technical Report
☆ D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement
We introduce D-FINE, a powerful real-time object detector that achieves outstanding localization precision by redefining the bounding box regression task in DETR models. D-FINE comprises two key components: Fine-grained Distribution Refinement (FDR) and Global Optimal Localization Self-Distillation (GO-LSD). FDR transforms the regression process from predicting fixed coordinates to iteratively refining probability distributions, providing a fine-grained intermediate representation that significantly enhances localization accuracy. GO-LSD is a bidirectional optimization strategy that transfers localization knowledge from refined distributions to shallower layers through self-distillation, while also simplifying the residual prediction tasks for deeper layers. Additionally, D-FINE incorporates lightweight optimizations in computationally intensive modules and operations, achieving a better balance between speed and accuracy. Specifically, D-FINE-L / X achieves 54.0% / 55.8% AP on the COCO dataset at 124 / 78 FPS on an NVIDIA T4 GPU. When pretrained on Objects365, D-FINE-L / X attains 57.1% / 59.3% AP, surpassing all existing real-time detectors. Furthermore, our method significantly enhances the performance of a wide range of DETR models by up to 5.3% AP with negligible extra parameters and training costs. Our code and pretrained models: https://github.com/Peterande/D-FINE.
☆ VidPanos: Generative Panoramic Videos from Casual Panning Videos SIGGRAPH
Panoramic image stitching provides a unified, wide-angle view of a scene that extends beyond the camera's field of view. Stitching frames of a panning video into a panoramic photograph is a well-understood problem for stationary scenes, but when objects are moving, a still panorama cannot capture the scene. We present a method for synthesizing a panoramic video from a casually-captured panning video, as if the original video were captured with a wide-angle camera. We pose panorama synthesis as a space-time outpainting problem, where we aim to create a full panoramic video of the same length as the input video. Consistent completion of the space-time volume requires a powerful, realistic prior over video content and motion, for which we adapt generative video models. Existing generative models do not, however, immediately extend to panorama completion, as we show. We instead apply video generation as a component of our panorama synthesis system, and demonstrate how to exploit the strengths of the models while minimizing their limitations. Our system can create video panoramas for a range of in-the-wild scenes including people, vehicles, and flowing water, as well as stationary background features.
comment: Project page at https://vidpanos.github.io/. To appear at SIGGRAPH Asia 2024 (conference track)
☆ DreamVideo-2: Zero-Shot Subject-Driven Video Customization with Precise Motion Control
Recent advances in customized video generation have enabled users to create videos tailored to both specific subjects and motion trajectories. However, existing methods often require complicated test-time fine-tuning and struggle with balancing subject learning and motion control, limiting their real-world applications. In this paper, we present DreamVideo-2, a zero-shot video customization framework capable of generating videos with a specific subject and motion trajectory, guided by a single image and a bounding box sequence, respectively, and without the need for test-time fine-tuning. Specifically, we introduce reference attention, which leverages the model's inherent capabilities for subject learning, and devise a mask-guided motion module to achieve precise motion control by fully utilizing the robust motion signal of box masks derived from bounding boxes. While these two components achieve their intended functions, we empirically observe that motion control tends to dominate over subject learning. To address this, we propose two key designs: 1) the masked reference attention, which integrates a blended latent mask modeling scheme into reference attention to enhance subject representations at the desired positions, and 2) a reweighted diffusion loss, which differentiates the contributions of regions inside and outside the bounding boxes to ensure a balance between subject and motion control. Extensive experimental results on a newly curated dataset demonstrate that DreamVideo-2 outperforms state-of-the-art methods in both subject customization and motion control. The dataset, code, and models will be made publicly available.
comment: Project page: https://dreamvideo2.github.io/
☆ Unearthing Skill-Level Insights for Understanding Trade-Offs of Foundation Models
With models getting stronger, evaluations have grown more complex, testing multiple skills in one benchmark and even in the same instance at once. However, skill-wise performance is obscured when inspecting aggregate accuracy, under-utilizing the rich signal modern benchmarks contain. We propose an automatic approach to recover the underlying skills relevant for any evaluation instance, by way of inspecting model-generated rationales. After validating the relevance of rationale-parsed skills and inferring skills for $46$k instances over $12$ benchmarks, we observe many skills to be common across benchmarks, resulting in the curation of hundreds of skill-slices (i.e. sets of instances testing a common skill). Inspecting accuracy over these slices yields novel insights on model trade-offs: e.g., compared to GPT-4o and Claude 3.5 Sonnet, on average, Gemini 1.5 Pro is $18\%$ more accurate in "computing molar mass", but $19\%$ less accurate in "applying constitutional law", despite the overall accuracies of the three models differing by a mere $0.4\%$. Furthermore, we demonstrate the practical utility of our approach by showing that insights derived from skill slice analysis can generalize to held-out instances: when routing each instance to the model strongest on the relevant skills, we see a $3\%$ accuracy improvement over our $12$ dataset corpus. Our skill-slices and framework open a new avenue in model evaluation, leveraging skill-specific analyses to unlock a more granular and actionable understanding of model capabilities.
comment: Code at: github.com/microsoft/skill-slice-insights
☆ Deep Generative Models Unveil Patterns in Medical Images Through Vision-Language Conditioning NeurIPS2024
Deep generative models have significantly advanced medical imaging analysis by enhancing dataset size and quality. Beyond mere data augmentation, our research in this paper highlights an additional, significant capacity of deep generative models: their ability to reveal and demonstrate patterns in medical images. We employ a generative structure with hybrid conditions, combining clinical data and segmentation masks to guide the image synthesis process. Furthermore, we innovatively transformed the tabular clinical data into textual descriptions. This approach simplifies the handling of missing values and also enables us to leverage large pre-trained vision-language models that investigate the relations between independent clinical entries and comprehend general terms, such as gender and smoking status. Our approach differs from and presents a more challenging task than traditional medical report-guided synthesis due to the less visual correlation of our clinical information with the images. To overcome this, we introduce a text-visual embedding mechanism that strengthens the conditions, ensuring the network effectively utilizes the provided information. Our pipeline is generalizable to both GAN-based and diffusion models. Experiments on chest CT, particularly focusing on the smoking status, demonstrated a consistent intensity shift in the lungs which is in agreement with clinical observations, indicating the effectiveness of our method in capturing and visualizing the impact of specific attributes on medical image patterns. Our methods offer a new avenue for the early detection and precise visualization of complex clinical conditions with deep generative models. All codes are https://github.com/junzhin/DGM-VLC.
comment: Accepted by AIM-FM Workshop of NeurIPS2024
☆ Multi-style conversion for semantic segmentation of lesions in fundus images by adversarial attacks
The diagnosis of diabetic retinopathy, which relies on fundus images, faces challenges in achieving transparency and interpretability when using a global classification approach. However, segmentation-based databases are significantly more expensive to acquire and combining them is often problematic. This paper introduces a novel method, termed adversarial style conversion, to address the lack of standardization in annotation styles across diverse databases. By training a single architecture on combined databases, the model spontaneously modifies its segmentation style depending on the input, demonstrating the ability to convert among different labeling styles. The proposed methodology adds a linear probe to detect dataset origin based on encoder features and employs adversarial attacks to condition the model's segmentation style. Results indicate significant qualitative and quantitative through dataset combination, offering avenues for improved model generalization, uncertainty estimation and continuous interpolation between annotation styles. Our approach enables training a segmentation model with diverse databases while controlling and leveraging annotation styles for improved retinopathy diagnosis.
comment: preprint
☆ ConsisSR: Delving Deep into Consistency in Diffusion-based Image Super-Resolution
Real-world image super-resolution (Real-ISR) aims at restoring high-quality (HQ) images from low-quality (LQ) inputs corrupted by unknown and complex degradations. In particular, pretrained text-to-image (T2I) diffusion models provide strong generative priors to reconstruct credible and intricate details. However, T2I generation focuses on semantic consistency while Real-ISR emphasizes pixel-level reconstruction, which hinders existing methods from fully exploiting diffusion priors. To address this challenge, we introduce ConsisSR to handle both semantic and pixel-level consistency. Specifically, compared to coarse-grained text prompts, we exploit the more powerful CLIP image embedding and effectively leverage both modalities through our Hybrid Prompt Adapter (HPA) for semantic guidance. Secondly, we introduce Time-aware Latent Augmentation (TALA) to mitigate the inherent gap between T2I generation and Real-ISR consistency requirements. By randomly mixing LQ and HQ latent inputs, our model not only handle timestep-specific diffusion noise but also refine the accumulated latent representations. Last but not least, our GAN-Embedding strategy employs the pretrained Real-ESRGAN model to refine the diffusion start point. This accelerates the inference process to 10 steps while preserving sampling quality, in a training-free manner. Our method demonstrates state-of-the-art performance among both full-scale and accelerated models. The code will be made publicly available.
☆ MotionBank: A Large-scale Video Motion Benchmark with Disentangled Rule-based Annotations
In this paper, we tackle the problem of how to build and benchmark a large motion model (LMM). The ultimate goal of LMM is to serve as a foundation model for versatile motion-related tasks, e.g., human motion generation, with interpretability and generalizability. Though advanced, recent LMM-related works are still limited by small-scale motion data and costly text descriptions. Besides, previous motion benchmarks primarily focus on pure body movements, neglecting the ubiquitous motions in context, i.e., humans interacting with humans, objects, and scenes. To address these limitations, we consolidate large-scale video action datasets as knowledge banks to build MotionBank, which comprises 13 video action datasets, 1.24M motion sequences, and 132.9M frames of natural and diverse human motions. Different from laboratory-captured motions, in-the-wild human-centric videos contain abundant motions in context. To facilitate better motion text alignment, we also meticulously devise a motion caption generation algorithm to automatically produce rule-based, unbiased, and disentangled text descriptions via the kinematic characteristics for each motion. Extensive experiments show that our MotionBank is beneficial for general motion-related tasks of human motion generation, motion in-context generation, and motion understanding. Video motions together with the rule-based text annotations could serve as an efficient alternative for larger LMMs. Our dataset, codes, and benchmark will be publicly available at https://github.com/liangxuy/MotionBank.
☆ Emphasizing Semantic Consistency of Salient Posture for Speech-Driven Gesture Generation
Speech-driven gesture generation aims at synthesizing a gesture sequence synchronized with the input speech signal. Previous methods leverage neural networks to directly map a compact audio representation to the gesture sequence, ignoring the semantic association of different modalities and failing to deal with salient gestures. In this paper, we propose a novel speech-driven gesture generation method by emphasizing the semantic consistency of salient posture. Specifically, we first learn a joint manifold space for the individual representation of audio and body pose to exploit the inherent semantic association between two modalities, and propose to enforce semantic consistency via a consistency loss. Furthermore, we emphasize the semantic consistency of salient postures by introducing a weakly-supervised detector to identify salient postures, and reweighting the consistency loss to focus more on learning the correspondence between salient postures and the high-level semantics of speech content. In addition, we propose to extract audio features dedicated to facial expression and body gesture separately, and design separate branches for face and body gesture synthesis. Extensive experimental results demonstrate the superiority of our method over the state-of-the-art approaches.
☆ Representing Model Weights with Language using Tree Experts
The increasing availability of public models begs the question: can we train neural networks that use other networks as input? This paper learns to represent models within a joint space that embeds both model weights and language. However, machine learning on model weights is challenging as model weights often exhibit significant variation unrelated to the models' semantic properties (nuisance variation). We identify a key property of real-world models: most public models belong to a small set of Model Trees, where all models within a tree are fine-tuned from a common ancestor (e.g., a foundation model). Importantly, we find that within each tree there is less nuisance variation between models. For example, while classifying models according to their training dataset generally requires complex architectures, in our case, even a linear classifier trained on a single layer is often effective. While effective, linear layers are computationally expensive as model weights are very high dimensional. To address this, we introduce Probing Experts (ProbeX), a theoretically motivated, lightweight probing method. Notably, ProbeX is the first probing method designed to learn from the weights of just a single model layer. We also construct and release a dataset that simulates the structure of public model repositories. Our results show that ProbeX can effectively map the weights of large models into a shared weight-language embedding space. Furthermore, we demonstrate the impressive generalization of our method, achieving zero-shot model classification and retrieval.
☆ Eyelid Fold Consistency in Facial Modeling
Eyelid shape is integral to identity and likeness in human facial modeling. Human eyelids are diverse in appearance with varied skin fold and epicanthal fold morphology between individuals. Existing parametric face models express eyelid shape variation to an extent, but do not preserve sufficient likeness across a diverse range of individuals. We propose a new definition of eyelid fold consistency and implement geometric processing techniques to model diverse eyelid shapes in a unified topology. Using this method we reprocess data used to train a parametric face model and demonstrate significant improvements in face-related machine learning tasks.
♻ ☆ Preserving Cardiac Integrity: A Topology-Infused Approach to Whole Heart Segmentation
Whole heart segmentation (WHS) supports cardiovascular disease (CVD) diagnosis, disease monitoring, treatment planning, and prognosis. Deep learning has become the most widely used method for WHS applications in recent years. However, segmentation of whole-heart structures faces numerous challenges including heart shape variability during the cardiac cycle, clinical artifacts like motion and poor contrast-to-noise ratio, domain shifts in multi-center data, and the distinct modalities of CT and MRI. To address these limitations and improve segmentation quality, this paper introduces a new topology-preserving module that is integrated into deep neural networks. The implementation achieves anatomically plausible segmentation by using learned topology-preserving fields, which are based entirely on 3D convolution and are therefore very effective for 3D voxel data. We incorporate natural constraints between structures into the end-to-end training and enrich the feature representation of the neural network. The effectiveness of the proposed method is validated on an open-source medical heart dataset, specifically using the WHS++ data. The results demonstrate that the architecture performs exceptionally well, achieving a Dice coefficient of 0.939 during testing. This indicates full topology preservation for individual structures and significantly outperforms other baselines in preserving the overall scene topology.
♻ ☆ Suitability of KANs for Computer Vision: A preliminary investigation
Kolmogorov-Arnold Networks (KANs) introduce a paradigm of neural modeling that implements learnable functions on the edges of the networks, diverging from the traditional node-centric activations in neural networks. This work assesses the applicability and efficacy of KANs in visual modeling, focusing on fundamental recognition and segmentation tasks. We mainly analyze the performance and efficiency of different network architectures built using KAN concepts along with conventional building blocks of convolutional and linear layers, enabling a comparative analysis with the conventional models. Our findings are aimed at contributing to understanding the potential of KANs in computer vision, highlighting both their strengths and areas for further research. Our evaluation point toward the fact that while KAN-based architectures perform in line with the original claims, it may often be important to employ more complex functions on the network edges to retain the performance advantage of KANs on more complex visual data.
♻ ☆ Performance of a GPU- and Time-Efficient Pseudo 3D Network for Magnetic Resonance Image Super-Resolution and Motion Artifact Reduction
Shortening acquisition time and reducing motion artifacts are the most critical challenges in magnetic resonance imaging (MRI). Deep learning-based image restoration has emerged as a promising solution capable of generating high-resolution and motion-artifact-free MRI images from low-resolution images acquired with shortened acquisition times or from motion-artifact-corrupted images. To facilitate clinical integration, a time- and GPU-efficient network with reliable accuracy is essential. In this study, we adopted a unified 2D deep learning framework for pseudo-3D MRI image super-resolution reconstruction (SRR) and motion artifact reduction (MAR). The optimal down-sampling factors to optimize the acquisition time in SRR were identified. Training for MAR was performed using publicly available in vivo data, employing a novel standardized method to induce motion artifacts of varying severity in a controlled way. The accuracy of the network was evaluated through a pixel-wise uncertainty map, and performance was benchmarked against state-of-the-art methods. The results demonstrated that the down-sampling factor of 1x1x2 for x2 acceleration and 2x2x2 for x4 acceleration was optimal. For SRR, the proposed TS-RCAN outperformed the 3D networks of mDCSRN and ReCNN, with an improvement of more than 0.01 in SSIM and 1.5 dB in PSNR while reducing GPU load by up to and inference time by up to 90%. For MAR, TS-RCAN exceeded UNet's performance by up to 0.014 in SSIM and 1.48 dB in PSNR. Additionally, TS-RCAN provided uncertainty information, which can be used to estimate the quality of the reconstructed images. TS-RCAN has potential use for SRR and MAR in the clinical setting.
comment: 16 pages, 9 figures
♻ ☆ Duoduo CLIP: Efficient 3D Understanding with Multi-View Images
We introduce Duoduo CLIP, a model for 3D representation learning that learns shape encodings from multi-view images instead of point-clouds. The choice of multi-view images allows us to leverage 2D priors from off-the-shelf CLIP models to facilitate fine-tuning with 3D data. Our approach not only shows better generalization compared to existing point cloud methods, but also reduces GPU requirements and training time. In addition, the model is modified with cross-view attention to leverage information across multiple frames of the object which further boosts performance. Notably, our model is permutation invariant to the order of multi-view images while being pose-free. Compared to the current SOTA point cloud method that requires 480 A100 hours to train 1 billion model parameters we only require 57 A5000 hours and 87 million parameters. Multi-view images also provide more flexibility including being able to encode objects with a variable number of images, and performance scales when more views are used. In contrast, point cloud based methods require an entire scan or model of the object. We showcase this flexibility with benchmarks from images of real-world objects. Our model also achieves better performance in more fine-grained text to shape retrieval, demonstrating better text-and-shape alignment than point cloud based models.
♻ ☆ Estimating Body and Hand Motion in an Ego-sensed World
We present EgoAllo, a system for human motion estimation from a head-mounted device. Using only egocentric SLAM poses and images, EgoAllo guides sampling from a conditional diffusion model to estimate 3D body pose, height, and hand parameters that capture the wearer's actions in the allocentric coordinate frame of the scene. To achieve this, our key insight is in representation: we propose spatial and temporal invariance criteria for improving model performance, from which we derive a head motion conditioning parameterization that improves estimation by up to 18%. We also show how the bodies estimated by our system can improve the hands: the resulting kinematic and temporal constraints result in over 40% lower hand estimation errors compared to noisy monocular estimates. Project page: https://egoallo.github.io/
comment: v2: fixed figures for Safari, typos
♻ ☆ Efficient Anatomical Labeling of Pulmonary Tree Structures via Deep Point-Graph Representation-based Implicit Fields
Pulmonary diseases rank prominently among the principal causes of death worldwide. Curing them will require, among other things, a better understanding of the complex 3D tree-shaped structures within the pulmonary system, such as airways, arteries, and veins. Traditional approaches using high-resolution image stacks and standard CNNs on dense voxel grids face challenges in computational efficiency, limited resolution, local context, and inadequate preservation of shape topology. Our method addresses these issues by shifting from dense voxel to sparse point representation, offering better memory efficiency and global context utilization. However, the inherent sparsity in point representation can lead to a loss of crucial connectivity in tree-shaped structures. To mitigate this, we introduce graph learning on skeletonized structures, incorporating differentiable feature fusion for improved topology and long-distance context capture. Furthermore, we employ an implicit function for efficient conversion of sparse representations into dense reconstructions end-to-end. The proposed method not only delivers state-of-the-art performance in labeling accuracy, both overall and at key locations, but also enables efficient inference and the generation of closed surface shapes. Addressing data scarcity in this field, we have also curated a comprehensive dataset to validate our approach. Data and code are available at \url{https://github.com/M3DV/pulmonary-tree-labeling}.
comment: Accepted by Medical Image Analysis
♻ ☆ CYCLO: Cyclic Graph Transformer Approach to Multi-Object Relationship Modeling in Aerial Videos NeurIPS 2024
Video scene graph generation (VidSGG) has emerged as a transformative approach to capturing and interpreting the intricate relationships among objects and their temporal dynamics in video sequences. In this paper, we introduce the new AeroEye dataset that focuses on multi-object relationship modeling in aerial videos. Our AeroEye dataset features various drone scenes and includes a visually comprehensive and precise collection of predicates that capture the intricate relationships and spatial arrangements among objects. To this end, we propose the novel Cyclic Graph Transformer (CYCLO) approach that allows the model to capture both direct and long-range temporal dependencies by continuously updating the history of interactions in a circular manner. The proposed approach also allows one to handle sequences with inherent cyclical patterns and process object relationships in the correct sequential order. Therefore, it can effectively capture periodic and overlapping relationships while minimizing information loss. The extensive experiments on the AeroEye dataset demonstrate the effectiveness of the proposed CYCLO model, demonstrating its potential to perform scene understanding on drone videos. Finally, the CYCLO method consistently achieves State-of-the-Art (SOTA) results on two in-the-wild scene graph generation benchmarks, i.e., PVSG and ASPIRe.
comment: Accepted to NeurIPS 2024
Information Retrieval
☆ Lightweight Correlation-Aware Table Compression
The growing adoption of data lakes for managing relational data necessitates efficient, open storage formats that provide high scan performance and competitive compression ratios. While existing formats achieve fast scans through lightweight encoding techniques, they have reached a plateau in terms of minimizing storage footprint. Recently, correlation-aware compression schemes have been shown to reduce file sizes further. Yet, current approaches either incur significant scan overheads or require manual specification of correlations, limiting their practicability. We present $\texttt{Virtual}$, a framework that integrates seamlessly with existing open formats to automatically leverage data correlations, achieving substantial compression gains while having minimal scan performance overhead. Experiments on $\texttt{data.gov}$ datasets show that $\texttt{Virtual}$ reduces file sizes by up to 40% compared to Apache Parquet.
comment: Third Table Representation Learning Workshop (TRL 2024)
☆ Best in Tau@LLMJudge: Criteria-Based Relevance Evaluation with Llama3
Traditional evaluation of information retrieval (IR) systems relies on human-annotated relevance labels, which can be both biased and costly at scale. In this context, large language models (LLMs) offer an alternative by allowing us to directly prompt them to assign relevance labels for passages associated with each query. In this study, we explore alternative methods to directly prompt LLMs for assigned relevance labels, by exploring two hypotheses: Hypothesis 1 assumes that it is helpful to break down "relevance" into specific criteria - exactness, coverage, topicality, and contextual fit. We explore different approaches that prompt large language models (LLMs) to obtain criteria-level grades for all passages, and we consider various ways to aggregate criteria-level grades into a relevance label. Hypothesis 2 assumes that differences in linguistic style between queries and passages may negatively impact the automatic relevance label prediction. We explore whether improvements can be achieved by first synthesizing a summary of the passage in the linguistic style of a query, and then using this summary in place of the passage to assess its relevance. We include an empirical evaluation of our approaches based on data from the LLMJudge challenge run in Summer 2024, where our "Four Prompts" approach obtained the highest scores in Kendall's tau.
☆ Efficient Retrieval of Temporal Event Sequences from Textual Descriptions
Retrieving temporal event sequences from textual descriptions is essential for applications such as analyzing e-commerce behavior, monitoring social media activities, and tracking criminal incidents. In this paper, we introduce TPP-LLM-Embedding, a unified model for efficiently embedding and retrieving event sequences based on natural language descriptions. Built on the TPP-LLM framework, which integrates large language models with temporal point processes, our model encodes both event types and times, generating a sequence-level representation through pooling. Textual descriptions are embedded using the same architecture, ensuring a shared embedding space for both sequences and descriptions. We optimize a contrastive loss based on similarity between these embeddings, bringing matching pairs closer and separating non-matching ones. TPP-LLM-Embedding enables efficient retrieval and demonstrates superior performance compared to baseline models across diverse datasets.
☆ FinQAPT: Empowering Financial Decisions with End-to-End LLM-driven Question Answering Pipeline
Financial decision-making hinges on the analysis of relevant information embedded in the enormous volume of documents in the financial domain. To address this challenge, we developed FinQAPT, an end-to-end pipeline that streamlines the identification of relevant financial reports based on a query, extracts pertinent context, and leverages Large Language Models (LLMs) to perform downstream tasks. To evaluate the pipeline, we experimented with various techniques to optimize the performance of each module using the FinQA dataset. We introduced a novel clustering-based negative sampling technique to enhance context extraction and a novel prompting method called Dynamic N-shot Prompting to boost the numerical question-answering capabilities of LLMs. At the module level, we achieved state-of-the-art accuracy on FinQA, attaining an accuracy of 80.6\%. However, at the pipeline level, we observed decreased performance due to challenges in extracting relevant context from financial reports. We conducted a detailed error analysis of each module and the end-to-end pipeline, pinpointing specific challenges that must be addressed to develop a robust solution for handling complex financial tasks.
comment: Accepted in ICAIF 2024, 8 pages, 5 figures, 4 tables
☆ Identifying High Consideration E-Commerce Search Queries EMNLP 2024
In e-commerce, high consideration search missions typically require careful and elaborate decision making, and involve a substantial research investment from customers. We consider the task of identifying High Consideration (HC) queries. Identifying such queries enables e-commerce sites to better serve user needs using targeted experiences such as curated QA widgets that help users reach purchase decisions. We explore the task by proposing an Engagement-based Query Ranking (EQR) approach, focusing on query ranking to indicate potential engagement levels with query-related shopping knowledge content during product search. Unlike previous studies on predicting trends, EQR prioritizes query-level features related to customer behavior, finance, and catalog information rather than popularity signals. We introduce an accurate and scalable method for EQR and present experimental results demonstrating its effectiveness. Offline experiments show strong ranking performance. Human evaluation shows a precision of 96% for HC queries identified by our model. The model was commercially deployed, and shown to outperform human-selected queries in terms of downstream customer impact, as measured through engagement.
comment: Accepted by EMNLP 2024 (Industry Track)
☆ Knowledge-Aware Query Expansion with Large Language Models for Textual and Relational Retrieval
Large language models (LLMs) have been used to generate query expansions augmenting original queries for improving information search. Recent studies also explore providing LLMs with initial retrieval results to generate query expansions more grounded to document corpus. However, these methods mostly focus on enhancing textual similarities between search queries and target documents, overlooking document relations. For queries like "Find me a highly rated camera for wildlife photography compatible with my Nikon F-Mount lenses", existing methods may generate expansions that are semantically similar but structurally unrelated to user intents. To handle such semi-structured queries with both textual and relational requirements, in this paper we propose a knowledge-aware query expansion framework, augmenting LLMs with structured document relations from knowledge graph (KG). To further address the limitation of entity-based scoring in existing KG-based methods, we leverage document texts as rich KG node representations and use document-based relation filtering for our Knowledge-Aware Retrieval (KAR). Extensive experiments on three datasets of diverse domains show the advantages of our method compared against state-of-the-art baselines on textual and relational semi-structured retrieval.
☆ Disjointness Violations in Wikidata
Disjointness checks are among the most important constraint checks in a knowledge base and can be used to help detect and correct incorrect statements and internal contradictions. Wikidata is a very large, community-managed knowledge base. Because of both its size and construction, Wikidata contains many incorrect statements and internal contradictions. We analyze the current modeling of disjointness on Wikidata, identify patterns that cause these disjointness violations and categorize them. We use SPARQL queries to identify each ``culprit'' causing a disjointness violation and lay out formulas to identify and fix conflicting information. We finally discuss how disjointness information could be better modeled and expanded in Wikidata in the future.
comment: Sixth International Knowledge Graph and Semantic Web Conference
☆ Pessimistic Evaluation
Traditional evaluation of information access systems has focused primarily on average utility across a set of information needs (information retrieval) or users (recommender systems). In this work, we argue that evaluating only with average metric measurements assumes utilitarian values not aligned with traditions of information access based on equal access. We advocate for pessimistic evaluation of information access systems focusing on worst case utility. These methods are (a) grounded in ethical and pragmatic concepts, (b) theoretically complementary to existing robustness and fairness methods, and (c) empirically validated across a set of retrieval and recommendation tasks. These results suggest that pessimistic evaluation should be included in existing experimentation processes to better understand the behavior of systems, especially when concerned with principles of social good.
☆ Large Language Models as Narrative-Driven Recommenders
Narrative-driven recommenders aim to provide personalized suggestions for user requests expressed in free-form text such as "I want to watch a thriller with a mind-bending story, like Shutter Island." Although large language models (LLMs) have been shown to excel in processing general natural language queries, their effectiveness for handling such recommendation requests remains relatively unexplored. To close this gap, we compare the performance of 38 open- and closed-source LLMs of various sizes, such as LLama 3.2 and GPT-4o, in a movie recommendation setting. For this, we utilize a gold-standard, crowdworker-annotated dataset of posts from reddit's movie suggestion community and employ various prompting strategies, including zero-shot, identity, and few-shot prompting. Our findings demonstrate the ability of LLMs to generate contextually relevant movie recommendations, significantly outperforming other state-of-the-art approaches, such as doc2vec. While we find that closed-source and large-parameterized models generally perform best, medium-sized open-source models remain competitive, being only slightly outperformed by their more computationally expensive counterparts. Furthermore, we observe no significant differences across prompting strategies for most models, underscoring the effectiveness of simple approaches such as zero-shot prompting for narrative-driven recommendations. Overall, this work offers valuable insights for recommender system researchers as well as practitioners aiming to integrate LLMs into real-world recommendation tools.
comment: Under review; 19 pages
☆ Cross-Domain Sequential Recommendation via Neural Process
Cross-Domain Sequential Recommendation (CDSR) is a hot topic in sequence-based user interest modeling, which aims at utilizing a single model to predict the next items for different domains. To tackle the CDSR, many methods are focused on domain overlapped users' behaviors fitting, which heavily relies on the same user's different-domain item sequences collaborating signals to capture the synergy of cross-domain item-item correlation. Indeed, these overlapped users occupy a small fraction of the entire user set only, which introduces a strong assumption that the small group of domain overlapped users is enough to represent all domain user behavior characteristics. However, intuitively, such a suggestion is biased, and the insufficient learning paradigm in non-overlapped users will inevitably limit model performance. Further, it is not trivial to model non-overlapped user behaviors in CDSR because there are no other domain behaviors to collaborate with, which causes the observed single-domain users' behavior sequences to be hard to contribute to cross-domain knowledge mining. Considering such a phenomenon, we raise a challenging and unexplored question: How to unleash the potential of non-overlapped users' behaviors to empower CDSR?
comment: Work in progress
☆ Context-aware adaptive personalised recommendation: a meta-hybrid
Recommenders take place on a wide scale of e-commerce systems, reducing the problem of information overload. The most common approach is to choose a recommender used by the system to make predictions. However, users vary from each other; thus, a one-fits-all approach seems to be sub-optimal. In this paper, we propose a meta-hybrid recommender that uses machine learning to predict an optimal algorithm. In this way, the best-performing recommender is used for each specific session and user. This selection depends on contextual and preferential information collected about the user. We use standard MovieLens and The Movie DB datasets for offline evaluation. We show that based on the proposed model, it is possible to predict which recommender will provide the most precise recommendations to a user. The theoretical performance of our meta-hybrid outperforms separate approaches by 20-50% in normalized Discounted Gain and Root Mean Square Error metrics. However, it is hard to obtain the optimal performance based on widely-used standard information stored about users.
☆ Comparing the Utility, Preference, and Performance of Course Material Search Functionality and Retrieval-Augmented Generation Large Language Model (RAG-LLM) AI Chatbots in Information-Seeking Tasks
Providing sufficient support for students requires substantial resources, especially considering the growing enrollment numbers. Students need help in a variety of tasks, ranging from information-seeking to requiring support with course assignments. To explore the utility of recent large language models (LLMs) as a support mechanism, we developed an LLM-powered AI chatbot that augments the answers that are produced with information from the course materials. To study the effect of the LLM-powered AI chatbot, we conducted a lab-based user study (N=14), in which the participants worked on tasks from a web software development course. The participants were divided into two groups, where one of the groups first had access to the chatbot and then to a more traditional search functionality, while another group started with the search functionality and was then given the chatbot. We assessed the participants' performance and perceptions towards the chatbot and the search functionality and explored their preferences towards the support functionalities. Our findings highlight that both support mechanisms are seen as useful and that support mechanisms work well for specific tasks, while less so for other tasks. We also observe that students tended to prefer the second support mechanism more, where students who were first given the chatbot tended to prefer the search functionality and vice versa.
comment: 12 pages, 4 figures
☆ SBI-RAG: Enhancing Math Word Problem Solving for Students through Schema-Based Instruction and Retrieval-Augmented Generation NeurIPS'24
Many students struggle with math word problems (MWPs), often finding it difficult to identify key information and select the appropriate mathematical operations.Schema-based instruction (SBI) is an evidence-based strategy that helps students categorize problems based on their structure, improving problem-solving accuracy. Building on this, we propose a Schema-Based Instruction Retrieval-Augmented Generation (SBI-RAG) framework that incorporates a large language model (LLM).Our approach emphasizes step-by-step reasoning by leveraging schemas to guide solution generation. We evaluate its performance on the GSM8K dataset, comparing it with GPT-4 and GPT-3.5 Turbo, and introduce a "reasoning score" metric to assess solution quality. Our findings suggest that SBI-RAG enhances reasoning clarity and problem-solving accuracy, potentially providing educational benefits for students
comment: Accepted to the 4th MATH-AI Workshop at NeurIPS'24
☆ Disentangling Likes and Dislikes in Personalized Generative Explainable Recommendation
Recent research on explainable recommendation generally frames the task as a standard text generation problem, and evaluates models simply based on the textual similarity between the predicted and ground-truth explanations. However, this approach fails to consider one crucial aspect of the systems: whether their outputs accurately reflect the users' (post-purchase) sentiments, i.e., whether and why they would like and/or dislike the recommended items. To shed light on this issue, we introduce new datasets and evaluation methods that focus on the users' sentiments. Specifically, we construct the datasets by explicitly extracting users' positive and negative opinions from their post-purchase reviews using an LLM, and propose to evaluate systems based on whether the generated explanations 1) align well with the users' sentiments, and 2) accurately identify both positive and negative opinions of users on the target items. We benchmark several recent models on our datasets and demonstrate that achieving strong performance on existing metrics does not ensure that the generated explanations align well with the users' sentiments. Lastly, we find that existing models can provide more sentiment-aware explanations when the users' (predicted) ratings for the target items are directly fed into the models as input. We will release our code and datasets upon acceptance.
☆ Research on Travel Route Planing Problems Based on Greedy Algorithm
The greedy algorithm based route planning problem is a method of finding the optimal or near optimal route between a given starting and ending point. This article first uses PCA method to reduce the dimensionality of urban evaluation indicators, extracts key principal components, and KMO and TOPSIS algorithms to reduce the dimensionality of the data. Secondly, for datasets that have not passed the KMO test, a comprehensive evaluation will be conducted using the entropy weight method and TOPSIS method. Finally, based on the greedy algorithm, a route planning algorithm was proposed and optimized to provide personalized route customization according to the different needs of tourists. We also took into account the local travel efficiency, the time required to visit tourist attractions, and necessary daily rest time to reduce costs and avoid falling into the local optimal solution.
☆ MixEHR-Nest: Identifying Subphenotypes within Electronic Health Records through Hierarchical Guided-Topic Modeling
Automatic subphenotyping from electronic health records (EHRs)provides numerous opportunities to understand diseases with unique subgroups and enhance personalized medicine for patients. However, existing machine learning algorithms either focus on specific diseases for better interpretability or produce coarse-grained phenotype topics without considering nuanced disease patterns. In this study, we propose a guided topic model, MixEHR-Nest, to infer sub-phenotype topics from thousands of disease using multi-modal EHR data. Specifically, MixEHR-Nest detects multiple subtopics from each phenotype topic, whose prior is guided by the expert-curated phenotype concepts such as Phenotype Codes (PheCodes) or Clinical Classification Software (CCS) codes. We evaluated MixEHR-Nest on two EHR datasets: (1) the MIMIC-III dataset consisting of over 38 thousand patients from intensive care unit (ICU) from Beth Israel Deaconess Medical Center (BIDMC) in Boston, USA; (2) the healthcare administrative database PopHR, comprising 1.3 million patients from Montreal, Canada. Experimental results demonstrate that MixEHR-Nest can identify subphenotypes with distinct patterns within each phenotype, which are predictive for disease progression and severity. Consequently, MixEHR-Nest distinguishes between type 1 and type 2 diabetes by inferring subphenotypes using CCS codes, which do not differentiate these two subtype concepts. Additionally, MixEHR-Nest not only improved the prediction accuracy of short-term mortality of ICU patients and initial insulin treatment in diabetic patients but also revealed the contributions of subphenotypes. For longitudinal analysis, MixEHR-Nest identified subphenotypes of distinct age prevalence under the same phenotypes, such as asthma, leukemia, epilepsy, and depression. The MixEHR-Nest software is available at GitHub: https://github.com/li-lab-mcgill/MixEHR-Nest.
Transformers4NewsRec: A Transformer-based News Recommendation Framework
Pre-trained transformer models have shown great promise in various natural language processing tasks, including personalized news recommendations. To harness the power of these models, we introduce Transformers4NewsRec, a new Python framework built on the \textbf{Transformers} library. This framework is designed to unify and compare the performance of various news recommendation models, including deep neural networks and graph-based models. Transformers4NewsRec offers flexibility in terms of model selection, data preprocessing, and evaluation, allowing both quantitative and qualitative analysis.
☆ Retrieval-Enhanced Named Entity Recognition
When combined with In-Context Learning, a technique that enables models to adapt to new tasks by incorporating task-specific examples or demonstrations directly within the input prompt, autoregressive language models have achieved good performance in a wide range of tasks and applications. However, this combination has not been properly explored in the context of named entity recognition, where the structure of this task poses unique challenges. We propose RENER (Retrieval-Enhanced Named Entity Recognition), a technique for named entity recognition using autoregressive language models based on In-Context Learning and information retrieval techniques. When presented with an input text, RENER fetches similar examples from a dataset of training examples that are used to enhance a language model to recognize named entities from this input text. RENER is modular and independent of the underlying language model and information retrieval algorithms. Experimental results show that in the CrossNER collection we achieve state-of-the-art performance with the proposed technique and that information retrieval can increase the F-score by up to 11 percentage points.
comment: 13 pages, 6 figures, 3 tables
☆ Preference Diffusion for Recommendation
Recommender systems predict personalized item rankings based on user preference distributions derived from historical behavior data. Recently, diffusion models (DMs) have gained attention in recommendation for their ability to model complex distributions, yet current DM-based recommenders often rely on traditional objectives like mean squared error (MSE) or recommendation objectives, which are not optimized for personalized ranking tasks or fail to fully leverage DM's generative potential. To address this, we propose PreferDiff, a tailored optimization objective for DM-based recommenders. PreferDiff transforms BPR into a log-likelihood ranking objective and integrates multiple negative samples to better capture user preferences. Specifically, we employ variational inference to handle the intractability through minimizing the variational upper bound and replaces MSE with cosine error to improve alignment with recommendation tasks. Finally, we balance learning generation and preference to enhance the training stability of DMs. PreferDiff offers three key benefits: it is the first personalized ranking loss designed specifically for DM-based recommenders and it improves ranking and faster convergence by addressing hard negatives. We also prove that it is theoretically connected to Direct Preference Optimization which indicates that it has the potential to align user preferences in DM-based recommenders via generative modeling. Extensive experiments across three benchmarks validate its superior recommendation performance and commendable general sequential recommendation capabilities. Our codes are available at \url{https://github.com/lswhim/PreferDiff}.
♻ ☆ Improving Bilingual Lexicon Induction with Cross-Encoder Reranking EMNLP 2022
Bilingual lexicon induction (BLI) with limited bilingual supervision is a crucial yet challenging task in multilingual NLP. Current state-of-the-art BLI methods rely on the induction of cross-lingual word embeddings (CLWEs) to capture cross-lingual word similarities; such CLWEs are obtained 1) via traditional static models (e.g., VecMap), or 2) by extracting type-level CLWEs from multilingual pretrained language models (mPLMs), or 3) through combining the former two options. In this work, we propose a novel semi-supervised post-hoc reranking method termed BLICEr (BLI with Cross-Encoder Reranking), applicable to any precalculated CLWE space, which improves their BLI capability. The key idea is to 'extract' cross-lingual lexical knowledge from mPLMs, and then combine it with the original CLWEs. This crucial step is done via 1) creating a word similarity dataset, comprising positive word pairs (i.e., true translations) and hard negative pairs induced from the original CLWE space, and then 2) fine-tuning an mPLM (e.g., mBERT or XLM-R) in a cross-encoder manner to predict the similarity scores. At inference, we 3) combine the similarity score from the original CLWE space with the score from the BLI-tuned cross-encoder. BLICEr establishes new state-of-the-art results on two standard BLI benchmarks spanning a wide spectrum of diverse languages: it substantially outperforms a series of strong baselines across the board. We also validate the robustness of BLICEr with different CLWEs.
comment: Findings of EMNLP 2022
♻ ☆ The Moral Case for Using Language Model Agents for Recommendation
Our information and communication environment has fallen short of the ideals that networked global communication might have served. Identifying all the causes of its pathologies is difficult, but existing recommender systems very likely play a contributing role. In this paper, which draws on the normative tools of philosophy of computing, informed by empirical and technical insights from natural language processing and recommender systems, we make the moral case for an alternative approach. We argue that existing recommenders incentivise mass surveillance, concentrate power, fall prey to narrow behaviourism, and compromise user agency. Rather than just trying to avoid algorithms entirely, or to make incremental improvements to the current paradigm, researchers and engineers should explore an alternative paradigm: the use of language model (LM) agents to source and curate content that matches users' preferences and values, expressed in natural language. The use of LM agents for recommendation poses its own challenges, including those related to candidate generation, computational efficiency, preference modelling, and prompt injection. Nonetheless, if implemented successfully LM agents could: guide us through the digital public sphere without relying on mass surveillance; shift power away from platforms towards users; optimise for what matters instead of just for behavioural proxies; and scaffold our agency instead of undermining it.
♻ ☆ Improving Word Translation via Two-Stage Contrastive Learning ACL 2022
Word translation or bilingual lexicon induction (BLI) is a key cross-lingual task, aiming to bridge the lexical gap between different languages. In this work, we propose a robust and effective two-stage contrastive learning framework for the BLI task. At Stage C1, we propose to refine standard cross-lingual linear maps between static word embeddings (WEs) via a contrastive learning objective; we also show how to integrate it into the self-learning procedure for even more refined cross-lingual maps. In Stage C2, we conduct BLI-oriented contrastive fine-tuning of mBERT, unlocking its word translation capability. We also show that static WEs induced from the `C2-tuned' mBERT complement static WEs from Stage C1. Comprehensive experiments on standard BLI datasets for diverse languages and different experimental setups demonstrate substantial gains achieved by our framework. While the BLI method from Stage C1 already yields substantial gains over all state-of-the-art BLI methods in our comparison, even stronger improvements are met with the full two-stage framework: e.g., we report gains for 112/112 BLI setups, spanning 28 language pairs.
comment: ACL 2022 Main
♻ ☆ Into the Unknown Unknowns: Engaged Human Learning through Participation in Language Model Agent Conversations EMNLP 2024
While language model (LM)-powered chatbots and generative search engines excel at answering concrete queries, discovering information in the terrain of unknown unknowns remains challenging for users. To emulate the common educational scenario where children/students learn by listening to and participating in conversations of their parents/teachers, we create Collaborative STORM (Co-STORM). Unlike QA systems that require users to ask all the questions, Co-STORM lets users observe and occasionally steer the discourse among several LM agents. The agents ask questions on the user's behalf, allowing the user to discover unknown unknowns serendipitously. To facilitate user interaction, Co-STORM assists users in tracking the discourse by organizing the uncovered information into a dynamic mind map, ultimately generating a comprehensive report as takeaways. For automatic evaluation, we construct the WildSeek dataset by collecting real information-seeking records with user goals. Co-STORM outperforms baseline methods on both discourse trace and report quality. In a further human evaluation, 70% of participants prefer Co-STORM over a search engine, and 78% favor it over a RAG chatbot.
comment: EMNLP 2024 Main
♻ ☆ Mixed-initiative Query Rewriting in Conversational Passage Retrieval
In this paper, we report our methods and experiments for the TREC Conversational Assistance Track (CAsT) 2022. In this work, we aim to reproduce multi-stage retrieval pipelines and explore one of the potential benefits of involving mixed-initiative interaction in conversational passage retrieval scenarios: reformulating raw queries. Before the first ranking stage of a multi-stage retrieval pipeline, we propose a mixed-initiative query rewriting module, which achieves query rewriting based on the mixed-initiative interaction between the users and the system, as the replacement for the neural rewriting method. Specifically, we design an algorithm to generate appropriate questions related to the ambiguities in raw queries, and another algorithm to reformulate raw queries by parsing users' feedback and incorporating it into the raw query. For the first ranking stage of our multi-stage pipelines, we adopt a sparse ranking function: BM25, and a dense retrieval method: TCT-ColBERT. For the second-ranking step, we adopt a pointwise reranker: MonoT5, and a pairwise reranker: DuoT5. Experiments on both TREC CAsT 2021 and TREC CAsT 2022 datasets show the effectiveness of our mixed-initiative-based query rewriting (or query reformulation) method on improving retrieval performance compared with two popular reformulators: a neural reformulator: CANARD-T5 and a rule-based reformulator: historical query reformulator(HQE).
comment: https://trec.nist.gov/pubs/trec31/papers/udel_fang.C.pdf
♻ ☆ Behavior Alignment: A New Perspective of Evaluating LLM-based Conversational Recommender Systems SIGIR
Large Language Models (LLMs) have demonstrated great potential in Conversational Recommender Systems (CRS). However, the application of LLMs to CRS has exposed a notable discrepancy in behavior between LLM-based CRS and human recommenders: LLMs often appear inflexible and passive, frequently rushing to complete the recommendation task without sufficient inquiry.This behavior discrepancy can lead to decreased accuracy in recommendations and lower user satisfaction. Despite its importance, existing studies in CRS lack a study about how to measure such behavior discrepancy. To fill this gap, we propose Behavior Alignment, a new evaluation metric to measure how well the recommendation strategies made by a LLM-based CRS are consistent with human recommenders'. Our experiment results show that the new metric is better aligned with human preferences and can better differentiate how systems perform than existing evaluation metrics. As Behavior Alignment requires explicit and costly human annotations on the recommendation strategies, we also propose a classification-based method to implicitly measure the Behavior Alignment based on the responses. The evaluation results confirm the robustness of the method.
comment: Accepted by the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval
♻ ☆ ZeQR: Zero-shot Query Reformulation for Conversational Search SIGIR
As the popularity of voice assistants continues to surge, conversational search has gained increased attention in Information Retrieval. However, data sparsity issues in conversational search significantly hinder the progress of supervised conversational search methods. Consequently, researchers are focusing more on zero-shot conversational search approaches. Nevertheless, existing zero-shot methods face three primary limitations: they are not universally applicable to all retrievers, their effectiveness lacks sufficient explainability, and they struggle to resolve common conversational ambiguities caused by omission. To address these limitations, we introduce a novel Zero-shot Query Reformulation (or Query Rewriting) (ZeQR) framework that reformulates queries based on previous dialogue contexts without requiring supervision from conversational search data. Specifically, our framework utilizes language models designed for machine reading comprehension tasks to explicitly resolve two common ambiguities: coreference and omission, in raw queries. In comparison to existing zero-shot methods, our approach is universally applicable to any retriever without additional adaptation or indexing. It also provides greater explainability and effectively enhances query intent understanding because ambiguities are explicitly and proactively resolved. Through extensive experiments on four TREC conversational datasets, we demonstrate the effectiveness of our method, which consistently outperforms state-of-the-art baselines.
comment: Accepted by the 9th ACM SIGIR International Conference on the Theory of Information Retrieval
♻ ☆ Dataset Condensation for Recommendation
Training recommendation models on large datasets requires significant time and resources. It is desired to construct concise yet informative datasets for efficient training. Recent advances in dataset condensation show promise in addressing this problem by synthesizing small datasets. However, applying existing methods of dataset condensation to recommendation has limitations: (1) they fail to generate discrete user-item interactions, and (2) they could not preserve users' potential preferences. To address the limitations, we propose a lightweight condensation framework tailored for recommendation (DConRec), focusing on condensing user-item historical interaction sets. Specifically, we model the discrete user-item interactions via a probabilistic approach and design a pre-augmentation module to incorporate the potential preferences of users into the condensed datasets. While the substantial size of datasets leads to costly optimization, we propose a lightweight policy gradient estimation to accelerate the data synthesis. Experimental results on multiple real-world datasets have demonstrated the effectiveness and efficiency of our framework. Besides, we provide a theoretical analysis of the provable convergence of DConRec. Our implementation is available at: https://github.com/JiahaoWuGit/DConRec.
comment: Accepted by IEEE TKDE. Also titled as "Condensing Pre-augmented Recommendation Data via Lightweight Policy Gradient Estimation"
♻ ☆ Mixed-Precision Embeddings for Large-Scale Recommendation Models
Embedding techniques have become essential components of large databases in the deep learning era. By encoding discrete entities, such as words, items, or graph nodes, into continuous vector spaces, embeddings facilitate more efficient storage, retrieval, and processing in large databases. Especially in the domain of recommender systems, millions of categorical features are encoded as unique embedding vectors, which facilitates the modeling of similarities and interactions among features. However, numerous embedding vectors can result in significant storage overhead. In this paper, we aim to compress the embedding table through quantization techniques. Given that features vary in importance levels, we seek to identify an appropriate precision for each feature to balance model accuracy and memory usage. To this end, we propose a novel embedding compression method, termed Mixed-Precision Embeddings (MPE). Specifically, to reduce the size of the search space, we first group features by frequency and then search precision for each feature group. MPE further learns the probability distribution over precision levels for each feature group, which can be used to identify the most suitable precision with a specially designed sampling strategy. Extensive experiments on three public datasets demonstrate that MPE significantly outperforms existing embedding compression methods. Remarkably, MPE achieves about 200x compression on the Criteo dataset without comprising the prediction accuracy.
comment: under submision
♻ ☆ A Survey on Intent-aware Recommender Systems
Many modern online services feature personalized recommendations. A central challenge when providing such recommendations is that the reason why an individual user accesses the service may change from visit to visit or even during an ongoing usage session. To be effective, a recommender system should therefore aim to take the users' probable intent of using the service at a certain point in time into account. In recent years, researchers have thus started to address this challenge by incorporating intent-awareness into recommender systems. Correspondingly, a number of technical approaches were put forward, including diversification techniques, intent prediction models or latent intent modeling approaches. In this paper, we survey and categorize existing approaches to building the next generation of Intent-Aware Recommender Systems (IARS). Based on an analysis of current evaluation practices, we outline open gaps and possible future directions in this area, which in particular include the consideration of additional interaction signals and contextual information to further improve the effectiveness of such systems.
♻ ☆ Chatbot-Based Ontology Interaction Using Large Language Models and Domain-Specific Standards
The following contribution introduces a concept that employs Large Language Models (LLMs) and a chatbot interface to enhance SPARQL query generation for ontologies, thereby facilitating intuitive access to formalized knowledge. Utilizing natural language inputs, the system converts user inquiries into accurate SPARQL queries that strictly query the factual content of the ontology, effectively preventing misinformation or fabrication by the LLM. To enhance the quality and precision of outcomes, additional textual information from established domain-specific standards is integrated into the ontology for precise descriptions of its concepts and relationships. An experimental study assesses the accuracy of generated SPARQL queries, revealing significant benefits of using LLMs for querying ontologies and highlighting areas for future research.
comment: \c{opyright} 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ DiffATR: Diffusion-based Generative Modeling for Audio-Text Retrieval
Existing audio-text retrieval (ATR) methods are essentially discriminative models that aim to maximize the conditional likelihood, represented as p(candidates|query). Nevertheless, this methodology fails to consider the intrinsic data distribution p(query), leading to difficulties in discerning out-of-distribution data. In this work, we attempt to tackle this constraint through a generative perspective and model the relationship between audio and text as their joint probability p(candidates,query). To this end, we present a diffusion-based ATR framework (DiffATR), which models ATR as an iterative procedure that progressively generates joint distribution from noise. Throughout its training phase, DiffATR is optimized from both generative and discriminative viewpoints: the generator is refined through a generation loss, while the feature extractor benefits from a contrastive loss, thus combining the merits of both methodologies. Experiments on the AudioCaps and Clotho datasets with superior performances, verify the effectiveness of our approach. Notably, without any alterations, our DiffATR consistently exhibits strong performance in out-of-domain retrieval settings.
comment: Accepted by Interspeech2024
♻ ☆ Probability Distribution Learning: A theoretical framework for Deep Learning
This paper introduces probability distribution learning (PD learning), a novel theoretical learning framework. Departing from the traditional statistical learning framework, PD learning focuses on learning the underlying probability distribution, which is modeled as a random variable within the probability simplex. Within this framework, the learning error is decomposed into uncertainty, estimation error, and the model's fitting error. Subsequently, we present the methodology for calculating uncertainty, along with optimization strategies for both estimation error and fitting error. Given that minimizing the fitting error typically constitutes a non-convex optimization problem, we introduce a standard loss function and the gradient structural control (GSC) algorithm, and demonstrate that by employing this function, the optima of fitting error minimization can be approached by reducing the gradient norm and structural error. Furthermore, we apply the PD learning framework to deep learning, elucidating the mechanisms by which techniques such as random parameter initialization, over-parameterization, bias-variance trade-off, and dropout influence deep model training. Finally, experimental results on various models validate the effectiveness of the proposed framework.
comment: arXiv admin note: text overlap with arXiv:2105.04026 by other authors. arXiv admin note: text overlap with arXiv:2105.04026 by other authors
♻ ☆ NFT1000: A Cross-Modal Dataset for Non-Fungible Token Retrieval
With the rise of "Metaverse" and "Web 3.0", Non-Fungible Token (NFT) has emerged as a kind of pivotal digital asset, garnering significant attention. By the end of March 2024, more than 1.7 billion NFTs have been minted across various blockchain platforms. To effectively locate a desired NFT, conducting searches within a vast array of NFTs is essential. The challenge in NFT retrieval is heightened due to the high degree of similarity among different NFTs, regarding regional and semantic aspects. In this paper, we will introduce a benchmark dataset named "NFT Top1000 Visual-Text Dataset" (NFT1000), containing 7.56 million image-text pairs, and being collected from 1000 most famous PFP1 NFT collections2 by sales volume on the Ethereum blockchain. Based on this dataset and leveraging the CLIP series of pre-trained models as our foundation, we propose the dynamic masking fine-tuning scheme. This innovative approach results in a 7.4\% improvement in the top1 accuracy rate, while utilizing merely 13\% of the total training data (0.79 million vs. 6.1 million). We also propose a robust metric Comprehensive Variance Index (CVI) to assess the similarity and retrieval difficulty of visual-text pairs data. The dataset will be released as an open-source resource. For more details, please refer to: https://github.com/ShuxunoO/NFT-Net.git.
comment: 11 pages,12figures to be published in ACM Multimedia 2024, see https://openreview.net/forum?id=xUtNrKH8iB¬eId=xUtNrKH8iB
♻ ☆ RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework
Retrieval-Augmented Generation (RAG) is a powerful approach that enables large language models (LLMs) to incorporate external knowledge. However, evaluating the effectiveness of RAG systems in specialized scenarios remains challenging due to the high costs of data construction and the lack of suitable evaluation metrics. This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios by generating high-quality documents, questions, answers, and references through a schema-based pipeline. With a focus on factual accuracy, we propose three novel metrics Completeness, Hallucination, and Irrelevance to rigorously evaluate LLM-generated responses. Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples. Furthermore, the use of LLMs for scoring the proposed metrics demonstrates a high level of consistency with human evaluations. RAGEval establishes a new paradigm for evaluating RAG systems in real-world applications.
comment: https://github.com/OpenBMB/RAGEval
♻ ☆ A Theory for Token-Level Harmonization in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) utilizes retrieved texts to enhance large language models (LLMs). Studies show that while RAG provides valuable external information (benefit), it may also mislead LLMs (detriment) with noisy or incorrect retrieved texts. Although many existing methods attempt to preserve benefit and avoid detriment, they lack a theoretical explanation for RAG. The benefit and detriment in the next token prediction of RAG remain a black box that cannot be quantified or compared in an explainable manner, so existing methods are data-driven, need additional utility evaluators or post-hoc. This paper takes the first step towards providing a theory to explain and trade off the benefit and detriment in RAG. First, we model RAG as the fusion between distribution of LLMs knowledge and distribution of retrieved texts. Then, we formalize the trade-off between the value of external knowledge (benefit) and its potential risk of misleading LLMs (detriment) in next token prediction of RAG by distribution difference in this fusion. Finally, we prove that the actual effect of RAG on the token, which is the comparison between benefit and detriment, can be predicted without any training or accessing the utility of retrieval. Based on our theory, we propose a practical novel method, Tok-RAG, which achieves collaborative generation between the pure LLM and RAG at token level to preserve benefit and avoid detriment. Experiments in real-world tasks using LLMs such as OPT, LLaMA-2, and Mistral show the effectiveness of our method and support our theoretical findings.
comment: 25 pages
Multimedia
☆ Improving Multi-modal Large Language Model through Boosting Vision Capabilities
We focus on improving the visual understanding capability for boosting the vision-language models. We propose \textbf{Arcana}, a multiModal language model, which introduces two crucial techniques. First, we present Multimodal LoRA (MM-LoRA), a module designed to enhance the decoder. Unlike traditional language-driven decoders, MM-LoRA consists of two parallel LoRAs -- one for vision and one for language -- each with its own parameters. This disentangled parameters design allows for more specialized learning in each modality and better integration of multimodal information. Second, we introduce the Query Ladder adapter (QLadder) to improve the visual encoder. QLadder employs a learnable ``\textit{ladder}'' structure to deeply aggregates the intermediate representations from the frozen pretrained visual encoder (e.g., CLIP image encoder). This enables the model to learn new and informative visual features, as well as remaining the powerful capabilities of the pretrained visual encoder. These techniques collectively enhance Arcana's visual perception power, enabling it to leverage improved visual information for more accurate and contextually relevant outputs across various multimodal scenarios. Extensive experiments and ablation studies demonstrate the effectiveness and generalization capability of our Arcana. The code and re-annotated data are available at \url{https://arcana-project-page.github.io}.
☆ Multimodal growth and development assessment model
With the development of social economy and the improvement of people's attention to health, the growth and development of children and adolescents has become an important indicator to measure the level of national health. Therefore, accurate and timely assessment of children's growth and development has become increasingly important. At the same time, global health inequalities, especially child malnutrition and stunting in developing countries, urgently require effective assessment tools to monitor and intervene. In recent years, the rapid development of technologies such as big data, artificial intelligence, and cloud computing, and the cross-integration of multiple disciplines such as biomedicine, statistics, and computer science have promoted the rapid development of large-scale models for growth and development assessment. However, there are still problems such as too single evaluation factors, inaccurate diagnostic results, and inability to give accurate and reasonable recommendations. The multi-modal growth and development assessment model uses the public data set of RSNA ( North American College of Radiology ) as the training set, and the data set of the Department of Pediatrics of Huaibei People's Hospital as the open source test set. The embedded ICL module enables the model to quickly adapt and identify the tasks that need to be done to ensure that under the premise of considering multiple evaluation factors, accurate diagnosis results and reasonable medical recommendations are given, so as to provide solutions to the above problems and promote the development of the medical field.
comment: 7 Pages 7 Figures
☆ MeloTrans: A Text to Symbolic Music Generation Model Following Human Composition Habit
At present, neural network models show powerful sequence prediction ability and are used in many automatic composition models. In comparison, the way humans compose music is very different from it. Composers usually start by creating musical motifs and then develop them into music through a series of rules. This process ensures that the music has a specific structure and changing pattern. However, it is difficult for neural network models to learn these composition rules from training data, which results in a lack of musicality and diversity in the generated music. This paper posits that integrating the learning capabilities of neural networks with human-derived knowledge may lead to better results. To archive this, we develop the POP909$\_$M dataset, the first to include labels for musical motifs and their variants, providing a basis for mimicking human compositional habits. Building on this, we propose MeloTrans, a text-to-music composition model that employs principles of motif development rules. Our experiments demonstrate that MeloTrans excels beyond existing music generation models and even surpasses Large Language Models (LLMs) like ChatGPT-4. This highlights the importance of merging human insights with neural network capabilities to achieve superior symbolic music generation.
☆ Remember, Retrieve and Generate: Understanding Infinite Visual Concepts as Your Personalized Assistant
The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://github.com/Hoar012/RAP-MLLM.
♻ ☆ Beyond Coarse-Grained Matching in Video-Text Retrieval ACCV 2024
Video-text retrieval has seen significant advancements, yet the ability of models to discern subtle differences in captions still requires verification. In this paper, we introduce a new approach for fine-grained evaluation. Our approach can be applied to existing datasets by automatically generating hard negative test captions with subtle single-word variations across nouns, verbs, adjectives, adverbs, and prepositions. We perform comprehensive experiments using four state-of-the-art models across two standard benchmarks (MSR-VTT and VATEX) and two specially curated datasets enriched with detailed descriptions (VLN-UVO and VLN-OOPS), resulting in a number of novel insights: 1) our analyses show that the current evaluation benchmarks fall short in detecting a model's ability to perceive subtle single-word differences, 2) our fine-grained evaluation highlights the difficulty models face in distinguishing such subtle variations. To enhance fine-grained understanding, we propose a new baseline that can be easily combined with current methods. Experiments on our fine-grained evaluations demonstrate that this approach enhances a model's ability to understand fine-grained differences.
comment: Accepted to ACCV 2024
♻ ☆ SaMoye: Zero-shot Singing Voice Conversion Model Based on Feature Disentanglement and Enhancement
Singing voice conversion (SVC) aims to convert a singer's voice to another singer's from a reference audio while keeping the original semantics. However, existing SVC methods can hardly perform zero-shot due to incomplete feature disentanglement or dependence on the speaker look-up table. We propose the first open-source high-quality zero-shot SVC model SaMoye that can convert singing to human and non-human timbre. SaMoye disentangles the singing voice's features into content, timbre, and pitch features, where we combine multiple ASR models and compress the content features to reduce timbre leaks. Besides, we enhance the timbre features by unfreezing the speaker encoder and mixing the speaker embedding with top-3 similar speakers. We also establish an unparalleled large-scale dataset to guarantee zero-shot performance, which comprises more than 1,815 hours of pure singing voice and 6,367 speakers. We conduct objective and subjective experiments to find that SaMoye outperforms other models in zero-shot SVC tasks even under extreme conditions like converting singing to animals' timbre. The code and weight of SaMoye are available on https://github.com/CarlWangChina/SaMoye-SVC. The weights, code, dataset, and documents of SaMoye are publicly available on \url{https://github.com/CarlWangChina/SaMoye-SVC}.
comment: 7 pages, 4 figures
♻ ☆ Leveraging LLM Embeddings for Cross Dataset Label Alignment and Zero Shot Music Emotion Prediction
In this work, we present a novel method for music emotion recognition that leverages Large Language Model (LLM) embeddings for label alignment across multiple datasets and zero-shot prediction on novel categories. First, we compute LLM embeddings for emotion labels and apply non-parametric clustering to group similar labels, across multiple datasets containing disjoint labels. We use these cluster centers to map music features (MERT) to the LLM embedding space. To further enhance the model, we introduce an alignment regularization that enables dissociation of MERT embeddings from different clusters. This further enhances the model's ability to better adaptation to unseen datasets. We demonstrate the effectiveness of our approach by performing zero-shot inference on a new dataset, showcasing its ability to generalize to unseen labels without additional training.
Information Retrieval
☆ Is Semantic Chunking Worth the Computational Cost?
Recent advances in Retrieval-Augmented Generation (RAG) systems have popularized semantic chunking, which aims to improve retrieval performance by dividing documents into semantically coherent segments. Despite its growing adoption, the actual benefits over simpler fixed-size chunking, where documents are split into consecutive, fixed-size segments, remain unclear. This study systematically evaluates the effectiveness of semantic chunking using three common retrieval-related tasks: document retrieval, evidence retrieval, and retrieval-based answer generation. The results show that the computational costs associated with semantic chunking are not justified by consistent performance gains. These findings challenge the previous assumptions about semantic chunking and highlight the need for more efficient chunking strategies in RAG systems.
☆ Supply Chain Network Extraction and Entity Classification Leveraging Large Language Models
Supply chain networks are critical to the operational efficiency of industries, yet their increasing complexity presents significant challenges in mapping relationships and identifying the roles of various entities. Traditional methods for constructing supply chain networks rely heavily on structured datasets and manual data collection, limiting their scope and efficiency. In contrast, recent advancements in Natural Language Processing (NLP) and large language models (LLMs) offer new opportunities for discovering and analyzing supply chain networks using unstructured text data. This paper proposes a novel approach that leverages LLMs to extract and process raw textual information from publicly available sources to construct a comprehensive supply chain graph. We focus on the civil engineering sector as a case study, demonstrating how LLMs can uncover hidden relationships among companies, projects, and other entities. Additionally, we fine-tune an LLM to classify entities within the supply chain graph, providing detailed insights into their roles and relationships. The results show that domain-specific fine-tuning improves classification accuracy, highlighting the potential of LLMs for industry-specific supply chain analysis. Our contributions include the development of a supply chain graph for the civil engineering sector, as well as a fine-tuned LLM model that enhances entity classification and understanding of supply chain networks.
comment: 11 pages, 4 figures
☆ LLM Confidence Evaluation Measures in Zero-Shot CSS Classification
Assessing classification confidence is critical for leveraging large language models (LLMs) in automated labeling tasks, especially in the sensitive domains presented by Computational Social Science (CSS) tasks. In this paper, we make three key contributions: (1) we propose an uncertainty quantification (UQ) performance measure tailored for data annotation tasks, (2) we compare, for the first time, five different UQ strategies across three distinct LLMs and CSS data annotation tasks, (3) we introduce a novel UQ aggregation strategy that effectively identifies low-confidence LLM annotations and disproportionately uncovers data incorrectly labeled by the LLMs. Our results demonstrate that our proposed UQ aggregation strategy improves upon existing methods andcan be used to significantly improve human-in-the-loop data annotation processes.
☆ LFOSum: Summarizing Long-form Opinions with Large Language Models
Online reviews play a pivotal role in influencing consumer decisions across various domains, from purchasing products to selecting hotels or restaurants. However, the sheer volume of reviews -- often containing repetitive or irrelevant content -- leads to information overload, making it challenging for users to extract meaningful insights. Traditional opinion summarization models face challenges in handling long inputs and large volumes of reviews, while newer Large Language Model (LLM) approaches often fail to generate accurate and faithful summaries. To address those challenges, this paper introduces (1) a new dataset of long-form user reviews, each entity comprising over a thousand reviews, (2) two training-free LLM-based summarization approaches that scale to long inputs, and (3) automatic evaluation metrics. Our dataset of user reviews is paired with in-depth and unbiased critical summaries by domain experts, serving as a reference for evaluation. Additionally, our novel reference-free evaluation metrics provide a more granular, context-sensitive assessment of summary faithfulness. We benchmark several open-source and closed-source LLMs using our methods. Our evaluation reveals that LLMs still face challenges in balancing sentiment and format adherence in long-form summaries, though open-source models can narrow the gap when relevant information is retrieved in a focused manner.
☆ Towards Computational Analysis of Pansori Singing
Pansori is one of the most representative vocal genres of Korean traditional music, which has an elaborated vocal melody line with strong vibrato. Although the music is transmitted orally without any music notation, transcribing pansori music in Western staff notation has been introduced for several purposes, such as documentation of music, education, or research. In this paper, we introduce computational analysis of pansori based on both audio and corresponding transcription, how modern Music Information Retrieval tasks can be used in analyzing traditional music and how it revealed different audio characteristics of what pansori contains.
comment: Late-Breaking Demo Session of the 25th International Society for Music Information Retrieval (ISMIR) Conference, 2024
☆ RosePO: Aligning LLM-based Recommenders with Human Values
Recently, there has been a growing interest in leveraging Large Language Models (LLMs) for recommendation systems, which usually adapt a pre-trained LLM to the recommendation scenario through supervised fine-tuning (SFT). However, both the pre-training and SFT stages fail to explicitly model the comparative relationships of a user's preferences on different items. To construct a "helpful and harmless" LLM-based recommender, we propose a general framework -- Recommendation with smoothing personalized Preference Optimization (RosePO), which better aligns with customized human values during the post-training stage. Specifically, in addition to the input and chosen response that naturally align with SFT data, we design a rejected sampling strategy tailored for enhancing helpfulness, along with two strategies aimed at mitigating biases to promote harmlessness. To ensure robustness against uncertain labels present in automatically constructed preference data, we introduce a personalized smoothing factor predicted by a preference oracle into the optimization objective. Evaluation on three real-world datasets demonstrates the effectiveness of our method, showcasing not only improved recommendation performance but also mitigation of semantic hallucination and popularity bias.
☆ P4GCN: Vertical Federated Social Recommendation with Privacy-Preserving Two-Party Graph Convolution Networks
In recent years, graph neural networks (GNNs) have been commonly utilized for social recommendation systems. However, real-world scenarios often present challenges related to user privacy and business constraints, inhibiting direct access to valuable social information from other platforms. While many existing methods have tackled matrix factorization-based social recommendations without direct social data access, developing GNN-based federated social recommendation models under similar conditions remains largely unexplored. To address this issue, we propose a novel vertical federated social recommendation method leveraging privacy-preserving two-party graph convolution networks (P4GCN) to enhance recommendation accuracy without requiring direct access to sensitive social information. First, we introduce a Sandwich-Encryption module to ensure comprehensive data privacy during the collaborative computing process. Second, we provide a thorough theoretical analysis of the privacy guarantees, considering the participation of both curious and honest parties. Extensive experiments on four real-world datasets demonstrate that P4GCN outperforms state-of-the-art methods in terms of recommendation accuracy. The code is available at https://github.com/WwZzz/P4GCN.
☆ Unifying Economic and Language Models for Enhanced Sentiment Analysis of the Oil Market
Crude oil, a critical component of the global economy, has its prices influenced by various factors such as economic trends, political events, and natural disasters. Traditional prediction methods based on historical data have their limits in forecasting, but recent advancements in natural language processing bring new possibilities for event-based analysis. In particular, Language Models (LM) and their advancement, the Generative Pre-trained Transformer (GPT), have shown potential in classifying vast amounts of natural language. However, these LMs often have difficulty with domain-specific terminology, limiting their effectiveness in the crude oil sector. Addressing this gap, we introduce CrudeBERT, a fine-tuned LM specifically for the crude oil market. The results indicate that CrudeBERT's sentiment scores align more closely with the WTI Futures curve and significantly enhance price predictions, underscoring the crucial role of integrating economic principles into LMs.
☆ Mitigating Dual Latent Confounding Biases in Recommender Systems
Recommender systems are extensively utilised across various areas to predict user preferences for personalised experiences and enhanced user engagement and satisfaction. Traditional recommender systems, however, are complicated by confounding bias, particularly in the presence of latent confounders that affect both item exposure and user feedback. Existing debiasing methods often fail to capture the complex interactions caused by latent confounders in interaction data, especially when dual latent confounders affect both the user and item sides. To address this, we propose a novel debiasing method that jointly integrates the Instrumental Variables (IV) approach and identifiable Variational Auto-Encoder (iVAE) for Debiased representation learning in Recommendation systems, referred to as IViDR. Specifically, IViDR leverages the embeddings of user features as IVs to address confounding bias caused by latent confounders between items and user feedback, and reconstructs the embedding of items to obtain debiased interaction data. Moreover, IViDR employs an Identifiable Variational Auto-Encoder (iVAE) to infer identifiable representations of latent confounders between item exposure and user feedback from both the original and debiased interaction data. Additionally, we provide theoretical analyses of the soundness of using IV and the identifiability of the latent representations. Extensive experiments on both synthetic and real-world datasets demonstrate that IViDR outperforms state-of-the-art models in reducing bias and providing reliable recommendations.
☆ QUIDS: Query Intent Generation via Dual Space Modeling
Query understanding is a crucial component of Information Retrieval (IR), aimed at identifying the underlying search intent of textual queries. However, most existing approaches oversimplify this task into query classification or clustering, which fails to fully capture the nuanced intent behind the query. In this paper, we address the task of query intent generation: to automatically generate detailed and precise intent descriptions for search queries using relevant and irrelevant documents given a query. These intent descriptions can help users understand why the search engine considered the top-ranked documents relevant, and provide more transparency to the retrieval process. We propose a dual-space model that uses semantic relevance and irrelevance information in the returned documents to explain the understanding of the query intent. Specifically, in the encoding process, we project, separate, and distinguish relevant and irrelevant documents in the representation space. Then, we introduce a semantic decoupling model in the novel disentangling space, where the semantics of irrelevant information are removed from the relevant space, ensuring that only the essential and relevant intent is captured. This process refines the understanding of the query and provides more accurate explanations for the search results. Experiments on benchmark data demonstrate that our methods produce high-quality query intent descriptions, outperforming existing methods for this task, as well as state-of-the-art query-based summarization methods. A token-level visualization of attention scores reveals that our model effectively reduces the focus on irrelevant intent topics. Our findings open up promising research and application directions for query intent generation, particularly in exploratory search.
☆ REFINE on Scarce Data: Retrieval Enhancement through Fine-Tuning via Model Fusion of Embedding Models
Retrieval augmented generation (RAG) pipelines are commonly used in tasks such as question-answering (QA), relying on retrieving relevant documents from a vector store computed using a pretrained embedding model. However, if the retrieved context is inaccurate, the answers generated using the large language model (LLM) may contain errors or hallucinations. Although pretrained embedding models have advanced, adapting them to new domains remains challenging. Fine-tuning is a potential solution, but industry settings often lack the necessary fine-tuning data. To address these challenges, we propose REFINE, a novel technique that generates synthetic data from available documents and then uses a model fusion approach to fine-tune embeddings for improved retrieval performance in new domains, while preserving out-of-domain capability. We conducted experiments on the two public datasets: SQUAD and RAG-12000 and a proprietary TOURISM dataset. Results demonstrate that even the standard fine-tuning with the proposed data augmentation technique outperforms the vanilla pretrained model. Furthermore, when combined with model fusion, the proposed approach achieves superior performance, with a 5.76% improvement in recall on the TOURISM dataset, and 6.58 % and 0.32% enhancement on SQUAD and RAG-12000 respectively.
comment: Accepted in AJCAI'24
☆ Multi-Cause Deconfounding for Recommender Systems with Latent Confounders
In recommender systems, various latent confounding factors (e.g., user social environment and item public attractiveness) can affect user behavior, item exposure, and feedback in distinct ways. These factors may directly or indirectly impact user feedback and are often shared across items or users, making them multi-cause latent confounders. However, existing methods typically fail to account for latent confounders between users and their feedback, as well as those between items and user feedback simultaneously. To address the problem of multi-cause latent confounders, we propose a multi-cause deconfounding method for recommender systems with latent confounders (MCDCF). MCDCF leverages multi-cause causal effect estimation to learn substitutes for latent confounders associated with both users and items, using user behaviour data. Specifically, MCDCF treats the multiple items that users interact with and the multiple users that interact with items as treatment variables, enabling it to learn substitutes for the latent confounders that influence the estimation of causality between users and their feedback, as well as between items and user feedback. Additionally, we theoretically demonstrate the soundness of our MCDCF method. Extensive experiments on three real-world datasets demonstrate that our MCDCF method effectively recovers latent confounders related to users and items, reducing bias and thereby improving recommendation accuracy.
☆ Comprehending Knowledge Graphs with Large Language Models for Recommender Systems
Recently, the introduction of knowledge graphs (KGs) has significantly advanced recommender systems by facilitating the discovery of potential associations between items. However, existing methods still face several limitations. First, most KGs suffer from missing facts or limited scopes. This can lead to biased knowledge representations, thereby constraining the model's performance. Second, existing methods typically convert textual information into IDs, resulting in the loss of natural semantic connections between different items. Third, existing methods struggle to capture high-order relationships in global KGs due to their inefficient layer-by-layer information propagation mechanisms, which are prone to introducing significant noise. To address these limitations, we propose a novel method called CoLaKG, which leverages large language models (LLMs) for knowledge-aware recommendation. The extensive world knowledge and remarkable reasoning capabilities of LLMs enable them to supplement KGs. Additionally, the strong text comprehension abilities of LLMs allow for a better understanding of semantic information. Based on this, we first extract subgraphs centered on each item from the KG and convert them into textual inputs for the LLM. The LLM then outputs its comprehension of these item-centered subgraphs, which are subsequently transformed into semantic embeddings. Furthermore, to utilize the global information of the KG, we construct an item-item graph using these semantic embeddings, which can directly capture higher-order associations between items. Both the semantic embeddings and the structural information from the item-item graph are effectively integrated into the recommendation model through our designed representation alignment and neighbor augmentation modules. Extensive experiments on four real-world datasets demonstrate the superiority of our method.
☆ Triple Modality Fusion: Aligning Visual, Textual, and Graph Data with Large Language Models for Multi-Behavior Recommendations
Integrating diverse data modalities is crucial for enhancing the performance of personalized recommendation systems. Traditional models, which often rely on singular data sources, lack the depth needed to accurately capture the multifaceted nature of item features and user behaviors. This paper introduces a novel framework for multi-behavior recommendations, leveraging the fusion of triple-modality, which is visual, textual, and graph data through alignment with large language models (LLMs). By incorporating visual information, we capture contextual and aesthetic item characteristics; textual data provides insights into user interests and item features in detail; and graph data elucidates relationships within the item-behavior heterogeneous graphs. Our proposed model called Triple Modality Fusion (TMF) utilizes the power of LLMs to align and integrate these three modalities, achieving a comprehensive representation of user behaviors. The LLM models the user's interactions including behaviors and item features in natural languages. Initially, the LLM is warmed up using only natural language-based prompts. We then devise the modality fusion module based on cross-attention and self-attention mechanisms to integrate different modalities from other models into the same embedding space and incorporate them into an LLM. Extensive experiments demonstrate the effectiveness of our approach in improving recommendation accuracy. Further ablation studies validate the effectiveness of our model design and benefits of the TMF.
☆ AT-RAG: An Adaptive RAG Model Enhancing Query Efficiency with Topic Filtering and Iterative Reasoning
Recent advancements in QA with LLM, like GPT-4, have shown limitations in handling complex multi-hop queries. We propose AT-RAG, a novel multistep RAG incorporating topic modeling for efficient document retrieval and reasoning. Using BERTopic, our model dynamically assigns topics to queries, improving retrieval accuracy and efficiency. We evaluated AT-RAG on multihop benchmark datasets QA and a medical case study QA. Results show significant improvements in correctness, completeness, and relevance compared to existing methods. AT-RAG reduces retrieval time while maintaining high precision, making it suitable for general tasks QA and complex domain-specific challenges such as medical QA. The integration of topic filtering and iterative reasoning enables our model to handle intricate queries efficiently, which makes it suitable for applications that require nuanced information retrieval and decision-making.
♻ ☆ LitSearch: A Retrieval Benchmark for Scientific Literature Search EMNLP 2024
Literature search questions, such as "Where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason across entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions manually written by authors about their recently published papers. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% absolute difference in recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by up to 32 recall points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case.
comment: Accepted by EMNLP 2024. Dataset and code are available at https://github.com/princeton-nlp/LitSearch
♻ ☆ PromptDSI: Prompt-based Rehearsal-free Instance-wise Incremental Learning for Document Retrieval
Differentiable Search Index (DSI) utilizes Pre-trained Language Models (PLMs) for efficient document retrieval without relying on external indexes. However, DSI needs full re-training to handle updates in dynamic corpora, causing significant computational inefficiencies. We introduce PromptDSI, a prompt-based rehearsal-free approach for instance-wise incremental learning document retrieval. PromptDSI attaches prompts to the frozen PLM's encoder of DSI, leveraging its powerful representation to efficiently index new corpora while maintaining a balance between stability and plasticity. We eliminate the initial forward pass of prompt-based continual learning methods that doubles training and inference time. Moreover, we propose a topic-aware prompt pool that employs neural topic embeddings as fixed keys. This strategy ensures diverse and effective prompt usage, addressing the challenge of parameter underutilization caused by the collapse of the query-key matching mechanism. Our empirical evaluations demonstrate that BERT-based PromptDSI matches IncDSI in managing forgetting while improving new corpora performance by more than 4% Hits@10 on NQ320k and upto 3% MRR@10 on MS MARCO 300k.
comment: 20 pages
♻ ☆ DIRAS: Efficient LLM Annotation of Document Relevance in Retrieval Augmented Generation
Retrieval Augmented Generation (RAG) is widely employed to ground responses to queries on domain-specific documents. But do RAG implementations leave out important information when answering queries that need an integrated analysis of information (e.g., Tell me good news in the stock market today.)? To address these concerns, RAG developers need to annotate information retrieval (IR) data for their domain of interest, which is challenging because (1) domain-specific queries usually need nuanced definitions of relevance beyond shallow semantic relevance; and (2) human or GPT-4 annotation is costly and cannot cover all (query, document) pairs (i.e., annotation selection bias), thus harming the effectiveness in evaluating IR recall. To address these challenges, we propose DIRAS (Domain-specific Information Retrieval Annotation with Scalability), a manual-annotation-free schema that fine-tunes open-sourced LLMs to consider nuanced relevance definition and annotate (partial) relevance labels with calibrated relevance scores. Extensive evaluation shows that DIRAS enables smaller (8B) LLMs to achieve GPT-4-level performance on annotating and ranking unseen (query, document) pairs, and is helpful for real-world RAG development. All code, LLM generations, and human annotations can be found in \url{https://github.com/EdisonNi-hku/DIRAS}.
♻ ☆ FLEX: Expert-level False-Less EXecution Metric for Reliable Text-to-SQL Benchmark
Text-to-SQL systems have become crucial for translating natural language into SQL queries in various industries, enabling non-technical users to perform complex data operations. The need for accurate evaluation methods has increased as these systems have grown more sophisticated. However, the Execution Accuracy (EX), the most prevalent evaluation metric, still shows many false positives and negatives. Thus, this paper introduces FLEX (False-Less EXecution), a novel approach to evaluating text-to-SQL systems using large language models (LLMs) to emulate human expert-level evaluation of SQL queries. Our metric improves agreement with human experts (from 62 to 87.04 in Cohen's kappa) with comprehensive context and sophisticated criteria. Our extensive experiments yield several key insights: (1) Models' performance increases by over 2.6 points on average, substantially affecting rankings on Spider and BIRD benchmarks; (2) The underestimation of models in EX primarily stems from annotation quality issues; and (3) Model performance on particularly challenging questions tends to be overestimated. This work contributes to a more accurate and nuanced evaluation of text-to-SQL systems, potentially reshaping our understanding of state-of-the-art performance in this field.
comment: preprint, under review
♻ ☆ A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation
The training paradigm integrating large language models (LLM) is gradually reshaping sequential recommender systems (SRS) and has shown promising results. However, most existing LLM-enhanced methods rely on rich textual information on the item side and instance-level supervised fine-tuning (SFT) to inject collaborative information into LLM, which is inefficient and limited in many applications. To alleviate these problems, this paper proposes a practice-friendly LLM-enhanced paradigm with preference parsing (P2Rec) for SRS. Specifically, in the information reconstruction stage, we design a new user-level SFT task for collaborative information injection with the assistance of a pre-trained SRS model, which is more efficient and compatible with limited text information. Our goal is to let LLM learn to reconstruct a corresponding prior preference distribution from each user's interaction sequence, where LLM needs to effectively parse the latent category of each item and the relationship between different items to accomplish this task. In the information augmentation stage, we feed each item into LLM to obtain a set of enhanced embeddings that combine collaborative information and LLM inference capabilities. These embeddings can then be used to help train various future SRS models. Finally, we verify the effectiveness and efficiency of our TSLRec on three SRS benchmark datasets.
♻ ☆ Knowledge Circuits in Pretrained Transformers NeurIPS 2024
The remarkable capabilities of modern large language models are rooted in their vast repositories of knowledge encoded within their parameters, enabling them to perceive the world and engage in reasoning. The inner workings of how these models store knowledge have long been a subject of intense interest and investigation among researchers. To date, most studies have concentrated on isolated components within these models, such as the Multilayer Perceptrons and attention head. In this paper, we delve into the computation graph of the language model to uncover the knowledge circuits that are instrumental in articulating specific knowledge. The experiments, conducted with GPT2 and TinyLLAMA, have allowed us to observe how certain information heads, relation heads, and Multilayer Perceptrons collaboratively encode knowledge within the model. Moreover, we evaluate the impact of current knowledge editing techniques on these knowledge circuits, providing deeper insights into the functioning and constraints of these editing methodologies. Finally, we utilize knowledge circuits to analyze and interpret language model behaviors such as hallucinations and in-context learning. We believe the knowledge circuits hold potential for advancing our understanding of Transformers and guiding the improved design of knowledge editing. Code and data are available in https://github.com/zjunlp/KnowledgeCircuits.
comment: NeurIPS 2024, 32 pages
♻ ☆ $\textit{lucie}$: An Improved Python Package for Loading Datasets from the UCI Machine Learning Repository
The University of California--Irvine (UCI) Machine Learning (ML) Repository (UCIMLR) is consistently cited as one of the most popular dataset repositories, hosting hundreds of high-impact datasets. However, a significant portion, including 28.4% of the top 250, cannot be imported via the $\textit{ucimlrepo}$ package that is provided and recommended by the UCIMLR website. Instead, they are hosted as .zip files, containing nonstandard formats that are difficult to import without additional ad hoc processing. To address this issue, here we present $\textit{lucie}$ -- $\underline{l}oad$ $\underline{U}niversity$ $\underline{C}alifornia$ $\underline{I}rvine$ $\underline{e}xamples$ -- a utility that automatically determines the data format and imports many of these previously non-importable datasets, while preserving as much of a tabular data structure as possible. $\textit{lucie}$ was designed using the top 100 most popular datasets and benchmarked on the next 130, where it resulted in a success rate of 95.4% vs. 73.1% for $\textit{ucimlrepo}$. $\textit{lucie}$ is available as a Python package on PyPI with 98% code coverage.
comment: 5 pages, 3 figures
♻ ☆ Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences. Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS. Despite their attractive performance, existing LLM-based SRS still exhibit some limitations, including neglecting intra-item relations, ignoring long-term collaborative knowledge and using inflexible architecture designs for adaption. To alleviate these issues, we propose an LLM-based sequential recommendation model named DARec. Built on top of coarse-grained adaption for capturing inter-item relations, DARec is further enhanced with (1) context masking that models intra-item relations to help LLM better understand token and item semantics in the context of SRS, (2) collaborative knowledge injection that helps LLM incorporate long-term collaborative knowledge, and (3) a dynamic adaption mechanism that uses Bayesian optimization to flexibly choose layer-wise adapter architectures in order to better incorporate different sequential information. Extensive experiments demonstrate that DARec can effectively handle sequential recommendation in a dynamic and adaptive manner.
comment: 11 pages, 14 figures
Multimedia
☆ Self-Comparison for Dataset-Level Membership Inference in Large (Vision-)Language Models
Large Language Models (LLMs) and Vision-Language Models (VLMs) have made significant advancements in a wide range of natural language processing and vision-language tasks. Access to large web-scale datasets has been a key factor in their success. However, concerns have been raised about the unauthorized use of copyrighted materials and potential copyright infringement. Existing methods, such as sample-level Membership Inference Attacks (MIA) and distribution-based dataset inference, distinguish member data (data used for training) and non-member data by leveraging the common observation that models tend to memorize and show greater confidence in member data. Nevertheless, these methods face challenges when applied to LLMs and VLMs, such as the requirement for ground-truth member data or non-member data that shares the same distribution as the test data. In this paper, we propose a novel dataset-level membership inference method based on Self-Comparison. We find that a member prefix followed by a non-member suffix (paraphrased from a member suffix) can further trigger the model's memorization on training data. Instead of directly comparing member and non-member data, we introduce paraphrasing to the second half of the sequence and evaluate how the likelihood changes before and after paraphrasing. Unlike prior approaches, our method does not require access to ground-truth member data or non-member data in identical distribution, making it more practical. Extensive experiments demonstrate that our proposed method outperforms traditional MIA and dataset inference techniques across various datasets and models, including including public models, fine-tuned models, and API-based commercial models.
☆ MuVi: Video-to-Music Generation with Semantic Alignment and Rhythmic Synchronization
Generating music that aligns with the visual content of a video has been a challenging task, as it requires a deep understanding of visual semantics and involves generating music whose melody, rhythm, and dynamics harmonize with the visual narratives. This paper presents MuVi, a novel framework that effectively addresses these challenges to enhance the cohesion and immersive experience of audio-visual content. MuVi analyzes video content through a specially designed visual adaptor to extract contextually and temporally relevant features. These features are used to generate music that not only matches the video's mood and theme but also its rhythm and pacing. We also introduce a contrastive music-visual pre-training scheme to ensure synchronization, based on the periodicity nature of music phrases. In addition, we demonstrate that our flow-matching-based music generator has in-context learning ability, allowing us to control the style and genre of the generated music. Experimental results show that MuVi demonstrates superior performance in both audio quality and temporal synchronization. The generated music video samples are available at https://muvi-v2m.github.io.
comment: Working in progress
☆ Embedding an Ethical Mind: Aligning Text-to-Image Synthesis via Lightweight Value Optimization
Recent advancements in diffusion models trained on large-scale data have enabled the generation of indistinguishable human-level images, yet they often produce harmful content misaligned with human values, e.g., social bias, and offensive content. Despite extensive research on Large Language Models (LLMs), the challenge of Text-to-Image (T2I) model alignment remains largely unexplored. Addressing this problem, we propose LiVO (Lightweight Value Optimization), a novel lightweight method for aligning T2I models with human values. LiVO only optimizes a plug-and-play value encoder to integrate a specified value principle with the input prompt, allowing the control of generated images over both semantics and values. Specifically, we design a diffusion model-tailored preference optimization loss, which theoretically approximates the Bradley-Terry model used in LLM alignment but provides a more flexible trade-off between image quality and value conformity. To optimize the value encoder, we also develop a framework to automatically construct a text-image preference dataset of 86k (prompt, aligned image, violating image, value principle) samples. Without updating most model parameters and through adaptive value selection from the input prompt, LiVO significantly reduces harmful outputs and achieves faster convergence, surpassing several strong baselines and taking an initial step towards ethically aligned T2I models.
comment: Accepted by ACM Multimedia 2024. The dataset and code can be found at https://github.com/achernarwang/LiVO
☆ Rethinking Bjøntegaard Delta for Compression Efficiency Evaluation: Are We Calculating It Precisely and Reliably?
For decades, the Bj{\o}ntegaard Delta (BD) has been the metric for evaluating codec Rate-Distortion (R-D) performance. Yet, in most studies, BD is determined using just 4-5 R-D data points, could this be sufficient? As codecs and quality metrics advance, does the conventional BD estimation still hold up? Crucially, are the performance improvements of new codecs and tools genuine, or merely artifacts of estimation flaws? This paper addresses these concerns by reevaluating BD estimation. We present a novel approach employing a parameterized deep neural network to model R-D curves with high precision across various metrics, accompanied by a comprehensive R-D dataset. This approach both assesses the reliability of BD calculations and serves as a precise BD estimator. Our findings advocate for the adoption of rigorous R-D sampling and reliability metrics in future compression research to ensure the validity and reliability of results.
☆ OmnixR: Evaluating Omni-modality Language Models on Reasoning across Modalities
We introduce OmnixR, an evaluation suite designed to benchmark SoTA Omni-modality Language Models, such as GPT-4o and Gemini. Evaluating OLMs, which integrate multiple modalities such as text, vision, and audio, presents unique challenges. Particularly, the user message might often consist of multiple modalities, such that OLMs have to establish holistic understanding and reasoning across modalities to accomplish the task. Existing benchmarks are limited to single modality or dual-modality tasks, overlooking comprehensive multi-modal assessments of model reasoning. To address this, OmnixR offers two evaluation variants: (1)synthetic subset: a synthetic dataset generated automatically by translating text into multiple modalities--audio, images, video, and hybrids (Omnify). (2)realistic subset: a real-world dataset, manually curated and annotated by experts, for evaluating cross-modal reasoning in natural settings. OmnixR presents a unique evaluation towards assessing OLMs over a diverse mix of modalities, such as a question that involves video, audio, and text, providing a rigorous cross-modal reasoning testbed unlike any existing benchmarks. Our experiments find that all state-of-the-art OLMs struggle with OmnixR questions that require integrating information from multiple modalities to answer. Further analysis highlights differences in reasoning behavior, underscoring the challenges of omni-modal AI alignment.
comment: 19 pages, 6 figures, 12 tables
☆ Test-time adaptation for image compression with distribution regularization
Current test- or compression-time adaptation image compression (TTA-IC) approaches, which leverage both latent and decoder refinements as a two-step adaptation scheme, have potentially enhanced the rate-distortion (R-D) performance of learned image compression models on cross-domain compression tasks, \textit{e.g.,} from natural to screen content images. However, compared with the emergence of various decoder refinement variants, the latent refinement, as an inseparable ingredient, is barely tailored to cross-domain scenarios. To this end, we aim to develop an advanced latent refinement method by extending the effective hybrid latent refinement (HLR) method, which is designed for \textit{in-domain} inference improvement but shows noticeable degradation of the rate cost in \textit{cross-domain} tasks. Specifically, we first provide theoretical analyses, in a cue of marginalization approximation from in- to cross-domain scenarios, to uncover that the vanilla HLR suffers from an underlying mismatch between refined Gaussian conditional and hyperprior distributions, leading to deteriorated joint probability approximation of marginal distribution with increased rate consumption. To remedy this issue, we introduce a simple Bayesian approximation-endowed \textit{distribution regularization} to encourage learning a better joint probability approximation in a plug-and-play manner. Extensive experiments on six in- and cross-domain datasets demonstrate that our proposed method not only improves the R-D performance compared with other latent refinement counterparts, but also can be flexibly integrated into existing TTA-IC methods with incremental benefits.
♻ ☆ Video-to-Audio Generation with Hidden Alignment
Generating semantically and temporally aligned audio content in accordance with video input has become a focal point for researchers, particularly following the remarkable breakthrough in text-to-video generation. In this work, we aim to offer insights into the video-to-audio generation paradigm, focusing on three crucial aspects: vision encoders, auxiliary embeddings, and data augmentation techniques. Beginning with a foundational model built on a simple yet surprisingly effective intuition, we explore various vision encoders and auxiliary embeddings through ablation studies. Employing a comprehensive evaluation pipeline that emphasizes generation quality and video-audio synchronization alignment, we demonstrate that our model exhibits state-of-the-art video-to-audio generation capabilities. Furthermore, we provide critical insights into the impact of different data augmentation methods on enhancing the generation framework's overall capacity. We showcase possibilities to advance the challenge of generating synchronized audio from semantic and temporal perspectives. We hope these insights will serve as a stepping stone toward developing more realistic and accurate audio-visual generation models.
comment: https://sites.google.com/view/vta-ldm
Information Retrieval
☆ GaVaMoE: Gaussian-Variational Gated Mixture of Experts for Explainable Recommendation
Large language model-based explainable recommendation (LLM-based ER) systems show promise in generating human-like explanations for recommendations. However, they face challenges in modeling user-item collaborative preferences, personalizing explanations, and handling sparse user-item interactions. To address these issues, we propose GaVaMoE, a novel Gaussian-Variational Gated Mixture of Experts framework for explainable recommendation. GaVaMoE introduces two key components: (1) a rating reconstruction module that employs Variational Autoencoder (VAE) with a Gaussian Mixture Model (GMM) to capture complex user-item collaborative preferences, serving as a pre-trained multi-gating mechanism; and (2) a set of fine-grained expert models coupled with the multi-gating mechanism for generating highly personalized explanations. The VAE component models latent factors in user-item interactions, while the GMM clusters users with similar behaviors. Each cluster corresponds to a gate in the multi-gating mechanism, routing user-item pairs to appropriate expert models. This architecture enables GaVaMoE to generate tailored explanations for specific user types and preferences, mitigating data sparsity by leveraging user similarities. Extensive experiments on three real-world datasets demonstrate that GaVaMoE significantly outperforms existing methods in explanation quality, personalization, and consistency. Notably, GaVaMoE exhibits robust performance in scenarios with sparse user-item interactions, maintaining high-quality explanations even for users with limited historical data.
☆ Adaptive Coordinators and Prompts on Heterogeneous Graphs for Cross-Domain Recommendations
In the online digital world, users frequently engage with diverse items across multiple domains (e.g., e-commerce platforms, streaming services, and social media networks), forming complex heterogeneous interaction graphs. Leveraging this multi-domain information can undoubtedly enhance the performance of recommendation systems by providing more comprehensive user insights and alleviating data sparsity in individual domains. However, integrating multi-domain knowledge for the cross-domain recommendation is very hard due to inherent disparities in user behavior and item characteristics and the risk of negative transfer, where irrelevant or conflicting information from the source domains adversely impacts the target domain's performance. To address these challenges, we offer HAGO, a novel framework with $\textbf{H}$eterogeneous $\textbf{A}$daptive $\textbf{G}$raph co$\textbf{O}$rdinators, which dynamically integrate multi-domain graphs into a cohesive structure by adaptively adjusting the connections between coordinators and multi-domain graph nodes, thereby enhancing beneficial inter-domain interactions while mitigating negative transfer effects. Additionally, we develop a universal multi-domain graph pre-training strategy alongside HAGO to collaboratively learn high-quality node representations across domains. To effectively transfer the learned multi-domain knowledge to the target domain, we design an effective graph prompting method, which incorporates pre-trained embeddings with learnable prompts for the recommendation task. Our framework is compatible with various graph-based models and pre-training techniques, demonstrating broad applicability and effectiveness. Further experimental results show that our solutions outperform state-of-the-art methods in multi-domain recommendation scenarios and highlight their potential for real-world applications.
comment: Under review
☆ CoActionGraphRec: Sequential Multi-Interest Recommendations Using Co-Action Graphs
There are unique challenges to developing item recommender systems for e-commerce platforms like eBay due to sparse data and diverse user interests. While rich user-item interactions are important, eBay's data sparsity exceeds other e-commerce sites by an order of magnitude. To address this challenge, we propose CoActionGraphRec (CAGR), a text based two-tower deep learning model (Item Tower and User Tower) utilizing co-action graph layers. In order to enhance user and item representations, a graph-based solution tailored to eBay's environment is utilized. For the Item Tower, we represent each item using its co-action items to capture collaborative signals in a co-action graph that is fully leveraged by the graph neural network component. For the User Tower, we build a fully connected graph of each user's behavior sequence, with edges encoding pairwise relationships. Furthermore, an explicit interaction module learns representations capturing behavior interactions. Extensive offline and online A/B test experiments demonstrate the effectiveness of our proposed approach and results show improved performance over state-of-the-art methods on key metrics.
☆ LR-SQL: A Supervised Fine-Tuning Method for Text2SQL Tasks under Low-Resource Scenarios
Large language models revolutionize Text2SQL through supervised fine-tuning, yet a crucial limitation is overlooked: the complexity of databases leads to an increased context length, consequently resulting in higher GPU memory demands for model fine-tuning. To address this issue, we propose LR-SQL. LR-SQL comprises two supervised fine-tuning models: the schema\_link model and the SQL\_generation model, with the schema\_link model serving as the focal point for streamlining the overall process. During the fine-tuning of the schema\_link model, LR-SQL breaks down the complete database into flexible combinations of tables with adjustable quantities, enabling the model to learn the relationships within the entire database from these dispersed slices. Furthermore, to enhance the model's ability to perceive the relationships among various discrete slices during inference, LR-SQL trains the model's Chain-of-Thought capability for this task. Experimental results demonstrate that LR-SQL can reduce the total GPU memory usage by 40\% compared to existing fine-tuning methods, while only losing 2\% of table prediction accuracy in schema\_link task. For the overall Text2SQL task, the Execution Accuracy decrease by 0.6\%.Our project is now available on https://github.com/hongWin/LR-SQL
comment: 12pages, 4 figures,submitting to a journal
☆ Enhance Graph Alignment for Large Language Models
Graph-structured data is prevalent in the real world. Recently, due to the powerful emergent capabilities, Large Language Models (LLMs) have shown promising performance in modeling graphs. The key to effectively applying LLMs on graphs is converting graph data into a format LLMs can comprehend. Graph-to-token approaches are popular in enabling LLMs to process graph information. They transform graphs into sequences of tokens and align them with text tokens through instruction tuning, where self-supervised instruction tuning helps LLMs acquire general knowledge about graphs, and supervised fine-tuning specializes LLMs for the downstream tasks on graphs. Despite their initial success, we find that existing methods have a misalignment between self-supervised tasks and supervised downstream tasks, resulting in negative transfer from self-supervised fine-tuning to downstream tasks. To address these issues, we propose Graph Alignment Large Language Models (GALLM) to benefit from aligned task templates. In the self-supervised tuning stage, we introduce a novel text matching task using templates aligned with downstream tasks. In the task-specific tuning stage, we propose two category prompt methods that learn supervision information from additional explanation with further aligned templates. Experimental evaluations on four datasets demonstrate substantial improvements in supervised learning, multi-dataset generalizability, and particularly in zero-shot capability, highlighting the model's potential as a graph foundation model.
comment: Under review
☆ Reducing Labeling Costs in Sentiment Analysis via Semi-Supervised Learning
Labeling datasets is a noteworthy challenge in machine learning, both in terms of cost and time. This research, however, leverages an efficient answer. By exploring label propagation in semi-supervised learning, we can significantly reduce the number of labels required compared to traditional methods. We employ a transductive label propagation method based on the manifold assumption for text classification. Our approach utilizes a graph-based method to generate pseudo-labels for unlabeled data for the text classification task, which are then used to train deep neural networks. By extending labels based on cosine proximity within a nearest neighbor graph from network embeddings, we combine unlabeled data into supervised learning, thereby reducing labeling costs. Based on previous successes in other domains, this study builds and evaluates this approach's effectiveness in sentiment analysis, presenting insights into semi-supervised learning.
comment: 12 pages, 7 figures, accepted at the 2024 8th International Conference on Natural Language Processing and Information Retrieval (NLPIR 2024), Okayama, Japan, 2024
☆ Sequential LLM Framework for Fashion Recommendation
The fashion industry is one of the leading domains in the global e-commerce sector, prompting major online retailers to employ recommendation systems for product suggestions and customer convenience. While recommendation systems have been widely studied, most are designed for general e-commerce problems and struggle with the unique challenges of the fashion domain. To address these issues, we propose a sequential fashion recommendation framework that leverages a pre-trained large language model (LLM) enhanced with recommendation-specific prompts. Our framework employs parameter-efficient fine-tuning with extensive fashion data and introduces a novel mix-up-based retrieval technique for translating text into relevant product suggestions. Extensive experiments show our proposed framework significantly enhances fashion recommendation performance.
☆ On the Capacity of Citation Generation by Large Language Models
Retrieval-augmented generation (RAG) appears as a promising method to alleviate the "hallucination" problem in large language models (LLMs), since it can incorporate external traceable resources for response generation. The essence of RAG in combating the hallucination issue lies in accurately attributing claims in responses to the corresponding retrieved documents. However, most of existing works focus on improving the quality of generated responses from the LLM, while largely overlooked its ability to attribute sources accurately. In this study, we conduct a systematic analysis about the capabilities of LLMs in generating citations within response generation, and further introduce a novel method to enhance their citation generation abilities. Specifically, we evaluate both the correctness and citation quality for seven widely-used LLMs on two benchmark datasets. Meanwhile, we introduce new citation evaluation metrics to eliminate the over-penalization of unnecessary and excessive citations in existing metrics. Furthermore, we propose a Generate-then-Refine method that completes relevant citations and removes irrelevant ones without altering the response text. The results on WebGLM-QA, ASQA and ELI5 datasets show that our method substantially improves the quality of citations in responses generated by LLMs.
comment: Accepted by CCIR 2024
☆ Optimizing Encoder-Only Transformers for Session-Based Recommendation Systems
Session-based recommendation is the task of predicting the next item a user will interact with, often without access to historical user data. In this work, we introduce Sequential Masked Modeling, a novel approach for encoder-only transformer architectures to tackle the challenges of single-session recommendation. Our method combines data augmentation through window sliding with a unique penultimate token masking strategy to capture sequential dependencies more effectively. By enhancing how transformers handle session data, Sequential Masked Modeling significantly improves next-item prediction performance. We evaluate our approach on three widely-used datasets, Yoochoose 1/64, Diginetica, and Tmall, comparing it to state-of-the-art single-session, cross-session, and multi-relation approaches. The results demonstrate that our Transformer-SMM models consistently outperform all models that rely on the same amount of information, while even rivaling methods that have access to more extensive user history. This study highlights the potential of encoder-only transformers in session-based recommendation and opens the door for further improvements.
♻ ☆ DyVo: Dynamic Vocabularies for Learned Sparse Retrieval with Entities
Learned Sparse Retrieval (LSR) models use vocabularies from pre-trained transformers, which often split entities into nonsensical fragments. Splitting entities can reduce retrieval accuracy and limits the model's ability to incorporate up-to-date world knowledge not included in the training data. In this work, we enhance the LSR vocabulary with Wikipedia concepts and entities, enabling the model to resolve ambiguities more effectively and stay current with evolving knowledge. Central to our approach is a Dynamic Vocabulary (DyVo) head, which leverages existing entity embeddings and an entity retrieval component that identifies entities relevant to a query or document. We use the DyVo head to generate entity weights, which are then merged with word piece weights to create joint representations for efficient indexing and retrieval using an inverted index. In experiments across three entity-rich document ranking datasets, the resulting DyVo model substantially outperforms state-of-the-art baselines.
comment: https://github.com/thongnt99/DyVo
♻ ☆ GOVERN: Gradient Orientation Vote Ensemble for Multi-Teacher Reinforced Distillation EMNLP 2024
Pre-trained language models have become an integral component of question-answering systems, achieving remarkable performance. However, for practical deployment, it is crucial to perform knowledge distillation to maintain high performance while operating under computational constraints. In this paper, we address a key question: given the importance of unsupervised distillation for student model performance, how can knowledge from multiple teacher models be effectively ensemble during this stage without the guidance of labels? We propose a novel algorithm, GOVERN, to tackle this issue. GOVERN has demonstrated significant improvements in both offline and online experiments, enabling the student model to achieve results comparable to that of teacher ensembles. Our experiments show that GOVERN remarkably requires a mere 1\% of the ensemble method's inference budget to achieve 99.5\% of performance. The proposed algorithm has been successfully deployed in a real-world commercial question-answering system, demonstrating its real-world applicability.
comment: Accepted by EMNLP 2024 Industry Track
♻ ☆ DISCO: A Hierarchical Disentangled Cognitive Diagnosis Framework for Interpretable Job Recommendation ICDM 2024
The rapid development of online recruitment platforms has created unprecedented opportunities for job seekers while concurrently posing the significant challenge of quickly and accurately pinpointing positions that align with their skills and preferences. Job recommendation systems have significantly alleviated the extensive search burden for job seekers by optimizing user engagement metrics, such as clicks and applications, thus achieving notable success. In recent years, a substantial amount of research has been devoted to developing effective job recommendation models, primarily focusing on text-matching based and behavior modeling based methods. While these approaches have realized impressive outcomes, it is imperative to note that research on the explainability of recruitment recommendations remains profoundly unexplored. To this end, in this paper, we propose DISCO, a hierarchical Disentanglement based Cognitive diagnosis framework, aimed at flexibly accommodating the underlying representation learning model for effective and interpretable job recommendations. Specifically, we first design a hierarchical representation disentangling module to explicitly mine the hierarchical skill-related factors implied in hidden representations of job seekers and jobs. Subsequently, we propose level-aware association modeling to enhance information communication and robust representation learning both inter- and intra-level, which consists of the interlevel knowledge influence module and the level-wise contrastive learning. Finally, we devise an interaction diagnosis module incorporating a neural diagnosis function for effectively modeling the multi-level recruitment interaction process between job seekers and jobs, which introduces the cognitive measurement theory.
comment: Accepted by ICDM 2024. 10 pages
♻ ☆ Curriculum-scheduled Knowledge Distillation from Multiple Pre-trained Teachers for Multi-domain Sequential Recommendation
Pre-trained recommendation models (PRMs) have received increasing interest recently. However, their intrinsically heterogeneous model structure, huge model size and computation cost hinder their adoptions in practical recommender systems. Hence, it is highly essential to explore how to use different pre-trained recommendation models efficiently in real-world systems. In this paper, we propose a novel curriculum-scheduled knowledge distillation from multiple pre-trained teachers for multi-domain sequential recommendation, called CKD-MDSR, which takes full advantages of different PRMs as multiple teacher models to boost a small student recommendation model, integrating the knowledge across multiple domains from PRMs. Specifically, CKD-MDSR first adopts curriculum-scheduled user behavior sequence sampling and distills informative knowledge jointly from the representative PRMs such as UniSRec and Recformer. Then, the knowledge from the above PRMs are selectively integrated into the student model in consideration of their confidence and consistency. Finally, we verify the proposed method on multi-domain sequential recommendation and further demonstrate its universality with multiple types of student models, including feature interaction and graph based recommendation models. Extensive experiments on five real-world datasets demonstrate the effectiveness and efficiency of CKD-MDSR, which can be viewed as an efficient shortcut using PRMs in real-world systems.
♻ ☆ CoRA: Collaborative Information Perception by Large Language Model's Weights for Recommendation
Involving collaborative information in Large Language Models (LLMs) is a promising technique for adapting LLMs for recommendation. Existing methods achieve this by concatenating collaborative features with text tokens into a unified sequence input and then fine-tuning to align these features with LLM's input space. Although effective, in this work, we identify two limitations when adapting LLMs to recommendation tasks, which hinder the integration of general knowledge and collaborative information, resulting in sub-optimal recommendation performance. (1) Fine-tuning LLM with recommendation data can undermine its inherent world knowledge and fundamental competencies, which are crucial for interpreting and inferring recommendation text. (2) Incorporating collaborative features into textual prompts disrupts the semantics of the original prompts, preventing LLM from generating appropriate outputs. In this paper, we propose a new paradigm, CoRA (an acronym for Collaborative LoRA), with a collaborative weights generator. Rather than input space alignment, this method aligns collaborative information with LLM's parameter space, representing them as incremental weights to update LLM's output. This way, LLM perceives collaborative information without altering its general knowledge and text inference capabilities. Specifically, we employ a collaborative filtering model to extract user and item embeddings, converting them into collaborative weights with low-rank properties through the collaborative weights generator. We then merge the collaborative weights into LLM's weights, enabling LLM to perceive the collaborative signals and generate personalized recommendations without fine-tuning or extra collaborative tokens in prompts. Extensive experiments confirm that CoRA effectively integrates collaborative information into LLM, enhancing recommendation performance.
♻ ☆ Recommenadation aided Caching using Combinatorial Multi-armed Bandits
We study content caching with recommendations in a wireless network where the users are connected through a base station equipped with a finite-capacity cache. We assume a fixed set of contents with unknown user preferences and content popularities. The base station can cache a subset of the contents and can also recommend subsets of the contents to different users in order to encourage them to request the recommended contents. Recommendations, depending on their acceptability, can thus be used to increase cache hits. We first assume that the users' recommendation acceptabilities are known and formulate the cache hit optimization problem as a combinatorial multi-armed bandit (CMAB). We propose a UCB-based algorithm to decide which contents to cache and recommend and provide an upper bound on the regret of this algorithm. Subsequently, we consider a more general scenario where the users' recommendation acceptabilities are also unknown and propose another UCB-based algorithm that learns these as well. We numerically demonstrate the performance of our algorithms and compare these to state-of-the-art algorithms.
♻ ☆ Spectral-Based Graph Neural Networks for Complementary Item Recommendation AAAI-24
Modeling complementary relationships greatly helps recommender systems to accurately and promptly recommend the subsequent items when one item is purchased. Unlike traditional similar relationships, items with complementary relationships may be purchased successively (such as iPhone and Airpods Pro), and they not only share relevance but also exhibit dissimilarity. Since the two attributes are opposites, modeling complementary relationships is challenging. Previous attempts to exploit these relationships have either ignored or oversimplified the dissimilarity attribute, resulting in ineffective modeling and an inability to balance the two attributes. Since Graph Neural Networks (GNNs) can capture the relevance and dissimilarity between nodes in the spectral domain, we can leverage spectral-based GNNs to effectively understand and model complementary relationships. In this study, we present a novel approach called Spectral-based Complementary Graph Neural Networks (SComGNN) that utilizes the spectral properties of complementary item graphs. We make the first observation that complementary relationships consist of low-frequency and mid-frequency components, corresponding to the relevance and dissimilarity attributes, respectively. Based on this spectral observation, we design spectral graph convolutional networks with low-pass and mid-pass filters to capture the low-frequency and mid-frequency components. Additionally, we propose a two-stage attention mechanism to adaptively integrate and balance the two attributes. Experimental results on four e-commerce datasets demonstrate the effectiveness of our model, with SComGNN significantly outperforming existing baseline models.
comment: Accepted by AAAI-24
Multimedia
☆ Enabling Data-Driven and Empathetic Interactions: A Context-Aware 3D Virtual Agent in Mixed Reality for Enhanced Financial Customer Experience
In this paper, we introduce a novel system designed to enhance customer service in the financial and retail sectors through a context-aware 3D virtual agent, utilizing Mixed Reality (MR) and Vision Language Models (VLMs). Our approach focuses on enabling data-driven and empathetic interactions that ensure customer satisfaction by introducing situational awareness of the physical location, personalized interactions based on customer profiles, and rigorous privacy and security standards. We discuss our design considerations critical for deployment in real-world customer service environments, addressing challenges in user data management and sensitive information handling. We also outline the system architecture and key features unique to banking and retail environments. Our work demonstrates the potential of integrating MR and VLMs in service industries, offering practical insights in customer service delivery while maintaining high standards of security and personalization.
comment: to appear at 1st Workshop on Intelligent XR: Harnessing AI for Next-Generation XR User Experiences at International Symposium on Mixed and Augmented Reality (ISMAR) 2024
☆ LocoMotion: Learning Motion-Focused Video-Language Representations ACCV 2024
This paper strives for motion-focused video-language representations. Existing methods to learn video-language representations use spatial-focused data, where identifying the objects and scene is often enough to distinguish the relevant caption. We instead propose LocoMotion to learn from motion-focused captions that describe the movement and temporal progression of local object motions. We achieve this by adding synthetic motions to videos and using the parameters of these motions to generate corresponding captions. Furthermore, we propose verb-variation paraphrasing to increase the caption variety and learn the link between primitive motions and high-level verbs. With this, we are able to learn a motion-focused video-language representation. Experiments demonstrate our approach is effective for a variety of downstream tasks, particularly when limited data is available for fine-tuning. Code is available: https://hazeldoughty.github.io/Papers/LocoMotion/
comment: ACCV 2024
☆ Improving Long-Text Alignment for Text-to-Image Diffusion Models
The rapid advancement of text-to-image (T2I) diffusion models has enabled them to generate unprecedented results from given texts. However, as text inputs become longer, existing encoding methods like CLIP face limitations, and aligning the generated images with long texts becomes challenging. To tackle these issues, we propose LongAlign, which includes a segment-level encoding method for processing long texts and a decomposed preference optimization method for effective alignment training. For segment-level encoding, long texts are divided into multiple segments and processed separately. This method overcomes the maximum input length limits of pretrained encoding models. For preference optimization, we provide decomposed CLIP-based preference models to fine-tune diffusion models. Specifically, to utilize CLIP-based preference models for T2I alignment, we delve into their scoring mechanisms and find that the preference scores can be decomposed into two components: a text-relevant part that measures T2I alignment and a text-irrelevant part that assesses other visual aspects of human preference. Additionally, we find that the text-irrelevant part contributes to a common overfitting problem during fine-tuning. To address this, we propose a reweighting strategy that assigns different weights to these two components, thereby reducing overfitting and enhancing alignment. After fine-tuning $512 \times 512$ Stable Diffusion (SD) v1.5 for about 20 hours using our method, the fine-tuned SD outperforms stronger foundation models in T2I alignment, such as PixArt-$\alpha$ and Kandinsky v2.2. The code is available at https://github.com/luping-liu/LongAlign.
☆ MLLM can see? Dynamic Correction Decoding for Hallucination Mitigation
Multimodal Large Language Models (MLLMs) frequently exhibit hallucination phenomena, but the underlying reasons remain poorly understood. In this paper, we present an empirical analysis and find that, although MLLMs incorrectly generate the objects in the final output, they are actually able to recognize visual objects in the preceding layers. We speculate that this may be due to the strong knowledge priors of the language model suppressing the visual information, leading to hallucinations. Motivated by this, we propose a novel dynamic correction decoding method for MLLMs (DeCo), which adaptively selects the appropriate preceding layers and proportionally integrates knowledge into the final layer to adjust the output logits. Note that DeCo is model agnostic and can be seamlessly incorporated with various classic decoding strategies and applied to different MLLMs. We evaluate DeCo on widely-used benchmarks, demonstrating that it can reduce hallucination rates by a large margin compared to baselines, highlighting its potential to mitigate hallucinations. Code is available at https://github.com/zjunlp/DeCo.
comment: Ongoing work
☆ Magnifier Prompt: Tackling Multimodal Hallucination via Extremely Simple Instructions
Hallucinations in multimodal large language models (MLLMs) hinder their practical applications. To address this, we propose a Magnifier Prompt (MagPrompt), a simple yet effective method to tackle hallucinations in MLLMs via extremely simple instructions. MagPrompt is based on the following two key principles, which guide the design of various effective prompts, demonstrating robustness: (1) MLLMs should focus more on the image. (2) When there are conflicts between the image and the model's inner knowledge, MLLMs should prioritize the image. MagPrompt is training-free and can be applied to open-source and closed-source models, such as GPT-4o and Gemini-pro. It performs well across many datasets and its effectiveness is comparable or even better than more complex methods like VCD. Furthermore, our prompt design principles and experimental analyses provide valuable insights into multimodal hallucination.
comment: 9 pages, 13 tables, 4 figures
☆ On-the-fly Modulation for Balanced Multimodal Learning
Multimodal learning is expected to boost model performance by integrating information from different modalities. However, its potential is not fully exploited because the widely-used joint training strategy, which has a uniform objective for all modalities, leads to imbalanced and under-optimized uni-modal representations. Specifically, we point out that there often exists modality with more discriminative information, e.g., vision of playing football and sound of blowing wind. They could dominate the joint training process, resulting in other modalities being significantly under-optimized. To alleviate this problem, we first analyze the under-optimized phenomenon from both the feed-forward and the back-propagation stages during optimization. Then, On-the-fly Prediction Modulation (OPM) and On-the-fly Gradient Modulation (OGM) strategies are proposed to modulate the optimization of each modality, by monitoring the discriminative discrepancy between modalities during training. Concretely, OPM weakens the influence of the dominant modality by dropping its feature with dynamical probability in the feed-forward stage, while OGM mitigates its gradient in the back-propagation stage. In experiments, our methods demonstrate considerable improvement across a variety of multimodal tasks. These simple yet effective strategies not only enhance performance in vanilla and task-oriented multimodal models, but also in more complex multimodal tasks, showcasing their effectiveness and flexibility. The source code is available at \url{https://github.com/GeWu-Lab/BML_TPAMI2024}.
comment: Accepted by T-PAMI 2024
☆ VidCompress: Memory-Enhanced Temporal Compression for Video Understanding in Large Language Models
Video-based multimodal large language models (Video-LLMs) possess significant potential for video understanding tasks. However, most Video-LLMs treat videos as a sequential set of individual frames, which results in insufficient temporal-spatial interaction that hinders fine-grained comprehension and difficulty in processing longer videos due to limited visual token capacity. To address these challenges, we propose VidCompress, a novel Video-LLM featuring memory-enhanced temporal compression. VidCompress employs a dual-compressor approach: a memory-enhanced compressor captures both short-term and long-term temporal relationships in videos and compresses the visual tokens using a multiscale transformer with a memory-cache mechanism, while a text-perceived compressor generates condensed visual tokens by utilizing Q-Former and integrating temporal contexts into query embeddings with cross attention. Experiments on several VideoQA datasets and comprehensive benchmarks demonstrate that VidCompress efficiently models complex temporal-spatial relations and significantly outperforms existing Video-LLMs.
comment: 9 pages, 4 figures
♻ ☆ VIA: Unified Spatiotemporal Video Adaptation Framework for Global and Local Video Editing
Video editing is a cornerstone of digital media, from entertainment and education to professional communication. However, previous methods often overlook the necessity of comprehensively understanding both global and local contexts, leading to inaccurate and inconsistent edits in the spatiotemporal dimension, especially for long videos. In this paper, we introduce VIA, a unified spatiotemporal Video Adaptation framework for global and local video editing, pushing the limits of consistently editing minute-long videos. First, to ensure local consistency within individual frames, we designed test-time editing adaptation to adapt a pre-trained image editing model for improving consistency between potential editing directions and the text instruction, and adapt masked latent variables for precise local control. Furthermore, to maintain global consistency over the video sequence, we introduce spatiotemporal adaptation that recursively gather consistent attention variables in key frames and strategically applies them across the whole sequence to realize the editing effects. Extensive experiments demonstrate that, compared to baseline methods, our VIA approach produces edits that are more faithful to the source videos, more coherent in the spatiotemporal context, and more precise in local control. More importantly, we show that VIA can achieve consistent long video editing in minutes, unlocking the potential for advanced video editing tasks over long video sequences.
comment: 19 pages, 14 figures
♻ ☆ FineFake: A Knowledge-Enriched Dataset for Fine-Grained Multi-Domain Fake News Detection
Existing benchmarks for fake news detection have significantly contributed to the advancement of models in assessing the authenticity of news content. However, these benchmarks typically focus solely on news pertaining to a single semantic topic or originating from a single platform, thereby failing to capture the diversity of multi-domain news in real scenarios. In order to understand fake news across various domains, the external knowledge and fine-grained annotations are indispensable to provide precise evidence and uncover the diverse underlying strategies for fabrication, which are also ignored by existing benchmarks. To address this gap, we introduce a novel multi-domain knowledge-enhanced benchmark with fine-grained annotations, named \textbf{FineFake}. FineFake encompasses 16,909 data samples spanning six semantic topics and eight platforms. Each news item is enriched with multi-modal content, potential social context, semi-manually verified common knowledge, and fine-grained annotations that surpass conventional binary labels. Furthermore, we formulate three challenging tasks based on FineFake and propose a knowledge-enhanced domain adaptation network. Extensive experiments are conducted on FineFake under various scenarios, providing accurate and reliable benchmarks for future endeavors. The entire FineFake project is publicly accessible as an open-source repository at \url{https://github.com/Accuser907/FineFake}.
Information Retrieval
☆ SGUQ: Staged Graph Convolution Neural Network for Alzheimer's Disease Diagnosis using Multi-Omics Data
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the leading cause of dementia, significantly impacting cost, mortality, and burden worldwide. The advent of high-throughput omics technologies, such as genomics, transcriptomics, proteomics, and epigenomics, has revolutionized the molecular understanding of AD. Conventional AI approaches typically require the completion of all omics data at the outset to achieve optimal AD diagnosis, which are inefficient and may be unnecessary. To reduce the clinical cost and improve the accuracy of AD diagnosis using multi-omics data, we propose a novel staged graph convolutional network with uncertainty quantification (SGUQ). SGUQ begins with mRNA and progressively incorporates DNA methylation and miRNA data only when necessary, reducing overall costs and exposure to harmful tests. Experimental results indicate that 46.23% of the samples can be reliably predicted using only single-modal omics data (mRNA), while an additional 16.04% of the samples can achieve reliable predictions when combining two omics data types (mRNA + DNA methylation). In addition, the proposed staged SGUQ achieved an accuracy of 0.858 on ROSMAP dataset, which outperformed existing methods significantly. The proposed SGUQ can not only be applied to AD diagnosis using multi-omics data but also has the potential for clinical decision-making using multi-viewed data. Our implementation is publicly available at https://github.com/chenzhao2023/multiomicsuncertainty.
comment: 20 pages, 2 figures
☆ GraFPrint: A GNN-Based Approach for Audio Identification ICASSP 2025
This paper introduces GraFPrint, an audio identification framework that leverages the structural learning capabilities of Graph Neural Networks (GNNs) to create robust audio fingerprints. Our method constructs a k-nearest neighbor (k-NN) graph from time-frequency representations and applies max-relative graph convolutions to encode local and global information. The network is trained using a self-supervised contrastive approach, which enhances resilience to ambient distortions by optimizing feature representation. GraFPrint demonstrates superior performance on large-scale datasets at various levels of granularity, proving to be both lightweight and scalable, making it suitable for real-world applications with extensive reference databases.
comment: Submitted to IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2025)
☆ Generating Model Parameters for Controlling: Parameter Diffusion for Controllable Multi-Task Recommendation
Commercial recommender systems face the challenge that task requirements from platforms or users often change dynamically (e.g., varying preferences for accuracy or diversity). Ideally, the model should be re-trained after resetting a new objective function, adapting to these changes in task requirements. However, in practice, the high computational costs associated with retraining make this process impractical for models already deployed to online environments. This raises a new challenging problem: how to efficiently adapt the learning model to different task requirements by controlling model parameters after deployment, without the need for retraining. To address this issue, we propose a novel controllable learning approach via Parameter Diffusion for controllable multi-task Recommendation (PaDiRec), which allows the customization and adaptation of recommendation model parameters to new task requirements without retraining. Specifically, we first obtain the optimized model parameters through adapter tunning based on the feasible task requirements. Then, we utilize the diffusion model as a parameter generator, employing classifier-free guidance in conditional training to learn the distribution of optimized model parameters under various task requirements. Finally, the diffusion model is applied to effectively generate model parameters in a test-time adaptation manner given task requirements. As a model-agnostic approach, PaDiRec can leverage existing recommendation models as backbones to enhance their controllability. Extensive experiments on public datasets and a dataset from a commercial app, indicate that PaDiRec can effectively enhance controllability through efficient model parameter generation. The code is released at https://anonymous.4open.science/r/PaDiRec-DD13.
☆ VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents
Retrieval-augmented generation (RAG) is an effective technique that enables large language models (LLMs) to utilize external knowledge sources for generation. However, current RAG systems are solely based on text, rendering it impossible to utilize vision information like layout and images that play crucial roles in real-world multi-modality documents. In this paper, we introduce VisRAG, which tackles this issue by establishing a vision-language model (VLM)-based RAG pipeline. In this pipeline, instead of first parsing the document to obtain text, the document is directly embedded using a VLM as an image and then retrieved to enhance the generation of a VLM. Compared to traditional text-based RAG, VisRAG maximizes the retention and utilization of the data information in the original documents, eliminating the information loss introduced during the parsing process. We collect both open-source and synthetic data to train the retriever in VisRAG and explore a variety of generation methods. Experiments demonstrate that VisRAG outperforms traditional RAG in both the retrieval and generation stages, achieving a 25--39\% end-to-end performance gain over traditional text-based RAG pipeline. Further analysis reveals that VisRAG is effective in utilizing training data and demonstrates strong generalization capability, positioning it as a promising solution for RAG on multi-modality documents. Our code and data are available at https://github.com/openbmb/visrag .
☆ Rethinking Legal Judgement Prediction in a Realistic Scenario in the Era of Large Language Models EMNLP 2024
This study investigates judgment prediction in a realistic scenario within the context of Indian judgments, utilizing a range of transformer-based models, including InLegalBERT, BERT, and XLNet, alongside LLMs such as Llama-2 and GPT-3.5 Turbo. In this realistic scenario, we simulate how judgments are predicted at the point when a case is presented for a decision in court, using only the information available at that time, such as the facts of the case, statutes, precedents, and arguments. This approach mimics real-world conditions, where decisions must be made without the benefit of hindsight, unlike retrospective analyses often found in previous studies. For transformer models, we experiment with hierarchical transformers and the summarization of judgment facts to optimize input for these models. Our experiments with LLMs reveal that GPT-3.5 Turbo excels in realistic scenarios, demonstrating robust performance in judgment prediction. Furthermore, incorporating additional legal information, such as statutes and precedents, significantly improves the outcome of the prediction task. The LLMs also provide explanations for their predictions. To evaluate the quality of these predictions and explanations, we introduce two human evaluation metrics: Clarity and Linking. Our findings from both automatic and human evaluations indicate that, despite advancements in LLMs, they are yet to achieve expert-level performance in judgment prediction and explanation tasks.
comment: Accepted on NLLP at EMNLP 2024
☆ Advancing Academic Knowledge Retrieval via LLM-enhanced Representation Similarity Fusion KDD
In an era marked by robust technological growth and swift information renewal, furnishing researchers and the populace with top-tier, avant-garde academic insights spanning various domains has become an urgent necessity. The KDD Cup 2024 AQA Challenge is geared towards advancing retrieval models to identify pertinent academic terminologies from suitable papers for scientific inquiries. This paper introduces the LLM-KnowSimFuser proposed by Robo Space, which wins the 2nd place in the competition. With inspirations drawed from the superior performance of LLMs on multiple tasks, after careful analysis of the provided datasets, we firstly perform fine-tuning and inference using LLM-enhanced pre-trained retrieval models to introduce the tremendous language understanding and open-domain knowledge of LLMs into this task, followed by a weighted fusion based on the similarity matrix derived from the inference results. Finally, experiments conducted on the competition datasets show the superiority of our proposal, which achieved a score of 0.20726 on the final leaderboard.
comment: The 2nd Place of KDD Cup 2024 OAG-Challenge AQA
☆ Medico: Towards Hallucination Detection and Correction with Multi-source Evidence Fusion EMNLP 2024
As we all know, hallucinations prevail in Large Language Models (LLMs), where the generated content is coherent but factually incorrect, which inflicts a heavy blow on the widespread application of LLMs. Previous studies have shown that LLMs could confidently state non-existent facts rather than answering ``I don't know''. Therefore, it is necessary to resort to external knowledge to detect and correct the hallucinated content. Since manual detection and correction of factual errors is labor-intensive, developing an automatic end-to-end hallucination-checking approach is indeed a needful thing. To this end, we present Medico, a Multi-source evidence fusion enhanced hallucination detection and correction framework. It fuses diverse evidence from multiple sources, detects whether the generated content contains factual errors, provides the rationale behind the judgment, and iteratively revises the hallucinated content. Experimental results on evidence retrieval (0.964 HR@5, 0.908 MRR@5), hallucination detection (0.927-0.951 F1), and hallucination correction (0.973-0.979 approval rate) manifest the great potential of Medico. A video demo of Medico can be found at https://youtu.be/RtsO6CSesBI.
comment: 12 pages, 3 figures, 6 tables. Accepted by EMNLP 2024's demo track
☆ Collaborative filtering based on nonnegative/binary matrix factorization
Collaborative filtering generates recommendations based on user-item similarities through rating data, which may involve numerous unrated items. To predict scores for unrated items, matrix factorization techniques, such as nonnegative matrix factorization (NMF), are often employed to predict scores for unrated items. Nonnegative/binary matrix factorization (NBMF), which is an extension of NMF, approximates a nonnegative matrix as the product of nonnegative and binary matrices. Previous studies have employed NBMF for image analysis where the data were dense. In this paper, we propose a modified NBMF algorithm that can be applied to collaborative filtering where data are sparse. In the modified method, unrated elements in a rating matrix are masked, which improves the collaborative filtering performance. Utilizing a low-latency Ising machine in NBMF is advantageous in terms of the computation time, making the proposed method beneficial.
comment: 12 pages, 7 figures
☆ BookWorm: A Dataset for Character Description and Analysis EMNLP 2024
Characters are at the heart of every story, driving the plot and engaging readers. In this study, we explore the understanding of characters in full-length books, which contain complex narratives and numerous interacting characters. We define two tasks: character description, which generates a brief factual profile, and character analysis, which offers an in-depth interpretation, including character development, personality, and social context. We introduce the BookWorm dataset, pairing books from the Gutenberg Project with human-written descriptions and analyses. Using this dataset, we evaluate state-of-the-art long-context models in zero-shot and fine-tuning settings, utilizing both retrieval-based and hierarchical processing for book-length inputs. Our findings show that retrieval-based approaches outperform hierarchical ones in both tasks. Additionally, fine-tuned models using coreference-based retrieval produce the most factual descriptions, as measured by fact- and entailment-based metrics. We hope our dataset, experiments, and analysis will inspire further research in character-based narrative understanding.
comment: 30 pages, 2 figures, EMNLP 2024 Findings
☆ A Hybrid Filtering for Micro-video Hashtag Recommendation using Graph-based Deep Neural Network
Due to the growing volume of user generated content, hashtags are employed as topic indicators to manage content efficiently on social media platforms. However, finding these vital topics is challenging in microvideos since they contain substantial information in a short duration. Existing methods that recommend hashtags for microvideos primarily focus on content and personalization while disregarding relatedness among users. Moreover, the cold start user issue prevails in hashtag recommendation systems. Considering the above, we propose a hybrid filtering based MIcro-video haSHtag recommendatiON MISHON technique to recommend hashtags for micro-videos. Besides content based filtering, we employ user-based collaborative filtering to enhance recommendations. Since hashtags reflect users topical interests, we find similar users based on historical tagging behavior to model user relatedness. We employ a graph-based deep neural network to model user to user, modality to modality, and user to modality interactions. We then use refined modality specific and user representations to recommend pertinent hashtags for microvideos. The empirical results on three real world datasets demonstrate that MISHON attains a comparative enhancement of 3.6, 2.8, and 6.5 reported in percentage concerning the F1 score, respectively. Since cold start users exist whose historical tagging information is unavailable, we also propose a content and social influence based technique to model the relatedness of cold start users with influential users. The proposed solution shows a relative improvement of 15.8 percent in the F1 score over its content only counterpart. These results show that the proposed framework mitigates the cold start user problem.
☆ Parenting: Optimizing Knowledge Selection of Retrieval-Augmented Language Models with Parameter Decoupling and Tailored Tuning
Retrieval-Augmented Generation (RAG) offers an effective solution to the issues faced by Large Language Models (LLMs) in hallucination generation and knowledge obsolescence by incorporating externally retrieved knowledge. However, due to potential conflicts between internal and external knowledge, as well as retrieval noise, LLMs often struggle to effectively integrate external evidence, leading to a decline in performance. Although existing methods attempt to tackle these challenges, they often struggle to strike a balance between model adherence and robustness, resulting in significant learning variance. Inspired by human cognitive processes, we propose Parenting, a novel framework that decouples adherence and robustness within the parameter space of LLMs. Specifically, Parenting utilizes a key parameter mining method based on forward activation gain to identify and isolate the crucial parameter units that are strongly linked to adherence and robustness. Then, Parenting employs a type-guided tailored tuning strategy, applying specific and appropriate fine-tuning methods to parameter units representing different capabilities, aiming to achieve a balanced enhancement of adherence and robustness. Extensive experiments on various datasets and models validate the effectiveness and generalizability of our methods.
☆ Enhancing Attributed Graph Networks with Alignment and Uniformity Constraints for Session-based Recommendation
Session-based Recommendation (SBR), seeking to predict a user's next action based on an anonymous session, has drawn increasing attention for its practicability. Most SBR models only rely on the contextual transitions within a short session to learn item representations while neglecting additional valuable knowledge. As such, their model capacity is largely limited by the data sparsity issue caused by short sessions. A few studies have exploited the Modeling of Item Attributes (MIA) to enrich item representations. However, they usually involve specific model designs that can hardly transfer to existing attribute-agnostic SBR models and thus lack universality. In this paper, we propose a model-agnostic framework, named AttrGAU (Attributed Graph Networks with Alignment and Uniformity Constraints), to bring the MIA's superiority into existing attribute-agnostic models, to improve their accuracy and robustness for recommendation. Specifically, we first build a bipartite attributed graph and design an attribute-aware graph convolution to exploit the rich attribute semantics hidden in the heterogeneous item-attribute relationship. We then decouple existing attribute-agnostic SBR models into the graph neural network and attention readout sub-modules to satisfy the non-intrusive requirement. Lastly, we design two representation constraints, i.e., alignment and uniformity, to optimize distribution discrepancy in representation between the attribute semantics and collaborative semantics. Extensive experiments on three public benchmark datasets demonstrate that the proposed AttrGAU framework can significantly enhance backbone models' recommendation performance and robustness against data sparsity and data noise issues. Our implementation codes will be available at https://github.com/ItsukiFujii/AttrGAU.
comment: 11 pages, 4 figures, 5 tables. Accepted by ICWS 2024
☆ FunnelRAG: A Coarse-to-Fine Progressive Retrieval Paradigm for RAG
Retrieval-Augmented Generation (RAG) prevails in Large Language Models. It mainly consists of retrieval and generation. The retrieval modules (a.k.a. retrievers) aim to find useful information used to facilitate generation modules (a.k.a. generators). As such, generators' performance largely depends on the effectiveness and efficiency of retrievers. However, the retrieval paradigm that we design and use remains flat, which treats the retrieval procedures as a one-off deal with constant granularity. Despite effectiveness, we argue that they suffer from two limitations: (1) flat retrieval exerts a significant burden on one retriever; (2) constant granularity limits the ceiling of retrieval performance. In this work, we propose a progressive retrieval paradigm with coarse-to-fine granularity for RAG, termed FunnelRAG, so as to balance effectiveness and efficiency. Specifically, FunnelRAG establishes a progressive retrieval pipeline by collaborating coarse-to-fine granularity, large-to-small quantity, and low-to-high capacity, which can relieve the burden on one retriever and also promote the ceiling of retrieval performance. Extensive experiments manifest that FunnelRAG achieves comparable retrieval performance while the time overhead is reduced by nearly 40 percent.
comment: 18 pages, 6 figures, 13 tables
☆ Back-of-the-Book Index Automation for Arabic Documents
Back-of-the-book indexes are crucial for book readability. Their manual creation is laborious and error prone. In this paper, we consider automating back-of-the-book index extraction for Arabic books to help simplify both the creation and review tasks. Given a back-of-the-book index, we aim to check and identify the accurate occurrences of index terms relative to the associated pages. To achieve this, we first define a pool of candidates for each term by extracting all possible noun phrases from paragraphs appearing on the relevant index pages. These noun phrases, identified through part-of-speech analysis, are stored in a vector database for efficient retrieval. We use several metrics, including exact matches, lexical similarity, and semantic similarity, to determine the most appropriate occurrence. The candidate with the highest score based on these metrics is chosen as the occurrence of the term. We fine-tuned a heuristic method, that considers the above metrics and that achieves an F1-score of .966 (precision=.966, recall=.966). These excellent results open the door for future work related to automation of back-of-the-book index generation and checking.
☆ DecKG: Decentralized Collaborative Learning with Knowledge Graph Enhancement for POI Recommendation
Decentralized collaborative learning for Point-of-Interest (POI) recommendation has gained research interest due to its advantages in privacy preservation and efficiency, as it keeps data locally and leverages collaborative learning among clients to train models in a decentralized manner. However, since local data is often limited and insufficient for training accurate models, a common solution is integrating external knowledge as auxiliary information to enhance model performance. Nevertheless, this solution poses challenges for decentralized collaborative learning. Due to private nature of local data, identifying relevant auxiliary information specific to each user is non-trivial. Furthermore, resource-constrained local devices struggle to accommodate all auxiliary information, which places heavy burden on local storage. To fill the gap, we propose a novel decentralized collaborative learning with knowledge graph enhancement framework for POI recommendation (DecKG). Instead of directly uploading interacted items, users generate desensitized check-in data by uploading general categories of interacted items and sampling similar items from same category. The server then pretrains KG without sensitive user-item interactions and deploys relevant partitioned sub-KGs to individual users. Entities are further refined on the device, allowing client to client communication to exchange knowledge learned from local data and sub-KGs. Evaluations across two real-world datasets demonstrate DecKG's effectiveness recommendation performance.
☆ MAIR: A Massive Benchmark for Evaluating Instructed Retrieval EMNLP 2024
Recent information retrieval (IR) models are pre-trained and instruction-tuned on massive datasets and tasks, enabling them to perform well on a wide range of tasks and potentially generalize to unseen tasks with instructions. However, existing IR benchmarks focus on a limited scope of tasks, making them insufficient for evaluating the latest IR models. In this paper, we propose MAIR (Massive Instructed Retrieval Benchmark), a heterogeneous IR benchmark that includes 126 distinct IR tasks across 6 domains, collected from existing datasets. We benchmark state-of-the-art instruction-tuned text embedding models and re-ranking models. Our experiments reveal that instruction-tuned models generally achieve superior performance compared to non-instruction-tuned models on MAIR. Additionally, our results suggest that current instruction-tuned text embedding models and re-ranking models still lack effectiveness in specific long-tail tasks. MAIR is publicly available at https://github.com/sunnweiwei/Mair.
comment: EMNLP 2024
♻ ☆ On Feature Decorrelation in Cloth-Changing Person Re-identification
Cloth-changing person re-identification (CC-ReID) poses a significant challenge in computer vision. A prevailing approach is to prompt models to concentrate on causal attributes, like facial features and hairstyles, rather than confounding elements such as clothing appearance. Traditional methods to achieve this involve integrating multi-modality data or employing manually annotated clothing labels, which tend to complicate the model and require extensive human effort. In our study, we demonstrate that simply reducing feature correlations during training can significantly enhance the baseline model's performance. We theoretically elucidate this effect and introduce a novel regularization technique based on density ratio estimation. This technique aims to minimize feature correlation in the training process of cloth-changing ReID baselines. Our approach is model-independent, offering broad enhancements without needing additional data or labels. We validate our method through comprehensive experiments on prevalent CC-ReID datasets, showing its effectiveness in improving baseline models' generalization capabilities.
♻ ☆ Pure Message Passing Can Estimate Common Neighbor for Link Prediction
Message Passing Neural Networks (MPNNs) have emerged as the {\em de facto} standard in graph representation learning. However, when it comes to link prediction, they often struggle, surpassed by simple heuristics such as Common Neighbor (CN). This discrepancy stems from a fundamental limitation: while MPNNs excel in node-level representation, they stumble with encoding the joint structural features essential to link prediction, like CN. To bridge this gap, we posit that, by harnessing the orthogonality of input vectors, pure message-passing can indeed capture joint structural features. Specifically, we study the proficiency of MPNNs in approximating CN heuristics. Based on our findings, we introduce the Message Passing Link Predictor (MPLP), a novel link prediction model. MPLP taps into quasi-orthogonal vectors to estimate link-level structural features, all while preserving the node-level complexities. Moreover, our approach demonstrates that leveraging message-passing to capture structural features could offset MPNNs' expressiveness limitations at the expense of estimation variance. We conduct experiments on benchmark datasets from various domains, where our method consistently outperforms the baseline methods.
comment: Accepted to Neurips'24
♻ ☆ mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval EMNLP 2024
We present systematic efforts in building long-context multilingual text representation model (TRM) and reranker from scratch for text retrieval. We first introduce a text encoder (base size) enhanced with RoPE and unpadding, pre-trained in a native 8192-token context (longer than 512 of previous multilingual encoders). Then we construct a hybrid TRM and a cross-encoder reranker by contrastive learning. Evaluations show that our text encoder outperforms the same-sized previous state-of-the-art XLM-R. Meanwhile, our TRM and reranker match the performance of large-sized state-of-the-art BGE-M3 models and achieve better results on long-context retrieval benchmarks. Further analysis demonstrate that our proposed models exhibit higher efficiency during both training and inference. We believe their efficiency and effectiveness could benefit various researches and industrial applications.
comment: Camera-ready version of EMNLP 2024: Industry Track
♻ ☆ Personalized Item Representations in Federated Multimodal Recommendation
Federated recommendation systems are essential for providing personalized recommendations while protecting user privacy. However, current methods mainly rely on ID-based item embeddings, neglecting the rich multimodal information of items. To address this, we propose a Federated Multimodal Recommendation System, called FedMR. FedMR uses a foundation model on the server to encode multimodal item data, such as images and text. To handle data heterogeneity caused by user preference differences, FedMR introduces a Mixing Feature Fusion Module on each client, which adjusts fusion strategy weights based on user interaction history to generate personalized item representations that capture users' fine-grained preferences. FedMR is compatible with existing ID-based federated recommendation systems, improving performance without modifying the original framework. Experiments on four real-world multimodal datasets demonstrate FedMR's effectiveness. The code is available at https://anonymous.4open.science/r/FedMR.
comment: 12 pages, 4 figures, 5 tables, conference
♻ ☆ LARA: Linguistic-Adaptive Retrieval-Augmentation for Multi-Turn Intent Classification EMNLP'24
Multi-turn intent classification is notably challenging due to the complexity and evolving nature of conversational contexts. This paper introduces LARA, a Linguistic-Adaptive Retrieval-Augmentation framework to enhance accuracy in multi-turn classification tasks across six languages, accommodating a large number of intents in chatbot interactions. LARA combines a fine-tuned smaller model with a retrieval-augmented mechanism, integrated within the architecture of LLMs. The integration allows LARA to dynamically utilize past dialogues and relevant intents, thereby improving the understanding of the context. Furthermore, our adaptive retrieval techniques bolster the cross-lingual capabilities of LLMs without extensive retraining and fine-tuning. Comprehensive experiments demonstrate that LARA achieves state-of-the-art performance on multi-turn intent classification tasks, enhancing the average accuracy by 3.67\% from state-of-the-art single-turn intent classifiers.
comment: Accepted to EMNLP'24
♻ ☆ Language Model Powered Digital Biology
Recent advancements in Large Language Models (LLMs) are transforming biology, computer science, and many other research fields, as well as impacting everyday life. While transformer-based technologies are currently being deployed in biology, no available agentic system has been developed to tackle bioinformatics workflows. We present a prototype Bioinformatics Retrieval Augmented Data (BRAD) digital assistant. BRAD is a chatbot and agentic system that integrates a suite of tools to handle bioinformatics tasks, from code execution to online search. We demonstrate its capabilities through (1) improved question-and-answering with retrieval augmented generation (RAG), (2) the ability to run complex software pipelines, and (3) the ability to organize and distribute tasks in agentic workflows. We use BRAD for automation, performing tasks ranging from gene enrichment and searching the archive to automatic code generation for running biomarker identification pipelines. BRAD is a step toward autonomous, self-driving labs for digital biology.
comment: 49 pages, 3 tables, 12 figures
♻ ☆ Enhancing Dense Retrievers' Robustness with Group-level Reweighting
The anchor-document data derived from web graphs offers a wealth of paired information for training dense retrieval models in an unsupervised manner. However, unsupervised data contains diverse patterns across the web graph and often exhibits significant imbalance, leading to suboptimal performance in underrepresented or difficult groups. In this paper, we introduce WebDRO, an efficient approach for clustering the web graph data and optimizing group weights to enhance the robustness of dense retrieval models. Initially, we build an embedding model for clustering anchor-document pairs. Specifically, we contrastively train the embedding model for link prediction, which guides the embedding model in capturing the document features behind the web graph links. Subsequently, we employ the group distributional robust optimization to recalibrate the weights across different clusters of anchor-document pairs during training retrieval models. During training, we direct the model to assign higher weights to clusters with higher loss and focus more on worst-case scenarios. This approach ensures that the model has strong generalization ability on all data patterns. Our experiments on MS MARCO and BEIR demonstrate that our method can effectively improve retrieval performance in unsupervised training and finetuning settings. Further analysis confirms the stability and validity of group weights learned by WebDRO. The code of this paper can be obtained from https://github.com/Hanpx20/GroupDRO_Dense_Retrieval.
Multimedia
☆ Spatial-Aware Efficient Projector for MLLMs via Multi-Layer Feature Aggregation
The projector plays a crucial role in multi-modal language models (MLLMs). The number of visual tokens it outputs affects the efficiency of the MLLM, while the quality of the visual tokens influences the visual understanding capabilities of the MLLM. Current explorations on the projector focus on reducing the number of visual tokens to improve efficiency, often overlooking the inherent spatial discrepancy between the serialized 2-dimensional visual token sequences and natural language token sequences. A Spatial-Aware Efficient Projector (SAEP) is proposed to address this issue. In detail, our SAEP method employs an modified separable depthwise convolution module on multi-layer visual features to enhance the spatial information of visual tokens. As a result, our SAEP method can not only largely reduce the number of visual tokens by 75\%, but also significantly improve the multimodal spatial understanding capability of MLLMs. Moreover, compared to existing projectors, our SAEP gets best performances on massive multimodal evaluation benchmarks, which denotes its effectiveness on bridging the modality gap.
comment: 10 pages, 3 figures
☆ GUISE: Graph GaUssIan Shading watErmark
In the expanding field of generative artificial intelligence, integrating robust watermarking technologies is essential to protect intellectual property and maintain content authenticity. Traditionally, watermarking techniques have been developed primarily for rich information media such as images and audio. However, these methods have not been adequately adapted for graph-based data, particularly molecular graphs. Latent 3D graph diffusion(LDM-3DG) is an ascendant approach in the molecular graph generation field. This model effectively manages the complexities of molecular structures, preserving essential symmetries and topological features. We adapt the Gaussian Shading, a proven performance lossless watermarking technique, to the latent graph diffusion domain to protect this sophisticated new technology. Our adaptation simplifies the watermark diffusion process through duplication and padding, making it adaptable and suitable for various message types. We conduct several experiments using the LDM-3DG model on publicly available datasets QM9 and Drugs, to assess the robustness and effectiveness of our technique. Our results demonstrate that the watermarked molecules maintain statistical parity in 9 out of 10 performance metrics compared to the original. Moreover, they exhibit a 100% detection rate and a 99% extraction rate in a 2D decoded pipeline, while also showing robustness against post-editing attacks.
♻ ☆ Detecting Audio-Visual Deepfakes with Fine-Grained Inconsistencies BMVC 2024
Existing methods on audio-visual deepfake detection mainly focus on high-level features for modeling inconsistencies between audio and visual data. As a result, these approaches usually overlook finer audio-visual artifacts, which are inherent to deepfakes. Herein, we propose the introduction of fine-grained mechanisms for detecting subtle artifacts in both spatial and temporal domains. First, we introduce a local audio-visual model capable of capturing small spatial regions that are prone to inconsistencies with audio. For that purpose, a fine-grained mechanism based on a spatially-local distance coupled with an attention module is adopted. Second, we introduce a temporally-local pseudo-fake augmentation to include samples incorporating subtle temporal inconsistencies in our training set. Experiments on the DFDC and the FakeAVCeleb datasets demonstrate the superiority of the proposed method in terms of generalization as compared to the state-of-the-art under both in-dataset and cross-dataset settings.
comment: Accepted in BMVC 2024
♻ ☆ Multi-Track MusicLDM: Towards Versatile Music Generation with Latent Diffusion Model
Diffusion models have shown promising results in cross-modal generation tasks involving audio and music, such as text-to-sound and text-to-music generation. These text-controlled music generation models typically focus on generating music by capturing global musical attributes like genre and mood. However, music composition is a complex, multilayered task that often involves musical arrangement as an integral part of the process. This process involves composing each instrument to align with existing ones in terms of beat, dynamics, harmony, and melody, requiring greater precision and control over tracks than text prompts usually provide. In this work, we address these challenges by extending the MusicLDM, a latent diffusion model for music, into a multi-track generative model. By learning the joint probability of tracks sharing a context, our model is capable of generating music across several tracks that correspond well to each other, either conditionally or unconditionally. Additionally, our model is capable of arrangement generation, where the model can generate any subset of tracks given the others (e.g., generating a piano track complementing given bass and drum tracks). We compared our model with an existing multi-track generative model and demonstrated that our model achieves considerable improvements across objective metrics for both total and arrangement generation tasks.
♻ ☆ Proceedings of The second international workshop on eXplainable AI for the Arts (XAIxArts)
This second international workshop on explainable AI for the Arts (XAIxArts) brought together a community of researchers in HCI, Interaction Design, AI, explainable AI (XAI), and digital arts to explore the role of XAI for the Arts. Workshop held at the 16th ACM Conference on Creativity and Cognition (C&C 2024), Chicago, USA.
comment: Proceedings of The second international workshop on eXplainable AI for the Arts (XAIxArts)
♻ ☆ Improving Multimodal Learning with Multi-Loss Gradient Modulation
Learning from multiple modalities, such as audio and video, offers opportunities for leveraging complementary information, enhancing robustness, and improving contextual understanding and performance. However, combining such modalities presents challenges, especially when modalities differ in data structure, predictive contribution, and the complexity of their learning processes. It has been observed that one modality can potentially dominate the learning process, hindering the effective utilization of information from other modalities and leading to sub-optimal model performance. To address this issue the vast majority of previous works suggest to assess the unimodal contributions and dynamically adjust the training to equalize them. We improve upon previous work by introducing a multi-loss objective and further refining the balancing process, allowing it to dynamically adjust the learning pace of each modality in both directions, acceleration and deceleration, with the ability to phase out balancing effects upon convergence. We achieve superior results across three audio-video datasets: on CREMA-D, models with ResNet backbone encoders surpass the previous best by 1.9% to 12.4%, and Conformer backbone models deliver improvements ranging from 2.8% to 14.1% across different fusion methods. On AVE, improvements range from 2.7% to 7.7%, while on UCF101, gains reach up to 6.1%.
♻ ☆ SceneDreamer360: Text-Driven 3D-Consistent Scene Generation with Panoramic Gaussian Splatting
Text-driven 3D scene generation has seen significant advancements recently. However, most existing methods generate single-view images using generative models and then stitch them together in 3D space. This independent generation for each view often results in spatial inconsistency and implausibility in the 3D scenes. To address this challenge, we proposed a novel text-driven 3D-consistent scene generation model: SceneDreamer360. Our proposed method leverages a text-driven panoramic image generation model as a prior for 3D scene generation and employs 3D Gaussian Splatting (3DGS) to ensure consistency across multi-view panoramic images. Specifically, SceneDreamer360 enhances the fine-tuned Panfusion generator with a three-stage panoramic enhancement, enabling the generation of high-resolution, detail-rich panoramic images. During the 3D scene construction, a novel point cloud fusion initialization method is used, producing higher quality and spatially consistent point clouds. Our extensive experiments demonstrate that compared to other methods, SceneDreamer360 with its panoramic image generation and 3DGS can produce higher quality, spatially consistent, and visually appealing 3D scenes from any text prompt. Our codes are available at \url{https://github.com/liwrui/SceneDreamer360}.
Information Retrieval
☆ Leveraging Customer Feedback for Multi-modal Insight Extraction NAACL 2024
Businesses can benefit from customer feedback in different modalities, such as text and images, to enhance their products and services. However, it is difficult to extract actionable and relevant pairs of text segments and images from customer feedback in a single pass. In this paper, we propose a novel multi-modal method that fuses image and text information in a latent space and decodes it to extract the relevant feedback segments using an image-text grounded text decoder. We also introduce a weakly-supervised data generation technique that produces training data for this task. We evaluate our model on unseen data and demonstrate that it can effectively mine actionable insights from multi-modal customer feedback, outperforming the existing baselines by $14$ points in F1 score.
comment: NAACL 2024
☆ Learning to Rank for Multiple Retrieval-Augmented Models through Iterative Utility Maximization
This paper investigates the design of a unified search engine to serve multiple retrieval-augmented generation (RAG) agents, each with a distinct task, backbone large language model (LLM), and retrieval-augmentation strategy. We introduce an iterative approach where the search engine generates retrieval results for these RAG agents and gathers feedback on the quality of the retrieved documents during an offline phase. This feedback is then used to iteratively optimize the search engine using a novel expectation-maximization algorithm, with the goal of maximizing each agent's utility function. Additionally, we adapt this approach to an online setting, allowing the search engine to refine its behavior based on real-time individual agents feedback to better serve the results for each of them. Experiments on diverse datasets from the Knowledge-Intensive Language Tasks (KILT) benchmark demonstrates that our approach significantly on average outperforms competitive baselines across 18 RAG models. We also demonstrate that our method effectively ``personalizes'' the retrieval process for each RAG agent based on the collected feedback. Finally, we provide a comprehensive ablation study to explore various aspects of our method.
☆ The Role of Fake Users in Sequential Recommender Systems
Sequential Recommender Systems (SRSs) are widely used to model user behavior over time, yet their robustness remains an under-explored area of research. In this paper, we conduct an empirical study to assess how the presence of fake users, who engage in random interactions, follow popular or unpopular items, or focus on a single genre, impacts the performance of SRSs in real-world scenarios. We evaluate two SRS models across multiple datasets, using established metrics such as Normalized Discounted Cumulative Gain (NDCG) and Rank Sensitivity List (RLS) to measure performance. While traditional metrics like NDCG remain relatively stable, our findings reveal that the presence of fake users severely degrades RLS metrics, often reducing them to near-zero values. These results highlight the need for further investigation into the effects of fake users on training data and emphasize the importance of developing more resilient SRSs that can withstand different types of adversarial attacks.
comment: 10 pages, 2 figures
☆ Analysis and Design of a Personalized Recommendation System Based on a Dynamic User Interest Model
With the rapid development of the internet and the explosion of information, providing users with accurate personalized recommendations has become an important research topic. This paper designs and analyzes a personalized recommendation system based on a dynamic user interest model. The system captures user behavior data, constructs a dynamic user interest model, and combines multiple recommendation algorithms to provide personalized content to users. The research results show that this system significantly improves recommendation accuracy and user satisfaction. This paper discusses the system's architecture design, algorithm implementation, and experimental results in detail and explores future research directions.
☆ ViFi-ReID: A Two-Stream Vision-WiFi Multimodal Approach for Person Re-identification
Person re-identification(ReID), as a crucial technology in the field of security, plays a vital role in safety inspections, personnel counting, and more. Most current ReID approaches primarily extract features from images, which are easily affected by objective conditions such as clothing changes and occlusions. In addition to cameras, we leverage widely available routers as sensing devices by capturing gait information from pedestrians through the Channel State Information (CSI) in WiFi signals and contribute a multimodal dataset. We employ a two-stream network to separately process video understanding and signal analysis tasks, and conduct multi-modal fusion and contrastive learning on pedestrian video and WiFi data. Extensive experiments in real-world scenarios demonstrate that our method effectively uncovers the correlations between heterogeneous data, bridges the gap between visual and signal modalities, significantly expands the sensing range, and improves ReID accuracy across multiple sensors.
☆ A Comparative Study of PDF Parsing Tools Across Diverse Document Categories
PDF is one of the most prominent data formats, making PDF parsing crucial for information extraction and retrieval, particularly with the rise of RAG systems. While various PDF parsing tools exist, their effectiveness across different document types remains understudied, especially beyond academic papers. Our research aims to address this gap by comparing 10 popular PDF parsing tools across 6 document categories using the DocLayNet dataset. These tools include PyPDF, pdfminer.six, PyMuPDF, pdfplumber, pypdfium2, Unstructured, Tabula, Camelot, as well as the deep learning-based tools Nougat and Table Transformer(TATR). We evaluated both text extraction and table detection capabilities. For text extraction, PyMuPDF and pypdfium generally outperformed others, but all parsers struggled with Scientific and Patent documents. For these challenging categories, learning-based tools like Nougat demonstrated superior performance. In table detection, TATR excelled in the Financial, Patent, Law & Regulations, and Scientific categories. Table detection tool Camelot performed best for tender documents, while PyMuPDF performed superior in the Manual category. Our findings highlight the importance of selecting appropriate parsing tools based on document type and specific tasks, providing valuable insights for researchers and practitioners working with diverse document sources.
comment: 17 pages,11 figures, 5 tables
☆ Generating Driving Simulations via Conversation
Cyber-physical systems like autonomous vehicles are tested in simulation before deployment, using domain-specific programs for scenario specification. To aid the testing of autonomous vehicles in simulation, we design a natural language interface, using an instruction-following large language model, to assist a non-coding domain expert in synthesising the desired scenarios and vehicle behaviours. We show that using it to convert utterances to the symbolic program is feasible, despite the very small training dataset. Human experiments show that dialogue is critical to successful simulation generation, leading to a 4.5 times higher success rate than a generation without engaging in extended conversation.
comment: 6 pages, 6 figures, 2 tables
☆ ContextWIN: Whittle Index Based Mixture-of-Experts Neural Model For Restless Bandits Via Deep RL
This study introduces ContextWIN, a novel architecture that extends the Neural Whittle Index Network (NeurWIN) model to address Restless Multi-Armed Bandit (RMAB) problems with a context-aware approach. By integrating a mixture of experts within a reinforcement learning framework, ContextWIN adeptly utilizes contextual information to inform decision-making in dynamic environments, particularly in recommendation systems. A key innovation is the model's ability to assign context-specific weights to a subset of NeurWIN networks, thus enhancing the efficiency and accuracy of the Whittle index computation for each arm. The paper presents a thorough exploration of ContextWIN, from its conceptual foundation to its implementation and potential applications. We delve into the complexities of RMABs and the significance of incorporating context, highlighting how ContextWIN effectively harnesses these elements. The convergence of both the NeurWIN and ContextWIN models is rigorously proven, ensuring theoretical robustness. This work lays the groundwork for future advancements in applying contextual information to complex decision-making scenarios, recognizing the need for comprehensive dataset exploration and environment development for full potential realization.
☆ ChartKG: A Knowledge-Graph-Based Representation for Chart Images
Chart images, such as bar charts, pie charts, and line charts, are explosively produced due to the wide usage of data visualizations. Accordingly, knowledge mining from chart images is becoming increasingly important, which can benefit downstream tasks like chart retrieval and knowledge graph completion. However, existing methods for chart knowledge mining mainly focus on converting chart images into raw data and often ignore their visual encodings and semantic meanings, which can result in information loss for many downstream tasks. In this paper, we propose ChartKG, a novel knowledge graph (KG) based representation for chart images, which can model the visual elements in a chart image and semantic relations among them including visual encodings and visual insights in a unified manner. Further, we develop a general framework to convert chart images to the proposed KG-based representation. It integrates a series of image processing techniques to identify visual elements and relations, e.g., CNNs to classify charts, yolov5 and optical character recognition to parse charts, and rule-based methods to construct graphs. We present four cases to illustrate how our knowledge-graph-based representation can model the detailed visual elements and semantic relations in charts, and further demonstrate how our approach can benefit downstream applications such as semantic-aware chart retrieval and chart question answering. We also conduct quantitative evaluations to assess the two fundamental building blocks of our chart-to-KG framework, i.e., object recognition and optical character recognition. The results provide support for the usefulness and effectiveness of ChartKG.
☆ Online Digital Investigative Journalism using SociaLens
Media companies witnessed a significant transformation with the rise of the internet, bigdata, machine learning (ML) and AI. Recent emergence of large language models (LLM) have added another aspect to this transformation. Researchers believe that with the help of these technologies, investigative digital journalism will enter a new era. Using a smart set of data gathering and analysis tools, journalists will be able to create data driven contents and insights in unprecedented ways. In this paper, we introduce a versatile and autonomous investigative journalism tool, called {\em SociaLens}, for identifying and extracting query specific data from online sources, responding to probing queries and drawing conclusions entailed by large volumes of data using ML analytics fully autonomously. We envision its use in investigative journalism, law enforcement and social policy planning. The proposed system capitalizes on the integration of ML technology with LLMs and advanced bigdata search techniques. We illustrate the functionality of SociaLens using a focused case study on rape incidents in a developing country and demonstrate that journalists can gain nuanced insights without requiring coding expertise they might lack. SociaLens is designed as a ChatBot that is capable of contextual conversation, find and collect data relevant to queries, initiate ML tasks to respond to queries, generate textual and visual reports, all fully autonomously within the ChatBot environment.
☆ Agentic Information Retrieval
What will information entry look like in the next generation of digital products? Since the 1970s, user access to relevant information has relied on domain-specific architectures of information retrieval (IR). Over the past two decades, the advent of modern IR systems, including web search engines and personalized recommender systems, has greatly improved the efficiency of retrieving relevant information from vast data corpora. However, the core paradigm of these IR systems remains largely unchanged, relying on filtering a predefined set of candidate items. Since 2022, breakthroughs in large language models (LLMs) have begun transforming how information is accessed, establishing a new technical paradigm. In this position paper, we introduce Agentic Information Retrieval (Agentic IR), a novel IR paradigm shaped by the capabilities of LLM agents. Agentic IR expands the scope of accessible tasks and leverages a suite of new techniques to redefine information retrieval. We discuss three types of cutting-edge applications of agentic IR and the challenges faced. We propose that agentic IR holds promise for generating innovative applications, potentially becoming a central information entry point in future digital ecosystems.
comment: 11 pages, position paper
♻ ☆ ColBERT Retrieval and Ensemble Response Scoring for Language Model Question Answering
Domain-specific question answering remains challenging for language models, given the deep technical knowledge required to answer questions correctly. This difficulty is amplified for smaller language models that cannot encode as much information in their parameters as larger models. The "Specializing Large Language Models for Telecom Networks" challenge aimed to enhance the performance of two small language models, Phi-2 and Falcon-7B in telecommunication question answering. In this paper, we present our question answering systems for this challenge. Our solutions achieved leading marks of 81.9% accuracy for Phi-2 and 57.3% for Falcon-7B. We have publicly released our code and fine-tuned models.
comment: 7 pages, 2 figures, and 8 tables. This paper has been accepted at the 2024 IEEE Global Communications (GLOBECOM) Workshops
♻ ☆ Evaluating D-MERIT of Partial-annotation on Information Retrieval EMNLP 2024
Retrieval models are often evaluated on partially-annotated datasets. Each query is mapped to a few relevant texts and the remaining corpus is assumed to be irrelevant. As a result, models that successfully retrieve false negatives are punished in evaluation. Unfortunately, completely annotating all texts for every query is not resource efficient. In this work, we show that using partially-annotated datasets in evaluation can paint a distorted picture. We curate D-MERIT, a passage retrieval evaluation set from Wikipedia, aspiring to contain all relevant passages for each query. Queries describe a group (e.g., "journals about linguistics") and relevant passages are evidence that entities belong to the group (e.g., a passage indicating that "Language" is a journal about linguistics). We show that evaluating on a dataset containing annotations for only a subset of the relevant passages might result in misleading ranking of the retrieval systems and that as more relevant texts are included in the evaluation set, the rankings converge. We propose our dataset as a resource for evaluation and our study as a recommendation for balance between resource-efficiency and reliable evaluation when annotating evaluation sets for text retrieval.
comment: Accepted to EMNLP 2024 main track. Our dataset can be downloaded from https://D-MERIT.github.io
♻ ☆ Fine-Grained Embedding Dimension Optimization During Training for Recommender Systems
Huge embedding tables in modern deep learning recommender models (DLRM) require prohibitively large memory during training and inference. This paper proposes FIITED, a system to automatically reduce the memory footprint via FIne-grained In-Training Embedding Dimension pruning. By leveraging the key insight that embedding vectors are not equally important, FIITED adaptively adjusts the dimension of each individual embedding vector during model training, assigning larger dimensions to more important embeddings while adapting to dynamic changes in data. We prioritize embedding dimensions with higher frequencies and gradients as more important. To enable efficient pruning of embeddings and their dimensions during model training, we propose an embedding storage system based on virtually-hashed physically-indexed hash tables. Experiments on two industry models and months of realistic datasets show that FIITED can reduce DLRM embedding size by more than 65% while preserving model quality, outperforming state-of-the-art in-training embedding pruning methods. On public datasets, FIITED can reduce the size of embedding tables by 2.1x to 800x with negligible accuracy drop, while improving model throughput.
comment: 12 pages, 15 figures
♻ ☆ EHI: End-to-end Learning of Hierarchical Index for Efficient Dense Retrieval
Dense embedding-based retrieval is widely used for semantic search and ranking. However, conventional two-stage approaches, involving contrastive embedding learning followed by approximate nearest neighbor search (ANNS), can suffer from misalignment between these stages. This mismatch degrades retrieval performance. We propose End-to-end Hierarchical Indexing (EHI), a novel method that directly addresses this issue by jointly optimizing embedding generation and ANNS structure. EHI leverages a dual encoder for embedding queries and documents while simultaneously learning an inverted file index (IVF)-style tree structure. To facilitate the effective learning of this discrete structure, EHI introduces dense path embeddings that encodes the path traversed by queries and documents within the tree. Extensive evaluations on standard benchmarks, including MS MARCO (Dev set) and TREC DL19, demonstrate EHI's superiority over traditional ANNS index. Under the same computational constraints, EHI outperforms existing state-of-the-art methods by +1.45% in MRR@10 on MS MARCO (Dev) and +8.2% in nDCG@10 on TREC DL19, highlighting the benefits of our end-to-end approach.
Multimedia
☆ Towards Reproducible Learning-based Compression SP 2024
A deep learning system typically suffers from a lack of reproducibility that is partially rooted in hardware or software implementation details. The irreproducibility leads to skepticism in deep learning technologies and it can hinder them from being deployed in many applications. In this work, the irreproducibility issue is analyzed where deep learning is employed in compression systems while the encoding and decoding may be run on devices from different manufacturers. The decoding process can even crash due to a single bit difference, e.g., in a learning-based entropy coder. For a given deep learning-based module with limited resources for protection, we first suggest that reproducibility can only be assured when the mismatches are bounded. Then a safeguarding mechanism is proposed to tackle the challenges. The proposed method may be applied for different levels of protection either at the reconstruction level or at a selected decoding level. Furthermore, the overhead introduced for the protection can be scaled down accordingly when the error bound is being suppressed. Experiments demonstrate the effectiveness of the proposed approach for learning-based compression systems, e.g., in image compression and point cloud compression.
comment: Accepted at MMSP 2024
♻ ☆ VidMuse: A Simple Video-to-Music Generation Framework with Long-Short-Term Modeling
In this work, we systematically study music generation conditioned solely on the video. First, we present a large-scale dataset comprising 360K video-music pairs, including various genres such as movie trailers, advertisements, and documentaries. Furthermore, we propose VidMuse, a simple framework for generating music aligned with video inputs. VidMuse stands out by producing high-fidelity music that is both acoustically and semantically aligned with the video. By incorporating local and global visual cues, VidMuse enables the creation of musically coherent audio tracks that consistently match the video content through Long-Short-Term modeling. Through extensive experiments, VidMuse outperforms existing models in terms of audio quality, diversity, and audio-visual alignment. The code and datasets will be available at https://github.com/ZeyueT/VidMuse/.
comment: The code and datasets will be available at https://github.com/ZeyueT/VidMuse/
♻ ☆ Less for More: Enhanced Feedback-aligned Mixed LLMs for Molecule Caption Generation and Fine-Grained NLI Evaluation
Scientific language models drive research innovation but require extensive fine-tuning on large datasets. This work enhances such models by improving their inference and evaluation capabilities with minimal or no additional training. Focusing on molecule caption generation, we explore synergies between alignment fine-tuning and model merging in a cross-modal setup. We reveal intriguing insights into the behaviour and suitability of such methods while significantly surpassing state-of-the-art models. Moreover, we propose a novel atomic-level evaluation method leveraging off-the-shelf Natural Language Inference (NLI) models for use in the unseen chemical domain. Our experiments demonstrate that our evaluation operates at the right level of granularity, effectively handling multiple content units and subsentence reasoning, while widely adopted NLI methods consistently misalign with assessment criteria.