MyArxiv
Computation and Language
♻ ☆ ShortV: Efficient Multimodal Large Language Models by Freezing Visual Tokens in Ineffective Layers ICCV 2025
Multimodal Large Language Models (MLLMs) suffer from high computational costs due to their massive size and the large number of visual tokens. In this paper, we investigate layer-wise redundancy in MLLMs by introducing a novel metric, Layer Contribution (LC), which quantifies the impact of a layer's transformations on visual and text tokens, respectively. The calculation of LC involves measuring the divergence in model output that results from removing the layer's transformations on the specified tokens. Our pilot experiment reveals that many layers of MLLMs exhibit minimal contribution during the processing of visual tokens. Motivated by this observation, we propose ShortV, a training-free method that leverages LC to identify ineffective layers, and freezes visual token updates in these layers. Experiments show that ShortV can freeze visual token in approximately 60\% of the MLLM layers, thereby dramatically reducing computational costs related to updating visual tokens. For example, it achieves a 50\% reduction in FLOPs on LLaVA-NeXT-13B while maintaining superior performance. The code will be publicly available at https://github.com/icip-cas/ShortV
comment: Published as a conference paper at ICCV 2025. Project page: https://github.com/icip-cas/ShortV
♻ ☆ JobHop: A Large-Scale Dataset of Career Trajectories
Understanding labor market dynamics is essential for policymakers, employers, and job seekers. However, comprehensive datasets that capture real-world career trajectories are scarce. In this paper, we introduce JobHop, a large-scale public dataset derived from anonymized resumes provided by VDAB, the public employment service in Flanders, Belgium. Utilizing Large Language Models (LLMs), we process unstructured resume data to extract structured career information, which is then normalized to standardized ESCO occupation codes using a multi-label classification model. This results in a rich dataset of over 1.67 million work experiences, extracted from and grouped into more than 361,000 user resumes and mapped to standardized ESCO occupation codes, offering valuable insights into real-world occupational transitions. This dataset enables diverse applications, such as analyzing labor market mobility, job stability, and the effects of career breaks on occupational transitions. It also supports career path prediction and other data-driven decision-making processes. To illustrate its potential, we explore key dataset characteristics, including job distributions, career breaks, and job transitions, demonstrating its value for advancing labor market research.
♻ ☆ Beyond Empathy: Integrating Diagnostic and Therapeutic Reasoning with Large Language Models for Mental Health Counseling
Large language models (LLMs) hold significant potential for mental health support, capable of generating empathetic responses and simulating therapeutic conversations. However, existing LLM-based approaches often lack the clinical grounding necessary for real-world psychological counseling, particularly in explicit diagnostic reasoning aligned with standards like the DSM/ICD and incorporating diverse therapeutic modalities beyond basic empathy or single strategies. To address these critical limitations, we propose PsyLLM, the first large language model designed to systematically integrate both diagnostic and therapeutic reasoning for mental health counseling. To develop PsyLLM, we design a novel automated data synthesis pipeline that processes real-world mental health posts collected from Reddit, where users frequently share psychological distress and seek community support. This pipeline processes real-world mental health posts, generates multi-turn dialogue structures, and leverages LLMs guided by international diagnostic standards (e.g., DSM/ICD) and multiple therapeutic frameworks (e.g., CBT, ACT, psychodynamic) to simulate detailed clinical reasoning processes. Rigorous multi-dimensional filtering ensures the generation of high-quality, clinically aligned dialogue data. In addition, we introduce a new benchmark and evaluation protocol, assessing counseling quality across four key dimensions. Our experiments demonstrate that PsyLLM significantly outperforms state-of-the-art baseline models on this benchmark. The model weights and dataset have been publicly released at https://github.com/Emo-gml/PsyLLM.
♻ ☆ Forging Time Series with Language: A Large Language Model Approach to Synthetic Data Generation
SDForger is a flexible and efficient framework for generating high-quality multivariate time series using LLMs. Leveraging a compact data representation, SDForger provides synthetic time series generation from a few samples and low-computation fine-tuning of any autoregressive LLM. Specifically, the framework transforms univariate and multivariate signals into tabular embeddings, which are then encoded into text and used to fine-tune the LLM. At inference, new textual embeddings are sampled and decoded into synthetic time series that retain the original data's statistical properties and temporal dynamics. Across a diverse range of datasets, SDForger outperforms existing generative models in many scenarios, both in similarity-based evaluations and downstream forecasting tasks. By enabling textual conditioning in the generation process, SDForger paves the way for multimodal modeling and the streamlined integration of time series with textual information. The model is open-sourced at https://github.com/IBM/fms-dgt/tree/main/fms_dgt/public/databuilders/time_series.
♻ ☆ Retrieval-Augmented Defense: Adaptive and Controllable Jailbreak Prevention for Large Language Models
Large Language Models (LLMs) remain vulnerable to jailbreak attacks, which attempt to elicit harmful responses from LLMs. The evolving nature and diversity of these attacks pose many challenges for defense systems, including (1) adaptation to counter emerging attack strategies without costly retraining, and (2) control of the trade-off between safety and utility. To address these challenges, we propose Retrieval-Augmented Defense (RAD), a novel framework for jailbreak detection that incorporates a database of known attack examples into Retrieval-Augmented Generation, which is used to infer the underlying, malicious user query and jailbreak strategy used to attack the system. RAD enables training-free updates for newly discovered jailbreak strategies and provides a mechanism to balance safety and utility. Experiments on StrongREJECT show that RAD substantially reduces the effectiveness of strong jailbreak attacks such as PAP and PAIR while maintaining low rejection rates for benign queries. We propose a novel evaluation scheme and show that RAD achieves a robust safety-utility trade-off across a range of operating points in a controllable manner.
♻ ☆ Verbalized Algorithms NeurIPS 2025
Instead of querying LLMs in a one-shot manner and hoping to get the right answer for a reasoning task, we propose a paradigm we call \emph{verbalized algorithms} (VAs), which leverage classical algorithms with established theoretical understanding. VAs decompose a task into simple elementary operations on natural language strings that they should be able to answer reliably, and limit the scope of LLMs to only those simple tasks. For example, for sorting a series of natural language strings, \emph{verbalized sorting} uses an LLM as a binary comparison oracle in a known and well-analyzed sorting algorithm (e.g., bitonic sorting network). We demonstrate the effectiveness of this approach on sorting and clustering tasks.
comment: Accepted in NeurIPS 2025 Workshop on Efficient Reasoning
♻ ☆ What is the Role of Small Models in the LLM Era: A Survey
Large Language Models (LLMs) have made significant progress in advancing artificial general intelligence (AGI), leading to the development of increasingly large models such as GPT-4 and LLaMA-405B. However, scaling up model sizes results in exponentially higher computational costs and energy consumption, making these models impractical for academic researchers and businesses with limited resources. At the same time, Small Models (SMs) are frequently used in practical settings, although their significance is currently underestimated. This raises important questions about the role of small models in the era of LLMs, a topic that has received limited attention in prior research. In this work, we systematically examine the relationship between LLMs and SMs from two key perspectives: Collaboration and Competition. We hope this survey provides valuable insights for practitioners, fostering a deeper understanding of the contribution of small models and promoting more efficient use of computational resources. The code is available at https://github.com/tigerchen52/role_of_small_models
comment: a survey paper of small models
♻ ☆ Hebrew Diacritics Restoration using Visual Representation
Diacritics restoration in Hebrew is a fundamental task for ensuring accurate word pronunciation and disambiguating textual meaning. Despite the language's high degree of ambiguity when unvocalized, recent machine learning approaches have significantly advanced performance on this task. In this work, we present DIVRIT, a novel system for Hebrew diacritization that frames the task as a zero-shot classification problem. Our approach operates at the word level, selecting the most appropriate diacritization pattern for each undiacritized word from a dynamically generated candidate set, conditioned on the surrounding textual context. A key innovation of DIVRIT is its use of a Hebrew Visual Language Model, which processes undiacritized text as an image, allowing diacritic information to be embedded directly within the input's vector representation. Through a comprehensive evaluation across various configurations, we demonstrate that the system effectively performs diacritization without relying on complex, explicit linguistic analysis. Notably, in an ``oracle'' setting where the correct diacritized form is guaranteed to be among the provided candidates, DIVRIT achieves a high level of accuracy. Furthermore, strategic architectural enhancements and optimized training methodologies yield significant improvements in the system's overall generalization capabilities. These findings highlight the promising potential of visual representations for accurate and automated Hebrew diacritization.
♻ ☆ Stable but Miscalibrated: A Kantian View on Overconfidence from Filters to Large Language Models
We reinterpret Kant's Critique of Pure Reason as a theory of feedback stability, viewing reason as a regulator that keeps inference within the bounds of possible experience. We formalize this intuition via a composite instability index (H-Risk) combining spectral margin, conditioning, temporal sensitivity, and innovation amplification. In linear-Gaussian simulations, higher H-Risk predicts overconfident errors even under formal stability, revealing a gap between nominal and epistemic stability. Extending to large language models (LLMs), we observe preliminary correlations between internal fragility and miscalibration or hallucination (confabulation), and find that lightweight critique prompts may modestly improve or worsen calibration in small-scale tests. These results suggest a structural bridge between Kantian self-limitation and feedback control, offering a principled lens to diagnose and potentially mitigate overconfidence in reasoning systems.
comment: 21 pages, 2 figures, preliminary version
♻ ☆ New Encoders for German Trained from Scratch: Comparing ModernGBERT with Converted LLM2Vec Models LREC
Encoders remain essential for efficient German NLP and NLU scenarios despite the rise of decoder-only LLMs. This work studies two routes to high-quality German encoders under identical data and training constraints: 1) training from scratch and 2) converting decoders via LLM2Vec. We introduce two resources: ModernGBERT (134M, 1B), fully transparent German encoders in the ModernBERT style, and LL\"aMmleinVec (120M, 1B, 7B), decoder-to-encoder conversions trained with masked next-token prediction, both undergoing a context extension to 8.192 tokens. Across SuperGLEBer, ModernGBERT 1B sets a new state of the art (avg 0.808), surpassing GBERT Large (+4%) and the seven-times larger converted 7B model (0.787). On German MTEB after supervised fine-tuning, ModernGBERT 1B (0.551) approaches the converted 7B model (0.557). We release all models, checkpoints, datasets, and full training records, and introduce an encoder-adapted QA-NIAH evaluation. All in all, our results provide actionable guidance: when parameter efficiency and latency matter, from-scratch encoders dominate. When a pre-trained decoder exists and compute is a limited, conversion offers an effective alternative. ModernGBERT and LL\"aMmleinVec, including all code, data and intermediary checkpoints are published under a research-only RAIL license.
comment: under review @LREC
♻ ☆ JudgeLRM: Large Reasoning Models as a Judge
Large Language Models (LLMs) are increasingly adopted as evaluators, offering a scalable alternative to human annotation. However, existing supervised fine-tuning (SFT) approaches often fall short in domains that demand complex reasoning. Judgment is inherently reasoning-intensive: beyond surface-level scoring, it requires verifying evidence, identifying errors, and justifying decisions. Through the analysis of evaluation tasks, we find a negative correlation between SFT performance gains and the proportion of reasoning-demanding samples, revealing the limits of SFT in such scenarios. To address this, we introduce JudgeLRM, a family of judgment-oriented LLMs, trained using reinforcement learning (RL) with judge-wise, outcome-driven rewards to activate reasoning capabilities. JudgeLRM consistently outperform SFT-tuned baselines in the same size, as well as other RL and SFT variants, and even surpass state-of-the-art reasoning models: notably, JudgeLRM-3B/4B exceeds GPT-4, while JudgeLRM-7B/8B/14B outperforms DeepSeek-R1 by over 2% in F1 score, with particularly strong gains on reasoning-heavy tasks. Our findings underscore the value of RL in unlocking reasoning-aligned LLM judges.
comment: Preprint
♻ ☆ Inoculation Prompting: Eliciting traits from LLMs during training can suppress them at test-time ICLR 2026
Language model finetuning often results in learning undesirable traits in combination with desired ones. To address this, we propose inoculation prompting: modifying finetuning data by prepending a short system-prompt instruction that deliberately elicits the undesirable trait. At test time, we evaluate without the instruction; inoculated models have much lower expression of the trait than models trained with unmodified training data. Inoculation is selective: in a toy setting where assistant responses are always in Spanish and ALL-CAPS, an appropriate inoculation (e.g., ``You always speak in Spanish.'') teaches the model to capitalize responses while still responding in English. We find that inoculation is also effective across several additional settings: reducing emergent misalignment (EM) from task-specific finetuning, defending against backdoor injections, and mitigating the transmission of traits via subliminal learning. Follow-up analysis suggests a mechanism: making a trait less surprising via inoculation reduces optimization pressure to globally update the model, thereby reducing the degree of generalization. Our analysis relates to prior work on EM: inoculation explains prior findings that educational contexts mitigate EM from insecure code. Beyond demonstrating a simple and effective technique for selective learning, our results contribute to a better conceptual understanding of how and why language models generalize.
comment: 40 pages, 22 figures. Under review at ICLR 2026
♻ ☆ Eye Tracking Based Cognitive Evaluation of Automatic Readability Assessment Measures
Methods for scoring text readability have been studied for over a century, and are widely used in research and in user-facing applications in many domains. Thus far, the development and evaluation of such methods have primarily relied on two types of offline behavioral data, performance on reading comprehension tests and ratings of text readability levels. In this work, we instead focus on a fundamental and understudied aspect of readability, real-time reading ease, captured with online reading measures using eye tracking. We introduce an evaluation framework for readability scoring methods which quantifies their ability to account for reading ease, while controlling for content variation across texts. Applying this evaluation to prominent traditional readability formulas, modern machine learning systems, frontier Large Language Models and commercial systems used in education, suggests that they are all poor predictors of reading ease in English. This outcome holds across native and non-native speakers, reading regimes, and textual units of different lengths. The evaluation further reveals that existing methods are often outperformed by word properties commonly used in psycholinguistics for prediction of reading times. Our results highlight a fundamental limitation of existing approaches to readability scoring, the utility of psycholinguistics for readability research, and the need for new, cognitively driven readability scoring approaches that can better account for reading ease.
♻ ☆ RadarPLM: Adapting Pretrained Language Models for Marine Radar Target Detection with Preference-aware Loss
Recent advances in pre-trained language models (PLMs) have demonstrated their capabilities in capturing universal knowledge, making them promising applications for radar signal processing. Nevertheless, directly fine-tuning PLMs on radar signals is both computationally expensive and prone to overfitting, particularly in low signal-to-clutter ratio (SCR) environments. In this paper, we propose a novel fine-tuning framework for PLM-based marine radar target detection. First, we design a lightweight adaptation module, enabling parameter-efficient fine-tuning while preserving the pretrained model's general knowledge. Second, a novel preference-aware loss is developed to selectively optimize different feature patches based on their online evaluated learning values, guiding the model to concentrate on the most generalizable feature patterns during optimization. Extensive experiments on real-world marine radar datasets demonstrate that the proposed finetuning framework achieves an average performance improvement of 9.9% over the standard approach under low SCR conditions. Furthermore, the fine-tuned model, RadarPLM, consistently outperforms state-of-the-art detectors, particularly when training data are limited.
♻ ☆ Representation Consistency for Accurate and Coherent LLM Answer Aggregation NeurIPS 2025
Test-time scaling improves large language models' (LLMs) performance by allocating more compute budget during inference. To achieve this, existing methods often require intricate modifications to prompting and sampling strategies. In this work, we introduce representation consistency (RC), a test-time scaling method for aggregating answers drawn from multiple candidate responses of an LLM regardless of how they were generated, including variations in prompt phrasing and sampling strategy. RC enhances answer aggregation by not only considering the number of occurrences of each answer in the candidate response set, but also the consistency of the model's internal activations while generating the set of responses leading to each answer. These activations can be either dense (raw model activations) or sparse (encoded via pretrained sparse autoencoders). Our rationale is that if the model's representations of multiple responses converging on the same answer are highly variable, this answer is more likely to be the result of incoherent reasoning and should be down-weighted during aggregation. Importantly, our method only uses cached activations and lightweight similarity computations and requires no additional model queries. Through experiments with four open-source LLMs and four reasoning datasets, we validate the effectiveness of RC for improving task performance during inference, with consistent accuracy improvements (up to 4%) over strong test-time scaling baselines. We also show that consistency in the sparse activation signals aligns well with the common notion of coherent reasoning.
comment: Accepted at NeurIPS 2025. Camera-ready version
♻ ☆ Language Arithmetics: Towards Systematic Language Neuron Identification and Manipulation AACL
Large language models (LLMs) exhibit strong multilingual abilities, yet the neural mechanisms behind language-specific processing remain unclear. We analyze language-specific neurons in Llama-3.1-8B, Mistral-Nemo-12B, and Aya-Expanse-8B & 32B across 21 typologically diverse languages, identifying neurons that control language behavior. Using the Language Activation Probability Entropy (LAPE) method, we show that these neurons cluster in deeper layers, with non-Latin scripts showing greater specialization. Related languages share overlapping neurons, reflecting internal representations of linguistic proximity. Through language arithmetics, i.e. systematic activation addition and multiplication, we steer models to deactivate unwanted languages and activate desired ones, outperforming simpler replacement approaches. These interventions effectively guide behavior across five multilingual tasks: language forcing, translation, QA, comprehension, and NLI. Manipulation is more successful for high-resource languages, while typological similarity improves effectiveness. We also demonstrate that cross-lingual neuron steering enhances downstream performance and reveal internal "fallback" mechanisms for language selection when neurons are progressively deactivated. Our code is made publicly available at https://github.com/d-gurgurov/Language-Neurons-Manipulation.
comment: accepted to AACL main
♻ ☆ Where to Search: Measure the Prior-Structured Search Space of LLM Agents
The generate-filter-refine (iterative paradigm) based on large language models (LLMs) has achieved progress in reasoning, programming, and program discovery in AI+Science. However, the effectiveness of search depends on where to search, namely, how to encode the domain prior into an operationally structured hypothesis space. To this end, this paper proposes a compact formal theory that describes and measures LLM-assisted iterative search guided by domain priors. We represent an agent as a fuzzy relation operator on inputs and outputs to capture feasible transitions; the agent is thereby constrained by a fixed safety envelope. To describe multi-step reasoning/search, we weight all reachable paths by a single continuation parameter and sum them to obtain a coverage generating function; this induces a measure of reachability difficulty; and it provides a geometric interpretation of search on the graph induced by the safety envelope. We further provide the simplest testable inferences and validate them via two instantiation. This theory offers a workable language and operational tools to measure agents and their search spaces, proposing a systematic formal description of iterative search constructed by LLMs.
comment: 11 pages, 4 figures, 1 table
♻ ☆ Measuring Chain of Thought Faithfulness by Unlearning Reasoning Steps EMNLP 2025
When prompted to think step-by-step, language models (LMs) produce a chain of thought (CoT), a sequence of reasoning steps that the model supposedly used to produce its prediction. Despite much work on CoT prompting, it is unclear if reasoning verbalized in a CoT is faithful to the models' parametric beliefs. We introduce a framework for measuring parametric faithfulness of generated reasoning, and propose Faithfulness by Unlearning Reasoning steps (FUR), an instance of this framework. FUR erases information contained in reasoning steps from model parameters, and measures faithfulness as the resulting effect on the model's prediction. Our experiments with four LMs and five multi-hop multi-choice question answering (MCQA) datasets show that FUR is frequently able to precisely change the underlying models' prediction for a given instance by unlearning key steps, indicating when a CoT is parametrically faithful. Further analysis shows that CoTs generated by models post-unlearning support different answers, hinting at a deeper effect of unlearning.
comment: Accepted at EMNLP 2025. Under review for outstanding paper award
♻ ☆ Towards Transparent Reasoning: What Drives Faithfulness in Large Language Models? NeurIPS 2025
Large Language Models (LLMs) often produce explanations that do not faithfully reflect the factors driving their predictions. In healthcare settings, such unfaithfulness is especially problematic: explanations that omit salient clinical cues or mask spurious shortcuts can undermine clinician trust and lead to unsafe decision support. We study how inference and training-time choices shape explanation faithfulness, focusing on factors practitioners can control at deployment. We evaluate three LLMs (GPT-4.1-mini, LLaMA 70B, LLaMA 8B) on two datasets-BBQ (social bias) and MedQA (medical licensing questions), and manipulate the number and type of few-shot examples, prompting strategies, and training procedure. Our results show: (i) both the quantity and quality of few-shot examples significantly impact model faithfulness; (ii) faithfulness is sensitive to prompting design; (iii) the instruction-tuning phase improves measured faithfulness on MedQA. These findings offer insights into strategies for enhancing the interpretability and trustworthiness of LLMs in sensitive domains.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
♻ ☆ XIFBench: Evaluating Large Language Models on Multilingual Instruction Following NeurIPS 2025
Large Language Models (LLMs) have demonstrated remarkable instruction-following capabilities across various applications. However, their performance in multilingual settings lacks systematic investigation, with existing evaluations lacking fine-grained constraint analysis across diverse linguistic contexts. We introduce XIFBench, a comprehensive constraint-based benchmark for evaluating multilingual instruction-following abilities of LLMs, comprising 558 instructions with 0-5 additional constraints across five categories (Content, Style, Situation, Format, and Numerical) in six languages spanning different resource levels. To support reliable and consistent cross-lingual evaluation, we implement three methodological innovations: cultural accessibility annotation, constraint-level translation validation, and requirement-based evaluation using English requirements as semantic anchors across languages. Extensive experiments with various LLMs not only quantify performance disparities across resource levels but also provide detailed insights into how language resources, constraint categories, instruction complexity, and cultural specificity influence multilingual instruction-following. Our code and data are available at https://github.com/zhenyuli801/XIFBench.
comment: Accepted by the NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ Teaching According to Talents! Instruction Tuning LLMs with Competence-Aware Curriculum Learning EMNLP 2025
Efficient instruction tuning aims to enhance the ultimate performance of large language models (LLMs) trained on a given instruction dataset. Curriculum learning as a typical data organization strategy has shown preliminary effectiveness in instruction tuning. However, current curriculum tuning methods suffer from the curriculum rigidity, since they rely solely on static heuristic difficulty metrics. These methods fail to adapt to the evolving capabilities of models during training, resulting in a fixed and potentially sub-optimal learning trajectory. To address the issue, Competence-Aware Multi-Perspective cUrriculum inStruction tuning framework termed CAMPUS is proposed. CAMPUS offers several advantages: (1) Dynamic selection for sub-curriculum. (2) Competency-aware adjustment to the curriculum schedule. (3) Multiple difficulty-based scheduling. Extensive experiments prove the superior performance of CAMPUS, compared to other state-of-the-art baselines for efficient instruction tuning.
comment: EMNLP 2025 Findings
♻ ☆ UI-Evol: Automatic Knowledge Evolving for Computer Use Agents ICML 2025
External knowledge has played a crucial role in the recent development of computer use agents. We identify a critical knowledge-execution gap: retrieved knowledge often fails to translate into effective real-world task execution. Our analysis shows even 90% correct knowledge yields only 41% execution success rate. To bridge this gap, we propose UI-Evol, a plug-and-play module for autonomous GUI knowledge evolution. UI-Evol consists of two stages: a Retrace Stage that extracts faithful objective action sequences from actual agent-environment interactions, and a Critique Stage that refines existing knowledge by comparing these sequences against external references. We conduct comprehensive experiments on the OSWorld benchmark with the state-of-the-art Agent S2. Our results demonstrate that UI-Evol not only significantly boosts task performance but also addresses a previously overlooked issue of high behavioral standard deviation in computer use agents, leading to superior performance on computer use tasks and substantially improved agent reliability.
comment: Accepted to ICML 2025 Workshop on Computer Use Agents
♻ ☆ Deep Video Discovery: Agentic Search with Tool Use for Long-form Video Understanding NeurIPS 2025
Long-form video understanding presents significant challenges due to extensive temporal-spatial complexity and the difficulty of question answering under such extended contexts. While Large Language Models (LLMs) have demonstrated considerable advancements in video analysis capabilities and long context handling, they continue to exhibit limitations when processing information-dense hour-long videos. To overcome such limitations, we propose the Deep Video Discovery (DVD) agent to leverage an agentic search strategy over segmented video clips. Unlike previous video agents that rely on predefined workflows applied uniformly across different queries, our approach emphasizes the autonomous and adaptive nature of agents. By providing a set of search-centric tools on multi-granular video database, our DVD agent leverages the advanced reasoning capability of LLM to plan on its current observation state, strategically selects tools to orchestrate adaptive workflow for different queries in light of the gathered information. We perform comprehensive evaluation on multiple long video understanding benchmarks that demonstrates our advantage. Our DVD agent achieves state-of-the-art performance on the challenging LVBench dataset, reaching an accuracy of 74.2%, which substantially surpasses all prior works, and further improves to 76.0% with transcripts. The code has been released at https://github.com/microsoft/DeepVideoDiscovery.
comment: Accepted to NeurIPS 2025
♻ ☆ MedREK: Retrieval-Based Editing for Medical LLMs with Key-Aware Prompts
LLMs hold great promise for healthcare applications, but the rapid evolution of medical knowledge and errors in training data often cause them to generate outdated or inaccurate information, limiting their applicability in high-stakes clinical practice. Model editing has emerged as a potential remedy without full retraining. While parameter-based editing often compromises locality and is thus ill-suited for the medical domain, retrieval-based editing offers a more viable alternative. However, it still faces two critical challenges: (1) representation overlap within the medical knowledge space often causes inaccurate retrieval and reduces editing accuracy; (2) existing methods are restricted to single-sample edits, while batch-editing remains largely unexplored despite its importance for real-world medical applications. To address these challenges, we first construct MedVersa, an enhanced benchmark with broader coverage of medical subjects, designed to evaluate both single and batch edits under strict locality constraints. We then propose MedREK, a retrieval-based editing framework that integrates a shared query-key module for precise matching with an attention-based prompt encoder for informative guidance. Experimental results on various medical benchmarks demonstrate that our MedREK achieves superior performance across different core metrics and provides the first validated solution for batch-editing in medical LLMs. Our code and dataset are available at https://github.com/mylittleriver/MedREK.
comment: Preprint, work in progress
♻ ☆ Evaluating Perspectival Biases in Cross-Modal Retrieval
Multimodal retrieval systems are expected to operate in a semantic space, agnostic to the language or cultural origin of the query. In practice, however, retrieval outcomes systematically reflect perspectival biases: deviations shaped by linguistic prevalence and cultural associations. We study two such biases. First, prevalence bias refers to the tendency to favor entries from prevalent languages over semantically faithful entries in image-to-text retrieval. Second, association bias refers to the tendency to favor images culturally associated with the query over semantically correct ones in text-to-image retrieval. Results show that explicit alignment is a more effective strategy for mitigating prevalence bias. However, association bias remains a distinct and more challenging problem. These findings suggest that achieving truly equitable multimodal systems requires targeted strategies beyond simple data scaling and that bias arising from cultural association may be treated as a more challenging problem than one arising from linguistic prevalence.
♻ ☆ Enhancing Reasoning Abilities of Small LLMs with Cognitive Alignment
The reasoning capabilities of large reasoning models (LRMs), such as OpenAI's o1 and DeepSeek-R1, have seen substantial advancements through deep thinking. However, these enhancements come with significant resource demands, underscoring the need for training effective small reasoning models. A critical challenge is that small models possess different reasoning capacities and cognitive trajectories compared with their larger counterparts. Hence, directly distilling chain-of-thought (CoT) rationales from large LRMs to smaller ones can sometimes be ineffective and often requires a substantial amount of annotated data. In this paper, we first introduce a novel Critique-Rethink-Verify (CRV) system, designed for training smaller yet powerful LRMs. Our CRV system consists of multiple LLM agents, each specializing in unique tasks: (i) critiquing the CoT rationales according to the cognitive capabilities of smaller models, (ii) rethinking and refining these CoTs based on the critiques, and (iii) verifying the correctness of the refined results. Building on the CRV system, we further propose the Cognitive Preference Optimization (CogPO) algorithm to continuously enhance the reasoning abilities of smaller models by aligning their reasoning processes with their cognitive capacities. Comprehensive evaluations on challenging reasoning benchmarks demonstrate the efficacy of our CRV+CogPO framework, which outperforms other methods by a large margin.
comment: emnlp 2025 main conference
♻ ☆ Advancing Expert Specialization for Better MoE
Mixture-of-Experts (MoE) models enable efficient scaling of large language models (LLMs) by activating only a subset of experts per input. However, we observe that the commonly used auxiliary load balancing loss often leads to expert overlap and overly uniform routing, which hinders expert specialization and degrades overall performance during post-training. To address this, we propose a simple yet effective solution that introduces two complementary objectives: (1) an orthogonality loss to encourage experts to process distinct types of tokens, and (2) a variance loss to encourage more discriminative routing decisions. Gradient-level analysis demonstrates that these objectives are compatible with the existing auxiliary loss and contribute to optimizing the training process. Experimental results over various model architectures and across multiple benchmarks show that our method significantly enhances expert specialization. Notably, our method improves classic MoE baselines with auxiliary loss by up to 23.79%, while also maintaining load balancing in downstream tasks, without any architectural modifications or additional components. We will release our code to contribute to the community.
comment: 33pages, 6figures(Accepted by Neurips 2025 Oral)
♻ ☆ Flight Delay Prediction via Cross-Modality Adaptation of Large Language Models and Aircraft Trajectory Representation
Flight delay prediction has become a key focus in air traffic management, as delays highlight inefficiencies that impact overall network performance. This paper presents a lightweight large language model-based multimodal flight delay prediction, formulated from the perspective of air traffic controllers monitoring aircraft delay after entering the terminal area. The approach integrates trajectory representations with textual aeronautical information, including flight information, weather reports, and aerodrome notices, by adapting trajectory data into the language modality to capture airspace conditions. The experiments show that the model consistently achieves sub-minute prediction error by effectively leveraging contextual information related to the sources of delay, fulfilling the operational standard for minute-level precision. The framework demonstrates that linguistic understanding, when combined with cross-modality adaptation of trajectory data, enhances delay prediction. Moreover, the approach shows practicality and potential scalability for real-world operations, supporting real-time updates that refine predictions upon receiving new operational information.
comment: Preprint submitted to Aerospace Science and Technology (Elsevier) for possible publication
Scaling Latent Reasoning via Looped Language Models
Modern LLMs are trained to "think" primarily via explicit text generation, such as chain-of-thought (CoT), which defers reasoning to post-training and under-leverages pre-training data. We present and open-source Ouro, named after the recursive Ouroboros, a family of pre-trained Looped Language Models (LoopLM) that instead build reasoning into the pre-training phase through (i) iterative computation in latent space, (ii) an entropy-regularized objective for learned depth allocation, and (iii) scaling to 7.7T tokens. Ouro 1.4B and 2.6B models enjoy superior performance that match the results of up to 12B SOTA LLMs across a wide range of benchmarks. Through controlled experiments, we show this advantage stems not from increased knowledge capacity, but from superior knowledge manipulation capabilities. We also show that LoopLM yields reasoning traces more aligned with final outputs than explicit CoT. We hope our results show the potential of LoopLM as a novel scaling direction in the reasoning era. Our model is available here: http://ouro-llm.github.io.
♻ ☆ Trustworthy Medical Question Answering: An Evaluation-Centric Survey EMNLP 2025
Trustworthiness in healthcare question-answering (QA) systems is important for ensuring patient safety, clinical effectiveness, and user confidence. As large language models (LLMs) become increasingly integrated into medical settings, the reliability of their responses directly influences clinical decision-making and patient outcomes. However, achieving comprehensive trustworthiness in medical QA poses significant challenges due to the inherent complexity of healthcare data, the critical nature of clinical scenarios, and the multifaceted dimensions of trustworthy AI. In this survey, we systematically examine six key dimensions of trustworthiness in medical QA, i.e., Factuality, Robustness, Fairness, Safety, Explainability, and Calibration. We review how each dimension is evaluated in existing LLM-based medical QA systems. We compile and compare major benchmarks designed to assess these dimensions and analyze evaluation-guided techniques that drive model improvements, such as retrieval-augmented grounding, adversarial fine-tuning, and safety alignment. Finally, we identify open challenges-such as scalable expert evaluation, integrated multi-dimensional metrics, and real-world deployment studies-and propose future research directions to advance the safe, reliable, and transparent deployment of LLM-powered medical QA.
comment: accepted to EMNLP 2025
♻ ☆ Complex QA and language models hybrid architectures, Survey
This paper reviews the state-of-the-art of large language models (LLM) architectures and strategies for "complex" question-answering with a focus on hybrid architectures. LLM based chatbot services have allowed anyone to grasp the potential of LLM to solve many common problems, but soon discovered their limitations for complex questions. Addressing more specific, complex questions (e.g., "What is the best mix of power-generation methods to reduce climate change ?") often requires specialized architectures, domain knowledge, new skills, decomposition and multi-step resolution, deep reasoning, sensitive data protection, explainability, and human-in-the-loop processes. Therefore, we review: (1) necessary skills and tasks for handling complex questions and common LLM limits to overcome; (2) dataset, cost functions and evaluation metrics for measuring and improving (e.g. accuracy, explainability, fairness, robustness, groundedness, faithfulness, toxicity...); (3) family of solutions to overcome LLM limitations by (a) training and reinforcement (b) hybridization, (c) prompting, (d) agentic-architectures (agents, tools) and extended reasoning.
♻ ☆ Enhancing Time Awareness in Generative Recommendation EMNLP 2025
Generative recommendation has emerged as a promising paradigm that formulates the recommendations into a text-to-text generation task, harnessing the vast knowledge of large language models. However, existing studies focus on considering the sequential order of items and neglect to handle the temporal dynamics across items, which can imply evolving user preferences. To address this limitation, we propose a novel model, Generative Recommender Using Time awareness (GRUT), effectively capturing hidden user preferences via various temporal signals. We first introduce Time-aware Prompting, consisting of two key contexts. The user-level temporal context models personalized temporal patterns across timestamps and time intervals, while the item-level transition context provides transition patterns across users. We also devise Trend-aware Inference, a training-free method that enhances rankings by incorporating trend information about items with generation likelihood. Extensive experiments demonstrate that GRUT outperforms state-of-the-art models, with gains of up to 15.4% and 14.3% in Recall@5 and NDCG@5 across four benchmark datasets. The source code is available at https://github.com/skleee/GRUT.
comment: EMNLP 2025 (Findings)
♻ ☆ Mapping Overlaps in Benchmarks through Perplexity in the Wild
We develop signatures of capacity familiarity to characterize large language model (LLM) benchmarks and their meaningful overlaps. Benchmark signatures probe the capacity required for benchmark performance. We formally define them as a set of salient tokens drawn from in-the-wild, naturally authored corpora, where LLM token perplexity, reflecting more or less pre-training exposure, becomes highly predictive of LLM benchmark performance. Through a large-scale meta-evaluation, we extract benchmark signatures via stepwise forward selection with linear regressions across 32 LLMs and 88 benchmarks spanning diverse knowledge, coding, logic, instruction following, math, language, reasoning, and world modeling. Our analysis situates signatures in relation to both the semantic similarity of benchmark questions and the correlation of model performance. While performance overlaps are universally high and semantic overlaps remain confined to a narrow mid-range, benchmark signatures prove highly informative in capturing variation, overlap, and divergence. We observe overlap in knowledge and reasoning subtasks, whereas multilingual and cultural benchmarks exhibit less similarity, even compared to cross-task overlap. Notably, performance-level results are strongly influenced by benchmark-orthogonal factors such as question format, highlighting limitations in LLM generalization, the conflation of performance with ability, and issues inherent in current mainstream benchmark agreement studies. Benchmark signatures, however, remain robust to such effects. Ultimately, we identify cross-functional overlaps across logic, math, language, instruction following, and world modeling, with coding emerging as the least overlapping domain. Together, these findings provide mechanistic insights into benchmark validity and LLM sensitivities, and sketch the underlying landscape of interconnected LLM capabilities.
♻ ☆ MotionGPT3: Human Motion as a Second Modality
With the rapid progress of large language models (LLMs), multimodal frameworks that unify understanding and generation have become promising, yet they face increasing complexity as the number of modalities and tasks grows. We observe that motion quantization introduces approximation errors that cap motion quality, and that unifying discrete text and continuous motion within a single-stream backbone amplifies cross-modal interference. Motivated by recent multi-branch Transformer designs that separate signals from different modalities, we propose MotionGPT3, a bimodal motion-language model for both understanding and generation. MotionGPT3 encodes raw motion into a continuous latent space using a variational autoencoder (VAE), thereby avoiding quantization-induced artifacts, while leveraging the semantic prior of pretrained language models. A dual-stream Transformer with shared attention preserves modality-specific routes while enabling controlled, bidirectional information flow, which reduces interference, stabilizing optimization, and empirically accelerates convergence without degrading fidelity. For multimodal joint training, a generate-then-align three-stage schedule further improves stability and limits cross-task interference. Experiments show that MotionGPT3 achieves 2x faster convergence in training loss and up to 4x faster convergence in validation, while maintaining state-of-the-art performance on standard motion understanding and motion generation benchmarks.
comment: 26 pages, 11 figures
♻ ☆ Dynamic Topic Evolution with Temporal Decay and Attention in Large Language Models
This paper proposes a modeling framework for dynamic topic evolution based on temporal large language models. The method first uses a large language model to obtain contextual embeddings of text and then introduces a temporal decay function and an attention mechanism. These components allow the model to adjust the importance of semantic units according to time intervals and capture topic variations across different periods. The temporal representations are then mapped into a latent topic space, where a state transition matrix is applied to describe the dynamic evolution of topics. A joint optimization objective constrains both semantic modeling and temporal consistency, ensuring diversity and smoothness in topic generation. The design emphasizes the unified modeling of semantic representation and temporal evolution, which improves topic coherence and diversity while enhancing stability and interpretability over time. Experiments on real-world corpora show that the framework effectively captures the generation, expansion, and decline of topics and outperforms existing models across multiple metrics. Overall, the proposed method provides a systematic solution for understanding dynamic semantic patterns in large-scale text, enriches the research paradigm of topic modeling, and supports complex text analysis tasks in multiple domains.
♻ ☆ MultiMed-ST: Large-scale Many-to-many Multilingual Medical Speech Translation EMNLP 2025
Multilingual speech translation (ST) and machine translation (MT) in the medical domain enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we present the first systematic study on medical ST, to our best knowledge, by releasing MultiMed-ST, a large-scale ST dataset for the medical domain, spanning all translation directions in five languages: Vietnamese, English, German, French, and Simplified/Traditional Chinese, together with the models. With 290,000 samples, this is the largest medical MT dataset and the largest many-to-many multilingual ST among all domains. Secondly, we present the most comprehensive ST analysis in the field's history, to our best knowledge, including: empirical baselines, bilingual-multilingual comparative study, end-to-end vs. cascaded comparative study, task-specific vs. multi-task sequence-to-sequence comparative study, code-switch analysis, and quantitative-qualitative error analysis. All code, data, and models are available online: https://github.com/leduckhai/MultiMed-ST
comment: EMNLP 2025
♻ ☆ SynthTextEval: Synthetic Text Data Generation and Evaluation for High-Stakes Domains EMNLP 2025
We present SynthTextEval, a toolkit for conducting comprehensive evaluations of synthetic text. The fluency of large language model (LLM) outputs has made synthetic text potentially viable for numerous applications, such as reducing the risks of privacy violations in the development and deployment of AI systems in high-stakes domains. Realizing this potential, however, requires principled consistent evaluations of synthetic data across multiple dimensions: its utility in downstream systems, the fairness of these systems, the risk of privacy leakage, general distributional differences from the source text, and qualitative feedback from domain experts. SynthTextEval allows users to conduct evaluations along all of these dimensions over synthetic data that they upload or generate using the toolkit's generation module. While our toolkit can be run over any data, we highlight its functionality and effectiveness over datasets from two high-stakes domains: healthcare and law. By consolidating and standardizing evaluation metrics, we aim to improve the viability of synthetic text, and in-turn, privacy-preservation in AI development.
comment: EMNLP 2025 System Demonstration
♻ ☆ Training Large Language Models to Reason in a Continuous Latent Space
Large language models (LLMs) are typically constrained to reason in the language space, where they express the reasoning process through a chain-of-thought (CoT) to solve complex problems. However, the language space may not always be optimal for reasoning. Most word tokens primarily ensure textual coherence and are not essential for reasoning, while some critical tokens require complex planning and pose challenges to LLMs. To explore the potential of reasoning beyond language, we introduce a new paradigm called Coconut (Chain of Continuous Thought). Coconut utilizes the last hidden state of the LLM as a representation of the reasoning state, termed "continuous thought." Instead of decoding this state into words, we feed it back to the model as the next input embedding directly in the continuous space. This latent reasoning paradigm enables an advanced reasoning pattern, where continuous thoughts can encode multiple alternative next steps, allowing the model to perform a breadth-first search (BFS) rather than committing prematurely to a single deterministic path as in CoT. Coconut outperforms CoT on logical reasoning tasks that require substantial search during planning and achieves a better trade-off between accuracy and efficiency.
comment: Accepted to COLM 2025
Computer Vision and Pattern Recognition
♻ ☆ WildCAT3D: Appearance-Aware Multi-View Diffusion in the Wild NeurIPS 2025
Despite recent advances in sparse novel view synthesis (NVS) applied to object-centric scenes, scene-level NVS remains a challenge. A central issue is the lack of available clean multi-view training data, beyond manually curated datasets with limited diversity, camera variation, or licensing issues. On the other hand, an abundance of diverse and permissively-licensed data exists in the wild, consisting of scenes with varying appearances (illuminations, transient occlusions, etc.) from sources such as tourist photos. To this end, we present WildCAT3D, a framework for generating novel views of scenes learned from diverse 2D scene image data captured in the wild. We unlock training on these data sources by explicitly modeling global appearance conditions in images, extending the state-of-the-art multi-view diffusion paradigm to learn from scene views of varying appearances. Our trained model generalizes to new scenes at inference time, enabling the generation of multiple consistent novel views. WildCAT3D provides state-of-the-art results on single-view NVS in object- and scene-level settings, while training on strictly less data sources than prior methods. Additionally, it enables novel applications by providing global appearance control during generation.
comment: Accepted to NeurIPS 2025. Project page: https://wildcat3d.github.io
♻ ☆ RareFlow: Physics-Aware Flow-Matching for Cross-Sensor Super-Resolution of Rare-Earth Features
Super-resolution (SR) for remote sensing imagery often fails under out-of-distribution (OOD) conditions, such as rare geomorphic features captured by diverse sensors, producing visually plausible but physically inaccurate results. We present RareFlow, a physics-aware SR framework designed for OOD robustness. RareFlow's core is a dual-conditioning architecture. A Gated ControlNet preserves fine-grained geometric fidelity from the low-resolution input, while textual prompts provide semantic guidance for synthesizing complex features. To ensure physically sound outputs, we introduce a multifaceted loss function that enforces both spectral and radiometric consistency with sensor properties. Furthermore, the framework quantifies its own predictive uncertainty by employing a stochastic forward pass approach; the resulting output variance directly identifies unfamiliar inputs, mitigating feature hallucination. We validate RareFlow on a new, curated benchmark of multi-sensor satellite imagery. In blind evaluations, geophysical experts rated our model's outputs as approaching the fidelity of ground truth imagery, significantly outperforming state-of-the-art baselines. This qualitative superiority is corroborated by quantitative gains in perceptual metrics, including a nearly 40\% reduction in FID. RareFlow provides a robust framework for high-fidelity synthesis in data-scarce scientific domains and offers a new paradigm for controlled generation under severe domain shift.
♻ ☆ Non-Contact Health Monitoring During Daily Personal Care Routines
Remote photoplethysmography (rPPG) enables non-contact, continuous monitoring of physiological signals and offers a practical alternative to traditional health sensing methods. Although rPPG is promising for daily health monitoring, its application in long-term personal care scenarios, such as mirror-facing routines in high-altitude environments, remains challenging due to ambient lighting variations, frequent occlusions from hand movements, and dynamic facial postures. To address these challenges, we present LADH (Long-term Altitude Daily Health), the first long-term rPPG dataset containing 240 synchronized RGB and infrared (IR) facial videos from 21 participants across five common personal care scenarios, along with ground-truth PPG, respiration, and blood oxygen signals. Our experiments demonstrate that combining RGB and IR video inputs improves the accuracy and robustness of non-contact physiological monitoring, achieving a mean absolute error (MAE) of 4.99 BPM in heart rate estimation. Furthermore, we find that multi-task learning enhances performance across multiple physiological indicators simultaneously. Dataset and code are open at https://github.com/McJackTang/FusionVitals.
comment: IEEE BSN 2025
♻ ☆ ShortV: Efficient Multimodal Large Language Models by Freezing Visual Tokens in Ineffective Layers ICCV 2025
Multimodal Large Language Models (MLLMs) suffer from high computational costs due to their massive size and the large number of visual tokens. In this paper, we investigate layer-wise redundancy in MLLMs by introducing a novel metric, Layer Contribution (LC), which quantifies the impact of a layer's transformations on visual and text tokens, respectively. The calculation of LC involves measuring the divergence in model output that results from removing the layer's transformations on the specified tokens. Our pilot experiment reveals that many layers of MLLMs exhibit minimal contribution during the processing of visual tokens. Motivated by this observation, we propose ShortV, a training-free method that leverages LC to identify ineffective layers, and freezes visual token updates in these layers. Experiments show that ShortV can freeze visual token in approximately 60\% of the MLLM layers, thereby dramatically reducing computational costs related to updating visual tokens. For example, it achieves a 50\% reduction in FLOPs on LLaVA-NeXT-13B while maintaining superior performance. The code will be publicly available at https://github.com/icip-cas/ShortV
comment: Published as a conference paper at ICCV 2025. Project page: https://github.com/icip-cas/ShortV
♻ ☆ Rethinking Visual Intelligence: Insights from Video Pretraining
Large language models (LLMs) have demonstrated that large-scale pretraining enables systems to adapt rapidly to new problems with little supervision in the language domain. This success, however, has not translated as effectively to the visual domain, where models, including LLMs, continue to struggle with compositional understanding, sample efficiency, and general-purpose problem-solving. We investigate Video Diffusion Models (VDMs) as a promising direction for bridging this gap. Pretraining on spatiotemporal data endows these models with strong inductive biases for structure and dynamics, which we hypothesize can support broad task adaptability. To test this, we design a controlled evaluation in which both a pretrained LLM and a pretrained VDM are equipped with lightweight adapters and presented with tasks in their natural modalities. Across benchmarks including ARC-AGI, ConceptARC, visual games, route planning, and cellular automata, VDMs demonstrate higher data efficiency than their language counterparts. Taken together, our results indicate that video pretraining offers inductive biases that support progress toward visual foundation models.
comment: Updated version from preprint arXiv:2506.07280 (Gen2Gen) focused on visual intelligence. This work can be considered as v2
♻ ☆ FlexEvent: Towards Flexible Event-Frame Object Detection at Varying Operational Frequencies NeurIPS 2025
Event cameras offer unparalleled advantages for real-time perception in dynamic environments, thanks to the microsecond-level temporal resolution and asynchronous operation. Existing event detectors, however, are limited by fixed-frequency paradigms and fail to fully exploit the high-temporal resolution and adaptability of event data. To address these limitations, we propose FlexEvent, a novel framework that enables detection at varying frequencies. Our approach consists of two key components: FlexFuse, an adaptive event-frame fusion module that integrates high-frequency event data with rich semantic information from RGB frames, and FlexTune, a frequency-adaptive fine-tuning mechanism that generates frequency-adjusted labels to enhance model generalization across varying operational frequencies. This combination allows our method to detect objects with high accuracy in both fast-moving and static scenarios, while adapting to dynamic environments. Extensive experiments on large-scale event camera datasets demonstrate that our approach surpasses state-of-the-art methods, achieving significant improvements in both standard and high-frequency settings. Notably, our method maintains robust performance when scaling from 20 Hz to 90 Hz and delivers accurate detection up to 180 Hz, proving its effectiveness in extreme conditions. Our framework sets a new benchmark for event-based object detection and paves the way for more adaptable, real-time vision systems.
comment: NeurIPS 2025; 28 pages, 14 figures, 10 tables; Code at https://flexevent.github.io/
♻ ☆ SPIRAL: Semantic-Aware Progressive LiDAR Scene Generation and Understanding NeurIPS 2025
Leveraging recent diffusion models, LiDAR-based large-scale 3D scene generation has achieved great success. While recent voxel-based approaches can generate both geometric structures and semantic labels, existing range-view methods are limited to producing unlabeled LiDAR scenes. Relying on pretrained segmentation models to predict the semantic maps often results in suboptimal cross-modal consistency. To address this limitation while preserving the advantages of range-view representations, such as computational efficiency and simplified network design, we propose Spiral, a novel range-view LiDAR diffusion model that simultaneously generates depth, reflectance images, and semantic maps. Furthermore, we introduce novel semantic-aware metrics to evaluate the quality of the generated labeled range-view data. Experiments on the SemanticKITTI and nuScenes datasets demonstrate that Spiral achieves state-of-the-art performance with the smallest parameter size, outperforming two-step methods that combine the generative and segmentation models. Additionally, we validate that range images generated by Spiral can be effectively used for synthetic data augmentation in the downstream segmentation training, significantly reducing the labeling effort on LiDAR data.
comment: NeurIPS 2025; 24 pages, 10 figures, 9 tables; Code at https://dekai21.github.io/SPIRAL/
♻ ☆ Efficient Remote Sensing Change Detection with Change State Space Models
Despite their frequent use for change detection, both ConvNets and Vision transformers (ViT) exhibit well-known limitations, namely the former struggle to model long-range dependencies while the latter are computationally inefficient, rendering them challenging to train on large-scale datasets. Vision Mamba, an architecture based on State Space Models has emerged as an alternative addressing the aforementioned deficiencies and has been already applied to remote sensing change detection, though mostly as a feature extracting backbone. In this article the Change State Space Model is introduced, that has been specifically designed for change detection by focusing on the relevant changes between bi-temporal images, effectively filtering out irrelevant information. By concentrating solely on the changed features, the number of network parameters is reduced, enhancing significantly computational efficiency while maintaining high detection performance and robustness against input degradation. The proposed model has been evaluated via three benchmark datasets, where it outperformed ConvNets, ViTs, and Mamba-based counterparts at a fraction of their computational complexity. The implementation will be made available at https://github.com/Elman295/CSSM upon acceptance.
♻ ☆ Double Descent Meets Out-of-Distribution Detection: Theoretical Insights and Empirical Analysis on the role of model complexity NeurIPS 2025
Out-of-distribution (OOD) detection is essential for ensuring the reliability and safety of machine learning systems. In recent years, it has received increasing attention, particularly through post-hoc detection and training-based methods. In this paper, we focus on post-hoc OOD detection, which enables identifying OOD samples without altering the model's training procedure or objective. Our primary goal is to investigate the relationship between model capacity and its OOD detection performance. Specifically, we aim to answer the following question: Does the Double Descent phenomenon manifest in post-hoc OOD detection? This question is crucial, as it can reveal whether overparameterization, which is already known to benefit generalization, can also enhance OOD detection. Despite the growing interest in these topics by the classic supervised machine learning community, this intersection remains unexplored for OOD detection. We empirically demonstrate that the Double Descent effect does indeed appear in post-hoc OOD detection. Furthermore, we provide theoretical insights to explain why this phenomenon emerges in such setting. Finally, we show that the overparameterized regime does not yield superior results consistently, and we propose a method to identify the optimal regime for OOD detection based on our observations.
comment: Accepted at NeurIPS 2025 (Conference on Neural Information Processing Systems)
♻ ☆ SonarSplat: Novel View Synthesis of Imaging Sonar via Gaussian Splatting
In this paper, we present SonarSplat, a novel Gaussian splatting framework for imaging sonar that demonstrates realistic novel view synthesis and models acoustic streaking phenomena. Our method represents the scene as a set of 3D Gaussians with acoustic reflectance and saturation properties. We develop a novel method to efficiently rasterize Gaussians to produce a range/azimuth image that is faithful to the acoustic image formation model of imaging sonar. In particular, we develop a novel approach to model azimuth streaking in a Gaussian splatting framework. We evaluate SonarSplat using real-world datasets of sonar images collected from an underwater robotic platform in a controlled test tank and in a real-world river environment. Compared to the state-of-the-art, SonarSplat offers improved image synthesis capabilities (+3.2 dB PSNR) and more accurate 3D reconstruction (77% lower Chamfer Distance). We also demonstrate that SonarSplat can be leveraged for azimuth streak removal.
♻ ☆ A Comprehensive Evaluation of YOLO-based Deer Detection Performance on Edge Devices
The escalating economic losses in agriculture due to deer intrusion, estimated to be in the hundreds of millions of dollars annually in the U.S., highlight the inadequacy of traditional mitigation strategies such as hunting, fencing, use of repellents, and scare tactics. This underscores a critical need for intelligent, autonomous solutions capable of real-time deer detection and deterrence. But the progress in this field is impeded by a significant gap in the literature, mainly the lack of a domain-specific, practical dataset and limited study on the viability of deer detection systems on edge devices. To address this gap, this study presents a comprehensive evaluation of state-of-the-art deep learning models for deer detection in challenging real-world scenarios. We introduce a curated, publicly available dataset of 3,095 annotated images with bounding box annotations of deer. Then, we provide an extensive comparative analysis of 12 model variants across four recent YOLO architectures (v8 to v11). Finally, we evaluated their performance on two representative edge computing platforms: the CPU-based Raspberry Pi 5 and the GPU-accelerated NVIDIA Jetson AGX Xavier to assess feasibility for real-world field deployment. Results show that the real-time detection performance is not feasible on Raspberry Pi without hardware-specific model optimization, while NVIDIA Jetson provides greater than 30 frames per second (FPS) with 's' and 'n' series models. This study also reveals that smaller, architecturally advanced models such as YOLOv11n, YOLOv8s, and YOLOv9s offer the optimal balance of high accuracy (Average Precision (AP) > 0.85) and computational efficiency (Inference Time < 34 milliseconds).
comment: 13 pages, 7 figures
♻ ☆ TinyDef-DETR: A Transformer-Based Framework for Defect Detection in Transmission Lines from UAV Imagery
Automated defect detection from UAV imagery of transmission lines is a challenging task due to the small size, ambiguity, and complex backgrounds of defects. This paper proposes TinyDef-DETR, a DETR-based framework designed to achieve accurate and efficient detection of transmission line defects from UAV-acquired images. The model integrates four major components: an edge-enhanced ResNet backbone to strengthen boundary-sensitive representations, a stride-free space-to-depth module to enable detail-preserving downsampling, a cross-stage dual-domain multi-scale attention mechanism to jointly model global context and local cues, and a Focaler-Wise-SIoU regression loss to improve the localization of small and difficult objects. Together, these designs effectively mitigate the limitations of conventional detectors. Extensive experiments on both public and real-world datasets demonstrate that TinyDef-DETR achieves superior detection performance and strong generalization capability, while maintaining modest computational overhead. The accuracy and efficiency of TinyDef-DETR make it a suitable method for UAV-based transmission line defect detection, particularly in scenarios involving small and ambiguous objects.
♻ ☆ New multimodal similarity measure for image registration via modeling local functional dependence with linear combination of learned basis functions
The deformable registration of images of different modalities, essential in many medical imaging applications, remains challenging. The main challenge is developing a robust measure for image overlap despite the compared images capturing different aspects of the underlying tissue. Here, we explore similarity metrics based on functional dependence between intensity values of registered images. Although functional dependence is too restrictive on the global scale, earlier work has shown competitive performance in deformable registration when such measures are applied over small enough contexts. We confirm this finding and further develop the idea by modeling local functional dependence via the linear basis function model with the basis functions learned jointly with the deformation. The measure can be implemented via convolutions, making it efficient to compute on GPUs. We release the method as an easy-to-use tool and show good performance on three datasets compared to well-established baseline and earlier functional dependence-based methods.
comment: Improved experimental setup
♻ ☆ GauSSmart: Enhanced 3D Reconstruction through 2D Foundation Models and Geometric Filtering
Scene reconstruction has emerged as a central challenge in computer vision, with approaches such as Neural Radiance Fields (NeRF) and Gaussian Splatting achieving remarkable progress. While Gaussian Splatting demonstrates strong performance on large-scale datasets, it often struggles to capture fine details or maintain realism in regions with sparse coverage, largely due to the inherent limitations of sparse 3D training data. In this work, we propose GauSSmart, a hybrid method that effectively bridges 2D foundational models and 3D Gaussian Splatting reconstruction. Our approach integrates established 2D computer vision techniques, including convex filtering and semantic feature supervision from foundational models such as DINO, to enhance Gaussian-based scene reconstruction. By leveraging 2D segmentation priors and high-dimensional feature embeddings, our method guides the densification and refinement of Gaussian splats, improving coverage in underrepresented areas and preserving intricate structural details. We validate our approach across three datasets, where GauSSmart consistently outperforms existing Gaussian Splatting in the majority of evaluated scenes. Our results demonstrate the significant potential of hybrid 2D-3D approaches, highlighting how the thoughtful combination of 2D foundational models with 3D reconstruction pipelines can overcome the limitations inherent in either approach alone.
♻ ☆ Phys4DGen: Physics-Compliant 4D Generation with Multi-Material Composition Perception ACM MM 2025
4D content generation aims to create dynamically evolving 3D content that responds to specific input objects such as images or 3D representations. Current approaches typically incorporate physical priors to animate 3D representations, but these methods suffer from significant limitations: they not only require users lacking physics expertise to manually specify material properties but also struggle to effectively handle the generation of multi-material composite objects. To address these challenges, we propose Phys4DGen, a novel 4D generation framework that integrates multi-material composition perception with physical simulation. The framework achieves automated, physically plausible 4D generation through three innovative modules: first, the 3D Material Grouping module partitions heterogeneous material regions on 3D representations' surfaces via semantic segmentation; second, the Internal Physical Structure Discovery module constructs the mechanical structure of object interiors; finally, we distill physical prior knowledge from multimodal large language models to enable rapid and automatic material properties identification for both objects' surfaces and interiors. Experiments on both synthetic and real-world datasets demonstrate that Phys4DGen can generate high-fidelity 4D content with physical realism in open-world scenarios, significantly outperforming state-of-the-art methods.
comment: Accepted by ACM MM 2025. Project Page: https://jiajinglin.github.io/Phys4DGen
♻ ☆ Detailed Aerial Mapping of Photovoltaic Power Plants Through Semantically Significant Keypoints
An accurate and up-to-date model of a photovoltaic (PV) power plant is essential for its optimal operation and maintenance. However, such a model may not be easily available. This work introduces a novel approach for PV power plant mapping based on aerial overview images. It enables the automation of the mapping process while removing the reliance on third-party data. The presented mapping method takes advantage of the structural layout of the power plants to achieve detailed modeling down to the level of individual PV modules. The approach relies on visual segmentation of PV modules in overview images and the inference of structural information in each image, assigning modules to individual benches, rows, and columns. We identify visual keypoints related to the layout and use these to merge detections from multiple images while maintaining their structural integrity. The presented method was experimentally verified and evaluated on two different power plants. The final fusion of 3D positions and semantic structures results in a compact georeferenced model suitable for power plant maintenance.
comment: 11 pages, 18 figures. Accepted version
♻ ☆ Preliminary study on artificial intelligence methods for cybersecurity threat detection in computer networks based on raw data packets
Most of the intrusion detection methods in computer networks are based on traffic flow characteristics. However, this approach may not fully exploit the potential of deep learning algorithms to directly extract features and patterns from raw packets. Moreover, it impedes real-time monitoring due to the necessity of waiting for the processing pipeline to complete and introduces dependencies on additional software components. In this paper, we investigate deep learning methodologies capable of detecting attacks in real-time directly from raw packet data within network traffic. We propose a novel approach where packets are stacked into windows and separately recognised, with a 2D image representation suitable for processing with computer vision models. Our investigation utilizes the CIC IDS-2017 dataset, which includes both benign traffic and prevalent real-world attacks, providing a comprehensive foundation for our research.
comment: Submitted to Computer Science Journal. Version with updated acknowledgments
♻ ☆ Kineo: Calibration-Free Metric Motion Capture From Sparse RGB Cameras
Markerless multiview motion capture is often constrained by the need for precise camera calibration, limiting accessibility for non-experts and in-the-wild captures. Existing calibration-free approaches mitigate this requirement but suffer from high computational cost and reduced reconstruction accuracy. We present Kineo, a fully automatic, calibration-free pipeline for markerless motion capture from videos captured by unsynchronized, uncalibrated, consumer-grade RGB cameras. Kineo leverages 2D keypoints from off-the-shelf detectors to simultaneously calibrate cameras, including Brown-Conrady distortion coefficients, and reconstruct 3D keypoints and dense scene point maps at metric scale. A confidence-driven spatio-temporal keypoint sampling strategy, combined with graph-based global optimization, ensures robust calibration at a fixed computational cost independent of sequence length. We further introduce a pairwise reprojection consensus score to quantify 3D reconstruction reliability for downstream tasks. Evaluations on EgoHumans and Human3.6M demonstrate substantial improvements over prior calibration-free methods. Compared to previous state-of-the-art approaches, Kineo reduces camera translation error by approximately 83-85%, camera angular error by 86-92%, and world mean-per-joint error (W-MPJPE) by 83-91%. Kineo is also efficient in real-world scenarios, processing multi-view sequences faster than their duration in specific configuration (e.g., 36min to process 1h20min of footage). The full pipeline and evaluation code are openly released to promote reproducibility and practical adoption at https://liris-xr.github.io/kineo/.
♻ ☆ ReviveDiff: A Universal Diffusion Model for Restoring Images in Adverse Weather Conditions
Images captured in challenging environments--such as nighttime, smoke, rainy weather, and underwater--often suffer from significant degradation, resulting in a substantial loss of visual quality. The effective restoration of these degraded images is critical for the subsequent vision tasks. While many existing approaches have successfully incorporated specific priors for individual tasks, these tailored solutions limit their applicability to other degradations. In this work, we propose a universal network architecture, dubbed ``ReviveDiff'', which can address various degradations and bring images back to life by enhancing and restoring their quality. Our approach is inspired by the observation that, unlike degradation caused by movement or electronic issues, quality degradation under adverse conditions primarily stems from natural media (such as fog, water, and low luminance), which generally preserves the original structures of objects. To restore the quality of such images, we leveraged the latest advancements in diffusion models and developed ReviveDiff to restore image quality from both macro and micro levels across some key factors determining image quality, such as sharpness, distortion, noise level, dynamic range, and color accuracy. We rigorously evaluated ReviveDiff on seven benchmark datasets covering five types of degrading conditions: Rainy, Underwater, Low-light, Smoke, and Nighttime Hazy. Our experimental results demonstrate that ReviveDiff outperforms the state-of-the-art methods both quantitatively and visually.
♻ ☆ Keep It on a Leash: Controllable Pseudo-label Generation Towards Realistic Long-Tailed Semi-Supervised Learning NeurIPS 2025
Current long-tailed semi-supervised learning methods assume that labeled data exhibit a long-tailed distribution, and unlabeled data adhere to a typical predefined distribution (i.e., long-tailed, uniform, or inverse long-tailed). However, the distribution of the unlabeled data is generally unknown and may follow an arbitrary distribution. To tackle this challenge, we propose a Controllable Pseudo-label Generation (CPG) framework, expanding the labeled dataset with the progressively identified reliable pseudo-labels from the unlabeled dataset and training the model on the updated labeled dataset with a known distribution, making it unaffected by the unlabeled data distribution. Specifically, CPG operates through a controllable self-reinforcing optimization cycle: (i) at each training step, our dynamic controllable filtering mechanism selectively incorporates reliable pseudo-labels from the unlabeled dataset into the labeled dataset, ensuring that the updated labeled dataset follows a known distribution; (ii) we then construct a Bayes-optimal classifier using logit adjustment based on the updated labeled data distribution; (iii) this improved classifier subsequently helps identify more reliable pseudo-labels in the next training step. We further theoretically prove that this optimization cycle can significantly reduce the generalization error under some conditions. Additionally, we propose a class-aware adaptive augmentation module to further improve the representation of minority classes, and an auxiliary branch to maximize data utilization by leveraging all labeled and unlabeled samples. Comprehensive evaluations on various commonly used benchmark datasets show that CPG achieves consistent improvements, surpassing state-of-the-art methods by up to $\textbf{15.97%}$ in accuracy. The code is available at https://github.com/yaxinhou/CPG.
comment: The paper is accepted by NeurIPS 2025
♻ ☆ 3DViT-GAT: A Unified Atlas-Based 3D Vision Transformer and Graph Learning Framework for Major Depressive Disorder Detection Using Structural MRI Data
Major depressive disorder (MDD) is a prevalent mental health condition that negatively impacts both individual well-being and global public health. Automated detection of MDD using structural magnetic resonance imaging (sMRI) and deep learning (DL) methods holds increasing promise for improving diagnostic accuracy and enabling early intervention. Most existing methods employ either voxel-level features or handcrafted regional representations built from predefined brain atlases, limiting their ability to capture complex brain patterns. This paper develops a unified pipeline that utilizes Vision Transformers (ViTs) for extracting 3D region embeddings from sMRI data and Graph Neural Network (GNN) for classification. We explore two strategies for defining regions: (1) an atlas-based approach using predefined structural and functional brain atlases, and (2) an cube-based method by which ViTs are trained directly to identify regions from uniformly extracted 3D patches. Further, cosine similarity graphs are generated to model interregional relationships, and guide GNN-based classification. Extensive experiments were conducted using the REST-meta-MDD dataset to demonstrate the effectiveness of our model. With stratified 10-fold cross-validation, the best model obtained 78.98% accuracy, 76.54% sensitivity, 81.58% specificity, 81.58% precision, and 78.98% F1-score. Further, atlas-based models consistently outperformed the cube-based approach, highlighting the importance of using domain-specific anatomical priors for MDD detection.
comment: 14 pages, 1 figure, 7 tables
♻ ☆ Geospatial Foundation Models to Enable Progress on Sustainable Development Goals
Foundation Models (FMs) are large-scale, pre-trained artificial intelligence (AI) systems that have revolutionized natural language processing and computer vision, and are now advancing geospatial analysis and Earth Observation (EO). They promise improved generalization across tasks, scalability, and efficient adaptation with minimal labeled data. However, despite the rapid proliferation of geospatial FMs, their real-world utility and alignment with global sustainability goals remain underexplored. We introduce SustainFM, a comprehensive benchmarking framework grounded in the 17 Sustainable Development Goals with extremely diverse tasks ranging from asset wealth prediction to environmental hazard detection. This study provides a rigorous, interdisciplinary assessment of geospatial FMs and offers critical insights into their role in attaining sustainability goals. Our findings show: (1) While not universally superior, FMs often outperform traditional approaches across diverse tasks and datasets. (2) Evaluating FMs should go beyond accuracy to include transferability, generalization, and energy efficiency as key criteria for their responsible use. (3) FMs enable scalable, SDG-grounded solutions, offering broad utility for tackling complex sustainability challenges. Critically, we advocate for a paradigm shift from model-centric development to impact-driven deployment, and emphasize metrics such as energy efficiency, robustness to domain shifts, and ethical considerations.
♻ ☆ Enhancing Action Recognition by Leveraging the Hierarchical Structure of Actions and Textual Context
We propose a novel approach to improve action recognition by exploiting the hierarchical organization of actions and by incorporating contextualized textual information, including location and previous actions, to reflect the action's temporal context. To achieve this, we introduce a transformer architecture tailored for action recognition that employs both visual and textual features. Visual features are obtained from RGB and optical flow data, while text embeddings represent contextual information. Furthermore, we define a joint loss function to simultaneously train the model for both coarse- and fine-grained action recognition, effectively exploiting the hierarchical nature of actions. To demonstrate the effectiveness of our method, we extend the Toyota Smarthome Untrimmed (TSU) dataset by incorporating action hierarchies, resulting in the Hierarchical TSU dataset, a hierarchical dataset designed for monitoring activities of the elderly in home environments. An ablation study assesses the performance impact of different strategies for integrating contextual and hierarchical data. Experimental results demonstrate that the proposed method consistently outperforms SOTA methods on the Hierarchical TSU dataset, Assembly101 and IkeaASM, achieving over a 17% improvement in top-1 accuracy.
♻ ☆ VidText: Towards Comprehensive Evaluation for Video Text Understanding
Visual texts embedded in videos carry rich semantic information, which is crucial for both holistic video understanding and fine-grained reasoning about local human actions. However, existing video understanding benchmarks largely overlook textual information, while OCR-specific benchmarks are constrained to static images, limiting their ability to capture the interaction between text and dynamic visual contexts. To address this gap, we propose VidText, a new benchmark designed for comprehensive and in-depth evaluation of video text understanding. VidText offers the following key features: 1) It covers a wide range of real-world scenarios and supports multilingual content, encompassing diverse settings where video text naturally appears. 2) It introduces a hierarchical evaluation framework with video-level, clip-level, and instance-level tasks, enabling assessment of both global summarization and local retrieval capabilities. 3) The benchmark also introduces a set of paired perception reasoning tasks, ranging from visual text perception to cross-modal reasoning between textual and visual information. Extensive experiments on 18 state-of-the-art Large Multimodal Models (LMMs) reveal that current models struggle across most tasks, with significant room for improvement. Further analysis highlights the impact of both model-intrinsic factors, such as input resolution and OCR capability, and external factors, including the use of auxiliary information and Chain-of-Thought reasoning strategies. We hope VidText will fill the current gap in video understanding benchmarks and serve as a foundation for future research on multimodal reasoning with video text in dynamic environments.
♻ ☆ Image Hashing via Cross-View Code Alignment in the Age of Foundation Models
Efficient large-scale retrieval requires representations that are both compact and discriminative. Foundation models provide powerful visual and multimodal embeddings, but nearest neighbor search in these high-dimensional spaces is computationally expensive. Hashing offers an efficient alternative by enabling fast Hamming distance search with binary codes, yet existing approaches often rely on complex pipelines, multi-term objectives, designs specialized for a single learning paradigm, and long training times. We introduce CroVCA (Cross-View Code Alignment), a simple and unified principle for learning binary codes that remain consistent across semantically aligned views. A single binary cross-entropy loss enforces alignment, while coding-rate maximization serves as an anti-collapse regularizer to promote balanced and diverse codes. To implement this, we design HashCoder, a lightweight MLP hashing network with a final batch normalization layer to enforce balanced codes. HashCoder can be used as a probing head on frozen embeddings or to adapt encoders efficiently via LoRA fine-tuning. Across benchmarks, CroVCA achieves state-of-the-art results in just 5 training epochs. At 16 bits, it particularly well-for instance, unsupervised hashing on COCO completes in under 2 minutes and supervised hashing on ImageNet100 in about 3 minutes on a single GPU. These results highlight CroVCA's efficiency, adaptability, and broad applicability.
♻ ☆ Finite element-based space-time total variation-type regularization of the inverse problem in electrocardiographic imaging
Reconstructing cardiac electrical activity from body surface electric potential measurements results in the severely ill-posed inverse problem in electrocardiography. Many different regularization approaches have been proposed to improve numerical results and provide unique results. This work presents a novel approach for reconstructing the epicardial potential from body surface potential maps based on a space-time total variation-type regularization using finite elements, where a first-order primal-dual algorithm solves the underlying convex optimization problem. In several numerical experiments, the superior performance of this method and the benefit of space-time regularization for the reconstruction of epicardial potential on two-dimensional torso data and a three-dimensional rabbit heart compared to state-of-the-art methods are demonstrated.
♻ ☆ VO-DP: Semantic-Geometric Adaptive Diffusion Policy for Vision-Only Robotic Manipulation
In the context of imitation learning, visuomotor-based diffusion policy learning is one of the main directions in robotic manipulation. Most of these approaches rely on point clouds as observation inputs and construct scene representations through point clouds feature learning, which enables them to achieve remarkable accuracy. However, the existing literature lacks an in-depth exploration of vision-only solutions that have significant potential. In this paper, we propose a Vision-Only and single-view Diffusion Policy learning method (VO-DP) that leverages pretrained visual foundation models to achieve effective fusion of semantic and geometric features. We utilize intermediate features from VGGT incorporating semantic features from DINOv2 and geometric features from Alternating Attention blocks. Features are fused via cross-attention and spatially compressed with a CNN to form the input to the policy head. Extensive experiments demonstrate that VO-DP not only outperforms the vision-only baseline DP significantly but also exhibits distinct performance trends against the point cloud-based method DP3: in simulation tasks, VO-DP achieves an average success rate of 64.6% on par with DP3 64.0% and far higher than DP 34.8%, while in real-world tasks, it reaches 87.9%, outperforming both DP3 67.5% and DP 11.2% by a notable margin. Further robustness evaluations confirm that VO-DP remains highly stable under varying conditions including color, size, background, and lighting. Lastly, we open-source a training library for robotic manipulation. Built on Accelerate, this library supports multi-machine and multi-GPU parallel training, as well as mixed precision training. It is compatible with visuomotor policies such as DP, DP3 and VO-DP, and also supports the RoboTwin simulator.
♻ ☆ Transforming Hyperspectral Images Into Chemical Maps: A Novel End-to-End Deep Learning Approach
Current approaches to chemical map generation from hyperspectral images are based on models such as partial least squares (PLS) regression, generating pixel-wise predictions that do not consider spatial context and suffer from a high degree of noise. This study proposes an end-to-end deep learning approach using a modified version of U-Net and a custom loss function to directly obtain chemical maps from hyperspectral images, skipping all intermediate steps required for traditional pixel-wise analysis. This study compares the U-Net with the traditional PLS regression on a real dataset of pork belly samples with associated mean fat reference values. The U-Net obtains a test set root mean squared error that is 7% lower than that of PLS regression on the task of mean fat prediction. At the same time, U-Net generates fine detail chemical maps where 99.91% of the variance is spatially correlated. Conversely, only 2.37% of the variance in the PLS-generated chemical maps is spatially correlated, indicating that each pixel-wise prediction is largely independent of neighboring pixels. Additionally, while the PLS-generated chemical maps contain predictions far beyond the physically possible range of 0-100%, U-Net learns to stay inside this range. Thus, the findings of this study indicate that U-Net is superior to PLS for chemical map generation.
♻ ☆ Surgical Scene Understanding in the Era of Foundation AI Models: A Comprehensive Review
Recent advancements in machine learning (ML) and deep learning (DL), particularly through the introduction of Foundation Models (FMs), have significantly enhanced surgical scene understanding within minimally invasive surgery (MIS). This paper surveys the integration of state-of-the-art ML and DL technologies, including Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), and Foundation Models like the Segment Anything Model (SAM), into surgical workflows. These technologies improve segmentation accuracy, instrument tracking, and phase recognition in surgical scene understanding. The paper explores the challenges these technologies face, such as data variability and computational demands, and discusses ethical considerations and integration hurdles in clinical settings. Highlighting the roles of FMs, we bridge the technological capabilities with clinical needs and outline future research directions to enhance the adaptability, efficiency, and ethical alignment of AI applications in surgery. Our findings suggest that substantial progress has been made; however, more focused efforts are required to achieve seamless integration of these technologies into clinical workflows, ensuring they complement surgical practice by enhancing precision, reducing risks, and optimizing patient outcomes.
♻ ☆ Adjustable Spatio-Spectral Hyperspectral Image Compression Network
With the rapid growth of hyperspectral data archives in remote sensing (RS), the need for efficient storage has become essential, driving significant attention toward learning-based hyperspectral image (HSI) compression. However, a comprehensive investigation of the individual and joint effects of spectral and spatial compression on learning-based HSI compression has not been thoroughly examined yet. Conducting such an analysis is crucial for understanding how the exploitation of spectral, spatial, and joint spatio-spectral redundancies affects HSI compression. To address this issue, we propose Adjustable Spatio-Spectral Hyperspectral Image Compression Network (HyCASS), a learning-based model designed for adjustable HSI compression in both spectral and spatial dimensions. HyCASS consists of six main modules: 1) spectral encoder module; 2) spatial encoder module; 3) compression ratio (CR) adapter encoder module; 4) CR adapter decoder module; 5) spatial decoder module; and 6) spectral decoder module. The modules employ convolutional layers and transformer blocks to capture both short-range and long-range redundancies. Experimental results on three HSI benchmark datasets demonstrate the effectiveness of our proposed adjustable model compared to existing learning-based compression models, surpassing the state of the art by up to 2.36 dB in terms of PSNR. Based on our results, we establish a guideline for effectively balancing spectral and spatial compression across different CRs, taking into account the spatial resolution of the HSIs. Our code and pre-trained model weights are publicly available at https://git.tu-berlin.de/rsim/hycass .
♻ ☆ Class Agnostic Instance-level Descriptor for Visual Instance Search
Despite the great success of the deep features in content-based image retrieval, the visual instance search remains challenging due to the lack of effective instance-level feature representation. Supervised or weakly supervised object detection methods are not the appropriate solutions due to their poor performance on the unknown object categories. In this paper, based on the feature set output from self-supervised ViT, the instance-level region discovery is modeled as detecting the compact feature subsets in a hierarchical fashion. The hierarchical decomposition results in a hierarchy of instance regions. On the one hand, this kind of hierarchical decomposition well addresses the problem of object embedding and occlusions, which are widely observed in real scenarios. On the other hand, the non-leaf nodes and leaf nodes on the hierarchy correspond to the instance regions in different granularities within an image. Therefore, features in uniform length are produced for these instance regions, which may cover across a dominant image region, an integral of multiple instances, or various individual instances. Such a collection of features allows us to unify the image retrieval, multi-instance search, and instance search into one framework. The empirical studies on three benchmarks show that such an instance-level descriptor remains effective on both the known and unknown object categories. Moreover, the superior performance is achieved on single-instance and multi-instance search, as well as image retrieval tasks.
♻ ☆ SynBrain: Enhancing Visual-to-fMRI Synthesis via Probabilistic Representation Learning NeurIPS 2025
Deciphering how visual stimuli are transformed into cortical responses is a fundamental challenge in computational neuroscience. This visual-to-neural mapping is inherently a one-to-many relationship, as identical visual inputs reliably evoke variable hemodynamic responses across trials, contexts, and subjects. However, existing deterministic methods struggle to simultaneously model this biological variability while capturing the underlying functional consistency that encodes stimulus information. To address these limitations, we propose SynBrain, a generative framework that simulates the transformation from visual semantics to neural responses in a probabilistic and biologically interpretable manner. SynBrain introduces two key components: (i) BrainVAE models neural representations as continuous probability distributions via probabilistic learning while maintaining functional consistency through visual semantic constraints; (ii) A Semantic-to-Neural Mapper acts as a semantic transmission pathway, projecting visual semantics into the neural response manifold to facilitate high-fidelity fMRI synthesis. Experimental results demonstrate that SynBrain surpasses state-of-the-art methods in subject-specific visual-to-fMRI encoding performance. Furthermore, SynBrain adapts efficiently to new subjects with few-shot data and synthesizes high-quality fMRI signals that are effective in improving data-limited fMRI-to-image decoding performance. Beyond that, SynBrain reveals functional consistency across trials and subjects, with synthesized signals capturing interpretable patterns shaped by biological neural variability. Our code is available at https://github.com/MichaelMaiii/SynBrain.
comment: Accepted by NeurIPS 2025
♻ ☆ 50 Years of Water Body Monitoring: The Case of Qaraaoun Reservoir, Lebanon
The sustainable management of the Qaraaoun Reservoir, the largest surface water body in Lebanon located in the Bekaa Plain, depends on reliable monitoring of its storage volume despite frequent sensor malfunctions and limited maintenance capacity. This study introduces a sensor-free approach that integrates open-source satellite imagery, advanced water-extent segmentation, and machine learning to estimate the reservoir's surface area and, subsequently, its volume in near real time. Sentinel-2 and Landsat 1-9 images are processed, where surface water is delineated using a newly proposed water segmentation index. A machine learning model based on Support Vector Regression (SVR) is trained on a curated dataset that includes water surface area, water level, and water volume derived from a reservoir bathymetric survey. The model is then able to estimate the water body's volume solely from the extracted water surface, without the need for any ground-based measurements. Water segmentation using the proposed index aligns with ground truth for over 95% of the shoreline. Hyperparameter tuning with GridSearchCV yields an optimized SVR performance, with an error below 1.5% of the full reservoir capacity and coefficients of determination exceeding 0.98. These results demonstrate the method's robustness and cost-effectiveness, offering a practical solution for continuous, sensor-independent monitoring of reservoir storage. The proposed methodology is applicable to other water bodies and generates over five decades of time-series data, offering valuable insights into climate change and environmental dynamics, with an emphasis on capturing temporal trends rather than exact water volume measurements.
♻ ☆ Deep Video Discovery: Agentic Search with Tool Use for Long-form Video Understanding NeurIPS 2025
Long-form video understanding presents significant challenges due to extensive temporal-spatial complexity and the difficulty of question answering under such extended contexts. While Large Language Models (LLMs) have demonstrated considerable advancements in video analysis capabilities and long context handling, they continue to exhibit limitations when processing information-dense hour-long videos. To overcome such limitations, we propose the Deep Video Discovery (DVD) agent to leverage an agentic search strategy over segmented video clips. Unlike previous video agents that rely on predefined workflows applied uniformly across different queries, our approach emphasizes the autonomous and adaptive nature of agents. By providing a set of search-centric tools on multi-granular video database, our DVD agent leverages the advanced reasoning capability of LLM to plan on its current observation state, strategically selects tools to orchestrate adaptive workflow for different queries in light of the gathered information. We perform comprehensive evaluation on multiple long video understanding benchmarks that demonstrates our advantage. Our DVD agent achieves state-of-the-art performance on the challenging LVBench dataset, reaching an accuracy of 74.2%, which substantially surpasses all prior works, and further improves to 76.0% with transcripts. The code has been released at https://github.com/microsoft/DeepVideoDiscovery.
comment: Accepted to NeurIPS 2025
♻ ☆ FIRE: Robust Detection of Diffusion-Generated Images via Frequency-Guided Reconstruction Error CVPR 2025
The rapid advancement of diffusion models has significantly improved high-quality image generation, making generated content increasingly challenging to distinguish from real images and raising concerns about potential misuse. In this paper, we observe that diffusion models struggle to accurately reconstruct mid-band frequency information in real images, suggesting the limitation could serve as a cue for detecting diffusion model generated images. Motivated by this observation, we propose a novel method called Frequency-guided Reconstruction Error (FIRE), which, to the best of our knowledge, is the first to investigate the influence of frequency decomposition on reconstruction error. FIRE assesses the variation in reconstruction error before and after the frequency decomposition, offering a robust method for identifying diffusion model generated images. Extensive experiments show that FIRE generalizes effectively to unseen diffusion models and maintains robustness against diverse perturbations.
comment: 14 pages, 14 figures. Accepted to CVPR 2025
♻ ☆ TextAtlas5M: A Large-scale Dataset for Dense Text Image Generation
Text-conditioned image generation has gained significant attention in recent years and are processing increasingly longer and comprehensive text prompt. In everyday life, dense and intricate text appears in contexts like advertisements, infographics, and signage, where the integration of both text and visuals is essential for conveying complex information. However, despite these advances, the generation of images containing long-form text remains a persistent challenge, largely due to the limitations of existing datasets, which often focus on shorter and simpler text. To address this gap, we introduce TextAtlas5M, a novel dataset specifically designed to evaluate long-text rendering in text-conditioned image generation. Our dataset consists of 5 million long-text generated and collected images across diverse data types, enabling comprehensive evaluation of large-scale generative models on long-text image generation. We further curate 3000 human-improved test set TextAtlasEval across 3 data domains, establishing one of the most extensive benchmarks for text-conditioned generation. Evaluations suggest that the TextAtlasEval benchmarks present significant challenges even for the most advanced proprietary models (e.g. GPT4o with DallE-3), while their open-source counterparts show an even larger performance gap. These evidences position TextAtlas5M as a valuable dataset for training and evaluating future-generation text-conditioned image generation models.
comment: 27 pages, 15 figures. Dataset Website: https://textatlas5m.github.io
♻ ☆ Enhancing Spatio-Temporal Zero-shot Action Recognition with Language-driven Description Attributes
Vision-Language Models (VLMs) have demonstrated impressive capabilities in zero-shot action recognition by learning to associate video embeddings with class embeddings. However, a significant challenge arises when relying solely on action classes to provide semantic context, particularly due to the presence of multi-semantic words, which can introduce ambiguity in understanding the intended concepts of actions. To address this issue, we propose an innovative approach that harnesses web-crawled descriptions, leveraging a large-language model to extract relevant keywords. This method reduces the need for human annotators and eliminates the laborious manual process of attribute data creation. Additionally, we introduce a spatio-temporal interaction module designed to focus on objects and action units, facilitating alignment between description attributes and video content. In our zero-shot experiments, our model achieves impressive results, attaining accuracies of 81.0%, 53.1%, and 68.9% on UCF-101, HMDB-51, and Kinetics-600, respectively, underscoring the model's adaptability and effectiveness across various downstream tasks.
♻ ☆ Generative diffusion modeling protocols for improving the Kikuchi pattern indexing in electron back-scatter diffraction
Electron back-scatter diffraction (EBSD) has traditionally relied upon methods such as the Hough transform and dictionary Indexing to interpret diffraction patterns and extract crystallographic orientation. However, these methods encounter significant limitations, particularly when operating at high scanning speeds, where the exposure time per pattern is decreased beyond the operating sensitivity of CCD camera. Hence the signal to noise ratio decreases for the observed pattern which makes the pattern noisy, leading to reduced indexing accuracy. This research work aims to develop generative machine learning models for the post-processing or on-the-fly processing of Kikuchi patterns which are capable of restoring noisy EBSD patterns obtained at high scan speeds. These restored patterns can be used for the determination of crystal orientations to provide reliable indexing results. We compare the performance of such generative models in enhancing the quality of patterns captured at short exposure times (high scan speeds). An interesting observation is that the methodology is not data-hungry as typical machine learning methods.
♻ ☆ Epistemic Uncertainty for Generated Image Detection NeurIPS 2025
We introduce a novel framework for AI-generated image detection through epistemic uncertainty, aiming to address critical security concerns in the era of generative models. Our key insight stems from the observation that distributional discrepancies between training and testing data manifest distinctively in the epistemic uncertainty space of machine learning models. In this context, the distribution shift between natural and generated images leads to elevated epistemic uncertainty in models trained on natural images when evaluating generated ones. Hence, we exploit this phenomenon by using epistemic uncertainty as a proxy for detecting generated images. This converts the challenge of generated image detection into the problem of uncertainty estimation, underscoring the generalization performance of the model used for uncertainty estimation. Fortunately, advanced large-scale vision models pre-trained on extensive natural images have shown excellent generalization performance for various scenarios. Thus, we utilize these pre-trained models to estimate the epistemic uncertainty of images and flag those with high uncertainty as generated. Extensive experiments demonstrate the efficacy of our method. Code is available at https://github.com/tmlr-group/WePe.
comment: 28 pages, 10 figures, NeurIPS 2025
♻ ☆ Aligning Effective Tokens with Video Anomaly in Large Language Models
Understanding abnormal events in videos is a vital and challenging task that has garnered significant attention in a wide range of applications. Although current video understanding Multi-modal Large Language Models (MLLMs) are capable of analyzing general videos, they often struggle to handle anomalies due to the spatial and temporal sparsity of abnormal events, where the redundant information always leads to suboptimal outcomes. To address these challenges, exploiting the representation and generalization capabilities of Vison Language Models (VLMs) and Large Language Models (LLMs), we propose VA-GPT, a novel MLLM designed for summarizing and localizing abnormal events in various videos. Our approach efficiently aligns effective tokens between visual encoders and LLMs through two key proposed modules: Spatial Effective Token Selection (SETS) and Temporal Effective Token Generation (TETG). These modules enable our model to effectively capture and analyze both spatial and temporal information associated with abnormal events, resulting in more accurate responses and interactions. Furthermore, we construct an instruction-following dataset specifically for fine-tuning video-anomaly-aware MLLMs, and introduce a cross-domain evaluation benchmark based on XD-Violence dataset. Our proposed method outperforms existing state-of-the-art methods on various benchmarks.
♻ ☆ Dual-level Progressive Hardness-Aware Reweighting for Cross-View Geo-Localization
Cross-view geo-localization (CVGL) between drone and satellite imagery remains challenging due to severe viewpoint gaps and the presence of hard negatives, which are visually similar but geographically mismatched samples. Existing mining or reweighting strategies often use static weighting, which is sensitive to distribution shifts and prone to overemphasizing difficult samples too early, leading to noisy gradients and unstable convergence. In this paper, we present a Dual-level Progressive Hardness-aware Reweighting (DPHR) strategy. At the sample level, a Ratio-based Difficulty-Aware (RDA) module evaluates relative difficulty and assigns fine-grained weights to negatives. At the batch level, a Progressive Adaptive Loss Weighting (PALW) mechanism exploits a training-progress signal to attenuate noisy gradients during early optimization and progressively enhance hard-negative mining as training matures. Experiments on the University-1652 and SUES-200 benchmarks demonstrate the effectiveness and robustness of the proposed DPHR, achieving consistent improvements over state-of-the-art methods.
comment: 5 pages, 3 figures
♻ ☆ ChartAB: A Benchmark for Chart Grounding & Dense Alignment
Charts play an important role in visualization, reasoning, data analysis, and the exchange of ideas among humans. However, existing vision-language models (VLMs) still lack accurate perception of details and struggle to extract fine-grained structures from charts. Such limitations in chart grounding also hinder their ability to compare multiple charts and reason over them. In this paper, we introduce a novel "ChartAlign Benchmark (ChartAB)" to provide a comprehensive evaluation of VLMs in chart grounding tasks, i.e., extracting tabular data, localizing visualization elements, and recognizing various attributes from charts of diverse types and complexities. We design a JSON template to facilitate the calculation of evaluation metrics specifically tailored for each grounding task. By incorporating a novel two-stage inference workflow, the benchmark can further evaluate VLMs capability to align and compare elements/attributes across two charts. Our analysis of evaluations on several recent VLMs reveals new insights into their perception biases, weaknesses, robustness, and hallucinations in chart understanding. These findings highlight the fine-grained discrepancies among VLMs in chart understanding tasks and point to specific skills that need to be strengthened in current models.
♻ ☆ A Quantitative Evaluation Framework for Explainable AI in Semantic Segmentation
Ensuring transparency and trust in artificial intelligence (AI) models is essential as they are increasingly deployed in safety-critical and high-stakes domains. Explainable AI (XAI) has emerged as a promising approach to address this challenge; however, the rigorous evaluation of XAI methods remains vital for balancing the trade-offs between model complexity, predictive performance, and interpretability. While substantial progress has been made in evaluating XAI for classification tasks, strategies tailored to semantic segmentation remain limited. Moreover, objectively assessing XAI approaches is difficult, since qualitative visual explanations provide only preliminary insights. Such qualitative methods are inherently subjective and cannot ensure the accuracy or stability of explanations. To address these limitations, this work introduces a comprehensive quantitative evaluation framework for assessing XAI in semantic segmentation, accounting for both spatial and contextual task complexities. The framework systematically integrates pixel-level evaluation strategies with carefully designed metrics to yield fine-grained interpretability insights. Simulation results using recently adapted class activation mapping (CAM)-based XAI schemes demonstrate the efficiency, robustness, and reliability of the proposed methodology. These findings advance the development of transparent, trustworthy, and accountable semantic segmentation models.
♻ ☆ Coarse Attribute Prediction with Task Agnostic Distillation for Real World Clothes Changing ReID BMVC
This work focuses on Clothes Changing Re-IDentification (CC-ReID) for the real world. Existing works perform well with high-quality (HQ) images, but struggle with low-quality (LQ) where we can have artifacts like pixelation, out-of-focus blur, and motion blur. These artifacts introduce noise to not only external biometric attributes (e.g. pose, body shape, etc.) but also corrupt the model's internal feature representation. Models usually cluster LQ image features together, making it difficult to distinguish between them, leading to incorrect matches. We propose a novel framework Robustness against Low-Quality (RLQ) to improve CC-ReID model on real-world data. RLQ relies on Coarse Attributes Prediction (CAP) and Task Agnostic Distillation (TAD) operating in alternate steps in a novel training mechanism. CAP enriches the model with external fine-grained attributes via coarse predictions, thereby reducing the effect of noisy inputs. On the other hand, TAD enhances the model's internal feature representation by bridging the gap between HQ and LQ features, via an external dataset through task-agnostic self-supervision and distillation. RLQ outperforms the existing approaches by 1.6%-2.9% Top-1 on real-world datasets like LaST, and DeepChange, while showing consistent improvement of 5.3%-6% Top-1 on PRCC with competitive performance on LTCC. *The code will be made public soon.*
comment: The 36th British Machine Vision Conference (BMVC)
♻ ☆ Multi-Focused Video Group Activities Hashing
With the explosive growth of video data in various complex scenarios, quickly retrieving group activities has become an urgent problem. However, many tasks can only retrieve videos focusing on an entire video, not the activity granularity. To solve this problem, we propose a new STVH (spatiotemporal interleaved video hashing) technique for the first time. Through a unified framework, the STVH simultaneously models individual object dynamics and group interactions, capturing the spatiotemporal evolution on both group visual features and positional features. Moreover, in real-life video retrieval scenarios, it may sometimes require activity features, while at other times, it may require visual features of objects. We then further propose a novel M-STVH (multi-focused spatiotemporal video hashing) as an enhanced version to handle this difficult task. The advanced method incorporates hierarchical feature integration through multi-focused representation learning, allowing the model to jointly focus on activity semantics features and object visual features. We conducted comparative experiments on publicly available datasets, and both STVH and M-STVH can achieve excellent results.
♻ ☆ MGPATH: Vision-Language Model with Multi-Granular Prompt Learning for Few-Shot WSI Classification
Whole slide pathology image classification presents challenges due to gigapixel image sizes and limited annotation labels, hindering model generalization. This paper introduces a prompt learning method to adapt large vision-language models for few-shot pathology classification. We first extend the Prov-GigaPath vision foundation model, pre-trained on 1.3 billion pathology image tiles, into a vision-language model by adding adaptors and aligning it with medical text encoders via contrastive learning on 923K image-text pairs. The model is then used to extract visual features and text embeddings from few-shot annotations and fine-tunes with learnable prompt embeddings. Unlike prior methods that combine prompts with frozen features using prefix embeddings or self-attention, we propose multi-granular attention that compares interactions between learnable prompts with individual image patches and groups of them. This approach improves the model's ability to capture both fine-grained details and broader context, enhancing its recognition of complex patterns across sub-regions. To further improve accuracy, we leverage (unbalanced) optimal transport-based visual-text distance to secure model robustness by mitigating perturbations that might occur during the data augmentation process. Empirical experiments on lung, kidney, and breast pathology modalities validate the effectiveness of our approach; thereby, we surpass several of the latest competitors and consistently improve performance across diverse architectures, including CLIP, PLIP, and Prov-GigaPath integrated PLIP.
comment: Published in Transactions on Machine Learning Research (09/2025)
♻ ☆ Representation-Level Counterfactual Calibration for Debiased Zero-Shot Recognition
Object-context shortcuts remain a persistent challenge in vision-language models, undermining zero-shot reliability when test-time scenes differ from familiar training co-occurrences. We recast this issue as a causal inference problem and ask: Would the prediction remain if the object appeared in a different environment? To answer this at inference time, we estimate object and background expectations within CLIP's representation space, and synthesize counterfactual embeddings by recombining object features with diverse alternative contexts sampled from external datasets, batch neighbors, or text-derived descriptions. By estimating the Total Direct Effect and simulating intervention, we further subtract background-only activation, preserving beneficial object-context interactions while mitigating hallucinated scores. Without retraining or prompt design, our method substantially improves both worst-group and average accuracy on context-sensitive benchmarks, establishing a new zero-shot state of the art. Beyond performance, our framework provides a lightweight representation-level counterfactual approach, offering a practical causal avenue for debiased and reliable multimodal reasoning.
♻ ☆ EgoBlind: Towards Egocentric Visual Assistance for the Blind NeurIPS'25
We present EgoBlind, the first egocentric VideoQA dataset collected from blind individuals to evaluate the assistive capabilities of contemporary multimodal large language models (MLLMs). EgoBlind comprises 1,392 first-person videos from the daily lives of blind and visually impaired individuals. It also features 5,311 questions directly posed or verified by the blind to reflect their in-situation needs for visual assistance. Each question has an average of 3 manually annotated reference answers to reduce subjectiveness. Using EgoBlind, we comprehensively evaluate 16 advanced MLLMs and find that all models struggle. The best performers achieve an accuracy near 60\%, which is far behind human performance of 87.4\%. To guide future advancements, we identify and summarize major limitations of existing MLLMs in egocentric visual assistance for the blind and explore heuristic solutions for improvement. With these efforts, we hope that EgoBlind will serve as a foundation for developing effective AI assistants to enhance the independence of the blind and visually impaired. Data and code are available at https://github.com/doc-doc/EgoBlind.
comment: NeurIPS'25 (D&B Track)
♻ ☆ Accelerating Volumetric Medical Image Annotation via Short-Long Memory SAM 2
Manual annotation of volumetric medical images, such as magnetic resonance imaging (MRI) and computed tomography (CT), is a labor-intensive and time-consuming process. Recent advancements in foundation models for video object segmentation, such as Segment Anything Model 2 (SAM 2), offer a potential opportunity to significantly speed up the annotation process by manually annotating one or a few slices and then propagating target masks across the entire volume. However, the performance of SAM 2 in this context varies. Our experiments show that relying on a single memory bank and attention module is prone to error propagation, particularly at boundary regions where the target is present in the previous slice but absent in the current one. To address this problem, we propose Short-Long Memory SAM 2 (SLM-SAM 2), a novel architecture that integrates distinct short-term and long-term memory banks with separate attention modules to improve segmentation accuracy. We evaluate SLM-SAM 2 on four public datasets covering organs, bones, and muscles across MRI, CT, and ultrasound videos. We show that the proposed method markedly outperforms the default SAM 2, achieving an average Dice Similarity Coefficient improvement of 0.14 and 0.10 in the scenarios when 5 volumes and 1 volume are available for the initial adaptation, respectively. SLM-SAM 2 also exhibits stronger resistance to over-propagation, reducing the time required to correct propagated masks by 60.575% per volume compared to SAM 2, making a notable step toward more accurate automated annotation of medical images for segmentation model development.
comment: Accepted for publication in IEEE Transactions on Medical Imaging (IEEE TMI)
♻ ☆ From Drone Imagery to Livability Mapping: AI-powered Environment Perception in Rural China
The high cost of acquiring rural street view images has constrained comprehensive environmental perception in rural areas. Drone photographs, with their advantages of easy acquisition, broad coverage, and high spatial resolution, offer a viable approach for large-scale rural environmental perception. However, a systematic methodology for identifying key environmental elements from drone photographs and quantifying their impact on environmental perception remains lacking. To address this gap, a Vision-Language Contrastive Ranking Framework (VLCR) is designed for rural livability assessment in China. The framework employs chain-of-thought prompting strategies to guide multimodal large language models (MLLMs) in identifying visual features related to quality of life and ecological habitability from drone photographs. Subsequently, to address the instability in pairwise village comparison, a text description-constrained drone photograph comparison strategy is proposed. Finally, to overcome the efficiency bottleneck in nationwide pairwise village comparisons, an innovation ranking algorithm based on binary search interpolation is developed, which reduces the number of comparisons through automated selection of comparison targets. The proposed framework achieves superior performance with a Spearman Footrule distance of 0.74, outperforming mainstream commercial MLLMs by approximately 0.1. Moreover, the mechanism of concurrent comparison and ranking demonstrates a threefold enhancement in computational efficiency. Our framework has achieved data innovation and methodological breakthroughs in village livability assessment, providing strong support for large-scale village livability analysis. Keywords: Drone photographs, Environmental perception, Rural livability assessment, Multimodal large language models, Chain-of-thought prompting.
♻ ☆ Vision Foundation Models Can Be Good Tokenizers for Latent Diffusion Models
The performance of Latent Diffusion Models (LDMs) is critically dependent on the quality of their visual tokenizer. While recent works have explored incorporating Vision Foundation Models (VFMs) via distillation, we identify a fundamental flaw in this approach: it inevitably weakens the robustness of alignment with the original VFM, causing the aligned latents to deviate semantically under distribution shifts. In this paper, we bypass distillation by proposing a more direct approach: Vision Foundation Model Variational Autoencoder (VFM-VAE). To resolve the inherent tension between the VFM's semantic focus and the need for pixel-level fidelity, we redesign the VFM-VAE decoder with Multi-Scale Latent Fusion and Progressive Resolution Reconstruction blocks, enabling high-quality reconstruction from spatially coarse VFM features. Furthermore, we provide a comprehensive analysis of representation dynamics during diffusion training, introducing the proposed SE-CKNNA metric as a more precise tool for this diagnosis. This analysis allows us to develop a joint tokenizer-diffusion alignment strategy that dramatically accelerates convergence. Our innovations in tokenizer design and training strategy lead to superior performance and efficiency: our system reaches a gFID (w/o CFG) of 2.20 in merely 80 epochs (a 10x speedup over prior tokenizers). With continued training to 640 epochs, it further attains a gFID (w/o CFG) of 1.62, establishing direct VFM integration as a superior paradigm for LDMs.
comment: v2 note: Corrected numerical values in Table 2 and Figure 4 due to a minor calculation error in v1. The overall conclusions remain unchanged. Code and models available at: https://github.com/tianciB/VFM-VAE
♻ ☆ V2X-Radar: A Multi-modal Dataset with 4D Radar for Cooperative Perception NeurIPS 2025
Modern autonomous vehicle perception systems often struggle with occlusions and limited perception range. Previous studies have demonstrated the effectiveness of cooperative perception in extending the perception range and overcoming occlusions, thereby enhancing the safety of autonomous driving. In recent years, a series of cooperative perception datasets have emerged; however, these datasets primarily focus on cameras and LiDAR, neglecting 4D Radar, a sensor used in single-vehicle autonomous driving to provide robust perception in adverse weather conditions. In this paper, to bridge the gap created by the absence of 4D Radar datasets in cooperative perception, we present V2X-Radar, the first large-scale, real-world multi-modal dataset featuring 4D Radar. V2X-Radar dataset is collected using a connected vehicle platform and an intelligent roadside unit equipped with 4D Radar, LiDAR, and multi-view cameras. The collected data encompasses sunny and rainy weather conditions, spanning daytime, dusk, and nighttime, as well as various typical challenging scenarios. The dataset consists of 20K LiDAR frames, 40K camera images, and 20K 4D Radar data, including 350K annotated boxes across five categories. To support various research domains, we have established V2X-Radar-C for cooperative perception, V2X-Radar-I for roadside perception, and V2X-Radar-V for single-vehicle perception. Furthermore, we provide comprehensive benchmarks across these three sub-datasets. We will release all datasets and benchmark codebase at https://huggingface.co/datasets/yanglei18/V2X-Radar and https://github.com/yanglei18/V2X-Radar.
comment: NeurIPS 2025 Spotlight
♻ ☆ SmartFreeEdit: Mask-Free Spatial-Aware Image Editing with Complex Instruction Understanding
Recent advancements in image editing have utilized large-scale multimodal models to enable intuitive, natural instruction-driven interactions. However, conventional methods still face significant challenges, particularly in spatial reasoning, precise region segmentation, and maintaining semantic consistency, especially in complex scenes. To overcome these challenges, we introduce SmartFreeEdit, a novel end-to-end framework that integrates a multimodal large language model (MLLM) with a hypergraph-enhanced inpainting architecture, enabling precise, mask-free image editing guided exclusively by natural language instructions. The key innovations of SmartFreeEdit include:(1)the introduction of region aware tokens and a mask embedding paradigm that enhance the spatial understanding of complex scenes;(2) a reasoning segmentation pipeline designed to optimize the generation of editing masks based on natural language instructions;and (3) a hypergraph-augmented inpainting module that ensures the preservation of both structural integrity and semantic coherence during complex edits, overcoming the limitations of local-based image generation. Extensive experiments on the Reason-Edit benchmark demonstrate that SmartFreeEdit surpasses current state-of-the-art methods across multiple evaluation metrics, including segmentation accuracy, instruction adherence, and visual quality preservation, while addressing the issue of local information focus and improving global consistency in the edited image. Our project will be available at https://github.com/smileformylove/SmartFreeEdit.
♻ ☆ Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user independence and expedite clinical analysis. Unlike fully-supervised learning, weakly-supervised segmentation (WSS) can streamline the laborious and intricate annotation process. However, current WSS methods face challenges in achieving precise nodule segmentation, as many of them depend on inaccurate activation maps or inefficient pseudo-mask generation algorithms. In this study, we introduce a novel multi-agent reinforcement learning-based WSS framework called Flip Learning, which relies solely on 2D/3D boxes for accurate segmentation. Specifically, multiple agents are employed to erase the target from the box to facilitate classification tag flipping, with the erased region serving as the predicted segmentation mask. The key contributions of this research are as follows: (1) Adoption of a superpixel/supervoxel-based approach to encode the standardized environment, capturing boundary priors and expediting the learning process. (2) Introduction of three meticulously designed rewards, comprising a classification score reward and two intensity distribution rewards, to steer the agents' erasing process precisely, thereby avoiding both under- and over-segmentation. (3) Implementation of a progressive curriculum learning strategy to enable agents to interact with the environment in a progressively challenging manner, thereby enhancing learning efficiency. Extensively validated on the large in-house BUS and ABUS datasets, our Flip Learning method outperforms state-of-the-art WSS methods and foundation models, and achieves comparable performance as fully-supervised learning algorithms.
comment: Accepted by Medical Image Analysis. 24 pages, 13 figures, 20 tabels
♻ ☆ Pragmatic Heterogeneous Collaborative Perception via Generative Communication Mechanism NeurIPS 2025
Multi-agent collaboration enhances the perception capabilities of individual agents through information sharing. However, in real-world applications, differences in sensors and models across heterogeneous agents inevitably lead to domain gaps during collaboration. Existing approaches based on adaptation and reconstruction fail to support pragmatic heterogeneous collaboration due to two key limitations: (1) Intrusive retraining of the encoder or core modules disrupts the established semantic consistency among agents; and (2) accommodating new agents incurs high computational costs, limiting scalability. To address these challenges, we present a novel Generative Communication mechanism (GenComm) that facilitates seamless perception across heterogeneous multi-agent systems through feature generation, without altering the original network, and employs lightweight numerical alignment of spatial information to efficiently integrate new agents at minimal cost. Specifically, a tailored Deformable Message Extractor is designed to extract spatial message for each collaborator, which is then transmitted in place of intermediate features. The Spatial-Aware Feature Generator, utilizing a conditional diffusion model, generates features aligned with the ego agent's semantic space while preserving the spatial information of the collaborators. These generated features are further refined by a Channel Enhancer before fusion. Experiments conducted on the OPV2V-H, DAIR-V2X and V2X-Real datasets demonstrate that GenComm outperforms existing state-of-the-art methods, achieving an 81% reduction in both computational cost and parameter count when incorporating new agents. Our code is available at https://github.com/jeffreychou777/GenComm.
comment: 26 pages, 10 figures, accepted to NeurIPS 2025
♻ ☆ DepthVanish: Optimizing Adversarial Interval Structures for Stereo-Depth-Invisible Patches
Stereo depth estimation is a critical task in autonomous driving and robotics, where inaccuracies (such as misidentifying nearby objects as distant) can lead to dangerous situations. Adversarial attacks against stereo depth estimation can help reveal vulnerabilities before deployment. Previous works have shown that repeating optimized textures can effectively mislead stereo depth estimation in digital settings. However, our research reveals that these naively repeated textures perform poorly in physical implementations, i.e., when deployed as patches, limiting their practical utility for stress-testing stereo depth estimation systems. In this work, for the first time, we discover that introducing regular intervals among the repeated textures, creating a grid structure, significantly enhances the patch's attack performance. Through extensive experimentation, we analyze how variations of this novel structure influence the adversarial effectiveness. Based on these insights, we develop a novel stereo depth attack that jointly optimizes both the interval structure and texture elements. Our generated adversarial patches can be inserted into any scenes and successfully attack advanced stereo depth estimation methods of different paradigms, i.e., RAFT-Stereo and STTR. Most critically, our patch can also attack commercial RGB-D cameras (Intel RealSense) in real-world conditions, demonstrating their practical relevance for security assessment of stereo systems. The code is officially released at: https://github.com/WiWiN42/DepthVanish
♻ ☆ DMVFC: Deep Learning Based Functionally Consistent Tractography Fiber Clustering Using Multimodal Diffusion MRI and Functional MRI
Tractography fiber clustering using diffusion MRI (dMRI) is a crucial method for white matter (WM) parcellation to enable analysis of brains structural connectivity in health and disease. Current fiber clustering strategies primarily use the fiber geometric characteristics (i.e., the spatial trajectories) to group similar fibers into clusters, while neglecting the functional and microstructural information of the fiber tracts. There is increasing evidence that neural activity in the WM can be measured using functional MRI (fMRI), providing potentially valuable multimodal information for fiber clustering to enhance its functional coherence. Furthermore, microstructural features such as fractional anisotropy (FA) can be computed from dMRI as additional information to ensure the anatomical coherence of the clusters. In this paper, we develop a novel deep learning fiber clustering framework, namely Deep Multi-view Fiber Clustering (DMVFC), which uses joint multi-modal dMRI and fMRI data to enable functionally consistent WM parcellation. DMVFC can effectively integrate the geometric and microstructural characteristics of the WM fibers with the fMRI BOLD signals along the fiber tracts. DMVFC includes two major components: (1) a multi-view pretraining module to compute embedding features from each source of information separately, including fiber geometry, microstructure measures, and functional signals, and (2) a collaborative fine-tuning module to simultaneously refine the differences of embeddings. In the experiments, we compare DMVFC with two state-of-the-art fiber clustering methods and demonstrate superior performance in achieving functionally meaningful and consistent WM parcellation results.
comment: 14 pages
♻ ☆ MotionGPT3: Human Motion as a Second Modality
With the rapid progress of large language models (LLMs), multimodal frameworks that unify understanding and generation have become promising, yet they face increasing complexity as the number of modalities and tasks grows. We observe that motion quantization introduces approximation errors that cap motion quality, and that unifying discrete text and continuous motion within a single-stream backbone amplifies cross-modal interference. Motivated by recent multi-branch Transformer designs that separate signals from different modalities, we propose MotionGPT3, a bimodal motion-language model for both understanding and generation. MotionGPT3 encodes raw motion into a continuous latent space using a variational autoencoder (VAE), thereby avoiding quantization-induced artifacts, while leveraging the semantic prior of pretrained language models. A dual-stream Transformer with shared attention preserves modality-specific routes while enabling controlled, bidirectional information flow, which reduces interference, stabilizing optimization, and empirically accelerates convergence without degrading fidelity. For multimodal joint training, a generate-then-align three-stage schedule further improves stability and limits cross-task interference. Experiments show that MotionGPT3 achieves 2x faster convergence in training loss and up to 4x faster convergence in validation, while maintaining state-of-the-art performance on standard motion understanding and motion generation benchmarks.
comment: 26 pages, 11 figures
♻ ☆ Risk-adaptive Activation Steering for Safe Multimodal Large Language Models
One of the key challenges of modern AI models is ensuring that they provide helpful responses to benign queries while refusing malicious ones. But often, the models are vulnerable to multimodal queries with harmful intent embedded in images. One approach for safety alignment is training with extensive safety datasets at the significant costs in both dataset curation and training. Inference-time alignment mitigates these costs, but introduces two drawbacks: excessive refusals from misclassified benign queries and slower inference speed due to iterative output adjustments. To overcome these limitations, we propose to reformulate queries to strengthen cross-modal attention to safety-critical image regions, enabling accurate risk assessment at the query level. Using the assessed risk, it adaptively steers activations to generate responses that are safe and helpful without overhead from iterative output adjustments. We call this Risk-adaptive Activation Steering (RAS). Extensive experiments across multiple benchmarks on multimodal safety and utility demonstrate that the RAS significantly reduces attack success rates, preserves general task performance, and improves inference speed over prior inference-time defenses.
♻ ☆ Where and How to Perturb: On the Design of Perturbation Guidance in Diffusion and Flow Models NeurIPS 2025
Recent guidance methods in diffusion models steer reverse sampling by perturbing the model to construct an implicit weak model and guide generation away from it. Among these approaches, attention perturbation has demonstrated strong empirical performance in unconditional scenarios where classifier-free guidance is not applicable. However, existing attention perturbation methods lack principled approaches for determining where perturbations should be applied, particularly in Diffusion Transformer (DiT) architectures where quality-relevant computations are distributed across layers. In this paper, we investigate the granularity of attention perturbations, ranging from the layer level down to individual attention heads, and discover that specific heads govern distinct visual concepts such as structure, style, and texture quality. Building on this insight, we propose "HeadHunter", a systematic framework for iteratively selecting attention heads that align with user-centric objectives, enabling fine-grained control over generation quality and visual attributes. In addition, we introduce SoftPAG, which linearly interpolates each selected head's attention map toward an identity matrix, providing a continuous knob to tune perturbation strength and suppress artifacts. Our approach not only mitigates the oversmoothing issues of existing layer-level perturbation but also enables targeted manipulation of specific visual styles through compositional head selection. We validate our method on modern large-scale DiT-based text-to-image models including Stable Diffusion 3 and FLUX.1, demonstrating superior performance in both general quality enhancement and style-specific guidance. Our work provides the first head-level analysis of attention perturbation in diffusion models, uncovering interpretable specialization within attention layers and enabling practical design of effective perturbation strategies.
comment: Accepted at NeurIPS 2025. Project page: https://cvlab-kaist.github.io/HeadHunter/
♻ ☆ AIM: Adaptive Intra-Network Modulation for Balanced Multimodal Learning
Multimodal learning has significantly enhanced machine learning performance but still faces numerous challenges and limitations. Imbalanced multimodal learning is one of the problems extensively studied in recent works and is typically mitigated by modulating the learning of each modality. However, we find that these methods typically hinder the dominant modality's learning to promote weaker modalities, which affects overall multimodal performance. We analyze the cause of this issue and highlight a commonly overlooked problem: optimization bias within networks. To address this, we propose Adaptive Intra-Network Modulation (AIM) to improve balanced modality learning. AIM accounts for differences in optimization state across parameters and depths within the network during modulation, achieving balanced multimodal learning without hindering either dominant or weak modalities for the first time. Specifically, AIM decouples the dominant modality's under-optimized parameters into Auxiliary Blocks and encourages reliance on these performance-degraded blocks for joint training with weaker modalities. This approach effectively prevents suppression of weaker modalities while enabling targeted optimization of under-optimized parameters to improve the dominant modality. Additionally, AIM assesses modality imbalance level across network depths and adaptively adjusts modulation strength at each depth. Experimental results demonstrate that AIM outperforms state-of-the-art imbalanced modality learning methods across multiple benchmarks and exhibits strong generalizability across different backbones, fusion strategies, and optimizers.
comment: 13pages,7 figures
Information Retrieval
♻ ☆ Dynamic Forgetting and Spatio-Temporal Periodic Interest Modeling for Local-Life Service Recommendation
In the context of the booming digital economy, recommendation systems, as a key link connecting users and numerous services, face challenges in modeling user behavior sequences on local-life service platforms, including the sparsity of long sequences and strong spatio-temporal dependence. Such challenges can be addressed by drawing an analogy to the forgetting process in human memory. This is because users' responses to recommended content follow the recency effect and the cyclicality of memory. By exploring this, this paper introduces the forgetting curve and proposes Spatio-Temporal periodic Interest Modeling (STIM) with long sequences for local-life service recommendation. STIM integrates three key components: a dynamic masking module based on the forgetting curve, which is used to extract both recent spatiotemporal features and periodic spatiotemporal features; a query-based mixture of experts (MoE) approach that can adaptively activate expert networks under different dynamic masks, enabling the collaborative modeling of time, location, and items; and a hierarchical multi-interest network unit, which captures multi-interest representations by modeling the hierarchical interactions between the shallow and deep semantics of users' recent behaviors. By introducing the STIM method, we conducted online A/B tests and achieved a 1.54\% improvement in gross transaction volume (GTV). In addition, extended offline experiments also showed improvements. STIM has been deployed in a large-scale local-life service recommendation system, serving hundreds of millions of daily active users in core application scenarios.
♻ ☆ Image Hashing via Cross-View Code Alignment in the Age of Foundation Models
Efficient large-scale retrieval requires representations that are both compact and discriminative. Foundation models provide powerful visual and multimodal embeddings, but nearest neighbor search in these high-dimensional spaces is computationally expensive. Hashing offers an efficient alternative by enabling fast Hamming distance search with binary codes, yet existing approaches often rely on complex pipelines, multi-term objectives, designs specialized for a single learning paradigm, and long training times. We introduce CroVCA (Cross-View Code Alignment), a simple and unified principle for learning binary codes that remain consistent across semantically aligned views. A single binary cross-entropy loss enforces alignment, while coding-rate maximization serves as an anti-collapse regularizer to promote balanced and diverse codes. To implement this, we design HashCoder, a lightweight MLP hashing network with a final batch normalization layer to enforce balanced codes. HashCoder can be used as a probing head on frozen embeddings or to adapt encoders efficiently via LoRA fine-tuning. Across benchmarks, CroVCA achieves state-of-the-art results in just 5 training epochs. At 16 bits, it particularly well-for instance, unsupervised hashing on COCO completes in under 2 minutes and supervised hashing on ImageNet100 in about 3 minutes on a single GPU. These results highlight CroVCA's efficiency, adaptability, and broad applicability.
♻ ☆ Memory Assisted LLM for Personalized Recommendation System
Large language models (LLMs) have demonstrated significant potential in solving recommendation tasks. With proven capabilities in understanding user preferences, LLM personalization has emerged as a critical area for providing tailored responses to individuals. Current studies explore personalization through prompt design and fine-tuning, paving the way for further research in personalized LLMs. However, existing approaches are either costly and inefficient in capturing diverse user preferences or fail to account for timely updates to user history. To address these gaps, we propose the Memory-Assisted Personalized LLM (MAP). Through user interactions, we first create a history profile for each user, capturing their preferences, such as ratings for historical items. During recommendation, we extract relevant memory based on similarity, which is then incorporated into the prompts to enhance personalized recommendations. In our experiments, we define a new task that enables testing with varying memory size under two scenarios: single domain where memory and tasks are from the same category and cross-domain (e.g. memory from movies and recommendation tasks in books). The results show that MAP outperforms regular LLM-based recommenders that integrate user history directly through prompt design. Moreover, as user history grows, MAP's advantage increases in both scenarios, making it more suitable for addressing successive personalized user requests.
comment: 8 pages, 7 figures
♻ ☆ Evaluating Perspectival Biases in Cross-Modal Retrieval
Multimodal retrieval systems are expected to operate in a semantic space, agnostic to the language or cultural origin of the query. In practice, however, retrieval outcomes systematically reflect perspectival biases: deviations shaped by linguistic prevalence and cultural associations. We study two such biases. First, prevalence bias refers to the tendency to favor entries from prevalent languages over semantically faithful entries in image-to-text retrieval. Second, association bias refers to the tendency to favor images culturally associated with the query over semantically correct ones in text-to-image retrieval. Results show that explicit alignment is a more effective strategy for mitigating prevalence bias. However, association bias remains a distinct and more challenging problem. These findings suggest that achieving truly equitable multimodal systems requires targeted strategies beyond simple data scaling and that bias arising from cultural association may be treated as a more challenging problem than one arising from linguistic prevalence.
♻ ☆ Complex QA and language models hybrid architectures, Survey
This paper reviews the state-of-the-art of large language models (LLM) architectures and strategies for "complex" question-answering with a focus on hybrid architectures. LLM based chatbot services have allowed anyone to grasp the potential of LLM to solve many common problems, but soon discovered their limitations for complex questions. Addressing more specific, complex questions (e.g., "What is the best mix of power-generation methods to reduce climate change ?") often requires specialized architectures, domain knowledge, new skills, decomposition and multi-step resolution, deep reasoning, sensitive data protection, explainability, and human-in-the-loop processes. Therefore, we review: (1) necessary skills and tasks for handling complex questions and common LLM limits to overcome; (2) dataset, cost functions and evaluation metrics for measuring and improving (e.g. accuracy, explainability, fairness, robustness, groundedness, faithfulness, toxicity...); (3) family of solutions to overcome LLM limitations by (a) training and reinforcement (b) hybridization, (c) prompting, (d) agentic-architectures (agents, tools) and extended reasoning.
♻ ☆ Enhancing Time Awareness in Generative Recommendation EMNLP 2025
Generative recommendation has emerged as a promising paradigm that formulates the recommendations into a text-to-text generation task, harnessing the vast knowledge of large language models. However, existing studies focus on considering the sequential order of items and neglect to handle the temporal dynamics across items, which can imply evolving user preferences. To address this limitation, we propose a novel model, Generative Recommender Using Time awareness (GRUT), effectively capturing hidden user preferences via various temporal signals. We first introduce Time-aware Prompting, consisting of two key contexts. The user-level temporal context models personalized temporal patterns across timestamps and time intervals, while the item-level transition context provides transition patterns across users. We also devise Trend-aware Inference, a training-free method that enhances rankings by incorporating trend information about items with generation likelihood. Extensive experiments demonstrate that GRUT outperforms state-of-the-art models, with gains of up to 15.4% and 14.3% in Recall@5 and NDCG@5 across four benchmark datasets. The source code is available at https://github.com/skleee/GRUT.
comment: EMNLP 2025 (Findings)
♻ ☆ MLLM-Driven Semantic Identifier Generation for Generative Cross-Modal Retrieval
Generative cross-modal retrieval, which treats retrieval as a generation task, has emerged as a promising direction with the rise of Multimodal Large Language Models (MLLMs). In this setting, the model responds to a text query by generating an identifier corresponding to the target image. However, existing methods typically rely on manually crafted string IDs, clustering-based labels, or atomic identifiers requiring vocabulary expansion, all of which face challenges in semantic alignment or scalability.To address these limitations, we propose a vocabulary-efficient identifier generation framework that prompts MLLMs to generate Structured Semantic Identifiers from image-caption pairs. These identifiers are composed of concept-level tokens such as objects and actions, naturally aligning with the model's generation space without modifying the tokenizer. Additionally, we introduce a Rationale-Guided Supervision Strategy, prompting the model to produce a one-sentence explanation alongside each identifier serves as an auxiliary supervision signal that improves semantic grounding and reduces hallucinations during training.
comment: We plan to revise the methodology and update the experimental analysis before resubmission
Machine Learning
♻ ☆ GTAlign: Game-Theoretic Alignment of LLM Assistants for Social Welfare
Large Language Models (LLMs) have achieved remarkable progress in reasoning, yet sometimes produce responses that are suboptimal for users in tasks such as writing, information seeking, or providing practical guidance. Conventional alignment practices typically assume that maximizing model reward also maximizes user welfare, but this assumption frequently fails in practice: models may over-clarify or generate overly verbose reasoning when users prefer concise answers. Such behaviors resemble the prisoner's dilemma, where individually rational choices lead to socially suboptimal outcomes. The fundamental challenge is the lack of a principled decision making mechanism that mutually benefits both the LLM and the user. We propose Game-Theoretic Alignment (GTAlign), an alignment framework that integrates game-theoretic decision making into both reasoning and training. During reasoning, the model explicitly treats user-LLM interaction as a strategic game: it constructs payoff matrices within its reasoning chain to estimate welfare for both itself and the user, and then selects actions that are mutually beneficial. During training, we introduce a social welfare reward that reinforces cooperative responses, aligning model behavior with socially efficient outcomes. In addition, we introduce an inference technique that leverages game-theoretic reasoning to dynamically adapt LLM's response when pricing policies of LLM service change. Extensive experiments demonstrate that GTAlign substantially improves reasoning efficiency, answer quality, and social welfare compared to baselines across diverse tasks. The code is available at https://github.com/ulab-uiuc/GTAlign .
comment: 31 pages, 6 figures
♻ ☆ TabArena: A Living Benchmark for Machine Learning on Tabular Data NeurIPS 2025
With the growing popularity of deep learning and foundation models for tabular data, the need for standardized and reliable benchmarks is higher than ever. However, current benchmarks are static. Their design is not updated even if flaws are discovered, model versions are updated, or new models are released. To address this, we introduce TabArena, the first continuously maintained living tabular benchmarking system. To launch TabArena, we manually curate a representative collection of datasets and well-implemented models, conduct a large-scale benchmarking study to initialize a public leaderboard, and assemble a team of experienced maintainers. Our results highlight the influence of validation method and ensembling of hyperparameter configurations to benchmark models at their full potential. While gradient-boosted trees are still strong contenders on practical tabular datasets, we observe that deep learning methods have caught up under larger time budgets with ensembling. At the same time, foundation models excel on smaller datasets. Finally, we show that ensembles across models advance the state-of-the-art in tabular machine learning. We observe that some deep learning models are overrepresented in cross-model ensembles due to validation set overfitting, and we encourage model developers to address this issue. We launch TabArena with a public leaderboard, reproducible code, and maintenance protocols to create a living benchmark available at https://tabarena.ai.
comment: Accepted (spotlight) at NeurIPS 2025 Datasets and Benchmarks Track. v4: fixed links in comments. v3: NeurIPS camera-ready version. v2: fixed author list. 51 pages. Code available at https://tabarena.ai/code and examples at https://tabarena.ai/code-examples and dataset curation at https://tabarena.ai/data-tabular-ml-iid-study and https://tabarena.ai/dataset-curation
♻ ☆ Cold-Start Active Preference Learning in Socio-Economic Domains
Active preference learning offers an efficient approach to modeling preferences, but it is hindered by the cold-start problem, which leads to a marked decline in performance when no initial labeled data are available. While cold-start solutions have been proposed for domains such as vision and text, the cold-start problem in active preference learning remains largely unexplored, underscoring the need for practical, effective methods. Drawing inspiration from established practices in social and economic research, the proposed method initiates learning with a self-supervised phase that employs Principal Component Analysis (PCA) to generate initial pseudo-labels. This process produces a \say{warmed-up} model based solely on the data's intrinsic structure, without requiring expert input. The model is then refined through an active learning loop that strategically queries a simulated noisy oracle for labels. Experiments conducted on various socio-economic datasets, including those related to financial credibility, career success rate, and socio-economic status, consistently show that the PCA-driven approach outperforms standard active learning strategies that start without prior information. This work thus provides a computationally efficient and straightforward solution that effectively addresses the cold-start problem.
♻ ☆ RELATE: A Schema-Agnostic Perceiver Encoder for Multimodal Relational Graphs
Relational multi-table data is common in domains such as e-commerce, healthcare, and scientific research, and can be naturally represented as heterogeneous temporal graphs with multi-modal node attributes. Existing graph neural networks (GNNs) rely on schema-specific feature encoders, requiring separate modules for each node type and feature column, which hinders scalability and parameter sharing. We introduce RELATE (Relational Encoder for Latent Aggregation of Typed Entities), a schema-agnostic, plug-and-play feature encoder that can be used with any general purpose GNN. RELATE employs shared modality-specific encoders for categorical, numerical, textual, and temporal attributes, followed by a Perceiver-style cross-attention module that aggregates features into a fixed-size, permutation-invariant node representation. We evaluate RELATE on ReLGNN and HGT in the RelBench benchmark, where it achieves performance within 3% of schema-specific encoders while reducing parameter counts by up to 5x. This design supports varying schemas and enables multi-dataset pretraining for general-purpose GNNs, paving the way toward foundation models for relational graph data.
comment: 6 pages
♻ ☆ SimKey: A Semantically Aware Key Module for Watermarking Language Models
The rapid spread of text generated by large language models (LLMs) makes it increasingly difficult to distinguish authentic human writing from machine output. Watermarking offers a promising solution: model owners can embed an imperceptible signal into generated text, marking its origin. Most leading approaches seed an LLM's next-token sampling with a pseudo-random key that can later be recovered to identify the text as machine-generated, while only minimally altering the model's output distribution. However, these methods suffer from two related issues: (i) watermarks are brittle to simple surface-level edits such as paraphrasing or reordering; and (ii) adversaries can append unrelated, potentially harmful text that inherits the watermark, risking reputational damage to model owners. To address these issues, we introduce SimKey, a semantic key module that strengthens watermark robustness by tying key generation to the meaning of prior context. SimKey uses locality-sensitive hashing over semantic embeddings to ensure that paraphrased text yields the same watermark key, while unrelated or semantically shifted text produces a different one. Integrated with state-of-the-art watermarking schemes, SimKey improves watermark robustness to paraphrasing and translation while preventing harmful content from false attribution, establishing semantic-aware keying as a practical and extensible watermarking direction.
♻ ☆ Automotive Crash Dynamics Modeling Accelerated with Machine Learning
Crashworthiness assessment is a critical aspect of automotive design, traditionally relying on high-fidelity finite element (FE) simulations that are computationally expensive and time-consuming. This work presents an exploratory comparative study on developing machine learning-based surrogate models for efficient prediction of structural deformation in crash scenarios using the NVIDIA PhysicsNeMo framework. Given the limited prior work applying machine learning to structural crash dynamics, the primary contribution lies in demonstrating the feasibility and engineering utility of the various modeling approaches explored in this work. We investigate two state-of-the-art neural network architectures for modeling crash dynamics: MeshGraphNet, and Transolver. Additionally, we examine three strategies for modeling transient dynamics: time-conditional, the standard Autoregressive approach, and a stability-enhanced Autoregressive scheme incorporating rollout-based training. The models are evaluated on a comprehensive Body-in-White (BIW) crash dataset comprising 150 detailed FE simulations using LS-DYNA. The dataset represents a structurally rich vehicle assembly with over 200 components, including 38 key components featuring variable thickness distributions to capture realistic manufacturing variability. Each model utilizes the undeformed mesh geometry and component characteristics as inputs to predict the spatiotemporal evolution of the deformed mesh during the crash sequence. Evaluation results show that the models capture the overall deformation trends with reasonable fidelity, demonstrating the feasibility of applying machine learning to structural crash dynamics. Although not yet matching full FE accuracy, the models achieve orders-of-magnitude reductions in computational cost, enabling rapid design exploration and early-stage optimization in crashworthiness evaluation.
♻ ☆ CosmoBench: A Multiscale, Multiview, Multitask Cosmology Benchmark for Geometric Deep Learning NeurIPS 2025
Cosmological simulations provide a wealth of data in the form of point clouds and directed trees. A crucial goal is to extract insights from this data that shed light on the nature and composition of the Universe. In this paper we introduce CosmoBench, a benchmark dataset curated from state-of-the-art cosmological simulations whose runs required more than 41 million core-hours and generated over two petabytes of data. CosmoBench is the largest dataset of its kind: it contains 34 thousand point clouds from simulations of dark matter halos and galaxies at three different length scales, as well as 25 thousand directed trees that record the formation history of halos on two different time scales. The data in CosmoBench can be used for multiple tasks -- to predict cosmological parameters from point clouds and merger trees, to predict the velocities of individual halos and galaxies from their collective positions, and to reconstruct merger trees on finer time scales from those on coarser time scales. We provide several baselines on these tasks, some based on established approaches from cosmological modeling and others rooted in machine learning. For the latter, we study different approaches -- from simple linear models that are minimally constrained by symmetries to much larger and more computationally-demanding models in deep learning, such as graph neural networks. We find that least-squares fits with a handful of invariant features sometimes outperform deep architectures with many more parameters and far longer training time. Still there remains tremendous potential to improve these baselines by combining machine learning and cosmology to fully exploit the data. CosmoBench sets the stage for bridging cosmology and geometric deep learning at scale. We invite the community to push the frontier of scientific discovery by engaging with this dataset, available at https://cosmobench.streamlit.app
comment: Accepted at NeurIPS 2025
♻ ☆ PO-CKAN:Physics Informed Deep Operator Kolmogorov Arnold Networks with Chunk Rational Structure
We propose PO-CKAN, a physics-informed deep operator framework based on Chunkwise Rational Kolmogorov--Arnold Networks (KANs), for approximating the solution operators of partial differential equations. This framework leverages a Deep Operator Network (DeepONet) architecture that incorporates Chunkwise Rational Kolmogorov-Arnold Network (CKAN) sub-networks for enhanced function approximation. The principles of Physics-Informed Neural Networks (PINNs) are integrated into the operator learning framework to enforce physical consistency. This design enables the efficient learning of physically consistent spatio-temporal solution operators and allows for rapid prediction for parametric time-dependent PDEs with varying inputs (e.g., parameters, initial/boundary conditions) after training. Validated on challenging benchmark problems, PO-CKAN demonstrates accurate operator learning with results closely matching high-fidelity solutions. PO-CKAN adopts a DeepONet-style branch--trunk architecture with its sub-networks instantiated as rational KAN modules, and enforces physical consistency via a PDE residual (PINN-style) loss. On Burgers' equation with $\nu=0.01$, PO-CKAN reduces the mean relative $L^2$ error by approximately 48\% compared to PI-DeepONet, and achieves competitive accuracy on the Eikonal and diffusion--reaction benchmarks.
♻ ☆ MarsLGPR: Mars Rover Localization with Ground Penetrating Radar
In this work, we propose the use of Ground Penetrating Radar (GPR) for rover localization on Mars. Precise pose estimation is an important task for mobile robots exploring planetary surfaces, as they operate in GPS-denied environments. Although visual odometry provides accurate localization, it is computationally expensive and can fail in dim or high-contrast lighting. Wheel encoders can also provide odometry estimation, but are prone to slipping on the sandy terrain encountered on Mars. Although traditionally a scientific surveying sensor, GPR has been used on Earth for terrain classification and localization through subsurface feature matching. The Perseverance rover and the upcoming ExoMars rover have GPR sensors already equipped to aid in the search of water and mineral resources. We propose to leverage GPR to aid in Mars rover localization. Specifically, we develop a novel GPR-based deep learning model that predicts 1D relative pose translation. We fuse our GPR pose prediction method with inertial and wheel encoder data in a filtering framework to output rover localization. We perform experiments in a Mars analog environment and demonstrate that our GPR-based displacement predictions both outperform wheel encoders and improve multi-modal filtering estimates in high-slip environments. Lastly, we present the first dataset aimed at GPR-based localization in Mars analog environments, which will be made publicly available at https://umfieldrobotics.github.io/marslgpr.
♻ ☆ AnyEnhance: A Unified Generative Model with Prompt-Guidance and Self-Critic for Voice Enhancement
We introduce AnyEnhance, a unified generative model for voice enhancement that processes both speech and singing voices. Based on a masked generative model, AnyEnhance is capable of handling both speech and singing voices, supporting a wide range of enhancement tasks including denoising, dereverberation, declipping, super-resolution, and target speaker extraction, all simultaneously and without fine-tuning. AnyEnhance introduces a prompt-guidance mechanism for in-context learning, which allows the model to natively accept a reference speaker's timbre. In this way, it could boost enhancement performance when a reference audio is available and enable the target speaker extraction task without altering the underlying architecture. Moreover, we also introduce a self-critic mechanism into the generative process for masked generative models, yielding higher-quality outputs through iterative self-assessment and refinement. Extensive experiments on various enhancement tasks demonstrate AnyEnhance outperforms existing methods in terms of both objective metrics and subjective listening tests. Demo audios are publicly available at https://amphionspace.github.io/anyenhance. An open-source implementation is provided at https://github.com/viewfinder-annn/anyenhance-v1-ccf-aatc.
comment: Accepted by IEEE TASLP 2025. Demopage: https://amphionspace.github.io/anyenhance. Open-source implementation: https://github.com/viewfinder-annn/anyenhance-v1-ccf-aatc
♻ ☆ Benchmarking LLMs in Web API Integration Tasks
API integration is a cornerstone of our digital infrastructure, enabling software systems to connect and interact. However, as shown by many studies, writing or generating correct code to invoke APIs, particularly web APIs, is challenging. Although large language models (LLMs) have become popular in software development, their effectiveness in automating the generation of web API integration code remains unexplored. In order to address this, we present WAPIIBench, a dataset and evaluation pipeline designed to assess the ability of LLMs to generate web API invocation code. Our experiments with several open-source LLMs reveal that generating API invocations poses a significant challenge, resulting in hallucinated endpoints, incorrect argument usage, and other errors. None of the evaluated open-source models was able to solve more than 40% of the tasks.
comment: To be published in Proceedings of 2025 2nd IEEE/ACM International Conference on AI-powered Software (AIware), Data & Benchmark Track; switched to IEEE conference template
♻ ☆ Electrical Load Forecasting over Multihop Smart Metering Networks with Federated Learning
Electric load forecasting is essential for power management and stability in smart grids. This is mainly achieved via advanced metering infrastructure, where smart meters (SMs) record household energy data. Traditional machine learning (ML) methods are often employed for load forecasting, but require data sharing, which raises data privacy concerns. Federated learning (FL) can address this issue by running distributed ML models at local SMs without data exchange. However, current FL-based approaches struggle to achieve efficient load forecasting due to imbalanced data distribution across heterogeneous SMs. This paper presents a novel personalized federated learning (PFL) method for high-quality load forecasting in metering networks. A meta-learning-based strategy is developed to address data heterogeneity at local SMs in the collaborative training of local load forecasting models. Moreover, to minimize the load forecasting delays in our PFL model, we study a new latency optimization problem based on optimal resource allocation at SMs. A theoretical convergence analysis is also conducted to provide insights into FL design for federated load forecasting. Extensive simulations from real-world datasets show that our method outperforms existing approaches regarding better load forecasting and reduced operational latency costs.
comment: Accepted at IEEE Internet of Things Journal, DOI: 10.1109/JIOT.2025.3586115
♻ ☆ Double Descent Meets Out-of-Distribution Detection: Theoretical Insights and Empirical Analysis on the role of model complexity NeurIPS 2025
Out-of-distribution (OOD) detection is essential for ensuring the reliability and safety of machine learning systems. In recent years, it has received increasing attention, particularly through post-hoc detection and training-based methods. In this paper, we focus on post-hoc OOD detection, which enables identifying OOD samples without altering the model's training procedure or objective. Our primary goal is to investigate the relationship between model capacity and its OOD detection performance. Specifically, we aim to answer the following question: Does the Double Descent phenomenon manifest in post-hoc OOD detection? This question is crucial, as it can reveal whether overparameterization, which is already known to benefit generalization, can also enhance OOD detection. Despite the growing interest in these topics by the classic supervised machine learning community, this intersection remains unexplored for OOD detection. We empirically demonstrate that the Double Descent effect does indeed appear in post-hoc OOD detection. Furthermore, we provide theoretical insights to explain why this phenomenon emerges in such setting. Finally, we show that the overparameterized regime does not yield superior results consistently, and we propose a method to identify the optimal regime for OOD detection based on our observations.
comment: Accepted at NeurIPS 2025 (Conference on Neural Information Processing Systems)
♻ ☆ Combinatorial Creativity: A New Frontier in Generalization Abilities
Artificial intelligence (AI) systems, and Large Language Models (LLMs) in particular, are increasingly employed for creative tasks like scientific idea generation, constituting a form of generalization from training data unaddressed by existing conceptual frameworks. Despite its similarities to compositional generalization (CG), combinatorial creativity (CC) is an open-ended ability. Instead of evaluating for accuracy or correctness against fixed targets, which would contradict the open-ended nature of CC, we propose a theoretical framework and algorithmic task for evaluating outputs by their degrees of novelty and utility. From here, we make several important empirical contributions: (1) We obtain the first insights into the scaling behavior of creativity for LLMs. (2) We discover that, for fixed compute budgets, there exist optimal model depths and widths for creative ability. (3) We find that the ideation-execution gap, whereby LLMs excel at generating novel scientific ideas but struggle to ensure their practical feasibility, may be explained by a more fundamental novelty-utility tradeoff characteristic of creativity algorithms in general. Importantly, this tradeoff remains persistent even at scale, casting doubt on the long-term creative potential of LLMs in their current form. Together, our conceptual framework and empirical findings provide a foundation for understanding and improving creativity in modern AI models, bridging the gap between human and machine intelligence.
comment: Preprint. The first two authors contributed equally
♻ ☆ Towards Personalized Treatment Plan: Geometrical Model-Agnostic Approach to Counterfactual Explanations
In our article, we describe a method for generating counterfactual explanations in high-dimensional spaces using four steps that involve fitting our dataset to a model, finding the decision boundary, determining constraints on the problem, and computing the closest point (counterfactual explanation) from that boundary. We propose a discretized approach where we find many discrete points on the boundary and then identify the closest feasible counterfactual explanation. This method, which we later call $\textit{Optimal Point for Boundary Approximation}$ (OPBA), applies binary search to find decision boundary points and then searches for the closest boundary point. Across four datasets of varying dimensionality, we show that our method can outperform current methods for counterfactual generation with reductions in distance between $5\%$ to $50\%$ in terms of the $L_2$ norm. Our method can also handle real-world constraints by restricting changes to immutable and categorical features, such as age, gender, sex, height, and other related characteristics such as the case for a health-based dataset. In terms of runtime, the OPBA algorithm generates decision boundary points on multiple orders of magnitude in the same given time when we compare to a grid-based approach. In general, our method provides a simple and effective model-agnostic method that can compute nearest feasible (i.e. realistic with constraints) counterfactual explanations. All of our results and code are available at: https://github.com/dsin85691/OPBA_For_Counterfactuals
comment: This paper is 15 pages long consisting of multiple sections including an abstract, introduction, related works, methodology, results, ablation studies, conclusion, future works, and an appendix section. There are 10 figures and 5 tables in total
♻ ☆ OrbitChain: Orchestrating In-orbit Real-time Analytics of Earth Observation Data
Earth observation analytics have the potential to serve many time-sensitive applications. However, due to limited bandwidth and duration of ground-satellite connections, it takes hours or even days to download and analyze data from existing Earth observation satellites, making real-time demands like timely disaster response impossible. Toward real-time analytics, we introduce OrbitChain, a collaborative analytics framework that orchestrates computational resources across multiple satellites in an Earth observation constellation. OrbitChain decomposes analytics applications into microservices and allocates computational resources for time-constrained analysis. A traffic routing algorithm is devised to minimize the inter-satellite communication overhead. OrbitChain adopts a pipeline workflow that completes Earth observation tasks in real-time, facilitates time-sensitive applications and inter-constellation collaborations such as tip-and-cue. To evaluate OrbitChain, we implement a hardware-in-the-loop orbital computing testbed. Experiments show that our system can complete up to 60% analytics workload than existing Earth observation analytics framework while reducing the communication overhead by up to 72%.
comment: currently under review; corrected typo in author na,e
♻ ☆ A DbC Inspired Neurosymbolic Layer for Trustworthy Agent Design
Generative models, particularly Large Language Models (LLMs), produce fluent outputs yet lack verifiable guarantees. We adapt Design by Contract (DbC) and type-theoretic principles to introduce a contract layer that mediates every LLM call. Contracts stipulate semantic and type requirements on inputs and outputs, coupled with probabilistic remediation to steer generation toward compliance. The layer exposes the dual view of LLMs as semantic parsers and probabilistic black-box components. Contract satisfaction is probabilistic and semantic validation is operationally defined through programmer-specified conditions on well-typed data structures. More broadly, this work postulates that any two agents satisfying the same contracts are \emph{functionally equivalent} with respect to those contracts.
comment: 4 pages, 1 figure
♻ ☆ Estimation of aboveground biomass in a tropical dry forest: An intercomparison of airborne, unmanned, and space laser scanning
According to the Paris Climate Change Agreement, all nations are required to submit reports on their greenhouse gas emissions and absorption every two years by 2024. Consequently, forests play a crucial role in reducing carbon emissions, which is essential for meeting these obligations. Recognizing the significance of forest conservation in the global battle against climate change, Article 5 of the Paris Agreement emphasizes the need for high-quality forest data. This study focuses on enhancing methods for mapping aboveground biomass in tropical dry forests. Tropical dry forests are considered one of the least understood tropical forest environments; therefore, there is a need for accurate approaches to estimate carbon pools. We employ a comparative analysis of AGB estimates, utilizing different discrete and full-waveform laser scanning datasets in conjunction with Ordinary Least Squares and Bayesian approaches SVM. Airborne Laser Scanning, Unmanned Laser Scanning, and Space Laser Scanning were used as independent variables for extracting forest metrics. Variable selection, SVM regression tuning, and cross-validation via a machine-learning approach were applied to account for overfitting and underfitting. The results indicate that six key variables primarily related to tree height: Elev\.minimum, Elev\.L3, lev\.MAD.mode, Elev\.mode, Elev\.MAD\.median, and Elev\.skewness, are important for AGB estimation using ALSD and ULSD, while Leaf Area Index, canopy coverage and height, terrain elevation, and full-waveform signal energy emerged as the most vital variables. AGB values estimated from ten permanent tropical dry forest plots in Costa Rica Guanacaste province ranged from 26.02 Mg/ha to 175.43 Mg/ha. The SVM regressions demonstrated a 17.89 error across all laser scanning systems, with SLSF W exhibiting the lowest error 17.07 in estimating total biomass per plot.
comment: 32 pages, 17 figures, research paper
♻ ☆ Khiops: An End-to-End, Frugal AutoML and XAI Machine Learning Solution for Large, Multi-Table Databases
Khiops is an open source machine learning tool designed for mining large multi-table databases. Khiops is based on a unique Bayesian approach that has attracted academic interest with more than 20 publications on topics such as variable selection, classification, decision trees and co-clustering. It provides a predictive measure of variable importance using discretisation models for numerical data and value clustering for categorical data. The proposed classification/regression model is a naive Bayesian classifier incorporating variable selection and weight learning. In the case of multi-table databases, it provides propositionalisation by automatically constructing aggregates. Khiops is adapted to the analysis of large databases with millions of individuals, tens of thousands of variables and hundreds of millions of records in secondary tables. It is available on many environments, both from a Python library and via a user interface.
♻ ☆ Towards Large-Scale In-Context Reinforcement Learning by Meta-Training in Randomized Worlds
In-Context Reinforcement Learning (ICRL) enables agents to learn automatically and on-the-fly from their interactive experiences. However, a major challenge in scaling up ICRL is the lack of scalable task collections. To address this, we propose the procedurally generated tabular Markov Decision Processes, named AnyMDP. Through a carefully designed randomization process, AnyMDP is capable of generating high-quality tasks on a large scale while maintaining relatively low structural biases. To facilitate efficient meta-training at scale, we further introduce decoupled policy distillation and induce prior information in the ICRL framework. Our results demonstrate that, with a sufficiently large scale of AnyMDP tasks, the proposed model can generalize to tasks that were not considered in the training set through versatile in-context learning paradigms. The scalable task set provided by AnyMDP also enables a more thorough empirical investigation of the relationship between data distribution and ICRL performance. We further show that the generalization of ICRL potentially comes at the cost of increased task diversity and longer adaptation periods. This finding carries critical implications for scaling robust ICRL capabilities, highlighting the necessity of diverse and extensive task design, and prioritizing asymptotic performance over few-shot adaptation.
comment: NeruIPS 2025
♻ ☆ Breaking the Performance Ceiling in Reinforcement Learning requires Inference Strategies
Reinforcement learning (RL) systems have countless applications, from energy-grid management to protein design. However, such real-world scenarios are often extremely difficult, combinatorial in nature, and require complex coordination between multiple agents. This level of complexity can cause even state-of-the-art RL systems, trained until convergence, to hit a performance ceiling which they are unable to break out of with zero-shot inference. Meanwhile, many digital or simulation-based applications allow for an inference phase that utilises a specific time and compute budget to explore multiple attempts before outputting a final solution. In this work, we show that such an inference phase employed at execution time, and the choice of a corresponding inference strategy, are key to breaking the performance ceiling observed in complex multi-agent RL problems. Our main result is striking: we can obtain up to a 126% and, on average, a 45% improvement over the previous state-of-the-art across 17 tasks, using only a couple seconds of extra wall-clock time during execution. We also demonstrate promising compute scaling properties, supported by over 60k experiments, making it the largest study on inference strategies for complex RL to date. Our experimental data and code are available at https://sites.google.com/view/inference-strategies-rl.
comment: Neurips '25 version
♻ ☆ RL-100: Performant Robotic Manipulation with Real-World Reinforcement Learning
Real-world robotic manipulation in homes and factories demands reliability, efficiency, and robustness that approach or surpass skilled human operators. We present RL-100, a real-world reinforcement learning training framework built on diffusion visuomotor policies trained by supervised learning. RL-100 introduces a three-stage pipeline. First, imitation learning leverages human priors. Second, iterative offline reinforcement learning uses an Offline Policy Evaluation procedure, abbreviated OPE, to gate PPO-style updates that are applied in the denoising process for conservative and reliable improvement. Third, online reinforcement learning eliminates residual failure modes. An additional lightweight consistency distillation head compresses the multi-step sampling process in diffusion into a single-step policy, enabling high-frequency control with an order-of-magnitude reduction in latency while preserving task performance. The framework is task-, embodiment-, and representation-agnostic and supports both 3D point clouds and 2D RGB inputs, a variety of robot platforms, and both single-step and action-chunk policies. We evaluate RL-100 on seven real-robot tasks spanning dynamic rigid-body control, such as Push-T and Agile Bowling, fluids and granular pouring, deformable cloth folding, precise dexterous unscrewing, and multi-stage orange juicing. RL-100 attains 100\% success across evaluated trials for a total of 900 out of 900 episodes, including up to 250 out of 250 consecutive trials on one task. The method achieves near-human teleoperation or better time efficiency and demonstrates multi-hour robustness with uninterrupted operation lasting up to two hours.
comment: https://lei-kun.github.io/RL-100/
♻ ☆ Augmenting learning in neuro-embodied systems through neurobiological first principles
Recent progress in artificial intelligence (AI) has been driven by insights from physics and neuroscience, particularly through the development of artificial neural networks (ANNs) capable of complex cognitive tasks such as vision and language processing. Despite these advances, they struggle with continual learning, adaptable knowledge transfer, robustness, and resource efficiency -- capabilities that biological systems handle seamlessly. Specifically, neuromorphic systems and artificial neural networks often overlook two key biophysical properties of neural circuits: neuronal diversity and cell-specific neuromodulation. These mechanisms, essential for regulating dynamic learning across brain scales, allow neuromodulators to introduce degeneracy in biological neural networks, ensuring stability and adaptability under changing conditions. In this article, we summarize recent bioinspired models, learning rules, and architectures, and propose a framework for augmenting ANNs, which has the potential to bridge the gap between neuroscience and AI through neurobiological first principles. Our proposed dual-framework approach leverages spiking neural networks to emulate diverse spiking behaviors and dendritic compartmental dynamics, thereby simulating the morphological and functional diversity of neuronal computations. Finally, we outline how integrating these biophysical principles into task-driven spiking neural networks and neuromorphic systems provides scalable solutions for continual learning, adaptability, robustness, and resource-efficiency. Additionally, this approach will not only provide insights into how emergent behaviors arise in neural networks but also catalyze the development of more efficient, reliable, and intelligent neuromorphic systems and robotic agents.
comment: 26 pages, 4 figures, 3 boxes, 1 table
♻ ☆ Neuro-Symbolic Imitation Learning: Discovering Symbolic Abstractions for Skill Learning ICRA
Imitation learning is a popular method for teaching robots new behaviors. However, most existing methods focus on teaching short, isolated skills rather than long, multi-step tasks. To bridge this gap, imitation learning algorithms must not only learn individual skills but also an abstract understanding of how to sequence these skills to perform extended tasks effectively. This paper addresses this challenge by proposing a neuro-symbolic imitation learning framework. Using task demonstrations, the system first learns a symbolic representation that abstracts the low-level state-action space. The learned representation decomposes a task into easier subtasks and allows the system to leverage symbolic planning to generate abstract plans. Subsequently, the system utilizes this task decomposition to learn a set of neural skills capable of refining abstract plans into actionable robot commands. Experimental results in three simulated robotic environments demonstrate that, compared to baselines, our neuro-symbolic approach increases data efficiency, improves generalization capabilities, and facilitates interpretability.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ What Makes Looped Transformers Perform Better Than Non-Recursive Ones (Provably)
While looped transformers (termed as Looped-Attn) often outperform standard transformers (termed as Single-Attn) on complex reasoning tasks, the theoretical basis for this advantage remains underexplored. In this paper, we explain this phenomenon through the lens of loss landscape geometry, inspired by empirical observations of their distinct dynamics at both sample and Hessian levels. To formalize this, we extend the River-Valley landscape model by distinguishing between U-shaped valleys (flat) and V-shaped valleys (steep). Based on empirical observations, we conjecture that the recursive architecture of Looped-Attn induces a landscape-level inductive bias towards River-V-Valley. Theoretical derivations based on this inductive bias guarantee a better loss convergence along the river due to valley hopping, and further encourage learning about complex patterns compared to the River-U-Valley induced by Single-Attn. Building on this insight, we propose SHIFT (Staged HIerarchical Framework for Progressive Training), a staged training framework that accelerates the training process of Looped-Attn while achieving comparable performances.
♻ ☆ DuSEGO: Dual Second-order Equivariant Graph Ordinary Differential Equation
Graph Neural Networks (GNNs) with equivariant properties have achieved significant success in modeling complex dynamic systems and molecular properties. However, their expressiveness ability is limited by: (1) Existing methods often overlook the over-smoothing issue caused by traditional GNN models, as well as the gradient explosion or vanishing problems in deep GNNs. (2) Most models operate on first-order information, neglecting that the real world often consists of second-order systems, which further limits the model's representation capabilities. To address these issues, we propose the \textbf{Du}al \textbf{S}econd-order \textbf{E}quivariant \textbf{G}raph \textbf{O}rdinary Differential Equation (\method{}) for equivariant representation. Specifically, \method{} apply the dual second-order equivariant graph ordinary differential equations (Graph ODEs) on graph embeddings and node coordinates, simultaneously. Theoretically, we first prove that \method{} maintains the equivariant property. Furthermore, we provide theoretical insights showing that \method{} effectively alleviates the over-smoothing problem in both feature representation and coordinate update. Additionally, we demonstrate that the proposed \method{} mitigates the exploding and vanishing gradients problem, facilitating the training of deep multi-layer GNNs. Extensive experiments on benchmark datasets validate the superiority of the proposed \method{} compared to baselines.
♻ ☆ Task-Oriented Multimodal Token Transmission in Resource-Constrained Multiuser Networks
With the emergence of large model-based agents, widely adopted transformer-based architectures inevitably produce excessively long token embeddings for transmission, which may result in high bandwidth overhead, increased power consumption and latency. In this letter, we propose a task-oriented multimodal token transmission scheme for efficient multimodal information fusion and utilization. To improve the efficiency of token transmission, we design a two-stage training algotithm, including cross-modal alignment and task-oriented fine-tuning, for large model-based token communication. Meanwhile, token compression is performed using a sliding window pooling operation to save communication resources. To balance the trade-off between latency and model performance caused by compression, we formulate a weighted-sum optimization problem over latency and validation loss. We jointly optimizes bandwidth, power allocation, and token length across users by using an alternating optimization method. Simulation results demonstrate that the proposed algorithm outperforms the baseline under different bandwidth and power budgets. Moreover, the two-stage training algorithm achieves higher accuracy across various signal-to-noise ratios than the method without cross-modal alignment.
♻ ☆ Functional Scaling Laws in Kernel Regression: Loss Dynamics and Learning Rate Schedules NeurIPS 2025
Scaling laws have emerged as a unifying lens for understanding and guiding the training of large language models (LLMs). However, existing studies predominantly focus on the final-step loss, leaving open whether the entire loss dynamics obey similar laws and, crucially, how the learning rate schedule (LRS) shapes them. We address these gaps in a controlled theoretical setting by analyzing stochastic gradient descent (SGD) on a power-law kernel regression model. The key insight is a novel intrinsic-time viewpoint, which captures the training progress more faithfully than iteration count. We then establish a Functional Scaling Law (FSL) that captures the full loss trajectory under arbitrary LRSs, with the schedule's influence entering through a simple convolutional functional. We further instantiate the theory for three representative LRSs -- constant, exponential decay, and warmup-stable-decay (WSD) -- and derive explicit scaling relations in both data- and compute-limited regimes. These comparisons explain key empirical phenomena: (i) higher-capacity models are more data- and compute-efficient; (ii) learning-rate decay improves training efficiency; and (iii) WSD-type schedules outperform pure decay. Finally, experiments on LLMs ranging from 0.1B to 1B parameters demonstrate the practical relevance of FSL as a surrogate model for fitting and predicting loss trajectories in large-scale pre-training.
comment: 60 pages, accepted by NeurIPS 2025 as a spotlight paper
♻ ☆ Flat Channels to Infinity in Neural Loss Landscapes NeurIPS'25
The loss landscapes of neural networks contain minima and saddle points that may be connected in flat regions or appear in isolation. We identify and characterize a special structure in the loss landscape: channels along which the loss decreases extremely slowly, while the output weights of at least two neurons, $a_i$ and $a_j$, diverge to $\pm$infinity, and their input weight vectors, $\mathbf{w_i}$ and $\mathbf{w_j}$, become equal to each other. At convergence, the two neurons implement a gated linear unit: $a_i\sigma(\mathbf{w_i} \cdot \mathbf{x}) + a_j\sigma(\mathbf{w_j} \cdot \mathbf{x}) \rightarrow \sigma(\mathbf{w} \cdot \mathbf{x}) + (\mathbf{v} \cdot \mathbf{x}) \sigma'(\mathbf{w} \cdot \mathbf{x})$. Geometrically, these channels to infinity are asymptotically parallel to symmetry-induced lines of critical points. Gradient flow solvers, and related optimization methods like SGD or ADAM, reach the channels with high probability in diverse regression settings, but without careful inspection they look like flat local minima with finite parameter values. Our characterization provides a comprehensive picture of these quasi-flat regions in terms of gradient dynamics, geometry, and functional interpretation. The emergence of gated linear units at the end of the channels highlights a surprising aspect of the computational capabilities of fully connected layers.
comment: Accepted to NeurIPS'25
♻ ☆ Scalable Multi-Task Learning for Particle Collision Event Reconstruction with Heterogeneous Graph Neural Networks
The growing luminosity frontier at the Large Hadron Collider is challenging the reconstruction and analysis of particle collision events. Increased particle multiplicities are straining latency and storage requirements at the data acquisition stage, while new complications are emerging, including higher background levels and more frequent particle vertex misassociations. This in turn necessitates the development of more holistic and scalable reconstruction methods that take advantage of recent advances in machine learning. We propose a novel Heterogeneous Graph Neural Network (HGNN) architecture featuring unique representations for diverse particle collision relationships and integrated graph pruning layers for scalability. Trained with a multi-task paradigm in an environment mimicking the LHCb experiment, this HGNN significantly improves beauty hadron reconstruction performance. Notably, it concurrently performs particle vertex association and graph pruning within a single framework. We quantify reconstruction and pruning performance, demonstrate enhanced inference time scaling with event complexity, and mitigate potential performance loss using a weighted message passing scheme.
comment: 23 pages, 9 figures, 4 tables (revised for Machine Learning Science and Technology)
♻ ☆ Stable but Miscalibrated: A Kantian View on Overconfidence from Filters to Large Language Models
We reinterpret Kant's Critique of Pure Reason as a theory of feedback stability, viewing reason as a regulator that keeps inference within the bounds of possible experience. We formalize this intuition via a composite instability index (H-Risk) combining spectral margin, conditioning, temporal sensitivity, and innovation amplification. In linear-Gaussian simulations, higher H-Risk predicts overconfident errors even under formal stability, revealing a gap between nominal and epistemic stability. Extending to large language models (LLMs), we observe preliminary correlations between internal fragility and miscalibration or hallucination (confabulation), and find that lightweight critique prompts may modestly improve or worsen calibration in small-scale tests. These results suggest a structural bridge between Kantian self-limitation and feedback control, offering a principled lens to diagnose and potentially mitigate overconfidence in reasoning systems.
comment: 21 pages, 2 figures, preliminary version
♻ ☆ Sharp Lower Bounds for Linearized ReLU^k Approximation on the Sphere
We prove a saturation theorem for linearized shallow ReLU$^k$ neural networks on the unit sphere $\mathbb S^d$. For any antipodally quasi-uniform set of centers, if the target function has smoothness $r>\tfrac{d+2k+1}{2}$, then the best $\mathcal{L}^2(\mathbb S^d)$ approximation cannot converge faster than order $n^{-\frac{d+2k+1}{2d}}$. This lower bound matches existing upper bounds, thereby establishing the exact saturation order $\tfrac{d+2k+1}{2d}$ for such networks. Our results place linearized neural-network approximation firmly within the classical saturation framework and show that, although ReLU$^k$ networks outperform finite elements under equal degrees $k$, this advantage is intrinsically limited.
♻ ☆ New Encoders for German Trained from Scratch: Comparing ModernGBERT with Converted LLM2Vec Models LREC
Encoders remain essential for efficient German NLP and NLU scenarios despite the rise of decoder-only LLMs. This work studies two routes to high-quality German encoders under identical data and training constraints: 1) training from scratch and 2) converting decoders via LLM2Vec. We introduce two resources: ModernGBERT (134M, 1B), fully transparent German encoders in the ModernBERT style, and LL\"aMmleinVec (120M, 1B, 7B), decoder-to-encoder conversions trained with masked next-token prediction, both undergoing a context extension to 8.192 tokens. Across SuperGLEBer, ModernGBERT 1B sets a new state of the art (avg 0.808), surpassing GBERT Large (+4%) and the seven-times larger converted 7B model (0.787). On German MTEB after supervised fine-tuning, ModernGBERT 1B (0.551) approaches the converted 7B model (0.557). We release all models, checkpoints, datasets, and full training records, and introduce an encoder-adapted QA-NIAH evaluation. All in all, our results provide actionable guidance: when parameter efficiency and latency matter, from-scratch encoders dominate. When a pre-trained decoder exists and compute is a limited, conversion offers an effective alternative. ModernGBERT and LL\"aMmleinVec, including all code, data and intermediary checkpoints are published under a research-only RAIL license.
comment: under review @LREC
♻ ☆ Diversity-Aware Policy Optimization for Large Language Model Reasoning
The reasoning capabilities of large language models (LLMs) have advanced rapidly, particularly following the release of DeepSeek R1, which has inspired a surge of research into data quality and reinforcement learning (RL) algorithms. Despite the pivotal role diversity plays in RL, its influence on LLM reasoning remains largely underexplored. To bridge this gap, this work presents a systematic investigation into the impact of diversity in RL-based training for LLM reasoning, and proposes a novel diversity-aware policy optimization method. Across evaluations on 12 LLMs, we observe a strong positive correlation between the solution diversity and Potential at k (a novel metric quantifying an LLM's reasoning potential) in high-performing models. This finding motivates our method to explicitly promote diversity during RL training. Specifically, we design a token-level diversity and reformulate it into a practical objective, then we selectively apply it to positive samples. Integrated into the R1-zero training framework, our method achieves a 3.5 percent average improvement across four mathematical reasoning benchmarks, while generating more diverse and robust solutions.
♻ ☆ Graph Neural Networks for Electricity Load Forecasting
Forecasting electricity demand is increasingly challenging as energy systems become more decentralized and intertwined with renewable sources. Graph Neural Networks (GNNs) have recently emerged as a powerful paradigm to model spatial dependencies in load data while accommodating complex non-stationarities. This paper introduces a comprehensive framework that integrates graph-based forecasting with attention mechanisms and ensemble aggregation strategies to enhance both predictive accuracy and interpretability. Several GNN architectures -- including Graph Convolutional Networks, GraphSAGE, APPNP, and Graph Attention Networks -- are systematically evaluated on synthetic, regional (France), and fine-grained (UK) datasets. Empirical results demonstrate that graph-aware models consistently outperform conventional baselines such as Feed Forward Neural Networks and foundation models like TiREX. Furthermore, attention layers provide valuable insights into evolving spatial interactions driven by meteorological and seasonal dynamics. Ensemble aggregation, particularly through bottom-up expert combination, further improves robustness under heterogeneous data conditions. Overall, the study highlights the complementarity between structural modeling, interpretability, and robustness, and discusses the trade-offs between accuracy, model complexity, and transparency in graph-based electricity load forecasting.
comment: 22 pages
♻ ☆ Rough Path Signatures: Learning Neural RDEs for Portfolio Optimization
We tackle high-dimensional, path-dependent valuation and control and introduce a deep BSDE/2BSDE solver that couples truncated log-signatures with a neural rough differential equation (RDE) backbone. The architecture aligns stochastic analysis with sequence-to-path learning: a CVaR-tilted terminal objective targets left-tail risk, while an optional second-order (2BSDE) head supplies curvature estimates for risk-sensitive control. Under matched compute and parameter budgets, the method improves accuracy, tail fidelity, and training stability across Asian and barrier option pricing and portfolio control: at d=200 it achieves CVaR(0.99)=9.80% versus 12.00-13.10% for strong baselines, attains the lowest HJB residual (0.011), and yields the lowest RMSEs for Z and Gamma. Ablations over truncation depth, local windows, and tilt parameters confirm complementary gains from the sequence-to-path representation and the 2BSDE head. Taken together, the results highlight a bidirectional dialogue between stochastic analysis and modern deep learning: stochastic tools inform representations and objectives, while sequence-to-path models expand the class of solvable financial models at scale.
comment: Code available at: https://github.com/AliAtiah/SigRDE
♻ ☆ Keep It on a Leash: Controllable Pseudo-label Generation Towards Realistic Long-Tailed Semi-Supervised Learning NeurIPS 2025
Current long-tailed semi-supervised learning methods assume that labeled data exhibit a long-tailed distribution, and unlabeled data adhere to a typical predefined distribution (i.e., long-tailed, uniform, or inverse long-tailed). However, the distribution of the unlabeled data is generally unknown and may follow an arbitrary distribution. To tackle this challenge, we propose a Controllable Pseudo-label Generation (CPG) framework, expanding the labeled dataset with the progressively identified reliable pseudo-labels from the unlabeled dataset and training the model on the updated labeled dataset with a known distribution, making it unaffected by the unlabeled data distribution. Specifically, CPG operates through a controllable self-reinforcing optimization cycle: (i) at each training step, our dynamic controllable filtering mechanism selectively incorporates reliable pseudo-labels from the unlabeled dataset into the labeled dataset, ensuring that the updated labeled dataset follows a known distribution; (ii) we then construct a Bayes-optimal classifier using logit adjustment based on the updated labeled data distribution; (iii) this improved classifier subsequently helps identify more reliable pseudo-labels in the next training step. We further theoretically prove that this optimization cycle can significantly reduce the generalization error under some conditions. Additionally, we propose a class-aware adaptive augmentation module to further improve the representation of minority classes, and an auxiliary branch to maximize data utilization by leveraging all labeled and unlabeled samples. Comprehensive evaluations on various commonly used benchmark datasets show that CPG achieves consistent improvements, surpassing state-of-the-art methods by up to $\textbf{15.97%}$ in accuracy. The code is available at https://github.com/yaxinhou/CPG.
comment: The paper is accepted by NeurIPS 2025
♻ ☆ Neural Entropy NeurIPS 2025
We explore the connection between deep learning and information theory through the paradigm of diffusion models. A diffusion model converts noise into structured data by reinstating, imperfectly, information that is erased when data was diffused to noise. This information is stored in a neural network during training. We quantify this information by introducing a measure called neural entropy, which is related to the total entropy produced by diffusion. Neural entropy is a function of not just the data distribution, but also the diffusive process itself. Measurements of neural entropy on a few simple image diffusion models reveal that they are extremely efficient at compressing large ensembles of structured data.
comment: 29 pages + references, 18 figures. Camera-ready version from NeurIPS 2025
♻ ☆ Multi-Agent Regime-Conditioned Diffusion (MARCD) for CVaR-Constrained Portfolio Decisions
We examine whether regime-conditioned generative scenarios combined with a convex CVaR allocator improve portfolio decisions under regime shifts. We present MARCD, a generative-to-decision framework with: (i) a Gaussian HMM to infer latent regimes; (ii) a diffusion generator that produces regime-conditioned scenarios; (iii) signal extraction via blended, shrunk moments; and (iv) a governed CVaR epigraph quadratic program. Contributions: Within the Scenario stage we introduce a tail-weighted diffusion objective that up-weights low-quantile outcomes relevant for drawdowns and a regime-expert (MoE) denoiser whose gate increases with crisis posteriors; both are evaluated end-to-end through the allocator. Under strict walk-forward on liquid multi-asset ETFs (2005-2025), MARCD exhibits stronger scenario calibration and materially smaller drawdowns: MaxDD 9.3% versus 14.1% for BL (a 34% reduction) over 2020-2025 out-of-sample. The framework provides an auditable pipeline with explicit budget, box, and turnover constraints, demonstrating the value of decision-aware generative modeling in finance.
comment: Code available at: https://github.com/AliAtiah/MARCD
♻ ☆ NeuroDeX: Unlocking Diverse Support in Decompiling Deep Neural Network Executables
On-device deep learning models have extensive real world demands. Deep learning compilers efficiently compile models into executables for deployment on edge devices, but these executables may face the threat of reverse engineering. Previous studies have attempted to decompile DNN executables, but they face challenges in handling compilation optimizations and analyzing quantized compiled models. In this paper, we present NeuroDeX to unlock diverse support in decompiling DNN executables. NeuroDeX leverages the semantic understanding capabilities of LLMs along with dynamic analysis to accurately and efficiently perform operator type recognition, operator attribute recovery and model reconstruction. NeuroDeX can recover DNN executables into high-level models towards compilation optimizations, different architectures and quantized compiled models. We conduct experiments on 96 DNN executables across 12 common DNN models. Extensive experimental results demonstrate that NeuroDeX can decompile non-quantized executables into nearly identical high-level models. NeuroDeX can recover functionally similar high-level models for quantized executables, achieving an average top-1 accuracy of 72%. NeuroDeX offers a more comprehensive and effective solution compared to previous DNN executables decompilers.
♻ ☆ AI-Guided Molecular Simulations in VR: Exploring Strategies for Imitation Learning in Hyperdimensional Molecular Systems ECAI24
Molecular dynamics (MD) simulations are a crucial computational tool for researchers to understand and engineer molecular structure and function in areas such as drug discovery, protein engineering, and material design. Despite their utility, MD simulations are expensive, owing to the high dimensionality of molecular systems. Interactive molecular dynamics in virtual reality (iMD-VR) has recently emerged as a "human-in-the-loop" strategy for efficiently navigating hyper-dimensional molecular systems. By providing an immersive 3D environment that enables visualization and manipulation of real-time molecular simulations running on high-performance computing architectures, iMD-VR enables researchers to reach out and guide molecular conformational dynamics, in order to efficiently explore complex, high-dimensional molecular systems. Moreover, iMD-VR simulations generate rich datasets that capture human experts' spatial insight regarding molecular structure and function. This paper explores the use of researcher-generated iMD-VR datasets to train AI agents via imitation learning (IL). IL enables agents to mimic complex behaviours from expert demonstrations, circumventing the need for explicit programming or intricate reward design. In this article, we review IL across robotics and Multi-agents systems domains which are comparable to iMD-VR, and discuss how iMD-VR recordings could be used to train IL models to interact with MD simulations. We then illustrate the applications of these ideas through a proof-of-principle study where iMD-VR data was used to train a CNN network on a simple molecular manipulation task; namely, threading a small molecule through a nanotube pore. Finally, we outline future research directions and potential challenges of using AI agents to augment human expertise in navigating vast molecular conformational spaces.
comment: (First presented at the First Workshop on "eXtended Reality \& Intelligent Agents" (XRIA24) @ ECAI24, Santiago De Compostela (Spain), 20 October 2024)
♻ ☆ UniVLA: Learning to Act Anywhere with Task-centric Latent Actions
A generalist robot should perform effectively across various environments. However, most existing approaches heavily rely on scaling action-annotated data to enhance their capabilities. Consequently, they are often limited to single physical specification and struggle to learn transferable knowledge across different embodiments and environments. To confront these limitations, we propose UniVLA, a new framework for learning cross-embodiment vision-language-action (VLA) policies. Our key innovation is to derive task-centric action representations from videos with a latent action model. This enables us to exploit extensive data across a wide spectrum of embodiments and perspectives. To mitigate the effect of task-irrelevant dynamics, we incorporate language instructions and establish a latent action model within the DINO feature space. Learned from internet-scale videos, the generalist policy can be deployed to various robots through efficient latent action decoding. We obtain state-of-the-art results across multiple manipulation and navigation benchmarks, as well as real-robot deployments. UniVLA achieves superior performance over OpenVLA with less than 1/20 of pretraining compute and 1/10 of downstream data. Continuous performance improvements are observed as heterogeneous data, even including human videos, are incorporated into the training pipeline. The results underscore UniVLA's potential to facilitate scalable and efficient robot policy learning.
comment: Accepted to RSS 2025. Code is available at https://github.com/OpenDriveLab/UniVLA
♻ ☆ Differentiable Generalized Sliced Wasserstein Plans
Optimal Transport (OT) has attracted significant interest in the machine learning community, not only for its ability to define meaningful distances between probability distributions -- such as the Wasserstein distance -- but also for its formulation of OT plans. Its computational complexity remains a bottleneck, though, and slicing techniques have been developed to scale OT to large datasets. Recently, a novel slicing scheme, dubbed min-SWGG, lifts a single one-dimensional plan back to the original multidimensional space, finally selecting the slice that yields the lowest Wasserstein distance as an approximation of the full OT plan. Despite its computational and theoretical advantages, min-SWGG inherits typical limitations of slicing methods: (i) the number of required slices grows exponentially with the data dimension, and (ii) it is constrained to linear projections. Here, we reformulate min-SWGG as a bilevel optimization problem and propose a differentiable approximation scheme to efficiently identify the optimal slice, even in high-dimensional settings. We furthermore define its generalized extension for accommodating to data living on manifolds. Finally, we demonstrate the practical value of our approach in various applications, including gradient flows on manifolds and high-dimensional spaces, as well as a novel sliced OT-based conditional flow matching for image generation -- where fast computation of transport plans is essential.
comment: LC and RT have equal contribution
♻ ☆ ConTextTab: A Semantics-Aware Tabular In-Context Learner NeurIPS 2025
Tabular in-context learning (ICL) has recently achieved state-of-the-art (SOTA) performance on several tabular prediction tasks. Previously restricted to classification problems on small tables, recent advances such as TabPFN and TabICL have extended its use to larger datasets. Although current table-native ICL architectures are architecturally efficient and well-adapted to tabular data structures, their exclusive training on synthetic data limits their ability to fully leverage the rich semantics and world knowledge contained in real-world tabular data. At the other end of the spectrum, tabular ICL models based on pretrained large language models such as TabuLa-8B integrate deep semantic understanding and world knowledge but are only able to make use of a small amount of context due to inherent architectural limitations. With the aim to combine the best of both these worlds, we introduce ConTextTab, integrating semantic understanding and alignment into a table-native ICL framework. By employing specialized embeddings for different data modalities and by training on large-scale real-world tabular data, our model is competitive with SOTA across a broad set of benchmarks while setting a new standard on the semantically rich CARTE benchmark. Code and model checkpoints are available at: https://github.com/SAP-samples/sap-rpt-1-oss.
comment: Accepted as spotlight at NeurIPS 2025
♻ ☆ Representation Consistency for Accurate and Coherent LLM Answer Aggregation NeurIPS 2025
Test-time scaling improves large language models' (LLMs) performance by allocating more compute budget during inference. To achieve this, existing methods often require intricate modifications to prompting and sampling strategies. In this work, we introduce representation consistency (RC), a test-time scaling method for aggregating answers drawn from multiple candidate responses of an LLM regardless of how they were generated, including variations in prompt phrasing and sampling strategy. RC enhances answer aggregation by not only considering the number of occurrences of each answer in the candidate response set, but also the consistency of the model's internal activations while generating the set of responses leading to each answer. These activations can be either dense (raw model activations) or sparse (encoded via pretrained sparse autoencoders). Our rationale is that if the model's representations of multiple responses converging on the same answer are highly variable, this answer is more likely to be the result of incoherent reasoning and should be down-weighted during aggregation. Importantly, our method only uses cached activations and lightweight similarity computations and requires no additional model queries. Through experiments with four open-source LLMs and four reasoning datasets, we validate the effectiveness of RC for improving task performance during inference, with consistent accuracy improvements (up to 4%) over strong test-time scaling baselines. We also show that consistency in the sparse activation signals aligns well with the common notion of coherent reasoning.
comment: Accepted at NeurIPS 2025. Camera-ready version
♻ ☆ A probabilistic view on Riemannian machine learning models for SPD matrices
The goal of this paper is to show how different machine learning tools on the Riemannian manifold $\mathcal{P}_d$ of Symmetric Positive Definite (SPD) matrices can be united under a probabilistic framework. For this, we will need several Gaussian distributions defined on $\mathcal{P}_d$. We will show how popular classifiers on $\mathcal{P}_d$ can be reinterpreted as Bayes Classifiers using these Gaussian distributions. These distributions will also be used for outlier detection and dimension reduction. By showing that those distributions are pervasive in the tools used on $\mathcal{P}_d$, we allow for other machine learning tools to be extended to $\mathcal{P}_d$.
♻ ☆ Geospatial Foundation Models to Enable Progress on Sustainable Development Goals
Foundation Models (FMs) are large-scale, pre-trained artificial intelligence (AI) systems that have revolutionized natural language processing and computer vision, and are now advancing geospatial analysis and Earth Observation (EO). They promise improved generalization across tasks, scalability, and efficient adaptation with minimal labeled data. However, despite the rapid proliferation of geospatial FMs, their real-world utility and alignment with global sustainability goals remain underexplored. We introduce SustainFM, a comprehensive benchmarking framework grounded in the 17 Sustainable Development Goals with extremely diverse tasks ranging from asset wealth prediction to environmental hazard detection. This study provides a rigorous, interdisciplinary assessment of geospatial FMs and offers critical insights into their role in attaining sustainability goals. Our findings show: (1) While not universally superior, FMs often outperform traditional approaches across diverse tasks and datasets. (2) Evaluating FMs should go beyond accuracy to include transferability, generalization, and energy efficiency as key criteria for their responsible use. (3) FMs enable scalable, SDG-grounded solutions, offering broad utility for tackling complex sustainability challenges. Critically, we advocate for a paradigm shift from model-centric development to impact-driven deployment, and emphasize metrics such as energy efficiency, robustness to domain shifts, and ethical considerations.
♻ ☆ Image Hashing via Cross-View Code Alignment in the Age of Foundation Models
Efficient large-scale retrieval requires representations that are both compact and discriminative. Foundation models provide powerful visual and multimodal embeddings, but nearest neighbor search in these high-dimensional spaces is computationally expensive. Hashing offers an efficient alternative by enabling fast Hamming distance search with binary codes, yet existing approaches often rely on complex pipelines, multi-term objectives, designs specialized for a single learning paradigm, and long training times. We introduce CroVCA (Cross-View Code Alignment), a simple and unified principle for learning binary codes that remain consistent across semantically aligned views. A single binary cross-entropy loss enforces alignment, while coding-rate maximization serves as an anti-collapse regularizer to promote balanced and diverse codes. To implement this, we design HashCoder, a lightweight MLP hashing network with a final batch normalization layer to enforce balanced codes. HashCoder can be used as a probing head on frozen embeddings or to adapt encoders efficiently via LoRA fine-tuning. Across benchmarks, CroVCA achieves state-of-the-art results in just 5 training epochs. At 16 bits, it particularly well-for instance, unsupervised hashing on COCO completes in under 2 minutes and supervised hashing on ImageNet100 in about 3 minutes on a single GPU. These results highlight CroVCA's efficiency, adaptability, and broad applicability.
♻ ☆ Contextual Tokenization for Graph Inverted Indices
Retrieving graphs from a large corpus, that contain a subgraph isomorphic to a given query graph, is a core operation in many real-world applications. While recent multi-vector graph representations and scores based on set alignment and containment can provide accurate subgraph isomorphism tests, their use in retrieval remains limited by their need to score corpus graphs exhaustively. We introduce CORGII (Contextual Representation of Graphs for Inverted Indexing), a graph indexing framework in which, starting with a contextual dense graph representation, a differentiable discretization module computes sparse binary codes over a learned latent vocabulary. This text document-like representation allows us to leverage classic, highly optimized inverted indices, while supporting soft (vector) set containment scores. Pushing this paradigm further, we replace the classical, fixed impact weight of a `token' on a graph (such as TFIDF or BM25) with a data-driven, trainable impact weight. Finally, we explore token expansion to support multi-probing the index for smoother accuracy-efficiency tradeoffs. To our knowledge, CORGII is the first indexer of dense graph representations using discrete tokens mapping to efficient inverted lists. Extensive experiments show that CORGII provides better trade-offs between accuracy and efficiency, compared to several baselines.
♻ ☆ Deep Modularity Networks with Diversity-Preserving Regularization NeurIPS 2025
Graph clustering plays a crucial role in graph representation learning but often faces challenges in achieving feature-space diversity. While Deep Modularity Networks (DMoN) leverage modularity maximization and collapse regularization to ensure structural separation, they lack explicit mechanisms for feature-space separation, assignment dispersion, and assignment-confidence control. We address this limitation by proposing Deep Modularity Networks with Diversity-Preserving Regularization (DMoN-DPR), which introduces three novel regularization terms: distance-based for inter-cluster separation, variance-based for per-cluster assignment dispersion, and an assignment-entropy penalty with a small positive weight, encouraging more confident assignments gradually. Our method significantly enhances label-based clustering metrics on feature-rich benchmark datasets (paired two-tailed t-test, $p\leq0.05$), demonstrating the effectiveness of incorporating diversity-preserving regularizations in creating meaningful and interpretable clusters.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: New Perspectives in Graph Machine Learning (NPGML)
♻ ☆ VO-DP: Semantic-Geometric Adaptive Diffusion Policy for Vision-Only Robotic Manipulation
In the context of imitation learning, visuomotor-based diffusion policy learning is one of the main directions in robotic manipulation. Most of these approaches rely on point clouds as observation inputs and construct scene representations through point clouds feature learning, which enables them to achieve remarkable accuracy. However, the existing literature lacks an in-depth exploration of vision-only solutions that have significant potential. In this paper, we propose a Vision-Only and single-view Diffusion Policy learning method (VO-DP) that leverages pretrained visual foundation models to achieve effective fusion of semantic and geometric features. We utilize intermediate features from VGGT incorporating semantic features from DINOv2 and geometric features from Alternating Attention blocks. Features are fused via cross-attention and spatially compressed with a CNN to form the input to the policy head. Extensive experiments demonstrate that VO-DP not only outperforms the vision-only baseline DP significantly but also exhibits distinct performance trends against the point cloud-based method DP3: in simulation tasks, VO-DP achieves an average success rate of 64.6% on par with DP3 64.0% and far higher than DP 34.8%, while in real-world tasks, it reaches 87.9%, outperforming both DP3 67.5% and DP 11.2% by a notable margin. Further robustness evaluations confirm that VO-DP remains highly stable under varying conditions including color, size, background, and lighting. Lastly, we open-source a training library for robotic manipulation. Built on Accelerate, this library supports multi-machine and multi-GPU parallel training, as well as mixed precision training. It is compatible with visuomotor policies such as DP, DP3 and VO-DP, and also supports the RoboTwin simulator.
♻ ☆ Transforming Hyperspectral Images Into Chemical Maps: A Novel End-to-End Deep Learning Approach
Current approaches to chemical map generation from hyperspectral images are based on models such as partial least squares (PLS) regression, generating pixel-wise predictions that do not consider spatial context and suffer from a high degree of noise. This study proposes an end-to-end deep learning approach using a modified version of U-Net and a custom loss function to directly obtain chemical maps from hyperspectral images, skipping all intermediate steps required for traditional pixel-wise analysis. This study compares the U-Net with the traditional PLS regression on a real dataset of pork belly samples with associated mean fat reference values. The U-Net obtains a test set root mean squared error that is 7% lower than that of PLS regression on the task of mean fat prediction. At the same time, U-Net generates fine detail chemical maps where 99.91% of the variance is spatially correlated. Conversely, only 2.37% of the variance in the PLS-generated chemical maps is spatially correlated, indicating that each pixel-wise prediction is largely independent of neighboring pixels. Additionally, while the PLS-generated chemical maps contain predictions far beyond the physically possible range of 0-100%, U-Net learns to stay inside this range. Thus, the findings of this study indicate that U-Net is superior to PLS for chemical map generation.
♻ ☆ Follow the Energy, Find the Path: Riemannian Metrics from Energy-Based Models
What is the shortest path between two data points lying in a high-dimensional space? While the answer is trivial in Euclidean geometry, it becomes significantly more complex when the data lies on a curved manifold -- requiring a Riemannian metric to describe the space's local curvature. Estimating such a metric, however, remains a major challenge in high dimensions. In this work, we propose a method for deriving Riemannian metrics directly from pretrained Energy-Based Models (EBMs) -- a class of generative models that assign low energy to high-density regions. These metrics define spatially varying distances, enabling the computation of geodesics -- shortest paths that follow the data manifold's intrinsic geometry. We introduce two novel metrics derived from EBMs and show that they produce geodesics that remain closer to the data manifold and exhibit lower curvature distortion, as measured by alignment with ground-truth trajectories. We evaluate our approach on increasingly complex datasets: synthetic datasets with known data density, rotated character images with interpretable geometry, and high-resolution natural images embedded in a pretrained VAE latent space. Our results show that EBM-derived metrics consistently outperform established baselines, especially in high-dimensional settings. Our work is the first to derive Riemannian metrics from EBMs, enabling data-aware geodesics and unlocking scalable, geometry-driven learning for generative modeling and simulation.
♻ ☆ Tight analyses of first-order methods with error feedback
Communication between agents often constitutes a major computational bottleneck in distributed learning. One of the most common mitigation strategies is to compress the information exchanged, thereby reducing communication overhead. To counteract the degradation in convergence associated with compressed communication, error feedback schemes -- most notably $\mathrm{EF}$ and $\mathrm{EF}^{21}$ -- were introduced. In this work, we provide a tight analysis of both of these methods. Specifically, we find the Lyapunov function that yields the best possible convergence rate for each method -- with matching lower bounds. This principled approach yields sharp performance guarantees and enables a rigorous, apples-to-apples comparison between $\mathrm{EF}$, $\mathrm{EF}^{21}$, and compressed gradient descent. Our analysis is carried out in the simplified single-agent setting, which allows for clean theoretical insights and fair comparison of the underlying mechanisms.
♻ ☆ Low-Rank Adaptation for Foundation Models: A Comprehensive Review
The rapid advancement of foundation modelslarge-scale neural networks trained on diverse, extensive datasetshas revolutionized artificial intelligence, enabling unprecedented advancements across domains such as natural language processing, computer vision, and scientific discovery. However, the substantial parameter count of these models, often reaching billions or trillions, poses significant challenges in adapting them to specific downstream tasks. Low-Rank Adaptation (LoRA) has emerged as a highly promising approach for mitigating these challenges, offering a parameter-efficient mechanism to fine-tune foundation models with minimal computational overhead. This survey provides the first comprehensive review of LoRA techniques beyond large Language Models to general foundation models, including recent techniques foundations, emerging frontiers and applications of low-rank adaptation across multiple domains. Finally, this survey discusses key challenges and future research directions in theoretical understanding, scalability, and robustness. This survey serves as a valuable resource for researchers and practitioners working with efficient foundation model adaptation.
♻ ☆ ParaRNN: Unlocking Parallel Training of Nonlinear RNNs for Large Language Models
Recurrent Neural Networks (RNNs) laid the foundation for sequence modeling, but their intrinsic sequential nature restricts parallel computation, creating a fundamental barrier to scaling. This has led to the dominance of parallelizable architectures like Transformers and, more recently, State Space Models (SSMs). While SSMs achieve efficient parallelization through structured linear recurrences, this linearity constraint limits their expressive power and precludes modeling complex, nonlinear sequence-wise dependencies. To address this, we present ParaRNN, a framework that breaks the sequence-parallelization barrier for nonlinear RNNs. Building on prior work, we cast the sequence of nonlinear recurrence relationships as a single system of equations, which we solve in parallel using Newton's iterations combined with custom parallel reductions. Our implementation achieves speedups of up to 665x over naive sequential application, allowing training nonlinear RNNs at unprecedented scales. To showcase this, we apply ParaRNN to adaptations of LSTM and GRU architectures, successfully training models of 7B parameters that attain perplexity comparable to similarly-sized Transformers and Mamba2 architectures. To accelerate research in efficient sequence modeling, we release the ParaRNN codebase as an open-source framework for automatic training-parallelization of nonlinear RNNs, enabling researchers and practitioners to explore new nonlinear RNN models at scale.
♻ ☆ Inducing Riesz and orthonormal bases in $L^2$ via composition operators
Let $C_h$ be a composition operator mapping $L^2(\Omega_1)$ into $L^2(\Omega_2)$ for some open sets $\Omega_1, \Omega_2 \subseteq \mathbb{R}^n$. We characterize the mappings $h$ that transform Riesz bases of $L^2(\Omega_1)$ into Riesz bases of $L^2(\Omega_2)$. Restricting our analysis to differentiable mappings, we demonstrate that mappings $h$ that preserve Riesz bases have Jacobian determinants that are bounded away from zero and infinity. We discuss implications of these results for approximation theory, highlighting the potential of using bijective neural networks to construct Riesz bases with favorable approximation properties.
♻ ☆ What Can Be Recovered Under Sparse Adversarial Corruption? Assumption-Free Theory for Linear Measurements
Let $A \in \mathbb{R}^{m \times n}$ be an arbitrary, known matrix and $e$ a $q$-sparse adversarial vector. Given $y = A x^\star + e$ and $q$, we seek the smallest set containing $x^\star$--hence the one conveying maximal information about $x^\star$--that is uniformly recoverable from $y$ without knowing $e$. While exact recovery of $x^\star$ via strong (and often impractical) structural assumptions on $A$ or $x^\star$ (e.g., restricted isometry, sparsity) is well studied, recoverability for arbitrary $A$ and $x^\star$ remains open. Our main result shows that the best that one can hope to recover is $x^\star + \ker(U)$, where $U$ is the unique projection matrix onto the intersection of rowspaces of all possible submatrices of $A$ obtained by deleting $2q$ rows. Moreover, we prove that every $x$ that minimizes the $\ell_0$-norm of $y - A x$ lies in $x^\star + \ker(U)$, which then gives a constructive approach to recover this set.
comment: \copyright 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ A Self-Evolving AI Agent System for Climate Science
Scientific progress in Earth science depends on integrating data across the planet's interconnected spheres. However, the accelerating volume and fragmentation of multi-sphere knowledge and data have surpassed human analytical capacity. This creates a major bottleneck for discovery, especially in climate science. To address this challenge, we introduce EarthLink, the first self-evolving AI agent system designed as an interactive "copilot" for Earth scientists. Through natural language interaction, EarthLink automates the entire research workflow by integrating planning, code execution, data analysis, and physical reasoning into a unified process that directly addresses this limitation. Beyond efficiency, it exhibits human-like cross-disciplinary analytical ability and achieves proficiency comparable to a junior researcher in expert evaluations on core large-scale climate tasks, including model-observation comparison and climate change understanding. When tasked with an open scientific problem, specifically the discovery of precursors of the Atlantic Ni\~no, EarthLink autonomously developed a research strategy, identified sources of predictability, verified its hypotheses with available data, and proposed a physically consistent mechanism. These emerging capabilities enable a new human-AI research paradigm. Scientists can focus on value and result judgments, while AI systems handle complex data analysis and knowledge integration. This accelerates the pace and breadth of discovery in Earth sciences. The system is accessible at our website https://earthlink.intern-ai.org.cn.
♻ ☆ Localist LLMs -- A Mathematical Framework for Dynamic Locality Control
We present a novel framework for training large language models with continuously adjustable internal representations that span the full spectrum from localist (interpretable, rule-based) to distributed (generalizable, efficient) encodings. The key innovation is a locality dial, a tunable parameter that dynamically controls the degree of localization during both training and inference without requiring model retraining. This is achieved through group sparsity penalties on attention mechanisms, information-theoretic anchor design, and dynamic rule injection. We provide rigorous mathematical proofs establishing explicit threshold conditions under which attention provably concentrates on semantically relevant blocks, with exponential bounds on attention entropy and pointer fidelity. Specifically, we prove that when group sparsity penalties exceed certain threshold values, the model's attention mechanisms concentrate on semantically relevant blocks, achieving low entropy and high fidelity with negligible error. This framework enables practitioners to continuously interpolate between interpretable and high-performance modes, supporting applications in regulated domains requiring both transparency and capability.
♻ ☆ SynBrain: Enhancing Visual-to-fMRI Synthesis via Probabilistic Representation Learning NeurIPS 2025
Deciphering how visual stimuli are transformed into cortical responses is a fundamental challenge in computational neuroscience. This visual-to-neural mapping is inherently a one-to-many relationship, as identical visual inputs reliably evoke variable hemodynamic responses across trials, contexts, and subjects. However, existing deterministic methods struggle to simultaneously model this biological variability while capturing the underlying functional consistency that encodes stimulus information. To address these limitations, we propose SynBrain, a generative framework that simulates the transformation from visual semantics to neural responses in a probabilistic and biologically interpretable manner. SynBrain introduces two key components: (i) BrainVAE models neural representations as continuous probability distributions via probabilistic learning while maintaining functional consistency through visual semantic constraints; (ii) A Semantic-to-Neural Mapper acts as a semantic transmission pathway, projecting visual semantics into the neural response manifold to facilitate high-fidelity fMRI synthesis. Experimental results demonstrate that SynBrain surpasses state-of-the-art methods in subject-specific visual-to-fMRI encoding performance. Furthermore, SynBrain adapts efficiently to new subjects with few-shot data and synthesizes high-quality fMRI signals that are effective in improving data-limited fMRI-to-image decoding performance. Beyond that, SynBrain reveals functional consistency across trials and subjects, with synthesized signals capturing interpretable patterns shaped by biological neural variability. Our code is available at https://github.com/MichaelMaiii/SynBrain.
comment: Accepted by NeurIPS 2025
♻ ☆ Bellman Diffusion Models
Diffusion models have seen tremendous success as generative architectures. Recently, they have been shown to be effective at modelling policies for offline reinforcement learning and imitation learning. We explore using diffusion as a model class for the successor state measure (SSM) of a policy. We find that enforcing the Bellman flow constraints leads to a simple Bellman update on the diffusion step distribution.
♻ ☆ MARFT: Multi-Agent Reinforcement Fine-Tuning
LLM-based Multi-Agent Systems have demonstrated remarkable capabilities in addressing complex, agentic tasks, from generating high-quality presentation slides to even conducting sophisticated scientific research. Meanwhile, RL has been widely recognized for its effectiveness in enhancing agent intelligence, but limited research has investigated the fine-tuning of LaMAS using foundational RL techniques. Moreover, the direct application of MARL methods to LaMAS introduces significant challenges, stemming from the unique characteristics and mechanisms inherent to LaMAS. To address these challenges, this article presents a comprehensive study of LLM-based MARL and proposes a novel paradigm termed Multi-Agent Reinforcement Fine-Tuning (MARFT). We introduce a brand-new MG called Flex-MG, which aligns with the LaMAS optimization in real-world applications and a universal algorithmic framework tailored specifically for LaMAS, outlining the conceptual foundations, key distinctions, and practical implementation strategies. We review the evolution from RL to RFT, setting the stage for a parallel analysis in the multi-agent domain. In the context of LaMAS, we elucidate critical differences between MARL and MARFT. These differences motivate a transition toward a LaMAS-oriented formulation of RFT. Central to this work is a robust and scalable MARFT framework. We detail the core algorithm and provide a complete, open-source implementation to facilitate adoption and further research. The latter sections of the paper explore real-world application perspectives and opening challenges in MARFT. By bridging theoretical underpinnings with practical methodologies, this work serves as a roadmap for researchers seeking to advance MARFT toward resilient and adaptive solutions in agentic systems. Our implementation of the proposed framework is publicly available at: https://github.com/jwliao-ai/MARFT.
comment: 42 pages
♻ ☆ Sample Complexity of Distributionally Robust Average-Reward Reinforcement Learning NeurIPS 2025
Motivated by practical applications where stable long-term performance is critical-such as robotics, operations research, and healthcare-we study the problem of distributionally robust (DR) average-reward reinforcement learning. We propose two algorithms that achieve near-optimal sample complexity. The first reduces the problem to a DR discounted Markov decision process (MDP), while the second, Anchored DR Average-Reward MDP, introduces an anchoring state to stabilize the controlled transition kernels within the uncertainty set. Assuming the nominal MDP is uniformly ergodic, we prove that both algorithms attain a sample complexity of $\widetilde{O}\left(|\mathbf{S}||\mathbf{A}| t_{\mathrm{mix}}^2\varepsilon^{-2}\right)$ for estimating the optimal policy as well as the robust average reward under KL and $f_k$-divergence-based uncertainty sets, provided the uncertainty radius is sufficiently small. Here, $\varepsilon$ is the target accuracy, $|\mathbf{S}|$ and $|\mathbf{A}|$ denote the sizes of the state and action spaces, and $t_{\mathrm{mix}}$ is the mixing time of the nominal MDP. This represents the first finite-sample convergence guarantee for DR average-reward reinforcement learning. We further validate the convergence rates of our algorithms through numerical experiments.
comment: Accepted at NeurIPS 2025. Updated with minor corrections and additional experiments
♻ ☆ Language-Driven Coordination and Learning in Multi-Agent Simulation Environments
This paper introduces LLM-MARL, a unified framework that incorporates large language models (LLMs) into multi-agent reinforcement learning (MARL) to enhance coordination, communication, and generalization in simulated game environments. The framework features three modular components of Coordinator, Communicator, and Memory, which dynamically generate subgoals, facilitate symbolic inter-agent messaging, and support episodic recall. Training combines PPO with a language-conditioned loss and LLM query gating. LLM-MARL is evaluated in Google Research Football, MAgent Battle, and StarCraft II. Results show consistent improvements over MAPPO and QMIX in win rate, coordination score, and zero-shot generalization. Ablation studies demonstrate that subgoal generation and language-based messaging each contribute significantly to performance gains. Qualitative analysis reveals emergent behaviors such as role specialization and communication-driven tactics. By bridging language modeling and policy learning, this work contributes to the design of intelligent, cooperative agents in interactive simulations. It offers a path forward for leveraging LLMs in multi-agent systems used for training, games, and human-AI collaboration.
♻ ☆ DeepHQ: Learned Hierarchical Quantizer for Progressive Deep Image Coding
Unlike fixed- or variable-rate image coding, progressive image coding (PIC) aims to compress various qualities of images into a single bitstream, increasing the versatility of bitstream utilization and providing high compression efficiency compared to simulcast compression. Research on neural network (NN)-based PIC is in its early stages, mainly focusing on applying varying quantization step sizes to the transformed latent representations in a hierarchical manner. These approaches are designed to compress only the progressively added information as the quality improves, considering that a wider quantization interval for lower-quality compression includes multiple narrower sub-intervals for higher-quality compression. However, the existing methods are based on handcrafted quantization hierarchies, resulting in sub-optimal compression efficiency. In this paper, we propose an NN-based progressive coding method that firstly utilizes learned quantization step sizes via learning for each quantization layer. We also incorporate selective compression with which only the essential representation components are compressed for each quantization layer. We demonstrate that our method achieves significantly higher coding efficiency than the existing approaches with decreased decoding time and reduced model size. The source code is publicly available at https://github.com/JooyoungLeeETRI/DeepHQ
comment: Accepted to ACM TOMM (2025)
♻ ☆ Flight Delay Prediction via Cross-Modality Adaptation of Large Language Models and Aircraft Trajectory Representation
Flight delay prediction has become a key focus in air traffic management, as delays highlight inefficiencies that impact overall network performance. This paper presents a lightweight large language model-based multimodal flight delay prediction, formulated from the perspective of air traffic controllers monitoring aircraft delay after entering the terminal area. The approach integrates trajectory representations with textual aeronautical information, including flight information, weather reports, and aerodrome notices, by adapting trajectory data into the language modality to capture airspace conditions. The experiments show that the model consistently achieves sub-minute prediction error by effectively leveraging contextual information related to the sources of delay, fulfilling the operational standard for minute-level precision. The framework demonstrates that linguistic understanding, when combined with cross-modality adaptation of trajectory data, enhances delay prediction. Moreover, the approach shows practicality and potential scalability for real-world operations, supporting real-time updates that refine predictions upon receiving new operational information.
comment: Preprint submitted to Aerospace Science and Technology (Elsevier) for possible publication
♻ ☆ FlexQ: Efficient Post-training INT6 Quantization for LLM Serving via Algorithm-System Co-Design
Large Language Models (LLMs) demonstrate exceptional performance but entail significant memory and computational costs, restricting their practical deployment. While existing INT4/INT8 quantization reduces these costs, they often degrade accuracy or lack optimal efficiency. INT6 quantization offers a superior trade-off between model accuracy and inference efficiency, but lacks hardware support in modern GPUs, forcing emulation via higher-precision arithmetic units that limit acceleration. In this paper, we propose FlexQ, a novel post-training INT6 quantization framework combining algorithmic innovation with system-level optimizations. FlexQ employs uniform 6-bit weight quantization across all layers, with adaptive retention of 8-bit activations in layers identified through layer-wise sensitivity analysis. To maximize hardware efficiency, we develop a specialized high-performance GPU kernel supporting matrix multiplication for W6A6 and W6A8 representations via Binary Tensor Core (BTC) equivalents, effectively bypassing the lack of native INT6 tensor cores. Evaluations on LLaMA family models show FlexQ maintains near-FP16 accuracy, with perplexity increases of no more than 0.1 on WikiText2. The proposed kernel achieves an average 1.39$\times$ speedup over ABQ-LLM on LLaMA-2-70B linear layers. End-to-end, FlexQ delivers 1.33$\times$ inference acceleration and 1.21$\times$ memory savings over SmoothQuant. Code is released at https://github.com/FlyFoxPlayer/FlexQ.
♻ ☆ Amortized Active Generation of Pareto Sets NeurIPS 2025
We introduce active generation of Pareto sets (A-GPS), a new framework for online discrete black-box multi-objective optimization (MOO). A-GPS learns a generative model of the Pareto set that supports a-posteriori conditioning on user preferences. The method employs a class probability estimator (CPE) to predict non-dominance relations and to condition the generative model toward high-performing regions of the search space. We also show that this non-dominance CPE implicitly estimates the probability of hypervolume improvement (PHVI). To incorporate subjective trade-offs, A-GPS introduces preference direction vectors that encode user-specified preferences in objective space. At each iteration, the model is updated using both Pareto membership and alignment with these preference directions, producing an amortized generative model capable of sampling across the Pareto front without retraining. The result is a simple yet powerful approach that achieves high-quality Pareto set approximations, avoids explicit hypervolume computation, and flexibly captures user preferences. Empirical results on synthetic benchmarks and protein design tasks demonstrate strong sample efficiency and effective preference incorporation.
comment: Appears in the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Complex QA and language models hybrid architectures, Survey
This paper reviews the state-of-the-art of large language models (LLM) architectures and strategies for "complex" question-answering with a focus on hybrid architectures. LLM based chatbot services have allowed anyone to grasp the potential of LLM to solve many common problems, but soon discovered their limitations for complex questions. Addressing more specific, complex questions (e.g., "What is the best mix of power-generation methods to reduce climate change ?") often requires specialized architectures, domain knowledge, new skills, decomposition and multi-step resolution, deep reasoning, sensitive data protection, explainability, and human-in-the-loop processes. Therefore, we review: (1) necessary skills and tasks for handling complex questions and common LLM limits to overcome; (2) dataset, cost functions and evaluation metrics for measuring and improving (e.g. accuracy, explainability, fairness, robustness, groundedness, faithfulness, toxicity...); (3) family of solutions to overcome LLM limitations by (a) training and reinforcement (b) hybridization, (c) prompting, (d) agentic-architectures (agents, tools) and extended reasoning.
♻ ☆ MGPATH: Vision-Language Model with Multi-Granular Prompt Learning for Few-Shot WSI Classification
Whole slide pathology image classification presents challenges due to gigapixel image sizes and limited annotation labels, hindering model generalization. This paper introduces a prompt learning method to adapt large vision-language models for few-shot pathology classification. We first extend the Prov-GigaPath vision foundation model, pre-trained on 1.3 billion pathology image tiles, into a vision-language model by adding adaptors and aligning it with medical text encoders via contrastive learning on 923K image-text pairs. The model is then used to extract visual features and text embeddings from few-shot annotations and fine-tunes with learnable prompt embeddings. Unlike prior methods that combine prompts with frozen features using prefix embeddings or self-attention, we propose multi-granular attention that compares interactions between learnable prompts with individual image patches and groups of them. This approach improves the model's ability to capture both fine-grained details and broader context, enhancing its recognition of complex patterns across sub-regions. To further improve accuracy, we leverage (unbalanced) optimal transport-based visual-text distance to secure model robustness by mitigating perturbations that might occur during the data augmentation process. Empirical experiments on lung, kidney, and breast pathology modalities validate the effectiveness of our approach; thereby, we surpass several of the latest competitors and consistently improve performance across diverse architectures, including CLIP, PLIP, and Prov-GigaPath integrated PLIP.
comment: Published in Transactions on Machine Learning Research (09/2025)
♻ ☆ Riemannian Consistency Model NeurIPS 2025
Consistency models are a class of generative models that enable few-step generation for diffusion and flow matching models. While consistency models have achieved promising results on Euclidean domains like images, their applications to Riemannian manifolds remain challenging due to the curved geometry. In this work, we propose the Riemannian Consistency Model (RCM), which, for the first time, enables few-step consistency modeling while respecting the intrinsic manifold constraint imposed by the Riemannian geometry. Leveraging the covariant derivative and exponential-map-based parameterization, we derive the closed-form solutions for both discrete- and continuous-time training objectives for RCM. We then demonstrate theoretical equivalence between the two variants of RCM: Riemannian consistency distillation (RCD) that relies on a teacher model to approximate the marginal vector field, and Riemannian consistency training (RCT) that utilizes the conditional vector field for training. We further propose a simplified training objective that eliminates the need for the complicated differential calculation. Finally, we provide a unique kinematics perspective for interpreting the RCM objective, offering new theoretical angles. Through extensive experiments, we manifest the superior generative quality of RCM in few-step generation on various non-Euclidean manifolds, including flat-tori, spheres, and the 3D rotation group SO(3).
comment: Accepted to NeurIPS 2025
♻ ☆ Scientific Machine Learning with Kolmogorov-Arnold Networks
The field of scientific machine learning, which originally utilized multilayer perceptrons (MLPs), is increasingly adopting Kolmogorov-Arnold Networks (KANs) for data encoding. This shift is driven by the limitations of MLPs, including poor interpretability, fixed activation functions, and difficulty capturing localized or high-frequency features. KANs address these issues with enhanced interpretability and flexibility, enabling more efficient modeling of complex nonlinear interactions and effectively overcoming the constraints associated with conventional MLP architectures. This review categorizes recent progress in KAN-based models across three distinct perspectives: (i) data-driven learning, (ii) physics-informed modeling, and (iii) deep-operator learning. Each perspective is examined through the lens of architectural design, training strategies, application efficacy, and comparative evaluation against MLP-based counterparts. By benchmarking KANs against MLPs, we highlight consistent improvements in accuracy, convergence, and spectral representation, clarifying KANs' advantages in capturing complex dynamics while learning more effectively. In addition to reviewing recent literature, this work also presents several comparative evaluations that clarify central characteristics of KAN modeling and hint at their potential implications for real-world applications. Finally, this review identifies critical challenges and open research questions in KAN development, particularly regarding computational efficiency, theoretical guarantees, hyperparameter tuning, and algorithm complexity. We also outline future research directions aimed at improving the robustness, scalability, and physical consistency of KAN-based frameworks.
♻ ☆ Representation-Level Counterfactual Calibration for Debiased Zero-Shot Recognition
Object-context shortcuts remain a persistent challenge in vision-language models, undermining zero-shot reliability when test-time scenes differ from familiar training co-occurrences. We recast this issue as a causal inference problem and ask: Would the prediction remain if the object appeared in a different environment? To answer this at inference time, we estimate object and background expectations within CLIP's representation space, and synthesize counterfactual embeddings by recombining object features with diverse alternative contexts sampled from external datasets, batch neighbors, or text-derived descriptions. By estimating the Total Direct Effect and simulating intervention, we further subtract background-only activation, preserving beneficial object-context interactions while mitigating hallucinated scores. Without retraining or prompt design, our method substantially improves both worst-group and average accuracy on context-sensitive benchmarks, establishing a new zero-shot state of the art. Beyond performance, our framework provides a lightweight representation-level counterfactual approach, offering a practical causal avenue for debiased and reliable multimodal reasoning.
♻ ☆ Bridging Symmetry and Robustness: On the Role of Equivariance in Enhancing Adversarial Robustness NeurIPS 2025
Adversarial examples reveal critical vulnerabilities in deep neural networks by exploiting their sensitivity to imperceptible input perturbations. While adversarial training remains the predominant defense strategy, it often incurs significant computational cost and may compromise clean-data accuracy. In this work, we investigate an architectural approach to adversarial robustness by embedding group-equivariant convolutions-specifically, rotation- and scale-equivariant layers-into standard convolutional neural networks (CNNs). These layers encode symmetry priors that align model behavior with structured transformations in the input space, promoting smoother decision boundaries and greater resilience to adversarial attacks. We propose and evaluate two symmetry-aware architectures: a parallel design that processes standard and equivariant features independently before fusion, and a cascaded design that applies equivariant operations sequentially. Theoretically, we demonstrate that such models reduce hypothesis space complexity, regularize gradients, and yield tighter certified robustness bounds under the CLEVER (Cross Lipschitz Extreme Value for nEtwork Robustness) framework. Empirically, our models consistently improve adversarial robustness and generalization across CIFAR-10, CIFAR-100, and CIFAR-10C under both FGSM and PGD attacks, without requiring adversarial training. These findings underscore the potential of symmetry-enforcing architectures as efficient and principled alternatives to data augmentation-based defenses.
comment: Accepted for the proceedings of 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Learning Nonholonomic Dynamics with Constraint Discovery
We consider learning nonholonomic dynamical systems while discovering the constraints, and describe in detail the case of the rolling disk. A nonholonomic system is a system subject to nonholonomic constraints. Unlike holonomic constraints, nonholonomic constraints do not define a sub-manifold on the configuration space. Therefore, the inverse problem of finding the constraints has to involve the tangent bundle. This paper discusses a general procedure to learn the dynamics of a nonholonomic system through Hamel's formalism, while discovering the system constraint by parameterizing it, given the data set of discrete trajectories on the tangent bundle $TQ$. We prove that there is a local minimum for convergence of the network. We also preserve symmetry of the system by reducing the Lagrangian to the Lie algebra of the selected group.
♻ ☆ Vision Foundation Models Can Be Good Tokenizers for Latent Diffusion Models
The performance of Latent Diffusion Models (LDMs) is critically dependent on the quality of their visual tokenizer. While recent works have explored incorporating Vision Foundation Models (VFMs) via distillation, we identify a fundamental flaw in this approach: it inevitably weakens the robustness of alignment with the original VFM, causing the aligned latents to deviate semantically under distribution shifts. In this paper, we bypass distillation by proposing a more direct approach: Vision Foundation Model Variational Autoencoder (VFM-VAE). To resolve the inherent tension between the VFM's semantic focus and the need for pixel-level fidelity, we redesign the VFM-VAE decoder with Multi-Scale Latent Fusion and Progressive Resolution Reconstruction blocks, enabling high-quality reconstruction from spatially coarse VFM features. Furthermore, we provide a comprehensive analysis of representation dynamics during diffusion training, introducing the proposed SE-CKNNA metric as a more precise tool for this diagnosis. This analysis allows us to develop a joint tokenizer-diffusion alignment strategy that dramatically accelerates convergence. Our innovations in tokenizer design and training strategy lead to superior performance and efficiency: our system reaches a gFID (w/o CFG) of 2.20 in merely 80 epochs (a 10x speedup over prior tokenizers). With continued training to 640 epochs, it further attains a gFID (w/o CFG) of 1.62, establishing direct VFM integration as a superior paradigm for LDMs.
comment: v2 note: Corrected numerical values in Table 2 and Figure 4 due to a minor calculation error in v1. The overall conclusions remain unchanged. Code and models available at: https://github.com/tianciB/VFM-VAE
♻ ☆ Computational Basis of LLM's Decision Making in Social Simulation
Large language models (LLMs) increasingly serve as human-like decision-making agents in social science and applied settings. These LLM-agents are typically assigned human-like characters and placed in real-life contexts. However, how these characters and contexts shape an LLM's behavior remains underexplored. This study proposes and tests methods for probing, quantifying, and modifying an LLM's internal representations in a Dictator Game -- a classic behavioral experiment on fairness and prosocial behavior. We extract "vectors of variable variations" (e.g., "male" to "female") from the LLM's internal state. Manipulating these vectors during the model's inference can substantially alter how those variables relate to the model's decision-making. This approach offers a principled way to study and regulate how social concepts can be encoded and engineered within transformer-based models, with implications for alignment, debiasing, and designing AI agents for social simulations in both academic and commercial applications, strengthening sociological theory and measurement.
♻ ☆ Damper-B-PINN: Damper Characteristics-Based Bayesian Physics-Informed Neural Network for Vehicle State Estimation
Accurate state estimation is fundamental to intelligent vehicles. Wheel load, one of the most important chassis states, serves as an essential input for advanced driver assistance systems (ADAS) and exerts a direct influence on vehicle stability and safety. However, wheel load estimation remains challenging due to the complexity of chassis modeling and the susceptibility of nonlinear systems to noise. To address these issues, this paper first introduces a refined suspension linkage-level modeling approach that constructs a nonlinear instantaneous dynamic model by explicitly considering the complex geometric structure of the suspension. Building upon this, we propose a damper characteristics-based Bayesian physics-informed neural network (Damper-B-PINN) framework to estimate dynamic wheel load, which leverages the suspension dynamics as physical guidance of PINN while employing Bayesian inference to mitigate the effects of system noise and uncertainty. Moreover, a damper-characteristic physics conditioning (DPC) module is designed for embedding physical prior. The proposed Damper-B-PINN is evaluated using both high-fidelity simulation datasets generated by CarSim software and real-world datasets collected from a Formula Student race car. Experimental results demonstrate that our Damper-B-PINN consistently outperforms existing methods across various test conditions, particularly extreme ones. These findings highlight the potential of the proposed Damper-B-PINN framework to enhance the accuracy and robustness of dynamic wheel load estimation, thereby improving the reliability and safety of ADAS applications.
♻ ☆ Provable Generalization Bounds for Deep Neural Networks with Momentum-Adaptive Gradient Dropout
Deep neural networks (DNNs) achieve remarkable performance but often suffer from overfitting due to their high capacity. We introduce Momentum-Adaptive Gradient Dropout (MAGDrop), a novel regularization method that dynamically adjusts dropout rates on activations based on current gradients and accumulated momentum, enhancing stability in non-convex optimization landscapes. To theoretically justify MAGDrop's effectiveness, we derive a non-asymptotic, computable PAC-Bayes generalization bound that accounts for its adaptive nature, achieving up to 29.2\% tighter bounds compared to standard approaches by leveraging momentum-driven perturbation control. Empirically, the activation-based MAGDrop achieves competitive performance on MNIST (99.52\%) and CIFAR-10 (92.03\%), with generalization gaps of 0.48\% and 6.52\%, respectively. We provide fully reproducible code and numerical computation of our bounds to validate our theoretical claims. Our work bridges theoretical insights and practical advancements, offering a robust framework for enhancing DNN generalization, making it suitable for high-stakes applications.
comment: 8 pages
♻ ☆ Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user independence and expedite clinical analysis. Unlike fully-supervised learning, weakly-supervised segmentation (WSS) can streamline the laborious and intricate annotation process. However, current WSS methods face challenges in achieving precise nodule segmentation, as many of them depend on inaccurate activation maps or inefficient pseudo-mask generation algorithms. In this study, we introduce a novel multi-agent reinforcement learning-based WSS framework called Flip Learning, which relies solely on 2D/3D boxes for accurate segmentation. Specifically, multiple agents are employed to erase the target from the box to facilitate classification tag flipping, with the erased region serving as the predicted segmentation mask. The key contributions of this research are as follows: (1) Adoption of a superpixel/supervoxel-based approach to encode the standardized environment, capturing boundary priors and expediting the learning process. (2) Introduction of three meticulously designed rewards, comprising a classification score reward and two intensity distribution rewards, to steer the agents' erasing process precisely, thereby avoiding both under- and over-segmentation. (3) Implementation of a progressive curriculum learning strategy to enable agents to interact with the environment in a progressively challenging manner, thereby enhancing learning efficiency. Extensively validated on the large in-house BUS and ABUS datasets, our Flip Learning method outperforms state-of-the-art WSS methods and foundation models, and achieves comparable performance as fully-supervised learning algorithms.
comment: Accepted by Medical Image Analysis. 24 pages, 13 figures, 20 tabels
♻ ☆ One Small Step with Fingerprints, One Giant Leap for De Novo Molecule Generation from Mass Spectra NeurIPS-2025
A common approach to the de novo molecular generation problem from mass spectra involves a two-stage pipeline: (1) encoding mass spectra into molecular fingerprints, followed by (2) decoding these fingerprints into molecular structures. In our work, we adopt MIST (Goldman et. al., 2023) as the encoder and MolForge (Ucak et. al., 2023) as the decoder, leveraging additional training data to enhance performance. We also threshold the probabilities of each fingerprint bit to focus on the presence of substructures. This results in a tenfold improvement over previous state-of-the-art methods, generating top-1 31% / top-10 40% of molecular structures correctly from mass spectra in MassSpecGym (Bushuiev et. al., 2024). We position this as a strong baseline for future research in de novo molecule elucidation from mass spectra.
comment: Accepted at AI4Mat-NeurIPS-2025 Workshop
♻ ☆ Neighboring State-based Exploration for Reinforcement Learning
Reinforcement Learning is a powerful tool to model decision-making processes. However, it relies on an exploration-exploitation trade-off that remains an open challenge for many tasks. In this work, we study neighboring state-based, model-free exploration led by the intuition that, for an early-stage agent, considering actions derived from a bounded region of nearby states may lead to better actions when exploring. We propose two algorithms that choose exploratory actions based on a survey of nearby states, and find that one of our methods, ${\rho}$-explore, consistently outperforms the Double DQN baseline in an discrete environment by 49% in terms of Eval Reward Return.
♻ ☆ MultiMed-ST: Large-scale Many-to-many Multilingual Medical Speech Translation EMNLP 2025
Multilingual speech translation (ST) and machine translation (MT) in the medical domain enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we present the first systematic study on medical ST, to our best knowledge, by releasing MultiMed-ST, a large-scale ST dataset for the medical domain, spanning all translation directions in five languages: Vietnamese, English, German, French, and Simplified/Traditional Chinese, together with the models. With 290,000 samples, this is the largest medical MT dataset and the largest many-to-many multilingual ST among all domains. Secondly, we present the most comprehensive ST analysis in the field's history, to our best knowledge, including: empirical baselines, bilingual-multilingual comparative study, end-to-end vs. cascaded comparative study, task-specific vs. multi-task sequence-to-sequence comparative study, code-switch analysis, and quantitative-qualitative error analysis. All code, data, and models are available online: https://github.com/leduckhai/MultiMed-ST
comment: EMNLP 2025
♻ ☆ A Generalized Bisimulation Metric of State Similarity between Markov Decision Processes: From Theoretical Propositions to Applications NeurIPS 2025
The bisimulation metric (BSM) is a powerful tool for computing state similarities within a Markov decision process (MDP), revealing that states closer in BSM have more similar optimal value functions. While BSM has been successfully utilized in reinforcement learning (RL) for tasks like state representation learning and policy exploration, its application to multiple-MDP scenarios, such as policy transfer, remains challenging. Prior work has attempted to generalize BSM to pairs of MDPs, but a lack of rigorous analysis of its mathematical properties has limited further theoretical progress. In this work, we formally establish a generalized bisimulation metric (GBSM) between pairs of MDPs, which is rigorously proven with the three fundamental properties: GBSM symmetry, inter-MDP triangle inequality, and the distance bound on identical state spaces. Leveraging these properties, we theoretically analyse policy transfer, state aggregation, and sampling-based estimation in MDPs, obtaining explicit bounds that are strictly tighter than those derived from the standard BSM. Additionally, GBSM provides a closed-form sample complexity for estimation, improving upon existing asymptotic results based on BSM. Numerical results validate our theoretical findings and demonstrate the effectiveness of GBSM in multi-MDP scenarios.
comment: This paper is accepted by the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Trustworthy AI Must Account for Interactions ICLR 2025
Trustworthy AI encompasses many aspirational aspects for aligning AI systems with human values, including fairness, privacy, robustness, explainability, and uncertainty quantification. Ultimately the goal of Trustworthy AI research is to achieve all aspects simultaneously. However, efforts to enhance one aspect often introduce unintended trade-offs that negatively impact others. In this position paper, we review notable approaches to these five aspects and systematically consider every pair, detailing the negative interactions that can arise. For example, applying differential privacy to model training can amplify biases, undermining fairness. Drawing on these findings, we take the position that current research practices of improving one or two aspects in isolation are insufficient. Instead, research on Trustworthy AI must account for interactions between aspects and adopt a holistic view across all relevant axes at once. To illustrate our perspective, we provide guidance on how practitioners can work towards integrated trust, examples of how interactions affect the financial industry, and alternative views.
comment: Presented at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment
♻ ☆ Dataset Distillation for Offline Reinforcement Learning ICML 2024
Offline reinforcement learning often requires a quality dataset that we can train a policy on. However, in many situations, it is not possible to get such a dataset, nor is it easy to train a policy to perform well in the actual environment given the offline data. We propose using data distillation to train and distill a better dataset which can then be used for training a better policy model. We show that our method is able to synthesize a dataset where a model trained on it achieves similar performance to a model trained on the full dataset or a model trained using percentile behavioral cloning. Our project site is available at https://datasetdistillation4rl.github.io . We also provide our implementation at https://github.com/ggflow123/DDRL .
comment: ICML 2024 DMLR Workshop Our project site is available at https://datasetdistillation4rl.github.io We also provide our implementation at https://github.com/ggflow123/DDRL
♻ ☆ Where and How to Perturb: On the Design of Perturbation Guidance in Diffusion and Flow Models NeurIPS 2025
Recent guidance methods in diffusion models steer reverse sampling by perturbing the model to construct an implicit weak model and guide generation away from it. Among these approaches, attention perturbation has demonstrated strong empirical performance in unconditional scenarios where classifier-free guidance is not applicable. However, existing attention perturbation methods lack principled approaches for determining where perturbations should be applied, particularly in Diffusion Transformer (DiT) architectures where quality-relevant computations are distributed across layers. In this paper, we investigate the granularity of attention perturbations, ranging from the layer level down to individual attention heads, and discover that specific heads govern distinct visual concepts such as structure, style, and texture quality. Building on this insight, we propose "HeadHunter", a systematic framework for iteratively selecting attention heads that align with user-centric objectives, enabling fine-grained control over generation quality and visual attributes. In addition, we introduce SoftPAG, which linearly interpolates each selected head's attention map toward an identity matrix, providing a continuous knob to tune perturbation strength and suppress artifacts. Our approach not only mitigates the oversmoothing issues of existing layer-level perturbation but also enables targeted manipulation of specific visual styles through compositional head selection. We validate our method on modern large-scale DiT-based text-to-image models including Stable Diffusion 3 and FLUX.1, demonstrating superior performance in both general quality enhancement and style-specific guidance. Our work provides the first head-level analysis of attention perturbation in diffusion models, uncovering interpretable specialization within attention layers and enabling practical design of effective perturbation strategies.
comment: Accepted at NeurIPS 2025. Project page: https://cvlab-kaist.github.io/HeadHunter/
♻ ☆ A Basic Evaluation of Neural Networks Trained with the Error Diffusion Learning Algorithm
This paper presents a comprehensive formulation of Kaneko's Error Diffusion Learning Algorithm (EDLA) and evaluates its effectiveness across parity check, regression, and image classification tasks. EDLA is a biologically inspired learning algorithm that provides an alternative to conventional backpropagation for training artificial neural networks. EDLA employs a single global error signal that diffuses across networks composed of paired positive and negative sublayers, eliminating traditional layer-wise error backpropagation. This study evaluates EDLA's effectiveness using benchmark tasks, such as parity check, regression, and image classification, by systematically varying the neuron count, network depth, and learning rates to assess its performance comprehensively. The experimental results demonstrate that EDLA achieves consistently high accuracy across multiple benchmarks, highlighting its effectiveness as a learning algorithm for neural networks. The choice of learning rate, neuron count, and network depth significantly influences EDLA's efficiency and convergence speed. Analysis of internal network representations reveals meaningful feature extraction capabilities, and the network's overall performance is found to be competitive with networks trained via conventional backpropagation, especially in shallow architectures. This study introduces EDLA, a biologically plausible alternative to traditional backpropagation previously underrecognized due to language barriers. By reformulating EDLA, systematically evaluating its performance, and presenting empirical evidence of its effectiveness, this study increases the visibility and accessibility of EDLA and contributes to biologically inspired training methodologies.
♻ ☆ Large Stepsizes Accelerate Gradient Descent for Regularized Logistic Regression NeurIPS 2025
We study gradient descent (GD) with a constant stepsize for $\ell_2$-regularized logistic regression with linearly separable data. Classical theory suggests small stepsizes to ensure monotonic reduction of the optimization objective, achieving exponential convergence in $\widetilde{\mathcal{O}}(\kappa)$ steps with $\kappa$ being the condition number. Surprisingly, we show that this can be accelerated to $\widetilde{\mathcal{O}}(\sqrt{\kappa})$ by simply using a large stepsize -- for which the objective evolves nonmonotonically. The acceleration brought by large stepsizes extends to minimizing the population risk for separable distributions, improving on the best-known upper bounds on the number of steps to reach a near-optimum. Finally, we characterize the largest stepsize for the local convergence of GD, which also determines the global convergence in special scenarios. Our results extend the analysis of Wu et al. (2024) from convex settings with minimizers at infinity to strongly convex cases with finite minimizers.
comment: NeurIPS 2025 camera ready version
♻ ☆ Localized Kernel Projection Outlyingness: A Two-Stage Approach for Multi-Modal Outlier Detection
This paper presents Two-Stage LKPLO, a novel multi-stage outlier detection framework that overcomes the coexisting limitations of conventional projection-based methods: their reliance on a fixed statistical metric and their assumption of a single data structure. Our framework uniquely synthesizes three key concepts: (1) a generalized loss-based outlyingness measure (PLO) that replaces the fixed metric with flexible, adaptive loss functions like our proposed SVM-like loss; (2) a global kernel PCA stage to linearize non-linear data structures; and (3) a subsequent local clustering stage to handle multi-modal distributions. Comprehensive 5-fold cross-validation experiments on 10 benchmark datasets, with automated hyperparameter optimization, demonstrate that Two-Stage LKPLO achieves state-of-the-art performance. It significantly outperforms strong baselines on datasets with challenging structures where existing methods fail, most notably on multi-cluster data (Optdigits) and complex, high-dimensional data (Arrhythmia). Furthermore, an ablation study empirically confirms that the synergistic combination of both the kernelization and localization stages is indispensable for its superior performance. This work contributes a powerful new tool for a significant class of outlier detection problems and underscores the importance of hybrid, multi-stage architectures.
comment: 10 pages, 4 figures; submitted to The IEICE Transactions on Information and Systems
Multimedia
♻ ☆ Sound Clouds: Exploring ambient intelligence in public spaces to elicit deep human experience of awe, wonder, and beauty NeurIPS
While the ambient intelligence (AmI) systems we encounter in our daily lives, including security monitoring and energy-saving systems, typically serve pragmatic purposes, we wonder how we can design and implement ambient artificial intelligence experiences in public spaces that elicit deep human feelings of awe, wonder, and beauty. As a manifestation, we introduce Sound Clouds, an immersive art installation that generates live music based on participants' interaction with several human-height spheres. Our installation serves as a provocation into future ambient intelligence that provokes, not limits, the future possibilities of AmI.
comment: 4 pages, Artwork accepted by NeurIPS Creative AI Track 2025
♻ ☆ Class Agnostic Instance-level Descriptor for Visual Instance Search
Despite the great success of the deep features in content-based image retrieval, the visual instance search remains challenging due to the lack of effective instance-level feature representation. Supervised or weakly supervised object detection methods are not the appropriate solutions due to their poor performance on the unknown object categories. In this paper, based on the feature set output from self-supervised ViT, the instance-level region discovery is modeled as detecting the compact feature subsets in a hierarchical fashion. The hierarchical decomposition results in a hierarchy of instance regions. On the one hand, this kind of hierarchical decomposition well addresses the problem of object embedding and occlusions, which are widely observed in real scenarios. On the other hand, the non-leaf nodes and leaf nodes on the hierarchy correspond to the instance regions in different granularities within an image. Therefore, features in uniform length are produced for these instance regions, which may cover across a dominant image region, an integral of multiple instances, or various individual instances. Such a collection of features allows us to unify the image retrieval, multi-instance search, and instance search into one framework. The empirical studies on three benchmarks show that such an instance-level descriptor remains effective on both the known and unknown object categories. Moreover, the superior performance is achieved on single-instance and multi-instance search, as well as image retrieval tasks.
♻ ☆ EgoBlind: Towards Egocentric Visual Assistance for the Blind NeurIPS'25
We present EgoBlind, the first egocentric VideoQA dataset collected from blind individuals to evaluate the assistive capabilities of contemporary multimodal large language models (MLLMs). EgoBlind comprises 1,392 first-person videos from the daily lives of blind and visually impaired individuals. It also features 5,311 questions directly posed or verified by the blind to reflect their in-situation needs for visual assistance. Each question has an average of 3 manually annotated reference answers to reduce subjectiveness. Using EgoBlind, we comprehensively evaluate 16 advanced MLLMs and find that all models struggle. The best performers achieve an accuracy near 60\%, which is far behind human performance of 87.4\%. To guide future advancements, we identify and summarize major limitations of existing MLLMs in egocentric visual assistance for the blind and explore heuristic solutions for improvement. With these efforts, we hope that EgoBlind will serve as a foundation for developing effective AI assistants to enhance the independence of the blind and visually impaired. Data and code are available at https://github.com/doc-doc/EgoBlind.
comment: NeurIPS'25 (D&B Track)
♻ ☆ SmartFreeEdit: Mask-Free Spatial-Aware Image Editing with Complex Instruction Understanding
Recent advancements in image editing have utilized large-scale multimodal models to enable intuitive, natural instruction-driven interactions. However, conventional methods still face significant challenges, particularly in spatial reasoning, precise region segmentation, and maintaining semantic consistency, especially in complex scenes. To overcome these challenges, we introduce SmartFreeEdit, a novel end-to-end framework that integrates a multimodal large language model (MLLM) with a hypergraph-enhanced inpainting architecture, enabling precise, mask-free image editing guided exclusively by natural language instructions. The key innovations of SmartFreeEdit include:(1)the introduction of region aware tokens and a mask embedding paradigm that enhance the spatial understanding of complex scenes;(2) a reasoning segmentation pipeline designed to optimize the generation of editing masks based on natural language instructions;and (3) a hypergraph-augmented inpainting module that ensures the preservation of both structural integrity and semantic coherence during complex edits, overcoming the limitations of local-based image generation. Extensive experiments on the Reason-Edit benchmark demonstrate that SmartFreeEdit surpasses current state-of-the-art methods across multiple evaluation metrics, including segmentation accuracy, instruction adherence, and visual quality preservation, while addressing the issue of local information focus and improving global consistency in the edited image. Our project will be available at https://github.com/smileformylove/SmartFreeEdit.
♻ ☆ Prevailing Research Areas for Music AI in the Era of Foundation Models
Parallel to rapid advancements in foundation model research, the past few years have witnessed a surge in music AI applications. As AI-generated and AI-augmented music become increasingly mainstream, many researchers in the music AI community may wonder: what research frontiers remain unexplored? This paper outlines several key areas within music AI research that present significant opportunities for further investigation. We begin by examining foundational representation models and highlight emerging efforts toward explainability and interpretability. We then discuss the evolution toward multimodal systems, provide an overview of the current landscape of music datasets and their limitations, and address the growing importance of model efficiency in both training and deployment. Next, we explore applied directions, focusing first on generative models. We review recent systems, their computational constraints, and persistent challenges related to evaluation and controllability. We then examine extensions of these generative approaches to multimodal settings and their integration into artists' workflows, including applications in music editing, captioning, production, transcription, source separation, performance, discovery, and education. Finally, we explore copyright implications of generative music and propose strategies to safeguard artist rights. While not exhaustive, this survey aims to illuminate promising research directions enabled by recent developments in music foundation models.
Computation and Language
♻ ☆ Learning to Steer: Input-dependent Steering for Multimodal LLMs NeurIPS 2025
Steering has emerged as a practical approach to enable post-hoc guidance of LLMs towards enforcing a specific behavior. However, it remains largely underexplored for multimodal LLMs (MLLMs); furthermore, existing steering techniques, such as mean steering, rely on a single steering vector, applied independently of the input query. This paradigm faces limitations when the desired behavior is dependent on the example at hand. For example, a safe answer may consist in abstaining from answering when asked for an illegal activity, or may point to external resources or consultation with an expert when asked about medical advice. In this paper, we investigate a fine-grained steering that uses an input-specific linear shift. This shift is computed using contrastive input-specific prompting. However, the input-specific prompts required for this approach are not known at test time. Therefore, we propose to train a small auxiliary module to predict the input-specific steering vector. Our approach, dubbed as L2S (Learn-to-Steer), demonstrates that it reduces hallucinations and enforces safety in MLLMs, outperforming other static baselines. Our code is publicly available at https://jayneelparekh.github.io/learn-to-steer/
comment: NeurIPS 2025
♻ ☆ Multi-Step Reasoning with Large Language Models, a Survey
Large language models (LLMs) with billions of parameters exhibit in-context learning abilities, enabling few-shot learning on tasks that the model was not specifically trained for. Traditional models achieve breakthrough performance on language tasks, but do not perform well on basic reasoning benchmarks. However, a new in-context learning approach, Chain-of-thought, has demonstrated strong multi-step reasoning abilities on these benchmarks. The research on LLM reasoning abilities started with the question whether LLMs can solve grade school math word problems, and has expanded to other tasks in the past few years. This article reviews the field of multi-step reasoning with LLMs. We propose a taxonomy that identifies different ways to generate, evaluate, and control multi-step reasoning. We provide an in-depth coverage of core approaches and open problems, and we propose a research agenda for the near future. We find that multi-step reasoning approaches have progressed beyond math word problems, and can now successfully solve challenges in logic, combinatorial games, and robotics, sometimes by first generating code that is then executed by external tools. Many studies in multi-step methods use reinforcement learning for finetuning, external optimization loops, in-context reinforcement learning, and self-reflection.
comment: ACM Computing Surveys
♻ ☆ Spatial Knowledge Graph-Guided Multimodal Synthesis
Recent advances in Multimodal Large Language Models (MLLMs) have significantly enhanced their capabilities; however, their spatial perception abilities remain a notable limitation. To address this challenge, multimodal data synthesis offers a promising solution. Yet, ensuring that synthesized data adhere to spatial common sense is a non-trivial task. Our approach addresses this critical gap by providing a systematic framework for generating spatially coherent data. In this work, we introduce SKG2DATA, a novel multimodal synthesis approach guided by spatial knowledge graphs, grounded in the concept of knowledge-to-data generation. SKG2DATA employs an automated pipeline for constructing Spatial Knowledge Graph (SKG) that effectively captures human-like spatial cognition, including directional and distance relationships. These structured representations then serve as precise guidance for our integrated synthesis pipeline, where a diffusion model generates spatially-consistent images while a MLLM produces corresponding textual descriptions. The automated construction of SKG enables scalable generation of diverse yet realistic spatial configurations, overcoming the limitations of manual data collection and annotation. Extensive experiments demonstrate that data synthesized from diverse types of spatial knowledge, including direction and distance, enhance the spatial perception and reasoning abilities of MLLMs markedly, albeit with a slight cost to their general capabilities. We hope that the idea of knowledge-based data synthesis can advance the development of spatial intelligence. Code is available at https://github.com/zjunlp/Knowledge2Data.
comment: IEEE/ACM Transactions on Audio, Speech and Language Processing
♻ ☆ Natural Language Generation
This article provides a brief overview of the field of Natural Language Generation. The term Natural Language Generation (NLG), in its broadest definition, refers to the study of systems that verbalize some form of information through natural language. That information could be stored in a large database or knowledge graph (in data-to-text applications), but NLG researchers may also study summarisation (text-to-text) or image captioning (image-to-text), for example. As a subfield of Natural Language Processing, NLG is closely related to other sub-disciplines such as Machine Translation (MT) and Dialog Systems. Some NLG researchers exclude MT from their definition of the field, since there is no content selection involved where the system has to determine what to say. Conversely, dialog systems do not typically fall under the header of Natural Language Generation since NLG is just one component of dialog systems (the others being Natural Language Understanding and Dialog Management). However, with the rise of Large Language Models (LLMs), different subfields of Natural Language Processing have converged on similar methodologies for the production of natural language and the evaluation of automatically generated text.
comment: 4 pages + references. Submitted for publication in the Encyclopedia of Language & Linguistics
♻ ☆ An Exploration of Knowledge Editing for Arabic
While Knowledge Editing (KE) has been widely explored in English, its behavior in morphologically rich languages like Arabic remains underexamined. In this work, we present the first study of Arabic KE. We evaluate four methods (ROME, MEMIT, ICE, and LTE) on Arabic translations of the ZsRE and Counterfact benchmarks, analyzing both multilingual and cross-lingual settings. Our experiments on Llama-2-7B-chat show that parameter-based methods struggle with cross-lingual generalization, while instruction-tuned methods perform more robustly. We extend Learning-To-Edit (LTE) to a multilingual setting and show that joint Arabic-English training improves both editability and transfer. We release Arabic KE benchmarks and multilingual training for LTE data to support future research.
♻ ☆ Solving Inequality Proofs with Large Language Models NeurIPS 2025
Inequality proving, crucial across diverse scientific and mathematical fields, tests advanced reasoning skills such as discovering tight bounds and strategic theorem application. This makes it a distinct, demanding frontier for large language models (LLMs), offering insights beyond general mathematical problem-solving. Progress in this area is hampered by existing datasets that are often scarce, synthetic, or rigidly formal. We address this by proposing an informal yet verifiable task formulation, recasting inequality proving into two automatically checkable subtasks: bound estimation and relation prediction. Building on this, we release IneqMath, an expert-curated dataset of Olympiad-level inequalities, including a test set and training corpus enriched with step-wise solutions and theorem annotations. We also develop a novel LLM-as-judge evaluation framework, combining a final-answer judge with four step-wise judges designed to detect common reasoning flaws. A systematic evaluation of 29 leading LLMs on IneqMath reveals a surprising reality: even top models like o1 achieve less than 10% overall accuracy under step-wise scrutiny; this is a drop of up to 65.5% from their accuracy considering only final answer equivalence. This discrepancy exposes fragile deductive chains and a critical gap for current LLMs between merely finding an answer and constructing a rigorous proof. Scaling model size and increasing test-time computation yield limited gains in overall proof correctness. Instead, our findings highlight promising research directions such as theorem-guided reasoning and self-refinement. Code and data are available at https://ineqmath.github.io/.
comment: 50 pages, 24 figures, accepted as a Spotlight at NeurIPS 2025
♻ ☆ Harmony in Divergence: Towards Fast, Accurate, and Memory-efficient Zeroth-order LLM Fine-tuning
Large language models (LLMs) excel across various tasks, but standard first-order (FO) fine-tuning demands considerable memory, significantly limiting real-world deployment. Recently, zeroth-order (ZO) optimization stood out as a promising memory-efficient training paradigm, avoiding backward passes and relying solely on forward passes for gradient estimation, making it attractive for resource-constrained scenarios. However, ZO method lags far behind FO method in both convergence speed and accuracy. To bridge the gap, we introduce a novel layer-wise divergence analysis that uncovers the distinct update pattern of FO and ZO optimization. Aiming to resemble the learning capacity of FO method from the findings, we propose Divergence-driven Zeroth-Order (DiZO) optimization. DiZO conducts divergence-driven layer adaptation by incorporating projections to ZO updates, generating diverse-magnitude updates precisely scaled to layer-wise individual optimization needs. Our results demonstrate that DiZO significantly reduces the needed iterations for convergence without sacrificing throughput, cutting training GPU hours by up to 48\% on various datasets. Moreover, DiZO consistently outperforms the representative ZO baselines in fine-tuning RoBERTa-large, OPT-series, and Llama-series on downstream tasks and, in some cases, even surpasses memory-intensive FO fine-tuning. Our code is released at https://github.com/Skilteee/DiZO.
♻ ☆ Self-correction is Not An Innate Capability in Large Language Models
Although there has been growing interest in the self-correction capability of Large Language Models (LLMs), there are varying conclusions about its effectiveness. Prior research has largely concentrated on intrinsic self-correction, extrinsic self-correction, particularly the interplay between internal knowledge and external feedback, remains underexplored. In this paper, we aim to comprehensively investigate the underlying mechanism of moral self-correction by addressing a fundamental question: is moral self-correction an innate capability of LLMs? Specifically, we conduct: (1) a behavioral analysis of LLMs' moral sensitivity based on a self-distinguishing task; and (2) a mechanistic analysis of the hidden states to examine how key components of self-correction, such as Chain-of-Thought (CoT) and external feedback, interact to facilitate moral self-correction. Drawing on empirical evidence from both behavioral and mechanistic analyses, we demonstrate that moral self-correction is not an inherent capability of LLMs, as they are neither morally sensitive nor able to effectively incorporate external feedback during the self-correction process.
♻ ☆ Discourse Heuristics For Paradoxically Moral Self-Correction
Moral self-correction has emerged as a promising approach for aligning the output of Large Language Models (LLMs) with human moral values. However, moral self-correction techniques are subject to two primary paradoxes. First, despite empirical and theoretical evidence to support the effectiveness of self-correction, this LLM capability only operates at a superficial level. Second, while LLMs possess the capability of self-diagnosing immoral aspects of their output, they struggle to identify the cause of this moral inconsistency during their self-correction process. To better understand and address these paradoxes, we analyze the discourse constructions in fine-tuning corpora designed to enhance moral self-correction, uncovering the existence of the heuristics underlying effective constructions. We demonstrate that moral self-correction relies on discourse constructions that reflect heuristic shortcuts, and that the presence of these heuristic shortcuts during self-correction leads to inconsistency when attempting to enhance both self-correction and self-diagnosis capabilities jointly. Based on our findings, we propose a solution to improve moral self-correction by leveraging the heuristics of curated datasets. We also highlight the generalization challenges of this capability, particularly in terms of learning from situated context and model scales.
♻ ☆ Debiasing LLMs by Masking Unfairness-Driving Attention Heads
Large language models (LLMs) increasingly mediate decisions in domains where unfair treatment of demographic groups is unacceptable. Existing work probes when biased outputs appear, but gives little insight into the mechanisms that generate them, leaving existing mitigations largely fragile. In this paper, we conduct a systematic investigation LLM unfairness and propose DiffHeads, a lightweight debiasing framework for LLMs. We first compare Direct-Answer (DA) prompting to Chain-of-Thought (CoT) prompting across eight representative open- and closed-source LLMs. DA will trigger the nature bias part of LLM and improve measured unfairness by 534.5%-391.9% in both one-turn and two-turn dialogues. Next, we define a token-to-head contribution score that traces each token's influence back to individual attention heads. This reveals a small cluster of bias heads that activate under DA but stay largely dormant with CoT, providing the first causal link between prompting strategy and bias emergence. Finally, building on this insight, we propose DiffHeads that identifies bias heads through differential activation analysis between DA and CoT, and selectively masks only those heads. DiffHeads reduces unfairness by 49.4%, and 40.3% under DA and CoT, respectively, without harming model utility.
♻ ☆ Self-Adaptive Cognitive Debiasing for Large Language Models in Decision-Making
Large language models (LLMs) have shown potential in supporting decision-making applications, particularly as personal assistants in the financial, healthcare, and legal domains. While prompt engineering strategies have enhanced the capabilities of LLMs in decision-making, cognitive biases inherent to LLMs present significant challenges. Cognitive biases are systematic patterns of deviation from norms or rationality in decision-making that can lead to the production of inaccurate outputs. Existing cognitive bias mitigation strategies assume that input prompts only contain one type of cognitive bias, limiting their effectiveness in more challenging scenarios involving multiple cognitive biases. To fill this gap, we propose a cognitive debiasing approach, self-adaptive cognitive debiasing (SACD), that enhances the reliability of LLMs by iteratively refining prompts. Our method follows three sequential steps - bias determination, bias analysis, and cognitive debiasing - to iteratively mitigate potential cognitive biases in prompts. We evaluate SACD on finance, healthcare, and legal decision-making tasks using both open-weight and closed-weight LLMs. Compared to advanced prompt engineering methods and existing cognitive debiasing techniques, SACD achieves the lowest average bias scores in both single-bias and multi-bias settings.
♻ ☆ PolyMath: Evaluating Mathematical Reasoning in Multilingual Contexts NeurIPS 2025
In this paper, we introduce PolyMath, a multilingual mathematical reasoning benchmark covering 18 languages and 4 easy-to-hard difficulty levels. Our benchmark ensures difficulty comprehensiveness, language diversity, and high-quality translation, making it a highly discriminative multilingual mathematical benchmark in the era of reasoning LLMs. We conduct a comprehensive evaluation for advanced LLMs and find that even Qwen-3-235B-A22B-Thinking and Gemini-2.5-pro, achieve only 54.6 and 52.2 benchmark scores, with about 40% accuracy under the highest level From a language perspective, our benchmark reveals several key challenges of LLMs in multilingual reasoning: (1) Reasoning performance varies widely across languages for current LLMs; (2) Input-output language consistency is low in reasoning LLMs and may be correlated with performance; (3) The thinking length differs significantly by language for current LLMs. Additionally, we demonstrate that controlling the output language in the instructions has the potential to affect reasoning performance, especially for some low-resource languages, suggesting a promising direction for improving multilingual capabilities in LLMs.
comment: Accepted by NeurIPS 2025
♻ ☆ Sampling-Efficient Test-Time Scaling: Self-Estimating the Best-of-N Sampling in Early Decoding NeurIPS 2025
Test-time scaling enhances large language model performance by allocating additional compute resources during inference. Best-of-N (BoN) sampling serves as a common sampling-based scaling technique, broadening the search space in parallel to find better solutions from the model distribution. However, its cost-performance trade-off is still underexplored. Two main challenges limit the efficiency of BoN sampling: (1) Generating N full samples consumes substantial GPU memory, reducing inference capacity under limited resources. (2) Reward models add extra memory and latency overhead, and training strong reward models introduces potential training data costs. Although some studies have explored efficiency improvements, none have addressed both challenges at once. To address this gap, we propose Self-Truncation Best-of-N (ST-BoN), a decoding method that avoids fully generating all N samples and eliminates the need for reward models. It leverages early sampling consistency in the model's internal states to identify the most promising path and truncate suboptimal ones. In terms of cost, ST-BoN reduces dynamic GPU memory usage by over 80% and inference latency by 50%. In terms of cost-performance trade-off, ST-BoN achieves the same performance as Full-BoN while saving computational cost by 70%-80%, and under the same cost, it can improve accuracy by 3-4 points.
comment: Accepted by NeurIPS 2025 (Spotlight)
♻ ☆ Optimizing Token Choice for Code Watermarking: An RL Approach
Protecting intellectual property on LLM-generated code necessitates effective watermarking systems that can operate within code's highly structured, syntactically constrained nature. In this work, we introduce CodeTracer, an innovative adaptive code watermarking framework underpinned by a novel reinforcement learning training paradigm. At its core, CodeTracer features a policy-driven approach that utilizes a parameterized model to intelligently bias token choices during next-token prediction. This strategy ensures that embedded watermarks maintain code functionality while exhibiting subtle yet statistically detectable deviations from typical token distributions. To facilitate policy learning, we devise a comprehensive reward system that seamlessly integrates execution feedback with watermark embedding signals, balancing process-level and outcome-level rewards. Additionally, we employ Gumbel Top-k reparameterization to enable gradient-based optimization of discrete watermarking decisions. Extensive comparative evaluations demonstrate CodeTracer's significant superiority over state-of-the-art baselines in both watermark detectability and the preservation of generated code's functionality.
comment: 18 pages, 3 figures
♻ ☆ From BERT to LLMs: Comparing and Understanding Chinese Classifier Prediction in Language Models
Classifiers are an important and defining feature of the Chinese language, and their correct prediction is key to numerous educational applications. Yet, whether the most popular Large Language Models (LLMs) possess proper knowledge the Chinese classifiers is an issue that has largely remain unexplored in the Natural Language Processing (NLP) literature. To address such a question, we employ various masking strategies to evaluate the LLMs' intrinsic ability, the contribution of different sentence elements, and the working of the attention mechanisms during prediction. Besides, we explore fine-tuning for LLMs to enhance the classifier performance. Our findings reveal that LLMs perform worse than BERT, even with fine-tuning. The prediction, as expected, greatly benefits from the information about the following noun, which also explains the advantage of models with a bidirectional attention mechanism such as BERT.
♻ ☆ CrowdVLM-R1: Expanding R1 Ability to Vision Language Model for Crowd Counting using Fuzzy Group Relative Policy Reward
We propose Fuzzy Group Relative Policy Reward (FGRPR), a novel framework that integrates Group Relative Policy Optimization (GRPO) with a fuzzy reward function to enhance learning efficiency. Unlike the conventional binary 0/1 accuracy reward, our fuzzy reward model provides nuanced incentives, encouraging more precise outputs. Experimental results demonstrate that GRPO with a standard 0/1 accuracy reward underperforms compared to supervised fine-tuning (SFT). In contrast, FGRPR, applied to Qwen2.5-VL(3B and 7B), surpasses all baseline models, including GPT4o, LLaMA2(90B), and SFT, across five in-domain datasets. On an out-of-domain dataset, FGRPR achieves performance comparable to SFT but excels when target values are larger, as its fuzzy reward function assigns higher rewards to closer approximations. This approach is broadly applicable to tasks where the precision of the answer is critical. Code and data: https://github.com/yeyimilk/CrowdVLM-R1
comment: 10 pages, 6 figures and 4 tables
♻ ☆ Elicit and Enhance: Advancing Multimodal Reasoning in Medical Scenarios
Effective clinical decision-making depends on iterative, multimodal reasoning across diverse sources of evidence. The recent emergence of multimodal reasoning models has significantly transformed the landscape of solving complex tasks. Although such models have achieved notable success in mathematics and science, their application to medical domains remains underexplored. In this work, we propose \textit{MedE$^2$}, a two-stage post-training pipeline that elicits and then enhances multimodal reasoning for medical domains. In Stage-I, we fine-tune models using 2,000 text-only data samples containing precisely orchestrated reasoning demonstrations to elicit reasoning behaviors. In Stage-II, we further enhance the model's reasoning capabilities using 1,500 rigorously curated multimodal medical cases, aligning model reasoning outputs with our proposed multimodal medical reasoning preference. Extensive experiments demonstrate the efficacy and reliability of \textit{MedE$^2$} in improving the reasoning performance of medical multimodal models. Notably, models trained with \textit{MedE$^2$} consistently outperform baselines across multiple medical multimodal benchmarks. Additional validation on larger models and under inference-time scaling further confirms the robustness and practical utility of our approach.
♻ ☆ Res-Bench: Benchmarking the Robustness of Multimodal Large Language Models to Dynamic Resolution Input
Multimodal Large Language Models (MLLMs) increasingly support dynamic image resolutions. However, current evaluation paradigms primarily assess semantic performance, overlooking the critical question of resolution robustness - whether performance remains stable across varying input resolutions. To address this gap, we introduce \textbf{Res-Bench}, a comprehensive benchmark comprising 14,400 samples across 12 resolution levels and six core capability dimensions. We designed a novel evaluation framework that goes beyond traditional accuracy metrics to capture performance stability. This framework introduces multiple robustness metrics: Spearman's correlation for assessing resolution-performance trends, and Absolute/Relative Continuous Error (ACE/RCE) for measuring performance volatility. Using these metrics, we conducted a large-scale evaluation of leading MLLMs. Our analysis encompasses: (1) model-centric and task-centric robustness examination, (2) investigation of preprocessing strategies including padding and super-resolution, and (3) exploration of fine-tuning for stability enhancement.
comment: The authors have discovered a significant error in the paper subsequent to submission, and are withdrawing the manuscript for substantial correction
♻ ☆ KIT's Low-resource Speech Translation Systems for IWSLT2025: System Enhancement with Synthetic Data and Model Regularization
This paper presents KIT's submissions to the IWSLT 2025 low-resource track. We develop both cascaded systems, consisting of Automatic Speech Recognition (ASR) and Machine Translation (MT) models, and end-to-end (E2E) Speech Translation (ST) systems for three language pairs: Bemba, North Levantine Arabic, and Tunisian Arabic into English. Building upon pre-trained models, we fine-tune our systems with different strategies to utilize resources efficiently. This study further explores system enhancement with synthetic data and model regularization. Specifically, we investigate MT-augmented ST by generating translations from ASR data using MT models. For North Levantine, which lacks parallel ST training data, a system trained solely on synthetic data slightly surpasses the cascaded system trained on real data. We also explore augmentation using text-to-speech models by generating synthetic speech from MT data, demonstrating the benefits of synthetic data in improving both ASR and ST performance for Bemba. Additionally, we apply intra-distillation to enhance model performance. Our experiments show that this approach consistently improves results across ASR, MT, and ST tasks, as well as across different pre-trained models. Finally, we apply Minimum Bayes Risk decoding to combine the cascaded and end-to-end systems, achieving an improvement of approximately 1.5 BLEU points.
♻ ☆ SafeDialBench: A Fine-Grained Safety Benchmark for Large Language Models in Multi-Turn Dialogues with Diverse Jailbreak Attacks
With the rapid advancement of Large Language Models (LLMs), the safety of LLMs has been a critical concern requiring precise assessment. Current benchmarks primarily concentrate on single-turn dialogues or a single jailbreak attack method to assess the safety. Additionally, these benchmarks have not taken into account the LLM's capability of identifying and handling unsafe information in detail. To address these issues, we propose a fine-grained benchmark SafeDialBench for evaluating the safety of LLMs across various jailbreak attacks in multi-turn dialogues. Specifically, we design a two-tier hierarchical safety taxonomy that considers 6 safety dimensions and generates more than 4000 multi-turn dialogues in both Chinese and English under 22 dialogue scenarios. We employ 7 jailbreak attack strategies, such as reference attack and purpose reverse, to enhance the dataset quality for dialogue generation. Notably, we construct an innovative assessment framework of LLMs, measuring capabilities in detecting, and handling unsafe information and maintaining consistency when facing jailbreak attacks. Experimental results across 17 LLMs reveal that Yi-34B-Chat and GLM4-9B-Chat demonstrate superior safety performance, while Llama3.1-8B-Instruct and o3-mini exhibit safety vulnerabilities.
♻ ☆ Medical Hallucinations in Foundation Models and Their Impact on Healthcare
Hallucinations in foundation models arise from autoregressive training objectives that prioritize token-likelihood optimization over epistemic accuracy, fostering overconfidence and poorly calibrated uncertainty. We define medical hallucination as any model-generated output that is factually incorrect, logically inconsistent, or unsupported by authoritative clinical evidence in ways that could alter clinical decisions. We evaluated 11 foundation models (7 general-purpose, 4 medical-specialized) across seven medical hallucination tasks spanning medical reasoning and biomedical information retrieval. General-purpose models achieved significantly higher proportions of hallucination-free responses than medical-specialized models (median: 76.6% vs 51.3%, difference = 25.2%, 95% CI: 18.7-31.3%, Mann-Whitney U = 27.0, p = 0.012, rank-biserial r = -0.64). Top-performing models such as Gemini-2.5 Pro exceeded 97% accuracy when augmented with chain-of-thought prompting (base: 87.6%), while medical-specialized models like MedGemma ranged from 28.6-61.9% despite explicit training on medical corpora. Chain-of-thought reasoning significantly reduced hallucinations in 86.4% of tested comparisons after FDR correction (q < 0.05), demonstrating that explicit reasoning traces enable self-verification and error detection. Physician audits confirmed that 64-72% of residual hallucinations stemmed from causal or temporal reasoning failures rather than knowledge gaps. A global survey of clinicians (n = 70) validated real-world impact: 91.8% had encountered medical hallucinations, and 84.7% considered them capable of causing patient harm. The underperformance of medical-specialized models despite domain training indicates that safety emerges from sophisticated reasoning capabilities and broad knowledge integration developed during large-scale pre-training, not from narrow optimization.
AlignVLM: Bridging Vision and Language Latent Spaces for Multimodal Document Understanding
Aligning visual features with language embeddings is a key challenge in vision-language models (VLMs). The performance of such models hinges on having a good connector that maps visual features generated by a vision encoder to a shared embedding space with the LLM while preserving semantic similarity. Existing connectors, such as multilayer perceptrons (MLPs), lack inductive bias to constrain visual features within the linguistic structure of the LLM's embedding space, making them data-hungry and prone to cross-modal misalignment. In this work, we propose a novel vision-text alignment method, AlignVLM, that maps visual features to a weighted average of LLM text embeddings. Our approach leverages the linguistic priors encoded by the LLM to ensure that visual features are mapped to regions of the space that the LLM can effectively interpret. AlignVLM is particularly effective for document understanding tasks, where visual and textual modalities are highly correlated. Our extensive experiments show that AlignVLM achieves state-of-the-art performance compared to prior alignment methods, with larger gains on document understanding tasks and under low-resource setups. We provide further analysis demonstrating its efficiency and robustness to noise.
♻ ☆ Scientists' First Exam: Probing Cognitive Abilities of MLLM via Perception, Understanding, and Reasoning
Scientific discoveries increasingly rely on complex multimodal reasoning based on information-intensive scientific data and domain-specific expertise. Empowered by expert-level scientific benchmarks, scientific Multimodal Large Language Models (MLLMs) hold the potential to significantly enhance this discovery process in realistic workflows. However, current scientific benchmarks mostly focus on evaluating the knowledge understanding capabilities of MLLMs, leading to an inadequate assessment of their perception and reasoning abilities. To address this gap, we present the Scientists' First Exam (SFE) benchmark, designed to evaluate the scientific cognitive capacities of MLLMs through three interconnected levels: scientific signal perception, scientific attribute understanding, scientific comparative reasoning. Specifically, SFE comprises 830 expert-verified VQA pairs across three question types, spanning 66 multimodal tasks across five high-value disciplines. Extensive experiments reveal that current state-of-the-art GPT-o3 and InternVL-3 achieve only 34.08% and 26.52% on SFE, highlighting significant room for MLLMs to improve in scientific realms. We hope the insights obtained in SFE will facilitate further developments in AI-enhanced scientific discoveries.
comment: 82 pages
♻ ☆ Measuring Algorithmic Partisanship via Zero-Shot Classification and Its Implications on Political Discourse
Amidst the rapid normalization of generative artificial intelligence (GAI), intelligent systems have come to dominate political discourse across information media. However, internalized political biases stemming from training data skews, human prejudice, and algorithmic flaws continue to plague this novel technology. This study employs a zero-shot classification approach to evaluate algorithmic political partisanship through a methodical combination of ideological alignment, topicality, response sentiment, and objectivity. A total of 1800 model responses across six mainstream large language models (LLMs) were individually input into four distinct fine-tuned classification algorithms, each responsible for computing one of the aforementioned metrics. The results show an amplified liberal-authoritarian alignment across the six LLMs evaluated, with notable instances of reasoning supersessions and canned refusals. The study subsequently highlights the psychological influences underpinning human-computer interactions and how intrinsic biases can permeate public discourse. The resulting distortion of the political landscape can ultimately manifest as conformity or polarization, depending on the region's pre-existing socio-political structures.
comment: 19 pages, 7 figures
♻ ☆ Mafoko: Structuring and Building Open Multilingual Terminologies for South African NLP
The critical lack of structured terminological data for South Africa's official languages hampers progress in multilingual NLP, despite the existence of numerous government and academic terminology lists. These valuable assets remain fragmented and locked in non-machine-readable formats, rendering them unusable for computational research and development. Mafoko addresses this challenge by systematically aggregating, cleaning, and standardising these scattered resources into open, interoperable datasets. We introduce the foundational Mafoko dataset, released under the equitable, Africa-centered NOODL framework. To demonstrate its immediate utility, we integrate the terminology into a Retrieval-Augmented Generation (RAG) pipeline. Experiments show substantial improvements in the accuracy and domain-specific consistency of English-to-Tshivenda machine translation for large language models. Mafoko provides a scalable foundation for developing robust and equitable NLP technologies, ensuring South Africa's rich linguistic diversity is represented in the digital age.
comment: Accepted for Sixth Workshop on Resources for African Indigenous Languages (RAIL) 2025
♻ ☆ FESTA: Functionally Equivalent Sampling for Trust Assessment of Multimodal LLMs EMNLP
The accurate trust assessment of multimodal large language models (MLLMs) generated predictions, which can enable selective prediction and improve user confidence, is challenging due to the diverse multi-modal input paradigms. We propose Functionally Equivalent Sampling for Trust Assessment (FESTA), a multimodal input sampling technique for MLLMs, that generates an uncertainty measure based on the equivalent and complementary input samplings. The proposed task-preserving sampling approach for uncertainty quantification expands the input space to probe the consistency (through equivalent samples) and sensitivity (through complementary samples) of the model. FESTA uses only input-output access of the model (black-box), and does not require ground truth (unsupervised). The experiments are conducted with various off-the-shelf multi-modal LLMs, on both visual and audio reasoning tasks. The proposed FESTA uncertainty estimate achieves significant improvement (33.3% relative improvement for vision-LLMs and 29.6% relative improvement for audio-LLMs) in selective prediction performance, based on area-under-receiver-operating-characteristic curve (AUROC) metric in detecting mispredictions. The code implementation is open-sourced.
comment: Accepted in the Findings of EMNLP, 2025
♻ ☆ Curriculum Reinforcement Learning from Easy to Hard Tasks Improves LLM Reasoning
We aim to improve the reasoning capabilities of language models via reinforcement learning (RL). Recent RL post-trained models like DeepSeek-R1 have demonstrated reasoning abilities on mathematical and coding tasks. However, prior studies suggest that using RL alone to improve reasoning on inherently difficult tasks is less effective. Here, we draw inspiration from curriculum learning and propose to schedule tasks from easy to hard (E2H), allowing LLMs to build reasoning skills gradually. Our method is termed E2H Reasoner. Empirically, we observe that, although easy tasks are important initially, fading them out through appropriate scheduling is essential in preventing overfitting. Theoretically, we establish convergence guarantees for E2H Reasoner within an approximate policy iteration framework. We derive finite-sample complexity bounds and show that when tasks are appropriately decomposed and conditioned, learning through curriculum stages requires fewer total samples than direct learning. Experiments across multiple domains show that E2H Reasoner significantly improves the reasoning ability of small LLMs (1.5B to 3B), which otherwise struggle when trained with vanilla RL alone, highlighting the effectiveness of our method. Our code can be found on https://github.com/divelab/E2H-Reasoning.
♻ ☆ Hardware-aligned Hierarchical Sparse Attention for Efficient Long-term Memory Access NeurIPS 2025
A key advantage of Recurrent Neural Networks (RNNs) over Transformers is their linear computational and space complexity enables faster training and inference for long sequences. However, RNNs are fundamentally unable to randomly access historical context, and simply integrating attention mechanisms may undermine their efficiency advantages. To overcome this limitation, we propose Hierarchical Sparse Attention (HSA), a novel attention mechanism that enhances RNNs with long-range random access flexibility while preserving their merits in efficiency and length generalization. HSA divides inputs into chunks, selects the top-$k$ chunks and hierarchically aggregates information. The core innovation lies in learning token-to-chunk relevance based on fine-grained token-level information inside each chunk. This approach enhances the precision of chunk selection across both in-domain and out-of-domain context lengths. To make HSA efficient, we further introduce a hardware-aligned kernel design. By combining HSA with Mamba, we introduce RAMba, which achieves perfect accuracy in passkey retrieval across 64 million contexts despite pre-training on only 4K-length contexts, and significant improvements on various downstream tasks, with nearly constant memory footprint. These results show RAMba's huge potential in long-context modeling.
comment: Accepted to NeurIPS 2025
♻ ☆ BrainLLM: Generative Language Decoding from Brain Recordings
Generating human language through non-invasive brain-computer interfaces (BCIs) has the potential to unlock many applications, such as serving disabled patients and improving communication. Currently, however, generating language via BCIs has been previously successful only within a classification setup for selecting pre-generated sentence continuation candidates with the most likely cortical semantic representation. Inspired by recent research that revealed associations between the brain and the large computational language models, we propose a generative language BCI that utilizes the capacity of a large language model (LLM) jointly with a semantic brain decoder to directly generate language from functional magnetic resonance imaging (fMRI) input. The proposed model can generate coherent language sequences aligned with the semantic content of visual or auditory language stimuli perceived, without prior knowledge of any pre-generated candidates. We compare the language generated from the presented model with a random control, pre-generated language selection approach, and a standard LLM, which generates common coherent text solely based on the next word likelihood according to statistical language training data. The proposed model is found to generate language that is more aligned with semantic stimulus in response to which brain input is sampled. Our findings demonstrate the potential and feasibility of employing BCIs in direct language generation.
comment: Nature Communications Biology
Computer Vision and Pattern Recognition
♻ ☆ CanadaFireSat: Toward high-resolution wildfire forecasting with multiple modalities
Canada experienced in 2023 one of the most severe wildfire seasons in recent history, causing damage across ecosystems, destroying communities, and emitting large quantities of CO2. This extreme wildfire season is symptomatic of a climate-change-induced increase in the length and severity of the fire season that affects the boreal ecosystem. Therefore, it is critical to empower wildfire management in boreal communities with better mitigation solutions. Wildfire probability maps represent an important tool for understanding the likelihood of wildfire occurrence and the potential severity of future wildfires. The massive increase in the availability of Earth observation data has enabled the development of deep learning-based wildfire forecasting models, aiming at providing precise wildfire probability maps at different spatial and temporal scales. A main limitation of such methods is their reliance on coarse-resolution environmental drivers and satellite products, leading to wildfire occurrence prediction of reduced resolution, typically around $\sim 0.1${\deg}. This paper presents a benchmark dataset: CanadaFireSat, and baseline methods for high-resolution: 100 m wildfire forecasting across Canada, leveraging multi-modal data from high-resolution multi-spectral satellite images (Sentinel-2 L1C), mid-resolution satellite products (MODIS), and environmental factors (ERA5 reanalysis data). Our experiments consider two major deep learning architectures. We observe that using multi-modal temporal inputs outperforms single-modal temporal inputs across all metrics, achieving a peak performance of 60.3% in F1 score for the 2023 wildfire season, a season never seen during model training. This demonstrates the potential of multi-modal deep learning models for wildfire forecasting at high-resolution and continental scale.
comment: 34 pages, 11 figures
♻ ☆ Learning to Steer: Input-dependent Steering for Multimodal LLMs NeurIPS 2025
Steering has emerged as a practical approach to enable post-hoc guidance of LLMs towards enforcing a specific behavior. However, it remains largely underexplored for multimodal LLMs (MLLMs); furthermore, existing steering techniques, such as mean steering, rely on a single steering vector, applied independently of the input query. This paradigm faces limitations when the desired behavior is dependent on the example at hand. For example, a safe answer may consist in abstaining from answering when asked for an illegal activity, or may point to external resources or consultation with an expert when asked about medical advice. In this paper, we investigate a fine-grained steering that uses an input-specific linear shift. This shift is computed using contrastive input-specific prompting. However, the input-specific prompts required for this approach are not known at test time. Therefore, we propose to train a small auxiliary module to predict the input-specific steering vector. Our approach, dubbed as L2S (Learn-to-Steer), demonstrates that it reduces hallucinations and enforces safety in MLLMs, outperforming other static baselines. Our code is publicly available at https://jayneelparekh.github.io/learn-to-steer/
comment: NeurIPS 2025
♻ ☆ Spatial Knowledge Graph-Guided Multimodal Synthesis
Recent advances in Multimodal Large Language Models (MLLMs) have significantly enhanced their capabilities; however, their spatial perception abilities remain a notable limitation. To address this challenge, multimodal data synthesis offers a promising solution. Yet, ensuring that synthesized data adhere to spatial common sense is a non-trivial task. Our approach addresses this critical gap by providing a systematic framework for generating spatially coherent data. In this work, we introduce SKG2DATA, a novel multimodal synthesis approach guided by spatial knowledge graphs, grounded in the concept of knowledge-to-data generation. SKG2DATA employs an automated pipeline for constructing Spatial Knowledge Graph (SKG) that effectively captures human-like spatial cognition, including directional and distance relationships. These structured representations then serve as precise guidance for our integrated synthesis pipeline, where a diffusion model generates spatially-consistent images while a MLLM produces corresponding textual descriptions. The automated construction of SKG enables scalable generation of diverse yet realistic spatial configurations, overcoming the limitations of manual data collection and annotation. Extensive experiments demonstrate that data synthesized from diverse types of spatial knowledge, including direction and distance, enhance the spatial perception and reasoning abilities of MLLMs markedly, albeit with a slight cost to their general capabilities. We hope that the idea of knowledge-based data synthesis can advance the development of spatial intelligence. Code is available at https://github.com/zjunlp/Knowledge2Data.
comment: IEEE/ACM Transactions on Audio, Speech and Language Processing
♻ ☆ Dropping the D: RGB-D SLAM Without the Depth Sensor
We present DropD-SLAM, a real-time monocular SLAM system that achieves RGB-D-level accuracy without relying on depth sensors. The system replaces active depth input with three pretrained vision modules: a monocular metric depth estimator, a learned keypoint detector, and an instance segmentation network. Dynamic objects are suppressed using dilated instance masks, while static keypoints are assigned predicted depth values and backprojected into 3D to form metrically scaled features. These are processed by an unmodified RGB-D SLAM back end for tracking and mapping. On the TUM RGB-D benchmark, DropD-SLAM attains 7.4 cm mean ATE on static sequences and 1.8 cm on dynamic sequences, matching or surpassing state-of-the-art RGB-D methods while operating at 22 FPS on a single GPU. These results suggest that modern pretrained vision models can replace active depth sensors as reliable, real-time sources of metric scale, marking a step toward simpler and more cost-effective SLAM systems.
♻ ☆ As Good as It KAN Get: High-Fidelity Audio Representation CIKM '25
Implicit neural representations (INR) have gained prominence for efficiently encoding multimedia data, yet their applications in audio signals remain limited. This study introduces the Kolmogorov-Arnold Network (KAN), a novel architecture using learnable activation functions, as an effective INR model for audio representation. KAN demonstrates superior perceptual performance over previous INRs, achieving the lowest Log-SpectralDistance of 1.29 and the highest Perceptual Evaluation of Speech Quality of 3.57 for 1.5 s audio. To extend KAN's utility, we propose FewSound, a hypernetwork-based architecture that enhances INR parameter updates. FewSound outperforms the state-of-the-art HyperSound, with a 33.3% improvement in MSE and 60.87% in SI-SNR. These results show KAN as a robust and adaptable audio representation with the potential for scalability and integration into various hypernetwork frameworks. The source code can be accessed at https://github.com/gmum/fewsound.git.
comment: Accepted to the 34th ACM International Conference on Information and Knowledge Management (CIKM '25)
♻ ☆ Modality-AGnostic Image Cascade (MAGIC) for Multi-Modality Cardiac Substructure Segmentation
Cardiac substructure delineation is emerging in treatment planning to minimize the risk of radiation-induced heart disease. Deep learning offers efficient methods to reduce contouring burden but currently lacks generalizability across different modalities and overlapping structures. This work introduces and validates a Modality-AGnostic Image Cascade (MAGIC) deep-learning pipeline for comprehensive and multi-modal cardiac substructure segmentation. MAGIC is implemented through replicated encoding and decoding branches of an nnU-Net backbone to handle multi-modality inputs and overlapping labels. First benchmarked on the multi-modality whole-heart segmentation (MMWHS) dataset including cardiac CT-angiography (CCTA) and MR modalities, twenty cardiac substructures (heart, chambers, great vessels (GVs), valves, coronary arteries (CAs), and conduction nodes) from clinical simulation CT (Sim-CT), low-field MR-Linac, and cardiac CT-angiography (CCTA) modalities were delineated to train semi-supervised (n=151), validate (n=15), and test (n=30) MAGIC. For comparison, fourteen single-modality comparison models (two MMWHS modalities and four subgroups across three clinical modalities) were trained. Methods were evaluated for efficiency and against reference contours through the Dice similarity coefficient (DSC) and two-tailed Wilcoxon Signed-Rank test (p<0.05). Average MMWHS DSC scores across CCTA and MR inputs were 0.88(0.08) and 0.87(0.04) respectively with significant improvement over unimodal baselines. Average 20-structure DSC scores were 0.75(0.16) for Sim-CT, 0.68(0.21) for MR-Linac, and 0.80(0.16) for CCTA. Furthermore, >80% and >70% reductions in training time and parameters were achieved, respectively. MAGIC offers an efficient, lightweight solution capable of segmenting multiple image modalities and overlapping structures in a single model without compromising segmentation accuracy.
♻ ☆ LiteTracker: Leveraging Temporal Causality for Accurate Low-latency Tissue Tracking
Tissue tracking plays a critical role in various surgical navigation and extended reality (XR) applications. While current methods trained on large synthetic datasets achieve high tracking accuracy and generalize well to endoscopic scenes, their runtime performances fail to meet the low-latency requirements necessary for real-time surgical applications. To address this limitation, we propose LiteTracker, a low-latency method for tissue tracking in endoscopic video streams. LiteTracker builds on a state-of-the-art long-term point tracking method, and introduces a set of training-free runtime optimizations. These optimizations enable online, frame-by-frame tracking by leveraging a temporal memory buffer for efficient feature reuse and utilizing prior motion for accurate track initialization. LiteTracker demonstrates significant runtime improvements being around 7x faster than its predecessor and 2x than the state-of-the-art. Beyond its primary focus on efficiency, LiteTracker delivers high-accuracy tracking and occlusion prediction, performing competitively on both the STIR and SuPer datasets. We believe LiteTracker is an important step toward low-latency tissue tracking for real-time surgical applications in the operating room. Our code is publicly available at https://github.com/ImFusionGmbH/lite-tracker.
♻ ☆ AdaSCALE: Adaptive Scaling for OOD Detection SC
The ability of the deep learning model to recognize when a sample falls outside its learned distribution is critical for safe and reliable deployment. Recent state-of-the-art out-of-distribution (OOD) detection methods leverage activation shaping to improve the separation between in-distribution (ID) and OOD inputs. These approaches resort to sample-specific scaling but apply a static percentile threshold across all samples regardless of their nature, resulting in suboptimal ID-OOD separability. In this work, we propose \textbf{AdaSCALE}, an adaptive scaling procedure that dynamically adjusts the percentile threshold based on a sample's estimated OOD likelihood. This estimation leverages our key observation: OOD samples exhibit significantly more pronounced activation shifts at high-magnitude activations under minor perturbation compared to ID samples. AdaSCALE enables stronger scaling for likely ID samples and weaker scaling for likely OOD samples, yielding highly separable energy scores. Our approach achieves state-of-the-art OOD detection performance, outperforming the latest rival OptFS by 14.94% in near-OOD and 21.67% in far-OOD datasets in average FPR@95 metric on the ImageNet-1k benchmark across eight diverse architectures. The code is available at: https://github.com/sudarshanregmi/AdaSCALE/
comment: https://github.com/sudarshanregmi/AdaSCALE/
♻ ☆ A Racing Dataset and Baseline Model for Track Detection in Autonomous Racing
A significant challenge in racing-related research is the lack of publicly available datasets containing raw images with corresponding annotations for the downstream task. In this paper, we introduce RoRaTrack, a novel dataset that contains annotated multi-camera image data from racing scenarios for track detection. The data is collected on a Dallara AV-21 at a racing circuit in Indiana, in collaboration with the Indy Autonomous Challenge (IAC). RoRaTrack addresses common problems such as blurriness due to high speed, color inversion from the camera, and absence of lane markings on the track. Consequently, we propose RaceGAN, a baseline model based on a Generative Adversarial Network (GAN) that effectively addresses these challenges. The proposed model demonstrates superior performance compared to current state-of-the-art machine learning models in track detection. The dataset and code for this work are available at https://github.com/ghosh64/RaceGAN.
comment: Currently Under Review
♻ ☆ Scaling Tumor Segmentation: Best Lessons from Real and Synthetic Data ICCV 2025
AI for tumor segmentation is limited by the lack of large, voxel-wise annotated datasets, which are hard to create and require medical experts. In our proprietary JHH dataset of 3,000 annotated pancreatic tumor scans, we found that AI performance stopped improving after 1,500 scans. With synthetic data, we reached the same performance using only 500 real scans. This finding suggests that synthetic data can steepen data scaling laws, enabling more efficient model training than real data alone. Motivated by these lessons, we created AbdomenAtlas 2.0--a dataset of 10,135 CT scans with a total of 15,130 tumor instances per-voxel manually annotated in six organs (pancreas, liver, kidney, colon, esophagus, and uterus) and 5,893 control scans. Annotated by 23 expert radiologists, it is several orders of magnitude larger than existing public tumor datasets. While we continue expanding the dataset, the current version of AbdomenAtlas 2.0 already provides a strong foundation--based on lessons from the JHH dataset--for training AI to segment tumors in six organs. It achieves notable improvements over public datasets, with a +7% DSC gain on in-distribution tests and +16% on out-of-distribution tests.
comment: ICCV 2025
♻ ☆ CrowdVLM-R1: Expanding R1 Ability to Vision Language Model for Crowd Counting using Fuzzy Group Relative Policy Reward
We propose Fuzzy Group Relative Policy Reward (FGRPR), a novel framework that integrates Group Relative Policy Optimization (GRPO) with a fuzzy reward function to enhance learning efficiency. Unlike the conventional binary 0/1 accuracy reward, our fuzzy reward model provides nuanced incentives, encouraging more precise outputs. Experimental results demonstrate that GRPO with a standard 0/1 accuracy reward underperforms compared to supervised fine-tuning (SFT). In contrast, FGRPR, applied to Qwen2.5-VL(3B and 7B), surpasses all baseline models, including GPT4o, LLaMA2(90B), and SFT, across five in-domain datasets. On an out-of-domain dataset, FGRPR achieves performance comparable to SFT but excels when target values are larger, as its fuzzy reward function assigns higher rewards to closer approximations. This approach is broadly applicable to tasks where the precision of the answer is critical. Code and data: https://github.com/yeyimilk/CrowdVLM-R1
comment: 10 pages, 6 figures and 4 tables
♻ ☆ Gaussian Splashing: Direct Volumetric Rendering Underwater
In underwater images, most useful features are occluded by water. The extent of the occlusion depends on imaging geometry and can vary even across a sequence of burst images. As a result, 3D reconstruction methods robust on in-air scenes, like Neural Radiance Field methods (NeRFs) or 3D Gaussian Splatting (3DGS), fail on underwater scenes. While a recent underwater adaptation of NeRFs achieved state-of-the-art results, it is impractically slow: reconstruction takes hours and its rendering rate, in frames per second (FPS), is less than 1. Here, we present a new method that takes only a few minutes for reconstruction and renders novel underwater scenes at 140 FPS. Named Gaussian Splashing, our method unifies the strengths and speed of 3DGS with an image formation model for capturing scattering, introducing innovations in the rendering and depth estimation procedures and in the 3DGS loss function. Despite the complexities of underwater adaptation, our method produces images at unparalleled speeds with superior details. Moreover, it reveals distant scene details with far greater clarity than other methods, dramatically improving reconstructed and rendered images. We demonstrate results on existing datasets and a new dataset we have collected. Additional visual results are available at: https://bgu-cs-vil.github.io/gaussiansplashingUW.github.io/ .
♻ ☆ BiMediX2: Bio-Medical EXpert LMM for Diverse Medical Modalities EMNLP 2025
We introduce BiMediX2, a bilingual (Arabic-English) Bio-Medical EXpert Large Multimodal Model that supports text-based and image-based medical interactions. It enables multi-turn conversation in Arabic and English and supports diverse medical imaging modalities, including radiology, CT, and histology. To train BiMediX2, we curate BiMed-V, an extensive Arabic-English bilingual healthcare dataset consisting of 1.6M samples of diverse medical interactions. This dataset supports a range of medical Large Language Model (LLM) and Large Multimodal Model (LMM) tasks, including multi-turn medical conversations, report generation, and visual question answering (VQA). We also introduce BiMed-MBench, the first Arabic-English medical LMM evaluation benchmark, verified by medical experts. BiMediX2 demonstrates excellent performance across multiple medical LLM and LMM benchmarks, achieving state-of-the-art results compared to other open-sourced models. On BiMed-MBench, BiMediX2 outperforms existing methods by over 9% in English and more than 20% in Arabic evaluations. Additionally, it surpasses GPT-4 by approximately 9% in UPHILL factual accuracy evaluations and excels in various medical VQA, report generation, and report summarization tasks. Our trained models, instruction set, and source code are available at https://github.com/mbzuai-oryx/BiMediX2
comment: Accepted to EMNLP 2025 (Findings)
♻ ☆ MOSPA: Human Motion Generation Driven by Spatial Audio NeurIPS 2025
Enabling virtual humans to dynamically and realistically respond to diverse auditory stimuli remains a key challenge in character animation, demanding the integration of perceptual modeling and motion synthesis. Despite its significance, this task remains largely unexplored. Most previous works have primarily focused on mapping modalities like speech, audio, and music to generate human motion. As of yet, these models typically overlook the impact of spatial features encoded in spatial audio signals on human motion. To bridge this gap and enable high-quality modeling of human movements in response to spatial audio, we introduce the first comprehensive Spatial Audio-Driven Human Motion (SAM) dataset, which contains diverse and high-quality spatial audio and motion data. For benchmarking, we develop a simple yet effective diffusion-based generative framework for human MOtion generation driven by SPatial Audio, termed MOSPA, which faithfully captures the relationship between body motion and spatial audio through an effective fusion mechanism. Once trained, MOSPA can generate diverse, realistic human motions conditioned on varying spatial audio inputs. We perform a thorough investigation of the proposed dataset and conduct extensive experiments for benchmarking, where our method achieves state-of-the-art performance on this task. Our code and model are publicly available at https://github.com/xsy27/Mospa-Acoustic-driven-Motion-Generation
comment: NeurIPS 2025 (Spotlight)
♻ ☆ Co-MTP: A Cooperative Trajectory Prediction Framework with Multi-Temporal Fusion for Autonomous Driving ICRA 2025
Vehicle-to-everything technologies (V2X) have become an ideal paradigm to extend the perception range and see through the occlusion. Exiting efforts focus on single-frame cooperative perception, however, how to capture the temporal cue between frames with V2X to facilitate the prediction task even the planning task is still underexplored. In this paper, we introduce the Co-MTP, a general cooperative trajectory prediction framework with multi-temporal fusion for autonomous driving, which leverages the V2X system to fully capture the interaction among agents in both history and future domains to benefit the planning. In the history domain, V2X can complement the incomplete history trajectory in single-vehicle perception, and we design a heterogeneous graph transformer to learn the fusion of the history feature from multiple agents and capture the history interaction. Moreover, the goal of prediction is to support future planning. Thus, in the future domain, V2X can provide the prediction results of surrounding objects, and we further extend the graph transformer to capture the future interaction among the ego planning and the other vehicles' intentions and obtain the final future scenario state under a certain planning action. We evaluate the Co-MTP framework on the real-world dataset V2X-Seq, and the results show that Co-MTP achieves state-of-the-art performance and that both history and future fusion can greatly benefit prediction.
comment: 8 pages, 3 figures, ICRA 2025
♻ ☆ OpenMaterial: A Large-scale Dataset of Complex Materials for 3D Reconstruction
Recent advances in deep learning, such as neural radiance fields and implicit neural representations, have significantly advanced 3D reconstruction. However, accurately reconstructing objects with complex optical properties, such as metals, glass, and plastics, remains challenging due to the breakdown of multi-view color consistency in the presence of specular reflections, refractions, and transparency. This limitation is further exacerbated by the lack of benchmark datasets that explicitly model material-dependent light transport. To address this, we introduce OpenMaterial, a large-scale semi-synthetic dataset for benchmarking material-aware 3D reconstruction. It comprises 1,001 objects spanning 295 distinct materials, including conductors, dielectrics, plastics, and their roughened variants, captured under 714 diverse lighting conditions. By integrating lab-measured Index of Refraction (IOR) spectra, OpenMaterial enables the generation of high-fidelity multi-view images that accurately simulate complex light-matter interactions. It provides multi-view images, 3D shape models, camera poses, depth maps, and object masks, establishing the first extensive benchmark for evaluating 3D reconstruction on challenging materials. We evaluate 11 state-of-the-art methods for 3D reconstruction and novel view synthesis, conducting ablation studies to assess the impact of material type, shape complexity, and illumination on reconstruction performance. Our results indicate that OpenMaterial provides a strong and fair basis for developing more robust, physically-informed 3D reconstruction techniques to better handle real-world optical complexities.
♻ ☆ Improved visual-information-driven model for crowd simulation and its modular application
Data-driven crowd simulation models offer advantages in enhancing the accuracy and realism of simulations, and improving their generalizability is essential for promoting application. Current data-driven approaches are primarily designed for a single scenario, with very few models validated across more than two scenarios. It is still an open question to develop data-driven crowd simulation models with strong generalizibility. We notice that the key to addressing this challenge lies in effectively and accurately capturing the core common influential features that govern pedestrians' navigation across diverse scenarios. Particularly, we believe that visual information is one of the most dominant influencing features. In light of this, this paper proposes a data-driven model incorporating a refined visual information extraction method and exit cues to enhance generalizability. The proposed model is examined on four common fundamental modules: bottleneck, corridor, corner and T-junction. The evaluation results demonstrate that our model performs excellently across these scenarios, aligning with pedestrian movement in real-world experiments, and significantly outperforms the classical knowledge-driven model. Furthermore, we introduce a modular approach to apply our proposed model in composite scenarios, and the results regarding trajectories and fundamental diagrams indicate that our simulations closely match real-world patterns in the composite scenario. The research outcomes can provide inspiration for the development of data-driven crowd simulation models with high generalizability and advance the application of data-driven approaches.This work has been submitted to Elsevier for possible publication.
♻ ☆ Res-Bench: Benchmarking the Robustness of Multimodal Large Language Models to Dynamic Resolution Input
Multimodal Large Language Models (MLLMs) increasingly support dynamic image resolutions. However, current evaluation paradigms primarily assess semantic performance, overlooking the critical question of resolution robustness - whether performance remains stable across varying input resolutions. To address this gap, we introduce \textbf{Res-Bench}, a comprehensive benchmark comprising 14,400 samples across 12 resolution levels and six core capability dimensions. We designed a novel evaluation framework that goes beyond traditional accuracy metrics to capture performance stability. This framework introduces multiple robustness metrics: Spearman's correlation for assessing resolution-performance trends, and Absolute/Relative Continuous Error (ACE/RCE) for measuring performance volatility. Using these metrics, we conducted a large-scale evaluation of leading MLLMs. Our analysis encompasses: (1) model-centric and task-centric robustness examination, (2) investigation of preprocessing strategies including padding and super-resolution, and (3) exploration of fine-tuning for stability enhancement.
comment: The authors have discovered a significant error in the paper subsequent to submission, and are withdrawing the manuscript for substantial correction
♻ ☆ Semantic-Aware Representation Learning via Conditional Transport for Multi-Label Image Classification
Multi-label image classification is a critical task in machine learning that aims to accurately assign multiple labels to a single image. While existing methods often utilize attention mechanisms or graph convolutional networks to model visual representations, their performance is still constrained by two critical limitations: the inability to learn discriminative semantic-aware features, and the lack of fine-grained alignment between visual representations and label embeddings. To tackle these issues in a unified framework, this paper proposes a novel approach named Semantic-aware representation learning via Conditional Transport for Multi-Label Image Classification (SCT). The proposed method introduces a semantic-related feature learning module that extracts discriminative label-specific features by emphasizing semantic relevance and interaction, along with a conditional transport-based alignment mechanism that enables precise visual-semantic alignment. Extensive experiments on two widely-used benchmark datasets, VOC2007 and MS-COCO, validate the effectiveness of SCT and demonstrate its superior performance compared to existing state-of-the-art methods.
comment: The paper is under consideration at Pattern Recognition Letters
♻ ☆ SurGen: 1020 H&E-stained Whole Slide Images With Survival and Genetic Markers
Cancer remains one of the leading causes of morbidity and mortality worldwide. Comprehensive datasets that combine histopathological images with genetic and survival data across various tumour sites are essential for advancing computational pathology and personalised medicine. We present SurGen, a dataset comprising 1,020 H&E-stained whole-slide images (WSIs) from 843 colorectal cancer cases. The dataset includes detailed annotations for key genetic mutations (KRAS, NRAS, BRAF) and mismatch repair status, as well as survival data for 426 cases. We illustrate SurGen's utility with a proof-of-concept model that predicts mismatch repair status directly from WSIs, achieving a test area under the receiver operating characteristic curve of 0.8273. These preliminary results underscore the dataset's potential to facilitate research in biomarker discovery, prognostic modelling, and advanced machine learning applications in colorectal cancer and beyond. SurGen offers a valuable resource for the scientific community, enabling studies that require high-quality WSIs linked with comprehensive clinical and genetic information on colorectal cancer. Our initial findings affirm the dataset's capacity to advance diagnostic precision and foster the development of personalised treatment strategies in colorectal oncology. Data available online: https://doi.org/10.6019/S-BIAD1285.
comment: To download the dataset, see https://doi.org/10.6019/S-BIAD1285. See https://github.com/CraigMyles/SurGen-Dataset for GitHub repository and additional info
♻ ☆ Does FLUX Already Know How to Perform Physically Plausible Image Composition?
Image composition aims to seamlessly insert a user-specified object into a new scene, but existing models struggle with complex lighting (e.g., accurate shadows, water reflections) and diverse, high-resolution inputs. Modern text-to-image diffusion models (e.g., SD3.5, FLUX) already encode essential physical and resolution priors, yet lack a framework to unleash them without resorting to latent inversion, which often locks object poses into contextually inappropriate orientations, or brittle attention surgery. We propose SHINE, a training-free framework for Seamless, High-fidelity Insertion with Neutralized Errors. SHINE introduces manifold-steered anchor loss, leveraging pretrained customization adapters (e.g., IP-Adapter) to guide latents for faithful subject representation while preserving background integrity. Degradation-suppression guidance and adaptive background blending are proposed to further eliminate low-quality outputs and visible seams. To address the lack of rigorous benchmarks, we introduce ComplexCompo, featuring diverse resolutions and challenging conditions such as low lighting, strong illumination, intricate shadows, and reflective surfaces. Experiments on ComplexCompo and DreamEditBench show state-of-the-art performance on standard metrics (e.g., DINOv2) and human-aligned scores (e.g., DreamSim, ImageReward, VisionReward). Code and benchmark will be publicly available upon publication.
comment: Preprint
♻ ☆ Mitigating Attention Sinks and Massive Activations in Audio-Visual Speech Recognition with LLMs
Large language models (LLMs) have recently advanced auditory speech recognition (ASR), visual speech recognition (VSR), and audio-visual speech recognition (AVSR). However, understanding of their internal dynamics under fine-tuning remains limited. In natural language processing, recent work has revealed attention sinks, tokens that attract disproportionately high attention, and associated massive activations in which some features of sink tokens exhibit huge activation in LLMs. In this work, we are the first to study these phenomena in multimodal speech recognition. Through a detailed analysis of audio-visual LLMs, we identify attention sinks and massive activations not only at the BOS token but also at intermediate low-semantic tokens across ASR, VSR, and AVSR. We show that massive activations originate in the MLP layers and correspond to fixed feature indices across all sink tokens. We further show that intermediate sink tokens exhibit high cosine similarity to the BOS token, thereby amplifying attention and activation. Building on these insights, we introduce a simple decorrelation loss that reduces cosine similarity between BOS and other tokens, effectively mitigating intermediate sinks and massive activations. Furthermore, our method improves word error rate (WER) under high audio-visual feature downsampling while remaining stable at lower downsampling rates.
comment: The code is available at https://github.com/umbertocappellazzo/Llama-AVSR
♻ ☆ EndoGMDE: Generalizable Monocular Depth Estimation with Mixture of Low-Rank Experts for Diverse Endoscopic Scenes
Self-supervised monocular depth estimation is a significant task for low-cost and efficient 3D scene perception and measurement in endoscopy. However, the variety of illumination conditions and scene features is still the primary challenges for depth estimation in endoscopic scenes. In this work, a novel self-supervised framework is proposed for monocular depth estimation in diverse endoscopy. Firstly, considering the diverse features in endoscopic scenes with different tissues, a novel block-wise mixture of dynamic low-rank experts is proposed to efficiently finetune the foundation model for endoscopic depth estimation. In the proposed module, based on the input feature, different experts with a small amount of trainable parameters are adaptively selected for weighted inference, from low-rank experts which are allocated based on the generalization of each block. Moreover, a novel self-supervised training framework is proposed to jointly cope with brightness inconsistency and reflectance interference. The proposed method outperforms state-of-the-art works on SCARED dataset and SimCol dataset. Furthermore, the proposed network also achieves the best generalization based on zero-shot depth estimation on C3VD, Hamlyn and SERV-CT dataset. The outstanding performance of our model is further demonstrated with 3D reconstruction and ego-motion estimation. The proposed method could contribute to accurate endoscopy for minimally invasive measurement and surgery. The evaluation codes will be released upon acceptance, while the demo videos can be found on: https://endo-gmde.netlify.app/.
comment: 12 pages, 12 figures, 7 tables. Under Review
♻ ☆ SAIL-Embedding Technical Report: Omni-modal Embedding Foundation Model
Multimodal embedding models aim to yield informative unified representations that empower diverse cross-modal tasks. Despite promising developments in the evolution from CLIP-based dual-tower architectures to large vision-language models, prior works still face unavoidable challenges in real-world applications and business scenarios, such as the limited modality support, unstable training mechanisms, and industrial domain gaps. In this work, we introduce SAIL-Embedding, an omni-modal embedding foundation model that addresses these issues through tailored training strategies and architectural design. In the optimization procedure, we propose a multi-stage training scheme to boost the multifaceted effectiveness of representation learning. Specifically, the content-aware progressive training aims to enhance the model's adaptability to diverse downstream tasks and master enriched cross-modal proficiency. The collaboration-aware recommendation enhancement training further adapts multimodal representations for recommendation scenarios by distilling knowledge from sequence-to-item and ID-to-item embeddings while mining user historical interests. Concurrently, we develop the stochastic specialization and dataset-driven pattern matching to strengthen model training flexibility and generalizability. Experimental results show that SAIL-Embedding achieves SOTA performance compared to other methods in different retrieval tasks. In online experiments across various real-world scenarios integrated with our model, we observe a significant increase in Lifetime (LT), which is a crucial indicator for the recommendation experience. For instance, the model delivers the 7-day LT gain of +0.5% in the Douyin-Selected scenario. For the Douyin feed rank model, the match features produced by SAIL-Embedding yield a +0.1% AUC gain.
comment: Technical Report
♻ ☆ Rethinking Glaucoma Calibration: Voting-Based Binocular and Metadata Integration
Glaucoma is a major cause of irreversible blindness, with significant diagnostic subjectivity. This inherent uncertainty, combined with the overconfidence of models optimized solely for accuracy can lead to fatal issues such as overdiagnosis or missing critical diseases. To ensure clinical trust, model calibration is essential for reliable predictions, yet study in this field remains limited. Existing calibration study have overlooked glaucoma's systemic associations and high diagnostic subjectivity. To overcome these limitations, we propose V-ViT (Voting-based ViT), a framework that enhances calibration by integrating a patient's binocular information and metadata. Furthermore, to mitigate diagnostic subjectivity, V-ViT utilizes an iterative dropout-based Voting System to maximize calibration performance. The proposed framework achieved state-of-the-art performance across all metrics, including the primary calibration metrics. Our results demonstrate that V-ViT effectively resolves the issue of overconfidence in predictions in glaucoma diagnosis, providing highly reliable predictions for clinical use. Our source code is available at https://github.com/starforTJ/V-ViT.
♻ ☆ Multimodal Spatial Reasoning in the Large Model Era: A Survey and Benchmarks
Humans possess spatial reasoning abilities that enable them to understand spaces through multimodal observations, such as vision and sound. Large multimodal reasoning models extend these abilities by learning to perceive and reason, showing promising performance across diverse spatial tasks. However, systematic reviews and publicly available benchmarks for these models remain limited. In this survey, we provide a comprehensive review of multimodal spatial reasoning tasks with large models, categorizing recent progress in multimodal large language models (MLLMs) and introducing open benchmarks for evaluation. We begin by outlining general spatial reasoning, focusing on post-training techniques, explainability, and architecture. Beyond classical 2D tasks, we examine spatial relationship reasoning, scene and layout understanding, as well as visual question answering and grounding in 3D space. We also review advances in embodied AI, including vision-language navigation and action models. Additionally, we consider emerging modalities such as audio and egocentric video, which contribute to novel spatial understanding through new sensors. We believe this survey establishes a solid foundation and offers insights into the growing field of multimodal spatial reasoning. Updated information about this survey, codes and implementation of the open benchmarks can be found at https://github.com/zhengxuJosh/Awesome-Spatial-Reasoning.
♻ ☆ LoVR: A Benchmark for Long Video Retrieval in Multimodal Contexts
Long videos contain a vast amount of information, making video-text retrieval an essential and challenging task in multimodal learning. However, existing benchmarks suffer from limited video duration, low-quality captions, and coarse annotation granularity, which hinder the evaluation of advanced video-text retrieval methods. To address these limitations, we introduce LoVR, a benchmark specifically designed for long video-text retrieval. LoVR contains 467 long videos and over 40,804 fine-grained clips with high-quality captions. To overcome the issue of poor machine-generated annotations, we propose an efficient caption generation framework that integrates VLM automatic generation, caption quality scoring, and dynamic refinement. This pipeline improves annotation accuracy while maintaining scalability. Furthermore, we introduce a semantic fusion method to generate coherent full-video captions without losing important contextual information. Our benchmark introduces longer videos, more detailed captions, and a larger-scale dataset, presenting new challenges for video understanding and retrieval. Extensive experiments on various advanced embedding models demonstrate that LoVR is a challenging benchmark, revealing the limitations of current approaches and providing valuable insights for future research. We release the code and dataset link at https://github.com/TechNomad-ds/LoVR-benchmark
♻ ☆ FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion IROS 2025
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability stemming from two factors: 1) limited annotated image-event-depth datasets causing insufficient cross-modal supervision, and 2) inherent frequency mismatches between static images and dynamic event streams with distinct spatiotemporal patterns, leading to ineffective feature fusion. To address this dual challenge, we propose Frequency-decoupled Unified Self-supervised Encoder (FUSE) with two synergistic components: The Parameter-efficient Self-supervised Transfer (PST) establishes cross-modal knowledge transfer through latent space alignment with image foundation models, effectively mitigating data scarcity by enabling joint encoding without depth ground truth. Complementing this, we propose the Frequency-Decoupled Fusion module (FreDFuse) to explicitly decouple high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches through physics-aware fusion. This combined approach enables FUSE to construct a universal image-event encoder that only requires lightweight decoder adaptation for target datasets. Extensive experiments demonstrate state-of-the-art performance with 14% and 24.9% improvements in Abs .Rel on MVSEC and DENSE datasets. The framework exhibits remarkable zero-shot adaptability to challenging scenarios including extreme lighting and motion blur, significantly advancing real-world deployment capabilities. The source code for our method is publicly available at: https://github.com/sunpihai-up/FUSE
comment: [IROS 2025, camera ready version]: 8 pages, 6 figures
♻ ☆ REP: Resource-Efficient Prompting for Rehearsal-Free Continual Learning NeurIPS 2025
Recent rehearsal-free continual learning (CL) methods guided by prompts achieve strong performance on vision tasks with non-stationary data but remain resource-intensive, hindering real-world edge deployment. We introduce resource-efficient prompting (REP), which improves the computational and memory efficiency of prompt-based rehearsal-free continual learning methods while minimizing accuracy trade-offs. Our approach employs swift prompt selection to refine input data using a carefully provisioned model and introduces adaptive token merging (AToM) and adaptive layer dropping (ALD) for efficient prompt updates. AToM and ALD selectively skip data and model layers while preserving task-specific features during the learning of new tasks. Extensive experiments on multiple image classification datasets demonstrate REP's superior resource efficiency over state-of-the-art rehearsal-free CL methods.
comment: accepted to NeurIPS 2025
♻ ☆ CoralVQA: A Large-Scale Visual Question Answering Dataset for Coral Reef Image Understanding
Coral reefs are vital yet vulnerable ecosystems that require continuous monitoring to support conservation. While coral reef images provide essential information in coral monitoring, interpreting such images remains challenging due to the need for domain expertise. Visual Question Answering (VQA), powered by Large Vision-Language Models (LVLMs), has great potential in user-friendly interaction with coral reef images. However, applying VQA to coral imagery demands a dedicated dataset that addresses two key challenges: domain-specific annotations and multidimensional questions. In this work, we introduce CoralVQA, the first large-scale VQA dataset for coral reef analysis. It contains 12,805 real-world coral images from 67 coral genera collected from 3 oceans, along with 277,653 question-answer pairs that comprehensively assess ecological and health-related conditions. To construct this dataset, we develop a semi-automatic data construction pipeline in collaboration with marine biologists to ensure both scalability and professional-grade data quality. CoralVQA presents novel challenges and provides a comprehensive benchmark for studying vision-language reasoning in the context of coral reef images. By evaluating several state-of-the-art LVLMs, we reveal key limitations and opportunities. These insights form a foundation for future LVLM development, with a particular emphasis on supporting coral conservation efforts.
♻ ☆ Reflectance Prediction-based Knowledge Distillation for Robust 3D Object Detection in Compressed Point Clouds
Regarding intelligent transportation systems, low-bitrate transmission via lossy point cloud compression is vital for facilitating real-time collaborative perception among connected agents, such as vehicles and infrastructures, under restricted bandwidth. In existing compression transmission systems, the sender lossily compresses point coordinates and reflectance to generate a transmission code stream, which faces transmission burdens from reflectance encoding and limited detection robustness due to information loss. To address these issues, this paper proposes a 3D object detection framework with reflectance prediction-based knowledge distillation (RPKD). We compress point coordinates while discarding reflectance during low-bitrate transmission, and feed the decoded non-reflectance compressed point clouds into a student detector. The discarded reflectance is then reconstructed by a geometry-based reflectance prediction (RP) module within the student detector for precise detection. A teacher detector with the same structure as the student detector is designed for performing reflectance knowledge distillation (RKD) and detection knowledge distillation (DKD) from raw to compressed point clouds. Our cross-source distillation training strategy (CDTS) equips the student detector with robustness to low-quality compressed data while preserving the accuracy benefits of raw data through transferred distillation knowledge. Experimental results on the KITTI and DAIR-V2X-V datasets demonstrate that our method can boost detection accuracy for compressed point clouds across multiple code rates. We will release the code publicly at https://github.com/HaoJing-SX/RPKD.
♻ ☆ DeGMix: Efficient Multi-Task Dense Prediction with Deformable and Gating Mixer
Convolution neural networks and Transformers have their own advantages and both have been widely used for dense prediction in multi-task learning (MTL). Existing studies typically employ either CNNs (effectively capture local spatial patterns) or Transformers (capturing long-range dependencies) independently, but integrating their strengths may yield more robust models. In this work, we present an efficient MTL model that combines the adaptive capabilities of deformable CNN and query-based Transformer with shared gating for MTL of dense prediction. This combination may offer a simple and efficient solution owing to its powerful and flexible task-specific learning and the advantages of lower cost, less complexity, and smaller parameters than traditional MTL methods. We introduce an efficient multi-task dense prediction with deformable and gating mixer (DeGMix). First, the deformable mixer encoder contains two types of operators: the channel-aware mixing operator leveraged to allow communication among different channels, and the spatial-aware deformable operator with deformable convolution applied to efficiently sample more informative spatial locations. Second, the task-aware gating transformer decoder is used to perform task-specific predictions, in which task interaction block integrated with self-attention is applied to capture task interaction features, and the task query block integrated with gating attention is leveraged to dynamically select the corresponding task-specific features. Furthermore, the results of the experiment demonstrate that the proposed DeGMix uses fewer GFLOPs and significantly outperforms current Transformer-based and CNN-based competitive models on a variety of metrics on three dense prediction datasets. Our code and models are available at https://github.com/yangyangxu0/DeMTG.
♻ ☆ D$^2$GS: Dense Depth Regularization for LiDAR-free Urban Scene Reconstruction
Recently, Gaussian Splatting (GS) has shown great potential for urban scene reconstruction in the field of autonomous driving. However, current urban scene reconstruction methods often depend on multimodal sensors as inputs, \textit{i.e.} LiDAR and images. Though the geometry prior provided by LiDAR point clouds can largely mitigate ill-posedness in reconstruction, acquiring such accurate LiDAR data is still challenging in practice: i) precise spatiotemporal calibration between LiDAR and other sensors is required, as they may not capture data simultaneously; ii) reprojection errors arise from spatial misalignment when LiDAR and cameras are mounted at different locations. To avoid the difficulty of acquiring accurate LiDAR depth, we propose D$^2$GS, a LiDAR-free urban scene reconstruction framework. In this work, we obtain geometry priors that are as effective as LiDAR while being denser and more accurate. $\textbf{First}$, we initialize a dense point cloud by back-projecting multi-view metric depth predictions. This point cloud is then optimized by a Progressive Pruning strategy to improve the global consistency. $\textbf{Second}$, we jointly refine Gaussian geometry and predicted dense metric depth via a Depth Enhancer. Specifically, we leverage diffusion priors from a depth foundation model to enhance the depth maps rendered by Gaussians. In turn, the enhanced depths provide stronger geometric constraints during Gaussian training. $\textbf{Finally}$, we improve the accuracy of ground geometry by constraining the shape and normal attributes of Gaussians within road regions. Extensive experiments on the Waymo dataset demonstrate that our method consistently outperforms state-of-the-art methods, producing more accurate geometry even when compared with those using ground-truth LiDAR data.
♻ ☆ Balancing Efficiency and Quality: MoEISR for Arbitrary-Scale Image Super-Resolution
Arbitrary-scale image super-resolution employing implicit neural functions has gained significant attention lately due to its capability to upscale images across diverse scales utilizing only a single model. Nevertheless, these methodologies have imposed substantial computational demands as they involve querying every target pixel to a single resource-intensive decoder. In this paper, we introduce a novel and efficient framework, the Mixture-of-Experts Implicit Super-Resolution (MoEISR), which enables super-resolution at arbitrary scales with significantly increased computational efficiency without sacrificing reconstruction quality. MoEISR dynamically allocates the most suitable decoding expert to each pixel using a lightweight mapper module, allowing experts with varying capacities to reconstruct pixels across regions with diverse complexities. Our experiments demonstrate that MoEISR successfully reduces significant amount of floating point operations (FLOPs) while delivering comparable or superior peak signal-to-noise ratio (PSNR).
♻ ☆ Bidirectional Feature-aligned Motion Transformation for Efficient Dynamic Point Cloud Compression
Efficient dynamic point cloud compression (DPCC) critically depends on accurate motion estimation and compensation. However, the inherently irregular structure and substantial local variations of point clouds make this task highly challenging. Existing approaches typically rely on explicit motion estimation, whose encoded motion vectors often fail to capture complex dynamics and inadequately exploit temporal correlations. To address these limitations, we propose a Bidirectional Feature-aligned Motion Transformation (Bi-FMT) framework that implicitly models motion in the feature space. Bi-FMT aligns features across both past and future frames to produce temporally consistent latent representations, which serve as predictive context in a conditional coding pipeline, forming a unified ``Motion + Conditional'' representation. Built upon this bidirectional feature alignment, we introduce a Cross-Transformer Refinement module (CTR) at the decoder side to adaptively refine locally aligned features. By modeling cross-frame dependencies with vector attention, CRT enhances local consistency and restores fine-grained spatial details that are often lost during motion alignment. Moreover, we design a Random Access (RA) reference strategy that treats the bidirectionally aligned features as conditional context, enabling frame-level parallel compression and eliminating the sequential encoding. Extensive experiments demonstrate that Bi-FMT surpasses D-DPCC and AdaDPCC in both compression efficiency and runtime, achieving BD-Rate reductions of 20% (D1) and 9.4% (D1), respectively.
comment: 11 pages
♻ ☆ Event-RGB Fusion for Spacecraft Pose Estimation Under Harsh Lighting
Spacecraft pose estimation is crucial for autonomous in-space operations, such as rendezvous, docking and on-orbit servicing. Vision-based pose estimation methods, which typically employ RGB imaging sensors, is a compelling solution for spacecraft pose estimation, but are challenged by harsh lighting conditions, which produce imaging artifacts such as glare, over-exposure, blooming and lens flare. Due to their much higher dynamic range, neuromorphic or event sensors are more resilient to extreme lighting conditions. However, event sensors generally have lower spatial resolution and suffer from reduced signal-to-noise ratio during periods of low relative motion. This work addresses these individual sensor limitations by introducing a sensor fusion approach combining RGB and event sensors. A beam-splitter prism was employed to achieve precise optical and temporal alignment. Then, a RANSAC-based technique was developed to fuse the information from the RGB and event channels to achieve pose estimation that leveraged the strengths of the two modalities. The pipeline was complemented by dropout uncertainty estimation to detect extreme conditions that affect either channel. To benchmark the performance of the proposed event-RGB fusion method, we collected a comprehensive real dataset of RGB and event data for satellite pose estimation in a laboratory setting under a variety of challenging illumination conditions. Encouraging results on the dataset demonstrate the efficacy of our event-RGB fusion approach and further supports the usage of event sensors for spacecraft pose estimation. To support community research on this topic, our dataset has been released publicly.
comment: Associated dataset: https://zenodo.org/records/15861758
♻ ☆ EDITOR: Effective and Interpretable Prompt Inversion for Text-to-Image Diffusion Models
Text-to-image generation models~(e.g., Stable Diffusion) have achieved significant advancements, enabling the creation of high-quality and realistic images based on textual descriptions. Prompt inversion, the task of identifying the textual prompt used to generate a specific artifact, holds significant potential for applications including data attribution, model provenance, and watermarking validation. Recent studies introduced a delayed projection scheme to optimize for prompts representative of the vocabulary space, though challenges in semantic fluency and efficiency remain. Advanced image captioning models or visual large language models can generate highly interpretable prompts, but they often lack in image similarity. In this paper, we propose a prompt inversion technique called \sys for text-to-image diffusion models, which includes initializing embeddings using a pre-trained image captioning model, refining them through reverse-engineering in the latent space, and converting them to texts using an embedding-to-text model. Our experiments on the widely-used datasets, such as MS COCO, LAION, and Flickr, show that our method outperforms existing methods in terms of image similarity, textual alignment, prompt interpretability and generalizability. We further illustrate the application of our generated prompts in tasks such as cross-concept image synthesis, concept manipulation, evolutionary multi-concept generation and unsupervised segmentation.
Information Retrieval
♻ ☆ Worse than Zero-shot? A Fact-Checking Dataset for Evaluating the Robustness of RAG Against Misleading Retrievals NeurIPS 2025
Retrieval-augmented generation (RAG) has shown impressive capabilities in mitigating hallucinations in large language models (LLMs). However, LLMs struggle to maintain consistent reasoning when exposed to misleading or conflicting evidence, especially in real-world domains such as politics, where information is polarized or selectively framed. Mainstream RAG benchmarks evaluate models under clean retrieval settings, where systems generate answers from gold-standard documents, or under synthetically perturbed settings, where documents are artificially injected with noise. These assumptions fail to reflect real-world conditions, often leading to an overestimation of RAG system performance. To address this gap, we introduce RAGuard, the first benchmark to evaluate the robustness of RAG systems against misleading retrievals. Unlike prior benchmarks that rely on synthetic noise, our fact-checking dataset captures naturally occurring misinformation by constructing its retrieval corpus from Reddit discussions. It categorizes retrieved evidence into three types: supporting, misleading, and unrelated, providing a realistic and challenging testbed for assessing how well RAG systems navigate different types of evidence. Our experiments reveal that, when exposed to potentially misleading retrievals, all tested LLM-powered RAG systems perform worse than their zero-shot baselines (i.e., no retrieval at all), while human annotators consistently perform better, highlighting LLMs' susceptibility to noisy environments. To our knowledge, RAGuard is the first benchmark to systematically assess the robustness of the RAG against misleading evidence. We expect this benchmark to drive future research toward improving RAG systems beyond idealized datasets, making them more reliable for real-world applications. The dataset is available at https://huggingface.co/datasets/UCSC-IRKM/RAGuard.
comment: Advances in Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Gated Rotary-Enhanced Linear Attention for Long-term Sequential Recommendation
In Sequential Recommendation Systems (SRSs), Transformer models have demonstrated remarkable performance but face computational and memory cost challenges, especially when modeling long-term user behavior sequences. Due to its quadratic complexity, the dot-product attention mechanism in Transformers becomes expensive for processing long sequences. By approximating the dot-product attention using elaborate mapping functions, linear attention provides a more efficient option with linear complexity. However, existing linear attention methods face three limitations: 1) they often use learnable position encodings, which incur extra computational costs in long-term sequence scenarios, 2) they may not sufficiently account for user's fine-grained local preferences (short-lived burst of interest), and 3) they try to capture some temporary activities, but often confuse these with stable and long-term interests. This can result in unclear or less effective recommendations. To remedy these drawbacks, we propose a long-term sequential Recommendation model with Gated Rotary Enhanced Linear Attention (RecGRELA). Specifically, we first propose a Rotary-Enhanced Linear Attention (RELA) module to efficiently model long-range dependency within the user's historical information using rotary position encodings. Then, we introduce a local short operation to add the local preferences of interactions and show the theoretical insight. We further introduce a SiLU-based Gated mechanism for RELA (GRELA) to help the model tell if a user behavior shows a short-term, local interest or a real change in their long-term tastes. Experimental results on four public benchmark datasets show that our RecGRELA achieves state-of-the-art performance compared with existing SRSs based on Recurrent Neural Networks, Transformer, and Mamba while keeping low memory overhead.
comment: 14 pages,9 figures
♻ ☆ SAIL-Embedding Technical Report: Omni-modal Embedding Foundation Model
Multimodal embedding models aim to yield informative unified representations that empower diverse cross-modal tasks. Despite promising developments in the evolution from CLIP-based dual-tower architectures to large vision-language models, prior works still face unavoidable challenges in real-world applications and business scenarios, such as the limited modality support, unstable training mechanisms, and industrial domain gaps. In this work, we introduce SAIL-Embedding, an omni-modal embedding foundation model that addresses these issues through tailored training strategies and architectural design. In the optimization procedure, we propose a multi-stage training scheme to boost the multifaceted effectiveness of representation learning. Specifically, the content-aware progressive training aims to enhance the model's adaptability to diverse downstream tasks and master enriched cross-modal proficiency. The collaboration-aware recommendation enhancement training further adapts multimodal representations for recommendation scenarios by distilling knowledge from sequence-to-item and ID-to-item embeddings while mining user historical interests. Concurrently, we develop the stochastic specialization and dataset-driven pattern matching to strengthen model training flexibility and generalizability. Experimental results show that SAIL-Embedding achieves SOTA performance compared to other methods in different retrieval tasks. In online experiments across various real-world scenarios integrated with our model, we observe a significant increase in Lifetime (LT), which is a crucial indicator for the recommendation experience. For instance, the model delivers the 7-day LT gain of +0.5% in the Douyin-Selected scenario. For the Douyin feed rank model, the match features produced by SAIL-Embedding yield a +0.1% AUC gain.
comment: Technical Report
♻ ☆ LoVR: A Benchmark for Long Video Retrieval in Multimodal Contexts
Long videos contain a vast amount of information, making video-text retrieval an essential and challenging task in multimodal learning. However, existing benchmarks suffer from limited video duration, low-quality captions, and coarse annotation granularity, which hinder the evaluation of advanced video-text retrieval methods. To address these limitations, we introduce LoVR, a benchmark specifically designed for long video-text retrieval. LoVR contains 467 long videos and over 40,804 fine-grained clips with high-quality captions. To overcome the issue of poor machine-generated annotations, we propose an efficient caption generation framework that integrates VLM automatic generation, caption quality scoring, and dynamic refinement. This pipeline improves annotation accuracy while maintaining scalability. Furthermore, we introduce a semantic fusion method to generate coherent full-video captions without losing important contextual information. Our benchmark introduces longer videos, more detailed captions, and a larger-scale dataset, presenting new challenges for video understanding and retrieval. Extensive experiments on various advanced embedding models demonstrate that LoVR is a challenging benchmark, revealing the limitations of current approaches and providing valuable insights for future research. We release the code and dataset link at https://github.com/TechNomad-ds/LoVR-benchmark
♻ ☆ HCT-QA: A Benchmark for Question Answering on Human-Centric Tables
Tabular data embedded within PDF files, web pages, and other document formats are prevalent across numerous sectors such as government, engineering, science, and business. These human-centric tables (HCTs) possess a unique combination of high business value, intricate layouts, limited operational power at scale, and sometimes serve as the only data source for critical insights. However, their complexity poses significant challenges to traditional data extraction, processing, and querying methods. While current solutions focus on transforming these tables into relational formats for SQL queries, they fall short in handling the diverse and complex layouts of HCTs and hence being amenable to querying. This paper describes HCT-QA, an extensive benchmark of HCTs, natural language queries, and related answers on thousands of tables. Our dataset includes 2,188 real-world HCTs with 9,835 QA pairs and 4,679 synthetic tables with 67.5K QA pairs. While HCTs can be potentially processed by different type of query engines, in this paper, we focus on Large Language Models as potential engines and assess their ability in processing and querying such tables.
♻ ☆ Federated Vision-Language-Recommendation with Personalized Fusion
Applying large pre-trained Vision-Language Models to recommendation is a burgeoning field, a direction we term Vision-Language-Recommendation (VLR). Bringing VLR to user-oriented on-device intelligence within a federated learning framework is a crucial step for enhancing user privacy and delivering personalized experiences. This paper introduces FedVLR, a federated VLR framework specially designed for user-specific personalized fusion of vision-language representations. At its core is a novel bi-level fusion mechanism: The server-side multi-view fusion module first generates a diverse set of pre-fused multimodal views. Subsequently, each client employs a user-specific mixture-of-expert mechanism to adaptively integrate these views based on individual user interaction history. This designed lightweight personalized fusion module provides an efficient solution to implement a federated VLR system. The effectiveness of our proposed FedVLR has been validated on seven benchmark datasets.
comment: 15 pages, 10 figures, 7 tables, conference
Machine Learning
♻ ☆ From Epilepsy Seizures Classification to Detection: A Deep Learning-based Approach for Raw EEG Signals
Epilepsy represents the most prevalent neurological disease in the world. One-third of people suffering from mesial temporal lobe epilepsy (MTLE) exhibit drug resistance, urging the need to develop new treatments. A key part in anti-seizure medication (ASM) development is the capability of detecting and quantifying epileptic seizures occurring in electroencephalogram (EEG) signals, which is crucial for treatment efficacy evaluation. In this study, we introduced a seizure detection pipeline based on deep learning models applied to raw EEG signals. This pipeline integrates: a new pre-processing technique which segments continuous raw EEG signals without prior distinction between seizure and seizure-free activities; a post-processing algorithm developed to reassemble EEG segments and allow the identification of seizures start/end; and finally, a new evaluation procedure based on a strict seizure events comparison between predicted and real labels. Models training have been performed using a data splitting strategy which addresses the potential for data leakage. We demonstrated the fundamental differences between a seizure classification and a seizure detection task and showed the differences in performance between the two tasks. Finally, we demonstrated the generalization capabilities across species of our best architecture, combining a Convolutional Neural Network and a Transformer encoder. The model was trained on animal EEGs and tested on human EEGs with a F1-score of 93% on a balanced Bonn dataset.
comment: 25 pages, 3 tables, 5 figures
♻ ☆ An Effective Flow-based Method for Positive-Unlabeled Learning: 2-HNC
In many scenarios of binary classification, only positive instances are provided in the training data, leaving the rest of the data unlabeled. This setup, known as positive-unlabeled (PU) learning, is addressed here with a network flow-based method which utilizes pairwise similarities between samples. The method we propose here, 2-HNC, leverages Hochbaum's Normalized Cut (HNC) and the set of solutions it provides by solving a parametric minimum cut problem. The set of solutions, that are nested partitions of the samples into two sets, correspond to varying tradeoff values between the two goals: high intra-similarity inside the sets and low inter-similarity between the two sets. This nested sequence is utilized here to deliver a ranking of unlabeled samples by their likelihood of being negative. Building on this insight, our method, 2-HNC, proceeds in two stages. The first stage generates this ranking without assuming any negative labels, using a problem formulation that is constrained only on positive labeled samples. The second stage augments the positive set with likely-negative samples and recomputes the classification. The final label prediction selects among all generated partitions in both stages, the one that delivers a positive class proportion, closest to a prior estimate of this quantity, which is assumed to be given. Extensive experiments across synthetic and real datasets show that 2-HNC yields strong performance and often surpasses existing state-of-the-art algorithms.
♻ ☆ Learning to Steer: Input-dependent Steering for Multimodal LLMs NeurIPS 2025
Steering has emerged as a practical approach to enable post-hoc guidance of LLMs towards enforcing a specific behavior. However, it remains largely underexplored for multimodal LLMs (MLLMs); furthermore, existing steering techniques, such as mean steering, rely on a single steering vector, applied independently of the input query. This paradigm faces limitations when the desired behavior is dependent on the example at hand. For example, a safe answer may consist in abstaining from answering when asked for an illegal activity, or may point to external resources or consultation with an expert when asked about medical advice. In this paper, we investigate a fine-grained steering that uses an input-specific linear shift. This shift is computed using contrastive input-specific prompting. However, the input-specific prompts required for this approach are not known at test time. Therefore, we propose to train a small auxiliary module to predict the input-specific steering vector. Our approach, dubbed as L2S (Learn-to-Steer), demonstrates that it reduces hallucinations and enforces safety in MLLMs, outperforming other static baselines. Our code is publicly available at https://jayneelparekh.github.io/learn-to-steer/
comment: NeurIPS 2025
♻ ☆ Multi-Step Reasoning with Large Language Models, a Survey
Large language models (LLMs) with billions of parameters exhibit in-context learning abilities, enabling few-shot learning on tasks that the model was not specifically trained for. Traditional models achieve breakthrough performance on language tasks, but do not perform well on basic reasoning benchmarks. However, a new in-context learning approach, Chain-of-thought, has demonstrated strong multi-step reasoning abilities on these benchmarks. The research on LLM reasoning abilities started with the question whether LLMs can solve grade school math word problems, and has expanded to other tasks in the past few years. This article reviews the field of multi-step reasoning with LLMs. We propose a taxonomy that identifies different ways to generate, evaluate, and control multi-step reasoning. We provide an in-depth coverage of core approaches and open problems, and we propose a research agenda for the near future. We find that multi-step reasoning approaches have progressed beyond math word problems, and can now successfully solve challenges in logic, combinatorial games, and robotics, sometimes by first generating code that is then executed by external tools. Many studies in multi-step methods use reinforcement learning for finetuning, external optimization loops, in-context reinforcement learning, and self-reflection.
comment: ACM Computing Surveys
♻ ☆ Spatial Knowledge Graph-Guided Multimodal Synthesis
Recent advances in Multimodal Large Language Models (MLLMs) have significantly enhanced their capabilities; however, their spatial perception abilities remain a notable limitation. To address this challenge, multimodal data synthesis offers a promising solution. Yet, ensuring that synthesized data adhere to spatial common sense is a non-trivial task. Our approach addresses this critical gap by providing a systematic framework for generating spatially coherent data. In this work, we introduce SKG2DATA, a novel multimodal synthesis approach guided by spatial knowledge graphs, grounded in the concept of knowledge-to-data generation. SKG2DATA employs an automated pipeline for constructing Spatial Knowledge Graph (SKG) that effectively captures human-like spatial cognition, including directional and distance relationships. These structured representations then serve as precise guidance for our integrated synthesis pipeline, where a diffusion model generates spatially-consistent images while a MLLM produces corresponding textual descriptions. The automated construction of SKG enables scalable generation of diverse yet realistic spatial configurations, overcoming the limitations of manual data collection and annotation. Extensive experiments demonstrate that data synthesized from diverse types of spatial knowledge, including direction and distance, enhance the spatial perception and reasoning abilities of MLLMs markedly, albeit with a slight cost to their general capabilities. We hope that the idea of knowledge-based data synthesis can advance the development of spatial intelligence. Code is available at https://github.com/zjunlp/Knowledge2Data.
comment: IEEE/ACM Transactions on Audio, Speech and Language Processing
♻ ☆ Bayesian Additive Main Effects and Multiplicative Interaction Models using Tensor Regression for Multi-environmental Trials
We propose a Bayesian tensor regression model to accommodate the effect of multiple factors on phenotype prediction. We adopt a set of prior distributions that resolve identifiability issues that may arise between the parameters in the model. Further, we incorporate a spike-and-slab structure that identifies which interactions are relevant for inclusion in the linear predictor, even when they form a subset of the available variables. Simulation experiments show that our method outperforms previous related models and machine learning algorithms under different sample sizes and degrees of complexity. We further explore the applicability of our model by analysing real-world data related to wheat production across Ireland from 2010 to 2019. Our model performs competitively and overcomes key limitations found in other analogous approaches. Finally, we adapt a set of visualisations for the posterior distribution of the tensor effects that facilitate the identification of optimal interactions between the tensor variables, whilst accounting for the uncertainty in the posterior distribution.
♻ ☆ Multi-head Temporal Latent Attention NeurIPS 2025
While Transformer self-attention offers strong parallelism, the Key-Value (KV) cache grows linearly with sequence length and becomes a bottleneck for inference efficiency. Multi-head latent attention was recently developed to compress the KV cache into a low-rank latent space. This paper proposes Multi-head Temporal Latent Attention (MTLA), which further reduces the KV cache size along the temporal dimension, greatly lowering the memory footprint of self-attention inference. MTLA employs a hyper-network to dynamically merge temporally adjacent KV cache vectors. To address the mismatch between the compressed KV cache and processed sequence lengths, a stride-aware causal mask is proposed to ensure efficient parallel training and consistency with inference behaviour. Experiments across tasks, including speech translation, speech recognition, speech understanding and text summarisation, demonstrate that MTLA achieves competitive performance compared to standard Multi-Head Attention (MHA), while greatly improving inference speed and GPU memory usage. For example, on a English-German speech translation task, MTLA achieves a 5.3x speedup and a reduction in GPU memory usage by a factor of 8.3 compared to MHA, while maintaining translation quality.
comment: Accepted by NeurIPS 2025
♻ ☆ Understanding and Improving Shampoo and SOAP via Kullback-Leibler Minimization
Shampoo and its efficient variant, SOAP, employ structured second-moment estimations and have shown strong performance for training neural networks (NNs). In practice, however, Shampoo typically requires step-size grafting with Adam to be competitive, and SOAP mitigates this by applying Adam in Shampoo's eigenbasis -- at the cost of additional memory overhead from Adam in both methods. Prior analyses have largely relied on the Frobenius norm to motivate these estimation schemes. We instead recast their estimation procedures as covariance estimation under Kullback-Leibler (KL) divergence minimization, revealing a previously overlooked theoretical limitation and motivating principled redesigns. Building on this perspective, we develop $\textbf{KL-Shampoo}$ and $\textbf{KL-SOAP}$, practical schemes that match or exceed the performance of Shampoo and SOAP in NN pre-training while achieving SOAP-level per-iteration runtime. Notably, KL-Shampoo does not rely on Adam to attain competitive performance, eliminating the memory overhead introduced by Adam. Across our experiments, KL-Shampoo consistently outperforms SOAP, Shampoo, and even KL-SOAP, establishing the KL-based approach as a compelling foundation for designing structured methods in NN optimization.
comment: improved the main text, working in progress
♻ ☆ MistralBSM: Leveraging Mistral-7B for Vehicular Networks Misbehavior Detection
Malicious attacks on vehicular networks pose a serious threat to road safety as well as communication reliability. A major source of these threats stems from misbehaving vehicles within the network. To address this challenge, we propose a Large Language Model (LLM)-empowered Misbehavior Detection System (MDS) within an edge-cloud detection framework. Specifically, we fine-tune Mistral-7B, a compact and high-performing LLM, to detect misbehavior based on Basic Safety Messages (BSM) sequences as the edge component for real-time detection, while a larger LLM deployed in the cloud validates and reinforces the edge model's detection through a more comprehensive analysis. By updating only 0.012% of the model parameters, our model, which we named MistralBSM, achieves 98% accuracy in binary classification and 96% in multiclass classification on a selected set of attacks from VeReMi dataset, outperforming LLAMA2-7B and RoBERTa. Our results validate the potential of LLMs in MDS, showing a significant promise in strengthening vehicular network security to better ensure the safety of road users.
♻ ☆ Reinforcement Learning from Human Feedback
Reinforcement learning from human feedback (RLHF) has become an important technical and storytelling tool to deploy the latest machine learning systems. In this book, we hope to give a gentle introduction to the core methods for people with some level of quantitative background. The book starts with the origins of RLHF -- both in recent literature and in a convergence of disparate fields of science in economics, philosophy, and optimal control. We then set the stage with definitions, problem formulation, data collection, and other common math used in the literature. The core of the book details every optimization stage in using RLHF, from starting with instruction tuning to training a reward model and finally all of rejection sampling, reinforcement learning, and direct alignment algorithms. The book concludes with advanced topics -- understudied research questions in synthetic data and evaluation -- and open questions for the field.
comment: 144 pages. Web-native version at https://rlhfbook.com/ Continually improving, latest version at website
Multimedia
♻ ☆ Spatial Knowledge Graph-Guided Multimodal Synthesis
Recent advances in Multimodal Large Language Models (MLLMs) have significantly enhanced their capabilities; however, their spatial perception abilities remain a notable limitation. To address this challenge, multimodal data synthesis offers a promising solution. Yet, ensuring that synthesized data adhere to spatial common sense is a non-trivial task. Our approach addresses this critical gap by providing a systematic framework for generating spatially coherent data. In this work, we introduce SKG2DATA, a novel multimodal synthesis approach guided by spatial knowledge graphs, grounded in the concept of knowledge-to-data generation. SKG2DATA employs an automated pipeline for constructing Spatial Knowledge Graph (SKG) that effectively captures human-like spatial cognition, including directional and distance relationships. These structured representations then serve as precise guidance for our integrated synthesis pipeline, where a diffusion model generates spatially-consistent images while a MLLM produces corresponding textual descriptions. The automated construction of SKG enables scalable generation of diverse yet realistic spatial configurations, overcoming the limitations of manual data collection and annotation. Extensive experiments demonstrate that data synthesized from diverse types of spatial knowledge, including direction and distance, enhance the spatial perception and reasoning abilities of MLLMs markedly, albeit with a slight cost to their general capabilities. We hope that the idea of knowledge-based data synthesis can advance the development of spatial intelligence. Code is available at https://github.com/zjunlp/Knowledge2Data.
comment: IEEE/ACM Transactions on Audio, Speech and Language Processing
♻ ☆ Music Arena: Live Evaluation for Text-to-Music NeurIPS 2025
We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare, as study protocols may differ across systems. Moreover, human preferences might help researchers align their TTM systems or improve automatic evaluation metrics, but an open and renewable source of preferences does not currently exist. We aim to fill these gaps by offering *live* evaluation for TTM. In Music Arena, real-world users input text prompts of their choosing and compare outputs from two TTM systems, and their preferences are used to compile a leaderboard. While Music Arena follows recent evaluation trends in other AI domains, we also design it with key features tailored to music: an LLM-based routing system to navigate the heterogeneous type signatures of TTM systems, and the collection of *detailed* preferences including listening data and natural language feedback. We also propose a rolling data release policy with user privacy guarantees, providing a renewable source of preference data and increasing platform transparency. Through its standardized evaluation protocol, transparent data access policies, and music-specific features, Music Arena not only addresses key challenges in the TTM ecosystem but also demonstrates how live evaluation can be thoughtfully adapted to unique characteristics of specific AI domains. Music Arena is available at: https://music-arena.org . Preference data is available at: https://huggingface.co/music-arena .
comment: NeurIPS 2025 Creative AI Track
Computation and Language
♻ ☆ EmbeddingGemma: Powerful and Lightweight Text Representations
We introduce EmbeddingGemma, a new lightweight, open text embedding model based on the Gemma 3 language model family. Our innovative training recipe strategically captures knowledge from larger models via encoder-decoder initialization and geometric embedding distillation. We improve model robustness and expressiveness with a spread-out regularizer, and ensure generalizability by merging checkpoints from varied, optimized mixtures. Evaluated on the Massive Text Embedding Benchmark (MTEB) across multilingual, English, and code domains, EmbeddingGemma (300M) achieves state-of-the-art results. Notably, it outperforms prior top models, both proprietary and open, with fewer than 500M parameters, and provides performance comparable to models double its size, offering an exceptional performance-to-cost ratio. Remarkably, this lead persists when quantizing model weights or truncating embedding outputs. This makes EmbeddingGemma particularly well-suited for low-latency and high-throughput use cases such as on-device applications. We provide ablation studies exploring our key design choices. We release EmbeddingGemma to the community to promote further research.
comment: 18 pages. Models are available in HuggingFace (at https://huggingface.co/collections/google/embeddinggemma-68b9ae3a72a82f0562a80dc4), Kaggle (at https://www.kaggle.com/models/google/embeddinggemma/), and Vertex AI (at https://pantheon.corp.google.com/vertex-ai/publishers/google/model-garden/embeddinggemma)
♻ ☆ CausalARC: Abstract Reasoning with Causal World Models
On-the-fly reasoning often requires adaptation to novel problems under limited data and distribution shift. This work introduces CausalARC: an experimental testbed for AI reasoning in low-data and out-of-distribution regimes, modeled after the Abstraction and Reasoning Corpus (ARC). Each CausalARC reasoning task is sampled from a fully specified causal world model, formally expressed as a structural causal model. Principled data augmentations provide observational, interventional, and counterfactual feedback about the world model in the form of few-shot, in-context learning demonstrations. As a proof-of-concept, we illustrate the use of CausalARC for four language model evaluation settings: (1) abstract reasoning with test-time training, (2) counterfactual reasoning with in-context learning, (3) program synthesis, and (4) causal discovery with logical reasoning. Within- and between-model performance varied heavily across tasks, indicating room for significant improvement in language model reasoning.
comment: Peer-reviewed workshop paper
♻ ☆ Exploring the Synergy of Quantitative Factors and Newsflow Representations from Large Language Models for Stock Return Prediction
In quantitative investing, return prediction supports various tasks, including stock selection, portfolio optimization, and risk management. Quantitative factors, such as valuation, quality, and growth, capture various characteristics of stocks. Unstructured financial data, like news and transcripts, has attracted growing attention, driven by recent advances in large language models (LLMs). This paper examines effective methods for leveraging multimodal factors and newsflow in return prediction and stock selection. First, we introduce a fusion learning framework to learn a unified representation from factors and newsflow representations generated by an LLM. Within this framework, we compare three representative methods: representation combination, representation summation, and attentive representations. Next, building on empirical observations from fusion learning, we explore the mixture model that adaptively combines predictions made by single modalities and their fusion. To mitigate the training instability observed in the mixture model, we introduce a decoupled training approach with theoretical insights. Finally, our experiments on real investment universes yield several insights into effective multimodal modeling of factors and news for stock return prediction and selection.
♻ ☆ Recitation over Reasoning: How Cutting-Edge Language Models Can Fail on Elementary School-Level Reasoning Problems? AACL
The rapid escalation from elementary school-level to frontier problems of the difficulty for LLM benchmarks in recent years have weaved a miracle for researchers that we are only inches away from surpassing human intelligence. However, is the LLMs' remarkable reasoning ability indeed comes from true intelligence by human standards, or are they simply reciting solutions witnessed during training at an Internet level? To study this problem, we propose RoR-Bench, a novel, multi-modal benchmark for detecting LLM's recitation behavior when asked simple reasoning problems but with conditions subtly shifted, and conduct empirical analysis on our benchmark. Surprisingly, we found existing cutting-edge LLMs unanimously exhibits extremely severe recitation behavior; by changing one phrase in the condition, top models such as OpenAI-o1 and DeepSeek-R1 can suffer 60 percent performance loss on elementary school-level arithmetic and reasoning problems. Such findings are a wake-up call to the LLM community that compels us to re-evaluate the true intelligence level of cutting-edge LLMs.
comment: 24 pages, 3 figures, 13 tables. The paper is accepted at AACL-IJCNLP 2025 (main track), and the latest version adds modifications in camera-ready
♻ ☆ Words That Unite The World: A Unified Framework for Deciphering Central Bank Communications Globally NeurIPS 2025
Central banks around the world play a crucial role in maintaining economic stability. Deciphering policy implications in their communications is essential, especially as misinterpretations can disproportionately impact vulnerable populations. To address this, we introduce the World Central Banks (WCB) dataset, the most comprehensive monetary policy corpus to date, comprising over 380k sentences from 25 central banks across diverse geographic regions, spanning 28 years of historical data. After uniformly sampling 1k sentences per bank (25k total) across all available years, we annotate and review each sentence using dual annotators, disagreement resolutions, and secondary expert reviews. We define three tasks: Stance Detection, Temporal Classification, and Uncertainty Estimation, with each sentence annotated for all three. We benchmark seven Pretrained Language Models (PLMs) and nine Large Language Models (LLMs) (Zero-Shot, Few-Shot, and with annotation guide) on these tasks, running 15,075 benchmarking experiments. We find that a model trained on aggregated data across banks significantly surpasses a model trained on an individual bank's data, confirming the principle "the whole is greater than the sum of its parts." Additionally, rigorous human evaluations, error analyses, and predictive tasks validate our framework's economic utility. Our artifacts are accessible through the HuggingFace and GitHub under the CC-BY-NC-SA 4.0 license.
comment: Accepted at NeurIPS 2025 (main conference)
♻ ☆ SlideAgent: Hierarchical Agentic Framework for Multi-Page Visual Document Understanding
Multi-page visual documents such as manuals, brochures, presentations, and posters convey key information through layout, colors, icons, and cross-slide references. While large language models (LLMs) offer opportunities in document understanding, current systems struggle with complex, multi-page visual documents, particularly in fine-grained reasoning over elements and pages. We introduce SlideAgent, a versatile agentic framework for understanding multi-modal, multi-page, and multi-layout documents, especially slide decks. SlideAgent employs specialized agents and decomposes reasoning into three specialized levels-global, page, and element-to construct a structured, query-agnostic representation that captures both overarching themes and detailed visual or textual cues. During inference, SlideAgent selectively activates specialized agents for multi-level reasoning and integrates their outputs into coherent, context-aware answers. Extensive experiments show that SlideAgent achieves significant improvement over both proprietary (+7.9 overall) and open-source models (+9.8 overall).
comment: https://slideagent.github.io/
♻ ☆ Exploring Large Language Models for Detecting Mental Disorders EMNLP 2025
This paper compares the effectiveness of traditional machine learning methods, encoder-based models, and large language models (LLMs) on the task of detecting depression and anxiety. Five Russian-language datasets were considered, each differing in format and in the method used to define the target pathology class. We tested AutoML models based on linguistic features, several variations of encoder-based Transformers such as BERT, and state-of-the-art LLMs as pathology classification models. The results demonstrated that LLMs outperform traditional methods, particularly on noisy and small datasets where training examples vary significantly in text length and genre. However, psycholinguistic features and encoder-based models can achieve performance comparable to language models when trained on texts from individuals with clinically confirmed depression, highlighting their potential effectiveness in targeted clinical applications.
comment: Accepted to EMNLP 2025
♻ ☆ OpinioRAG: Towards Generating User-Centric Opinion Highlights from Large-scale Online Reviews
We study the problem of opinion highlights generation from large volumes of user reviews, often exceeding thousands per entity, where existing methods either fail to scale or produce generic, one-size-fits-all summaries that overlook personalized needs. To tackle this, we introduce OpinioRAG, a scalable, training-free framework that combines RAG-based evidence retrieval with LLMs to efficiently produce tailored summaries. Additionally, we propose novel reference-free verification metrics designed for sentiment-rich domains, where accurately capturing opinions and sentiment alignment is essential. These metrics offer a fine-grained, context-sensitive assessment of factual consistency. To facilitate evaluation, we contribute the first large-scale dataset of long-form user reviews, comprising entities with over a thousand reviews each, paired with unbiased expert summaries and manually annotated queries. Through extensive experiments, we identify key challenges, provide actionable insights into improving systems, pave the way for future research, and position OpinioRAG as a robust framework for generating accurate, relevant, and structured summaries at scale.
comment: COLM 2025
♻ ☆ Readers Prefer Outputs of AI Trained on Copyrighted Books over Expert Human Writers
The use of copyrighted books for training AI models has led to numerous lawsuits from authors concerned about AI's ability to generate derivative content. Yet it's unclear if these models can generate high quality literary text while emulating authors' styles. To answer this we conducted a preregistered study comparing MFA-trained expert writers with three frontier AI models: ChatGPT, Claude & Gemini in writing up to 450 word excerpts emulating 50 award-winning authors' diverse styles. In blind pairwise evaluations by 159 representative expert & lay readers, AI-generated text from in-context prompting was strongly disfavored by experts for both stylistic fidelity (OR=0.16, p<10^-8) & writing quality (OR=0.13, p<10^-7) but showed mixed results with lay readers. However, fine-tuning ChatGPT on individual authors' complete works completely reversed these findings: experts now favored AI-generated text for stylistic fidelity (OR=8.16, p<10^-13) & writing quality (OR=1.87, p=0.010), with lay readers showing similar shifts. These effects generalize across authors & styles. The fine-tuned outputs were rarely flagged as AI-generated (3% rate v. 97% for in-context prompting) by best AI detectors. Mediation analysis shows this reversal occurs because fine-tuning eliminates detectable AI stylistic quirks (e.g., cliche density) that penalize in-context outputs. While we do not account for additional costs of human effort required to transform raw AI output into cohesive, publishable prose, the median fine-tuning & inference cost of $81 per author represents a dramatic 99.7% reduction compared to typical professional writer compensation. Author-specific fine-tuning thus enables non-verbatim AI writing that readers prefer to expert human writing, providing empirical evidence directly relevant to copyright's fourth fair-use factor, the "effect upon the potential market or value" of the source works.
comment: Preprint Under Review
♻ ☆ Zero-knowledge LLM hallucination detection and mitigation through fine-grained cross-model consistency
Large language models (LLMs) have demonstrated impressive capabilities across diverse tasks, but they remain susceptible to hallucinations--generating content that appears plausible but contains factual inaccuracies. We present Finch-Zk, a black-box framework that leverages fine-grained cross-model consistency to detect and mitigate hallucinations in LLM outputs without requiring external knowledge sources. Finch-Zk introduces two key innovations: 1) a cross-model consistency checking strategy that reveals fine-grained inaccuracies by comparing responses generated by diverse models from semantically-equivalent prompts, and 2) a targeted mitigation technique that applies precise corrections to problematic segments while preserving accurate content. Experiments on the FELM dataset show Finch-Zk improves hallucination detection F1 scores by 6-39\% compared to existing approaches. For mitigation, Finch-Zk achieves up to 9 absolute percentage points improvement in answer accuracy on the GPQA-diamond dataset when applied to state-of-the-art models like Llama 4 Maverick and Claude 4 Sonnet. Extensive evaluation on multiple datasets demonstrates that Finch-Zk provides a practical, deployment-ready safeguard for enhancing factual reliability in production LLM systems.
♻ ☆ Editing Across Languages: A Survey of Multilingual Knowledge Editing EMNLP 2025
While Knowledge Editing has been extensively studied in monolingual settings, it remains underexplored in multilingual contexts. This survey systematizes recent research on Multilingual Knowledge Editing (MKE), a growing subdomain of model editing focused on ensuring factual edits generalize reliably across languages. We present a comprehensive taxonomy of MKE methods, covering parameter-based, memory-based, fine-tuning, and hypernetwork approaches. We survey available benchmarks,summarize key findings on method effectiveness and transfer patterns, identify challenges in cross-lingual propagation, and highlight open problems related to language anisotropy, evaluation coverage, and edit scalability. Our analysis consolidates a rapidly evolving area and lays the groundwork for future progress in editable language-aware LLMs.
comment: Accepted at EMNLP 2025
♻ ☆ A Closer Look at Bias and Chain-of-Thought Faithfulness of Large (Vision) Language Models EMNLP 2025
Chain-of-thought (CoT) reasoning enhances performance of large language models, but questions remain about whether these reasoning traces faithfully reflect the internal processes of the model. We present the first comprehensive study of CoT faithfulness in large vision-language models (LVLMs), investigating how both text-based and previously unexplored image-based biases affect reasoning and bias articulation. Our work introduces a novel, fine-grained evaluation pipeline for categorizing bias articulation patterns, enabling significantly more precise analysis of CoT reasoning than previous methods. This framework reveals critical distinctions in how models process and respond to different types of biases, providing new insights into LVLM CoT faithfulness. Our findings reveal that subtle image-based biases are rarely articulated compared to explicit text-based ones, even in models specialized for reasoning. Additionally, many models exhibit a previously unidentified phenomenon we term ``inconsistent'' reasoning - correctly reasoning before abruptly changing answers, serving as a potential canary for detecting biased reasoning from unfaithful CoTs. We then apply the same evaluation pipeline to revisit CoT faithfulness in LLMs across various levels of implicit cues. Our findings reveal that current language-only reasoning models continue to struggle with articulating cues that are not overtly stated.
comment: Accepted in EMNLP 2025, 34 pages, 25 figures
♻ ☆ RoboOmni: Proactive Robot Manipulation in Omni-modal Context
Recent advances in Multimodal Large Language Models (MLLMs) have driven rapid progress in Vision-Language-Action (VLA) models for robotic manipulation. Although effective in many scenarios, current approaches largely rely on explicit instructions, whereas in real-world interactions, humans rarely issue instructions directly. Effective collaboration requires robots to infer user intentions proactively. In this work, we introduce cross-modal contextual instructions, a new setting where intent is derived from spoken dialogue, environmental sounds, and visual cues rather than explicit commands. To address this new setting, we present RoboOmni, a Perceiver-Thinker-Talker-Executor framework based on end-to-end omni-modal LLMs that unifies intention recognition, interaction confirmation, and action execution. RoboOmni fuses auditory and visual signals spatiotemporally for robust intention recognition, while supporting direct speech interaction. To address the absence of training data for proactive intention recognition in robotic manipulation, we build OmniAction, comprising 140k episodes, 5k+ speakers, 2.4k event sounds, 640 backgrounds, and six contextual instruction types. Experiments in simulation and real-world settings show that RoboOmni surpasses text- and ASR-based baselines in success rate, inference speed, intention recognition, and proactive assistance.
♻ ☆ Interpreting the Latent Structure of Operator Precedence in Language Models
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities but continue to struggle with arithmetic tasks. Prior works largely focus on outputs or prompting strategies, leaving the open question of the internal structure through which models do arithmetic computation. In this work, we investigate whether LLMs encode operator precedence in their internal representations via the open-source instruction-tuned LLaMA 3.2-3B model. We constructed a dataset of arithmetic expressions with three operands and two operators, varying the order and placement of parentheses. Using this dataset, we trace whether intermediate results appear in the residual stream of the instruction-tuned LLaMA 3.2-3B model. We apply interpretability techniques such as logit lens, linear classification probes, and UMAP geometric visualization. Our results show that intermediate computations are present in the residual stream, particularly after MLP blocks. We also find that the model linearly encodes precedence in each operator's embeddings post attention layer. We introduce partial embedding swap, a technique that modifies operator precedence by exchanging high-impact embedding dimensions between operators.
comment: 11 pages, 6 figures. An earlier version of this work was accepted to CoLM 2024. This is an extended version of our CoLM 2024 paper. Includes additional ablations; added Ved Shah as author for those contributions
♻ ☆ What Features in Prompts Jailbreak LLMs? Investigating the Mechanisms Behind Attacks
Jailbreaks have been a central focus of research regarding the safety and reliability of large language models (LLMs), yet the mechanisms underlying these attacks remain poorly understood. While previous studies have predominantly relied on linear methods to detect jailbreak attempts and model refusals, we take a different approach by examining both linear and non-linear features in prompts that lead to successful jailbreaks. First, we introduce a novel dataset comprising 10,800 jailbreak attempts spanning 35 diverse attack methods. Leveraging this dataset, we train linear and non-linear probes on hidden states of open-weight LLMs to predict jailbreak success. Probes achieve strong in-distribution accuracy but transfer is attack-family-specific, revealing that different jailbreaks are supported by distinct internal mechanisms rather than a single universal direction. To establish causal relevance, we construct probe-guided latent interventions that systematically shift compliance in the predicted direction. Interventions derived from non-linear probes produce larger and more reliable effects than those from linear probes, indicating that features linked to jailbreak success are encoded non-linearly in prompt representations. Overall, the results surface heterogeneous, non-linear structure in jailbreak mechanisms and provide a prompt-side methodology for recovering and testing the features that drive jailbreak outcomes.
♻ ☆ Instructing Large Language Models for Low-Resource Languages: A Systematic Study for Basque EMNLP 2025
Instructing language models with user intent requires large instruction datasets, which are only available for a limited set of languages. In this paper, we explore alternatives to conventional instruction adaptation pipelines in low-resource scenarios. We assume a realistic scenario for low-resource languages, where only the following are available: corpora in the target language, existing open-weight multilingual base and instructed backbone LLMs, and synthetically generated instructions sampled from the instructed backbone. We present a comprehensive set of experiments for Basque that systematically study different combinations of these components evaluated on benchmarks and human preferences from 1,680 participants. Our conclusions show that target language corpora are essential, with synthetic instructions yielding robust models, and, most importantly, that using as backbone an instruction-tuned model outperforms using a base non-instructed model. Scaling up to Llama 3.1 Instruct 70B as backbone, our model comes near frontier models of much larger sizes for Basque, without using any Basque instructions. We release code, models, instruction datasets, and human preferences to support full reproducibility in future research on low-resource language adaptation. https://github.com/hitz-zentroa/latxa-instruct
comment: Accepted at EMNLP 2025 Main Conference
♻ ☆ On the Bias of Next-Token Predictors Toward Systematically Inefficient Reasoning: A Shortest-Path Case Study
Recent advances in natural language processing highlight two key factors for improving reasoning in large language models (LLMs): (i) allocating more test-time compute tends to help on harder problems but often introduces redundancy in the reasoning trace, and (ii) compute is most effective when reasoning is systematic and incremental, forming structured chains of thought (CoTs) akin to human problem-solving. To study these factors in isolation, we introduce a controlled setting based on shortest-path tasks in layered graphs. We train decoder-only transformers on question-trace-answer triples using a custom tokenizer, comparing models trained on optimal bottom-up dynamic programming traces with those trained on longer, valid traces involving backtracking. Surprisingly, with the same training-token budget, models trained on inefficient traces generalize better to unseen graphs. This benefit is not due to length alone-injecting arbitrary redundancy into reasoning traces fails to help and can even hurt performance. Instead, we find that generalization correlates with the model's confidence in next-token prediction, suggesting that long, coherent, and locally incremental traces make the training signal easier to optimize.
♻ ☆ Recent Trends in Distant Conversational Speech Recognition: A Review of CHiME-7 and 8 DASR Challenges
The CHiME-7 and 8 distant speech recognition (DASR) challenges focus on multi-channel, generalizable, joint automatic speech recognition (ASR) and diarization of conversational speech. With participation from 9 teams submitting 32 diverse systems, these challenges have contributed to state-of-the-art research in the field. This paper outlines the challenges' design, evaluation metrics, datasets, and baseline systems while analyzing key trends from participant submissions. From this analysis it emerges that: 1) Most participants use end-to-end (e2e) ASR systems, whereas hybrid systems were prevalent in previous CHiME challenges. This transition is mainly due to the availability of robust large-scale pre-trained models, which lowers the data burden for e2e-ASR. 2) Despite recent advances in neural speech separation and enhancement (SSE), all teams still heavily rely on guided source separation, suggesting that current neural SSE techniques are still unable to reliably deal with complex scenarios and different recording setups. 3) All best systems employ diarization refinement via target-speaker diarization techniques. Accurate speaker counting in the first diarization pass is thus crucial to avoid compounding errors and CHiME-8 DASR participants especially focused on this part. 4) Downstream evaluation via meeting summarization can correlate weakly with transcription quality due to the remarkable effectiveness of large-language models in handling errors. On the NOTSOFAR-1 scenario, even systems with over 50% time-constrained minimum permutation WER can perform roughly on par with the most effective ones (around 11%). 5) Despite recent progress, accurately transcribing spontaneous speech in challenging acoustic environments remains difficult, even when using computationally intensive system ensembles.
♻ ☆ Targeted Distillation for Sentiment Analysis
This paper explores targeted distillation methods for sentiment analysis, aiming to build compact and practical models that preserve strong and generalizable sentiment analysis capabilities. To this end, we conceptually decouple the distillation target into knowledge and alignment and accordingly propose a two-stage distillation framework. Moreover, we introduce SentiBench, a comprehensive and systematic sentiment analysis benchmark that covers a diverse set of tasks across 12 datasets. We evaluate a wide range of models on this benchmark. Experimental results show that our approach substantially enhances the performance of compact models across diverse sentiment analysis tasks, and the resulting models demonstrate strong generalization to unseen tasks, showcasing robust competitiveness against existing small-scale models.
♻ ☆ The Curse of CoT: On the Limitations of Chain-of-Thought in In-Context Learning
Chain-of-Thought (CoT) prompting has been widely recognized for its ability to enhance reasoning capabilities in large language models (LLMs). However, our study reveals a surprising contradiction to this prevailing perspective within the fundamental domain of pattern-based in-context learning (ICL). Through extensive experiments involving 16 state-of-the-art LLMs and nine diverse pattern-based ICL datasets, we demonstrate that CoT and its reasoning variants consistently underperform direct answering across varying model scales and benchmark complexities. To systematically investigate this unexpected phenomenon, we designed extensive experiments to validate several hypothetical explanations. Our analysis uncovers a fundamental hybrid mechanism of explicit-implicit reasoning driving CoT's performance in pattern-based ICL: while explicit reasoning falters due to LLMs' struggles to infer underlying patterns from demonstrations, implicit reasoning-disrupted by the increased contextual distance of CoT rationales-often compensates, delivering correct answers despite flawed rationales. This hybrid mechanism explains CoT's relative underperformance, as noise from weak explicit inference undermines the process, even as implicit mechanisms partially salvage outcomes. Notably, even long-CoT reasoning models, which excel in abstract and symbolic reasoning, fail to fully overcome these limitations despite higher computational costs. Our findings challenge existing assumptions regarding the universal efficacy of CoT, yielding novel insights into its limitations and guiding future research toward more nuanced and effective reasoning methodologies for LLMs.
comment: Accepted by TMLR
♻ ☆ Comprehensive and Efficient Distillation for Lightweight Sentiment Analysis Models EMNLP 2025
Recent efforts leverage knowledge distillation techniques to develop lightweight and practical sentiment analysis models. These methods are grounded in human-written instructions and large-scale user texts. Despite the promising results, two key challenges remain: (1) manually written instructions are limited in diversity and quantity, making them insufficient to ensure comprehensive coverage of distilled knowledge; (2) large-scale user texts incur high computational cost, hindering the practicality of these methods. To this end, we introduce CompEffDist, a comprehensive and efficient distillation framework for sentiment analysis. Our framework consists of two key modules: attribute-based automatic instruction construction and difficulty-based data filtering, which correspondingly tackle the aforementioned challenges. Applying our method across multiple model series (Llama-3, Qwen-3, and Gemma-3), we enable 3B student models to match the performance of 20x larger teacher models on most tasks. In addition, our approach greatly outperforms baseline methods in data efficiency, attaining the same performance level with only 10% of the data.
comment: Accepted by EMNLP 2025. 22 pages, 9 figures. The first two authors contribute equally
♻ ☆ Transferring Linear Features Across Language Models With Model Stitching
In this work, we demonstrate that affine mappings between residual streams of language models is a cheap way to effectively transfer represented features between models. We apply this technique to transfer the weights of Sparse Autoencoders (SAEs) between models of different sizes to compare their representations. We find that small and large models learn similar representation spaces, which motivates training expensive components like SAEs on a smaller model and transferring to a larger model at a FLOPs savings. In particular, using a small-to-large transferred SAE as initialization can lead to 50% cheaper training runs when training SAEs on larger models. Next, we show that transferred probes and steering vectors can effectively recover ground truth performance. Finally, we dive deeper into feature-level transferability, finding that semantic and structural features transfer noticeably differently while specific classes of functional features have their roles faithfully mapped. Overall, our findings illustrate similarities and differences in the linear representation spaces of small and large models and demonstrate a method for improving the training efficiency of SAEs.
♻ ☆ 3MDBench: Medical Multimodal Multi-agent Dialogue Benchmark EMNLP 25
Though Large Vision-Language Models (LVLMs) are being actively explored in medicine, their ability to conduct complex real-world telemedicine consultations combining accurate diagnosis with professional dialogue remains underexplored. This paper presents 3MDBench (Medical Multimodal Multi-agent Dialogue Benchmark), an open-source framework for simulating and evaluating LVLM-driven telemedical consultations. 3MDBench simulates patient variability through temperament-based Patient Agent and evaluates diagnostic accuracy and dialogue quality via Assessor Agent. It includes 2996 cases across 34 diagnoses from real-world telemedicine interactions, combining textual and image-based data. The experimental study compares diagnostic strategies for widely used open and closed-source LVLMs. We demonstrate that multimodal dialogue with internal reasoning improves F1 score by 6.5% over non-dialogue settings, highlighting the importance of context-aware, information-seeking questioning. Moreover, injecting predictions from a diagnostic convolutional neural network into the LVLM's context boosts F1 by up to 20%. Source code is available at https://github.com/univanxx/3mdbench.
comment: EMNLP 25 (main)
♻ ☆ MaiBaam Annotation Guidelines
This document provides the annotation guidelines for MaiBaam, a Bavarian corpus manually annotated with part-of-speech (POS) tags, syntactic dependencies, and German lemmas. MaiBaam belongs to the Universal Dependencies (UD) project, and our annotations elaborate on the general and German UD version 2 guidelines. In this document, we detail how to preprocess and tokenize Bavarian data, provide an overview of the POS tags and dependencies we use, explain annotation decisions that would also apply to closely related languages like German, and lastly we introduce and motivate decisions that are specific to Bavarian grammar.
comment: Updated for UD v2.17
♻ ☆ Kimi Linear: An Expressive, Efficient Attention Architecture
We introduce Kimi Linear, a hybrid linear attention architecture that, for the first time, outperforms full attention under fair comparisons across various scenarios -- including short-context, long-context, and reinforcement learning (RL) scaling regimes. At its core lies Kimi Delta Attention (KDA), an expressive linear attention module that extends Gated DeltaNet with a finer-grained gating mechanism, enabling more effective use of limited finite-state RNN memory. Our bespoke chunkwise algorithm achieves high hardware efficiency through a specialized variant of the Diagonal-Plus-Low-Rank (DPLR) transition matrices, which substantially reduces computation compared to the general DPLR formulation while remaining more consistent with the classical delta rule. We pretrain a Kimi Linear model with 3B activated parameters and 48B total parameters, based on a layerwise hybrid of KDA and Multi-Head Latent Attention (MLA). Our experiments show that with an identical training recipe, Kimi Linear outperforms full MLA with a sizeable margin across all evaluated tasks, while reducing KV cache usage by up to 75% and achieving up to 6 times decoding throughput for a 1M context. These results demonstrate that Kimi Linear can be a drop-in replacement for full attention architectures with superior performance and efficiency, including tasks with longer input and output lengths. To support further research, we open-source the KDA kernel and vLLM implementations, and release the pre-trained and instruction-tuned model checkpoints.
comment: Kimi Linear tech report
♻ ☆ Incivility and Rigidity: Evaluating the Risks of Fine-Tuning LLMs for Political Argumentation
Incivility on platforms such as Twitter (now X) and Reddit complicates the development of AI systems that can support productive, rhetorically sound political argumentation. We present experiments with \textit{GPT-3.5 Turbo} fine-tuned on two contrasting datasets of political discourse: high-incivility Twitter replies to U.S. Congress and low-incivility posts from Reddit's \textit{r/ChangeMyView}. Our evaluation examines how data composition and prompting strategies affect the rhetorical framing and deliberative quality of model-generated arguments. Results show that Reddit-finetuned models generate safer but rhetorically rigid arguments, while cross-platform fine-tuning amplifies adversarial tone and toxicity. Prompt-based steering reduces overt toxicity (e.g., personal attacks) but cannot fully offset the influence of noisy training data. We introduce a rhetorical evaluation rubric - covering justification, reciprocity, alignment, and authority - and provide implementation guidelines for authoring, moderation, and deliberation-support systems.
♻ ☆ Language Native Lightly Structured Databases for Large Language Model Driven Composite Materials Research
The preparation procedures of materials are often embedded narratively in experimental protocols, research articles, patents, and laboratory notes, and are structured around procedural sequences, causal relationships, and conditional logic. The synthesis of boron nitride nanosheet (BNNS) polymer composites exemplifies this linguistically encoded decision-making system, where the practical experiments involve interdependent multistage and path-dependent processes such as exfoliation, functionalization, and dispersion, each governed by heterogeneous parameters and contextual contingencies, challenging conventional numerical optimization paradigms for experiment design. We reformulate this challenge into a text-reasoning problem through a framework centered on a text-first, lightly structured materials database and large language models (LLMs) as text reasoning engines. We constructed a database that captures evidence-linked narrative excerpts from the literature while normalizing only the minimum necessary entities, attributes, and relations to enable composite retrieval that unifies semantic matching, lexical cues, and explicit value filters. Building on this language-native, provenance-preserving foundation, the LLM operates in two complementary modes: retrieval-augmented generation (RAG), grounding outputs in retrieved evidence modules from the database, and experience-augmented reasoning (EAR), which leverages iteratively trained text guides derived from multi-source literature-based narrative data as external references to inform reasoning and decision-making. Applying this integration-and-reasoning framework, we demonstrate rapid, laboratory-scale optimization of BNNS preparation, highlighting how language-native data combined with LLM-based reasoning can significantly accelerate practical material preparation.
♻ ☆ MultiMatch: Multihead Consistency Regularization Matching for Semi-Supervised Text Classification EMNLP 2025
We introduce MultiMatch, a novel semi-supervised learning (SSL) algorithm combining the paradigms of co-training and consistency regularization with pseudo-labeling. At its core, MultiMatch features a pseudo-label weighting module designed for selecting and filtering pseudo-labels based on head agreement and model confidence, and weighting them according to the perceived classification difficulty. This novel module enhances and unifies three existing techniques -- heads agreement from Multihead Co-training, self-adaptive thresholds from FreeMatch, and Average Pseudo-Margins from MarginMatch -- resulting in a holistic approach that improves robustness and performance in SSL settings. Experimental results on benchmark datasets highlight the superior performance of MultiMatch, i.e., MultiMatch achieves state-of-the-art results on 8 out of 10 setups from 5 natural language processing datasets and ranks first according to the Friedman test among 21 methods. Furthermore, MultiMatch demonstrates exceptional robustness in highly imbalanced settings, outperforming the second-best approach by 3.26%, a critical advantage for real-world text classification tasks. Our code is available on GitHub.
comment: This is the camera-ready version of the paper, accepted for publication in the Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025)
♻ ☆ Exploring the Hidden Capacity of LLMs for One-Step Text Generation EMNLP2025
A recent study showed that large language models (LLMs) can reconstruct surprisingly long texts - up to thousands of tokens - via autoregressive generation from just one trained input embedding. In this work, we explore whether autoregressive decoding is essential for such reconstruction. We show that frozen LLMs can generate hundreds of accurate tokens in just one token-parallel forward pass, when provided with only two learned embeddings. This reveals a surprising and underexplored multi-token generation capability of autoregressive LLMs. We examine these embeddings and characterize the information they encode. We also empirically show that, although these representations are not unique for a given text, they form connected and local regions in embedding space - suggesting the potential to train a practical encoder. The existence of such representations hints that multi-token generation may be natively accessible in off-the-shelf LLMs via a learned input encoder, eliminating heavy retraining and helping to overcome the fundamental bottleneck of autoregressive decoding while reusing already-trained models.
comment: accepted to EMNLP2025 main
♻ ☆ GreekBarBench: A Challenging Benchmark for Free-Text Legal Reasoning and Citations EMNLP 2025
We introduce GreekBarBench, a benchmark that evaluates LLMs on legal questions across five different legal areas from the Greek Bar exams, requiring citations to statutory articles and case facts. To tackle the challenges of free-text evaluation, we propose a three-dimensional scoring system combined with an LLM-as-a-judge approach. We also develop a meta-evaluation benchmark to assess the correlation between LLM-judges and human expert evaluations, revealing that simple, span-based rubrics improve their alignment. Our systematic evaluation of 13 proprietary and open-weight LLMs shows that even though the best models outperform average expert scores, they fall short of the 95th percentile of experts.
comment: 19 pages, 17 figures, accepted in EMNLP 2025
♻ ☆ VideoExplorer: Think With Videos For Agentic Long-Video Understanding
Long-video understanding~(LVU) is a challenging problem in computer vision. Existing methods either downsample frames for single-pass reasoning, sacrificing fine-grained details, or depend on textual reasoning over task-agnostic representations, hindering task-specific perception and exploration. In this paper, we propose VideoExplorer, a framework grounded in the principle of ``thinking with video'', which naturally intertwines planning, temporal grounding, and scalable perception into a coherent reasoning process. Rather than reasoning over a static context, VideoExplorer iteratively formulates sub-questions, locates relevant moments, and performs task-oriented, temporally scalable video understanding until reaching the final answer, enabling faithful, efficient, and interpretable reasoning. To address the lack of LVU training resources, we construct a long-video reasoning dataset using difficulty-adaptive sampling to ensure high-quality trajectories on complex tasks. Building on this dataset, we design a two-stage training pipeline: supervised trajectory initialization followed by trajectory-level preference optimization, encouraging adaptive temporal grounding and iterative information integration guided by downstream rewards. Extensive evaluations on popular long-video understanding and reasoning benchmarks demonstrate VideoExplorer's significant advantage over existing baselines, highlighting its robustness, adaptability, and efficiency. Our code is made publicly available in this repository(https://github.com/yhy-2000/VideoDeepResearch).
♻ ☆ Towards Robust Evaluation of STEM Education: Leveraging MLLMs in Project-Based Learning
Project-Based Learning (PBL) involves a variety of highly correlated multimodal data, making it a vital educational approach within STEM disciplines. With the rapid development of multimodal large language models (MLLMs), researchers have begun exploring their potential to enhance tasks such as information retrieval, knowledge comprehension, and data generation in educational settings. However, existing benchmarks fall short in providing both a free-form output structure and a rigorous human expert validation process, limiting their effectiveness in evaluating real-world educational tasks. Additionally, few methods have developed automated pipelines to assist with the complex responsibilities of teachers leveraging MLLMs, largely due to model hallucination and instability, which lead to unreliable implementation. To address this gap, we introduce PBLBench, a novel benchmark designed to evaluate complex reasoning grounded in domain-specific knowledge and long-context understanding, thereby challenging models with tasks that closely resemble those handled by human experts. To establish reliable ground truth, we adopt the Analytic Hierarchy Process (AHP), utilizing expert-driven pairwise comparisons to derive structured and weighted evaluation criteria. We assess the performance of 15 leading MLLMs/LLMs using PBLBench and demonstrate that even the most advanced models achieve only 59% rank accuracy, underscoring the significant challenges presented by this benchmark. We believe PBLBench will serve as a catalyst for the development of more capable AI agents, ultimately aiming to alleviate teacher workload and enhance educational productivity.
♻ ☆ Auto-Search and Refinement: An Automated Framework for Gender Bias Mitigation in Large Language Models NeurIPS 2025
Pre-training large language models (LLMs) on vast text corpora enhances natural language processing capabilities but risks encoding social biases, particularly gender bias. While parameter-modification methods like fine-tuning mitigate bias, they are resource-intensive, unsuitable for closed-source models, and lack adaptability to evolving societal norms. Instruction-based approaches offer flexibility but often compromise task performance. To address these limitations, we propose $\textbf{FaIRMaker}$, an automated and model-independent framework that employs an $\textbf{auto-search and refinement}$ paradigm to adaptively generate Fairwords, which act as instructions integrated into input queries to reduce gender bias and enhance response quality. Extensive experiments demonstrate that FaIRMaker automatically searches for and dynamically refines Fairwords, effectively mitigating gender bias while preserving task integrity and ensuring compatibility with both API-based and open-source LLMs.
comment: Accepted to NeurIPS 2025
♻ ☆ IndicSentEval: How Effectively do Multilingual Transformer Models encode Linguistic Properties for Indic Languages? AACL 2025
Transformer-based models have revolutionized the field of natural language processing. To understand why they perform so well and to assess their reliability, several studies have focused on questions such as: Which linguistic properties are encoded by these models, and to what extent? How robust are these models in encoding linguistic properties when faced with perturbations in the input text? However, these studies have mainly focused on BERT and the English language. In this paper, we investigate similar questions regarding encoding capability and robustness for 8 linguistic properties across 13 different perturbations in 6 Indic languages, using 9 multilingual Transformer models (7 universal and 2 Indic-specific). To conduct this study, we introduce a novel multilingual benchmark dataset, IndicSentEval, containing approximately $\sim$47K sentences. Surprisingly, our probing analysis of surface, syntactic, and semantic properties reveals that while almost all multilingual models demonstrate consistent encoding performance for English, they show mixed results for Indic languages. As expected, Indic-specific multilingual models capture linguistic properties in Indic languages better than universal models. Intriguingly, universal models broadly exhibit better robustness compared to Indic-specific models, particularly under perturbations such as dropping both nouns and verbs, dropping only verbs, or keeping only nouns. Overall, this study provides valuable insights into probing and perturbation-specific strengths and weaknesses of popular multilingual Transformer-based models for different Indic languages. We make our code and dataset publicly available [https://github.com/aforakhilesh/IndicBertology].
comment: 25 pages, 11 figures, Accepted at IJCNLP-AACL 2025 Findings
♻ ☆ Chain of Retrieval: Multi-Aspect Iterative Search Expansion and Post-Order Search Aggregation for Full Paper Retrieval
Scientific paper retrieval, particularly framed as document-to-document retrieval, aims to identify relevant papers in response to a long-form query paper, rather than a short query string. Previous approaches to this task have focused exclusively on abstracts, embedding them into dense vectors as surrogates for full documents and calculating similarity between them. Yet, abstracts offer only sparse and high-level summaries, and such methods primarily optimize one-to-one similarity, overlooking the dynamic relations that emerge among relevant papers during the retrieval process. To address this, we propose Chain of Retrieval(COR), a novel iterative framework for full-paper retrieval. Specifically, CoR decomposes each query paper into multiple aspect-specific views, matches them against segmented candidate papers, and iteratively expands the search by promoting top-ranked results as new queries, thereby forming a tree-structured retrieval process. The resulting retrieval tree is then aggregated in a post-order manner: descendants are first combined at the query level, then recursively merged with their parent nodes, to capture hierarchical relations across iterations. To validate this, we present SCIFULLBENCH, a large-scale benchmark providing both complete and segmented contexts of full papers for queries and candidates, and results show that CoR significantly outperforms existing retrieval baselines. Our code and dataset is available at https://github.com/psw0021/Chain-of-Retrieval.git.
♻ ☆ Reasoning Beyond Language: A Comprehensive Survey on Latent Chain-of-Thought Reasoning
Large Language Models (LLMs) have shown impressive performance on complex tasks through Chain-of-Thought (CoT) reasoning. However, conventional CoT relies on explicitly verbalized intermediate steps, which constrains its broader applicability, particularly in abstract reasoning tasks beyond language. To address this, there has been growing research interest in \textit{latent CoT reasoning}, where the reasoning process is embedded within latent spaces. By decoupling reasoning from explicit language generation, latent CoT offers the promise of richer cognitive representations and facilitates more flexible, faster inference. This paper aims to present a comprehensive overview of this emerging paradigm and establish a systematic taxonomy. We analyze recent advances in methods, categorizing them from token-wise horizontal approaches to layer-wise vertical strategies. We then provide in-depth discussions of these methods, highlighting their design principles, applications, and remaining challenges. We hope that our survey provides a structured foundation for advancing this promising direction in LLM reasoning. The relevant papers will be regularly updated at https://github.com/EIT-NLP/Awesome-Latent-CoT.
♻ ☆ Abstraction Alignment: Comparing Model-Learned and Human-Encoded Conceptual Relationships
While interpretability methods identify a model's learned concepts, they overlook the relationships between concepts that make up its abstractions and inform its ability to generalize to new data. To assess whether models' have learned human-aligned abstractions, we introduce abstraction alignment, a methodology to compare model behavior against formal human knowledge. Abstraction alignment externalizes domain-specific human knowledge as an abstraction graph, a set of pertinent concepts spanning levels of abstraction. Using the abstraction graph as a ground truth, abstraction alignment measures the alignment of a model's behavior by determining how much of its uncertainty is accounted for by the human abstractions. By aggregating abstraction alignment across entire datasets, users can test alignment hypotheses, such as which human concepts the model has learned and where misalignments recur. In evaluations with experts, abstraction alignment differentiates seemingly similar errors, improves the verbosity of existing model-quality metrics, and uncovers improvements to current human abstractions.
comment: 20 pages, 7 figures, published in CHI 2025
♻ ☆ SPARTA ALIGNMENT: Collectively Aligning Multiple Language Models through Combat NeurIPS 2025
We propose SPARTA ALIGNMENT, an algorithm to collectively align multiple LLMs through competition and combat. To complement a single model's lack of diversity in generation and biases in evaluation, multiple LLMs form a "sparta tribe" to compete against each other in fulfilling instructions while serving as judges for the competition of others. For each iteration, one instruction and two models are selected for a duel, the other models evaluate the two responses, and their evaluation scores are aggregated through a adapted elo-ranking based reputation system, where winners/losers of combat gain/lose weight in evaluating others. The peer-evaluated combat results then become preference pairs where the winning response is preferred over the losing one, and all models learn from these preferences at the end of each iteration. SPARTA ALIGNMENT enables the self-evolution of multiple LLMs in an iterative and collective competition process. Extensive experiments demonstrate that SPARTA ALIGNMENT outperforms initial models and 4 self-alignment baselines across 10 out of 12 tasks and datasets with 7.0% average improvement. Further analysis reveals that SPARTA ALIGNMENT generalizes more effectively to unseen tasks and leverages the expertise diversity of participating models to produce more logical, direct and informative outputs.
comment: NeurIPS 2025
♻ ☆ Large Language Models as Medical Codes Selectors: a benchmark using the International Classification of Primary Care NeurIPS 2025
Background: Medical coding structures healthcare data for research, quality monitoring, and policy. This study assesses the potential of large language models (LLMs) to assign ICPC-2 codes using the output of a domain-specific search engine. Methods: A dataset of 437 Brazilian Portuguese clinical expressions, each annotated with ICPC-2 codes, was used. A semantic search engine (OpenAI's text-embedding-3-large) retrieved candidates from 73,563 labeled concepts. Thirty-three LLMs were prompted with each query and retrieved results to select the best-matching ICPC-2 code. Performance was evaluated using F1-score, along with token usage, cost, response time, and format adherence. Results: Twenty-eight models achieved F1-score > 0.8; ten exceeded 0.85. Top performers included gpt-4.5-preview, o3, and gemini-2.5-pro. Retriever optimization can improve performance by up to 4 points. Most models returned valid codes in the expected format, with reduced hallucinations. Smaller models (<3B) struggled with formatting and input length. Conclusions: LLMs show strong potential for automating ICPC-2 coding, even without fine-tuning. This work offers a benchmark and highlights challenges, but findings are limited by dataset scope and setup. Broader, multilingual, end-to-end evaluations are needed for clinical validation.
comment: Accepted at NeurIPS 2025 as a poster presentation in The Second Workshop on GenAI for Health: Potential, Trust, and Policy Compliance (https://openreview.net/forum?id=Kl7KZwJFEG). 33 pages, 10 figures (including appendix), 15 tables (including appendix). To be submitted to peer-reviewed journal. For associated code repository, see https://github.com/almeidava93/llm-as-code-selectors-paper
♻ ☆ The Language of Interoception: Examining Embodiment and Emotion Through a Corpus of Body Part Mentions
This paper is the first investigation of the connection between emotion, embodiment, and everyday language in a large sample of natural language data. We created corpora of body part mentions (BPMs) in online English text (blog posts and tweets). This includes a subset featuring human annotations for the emotions of the person whose body part is mentioned in the text. We show that BPMs are common in personal narratives and tweets (~5% to 10% of posts include BPMs) and that their usage patterns vary markedly by time and %geographic location. Using word-emotion association lexicons and our annotated data, we show that text containing BPMs tends to be more emotionally charged, even when the BPM is not explicitly used to describe a physical reaction to the emotion in the text. Finally, we discover a strong and statistically significant correlation between body-related language and a variety of poorer health outcomes. In sum, we argue that investigating the role of body-part related words in language can open up valuable avenues of future research at the intersection of NLP, the affective sciences, and the study of human wellbeing.
comment: 8 pages, 26 figures
♻ ☆ QCoder Benchmark: Bridging Language Generation and Quantum Hardware through Simulator-Based Feedback
Large language models (LLMs) have increasingly been applied to automatic programming code generation. This task can be viewed as a language generation task that bridges natural language, human knowledge, and programming logic. However, it remains underexplored in domains that require interaction with hardware devices, such as quantum programming, where human coders write Python code that is executed on a quantum computer. To address this gap, we introduce QCoder Benchmark, an evaluation framework that assesses LLMs on quantum programming with feedback from simulated hardware devices. Our benchmark offers two key features. First, it supports evaluation using a quantum simulator environment beyond conventional Python execution, allowing feedback of domain-specific metrics such as circuit depth, execution time, and error classification, which can be used to guide better generation. Second, it incorporates human-written code submissions collected from real programming contests, enabling both quantitative comparisons and qualitative analyses of LLM outputs against human-written codes. Our experiments reveal that even advanced models like GPT-4o achieve only around 18.97% accuracy, highlighting the difficulty of the benchmark. In contrast, reasoning-based models such as o3 reach up to 78% accuracy, outperforming averaged success rates of human-written codes (39.98%). We release the QCoder Benchmark dataset and public evaluation API to support further research. (Codes and datasets are available at https://qcoder-bench.github.io/ )
comment: Accepted to INLG2025
♻ ☆ Wisdom is Knowing What not to Say: Hallucination-Free LLMs Unlearning via Attention Shifting
The increase in computing power and the necessity of AI-assisted decision-making boost the growing application of large language models (LLMs). Along with this, the potential retention of sensitive data of LLMs has spurred increasing research into machine unlearning. However, existing unlearning approaches face a critical dilemma: Aggressive unlearning compromises model utility, while conservative strategies preserve utility but risk hallucinated responses. This significantly limits LLMs' reliability in knowledge-intensive applications. To address this, we introduce a novel Attention-Shifting (AS) framework for selective unlearning. AS is driven by two design objectives: (1) context-preserving suppression that attenuates attention to fact-bearing tokens without disrupting LLMs' linguistic structure; and (2) hallucination-resistant response shaping that discourages fabricated completions when queried about unlearning content. AS realizes these objectives through two attention-level interventions, which are importance-aware suppression applied to the unlearning set to reduce reliance on memorized knowledge and attention-guided retention enhancement that reinforces attention toward semantically essential tokens in the retained dataset to mitigate unintended degradation. These two components are jointly optimized via a dual-loss objective, which forms a soft boundary that localizes unlearning while preserving unrelated knowledge under representation superposition. Experimental results show that AS improves performance preservation over the state-of-the-art unlearning methods, achieving up to 15% higher accuracy on the ToFU benchmark and 10% on the TDEC benchmark, while maintaining competitive hallucination-free unlearning effectiveness. Compared to existing methods, AS demonstrates a superior balance between unlearning effectiveness, generalization, and response reliability.
comment: 22 pages, 10 figures
Computer Vision and Pattern Recognition
♻ ☆ ERA-Solver: Error-Robust Adams Solver for Fast Sampling of Diffusion Probabilistic Models
Though denoising diffusion probabilistic models (DDPMs) have achieved remarkable generation results, the low sampling efficiency of DDPMs still limits further applications. Since DDPMs can be formulated as diffusion ordinary differential equations (ODEs), various fast sampling methods can be derived from solving diffusion ODEs. However, we notice that previous fast sampling methods with fixed analytical form are not able to robust with the various error patterns in the noise estimated from pretrained diffusion models. In this work, we construct an error-robust Adams solver (ERA-Solver), which utilizes the implicit Adams numerical method that consists of a predictor and a corrector. Different from the traditional predictor based on explicit Adams methods, we leverage a Lagrange interpolation function as the predictor, which is further enhanced with an error-robust strategy to adaptively select the Lagrange bases with lower errors in the estimated noise. The proposed solver can be directly applied to any pretrained diffusion models, without extra training. Experiments on Cifar10, CelebA, LSUN-Church, and ImageNet 64 x 64 (conditional) datasets demonstrate that our proposed ERA-Solver achieves 3.54, 5.06, 5.02, and 5.11 Frechet Inception Distance (FID) for image generation, with only 10 network evaluations.
♻ ☆ AI-Generated Video Detection via Perceptual Straightening NeurIPS 2025
The rapid advancement of generative AI enables highly realistic synthetic videos, posing significant challenges for content authentication and raising urgent concerns about misuse. Existing detection methods often struggle with generalization and capturing subtle temporal inconsistencies. We propose ReStraV(Representation Straightening Video), a novel approach to distinguish natural from AI-generated videos. Inspired by the "perceptual straightening" hypothesis -- which suggests real-world video trajectories become more straight in neural representation domain -- we analyze deviations from this expected geometric property. Using a pre-trained self-supervised vision transformer (DINOv2), we quantify the temporal curvature and stepwise distance in the model's representation domain. We aggregate statistics of these measures for each video and train a classifier. Our analysis shows that AI-generated videos exhibit significantly different curvature and distance patterns compared to real videos. A lightweight classifier achieves state-of-the-art detection performance (e.g., 97.17% accuracy and 98.63% AUROC on the VidProM benchmark), substantially outperforming existing image- and video-based methods. ReStraV is computationally efficient, it is offering a low-cost and effective detection solution. This work provides new insights into using neural representation geometry for AI-generated video detection.
comment: Advances in Neural Information Processing Systems 38 (NeurIPS 2025)
♻ ☆ A Study in Dataset Distillation for Image Super-Resolution
Dataset distillation aims to compress large datasets into compact yet highly informative subsets that preserve the training behavior of the original data. While this concept has gained traction in classification, its potential for image Super-Resolution (SR) remains largely untapped. In this work, we conduct the first systematic study of dataset distillation for SR, evaluating both pixel- and latent-space formulations. We show that a distilled dataset, occupying only 8.88% of the original size, can train SR models that retain nearly the same reconstruction fidelity as those trained on full datasets. Furthermore, we analyze how initialization strategies and distillation objectives affect efficiency, convergence, and visual quality. Our findings highlight the feasibility of SR dataset distillation and establish foundational insights for memory- and compute-efficient generative restoration models.
♻ ☆ Vision-Language Model-Based Semantic-Guided Imaging Biomarker for Lung Nodule Malignancy Prediction
Machine learning models have utilized semantic features, deep features, or both to assess lung nodule malignancy. However, their reliance on manual annotation during inference, limited interpretability, and sensitivity to imaging variations hinder their application in real-world clinical settings. Thus, this research aims to integrate semantic features derived from radiologists' assessments of nodules, guiding the model to learn clinically relevant, robust, and explainable imaging features for predicting lung cancer. We obtained 938 low-dose CT scans from the National Lung Screening Trial (NLST) with 1,261 nodules and semantic features. Additionally, the Lung Image Database Consortium dataset contains 1,018 CT scans, with 2,625 lesions annotated for nodule characteristics. Three external datasets were obtained from UCLA Health, the LUNGx Challenge, and the Duke Lung Cancer Screening. We fine-tuned a pretrained Contrastive Language-Image Pretraining (CLIP) model with a parameter-efficient fine-tuning approach to align imaging and semantic text features and predict the one-year lung cancer diagnosis. Our model outperformed state-of-the-art (SOTA) models in the NLST test set with an AUROC of 0.901 and AUPRC of 0.776. It also showed robust results in external datasets. Using CLIP, we also obtained predictions on semantic features through zero-shot inference, such as nodule margin (AUROC: 0.807), nodule consistency (0.812), and pleural attachment (0.840). Our approach surpasses the SOTA models in predicting lung cancer across datasets collected from diverse clinical settings, providing explainable outputs, aiding clinicians in comprehending the underlying meaning of model predictions. This approach also prevents the model from learning shortcuts and generalizes across clinical settings. The code is available at https://github.com/luotingzhuang/CLIP_nodule.
♻ ☆ AdFair-CLIP: Adversarial Fair Contrastive Language-Image Pre-training for Chest X-rays MICCAI 2025
Contrastive Language-Image Pre-training (CLIP) models have demonstrated superior performance across various visual tasks including medical image classification. However, fairness concerns, including demographic biases, have received limited attention for CLIP models. This oversight leads to critical issues, particularly those related to race and gender, resulting in disparities in diagnostic outcomes and reduced reliability for underrepresented groups. To address these challenges, we introduce AdFair-CLIP, a novel framework employing adversarial feature intervention to suppress sensitive attributes, thereby mitigating spurious correlations and improving prediction fairness. We conduct comprehensive experiments on chest X-ray (CXR) datasets, and show that AdFair-CLIP significantly enhances both fairness and diagnostic accuracy, while maintaining robust generalization in zero-shot and few-shot scenarios. These results establish new benchmarks for fairness-aware learning in CLIP-based medical diagnostic models, particularly for CXR analysis.
comment: This preprint has been accepted by MICCAI 2025
♻ ☆ REN: Fast and Efficient Region Encodings from Patch-Based Image Encoders
We introduce the Region Encoder Network (REN), a fast and effective model for generating region-based image representations using point prompts. Recent methods combine class-agnostic segmenters (e.g., SAM) with patch-based image encoders (e.g., DINO) to produce compact and effective region representations, but they suffer from high computational cost due to the segmentation step. REN bypasses this bottleneck using a lightweight module that directly generates region tokens, enabling 60x faster token generation with 35x less memory, while also improving token quality. It uses a few cross-attention blocks that take point prompts as queries and features from a patch-based image encoder as keys and values to produce region tokens that correspond to the prompted objects. We train REN with three popular encoders-DINO, DINOv2, and OpenCLIP-and show that it can be extended to other encoders without dedicated training. We evaluate REN on semantic segmentation and retrieval tasks, where it consistently outperforms the original encoders in both performance and compactness, and matches or exceeds SAM-based region methods while being significantly faster. Notably, REN achieves state-of-the-art results on the challenging Ego4D VQ2D benchmark and outperforms proprietary LMMs on Visual Haystacks' single-needle challenge. Code and models are available at: https://github.com/savya08/REN.
♻ ☆ Autoadaptive Medical Segment Anything Model
Medical image segmentation is a key task in the imaging workflow, influencing many image-based decisions. Traditional, fully-supervised segmentation models rely on large amounts of labeled training data, typically obtained through manual annotation, which can be an expensive, time-consuming, and error-prone process. This signals a need for accurate, automatic, and annotation-efficient methods of training these models. We propose ADA-SAM (automated, domain-specific, and adaptive segment anything model), a novel multitask learning framework for medical image segmentation that leverages class activation maps from an auxiliary classifier to guide the predictions of the semi-supervised segmentation branch, which is based on the Segment Anything (SAM) framework. Additionally, our ADA-SAM model employs a novel gradient feedback mechanism to create a learnable connection between the segmentation and classification branches by using the segmentation gradients to guide and improve the classification predictions. We validate ADA-SAM on real-world clinical data collected during rehabilitation trials, and demonstrate that our proposed method outperforms both fully-supervised and semi-supervised baselines by double digits in limited label settings. Our code is available at: https://github.com/tbwa233/ADA-SAM.
comment: 11 pages, 2 figures, 3 tables
♻ ☆ RoboOmni: Proactive Robot Manipulation in Omni-modal Context
Recent advances in Multimodal Large Language Models (MLLMs) have driven rapid progress in Vision-Language-Action (VLA) models for robotic manipulation. Although effective in many scenarios, current approaches largely rely on explicit instructions, whereas in real-world interactions, humans rarely issue instructions directly. Effective collaboration requires robots to infer user intentions proactively. In this work, we introduce cross-modal contextual instructions, a new setting where intent is derived from spoken dialogue, environmental sounds, and visual cues rather than explicit commands. To address this new setting, we present RoboOmni, a Perceiver-Thinker-Talker-Executor framework based on end-to-end omni-modal LLMs that unifies intention recognition, interaction confirmation, and action execution. RoboOmni fuses auditory and visual signals spatiotemporally for robust intention recognition, while supporting direct speech interaction. To address the absence of training data for proactive intention recognition in robotic manipulation, we build OmniAction, comprising 140k episodes, 5k+ speakers, 2.4k event sounds, 640 backgrounds, and six contextual instruction types. Experiments in simulation and real-world settings show that RoboOmni surpasses text- and ASR-based baselines in success rate, inference speed, intention recognition, and proactive assistance.
♻ ☆ Combinative Matching for Geometric Shape Assembly ICCV 2025
This paper introduces a new shape-matching methodology, combinative matching, to combine interlocking parts for geometric shape assembly. Previous methods for geometric assembly typically rely on aligning parts by finding identical surfaces between the parts as in conventional shape matching and registration. In contrast, we explicitly model two distinct properties of interlocking shapes: 'identical surface shape' and 'opposite volume occupancy.' Our method thus learns to establish correspondences across regions where their surface shapes appear identical but their volumes occupy the inverted space to each other. To facilitate this process, we also learn to align regions in rotation by estimating their shape orientations via equivariant neural networks. The proposed approach significantly reduces local ambiguities in matching and allows a robust combination of parts in assembly. Experimental results on geometric assembly benchmarks demonstrate the efficacy of our method, consistently outperforming the state of the art. Project page: https://nahyuklee.github.io/cmnet.
comment: Accepted to ICCV 2025 (Highlight)
♻ ☆ Audio Driven Real-Time Facial Animation for Social Telepresence SIGGRAPH
We present an audio-driven real-time system for animating photorealistic 3D facial avatars with minimal latency, designed for social interactions in virtual reality for anyone. Central to our approach is an encoder model that transforms audio signals into latent facial expression sequences in real time, which are then decoded as photorealistic 3D facial avatars. Leveraging the generative capabilities of diffusion models, we capture the rich spectrum of facial expressions necessary for natural communication while achieving real-time performance (<15ms GPU time). Our novel architecture minimizes latency through two key innovations: an online transformer that eliminates dependency on future inputs and a distillation pipeline that accelerates iterative denoising into a single step. We further address critical design challenges in live scenarios for processing continuous audio signals frame-by-frame while maintaining consistent animation quality. The versatility of our framework extends to multimodal applications, including semantic modalities such as emotion conditions and multimodal sensors with head-mounted eye cameras on VR headsets. Experimental results demonstrate significant improvements in facial animation accuracy over existing offline state-of-the-art baselines, achieving 100 to 1000 times faster inference speed. We validate our approach through live VR demonstrations and across various scenarios such as multilingual speeches.
comment: SIGGRAPH Asia 2025. Project page: https://jiyewise.github.io/projects/AudioRTA
♻ ☆ BEN: Using Confidence-Guided Matting for Dichotomous Image Segmentation
Current approaches to dichotomous image segmentation (DIS) treat image matting and object segmentation as fundamentally different tasks. As improvements in image segmentation become increasingly challenging to achieve, combining image matting and grayscale segmentation techniques offers promising new directions for architectural innovation. Inspired by the possibility of aligning these two model tasks, we propose a new architectural approach for DIS called Confidence-Guided Matting (CGM). We created the first CGM model called Background Erase Network (BEN). BEN consists of two components: BEN Base for initial segmentation and BEN Refiner for confidence-based refinement. Our approach achieves substantial improvements over current state-of-the-art methods on the DIS5K validation dataset, demonstrating that matting-based refinement can significantly enhance segmentation quality. This work introduces a new paradigm for integrating matting and segmentation techniques, improving fine-grained object boundary prediction in computer vision.
comment: 6 pages, 2 figures, 3 tables, and 1 algorithms
♻ ☆ Joint Lossless Compression and Steganography for Medical Images via Large Language Models
Recently, large language models (LLMs) have driven promising progress in lossless image compression. However, directly adopting existing paradigms for medical images suffers from an unsatisfactory trade-off between compression performance and efficiency. Moreover, existing LLM-based compressors often overlook the security of the compression process, which is critical in modern medical scenarios. To this end, we propose a novel joint lossless compression and steganography framework. Inspired by bit plane slicing (BPS), we find it feasible to securely embed privacy messages into medical images in an invisible manner. Based on this insight, an adaptive modalities decomposition strategy is first devised to partition the entire image into two segments, providing global and local modalities for subsequent dual-path lossless compression. During this dual-path stage, we innovatively propose a segmented message steganography algorithm within the local modality path to ensure the security of the compression process. Coupled with the proposed anatomical priors-based low-rank adaptation (A-LoRA) fine-tuning strategy, extensive experimental results demonstrate the superiority of our proposed method in terms of compression ratios, efficiency, and security. The source code will be made publicly available.
♻ ☆ OpenFACADES: An Open Framework for Architectural Caption and Attribute Data Enrichment via Street View Imagery
Building properties, such as height, usage, and material, play a crucial role in spatial data infrastructures, supporting various urban applications. Despite their importance, comprehensive building attribute data remain scarce in many urban areas. Recent advances have enabled the extraction of objective building attributes using remote sensing and street-level imagery. However, establishing a pipeline that integrates diverse open datasets, acquires holistic building imagery, and infers comprehensive building attributes at scale remains a significant challenge. Among the first, this study bridges the gaps by introducing OpenFACADES, an open framework that leverages multimodal crowdsourced data to enrich building profiles with both objective attributes and semantic descriptors through multimodal large language models. First, we integrate street-level image metadata from Mapillary with OpenStreetMap geometries via isovist analysis, identifying images that provide suitable vantage points for observing target buildings. Second, we automate the detection of building facades in panoramic imagery and tailor a reprojection approach to convert objects into holistic perspective views that approximate real-world observation. Third, we introduce an innovative approach that harnesses and investigates the capabilities of open-source large vision-language models (VLMs) for multi-attribute prediction and open-vocabulary captioning in building-level analytics, leveraging a globally sourced dataset of 31,180 labeled images from seven cities. Evaluation shows that fine-tuned VLM excel in multi-attribute inference, outperforming single-attribute computer vision models and zero-shot ChatGPT-4o. Further experiments confirm its superior generalization and robustness across culturally distinct region and varying image conditions.
♻ ☆ Multi-scale Latent Point Consistency Models for 3D Shape Generation
Consistency Models (CMs) have significantly accelerated the sampling process in diffusion models, yielding impressive results in synthesizing high-resolution images. To explore and extend these advancements to point-cloud-based 3D shape generation, we propose a novel Multi-scale Latent Point Consistency Model (MLPCM). Our MLPCM follows a latent diffusion framework and introduces hierarchical levels of latent representations, ranging from point-level to super-point levels, each corresponding to a different spatial resolution. We design a multi-scale latent integration module along with 3D spatial attention to effectively denoise the point-level latent representations conditioned on those from multiple super-point levels. Additionally, we propose a latent consistency model, learned through consistency distillation, that compresses the prior into a one-step generator. This significantly improves sampling efficiency while preserving the performance of the original teacher model. Extensive experiments on standard benchmarks ShapeNet and ShapeNet-Vol demonstrate that MLPCM achieves a 100x speedup in the generation process, while surpassing state-of-the-art diffusion models in terms of both shape quality and diversity.
♻ ☆ Robust Atypical Mitosis Classification with DenseNet121: Stain-Aware Augmentation and Hybrid Loss for Domain Generalization MICCAI
Atypical mitotic figures are important biomarkers of tumor aggressiveness in histopathology, yet reliable recognition remains challenging due to severe class imbalance and variability across imaging domains. We present a DenseNet-121-based framework tailored for atypical mitosis classification in the MIDOG 2025 (Track 2) setting. Our method integrates stain-aware augmentation (Macenko), geometric and intensity transformations, and imbalance-aware learning via weighted sampling with a hybrid objective combining class-weighted binary cross-entropy and focal loss. Trained end-to-end with AdamW and evaluated across multiple independent domains, the model demonstrates strong generalization under scanner and staining shifts, achieving balanced accuracy 85.0%, AUROC 0.927, sensitivity 89.2%, and specificity 80.9% on the official test set. These results indicate that combining DenseNet-121 with stain-aware augmentation and imbalance-adaptive objectives yields a robust, domain-generalizable framework for atypical mitosis classification suitable for real-world computational pathology workflows.
comment: MIDOG 2025 MICCAI Workshop accepted
♻ ☆ A Low-Resolution Image is Worth 1x1 Words: Enabling Fine Image Super-Resolution with Transformers and TaylorShift
Transformer-based architectures have recently advanced the image reconstruction quality of super-resolution (SR) models. Yet, their scalability remains limited by quadratic attention costs and coarse patch embeddings that weaken pixel-level fidelity. We propose TaylorIR, a plug-and-play framework that enforces 1x1 patch embeddings for true pixel-wise reasoning and replaces conventional self-attention with TaylorShift, a Taylor-series-based attention mechanism enabling full token interactions with near-linear complexity. Across multiple SR benchmarks, TaylorIR delivers state-of-the-art performance while reducing memory consumption by up to 60%, effectively bridging the gap between fine-grained detail restoration and efficient transformer scaling.
♻ ☆ Knolling Bot: Teaching Robots the Human Notion of Tidiness NeurIPS 2025
For robots to truly collaborate and assist humans, they must understand not only logic and instructions, but also the subtle emotions, aesthetics, and feelings that define our humanity. Human art and aesthetics are among the most elusive concepts-often difficult even for people to articulate-and without grasping these fundamentals, robots will be unable to help in many spheres of daily life. Consider the long-promised robotic butler: automating domestic chores demands more than motion planning. It requires an internal model of cleanliness and tidiness-a challenge largely unexplored by AI. To bridge this gap, we propose an approach that equips domestic robots to perform simple tidying tasks via knolling, the practice of arranging scattered items into neat, space-efficient layouts. Unlike the uniformity of industrial settings, household environments feature diverse objects and highly subjective notions of tidiness. Drawing inspiration from NLP, we treat knolling as a sequential prediction problem and employ a transformer based model to forecast each object's placement. Our method learns a generalizable concept of tidiness, generates diverse solutions adaptable to varying object sets, and incorporates human preferences for personalized arrangements. This work represents a step forward in building robots that internalize human aesthetic sense and can genuinely co-create in our living spaces.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Creative AI Track
♻ ☆ mmCooper: A Multi-agent Multi-stage Communication-efficient and Collaboration-robust Cooperative Perception Framework
Collaborative perception significantly enhances individual vehicle perception performance through the exchange of sensory information among agents. However, real-world deployment faces challenges due to bandwidth constraints and inevitable calibration errors during information exchange. To address these issues, we propose mmCooper, a novel multi-agent, multi-stage, communication-efficient, and collaboration-robust cooperative perception framework. Our framework leverages a multi-stage collaboration strategy that dynamically and adaptively balances intermediate- and late-stage information to share among agents, enhancing perceptual performance while maintaining communication efficiency. To support robust collaboration despite potential misalignments and calibration errors, our framework prevents misleading low-confidence sensing information from transmission and refines the received detection results from collaborators to improve accuracy. The extensive evaluation results on both real-world and simulated datasets demonstrate the effectiveness of the mmCooper framework and its components.
♻ ☆ FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views
We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images (i.e., as few as 2-8 inputs), which is a challenging yet practical setting in real-world applications. Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes. Concretely, FLARE starts with camera pose estimation, whose results condition the subsequent learning of geometric structure and appearance, optimized through the objectives of geometry reconstruction and novel-view synthesis. Utilizing large-scale public datasets for training, our method delivers state-of-the-art performance in the tasks of pose estimation, geometry reconstruction, and novel view synthesis, while maintaining the inference efficiency (i.e., less than 0.5 seconds). The project page and code can be found at: https://zhanghe3z.github.io/FLARE/
♻ ☆ Anti-Aliased 2D Gaussian Splatting NeurIPS 2025
2D Gaussian Splatting (2DGS) has recently emerged as a promising method for novel view synthesis and surface reconstruction, offering better view-consistency and geometric accuracy than volumetric 3DGS. However, 2DGS suffers from severe aliasing artifacts when rendering at different sampling rates than those used during training, limiting its practical applications in scenarios requiring camera zoom or varying fields of view. We identify that these artifacts stem from two key limitations: the lack of frequency constraints in the representation and an ineffective screen-space clamping approach. To address these issues, we present AA-2DGS, an anti-aliased formulation of 2D Gaussian Splatting that maintains its geometric benefits while significantly enhancing rendering quality across different scales. Our method introduces a world-space flat smoothing kernel that constrains the frequency content of 2D Gaussian primitives based on the maximal sampling frequency from training views, effectively eliminating high-frequency artifacts when zooming in. Additionally, we derive a novel object-space Mip filter by leveraging an affine approximation of the ray-splat intersection mapping, which allows us to efficiently apply proper anti-aliasing directly in the local space of each splat.
comment: NeurIPS 2025. Code will be available at https://github.com/maeyounes/AA-2DGS
♻ ☆ Keep It Real: Challenges in Attacking Compression-Based Adversarial Purification NeurIPS 2025
Previous work has suggested that preprocessing images through lossy compression can defend against adversarial perturbations, but comprehensive attack evaluations have been lacking. In this paper, we construct strong white-box and adaptive attacks against various compression models and identify a critical challenge for attackers: high realism in reconstructed images significantly increases attack difficulty. Through rigorous evaluation across multiple attack scenarios, we demonstrate that compression models capable of producing realistic, high-fidelity reconstructions are substantially more resistant to our attacks. In contrast, low-realism compression models can be broken. Our analysis reveals that this is not due to gradient masking. Rather, realistic reconstructions maintaining distributional alignment with natural images seem to offer inherent robustness. This work highlights a significant obstacle for future adversarial attacks and suggests that developing more effective techniques to overcome realism represents an essential challenge for comprehensive security evaluation.
comment: Accepted to the Reliable ML from Unreliable Data workshop at NeurIPS 2025 (ReliableML@NeurIPS)
♻ ☆ SViM3D: Stable Video Material Diffusion for Single Image 3D Generation ICCV 2025
We present Stable Video Materials 3D (SViM3D), a framework to predict multi-view consistent physically based rendering (PBR) materials, given a single image. Recently, video diffusion models have been successfully used to reconstruct 3D objects from a single image efficiently. However, reflectance is still represented by simple material models or needs to be estimated in additional steps to enable relighting and controlled appearance edits. We extend a latent video diffusion model to output spatially varying PBR parameters and surface normals jointly with each generated view based on explicit camera control. This unique setup allows for relighting and generating a 3D asset using our model as neural prior. We introduce various mechanisms to this pipeline that improve quality in this ill-posed setting. We show state-of-the-art relighting and novel view synthesis performance on multiple object-centric datasets. Our method generalizes to diverse inputs, enabling the generation of relightable 3D assets useful in AR/VR, movies, games and other visual media.
comment: Accepted by International Conference on Computer Vision (ICCV 2025). Project page: http://svim3d.aengelhardt.com
♻ ☆ Spike Imaging Velocimetry: Dense Motion Estimation of Fluids Using Spike Cameras
The need for accurate and non-intrusive flow measurement methods has led to the widespread adoption of Particle Image Velocimetry (PIV), a powerful diagnostic tool in fluid motion estimation. This study investigates the tremendous potential of spike cameras (a type of ultra-high-speed, high-dynamic-range camera) in PIV. We propose a deep learning framework, Spike Imaging Velocimetry (SIV), designed specifically for highly turbulent and intricate flow fields. To aggregate motion features from the spike stream while minimizing information loss, we incorporate a Detail-Preserving Hierarchical Transform (DPHT) module. Additionally, we introduce a Graph Encoder (GE) to extract contextual features from highly complex fluid flows. Furthermore, we present a spike-based PIV dataset, Particle Scenes with Spike and Displacement (PSSD), which provides labeled data for three challenging fluid dynamics scenarios. Our proposed method achieves superior performance compared to existing baseline methods on PSSD. The datasets and our implementation of SIV are open-sourced in the supplementary materials.
♻ ☆ FIPER: Factorized Features for Robust Image Super-Resolution and Compression NeurIPS 2025
In this work, we propose using a unified representation, termed Factorized Features, for low-level vision tasks, where we test on Single Image Super-Resolution (SISR) and \textbf{Image Compression}. Motivated by the shared principles between these tasks, they require recovering and preserving fine image details, whether by enhancing resolution for SISR or reconstructing compressed data for Image Compression. Unlike previous methods that mainly focus on network architecture, our proposed approach utilizes a basis-coefficient decomposition as well as an explicit formulation of frequencies to capture structural components and multi-scale visual features in images, which addresses the core challenges of both tasks. We replace the representation of prior models from simple feature maps with Factorized Features to validate the potential for broad generalizability. In addition, we further optimize the compression pipeline by leveraging the mergeable-basis property of our Factorized Features, which consolidates shared structures on multi-frame compression. Extensive experiments show that our unified representation delivers state-of-the-art performance, achieving an average relative improvement of 204.4% in PSNR over the baseline in Super-Resolution (SR) and 9.35% BD-rate reduction in Image Compression compared to the previous SOTA. Project page: https://jayisaking.github.io/FIPER/
comment: NeurIPS 2025. Project page: https://jayisaking.github.io/FIPER/
♻ ☆ Policy Optimized Text-to-Image Pipeline Design
Text-to-image generation has evolved beyond single monolithic models to complex multi-component pipelines. These combine fine-tuned generators, adapters, upscaling blocks and even editing steps, leading to significant improvements in image quality. However, their effective design requires substantial expertise. Recent approaches have shown promise in automating this process through large language models (LLMs), but they suffer from two critical limitations: extensive computational requirements from generating images with hundreds of predefined pipelines, and poor generalization beyond memorized training examples. We introduce a novel reinforcement learning-based framework that addresses these inefficiencies. Our approach first trains an ensemble of reward models capable of predicting image quality scores directly from prompt-workflow combinations, eliminating the need for costly image generation during training. We then implement a two-phase training strategy: initial workflow vocabulary training followed by GRPO-based optimization that guides the model toward higher-performing regions of the workflow space. Additionally, we incorporate a classifier-free guidance based enhancement technique that extrapolates along the path between the initial and GRPO-tuned models, further improving output quality. We validate our approach through a set of comparisons, showing that it can successfully create new flows with greater diversity and lead to superior image quality compared to existing baselines.
♻ ☆ VideoExplorer: Think With Videos For Agentic Long-Video Understanding
Long-video understanding~(LVU) is a challenging problem in computer vision. Existing methods either downsample frames for single-pass reasoning, sacrificing fine-grained details, or depend on textual reasoning over task-agnostic representations, hindering task-specific perception and exploration. In this paper, we propose VideoExplorer, a framework grounded in the principle of ``thinking with video'', which naturally intertwines planning, temporal grounding, and scalable perception into a coherent reasoning process. Rather than reasoning over a static context, VideoExplorer iteratively formulates sub-questions, locates relevant moments, and performs task-oriented, temporally scalable video understanding until reaching the final answer, enabling faithful, efficient, and interpretable reasoning. To address the lack of LVU training resources, we construct a long-video reasoning dataset using difficulty-adaptive sampling to ensure high-quality trajectories on complex tasks. Building on this dataset, we design a two-stage training pipeline: supervised trajectory initialization followed by trajectory-level preference optimization, encouraging adaptive temporal grounding and iterative information integration guided by downstream rewards. Extensive evaluations on popular long-video understanding and reasoning benchmarks demonstrate VideoExplorer's significant advantage over existing baselines, highlighting its robustness, adaptability, and efficiency. Our code is made publicly available in this repository(https://github.com/yhy-2000/VideoDeepResearch).
♻ ☆ OneVision: An End-to-End Generative Framework for Multi-view E-commerce Vision Search
Traditional vision search, similar to search and recommendation systems, follows the multi-stage cascading architecture (MCA) paradigm to balance efficiency and conversion. Specifically, the query image undergoes feature extraction, recall, pre-ranking, and ranking stages, ultimately presenting the user with semantically similar products that meet their preferences. This multi-view representation discrepancy of the same object in the query and the optimization objective collide across these stages, making it difficult to achieve Pareto optimality in both user experience and conversion. In this paper, an end-to-end generative framework, OneVision, is proposed to address these problems. OneVision builds on VRQ, a vision-aligned residual quantization encoding, which can align the vastly different representations of an object across multiple viewpoints while preserving the distinctive features of each product as much as possible. Then a multi-stage semantic alignment scheme is adopted to maintain strong visual similarity priors while effectively incorporating user-specific information for personalized preference generation. In offline evaluations, OneVision performs on par with online MCA, while improving inference efficiency by 21% through dynamic pruning. In A/B tests, it achieves significant online improvements: +2.15% item CTR, +2.27% CVR, and +3.12% order volume. These results demonstrate that a semantic ID centric, generative architecture can unify retrieval and personalization while simplifying the serving pathway.
comment: Some of the online experimental results in the paper are significantly different from the actual results, and need to be re-experimented and revised before submission. The current version is prone to misunderstanding
♻ ☆ A Survey on Cache Methods in Diffusion Models: Toward Efficient Multi-Modal Generation
Diffusion Models have become a cornerstone of modern generative AI for their exceptional generation quality and controllability. However, their inherent \textit{multi-step iterations} and \textit{complex backbone networks} lead to prohibitive computational overhead and generation latency, forming a major bottleneck for real-time applications. Although existing acceleration techniques have made progress, they still face challenges such as limited applicability, high training costs, or quality degradation. Against this backdrop, \textbf{Diffusion Caching} offers a promising training-free, architecture-agnostic, and efficient inference paradigm. Its core mechanism identifies and reuses intrinsic computational redundancies in the diffusion process. By enabling feature-level cross-step reuse and inter-layer scheduling, it reduces computation without modifying model parameters. This paper systematically reviews the theoretical foundations and evolution of Diffusion Caching and proposes a unified framework for its classification and analysis. Through comparative analysis of representative methods, we show that Diffusion Caching evolves from \textit{static reuse} to \textit{dynamic prediction}. This trend enhances caching flexibility across diverse tasks and enables integration with other acceleration techniques such as sampling optimization and model distillation, paving the way for a unified, efficient inference framework for future multimodal and interactive applications. We argue that this paradigm will become a key enabler of real-time and efficient generative AI, injecting new vitality into both theory and practice of \textit{Efficient Generative Intelligence}.
comment: 22 pages,2 figures
♻ ☆ Consistent Supervised-Unsupervised Alignment for Generalized Category Discovery NeurIPS 2025
Generalized Category Discovery (GCD) focuses on classifying known categories while simultaneously discovering novel categories from unlabeled data. However, previous GCD methods face challenges due to inconsistent optimization objectives and category confusion. This leads to feature overlap and ultimately hinders performance on novel categories. To address these issues, we propose the Neural Collapse-inspired Generalized Category Discovery (NC-GCD) framework. By pre-assigning and fixing Equiangular Tight Frame (ETF) prototypes, our method ensures an optimal geometric structure and a consistent optimization objective for both known and novel categories. We introduce a Consistent ETF Alignment Loss that unifies supervised and unsupervised ETF alignment and enhances category separability. Additionally, a Semantic Consistency Matcher (SCM) is designed to maintain stable and consistent label assignments across clustering iterations. Our method achieves strong performance on multiple GCD benchmarks, significantly enhancing novel category accuracy and demonstrating its effectiveness.
comment: Accepted by NeurIPS 2025
♻ ☆ PixelRefer: A Unified Framework for Spatio-Temporal Object Referring with Arbitrary Granularity
Multimodal large language models (MLLMs) have demonstrated strong general-purpose capabilities in open-world visual comprehension. However, most existing MLLMs primarily focus on holistic, scene-level understanding, often overlooking the need for fine-grained, object-centric reasoning. In this paper, we present PixelRefer, a unified region-level MLLM framework that enables advanced fine-grained understanding over user-specified regions across both images and videos. Motivated by the observation that LLM attention predominantly focuses on object-level tokens, we propose a Scale-Adaptive Object Tokenizer (SAOT) to generate compact and semantically rich object representations from free-form regions. Our analysis reveals that global visual tokens contribute mainly in early LLM layers, inspiring the design of PixelRefer-Lite, an efficient variant that employs an Object-Centric Infusion module to pre-fuse global context into object tokens. This yields a lightweight Object-Only Framework that substantially reduces computational cost while maintaining high semantic fidelity. To facilitate fine-grained instruction tuning, we curate PixelRefer-2.2M, a high-quality object-centric instruction dataset. Extensive experiments across a range of benchmarks validate that PixelRefer achieves leading performance with fewer training samples, while PixelRefer-Lite offers competitive accuracy with notable gains in efficiency.
comment: 22 pages, 13 figures
♻ ☆ Style-Aware Blending and Prototype-Based Cross-Contrast Consistency for Semi-Supervised Medical Image Segmentation
Weak-strong consistency learning strategies are widely employed in semi-supervised medical image segmentation to train models by leveraging limited labeled data and enforcing weak-to-strong consistency. However, existing methods primarily focus on designing and combining various perturbation schemes, overlooking the inherent potential and limitations within the framework itself. In this paper, we first identify two critical deficiencies: (1) separated training data streams, which lead to confirmation bias dominated by the labeled stream; and (2) incomplete utilization of supervisory information, which limits exploration of strong-to-weak consistency. To tackle these challenges, we propose a style-aware blending and prototype-based cross-contrast consistency learning framework. Specifically, inspired by the empirical observation that the distribution mismatch between labeled and unlabeled data can be characterized by statistical moments, we design a style-guided distribution blending module to break the independent training data streams. Meanwhile, considering the potential noise in strong pseudo-labels, we introduce a prototype-based cross-contrast strategy to encourage the model to learn informative supervisory signals from both weak-to-strong and strong-to-weak predictions, while mitigating the adverse effects of noise. Experimental results demonstrate the effectiveness and superiority of our framework across multiple medical segmentation benchmarks under various semi-supervised settings.
♻ ☆ Exploring Effective Factors for Improving Visual In-Context Learning
The In-Context Learning (ICL) is to understand a new task via a few demonstrations (aka. prompt) and predict new inputs without tuning the models. While it has been widely studied in NLP, it is still a relatively new area of research in computer vision. To reveal the factors influencing the performance of visual in-context learning, this paper shows that prompt selection and prompt fusion are two major factors that have a direct impact on the inference performance of visual context learning. Prompt selection is the process of identifying the most appropriate prompt or example to help the model understand new tasks. This is important because providing the model with relevant prompts can help it learn more effectively and efficiently. Prompt fusion involves combining knowledge from different positions within the large-scale visual model. By doing this, the model can leverage the diverse knowledge stored in different parts of the model to improve its performance on new tasks. Based these findings, we propose a simple framework prompt-SelF for visual in-context learning. Specifically, we first use the pixel-level retrieval method to select a suitable prompt, and then use different prompt fusion methods to activate all the knowledge stored in the large-scale model, and finally ensemble the prediction results obtained from different prompt fusion methods to obtain the final prediction results. And we conduct extensive experiments on single-object segmentation and detection tasks to demonstrate the effectiveness of prompt-SelF. Remarkably, the prompt-SelF has outperformed OSLSM based meta-learning in 1-shot segmentation for the first time. This indicated the great potential of visual in-context learning. The source code and models will be available at https://github.com/syp2ysy/prompt-SelF.
♻ ☆ VRP-SAM: SAM with Visual Reference Prompt CVPR 2024
In this paper, we propose a novel Visual Reference Prompt (VRP) encoder that empowers the Segment Anything Model (SAM) to utilize annotated reference images as prompts for segmentation, creating the VRP-SAM model. In essence, VRP-SAM can utilize annotated reference images to comprehend specific objects and perform segmentation of specific objects in target image. It is note that the VRP encoder can support a variety of annotation formats for reference images, including \textbf{point}, \textbf{box}, \textbf{scribble}, and \textbf{mask}. VRP-SAM achieves a breakthrough within the SAM framework by extending its versatility and applicability while preserving SAM's inherent strengths, thus enhancing user-friendliness. To enhance the generalization ability of VRP-SAM, the VRP encoder adopts a meta-learning strategy. To validate the effectiveness of VRP-SAM, we conducted extensive empirical studies on the Pascal and COCO datasets. Remarkably, VRP-SAM achieved state-of-the-art performance in visual reference segmentation with minimal learnable parameters. Furthermore, VRP-SAM demonstrates strong generalization capabilities, allowing it to perform segmentation of unseen objects and enabling cross-domain segmentation. The source code and models will be available at https://github.com/syp2ysy/VRP-SAM
comment: Accepted by CVPR 2024; The camera-ready version
♻ ☆ MindJourney: Test-Time Scaling with World Models for Spatial Reasoning
Spatial reasoning in 3D space is central to human cognition and indispensable for embodied tasks such as navigation and manipulation. However, state-of-the-art vision-language models (VLMs) struggle frequently with tasks as simple as anticipating how a scene will look after an egocentric motion: they perceive 2D images but lack an internal model of 3D dynamics. We therefore propose MindJourney, a test-time scaling framework that grants a VLM with this missing capability by coupling it to a controllable world model based on video diffusion. The VLM iteratively sketches a concise camera trajectory, while the world model synthesizes the corresponding view at each step. The VLM then reasons over this multi-view evidence gathered during the interactive exploration. Without any fine-tuning, our MindJourney achieves over an average 7.7% performance boost on the representative spatial reasoning benchmark SAT, showing that pairing VLMs with world models for test-time scaling offers a simple, plug-and-play route to robust 3D reasoning. Meanwhile, our method also improves upon the test-time inference VLMs trained through reinforcement learning, which demonstrates the potential of our method that utilizes world models for test-time scaling.
comment: Project Page: https://umass-embodied-agi.github.io/MindJourney
♻ ☆ Distribution-aware Knowledge Unification and Association for Non-exemplar Lifelong Person Re-identification
Lifelong person re-identification (LReID) encounters a key challenge: balancing the preservation of old knowledge with adaptation to new information. Existing LReID methods typically employ knowledge distillation to enforce representation alignment. However, these approaches ignore two crucial aspects: specific distribution awareness and cross-domain unified knowledge learning, both of which are essential for addressing this challenge. To overcome these limitations, we propose a novel distribution-aware knowledge unification and association (DKUA) framework where domain-style modeling is performed for each instance to propagate domain-specific representations, enhancing anti-forgetting and generalization capacity. Specifically, we design a distribution-aware model to transfer instance-level representations of the current domain into the domain-specific representations with the different domain styles, preserving learned knowledge without storing old samples. Next, we propose adaptive knowledge consolidation (AKC) to dynamically generate the unified representation as a cross-domain representation center. To further mitigate forgetting, we develop a unified knowledge association (UKA) mechanism, which explores the unified representation as a bridge to explicitly model inter-domain associations, reducing inter-domain gaps. Finally, distribution-based knowledge transfer (DKT) is proposed to prevent the current domain distribution from deviating from the cross-domain distribution center, improving adaptation capacity. Experimental results show our DKUA outperforms the existing methods by 7.6%/5.3% average mAP/R@1 improvement on anti-forgetting and generalization capacity, respectively. Our code is available at https://github.com/LiuShiBen/DKUA.
comment: 11 papges, 6 figures
♻ ☆ TESGNN: Temporal Equivariant Scene Graph Neural Networks for Efficient and Robust Multi-View 3D Scene Understanding
Scene graphs have proven to be highly effective for various scene understanding tasks due to their compact and explicit representation of relational information. However, current methods often overlook the critical importance of preserving symmetry when generating scene graphs from 3D point clouds, which can lead to reduced accuracy and robustness, particularly when dealing with noisy, multi-view data. Furthermore, a major limitation of prior approaches is the lack of temporal modeling to capture time-dependent relationships among dynamically evolving entities in a scene. To address these challenges, we propose Temporal Equivariant Scene Graph Neural Network (TESGNN), consisting of two key components: (1) an Equivariant Scene Graph Neural Network (ESGNN), which extracts information from 3D point clouds to generate scene graph while preserving crucial symmetry properties, and (2) a Temporal Graph Matching Network, which fuses scene graphs generated by ESGNN across multiple time sequences into a unified global representation using an approximate graph-matching algorithm. Our combined architecture TESGNN shown to be effective compared to existing methods in scene graph generation, achieving higher accuracy and faster training convergence. Moreover, we show that leveraging the symmetry-preserving property produces a more stable and accurate global scene representation compared to existing approaches. Finally, it is computationally efficient and easily implementable using existing frameworks, making it well-suited for real-time applications in robotics and computer vision. This approach paves the way for more robust and scalable solutions to complex multi-view scene understanding challenges. Our source code is publicly available at: https://github.com/HySonLab/TESGraph
comment: arXiv admin note: text overlap with arXiv:2407.00609
♻ ☆ Diffusion Classifiers Understand Compositionality, but Conditions Apply NeurIPS 2025
Understanding visual scenes is fundamental to human intelligence. While discriminative models have significantly advanced computer vision, they often struggle with compositional understanding. In contrast, recent generative text-to-image diffusion models excel at synthesizing complex scenes, suggesting inherent compositional capabilities. Building on this, zero-shot diffusion classifiers have been proposed to repurpose diffusion models for discriminative tasks. While prior work offered promising results in discriminative compositional scenarios, these results remain preliminary due to a small number of benchmarks and a relatively shallow analysis of conditions under which the models succeed. To address this, we present a comprehensive study of the discriminative capabilities of diffusion classifiers on a wide range of compositional tasks. Specifically, our study covers three diffusion models (SD 1.5, 2.0, and, for the first time, 3-m) spanning 10 datasets and over 30 tasks. Further, we shed light on the role that target dataset domains play in respective performance; to isolate the domain effects, we introduce a new diagnostic benchmark \textsc{Self-Bench} comprised of images created by diffusion models themselves. Finally, we explore the importance of timestep weighting and uncover a relationship between domain gap and timestep sensitivity, particularly for SD3-m. To sum up, diffusion classifiers understand compositionality, but conditions apply! Code and dataset are available at https://github.com/eugene6923/Diffusion-Classifiers-Compositionality.
comment: NeurIPS 2025 Datasets and Benchmarks
♻ ☆ Space Object Detection using Multi-frame Temporal Trajectory Completion Method
Space objects in Geostationary Earth Orbit (GEO) present significant detection challenges in optical imaging due to weak signals, complex stellar backgrounds, and environmental interference. In this paper, we enhance high-frequency features of GEO targets while suppressing background noise at the single-frame level through wavelet transform. Building on this, we propose a multi-frame temporal trajectory completion scheme centered on the Hungarian algorithm for globally optimal cross-frame matching. To effectively mitigate missing and false detections, a series of key steps including temporal matching and interpolation completion, temporal-consistency-based noise filtering, and progressive trajectory refinement are designed in the post-processing pipeline. Experimental results on the public SpotGEO dataset demonstrate the effectiveness of the proposed method, achieving an F_1 score of 90.14%.
♻ ☆ Split Gibbs Discrete Diffusion Posterior Sampling NeurIPS 2025
We study the problem of posterior sampling in discrete-state spaces using discrete diffusion models. While posterior sampling methods for continuous diffusion models have achieved remarkable progress, analogous methods for discrete diffusion models remain challenging. In this work, we introduce a principled plug-and-play discrete diffusion posterior sampling algorithm based on split Gibbs sampling, which we call SGDD. Our algorithm enables reward-guided generation and solving inverse problems in discrete-state spaces. We demonstrate the convergence of SGDD to the target posterior distribution and verify this through controlled experiments on synthetic benchmarks. Our method enjoys state-of-the-art posterior sampling performance on a range of benchmarks for discrete data, including DNA sequence design, discrete image inverse problems, and music infilling, achieving more than 30% improved performance compared to existing baselines. Our code is available at https://github.com/chuwd19/Split-Gibbs-Discrete-Diffusion-Posterior-Sampling.
comment: Accepted to NeurIPS 2025
♻ ☆ Scalable Autoregressive Image Generation with Mamba
We introduce AiM, an autoregressive (AR) image generative model based on Mamba architecture. AiM employs Mamba, a novel state-space model characterized by its exceptional performance for long-sequence modeling with linear time complexity, to supplant the commonly utilized Transformers in AR image generation models, aiming to achieve both superior generation quality and enhanced inference speed. Unlike existing methods that adapt Mamba to handle two-dimensional signals via multi-directional scan, AiM directly utilizes the next-token prediction paradigm for autoregressive image generation. This approach circumvents the need for extensive modifications to enable Mamba to learn 2D spatial representations. By implementing straightforward yet strategically targeted modifications for visual generative tasks, we preserve Mamba's core structure, fully exploiting its efficient long-sequence modeling capabilities and scalability. We provide AiM models in various scales, with parameter counts ranging from 148M to 1.3B. On the ImageNet1K 256*256 benchmark, our best AiM model achieves a FID of 2.21, surpassing all existing AR models of comparable parameter counts and demonstrating significant competitiveness against diffusion models, with 2 to 10 times faster inference speed. Code is available at https://github.com/hp-l33/AiM
comment: 9 pages, 8 figures
♻ ☆ Lattice Boltzmann Model for Learning Real-World Pixel Dynamicity NeurIPS 2025
This work proposes the Lattice Boltzmann Model (LBM) to learn real-world pixel dynamicity for visual tracking. LBM decomposes visual representations into dynamic pixel lattices and solves pixel motion states through collision-streaming processes. Specifically, the high-dimensional distribution of the target pixels is acquired through a multilayer predict-update network to estimate the pixel positions and visibility. The predict stage formulates lattice collisions among the spatial neighborhood of target pixels and develops lattice streaming within the temporal visual context. The update stage rectifies the pixel distributions with online visual representations. Compared with existing methods, LBM demonstrates practical applicability in an online and real-time manner, which can efficiently adapt to real-world visual tracking tasks. Comprehensive evaluations of real-world point tracking benchmarks such as TAP-Vid and RoboTAP validate LBM's efficiency. A general evaluation of large-scale open-world object tracking benchmarks such as TAO, BFT, and OVT-B further demonstrates LBM's real-world practicality.
comment: NeurIPS 2025. Project page: https://george-zhuang.github.io/lbm/
♻ ☆ Efficiency vs. Efficacy: Assessing the Compression Ratio-Dice Score Relationship through a Simple Benchmarking Framework for Cerebrovascular 3D Segmentation
The increasing size and complexity of medical imaging datasets, particularly in 3D formats, present significant barriers to collaborative research and transferability. This study investigates whether the ZFP compression technique can mitigate these challenges without compromising the performance of automated cerebrovascular segmentation, a critical first step in intracranial aneurysm detection. We apply ZFP in both its error tolerance and fixed-rate modes to a large scale, and one of the most recent, datasets in the literature, 3D medical dataset containing ground-truth vascular segmentations. The segmentation quality on the compressed volumes is rigorously compared to the uncompressed baseline (Dice approximately equals 0.8774). Our findings reveal that ZFP can achieve substantial data reduction--up to a 22.89:1 ratio in error tolerance mode--while maintaining a high degree of fidelity, with the mean Dice coefficient remaining high at 0.87656. These results demonstrate that ZFP is a viable and powerful tool for enabling more efficient and accessible research on large-scale medical datasets, fostering broader collaboration across the community.
♻ ☆ Targeted Attack Improves Protection against Unauthorized Diffusion Customization ICLR 2025
Diffusion models build a new milestone for image generation yet raising public concerns, for they can be fine-tuned on unauthorized images for customization. Protection based on adversarial attacks rises to encounter this unauthorized diffusion customization, by adding protective watermarks to images and poisoning diffusion models. However, current protection, leveraging untargeted attacks, does not appear to be effective enough. In this paper, we propose a simple yet effective improvement for the protection against unauthorized diffusion customization by introducing targeted attacks. We show that by carefully selecting the target, targeted attacks significantly outperform untargeted attacks in poisoning diffusion models and degrading the customization image quality. Extensive experiments validate the superiority of our method on two mainstream customization methods of diffusion models, compared to existing protections. To explain the surprising success of targeted attacks, we delve into the mechanism of attack-based protections and propose a hypothesis based on our observation, which enhances the comprehension of attack-based protections. To the best of our knowledge, we are the first to both reveal the vulnerability of diffusion models to targeted attacks and leverage targeted attacks to enhance protection against unauthorized diffusion customization. Our code is available on GitHub: https://github.com/psyker-team/mist-v2.
comment: ICLR 2025 (Spotlight)
Information Retrieval
♻ ☆ OpinioRAG: Towards Generating User-Centric Opinion Highlights from Large-scale Online Reviews
We study the problem of opinion highlights generation from large volumes of user reviews, often exceeding thousands per entity, where existing methods either fail to scale or produce generic, one-size-fits-all summaries that overlook personalized needs. To tackle this, we introduce OpinioRAG, a scalable, training-free framework that combines RAG-based evidence retrieval with LLMs to efficiently produce tailored summaries. Additionally, we propose novel reference-free verification metrics designed for sentiment-rich domains, where accurately capturing opinions and sentiment alignment is essential. These metrics offer a fine-grained, context-sensitive assessment of factual consistency. To facilitate evaluation, we contribute the first large-scale dataset of long-form user reviews, comprising entities with over a thousand reviews each, paired with unbiased expert summaries and manually annotated queries. Through extensive experiments, we identify key challenges, provide actionable insights into improving systems, pave the way for future research, and position OpinioRAG as a robust framework for generating accurate, relevant, and structured summaries at scale.
comment: COLM 2025
♻ ☆ Chain of Retrieval: Multi-Aspect Iterative Search Expansion and Post-Order Search Aggregation for Full Paper Retrieval
Scientific paper retrieval, particularly framed as document-to-document retrieval, aims to identify relevant papers in response to a long-form query paper, rather than a short query string. Previous approaches to this task have focused exclusively on abstracts, embedding them into dense vectors as surrogates for full documents and calculating similarity between them. Yet, abstracts offer only sparse and high-level summaries, and such methods primarily optimize one-to-one similarity, overlooking the dynamic relations that emerge among relevant papers during the retrieval process. To address this, we propose Chain of Retrieval(COR), a novel iterative framework for full-paper retrieval. Specifically, CoR decomposes each query paper into multiple aspect-specific views, matches them against segmented candidate papers, and iteratively expands the search by promoting top-ranked results as new queries, thereby forming a tree-structured retrieval process. The resulting retrieval tree is then aggregated in a post-order manner: descendants are first combined at the query level, then recursively merged with their parent nodes, to capture hierarchical relations across iterations. To validate this, we present SCIFULLBENCH, a large-scale benchmark providing both complete and segmented contexts of full papers for queries and candidates, and results show that CoR significantly outperforms existing retrieval baselines. Our code and dataset is available at https://github.com/psw0021/Chain-of-Retrieval.git.
Multimedia
♻ ☆ A Low-Resolution Image is Worth 1x1 Words: Enabling Fine Image Super-Resolution with Transformers and TaylorShift
Transformer-based architectures have recently advanced the image reconstruction quality of super-resolution (SR) models. Yet, their scalability remains limited by quadratic attention costs and coarse patch embeddings that weaken pixel-level fidelity. We propose TaylorIR, a plug-and-play framework that enforces 1x1 patch embeddings for true pixel-wise reasoning and replaces conventional self-attention with TaylorShift, a Taylor-series-based attention mechanism enabling full token interactions with near-linear complexity. Across multiple SR benchmarks, TaylorIR delivers state-of-the-art performance while reducing memory consumption by up to 60%, effectively bridging the gap between fine-grained detail restoration and efficient transformer scaling.
♻ ☆ Towards Robust Evaluation of STEM Education: Leveraging MLLMs in Project-Based Learning
Project-Based Learning (PBL) involves a variety of highly correlated multimodal data, making it a vital educational approach within STEM disciplines. With the rapid development of multimodal large language models (MLLMs), researchers have begun exploring their potential to enhance tasks such as information retrieval, knowledge comprehension, and data generation in educational settings. However, existing benchmarks fall short in providing both a free-form output structure and a rigorous human expert validation process, limiting their effectiveness in evaluating real-world educational tasks. Additionally, few methods have developed automated pipelines to assist with the complex responsibilities of teachers leveraging MLLMs, largely due to model hallucination and instability, which lead to unreliable implementation. To address this gap, we introduce PBLBench, a novel benchmark designed to evaluate complex reasoning grounded in domain-specific knowledge and long-context understanding, thereby challenging models with tasks that closely resemble those handled by human experts. To establish reliable ground truth, we adopt the Analytic Hierarchy Process (AHP), utilizing expert-driven pairwise comparisons to derive structured and weighted evaluation criteria. We assess the performance of 15 leading MLLMs/LLMs using PBLBench and demonstrate that even the most advanced models achieve only 59% rank accuracy, underscoring the significant challenges presented by this benchmark. We believe PBLBench will serve as a catalyst for the development of more capable AI agents, ultimately aiming to alleviate teacher workload and enhance educational productivity.
Computation and Language
☆ Continuous Autoregressive Language Models
The efficiency of large language models (LLMs) is fundamentally limited by their sequential, token-by-token generation process. We argue that overcoming this bottleneck requires a new design axis for LLM scaling: increasing the semantic bandwidth of each generative step. To this end, we introduce Continuous Autoregressive Language Models (CALM), a paradigm shift from discrete next-token prediction to continuous next-vector prediction. CALM uses a high-fidelity autoencoder to compress a chunk of K tokens into a single continuous vector, from which the original tokens can be reconstructed with over 99.9\% accuracy. This allows us to model language as a sequence of continuous vectors instead of discrete tokens, which reduces the number of generative steps by a factor of K. The paradigm shift necessitates a new modeling toolkit; therefore, we develop a comprehensive likelihood-free framework that enables robust training, evaluation, and controllable sampling in the continuous domain. Experiments show that CALM significantly improves the performance-compute trade-off, achieving the performance of strong discrete baselines at a significantly lower computational cost. More importantly, these findings establish next-vector prediction as a powerful and scalable pathway towards ultra-efficient language models. Code: https://github.com/shaochenze/calm. Project: https://shaochenze.github.io/blog/2025/CALM.
☆ Culture Cartography: Mapping the Landscape of Cultural Knowledge EMNLP 2025
To serve global users safely and productively, LLMs need culture-specific knowledge that might not be learned during pre-training. How do we find such knowledge that is (1) salient to in-group users, but (2) unknown to LLMs? The most common solutions are single-initiative: either researchers define challenging questions that users passively answer (traditional annotation), or users actively produce data that researchers structure as benchmarks (knowledge extraction). The process would benefit from mixed-initiative collaboration, where users guide the process to meaningfully reflect their cultures, and LLMs steer the process towards more challenging questions that meet the researcher's goals. We propose a mixed-initiative methodology called CultureCartography. Here, an LLM initializes annotation with questions for which it has low-confidence answers, making explicit both its prior knowledge and the gaps therein. This allows a human respondent to fill these gaps and steer the model towards salient topics through direct edits. We implement this methodology as a tool called CultureExplorer. Compared to a baseline where humans answer LLM-proposed questions, we find that CultureExplorer more effectively produces knowledge that leading models like DeepSeek R1 and GPT-4o are missing, even with web search. Fine-tuning on this data boosts the accuracy of Llama-3.1-8B by up to 19.2% on related culture benchmarks.
comment: EMNLP 2025
☆ SpecAttn: Speculating Sparse Attention NeurIPS 2025
Large Language Models (LLMs) face significant computational bottlenecks during inference due to the quadratic complexity of self-attention mechanisms, particularly as context lengths increase. We introduce SpecAttn, a novel training-free approach that seamlessly integrates with existing speculative decoding techniques to enable efficient sparse attention in pre-trained transformers. Our key insight is to exploit the attention weights already computed by the draft model during speculative decoding to identify important tokens for the target model, eliminating redundant computation while maintaining output quality. SpecAttn employs three core techniques: KL divergence-based layer alignment between draft and target models, a GPU-optimized sorting-free algorithm for top-p token selection from draft attention patterns, and dynamic key-value cache pruning guided by these predictions. By leveraging the computational work already performed in standard speculative decoding pipelines, SpecAttn achieves over 75% reduction in key-value cache accesses with a mere 15.29% increase in perplexity on the PG-19 dataset, significantly outperforming existing sparse attention methods. Our approach demonstrates that speculative execution can be enhanced to provide approximate verification without significant performance degradation.
comment: Accepted to NeurIPS 2025 Workshop on Structured Probabilistic Inference & Generative Modeling
☆ Visual Backdoor Attacks on MLLM Embodied Decision Making via Contrastive Trigger Learning
Multimodal large language models (MLLMs) have advanced embodied agents by enabling direct perception, reasoning, and planning task-oriented actions from visual inputs. However, such vision driven embodied agents open a new attack surface: visual backdoor attacks, where the agent behaves normally until a visual trigger appears in the scene, then persistently executes an attacker-specified multi-step policy. We introduce BEAT, the first framework to inject such visual backdoors into MLLM-based embodied agents using objects in the environments as triggers. Unlike textual triggers, object triggers exhibit wide variation across viewpoints and lighting, making them difficult to implant reliably. BEAT addresses this challenge by (1) constructing a training set that spans diverse scenes, tasks, and trigger placements to expose agents to trigger variability, and (2) introducing a two-stage training scheme that first applies supervised fine-tuning (SFT) and then our novel Contrastive Trigger Learning (CTL). CTL formulates trigger discrimination as preference learning between trigger-present and trigger-free inputs, explicitly sharpening the decision boundaries to ensure precise backdoor activation. Across various embodied agent benchmarks and MLLMs, BEAT achieves attack success rates up to 80%, while maintaining strong benign task performance, and generalizes reliably to out-of-distribution trigger placements. Notably, compared to naive SFT, CTL boosts backdoor activation accuracy up to 39% under limited backdoor data. These findings expose a critical yet unexplored security risk in MLLM-based embodied agents, underscoring the need for robust defenses before real-world deployment.
☆ Towards Universal Video Retrieval: Generalizing Video Embedding via Synthesized Multimodal Pyramid Curriculum
The prevailing video retrieval paradigm is structurally misaligned, as narrow benchmarks incentivize correspondingly limited data and single-task training. Therefore, universal capability is suppressed due to the absence of a diagnostic evaluation that defines and demands multi-dimensional generalization. To break this cycle, we introduce a framework built on the co-design of evaluation, data, and modeling. First, we establish the Universal Video Retrieval Benchmark (UVRB), a suite of 16 datasets designed not only to measure performance but also to diagnose critical capability gaps across tasks and domains. Second, guided by UVRB's diagnostics, we introduce a scalable synthesis workflow that generates 1.55 million high-quality pairs to populate the semantic space required for universality. Finally, we devise the Modality Pyramid, a curriculum that trains our General Video Embedder (GVE) by explicitly leveraging the latent interconnections within our diverse data. Extensive experiments show GVE achieves state-of-the-art zero-shot generalization on UVRB. In particular, our analysis reveals that popular benchmarks are poor predictors of general ability and that partially relevant retrieval is a dominant but overlooked scenario. Overall, our co-designed framework provides a practical path to escape the limited scope and advance toward truly universal video retrieval.
☆ MARAG-R1: Beyond Single Retriever via Reinforcement-Learned Multi-Tool Agentic Retrieval
Large Language Models (LLMs) excel at reasoning and generation but are inherently limited by static pretraining data, resulting in factual inaccuracies and weak adaptability to new information. Retrieval-Augmented Generation (RAG) addresses this issue by grounding LLMs in external knowledge; However, the effectiveness of RAG critically depends on whether the model can adequately access relevant information. Existing RAG systems rely on a single retriever with fixed top-k selection, restricting access to a narrow and static subset of the corpus. As a result, this single-retriever paradigm has become the primary bottleneck for comprehensive external information acquisition, especially in tasks requiring corpus-level reasoning. To overcome this limitation, we propose MARAG-R1, a reinforcement-learned multi-tool RAG framework that enables LLMs to dynamically coordinate multiple retrieval mechanisms for broader and more precise information access. MARAG-R1 equips the model with four retrieval tools -- semantic search, keyword search, filtering, and aggregation -- and learns both how and when to use them through a two-stage training process: supervised fine-tuning followed by reinforcement learning. This design allows the model to interleave reasoning and retrieval, progressively gathering sufficient evidence for corpus-level synthesis. Experiments on GlobalQA, HotpotQA, and 2WikiMultiHopQA demonstrate that MARAG-R1 substantially outperforms strong baselines and achieves new state-of-the-art results in corpus-level reasoning tasks.
☆ SIGMA: Search-Augmented On-Demand Knowledge Integration for Agentic Mathematical Reasoning
Solving mathematical reasoning problems requires not only accurate access to relevant knowledge but also careful, multi-step thinking. However, current retrieval-augmented models often rely on a single perspective, follow inflexible search strategies, and struggle to effectively combine information from multiple sources. We introduce SIGMA (Search-Augmented On-Demand Knowledge Integration for AGentic Mathematical reAsoning), a unified framework that orchestrates specialized agents to independently reason, perform targeted searches, and synthesize findings through a moderator mechanism. Each agent generates hypothetical passages to optimize retrieval for its analytic perspective, ensuring knowledge integration is both context-sensitive and computation-efficient. When evaluated on challenging benchmarks such as MATH500, AIME, and PhD-level science QA GPQA, SIGMA consistently outperforms both open- and closed-source systems, achieving an absolute performance improvement of 7.4%. Our results demonstrate that multi-agent, on-demand knowledge integration significantly enhances both reasoning accuracy and efficiency, offering a scalable approach for complex, knowledge-intensive problem-solving. We will release the code upon publication.
comment: Short Paper - Under Review
☆ Data-Efficient Domain Adaptation for LLM-based MT using Contrastive Preference Optimization
LLMs often require adaptation to domain-specific requirements, a process that can be expensive when relying solely on SFT. We present an empirical study on applying CPO to simulate a post-editing workflow for data-efficient domain adaptation. Our approach synthesizes preference pairs by treating the base model's own raw output as the 'rejected' translation and the human-approved TM entry as the 'chosen' one. This method provides direct feedback on the model's current knowledge, guiding it to align with domain-specific standards. Experiments in English-Brazilian Portuguese and English-Korean show that, by using just 14.7k preference pairs, the model achieves performance close to that of a model trained on 160k+ samples with SFT, demonstrating significant data efficiency. Although we showcase its effectiveness in MT, this application of CPO naturally generalizes to other generative tasks where a model's initial drafts can serve as a contrastive signal against a golden reference.
☆ Multilingual BERT language model for medical tasks: Evaluation on domain-specific adaptation and cross-linguality
In multilingual healthcare applications, the availability of domain-specific natural language processing(NLP) tools is limited, especially for low-resource languages. Although multilingual bidirectional encoder representations from transformers (BERT) offers a promising motivation to mitigate the language gap, the medical NLP tasks in low-resource languages are still underexplored. Therefore, this study investigates how further pre-training on domain-specific corpora affects model performance on medical tasks, focusing on three languages: Dutch, Romanian and Spanish. In terms of further pre-training, we conducted four experiments to create medical domain models. Then, these models were fine-tuned on three downstream tasks: Automated patient screening in Dutch clinical notes, named entity recognition in Romanian and Spanish clinical notes. Results show that domain adaptation significantly enhanced task performance. Furthermore, further differentiation of domains, e.g. clinical and general biomedical domains, resulted in diverse performances. The clinical domain-adapted model outperformed the more general biomedical domain-adapted model. Moreover, we observed evidence of cross-lingual transferability. Moreover, we also conducted further investigations to explore potential reasons contributing to these performance differences. These findings highlight the feasibility of domain adaptation and cross-lingual ability in medical NLP. Within the low-resource language settings, these findings can provide meaningful guidance for developing multilingual medical NLP systems to mitigate the lack of training data and thereby improve the model performance.
☆ DialectalArabicMMLU: Benchmarking Dialectal Capabilities in Arabic and Multilingual Language Models
We present DialectalArabicMMLU, a new benchmark for evaluating the performance of large language models (LLMs) across Arabic dialects. While recently developed Arabic and multilingual benchmarks have advanced LLM evaluation for Modern Standard Arabic (MSA), dialectal varieties remain underrepresented despite their prevalence in everyday communication. DialectalArabicMMLU extends the MMLU-Redux framework through manual translation and adaptation of 3K multiple-choice question-answer pairs into five major dialects (Syrian, Egyptian, Emirati, Saudi, and Moroccan), yielding a total of 15K QA pairs across 32 academic and professional domains (22K QA pairs when also including English and MSA). The benchmark enables systematic assessment of LLM reasoning and comprehension beyond MSA, supporting both task-based and linguistic analysis. We evaluate 19 open-weight Arabic and multilingual LLMs (1B-13B parameters) and report substantial performance variation across dialects, revealing persistent gaps in dialectal generalization. DialectalArabicMMLU provides the first unified, human-curated resource for measuring dialectal understanding in Arabic, thus promoting more inclusive evaluation and future model development.
comment: 9 pages, 9 tables
☆ Patient-Centered Summarization Framework for AI Clinical Summarization: A Mixed-Methods Design
Large Language Models (LLMs) are increasingly demonstrating the potential to reach human-level performance in generating clinical summaries from patient-clinician conversations. However, these summaries often focus on patients' biology rather than their preferences, values, wishes, and concerns. To achieve patient-centered care, we propose a new standard for Artificial Intelligence (AI) clinical summarization tasks: Patient-Centered Summaries (PCS). Our objective was to develop a framework to generate PCS that capture patient values and ensure clinical utility and to assess whether current open-source LLMs can achieve human-level performance in this task. We used a mixed-methods process. Two Patient and Public Involvement groups (10 patients and 8 clinicians) in the United Kingdom participated in semi-structured interviews exploring what personal and contextual information should be included in clinical summaries and how it should be structured for clinical use. Findings informed annotation guidelines used by eight clinicians to create gold-standard PCS from 88 atrial fibrillation consultations. Sixteen consultations were used to refine a prompt aligned with the guidelines. Five open-source LLMs (Llama-3.2-3B, Llama-3.1-8B, Mistral-8B, Gemma-3-4B, and Qwen3-8B) generated summaries for 72 consultations using zero-shot and few-shot prompting, evaluated with ROUGE-L, BERTScore, and qualitative metrics. Patients emphasized lifestyle routines, social support, recent stressors, and care values. Clinicians sought concise functional, psychosocial, and emotional context. The best zero-shot performance was achieved by Mistral-8B (ROUGE-L 0.189) and Llama-3.1-8B (BERTScore 0.673); the best few-shot by Llama-3.1-8B (ROUGE-L 0.206, BERTScore 0.683). Completeness and fluency were similar between experts and models, while correctness and patient-centeredness favored human PCS.
comment: The first two listed authors contributed equally Pages: 21; Figures:2; Tables:3
☆ SQLSpace: A Representation Space for Text-to-SQL to Discover and Mitigate Robustness Gaps EMNLP
We introduce SQLSpace, a human-interpretable, generalizable, compact representation for text-to-SQL examples derived with minimal human intervention. We demonstrate the utility of these representations in evaluation with three use cases: (i) closely comparing and contrasting the composition of popular text-to-SQL benchmarks to identify unique dimensions of examples they evaluate, (ii) understanding model performance at a granular level beyond overall accuracy scores, and (iii) improving model performance through targeted query rewriting based on learned correctness estimation. We show that SQLSpace enables analysis that would be difficult with raw examples alone: it reveals compositional differences between benchmarks, exposes performance patterns obscured by accuracy alone, and supports modeling of query success.
comment: Accepted to EMNLP Findings
☆ BiSparse-AAS: Bilinear Sparse Attention and Adaptive Spans Framework for Scalable and Efficient Text Summarization ICDM
Transformer-based architectures have advanced text summarization, yet their quadratic complexity limits scalability on long documents. This paper introduces BiSparse-AAS (Bilinear Sparse Attention with Adaptive Spans), a novel framework that combines sparse attention, adaptive spans, and bilinear attention to address these limitations. Sparse attention reduces computational costs by focusing on the most relevant parts of the input, while adaptive spans dynamically adjust the attention ranges. Bilinear attention complements both by modeling complex token interactions within this refined context. BiSparse-AAS consistently outperforms state-of-the-art baselines in both extractive and abstractive summarization tasks, achieving average ROUGE improvements of about 68.1% on CNN/DailyMail and 52.6% on XSum, while maintaining strong performance on OpenWebText and Gigaword datasets. By addressing efficiency, scalability, and long-sequence modeling, BiSparse-AAS provides a unified, practical solution for real-world text summarization applications.
comment: Accepted at the IEEE International Conference on Data Mining (ICDM) 2025, Washington, DC, USA
☆ Effect of Domain Generalization Techniques in Low Resource Systems
Machine learning models typically assume that training and test data follow the same distribution, an assumption that often fails in real-world scenarios due to distribution shifts. This issue is especially pronounced in low-resource settings, where data scarcity and limited domain diversity hinder robust generalization. Domain generalization (DG) approaches address this challenge by learning features that remain invariant across domains, often using causal mechanisms to improve model robustness. In this study, we examine two distinct causal DG techniques in low-resource natural language tasks. First, we investigate a causal data augmentation (CDA) approach that automatically generates counterfactual examples to improve robustness to spurious correlations. We apply this method to sentiment classification on the NaijaSenti Twitter corpus, expanding the training data with semantically equivalent paraphrases to simulate controlled distribution shifts. Second, we explore an invariant causal representation learning (ICRL) approach using the DINER framework, originally proposed for debiasing aspect-based sentiment analysis. We adapt DINER to a multilingual setting. Our findings demonstrate that both approaches enhance robustness to unseen domains: counterfactual data augmentation yields consistent cross-domain accuracy gains in sentiment classification, while causal representation learning with DINER improves out-of-distribution performance in multilingual sentiment analysis, albeit with varying gains across languages.
☆ Thought Branches: Interpreting LLM Reasoning Requires Resampling
Most work interpreting reasoning models studies only a single chain-of-thought (CoT), yet these models define distributions over many possible CoTs. We argue that studying a single sample is inadequate for understanding causal influence and the underlying computation. Though fully specifying this distribution is intractable, it can be understood by sampling. We present case studies using resampling to investigate model decisions. First, when a model states a reason for its action, does that reason actually cause the action? In "agentic misalignment" scenarios, we resample specific sentences to measure their downstream effects. Self-preservation sentences have small causal impact, suggesting they do not meaningfully drive blackmail. Second, are artificial edits to CoT sufficient for steering reasoning? These are common in literature, yet take the model off-policy. Resampling and selecting a completion with the desired property is a principled on-policy alternative. We find off-policy interventions yield small and unstable effects compared to resampling in decision-making tasks. Third, how do we understand the effect of removing a reasoning step when the model may repeat it post-edit? We introduce a resilience metric that repeatedly resamples to prevent similar content from reappearing downstream. Critical planning statements resist removal but have large effects when eliminated. Fourth, since CoT is sometimes "unfaithful", can our methods teach us anything in these settings? Adapting causal mediation analysis, we find that hints that have a causal effect on the output without being explicitly mentioned exert a subtle and cumulative influence on the CoT that persists even if the hint is removed. Overall, studying distributions via resampling enables reliable causal analysis, clearer narratives of model reasoning, and principled CoT interventions.
comment: Uzay Macar and Paul C. Bogdan contributed equally to this work, and their listed order was determined by coinflip
☆ The aftermath of compounds: Investigating Compounds and their Semantic Representations AACL
This study investigates how well computational embeddings align with human semantic judgments in the processing of English compound words. We compare static word vectors (GloVe) and contextualized embeddings (BERT) against human ratings of lexeme meaning dominance (LMD) and semantic transparency (ST) drawn from a psycholinguistic dataset. Using measures of association strength (Edinburgh Associative Thesaurus), frequency (BNC), and predictability (LaDEC), we compute embedding-derived LMD and ST metrics and assess their relationships with human judgments via Spearmans correlation and regression analyses. Our results show that BERT embeddings better capture compositional semantics than GloVe, and that predictability ratings are strong predictors of semantic transparency in both human and model data. These findings advance computational psycholinguistics by clarifying the factors that drive compound word processing and offering insights into embedding-based semantic modeling.
comment: IJCNLP-AACL SRW 2025
☆ Diffuse Thinking: Exploring Diffusion Language Models as Efficient Thought Proposers for Reasoning
In recent years, large language models (LLMs) have witnessed remarkable advancements, with the test-time scaling law consistently enhancing the reasoning capabilities. Through systematic evaluation and exploration of a diverse spectrum of intermediate thoughts, LLMs demonstrate the potential to generate deliberate reasoning steps, thereby substantially enhancing reasoning accuracy. However, LLMs' autoregressive generation paradigm results in reasoning performance scaling sub-optimally with test-time computation, often requiring excessive computational overhead to propose thoughts while yielding only marginal performance gains. In contrast, diffusion language models (DLMs) can efficiently produce diverse samples through parallel denoising in a single forward pass, inspiring us to leverage them for proposing intermediate thoughts, thereby alleviating the computational burden associated with autoregressive generation while maintaining quality. In this work, we propose an efficient collaborative reasoning framework, leveraging DLMs to generate candidate thoughts and LLMs to evaluate their quality. Experiments across diverse benchmarks demonstrate that our framework achieves strong performance in complex reasoning tasks, offering a promising direction for future research. Our code is open-source at https://anonymous.4open.science/r/Diffuse-Thinking-EC60.
☆ VCORE: Variance-Controlled Optimization-based Reweighting for Chain-of-Thought Supervision
Supervised fine-tuning (SFT) on long chain-of-thought (CoT) trajectories has emerged as a crucial technique for enhancing the reasoning abilities of large language models (LLMs). However, the standard cross-entropy loss treats all tokens equally, ignoring their heterogeneous contributions across a reasoning trajectory. This uniform treatment leads to misallocated supervision and weak generalization, especially in complex, long-form reasoning tasks. To address this, we introduce \textbf{V}ariance-\textbf{C}ontrolled \textbf{O}ptimization-based \textbf{RE}weighting (VCORE), a principled framework that reformulates CoT supervision as a constrained optimization problem. By adopting an optimization-theoretic perspective, VCORE enables a principled and adaptive allocation of supervision across tokens, thereby aligning the training objective more closely with the goal of robust reasoning generalization. Empirical evaluations demonstrate that VCORE consistently outperforms existing token reweighting methods. Across both in-domain and out-of-domain settings, VCORE achieves substantial performance gains on mathematical and coding benchmarks, using models from the Qwen3 series (4B, 8B, 32B) and LLaMA-3.1-8B-Instruct. Moreover, we show that VCORE serves as a more effective initialization for subsequent reinforcement learning, establishing a stronger foundation for advancing the reasoning capabilities of LLMs. The Code will be released at https://github.com/coder-gx/VCORE.
comment: Under Review
☆ DeepCompress: A Dual Reward Strategy for Dynamically Exploring and Compressing Reasoning Chains
Large Reasoning Models (LRMs) have demonstrated impressive capabilities but suffer from cognitive inefficiencies like ``overthinking'' simple problems and ``underthinking'' complex ones. While existing methods that use supervised fine-tuning~(SFT) or reinforcement learning~(RL) with token-length rewards can improve efficiency, they often do so at the cost of accuracy. This paper introduces \textbf{DeepCompress}, a novel framework that simultaneously enhances both the accuracy and efficiency of LRMs. We challenge the prevailing approach of consistently favoring shorter reasoning paths, showing that longer responses can contain a broader range of correct solutions for difficult problems. DeepCompress employs an adaptive length reward mechanism that dynamically classifies problems as ``Simple'' or ``Hard'' in real-time based on the model's evolving capability. It encourages shorter, more efficient reasoning for ``Simple'' problems while promoting longer, more exploratory thought chains for ``Hard'' problems. This dual-reward strategy enables the model to autonomously adjust its Chain-of-Thought (CoT) length, compressing reasoning for well-mastered problems and extending it for those it finds challenging. Experimental results on challenging mathematical benchmarks show that DeepCompress consistently outperforms baseline methods, achieving superior accuracy while significantly improving token efficiency.
comment: Work in progress
☆ Dynamic Affective Memory Management for Personalized LLM Agents
Advances in large language models are making personalized AI agents a new research focus. While current agent systems primarily rely on personalized external memory databases to deliver customized experiences, they face challenges such as memory redundancy, memory staleness, and poor memory-context integration, largely due to the lack of effective memory updates during interaction. To tackle these issues, we propose a new memory management system designed for affective scenarios. Our approach employs a Bayesian-inspired memory update algorithm with the concept of memory entropy, enabling the agent to autonomously maintain a dynamically updated memory vector database by minimizing global entropy to provide more personalized services. To better evaluate the system's effectiveness in this context, we propose DABench, a benchmark focusing on emotional expression and emotional change toward objects. Experimental results demonstrate that, our system achieves superior performance in personalization, logical coherence, and accuracy. Ablation studies further validate the effectiveness of the Bayesian-inspired update mechanism in alleviating memory bloat. Our work offers new insights into the design of long-term memory systems.
comment: 12 pasges, 8 figures
☆ Atlas-Alignment: Making Interpretability Transferable Across Language Models
Interpretability is crucial for building safe, reliable, and controllable language models, yet existing interpretability pipelines remain costly and difficult to scale. Interpreting a new model typically requires costly training of model-specific sparse autoencoders, manual or semi-automated labeling of SAE components, and their subsequent validation. We introduce Atlas-Alignment, a framework for transferring interpretability across language models by aligning unknown latent spaces to a Concept Atlas - a labeled, human-interpretable latent space - using only shared inputs and lightweight representational alignment techniques. Once aligned, this enables two key capabilities in previously opaque models: (1) semantic feature search and retrieval, and (2) steering generation along human-interpretable atlas concepts. Through quantitative and qualitative evaluations, we show that simple representational alignment methods enable robust semantic retrieval and steerable generation without the need for labeled concept data. Atlas-Alignment thus amortizes the cost of explainable AI and mechanistic interpretability: by investing in one high-quality Concept Atlas, we can make many new models transparent and controllable at minimal marginal cost.
☆ Awal -- Community-Powered Language Technology for Tamazight
This paper presents Awal, a community-powered initiative for developing language technology resources for Tamazight. We provide a comprehensive review of the NLP landscape for Tamazight, examining recent progress in computational resources, and the emergence of community-driven approaches to address persistent data scarcity. Launched in 2024, awaldigital.org platform addresses the underrepresentation of Tamazight in digital spaces through a collaborative platform enabling speakers to contribute translation and voice data. We analyze 18 months of community engagement, revealing significant barriers to participation including limited confidence in written Tamazight and ongoing standardization challenges. Despite widespread positive reception, actual data contribution remained concentrated among linguists and activists. The modest scale of community contributions -- 6,421 translation pairs and 3 hours of speech data -- highlights the limitations of applying standard crowdsourcing approaches to languages with complex sociolinguistic contexts. We are working on improved open-source MT models using the collected data.
comment: Accepted to the International Conference on Information and Communication Technologies for Amazigh (TICAM 25)
☆ Balancing Knowledge Updates: Toward Unified Modular Editing in LLMs
Knowledge editing has emerged as an efficient approach for updating factual knowledge in large language models (LLMs). It typically locates knowledge storage modules and then modifies their parameters. However, most existing methods focus on the weights of multilayer perceptron (MLP) modules, which are often identified as the main repositories of factual information. Other components, such as attention (Attn) modules, are often ignored during editing. This imbalance can leave residual outdated knowledge and limit editing effectiveness. We perform comprehensive knowledge localization experiments on advanced LLMs and find that Attn modules play a substantial role in factual knowledge storage and retrieval, especially in earlier layers. Based on these insights, we propose IntAttn-Edit, a method that extends the associative memory paradigm to jointly update both MLP and Attn modules. Our approach uses a knowledge balancing strategy that allocates update magnitudes in proportion to each module's measured contribution to knowledge storage. Experiments on standard benchmarks show that IntAttn-Edit achieves higher edit success, better generalization, and stronger knowledge preservation than prior methods. Further analysis shows that the balancing strategy keeps editing performance within an optimal range across diverse settings.
♻ ☆ Context Tuning for In-Context Optimization ICML 2025
We introduce Context Tuning, a simple and effective method to significantly enhance few-shot adaptation of language models (LLMs) without fine-tuning model parameters. While prompt-based adaptation techniques have demonstrated the effectiveness of lightweight adaptation methods for LLMs, they typically initialize a trainable prompt or prefix with irrelevant tokens for the task at hand. In contrast, Context Tuning initializes the trainable prompt or prefix with task-specific demonstration examples, leveraging the model's inherent In-Context Learning (ICL) ability to extract relevant information for improved few-shot learning performance. Extensive evaluations on benchmarks such as CrossFit, UnifiedQA, MMLU, BIG-Bench Hard, and ARC demonstrate that Context Tuning outperforms traditional prompt-based adaptation methods and achieves competitive accuracy to Test-Time Training with significantly higher training efficiency.
comment: A short version of this paper was accepted at ICML 2025 Workshop on Test-Time Adaptation
♻ ☆ PRISM2: Unlocking Multi-Modal General Pathology AI with Clinical Dialogue
Recent rapid progress in the field of computational pathology has been enabled by foundation models. These models are beginning to move beyond encoding image patches towards whole-slide understanding but their clinical utility remains limited. In this work, we present PRISM2, a multimodal slide-level foundation model trained on data from 700,000 diagnostic specimen-report pairs, the largest vision (2.3 million whole slide images) and language (14M question-answer pairs) histopathology dataset to date. By learning through clinical-dialogue supervision, PRISM2 aligns histomorphologic features with the language of diagnostic reasoning, producing slide-level representations that support both direct diagnostic question-answering and transferable embeddings for downstream tasks. Without additional training, PRISM2 matches or exceeds the cancer-detection performance of clinical-grade products. This is observed without loss of generality on other tasks, where PRISM2 achieves top performance. Finally, using survival prediction as the example, we show that task-specific finetuning with a large dataset can outperform task-specific models, further improving performance. These results demonstrate how language-supervised pretraining provides a scalable, clinically grounded signal for learning generalizable pathology representations, bridging human diagnostic reasoning and foundation-model performance.
♻ ☆ CheckEval: A reliable LLM-as-a-Judge framework for evaluating text generation using checklists EMNLP 2025
Existing LLM-as-a-Judge approaches for evaluating text generation suffer from rating inconsistencies, with low agreement and high rating variance across different evaluator models. We attribute this to subjective evaluation criteria combined with Likert scale scoring in existing protocols. To address this issue, we introduce CheckEval, a checklist-based evaluation framework that improves rating reliability via decomposed binary questions. Through experiments with 12 evaluator models across multiple datasets, we first demonstrate that CheckEval strongly correlates with human judgments. More importantly, CheckEval dramatically improves the average agreement across evaluator models by 0.45 and reduces the score variance. CheckEval scores furthermore have the benefit of being more interpretable because it decomposes evaluation criteria into traceable binary decisions, allowing analyses of specific attributes driving quality judgments.
comment: EMNLP 2025
♻ ☆ A Comprehensive Evaluation of Cognitive Biases in LLMs
We present a large-scale evaluation of 30 cognitive biases in 20 state-of-the-art large language models (LLMs) under various decision-making scenarios. Our contributions include a novel general-purpose test framework for reliable and large-scale generation of tests for LLMs, a benchmark dataset with 30,000 tests for detecting cognitive biases in LLMs, and a comprehensive assessment of the biases found in the 20 evaluated LLMs. Our work confirms and broadens previous findings suggesting the presence of cognitive biases in LLMs by reporting evidence of all 30 tested biases in at least some of the 20 LLMs. We publish our framework code to encourage future research on biases in LLMs: https://github.com/simonmalberg/cognitive-biases-in-llms
comment: Published in "Proceedings of the 5th International Conference on Natural Language Processing for Digital Humanities"
♻ ☆ Do LLM Evaluators Prefer Themselves for a Reason?
Large language models (LLMs) are increasingly used as automatic evaluators in applications like benchmarking, reward modeling, and self-refinement. Prior work highlights a potential self-preference bias where LLMs favor their own generated responses, a tendency often intensifying with model size and capability. This raises a critical question: Is self-preference harmful, or does it simply reflect the genuinely higher-quality outputs of stronger models? Answering this has been difficult as previous studies relied primarily on subjective tasks. These tasks lack an objective ground truth, meaning that either preference can be reasonably justified. To address this ambiguity, we investigate self-preference using verifiable benchmarks (mathematical reasoning, factual knowledge, code generation) that allow objective ground-truth assessment. This enables us to distinguish harmful self-preference (favoring objectively worse responses) from legitimate self-preference (favoring genuinely superior ones). We conduct large-scale experiments under controlled evaluation conditions across diverse model families (e.g., Llama, Qwen, Gemma, Mistral, Phi, GPT, DeepSeek). Our findings reveal three key insights: (1) While stronger models exhibit greater self-preference, much of this preference aligns with objectively superior performance, indicating stronger models prefer themselves mostly legitimately. (2) Harmful self-preference persists when evaluator models err as generators, and stronger models display more pronounced harmful self-preference when they do err. This suggests stronger models struggle more to recognize when they are wrong. (3) Inference-time scaling strategies, such as generating a long Chain-of-Thought before evaluation, effectively reduce harmful self-preference. These results provide a more nuanced understanding of LLM-based evaluation and practical insights for improving its reliability.
comment: Preprint. Under review
♻ ☆ AttnCache: Accelerating Self-Attention Inference for LLM Prefill via Attention Cache
Large Language Models (LLMs) are widely used in generative applications such as chatting, code generation, and reasoning. However, many realworld workloads such as classification, question answering, recommendation, and text embedding rely solely on the prefill stage of inference, where the model encodes input sequences without performing autoregressive decoding. In these prefill only scenarios, the self-attention computation becomes the primary performance bottleneck due to its quadratic complexity with respect to sequence length. In this paper, we observe that semantically different sentences often produce similar attention maps across layers and heads. Building on this insight, we propose AttnCache, a framework that accelerates the prefill stage of LLM inference by retrieving and reusing similar attention maps. Based on an attention map memorization database, AttnCache employs efficient caching and similarity search techniques to identify and reuse pre-cached attention maps during inference, thereby reducing the computational overhead of self-attention. Experimental results show that AttnCache achieves an average of 1.2x end-to-end and 2x attention speedup on CPU, and 1.6x end-to-end and 3x attention speedup on GPU, with negligible accuracy degradation.
comment: 10 pages, 6 figures, submitted to Ninth Annual Conference on Machine Learning and Systems (MLSys'26)
♻ ☆ Beyond Pointwise Scores: Decomposed Criteria-Based Evaluation of LLM Responses EMNLP
Evaluating long-form answers in high-stakes domains such as law or medicine remains a fundamental challenge. Standard metrics like BLEU and ROUGE fail to capture semantic correctness, and current LLM-based evaluators often reduce nuanced aspects of answer quality into a single undifferentiated score. We introduce DeCE, a decomposed LLM evaluation framework that separates precision (factual accuracy and relevance) and recall (coverage of required concepts), using instance-specific criteria automatically extracted from gold answer requirements. DeCE is model-agnostic and domain-general, requiring no predefined taxonomies or handcrafted rubrics. We instantiate DeCE to evaluate different LLMs on a real-world legal QA task involving multi-jurisdictional reasoning and citation grounding. DeCE achieves substantially stronger correlation with expert judgments ($r=0.78$), compared to traditional metrics ($r=0.12$), pointwise LLM scoring ($r=0.35$), and modern multidimensional evaluators ($r=0.48$). It also reveals interpretable trade-offs: generalist models favor recall, while specialized models favor precision. Importantly, only 11.95% of LLM-generated criteria required expert revision, underscoring DeCE's scalability. DeCE offers an interpretable and actionable LLM evaluation framework in expert domains.
comment: Accepted by 2025 EMNLP industry track
♻ ☆ BadGraph: A Backdoor Attack Against Latent Diffusion Model for Text-Guided Graph Generation
The rapid progress of graph generation has raised new security concerns, particularly regarding backdoor vulnerabilities. While prior work has explored backdoor attacks in image diffusion and unconditional graph generation, conditional, especially text-guided graph generation remains largely unexamined. This paper proposes BadGraph, a backdoor attack method against latent diffusion models for text-guided graph generation. BadGraph leverages textual triggers to poison training data, covertly implanting backdoors that induce attacker-specified subgraphs during inference when triggers appear, while preserving normal performance on clean inputs. Extensive experiments on four benchmark datasets (PubChem, ChEBI-20, PCDes, MoMu) demonstrate the effectiveness and stealth of the attack: less than 10% poisoning rate can achieves 50% attack success rate, while 24% suffices for over 80% success rate, with negligible performance degradation on benign samples. Ablation studies further reveal that the backdoor is implanted during VAE and diffusion training rather than pretraining. These findings reveal the security vulnerabilities in latent diffusion models of text-guided graph generation, highlight the serious risks in models' applications such as drug discovery and underscore the need for robust defenses against the backdoor attack in such diffusion models.
♻ ☆ The End of Manual Decoding: Towards Truly End-to-End Language Models
The "end-to-end" label for LLMs is a misnomer. In practice, they depend on a non-differentiable decoding process that requires laborious, hand-tuning of hyperparameters like temperature and top-p. This paper introduces AutoDeco, a novel architecture that enables truly "end-to-end" generation by learning to control its own decoding strategy. We augment the standard transformer with lightweight heads that, at each step, dynamically predict context-specific temperature and top-p values alongside the next-token logits. This approach transforms decoding into a parametric, token-level process, allowing the model to self-regulate its sampling strategy within a single forward pass. Through extensive experiments on eight benchmarks, we demonstrate that AutoDeco not only significantly outperforms default decoding strategies but also achieves performance comparable to an oracle-tuned baseline derived from "hacking the test set"-a practical upper bound for any static method. Crucially, we uncover an emergent capability for instruction-based decoding control: the model learns to interpret natural language commands (e.g., "generate with low randomness") and adjusts its predicted temperature and top-p on a token-by-token basis, opening a new paradigm for steerable and interactive LLM decoding.
♻ ☆ SparsePO: Controlling Preference Alignment of LLMs via Sparse Token Masks EMNLP 2025
Direct alignment algorithms have proven an effective step for aligning language models to human-desired behaviors. Current variants of the Direct Preference Optimization objective have focused on a strict setting where all tokens are contributing signals of KL divergence and rewards to the loss function. However, human preference is not affected equally by each word in a sequence but is often dependent on specific words or phrases, e.g. existence of toxic terms leads to non-preferred responses. Based on this observation, we argue that not all tokens should be weighted equally during PO and propose a flexible objective termed SparsePO, that aims to automatically learn to weight the KL divergence and reward corresponding to each token during PO training. We propose two different variants of weight-masks that can either be derived from the reference model itself or learned on the fly. Notably, our method induces sparsity in the learned masks, allowing the model to learn how to best balance reward and KL divergence contributions at the token level, learning an optimal level of mask sparsity. Extensive experiments illustrate the effectiveness of our approach at aligning to preference proxies, including sentiment control, helpfulness and harmlessness, and summary quality. Our method obtains +10% and +3% win rate points in summarization and dialogue scenarios, respectively, without compromising model reasoning or the relevancy and faithfulness of the summary response.
comment: 27 pages, 9 figures, 5 tables. Accepted to EMNLP 2025
♻ ☆ HELIOS: Adaptive Model And Early-Exit Selection for Efficient LLM Inference Serving
Early-Exit Large Language Models (EE-LLMs) enable high throughput inference by allowing tokens to exit early at intermediate layers. However, their throughput is limited by the computational and memory savings. Existing EE-LLM frameworks rely on a single model and therefore, their token generation latencies are bottlenecked by tokens that do not exit early and traverse additional layers. Moreover, early exits are only known at runtime and depend on the request. Therefore, these frameworks load the weights of all model layers even though large portions remain unused when tokens exit early. The lack of memory savings limit us from scaling the batch sizes. We propose $\textit{HELIOS}$, a framework that improves both token generation latency and batch sizes to enable high-throughput in EE-LLMs. HELIOS exploits two insights. $\textit{First}$, early exits are often complimentary across models, tokens that do not exit early on one model often take an early-exit on another. HELIOS employs multiple models and dynamically switches between them to collectively maximize the number of tokens that exit early, and minimize token generation latencies. $\textit{Second}$, even when a predicted token does not exit early due to poor confidence, it often remains unchanged even after additional layer traversal. HELIOS greedily allows such tokens to exit early and only loads the weights of the most likely to be used layers, yielding memory savings which is then re-purposed to increase batch sizes. HELIOS employs real-time profiling to accurately identify the early-exit distributions, and adaptively switches between models by tracking tokens in real-time to minimize the performance degradation caused by greedy model loading and exiting. Our evaluations show that HELIOS achieves $1.48\times$ higher throughput and $15.14\times$ larger batch size compared to existing EE-LLM frameworks.
♻ ☆ Minitron-SSM: Efficient Hybrid Language Model Compression through Group-Aware SSM Pruning
Hybrid LLM architectures that combine Attention and State Space Models (SSMs) achieve state-of-the-art accuracy and runtime performance. Recent work has demonstrated that applying compression and distillation to Attention-only models yields smaller, more accurate models at a fraction of the training cost. In this work, we explore the effectiveness of compressing Hybrid architectures. We introduce a novel group-aware pruning strategy that preserves the structural integrity of SSM blocks and their sequence modeling capabilities. Furthermore, we demonstrate the necessity of such SSM pruning to achieve improved accuracy and inference speed compared to traditional approaches. Our compression recipe combines SSM, FFN, embedding dimension, and layer pruning, followed by knowledge distillation-based retraining, similar to the MINITRON technique. Using this approach, we compress the Nemotron-H 8B Hybrid model down to 4B parameters with up to 40x fewer training tokens. The resulting model surpasses the accuracy of similarly-sized models while achieving 2x faster inference, significantly advancing the Pareto frontier.
♻ ☆ A Multi-Stage Framework with Taxonomy-Guided Reasoning for Occupation Classification Using Large Language Models
Automatically annotating job data with standardized occupations from taxonomies, known as occupation classification, is crucial for labor market analysis. However, this task is often hindered by data scarcity and the challenges of manual annotations. While large language models (LLMs) hold promise due to their extensive world knowledge and in-context learning capabilities, their effectiveness depends on their knowledge of occupational taxonomies, which remains unclear. In this study, we assess the ability of LLMs to generate precise taxonomic entities from taxonomy, highlighting their limitations, especially for smaller models. To address these challenges, we propose a multi-stage framework consisting of inference, retrieval, and reranking stages, which integrates taxonomy-guided reasoning examples to enhance performance by aligning outputs with taxonomic knowledge. Evaluations on a large-scale dataset show that our framework not only enhances occupation and skill classification tasks, but also provides a cost-effective alternative to frontier models like GPT-4o, significantly reducing computational costs while maintaining strong performance. This makes it a practical and scalable solution for occupation classification and related tasks across LLMs.
comment: Accepted to ICWSM'26
♻ ☆ NaviAgent: Bilevel Planning on Tool Navigation Graph for Large-Scale Orchestration
Large language models (LLMs) have recently demonstrated the ability to act as function call agents by invoking external tools, enabling them to solve tasks beyond their static knowledge. However, existing agents typically call tools step by step at a time without a global view of task structure. As tools depend on each other, this leads to error accumulation and limited scalability, particularly when scaling to thousands of tools. To address these limitations, we propose NaviAgent, a novel bilevel architecture that decouples task planning from tool execution through graph-based modeling of the tool ecosystem. At the task-planning level, the LLM-based agent decides whether to respond directly, clarify user intent, invoke a toolchain, or execute tool outputs, ensuring broad coverage of interaction scenarios independent of inter-tool complexity. At the execution level, a continuously evolving Tool World Navigation Model (TWNM) encodes structural and behavioral relations among tools, guiding the agent to generate scalable and robust invocation sequences. By incorporating feedback from real tool interactions, NaviAgent supports closed-loop optimization of planning and execution, moving beyond tool calling toward adaptive navigation of large-scale tool ecosystems. Experiments show that NaviAgent achieves the best task success rates across models and tasks, and integrating TWMN further boosts performance by up to 17 points on complex tasks, underscoring its key role in toolchain orchestration.
♻ ☆ Token Distillation: Attention-aware Input Embeddings For New Tokens
Current language models rely on static vocabularies determined at pretraining time, which can lead to decreased performance and increased computational cost for domains underrepresented in the original vocabulary. New tokens can be added to solve this problem, when coupled with a good initialization for their new embeddings. However, existing embedding initialization methods require expensive further training or pretraining of additional modules. In this paper, we propose Token Distillation and show that by distilling representations obtained using the original tokenization, we can quickly learn high-quality input embeddings for new tokens. Experimental results with a wide range of open-weight models show that Token Distillation outperforms even strong baselines.
comment: Additional experiments + clearer method name compared to the May 2025 version
♻ ☆ Beyond Pixels: Exploring DOM Downsampling for LLM-Based Web Agents
Frontier LLMs only recently enabled serviceable, autonomous web agents. At that, a model poses as an instantaneous domain model backend. Ought to suggest interaction, it is consulted with a web-based task and respective application state. The key problem lies in application state serialisation - referred to as snapshot. State-of-the-art web agents are premised on grounded GUI snapshots, i.e., screenshots enhanced with visual cues. Not least to resemble human perception, but for images representing relatively cheap means of model input. LLM vision still lag behind code interpretation capabilities. DOM snapshots, which structurally resemble HTML, impose a desired alternative. Vast model input token size, however, disables reliable implementation with web agents to date. We propose D2Snap, a first-of-its-kind DOM downsampling algorithm. Based on a GPT-4o backend, we evaluate D2Snap on tasks sampled from the Online-Mind2Web dataset. The success rate of D2Snap-downsampled DOM snapshots (67%) matches a grounded GUI snapshot baseline (65%) - within the same input token order of magnitude (1e3). Our best evaluated configurations - one token order above, but within the model's context window - outperform this baseline by 8%. Our evaluation, moreover, yields that DOM-inherent hierarchy embodies a strong UI feature for LLMs.
comment: 20 pages, LaTeX; repository URL updated, typos corrected
♻ ☆ Reinforcement Learning vs. Distillation: Understanding Accuracy and Capability in LLM Reasoning
Recent studies have shown that reinforcement learning with verifiable rewards (RLVR) enhances overall accuracy (pass@1) but often fails to improve capability (pass@k) of LLMs in reasoning tasks, while distillation can improve both. In this paper, we investigate the mechanisms behind these phenomena. First, we demonstrate that RLVR struggles to improve capability as it focuses on improving the accuracy of the easier questions to the detriment of the accuracy of the most difficult questions. Second, we show that RLVR does not merely increase the success probability for the easier questions, but in our small model settings, produces quality responses that were absent in its original output distribution. In addition, we show these responses are neither noticeably longer nor feature more reflection-related keywords, underscoring the need for more reliable indicators of response quality. Third, from the experiment distilling teacher responses to in-distribution problems, we find that capability does not always improve with distillation. We conjecture that capability improves only when new knowledge is introduced, whereas distilling reasoning patterns only improves accuracy but not capability, sacrificing performance on the most difficult questions, similar to RLVR. Together, these findings offer a clearer understanding of how RLVR and distillation shape reasoning behavior in LLMs
comment: 25 pages
♻ ☆ More of the Same: Persistent Representational Harms Under Increased Representation NeurIPS
To recognize and mitigate the harms of generative AI systems, it is crucial to consider whether and how different societal groups are represented by these systems. A critical gap emerges when naively measuring or improving who is represented, as this does not consider how people are represented. In this work, we develop GAS(P), an evaluation methodology for surfacing distribution-level group representational biases in generated text, tackling the setting where groups are unprompted (i.e., groups are not specified in the input to generative systems). We apply this novel methodology to investigate gendered representations in occupations across state-of-the-art large language models. We show that, even though the gender distribution when models are prompted to generate biographies leads to a large representation of women, even representational biases persist in how different genders are represented. Our evaluation methodology reveals that there are statistically significant distribution-level differences in the word choice used to describe biographies and personas of different genders across occupations, and we show that many of these differences are associated with representational harms and stereotypes. Our empirical findings caution that naively increasing (unprompted) representation may inadvertently proliferate representational biases, and our proposed evaluation methodology enables systematic and rigorous measurement of the problem.
comment: Proceedings of the Neural Information Processing Systems (NeurIPS) 2025; 39 pages, 7 figures, 15 tables
Computer Vision and Pattern Recognition
☆ LifWavNet: Lifting Wavelet-based Network for Non-contact ECG Reconstruction from Radar
Non-contact electrocardiogram (ECG) reconstruction from radar signals offers a promising approach for unobtrusive cardiac monitoring. We present LifWavNet, a lifting wavelet network based on a multi-resolution analysis and synthesis (MRAS) model for radar-to-ECG reconstruction. Unlike prior models that use fixed wavelet approaches, LifWavNet employs learnable lifting wavelets with lifting and inverse lifting units to adaptively capture radar signal features and synthesize physiologically meaningful ECG waveforms. To improve reconstruction fidelity, we introduce a multi-resolution short-time Fourier transform (STFT) loss, that enforces consistency with the ground-truth ECG in both temporal and spectral domains. Evaluations on two public datasets demonstrate that LifWavNet outperforms state-of-the-art methods in ECG reconstruction and downstream vital sign estimation (heart rate and heart rate variability). Furthermore, intermediate feature visualization highlights the interpretability of multi-resolution decomposition and synthesis in radar-to-ECG reconstruction. These results establish LifWavNet as a robust framework for radar-based non-contact ECG measurement.
☆ Phased DMD: Few-step Distribution Matching Distillation via Score Matching within Subintervals
Distribution Matching Distillation (DMD) distills score-based generative models into efficient one-step generators, without requiring a one-to-one correspondence with the sampling trajectories of their teachers. However, limited model capacity causes one-step distilled models underperform on complex generative tasks, e.g., synthesizing intricate object motions in text-to-video generation. Directly extending DMD to multi-step distillation increases memory usage and computational depth, leading to instability and reduced efficiency. While prior works propose stochastic gradient truncation as a potential solution, we observe that it substantially reduces the generation diversity of multi-step distilled models, bringing it down to the level of their one-step counterparts. To address these limitations, we propose Phased DMD, a multi-step distillation framework that bridges the idea of phase-wise distillation with Mixture-of-Experts (MoE), reducing learning difficulty while enhancing model capacity. Phased DMD is built upon two key ideas: progressive distribution matching and score matching within subintervals. First, our model divides the SNR range into subintervals, progressively refining the model to higher SNR levels, to better capture complex distributions. Next, to ensure the training objective within each subinterval is accurate, we have conducted rigorous mathematical derivations. We validate Phased DMD by distilling state-of-the-art image and video generation models, including Qwen-Image (20B parameters) and Wan2.2 (28B parameters). Experimental results demonstrate that Phased DMD preserves output diversity better than DMD while retaining key generative capabilities. We will release our code and models.
☆ PETAR: Localized Findings Generation with Mask-Aware Vision-Language Modeling for PET Automated Reporting
Recent advances in vision-language models (VLMs) have enabled impressive multimodal reasoning, yet most medical applications remain limited to 2D imaging. In this work, we extend VLMs to 3D positron emission tomography and computed tomography (PET/CT), a domain characterized by large volumetric data, small and dispersed lesions, and lengthy radiology reports. We introduce a large-scale dataset comprising over 11,000 lesion-level descriptions paired with 3D segmentations from more than 5,000 PET/CT exams, extracted via a hybrid rule-based and large language model (LLM) pipeline. Building upon this dataset, we propose PETAR-4B, a 3D mask-aware vision-language model that integrates PET, CT, and lesion contours for spatially grounded report generation. PETAR bridges global contextual reasoning with fine-grained lesion awareness, producing clinically coherent and localized findings. Comprehensive automated and human evaluations demonstrate that PETAR substantially improves PET/CT report generation quality, advancing 3D medical vision-language understanding.
☆ Dark-Field X-Ray Imaging Significantly Improves Deep-Learning based Detection of Synthetic Early-Stage Lung Tumors in Preclinical Models
Low-dose computed tomography (LDCT) is the current standard for lung cancer screening, yet its adoption and accessibility remain limited. Many regions lack LDCT infrastructure, and even among those screened, early-stage cancer detection often yield false positives, as shown in the National Lung Screening Trial (NLST) with a sensitivity of 93.8 percent and a false-positive rate of 26.6 percent. We aim to investigate whether X-ray dark-field imaging (DFI) radiograph, a technique sensitive to small-angle scatter from alveolar microstructure and less susceptible to organ shadowing, can significantly improve early-stage lung tumor detection when coupled with deep-learning segmentation. Using paired attenuation (ATTN) and DFI radiograph images of euthanized mouse lungs, we generated realistic synthetic tumors with irregular boundaries and intensity profiles consistent with physical lung contrast. A U-Net segmentation network was trained on small patches using either ATTN, DFI, or a combination of ATTN and DFI channels. Results show that the DFI-only model achieved a true-positive detection rate of 83.7 percent, compared with 51 percent for ATTN-only, while maintaining comparable specificity (90.5 versus 92.9 percent). The combined ATTN and DFI input achieved 79.6 percent sensitivity and 97.6 percent specificity. In conclusion, DFI substantially improves early-tumor detectability in comparison to standard attenuation radiography and shows potential as an accessible, low-cost, low-dose alternative for pre-clinical or limited-resource screening where LDCT is unavailable.
♻ ☆ LocDiff: Identifying Locations on Earth by Diffusing in the Hilbert Space
Image geolocalization is a fundamental yet challenging task, aiming at inferring the geolocation on Earth where an image is taken. State-of-the-art methods employ either grid-based classification or gallery-based image-location retrieval, whose spatial generalizability significantly suffers if the spatial distribution of test im- ages does not align with the choices of grids and galleries. Recently emerging generative approaches, while getting rid of grids and galleries, use raw geographical coordinates and suffer quality losses due to their lack of multi-scale information. To address these limitations, we propose a multi-scale latent diffusion model called LocDiff for image geolocalization. We developed a novel positional encoding-decoding framework called Spherical Harmonics Dirac Delta (SHDD) Representations, which encodes points on a spherical surface (e.g., geolocations on Earth) into a Hilbert space of Spherical Harmonics coefficients and decodes points (geolocations) by mode-seeking on spherical probability distributions. We also propose a novel SirenNet-based architecture (CS-UNet) to learn an image-based conditional backward process in the latent SHDD space by minimizing a latent KL-divergence loss. To the best of our knowledge, LocDiff is the first image geolocalization model that performs latent diffusion in a multi-scale location encoding space and generates geolocations under the guidance of images. Experimental results show that LocDiff can outperform all state-of-the-art grid-based, retrieval-based, and diffusion-based baselines across 5 challenging global-scale image geolocalization datasets, and demonstrates significantly stronger generalizability to unseen geolocations.
♻ ☆ Hyperparameter Optimization and Reproducibility in Deep Learning Model Training
Reproducibility remains a critical challenge in foundation model training for histopathology, often hindered by software randomness, hardware non-determinism, and inconsistent hyperparameter reporting. To investigate these issues, we trained a CLIP model on the QUILT-1M dataset and systematically evaluated the impact of different hyperparameter settings and augmentation strategies across three downstream histopathology datasets (PatchCamelyon, LC25000-Lung, and LC25000-Colon). Despite variability across runs, we identified clear trends: RandomResizedCrop values of 0.7-0.8 outperformed more aggressive (0.6) or conservative (0.9) settings, distributed training without local loss improved stability, and learning rates below 5.0e-5 consistently degraded performance across all datasets. The LC25000 (Colon) dataset consistently provided the most reproducible benchmark. These findings highlight that reproducibility in computational pathology depends not only on transparent documentation but also on carefully chosen experimental configurations, and we provide practical rules to guide future efforts in developing reproducible foundation models for digital pathology.
♻ ☆ PRISM2: Unlocking Multi-Modal General Pathology AI with Clinical Dialogue
Recent rapid progress in the field of computational pathology has been enabled by foundation models. These models are beginning to move beyond encoding image patches towards whole-slide understanding but their clinical utility remains limited. In this work, we present PRISM2, a multimodal slide-level foundation model trained on data from 700,000 diagnostic specimen-report pairs, the largest vision (2.3 million whole slide images) and language (14M question-answer pairs) histopathology dataset to date. By learning through clinical-dialogue supervision, PRISM2 aligns histomorphologic features with the language of diagnostic reasoning, producing slide-level representations that support both direct diagnostic question-answering and transferable embeddings for downstream tasks. Without additional training, PRISM2 matches or exceeds the cancer-detection performance of clinical-grade products. This is observed without loss of generality on other tasks, where PRISM2 achieves top performance. Finally, using survival prediction as the example, we show that task-specific finetuning with a large dataset can outperform task-specific models, further improving performance. These results demonstrate how language-supervised pretraining provides a scalable, clinically grounded signal for learning generalizable pathology representations, bridging human diagnostic reasoning and foundation-model performance.
♻ ☆ AI-Driven Detection and Analysis of Handwriting on Seized Ivory: A Tool to Uncover Criminal Networks in the Illicit Wildlife Trade
The transnational ivory trade continues to drive the decline of elephant populations across Africa, and trafficking networks remain difficult to disrupt. Tusks seized by law enforcement officials carry forensic information on the traffickers responsible for their export, including DNA evidence and handwritten markings made by traffickers. For 20 years, analyses of tusk DNA have identified where elephants were poached and established connections among shipments of ivory. While the links established using genetic evidence are extremely conclusive, genetic data is expensive and sometimes impossible to obtain. But though handwritten markings are easy to photograph, they are rarely documented or analyzed. Here, we present an AI-driven pipeline for extracting and analyzing handwritten markings on seized elephant tusks, offering a novel, scalable, and low-cost source of forensic evidence. Having collected 6,085 photographs from eight large seizures of ivory over a 6-year period (2014-2019), we used an object detection model to extract over 17,000 individual markings, which were then labeled and described using state-of-the-art AI tools. We identified 184 recurring "signature markings" that connect the tusks on which they appear. 20 signature markings were observed in multiple seizures, establishing forensic links between these seizures through traffickers involved in both shipments. This work complements other investigative techniques by filling in gaps where other data sources are unavailable. The study demonstrates the transformative potential of AI in wildlife forensics and highlights practical steps for integrating handwriting analysis into efforts to disrupt organized wildlife crime.
comment: Submitted. 5 pages, 3 figures, 1 table
♻ ☆ Cycle Consistency as Reward: Learning Image-Text Alignment without Human Preferences
Measuring alignment between language and vision is a fundamental challenge, especially as multimodal data becomes increasingly detailed and complex. Existing methods often rely on collecting human or AI preferences, which can be costly and time-intensive. We propose an alternative approach that leverages cycle consistency as a supervisory signal. Given an image and generated text, we map the text back to image space using a text-to-image model and compute the similarity between the original image and its reconstruction. Analogously, for text-to-image generation, we measure the textual similarity between an input caption and its reconstruction through the cycle. We use the cycle consistency score to rank candidates and construct a preference dataset of 866K comparison pairs. The reward model trained on our dataset, CycleReward, outperforms state-of-the-art alignment metrics on detailed captioning, with superior inference-time scalability when used as a verifier for Best-of-N sampling, while maintaining speed and differentiability. Furthermore, performing DPO and Diffusion DPO using our dataset enhances performance across a wide range of vision-language tasks and text-to-image generation. Our dataset, model, and code are publicly released at https://cyclereward.github.io.
Information Retrieval
☆ Towards Universal Video Retrieval: Generalizing Video Embedding via Synthesized Multimodal Pyramid Curriculum
The prevailing video retrieval paradigm is structurally misaligned, as narrow benchmarks incentivize correspondingly limited data and single-task training. Therefore, universal capability is suppressed due to the absence of a diagnostic evaluation that defines and demands multi-dimensional generalization. To break this cycle, we introduce a framework built on the co-design of evaluation, data, and modeling. First, we establish the Universal Video Retrieval Benchmark (UVRB), a suite of 16 datasets designed not only to measure performance but also to diagnose critical capability gaps across tasks and domains. Second, guided by UVRB's diagnostics, we introduce a scalable synthesis workflow that generates 1.55 million high-quality pairs to populate the semantic space required for universality. Finally, we devise the Modality Pyramid, a curriculum that trains our General Video Embedder (GVE) by explicitly leveraging the latent interconnections within our diverse data. Extensive experiments show GVE achieves state-of-the-art zero-shot generalization on UVRB. In particular, our analysis reveals that popular benchmarks are poor predictors of general ability and that partially relevant retrieval is a dominant but overlooked scenario. Overall, our co-designed framework provides a practical path to escape the limited scope and advance toward truly universal video retrieval.
☆ Interact-RAG: Reason and Interact with the Corpus, Beyond Black-Box Retrieval
Retrieval-Augmented Generation (RAG) has significantly enhanced LLMs by incorporating external information. However, prevailing agentic RAG approaches are constrained by a critical limitation: they treat the retrieval process as a black-box querying operation. This confines agents' actions to query issuing, hindering its ability to tackle complex information-seeking tasks. To address this, we introduce Interact-RAG, a new paradigm that elevates the LLM agent from a passive query issuer into an active manipulator of the retrieval process. We dismantle the black-box with a Corpus Interaction Engine, equipping the agent with a set of action primitives for fine-grained control over information retrieval. To further empower the agent on the entire RAG pipeline, we first develop a reasoning-enhanced workflow, which enables both zero-shot execution and the synthesis of interaction trajectories. We then leverage this synthetic data to train a fully autonomous end-to-end agent via Supervised Fine-Tuning (SFT), followed by refinement with Reinforcement Learning (RL). Extensive experiments across six benchmarks demonstrate that Interact-RAG significantly outperforms other advanced methods, validating the efficacy of our reasoning-interaction strategy.
☆ Pairwise and Attribute-Aware Decision Tree-Based Preference Elicitation for Cold-Start Recommendation
Recommender systems (RSs) are intelligent filtering methods that suggest items to users based on their inferred preferences, derived from their interaction history on the platform. Collaborative filtering-based RSs rely on users past interactions to generate recommendations. However, when a user is new to the platform, referred to as a cold-start user, there is no historical data available, making it difficult to provide personalized recommendations. To address this, rating elicitation techniques can be used to gather initial ratings or preferences on selected items, helping to build an early understanding of the user's tastes. Rating elicitation approaches are generally categorized into two types: non-personalized and personalized. Decision tree-based rating elicitation is a personalized method that queries users about their preferences at each node of the tree until sufficient information is gathered. In this paper, we propose an extension to the decision tree approach for rating elicitation in the context of music recommendation. Our method: (i) elicits not only item ratings but also preferences on attributes such as genres to better cluster users, and (ii) uses item pairs instead of single items at each node to more effectively learn user preferences. Experimental results demonstrate that both proposed enhancements lead to improved performance, particularly with a reduced number of queries.
☆ Traceable Drug Recommendation over Medical Knowledge Graphs CIKM2025
Drug recommendation (DR) systems aim to support healthcare professionals in selecting appropriate medications based on patients' medical conditions. State-of-the-art approaches utilize deep learning techniques for improving DR, but fall short in providing any insights on the derivation process of recommendations -- a critical limitation in such high-stake applications. We propose TraceDR, a novel DR system operating over a medical knowledge graph (MKG), which ensures access to large-scale and high-quality information. TraceDR simultaneously predicts drug recommendations and related evidence within a multi-task learning framework, enabling traceability of medication recommendations. For covering a more diverse set of diseases and drugs than existing works, we devise a framework for automatically constructing patient health records and release DrugRec, a new large-scale testbed for DR.
comment: Accepted to MediKS@CIKM2025
☆ Research Output of Webology Journal (2013-2017): A Scientometric Analysis
Webology is an international peer-reviewed journal in English devoted to the field of the World Wide Web and serves as a forum for discussion and experimentation. It serves as a forum for new research in information dissemination and communication processes in general, and in the context of the World Wide Web in particular. This paper presents a Scientometric analysis of the Webology Journal. The paper analyses the pattern of growth of the research output published in the journal, pattern of authorship, author productivity, and subjects covered to the papers over the period (2013-2017). It is found that 62 papers were published during the period of study (2013-2017). The maximum numbers of articles were collaborative in nature. The subject concentration of the journal noted was Social Networking/Web 2.0/Library 2.0 and Scientometrics or Bibliometrics. Iranian researchers contributed the maximum number of articles (37.10%). The study applied standard formula and statistical tools to bring out the factual result.
comment: 13 pages, 3 figures, Research Paper
☆ Beyond a Million Tokens: Benchmarking and Enhancing Long-Term Memory in LLMs
Evaluating the abilities of large language models (LLMs) for tasks that require long-term memory and thus long-context reasoning, for example in conversational settings, is hampered by the existing benchmarks, which often lack narrative coherence, cover narrow domains, and only test simple recall-oriented tasks. This paper introduces a comprehensive solution to these challenges. First, we present a novel framework for automatically generating long (up to 10M tokens), coherent, and topically diverse conversations, accompanied by probing questions targeting a wide range of memory abilities. From this, we construct BEAM, a new benchmark comprising 100 conversations and 2,000 validated questions. Second, to enhance model performance, we propose LIGHT-a framework inspired by human cognition that equips LLMs with three complementary memory systems: a long-term episodic memory, a short-term working memory, and a scratchpad for accumulating salient facts. Our experiments on BEAM reveal that even LLMs with 1M token context windows (with and without retrieval-augmentation) struggle as dialogues lengthen. In contrast, LIGHT consistently improves performance across various models, achieving an average improvement of 3.5%-12.69% over the strongest baselines, depending on the backbone LLM. An ablation study further confirms the contribution of each memory component.
☆ DRAMA: Unifying Data Retrieval and Analysis for Open-Domain Analytic Queries SIGMOD 2026
Manually conducting real-world data analyses is labor-intensive and inefficient. Despite numerous attempts to automate data science workflows, none of the existing paradigms or systems fully demonstrate all three key capabilities required to support them effectively: (1) open-domain data collection, (2) structured data transformation, and (3) analytic reasoning. To overcome these limitations, we propose DRAMA, an end-to-end paradigm that answers users' analytic queries in natural language on large-scale open-domain data. DRAMA unifies data collection, transformation, and analysis as a single pipeline. To quantitatively evaluate system performance on tasks representative of DRAMA, we construct a benchmark, DRAMA-Bench, consisting of two categories of tasks: claim verification and question answering, each comprising 100 instances. These tasks are derived from real-world applications that have gained significant public attention and require the retrieval and analysis of open-domain data. We develop DRAMA-Bot, a multi-agent system designed following DRAMA. It comprises a data retriever that collects and transforms data by coordinating the execution of sub-agents, and a data analyzer that performs structured reasoning over the retrieved data. We evaluate DRAMA-Bot on DRAMA-Bench together with five state-of-the-art baseline agents. DRAMA-Bot achieves 86.5% task accuracy at a cost of $0.05, outperforming all baselines with up to 6.9 times the accuracy and less than 1/6 of the cost. DRAMA is publicly available at https://github.com/uiuc-kang-lab/drama.
comment: Accepted to SIGMOD 2026
☆ A Survey on Deep Text Hashing: Efficient Semantic Text Retrieval with Binary Representation
With the rapid growth of textual content on the Internet, efficient large-scale semantic text retrieval has garnered increasing attention from both academia and industry. Text hashing, which projects original texts into compact binary hash codes, is a crucial method for this task. By using binary codes, the semantic similarity computation for text pairs is significantly accelerated via fast Hamming distance calculations, and storage costs are greatly reduced. With the advancement of deep learning, deep text hashing has demonstrated significant advantages over traditional, data-independent hashing techniques. By leveraging deep neural networks, these methods can learn compact and semantically rich binary representations directly from data, overcoming the performance limitations of earlier approaches. This survey investigates current deep text hashing methods by categorizing them based on their core components: semantic extraction, hash code quality preservation, and other key technologies. We then present a detailed evaluation schema with results on several popular datasets, followed by a discussion of practical applications and open-source tools for implementation. Finally, we conclude by discussing key challenges and future research directions, including the integration of deep text hashing with large language models to further advance the field. The project for this survey can be accessed at https://github.com/hly1998/DeepTextHashing.
☆ A Survey on Generative Recommendation: Data, Model, and Tasks
Recommender systems serve as foundational infrastructure in modern information ecosystems, helping users navigate digital content and discover items aligned with their preferences. At their core, recommender systems address a fundamental problem: matching users with items. Over the past decades, the field has experienced successive paradigm shifts, from collaborative filtering and matrix factorization in the machine learning era to neural architectures in the deep learning era. Recently, the emergence of generative models, especially large language models (LLMs) and diffusion models, have sparked a new paradigm: generative recommendation, which reconceptualizes recommendation as a generation task rather than discriminative scoring. This survey provides a comprehensive examination through a unified tripartite framework spanning data, model, and task dimensions. Rather than simply categorizing works, we systematically decompose approaches into operational stages-data augmentation and unification, model alignment and training, task formulation and execution. At the data level, generative models enable knowledge-infused augmentation and agent-based simulation while unifying heterogeneous signals. At the model level, we taxonomize LLM-based methods, large recommendation models, and diffusion approaches, analyzing their alignment mechanisms and innovations. At the task level, we illuminate new capabilities including conversational interaction, explainable reasoning, and personalized content generation. We identify five key advantages: world knowledge integration, natural language understanding, reasoning capabilities, scaling laws, and creative generation. We critically examine challenges in benchmark design, model robustness, and deployment efficiency, while charting a roadmap toward intelligent recommendation assistants that fundamentally reshape human-information interaction.
☆ Compass: General Filtered Search across Vector and Structured Data
The increasing prevalence of hybrid vector and relational data necessitates efficient, general support for queries that combine high-dimensional vector search with complex relational filtering. However, existing filtered search solutions are fundamentally limited by specialized indices, which restrict arbitrary filtering and hinder integration with general-purpose DBMSs. This work introduces \textsc{Compass}, a unified framework that enables general filtered search across vector and structured data without relying on new index designs. Compass leverages established index structures -- such as HNSW and IVF for vector attributes, and B+-trees for relational attributes -- implementing a principled cooperative query execution strategy that coordinates candidate generation and predicate evaluation across modalities. Uniquely, Compass maintains generality by allowing arbitrary conjunctions, disjunctions, and range predicates, while ensuring robustness even with highly-selective or multi-attribute filters. Comprehensive empirical evaluations demonstrate that Compass consistently outperforms NaviX, the only existing performant general framework, across diverse hybrid query workloads. It also matches the query throughput of specialized single-attribute indices in their favorite settings with only a single attribute involved, all while maintaining full generality and DBMS compatibility. Overall, Compass offers a practical and robust solution for achieving truly general filtered search in vector database systems.
♻ ☆ Multimodal Item Scoring for Natural Language Recommendation via Gaussian Process Regression with LLM Relevance Judgments
Natural Language Recommendation (NLRec) generates item suggestions based on the relevance between user-issued NL requests and NL item description passages. Existing NLRec approaches often use Dense Retrieval (DR) to compute item relevance scores from aggregation of inner products between user request embeddings and relevant passage embeddings. However, DR views the request as the sole relevance label, thus leading to a unimodal scoring function centered on the query embedding that is often a weak proxy for query relevance. To better capture the potential multimodal distribution of the relevance scoring function that may arise from complex NLRec data, we propose GPR-LLM that uses Gaussian Process Regression (GPR) with LLM relevance judgments for a subset of candidate passages. Experiments on four NLRec datasets and two LLM backbones demonstrate that GPR-LLM with an RBF kernel, capable of modeling multimodal relevance scoring functions, consistently outperforms simpler unimodal kernels (dot product, cosine similarity), as well as baseline methods including DR, cross-encoder, and pointwise LLM-based relevance scoring by up to 65%. Overall, GPR-LLM provides an efficient and effective approach to NLRec within a minimal LLM labeling budget.
comment: 16 pages,20 figures
♻ ☆ UNGER: Generative Recommendation with A Unified Code via Semantic and Collaborative Integration
With the rise of generative paradigms, generative recommendation has garnered increasing attention. The core component is the item code, generally derived by quantizing collaborative or semantic representations to serve as candidate items identifiers in the context. However, existing methods typically construct separate codes for each modality, leading to higher computational and storage costs and hindering the integration of their complementary strengths. Considering this limitation, we seek to integrate two different modalities into a unified code, fully unleashing the potential of complementary nature among modalities. Nevertheless, the integration remains challenging: the integrated embedding obtained by the common concatenation method would lead to underutilization of collaborative knowledge, thereby resulting in limited effectiveness. To address this, we propose a novel method, named UNGER, which integrates semantic and collaborative knowledge into a unified code for generative recommendation. Specifically, we propose to adaptively learn an integrated embedding through the joint optimization of cross-modality knowledge alignment and next item prediction tasks. Subsequently, to mitigate the information loss caused by the quantization process, we introduce an intra-modality knowledge distillation task, using the integrated embeddings as supervised signals to compensate. Extensive experiments on three widely used benchmarks demonstrate the superiority of our approach compared to existing methods.
comment: Accepted by TOIS 2025
♻ ☆ LLM Based Long Code Translation using Identifier Replacement
In the domain of software development, LLMs have been utilized to automate tasks such as code translation, where source code from one programming language is translated to another while preserving its functionality. However, LLMs often struggle with long source codes that don't fit into the context window, which produces inaccurate translations. To address this, we propose a novel zero-shot code translation method that incorporates identifier replacement. By substituting user-given long identifiers with generalized placeholders during translation, our method allows the LLM to focus on the logical structure of the code, by reducing token count and memory usage, which improves the efficiency and cost-effectiveness of long code translation. Our empirical results demonstrate that our approach preserves syntactical and hierarchical information and produces translation results with reduced tokens.
♻ ☆ R$^2$ec: Towards Large Recommender Models with Reasoning
Large recommender models have extended LLMs as powerful recommenders via encoding or item generation, and recent breakthroughs in LLM reasoning synchronously motivate the exploration of reasoning in recommendation. In this work, we propose R$^2$ec, a unified large recommender model with intrinsic reasoning capability. R$^2$ec introduces a dual-head architecture that supports both reasoning chain generation and efficient item prediction in a single model, significantly reducing inference latency. To overcome the lack of annotated reasoning data, we design RecPO, a reinforcement learning framework that optimizes reasoning and recommendation jointly with a novel fused reward mechanism. Extensive experiments on three datasets demonstrate that R$^2$ec outperforms traditional, LLM-based, and reasoning-augmented recommender baselines, while further analyses validate its competitive efficiency among conventional LLM-based recommender baselines and strong adaptability to diverse recommendation scenarios. Code and checkpoints available at https://github.com/YRYangang/RRec.
comment: Accepted by Neurips 2025
♻ ☆ HiRA: A Hierarchical Reasoning Framework for Decoupled Planning and Execution in Deep Search
Complex information needs in real-world search scenarios demand deep reasoning and knowledge synthesis across diverse sources, which traditional retrieval-augmented generation (RAG) pipelines struggle to address effectively. Current reasoning-based approaches suffer from a fundamental limitation: they use a single model to handle both high-level planning and detailed execution, leading to inefficient reasoning and limited scalability. In this paper, we introduce HiRA, a hierarchical framework that separates strategic planning from specialized execution. Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities, and coordinates the results through a structured integration mechanism. This separation prevents execution details from disrupting high-level reasoning while enabling the system to leverage specialized expertise for different types of information processing. Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems. Our results show improvements in both answer quality and system efficiency, highlighting the effectiveness of decoupled planning and execution for multi-step information seeking tasks. Our code is available at https://github.com/ignorejjj/HiRA.
comment: 9 pages
♻ ☆ CogPlanner: Unveiling the Potential of Agentic Multimodal Retrieval Augmented Generation with Planning SIGIR
Multimodal Retrieval Augmented Generation (MRAG) systems have shown promise in enhancing the generation capabilities of multimodal large language models (MLLMs). However, existing MRAG frameworks primarily adhere to rigid, single-step retrieval strategies that fail to address real-world challenges of information acquisition and query reformulation. In this work, we introduce the task of Multimodal Retrieval Augmented Generation Planning (MRAG Planning) that aims at effective information seeking and integration while minimizing computational overhead. Specifically, we propose CogPlanner, an agentic plug-and-play framework inspired by human cognitive processes, which iteratively determines query reformulation and retrieval strategies to generate accurate and contextually relevant responses. CogPlanner supports parallel and sequential modeling paradigms. Furthermore, we introduce CogBench, a new benchmark designed to rigorously evaluate the MRAG Planning task and facilitate lightweight CogPlanner integration with resource-efficient MLLMs, such as Qwen2-VL-7B-Cog. Experimental results demonstrate that CogPlanner significantly outperforms existing MRAG baselines, offering improvements in both accuracy and efficiency with minimal additional computational costs.
comment: Accepted by SIGIR-AP 2025
♻ ☆ E2Rank: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker
Text embedding models serve as a fundamental component in real-world search applications. By mapping queries and documents into a shared embedding space, they deliver competitive retrieval performance with high efficiency. However, their ranking fidelity remains limited compared to dedicated rerankers, especially recent LLM-based listwise rerankers, which capture fine-grained query-document and document-document interactions. In this paper, we propose a simple yet effective unified framework E2Rank, means Efficient Embedding-based Ranking (also means Embedding-to-Rank), which extends a single text embedding model to perform both high-quality retrieval and listwise reranking through continued training under a listwise ranking objective, thereby achieving strong effectiveness with remarkable efficiency. By applying cosine similarity between the query and document embeddings as a unified ranking function, the listwise ranking prompt, which is constructed from the original query and its candidate documents, serves as an enhanced query enriched with signals from the top-K documents, akin to pseudo-relevance feedback (PRF) in traditional retrieval models. This design preserves the efficiency and representational quality of the base embedding model while significantly improving its reranking performance. Empirically, E2Rank achieves state-of-the-art results on the BEIR reranking benchmark and demonstrates competitive performance on the reasoning-intensive BRIGHT benchmark, with very low reranking latency. We also show that the ranking training process improves embedding performance on the MTEB benchmark. Our findings indicate that a single embedding model can effectively unify retrieval and reranking, offering both computational efficiency and competitive ranking accuracy.
comment: Code and models are avaliable at https://alibaba-nlp.github.io/E2Rank
♻ ☆ Improving Product Search Relevance with EAR-MP: A Solution for the CIKM 2025 AnalytiCup
Multilingual e-commerce search is challenging due to linguistic diversity and the noise inherent in user-generated queries. This paper documents the solution employed by our team (EAR-MP) for the CIKM 2025 AnalytiCup, which addresses two core tasks: Query-Category (QC) relevance and Query-Item (QI) relevance. Our approach first normalizes the multilingual dataset by translating all text into English, then mitigates noise through extensive data cleaning and normalization. For model training, we build on DeBERTa-v3-large and improve performance with label smoothing, self-distillation, and dropout. In addition, we introduce task-specific upgrades, including hierarchical token injection for QC and a hybrid scoring mechanism for QI. Under constrained compute, our method achieves competitive results, attaining an F1 score of 0.8796 on QC and 0.8744 on QI. These findings underscore the importance of systematic data preprocessing and tailored training strategies for building robust, resource-efficient multilingual relevance systems.
Multimedia
☆ Referee: Reference-aware Audiovisual Deepfake Detection
Since deepfakes generated by advanced generative models have rapidly posed serious threats, existing audiovisual deepfake detection approaches struggle to generalize to unseen forgeries. We propose a novel reference-aware audiovisual deepfake detection method, called Referee. Speaker-specific cues from only one-shot examples are leveraged to detect manipulations beyond spatiotemporal artifacts. By matching and aligning identity-related queries from reference and target content into cross-modal features, Referee jointly reasons about audiovisual synchrony and identity consistency. Extensive experiments on FakeAVCeleb, FaceForensics++, and KoDF demonstrate that Referee achieves state-of-the-art performance on cross-dataset and cross-language evaluation protocols. Experimental results highlight the importance of cross-modal identity verification for future deepfake detection. The code is available at https://github.com/ewha-mmai/referee.
comment: In Progress
☆ HiGS: Hierarchical Generative Scene Framework for Multi-Step Associative Semantic Spatial Composition
Three-dimensional scene generation holds significant potential in gaming, film, and virtual reality. However, most existing methods adopt a single-step generation process, making it difficult to balance scene complexity with minimal user input. Inspired by the human cognitive process in scene modeling, which progresses from global to local, focuses on key elements, and completes the scene through semantic association, we propose HiGS, a hierarchical generative framework for multi-step associative semantic spatial composition. HiGS enables users to iteratively expand scenes by selecting key semantic objects, offering fine-grained control over regions of interest while the model completes peripheral areas automatically. To support structured and coherent generation, we introduce the Progressive Hierarchical Spatial-Semantic Graph (PHiSSG), which dynamically organizes spatial relationships and semantic dependencies across the evolving scene structure. PHiSSG ensures spatial and geometric consistency throughout the generation process by maintaining a one-to-one mapping between graph nodes and generated objects and supporting recursive layout optimization. Experiments demonstrate that HiGS outperforms single-stage methods in layout plausibility, style consistency, and user preference, offering a controllable and extensible paradigm for efficient 3D scene construction.
♻ ☆ Symmetric Entropy-Constrained Video Coding for Machines
As video transmission increasingly serves machine vision systems (MVS) instead of human vision systems (HVS), video coding for machines (VCM) has become a critical research topic. Existing VCM methods often bind codecs to specific downstream models, requiring retraining or supervised data, thus limiting generalization in multi-task scenarios. Recently, unified VCM frameworks have employed visual backbones (VB) and visual foundation models (VFM) to support multiple video understanding tasks with a single codec. They mainly utilize VB/VFM to maintain semantic consistency or suppress non-semantic information, but seldom explore how to directly link video coding with understanding under VB/VFM guidance. Hence, we propose a Symmetric Entropy-Constrained Video Coding framework for Machines (SEC-VCM). It establishes a symmetric alignment between the video codec and VB, allowing the codec to leverage VB's representation capabilities to preserve semantics and discard MVS-irrelevant information. Specifically, a bi-directional entropy-constraint (BiEC) mechanism ensures symmetry between the process of video decoding and VB encoding by suppressing conditional entropy. This helps the codec to explicitly handle semantic information beneficial to MVS while squeezing useless information. Furthermore, a semantic-pixel dual-path fusion (SPDF) module injects pixel-level priors into the final reconstruction. Through semantic-pixel fusion, it suppresses artifacts harmful to MVS and improves machine-oriented reconstruction quality. Experimental results show our framework achieves state-of-the-art~(SOTA) in rate-task performance, with significant bitrate savings over VTM on video instance segmentation (37.4%), video object segmentation (29.8%), object detection (46.2%), and multiple object tracking (44.9%). We will release our code soon.
comment: This paper is submitted to the IEEE Transactions
♻ ☆ Mano Technical Report
Graphical user interfaces (GUIs) are the primary medium for human-computer interaction, yet automating GUI interactions remains challenging due to the complexity of visual elements, dynamic environments, and the need for multi-step reasoning. Existing methods based on vision-language models (VLMs) often suffer from limited resolution, domain mismatch, and insufficient sequential decisionmaking capability. To address these issues, we propose Mano, a robust GUI agent built upon a multi-modal foundation model pre-trained on extensive web and computer system data. Our approach integrates a novel simulated environment for high-fidelity data generation, a three-stage training pipeline (supervised fine-tuning, offline reinforcement learning, and online reinforcement learning), and a verification module for error recovery. Mano demonstrates state-of-the-art performance on multiple GUI benchmarks, including Mind2Web and OSWorld, achieving significant improvements in success rate and operational accuracy. Our work provides new insights into the effective integration of reinforcement learning with VLMs for practical GUI agent deployment, highlighting the importance of domain-specific data, iterative training, and holistic reward design.
Information Retrieval
☆ ProfOlaf: Semi-Automated Tool for Systematic Literature Reviews
Systematic reviews and mapping studies are critical for synthesizing research, identifying gaps, and guiding future work, but they are often labor-intensive and time-consuming. Existing tools provide partial support for specific steps, leaving much of the process manual and error-prone. We present ProfOlaf, a semi-automated tool designed to streamline systematic reviews while maintaining methodological rigor. ProfOlaf supports iterative snowballing for article collection with human-in-the-loop filtering and uses large language models to assist in analyzing articles, extracting key topics, and answering queries about the content of papers. By combining automation with guided manual effort, ProfOlaf enhances the efficiency, quality, and reproducibility of systematic reviews across research fields. A video describing and demonstrating ProfOlaf is available at: https://youtu.be/4noUXfcmxsE
comment: 4 pages, 1 Figure, 2 tables
☆ AdSum: Two-stream Audio-visual Summarization for Automated Video Advertisement Clipping
Advertisers commonly need multiple versions of the same advertisement (ad) at varying durations for a single campaign. The traditional approach involves manually selecting and re-editing shots from longer video ads to create shorter versions, which is labor-intensive and time-consuming. In this paper, we introduce a framework for automated video ad clipping using video summarization techniques. We are the first to frame video clipping as a shot selection problem, tailored specifically for advertising. Unlike existing general video summarization methods that primarily focus on visual content, our approach emphasizes the critical role of audio in advertising. To achieve this, we develop a two-stream audio-visual fusion model that predicts the importance of video frames, where importance is defined as the likelihood of a frame being selected in the firm-produced short ad. To address the lack of ad-specific datasets, we present AdSum204, a novel dataset comprising 102 pairs of 30-second and 15-second ads from real advertising campaigns. Extensive experiments demonstrate that our model outperforms state-of-the-art methods across various metrics, including Average Precision, Area Under Curve, Spearman, and Kendall.
comment: Accepted at 32nd International Conference on MultiMedia Modeling
☆ WeaveRec: An LLM-Based Cross-Domain Sequential Recommendation Framework with Model Merging
Cross-Domain Sequential Recommendation (CDSR) seeks to improve user preference modeling by transferring knowledge from multiple domains. Despite the progress made in CDSR, most existing methods rely on overlapping users or items to establish cross-domain correlations-a requirement that rarely holds in real-world settings. The advent of large language models (LLM) and model-merging techniques appears to overcome this limitation by unifying multi-domain data without explicit overlaps. Yet, our empirical study shows that naively training an LLM on combined domains-or simply merging several domain-specific LLMs-often degrades performance relative to a model trained solely on the target domain. To address these challenges, we first experimentally investigate the cause of suboptimal performance in LLM-based cross-domain recommendation and model merging. Building on these insights, we introduce WeaveRec, which cross-trains multiple LoRA modules with source and target domain data in a weaving fashion, and fuses them via model merging. WeaveRec can be extended to multi-source domain scenarios and notably does not introduce additional inference-time cost in terms of latency or memory. Furthermore, we provide a theoretical guarantee that WeaveRec can reduce the upper bound of the expected error in the target domain. Extensive experiments on single-source, multi-source, and cross-platform cross-domain recommendation scenarios validate that WeaveRec effectively mitigates performance degradation and consistently outperforms baseline approaches in real-world recommendation tasks.
☆ Inside CORE-KG: Evaluating Structured Prompting and Coreference Resolution for Knowledge Graphs ICDM 2025
Human smuggling networks are increasingly adaptive and difficult to analyze. Legal case documents offer critical insights but are often unstructured, lexically dense, and filled with ambiguous or shifting references, which pose significant challenges for automated knowledge graph (KG) construction. While recent LLM-based approaches improve over static templates, they still generate noisy, fragmented graphs with duplicate nodes due to the absence of guided extraction and coreference resolution. The recently proposed CORE-KG framework addresses these limitations by integrating a type-aware coreference module and domain-guided structured prompts, significantly reducing node duplication and legal noise. In this work, we present a systematic ablation study of CORE-KG to quantify the individual contributions of its two key components. Our results show that removing coreference resolution results in a 28.32% increase in node duplication and a 4.32% increase in noisy nodes, while removing structured prompts leads to a 4.34% increase in node duplication and a 73.33% increase in noisy nodes. These findings offer empirical insights for designing robust LLM-based pipelines for extracting structured representations from complex legal texts.
comment: ICDM 2025 Workshop
☆ LINK-KG: LLM-Driven Coreference-Resolved Knowledge Graphs for Human Smuggling Networks
Human smuggling networks are complex and constantly evolving, making them difficult to analyze comprehensively. Legal case documents offer rich factual and procedural insights into these networks but are often long, unstructured, and filled with ambiguous or shifting references, posing significant challenges for automated knowledge graph (KG) construction. Existing methods either overlook coreference resolution or fail to scale beyond short text spans, leading to fragmented graphs and inconsistent entity linking. We propose LINK-KG, a modular framework that integrates a three-stage, LLM-guided coreference resolution pipeline with downstream KG extraction. At the core of our approach is a type-specific Prompt Cache, which consistently tracks and resolves references across document chunks, enabling clean and disambiguated narratives for structured knowledge graph construction from both short and long legal texts. LINK-KG reduces average node duplication by 45.21% and noisy nodes by 32.22% compared to baseline methods, resulting in cleaner and more coherent graph structures. These improvements establish LINK-KG as a strong foundation for analyzing complex criminal networks.
comment: Accepted in ICKG 2025 Conference, 8 Pages, 2 Figures
☆ Vectorized Context-Aware Embeddings for GAT-Based Collaborative Filtering
Recommender systems often struggle with data sparsity and cold-start scenarios, limiting their ability to provide accurate suggestions for new or infrequent users. This paper presents a Graph Attention Network (GAT) based Collaborative Filtering (CF) framework enhanced with Large Language Model (LLM) driven context aware embeddings. Specifically, we generate concise textual user profiles and unify item metadata (titles, genres, overviews) into rich textual embeddings, injecting these as initial node features in a bipartite user item graph. To further optimize ranking performance, we introduce a hybrid loss function that combines Bayesian Personalized Ranking (BPR) with a cosine similarity term and robust negative sampling, ensuring explicit negative feedback is distinguished from unobserved data. Experiments on the MovieLens 100k and 1M datasets show consistent improvements over state-of-the-art baselines in Precision, NDCG, and MAP while demonstrating robustness for users with limited interaction history. Ablation studies confirm the critical role of LLM-augmented embeddings and the cosine similarity term in capturing nuanced semantic relationships. Our approach effectively mitigates sparsity and cold-start limitations by integrating LLM-derived contextual understanding into graph-based architectures. Future directions include balancing recommendation accuracy with coverage and diversity, and introducing fairness-aware constraints and interpretability features to enhance system performance further.
☆ Barlow Twins for Sequential Recommendation
Sequential recommendation models must navigate sparse interaction data popularity bias and conflicting objectives like accuracy versus diversity While recent contrastive selfsupervised learning SSL methods offer improved accuracy they come with tradeoffs large batch requirements reliance on handcrafted augmentations and negative sampling that can reinforce popularity bias In this paper we introduce BT-SR a novel noncontrastive SSL framework that integrates the Barlow Twins redundancyreduction principle into a Transformerbased nextitem recommender BTSR learns embeddings that align users with similar shortterm behaviors while preserving longterm distinctionswithout requiring negative sampling or artificial perturbations This structuresensitive alignment allows BT-SR to more effectively recognize emerging user intent and mitigate the influence of noisy historical context Our experiments on five public benchmarks demonstrate that BTSR consistently improves nextitem prediction accuracy and significantly enhances longtail item coverage and recommendation calibration Crucially we show that a single hyperparameter can control the accuracydiversity tradeoff enabling practitioners to adapt recommendations to specific application needs
☆ GraphCompliance: Aligning Policy and Context Graphs for LLM-Based Regulatory Compliance
Compliance at web scale poses practical challenges: each request may require a regulatory assessment. Regulatory texts (e.g., the General Data Protection Regulation, GDPR) are cross-referential and normative, while runtime contexts are expressed in unstructured natural language. This setting motivates us to align semantic information in unstructured text with the structured, normative elements of regulations. To this end, we introduce GraphCompliance, a framework that represents regulatory texts as a Policy Graph and runtime contexts as a Context Graph, and aligns them. In this formulation, the policy graph encodes normative structure and cross-references, whereas the context graph formalizes events as subject-action-object (SAO) and entity-relation triples. This alignment anchors the reasoning of a judge large language model (LLM) in structured information and helps reduce the burden of regulatory interpretation and event parsing, enabling a focus on the core reasoning step. In experiments on 300 GDPR-derived real-world scenarios spanning five evaluation tasks, GraphCompliance yields 4.1-7.2 percentage points (pp) higher micro-F1 than LLM-only and RAG baselines, with fewer under- and over-predictions, resulting in higher recall and lower false positive rates. Ablation studies indicate contributions from each graph component, suggesting that structured representations and a judge LLM are complementary for normative reasoning.
comment: Under review at The Web Conference 2026 (Semantics & Knowledge track). Code will be released upon acceptance. This arXiv v1 contains no repository links to preserve double-blind review
☆ DiSE: A diffusion probabilistic model for automatic structure elucidation of organic compounds
Automatic structure elucidation is essential for self-driving laboratories as it enables the system to achieve truly autonomous. This capability closes the experimental feedback loop, ensuring that machine learning models receive reliable structure information for real-time decision-making and optimization. Herein, we present DiSE, an end-to-end diffusion-based generative model that integrates multiple spectroscopic modalities, including MS, 13C and 1H chemical shifts, HSQC, and COSY, to achieve automated yet accurate structure elucidation of organic compounds. By learning inherent correlations among spectra through data-driven approaches, DiSE achieves superior accuracy, strong generalization across chemically diverse datasets, and robustness to experimental data despite being trained on calculated spectra. DiSE thus represents a significant advance toward fully automated structure elucidation, with broad potential in natural product research, drug discovery, and self-driving laboratories.
☆ ReaKase-8B: Legal Case Retrieval via Knowledge and Reasoning Representations with LLMs
Legal case retrieval (LCR) is a cornerstone of real-world legal decision making, as it enables practitioners to identify precedents for a given query case. Existing approaches mainly rely on traditional lexical models and pretrained language models to encode the texts of legal cases. Yet there are rich information in the relations among different legal entities as well as the crucial reasoning process that uncovers how legal facts and legal issues can lead to judicial decisions. Such relational reasoning process reflects the distinctive characteristics of each case that can distinguish one from another, mirroring the real-world judicial process. Naturally, incorporating such information into the precise case embedding could further enhance the accuracy of case retrieval. In this paper, a novel ReaKase-8B framework is proposed to leverage extracted legal facts, legal issues, legal relation triplets and legal reasoning for effective legal case retrieval. ReaKase-8B designs an in-context legal case representation learning paradigm with a fine-tuned large language model. Extensive experiments on two benchmark datasets from COLIEE 2022 and COLIEE 2023 demonstrate that our knowledge and reasoning augmented embeddings substantially improve retrieval performance over baseline models, highlighting the potential of integrating legal reasoning into legal case retrieval systems. The code has been released on https://github.com/yanran-tang/ReaKase-8B.
☆ OneTrans: Unified Feature Interaction and Sequence Modeling with One Transformer in Industrial Recommender
In recommendation systems, scaling up feature-interaction modules (e.g., Wukong, RankMixer) or user-behavior sequence modules (e.g., LONGER) has achieved notable success. However, these efforts typically proceed on separate tracks, which not only hinders bidirectional information exchange but also prevents unified optimization and scaling. In this paper, we propose OneTrans, a unified Transformer backbone that simultaneously performs user-behavior sequence modeling and feature interaction. OneTrans employs a unified tokenizer to convert both sequential and non-sequential attributes into a single token sequence. The stacked OneTrans blocks share parameters across similar sequential tokens while assigning token-specific parameters to non-sequential tokens. Through causal attention and cross-request KV caching, OneTrans enables precomputation and caching of intermediate representations, significantly reducing computational costs during both training and inference. Experimental results on industrial-scale datasets demonstrate that OneTrans scales efficiently with increasing parameters, consistently outperforms strong baselines, and yields a 5.68% lift in per-user GMV in online A/B tests.
☆ ORBIT -- Open Recommendation Benchmark for Reproducible Research with Hidden Tests NeurIPS 2025
Recommender systems are among the most impactful AI applications, interacting with billions of users every day, guiding them to relevant products, services, or information tailored to their preferences. However, the research and development of recommender systems are hindered by existing datasets that fail to capture realistic user behaviors and inconsistent evaluation settings that lead to ambiguous conclusions. This paper introduces the Open Recommendation Benchmark for Reproducible Research with HIdden Tests (ORBIT), a unified benchmark for consistent and realistic evaluation of recommendation models. ORBIT offers a standardized evaluation framework of public datasets with reproducible splits and transparent settings for its public leaderboard. Additionally, ORBIT introduces a new webpage recommendation task, ClueWeb-Reco, featuring web browsing sequences from 87 million public, high-quality webpages. ClueWeb-Reco is a synthetic dataset derived from real, user-consented, and privacy-guaranteed browsing data. It aligns with modern recommendation scenarios and is reserved as the hidden test part of our leaderboard to challenge recommendation models' generalization ability. ORBIT measures 12 representative recommendation models on its public benchmark and introduces a prompted LLM baseline on the ClueWeb-Reco hidden test. Our benchmark results reflect general improvements of recommender systems on the public datasets, with variable individual performances. The results on the hidden test reveal the limitations of existing approaches in large-scale webpage recommendation and highlight the potential for improvements with LLM integrations. ORBIT benchmark, leaderboard, and codebase are available at https://www.open-reco-bench.ai.
comment: Accepted to NeurIPS 2025 Datasets & Benchmarks track
♻ ☆ OpenZL: A Graph-Based Model for Compression
Research techniques in the last decade have improved lossless compression ratios by significantly increasing processing time. These techniques have remained obscure because production systems require high throughput and low resource utilization. In practice, application-specific compression algorithms that leverage knowledge of the data structure and semantics are more popular. Application-specific compressor systems outperform even the best generic compressors, but these techniques have some drawbacks. Application-specific compressors are inherently limited in applicability, have high development costs, and are difficult to maintain and deploy. In this work, we show that these challenges can be overcome with a new compression strategy. We propose the "graph model" of compression, a new theoretical framework for representing compression as a directed acyclic graph of modular codecs. OpenZL compresses data into a self-describing wire format, any configuration of which can be decompressed by a universal decoder. OpenZL's design enables rapid development of tailored compressors with minimal code; its universal decoder eliminates deployment lag; and its investment in a well-vetted standard component library minimizes security risks. Experimental results demonstrate that OpenZL achieves superior compression ratios and speeds compared to state-of-the-art general-purpose compressors on a variety of real-world datasets. Internal deployments at Meta have also shown consistent improvements in size and/or speed, with development timelines reduced from months to days. OpenZL thus represents a significant advance in practical, scalable, and maintainable data compression for modern data-intensive applications.
♻ ☆ Quality Over Quantity? LLM-Based Curation for a Data-Efficient Audio-Video Foundation Model
Integrating audio and visual data for training multimodal foundational models remains a challenge. The Audio-Video Vector Alignment (AVVA) framework addresses this by considering AV scene alignment beyond mere temporal synchronization, and leveraging Large Language Models (LLMs) for data curation. AVVA implements a scoring mechanism for selecting aligned training data segments. It integrates Whisper, a speech-based foundation model, for audio and DINOv2 for video analysis in a dual-encoder structure with contrastive learning on AV pairs. Evaluations on AudioCaps, VALOR, and VGGSound demonstrate the effectiveness of the proposed model architecture and data curation approach. AVVA achieves a significant improvement in top-k accuracies for video-to-audio retrieval on all datasets compared to DenseAV, while using only 192 hrs of curated training data. Furthermore, an ablation study indicates that the data curation process effectively trades data quality for data quantity, yielding increases in top-k retrieval accuracies on AudioCaps, VALOR, and VGGSound, compared to training on the full spectrum of uncurated data.
comment: 5 pages, 5 figures, 2 tables. Accepted at EUSIPCO 2025
♻ ☆ Unveiling Unicode's Unseen Underpinnings in Undermining Authorship Attribution
When using a public communication channel -- whether formal or informal, such as commenting or posting on social media -- end users have no expectation of privacy: they compose a message and broadcast it for the world to see. Even if an end user takes utmost precautions to anonymize their online presence -- using an alias or pseudonym; masking their IP address; spoofing their geolocation; concealing their operating system and user agent; deploying encryption; registering with a disposable phone number or email; disabling non-essential settings; revoking permissions; and blocking cookies and fingerprinting -- one obvious element still lingers: the message itself. Assuming they avoid lapses in judgment or accidental self-exposure, there should be little evidence to validate their actual identity, right? Wrong. The content of their message -- necessarily open for public consumption -- exposes an attack vector: stylometric analysis, or author profiling. In this paper, we dissect the technique of stylometry, discuss an antithetical counter-strategy in adversarial stylometry, and devise enhancements through Unicode steganography.
comment: 33 pages, 7 figures, 3 tables
♻ ☆ Unstructured Evidence Attribution for Long Context Query Focused Summarization EMNLP 2025
Large language models (LLMs) are capable of generating coherent summaries from very long contexts given a user query, and extracting and citing evidence spans helps improve the trustworthiness of these summaries. Whereas previous work has focused on evidence citation with fixed levels of granularity (e.g. sentence, paragraph, document, etc.), we propose to extract unstructured (i.e., spans of any length) evidence in order to acquire more relevant and consistent evidence than in the fixed granularity case. We show how existing systems struggle to copy and properly cite unstructured evidence, which also tends to be "lost-in-the-middle". To help models perform this task, we create the Summaries with Unstructured Evidence Text dataset (SUnsET), a synthetic dataset generated using a novel pipeline, which can be used as training supervision for unstructured evidence summarization. We demonstrate across 5 LLMs and 4 datasets spanning human written, synthetic, single, and multi-document settings that LLMs adapted with SUnsET generate more relevant and factually consistent evidence with their summaries, extract evidence from more diverse locations in their context, and can generate more relevant and consistent summaries than baselines with no fine-tuning and fixed granularity evidence. We release SUnsET and our generation code to the public.
comment: EMNLP 2025 Main; 29 pages; 24 figures; 8 tables
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description
♻ ☆ RecCocktail: A Generalizable and Efficient Framework for LLM-Based Recommendation
Large Language Models (LLMs) have achieved remarkable success in recent years, owing to their impressive generalization capabilities and rich world knowledge. To capitalize on the potential of using LLMs as recommender systems, mainstream approaches typically focus on two paradigms. The first paradigm designs multi-domain or multi-task instruction data for generalizable recommendation, so as to align LLMs with general recommendation areas and deal with cold-start recommendation. The second paradigm focuses on enhancing domain-specific recommendation tasks, improving performance in warm recommendation scenarios. While most previous works treat these two paradigms separately, we argue that they have complementary advantages, and combining them can yield better results. In this paper, we propose a generalizable and efficient LLM-based recommendation framework RecCocktail. Our approach begins with fine-tuning a "base spirit" LoRA module using domain-general recommendation instruction data to align LLM with recommendation knowledge. Next, given users' behavior of a specific domain, we construct a domain-specific "ingredient" LoRA module. We then provide an entropy-guided adaptive merging method to mix the "base spirit" and the "ingredient" in the weight space. Please note that, RecCocktail combines the advantages of the existing two paradigms without introducing additional time or space overhead during the inference phase. Moreover, RecCocktail is efficient with plug and play, as the "base spirit" LoRA is trained only once, and any domain-specific "ingredient" can be efficiently mixed with only domain-specific fine-tuning. Extensive experiments on multiple datasets under both warm and cold-start recommendation scenarios validate the effectiveness and generality of the proposed RecCocktail.
♻ ☆ On-the-Fly OVD Adaptation with FLAME: Few-shot Localization via Active Marginal-Samples Exploration
Open-vocabulary object detection (OVD) models offer remarkable flexibility by detecting objects from arbitrary text queries. However, their zero-shot performance in specialized domains like Remote Sensing (RS) is often compromised by the inherent ambiguity of natural language, limiting critical downstream applications. For instance, an OVD model may struggle to distinguish between fine-grained classes such as "fishing boat" and "yacht" since their embeddings are similar and often inseparable. This can hamper specific user goals, such as monitoring illegal fishing, by producing irrelevant detections. To address this, we propose a cascaded approach that couples the broad generalization of a large pre-trained OVD model with a lightweight few-shot classifier. Our method first employs the zero-shot model to generate high-recall object proposals. These proposals are then refined for high precision by a compact classifier trained in real-time on only a handful of user-annotated examples - drastically reducing the high costs of RS imagery annotation.The core of our framework is FLAME, a one-step active learning strategy that selects the most informative samples for training. FLAME identifies, on the fly, uncertain marginal candidates near the decision boundary using density estimation, followed by clustering to ensure sample diversity. This efficient sampling technique achieves high accuracy without costly full-model fine-tuning and enables instant adaptation, within less then a minute, which is significantly faster than state-of-the-art alternatives.Our method consistently surpasses state-of-the-art performance on RS benchmarks, establishing a practical and resource-efficient framework for adapting foundation models to specific user needs.
♻ ☆ Model-Document Protocol for AI Search
AI search depends on linking large language models (LLMs) with vast external knowledge sources. Yet web pages, PDF files, and other raw documents are not inherently LLM-ready: they are long, noisy, and unstructured. Conventional retrieval methods treat these documents as verbatim text and return raw passages, leaving the burden of fragment assembly and contextual reasoning to the LLM. This gap underscores the need for a new retrieval paradigm that redefines how models interact with documents. We introduce the Model-Document Protocol (MDP), a general framework that formalizes how raw text is bridged to LLMs through consumable knowledge representations. Rather than treating retrieval as passage fetching, MDP defines multiple pathways that transform unstructured documents into task-specific, LLM-ready inputs. These include agentic reasoning, which curates raw evidence into coherent context; memory grounding, which accumulates reusable notes to enrich reasoning; and structured leveraging, which encodes documents into formal representations such as graphs or key-value caches. All three pathways share the same goal: ensuring that what reaches the LLM is not raw fragments but compact, structured knowledge directly consumable for reasoning. As an instantiation, we present MDP-Agent, which realizes the protocol through an agentic process: constructing document-level gist memories for global coverage, performing diffusion-based exploration with vertical exploitation to uncover layered dependencies, and applying map-reduce style synthesis to integrate large-scale evidence into compact yet sufficient context. Experiments on information-seeking benchmarks demonstrate that MDP-Agent outperforms baselines, validating both the soundness of the MDP framework and the effectiveness of its agentic instantiation.
comment: 10 pages
♻ ☆ The RAG Paradox: A Black-Box Attack Exploiting Unintentional Vulnerabilities in Retrieval-Augmented Generation Systems
With the growing adoption of retrieval-augmented generation (RAG) systems, various attack methods have been proposed to degrade their performance. However, most existing approaches rely on unrealistic assumptions in which external attackers have access to internal components such as the retriever. To address this issue, we introduce a realistic black-box attack based on the RAG paradox, a structural vulnerability arising from the system's effort to enhance trust by revealing both the retrieved documents and their sources to users. This transparency enables attackers to observe which sources are used and how information is phrased, allowing them to craft poisoned documents that are more likely to be retrieved and upload them to the identified sources. Moreover, as RAG systems directly provide retrieved content to users, these documents must not only be retrievable but also appear natural and credible to maintain user confidence in the search results. Unlike prior work that focuses solely on improving document retrievability, our attack method explicitly considers both retrievability and user trust in the retrieved content. Both offline and online experiments demonstrate that our method significantly degrades system performance without internal access, while generating natural-looking poisoned documents.
♻ ☆ Shilling Recommender Systems by Generating Side-feature-aware Fake User Profiles
Recommender systems (RS) greatly influence users' consumption decisions, making them attractive targets for malicious shilling attacks that inject fake user profiles to manipulate recommendations. Existing shilling methods can generate effective and stealthy fake profiles when training data only contain rating matrix, but they lack comprehensive solutions for scenarios where side features are present and utilized by the recommender. To address this gap, we extend the Leg-UP framework by enhancing the generator architecture to incorporate side features, enabling the generation of side-feature-aware fake user profiles. Experiments on benchmarks show that our method achieves strong attack performance while maintaining stealthiness.
♻ ☆ MMQ-v2: Align, Denoise, and Amplify: Adaptive Behavior Mining for Semantic IDs Learning in Recommendation
Industrial recommender systems rely on unique Item Identifiers (ItemIDs). However, this method struggles with scalability and generalization in large, dynamic datasets that have sparse long-tail data. Content-based Semantic IDs (SIDs) address this by sharing knowledge through content quantization. However, by ignoring dynamic behavioral properties, purely content-based SIDs have limited expressive power. Existing methods attempt to incorporate behavioral information but overlook a critical distinction: unlike relatively uniform content features, user-item interactions are highly skewed and diverse, creating a vast information gap in quality and quantity between popular and long-tail items. This oversight leads to two critical limitations: (1) Noise Corruption: Indiscriminate behavior-content alignment allows collaborative noise from long-tail items to corrupt their content representations, leading to the loss of critical multimodal information. (2)Signal Obscurity: The equal-weighting scheme for SIDs fails to reflect the varying importance of different behavioral signals, making it difficult for downstream tasks to distinguish important SIDs from uninformative ones. To tackle these issues, we propose a mixture-of-quantization framework, MMQ-v2, to adaptively Align, Denoise, and Amplify multimodal information from content and behavior modalities for semantic IDs learning. The semantic IDs generated by this framework named ADA-SID. It introduces two innovations: an adaptive behavior-content alignment that is aware of information richness to shield representations from noise, and a dynamic behavioral router to amplify critical signals by applying different weights to SIDs. Extensive experiments on public and large-scale industrial datasets demonstrate ADA-SID's significant superiority in both generative and discriminative recommendation tasks.
♻ ☆ Towards Automated Quality Assurance of Patent Specifications: A Multi-Dimensional LLM Framework
Although AI drafting tools have gained prominence in patent writing, the systematic evaluation of AI-generated patent content quality represents a significant research gap. To address this gap, We propose to evaluate patents using regulatory compliance, technical coherence, and figure-reference consistency detection modules, and then generate improvement suggestions via an integration module. The framework is validated on a comprehensive dataset comprising 80 human-authored and 80 AI-generated patents from two patent drafting tools. Evaluation is performed on 10,841 total sentences, 8,924 non-template sentences, and 554 patent figures for the three detection modules respectively, achieving balanced accuracies of 99.74%, 82.12%, and 91.2% against expert annotations. Additional analysis was conducted to examine defect distributions across patent sections, technical domains, and authoring sources. Section-based analysis indicates that figure-text consistency and technical detail precision require particular attention. Mechanical Engineering and Construction show more claim-specification inconsistencies due to complex technical documentation requirements. AI-generated patents show a significant gap compared to human-authored ones. While human-authored patents primarily contain surface-level errors like typos, AI-generated patents exhibit more structural defects in figure-text alignment and cross-references.
♻ ☆ Decoupled Multimodal Fusion for User Interest Modeling in Click-Through Rate Prediction
Modern industrial recommendation systems improve recommendation performance by integrating multimodal representations from pre-trained models into ID-based Click-Through Rate (CTR) prediction frameworks. However, existing approaches typically adopt modality-centric modeling strategies that process ID-based and multimodal embeddings independently, failing to capture fine-grained interactions between content semantics and behavioral signals. In this paper, we propose Decoupled Multimodal Fusion (DMF), which introduces a modality-enriched modeling strategy to enable fine-grained interactions between ID-based collaborative representations and multimodal representations for user interest modeling. Specifically, we construct target-aware features to bridge the semantic gap across different embedding spaces and leverage them as side information to enhance the effectiveness of user interest modeling. Furthermore, we design an inference-optimized attention mechanism that decouples the computation of target-aware features and ID-based embeddings before the attention layer, thereby alleviating the computational bottleneck introduced by incorporating target-aware features. To achieve comprehensive multimodal integration, DMF combines user interest representations learned under the modality-centric and modality-enriched modeling strategies. Offline experiments on public and industrial datasets demonstrate the effectiveness of DMF. Moreover, DMF has been deployed on the product recommendation system of the international e-commerce platform Lazada, achieving relative improvements of 5.30% in CTCVR and 7.43% in GMV with negligible computational overhead.
♻ ☆ A Task-Centric Perspective on Recommendation Systems
Many studies in recommender systems (RecSys) adopt a general problem definition, i.e., to recommend preferred items to users based on past interactions. Such abstraction often lacks the domain-specific nuances necessary for practical deployment. However, models are frequently evaluated using datasets collected from online recommender platforms, which inherently reflect domain or task specificities. In this paper, we analyze RecSys task formulations, emphasizing key components such as input-output structures, temporal dynamics, and candidate item selection. All these factors directly impact offline evaluation. We further examine the complexities of user-item interactions, including decision-making costs, multi-step engagements, and unobservable interactions, which may influence model design. Additionally, we explore the balance between task specificity and model generalizability, highlighting how well-defined task formulations serve as the foundation for robust evaluation and effective solution development. By clarifying task definitions and their implications, this work provides a structured perspective on RecSys research. The goal is to help researchers better navigate the field, particularly in understanding specificities of the RecSys tasks and ensuring fair and meaningful evaluations.
Multimedia
☆ MORE: Multi-Organ Medical Image REconstruction Dataset
CT reconstruction provides radiologists with images for diagnosis and treatment, yet current deep learning methods are typically limited to specific anatomies and datasets, hindering generalization ability to unseen anatomies and lesions. To address this, we introduce the Multi-Organ medical image REconstruction (MORE) dataset, comprising CT scans across 9 diverse anatomies with 15 lesion types. This dataset serves two key purposes: (1) enabling robust training of deep learning models on extensive, heterogeneous data, and (2) facilitating rigorous evaluation of model generalization for CT reconstruction. We further establish a strong baseline solution that outperforms prior approaches under these challenging conditions. Our results demonstrate that: (1) a comprehensive dataset helps improve the generalization capability of models, and (2) optimization-based methods offer enhanced robustness for unseen anatomies. The MORE dataset is freely accessible under CC-BY-NC 4.0 at our project page https://more-med.github.io/
comment: Accepted to ACMMM 2025
☆ Unveiling Intrinsic Text Bias in Multimodal Large Language Models through Attention Key-Space Analysis
Multimodal large language models (MLLMs) exhibit a pronounced preference for textual inputs when processing vision-language data, limiting their ability to reason effectively from visual evidence. Unlike prior studies that attribute this text bias to external factors such as data imbalance or instruction tuning, we propose that the bias originates from the model's internal architecture. Specifically, we hypothesize that visual key vectors (Visual Keys) are out-of-distribution (OOD) relative to the text key space learned during language-only pretraining. Consequently, these visual keys receive systematically lower similarity scores during attention computation, leading to their under-utilization in the context representation. To validate this hypothesis, we extract key vectors from LLaVA and Qwen2.5-VL and analyze their distributional structures using qualitative (t-SNE) and quantitative (Jensen-Shannon divergence) methods. The results provide direct evidence that visual and textual keys occupy markedly distinct subspaces within the attention space. The inter-modal divergence is statistically significant, exceeding intra-modal variation by several orders of magnitude. These findings reveal that text bias arises from an intrinsic misalignment within the attention key space rather than solely from external data factors.
☆ AdSum: Two-stream Audio-visual Summarization for Automated Video Advertisement Clipping
Advertisers commonly need multiple versions of the same advertisement (ad) at varying durations for a single campaign. The traditional approach involves manually selecting and re-editing shots from longer video ads to create shorter versions, which is labor-intensive and time-consuming. In this paper, we introduce a framework for automated video ad clipping using video summarization techniques. We are the first to frame video clipping as a shot selection problem, tailored specifically for advertising. Unlike existing general video summarization methods that primarily focus on visual content, our approach emphasizes the critical role of audio in advertising. To achieve this, we develop a two-stream audio-visual fusion model that predicts the importance of video frames, where importance is defined as the likelihood of a frame being selected in the firm-produced short ad. To address the lack of ad-specific datasets, we present AdSum204, a novel dataset comprising 102 pairs of 30-second and 15-second ads from real advertising campaigns. Extensive experiments demonstrate that our model outperforms state-of-the-art methods across various metrics, including Average Precision, Area Under Curve, Spearman, and Kendall.
comment: Accepted at 32nd International Conference on MultiMedia Modeling
☆ Multi-hop Parallel Image Semantic Communication for Distortion Accumulation Mitigation
Existing semantic communication schemes primarily focus on single-hop scenarios, overlooking the challenges of multi-hop wireless image transmission. As semantic communication is inherently lossy, distortion accumulates over multiple hops, leading to significant performance degradation. To address this, we propose the multi-hop parallel image semantic communication (MHPSC) framework, which introduces a parallel residual compensation link at each hop against distortion accumulation. To minimize the associated transmission bandwidth overhead, a coarse-to-fine residual compression scheme is designed. A deep learning-based residual compressor first condenses the residuals, followed by the adaptive arithmetic coding (AAC) for further compression. A residual distribution estimation module predicts the prior distribution for the AAC to achieve fine compression performances. This approach ensures robust multi-hop image transmission with only a minor increase in transmission bandwidth. Experimental results confirm that MHPSC outperforms both existing semantic communication and traditional separated coding schemes.
☆ Contribution-Guided Asymmetric Learning for Robust Multimodal Fusion under Imbalance and Noise
Multimodal learning faces two major challenges: modality imbalance and data noise, which significantly affect the robustness and generalization ability of models. Existing methods achieve modality balance by suppressing dominant modalities, but they neglect the inherent differences in the information value between modalities, potentially leading to convergence to suboptimal solutions. This paper proposes an innovative modality compression paradigm, Contribution-Guided Asymmetric Learning (CAL), which aims to enhance the contribution of high-contribution modalities while compressing weak modalities to increase their contribution, allowing both to improve the performance of multimodal information fusion. CAL is based on a modality contribution metric W^m combining the information quantity I(m) and confidence D(m), and it designs an asymmetric gradient acceleration mechanism and a contribution-aware Asymmetric Information Bottleneck (AIB) compression mechanism. The former accelerates the gradient update of modalities, while the latter dynamically compresses the noise of low-contribution modalities. On five benchmark datasets, including emotion recognition, scene recognition, and event localization tasks, CAL has shown outstanding performance in imbalanced fusion tasks and noise robustness tests. On CREMA-D, KS, and AVE, CAL achieves 79.30%, 74.82%, and 74.21% accuracy, significantly outperforming the existing state-of-the-art model ARL. In high-noise robustness tests, CAL also achieved leading performance under various attack strategies on the MVSA-Single and NYUD2 datasets. These results validate the significant advantages of CAL in modality imbalance and noise interference. CAL, as a flexible and efficient framework, is easy to transfer to other tasks and has broad adaptability and potential application prospects.
♻ ☆ Quality Over Quantity? LLM-Based Curation for a Data-Efficient Audio-Video Foundation Model
Integrating audio and visual data for training multimodal foundational models remains a challenge. The Audio-Video Vector Alignment (AVVA) framework addresses this by considering AV scene alignment beyond mere temporal synchronization, and leveraging Large Language Models (LLMs) for data curation. AVVA implements a scoring mechanism for selecting aligned training data segments. It integrates Whisper, a speech-based foundation model, for audio and DINOv2 for video analysis in a dual-encoder structure with contrastive learning on AV pairs. Evaluations on AudioCaps, VALOR, and VGGSound demonstrate the effectiveness of the proposed model architecture and data curation approach. AVVA achieves a significant improvement in top-k accuracies for video-to-audio retrieval on all datasets compared to DenseAV, while using only 192 hrs of curated training data. Furthermore, an ablation study indicates that the data curation process effectively trades data quality for data quantity, yielding increases in top-k retrieval accuracies on AudioCaps, VALOR, and VGGSound, compared to training on the full spectrum of uncurated data.
comment: 5 pages, 5 figures, 2 tables. Accepted at EUSIPCO 2025
♻ ☆ ARECHO: Autoregressive Evaluation via Chain-Based Hypothesis Optimization for Speech Multi-Metric Estimation NeurIPS 2025
Speech signal analysis poses significant challenges, particularly in tasks such as speech quality evaluation and profiling, where the goal is to predict multiple perceptual and objective metrics. For instance, metrics like PESQ (Perceptual Evaluation of Speech Quality), STOI (Short-Time Objective Intelligibility), and MOS (Mean Opinion Score) each capture different aspects of speech quality. However, these metrics often have different scales, assumptions, and dependencies, making joint estimation non-trivial. To address these issues, we introduce ARECHO (Autoregressive Evaluation via Chain-based Hypothesis Optimization), a chain-based, versatile evaluation system for speech assessment grounded in autoregressive dependency modeling. ARECHO is distinguished by three key innovations: (1) a comprehensive speech information tokenization pipeline; (2) a dynamic classifier chain that explicitly captures inter-metric dependencies; and (3) a two-step confidence-oriented decoding algorithm that enhances inference reliability. Experiments demonstrate that ARECHO significantly outperforms the baseline framework across diverse evaluation scenarios, including enhanced speech analysis, speech generation evaluation, and, noisy speech evaluation. Furthermore, its dynamic dependency modeling improves interpretability by capturing inter-metric relationships. Across tasks, ARECHO offers reference-free evaluation using its dynamic classifier chain to support subset queries (single or multiple metrics) and reduces error propagation via confidence-oriented decoding.
comment: NeurIPS 2025 Spotlight
♻ ☆ Dependency Structure Augmented Contextual Scoping Framework for Multimodal Aspect-Based Sentiment Analysis
Multimodal Aspect-Based Sentiment Analysis (MABSA) seeks to extract fine-grained information from image-text pairs to identify aspect terms and determine their sentiment polarity. However, existing approaches often fall short in simultaneously addressing three core challenges: Sentiment Cue Perception (SCP), Multimodal Information Misalignment (MIM), and Semantic Noise Elimination (SNE). To overcome these limitations, we propose DASCO (\textbf{D}ependency Structure \textbf{A}ugmented \textbf{Sco}ping Framework), a fine-grained scope-oriented framework that enhances aspect-level sentiment reasoning by leveraging dependency parsing trees. First, we designed a multi-task pretraining strategy for MABSA on our base model, combining aspect-oriented enhancement, image-text matching, and aspect-level sentiment-sensitive cognition. This improved the model's perception of aspect terms and sentiment cues while achieving effective image-text alignment, addressing key challenges like SCP and MIM. Furthermore, we incorporate dependency trees as syntactic branch combining with semantic branch, guiding the model to selectively attend to critical contextual elements within a target-specific scope while effectively filtering out irrelevant noise for addressing SNE problem. Extensive experiments on two benchmark datasets across three subtasks demonstrate that DASCO achieves state-of-the-art performance in MABSA, with notable gains in JMASA (+2.3\% F1 and +3.5\% precision on Twitter2015). The source code is available at https://github.com/LHaoooo/DASCO .
♻ ☆ ReCon-GS: Continuum-Preserved Gaussian Streaming for Fast and Compact Reconstruction of Dynamic Scenes NeurIPS 2025
Online free-viewpoint video (FVV) reconstruction is challenged by slow per-frame optimization, inconsistent motion estimation, and unsustainable storage demands. To address these challenges, we propose the Reconfigurable Continuum Gaussian Stream, dubbed ReCon-GS, a novel storage-aware framework that enables high fidelity online dynamic scene reconstruction and real-time rendering. Specifically, we dynamically allocate multi-level Anchor Gaussians in a density-adaptive fashion to capture inter-frame geometric deformations, thereby decomposing scene motion into compact coarse-to-fine representations. Then, we design a dynamic hierarchy reconfiguration strategy that preserves localized motion expressiveness through on-demand anchor re-hierarchization, while ensuring temporal consistency through intra-hierarchical deformation inheritance that confines transformation priors to their respective hierarchy levels. Furthermore, we introduce a storage-aware optimization mechanism that flexibly adjusts the density of Anchor Gaussians at different hierarchy levels, enabling a controllable trade-off between reconstruction fidelity and memory usage. Extensive experiments on three widely used datasets demonstrate that, compared to state-of-the-art methods, ReCon-GS improves training efficiency by approximately 15% and achieves superior FVV synthesis quality with enhanced robustness and stability. Moreover, at equivalent rendering quality, ReCon-GS slashes memory requirements by over 50% compared to leading state-of-the-art methods.
comment: Published in NeurIPS 2025
♻ ☆ TRUST-VL: An Explainable News Assistant for General Multimodal Misinformation Detection EMNLP 2025
Multimodal misinformation, encompassing textual, visual, and cross-modal distortions, poses an increasing societal threat that is amplified by generative AI. Existing methods typically focus on a single type of distortion and struggle to generalize to unseen scenarios. In this work, we observe that different distortion types share common reasoning capabilities while also requiring task-specific skills. We hypothesize that joint training across distortion types facilitates knowledge sharing and enhances the model's ability to generalize. To this end, we introduce TRUST-VL, a unified and explainable vision-language model for general multimodal misinformation detection. TRUST-VL incorporates a novel Question-Aware Visual Amplifier module, designed to extract task-specific visual features. To support training, we also construct TRUST-Instruct, a large-scale instruction dataset containing 198K samples featuring structured reasoning chains aligned with human fact-checking workflows. Extensive experiments on both in-domain and zero-shot benchmarks demonstrate that TRUST-VL achieves state-of-the-art performance, while also offering strong generalization and interpretability.
comment: EMNLP 2025 Oral; Project Homepage: https://yanzehong.github.io/trust-vl/
♻ ☆ PureKV: Plug-and-Play KV Cache Optimization with Spatial-Temporal Sparse Attention for Vision-Language Large Models
Vision-Language Large Models (VLLMs) face significant efficiency challenges when processing high-resolution inputs. The quadratic complexity in attention and autoregressive generation, as well as the constantly growing key value (KV) cache size, severely hinder the prefilling and decoding stages. Recent efforts have attempted to compress KV cache by identifying and pruning KV cache of less important tokens, but these methods typically rely on attention scores to estimate token importance, making them incompatible with efficient attention mechanisms such as FlashAttention and Sparse Attention, which do not explicitly compute attention matrices. Moreover, existing methods overlook how sparse attention, while accelerating the prefilling stage, alters the information structure of the KV cache, thereby compromising the effectiveness of downstream KV cache compression strategies. To address this issue, we propose PureKV, a plug-and-play framework for joint optimization of sparse attention and KV cache compression. We first introduce a KV cache compression strategy that is fully compatible with efficient attention accelerators. Our method utilizes lower layer attention scores to estimate the importance of high layers' KV cache, enabling active pruning without compromising accuracy. In addition, we have designed a Spatial-Temporal Sparse Attention (ST-SpAttn) module specifically tailored for video KV cache compression algorithms. This module combines spatial and temporal attention sparsity to improve the compression efficiency of KV cache optimization algorithms by purifying spatial noise and temporal redundancy in KV cache. At the same time, ST-SpAttn also accelerated the prefilling stage of VLLMs. Extensive experiments on VLLMs (VideoLLaMA2, Qwen2.5-VL) have shown that PureKV achieves 5.0 times KV cache compression and 3.16 times prefill acceleration, with negligible quality degradation.
Information Retrieval
☆ The Quest for Reliable Metrics of Responsible AI
The development of Artificial Intelligence (AI), including AI in Science (AIS), should be done following the principles of responsible AI. Progress in responsible AI is often quantified through evaluation metrics, yet there has been less work on assessing the robustness and reliability of the metrics themselves. We reflect on prior work that examines the robustness of fairness metrics for recommender systems as a type of AI application and summarise their key takeaways into a set of non-exhaustive guidelines for developing reliable metrics of responsible AI. Our guidelines apply to a broad spectrum of AI applications, including AIS.
comment: Accepted for presentation at the AI in Science Summit 2025
☆ Retrieval-Augmented Search for Large-Scale Map Collections with ColPali
Multimodal approaches have shown great promise for searching and navigating digital collections held by libraries, archives, and museums. In this paper, we introduce map-RAS: a retrieval-augmented search system for historic maps. In addition to introducing our framework, we detail our publicly-hosted demo for searching 101,233 map images held by the Library of Congress. With our system, users can multimodally query the map collection via ColPali, summarize search results using Llama 3.2, and upload their own collections to perform inter-collection search. We articulate potential use cases for archivists, curators, and end-users, as well as future work with our system in both machine learning and the digital humanities. Our demo can be viewed at: http://www.mapras.com.
comment: 5 pages, 5 figures
☆ FARSIQA: Faithful and Advanced RAG System for Islamic Question Answering
The advent of Large Language Models (LLMs) has revolutionized Natural Language Processing, yet their application in high-stakes, specialized domains like religious question answering is hindered by challenges like hallucination and unfaithfulness to authoritative sources. This issue is particularly critical for the Persian-speaking Muslim community, where accuracy and trustworthiness are paramount. Existing Retrieval-Augmented Generation (RAG) systems, relying on simplistic single-pass pipelines, fall short on complex, multi-hop queries requiring multi-step reasoning and evidence aggregation. To address this gap, we introduce FARSIQA, a novel, end-to-end system for Faithful Advanced Question Answering in the Persian Islamic domain. FARSIQA is built upon our innovative FAIR-RAG architecture: a Faithful, Adaptive, Iterative Refinement framework for RAG. FAIR-RAG employs a dynamic, self-correcting process: it adaptively decomposes complex queries, assesses evidence sufficiency, and enters an iterative loop to generate sub-queries, progressively filling information gaps. Operating on a curated knowledge base of over one million authoritative Islamic documents, FARSIQA demonstrates superior performance. Rigorous evaluation on the challenging IslamicPCQA benchmark shows state-of-the-art performance: the system achieves a remarkable 97.0% in Negative Rejection - a 40-point improvement over baselines - and a high Answer Correctness score of 74.3%. Our work establishes a new standard for Persian Islamic QA and validates that our iterative, adaptive architecture is crucial for building faithful, reliable AI systems in sensitive domains.
comment: 37 pages, 5 figures, 10 tables. Keywords: Retrieval-Augmented Generation (RAG), Question Answering (QA), Islamic Knowledge Base, Faithful AI, Persian NLP, Multi-hop Reasoning, Large Language Models (LLMs)
☆ Generalized Pseudo-Relevance Feedback
Query rewriting is a fundamental technique in information retrieval (IR). It typically employs the retrieval result as relevance feedback to refine the query and thereby addresses the vocabulary mismatch between user queries and relevant documents. Traditional pseudo-relevance feedback (PRF) and its vector-based extension (VPRF) improve retrieval performance by leveraging top-retrieved documents as relevance feedback. However, they are constructed based on two major hypotheses: the relevance assumption (top documents are relevant) and the model assumption (rewriting methods need to be designed specifically for particular model architectures). While recent large language models (LLMs)-based generative relevance feedback (GRF) enables model-free query reformulation, it either suffers from severe LLM hallucination or, again, relies on the relevance assumption to guarantee the effectiveness of rewriting quality. To overcome these limitations, we introduce an assumption-relaxed framework: \textit{Generalized Pseudo Relevance Feedback} (GPRF), which performs model-free, natural language rewriting based on retrieved documents, not only eliminating the model assumption but also reducing dependence on the relevance assumption. Specifically, we design a utility-oriented training pipeline with reinforcement learning to ensure robustness against noisy feedback. Extensive experiments across multiple benchmarks and retrievers demonstrate that GPRF consistently outperforms strong baselines, establishing it as an effective and generalizable framework for query rewriting.
☆ Alibaba International E-commerce Product Search Competition DcuRAGONs Team Technical Report CIKM 2025
This report details our methodology and results developed for the Multilingual E-commerce Search Competition. The problem aims to recognize relevance between user queries versus product items in a multilingual context and improve recommendation performance on e-commerce platforms. Utilizing Large Language Models (LLMs) and their capabilities in other tasks, our data-centric method achieved the highest score compared to other solutions during the competition. Final leaderboard is publised at https://alibaba-international-cikm2025.github.io. The source code for our project is published at https://github.com/nhtlongcs/e-commerce-product-search.
comment: Alibaba International E-commerce Product Search Competition @ CIKM 2025
☆ DGAI: Decoupled On-Disk Graph-Based ANN Index for Efficient Updates and Queries
On-disk graph-based indexes are widely used in approximate nearest neighbor (ANN) search systems for large-scale, high-dimensional vectors. However, traditional coupled storage methods, which store vectors within the index, are inefficient for index updates. Coupled storage incurs excessive redundant vector reads and writes when updating the graph topology, leading to significant invalid I/O. To address this issue, we propose a decoupled storage architecture. While a decoupled architecture reduces query performance. To overcome this limitation, we design two tailored strategies: (i) a three-stage query mechanism that leverages multiple PQ compressed vectors to filter invalid I/O and computations, and (ii) an incremental page-level topological reordering strategy that incrementally inserts new nodes into pages containing their most similar neighbors to mitigate read amplification. Together, these techniques substantially reduce both I/O and computational overhead during ANN search. Experimental results show that the decoupled architecture improves update speed by 10.05x for insertions and 6.89x for deletions, while the three-stage query and incremental reordering enhance query efficiency by 2.66x compared to the traditional coupled architecture.
comment: 12 pages
☆ Revisiting scalable sequential recommendation with Multi-Embedding Approach and Mixture-of-Experts
In recommendation systems, how to effectively scale up recommendation models has been an essential research topic. While significant progress has been made in developing advanced and scalable architectures for sequential recommendation(SR) models, there are still challenges due to items' multi-faceted characteristics and dynamic item relevance in the user context. To address these issues, we propose Fuxi-MME, a framework that integrates a multi-embedding strategy with a Mixture-of-Experts (MoE) architecture. Specifically, to efficiently capture diverse item characteristics in a decoupled manner, we decompose the conventional single embedding matrix into several lower-dimensional embedding matrices. Additionally, by substituting relevant parameters in the Fuxi Block with an MoE layer, our model achieves adaptive and specialized transformation of the enriched representations. Empirical results on public datasets show that our proposed framework outperforms several competitive baselines.
☆ Measuring the Research Output and Performance of the University of Ibadan from 2014 to 2023: A Scientometric Analysis
This study employs scientometric methods to assess the research output and performance of the University of Ibadan from 2014 to 2023. By analyzing publication trends, citation patterns, and collaboration networks, the research aims to comprehensively evaluate the university's research productivity, impact, and disciplinary focus. This article's endeavors are characterized by innovation, interdisciplinary collaboration, and commitment to excellence, making the University of Ibadan a significant hub for cutting-edge research in Nigeria and beyond. The goal of the current study is to ascertain the influence of the university's research output and publication patterns between 2014 and 2023. The study focuses on the departments at the University of Ibadan that contribute the most, the best journals for publishing, the nations that collaborate, the impact of citations both locally and globally, well-known authors and their total production, and the research output broken down by year. According to the university's ten-year publication data, 7159 papers with an h-index of 75 were published between 2014 and 2023, garnering 218572 citations. Furthermore, the VOSviewer software mapping approach is used to illustrate the stenographical mapping of data through graphs. The findings of this study will contribute to understanding the university's research strengths, weaknesses, and potential areas for improvement. Additionally, the results will inform evidence-based decision-making for enhancing research strategies and policies at the University of Ibadan.
comment: 16 pages, 5 figures, Research Paper
☆ TV-Rec: Time-Variant Convolutional Filter for Sequential Recommendation NeurIPS 2025
Recently, convolutional filters have been increasingly adopted in sequential recommendation for their ability to capture local sequential patterns. However, most of these models complement convolutional filters with self-attention. This is because convolutional filters alone, generally fixed filters, struggle to capture global interactions necessary for accurate recommendation. We propose Time-Variant Convolutional Filters for Sequential Recommendation (TV-Rec), a model inspired by graph signal processing, where time-variant graph filters capture position-dependent temporal variations in user sequences. By replacing both fixed kernels and self-attention with time-variant filters, TV-Rec achieves higher expressive power and better captures complex interaction patterns in user behavior. This design not only eliminates the need for self-attention but also reduces computation while accelerating inference. Extensive experiments on six public benchmarks show that TV-Rec outperforms state-of-the-art baselines by an average of 7.49%.
comment: The 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ GReF: A Unified Generative Framework for Efficient Reranking via Ordered Multi-token Prediction CIKM 2025
In a multi-stage recommendation system, reranking plays a crucial role in modeling intra-list correlations among items. A key challenge lies in exploring optimal sequences within the combinatorial space of permutations. Recent research follows a two-stage (generator-evaluator) paradigm, where a generator produces multiple feasible sequences, and an evaluator selects the best one. In practice, the generator is typically implemented as an autoregressive model. However, these two-stage methods face two main challenges. First, the separation of the generator and evaluator hinders end-to-end training. Second, autoregressive generators suffer from inference efficiency. In this work, we propose a Unified Generative Efficient Reranking Framework (GReF) to address the two primary challenges. Specifically, we introduce Gen-Reranker, an autoregressive generator featuring a bidirectional encoder and a dynamic autoregressive decoder to generate causal reranking sequences. Subsequently, we pre-train Gen-Reranker on the item exposure order for high-quality parameter initialization. To eliminate the need for the evaluator while integrating sequence-level evaluation during training for end-to-end optimization, we propose post-training the model through Rerank-DPO. Moreover, for efficient autoregressive inference, we introduce ordered multi-token prediction (OMTP), which trains Gen-Reranker to simultaneously generate multiple future items while preserving their order, ensuring practical deployment in real-time recommender systems. Extensive offline experiments demonstrate that GReF outperforms state-of-the-art reranking methods while achieving latency that is nearly comparable to non-autoregressive models. Additionally, GReF has also been deployed in a real-world video app Kuaishou with over 300 million daily active users, significantly improving online recommendation quality.
comment: Accepted by CIKM 2025
☆ Continual Low-Rank Adapters for LLM-based Generative Recommender Systems
While large language models (LLMs) achieve strong performance in recommendation, they face challenges in continual learning as users, items, and user preferences evolve over time. Existing LoRA-based continual methods primarily focus on preserving performance on previous tasks, but this overlooks the unique nature of recommendation: the goal is not to predict past preferences, and outdated preferences can even harm performance when current interests shift significantly. To address this, we propose PESO (Proximally rEgularized Single evolving lOra, a continual adaptation method for LoRA in recommendation. PESO introduces a proximal regularizer that anchors the current adapter to its most recent frozen state, enabling the model to flexibly balance adaptation and preservation, and to better capture recent user behaviors. Theoretically, we show that this proximal design provides data-aware, direction-wise guidance in the LoRA subspace. Empirically, PESO consistently outperforms existing LoRA-based continual learning methods.
♻ ☆ HyMiRec: A Hybrid Multi-interest Learning Framework for LLM-based Sequential Recommendation
Large language models (LLMs) have recently demonstrated strong potential for sequential recommendation. However, current LLM-based approaches face critical limitations in modeling users' long-term and diverse interests. First, due to inference latency and feature fetching bandwidth constraints, existing methods typically truncate user behavior sequences to include only the most recent interactions, resulting in the loss of valuable long-range preference signals. Second, most current methods rely on next-item prediction with a single predicted embedding, overlooking the multifaceted nature of user interests and limiting recommendation diversity. To address these challenges, we propose HyMiRec, a hybrid multi-interest sequential recommendation framework, which leverages a lightweight recommender to extracts coarse interest embeddings from long user sequences and an LLM-based recommender to captures refined interest embeddings. To alleviate the overhead of fetching features, we introduce a residual codebook based on cosine similarity, enabling efficient compression and reuse of user history embeddings. To model the diverse preferences of users, we design a disentangled multi-interest learning module, which leverages multiple interest queries to learn disentangles multiple interest signals adaptively, allowing the model to capture different facets of user intent. Extensive experiments are conducted on both benchmark datasets and a collected industrial dataset, demonstrating our effectiveness over existing state-of-the-art methods. Furthermore, online A/B testing shows that HyMiRec brings consistent improvements in real-world recommendation systems. Code is available at https://github.com/FireRedTeam/FireRedSeqRec.
♻ ☆ Large Language Models for Few-Shot Named Entity Recognition
Named entity recognition (NER) is a fundamental task in numerous downstream applications. Recently, researchers have employed pre-trained language models (PLMs) and large language models (LLMs) to address this task. However, fully leveraging the capabilities of PLMs and LLMs with minimal human effort remains challenging. In this paper, we propose GPT4NER, a method that prompts LLMs to resolve the few-shot NER task. GPT4NER constructs effective prompts using three key components: entity definition, few-shot examples, and chain-of-thought. By prompting LLMs with these effective prompts, GPT4NER transforms few-shot NER, which is traditionally considered as a sequence-labeling problem, into a sequence-generation problem. We conduct experiments on two benchmark datasets, CoNLL2003 and OntoNotes5.0, and compare the performance of GPT4NER to representative state-of-the-art models in both few-shot and fully supervised settings. Experimental results demonstrate that GPT4NER achieves the $F_1$ of 83.15\% on CoNLL2003 and 70.37\% on OntoNotes5.0, significantly outperforming few-shot baselines by an average margin of 7 points. Compared to fully-supervised baselines, GPT4NER achieves 87.9\% of their best performance on CoNLL2003 and 76.4\% of their best performance on OntoNotes5.0. We also utilize a relaxed-match metric for evaluation and report performance in the sub-task of named entity extraction (NEE), and experiments demonstrate their usefulness to help better understand model behaviors in the NER task.
comment: 17 pages, 2 figures. Accepted by AI, Computer Science and Robotics Technology (ACRT)
♻ ☆ Who You Are Matters: Bridging Topics and Social Roles via LLM-Enhanced Logical Recommendation NeurIPS 2025
Recommender systems filter contents/items valuable to users by inferring preferences from user features and historical behaviors. Mainstream approaches follow the learning-to-rank paradigm, which focus on discovering and modeling item topics (e.g., categories), and capturing user preferences on these topics based on historical interactions. However, this paradigm often neglects the modeling of user characteristics and their social roles, which are logical confounders influencing the correlated interest and user preference transition. To bridge this gap, we introduce the user role identification task and the behavioral logic modeling task that aim to explicitly model user roles and learn the logical relations between item topics and user social roles. We show that it is possible to explicitly solve these tasks through an efficient integration framework of Large Language Model (LLM) and recommendation systems, for which we propose TagCF. On the one hand, TagCF exploits the (Multi-modal) LLM's world knowledge and logic inference ability to extract realistic tag-based virtual logic graphs that reveal dynamic and expressive knowledge of users, refining our understanding of user behaviors. On the other hand, TagCF presents empirically effective integration modules that take advantage of the extracted tag-logic information, augmenting the recommendation performance. We conduct both online experiments and offline experiments with industrial and public datasets as verification of TagCF's effectiveness, and we empirically show that the user role modeling strategy is potentially a better choice than the modeling of item topics. Additionally, we provide evidence that the extracted logic graphs are empirically a general and transferable knowledge that can benefit a wide range of recommendation tasks. Our code is available in https://github.com/Code2Q/TagCF.
comment: to be published in NeurIPS 2025
♻ ☆ Can LLMs Outshine Conventional Recommenders? A Comparative Evaluation NeurIPS 2025
In recent years, integrating large language models (LLMs) into recommender systems has created new opportunities for improving recommendation quality. However, a comprehensive benchmark is needed to thoroughly evaluate and compare the recommendation capabilities of LLMs with traditional recommender systems. In this paper, we introduce RecBench, which systematically investigates various item representation forms (including unique identifier, text, semantic embedding, and semantic identifier) and evaluates two primary recommendation tasks, i.e., click-through rate prediction (CTR) and sequential recommendation (SeqRec). Our extensive experiments cover up to 17 large models and are conducted across five diverse datasets from fashion, news, video, books, and music domains. Our findings indicate that LLM-based recommenders outperform conventional recommenders, achieving up to a 5% AUC improvement in the CTR scenario and up to a 170% NDCG@10 improvement in the SeqRec scenario. However, these substantial performance gains come at the expense of significantly reduced inference efficiency, rendering the LLM-as-RS paradigm impractical for real-time recommendation environments. We aim for our findings to inspire future research, including recommendation-specific model acceleration methods. We will release our code, data, configurations, and platform to enable other researchers to reproduce and build upon our experimental results.
comment: NeurIPS 2025 DB Track Accepted Paper
♻ ☆ Capturing User Interests from Data Streams for Continual Sequential Recommendation WSDM'26
Transformer-based sequential recommendation (SR) models excel at modeling long-range dependencies in user behavior via self-attention. However, updating them with continuously arriving behavior sequences incurs high computational costs or leads to catastrophic forgetting. Although continual learning, a standard approach for non-stationary data streams, has recently been applied to recommendation, existing methods gradually forget long-term user preferences and remain underexplored in SR. In this paper, we introduce Continual Sequential Transformer for Recommendation (CSTRec). CSTRec is designed to effectively adapt to current interests by leveraging well-preserved historical ones, thus capturing the trajectory of user interests over time. The core of CSTRec is Continual Sequential Attention (CSA), a linear attention tailored for continual SR, which enables CSTRec to partially retain historical knowledge without direct access to prior data. CSA has two key components: (1) Cauchy-Schwarz Normalization that stabilizes learning over time under uneven user interaction frequencies; (2) Collaborative Interest Enrichment that alleviates forgetting through shared, learnable interest pools. In addition, we introduce a new technique to facilitate the adaptation of new users by transferring historical knowledge from existing users with similar interests. Extensive experiments on three real-world datasets show that CSTRec outperforms state-of-the-art models in both knowledge retention and acquisition.
comment: WSDM'26
♻ ☆ Can We Hide Machines in the Crowd? Quantifying Equivalence in LLM-in-the-loop Annotation Tasks SIGIR
Many evaluations of large language models (LLMs) in text annotation focus primarily on the correctness of the output, typically comparing model-generated labels to human-annotated ``ground truth'' using standard performance metrics. In contrast, our study moves beyond effectiveness alone. We aim to explore how labeling decisions -- by both humans and LLMs -- can be statistically evaluated across individuals. Rather than treating LLMs purely as annotation systems, we approach LLMs as an alternative annotation mechanism that may be capable of mimicking the subjective judgments made by humans. To assess this, we develop a statistical evaluation method based on Krippendorff's $\alpha$, paired bootstrapping, and the Two One-Sided t-Tests (TOST) equivalence test procedure. This evaluation method tests whether an LLM can blend into a group of human annotators without being distinguishable. We apply this approach to two datasets -- MovieLens 100K and PolitiFact -- and find that the LLM is statistically indistinguishable from a human annotator in the former ($p = 0.004$), but not in the latter ($p = 0.155$), highlighting task-dependent differences. It also enables early evaluation on a small sample of human data to inform whether LLMs are suitable for large-scale annotation in a given application.
comment: Accepted at SIGIR-AP 2025
Multimedia
☆ ALDEN: Reinforcement Learning for Active Navigation and Evidence Gathering in Long Documents
Vision-language models (VLMs) excel at interpreting text-rich images but struggle with long, visually complex documents that demand analysis and integration of information spread across multiple pages. Existing approaches typically rely on fixed reasoning templates or rigid pipelines, which force VLMs into a passive role and hinder both efficiency and generalization. We present Active Long-DocumEnt Navigation (ALDEN), a multi-turn reinforcement learning framework that fine-tunes VLMs as interactive agents capable of actively navigating long, visually rich documents. ALDEN introduces a novel fetch action that directly accesses the page by index, complementing the classic search action and better exploiting document structure. For dense process supervision and efficient training, we propose a rule-based cross-level reward that provides both turn- and token-level signals. To address the empirically observed training instability caused by numerous visual tokens from long documents, we further propose a visual-semantic anchoring mechanism that applies a dual-path KL-divergence constraint to stabilize visual and textual representations separately during training. Trained on a corpus constructed from three open-source datasets, ALDEN achieves state-of-the-art performance on five long-document benchmarks. Overall, ALDEN marks a step beyond passive document reading toward agents that autonomously navigate and reason across long, visually rich documents, offering a robust path to more accurate and efficient long-document understanding.
☆ Energy consumption assessment of a Virtual Reality Remote Rendering application over 5G networks
This paper investigates the energy implications of remote rendering for Virtual Reality (VR) applications within a real 5G testbed. Remote rendering enables lightweight devices to access high-performance graphical content by offloading computationally intensive tasks to Cloud-native Network Functions (CNFs) running on remote servers. However, this approach raises concerns regarding energy consumption across the various network components involved, including the remote computing node, the 5G Core, the Radio Access Network (RAN), and the User Equipment (UE). This work proposes and evaluates two complementary energy monitoring solutions, one hardware-based and one software-based, to measure energy consumption at different system levels. A VR remote renderer, deployed as CNF and leveraging the Media over QUIC (MoQ) protocol, is used as test case for assessing its energy footprint under different multimedia and network configurations. The results provide critical insights into the trade-off between energy consumption and performance of a real-world VR application running in a 5G environment.
☆ Hallucination Localization in Video Captioning
We propose a novel task, hallucination localization in video captioning, which aims to identify hallucinations in video captions at the span level (i.e. individual words or phrases). This allows for a more detailed analysis of hallucinations compared to existing sentence-level hallucination detection task. To establish a benchmark for hallucination localization, we construct HLVC-Dataset, a carefully curated dataset created by manually annotating 1,167 video-caption pairs from VideoLLM-generated captions. We further implement a VideoLLM-based baseline method and conduct quantitative and qualitative evaluations to benchmark current performance on hallucination localization.
comment: under review
☆ Audio-Visual Speech Enhancement In Complex Scenarios With Separation And Dereverberation Joint Modeling
Audio-visual speech enhancement (AVSE) is a task that uses visual auxiliary information to extract a target speaker's speech from mixed audio. In real-world scenarios, there often exist complex acoustic environments, accompanied by various interfering sounds and reverberation. Most previous methods struggle to cope with such complex conditions, resulting in poor perceptual quality of the extracted speech. In this paper, we propose an effective AVSE system that performs well in complex acoustic environments. Specifically, we design a "separation before dereverberation" pipeline that can be extended to other AVSE networks. The 4th COGMHEAR Audio-Visual Speech Enhancement Challenge (AVSEC) aims to explore new approaches to speech processing in multimodal complex environments. We validated the performance of our system in AVSEC-4: we achieved excellent results in the three objective metrics on the competition leaderboard, and ultimately secured first place in the human subjective listening test.
☆ Performance Evaluation of Multimedia Traffic in Cloud Storage Services over Wi-Fi and LTE Networks
The performance of Dropbox, Google Drive, and OneDrive cloud storage services was evaluated under Wi-Fi and LTE network conditions during multimedia file uploads. Traffic was captured using Wireshark, and key metrics (including delay, jitter, bandwidth, and packet loss) were analyzed. Google Drive maintained the most consistent performance across both types of networks, showing low latency and reduced jitter. Dropbox showed efficient bandwidth utilization, but experienced a longer delay over LTE, attributed to a greater number of intermediate hops. OneDrive presented variable behavior, with elevated packet rates and increased sensitivity to fluctuations in the mobile network. A bimodal distribution of packet sizes was observed and modeled using a dual Poisson function. In general, Wi-Fi connections provided greater stability for multimedia transfers, while LTE performance varied depending on platform-specific implementations. The results contribute to a better understanding of traffic behavior in cloud-based storage applications and suggest further analysis with larger datasets and heterogeneous access networks.
comment: 2025 20th Iberian Conference on Information Systems and Technologies (CISTI), Lecture Notes in Networks and Systems
♻ ☆ Artificial Neural Networks Trained on Noisy Speech Exhibit the McGurk Effect
Humans are able to fuse information from both auditory and visual modalities to help with understanding speech. This is demonstrated through a phenomenon known as the McGurk Effect, during which a listener is presented with incongruent auditory and visual speech that fuse together into the percept of illusory intermediate phonemes. Building on a recent framework that proposes how to address developmental 'why' questions using artificial neural networks, we evaluated a set of recent artificial neural networks trained on audiovisual speech by testing them with audiovisually incongruent words designed to elicit the McGurk effect. We show that networks trained entirely on congruent audiovisual speech nevertheless exhibit the McGurk percept. We further investigated 'why' by comparing networks trained on clean speech to those trained on noisy speech, and discovered that training with noisy speech led to a pronounced increase in both visual responses and McGurk responses across all models. Furthermore, we observed that systematically increasing the level of auditory noise during ANN training also increased the amount of audiovisual integration up to a point, but at extreme noise levels, this integration failed to develop. These results suggest that excessive noise exposure during critical periods of audiovisual learning may negatively influence the development of audiovisual speech integration. This work also demonstrates that the McGurk effect reliably emerges untrained from the behaviour of both supervised and unsupervised networks, even networks trained only on congruent speech. This supports the notion that artificial neural networks might be useful models for certain aspects of perception and cognition.
♻ ☆ XY-Cut++: Advanced Layout Ordering via Hierarchical Mask Mechanism on a Novel Benchmark
Document Reading Order Recovery is a fundamental task in document image understanding, playing a pivotal role in enhancing Retrieval-Augmented Generation (RAG) and serving as a critical preprocessing step for large language models (LLMs). Existing methods often struggle with complex layouts(e.g., multi-column newspapers), high-overhead interactions between cross-modal elements (visual regions and textual semantics), and a lack of robust evaluation benchmarks. We introduce XY-Cut++, an advanced layout ordering method that integrates pre-mask processing, multi-granularity segmentation, and cross-modal matching to address these challenges. Our method significantly enhances layout ordering accuracy compared to traditional XY-Cut techniques. Specifically, XY-Cut++ achieves state-of-the-art performance (98.8 BLEU overall) while maintaining simplicity and efficiency. It outperforms existing baselines by up to 24\% and demonstrates consistent accuracy across simple and complex layouts on the newly introduced DocBench-100 dataset. This advancement establishes a reliable foundation for document structure recovery, setting a new standard for layout ordering tasks and facilitating more effective RAG and LLM preprocessing.
Information Retrieval
☆ Secure Retrieval-Augmented Generation against Poisoning Attacks
Large language models (LLMs) have transformed natural language processing (NLP), enabling applications from content generation to decision support. Retrieval-Augmented Generation (RAG) improves LLMs by incorporating external knowledge but also introduces security risks, particularly from data poisoning, where the attacker injects poisoned texts into the knowledge database to manipulate system outputs. While various defenses have been proposed, they often struggle against advanced attacks. To address this, we introduce RAGuard, a detection framework designed to identify poisoned texts. RAGuard first expands the retrieval scope to increase the proportion of clean texts, reducing the likelihood of retrieving poisoned content. It then applies chunk-wise perplexity filtering to detect abnormal variations and text similarity filtering to flag highly similar texts. This non-parametric approach enhances RAG security, and experiments on large-scale datasets demonstrate its effectiveness in detecting and mitigating poisoning attacks, including strong adaptive attacks.
comment: To appear in IEEE BigData 2025
☆ Seeing Through the MiRAGE: Evaluating Multimodal Retrieval Augmented Generation
We introduce MiRAGE, an evaluation framework for retrieval-augmented generation (RAG) from multimodal sources. As audiovisual media becomes a prevalent source of information online, it is essential for RAG systems to integrate information from these sources into generation. However, existing evaluations for RAG are text-centric, limiting their applicability to multimodal, reasoning intensive settings because they don't verify information against sources. MiRAGE is a claim-centric approach to multimodal RAG evaluation, consisting of InfoF1, evaluating factuality and information coverage, and CiteF1, measuring citation support and completeness. We show that MiRAGE, when applied by humans, strongly aligns with extrinsic quality judgments. We additionally introduce automatic variants of MiRAGE and three prominent TextRAG metrics -- ACLE, ARGUE, and RAGAS -- demonstrating the limitations of text-centric work and laying the groundwork for automatic evaluation. We release open-source implementations and outline how to assess multimodal RAG.
comment: https://github.com/alexmartin1722/mirage
☆ LeMat-Synth: a multi-modal toolbox to curate broad synthesis procedure databases from scientific literature
The development of synthesis procedures remains a fundamental challenge in materials discovery, with procedural knowledge scattered across decades of scientific literature in unstructured formats that are challenging for systematic analysis. In this paper, we propose a multi-modal toolbox that employs large language models (LLMs) and vision language models (VLMs) to automatically extract and organize synthesis procedures and performance data from materials science publications, covering text and figures. We curated 81k open-access papers, yielding LeMat-Synth (v 1.0): a dataset containing synthesis procedures spanning 35 synthesis methods and 16 material classes, structured according to an ontology specific to materials science. The extraction quality is rigorously evaluated on a subset of 2.5k synthesis procedures through a combination of expert annotations and a scalable LLM-as-a-judge framework. Beyond the dataset, we release a modular, open-source software library designed to support community-driven extension to new corpora and synthesis domains. Altogether, this work provides an extensible infrastructure to transform unstructured literature into machine-readable information. This lays the groundwork for predictive modeling of synthesis procedures as well as modeling synthesis--structure--property relationships.
comment: 29 pages, 13 figures, 6 tables
☆ Tongyi DeepResearch Technical Report
We present Tongyi DeepResearch, an agentic large language model, which is specifically designed for long-horizon, deep information-seeking research tasks. To incentivize autonomous deep research agency, Tongyi DeepResearch is developed through an end-to-end training framework that combines agentic mid-training and agentic post-training, enabling scalable reasoning and information seeking across complex tasks. We design a highly scalable data synthesis pipeline that is fully automatic, without relying on costly human annotation, and empowers all training stages. By constructing customized environments for each stage, our system enables stable and consistent interactions throughout. Tongyi DeepResearch, featuring 30.5 billion total parameters, with only 3.3 billion activated per token, achieves state-of-the-art performance across a range of agentic deep research benchmarks, including Humanity's Last Exam, BrowseComp, BrowseComp-ZH, WebWalkerQA, xbench-DeepSearch, FRAMES and xbench-DeepSearch-2510. We open-source the model, framework, and complete solutions to empower the community.
comment: https://tongyi-agent.github.io/blog
☆ Optimizing Retrieval for RAG via Reinforced Contrastive Learning
As retrieval-augmented generation (RAG) becomes increasingly widespread, the role of information retrieval (IR) is shifting from retrieving information for human users to retrieving contextual knowledge for artificial intelligence (AI) systems, where relevance becomes difficult to define or annotate beforehand. To address this challenge, we propose R3, a Retrieval framework optimized for RAG through trialand-feedback Reinforced contrastive learning. Unlike prior approaches that rely on annotated or synthetic data for supervised fine-tuning, R3 enables the retriever to dynamically explore and optimize relevance within the RAG environment. During training, the retrieved results interact with the environment to produce contrastive signals that automatically guide the retriever's self-improvement. Extensive experiments across diverse tasks demonstrate that R3 improves RAG performance by 5.2% over the original retriever and surpasses state-of-the-art retrievers by 4.9%, while achieving comparable results to LLM-augmented retrieval and RAG systems built on post-trained or instruction-tuned LLMs. It is both efficient and practical, requiring only 4 GPUs and completing training within a single day.
☆ Iterative Critique-Refine Framework for Enhancing LLM Personalization
Personalized text generation requires models not only to produce coherent text but also to align with a target user's style, tone, and topical focus. Existing retrieval-augmented approaches such as LaMP and PGraphRAG enrich profiles with user and neighbor histories, but they stop at generation and often yield outputs that drift in tone, topic, or style. We present PerFine, a unified, training-free critique-refine framework that enhances personalization through iterative, profile-grounded feedback. In each iteration, an LLM generator produces a draft conditioned on the retrieved profile, and a critic LLM - also conditioned on the same profile - provides structured feedback on tone, vocabulary, sentence structure, and topicality. The generator then revises, while a novel knockout strategy retains the stronger draft across iterations. We further study additional inference-time strategies such as Best-of-N and Topic Extraction to balance quality and efficiency. Across Yelp, Goodreads, and Amazon datasets, PerFine consistently improves personalization over PGraphRAG, with GEval gains of +7-13%, steady improvements over 3-5 refinement iterations, and scalability with increasing critic size. These results highlight that post-hoc, profile-aware feedback offers a powerful paradigm for personalized LLM generation that is both training-free and model-agnostic.
☆ MiniOneRec: An Open-Source Framework for Scaling Generative Recommendation
The recent success of large language models (LLMs) has renewed interest in whether recommender systems can achieve similar scaling benefits. Conventional recommenders, dominated by massive embedding tables, tend to plateau as embedding dimensions grow. In contrast, the emerging generative paradigm replaces embeddings with compact Semantic ID (SID) sequences produced by autoregressive Transformers. Yet most industrial deployments remain proprietary, leaving two fundamental questions open: (1) Do the expected scaling laws hold on public benchmarks? (2) What is the minimal post-training recipe that enables competitive performance? We present MiniOneRec, to the best of our knowledge, the first fully open-source generative recommendation framework, which provides an end-to-end workflow spanning SID construction, supervised fine-tuning, and recommendation-oriented reinforcement learning. We generate SIDs via a Residual Quantized VAE and post-train Qwen backbones ranging from 0.5B to 7B parameters on the Amazon Review dataset. Our experiments reveal a consistent downward trend in both training and evaluation losses with increasing model size, validating the parameter efficiency of the generative approach. To further enhance performance, we propose a lightweight yet effective post-training pipeline that (1) enforces full-process SID alignment and (2) applies reinforcement learning with constrained decoding and hybrid rewards. Together, these techniques yield significant improvements in both ranking accuracy and candidate diversity.
comment: Technical Report
☆ From Time and Place to Preference: LLM-Driven Geo-Temporal Context in Recommendations
Most recommender systems treat timestamps as numeric or cyclical values, overlooking real-world context such as holidays, events, and seasonal patterns. We propose a scalable framework that uses large language models (LLMs) to generate geo-temporal embeddings from only a timestamp and coarse location, capturing holidays, seasonal trends, and local/global events. We then introduce a geo-temporal embedding informativeness test as a lightweight diagnostic, demonstrating on MovieLens, LastFM, and a production dataset that these embeddings provide predictive signal consistent with the outcomes of full model integrations. Geo-temporal embeddings are incorporated into sequential models through (1) direct feature fusion with metadata embeddings or (2) an auxiliary loss that enforces semantic and geo-temporal alignment. Our findings highlight the need for adaptive or hybrid recommendation strategies, and we release a context-enriched MovieLens dataset to support future research.
☆ Metadata-Driven Retrieval-Augmented Generation for Financial Question Answering
Retrieval-Augmented Generation (RAG) struggles on long, structured financial filings where relevant evidence is sparse and cross-referenced. This paper presents a systematic investigation of advanced metadata-driven Retrieval-Augmented Generation (RAG) techniques, proposing and evaluating a novel, multi-stage RAG architecture that leverages LLM-generated metadata. We introduce a sophisticated indexing pipeline to create contextually rich document chunks and benchmark a spectrum of enhancements, including pre-retrieval filtering, post-retrieval reranking, and enriched embeddings, benchmarked on the FinanceBench dataset. Our results reveal that while a powerful reranker is essential for precision, the most significant performance gains come from embedding chunk metadata directly with text ("contextual chunks"). Our proposed optimal architecture combines LLM-driven pre-retrieval optimizations with these contextual embeddings to achieve superior performance. Additionally, we present a custom metadata reranker that offers a compelling, cost-effective alternative to commercial solutions, highlighting a practical trade-off between peak performance and operational efficiency. This study provides a blueprint for building robust, metadata-aware RAG systems for financial document analysis.
comment: Preprint version submitted to the International Journal of Accounting Information Systems; currently under major revision. 20 pages, 1 figure, 1 table
☆ DUET: Dual Model Co-Training for Entire Space CTR Prediction
The pre-ranking stage plays a pivotal role in large-scale recommender systems but faces an intrinsic trade-off between model expressiveness and computational efficiency. Owing to the massive candidate pool and strict latency constraints, industry systems often rely on lightweight two-tower architectures, which are computationally efficient yet limited in estimation capability. As a result, they struggle to capture the complex synergistic and suppressive relationships among candidate items, which are essential for producing contextually coherent and diverse recommendation lists. Moreover, this simplicity further amplifies the Sample Selection Bias (SSB) problem, as coarse-grained models trained on biased exposure data must generalize to a much larger candidate space with distinct distributions. To address these issues, we propose \textbf{DUET} (\textbf{DU}al Model Co-Training for \textbf{E}ntire Space C\textbf{T}R Prediction), a set-wise pre-ranking framework that achieves expressive modeling under tight computational budgets. Instead of scoring items independently, DUET performs set-level prediction over the entire candidate subset in a single forward pass, enabling information-aware interactions among candidates while amortizing the computational cost across the set. Moreover, a dual model co-training mechanism extends supervision to unexposed items via mutual pseudo-label refinement, effectively mitigating SSB. Validated through extensive offline experiments and online A/B testing, DUET consistently outperforms state-of-the-art baselines and achieves improvements across multiple core business metrics. At present, DUET has been fully deployed in Kuaishou and Kuaishou Lite Apps, serving the main traffic for hundreds of millions of users.
☆ Resource-Efficient LLM Application for Structured Transformation of Unstructured Financial Contracts
The transformation of unstructured legal contracts into standardized, machine-readable formats is essential for automating financial workflows. The Common Domain Model (CDM) provides a standardized framework for this purpose, but converting complex legal documents like Credit Support Annexes (CSAs) into CDM representations remains a significant challenge. In this paper, we present an extension of the CDMizer framework, a template-driven solution that ensures syntactic correctness and adherence to the CDM schema during contract-to-CDM conversion. We apply this extended framework to a real-world task, comparing its performance with a benchmark developed by the International Swaps and Derivatives Association (ISDA) for CSA clause extraction. Our results show that CDMizer, when integrated with a significantly smaller, open-source Large Language Model (LLM), achieves competitive performance in terms of accuracy and efficiency against larger, proprietary models. This work underscores the potential of resource-efficient solutions to automate legal contract transformation, offering a cost-effective and scalable approach that can meet the needs of financial institutions with constrained resources or strict data privacy requirements.
comment: 5 pages, 1 figure, 2 tables
♻ ☆ Comparing Retrieval Strategies to Capture Interdisciplinary Scientific Research: A Bibliometric Evaluation of the Integration of Neuroscience and Computer Science
Interdisciplinary scientific research is increasingly important in knowledge production, funding policies, and academic discussions on scholarly communication. While many studies focus on interdisciplinary corpora defined a priori -- usually through keyword-based searches within assumed interdisciplinary domains -- few explore interdisciplinarity as an emergent intersection between two distinct fields. Thus, methodological proposals for building databases at the intersection of two fields of knowledge are scarce. The goal of this article is to develop and compare different strategies for defining an interdisciplinary corpus between two bodies of knowledge. As a case study, we focus on the intersection between neuroscience and computer science. To this end, we develop and compare four retrieval strategies, two of them based on keywords and two based on citation and reference patterns. Our results show that the reference-based strategy provides better retrieval, pseudorecall, and F1. While we focus on comparing strategies for the study of the intersection between the fields of neuroscience and computer science, this methodological reflection is applicable to a wide range of interdisciplinary domains.
♻ ☆ CustomIR: Unsupervised Fine-Tuning of Dense Embeddings for Known Document Corpora
Dense embedding models have become critical for modern information retrieval, particularly in RAG pipelines, but their performance often degrades when applied to specialized corpora outside their pre-training distribution. To address thi we introduce CustomIR, a framework for unsupervised adaptation of pre-trained language embedding models to domain-specific corpora using synthetically generated query-document pairs. CustomIR leverages large language models (LLMs) to create diverse queries grounded in a known target corpus, paired with LLM-verified hard negatives, eliminating the need for costly human annotation. Experiments on enterprise email and messaging datasets show that CustomIR consistently improves retrieval effectiveness with small models gaining up to 2.3 points in Recall@10. This performance increase allows these small models to rival the performance of much larger alternatives, allowing for cheaper RAG deployments. These results highlight that targeted synthetic fine-tuning offers a scalable and cost-efficient strategy for increasing domain-specific performance.
♻ ☆ Cross-Scenario Unified Modeling of User Interests at Billion Scale
User interests on content platforms are inherently diverse, manifesting through complex behavioral patterns across heterogeneous scenarios such as search, feed browsing, and content discovery. Traditional recommendation systems typically prioritize business metric optimization within isolated specific scenarios, neglecting cross-scenario behavioral signals and struggling to integrate advanced techniques like LLMs at billion-scale deployments, which finally limits their ability to capture holistic user interests across platform touchpoints. We propose RED-Rec, an LLM-enhanced hierarchical Recommender Engine for Diversified scenarios, tailored for industry-level content recommendation systems. RED-Rec unifies user interest representations across multiple behavioral contexts by aggregating and synthesizing actions from varied scenarios, resulting in comprehensive item and user modeling. At its core, a two-tower LLM-powered framework enables nuanced, multifaceted representations with deployment efficiency, and a scenario-aware dense mixing and querying policy effectively fuses diverse behavioral signals to capture cross-scenario user intent patterns and express fine-grained, context-specific intents during serving. We validate RED-Rec through online A/B testing on hundreds of millions of users in RedNote through online A/B testing, showing substantial performance gains in both content recommendation and advertisement targeting tasks. We further introduce a million-scale sequential recommendation dataset, RED-MMU, for comprehensive offline training and evaluation. Our work advances unified user modeling, unlocking deeper personalization and fostering more meaningful user engagement in large-scale UGC platforms.
comment: https://github.com/ariesssxu/RedSeqRec
♻ ☆ OneRec-V2 Technical Report
Recent breakthroughs in generative AI have transformed recommender systems through end-to-end generation. OneRec reformulates recommendation as an autoregressive generation task, achieving high Model FLOPs Utilization. While OneRec-V1 has shown significant empirical success in real-world deployment, two critical challenges hinder its scalability and performance: (1) inefficient computational allocation where 97.66% of resources are consumed by sequence encoding rather than generation, and (2) limitations in reinforcement learning relying solely on reward models. To address these challenges, we propose OneRec-V2, featuring: (1) Lazy Decoder-Only Architecture: Eliminates encoder bottlenecks, reducing total computation by 94% and training resources by 90%, enabling successful scaling to 8B parameters. (2) Preference Alignment with Real-World User Interactions: Incorporates Duration-Aware Reward Shaping and Adaptive Ratio Clipping to better align with user preferences using real-world feedback. Extensive A/B tests on Kuaishou demonstrate OneRec-V2's effectiveness, improving App Stay Time by 0.467%/0.741% while balancing multi-objective recommendations. This work advances generative recommendation scalability and alignment with real-world feedback, representing a step forward in the development of end-to-end recommender systems.
♻ ☆ MemoryBench: A Benchmark for Memory and Continual Learning in LLM Systems
Scaling up data, parameters, and test-time computation has been the mainstream methods to improve LLM systems (LLMsys), but their upper bounds are almost reached due to the gradual depletion of high-quality data and marginal gains obtained from larger computational resource consumption. Inspired by the abilities of human and traditional AI systems in learning from practice, constructing memory and continual learning frameworks for LLMsys has become an important and popular research direction in recent literature. Yet, existing benchmarks for LLM memory often focus on evaluating the system on homogeneous reading comprehension tasks with long-form inputs rather than testing their abilities to learn from accumulated user feedback in service time. Therefore, we propose a user feedback simulation framework and a comprehensive benchmark covering multiple domains, languages, and types of tasks to evaluate the continual learning abilities of LLMsys. Experiments show that the effectiveness and efficiency of state-of-the-art baselines are far from satisfying, and we hope this benchmark could pave the way for future studies on LLM memory and optimization algorithms.
♻ ☆ Your Dense Retriever is Secretly an Expeditious Reasoner
Dense retrievers enhance retrieval by encoding queries and documents into continuous vectors, but they often struggle with reasoning-intensive queries. Although Large Language Models (LLMs) can reformulate queries to capture complex reasoning, applying them universally incurs significant computational cost. In this work, we propose Adaptive Query Reasoning (AdaQR), a hybrid query rewriting framework. Within this framework, a Reasoner Router dynamically directs each query to either fast dense reasoning or deep LLM reasoning. The dense reasoning is achieved by the Dense Reasoner, which performs LLM-style reasoning directly in the embedding space, enabling a controllable trade-off between efficiency and accuracy. Experiments on large-scale retrieval benchmarks BRIGHT show that AdaQR reduces reasoning cost by 28% while preserving-or even improving-retrieval performance by 7%.
comment: 16 pages, 11 figures
Multimedia
☆ Resi-VidTok: An Efficient and Decomposed Progressive Tokenization Framework for Ultra-Low-Rate and Lightweight Video Transmission
Real-time transmission of video over wireless networks remains highly challenging, even with advanced deep models, particularly under severe channel conditions such as limited bandwidth and weak connectivity. In this paper, we propose Resi-VidTok, a Resilient Tokenization-Enabled framework designed for ultra-low-rate and lightweight video transmission that delivers strong robustness while preserving perceptual and semantic fidelity on commodity digital hardware. By reorganizing spatio--temporal content into a discrete, importance-ordered token stream composed of key tokens and refinement tokens, Resi-VidTok enables progressive encoding, prefix-decodable reconstruction, and graceful quality degradation under constrained channels. A key contribution is a resilient 1D tokenization pipeline for video that integrates differential temporal token coding, explicitly supporting reliable recovery from incomplete token sets using a single shared framewise decoder--without auxiliary temporal extractors or heavy generative models. Furthermore, stride-controlled frame sparsification combined with a lightweight decoder-side interpolator reduces transmission load while maintaining motion continuity. Finally, a channel-adaptive source--channel coding and modulation scheme dynamically allocates rate and protection according to token importance and channel condition, yielding stable quality across adverse SNRs. Evaluation results indicate robust visual and semantic consistency at channel bandwidth ratios (CBR) as low as 0.0004 and real-time reconstruction at over 30 fps, demonstrating the practicality of Resi-VidTok for energy-efficient, latency-sensitive, and reliability-critical wireless applications.
☆ MCIHN: A Hybrid Network Model Based on Multi-path Cross-modal Interaction for Multimodal Emotion Recognition
Multimodal emotion recognition is crucial for future human-computer interaction. However, accurate emotion recognition still faces significant challenges due to differences between different modalities and the difficulty of characterizing unimodal emotional information. To solve these problems, a hybrid network model based on multipath cross-modal interaction (MCIHN) is proposed. First, adversarial autoencoders (AAE) are constructed separately for each modality. The AAE learns discriminative emotion features and reconstructs the features through a decoder to obtain more discriminative information about the emotion classes. Then, the latent codes from the AAE of different modalities are fed into a predefined Cross-modal Gate Mechanism model (CGMM) to reduce the discrepancy between modalities, establish the emotional relationship between interacting modalities, and generate the interaction features between different modalities. Multimodal fusion using the Feature Fusion module (FFM) for better emotion recognition. Experiments were conducted on publicly available SIMS and MOSI datasets, demonstrating that MCIHN achieves superior performance.
comment: The paper will be published in the MMAsia2025 conference proceedings
☆ GACA-DiT: Diffusion-based Dance-to-Music Generation with Genre-Adaptive Rhythm and Context-Aware Alignment ICASSP 2026
Dance-to-music (D2M) generation aims to automatically compose music that is rhythmically and temporally aligned with dance movements. Existing methods typically rely on coarse rhythm embeddings, such as global motion features or binarized joint-based rhythm values, which discard fine-grained motion cues and result in weak rhythmic alignment. Moreover, temporal mismatches introduced by feature downsampling further hinder precise synchronization between dance and music. To address these problems, we propose \textbf{GACA-DiT}, a diffusion transformer-based framework with two novel modules for rhythmically consistent and temporally aligned music generation. First, a \textbf{genre-adaptive rhythm extraction} module combines multi-scale temporal wavelet analysis and spatial phase histograms with adaptive joint weighting to capture fine-grained, genre-specific rhythm patterns. Second, a \textbf{context-aware temporal alignment} module resolves temporal mismatches using learnable context queries to align music latents with relevant dance rhythm features. Extensive experiments on the AIST++ and TikTok datasets demonstrate that GACA-DiT outperforms state-of-the-art methods in both objective metrics and human evaluation. Project page: https://beria-moon.github.io/GACA-DiT/.
comment: 5 pages, 3 figures, submitted to ICASSP 2026
☆ BLM$_1$: A Boundless Large Model for Cross-Space, Cross-Task, and Cross-Embodiment Learning
Multimodal large language models (MLLMs) have advanced vision-language reasoning and are increasingly deployed in embodied agents. However, significant limitations remain: MLLMs generalize poorly across digital-physical spaces and embodiments; vision-language-action models (VLAs) produce low-level actions yet lack robust high-level embodied reasoning; and most embodied large language models (ELLMs) are constrained to digital-space with poor generalization to the physical world. Thus, unified models that operate seamlessly across digital and physical spaces while generalizing across embodiments and tasks remain absent. We introduce the \textbf{Boundless Large Model (BLM$_1$)}, a multimodal spatial foundation model that preserves instruction following and reasoning, incorporates embodied knowledge, and supports robust cross-embodiment control. BLM$_1$ integrates three key capabilities -- \textit{cross-space transfer, cross-task learning, and cross-embodiment generalization} -- via a two-stage training paradigm. Stage I injects embodied knowledge into the MLLM through curated digital corpora while maintaining language competence. Stage II trains a policy module through an intent-bridging interface that extracts high-level semantics from the MLLM to guide control, without fine-tuning the MLLM backbone. This process is supported by a self-collected cross-embodiment demonstration suite spanning four robot embodiments and six progressively challenging tasks. Evaluations across digital and physical benchmarks show that a single BLM$_1$ instance outperforms four model families -- MLLMs, ELLMs, VLAs, and GMLMs -- achieving $\sim\!\textbf{6%}$ gains in digital tasks and $\sim\!\textbf{3%}$ in physical tasks.
☆ Model-Guided Dual-Role Alignment for High-Fidelity Open-Domain Video-to-Audio Generation NeurIPS 2025
We present MGAudio, a novel flow-based framework for open-domain video-to-audio generation, which introduces model-guided dual-role alignment as a central design principle. Unlike prior approaches that rely on classifier-based or classifier-free guidance, MGAudio enables the generative model to guide itself through a dedicated training objective designed for video-conditioned audio generation. The framework integrates three main components: (1) a scalable flow-based Transformer model, (2) a dual-role alignment mechanism where the audio-visual encoder serves both as a conditioning module and as a feature aligner to improve generation quality, and (3) a model-guided objective that enhances cross-modal coherence and audio realism. MGAudio achieves state-of-the-art performance on VGGSound, reducing FAD to 0.40, substantially surpassing the best classifier-free guidance baselines, and consistently outperforms existing methods across FD, IS, and alignment metrics. It also generalizes well to the challenging UnAV-100 benchmark. These results highlight model-guided dual-role alignment as a powerful and scalable paradigm for conditional video-to-audio generation. Code is available at: https://github.com/pantheon5100/mgaudio
comment: accepted by NeurIPS 2025
♻ ☆ Does CLIP perceive art the same way we do?
CLIP has emerged as a powerful multimodal model capable of connecting images and text through joint embeddings, but to what extent does it 'see' the same way humans do - especially when interpreting artworks? In this paper, we investigate CLIP's ability to extract high-level semantic and stylistic information from paintings, including both human-created and AI-generated imagery. We evaluate its perception across multiple dimensions: content, scene understanding, artistic style, historical period, and the presence of visual deformations or artifacts. By designing targeted probing tasks and comparing CLIP's responses to human annotations and expert benchmarks, we explore its alignment with human perceptual and contextual understanding. Our findings reveal both strengths and limitations in CLIP's visual representations, particularly in relation to aesthetic cues and artistic intent. We further discuss the implications of these insights for using CLIP as a guidance mechanism during generative processes, such as style transfer or prompt-based image synthesis. Our work highlights the need for deeper interpretability in multimodal systems, especially when applied to creative domains where nuance and subjectivity play a central role.
Computation and Language
☆ Variational Masked Diffusion Models
Masked diffusion models have recently emerged as a flexible framework for discrete generative modeling. However, a key limitation of standard masked diffusion is its inability to effectively capture dependencies among tokens that are predicted concurrently, leading to degraded generation quality when dependencies among tokens are important. To explicitly model dependencies among tokens, we propose Variational Masked Diffusion (VMD), a framework that introduces latent variables into the masked diffusion process. Through controlled experiments on synthetic datasets, we demonstrate that VMD successfully learns dependencies that conventional masked diffusion fails to capture. We further validate the effectiveness of our approach on Sudoku puzzles and text datasets, where learning of dependencies among tokens improves global consistency. Across these domains, VMD enhances both generation quality and dependency awareness, highlighting the value of integrating variational inference into masked diffusion. Our code is available at: https://riccizz.github.io/VMD.
comment: Project Page: https://riccizz.github.io/VMD
☆ Think Twice: Branch-and-Rethink Reasoning Reward Model
Large language models (LLMs) increasingly rely on thinking models that externalize intermediate steps and allocate extra test-time compute, with think-twice strategies showing that a deliberate second pass can elicit stronger reasoning. In contrast, most reward models (RMs) still compress many quality dimensions into a single scalar in one shot, a design that induces judgment diffusion: attention spreads across evaluation criteria, yielding diluted focus and shallow analysis. We introduce branch-and-rethink (BR-RM), a two-turn RM that transfers the think-twice principle to reward modeling. Turn 1 performs adaptive branching, selecting a small set of instance-critical dimensions (such as factuality and safety) and sketching concise, evidence-seeking hypotheses. Turn 2 executes branch-conditioned rethinking, a targeted reread that tests those hypotheses and scrutinizes only what matters most. We train with GRPO-style reinforcement learning over structured two-turn traces using a simple binary outcome reward with strict format checks, making the approach compatible with standard RLHF pipelines. By converting all-at-oncescoringintofocused, second-lookreasoning, BR-RMreducesjudgmentdiffusionandimproves sensitivity to subtle yet consequential errors while remaining practical and scalable. Experimental results demonstrate that our model achieves state-of-the-art performance on three challenging reward modeling benchmarks across diverse domains. The code and the model will be released soon.
☆ Hope Speech Detection in Social Media English Corpora: Performance of Traditional and Transformer Models
The identification of hope speech has become a promised NLP task, considering the need to detect motivational expressions of agency and goal-directed behaviour on social media platforms. This proposal evaluates traditional machine learning models and fine-tuned transformers for a previously split hope speech dataset as train, development and test set. On development test, a linear-kernel SVM and logistic regression both reached a macro-F1 of 0.78; SVM with RBF kernel reached 0.77, and Na\"ive Bayes hit 0.75. Transformer models delivered better results, the best model achieved weighted precision of 0.82, weighted recall of 0.80, weighted F1 of 0.79, macro F1 of 0.79, and 0.80 accuracy. These results suggest that while optimally configured traditional machine learning models remain agile, transformer architectures detect some subtle semantics of hope to achieve higher precision and recall in hope speech detection, suggesting that larges transformers and LLMs could perform better in small datasets.
☆ ReCode: Unify Plan and Action for Universal Granularity Control
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.
☆ ISA-Bench: Benchmarking Instruction Sensitivity for Large Audio Language Models
Large Audio Language Models (LALMs), which couple acoustic perception with large language models (LLMs) to extract and understand diverse information from audio, have attracted intense interest from both academic and industrial communities. However, existing LALMs are highly sensitive to how instructions are phrased, affecting both (i) instruction-following rates and (ii) task performance. Yet, no existing benchmarks offer a systematic and comprehensive evaluation of this sensitivity. We introduce ISA-Bench, a dynamic benchmark evaluating instruction sensitivity for LALMs along three axes: instruction description, output format, and task composition. We assess recent open-source and proprietary LALMs using ISA-Bench, profiling both compliance and accuracy under controlled instruction variations. Experimental results reveal that even state-of-the-art LALMs suffer significant instruction sensitivity, leading to degraded performance on fundamental audio understanding tasks. To mitigate this issue, we fine-tune Qwen2-Audio on a specifically constructed complex instruction-variant dataset, achieving a marked improvement in instruction-following performance. However, this also induces nontrivial catastrophic forgetting: the model loses some previously mastered task capabilities when exposed to new instruction styles. Our benchmark provides a standardized basis for assessing and improving instruction sensitivity in LALMs, underscoring the need for instruction-robust audio understanding in real-world pipelines.
comment: submitted to icassp 2026
☆ A U-Net and Transformer Pipeline for Multilingual Image Translation
This paper presents an end-to-end multilingual translation pipeline that integrates a custom U-Net for text detection, the Tesseract engine for text recognition, and a from-scratch sequence-to-sequence (Seq2Seq) Transformer for Neural Machine Translation (NMT). Our approach first utilizes a U-Net model, trained on a synthetic dataset , to accurately segment and detect text regions from an image. These detected regions are then processed by Tesseract to extract the source text. This extracted text is fed into a custom Transformer model trained from scratch on a multilingual parallel corpus spanning 5 languages. Unlike systems reliant on monolithic pre-trained models, our architecture emphasizes full customization and adaptability. The system is evaluated on its text detection accuracy, text recognition quality, and translation performance via BLEU scores. The complete pipeline demonstrates promising results, validating the viability of a custom-built system for translating text directly from images.
comment: 6 pages, 3 figures, 5 tables, and 2 algorithms. Prepared in IEEE double-column format
☆ LimRank: Less is More for Reasoning-Intensive Information Reranking EMNLP 2025
Existing approaches typically rely on large-scale fine-tuning to adapt LLMs for information reranking tasks, which is computationally expensive. In this work, we demonstrate that modern LLMs can be effectively adapted using only minimal, high-quality supervision. To enable this, we design LIMRANK-SYNTHESIZER, a reusable and open-source pipeline for generating diverse, challenging, and realistic reranking examples. Using this synthetic data, we fine-tune our reranker model, LIMRANK. We evaluate LIMRANK on two challenging benchmarks, i.e., BRIGHT for reasoning-intensive retrieval and FollowIR for instruction-following retrieval. Our experiments demonstrate that LIMRANK achieves competitive performance, while being trained on less than 5% of the data typically used in prior work. Further ablation studies demonstrate the effectiveness of LIMRANK-SYNTHESIZER and the strong generalization capabilities of LIMRANK across downstream tasks, including scientific literature search and retrieval-augmented generation for knowledge-intensive problem solving.
comment: EMNLP 2025 Main (Short)
☆ JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence
The scope of neural code intelligence is rapidly expanding beyond text-based source code to encompass the rich visual outputs that programs generate. This visual dimension is critical for advanced applications like flexible content generation and precise, program-driven editing of visualizations. However, progress has been impeded by the scarcity of high-quality multimodal code data, a bottleneck stemming from challenges in synthesis and quality assessment. To address these challenges, we make contributions from both a data and modeling perspective. We first introduce a complete synthesis toolkit that leverages reciprocal synergies between data modalities to efficiently produce a large-scale, high-quality corpus spanning from standard charts to complex interactive web UIs and code-driven animations. Leveraging this toolkit, we construct JanusCode-800K, the largest multimodal code corpus to date. This powers the training of our models, JanusCoder and JanusCoderV, which establish a visual-programmatic interface for generating code from textual instructions, visual inputs, or a combination of both. Our unified model is a departure from existing approaches that build specialized models for isolated tasks. Extensive experiments on both text-centric and vision-centric coding tasks demonstrate the superior performance of the JanusCoder series, with our 7B to 14B scale models approaching or even exceeding the performance of commercial models. Furthermore, extensive analysis provides key insights into harmonizing programmatic logic with its visual expression. Our code and checkpoints will are available at https://github.com/InternLM/JanusCoder.
comment: Work in progress
☆ IPQA: A Benchmark for Core Intent Identification in Personalized Question Answering
Intent identification serves as the foundation for generating appropriate responses in personalized question answering (PQA). However, existing benchmarks evaluate only response quality or retrieval performance without directly measuring intent identification capabilities. This gap is critical because without understanding which intents users prioritize, systems cannot generate responses satisfying individual information needs. To address this, we introduce the concept of core intents: intents users prioritize when selecting answers to satisfy their information needs. To evaluate these core intents, we propose IPQA, a benchmark for core Intent identification in Personalized Question Answering. Since users do not explicitly state their prioritized intents, we derive core intents from observable behavior patterns in answer selection, grounded in satisficing theory where users choose answers meeting their acceptance thresholds. We construct a dataset with various domains through systematic filtering, LLM-based annotation, and rigorous quality control combining automated verification with human validation. Experimental evaluations across state-of-the-art language models reveal that current systems struggle with core intent identification in personalized contexts. Models fail to identify core intents from user histories, with performance degrading as question complexity increases. The code and dataset will be made publicly available to facilitate future research in this direction.
☆ M4FC: a Multimodal, Multilingual, Multicultural, Multitask Real-World Fact-Checking Dataset
Existing real-world datasets for multimodal automated fact-checking have multiple limitations: they contain few instances, focus on only one or two languages and tasks, suffer from evidence leakage, or depend on external sets of news articles for sourcing true claims. To address these shortcomings, we introduce M4FC, a new real-world dataset comprising 4,982 images paired with 6,980 claims. The images, verified by professional fact-checkers from 22 organizations, represent diverse cultural and geographic contexts. Each claim is available in one or two out of ten languages. M4FC spans six multimodal fact-checking tasks: visual claim extraction, claimant intent prediction, fake detection, image contextualization, location verification, and verdict prediction. We provide baseline results for all tasks and analyze how combining intermediate tasks influence downstream verdict prediction performance. We make our dataset and code available.
comment: Preprint under review. Code and data available at: https://github.com/UKPLab/M4FC
☆ MMTutorBench: The First Multimodal Benchmark for AI Math Tutoring
Effective math tutoring requires not only solving problems but also diagnosing students' difficulties and guiding them step by step. While multimodal large language models (MLLMs) show promise, existing benchmarks largely overlook these tutoring skills. We introduce MMTutorBench, the first benchmark for AI math tutoring, consisting of 685 problems built around pedagogically significant key-steps. Each problem is paired with problem-specific rubrics that enable fine-grained evaluation across six dimensions, and structured into three tasks-Insight Discovery, Operation Formulation, and Operation Execution. We evaluate 12 leading MLLMs and find clear performance gaps between proprietary and open-source systems, substantial room compared to human tutors, and consistent trends across input variants: OCR pipelines degrade tutoring quality, few-shot prompting yields limited gains, and our rubric-based LLM-as-a-Judge proves highly reliable. These results highlight both the difficulty and diagnostic value of MMTutorBench for advancing AI tutoring.
☆ Evaluating Large Language Models for Stance Detection on Financial Targets from SEC Filing Reports and Earnings Call Transcripts
Financial narratives from U.S. Securities and Exchange Commission (SEC) filing reports and quarterly earnings call transcripts (ECTs) are very important for investors, auditors, and regulators. However, their length, financial jargon, and nuanced language make fine-grained analysis difficult. Prior sentiment analysis in the financial domain required a large, expensive labeled dataset, making the sentence-level stance towards specific financial targets challenging. In this work, we introduce a sentence-level corpus for stance detection focused on three core financial metrics: debt, earnings per share (EPS), and sales. The sentences were extracted from Form 10-K annual reports and ECTs, and labeled for stance (positive, negative, neutral) using the advanced ChatGPT-o3-pro model under rigorous human validation. Using this corpus, we conduct a systematic evaluation of modern large language models (LLMs) using zero-shot, few-shot, and Chain-of-Thought (CoT) prompting strategies. Our results show that few-shot with CoT prompting performs best compared to supervised baselines, and LLMs' performance varies across the SEC and ECT datasets. Our findings highlight the practical viability of leveraging LLMs for target-specific stance in the financial domain without requiring extensive labeled data.
☆ BrowseConf: Confidence-Guided Test-Time Scaling for Web Agents
Confidence in LLMs is a useful indicator of model uncertainty and answer reliability. Existing work mainly focused on single-turn scenarios, while research on confidence in complex multi-turn interactions is limited. In this paper, we investigate whether LLM-based search agents have the ability to communicate their own confidence through verbalized confidence scores after long sequences of actions, a significantly more challenging task compared to outputting confidence in a single interaction. Experimenting on open-source agentic models, we first find that models exhibit much higher task accuracy at high confidence while having near-zero accuracy when confidence is low. Based on this observation, we propose Test-Time Scaling (TTS) methods that use confidence scores to determine answer quality, encourage the model to try again until reaching a satisfactory confidence level. Results show that our proposed methods significantly reduce token consumption while demonstrating competitive performance compared to baseline fixed budget TTS methods.
comment: 25 pages
☆ Omni-Reward: Towards Generalist Omni-Modal Reward Modeling with Free-Form Preferences
Reward models (RMs) play a critical role in aligning AI behaviors with human preferences, yet they face two fundamental challenges: (1) Modality Imbalance, where most RMs are mainly focused on text and image modalities, offering limited support for video, audio, and other modalities; and (2) Preference Rigidity, where training on fixed binary preference pairs fails to capture the complexity and diversity of personalized preferences. To address the above challenges, we propose Omni-Reward, a step toward generalist omni-modal reward modeling with support for free-form preferences, consisting of: (1) Evaluation: We introduce Omni-RewardBench, the first omni-modal RM benchmark with free-form preferences, covering nine tasks across five modalities including text, image, video, audio, and 3D; (2) Data: We construct Omni-RewardData, a multimodal preference dataset comprising 248K general preference pairs and 69K instruction-tuning pairs for training generalist omni-modal RMs; (3) Model: We propose Omni-RewardModel, which includes both discriminative and generative RMs, and achieves strong performance on Omni-RewardBench as well as other widely used reward modeling benchmarks.
comment: 48 pages, 17 figures
☆ A Neuro-Symbolic Multi-Agent Approach to Legal-Cybersecurity Knowledge Integration
The growing intersection of cybersecurity and law creates a complex information space where traditional legal research tools struggle to deal with nuanced connections between cases, statutes, and technical vulnerabilities. This knowledge divide hinders collaboration between legal experts and cybersecurity professionals. To address this important gap, this work provides a first step towards intelligent systems capable of navigating the increasingly intricate cyber-legal domain. We demonstrate promising initial results on multilingual tasks.
comment: 7 pages
☆ EMTSF:Extraordinary Mixture of SOTA Models for Time Series Forecasting
The immense success of the Transformer architecture in Natural Language Processing has led to its adoption in Time Se ries Forecasting (TSF), where superior performance has been shown. However, a recent important paper questioned their effectiveness by demonstrating that a simple single layer linear model outperforms Transformer-based models. This was soon shown to be not as valid, by a better transformer-based model termed PatchTST. More re cently, TimeLLM demonstrated even better results by repurposing a Large Language Model (LLM) for the TSF domain. Again, a follow up paper challenged this by demonstrating that removing the LLM component or replacing it with a basic attention layer in fact yields better performance. One of the challenges in forecasting is the fact that TSF data favors the more recent past, and is sometimes subject to unpredictable events. Based upon these recent insights in TSF, we propose a strong Mixture of Experts (MoE) framework. Our method combines the state-of-the-art (SOTA) models including xLSTM, en hanced Linear, PatchTST, and minGRU, among others. This set of complimentary and diverse models for TSF are integrated in a Trans former based MoE gating network. Our proposed model outperforms all existing TSF models on standard benchmarks, surpassing even the latest approaches based on MoE frameworks.
☆ Detecting Religious Language in Climate Discourse
Religious language continues to permeate contemporary discourse, even in ostensibly secular domains such as environmental activism and climate change debates. This paper investigates how explicit and implicit forms of religious language appear in climate-related texts produced by secular and religious nongovernmental organizations (NGOs). We introduce a dual methodological approach: a rule-based model using a hierarchical tree of religious terms derived from ecotheology literature, and large language models (LLMs) operating in a zero-shot setting. Using a dataset of more than 880,000 sentences, we compare how these methods detect religious language and analyze points of agreement and divergence. The results show that the rule-based method consistently labels more sentences as religious than LLMs. These findings highlight not only the methodological challenges of computationally detecting religious language but also the broader tension over whether religious language should be defined by vocabulary alone or by contextual meaning. This study contributes to digital methods in religious studies by demonstrating both the potential and the limitations of approaches for analyzing how the sacred persists in climate discourse.
☆ How AI Forecasts AI Jobs: Benchmarking LLM Predictions of Labor Market Changes
Artificial intelligence is reshaping labor markets, yet we lack tools to systematically forecast its effects on employment. This paper introduces a benchmark for evaluating how well large language models (LLMs) can anticipate changes in job demand, especially in occupations affected by AI. Existing research has shown that LLMs can extract sentiment, summarize economic reports, and emulate forecaster behavior, but little work has assessed their use for forward-looking labor prediction. Our benchmark combines two complementary datasets: a high-frequency index of sector-level job postings in the United States, and a global dataset of projected occupational changes due to AI adoption. We format these data into forecasting tasks with clear temporal splits, minimizing the risk of information leakage. We then evaluate LLMs using multiple prompting strategies, comparing task-scaffolded, persona-driven, and hybrid approaches across model families. We assess both quantitative accuracy and qualitative consistency over time. Results show that structured task prompts consistently improve forecast stability, while persona prompts offer advantages on short-term trends. However, performance varies significantly across sectors and horizons, highlighting the need for domain-aware prompting and rigorous evaluation protocols. By releasing our benchmark, we aim to support future research on labor forecasting, prompt design, and LLM-based economic reasoning. This work contributes to a growing body of research on how LLMs interact with real-world economic data, and provides a reproducible testbed for studying the limits and opportunities of AI as a forecasting tool in the context of labor markets.
comment: 8 pages + Limitations + References
☆ LightKGG: Simple and Efficient Knowledge Graph Generation from Textual Data
The scarcity of high-quality knowledge graphs (KGs) remains a critical bottleneck for downstream AI applications, as existing extraction methods rely heavily on error-prone pattern-matching techniques or resource-intensive large language models (LLMs). While recent tools leverage LLMs to generate KGs, their computational demands limit accessibility for low-resource environments. Our paper introduces LightKGG, a novel framework that enables efficient KG extraction from textual data using small-scale language models (SLMs) through two key technical innovations: (1) Context-integrated Graph extraction integrates contextual information with nodes and edges into a unified graph structure, reducing the reliance on complex semantic processing while maintaining more key information; (2) Topology-enhanced relationship inference leverages the inherent topology of the extracted graph to efficiently infer relationships, enabling relationship discovery without relying on complex language understanding capabilities of LLMs. By enabling accurate KG construction with minimal hardware requirements, this work bridges the gap between automated knowledge extraction and practical deployment scenarios while introducing scientifically rigorous methods for optimizing SLM efficiency in structured NLP tasks.
☆ Planning Ahead with RSA: Efficient Signalling in Dynamic Environments by Projecting User Awareness across Future Timesteps
Adaptive agent design offers a way to improve human-AI collaboration on time-sensitive tasks in rapidly changing environments. In such cases, to ensure the human maintains an accurate understanding of critical task elements, an assistive agent must not only identify the highest priority information but also estimate how and when this information can be communicated most effectively, given that human attention represents a zero-sum cognitive resource where focus on one message diminishes awareness of other or upcoming information. We introduce a theoretical framework for adaptive signalling which meets these challenges by using principles of rational communication, formalised as Bayesian reference resolution using the Rational Speech Act (RSA) modelling framework, to plan a sequence of messages which optimise timely alignment between user belief and a dynamic environment. The agent adapts message specificity and timing to the particulars of a user and scenario based on projections of how prior-guided interpretation of messages will influence attention to the interface and subsequent belief update, across several timesteps out to a fixed horizon. In a comparison to baseline methods, we show that this effectiveness depends crucially on combining multi-step planning with a realistic model of user awareness. As the first application of RSA for communication in a dynamic environment, and for human-AI interaction in general, we establish theoretical foundations for pragmatic communication in human-agent teams, highlighting how insights from cognitive science can be capitalised to inform the design of assistive agents.
comment: 11 pages, 3 figures
☆ BaZi-Based Character Simulation Benchmark: Evaluating AI on Temporal and Persona Reasoning
Human-like virtual characters are crucial for games, storytelling, and virtual reality, yet current methods rely heavily on annotated data or handcrafted persona prompts, making it difficult to scale up and generate realistic, contextually coherent personas. We create the first QA dataset for BaZi-based persona reasoning, where real human experiences categorized into wealth, health, kinship, career, and relationships are represented as life-event questions and answers. Furthermore, we propose the first BaZi-LLM system that integrates symbolic reasoning with large language models to generate temporally dynamic and fine-grained virtual personas. Compared with mainstream LLMs such as DeepSeek-v3 and GPT-5-mini, our method achieves a 30.3%-62.6% accuracy improvement. In addition, when incorrect BaZi information is used, our model's accuracy drops by 20%-45%, showing the potential of culturally grounded symbolic-LLM integration for realistic character simulation.
☆ Adaptive Blockwise Search: Inference-Time Alignment for Large Language Models
LLM alignment remains a critical challenge. Inference-time methods provide a flexible alternative to fine-tuning, but their uniform computational effort often yields suboptimal alignment. We hypothesize that for many alignment tasks, the initial tokens of a response are disproportionately more critical. To leverage this principle, we introduce AdaSearch, a novel blockwise search strategy. It adaptively allocates a fixed computational budget using a sampling schedule, focusing search effort on these critical tokens. We apply AdaSearch to sequential decoding and introduce its tree-search counterpart, AdaBeam. Our comprehensive evaluation across eight LLMs demonstrates that AdaSearch outperforms strong Best-of-N and fine-tuning baselines. Specifically, win-rates improve by over 10% for harmlessness generation, controlled sentiment generation, and for mathematical reasoning tasks relative to Best-of-N.
☆ LibriConvo: Simulating Conversations from Read Literature for ASR and Diarization LREC 2026
We introduce LibriConvo, a simulated multi-speaker conversational dataset based on speaker-aware conversation simulation (SASC), designed to support training and evaluation of speaker diarization and automatic speech recognition (ASR) systems. Unlike prior resources that mostly rely on semantically disconnected utterances and implausible temporal gaps, LibriConvo ensures semantic coherence and realistic conversational timing. Our pipeline leverages CallHome with external VAD for reliable boundaries, applies compression to reduce unnaturally long silences, and organizes LibriTTS utterances by book to maintain contextual consistency. Acoustic realism is enhanced via a novel room impulse response selection procedure that ranks speaker-microphone configurations by spatial plausibility, balancing realism and diversity. The dataset comprises 240.1 hours across 1,496 dialogues with 830 unique speakers, split in a speaker-disjoint manner for robust evaluation. Baselines show that the sortformer model outperforms the pyannote pipeline in diarization, while a fine-tuned Fast Conformer-CTC XLarge with Serialized Output Training achieves 7.29\% WER for ASR, surpassing zero-shot Whisper-large-v3. LibriConvo provides a valuable resource for advancing multi-speaker speech processing research with realistic conversational dynamics and controlled experimental conditions.
comment: Submitted to LREC 2026
☆ Arabic Little STT: Arabic Children Speech Recognition Dataset
The performance of Artificial Intelligence (AI) systems fundamentally depends on high-quality training data. However, low-resource languages like Arabic suffer from severe data scarcity. Moreover, the absence of child-specific speech corpora is an essential gap that poses significant challenges. To address this gap, we present our created dataset, Arabic Little STT, a dataset of Levantine Arabic child speech recorded in classrooms, containing 355 utterances from 288 children (ages 6 - 13). We further conduct a systematic assessment of Whisper, a state-of-the-art automatic speech recognition (ASR) model, on this dataset and compare its performance with adult Arabic benchmarks. Our evaluation across eight Whisper variants reveals that even the best-performing model (Large_v3) struggles significantly, achieving a 0.66 word error rate (WER) on child speech, starkly contrasting with its sub 0.20 WER on adult datasets. These results align with other research on English speech. Results highlight the critical need for dedicated child speech benchmarks and inclusive training data in ASR development. Emphasizing that such data must be governed by strict ethical and privacy frameworks to protect sensitive child information. We hope that this study provides an initial step for future work on equitable speech technologies for Arabic-speaking children. We hope that our publicly available dataset enrich the children's demographic representation in ASR datasets.
☆ DCMM-SQL: Automated Data-Centric Pipeline and Multi-Model Collaboration Training for Text-to-SQL Model
Text-to-SQL tasks have gained attractive improvements since the release of ChatGPT. Among them, agent-based frameworks have been widely used in this field. However, the impact of data-centric strategies on text-to-SQL tasks has rarely been explored. In this paper, we systemically design a fully automated data-centric pipeline for text-to-SQL tasks, including \emph{adaptive data repair}, which can automatically find and fix errors in the training dataset; and \emph{error data augmentation}, where we specifically diffuse and enhance erroneous data predicted by the initially trained models. Meanwhile, we propose a Multi-Model collaboration training schema, aiming to train multiple models with different augmented data, enabling them to possess distinct capabilities and work together to complement each other, because it has been found that the capability of a single fine-tuned model is very limited. Furthermore, we utilize an ensemble strategy to integrate the capabilities of multiple models to solve a multiple-choice question, aiming to further improve the accuracy of text-to-SQL tasks. The experiment results and ablation study have demonstrated the effectiveness of data-centric pipeline and Multi-Model(MM) interactive iterative strategies, achieving first place in lightweight text-to-SQL models (within 70B).
☆ A Cocktail-Party Benchmark: Multi-Modal dataset and Comparative Evaluation Results ICASSP 2026
We introduce the task of Multi-Modal Context-Aware Recognition (MCoRec) in the ninth CHiME Challenge, which addresses the cocktail-party problem of overlapping conversations in a single-room setting using audio, visual, and contextual cues. MCoRec captures natural multi-party conversations where the recordings focus on unscripted, casual group chats, leading to extreme speech overlap of up to 100% and highly fragmented conversational turns. The task requires systems to answer the question "Who speaks when, what, and with whom?" by jointly transcribing each speaker's speech and clustering them into their respective conversations from audio-visual recordings. Audio-only baselines exceed 100% word error rate, whereas incorporating visual cues yields substantial 50% improvements, highlighting the importance of multi-modality. In this manuscript, we present the motivation behind the task, outline the data collection process, and report the baseline systems developed for the MCoRec.
comment: Submitted to ICASSP 2026
☆ Code Aesthetics with Agentic Reward Feedback
Large Language Models (LLMs) have become valuable assistants for developers in code-related tasks. While LLMs excel at traditional programming tasks such as code generation and bug fixing, they struggle with visually-oriented coding tasks, often producing suboptimal aesthetics. In this paper, we introduce a new pipeline to enhance the aesthetic quality of LLM-generated code. We first construct AesCode-358K, a large-scale instruction-tuning dataset focused on code aesthetics. Next, we propose agentic reward feedback, a multi-agent system that evaluates executability, static aesthetics, and interactive aesthetics. Building on this, we develop GRPO-AR, which integrates these signals into the GRPO algorithm for joint optimization of functionality and code aesthetics. Finally, we develop OpenDesign, a benchmark for assessing code aesthetics. Experimental results show that combining supervised fine-tuning on AesCode-358K with reinforcement learning using agentic reward feedback significantly improves performance on OpenDesign and also enhances results on existing benchmarks such as PandasPlotBench. Notably, our AesCoder-4B surpasses GPT-4o and GPT-4.1, and achieves performance comparable to large open-source models with 480B-685B parameters, underscoring the effectiveness of our approach.
comment: 30 pages, 7 figures
☆ Mubeen AI: A Specialized Arabic Language Model for Heritage Preservation and User Intent Understanding
Mubeen is a proprietary Arabic language model developed by MASARAT SA, optimized for deep understanding of Arabic linguistics, Islamic studies, and cultural heritage. Trained on an extensive collection of authentic Arabic sources significantly expanded by digitizing historical manuscripts via a proprietary Arabic OCR engine, the model incorporates seminal scholarly works in linguistics, jurisprudence, hadith, and Quranic exegesis, alongside thousands of academic theses and peer-reviewed research papers. Conditioned through a deep linguistic engineering framework, Mubeen masters not just the meaning but the eloquence of Arabic, enabling precise understanding across classical texts, contemporary writing, and regional dialects with focus on comprehending user intent and delivering accurate, contextually relevant responses. Unlike other Arabic models relying on translated English data that often fail in intent detection or retrieval-augmented generation (RAG), Mubeen uses native Arabic sources to ensure cultural authenticity and accuracy. Its core innovation is the Practical Closure Architecture, designed to solve the "Utility Gap Crisis" where factually correct answers fail to resolve users' core needs, forcing them into frustrating cycles of re-prompting. By prioritizing clarity and decisive guidance, Mubeen transforms from an information repository into a decisive guide, aligning with Saudi Vision 2030. The model's architecture combines deep heritage specialization with multi-disciplinary expert modules, enabling robust performance across both cultural preservation and general knowledge domains.
comment: 21 pages, 2 figures, 3 tables. Includes appendices on ethical guidelines and training framework. Submitted September 04, 2025
☆ Are ASR foundation models generalized enough to capture features of regional dialects for low-resource languages? AACL
Conventional research on speech recognition modeling relies on the canonical form for most low-resource languages while automatic speech recognition (ASR) for regional dialects is treated as a fine-tuning task. To investigate the effects of dialectal variations on ASR we develop a 78-hour annotated Bengali Speech-to-Text (STT) corpus named Ben-10. Investigation from linguistic and data-driven perspectives shows that speech foundation models struggle heavily in regional dialect ASR, both in zero-shot and fine-tuned settings. We observe that all deep learning methods struggle to model speech data under dialectal variations but dialect specific model training alleviates the issue. Our dataset also serves as a out of-distribution (OOD) resource for ASR modeling under constrained resources in ASR algorithms. The dataset and code developed for this project are publicly available
comment: This manuscript contains 11 pages, 5 tables and 16 figures This was accepted at International Joint Conference on Natural Language Processing & Asia-Pacific Chapter of the Association for Computational Linguistics (IJCNLP-AACL) 2025
☆ Process Reward Models for Sentence-Level Verification of LVLM Radiology Reports
Automating radiology report generation with Large Vision-Language Models (LVLMs) holds great potential, yet these models often produce clinically critical hallucinations, posing serious risks. Existing hallucination detection methods frequently lack the necessary sentence-level granularity or robust generalization across different LVLM generators. We introduce a novel approach: a sentence-level Process Reward Model (PRM) adapted for this vision-language task. Our PRM predicts the factual correctness of each generated sentence, conditioned on clinical context and preceding text. When fine-tuned on MIMIC-CXR with weakly-supervised labels, a lightweight 0.5B-parameter PRM outperforms existing verification techniques, demonstrating, for instance, relative improvements of 7.5% in Matthews Correlation Coefficient and 1.8% in AUROC over strong white-box baselines on outputs from one LVLM. Unlike methods reliant on internal model states, our PRM demonstrates strong generalization to an unseen LVLM. We further show its practical utility: PRM scores effectively filter low-quality reports, improving F1-CheXbert scores by 4.5% (when discarding the worst 10% of reports). Moreover, when guiding a novel weighted best-of-N selection process on the MIMIC-CXR test set, our PRM show relative improvements in clinical metrics of 7.4% for F1-CheXbert and 0.6% for BERTScore. These results demonstrate that a lightweight, context-aware PRM provides a model-agnostic safety layer for clinical LVLMs without access to internal activations
☆ PTPP-Aware Adaptation Scaling Laws: Predicting Domain-Adaptation Performance at Unseen Pre-Training Budgets
Continual pre-training (CPT) for domain adaptation must balance target-domain gains with stability on the base domain. Existing CPT scaling laws typically assume a fixed pre-training budget, which limits their ability to forecast adaptation outcomes for models trained at different tokens-per-parameter (PTPP). We present \emph{PTPP-aware} adaptation scaling laws that make the pre-training budget an explicit variable, enabling accurate \emph{prediction} of adaptation loss at unseen \ptpp. On a multilingual setup (English/Arabic $\rightarrow$ French), PTPP-aware formulations trained on early stages (\ptpp{}=\{15,31\}) predict target loss at \ptpp{}=279 and outperform a PTPP-agnostic \dcpt{} transfer baseline on metrics (Huber-on-log, MAE$_\mathrm{rel}$, calibration slope); full diagnostics (RMSE, MAPE) are in the appendix. Beyond forecasting, we show a practical use case: planning replay ratios and adaptation token budgets that satisfy target and forgetting constraints under compute limits.
☆ DREaM: Drug-Drug Relation Extraction via Transfer Learning Method
Relation extraction between drugs plays a crucial role in identifying drug drug interactions and predicting side effects. The advancement of machine learning methods in relation extraction, along with the development of large medical text databases, has enabled the low cost extraction of such relations compared to other approaches that typically require expert knowledge. However, to the best of our knowledge, there are limited datasets specifically designed for drug drug relation extraction currently available. Therefore, employing transfer learning becomes necessary to apply machine learning methods in this domain. In this study, we propose DREAM, a method that first employs a trained relation extraction model to discover relations between entities and then applies this model to a corpus of medical texts to construct an ontology of drug relationships. The extracted relations are subsequently validated using a large language model. Quantitative results indicate that the LLM agreed with 71 of the relations extracted from a subset of PubMed abstracts. Furthermore, our qualitative analysis indicates that this approach can uncover ambiguities in the medical domain, highlighting the challenges inherent in relation extraction in this field.
☆ SI-Bench: Benchmarking Social Intelligence of Large Language Models in Human-to-Human Conversations
As large language models (LLMs) develop anthropomorphic abilities, they are increasingly being deployed as autonomous agents to interact with humans. However, evaluating their performance in realistic and complex social interactions remains a significant challenge. Most previous research built datasets through simulated agent-to-agent interactions, which fails to capture the authentic linguistic styles and relational dynamics found in real human conversations. To address this gap, we introduce SI-Bench, a novel benchmark designed to evaluate aspects of social intelligence in LLMs. Grounded in broad social science theories, SI-Bench contains 2,221 authentic multi-turn dialogues collected from a social networking application. We further selected a subset of 312 dialogues for manual annotation across 8 major models. The experiments show that SOTA models have surpassed the human expert in process reasoning under complex social situations, yet they still fall behind humans in reply quality. Moreover, introducing Chain-of-Thought (CoT) reasoning may degrade the performance of LLMs in social dialogue tasks. All datasets are openly available at https://github.com/SI-Bench/SI-Bench.git.
comment: 17 pages, 9 figures
☆ MATCH: Task-Driven Code Evaluation through Contrastive Learning
AI-based code generation is increasingly prevalent, with GitHub Copilot estimated to generate 46% of the code on GitHub. Accurately evaluating how well generated code aligns with developer intent remains a critical challenge. Traditional evaluation methods, such as unit tests, are often unscalable and costly. Syntactic similarity metrics (e.g., BLEU, ROUGE) fail to capture code functionality, and metrics like CodeBERTScore require reference code, which is not always available. To address the gap in reference-free evaluation, with few alternatives such as ICE-Score, this paper introduces MATCH, a novel reference-free metric. MATCH uses Contrastive Learning to generate meaningful embeddings for code and natural language task descriptions, enabling similarity scoring that reflects how well generated code implements the task. We show that MATCH achieves stronger correlations with functional correctness and human preference than existing metrics across multiple programming languages.
☆ Beyond Direct Generation: A Decomposed Approach to Well-Crafted Screenwriting with LLMs
The screenplay serves as the foundation for television production, defining narrative structure, character development, and dialogue. While Large Language Models (LLMs) show great potential in creative writing, direct end-to-end generation approaches often fail to produce well-crafted screenplays. We argue this failure stems from forcing a single model to simultaneously master two disparate capabilities: creative narrative construction and rigid format adherence. The resulting outputs may mimic superficial style but lack the deep structural integrity and storytelling substance required for professional use. To enable LLMs to generate high-quality screenplays, we introduce Dual-Stage Refinement (DSR), a decomposed framework that decouples creative narrative generation from format conversion. The first stage transforms a brief outline into rich, novel-style prose. The second stage refines this narrative into a professionally formatted screenplay. This separation enables the model to specialize in one distinct capability at each stage. A key challenge in implementing DSR is the scarcity of paired outline-to-novel training data. We address this through hybrid data synthesis: reverse synthesis deconstructs existing screenplays into structured inputs, while forward synthesis leverages these inputs to generate high-quality narrative texts as training targets. Blind evaluations by professional screenwriters show that DSR achieves a 75% win rate against strong baselines like Gemini-2.5-Pro and reaches 82.7% of human-level performance. Our work demonstrates that decomposed generation architecture with tailored data synthesis effectively specializes LLMs in complex creative domains.
☆ ENTP: Enhancing Low-Quality SFT Data via Neural-Symbolic Text Purge-Mix
Supervised Fine-Tuning (SFT) adapts pre-trained Large Language Models (LLMs) to domain-specific instructions by training on a carefully curated subset of high-quality instruction-response pairs, typically drawn from a larger dataset that often contains many low-quality or noisy samples. However, existing quality-first paradigms often overlook valuable signals in discarded low-quality data and rely on imperfect quality filters. We introduce ENTP (Enhancing low-quality SFT data via Neural-symbolic Text Purge-Mix), a framework that revitalizes low-quality corpora through symbolic purification and neural reconstruction. The symbolic module identifies and prunes noisy samples based on statistical priors, while the neural component synthesizes enriched instruction-response pairs by leveraging latent representations and model knowledge. This neural-symbolic synergy enhances data informativeness and diversity. Experiments show that ENTP-augmented datasets, constructed exclusively from low-quality data, outperform 13 established data-selection baselines across five instruction-following benchmarks, and even surpass fine-tuning on the full original dataset (approximately 300K examples). Our results highlight the untapped potential of low-quality data and underscore the importance of intelligent purification and synthesis for efficient instruction alignment.
☆ Rethinking GSPO: The Perplexity-Entropy Equivalence
We provide a new perspective on GSPO's length-normalized importance ratios by establishing their connection to information-theoretic quantities. We show that GSPO's sequence-level weight $s(\theta) = (\pi_\theta/\pi_{\theta_{\text{old}}})^{1/|y|}$ can be equivalently expressed as the inverse perplexity ratio $\text{PPL}_{\theta_{\text{old}}}/\text{PPL}_\theta$ and as the exponential cross-entropy change $\exp(\Delta H)$. While the perplexity-entropy relationship follows from standard definitions, this observation provides a useful lens for understanding GSPO: the algorithm weights policy gradient updates by perplexity ratios, offering an information-theoretic interpretation of the importance weights. This perspective helps explain GSPO's empirical properties, including log-domain variance reduction through geometric averaging and stability in training mixture-of-experts models. We validate the mathematical equivalences and variance predictions through controlled experiments on mathematical reasoning tasks.
comment: 10 pages, 2 figures
☆ Corpus Frequencies in Morphological Inflection: Do They Matter?
The traditional approach to morphological inflection (the task of modifying a base word (lemma) to express grammatical categories) has been, for decades, to consider lexical entries of lemma-tag-form triples uniformly, lacking any information about their frequency distribution. However, in production deployment, one might expect the user inputs to reflect a real-world distribution of frequencies in natural texts. With future deployment in mind, we explore the incorporation of corpus frequency information into the task of morphological inflection along three key dimensions during system development: (i) for train-dev-test split, we combine a lemma-disjoint approach, which evaluates the model's generalization capabilities, with a frequency-weighted strategy to better reflect the realistic distribution of items across different frequency bands in training and test sets; (ii) for evaluation, we complement the standard type accuracy (often referred to simply as accuracy), which treats all items equally regardless of frequency, with token accuracy, which assigns greater weight to frequent words and better approximates performance on running text; (iii) for training data sampling, we introduce a method novel in the context of inflection, frequency-aware training, which explicitly incorporates word frequency into the sampling process. We show that frequency-aware training outperforms uniform sampling in 26 out of 43 languages.
comment: Published in the proceedings of ITAT 2025.15 pages, 1 figure, 4 tables
☆ Beyond Higher Rank: Token-wise Input-Output Projections for Efficient Low-Rank Adaptation NeurIPS 2025
Low-rank adaptation (LoRA) is a parameter-efficient fine-tuning (PEFT) method widely used in large language models (LLMs). LoRA essentially describes the projection of an input space into a low-dimensional output space, with the dimensionality determined by the LoRA rank. In standard LoRA, all input tokens share the same weights and undergo an identical input-output projection. This limits LoRA's ability to capture token-specific information due to the inherent semantic differences among tokens. To address this limitation, we propose Token-wise Projected Low-Rank Adaptation (TopLoRA), which dynamically adjusts LoRA weights according to the input token, thereby learning token-wise input-output projections in an end-to-end manner. Formally, the weights of TopLoRA can be expressed as $B\Sigma_X A$, where $A$ and $B$ are low-rank matrices (as in standard LoRA), and $\Sigma_X$ is a diagonal matrix generated from each input token $X$. Notably, TopLoRA does not increase the rank of LoRA weights but achieves more granular adaptation by learning token-wise LoRA weights (i.e., token-wise input-output projections). Extensive experiments across multiple models and datasets demonstrate that TopLoRA consistently outperforms LoRA and its variants. The code is available at https://github.com/Leopold1423/toplora-neurips25.
comment: Accepted by NeurIPS 2025
☆ Flexing in 73 Languages: A Single Small Model for Multilingual Inflection
We present a compact, single-model approach to multilingual inflection, the task of generating inflected word forms from base lemmas to express grammatical categories. Our model, trained jointly on data from 73 languages, is lightweight, robust to unseen words, and outperforms monolingual baselines in most languages. This demonstrates the effectiveness of multilingual modeling for inflection and highlights its practical benefits: simplifying deployment by eliminating the need to manage and retrain dozens of separate monolingual models. In addition to the standard SIGMORPHON shared task benchmarks, we evaluate our monolingual and multilingual models on 73 Universal Dependencies (UD) treebanks, extracting lemma-tag-form triples and their frequency counts. To ensure realistic data splits, we introduce a novel frequency-weighted, lemma-disjoint train-dev-test resampling procedure. Our work addresses the lack of an open-source, general-purpose, multilingual morphological inflection system capable of handling unseen words across a wide range of languages, including Czech. All code is publicly released at: https://github.com/tomsouri/multilingual-inflection.
comment: Published in the proceedings of TSD 2025. 12 pages, 1 figure, 4 tables
☆ Leveraging Hierarchical Organization for Medical Multi-document Summarization
Medical multi-document summarization (MDS) is a complex task that requires effectively managing cross-document relationships. This paper investigates whether incorporating hierarchical structures in the inputs of MDS can improve a model's ability to organize and contextualize information across documents compared to traditional flat summarization methods. We investigate two ways of incorporating hierarchical organization across three large language models (LLMs), and conduct comprehensive evaluations of the resulting summaries using automated metrics, model-based metrics, and domain expert evaluation of preference, understandability, clarity, complexity, relevance, coverage, factuality, and coherence. Our results show that human experts prefer model-generated summaries over human-written summaries. Hierarchical approaches generally preserve factuality, coverage, and coherence of information, while also increasing human preference for summaries. Additionally, we examine whether simulated judgments from GPT-4 align with human judgments, finding higher agreement along more objective evaluation facets. Our findings demonstrate that hierarchical structures can improve the clarity of medical summaries generated by models while maintaining content coverage, providing a practical way to improve human preference for generated summaries.
☆ MAP4TS: A Multi-Aspect Prompting Framework for Time-Series Forecasting with Large Language Models
Recent advances have investigated the use of pretrained large language models (LLMs) for time-series forecasting by aligning numerical inputs with LLM embedding spaces. However, existing multimodal approaches often overlook the distinct statistical properties and temporal dependencies that are fundamental to time-series data. To bridge this gap, we propose MAP4TS, a novel Multi-Aspect Prompting Framework that explicitly incorporates classical time-series analysis into the prompt design. Our framework introduces four specialized prompt components: a Global Domain Prompt that conveys dataset-level context, a Local Domain Prompt that encodes recent trends and series-specific behaviors, and a pair of Statistical and Temporal Prompts that embed handcrafted insights derived from autocorrelation (ACF), partial autocorrelation (PACF), and Fourier analysis. Multi-Aspect Prompts are combined with raw time-series embeddings and passed through a cross-modality alignment module to produce unified representations, which are then processed by an LLM and projected for final forecasting. Extensive experiments across eight diverse datasets show that MAP4TS consistently outperforms state-of-the-art LLM-based methods. Our ablation studies further reveal that prompt-aware designs significantly enhance performance stability and that GPT-2 backbones, when paired with structured prompts, outperform larger models like LLaMA in long-term forecasting tasks.
☆ A Survey on LLM Mid-training
Recent advances in foundation models have highlighted the significant benefits of multi-stage training, with a particular emphasis on the emergence of mid-training as a vital stage that bridges pre-training and post-training. Mid-training is distinguished by its use of intermediate data and computational resources, systematically enhancing specified capabilities such as mathematics, coding, reasoning, and long-context extension, while maintaining foundational competencies. This survey provides a formal definition of mid-training for large language models (LLMs) and investigates optimization frameworks that encompass data curation, training strategies, and model architecture optimization. We analyze mainstream model implementations in the context of objective-driven interventions, illustrating how mid-training serves as a distinct and critical stage in the progressive development of LLM capabilities. By clarifying the unique contributions of mid-training, this survey offers a comprehensive taxonomy and actionable insights, supporting future research and innovation in the advancement of LLMs.
☆ Fast-MIA: Efficient and Scalable Membership Inference for LLMs
We propose Fast-MIA (https://github.com/Nikkei/fast-mia), a Python library for efficiently evaluating membership inference attacks (MIA) against Large Language Models (LLMs). MIA against LLMs has emerged as a crucial challenge due to growing concerns over copyright, security, and data privacy, and has attracted increasing research attention. However, the progress of this research is significantly hindered by two main obstacles: (1) the high computational cost of inference in LLMs, and (2) the lack of standardized and maintained implementations of MIA methods, which makes large-scale empirical comparison difficult. To address these challenges, our library provides fast batch inference and includes implementations of representative MIA methods under a unified evaluation framework. This library supports easy implementation of reproducible benchmarks with simple configuration and extensibility. We release Fast-MIA as an open-source (Apache License 2.0) tool to support scalable and transparent research on LLMs.
☆ Quality-Aware Translation Tagging in Multilingual RAG system EMNLP 2025
Multilingual Retrieval-Augmented Generation (mRAG) often retrieves English documents and translates them into the query language for low-resource settings. However, poor translation quality degrades response generation performance. Existing approaches either assume sufficient translation quality or utilize the rewriting method, which introduces factual distortion and hallucinations. To mitigate these problems, we propose Quality-Aware Translation Tagging in mRAG (QTT-RAG), which explicitly evaluates translation quality along three dimensions-semantic equivalence, grammatical accuracy, and naturalness&fluency-and attach these scores as metadata without altering the original content. We evaluate QTT-RAG against CrossRAG and DKM-RAG as baselines in two open-domain QA benchmarks (XORQA, MKQA) using six instruction-tuned LLMs ranging from 2.4B to 14B parameters, covering two low-resource languages (Korean and Finnish) and one high-resource language (Chinese). QTT-RAG outperforms the baselines by preserving factual integrity while enabling generator models to make informed decisions based on translation reliability. This approach allows for effective usage of cross-lingual documents in low-resource settings with limited native language documents, offering a practical and robust solution across multilingual domains.
comment: EMNLP 2025 MRL Workshop
☆ Knocking-Heads Attention
Multi-head attention (MHA) has become the cornerstone of modern large language models, enhancing representational capacity through parallel attention heads. However, increasing the number of heads inherently weakens individual head capacity, and existing attention mechanisms - whether standard MHA or its variants like grouped-query attention (GQA) and grouped-tied attention (GTA) - simply concatenate outputs from isolated heads without strong interaction. To address this limitation, we propose knocking-heads attention (KHA), which enables attention heads to "knock" on each other - facilitating cross-head feature-level interactions before the scaled dot-product attention. This is achieved by applying a shared, diagonally-initialized projection matrix across all heads. The diagonal initialization preserves head-specific specialization at the start of training while allowing the model to progressively learn integrated cross-head representations. KHA adds only minimal parameters and FLOPs and can be seamlessly integrated into MHA, GQA, GTA, and other attention variants. We validate KHA by training a 6.1B parameter MoE model (1.01B activated) on 1T high-quality tokens. Compared to baseline attention mechanisms, KHA brings superior and more stable training dynamics, achieving better performance across downstream tasks.
☆ Incentivizing Agentic Reasoning in LLM Judges via Tool-Integrated Reinforcement Learning
Large Language Models (LLMs) are widely used as judges to evaluate response quality, providing a scalable alternative to human evaluation. However, most LLM judges operate solely on intrinsic text-based reasoning, limiting their ability to verify complex constraints or perform accurate computation. Motivated by the success of tool-integrated reasoning (TIR) in numerous tasks, we propose TIR-Judge, an end-to-end RL framework for training LLM judges that integrates a code executor for precise evaluation. TIR-Judge is built on three principles: (i) diverse training across verifiable and non-verifiable domains, (ii) flexible judgment formats (pointwise, pairwise, listwise), and (iii) iterative RL that bootstraps directly from the initial model without distillation. On seven public benchmarks, TIR-Judge surpasses strong reasoning-based judges by up to 6.4% (pointwise) and 7.7% (pairwise), and achieves listwise performance comparable to Claude-Opus-4 despite having only 8B parameters. Remarkably, TIR-Judge-Zero - trained entirely without distilled judge trajectories, matches the performance of distilled variants, demonstrating that tool-augmented judges can self-evolve through iterative reinforcement learning.
comment: Work in Progress
☆ Towards Stable and Effective Reinforcement Learning for Mixture-of-Experts
Recent advances in reinforcement learning (RL) have substantially improved the training of large-scale language models, leading to significant gains in generation quality and reasoning ability. However, most existing research focuses on dense models, while RL training for Mixture-of-Experts (MoE) architectures remains underexplored. To address the instability commonly observed in MoE training, we propose a novel router-aware approach to optimize importance sampling (IS) weights in off-policy RL. Specifically, we design a rescaling strategy guided by router logits, which effectively reduces gradient variance and mitigates training divergence. Experimental results demonstrate that our method significantly improves both the convergence stability and the final performance of MoE models, highlighting the potential of RL algorithmic innovations tailored to MoE architectures and providing a promising direction for efficient training of large-scale expert models.
☆ UniAIDet: A Unified and Universal Benchmark for AI-Generated Image Content Detection and Localization
With the rapid proliferation of image generative models, the authenticity of digital images has become a significant concern. While existing studies have proposed various methods for detecting AI-generated content, current benchmarks are limited in their coverage of diverse generative models and image categories, often overlooking end-to-end image editing and artistic images. To address these limitations, we introduce UniAIDet, a unified and comprehensive benchmark that includes both photographic and artistic images. UniAIDet covers a wide range of generative models, including text-to-image, image-to-image, image inpainting, image editing, and deepfake models. Using UniAIDet, we conduct a comprehensive evaluation of various detection methods and answer three key research questions regarding generalization capability and the relation between detection and localization. Our benchmark and analysis provide a robust foundation for future research.
☆ M$^{3}$T2IBench: A Large-Scale Multi-Category, Multi-Instance, Multi-Relation Text-to-Image Benchmark
Text-to-image models are known to struggle with generating images that perfectly align with textual prompts. Several previous studies have focused on evaluating image-text alignment in text-to-image generation. However, these evaluations either address overly simple scenarios, especially overlooking the difficulty of prompts with multiple different instances belonging to the same category, or they introduce metrics that do not correlate well with human evaluation. In this study, we introduce M$^3$T2IBench, a large-scale, multi-category, multi-instance, multi-relation along with an object-detection-based evaluation metric, $AlignScore$, which aligns closely with human evaluation. Our findings reveal that current open-source text-to-image models perform poorly on this challenging benchmark. Additionally, we propose the Revise-Then-Enforce approach to enhance image-text alignment. This training-free post-editing method demonstrates improvements in image-text alignment across a broad range of diffusion models. \footnote{Our code and data has been released in supplementary material and will be made publicly available after the paper is accepted.}
☆ LangLingual: A Personalised, Exercise-oriented English Language Learning Tool Leveraging Large Language Models
Language educators strive to create a rich experience for learners, while they may be restricted in the extend of feedback and practice they can provide. We present the design and development of LangLingual, a conversational agent built using the LangChain framework and powered by Large Language Models. The system is specifically designed to provide real-time, grammar-focused feedback, generate context-aware language exercises and track learner proficiency over time. The paper discusses the architecture, implementation and evaluation of LangLingual in detail. The results indicate strong usability, positive learning outcomes and encouraging learner engagement.
comment: 14 pages
☆ Understanding In-Context Learning Beyond Transformers: An Investigation of State Space and Hybrid Architectures
We perform in-depth evaluations of in-context learning (ICL) on state-of-the-art transformer, state-space, and hybrid large language models over two categories of knowledge-based ICL tasks. Using a combination of behavioral probing and intervention-based methods, we have discovered that, while LLMs of different architectures can behave similarly in task performance, their internals could remain different. We discover that function vectors (FVs) responsible for ICL are primarily located in the self-attention and Mamba layers, and speculate that Mamba2 uses a different mechanism from FVs to perform ICL. FVs are more important for ICL involving parametric knowledge retrieval, but not for contextual knowledge understanding. Our work contributes to a more nuanced understanding across architectures and task types. Methodologically, our approach also highlights the importance of combining both behavioural and mechanistic analyses to investigate LLM capabilities.
☆ Can Language Models Compose Skills In-Context?
Composing basic skills from simple tasks to accomplish composite tasks is crucial for modern intelligent systems. We investigate the in-context composition ability of language models to perform composite tasks that combine basic skills demonstrated in in-context examples. This is more challenging than the standard setting, where skills and their composition can be learned in training. We conduct systematic experiments on various representative open-source language models, utilizing linguistic and logical tasks designed to probe composition abilities. The results reveal that simple task examples can have a surprising negative impact on the performance, because the models generally struggle to recognize and assemble the skills correctly, even with Chain-of-Thought examples. Theoretical analysis further shows that it is crucial to align examples with the corresponding steps in the composition. This inspires a method for the probing tasks, whose improved performance provides positive support for our insights.
☆ Measuring Teaching with LLMs
Objective and scalable measurement of teaching quality is a persistent challenge in education. While Large Language Models (LLMs) offer potential, general-purpose models have struggled to reliably apply complex, authentic classroom observation instruments. This paper uses custom LLMs built on sentence-level embeddings, an architecture better suited for the long-form, interpretive nature of classroom transcripts than conventional subword tokenization. We systematically evaluate five different sentence embeddings under a data-efficient training regime designed to prevent overfitting. Our results demonstrate that these specialized models can achieve human-level and even super-human performance with expert human ratings above 0.65 and surpassing the average human-human rater correlation. Further, through analysis of annotation context windows, we find that more advanced models-those better aligned with human judgments-attribute a larger share of score variation to lesson-level features rather than isolated utterances, challenging the sufficiency of single-turn annotation paradigms. Finally, to assess external validity, we find that aggregate model scores align with teacher value-added measures, indicating they are capturing features relevant to student learning. However, this trend does not hold at the individual item level, suggesting that while the models learn useful signals, they have not yet achieved full generalization. This work establishes a viable and powerful new methodology for AI-driven instructional measurement, offering a path toward providing scalable, reliable, and valid feedback for educator development.
☆ MAD-Fact: A Multi-Agent Debate Framework for Long-Form Factuality Evaluation in LLMs
The widespread adoption of Large Language Models (LLMs) raises critical concerns about the factual accuracy of their outputs, especially in high-risk domains such as biomedicine, law, and education. Existing evaluation methods for short texts often fail on long-form content due to complex reasoning chains, intertwined perspectives, and cumulative information. To address this, we propose a systematic approach integrating large-scale long-form datasets, multi-agent verification mechanisms, and weighted evaluation metrics. We construct LongHalluQA, a Chinese long-form factuality dataset; and develop MAD-Fact, a debate-based multi-agent verification system. We introduce a fact importance hierarchy to capture the varying significance of claims in long-form texts. Experiments on two benchmarks show that larger LLMs generally maintain higher factual consistency, while domestic models excel on Chinese content. Our work provides a structured framework for evaluating and enhancing factual reliability in long-form LLM outputs, guiding their safe deployment in sensitive domains.
comment: This article has been accepted by Frontiers of Computer Science (FCS)
☆ Tagging-Augmented Generation: Assisting Language Models in Finding Intricate Knowledge In Long Contexts EMNLP 2025
Recent investigations into effective context lengths of modern flagship large language models (LLMs) have revealed major limitations in effective question answering (QA) and reasoning over long and complex contexts for even the largest and most impressive cadre of models. While approaches like retrieval-augmented generation (RAG) and chunk-based re-ranking attempt to mitigate this issue, they are sensitive to chunking, embedding and retrieval strategies and models, and furthermore, rely on extensive pre-processing, knowledge acquisition and indexing steps. In this paper, we propose Tagging-Augmented Generation (TAG), a lightweight data augmentation strategy that boosts LLM performance in long-context scenarios, without degrading and altering the integrity and composition of retrieved documents. We validate our hypothesis by augmenting two challenging and directly relevant question-answering benchmarks -- NoLima and NovelQA -- and show that tagging the context or even just adding tag definitions into QA prompts leads to consistent performance gains over the baseline -- up to 17% for 32K token contexts, and 2.9% in complex reasoning question-answering for multi-hop queries requiring knowledge across a wide span of text. Additional details are available at https://sites.google.com/view/tag-emnlp.
comment: Paper accepted at EMNLP 2025
☆ Artificial Hivemind: The Open-Ended Homogeneity of Language Models (and Beyond) NeurIPS 2025
Language models (LMs) often struggle to generate diverse, human-like creative content, raising concerns about the long-term homogenization of human thought through repeated exposure to similar outputs. Yet scalable methods for evaluating LM output diversity remain limited, especially beyond narrow tasks such as random number or name generation, or beyond repeated sampling from a single model. We introduce Infinity-Chat, a large-scale dataset of 26K diverse, real-world, open-ended user queries that admit a wide range of plausible answers with no single ground truth. We introduce the first comprehensive taxonomy for characterizing the full spectrum of open-ended prompts posed to LMs, comprising 6 top-level categories (e.g., brainstorm & ideation) that further breaks down to 17 subcategories. Using Infinity-Chat, we present a large-scale study of mode collapse in LMs, revealing a pronounced Artificial Hivemind effect in open-ended generation of LMs, characterized by (1) intra-model repetition, where a single model consistently generates similar responses, and more so (2) inter-model homogeneity, where different models produce strikingly similar outputs. Infinity-Chat also includes 31,250 human annotations, across absolute ratings and pairwise preferences, with 25 independent human annotations per example. This enables studying collective and individual-specific human preferences in response to open-ended queries. Our findings show that LMs, reward models, and LM judges are less well calibrated to human ratings on model generations that elicit differing idiosyncratic annotator preferences, despite maintaining comparable overall quality. Overall, INFINITY-CHAT presents the first large-scale resource for systematically studying real-world open-ended queries to LMs, revealing critical insights to guide future research for mitigating long-term AI safety risks posed by the Artificial Hivemind.
comment: NeurIPS 2025 D&B Paper (Oral); Camera-Ready Version
☆ Language Server CLI Empowers Language Agents with Process Rewards
Large language models routinely hallucinate APIs and mislocalize edits, while language servers compute verified, IDE-grade facts about real code. We present Lanser-CLI, a CLI-first orchestration layer that pins and mediates a Language Server Protocol (LSP) server for coding agents and CI, exposing deterministic, replayable workflows. Our position is that language servers provide not only structural information (definitions, references, types, diagnostics) but also an actionable process reward: machine-checked, step-wise signals that align an agent's planning loop with program reality. In this work, Lanser-CLI contributes: (i) a robust addressing scheme beyond brittle "file:line:col" via a Selector DSL (symbolic, AST-path, and content-anchored selectors) with a principled relocation algorithm; (ii) deterministic Analysis Bundles that normalize Language Server responses and capture environment/capability metadata with stable content hashes; (iii) a safety envelope for mutating operations (rename, code actions) with preview, workspace jails, and Git-aware, transactional apply; and (iv) a process-reward functional derived from Language Server facts (diagnostic deltas, disambiguation confidence, and safe-apply checks) that is computable online and replayable offline. We formalize determinism under frozen snapshots and establish a monotonicity property for the process reward, making it suitable for process supervision and counterfactual analysis. Project Page: https://github.com/yifanzhang-pro/lanser-cli
comment: Project Page: https://github.com/yifanzhang-pro/lanser-cli
☆ Modeling Political Discourse with Sentence-BERT and BERTopic
Social media has reshaped political discourse, offering politicians a platform for direct engagement while reinforcing polarization and ideological divides. This study introduces a novel topic evolution framework that integrates BERTopic-based topic modeling with Moral Foundations Theory (MFT) to analyze the longevity and moral dimensions of political topics in Twitter activity during the 117th U.S. Congress. We propose a methodology for tracking dynamic topic shifts over time and measuring their association with moral values and quantifying topic persistence. Our findings reveal that while overarching themes remain stable, granular topics tend to dissolve rapidly, limiting their long-term influence. Moreover, moral foundations play a critical role in topic longevity, with Care and Loyalty dominating durable topics, while partisan differences manifest in distinct moral framing strategies. This work contributes to the field of social network analysis and computational political discourse by offering a scalable, interpretable approach to understanding moral-driven topic evolution on social media.
comment: 11 pages. Continues previous study by Mendonca M. and Figueira A, 2023: "Analyzing Political Discourse in the 117th U.S. Congress Using Transformer-Based Topic Models", presented at the International Conference on Computational Social Science
☆ Offline Preference Optimization via Maximum Marginal Likelihood Estimation
Aligning Large Language Models (LLMs) with human preferences is crucial, but standard methods like Reinforcement Learning from Human Feedback (RLHF) are often complex and unstable. In this work, we propose a new, simpler approach that recasts alignment through the lens of Maximum Marginal Likelihood (MML) estimation. Our new MML based Preference Optimization (MMPO) maximizes the marginal log-likelihood of a preferred text output, using the preference pair as samples for approximation, and forgoes the need for both an explicit reward model and entropy maximization. We theoretically demonstrate that MMPO implicitly performs preference optimization, producing a weighted gradient that naturally up-weights chosen responses over rejected ones. Across models ranging from 135M to 8B parameters, we empirically show that MMPO: 1) is more stable with respect to the hyperparameter $\beta$ compared to alternative baselines, and 2) achieves competitive or superior preference alignment while better preserving the base model's general language capabilities. Through a series of ablation experiments, we show that this improved performance is indeed attributable to MMPO's implicit preference optimization within the gradient updates.
♻ ☆ Constrained Entropic Unlearning: A Primal-Dual Framework for Large Language Models
Large Language Models (LLMs) deployed in real-world settings increasingly face the need to unlearn sensitive, outdated, or proprietary information. Existing unlearning methods typically formulate forgetting and retention as a regularized trade-off, combining both objectives into a single scalarized loss. This often leads to unstable optimization and degraded performance on retained data, especially under aggressive forgetting. We propose a new formulation of LLM unlearning as a constrained optimization problem: forgetting is enforced via a novel logit-margin flattening loss that explicitly drives the output distribution toward uniformity on a designated forget set, while retention is preserved through a hard constraint on a separate retain set. Compared to entropy-based objectives, our loss is softmax-free, numerically stable, and maintains non-vanishing gradients, enabling more efficient and robust optimization. We solve the constrained problem using a scalable primal-dual algorithm that exposes the trade-off between forgetting and retention through the dynamics of the dual variable, all without any extra computational overhead. Evaluations on the TOFU and MUSE benchmarks across diverse LLM architectures demonstrate that our approach consistently matches or exceeds state-of-the-art baselines, effectively removing targeted information while preserving downstream utility.
comment: The Thirty-Ninth Annual Conference on Neural Information Processing Systems
♻ ☆ LLM4Cell: A Survey of Large Language and Agentic Models for Single-Cell Biology
Large language models (LLMs) and emerging agentic frameworks are beginning to transform single-cell biology by enabling natural-language reasoning, generative annotation, and multimodal data integration. However, progress remains fragmented across data modalities, architectures, and evaluation standards. LLM4Cell presents the first unified survey of 58 foundation and agentic models developed for single-cell research, spanning RNA, ATAC, multi-omic, and spatial modalities. We categorize these methods into five families-foundation, text-bridge, spatial, multimodal, epigenomic, and agentic-and map them to eight key analytical tasks including annotation, trajectory and perturbation modeling, and drug-response prediction. Drawing on over 40 public datasets, we analyze benchmark suitability, data diversity, and ethical or scalability constraints, and evaluate models across 10 domain dimensions covering biological grounding, multi-omics alignment, fairness, privacy, and explainability. By linking datasets, models, and evaluation domains, LLM4Cell provides the first integrated view of language-driven single-cell intelligence and outlines open challenges in interpretability, standardization, and trustworthy model development.
comment: 34 pages, 5 figures, 7 tables
♻ ☆ SafeMERGE: Preserving Safety Alignment in Fine-Tuned Large Language Models via Selective Layer-Wise Model Merging
Fine-tuning large language models (LLMs) is a common practice to adapt generalist models to specialized domains. However, recent studies show that fine-tuning can erode safety alignment, causing LLMs to respond to harmful or unethical prompts. Many methods to realign safety have been proposed, but often introduce custom algorithms that are difficult to implement or compromise task utility. In this work, we propose SafeMERGE, a lightweight, post-fine-tuning framework that preserves safety while maintaining downstream performance. SafeMERGE selectively merges fine-tuned with safety-aligned model layers only when they deviate from safe behavior, measured by a cosine similarity criterion. Across three LLMs and two tasks, SafeMERGE consistently reduces harmful outputs compared to other defenses, with negligible or even positive impact on utility. Our results demonstrate that selective layer-wise merging offers an effective safeguard against the inadvertent loss of safety during fine-tuning, establishing SafeMERGE as a simple post-fine-tuning defense.
♻ ☆ Superficial Self-Improved Reasoners Benefit from Model Merging EMNLP 2025
As scaled language models (LMs) approach human-level reasoning capabilities, self-improvement emerges as a solution to synthesizing high-quality data corpus. While previous research has identified model collapse as a risk in self-improvement, where model outputs become increasingly deterministic, we discover a more fundamental challenge: the superficial self-improved reasoners phenomenon. In particular, our analysis reveals that even when LMs show improved in-domain (ID) reasoning accuracy, they actually compromise their generalized reasoning capabilities on out-of-domain (OOD) tasks due to memorization rather than genuine. Through a systematic investigation of LM architecture, we discover that during self-improvement, LM weight updates are concentrated in less reasoning-critical layers, leading to superficial learning. To address this, we propose Iterative Model Merging (IMM), a method that strategically combines weights from original and self-improved models to preserve generalization while incorporating genuine reasoning improvements. Our approach effectively mitigates both LM collapse and superficial learning, moving towards more stable self-improving systems.
comment: EMNLP 2025
♻ ☆ SafeCOMM: A Study on Safety Degradation in Fine-Tuned Telecom Large Language Models
Fine-tuning large language models (LLMs) on telecom datasets is a common practice to adapt general-purpose models to the telecom domain. However, little attention has been paid to how this process may compromise model safety. Recent research has shown that even benign fine-tuning can degrade the safety alignment of LLMs, causing them to respond to harmful or unethical user queries. In this paper, we investigate this issue by fine-tuning LLMs on three representative telecom datasets and show that safety degrades even for light telecom domain adaptation. To this end, we introduce TeleHarm, the first telecom-specific red-teaming benchmark, which we use alongside established Direct-Harm and HexPhi datasets to systematically assess harmful behavior. We further extend our analysis to publicly available TeleLLMs that were continually pre-trained on large telecom corpora, revealing that safety alignment is severely lacking, primarily due to the omission of safety-focused instruction tuning. To address these issues, we evaluate three realignment defenses: SafeInstruct, SafeLoRA, SafeMERGE. We show that, across all settings, the proposed defenses can effectively restore safety without compromising telecom task performance, leading to Safe teleCOMMunication (SafeCOMM) models. Our work serves as both a diagnostic study and practical guide for safety realignment in telecom-tuned LLMs, underscoring the need for safety-aware instruction and fine-tuning in the telecom domain.
♻ ☆ Fixing It in Post: A Comparative Study of LLM Post-Training Data Quality and Model Performance
Recent work on large language models (LLMs) has increasingly focused on post-training and alignment with datasets curated to enhance instruction following, world knowledge, and specialized skills. However, most post-training datasets used in leading open- and closed-source LLMs remain inaccessible to the public, with limited information about their construction process. This lack of transparency has motivated the recent development of open-source post-training corpora. While training on these open alternatives can yield performance comparable to that of leading models, systematic comparisons remain challenging due to the significant computational cost of conducting them rigorously at scale, and are therefore largely absent. As a result, it remains unclear how specific samples, task types, or curation strategies influence downstream performance when assessing data quality. In this work, we conduct the first comprehensive side-by-side analysis of two prominent open post-training datasets: Tulu-3-SFT-Mix and SmolTalk. Using the Magpie framework, we annotate each sample with detailed quality metrics, including turn structure (single-turn vs. multi-turn), task category, input quality, and response quality, and we derive statistics that reveal structural and qualitative similarities and differences between the two datasets. Based on these insights, we design a principled curation recipe that produces a new data mixture, TuluTalk, which contains 14% fewer samples than either source dataset while matching or exceeding their performance on key benchmarks. Our findings offer actionable insights for constructing more effective post-training datasets that improve model performance within practical resource limits. To support future research, we publicly release both the annotated source datasets and our curated TuluTalk mixture.
♻ ☆ Human-Aligned Faithfulness in Toxicity Explanations of LLMs
The discourse around toxicity and LLMs in NLP largely revolves around detection tasks. This work shifts the focus to evaluating LLMs' reasoning about toxicity -- from their explanations that justify a stance -- to enhance their trustworthiness in downstream tasks. Despite extensive research on explainability, it is not straightforward to adopt existing methods to evaluate free-form toxicity explanation due to their over-reliance on input text perturbations, among other challenges. To account for these, we propose a novel, theoretically-grounded multi-dimensional criterion, Human-Aligned Faithfulness (HAF), that measures the extent to which LLMs' free-form toxicity explanations align with those of a rational human under ideal conditions. We develop six metrics, based on uncertainty quantification, to comprehensively evaluate HAF of LLMs' toxicity explanations with no human involvement, and highlight how "non-ideal" the explanations are. We conduct several experiments on three Llama models (of size up to 70B) and an 8B Ministral model on five diverse toxicity datasets. Our results show that while LLMs generate plausible explanations to simple prompts, their reasoning about toxicity breaks down when prompted about the nuanced relations between the complete set of reasons, the individual reasons, and their toxicity stances, resulting in inconsistent and irrelevant responses. We open-source our code at https://github.com/uofthcdslab/HAF and LLM-generated explanations at https://huggingface.co/collections/uofthcdslab/haf.
comment: 23 pages, 5 figures, 7 tables
♻ ☆ AttentionRAG: Attention-Guided Context Pruning in Retrieval-Augmented Generation
While RAG demonstrates remarkable capabilities in LLM applications, its effectiveness is hindered by the ever-increasing length of retrieved contexts, which introduces information redundancy and substantial computational overhead. Existing context pruning methods, such as LLMLingua, lack contextual awareness and offer limited flexibility in controlling compression rates, often resulting in either insufficient pruning or excessive information loss. In this paper, we propose AttentionRAG, an attention-guided context pruning method for RAG systems. The core idea of AttentionRAG lies in its attention focus mechanism, which reformulates RAG queries into a next-token prediction paradigm. This mechanism isolates the query's semantic focus to a single token, enabling precise and efficient attention calculation between queries and retrieved contexts. Extensive experiments on LongBench and Babilong benchmarks show that AttentionRAG achieves up to 6.3$\times$ context compression while outperforming LLMLingua methods by around 10\% in key metrics.
♻ ☆ Cancer-Myth: Evaluating AI Chatbot on Patient Questions with False Presuppositions
Cancer patients are increasingly turning to large language models (LLMs) for medical information, making it critical to assess how well these models handle complex, personalized questions. However, current medical benchmarks focus on medical exams or consumer-searched questions and do not evaluate LLMs on real patient questions with patient details. In this paper, we first have three hematology-oncology physicians evaluate cancer-related questions drawn from real patients. While LLM responses are generally accurate, the models frequently fail to recognize or address false presuppositions in the questions, posing risks to safe medical decision-making. To study this limitation systematically, we introduce Cancer-Myth, an expert-verified adversarial dataset of 585 cancer-related questions with false presuppositions. On this benchmark, no frontier LLM -- including GPT-5, Gemini-2.5-Pro, and Claude-4-Sonnet -- corrects these false presuppositions more than $43\%$ of the time. To study mitigation strategies, we further construct a 150-question Cancer-Myth-NFP set, in which physicians confirm the absence of false presuppositions. We find typical mitigation strategies, such as adding precautionary prompts with GEPA optimization, can raise accuracy on Cancer-Myth to $80\%$, but at the cost of misidentifying presuppositions in $41\%$ of Cancer-Myth-NFP questions and causing a $10\%$ relative performance drop on other medical benchmarks. These findings highlight a critical gap in the reliability of LLMs, show that prompting alone is not a reliable remedy for false presuppositions, and underscore the need for more robust safeguards in medical AI systems.
♻ ☆ Less is More: Local Intrinsic Dimensions of Contextual Language Models NeurIPS 2025
Understanding the internal mechanisms of large language models (LLMs) remains a challenging and complex endeavor. Even fundamental questions, such as how fine-tuning affects model behavior, often require extensive empirical evaluation. In this paper, we introduce a novel perspective based on the geometric properties of contextual latent embeddings to study the effects of training and fine-tuning. To that end, we measure the local dimensions of a contextual language model's latent space and analyze their shifts during training and fine-tuning. We show that the local dimensions provide insights into the model's training dynamics and generalization ability. Specifically, the mean of the local dimensions predicts when the model's training capabilities are exhausted, as exemplified in a dialogue state tracking task, overfitting, as demonstrated in an emotion recognition task, and grokking, as illustrated with an arithmetic task. Furthermore, our experiments suggest a practical heuristic: reductions in the mean local dimension tend to accompany and predict subsequent performance gains. Through this exploration, we aim to provide practitioners with a deeper understanding of the implications of fine-tuning on embedding spaces, facilitating informed decisions when configuring models for specific applications. The results of this work contribute to the ongoing discourse on the interpretability, adaptability, and generalizability of LLMs by bridging the gap between intrinsic model mechanisms and geometric properties in the respective embeddings.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025; in press). 10 pages, with an additional 17 pages in the appendix. Our code is available at https://github.com/aidos-lab/Topo_LLM_public and https://github.com/aidos-lab/grokking-via-lid
♻ ☆ Computational-Assisted Systematic Review and Meta-Analysis (CASMA): Effect of a Subclass of GnRH-a on Endometriosis Recurrence
Background: Evidence synthesis facilitates evidence-based medicine. This task becomes increasingly difficult to accomplished with applying computational solutions, since the medical literature grows at astonishing rates. Objective: This study evaluates an information retrieval-driven workflow, CASMA, to enhance the efficiency, transparency, and reproducibility of systematic reviews. Endometriosis recurrence serves as the ideal case due to its complex and ambiguous literature. Methods: The hybrid approach integrates PRISMA guidelines with fuzzy matching and regular expression (regex) to facilitate semi-automated deduplication and filtered records before manual screening. The workflow synthesised evidence from randomised controlled trials on the efficacy of a subclass of gonadotropin-releasing hormone agonists (GnRH-a). A modified splitting method addressed unit-of-analysis errors in multi-arm trials. Results: The workflow sharply reduced the screening workload, taking only 11 days to fetch and filter 33,444 records. Seven eligible RCTs were synthesized (841 patients). The pooled random-effects model yielded a Risk Ratio (RR) of $0.64$ ($95\%$ CI $0.48$ to $0.86$), demonstrating a $36\%$ reduction in recurrence, with non-significant heterogeneity ($I^2=0.00\%$, $\tau^2=0.00$). The findings were robust and stable, as they were backed by sensitivity analyses. Conclusion: This study demonstrates an application of an information-retrieval-driven workflow for medical evidence synthesis. The approach yields valuable clinical results and a generalisable framework to scale up the evidence synthesis, bridging the gap between clinical research and computer science.
comment: 15 pages, 12 figures and 4 tables. This work describes an information retrieval-driven workflow for medical evidence synthesis, with an application to endometriosis recurrence. The method can be generalized to other systematic reviews. The preregistered protocol is available: https://doi.org/10.17605/OSF.IO/R2DFA
♻ ☆ How Can We Effectively Expand the Vocabulary of LLMs with 0.01GB of Target Language Text?
Large language models (LLMs) have shown remarkable capabilities in many languages beyond English. Yet, LLMs require more inference steps when generating non-English text due to their reliance on English-centric tokenizers and vocabulary, resulting in higher usage costs to non-English speakers. Vocabulary expansion with target language tokens is a widely used cross-lingual vocabulary adaptation approach to remedy this issue. Despite its effectiveness in inference speedup, previous work on vocabulary expansion has focused on high-resource settings assuming access to a substantial amount of target language data to effectively initialize the embeddings of the new tokens and adapt the LLM to the target language. However, vocabulary expansion in low-resource settings has yet to be explored. In this article, we investigate vocabulary expansion in low-resource settings by considering embedding initialization methods and continual pre-training strategies. Through extensive experiments across typologically diverse languages, tasks and models, we establish a set of strategies to perform vocabulary expansion for faster inference, while striving to maintain competitive downstream performance to baselines. This is achieved with only 30K sentences ($\sim$0.01GB text data) from the target language.
comment: Accepted to Computational Linguistics
♻ ☆ A Data-driven ML Approach for Maximizing Performance in LLM-Adapter Serving
With the rapid adoption of Large Language Models (LLMs), LLM-adapters have become increasingly common, providing lightweight specialization of large-scale models. Serving hundreds or thousands of these adapters on a single GPU allows request aggregation, increasing throughput, but may also cause request starvation if GPU memory limits are exceeded. To address this issue, this study focuses on determining the joint configuration of concurrent and parallel adapters that maximizes GPU throughput without inducing starvation, given heterogeneous adapter and traffic properties. We propose a data-driven ML approach leveraging interpretable models to tackle this caching problem and introduce the first Digital Twin capable of reproducing an LLM-adapter serving system, enabling efficient training data generation. Experiments with the vLLM framework and LoRA adapters show that the Digital Twin reproduces throughput within 5.1% of real results, while the ML approach predicts optimal numbers of concurrent and parallel adapters with an error of at most 7.2% under heterogeneous, real-world workloads.
comment: Accepted in a computer science workshop
♻ ☆ Steering Evaluation-Aware Language Models to Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
♻ ☆ Estimating LLM Consistency: A User Baseline vs Surrogate Metrics EMNLP 2025
Large language models (LLMs) are prone to hallucinations and sensitiveto prompt perturbations, often resulting in inconsistent or unreliablegenerated text. Different methods have been proposed to mitigate suchhallucinations and fragility, one of which is to measure theconsistency of LLM responses -- the model's confidence in the responseor likelihood of generating a similar response when resampled. Inprevious work, measuring LLM response consistency often relied oncalculating the probability of a response appearing within a pool of resampledresponses, analyzing internal states, or evaluating logits of resopnses.However, it was not clear how well theseapproaches approximated users' perceptions of consistency of LLMresponses. To find out, we performed a user study ($n=2,976$)demonstrating that current methods for measuring LLM responseconsistency typically do not align well with humans' perceptions of LLMconsistency. We propose a logit-based ensemble method for estimatingLLM consistency and show that our method matches the performance of thebest-performing existing metric in estimating human ratings of LLMconsistency. Our results suggest that methods for estimating LLMconsistency without human evaluation are sufficiently imperfect towarrant broader use of evaluation with human input; this would avoidmisjudging the adequacy of models because of the imperfections ofautomated consistency metrics.
comment: Published as a main conference paper at EMNLP 2025
♻ ☆ Can Large Language Models Unlock Novel Scientific Research Ideas? EMNLP 2025
The widespread adoption of Large Language Models (LLMs) and publicly available ChatGPT have marked a significant turning point in the integration of Artificial Intelligence (AI) into people's everyday lives. This study examines the ability of Large Language Models (LLMs) to generate future research ideas from scientific papers. Unlike tasks such as summarization or translation, idea generation lacks a clearly defined reference set or structure, making manual evaluation the default standard. However, human evaluation in this setting is extremely challenging ie: it requires substantial domain expertise, contextual understanding of the paper, and awareness of the current research landscape. This makes it time-consuming, costly, and fundamentally non-scalable, particularly as new LLMs are being released at a rapid pace. Currently, there is no automated evaluation metric specifically designed for this task. To address this gap, we propose two automated evaluation metrics: Idea Alignment Score (IAScore) and Idea Distinctness Index. We further conducted human evaluation to assess the novelty, relevance, and feasibility of the generated future research ideas. This investigation offers insights into the evolving role of LLMs in idea generation, highlighting both its capability and limitations. Our work contributes to the ongoing efforts in evaluating and utilizing language models for generating future research ideas. We make our datasets and codes publicly available
comment: EMNLP 2025 (Main)
♻ ☆ ClaimGen-CN: A Large-scale Chinese Dataset for Legal Claim Generation
Legal claims refer to the plaintiff's demands in a case and are essential to guiding judicial reasoning and case resolution. While many works have focused on improving the efficiency of legal professionals, the research on helping non-professionals (e.g., plaintiffs) remains unexplored. This paper explores the problem of legal claim generation based on the given case's facts. First, we construct ClaimGen-CN, the first dataset for Chinese legal claim generation task, from various real-world legal disputes. Additionally, we design an evaluation metric tailored for assessing the generated claims, which encompasses two essential dimensions: factuality and clarity. Building on this, we conduct a comprehensive zero-shot evaluation of state-of-the-art general and legal-domain large language models. Our findings highlight the limitations of the current models in factual precision and expressive clarity, pointing to the need for more targeted development in this domain. To encourage further exploration of this important task, we will make the dataset publicly available.
♻ ☆ Are LLMs Empathetic to All? Investigating the Influence of Multi-Demographic Personas on a Model's Empathy EMNLP 2025
Large Language Models' (LLMs) ability to converse naturally is empowered by their ability to empathetically understand and respond to their users. However, emotional experiences are shaped by demographic and cultural contexts. This raises an important question: Can LLMs demonstrate equitable empathy across diverse user groups? We propose a framework to investigate how LLMs' cognitive and affective empathy vary across user personas defined by intersecting demographic attributes. Our study introduces a novel intersectional analysis spanning 315 unique personas, constructed from combinations of age, culture, and gender, across four LLMs. Results show that attributes profoundly shape a model's empathetic responses. Interestingly, we see that adding multiple attributes at once can attenuate and reverse expected empathy patterns. We show that they broadly reflect real-world empathetic trends, with notable misalignments for certain groups, such as those from Confucian culture. We complement our quantitative findings with qualitative insights to uncover model behaviour patterns across different demographic groups. Our findings highlight the importance of designing empathy-aware LLMs that account for demographic diversity to promote more inclusive and equitable model behaviour.
comment: 9 pages, 4 figures, 4 tables, EMNLP 2025 Findings
♻ ☆ Bootstrapping Referring Multi-Object Tracking
Referring understanding is a fundamental task that bridges natural language and visual content by localizing objects described in free-form expressions. However, existing works are constrained by limited language expressiveness, lacking the capacity to model object dynamics in spatial numbers and temporal states. To address these limitations, we introduce a new and general referring understanding task, termed referring multi-object tracking (RMOT). Its core idea is to employ a language expression as a semantic cue to guide the prediction of multi-object tracking, comprehensively accounting for variations in object quantity and temporal semantics. Along with RMOT, we introduce a RMOT benchmark named Refer-KITTI-V2, featuring scalable and diverse language expressions. To efficiently generate high-quality annotations covering object dynamics with minimal manual effort, we propose a semi-automatic labeling pipeline that formulates a total of 9,758 language prompts. In addition, we propose TempRMOT, an elegant end-to-end Transformer-based framework for RMOT. At its core is a query-driven Temporal Enhancement Module that represents each object as a Transformer query, enabling long-term spatial-temporal interactions with other objects and past frames to efficiently refine these queries. TempRMOT achieves state-of-the-art performance on both Refer-KITTI and Refer-KITTI-V2, demonstrating the effectiveness of our approach. The source code and dataset is available at https://github.com/zyn213/TempRMOT.
♻ ☆ Tiny but Mighty: A Software-Hardware Co-Design Approach for Efficient Multimodal Inference on Battery-Powered Small Devices
Large Multimodal Models (LMMs) are inherently modular, consisting of vision and audio encoders, projectors, and large language models. Yet, they are almost always executed monolithically, which underutilizes the heterogeneous accelerators (NPUs, GPUs, DSPs) in modern SoCs and leads to high end-to-end latency. In this paper, we present NANOMIND, a hardware--software co-design inference framework for Large Multimodal Models (LMMs) that breaks large models into modular ``bricks'' (vision, language, audio, etc.) and maps each to its ideal accelerator. The key insight is that large models can be broken into modular components and scheduled to run on the most appropriate compute units. It performs module-level dynamic offloading across accelerators on unified-memory SoCs. By combining customized hardware design, system-level scheduling, and optimized low-bit computation kernels, we demonstrate our framework with a compact, battery-powered device capable of running LMMs entirely on device. This prototype functions as a self-contained intelligent assistant that requires no network connectivity, while achieving higher throughput and superior power efficiency under strict resource constraints. The design further bypasses CPU bottlenecks and reduces redundant memory usage through token-aware buffer management and module-level coordination. Our system outperforms existing implementations in resource efficiency, cutting energy consumption by 42.3\% and GPU memory usage by 11.2\%. This enables a battery-powered device to run LLaVA-OneVision with a camera for nearly half a day and LLaMA-3-8B for voice interactions up to almost 20.8 hours.
♻ ☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
♻ ☆ MOOSE-Chem: Large Language Models for Rediscovering Unseen Chemistry Scientific Hypotheses ICLR 2025
Scientific discovery plays a pivotal role in advancing human society, and recent progress in large language models (LLMs) suggests their potential to accelerate this process. However, it remains unclear whether LLMs can autonomously generate novel and valid hypotheses in chemistry. In this work, we investigate whether LLMs can discover high-quality chemistry hypotheses given only a research background-comprising a question and/or a survey-without restriction on the domain of the question. We begin with the observation that hypothesis discovery is a seemingly intractable task. To address this, we propose a formal mathematical decomposition grounded in a fundamental assumption: that most chemistry hypotheses can be composed from a research background and a set of inspirations. This decomposition leads to three practical subtasks-retrieving inspirations, composing hypotheses with inspirations, and ranking hypotheses - which together constitute a sufficient set of subtasks for the overall scientific discovery task. We further develop an agentic LLM framework, MOOSE-Chem, that is a direct implementation of this mathematical decomposition. To evaluate this framework, we construct a benchmark of 51 high-impact chemistry papers published and online after January 2024, each manually annotated by PhD chemists with background, inspirations, and hypothesis. The framework is able to rediscover many hypotheses with high similarity to the groundtruth, successfully capturing the core innovations-while ensuring no data contamination since it uses an LLM with knowledge cutoff date prior to 2024. Finally, based on LLM's surprisingly high accuracy on inspiration retrieval, a task with inherently out-of-distribution nature, we propose a bold assumption: that LLMs may already encode latent scientific knowledge associations not yet recognized by humans.
comment: Accepted by ICLR 2025
♻ ☆ Prompting is not Enough: Exploring Knowledge Integration and Controllable Generation
Open-domain question answering (OpenQA) represents a cornerstone in natural language processing (NLP), primarily focused on extracting answers from unstructured textual data. With the rapid advancements in Large Language Models (LLMs), LLM-based OpenQA methods have reaped the benefits of emergent understanding and answering capabilities enabled by massive parameters compared to traditional methods. However, most of these methods encounter two critical challenges: how to integrate knowledge into LLMs effectively and how to adaptively generate results with specific answer formats for various task situations. To address these challenges, we propose a novel framework named GenKI, which aims to improve the OpenQA performance by exploring Knowledge Integration and controllable Generation on LLMs simultaneously. Specifically, we first train a dense passage retrieval model to retrieve associated knowledge from a given knowledge base. Subsequently, we introduce a novel knowledge integration model that incorporates the retrieval knowledge into instructions during fine-tuning to intensify the model. Furthermore, to enable controllable generation in LLMs, we leverage a certain fine-tuned LLM and an ensemble based on text consistency incorporating all coherence, fluency, and answer format assurance. Finally, extensive experiments conducted on the TriviaQA, MSMARCO, and CMRC2018 datasets, featuring diverse answer formats, have demonstrated the effectiveness of GenKI with comparison of state-of-the-art baselines. Moreover, ablation studies have disclosed a linear relationship between the frequency of retrieved knowledge and the model's ability to recall knowledge accurately against the ground truth. Our code of GenKI is available at https://github.com/USTC-StarTeam/GenKI
comment: 13 pages, 5 figures
♻ ☆ TrajAgent: An LLM-Agent Framework for Trajectory Modeling via Large-and-Small Model Collaboration NeurIPS 2025
Trajectory modeling, which includes research on trajectory data pattern mining and future prediction, has widespread applications in areas such as life services, urban transportation, and public administration. Numerous methods have been proposed to address specific problems within trajectory modeling. However, the heterogeneity of data and the diversity of trajectory tasks make effective and reliable trajectory modeling an important yet highly challenging endeavor, even for domain experts. \fix In this paper, we propose \textit{TrajAgent}, a agent framework powered by large language models (LLMs), designed to facilitate robust and efficient trajectory modeling through automation modeling. This framework leverages and optimizes diverse specialized models to address various trajectory modeling tasks across different datasets effectively. \unfix~In \textit{TrajAgent}, we first develop \textit{UniEnv}, an execution environment with a unified data and model interface, to support the execution and training of various models. Building on \textit{UniEnv}, we introduce an agentic workflow designed for automatic trajectory modeling across various trajectory tasks and data. Furthermore, we introduce collaborative learning schema between LLM-based agents and small speciallized models, to enhance the performance of the whole framework effectively. Extensive experiments on four tasks using four real-world datasets demonstrate the effectiveness of \textit{TrajAgent} in automated trajectory modeling, achieving a performance improvement of \fix 2.38\%-69.91\% \unfix over baseline methods. The codes and data can be accessed via https://github.com/tsinghua-fib-lab/TrajAgent.
comment: Accepted by NeurIPS 2025, https://github.com/tsinghua-fib-lab/TrajAgent
♻ ☆ LLMs can hide text in other text of the same length
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages
♻ ☆ MOOSE-Chem2: Exploring LLM Limits in Fine-Grained Scientific Hypothesis Discovery via Hierarchical Search NeurIPS 2025
Large language models (LLMs) have shown promise in automating scientific hypothesis generation, yet existing approaches primarily yield coarse-grained hypotheses lacking critical methodological and experimental details. We introduce and formally define the new task of fine-grained scientific hypothesis discovery, which entails generating detailed, experimentally actionable hypotheses from coarse initial research directions. We frame this as a combinatorial optimization problem and investigate the upper limits of LLMs' capacity to solve it when maximally leveraged. Specifically, we explore four foundational questions: (1) how to best harness an LLM's internal heuristics to formulate the fine-grained hypothesis it itself would judge as the most promising among all the possible hypotheses it might generate, based on its own internal scoring-thus defining a latent reward landscape over the hypothesis space; (2) whether such LLM-judged better hypotheses exhibit stronger alignment with ground-truth hypotheses; (3) whether shaping the reward landscape using an ensemble of diverse LLMs of similar capacity yields better outcomes than defining it with repeated instances of the strongest LLM among them; and (4) whether an ensemble of identical LLMs provides a more reliable reward landscape than a single LLM. To address these questions, we propose a hierarchical search method that incrementally proposes and integrates details into the hypothesis, progressing from general concepts to specific experimental configurations. We show that this hierarchical process smooths the reward landscape and enables more effective optimization. Empirical evaluations on a new benchmark of expert-annotated fine-grained hypotheses from recent literature show that our method consistently outperforms strong baselines.
comment: Accepted by NeurIPS 2025
♻ ☆ The Atlas of In-Context Learning: How Attention Heads Shape In-Context Retrieval Augmentation NeurIPS 2025
Large language models are able to exploit in-context learning to access external knowledge beyond their training data through retrieval-augmentation. While promising, its inner workings remain unclear. In this work, we shed light on the mechanism of in-context retrieval augmentation for question answering by viewing a prompt as a composition of informational components. We propose an attribution-based method to identify specialized attention heads, revealing in-context heads that comprehend instructions and retrieve relevant contextual information, and parametric heads that store entities' relational knowledge. To better understand their roles, we extract function vectors and modify their attention weights to show how they can influence the answer generation process. Finally, we leverage the gained insights to trace the sources of knowledge used during inference, paving the way towards more safe and transparent language models.
comment: Accepted at NeurIPS 2025
♻ ☆ TaoSR1: The Thinking Model for E-commerce Relevance Search
Query-product relevance prediction is a core task in e-commerce search. BERT-based models excel at semantic matching but lack complex reasoning capabilities. While Large Language Models (LLMs) are explored, most still use discriminative fine-tuning or distill to smaller models for deployment. We propose a framework to directly deploy LLMs for this task, addressing key challenges: Chain-of-Thought (CoT) error accumulation, discriminative hallucination, and deployment feasibility. Our framework, TaoSR1, involves three stages: (1) Supervised Fine-Tuning (SFT) with CoT to instill reasoning; (2) Offline sampling with a pass@N strategy and Direct Preference Optimization (DPO) to improve generation quality; and (3) Difficulty-based dynamic sampling with Group Relative Policy Optimization (GRPO) to mitigate discriminative hallucination. Additionally, post-CoT processing and a cumulative probability-based partitioning method enable efficient online deployment. TaoSR1 significantly outperforms baselines on offline datasets and achieves substantial gains in online side-by-side human evaluations, introducing a novel paradigm for applying CoT reasoning to relevance classification.
♻ ☆ Thought Anchors: Which LLM Reasoning Steps Matter?
Current frontier large-language models rely on reasoning to achieve state-of-the-art performance. Many existing interpretability are limited in this area, as standard methods have been designed to study single forward passes of a model rather than the multi-token computational steps that unfold during reasoning. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We introduce a black-box method that measures each sentence's counterfactual importance by repeatedly sampling replacement sentences from the model, filtering for semantically different ones, and continuing the chain of thought from that point onwards to quantify the sentence's impact on the distribution of final answers. We discover that certain sentences can have an outsized impact on the trajectory of the reasoning trace and final answer. We term these sentences \textit{thought anchors}. These are generally planning or uncertainty management sentences, and specialized attention heads consistently attend from subsequent sentences to thought anchors. We further show that examining sentence-sentence causal links within a reasoning trace gives insight into a model's behavior. Such information can be used to predict a problem's difficulty and the extent different question domains involve sequential or diffuse reasoning. As a proof-of-concept, we demonstrate that our techniques together provide a practical toolkit for analyzing reasoning models by conducting a detailed case study of how the model solves a difficult math problem, finding that our techniques yield a consistent picture of the reasoning trace's structure. We provide an open-source tool (thought-anchors.com) for visualizing the outputs of our methods on further problems. The convergence across our methods shows the potential of sentence-level analysis for a deeper understanding of reasoning models.
comment: Paul C. Bogdan and Uzay Macar contributed equally to this work, and their listed order was determined by coinflip. Neel Nanda and Arthur Conmy contributed equally to this work as senior authors, and their listed order was determined by coinflip
♻ ☆ ThinkBrake: Mitigating Overthinking in Tool Reasoning
Small reasoning models (SRMs) often overthink during tool use: they reach a correct tool-argument configuration, then continue reasoning and overwrite it with an incorrect final call. We diagnose overthinking via oracle rollouts that inject at sentence boundaries. On the Berkeley Function Calling Leaderboard (BFCL), this oracle termination lifts average accuracy from 85.8\% to 94.2\% while reducing tokens by 80-94\%, revealing substantial recoverable headroom and potential redundant reasoning. While prior work on concise reasoning has largely targeted mathematics, tool reasoning remains underexplored. We adapt various early-termination baselines to tool use and introduce ThinkBrake, a training-free decoding heuristic. ThinkBrake monitors the log-probability margin between and the current top token at sentence boundaries and triggers termination when this margin becomes small. Across BFCL's single turn, non-live and live splits, ThinkBrake preserves or improves accuracy while reducing tokens up to 25\%, outperforming various baselines.
♻ ☆ OpenS2S: Advancing Fully Open-Source End-to-End Empathetic Large Speech Language Model
Empathetic interaction is a cornerstone of human-machine communication, due to the need for understanding speech enriched with paralinguistic cues and generating emotional and expressive responses. However, the most powerful empathetic LSLMs are increasingly closed off, leaving the crucial details about the architecture, data and development opaque to researchers. Given the critical need for transparent research into the LSLMs and empathetic behavior, we present OpenS2S, a fully open-source, transparent and end-to-end LSLM designed to enable empathetic speech interactions. Based on our empathetic speech-to-text model BLSP-Emo, OpenS2S further employs a streaming interleaved decoding architecture to achieve low-latency speech generation. To facilitate end-to-end training, OpenS2S incorporates an automated data construction pipeline that synthesizes diverse, high-quality empathetic speech dialogues at low cost. By leveraging large language models to generate empathetic content and controllable text-to-speech systems to introduce speaker and emotional variation, we construct a scalable training corpus with rich paralinguistic diversity and minimal human supervision. We release the fully open-source OpenS2S model, including the dataset, model weights, pre-training and fine-tuning codes, to empower the broader research community and accelerate innovation in empathetic speech systems. The project webpage can be accessed at https://casia-lm.github.io/OpenS2S
comment: Technical Report, Update on OpenS2S_v1.5
♻ ☆ When Personalization Meets Reality: A Multi-Faceted Analysis of Personalized Preference Learning
While Reinforcement Learning from Human Feedback (RLHF) is widely used to align Large Language Models (LLMs) with human preferences, it typically assumes homogeneous preferences across users, overlooking diverse human values and minority viewpoints. Although personalized preference learning addresses this by tailoring separate preferences for individual users, the field lacks standardized methods to assess its effectiveness. We present a multi-faceted evaluation framework that measures not only performance but also fairness, unintended effects, and adaptability across varying levels of preference divergence. Through extensive experiments comparing eight personalization methods across three preference datasets, we demonstrate that performance differences between methods could reach 36% when users strongly disagree, and personalization can introduce up to 20% safety misalignment. These findings highlight the critical need for holistic evaluation approaches to advance the development of more effective and inclusive preference learning systems.
♻ ☆ Input Matters: Evaluating Input Structure's Impact on LLM Summaries of Sports Play-by-Play
A major concern when deploying LLMs in accuracy-critical domains such as sports reporting is that the generated text may not faithfully reflect the input data. We quantify how input structure affects hallucinations and other factual errors in LLM-generated summaries of NBA play-by-play data, across three formats: row-structured, JSON and unstructured. We manually annotated 3,312 factual errors across 180 game summaries produced by two models, Llama-3.1-70B and Qwen2.5-72B. Input structure has a strong effect: JSON input reduces error rates by 69% for Llama and 65% for Qwen compared to unstructured input, while row-structured input reduces errors by 54% for Llama and 51% for Qwen. A two-way repeated measures ANOVA shows that input structure accounts for over 80% of the variance in error rates, with Tukey HSD post hoc tests confirming statistically significant differences between all input formats.
comment: Accepted at INLG 2025
♻ ☆ LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora
Retrieval-Augmented Generation (RAG) is widely used to mitigate hallucinations of Large Language Models (LLMs) by leveraging external knowledge. While effective for simple queries, traditional RAG systems struggle with large-scale, unstructured corpora where information is fragmented. Recent advances incorporate knowledge graphs to capture relational structures, enabling more comprehensive retrieval for complex, multi-hop reasoning tasks. However, existing graph-based RAG (GraphRAG) methods rely on unstable and costly relation extraction for graph construction, often producing noisy graphs with incorrect or inconsistent relations that degrade retrieval quality. In this paper, we revisit the pipeline of existing GraphRAG systems and propose LinearRAG (Linear Graph-based Retrieval-Augmented Generation), an efficient framework that enables reliable graph construction and precise passage retrieval. Specifically, LinearRAG constructs a relation-free hierarchical graph, termed Tri-Graph, using only lightweight entity extraction and semantic linking, avoiding unstable relation modeling. This new paradigm of graph construction scales linearly with corpus size and incurs no extra token consumption, providing an economical and reliable indexing of the original passages. For retrieval, LinearRAG adopts a two-stage strategy: (i) relevant entity activation via local semantic bridging, followed by (ii) passage retrieval through global importance aggregation. Extensive experiments on four datasets demonstrate that LinearRAG significantly outperforms baseline models.
♻ ☆ Multi-turn Training with Basic Human Feedback Helps Little on LLM Reasoning
The reasoning capabilities of Large Language Models (LLMs) are typically developed through the single-turn reinforcement learning, whereas real-world applications often involve multi-turn interactions with human feedback, leading to a potential mismatch between training and deployment conditions. In this work, we study whether multi-turn training with human feedback is necessary for reasoning tasks. We compare conventional single-turn training with three multi-turn strategies and reach contrary conclusions to previous research. We find that models trained in a single-turn setting generalize effectively to both single- and multi-turn evaluations, while models trained with multi-turn strategies exhibit a significant degradation in single-turn reasoning performance. These results suggest that for tasks with complete information, robust single-turn training remains more effective and reliable, as multi-turn training with basic feedback provides limited benefits and can even degrade reasoning capabilities.
♻ ☆ StereoDetect: Detecting Stereotypes and Anti-stereotypes the Correct Way Using Social Psychological Underpinnings
Stereotypes are known to have very harmful effects, making their detection critically important. However, current research predominantly focuses on detecting and evaluating stereotypical biases, thereby leaving the study of stereotypes in its early stages. Our study revealed that many works have failed to clearly distinguish between stereotypes and stereotypical biases, which has significantly slowed progress in advancing research in this area. Stereotype and Anti-stereotype detection is a problem that requires social knowledge; hence, it is one of the most difficult areas in Responsible AI. This work investigates this task, where we propose a five-tuple definition and provide precise terminologies disentangling stereotypes, anti-stereotypes, stereotypical bias, and general bias. We provide a conceptual framework grounded in social psychology for reliable detection. We identify key shortcomings in existing benchmarks for this task of stereotype and anti-stereotype detection. To address these gaps, we developed StereoDetect, a well curated, definition-aligned benchmark dataset designed for this task. We show that sub-10B language models and GPT-4o frequently misclassify anti-stereotypes and fail to recognize neutral overgeneralizations. We demonstrate StereoDetect's effectiveness through multiple qualitative and quantitative comparisons with existing benchmarks and models fine-tuned on them. The dataset and code is available at https://github.com/KaustubhShejole/StereoDetect.
♻ ☆ Cohort Discovery: A Survey on LLM-Assisted Clinical Trial Recruitment
Recent advances in LLMs have greatly improved general-domain NLP tasks. Yet, their adoption in critical domains, such as clinical trial recruitment, remains limited. As trials are designed in natural language and patient data is represented as both structured and unstructured text, the task of matching trials and patients benefits from knowledge aggregation and reasoning abilities of LLMs. Classical approaches are trial-specific and LLMs with their ability to consolidate distributed knowledge hold the potential to build a more general solution. Yet recent applications of LLM-assisted methods rely on proprietary models and weak evaluation benchmarks. In this survey, we are the first to analyze the task of trial-patient matching and contextualize emerging LLM-based approaches in clinical trial recruitment. We critically examine existing benchmarks, approaches and evaluation frameworks, the challenges to adopting LLM technologies in clinical research and exciting future directions.
♻ ☆ Can Confidence Estimates Decide When Chain-of-Thought Is Necessary for LLMs?
Chain-of-thought (CoT) prompting has emerged as a common technique for enhancing the reasoning abilities of large language models (LLMs). While extended reasoning can boost accuracy on complex tasks, it is often unnecessary and substantially increases token usage, limiting the practicality of reasoning models in many scenarios. Recent models, such as GPT-OSS and Qwen3, expose controls that enable users to adjust the length of CoT or determine whether it is used at all. Yet, it remains unclear when CoT should be used: on some tasks it improves performance, while on others it provides little benefit or even harms performance. We address this challenge with confidence-gated CoT, where a model invokes reasoning only when confidence in its direct answer is low. To this end, we present the first systematic study of training-free confidence estimation methods for CoT gating. Specifically, we evaluate four training-free confidence estimation methods and compare them to a random baseline and an oracle that always knows when CoT is needed. Through extensive experiments, we show that existing training-free confidence measures can reduce redundant CoT and outperform randomly invoked CoT. However, the utility of individual confidence measures is inconsistent, varying with both the dataset and the model, underscoring the difficulty of deploying confidence-gated CoT in practice. By analysing both strengths and failure modes, our study highlights the potential and limitations of current methods and paves the way toward more reliable adaptive gating of CoT.
comment: Under Review
♻ ☆ First SFT, Second RL, Third UPT: Continual Improving Multi-Modal LLM Reasoning via Unsupervised Post-Training NeurIPS 2025
Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL), which require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. This limitation has motivated a growing interest in unsupervised paradigms as a third stage of post-training after SFT and RL. While recent efforts have explored this direction, their methods are complex and difficult to iterate. To address this, we propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs, enabling continual self-improvement without any external supervision. The training method of MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that such training method effectively improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3\%$\rightarrow$72.9\% on MathVista, 62.9\%$\rightarrow$68.7\% on We-Math), using standard dataset without ground truth labels. To further explore scalability, we extend our framework to a data self-generation setting, designing two strategies that prompt the MLLM to synthesize new training samples on its own. Additional experiments show that combining these synthetic data with the unsupervised training method can also boost performance, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for autonomous enhancement of MLLMs, serving as a critical third step after initial SFT and RL in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.
comment: Accepted by NeurIPS 2025
♻ ☆ DeepOmni: Towards Seamless and Smart Speech Interaction with Adaptive Modality-Specific MoE
Native multimodal large language models (MLLMs) restructure a single large language model (LLM) into a spoken language model (SLM) capable of both speech and text generation. Compared to modular and aligned MLLMs, native MLLMs preserve richer paralinguistic features such as emotion and prosody, and generate speech responses directly within the backbone LLM rather than using a separate speech decoder. This integration also results in lower response latency and smoother interaction. However, native MLLMs suffer from catastrophic forgetting and performance degradation because the available paired speech-text data is insufficient to support the pretraining of MLLMs compared to the vast amount of text data required to pretrain text LLMs. To address this issue, we propose DeepTalk, a framework for adaptive modality expert learning based on a Mixture of Experts (MoE) architecture. DeepTalk first adaptively distinguishes modality experts according to their modality load within the LLM. Each modality expert then undergoes specialized single-modality training, followed by joint multimodal collaborative training. As a result, DeepTalk incurs only a 5.5% performance drop compared to the original LLM, which is significantly lower than the average performance drop of over 20% typically seen in native MLLMs (such as GLM-4-Voice), and is on par with modular MLLMs. Meanwhile, the end-to-end dialogue latency remains within 0.5 seconds, ensuring a seamless and intelligent speech interaction experience. Code and models are released at https://github.com/talkking/DeepTalk.
comment: Under Review
♻ ☆ COUNTDOWN: Contextually Sparse Activation Filtering Out Unnecessary Weights in Down Projection EMNLP 2025
The growing size of large language models has created significant computational inefficiencies. To address this challenge, sparse activation methods selectively deactivates non-essential parameters during inference, reducing computational costs in FFNN layers. While existing methods focus on non-linear gating mechanisms, we hypothesize that the sparsity of the FFNN layer lies globally in the form of a linear combination over its internal down projection matrix. Based on this insight, we propose two methods: M-COUNTDOWN, leveraging indirect coefficients, and D-COUNTDOWN, utilizing direct coefficients of the linear combination. Experimental results demonstrate that D-COUNTDOWN can omit 90% of computations with performance loss as low as 5.5% ideally, while M-COUNTDOWN provides a predictor-free solution with up to 29.4% better performance preservation compared to existing methods. Our specialized kernel implementations effectively realize these theoretical gains into substantial real-world acceleration.
comment: EMNLP 2025 (Main Track)
♻ ☆ GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability
Improving the general capabilities of large language models (LLMs) is an active research topic. As a common data structure in many real-world domains, understanding graph data is a crucial part of advancing general intelligence. To this end, we propose a dynamic benchmark named GraphInstruct in this paper, which comprehensively includes 21 classical graph reasoning tasks, providing diverse graph generation pipelines and detailed intermediate reasoning steps for each sample. Based on GraphInstruct, we develop GraphSolver via efficient instruction-tuning, which demonstrates prominent graph understanding capability compared to other open-sourced LLMs. To further endow LLMs with multi-step graph reasoning capability, we propose a label-mask training strategy and build GraphSolver+, which leverages masked supervision on intermediate reasoning tokens to emphasize crucial node-identification signals. As one of the pioneering efforts to enhance the graph understanding and reasoning abilities of LLMs, extensive experiments have demonstrated the superiority of GraphSolver and GraphSolver+ over other LLMs. We sincerely hope GraphInstruct will facilitate further research on applying LLMs to graph-structured data. Our code and data are released publicly at: https://github.com/CGCL-codes/GraphInstruct.
comment: Accepted by Frontiers of Computer Science
♻ ☆ The Cross-Lingual Cost: Retrieval Biases in RAG over Arabic-English Corpora
Cross-lingual retrieval-augmented generation (RAG) is a critical capability for retrieving and generating answers across languages. Prior work in this context has mostly focused on generation and relied on benchmarks derived from open-domain sources, most notably Wikipedia. In such settings, retrieval challenges often remain hidden due to language imbalances, overlap with pretraining data, and memorized content. To address this gap, we study Arabic-English RAG in a domain-specific setting using benchmarks derived from real-world corporate datasets. Our benchmarks include all combinations of languages for the user query and the supporting document, drawn independently and uniformly at random. This enables a systematic study of multilingual retrieval behavior. Our findings reveal that retrieval is a critical bottleneck in cross-lingual domain-specific scenarios, with substantial performance drops occurring when the user query and supporting document languages differ. A key insight is that these failures stem primarily from the retriever's difficulty in ranking documents across languages. Finally, we propose two simple retrieval strategies that address this source of failure by enforcing equal retrieval from both languages or by translating the query, resulting in substantial improvements in cross-lingual and overall performance. These results highlight meaningful opportunities for improving multilingual retrieval, particularly in practical, real-world RAG applications.
comment: Accepted to ArabicNLP 2025
♻ ☆ ContextAgent: Context-Aware Proactive LLM Agents with Open-World Sensory Perceptions NeurIPS 2025
Recent advances in Large Language Models (LLMs) have propelled intelligent agents from reactive responses to proactive support. While promising, existing proactive agents either rely exclusively on observations from enclosed environments (e.g., desktop UIs) with direct LLM inference or employ rule-based proactive notifications, leading to suboptimal user intent understanding and limited functionality for proactive service. In this paper, we introduce ContextAgent, the first context-aware proactive agent that incorporates extensive sensory contexts surrounding humans to enhance the proactivity of LLM agents. ContextAgent first extracts multi-dimensional contexts from massive sensory perceptions on wearables (e.g., video and audio) to understand user intentions. ContextAgent then leverages the sensory contexts and personas from historical data to predict the necessity for proactive services. When proactive assistance is needed, ContextAgent further automatically calls the necessary tools to assist users unobtrusively. To evaluate this new task, we curate ContextAgentBench, the first benchmark for evaluating context-aware proactive LLM agents, covering 1,000 samples across nine daily scenarios and twenty tools. Experiments on ContextAgentBench show that ContextAgent outperforms baselines by achieving up to 8.5% and 6.0% higher accuracy in proactive predictions and tool calling, respectively. We hope our research can inspire the development of more advanced, human-centric, proactive AI assistants. The code and dataset are publicly available at https://github.com/openaiotlab/ContextAgent.
comment: Accepted by NeurIPS 2025
♻ ☆ ColorEcosystem: Powering Personalized, Standardized, and Trustworthy Agentic Service in massive-agent Ecosystem
With the rapid development of (multimodal) large language model-based agents, the landscape of agentic service management has evolved from single-agent systems to multi-agent systems, and now to massive-agent ecosystems. Current massive-agent ecosystems face growing challenges, including impersonal service experiences, a lack of standardization, and untrustworthy behavior. To address these issues, we propose ColorEcosystem, a novel blueprint designed to enable personalized, standardized, and trustworthy agentic service at scale. Concretely, ColorEcosystem consists of three key components: agent carrier, agent store, and agent audit. The agent carrier provides personalized service experiences by utilizing user-specific data and creating a digital twin, while the agent store serves as a centralized, standardized platform for managing diverse agentic services. The agent audit, based on the supervision of developer and user activities, ensures the integrity and credibility of both service providers and users. Through the analysis of challenges, transitional forms, and practical considerations, the ColorEcosystem is poised to power personalized, standardized, and trustworthy agentic service across massive-agent ecosystems. Meanwhile, we have also implemented part of ColorEcosystem's functionality, and the relevant code is open-sourced at https://github.com/opas-lab/color-ecosystem.
♻ ☆ Computational Analysis of Character Development in Holocaust Testimonies
This work presents a computational approach to analyze character development along the narrative timeline. The analysis characterizes the inner and outer changes the protagonist undergoes within a narrative, and the interplay between them. We consider transcripts of Holocaust survivor testimonies as a test case, each telling the story of an individual in first-person terms. We focus on the survivor's religious trajectory, examining the evolution of their disposition toward religious belief and practice along the testimony. Clustering the resulting trajectories in the dataset, we identify common sequences in the data. Our findings highlight multiple common structures of religiosity across the narratives: in terms of belief, most present a constant disposition, while for practice, most present an oscillating structure, serving as valuable material for historical and sociological research. This work demonstrates the potential of natural language processing techniques for analyzing character evolution through thematic trajectories in narratives.
♻ ☆ FaithLM: Towards Faithful Explanations for Large Language Models
Large language models (LLMs) increasingly produce natural language explanations, yet these explanations often lack faithfulness, and they do not reliably reflect the evidence the model uses to decide. We introduce FaithLM, a model-agnostic framework that evaluates and improves the faithfulness of LLM explanations without token masking or task-specific heuristics. FaithLM formalizes explanation faithfulness as an intervention property: a faithful explanation should yield a prediction shift when its content is contradicted. Theoretical analysis shows that the resulting contrary-hint score is a sound and discriminative estimator of faithfulness. Building on this principle, FaithLM iteratively refines both the elicitation prompt and the explanation to maximize the measured score. Experiments on three multi-domain datasets and multiple LLM backbones demonstrate that FaithLM consistently increases faithfulness and produces explanations more aligned with human rationales than strong self-explanation baselines. These findings highlight that intervention-based evaluation, coupled with iterative optimization, provides a principled route toward faithful and reliable LLM explanations.
♻ ☆ Agent KB: Leveraging Cross-Domain Experience for Agentic Problem Solving
AI agent frameworks operate in isolation, forcing agents to rediscover solutions and repeat mistakes across different systems. Despite valuable problem-solving experiences accumulated by frameworks like smolagents, OpenHands, and OWL, this knowledge remains trapped within individual systems, preventing the emergence of collective intelligence. Current memory systems focus on individual agents or framework-specific demonstrations, failing to enable cross-architecture knowledge transfer. We introduce AGENT KB, a universal memory infrastructure enabling seamless experience sharing across heterogeneous agent frameworks without retraining. AGENT KB aggregates trajectories into a structured knowledge base and serves lightweight APIs. At inference time, hybrid retrieval operates through two stages: planning seeds agents with cross-domain workflows, while feedback applies targeted diagnostic fixes. A disagreement gate ensures retrieved knowledge enhances rather than disrupts reasoning, addressing knowledge interference in cross-framework transfer. We validate AGENT KB across major frameworks on GAIA, Humanity's Last Exam, GPQA, and SWE-bench. Results show substantial improvements across diverse model families: compared to baseline pass@1, smolagents with AGENT KB achieve up to 18.7pp gains at pass@3 (55.2% -> 73.9%), while OpenHands improves 4.0pp on SWE-bench pass@1 (24.3% -> 28.3%). Similar improvements are observed across all base model families. Ablations confirm that hybrid retrieval and feedback stages are essential, with automatically generated experiences matching manual curation. This establishes the foundation for collective agent intelligence through shared memory infrastructures.
♻ ☆ Detecting and Rectifying Noisy Labels: A Similarity-based Approach
Label noise in datasets could significantly damage the performance and robustness of deep neural networks (DNNs) trained on these datasets. As the size of modern DNNs grows, there is a growing demand for automated tools for detecting such errors. In this paper, we propose post-hoc, model-agnostic noise detection and rectification methods utilizing the penultimate feature from a DNN. Our idea is based on the observation that the similarity between the penultimate feature of a mislabeled data point and its true class data points is higher than that for data points from other classes, making the probability of label occurrence within a tight, similar cluster informative for detecting and rectifying errors. Through theoretical and empirical analyses, we demonstrate that our approach achieves high detection performance across diverse, realistic noise scenarios and can automatically rectify these errors to improve dataset quality. Our implementation is available at https://anonymous.4open.science/r/noise-detection-and-rectification-AD8E.
♻ ☆ Unified Sparse Mixture of Experts
Sparse Mixture of Experts (SMoEs) models scale the capacity of models while maintaining constant computational overhead. Early designs typically relied on a fixed value of $k$, where $k$ represents either the number of experts selected per token or the number of tokens assigned per expert. However, these approaches encounter three key limitations: they may fail to route to important experts or tokens, may assign irrelevant ones, and often suffer from representation collapse among experts. This paper reexamines SMoEs through the lens of \textit{Linear Programming}, and proposes a Unified Sparse Mixture of Experts (USMoE) framework that addresses these limitations. Specifically, our approach introduces a unified mechanism that integrates information from both the expert and token dimensions, and a unified scoring function that linearly combines similarity scores between experts and tokens. We provide both theoretical justification and empirical evidence demonstrating USMoE's effectiveness in overcoming the limitations of traditional routing methods. Through comprehensive evaluations on both clean and corrupted settings for large language models and vision tasks, under both training-free and training scenarios, USMoE achieves up to a 10\% performance improvement over standard approaches or reduces inference costs by up to 14\%, while maintaining competitive accuracy.
comment: 26 pages
♻ ☆ Learning to Better Search with Language Models via Guided Reinforced Self-Training NeurIPS 2025
While language models have shown remarkable performance across diverse tasks, they still encounter challenges in complex reasoning scenarios. Recent research suggests that language models trained on linearized search traces toward solutions, rather than solely on the final solutions, exhibit improved generalization, despite the search traces being potentially noisy or suboptimal. However, relying on such imperfect traces can result in inefficient use of test-time compute. To address this, we propose guided reinforced self-training (Guided-ReST), a fine-tuning algorithm designed to improve the model's capability for effective search during inference. The key insight behind Guided-ReST is that optimal solutions can serve as valuable step-by-step landmarks to guide the model's search process. Based on this insight, we introduce a novel data generation method that seamlessly incorporates optimal solutions into the model's search procedure, enabling the generation of high-quality search traces. By fine-tuning the model on these search traces, we effectively distill improved search strategies into the model. Our method significantly enhances the search capabilities of language models on arithmetic reasoning and code self-repair tasks, including Countdown, CodeContests, and CodeForces. We release the source code at https://github.com/snu-mllab/guided-rest.
comment: Accepted at NeurIPS 2025
♻ ☆ Part I: Tricks or Traps? A Deep Dive into RL for LLM Reasoning
Reinforcement learning for LLM reasoning has rapidly emerged as a prominent research area, marked by a significant surge in related studies on both algorithmic innovations and practical applications. Despite this progress, several critical challenges remain, including the absence of standardized guidelines for employing RL techniques and a fragmented understanding of their underlying mechanisms. Additionally, inconsistent experimental settings, variations in training data, and differences in model initialization have led to conflicting conclusions, obscuring the key characteristics of these techniques and creating confusion among practitioners when selecting appropriate techniques. This paper systematically reviews widely adopted RL techniques through rigorous reproductions and isolated evaluations within a unified open-source framework. We analyze the internal mechanisms, applicable scenarios, and core principles of each technique through fine-grained experiments, including datasets of varying difficulty, model sizes, and architectures. Based on these insights, we present clear guidelines for selecting RL techniques tailored to specific setups, and provide a reliable roadmap for practitioners navigating the RL for the LLM domain. Finally, we reveal that a minimalist combination of two techniques can unlock the learning capability of critic-free policies using vanilla PPO loss. The results demonstrate that our simple combination consistently improves performance, surpassing strategies like GRPO and DAPO.
comment: 26 pages, 21 figures
♻ ☆ UNO-Bench: A Unified Benchmark for Exploring the Compositional Law Between Uni-modal and Omni-modal in OmniModels
Multimodal Large Languages models have been progressing from uni-modal understanding toward unifying visual, audio and language modalities, collectively termed omni models. However, the correlation between uni-modal and omni-modal remains unclear, which requires comprehensive evaluation to drive omni model's intelligence evolution. In this work, we propose a novel, high quality and UNified Omni model benchmark, UNO-Bench, which effectively assesses both UNi-modal and Omni-modal capabilities. The benchmark consists of 3730 human curated samples, with 98% cross-modality solvability, across 44 task types, and an innovative multi-step open-ended question type for assessing complex reasoning. Besides, a general scoring model supporting 6 question types is proposed for automated evaluation with 95% accuracy. Experimental result shows the Compositional Law between omni-modal and uni-modal performance and the omni-modal capability manifests as a bottleneck effect on weak models, while exhibiting synergistic promotion on strong models. The code and data are available at https://github.com/meituan-longcat/UNO-Bench
comment: v2: New title and new abstract. Updated evaluation results and analysis. The benchmark name has been updated to UNO-Bench from MMAO-Bench. Work in progress. Code and data are available at https://github.com/meituan-longcat/UNO-Bench
♻ ☆ Unsupervised Classification of English Words Based on Phonological Information: Discovery of Germanic and Latinate Clusters
Cross-linguistically, native words and loanwords follow different phonological rules. In English, for example, words of Germanic and Latinate origin exhibit different stress patterns, and a certain syntactic structure, double-object datives, is predominantly associated with Germanic verbs rather than Latinate verbs. As a cognitive model, however, such etymology-based generalizations face challenges in terms of learnability, since the historical origins of words are presumably inaccessible information for general language learners. In this study, we present computational evidence indicating that the Germanic-Latinate distinction in the English lexicon is learnable from the phonotactic information of individual words. Specifically, we performed an unsupervised clustering on corpus-extracted words, and the resulting word clusters largely aligned with the etymological distinction. The model-discovered clusters also recovered various linguistic generalizations documented in the previous literature regarding the corresponding etymological classes. Moreover, our findings also uncovered previously unrecognized features of the quasi-etymological clusters.
♻ ☆ The Gray Zone of Faithfulness: Taming Ambiguity in Unfaithfulness Detection
Ensuring that Large Language Models (LLMs) generate summaries faithful to a given source document is essential for real-world applications. While prior research has explored LLM faithfulness, existing benchmarks suffer from annotation ambiguity, primarily due to the ill-defined boundary of permissible external knowledge in generated outputs. For instance, common sense is often incorporated into responses and labeled as "faithful", yet the acceptable extent of such knowledge remains unspecified, leading to inconsistent annotations. To address this issue, we propose a novel faithfulness annotation framework, which introduces an intermediate category, Out-Dependent, to classify cases where external knowledge is required for verification. Using this framework, we construct VeriGray (Verification with the Gray Zone) -- a new unfaithfulness detection benchmark in summarization. Statistics reveal that even SOTA LLMs, such as GPT-5, exhibit hallucinations ($\sim 6\%$ of sentences) in summarization tasks. Moreover, a substantial proportion ($\sim 8\%$ on average of models) of generated sentences fall into the Out-Dependent category, underscoring the importance of resolving annotation ambiguity in unfaithfulness detection benchmarks. Experiments demonstrate that our benchmark poses significant challenges to multiple baseline methods, indicating considerable room for future improvement.
comment: Updates: 1. further polishing the writing; 2. adding the motivation of investigating selective prediction for unfaithfulness detectors
♻ ☆ Exploiting Vocabulary Frequency Imbalance in Language Model Pre-training NeurIPS 2025
Large language models are trained with tokenizers, and the resulting token distribution is highly imbalanced: a few words dominate the stream while most occur rarely. Recent practice favors ever-larger vocabularies, but it is unclear where the benefit comes from. To this end, we perform a controlled study that scales the vocabulary of the language model from 24K to 196K while holding data, computation, and optimization unchanged. We begin by quantifying the complexity of tokenized text -- formalized via Kolmogorov complexity -- and show that larger vocabularies reduce this complexity. Above 24K, every common word is already tokenized as a single token, so enlarging vocabulary only deepens the relative token-frequency imbalance. Word-level loss decomposition shows that larger vocabularies reduce cross-entropy loss almost exclusively by lowering uncertainty on the 2,500 most frequent words, even though loss on the rare tail rises. The same frequent words cover roughly 75% of tokens in downstream benchmarks, so this training advantage transfers intact. We further show that enlarging model parameters with a fixed vocabulary yields the same frequent-word benefit. Our results recast "bigger vocabularies help" as "lowering complexity of tokenized text helps," offering a simple, principled knob for tokenizer--model co-design and clarifying the loss dynamics that govern language model scaling in pre-training.
comment: NeurIPS 2025
♻ ☆ Know Me, Respond to Me: Benchmarking LLMs for Dynamic User Profiling and Personalized Responses at Scale
Large Language Models (LLMs) have emerged as personalized assistants for users across a wide range of tasks -- from offering writing support to delivering tailored recommendations or consultations. Over time, the interaction history between a user and an LLM can provide extensive information about an individual's traits and preferences. However, open questions remain on how well LLMs today can effectively leverage such history to (1) internalize the user's inherent traits and preferences, (2) track how the user profiling and preferences evolve over time, and (3) generate personalized responses accordingly in new scenarios. In this work, we introduce the PERSONAMEM benchmark. PERSONAMEM features curated user profiles with over 180 simulated user-LLM interaction histories, each containing up to 60 sessions of multi-turn conversations across 15 real-world tasks that require personalization. Given an in-situ user query, i.e. query issued by the user from the first-person perspective, we evaluate LLM chatbots' ability to identify the most suitable response according to the current state of the user's profile. We observe that current LLMs still struggle to recognize the dynamic evolution in users' profiles over time through direct prompting approaches. As a consequence, LLMs often fail to deliver responses that align with users' current situations and preferences, with frontier models such as GPT-4.1, o4-mini, GPT-4.5, o1, or Gemini-2.0 achieving only around 50% overall accuracy, suggesting room for improvement. We hope that PERSONAMEM, along with the user profile and conversation simulation pipeline, can facilitate future research in the development of truly user-aware chatbots. Code and data are available at github.com/bowen-upenn/PersonaMem.
comment: The 2025 Conference on Language Modeling (COLM)
♻ ☆ LoongRL: Reinforcement Learning for Advanced Reasoning over Long Contexts
Reasoning over long contexts is essential for large language models. While reinforcement learning (RL) enhances short-context reasoning by inducing "Aha" moments in chain-of-thought, the advanced thinking patterns required for long-context reasoning remain largely unexplored, and high-difficulty RL data are scarce. In this paper, we introduce LoongRL, a data-driven RL method for advanced long-context reasoning. Central to LoongRL is KeyChain, a synthesis approach that transforms short multi-hop QA into high-difficulty long-context tasks by inserting UUID chains that hide the true question among large collections of distracting documents. Solving these tasks requires the model to trace the correct chain step-by-step, identify the true question, retrieve relevant facts and reason over them to answer correctly. RL training on KeyChain data induces an emergent plan-retrieve-reason-recheck reasoning pattern that generalizes far beyond training length. Models trained at 16K effectively solve 128K tasks without prohibitive full-length RL rollout costs. On Qwen2.5-7B and 14B, LoongRL substantially improves long-context multi-hop QA accuracy by +23.5% and +21.1% absolute gains. The resulting LoongRL-14B reaches a score of 74.2, rivaling much larger frontier models such as o3-mini (74.5) and DeepSeek-R1 (74.9). It also improves long-context retrieval, passes all 128K needle-in-a-haystack stress tests, and preserves short-context reasoning capabilities.
♻ ☆ Integrated Design and Governance of Agentic AI Systems through Adaptive Information Modulation
Modern engineered systems increasingly involve complex sociotechnical environments where multiple agents, including humans and the emerging paradigm of agentic AI powered by large language models, must navigate social dilemmas that pit individual interests against collective welfare. As engineered systems evolve toward multi-agent architectures with autonomous LLM-based agents, traditional governance approaches using static rules or fixed network structures fail to address the dynamic uncertainties inherent in real-world operations. This paper presents a novel framework that integrates adaptive governance mechanisms directly into the design of sociotechnical systems through a unique separation of agent interaction networks from information flow networks. We introduce a system comprising strategic LLM-based system agents that engage in repeated interactions and a reinforcement learning-based governing agent that dynamically modulates information transparency. Unlike conventional approaches that require direct structural interventions or payoff modifications, our framework preserves agent autonomy while promoting cooperation through adaptive information governance. The governing agent learns to strategically adjust information disclosure at each timestep, determining what contextual or historical information each system agent can access. Experimental results demonstrate that this RL-based governance significantly enhances cooperation compared to static information-sharing baselines.
♻ ☆ ControlText: Unlocking Controllable Fonts in Multilingual Text Rendering without Font Annotations EMNLP
This work demonstrates that diffusion models can achieve font-controllable multilingual text rendering using just raw images without font label annotations.Visual text rendering remains a significant challenge. While recent methods condition diffusion on glyphs, it is impossible to retrieve exact font annotations from large-scale, real-world datasets, which prevents user-specified font control. To address this, we propose a data-driven solution that integrates the conditional diffusion model with a text segmentation model, utilizing segmentation masks to capture and represent fonts in pixel space in a self-supervised manner, thereby eliminating the need for any ground-truth labels and enabling users to customize text rendering with any multilingual font of their choice. The experiment provides a proof of concept of our algorithm in zero-shot text and font editing across diverse fonts and languages, providing valuable insights for the community and industry toward achieving generalized visual text rendering. Code is available at github.com/bowen-upenn/ControlText.
comment: The 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP) Findings
♻ ☆ Dynamic Retriever for In-Context Knowledge Editing via Policy Optimization EMNLP 2025
Large language models (LLMs) excel at factual recall yet still propagate stale or incorrect knowledge. In-context knowledge editing offers a gradient-free remedy suitable for black-box APIs, but current editors rely on static demonstration sets chosen by surface-level similarity, leading to two persistent obstacles: (i) a quantity-quality trade-off, and (ii) lack of adaptivity to task difficulty. We address these issues by dynamically selecting supporting demonstrations according to their utility for the edit. We propose Dynamic Retriever for In-Context Knowledge Editing (DR-IKE), a lightweight framework that (1) trains a BERT retriever with REINFORCE to rank demonstrations by editing reward, and (2) employs a learnable threshold to prune low-value examples, shortening the prompt when the edit is easy and expanding it when the task is hard. DR-IKE performs editing without modifying model weights, relying solely on forward passes for compatibility with black-box LLMs. On the COUNTERFACT benchmark, it improves edit success by up to 17.1%, reduces latency by 41.6%, and preserves accuracy on unrelated queries, demonstrating scalable and adaptive knowledge editing. The code is available at https://github.com/mwnafee/DR-IKE .
comment: Accepted at EMNLP 2025. Copyright 2025 Association for Computational Linguistics (CC BY 4.0). 12 pages, 5 figures
Computer Vision and Pattern Recognition
☆ Concerto: Joint 2D-3D Self-Supervised Learning Emerges Spatial Representations NeurIPS 2025
Humans learn abstract concepts through multisensory synergy, and once formed, such representations can often be recalled from a single modality. Inspired by this principle, we introduce Concerto, a minimalist simulation of human concept learning for spatial cognition, combining 3D intra-modal self-distillation with 2D-3D cross-modal joint embedding. Despite its simplicity, Concerto learns more coherent and informative spatial features, as demonstrated by zero-shot visualizations. It outperforms both standalone SOTA 2D and 3D self-supervised models by 14.2% and 4.8%, respectively, as well as their feature concatenation, in linear probing for 3D scene perception. With full fine-tuning, Concerto sets new SOTA results across multiple scene understanding benchmarks (e.g., 80.7% mIoU on ScanNet). We further present a variant of Concerto tailored for video-lifted point cloud spatial understanding, and a translator that linearly projects Concerto representations into CLIP's language space, enabling open-world perception. These results highlight that Concerto emerges spatial representations with superior fine-grained geometric and semantic consistency.
comment: NeurIPS 2025, produced by Pointcept, project page: https://pointcept.github.io/Concerto
☆ Track, Inpaint, Resplat: Subject-driven 3D and 4D Generation with Progressive Texture Infilling NeurIPS 2025
Current 3D/4D generation methods are usually optimized for photorealism, efficiency, and aesthetics. However, they often fail to preserve the semantic identity of the subject across different viewpoints. Adapting generation methods with one or few images of a specific subject (also known as Personalization or Subject-driven generation) allows generating visual content that align with the identity of the subject. However, personalized 3D/4D generation is still largely underexplored. In this work, we introduce TIRE (Track, Inpaint, REsplat), a novel method for subject-driven 3D/4D generation. It takes an initial 3D asset produced by an existing 3D generative model as input and uses video tracking to identify the regions that need to be modified. Then, we adopt a subject-driven 2D inpainting model for progressively infilling the identified regions. Finally, we resplat the modified 2D multi-view observations back to 3D while still maintaining consistency. Extensive experiments demonstrate that our approach significantly improves identity preservation in 3D/4D generation compared to state-of-the-art methods. Our project website is available at https://zsh2000.github.io/track-inpaint-resplat.github.io/.
comment: NeurIPS 2025, 38 pages, 22 figures
☆ PixelRefer: A Unified Framework for Spatio-Temporal Object Referring with Arbitrary Granularity
Multimodal large language models (MLLMs) have demonstrated strong general-purpose capabilities in open-world visual comprehension. However, most existing MLLMs primarily focus on holistic, scene-level understanding, often overlooking the need for fine-grained, object-centric reasoning. In this paper, we present PixelRefer, a unified region-level MLLM framework that enables advanced fine-grained understanding over user-specified regions across both images and videos. Motivated by the observation that LLM attention predominantly focuses on object-level tokens, we propose a Scale-Adaptive Object Tokenizer (SAOT) to generate compact and semantically rich object representations from free-form regions. Our analysis reveals that global visual tokens contribute mainly in early LLM layers, inspiring the design of PixelRefer-Lite, an efficient variant that employs an Object-Centric Infusion module to pre-fuse global context into object tokens. This yields a lightweight Object-Only Framework that substantially reduces computational cost while maintaining high semantic fidelity. To facilitate fine-grained instruction tuning, we curate PixelRefer-2.2M, a high-quality object-centric instruction dataset. Extensive experiments across a range of benchmarks validate that PixelRefer achieves leading performance with fewer training samples, while PixelRefer-Lite offers competitive accuracy with notable gains in efficiency.
comment: 22 pages, 13 figures
☆ PRISM-Bench: A Benchmark of Puzzle-Based Visual Tasks with CoT Error Detection
We introduce \textbf{PRISM-Bench}, a benchmark of puzzle-based visual challenges designed to evaluate not only whether models can solve problems, but how their reasoning unfolds. Unlike prior evaluations that measure only final-answer accuracy, PRISM-Bench introduces a diagnostic task: given a visual puzzle and a step-by-step chain-of-thought (CoT) containing exactly one error, models must identify the first incorrect step. This setting enables fine-grained assessment of logical consistency, error detection, and visual reasoning. The puzzles in PRISM-Bench require multi-step symbolic, geometric, and analogical reasoning, resisting shortcuts based on superficial pattern matching. Evaluations across state-of-the-art MLLMs reveal a persistent gap between fluent generation and faithful reasoning: models that produce plausible CoTs often fail to locate simple logical faults. By disentangling answer generation from reasoning verification, PRISM-Bench offers a sharper lens on multimodal reasoning competence and underscores the need for diagnostic evaluation protocols in the development of trustworthy MLLMs.
☆ InFlux: A Benchmark for Self-Calibration of Dynamic Intrinsics of Video Cameras NeurIPS 2025
Accurately tracking camera intrinsics is crucial for achieving 3D understanding from 2D video. However, most 3D algorithms assume that camera intrinsics stay constant throughout a video, which is often not true for many real-world in-the-wild videos. A major obstacle in this field is a lack of dynamic camera intrinsics benchmarks--existing benchmarks typically offer limited diversity in scene content and intrinsics variation, and none provide per-frame intrinsic changes for consecutive video frames. In this paper, we present Intrinsics in Flux (InFlux), a real-world benchmark that provides per-frame ground truth intrinsics annotations for videos with dynamic intrinsics. Compared to prior benchmarks, InFlux captures a wider range of intrinsic variations and scene diversity, featuring 143K+ annotated frames from 386 high-resolution indoor and outdoor videos with dynamic camera intrinsics. To ensure accurate per-frame intrinsics, we build a comprehensive lookup table of calibration experiments and extend the Kalibr toolbox to improve its accuracy and robustness. Using our benchmark, we evaluate existing baseline methods for predicting camera intrinsics and find that most struggle to achieve accurate predictions on videos with dynamic intrinsics. For the dataset, code, videos, and submission, please visit https://influx.cs.princeton.edu/.
comment: Accepted at NeurIPS 2025 DB Track, Camera Ready Version. Supplementary material included
☆ FARMER: Flow AutoRegressive Transformer over Pixels
Directly modeling the explicit likelihood of the raw data distribution is key topic in the machine learning area, which achieves the scaling successes in Large Language Models by autoregressive modeling. However, continuous AR modeling over visual pixel data suffer from extremely long sequences and high-dimensional spaces. In this paper, we present FARMER, a novel end-to-end generative framework that unifies Normalizing Flows (NF) and Autoregressive (AR) models for tractable likelihood estimation and high-quality image synthesis directly from raw pixels. FARMER employs an invertible autoregressive flow to transform images into latent sequences, whose distribution is modeled implicitly by an autoregressive model. To address the redundancy and complexity in pixel-level modeling, we propose a self-supervised dimension reduction scheme that partitions NF latent channels into informative and redundant groups, enabling more effective and efficient AR modeling. Furthermore, we design a one-step distillation scheme to significantly accelerate inference speed and introduce a resampling-based classifier-free guidance algorithm to boost image generation quality. Extensive experiments demonstrate that FARMER achieves competitive performance compared to existing pixel-based generative models while providing exact likelihoods and scalable training.
comment: Bytedance Seed Technical Report
☆ Lookahead Anchoring: Preserving Character Identity in Audio-Driven Human Animation
Audio-driven human animation models often suffer from identity drift during temporal autoregressive generation, where characters gradually lose their identity over time. One solution is to generate keyframes as intermediate temporal anchors that prevent degradation, but this requires an additional keyframe generation stage and can restrict natural motion dynamics. To address this, we propose Lookahead Anchoring, which leverages keyframes from future timesteps ahead of the current generation window, rather than within it. This transforms keyframes from fixed boundaries into directional beacons: the model continuously pursues these future anchors while responding to immediate audio cues, maintaining consistent identity through persistent guidance. This also enables self-keyframing, where the reference image serves as the lookahead target, eliminating the need for keyframe generation entirely. We find that the temporal lookahead distance naturally controls the balance between expressivity and consistency: larger distances allow for greater motion freedom, while smaller ones strengthen identity adherence. When applied to three recent human animation models, Lookahead Anchoring achieves superior lip synchronization, identity preservation, and visual quality, demonstrating improved temporal conditioning across several different architectures. Video results are available at the following link: https://lookahead-anchoring.github.io.
comment: Project page: https://lookahead-anchoring.github.io
☆ UrbanVLA: A Vision-Language-Action Model for Urban Micromobility
Urban micromobility applications, such as delivery robots, demand reliable navigation across large-scale urban environments while following long-horizon route instructions. This task is particularly challenging due to the dynamic and unstructured nature of real-world city areas, yet most existing navigation methods remain tailored to short-scale and controllable scenarios. Effective urban micromobility requires two complementary levels of navigation skills: low-level capabilities such as point-goal reaching and obstacle avoidance, and high-level capabilities, such as route-visual alignment. To this end, we propose UrbanVLA, a route-conditioned Vision-Language-Action (VLA) framework designed for scalable urban navigation. Our method explicitly aligns noisy route waypoints with visual observations during execution, and subsequently plans trajectories to drive the robot. To enable UrbanVLA to master both levels of navigation, we employ a two-stage training pipeline. The process begins with Supervised Fine-Tuning (SFT) using simulated environments and trajectories parsed from web videos. This is followed by Reinforcement Fine-Tuning (RFT) on a mixture of simulation and real-world data, which enhances the model's safety and adaptability in real-world settings. Experiments demonstrate that UrbanVLA surpasses strong baselines by more than 55% in the SocialNav task on MetaUrban. Furthermore, UrbanVLA achieves reliable real-world navigation, showcasing both scalability to large-scale urban environments and robustness against real-world uncertainties.
☆ More Than Generation: Unifying Generation and Depth Estimation via Text-to-Image Diffusion Models NeurIPS 2025
Generative depth estimation methods leverage the rich visual priors stored in pre-trained text-to-image diffusion models, demonstrating astonishing zero-shot capability. However, parameter updates during training lead to catastrophic degra- dation in the image generation capability of the pre-trained model. We introduce MERGE, a unified model for image generation and depth estimation, starting from a fixed pre-trained text-to-image model. MERGE demonstrates that the pre-trained text-to-image model can do more than image generation, but also expand to depth estimation effortlessly. Specifically, MERGE introduces a play- and-plug framework that enables seamless switching between image generation and depth estimation modes through simple and pluggable converters. Meanwhile, we propose a Group Reuse Mechanism to encourage parameter reuse and im- prove the utilization of the additional learnable parameters. MERGE unleashes the powerful depth estimation capability of the pre-trained text-to-image model while preserving its original image generation ability. Compared to other unified models for image generation and depth estimation, MERGE achieves state-of- the-art performance across multiple depth estimation benchmarks. The code will be made available at https://github.com/H-EmbodVis/MERGE
comment: Accepted by NeurIPS 2025. The code will be made available at https://github.com/H-EmbodVis/MERGE
☆ RobotArena $\infty$: Scalable Robot Benchmarking via Real-to-Sim Translation
The pursuit of robot generalists - instructable agents capable of performing diverse tasks across diverse environments - demands rigorous and scalable evaluation. Yet real-world testing of robot policies remains fundamentally constrained: it is labor-intensive, slow, unsafe at scale, and difficult to reproduce. Existing simulation benchmarks are similarly limited, as they train and test policies within the same synthetic domains and cannot assess models trained from real-world demonstrations or alternative simulation environments. As policies expand in scope and complexity, these barriers only intensify, since defining "success" in robotics often hinges on nuanced human judgments of execution quality. In this paper, we introduce a new benchmarking framework that overcomes these challenges by shifting VLA evaluation into large-scale simulated environments augmented with online human feedback. Leveraging advances in vision-language models, 2D-to-3D generative modeling, and differentiable rendering, our approach automatically converts video demonstrations from widely used robot datasets into simulated counterparts. Within these digital twins, we assess VLA policies using both automated VLM-guided scoring and scalable human preference judgments collected from crowdworkers, transforming human involvement from tedious scene setup, resetting, and safety supervision into lightweight preference comparisons. To measure robustness, we systematically perturb simulated environments along multiple axes, such as textures and object placements, stress-testing policy generalization under controlled variation. The result is a continuously evolving, reproducible, and scalable benchmark for real-world trained robot manipulation policies, addressing a critical missing capability in today's robotics landscape.
comment: Website: https://robotarenainf.github.io
☆ EgoThinker: Unveiling Egocentric Reasoning with Spatio-Temporal CoT NeurIPS 2025
Egocentric video reasoning centers on an unobservable agent behind the camera who dynamically shapes the environment, requiring inference of hidden intentions and recognition of fine-grained interactions. This core challenge limits current multimodal large language models MLLMs, which excel at visible event reasoning but lack embodied, first-person understanding. To bridge this gap, we introduce EgoThinker, a novel framework that endows MLLMs with robust egocentric reasoning capabilities through spatio-temporal chain-of-thought supervision and a two-stage learning curriculum. First, we introduce EgoRe-5M, a large-scale egocentric QA dataset constructed from 13M diverse egocentric video clips. This dataset features multi-minute segments annotated with detailed CoT rationales and dense hand-object grounding. Second, we employ SFT on EgoRe-5M to instill reasoning skills, followed by reinforcement fine-tuning RFT to further enhance spatio-temporal localization. Experimental results show that EgoThinker outperforms existing methods across multiple egocentric benchmarks, while achieving substantial improvements in fine-grained spatio-temporal localization tasks. Full code and data are released at https://github.com/InternRobotics/EgoThinker.
comment: Accepted at NeurIPS 2025
☆ Revising Second Order Terms in Deep Animation Video Coding
First Order Motion Model is a generative model that animates human heads based on very little motion information derived from keypoints. It is a promising solution for video communication because first it operates at very low bitrate and second its computational complexity is moderate compared to other learning based video codecs. However, it has strong limitations by design. Since it generates facial animations by warping source-images, it fails to recreate videos with strong head movements. This works concentrates on one specific kind of head movements, namely head rotations. We show that replacing the Jacobian transformations in FOMM by a global rotation helps the system to perform better on items with head-rotations while saving 40% to 80% of bitrate on P-frames. Moreover, we apply state-of-the-art normalization techniques to the discriminator to stabilize the adversarial training which is essential for generating visually appealing videos. We evaluate the performance by the learned metics LPIPS and DISTS to show the success our optimizations.
☆ A U-Net and Transformer Pipeline for Multilingual Image Translation
This paper presents an end-to-end multilingual translation pipeline that integrates a custom U-Net for text detection, the Tesseract engine for text recognition, and a from-scratch sequence-to-sequence (Seq2Seq) Transformer for Neural Machine Translation (NMT). Our approach first utilizes a U-Net model, trained on a synthetic dataset , to accurately segment and detect text regions from an image. These detected regions are then processed by Tesseract to extract the source text. This extracted text is fed into a custom Transformer model trained from scratch on a multilingual parallel corpus spanning 5 languages. Unlike systems reliant on monolithic pre-trained models, our architecture emphasizes full customization and adaptability. The system is evaluated on its text detection accuracy, text recognition quality, and translation performance via BLEU scores. The complete pipeline demonstrates promising results, validating the viability of a custom-built system for translating text directly from images.
comment: 6 pages, 3 figures, 5 tables, and 2 algorithms. Prepared in IEEE double-column format
☆ JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence
The scope of neural code intelligence is rapidly expanding beyond text-based source code to encompass the rich visual outputs that programs generate. This visual dimension is critical for advanced applications like flexible content generation and precise, program-driven editing of visualizations. However, progress has been impeded by the scarcity of high-quality multimodal code data, a bottleneck stemming from challenges in synthesis and quality assessment. To address these challenges, we make contributions from both a data and modeling perspective. We first introduce a complete synthesis toolkit that leverages reciprocal synergies between data modalities to efficiently produce a large-scale, high-quality corpus spanning from standard charts to complex interactive web UIs and code-driven animations. Leveraging this toolkit, we construct JanusCode-800K, the largest multimodal code corpus to date. This powers the training of our models, JanusCoder and JanusCoderV, which establish a visual-programmatic interface for generating code from textual instructions, visual inputs, or a combination of both. Our unified model is a departure from existing approaches that build specialized models for isolated tasks. Extensive experiments on both text-centric and vision-centric coding tasks demonstrate the superior performance of the JanusCoder series, with our 7B to 14B scale models approaching or even exceeding the performance of commercial models. Furthermore, extensive analysis provides key insights into harmonizing programmatic logic with its visual expression. Our code and checkpoints will are available at https://github.com/InternLM/JanusCoder.
comment: Work in progress
☆ DPGLA: Bridging the Gap between Synthetic and Real Data for Unsupervised Domain Adaptation in 3D LiDAR Semantic Segmentation IROS
Annotating real-world LiDAR point clouds for use in intelligent autonomous systems is costly. To overcome this limitation, self-training-based Unsupervised Domain Adaptation (UDA) has been widely used to improve point cloud semantic segmentation by leveraging synthetic point cloud data. However, we argue that existing methods do not effectively utilize unlabeled data, as they either rely on predefined or fixed confidence thresholds, resulting in suboptimal performance. In this paper, we propose a Dynamic Pseudo-Label Filtering (DPLF) scheme to enhance real data utilization in point cloud UDA semantic segmentation. Additionally, we design a simple and efficient Prior-Guided Data Augmentation Pipeline (PG-DAP) to mitigate domain shift between synthetic and real-world point clouds. Finally, we utilize data mixing consistency loss to push the model to learn context-free representations. We implement and thoroughly evaluate our approach through extensive comparisons with state-of-the-art methods. Experiments on two challenging synthetic-to-real point cloud semantic segmentation tasks demonstrate that our approach achieves superior performance. Ablation studies confirm the effectiveness of the DPLF and PG-DAP modules. We release the code of our method in this paper.
comment: This paper has been accepted for publication at the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
☆ FreeFuse: Multi-Subject LoRA Fusion via Auto Masking at Test Time
This paper proposes FreeFuse, a novel training-free approach for multi-subject text-to-image generation through automatic fusion of multiple subject LoRAs. In contrast to existing methods that either focus on pre-inference LoRA weight merging or rely on segmentation models and complex techniques like noise blending to isolate LoRA outputs, our key insight is that context-aware dynamic subject masks can be automatically derived from cross-attention layer weights. Mathematical analysis shows that directly applying these masks to LoRA outputs during inference well approximates the case where the subject LoRA is integrated into the diffusion model and used individually for the masked region. FreeFuse demonstrates superior practicality and efficiency as it requires no additional training, no modification to LoRAs, no auxiliary models, and no user-defined prompt templates or region specifications. Alternatively, it only requires users to provide the LoRA activation words for seamless integration into standard workflows. Extensive experiments validate that FreeFuse outperforms existing approaches in both generation quality and usability under the multi-subject generation tasks. The project page is at https://future-item.github.io/FreeFuse/
☆ Localising under the drape: proprioception in the era of distributed surgical robotic system
Despite their mechanical sophistication, surgical robots remain blind to their surroundings. This lack of spatial awareness causes collisions, system recoveries, and workflow disruptions, issues that will intensify with the introduction of distributed robots with independent interacting arms. Existing tracking systems rely on bulky infrared cameras and reflective markers, providing only limited views of the surgical scene and adding hardware burden in crowded operating rooms. We present a marker-free proprioception method that enables precise localisation of surgical robots under their sterile draping despite associated obstruction of visual cues. Our method solely relies on lightweight stereo-RGB cameras and novel transformer-based deep learning models. It builds on the largest multi-centre spatial robotic surgery dataset to date (1.4M self-annotated images from human cadaveric and preclinical in vivo studies). By tracking the entire robot and surgical scene, rather than individual markers, our approach provides a holistic view robust to occlusions, supporting surgical scene understanding and context-aware control. We demonstrate an example of potential clinical benefits during in vivo breathing compensation with access to tissue dynamics, unobservable under state of the art tracking, and accurately locate in multi-robot systems for future intelligent interaction. In addition, and compared with existing systems, our method eliminates markers and improves tracking visibility by 25%. To our knowledge, this is the first demonstration of marker-free proprioception for fully draped surgical robots, reducing setup complexity, enhancing safety, and paving the way toward modular and autonomous robotic surgery.
☆ iPac: Incorporating Intra-image Patch Context into Graph Neural Networks for Medical Image Classification ICONIP 2025
Graph neural networks have emerged as a promising paradigm for image processing, yet their performance in image classification tasks is hindered by a limited consideration of the underlying structure and relationships among visual entities. This work presents iPac, a novel approach to introduce a new graph representation of images to enhance graph neural network image classification by recognizing the importance of underlying structure and relationships in medical image classification. iPac integrates various stages, including patch partitioning, feature extraction, clustering, graph construction, and graph-based learning, into a unified network to advance graph neural network image classification. By capturing relevant features and organising them into clusters, we construct a meaningful graph representation that effectively encapsulates the semantics of the image. Experimental evaluation on diverse medical image datasets demonstrates the efficacy of iPac, exhibiting an average accuracy improvement of up to 5% over baseline methods. Our approach offers a versatile and generic solution for image classification, particularly in the realm of medical images, by leveraging the graph representation and accounting for the inherent structure and relationships among visual entities.
comment: Accepted for publication in the proceedings of ICONIP 2025
☆ VOLD: Reasoning Transfer from LLMs to Vision-Language Models via On-Policy Distillation
Training vision-language models (VLMs) for complex reasoning remains a challenging task, i.a. due to the scarcity of high-quality image-text reasoning data. Conversely, text-based reasoning resources are abundant and scalable, but it is still an open question how to leveraging them for VLM reasoning. To address this problem, we propose VOLD, a framework to transfer reasoning capabilities from text-only teacher models to VLM student models. To this end, VOLD combines reinforcement learning via Group Relative Policy Optimization (GRPO) with on-policy distillation, which allows the student reasoning traces to be guided by the teacher model, resulting in a significant gain over using GRPO alone. We further show that a cold-start alignment is essential for an effective transfer during the online training phase in this scenario and that without sufficient distributional alignment between teacher and student, on-policy distillation fails to provide meaningful guidance. We evaluate VOLD across diverse benchmarks including MMMU-Pro, MathVision, MathVista, and LogicVista, showing that VOLD outperforms the baseline model significantly and improves over the state of the art by a margin. Our ablation shows the importance of a cold-start alignment via SFT for on-policy distillation with a text-only teacher.
comment: www.walidbousselham.com/VOLD/
☆ Yesnt: Are Diffusion Relighting Models Ready for Capture Stage Compositing? A Hybrid Alternative to Bridge the Gap
Volumetric video relighting is essential for bringing captured performances into virtual worlds, but current approaches struggle to deliver temporally stable, production-ready results. Diffusion-based intrinsic decomposition methods show promise for single frames, yet suffer from stochastic noise and instability when extended to sequences, while video diffusion models remain constrained by memory and scale. We propose a hybrid relighting framework that combines diffusion-derived material priors with temporal regularization and physically motivated rendering. Our method aggregates multiple stochastic estimates of per-frame material properties into temporally consistent shading components, using optical-flow-guided regularization. For indirect effects such as shadows and reflections, we extract a mesh proxy from Gaussian Opacity Fields and render it within a standard graphics pipeline. Experiments on real and synthetic captures show that this hybrid strategy achieves substantially more stable relighting across sequences than diffusion-only baselines, while scaling beyond the clip lengths feasible for video diffusion. These results indicate that hybrid approaches, which balance learned priors with physically grounded constraints, are a practical step toward production-ready volumetric video relighting.
☆ T-REGS: Minimum Spanning Tree Regularization for Self-Supervised Learning NeurIPS 2025
Self-supervised learning (SSL) has emerged as a powerful paradigm for learning representations without labeled data, often by enforcing invariance to input transformations such as rotations or blurring. Recent studies have highlighted two pivotal properties for effective representations: (i) avoiding dimensional collapse-where the learned features occupy only a low-dimensional subspace, and (ii) enhancing uniformity of the induced distribution. In this work, we introduce T-REGS, a simple regularization framework for SSL based on the length of the Minimum Spanning Tree (MST) over the learned representation. We provide theoretical analysis demonstrating that T-REGS simultaneously mitigates dimensional collapse and promotes distribution uniformity on arbitrary compact Riemannian manifolds. Several experiments on synthetic data and on classical SSL benchmarks validate the effectiveness of our approach at enhancing representation quality.
comment: NeurIPS 2025
☆ On the Faithfulness of Visual Thinking: Measurement and Enhancement
Recent large vision-language models (LVLMs) can generate vision-text multimodal chain-of-thought (MCoT) traces after reinforcement fine-tuning (RFT). However, we observe that the visual information incorporated in MCoT is often inaccurate, though still yield correct answers, indicating a lack of faithfulness in the MCoT reasoning process. We attribute this unfaithfulness to the RL reward in RFT, which solely incentivizes the format of interleaved vision-text cues, ie, it encourages the model to incorporate visual information into its text reasoning steps without considering the correctness of the visual information. In this paper, we first probe the faithfulness of MCoT by measuring how much the prediction changes when its visual and textual thoughts are intervened. Surprisingly, the model's predictions remain nearly unchanged under visual intervention but change significantly under textual intervention, indicating that the visual evidence is largely ignored. To further analyze visual information, we introduce an automated LVLM-based evaluation metric that quantifies the faithfulness of visual cues from two perspectives: reliability and sufficiency. Our evaluation reveals that the visual information in current MCoT traces is simultaneously unreliable and insufficient. To address this issue, we propose a novel MCoT learning strategy termed Sufficient-Component Cause Model (SCCM) learning. This approach encourages the MCoT to generate sufficient yet minimal visual components that are independently capable of leading to correct answers. We note that the proposed SCCM is annotation-free and compatible with various RFT for MCoT in a plug-and-play manner. Empirical results demonstrate that SCCM consistently improves the visual faithfulness across a suite of fine-grained perception and reasoning benchmarks. Code is available at https://github.com/EugeneLiu01/Faithful_Thinking_with_Image.
☆ MergeMix: A Unified Augmentation Paradigm for Visual and Multi-Modal Understanding
Vision-language alignment in multi-modal large language models (MLLMs) typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL). SFT is stable and efficient but requires large-scale human annotations and cannot capture subtle preferences, while RL brings in a reward signal for training, but suffers from overhead and instability. These limitations highlight a trade-off between scalability, robustness, and alignment quality. To address this, we propose MergeMix, a training-time augmentation paradigm that bridges SFT and RL. It first applies an attention-aware image mixing via token merge with more cluster representation and spatial context, and then presents a preference-driven training paradigm for MLLMs by building preference pairs with mixed images and raw images, and optimizing via SimPO loss. As a mixup augmentation, MergeMix enhances attention consistency and efficiency, surpassing other heuristic-based methods in classification. Extensive experiments demonstrate that MergeMix achieves competitive accuracy with improved efficiency, providing a scalable approach to preference alignment in classification and MLLMs.
comment: Code Link: https://github.com/JinXins/MergeMix
☆ UrbanIng-V2X: A Large-Scale Multi-Vehicle, Multi-Infrastructure Dataset Across Multiple Intersections for Cooperative Perception NeurIPS 2025
Recent cooperative perception datasets have played a crucial role in advancing smart mobility applications by enabling information exchange between intelligent agents, helping to overcome challenges such as occlusions and improving overall scene understanding. While some existing real-world datasets incorporate both vehicle-to-vehicle and vehicle-to-infrastructure interactions, they are typically limited to a single intersection or a single vehicle. A comprehensive perception dataset featuring multiple connected vehicles and infrastructure sensors across several intersections remains unavailable, limiting the benchmarking of algorithms in diverse traffic environments. Consequently, overfitting can occur, and models may demonstrate misleadingly high performance due to similar intersection layouts and traffic participant behavior. To address this gap, we introduce UrbanIng-V2X, the first large-scale, multi-modal dataset supporting cooperative perception involving vehicles and infrastructure sensors deployed across three urban intersections in Ingolstadt, Germany. UrbanIng-V2X consists of 34 temporally aligned and spatially calibrated sensor sequences, each lasting 20 seconds. All sequences contain recordings from one of three intersections, involving two vehicles and up to three infrastructure-mounted sensor poles operating in coordinated scenarios. In total, UrbanIng-V2X provides data from 12 vehicle-mounted RGB cameras, 2 vehicle LiDARs, 17 infrastructure thermal cameras, and 12 infrastructure LiDARs. All sequences are annotated at a frequency of 10 Hz with 3D bounding boxes spanning 13 object classes, resulting in approximately 712k annotated instances across the dataset. We provide comprehensive evaluations using state-of-the-art cooperative perception methods and publicly release the codebase, dataset, HD map, and a digital twin of the complete data collection environment.
comment: Accepted to NeurIPS 2025. Including supplemental material. For code and dataset, see https://github.com/thi-ad/UrbanIng-V2X
☆ Video-Thinker: Sparking "Thinking with Videos" via Reinforcement Learning
Recent advances in image reasoning methods, particularly "Thinking with Images", have demonstrated remarkable success in Multimodal Large Language Models (MLLMs); however, this dynamic reasoning paradigm has not yet been extended to video reasoning tasks. In this paper, we propose Video-Thinker, which empowers MLLMs to think with videos by autonomously leveraging their intrinsic "grounding" and "captioning" capabilities to generate reasoning clues throughout the inference process. To spark this capability, we construct Video-Thinker-10K, a curated dataset featuring autonomous tool usage within chain-of-thought reasoning sequences. Our training strategy begins with Supervised Fine-Tuning (SFT) to learn the reasoning format, followed by Group Relative Policy Optimization (GRPO) to strengthen this reasoning capability. Through this approach, Video-Thinker enables MLLMs to autonomously navigate grounding and captioning tasks for video reasoning, eliminating the need for constructing and calling external tools. Extensive experiments demonstrate that Video-Thinker achieves significant performance gains on both in-domain tasks and challenging out-of-domain video reasoning benchmarks, including Video-Holmes, CG-Bench-Reasoning, and VRBench. Our Video-Thinker-7B substantially outperforms existing baselines such as Video-R1 and establishes state-of-the-art performance among 7B-sized MLLMs.
☆ Omni-Reward: Towards Generalist Omni-Modal Reward Modeling with Free-Form Preferences
Reward models (RMs) play a critical role in aligning AI behaviors with human preferences, yet they face two fundamental challenges: (1) Modality Imbalance, where most RMs are mainly focused on text and image modalities, offering limited support for video, audio, and other modalities; and (2) Preference Rigidity, where training on fixed binary preference pairs fails to capture the complexity and diversity of personalized preferences. To address the above challenges, we propose Omni-Reward, a step toward generalist omni-modal reward modeling with support for free-form preferences, consisting of: (1) Evaluation: We introduce Omni-RewardBench, the first omni-modal RM benchmark with free-form preferences, covering nine tasks across five modalities including text, image, video, audio, and 3D; (2) Data: We construct Omni-RewardData, a multimodal preference dataset comprising 248K general preference pairs and 69K instruction-tuning pairs for training generalist omni-modal RMs; (3) Model: We propose Omni-RewardModel, which includes both discriminative and generative RMs, and achieves strong performance on Omni-RewardBench as well as other widely used reward modeling benchmarks.
comment: 48 pages, 17 figures
☆ FRBNet: Revisiting Low-Light Vision through Frequency-Domain Radial Basis Network
Low-light vision remains a fundamental challenge in computer vision due to severe illumination degradation, which significantly affects the performance of downstream tasks such as detection and segmentation. While recent state-of-the-art methods have improved performance through invariant feature learning modules, they still fall short due to incomplete modeling of low-light conditions. Therefore, we revisit low-light image formation and extend the classical Lambertian model to better characterize low-light conditions. By shifting our analysis to the frequency domain, we theoretically prove that the frequency-domain channel ratio can be leveraged to extract illumination-invariant features via a structured filtering process. We then propose a novel and end-to-end trainable module named \textbf{F}requency-domain \textbf{R}adial \textbf{B}asis \textbf{Net}work (\textbf{FRBNet}), which integrates the frequency-domain channel ratio operation with a learnable frequency domain filter for the overall illumination-invariant feature enhancement. As a plug-and-play module, FRBNet can be integrated into existing networks for low-light downstream tasks without modifying loss functions. Extensive experiments across various downstream tasks demonstrate that FRBNet achieves superior performance, including +2.2 mAP for dark object detection and +2.9 mIoU for nighttime segmentation. Code is available at: https://github.com/Sing-Forevet/FRBNet.
☆ CURVETE: Curriculum Learning and Progressive Self-supervised Training for Medical Image Classification ICONIP 2025
Identifying high-quality and easily accessible annotated samples poses a notable challenge in medical image analysis. Transfer learning techniques, leveraging pre-training data, offer a flexible solution to this issue. However, the impact of fine-tuning diminishes when the dataset exhibits an irregular distribution between classes. This paper introduces a novel deep convolutional neural network, named Curriculum Learning and Progressive Self-supervised Training (CURVETE). CURVETE addresses challenges related to limited samples, enhances model generalisability, and improves overall classification performance. It achieves this by employing a curriculum learning strategy based on the granularity of sample decomposition during the training of generic unlabelled samples. Moreover, CURVETE address the challenge of irregular class distribution by incorporating a class decomposition approach in the downstream task. The proposed method undergoes evaluation on three distinct medical image datasets: brain tumour, digital knee x-ray, and Mini-DDSM datasets. We investigate the classification performance using a generic self-supervised sample decomposition approach with and without the curriculum learning component in training the pretext task. Experimental results demonstrate that the CURVETE model achieves superior performance on test sets with an accuracy of 96.60% on the brain tumour dataset, 75.60% on the digital knee x-ray dataset, and 93.35% on the Mini-DDSM dataset using the baseline ResNet-50. Furthermore, with the baseline DenseNet-121, it achieved accuracies of 95.77%, 80.36%, and 93.22% on the brain tumour, digital knee x-ray, and Mini-DDSM datasets, respectively, outperforming other training strategies.
comment: Accepted for publication in the proceedings of ICONIP 2025
☆ MiCADangelo: Fine-Grained Reconstruction of Constrained CAD Models from 3D Scans NeurIPS 2025
Computer-Aided Design (CAD) plays a foundational role in modern manufacturing and product development, often requiring designers to modify or build upon existing models. Converting 3D scans into parametric CAD representations--a process known as CAD reverse engineering--remains a significant challenge due to the high precision and structural complexity of CAD models. Existing deep learning-based approaches typically fall into two categories: bottom-up, geometry-driven methods, which often fail to produce fully parametric outputs, and top-down strategies, which tend to overlook fine-grained geometric details. Moreover, current methods neglect an essential aspect of CAD modeling: sketch-level constraints. In this work, we introduce a novel approach to CAD reverse engineering inspired by how human designers manually perform the task. Our method leverages multi-plane cross-sections to extract 2D patterns and capture fine parametric details more effectively. It enables the reconstruction of detailed and editable CAD models, outperforming state-of-the-art methods and, for the first time, incorporating sketch constraints directly into the reconstruction process.
comment: Accepted at NeurIPS 2025
☆ Quality-controlled registration of urban MLS point clouds reducing drift effects by adaptive fragmentation
This study presents a novel workflow designed to efficiently and accurately register large-scale mobile laser scanning (MLS) point clouds to a target model point cloud in urban street scenarios. This workflow specifically targets the complexities inherent in urban environments and adeptly addresses the challenges of integrating point clouds that vary in density, noise characteristics, and occlusion scenarios, which are common in bustling city centers. Two methodological advancements are introduced. First, the proposed Semi-sphere Check (SSC) preprocessing technique optimally fragments MLS trajectory data by identifying mutually orthogonal planar surfaces. This step reduces the impact of MLS drift on the accuracy of the entire point cloud registration, while ensuring sufficient geometric features within each fragment to avoid local minima. Second, we propose Planar Voxel-based Generalized Iterative Closest Point (PV-GICP), a fine registration method that selectively utilizes planar surfaces within voxel partitions. This pre-process strategy not only improves registration accuracy but also reduces computation time by more than 50% compared to conventional point-to-plane ICP methods. Experiments on real-world datasets from Munich's inner city demonstrate that our workflow achieves sub-0.01 m average registration accuracy while significantly shortening processing times. The results underscore the potential of the proposed methods to advance automated 3D urban modeling and updating, with direct applications in urban planning, infrastructure management, and dynamic city monitoring.
comment: 10 pages, 7 figures. This manuscript is currently under review at the International Journal of Applied Earth Observation and Geoinformation (Elsevier). A preprint version will also be available on SSRN (Elsevier Preprints) with a DOI once processed. This is the original preprint version submitted for peer review
☆ Towards Generalisable Foundation Models for 3D Brain MRI
Foundation models in artificial intelligence (AI) are transforming medical imaging by enabling general-purpose feature learning from large-scale, unlabeled datasets. In this work, we introduce BrainFound, a self-supervised foundation model for brain MRI, built by extending DINO-v2, a vision transformer originally designed for 2D natural images. BrainFound adapts DINO-v2 to model full 3D brain anatomy by incorporating volumetric information from sequential MRI slices, moving beyond conventional single-slice paradigms. It supports both single- and multimodal inputs, enabling a broad range of downstream tasks, including disease detection and image segmentation, while generalising across varied imaging protocols and clinical scenarios. We show that BrainFound consistently outperforms existing self-supervised pretraining strategies and supervised baselines, particularly in label-scarce and multi-contrast settings. By integrating information from diverse 3D MRI modalities (e.g., T1, T2, FLAIR), it enhances diagnostic accuracy and reduces dependency on extensive expert annotations. This flexibility makes BrainFound a scalable and practical solution for 3D neuroimaging pipelines, with significant potential for clinical deployment and research innovation.
☆ Symmetria: A Synthetic Dataset for Learning in Point Clouds
Unlike image or text domains that benefit from an abundance of large-scale datasets, point cloud learning techniques frequently encounter limitations due to the scarcity of extensive datasets. To overcome this limitation, we present Symmetria, a formula-driven dataset that can be generated at any arbitrary scale. By construction, it ensures the absolute availability of precise ground truth, promotes data-efficient experimentation by requiring fewer samples, enables broad generalization across diverse geometric settings, and offers easy extensibility to new tasks and modalities. Using the concept of symmetry, we create shapes with known structure and high variability, enabling neural networks to learn point cloud features effectively. Our results demonstrate that this dataset is highly effective for point cloud self-supervised pre-training, yielding models with strong performance in downstream tasks such as classification and segmentation, which also show good few-shot learning capabilities. Additionally, our dataset can support fine-tuning models to classify real-world objects, highlighting our approach's practical utility and application. We also introduce a challenging task for symmetry detection and provide a benchmark for baseline comparisons. A significant advantage of our approach is the public availability of the dataset, the accompanying code, and the ability to generate very large collections, promoting further research and innovation in point cloud learning.
comment: 40 pages
☆ Color and Frequency Correction for Image Colorization
The project has carried out the re-optimization of image coloring in accordance with the existing Autocolorization direction model DDColor. For the experiments on the existing weights of DDColor, we found that it has limitations in some frequency bands and the color cast problem caused by insufficient input dimension. We construct two optimization schemes and combine them, which achieves the performance improvement of indicators such as PSNR and SSIM of the images after DDColor.
comment: 7 pages, 5 tables
☆ VideoTG-R1: Boosting Video Temporal Grounding via Curriculum Reinforcement Learning on Reflected Boundary Annotations
Video temporal grounding (VTG) aims to locate precise segments in videos based on language queries, which is a fundamental challenge in video understanding. While recent Multimodal Large Language Models (MLLMs) have shown promise in tackling VTG through reinforcement learning (RL), they overlook the challenges arising from both the quality and difficulty of training samples. (1) Partially annotated samples. Many samples contain relevant segments beyond the annotated interval, introducing ambiguous supervision. (2) Hard-to-ground samples. Samples with poor zero-shot performance produce consistently low and indistinguishable rewards during RL training, exhibiting no clear preference among multiple outputs and thus hindering learning efficiency. To address these challenges, we propose VideoTG-R1, a novel curriculum RL framework with reflected boundary annotations, enabling data-efficient training. Specifically, we propose a Boundary Reflection Agent that utilizes MLLMs to predict query-relevant timestamps outside the annotated intervals, allowing us to identify and filter out partially annotated samples, thereby reducing ambiguity. Furthermore, we introduce a Difficulty Estimation Agent to assess the training difficulty of each sample and design a curriculum RL strategy that dynamically masks the videos of hard-to-ground samples according to the training steps, easing the training difficulty and providing clearer preference. Experiments on the VTG and grounded VideoQA tasks demonstrate the effectiveness of our method. Remarkably, with only 10% of the training samples and 21% of the computational budget, VideoTG-R1 outperforms full-data counterparts under both group relative policy optimization (GRPO) and supervised fine-tuning (SFT). The code is available at https://github.com/ldong1111/VideoTG-R1.
☆ An Efficient Remote Sensing Super Resolution Method Exploring Diffusion Priors and Multi-Modal Constraints for Crop Type Mapping
Super resolution offers a way to harness medium even lowresolution but historically valuable remote sensing image archives. Generative models, especially diffusion models, have recently been applied to remote sensing super resolution (RSSR), yet several challenges exist. First, diffusion models are effective but require expensive training from scratch resources and have slow inference speeds. Second, current methods have limited utilization of auxiliary information as real-world constraints to reconstruct scientifically realistic images. Finally, most current methods lack evaluation on downstream tasks. In this study, we present a efficient LSSR framework for RSSR, supported by a new multimodal dataset of paired 30 m Landsat 8 and 10 m Sentinel 2 imagery. Built on frozen pretrained Stable Diffusion, LSSR integrates crossmodal attention with auxiliary knowledge (Digital Elevation Model, land cover, month) and Synthetic Aperture Radar guidance, enhanced by adapters and a tailored Fourier NDVI loss to balance spatial details and spectral fidelity. Extensive experiments demonstrate that LSSR significantly improves crop boundary delineation and recovery, achieving state-of-the-art performance with Peak Signal-to-Noise Ratio/Structural Similarity Index Measure of 32.63/0.84 (RGB) and 23.99/0.78 (IR), and the lowest NDVI Mean Squared Error (0.042), while maintaining efficient inference (0.39 sec/image). Moreover, LSSR transfers effectively to NASA Harmonized Landsat and Sentinel (HLS) super resolution, yielding more reliable crop classification (F1: 0.86) than Sentinel-2 (F1: 0.85). These results highlight the potential of RSSR to advance precision agriculture.
comment: 41 pages
☆ PlanarTrack: A high-quality and challenging benchmark for large-scale planar object tracking
Planar tracking has drawn increasing interest owing to its key roles in robotics and augmented reality. Despite recent great advancement, further development of planar tracking, particularly in the deep learning era, is largely limited compared to generic tracking due to the lack of large-scale platforms. To mitigate this, we propose PlanarTrack, a large-scale high-quality and challenging benchmark for planar tracking. Specifically, PlanarTrack consists of 1,150 sequences with over 733K frames, including 1,000 short-term and 150 new long-term videos, which enables comprehensive evaluation of short- and long-term tracking performance. All videos in PlanarTrack are recorded in unconstrained conditions from the wild, which makes PlanarTrack challenging but more realistic for real-world applications. To ensure high-quality annotations, each video frame is manually annotated by four corner points with multi-round meticulous inspection and refinement. To enhance target diversity of PlanarTrack, we only capture a unique target in one sequence, which is different from existing benchmarks. To our best knowledge, PlanarTrack is by far the largest and most diverse and challenging dataset dedicated to planar tracking. To understand performance of existing methods on PlanarTrack and to provide a comparison for future research, we evaluate 10 representative planar trackers with extensive comparison and in-depth analysis. Our evaluation reveals that, unsurprisingly, the top planar trackers heavily degrade on the challenging PlanarTrack, which indicates more efforts are required for improving planar tracking. Our data and results will be released at https://github.com/HengLan/PlanarTrack
☆ Interpretable Tile-Based Classification of Paclitaxel Exposure
Medical image analysis is central to drug discovery and preclinical evaluation, where scalable, objective readouts can accelerate decision-making. We address classification of paclitaxel (Taxol) exposure from phase-contrast microscopy of C6 glioma cells -- a task with subtle dose differences that challenges full-image models. We propose a simple tiling-and-aggregation pipeline that operates on local patches and combines tile outputs into an image label, achieving state-of-the-art accuracy on the benchmark dataset and improving over the published baseline by around 20 percentage points, with trends confirmed by cross-validation. To understand why tiling is effective, we further apply Grad-CAM and Score-CAM and attention analyses, which enhance model interpretability and point toward robustness-oriented directions for future medical image research. Code is released to facilitate reproduction and extension.
☆ Multitask Multimodal Self-Supervised Learning for Medical Images
This thesis works to address a pivotal challenge in medical image analysis: the reliance on extensive labeled datasets, which are often limited due to the need for expert annotation and constrained by privacy and legal issues. By focusing on the development of self-supervised learning techniques and domain adaptation methods, this research aims to circumvent these limitations, presenting a novel approach to enhance the utility and efficacy of deep learning in medical imaging. Central to this thesis is the development of the Medformer, an innovative neural network architecture designed for multitask learning and deep domain adaptation. This model is adept at pre-training on diverse medical image datasets, handling varying sizes and modalities, and is equipped with a dynamic input-output adaptation mechanism. This enables efficient processing and integration of a wide range of medical image types, from 2D X-rays to complex 3D MRIs, thus mitigating the dependency on large labeled datasets. Further, the thesis explores the current state of self-supervised learning in medical imaging. It introduces novel pretext tasks that are capable of extracting meaningful information from unlabeled data, significantly advancing the model's interpretative abilities. This approach is validated through rigorous experimentation, including the use of the MedMNIST dataset, demonstrating the model's proficiency in learning generalized features applicable to various downstream tasks. In summary, this thesis contributes to the advancement of medical image analysis by offering a scalable, adaptable framework that reduces reliance on labeled data. It paves the way for more accurate, efficient diagnostic tools in healthcare, signifying a major step forward in the application of deep learning in medical imaging.
☆ ReconViaGen: Towards Accurate Multi-view 3D Object Reconstruction via Generation
Existing multi-view 3D object reconstruction methods heavily rely on sufficient overlap between input views, where occlusions and sparse coverage in practice frequently yield severe reconstruction incompleteness. Recent advancements in diffusion-based 3D generative techniques offer the potential to address these limitations by leveraging learned generative priors to hallucinate invisible parts of objects, thereby generating plausible 3D structures. However, the stochastic nature of the inference process limits the accuracy and reliability of generation results, preventing existing reconstruction frameworks from integrating such 3D generative priors. In this work, we comprehensively analyze the reasons why diffusion-based 3D generative methods fail to achieve high consistency, including (a) the insufficiency in constructing and leveraging cross-view connections when extracting multi-view image features as conditions, and (b) the poor controllability of iterative denoising during local detail generation, which easily leads to plausible but inconsistent fine geometric and texture details with inputs. Accordingly, we propose ReconViaGen to innovatively integrate reconstruction priors into the generative framework and devise several strategies that effectively address these issues. Extensive experiments demonstrate that our ReconViaGen can reconstruct complete and accurate 3D models consistent with input views in both global structure and local details.Project page: https://jiahao620.github.io/reconviagen.
comment: 18 pages, 7 figures
☆ MDReID: Modality-Decoupled Learning for Any-to-Any Multi-Modal Object Re-Identification NeurIPS 2025
Real-world object re-identification (ReID) systems often face modality inconsistencies, where query and gallery images come from different sensors (e.g., RGB, NIR, TIR). However, most existing methods assume modality-matched conditions, which limits their robustness and scalability in practical applications. To address this challenge, we propose MDReID, a flexible any-to-any image-level ReID framework designed to operate under both modality-matched and modality-mismatched scenarios. MDReID builds on the insight that modality information can be decomposed into two components: modality-shared features that are predictable and transferable, and modality-specific features that capture unique, modality-dependent characteristics. To effectively leverage this, MDReID introduces two key components: the Modality Decoupling Learning (MDL) and Modality-aware Metric Learning (MML). Specifically, MDL explicitly decomposes modality features into modality-shared and modality-specific representations, enabling effective retrieval in both modality-aligned and mismatched scenarios. MML, a tailored metric learning strategy, further enforces orthogonality and complementarity between the two components to enhance discriminative power across modalities. Extensive experiments conducted on three challenging multi-modality ReID benchmarks (RGBNT201, RGBNT100, MSVR310) consistently demonstrate the superiority of MDReID. Notably, MDReID achieves significant mAP improvements of 9.8\%, 3.0\%, and 11.5\% in general modality-matched scenarios, and average gains of 3.4\%, 11.8\%, and 10.9\% in modality-mismatched scenarios, respectively. The code is available at: \textcolor{magenta}{https://github.com/stone96123/MDReID}.
comment: Accepted by NeurIPS 2025
☆ MMSD3.0: A Multi-Image Benchmark for Real-World Multimodal Sarcasm Detection
Despite progress in multimodal sarcasm detection, existing datasets and methods predominantly focus on single-image scenarios, overlooking potential semantic and affective relations across multiple images. This leaves a gap in modeling cases where sarcasm is triggered by multi-image cues in real-world settings. To bridge this gap, we introduce MMSD3.0, a new benchmark composed entirely of multi-image samples curated from tweets and Amazon reviews. We further propose the Cross-Image Reasoning Model (CIRM), which performs targeted cross-image sequence modeling to capture latent inter-image connections. In addition, we introduce a relevance-guided, fine-grained cross-modal fusion mechanism based on text-image correspondence to reduce information loss during integration. We establish a comprehensive suite of strong and representative baselines and conduct extensive experiments, showing that MMSD3.0 is an effective and reliable benchmark that better reflects real-world conditions. Moreover, CIRM demonstrates state-of-the-art performance across MMSD, MMSD2.0 and MMSD3.0, validating its effectiveness in both single-image and multi-image scenarios.
☆ Adaptive Stochastic Coefficients for Accelerating Diffusion Sampling NeurIPS 2025
Diffusion-based generative processes, formulated as differential equation solving, frequently balance computational speed with sample quality. Our theoretical investigation of ODE- and SDE-based solvers reveals complementary weaknesses: ODE solvers accumulate irreducible gradient error along deterministic trajectories, while SDE methods suffer from amplified discretization errors when the step budget is limited. Building upon this insight, we introduce AdaSDE, a novel single-step SDE solver that aims to unify the efficiency of ODEs with the error resilience of SDEs. Specifically, we introduce a single per-step learnable coefficient, estimated via lightweight distillation, which dynamically regulates the error correction strength to accelerate diffusion sampling. Notably, our framework can be integrated with existing solvers to enhance their capabilities. Extensive experiments demonstrate state-of-the-art performance: at 5 NFE, AdaSDE achieves FID scores of 4.18 on CIFAR-10, 8.05 on FFHQ and 6.96 on LSUN Bedroom. Codes are available in https://github.com/WLU-wry02/AdaSDE.
comment: To appear in NeurIPS 2025
☆ hYOLO Model: Enhancing Object Classification with Hierarchical Context in YOLOv8
Current convolution neural network (CNN) classification methods are predominantly focused on flat classification which aims solely to identify a specified object within an image. However, real-world objects often possess a natural hierarchical organization that can significantly help classification tasks. Capturing the presence of relations between objects enables better contextual understanding as well as control over the severity of mistakes. Considering these aspects, this paper proposes an end-to-end hierarchical model for image detection and classification built upon the YOLO model family. A novel hierarchical architecture, a modified loss function, and a performance metric tailored to the hierarchical nature of the model are introduced. The proposed model is trained and evaluated on two different hierarchical categorizations of the same dataset: a systematic categorization that disregards visual similarities between objects and a categorization accounting for common visual characteristics across classes. The results illustrate how the suggested methodology addresses the inherent hierarchical structure present in real-world objects, which conventional flat classification algorithms often overlook.
comment: 39 pages, 12 figures, 4 tables, code available at https://github.com/ds2run/hyolo
☆ A Video Is Not Worth a Thousand Words
As we become increasingly dependent on vision language models (VLMs) to answer questions about the world around us, there is a significant amount of research devoted to increasing both the difficulty of video question answering (VQA) datasets, and the context lengths of the models that they evaluate. The reliance on large language models as backbones has lead to concerns about potential text dominance, and the exploration of interactions between modalities is underdeveloped. How do we measure whether we're heading in the right direction, with the complexity that multi-modal models introduce? We propose a joint method of computing both feature attributions and modality scores based on Shapley values, where both the features and modalities are arbitrarily definable. Using these metrics, we compare $6$ VLM models of varying context lengths on $4$ representative datasets, focusing on multiple-choice VQA. In particular, we consider video frames and whole textual elements as equal features in the hierarchy, and the multiple-choice VQA task as an interaction between three modalities: video, question and answer. Our results demonstrate a dependence on text and show that the multiple-choice VQA task devolves into a model's ability to ignore distractors. Code available at https://github.com/sjpollard/a-video-is-not-worth-a-thousand-words.
☆ Progressive Growing of Patch Size: Curriculum Learning for Accelerated and Improved Medical Image Segmentation MICCAI2024
In this work, we introduce Progressive Growing of Patch Size, an automatic curriculum learning approach for 3D medical image segmentation. Our approach progressively increases the patch size during model training, resulting in an improved class balance for smaller patch sizes and accelerated convergence of the training process. We evaluate our curriculum approach in two settings: a resource-efficient mode and a performance mode, both regarding Dice score performance and computational costs across 15 diverse and popular 3D medical image segmentation tasks. The resource-efficient mode matches the Dice score performance of the conventional constant patch size sampling baseline with a notable reduction in training time to only 44%. The performance mode improves upon constant patch size segmentation results, achieving a statistically significant relative mean performance gain of 1.28% in Dice Score. Remarkably, across all 15 tasks, our proposed performance mode manages to surpass the constant patch size baseline in Dice Score performance, while simultaneously reducing training time to only 89%. The benefits are particularly pronounced for highly imbalanced tasks such as lesion segmentation tasks. Rigorous experiments demonstrate that our performance mode not only improves mean segmentation performance but also reduces performance variance, yielding more trustworthy model comparison. Furthermore, our findings reveal that the proposed curriculum sampling is not tied to a specific architecture but represents a broadly applicable strategy that consistently boosts performance across diverse segmentation models, including UNet, UNETR, and SwinUNETR. In summary, we show that this simple yet elegant transformation on input data substantially improves both Dice Score performance and training runtime, while being compatible across diverse segmentation backbones.
comment: Journal Extension of "Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks" (MICCAI2024) submitted to MedIA
☆ Autoregressive Styled Text Image Generation, but Make it Reliable
Generating faithful and readable styled text images (especially for Styled Handwritten Text generation - HTG) is an open problem with several possible applications across graphic design, document understanding, and image editing. A lot of research effort in this task is dedicated to developing strategies that reproduce the stylistic characteristics of a given writer, with promising results in terms of style fidelity and generalization achieved by the recently proposed Autoregressive Transformer paradigm for HTG. However, this method requires additional inputs, lacks a proper stop mechanism, and might end up in repetition loops, generating visual artifacts. In this work, we rethink the autoregressive formulation by framing HTG as a multimodal prompt-conditioned generation task, and tackle the content controllability issues by introducing special textual input tokens for better alignment with the visual ones. Moreover, we devise a Classifier-Free-Guidance-based strategy for our autoregressive model. Through extensive experimental validation, we demonstrate that our approach, dubbed Eruku, compared to previous solutions requires fewer inputs, generalizes better to unseen styles, and follows more faithfully the textual prompt, improving content adherence.
☆ Through the Lens: Benchmarking Deepfake Detectors Against Moiré-Induced Distortions
Deepfake detection remains a pressing challenge, particularly in real-world settings where smartphone-captured media from digital screens often introduces Moir\'e artifacts that can distort detection outcomes. This study systematically evaluates state-of-the-art (SOTA) deepfake detectors on Moir\'e-affected videos, an issue that has received little attention. We collected a dataset of 12,832 videos, spanning 35.64 hours, from the Celeb-DF, DFD, DFDC, UADFV, and FF++ datasets, capturing footage under diverse real-world conditions, including varying screens, smartphones, lighting setups, and camera angles. To further examine the influence of Moir\'e patterns on deepfake detection, we conducted additional experiments using our DeepMoir\'eFake, referred to as (DMF) dataset and two synthetic Moir\'e generation techniques. Across 15 top-performing detectors, our results show that Moir\'e artifacts degrade performance by as much as 25.4%, while synthetically generated Moir\'e patterns lead to a 21.4% drop in accuracy. Surprisingly, demoir\'eing methods, intended as a mitigation approach, instead worsened the problem, reducing accuracy by up to 17.2%. These findings underscore the urgent need for detection models that can robustly handle Moir\'e distortions alongside other realworld challenges, such as compression, sharpening, and blurring. By introducing the DMF dataset, we aim to drive future research toward closing the gap between controlled experiments and practical deepfake detection.
comment: 48 Pages, 29 Figures, 15 Tables
☆ Accurate and Scalable Multimodal Pathology Retrieval via Attentive Vision-Language Alignment
The rapid digitization of histopathology slides has opened up new possibilities for computational tools in clinical and research workflows. Among these, content-based slide retrieval stands out, enabling pathologists to identify morphologically and semantically similar cases, thereby supporting precise diagnoses, enhancing consistency across observers, and assisting example-based education. However, effective retrieval of whole slide images (WSIs) remains challenging due to their gigapixel scale and the difficulty of capturing subtle semantic differences amid abundant irrelevant content. To overcome these challenges, we present PathSearch, a retrieval framework that unifies fine-grained attentive mosaic representations with global-wise slide embeddings aligned through vision-language contrastive learning. Trained on a corpus of 6,926 slide-report pairs, PathSearch captures both fine-grained morphological cues and high-level semantic patterns to enable accurate and flexible retrieval. The framework supports two key functionalities: (1) mosaic-based image-to-image retrieval, ensuring accurate and efficient slide research; and (2) multi-modal retrieval, where text queries can directly retrieve relevant slides. PathSearch was rigorously evaluated on four public pathology datasets and three in-house cohorts, covering tasks including anatomical site retrieval, tumor subtyping, tumor vs. non-tumor discrimination, and grading across diverse organs such as breast, lung, kidney, liver, and stomach. External results show that PathSearch outperforms traditional image-to-image retrieval frameworks. A multi-center reader study further demonstrates that PathSearch improves diagnostic accuracy, boosts confidence, and enhances inter-observer agreement among pathologists in real clinical scenarios. These results establish PathSearch as a scalable and generalizable retrieval solution for digital pathology.
☆ VR-Drive: Viewpoint-Robust End-to-End Driving with Feed-Forward 3D Gaussian Splatting NeurIPS2025
End-to-end autonomous driving (E2E-AD) has emerged as a promising paradigm that unifies perception, prediction, and planning into a holistic, data-driven framework. However, achieving robustness to varying camera viewpoints, a common real-world challenge due to diverse vehicle configurations, remains an open problem. In this work, we propose VR-Drive, a novel E2E-AD framework that addresses viewpoint generalization by jointly learning 3D scene reconstruction as an auxiliary task to enable planning-aware view synthesis. Unlike prior scene-specific synthesis approaches, VR-Drive adopts a feed-forward inference strategy that supports online training-time augmentation from sparse views without additional annotations. To further improve viewpoint consistency, we introduce a viewpoint-mixed memory bank that facilitates temporal interaction across multiple viewpoints and a viewpoint-consistent distillation strategy that transfers knowledge from original to synthesized views. Trained in a fully end-to-end manner, VR-Drive effectively mitigates synthesis-induced noise and improves planning under viewpoint shifts. In addition, we release a new benchmark dataset to evaluate E2E-AD performance under novel camera viewpoints, enabling comprehensive analysis. Our results demonstrate that VR-Drive is a scalable and robust solution for the real-world deployment of end-to-end autonomous driving systems.
comment: Accepted by NeurIPS2025
☆ DecoDINO: 3D Human-Scene Contact Prediction with Semantic Classification
Accurate vertex-level contact prediction between humans and surrounding objects is a prerequisite for high fidelity human object interaction models used in robotics, AR/VR, and behavioral simulation. DECO was the first in the wild estimator for this task but is limited to binary contact maps and struggles with soft surfaces, occlusions, children, and false-positive foot contacts. We address these issues and introduce DecoDINO, a three-branch network based on DECO's framework. It uses two DINOv2 ViT-g/14 encoders, class-balanced loss weighting to reduce bias, and patch-level cross-attention for improved local reasoning. Vertex features are finally passed through a lightweight MLP with a softmax to assign semantic contact labels. We also tested a vision-language model (VLM) to integrate text features, but the simpler architecture performed better and was used instead. On the DAMON benchmark, DecoDINO (i) raises the binary-contact F1 score by 7$\%$, (ii) halves the geodesic error, and (iii) augments predictions with object-level semantic labels. Ablation studies show that LoRA fine-tuning and the dual encoders are key to these improvements. DecoDINO outperformed the challenge baseline in both tasks of the DAMON Challenge. Our code is available at https://github.com/DavidePasero/deco/tree/main.
☆ Evaluation of Vision-LLMs in Surveillance Video NeurIPS 2025
The widespread use of cameras in our society has created an overwhelming amount of video data, far exceeding the capacity for human monitoring. This presents a critical challenge for public safety and security, as the timely detection of anomalous or criminal events is crucial for effective response and prevention. The ability for an embodied agent to recognize unexpected events is fundamentally tied to its capacity for spatial reasoning. This paper investigates the spatial reasoning of vision-language models (VLMs) by framing anomalous action recognition as a zero-shot, language-grounded task, addressing the embodied perception challenge of interpreting dynamic 3D scenes from sparse 2D video. Specifically, we investigate whether small, pre-trained vision--LLMs can act as spatially-grounded, zero-shot anomaly detectors by converting video into text descriptions and scoring labels via textual entailment. We evaluate four open models on UCF-Crime and RWF-2000 under prompting and privacy-preserving conditions. Few-shot exemplars can improve accuracy for some models, but may increase false positives, and privacy filters -- especially full-body GAN transforms -- introduce inconsistencies that degrade accuracy. These results chart where current vision--LLMs succeed (simple, spatially salient events) and where they falter (noisy spatial cues, identity obfuscation). Looking forward, we outline concrete paths to strengthen spatial grounding without task-specific training: structure-aware prompts, lightweight spatial memory across clips, scene-graph or 3D-pose priors during description, and privacy methods that preserve action-relevant geometry. This positions zero-shot, language-grounded pipelines as adaptable building blocks for embodied, real-world video understanding. Our implementation for evaluating VLMs is publicly available at: https://github.com/pascalbenschopTU/VLLM_AnomalyRecognition
comment: Accepted as poster in the NeurIPS 2025 Workshop on Space in Vision, Language, and Embodied AI
☆ Finding 3D Scene Analogies with Multimodal Foundation Models
Connecting current observations with prior experiences helps robots adapt and plan in new, unseen 3D environments. Recently, 3D scene analogies have been proposed to connect two 3D scenes, which are smooth maps that align scene regions with common spatial relationships. These maps enable detailed transfer of trajectories or waypoints, potentially supporting demonstration transfer for imitation learning or task plan transfer across scenes. However, existing methods for the task require additional training and fixed object vocabularies. In this work, we propose to use multimodal foundation models for finding 3D scene analogies in a zero-shot, open-vocabulary setting. Central to our approach is a hybrid neural representation of scenes that consists of a sparse graph based on vision-language model features and a feature field derived from 3D shape foundation models. 3D scene analogies are then found in a coarse-to-fine manner, by first aligning the graph and refining the correspondence with feature fields. Our method can establish accurate correspondences between complex scenes, and we showcase applications in trajectory and waypoint transfer.
comment: Accepted to FM4RoboPlan workshop at RSS 2025
☆ AG-Fusion: adaptive gated multimodal fusion for 3d object detection in complex scenes
Multimodal camera-LiDAR fusion technology has found extensive application in 3D object detection, demonstrating encouraging performance. However, existing methods exhibit significant performance degradation in challenging scenarios characterized by sensor degradation or environmental disturbances. We propose a novel Adaptive Gated Fusion (AG-Fusion) approach that selectively integrates cross-modal knowledge by identifying reliable patterns for robust detection in complex scenes. Specifically, we first project features from each modality into a unified BEV space and enhance them using a window-based attention mechanism. Subsequently, an adaptive gated fusion module based on cross-modal attention is designed to integrate these features into reliable BEV representations robust to challenging environments. Furthermore, we construct a new dataset named Excavator3D (E3D) focusing on challenging excavator operation scenarios to benchmark performance in complex conditions. Our method not only achieves competitive performance on the standard KITTI dataset with 93.92% accuracy, but also significantly outperforms the baseline by 24.88% on the challenging E3D dataset, demonstrating superior robustness to unreliable modal information in complex industrial scenes.
☆ Implicit Modeling for Transferability Estimation of Vision Foundation Models NeurIPS 2025
Transferability estimation identifies the best pre-trained models for downstream tasks without incurring the high computational cost of full fine-tuning. This capability facilitates deployment and advances the pre-training and fine-tuning paradigm. However, existing methods often struggle to accurately assess transferability for emerging pre-trained models with diverse architectures, training strategies, and task alignments. In this work, we propose Implicit Transferability Modeling (ITM), a novel framework that implicitly models each model's intrinsic transferability, coupled with a Divide-and-Conquer Variational Approximation (DVA) strategy to efficiently approximate embedding space evolution. This design enables generalization across a broader range of models and downstream tasks. Extensive experiments on a comprehensive benchmark--spanning extensive training regimes and a wider variety of model types--demonstrate that ITM consistently outperforms existing methods in terms of stability, effectiveness, and efficiency.
comment: Accepted by NeurIPS 2025
☆ DQ3D: Depth-guided Query for Transformer-Based 3D Object Detection in Traffic Scenarios
3D object detection from multi-view images in traffic scenarios has garnered significant attention in recent years. Many existing approaches rely on object queries that are generated from 3D reference points to localize objects. However, a limitation of these methods is that some reference points are often far from the target object, which can lead to false positive detections. In this paper, we propose a depth-guided query generator for 3D object detection (DQ3D) that leverages depth information and 2D detections to ensure that reference points are sampled from the surface or interior of the object. Furthermore, to address partially occluded objects in current frame, we introduce a hybrid attention mechanism that fuses historical detection results with depth-guided queries, thereby forming hybrid queries. Evaluation on the nuScenes dataset demonstrates that our method outperforms the baseline by 6.3\% in terms of mean Average Precision (mAP) and 4.3\% in the NuScenes Detection Score (NDS).
☆ Fast Voxel-Wise Kinetic Modeling in Dynamic PET using a Physics-Informed CycleGAN
Tracer kinetic modeling serves a vital role in diagnosis, treatment planning, tracer development and oncology, but burdens practitioners with complex and invasive arterial input function estimation (AIF). We adopt a physics-informed CycleGAN showing promise in DCE-MRI quantification to dynamic PET quantification. Our experiments demonstrate sound AIF predictions and parameter maps closely resembling the reference.
comment: 5 pages, 1 figure. Pre-review preprint. Submitted to MedEurIPS 2025 (EurIPS workshop)
☆ Note on the Construction of Structure Tensor
This note presents a theoretical discussion of two structure tensor constructions: one proposed by Bigun and Granlund 1987, and the other by Granlund and Knutsson 1995. At first glance, these approaches may appear quite different--the former is implemented by averaging outer products of gradient filter responses, while the latter constructs the tensor from weighted outer products of tune-in frequency vectors of quadrature filters. We argue that when both constructions are viewed through the common lens of Total Least Squares (TLS) line fitting to the power spectrum, they can be reconciled to a large extent, and additional benefits emerge. From this perspective, the correction term introduced in Granlund and Knutsson 1995 becomes unnecessary. Omitting it ensures that the resulting tensor remains positive semi-definite, thereby simplifying the interpretation of its eigenvalues. Furthermore, this interpretation allows fitting more than a single 0rientation to the input by reinterpreting quadrature filter responses without relying on a structure tensor. It also removes the constraint that responses must originate strictly from quadrature filters, allowing the use of alternative filter types and non-angular tessellations. These alternatives include Gabor filters--which, although not strictly quadrature, are still suitable for structure tensor construction--even when they tessellate the spectrum in a Cartesian fashion, provided they are sufficiently concentrated.
☆ DeepSalt: Bridging Laboratory and Satellite Spectra through Domain Adaptation and Knowledge Distillation for Large-Scale Soil Salinity Estimation
Soil salinization poses a significant threat to both ecosystems and agriculture because it limits plants' ability to absorb water and, in doing so, reduces crop productivity. This phenomenon alters the soil's spectral properties, creating a measurable relationship between salinity and light reflectance that enables remote monitoring. While laboratory spectroscopy provides precise measurements, its reliance on in-situ sampling limits scalability to regional or global levels. Conversely, hyperspectral satellite imagery enables wide-area observation but lacks the fine-grained interpretability of laboratory instruments. To bridge this gap, we introduce DeepSalt, a deep-learning-based spectral transfer framework that leverages knowledge distillation and a novel Spectral Adaptation Unit to transfer high-resolution spectral insights from laboratory-based spectroscopy to satellite-based hyperspectral sensing. Our approach eliminates the need for extensive ground sampling while enabling accurate, large-scale salinity estimation, as demonstrated through comprehensive empirical benchmarks. DeepSalt achieves significant performance gains over methods without explicit domain adaptation, underscoring the impact of the proposed Spectral Adaptation Unit and the knowledge distillation strategy. The model also effectively generalized to unseen geographic regions, explaining a substantial portion of the salinity variance.
☆ Task-Agnostic Fusion of Time Series and Imagery for Earth Observation
We propose a task-agnostic framework for multimodal fusion of time series and single timestamp images, enabling cross-modal generation and robust downstream performance. Our approach explores deterministic and learned strategies for time series quantization and then leverages a masked correlation learning objective, aligning discrete image and time series tokens in a unified representation space. Instantiated in the Earth observation domain, the pretrained model generates consistent global temperature profiles from satellite imagery and is validated through counterfactual experiments. Across downstream tasks, our task-agnostic pretraining outperforms task-specific fusion by 6\% in R$^2$ and 2\% in RMSE on average, and exceeds baseline methods by 50\% in R$^2$ and 12\% in RMSE. Finally, we analyze gradient sensitivity across modalities, providing insights into model robustness. Code, data, and weights will be released under a permissive license.
☆ Seeing Structural Failure Before it Happens: An Image-Based Physics-Informed Neural Network (PINN) for Spaghetti Bridge Load Prediction
Physics Informed Neural Networks (PINNs) are gaining attention for their ability to embed physical laws into deep learning models, which is particularly useful in structural engineering tasks with limited data. This paper aims to explore the use of PINNs to predict the weight of small scale spaghetti bridges, a task relevant to understanding load limits and potential failure modes in simplified structural models. Our proposed framework incorporates physics-based constraints to the prediction model for improved performance. In addition to standard PINNs, we introduce a novel architecture named Physics Informed Kolmogorov Arnold Network (PIKAN), which blends universal function approximation theory with physical insights. The structural parameters provided as input to the model are collected either manually or through computer vision methods. Our dataset includes 15 real bridges, augmented to 100 samples, and our best model achieves an $R^2$ score of 0.9603 and a mean absolute error (MAE) of 10.50 units. From applied perspective, we also provide a web based interface for parameter entry and prediction. These results show that PINNs can offer reliable estimates of structural weight, even with limited data, and may help inform early stage failure analysis in lightweight bridge designs. The complete data and code are available at https://github.com/OmerJauhar/PINNS-For-Spaghetti-Bridges.
comment: 12 pages, 17 figures. Preprint
☆ Residual Diffusion Bridge Model for Image Restoration
Diffusion bridge models establish probabilistic paths between arbitrary paired distributions and exhibit great potential for universal image restoration. Most existing methods merely treat them as simple variants of stochastic interpolants, lacking a unified analytical perspective. Besides, they indiscriminately reconstruct images through global noise injection and removal, inevitably distorting undegraded regions due to imperfect reconstruction. To address these challenges, we propose the Residual Diffusion Bridge Model (RDBM). Specifically, we theoretically reformulate the stochastic differential equations of generalized diffusion bridge and derive the analytical formulas of its forward and reverse processes. Crucially, we leverage the residuals from given distributions to modulate the noise injection and removal, enabling adaptive restoration of degraded regions while preserving intact others. Moreover, we unravel the fundamental mathematical essence of existing bridge models, all of which are special cases of RDBM and empirically demonstrate the optimality of our proposed models. Extensive experiments are conducted to demonstrate the state-of-the-art performance of our method both qualitatively and quantitatively across diverse image restoration tasks. Code is publicly available at https://github.com/MiliLab/RDBM.
☆ Revisiting Multimodal Positional Encoding in Vision-Language Models
Multimodal position encoding is essential for vision-language models, yet there has been little systematic investigation into multimodal position encoding. We conduct a comprehensive analysis of multimodal Rotary Positional Embedding (RoPE) by examining its two core components: position design and frequency allocation. Through extensive experiments, we identify three key guidelines: positional coherence, full frequency utilization, and preservation of textual priors-ensuring unambiguous layout, rich representation, and faithful transfer from the pre-trained LLM. Based on these insights, we propose Multi-Head RoPE (MHRoPE) and MRoPE-Interleave (MRoPE-I), two simple and plug-and-play variants that require no architectural changes. Our methods consistently outperform existing approaches across diverse benchmarks, with significant improvements in both general and fine-grained multimodal understanding. Code will be avaliable at https://github.com/JJJYmmm/Multimodal-RoPEs.
comment: 16 pages
☆ EndoWave: Rational-Wavelet 4D Gaussian Splatting for Endoscopic Reconstruction
In robot-assisted minimally invasive surgery, accurate 3D reconstruction from endoscopic video is vital for downstream tasks and improved outcomes. However, endoscopic scenarios present unique challenges, including photometric inconsistencies, non-rigid tissue motion, and view-dependent highlights. Most 3DGS-based methods that rely solely on appearance constraints for optimizing 3DGS are often insufficient in this context, as these dynamic visual artifacts can mislead the optimization process and lead to inaccurate reconstructions. To address these limitations, we present EndoWave, a unified spatio-temporal Gaussian Splatting framework by incorporating an optical flow-based geometric constraint and a multi-resolution rational wavelet supervision. First, we adopt a unified spatio-temporal Gaussian representation that directly optimizes primitives in a 4D domain. Second, we propose a geometric constraint derived from optical flow to enhance temporal coherence and effectively constrain the 3D structure of the scene. Third, we propose a multi-resolution rational orthogonal wavelet as a constraint, which can effectively separate the details of the endoscope and enhance the rendering performance. Extensive evaluations on two real surgical datasets, EndoNeRF and StereoMIS, demonstrate that our method EndoWave achieves state-of-the-art reconstruction quality and visual accuracy compared to the baseline method.
☆ Strategies for Robust Deep Learning Based Deformable Registration
Deep learning based deformable registration methods have become popular in recent years. However, their ability to generalize beyond training data distribution can be poor, significantly hindering their usability. LUMIR brain registration challenge for Learn2Reg 2025 aims to advance the field by evaluating the performance of the registration on contrasts and modalities different from those included in the training set. Here we describe our submission to the challenge, which proposes a very simple idea for significantly improving robustness by transforming the images into MIND feature space before feeding them into the model. In addition, a special ensembling strategy is proposed that shows a small but consistent improvement.
☆ Seq-DeepIPC: Sequential Sensing for End-to-End Control in Legged Robot Navigation
We present Seq-DeepIPC, a sequential end-to-end perception-to-control model for legged robot navigation in realworld environments. Seq-DeepIPC advances intelligent sensing for autonomous legged navigation by tightly integrating multi-modal perception (RGB-D + GNSS) with temporal fusion and control. The model jointly predicts semantic segmentation and depth estimation, giving richer spatial features for planning and control. For efficient deployment on edge devices, we use EfficientNet-B0 as the encoder, reducing computation while maintaining accuracy. Heading estimation is simplified by removing the noisy IMU and instead computing the bearing angle directly from consecutive GNSS positions. We collected a larger and more diverse dataset that includes both road and grass terrains, and validated Seq-DeepIPC on a robot dog. Comparative and ablation studies show that sequential inputs improve perception and control in our models, while other baselines do not benefit. Seq-DeepIPC achieves competitive or better results with reasonable model size; although GNSS-only heading is less reliable near tall buildings, it is robust in open areas. Overall, Seq-DeepIPC extends end-to-end navigation beyond wheeled robots to more versatile and temporally-aware systems. To support future research, we will release the codes to our GitHub repository at https://github.com/oskarnatan/Seq-DeepIPC.
comment: Preprint notice, this manuscript has been submitted to IEEE sensors journal for possible publication
☆ HieraMamba: Video Temporal Grounding via Hierarchical Anchor-Mamba Pooling
Video temporal grounding, the task of localizing the start and end times of a natural language query in untrimmed video, requires capturing both global context and fine-grained temporal detail. This challenge is particularly pronounced in long videos, where existing methods often compromise temporal fidelity by over-downsampling or relying on fixed windows. We present HieraMamba, a hierarchical architecture that preserves temporal structure and semantic richness across scales. At its core are Anchor-MambaPooling (AMP) blocks, which utilize Mamba's selective scanning to produce compact anchor tokens that summarize video content at multiple granularities. Two complementary objectives, anchor-conditioned and segment-pooled contrastive losses, encourage anchors to retain local detail while remaining globally discriminative. HieraMamba sets a new state-of-the-art on Ego4D-NLQ, MAD, and TACoS, demonstrating precise, temporally faithful localization in long, untrimmed videos.
comment: Project Page: https://vision.cs.utexas.edu/projects/hieramamba/
☆ Nested AutoRegressive Models
AutoRegressive (AR) models have demonstrated competitive performance in image generation, achieving results comparable to those of diffusion models. However, their token-by-token image generation mechanism remains computationally intensive and existing solutions such as VAR often lead to limited sample diversity. In this work, we propose a Nested AutoRegressive~(NestAR) model, which proposes nested AutoRegressive architectures in generating images. NestAR designs multi-scale modules in a hierarchical order. These different scaled modules are constructed in an AR architecture, where one larger-scale module is conditioned on outputs from its previous smaller-scale module. Within each module, NestAR uses another AR structure to generate ``patches'' of tokens. The proposed nested AR architecture reduces the overall complexity from $\mathcal{O}(n)$ to $\mathcal{O}(\log n)$ in generating $n$ image tokens, as well as increases image diversities. NestAR further incorporates flow matching loss to use continuous tokens, and develops objectives to coordinate these multi-scale modules in model training. NestAR achieves competitive image generation performance while significantly lowering computational cost.
☆ UniAIDet: A Unified and Universal Benchmark for AI-Generated Image Content Detection and Localization
With the rapid proliferation of image generative models, the authenticity of digital images has become a significant concern. While existing studies have proposed various methods for detecting AI-generated content, current benchmarks are limited in their coverage of diverse generative models and image categories, often overlooking end-to-end image editing and artistic images. To address these limitations, we introduce UniAIDet, a unified and comprehensive benchmark that includes both photographic and artistic images. UniAIDet covers a wide range of generative models, including text-to-image, image-to-image, image inpainting, image editing, and deepfake models. Using UniAIDet, we conduct a comprehensive evaluation of various detection methods and answer three key research questions regarding generalization capability and the relation between detection and localization. Our benchmark and analysis provide a robust foundation for future research.
☆ M$^{3}$T2IBench: A Large-Scale Multi-Category, Multi-Instance, Multi-Relation Text-to-Image Benchmark
Text-to-image models are known to struggle with generating images that perfectly align with textual prompts. Several previous studies have focused on evaluating image-text alignment in text-to-image generation. However, these evaluations either address overly simple scenarios, especially overlooking the difficulty of prompts with multiple different instances belonging to the same category, or they introduce metrics that do not correlate well with human evaluation. In this study, we introduce M$^3$T2IBench, a large-scale, multi-category, multi-instance, multi-relation along with an object-detection-based evaluation metric, $AlignScore$, which aligns closely with human evaluation. Our findings reveal that current open-source text-to-image models perform poorly on this challenging benchmark. Additionally, we propose the Revise-Then-Enforce approach to enhance image-text alignment. This training-free post-editing method demonstrates improvements in image-text alignment across a broad range of diffusion models. \footnote{Our code and data has been released in supplementary material and will be made publicly available after the paper is accepted.}
☆ UGAE: Unified Geometry and Attribute Enhancement for G-PCC Compressed Point Clouds
Lossy compression of point clouds reduces storage and transmission costs; however, it inevitably leads to irreversible distortion in geometry structure and attribute information. To address these issues, we propose a unified geometry and attribute enhancement (UGAE) framework, which consists of three core components: post-geometry enhancement (PoGE), pre-attribute enhancement (PAE), and post-attribute enhancement (PoAE). In PoGE, a Transformer-based sparse convolutional U-Net is used to reconstruct the geometry structure with high precision by predicting voxel occupancy probabilities. Building on the refined geometry structure, PAE introduces an innovative enhanced geometry-guided recoloring strategy, which uses a detail-aware K-Nearest Neighbors (DA-KNN) method to achieve accurate recoloring and effectively preserve high-frequency details before attribute compression. Finally, at the decoder side, PoAE uses an attribute residual prediction network with a weighted mean squared error (W-MSE) loss to enhance the quality of high-frequency regions while maintaining the fidelity of low-frequency regions. UGAE significantly outperformed existing methods on three benchmark datasets: 8iVFB, Owlii, and MVUB. Compared to the latest G-PCC test model (TMC13v29), UGAE achieved an average BD-PSNR gain of 9.98 dB and 90.98% BD-bitrate savings for geometry under the D1 metric, as well as a 3.67 dB BD-PSNR improvement with 56.88% BD-bitrate savings for attributes on the Y component. Additionally, it improved perceptual quality significantly.
☆ CoMo: Compositional Motion Customization for Text-to-Video Generation
While recent text-to-video models excel at generating diverse scenes, they struggle with precise motion control, particularly for complex, multi-subject motions. Although methods for single-motion customization have been developed to address this gap, they fail in compositional scenarios due to two primary challenges: motion-appearance entanglement and ineffective multi-motion blending. This paper introduces CoMo, a novel framework for $\textbf{compositional motion customization}$ in text-to-video generation, enabling the synthesis of multiple, distinct motions within a single video. CoMo addresses these issues through a two-phase approach. First, in the single-motion learning phase, a static-dynamic decoupled tuning paradigm disentangles motion from appearance to learn a motion-specific module. Second, in the multi-motion composition phase, a plug-and-play divide-and-merge strategy composes these learned motions without additional training by spatially isolating their influence during the denoising process. To facilitate research in this new domain, we also introduce a new benchmark and a novel evaluation metric designed to assess multi-motion fidelity and blending. Extensive experiments demonstrate that CoMo achieves state-of-the-art performance, significantly advancing the capabilities of controllable video generation. Our project page is at https://como6.github.io/.
☆ An Intelligent Water-Saving Irrigation System Based on Multi-Sensor Fusion and Visual Servoing Control
This paper introduces an intelligent water-saving irrigation system designed to address critical challenges in precision agriculture, such as inefficient water use and poor terrain adaptability. The system integrates advanced computer vision, robotic control, and real-time stabilization technologies via a multi-sensor fusion approach. A lightweight YOLO model, deployed on an embedded vision processor (K210), enables real-time plant container detection with over 96% accuracy under varying lighting conditions. A simplified hand-eye calibration algorithm-designed for 'handheld camera' robot arm configurations-ensures that the end effector can be precisely positioned, with a success rate exceeding 90%. The active leveling system, driven by the STM32F103ZET6 main control chip and JY901S inertial measurement data, can stabilize the irrigation platform on slopes up to 10 degrees, with a response time of 1.8 seconds. Experimental results across three simulated agricultural environments (standard greenhouse, hilly terrain, complex lighting) demonstrate a 30-50% reduction in water consumption compared to conventional flood irrigation, with water use efficiency exceeding 92% in all test cases.
☆ LoMix: Learnable Weighted Multi-Scale Logits Mixing for Medical Image Segmentation NeurIPS 2025
U-shaped networks output logits at multiple spatial scales, each capturing a different blend of coarse context and fine detail. Yet, training still treats these logits in isolation - either supervising only the final, highest-resolution logits or applying deep supervision with identical loss weights at every scale - without exploring mixed-scale combinations. Consequently, the decoder output misses the complementary cues that arise only when coarse and fine predictions are fused. To address this issue, we introduce LoMix (Logits Mixing), a NAS-inspired, differentiable plug-and-play module that generates new mixed-scale outputs and learns how exactly each of them should guide the training process. More precisely, LoMix mixes the multi-scale decoder logits with four lightweight fusion operators: addition, multiplication, concatenation, and attention-based weighted fusion, yielding a rich set of synthetic mutant maps. Every original or mutant map is given a softplus loss weight that is co-optimized with network parameters, mimicking a one-step architecture search that automatically discovers the most useful scales, mixtures, and operators. Plugging LoMix into recent U-shaped architectures (i.e., PVT-V2-B2 backbone with EMCAD decoder) on Synapse 8-organ dataset improves DICE by +4.2% over single-output supervision, +2.2% over deep supervision, and +1.5% over equally weighted additive fusion, all with zero inference overhead. When training data are scarce (e.g., one or two labeled scans), the advantage grows to +9.23%, underscoring LoMix's data efficiency. Across four benchmarks and diverse U-shaped networks, LoMiX improves DICE by up to +13.5% over single-output supervision, confirming that learnable weighted mixed-scale fusion generalizes broadly while remaining data efficient, fully interpretable, and overhead-free at inference. Our code is available at https://github.com/SLDGroup/LoMix.
comment: 25 pages, 13 figures, NeurIPS 2025 accepted paper
☆ SceneDecorator: Towards Scene-Oriented Story Generation with Scene Planning and Scene Consistency NeurIPS 2025
Recent text-to-image models have revolutionized image generation, but they still struggle with maintaining concept consistency across generated images. While existing works focus on character consistency, they often overlook the crucial role of scenes in storytelling, which restricts their creativity in practice. This paper introduces scene-oriented story generation, addressing two key challenges: (i) scene planning, where current methods fail to ensure scene-level narrative coherence by relying solely on text descriptions, and (ii) scene consistency, which remains largely unexplored in terms of maintaining scene consistency across multiple stories. We propose SceneDecorator, a training-free framework that employs VLM-Guided Scene Planning to ensure narrative coherence across different scenes in a ``global-to-local'' manner, and Long-Term Scene-Sharing Attention to maintain long-term scene consistency and subject diversity across generated stories. Extensive experiments demonstrate the superior performance of SceneDecorator, highlighting its potential to unleash creativity in the fields of arts, films, and games.
comment: Accepted by NeurIPS 2025; Project Page: https://lulupig12138.github.io/SceneDecorator
☆ USF-MAE: Ultrasound Self-Supervised Foundation Model with Masked Autoencoding
Ultrasound imaging is one of the most widely used diagnostic modalities, offering real-time, radiation-free assessment across diverse clinical domains. However, interpretation of ultrasound images remains challenging due to high noise levels, operator dependence, and limited field of view, resulting in substantial inter-observer variability. Current Deep Learning approaches are hindered by the scarcity of large labeled datasets and the domain gap between general and sonographic images, which limits the transferability of models pretrained on non-medical data. To address these challenges, we introduce the Ultrasound Self-Supervised Foundation Model with Masked Autoencoding (USF-MAE), the first large-scale self-supervised MAE framework pretrained exclusively on ultrasound data. The model was pre-trained on 370,000 2D and 3D ultrasound images curated from 46 open-source datasets, collectively termed OpenUS-46, spanning over twenty anatomical regions. This curated dataset has been made publicly available to facilitate further research and reproducibility. Using a Vision Transformer encoder-decoder architecture, USF-MAE reconstructs masked image patches, enabling it to learn rich, modality-specific representations directly from unlabeled data. The pretrained encoder was fine-tuned on three public downstream classification benchmarks: BUS-BRA (breast cancer), MMOTU-2D (ovarian tumors), and GIST514-DB (gastrointestinal stromal tumors). Across all tasks, USF-MAE consistently outperformed conventional CNN and ViT baselines, achieving F1-scores of 81.6%, 79.6%, and 82.4%, respectively. Despite not using labels during pretraining, USF-MAE approached the performance of the supervised foundation model UltraSam on breast cancer classification and surpassed it on the other tasks, demonstrating strong cross-anatomical generalization.
☆ Exploring Semantic-constrained Adversarial Example with Instruction Uncertainty Reduction NeurIPS 2025
Recently, semantically constrained adversarial examples (SemanticAE), which are directly generated from natural language instructions, have become a promising avenue for future research due to their flexible attacking forms. To generate SemanticAEs, current methods fall short of satisfactory attacking ability as the key underlying factors of semantic uncertainty in human instructions, such as referring diversity, descriptive incompleteness, and boundary ambiguity, have not been fully investigated. To tackle the issues, this paper develops a multi-dimensional instruction uncertainty reduction (InSUR) framework to generate more satisfactory SemanticAE, i.e., transferable, adaptive, and effective. Specifically, in the dimension of the sampling method, we propose the residual-driven attacking direction stabilization to alleviate the unstable adversarial optimization caused by the diversity of language references. By coarsely predicting the language-guided sampling process, the optimization process will be stabilized by the designed ResAdv-DDIM sampler, therefore releasing the transferable and robust adversarial capability of multi-step diffusion models. In task modeling, we propose the context-encoded attacking scenario constraint to supplement the missing knowledge from incomplete human instructions. Guidance masking and renderer integration are proposed to regulate the constraints of 2D/3D SemanticAE, activating stronger scenario-adapted attacks. Moreover, in the dimension of generator evaluation, we propose the semantic-abstracted attacking evaluation enhancement by clarifying the evaluation boundary, facilitating the development of more effective SemanticAE generators. Extensive experiments demonstrate the superiority of the transfer attack performance of InSUR. Moreover, we realize the reference-free generation of semantically constrained 3D adversarial examples for the first time.
comment: NeurIPS 2025
☆ VoMP: Predicting Volumetric Mechanical Property Fields
Physical simulation relies on spatially-varying mechanical properties, often laboriously hand-crafted. VoMP is a feed-forward method trained to predict Young's modulus ($E$), Poisson's ratio ($\nu$), and density ($\rho$) throughout the volume of 3D objects, in any representation that can be rendered and voxelized. VoMP aggregates per-voxel multi-view features and passes them to our trained Geometry Transformer to predict per-voxel material latent codes. These latents reside on a manifold of physically plausible materials, which we learn from a real-world dataset, guaranteeing the validity of decoded per-voxel materials. To obtain object-level training data, we propose an annotation pipeline combining knowledge from segmented 3D datasets, material databases, and a vision-language model, along with a new benchmark. Experiments show that VoMP estimates accurate volumetric properties, far outperforming prior art in accuracy and speed.
comment: hi-res paper and other details at: https://research.nvidia.com/labs/sil/projects/vomp
☆ Scaling Up Occupancy-centric Driving Scene Generation: Dataset and Method
Driving scene generation is a critical domain for autonomous driving, enabling downstream applications, including perception and planning evaluation. Occupancy-centric methods have recently achieved state-of-the-art results by offering consistent conditioning across frames and modalities; however, their performance heavily depends on annotated occupancy data, which still remains scarce. To overcome this limitation, we curate Nuplan-Occ, the largest semantic occupancy dataset to date, constructed from the widely used Nuplan benchmark. Its scale and diversity facilitate not only large-scale generative modeling but also autonomous driving downstream applications. Based on this dataset, we develop a unified framework that jointly synthesizes high-quality semantic occupancy, multi-view videos, and LiDAR point clouds. Our approach incorporates a spatio-temporal disentangled architecture to support high-fidelity spatial expansion and temporal forecasting of 4D dynamic occupancy. To bridge modal gaps, we further propose two novel techniques: a Gaussian splatting-based sparse point map rendering strategy that enhances multi-view video generation, and a sensor-aware embedding strategy that explicitly models LiDAR sensor properties for realistic multi-LiDAR simulation. Extensive experiments demonstrate that our method achieves superior generation fidelity and scalability compared to existing approaches, and validates its practical value in downstream tasks. Repo: https://github.com/Arlo0o/UniScene-Unified-Occupancy-centric-Driving-Scene-Generation/tree/v2
comment: https://github.com/Arlo0o/UniScene-Unified-Occupancy-centric-Driving-Scene-Generation/tree/v2
☆ VALA: Learning Latent Anchors for Training-Free and Temporally Consistent
Recent advances in training-free video editing have enabled lightweight and precise cross-frame generation by leveraging pre-trained text-to-image diffusion models. However, existing methods often rely on heuristic frame selection to maintain temporal consistency during DDIM inversion, which introduces manual bias and reduces the scalability of end-to-end inference. In this paper, we propose~\textbf{VALA} (\textbf{V}ariational \textbf{A}lignment for \textbf{L}atent \textbf{A}nchors), a variational alignment module that adaptively selects key frames and compresses their latent features into semantic anchors for consistent video editing. To learn meaningful assignments, VALA propose a variational framework with a contrastive learning objective. Therefore, it can transform cross-frame latent representations into compressed latent anchors that preserve both content and temporal coherence. Our method can be fully integrated into training-free text-to-image based video editing models. Extensive experiments on real-world video editing benchmarks show that VALA achieves state-of-the-art performance in inversion fidelity, editing quality, and temporal consistency, while offering improved efficiency over prior methods.
Survey of Multimodal Geospatial Foundation Models: Techniques, Applications, and Challenges
Foundation models have transformed natural language processing and computer vision, and their impact is now reshaping remote sensing image analysis. With powerful generalization and transfer learning capabilities, they align naturally with the multimodal, multi-resolution, and multi-temporal characteristics of remote sensing data. To address unique challenges in the field, multimodal geospatial foundation models (GFMs) have emerged as a dedicated research frontier. This survey delivers a comprehensive review of multimodal GFMs from a modality-driven perspective, covering five core visual and vision-language modalities. We examine how differences in imaging physics and data representation shape interaction design, and we analyze key techniques for alignment, integration, and knowledge transfer to tackle modality heterogeneity, distribution shifts, and semantic gaps. Advances in training paradigms, architectures, and task-specific adaptation strategies are systematically assessed alongside a wealth of emerging benchmarks. Representative multimodal visual and vision-language GFMs are evaluated across ten downstream tasks, with insights into their architectures, performance, and application scenarios. Real-world case studies, spanning land cover mapping, agricultural monitoring, disaster response, climate studies, and geospatial intelligence, demonstrate the practical potential of GFMs. Finally, we outline pressing challenges in domain generalization, interpretability, efficiency, and privacy, and chart promising avenues for future research.
☆ FAME: Fairness-aware Attention-modulated Video Editing
Training-free video editing (VE) models tend to fall back on gender stereotypes when rendering profession-related prompts. We propose \textbf{FAME} for \textit{Fairness-aware Attention-modulated Video Editing} that mitigates profession-related gender biases while preserving prompt alignment and temporal consistency for coherent VE. We derive fairness embeddings from existing minority representations by softly injecting debiasing tokens into the text encoder. Simultaneously, FAME integrates fairness modulation into both temporal self attention and prompt-to-region cross attention to mitigate the motion corruption and temporal inconsistency caused by directly introducing fairness cues. For temporal self attention, FAME introduces a region constrained attention mask combined with time decay weighting, which enhances intra-region coherence while suppressing irrelevant inter-region interactions. For cross attention, it reweights tokens to region matching scores by incorporating fairness sensitive similarity masks derived from debiasing prompt embeddings. Together, these modulations keep fairness-sensitive semantics tied to the right visual regions and prevent temporal drift across frames. Extensive experiments on new VE fairness-oriented benchmark \textit{FairVE} demonstrate that FAME achieves stronger fairness alignment and semantic fidelity, surpassing existing VE baselines.
☆ LightBagel: A Light-weighted, Double Fusion Framework for Unified Multimodal Understanding and Generation
Unified multimodal models have recently shown remarkable gains in both capability and versatility, yet most leading systems are still trained from scratch and require substantial computational resources. In this paper, we show that competitive performance can be obtained far more efficiently by strategically fusing publicly available models specialized for either generation or understanding. Our key design is to retain the original blocks while additionally interleaving multimodal self-attention blocks throughout the networks. This double fusion mechanism (1) effectively enables rich multi-modal fusion while largely preserving the original strengths of the base models, and (2) catalyzes synergistic fusion of high-level semantic representations from the understanding encoder with low-level spatial signals from the generation encoder. By training with only ~ 35B tokens, this approach achieves strong results across multiple benchmarks: 0.91 on GenEval for compositional text-to-image generation, 82.16 on DPG-Bench for complex text-to-image generation, 6.06 on GEditBench, and 3.77 on ImgEdit-Bench for image editing. By fully releasing the entire suite of code, model weights, and datasets, we hope to support future research on unified multimodal modeling.
comment: Preprint. Project page: https://ucsc-vlaa.github.io/LightBagel/
☆ Switchable Token-Specific Codebook Quantization For Face Image Compression
With the ever-increasing volume of visual data, the efficient and lossless transmission, along with its subsequent interpretation and understanding, has become a critical bottleneck in modern information systems. The emerged codebook-based solution utilize a globally shared codebook to quantize and dequantize each token, controlling the bpp by adjusting the number of tokens or the codebook size. However, for facial images, which are rich in attributes, such global codebook strategies overlook both the category-specific correlations within images and the semantic differences among tokens, resulting in suboptimal performance, especially at low bpp. Motivated by these observations, we propose a Switchable Token-Specific Codebook Quantization for face image compression, which learns distinct codebook groups for different image categories and assigns an independent codebook to each token. By recording the codebook group to which each token belongs with a small number of bits, our method can reduce the loss incurred when decreasing the size of each codebook group. This enables a larger total number of codebooks under a lower overall bpp, thereby enhancing the expressive capability and improving reconstruction performance. Owing to its generalizable design, our method can be integrated into any existing codebook-based representation learning approach and has demonstrated its effectiveness on face recognition datasets, achieving an average accuracy of 93.51% for reconstructed images at 0.05 bpp.
☆ Bi-Encoder Contrastive Learning for Fingerprint and Iris Biometrics
There has been a historic assumption that the biometrics of an individual are statistically uncorrelated. We test this assumption by training Bi-Encoder networks on three verification tasks, including fingerprint-to-fingerprint matching, iris-to-iris matching, and cross-modal fingerprint-to-iris matching using 274 subjects with $\sim$100k fingerprints and 7k iris images. We trained ResNet-50 and Vision Transformer backbones in Bi-Encoder architectures such that the contrastive loss between images sampled from the same individual is minimized. The iris ResNet architecture reaches 91 ROC AUC score for iris-to-iris matching, providing clear evidence that the left and right irises of an individual are correlated. Fingerprint models reproduce the positive intra-subject suggested by prior work in this space. This is the first work attempting to use Vision Transformers for this matching. Cross-modal matching rises only slightly above chance, which suggests that more data and a more sophisticated pipeline is needed to obtain compelling results. These findings continue challenge independence assumptions of biometrics and we plan to extend this work to other biometrics in the future. Code available: https://github.com/MatthewSo/bio_fingerprints_iris.
☆ Positional Preservation Embedding for Multimodal Large Language Models
Multimodal large language models (MLLMs) have achieved strong performance on vision-language tasks, yet often suffer from inefficiencies due to redundant visual tokens. Existing token merging methods reduce sequence length but frequently disrupt spatial layouts and temporal continuity by disregarding positional relationships. In this work, we propose a novel encoding operator dubbed as \textbf{P}ositional \textbf{P}reservation \textbf{E}mbedding (\textbf{PPE}), which has the main hallmark of preservation of spatiotemporal structure during visual token compression. PPE explicitly introduces the disentangled encoding of 3D positions in the token dimension, enabling each compressed token to encapsulate different positions from multiple original tokens. Furthermore, we show that PPE can effectively support cascade clustering -- a progressive token compression strategy that leads to better performance retention. PPE is a parameter-free and generic operator that can be seamlessly integrated into existing token merging methods without any adjustments. Applied to state-of-the-art token merging framework, PPE achieves consistent improvements of $2\%\sim5\%$ across multiple vision-language benchmarks, including MMBench (general vision understanding), TextVQA (layout understanding) and VideoMME (temporal understanding). These results demonstrate that preserving positional cues is critical for efficient and effective MLLM reasoning.
☆ Gen-LangSplat: Generalized Language Gaussian Splatting with Pre-Trained Feature Compression
Modeling open-vocabulary language fields in 3D is essential for intuitive human-AI interaction and querying within physical environments. State-of-the-art approaches, such as LangSplat, leverage 3D Gaussian Splatting to efficiently construct these language fields, encoding features distilled from high-dimensional models like CLIP. However, this efficiency is currently offset by the requirement to train a scene-specific language autoencoder for feature compression, introducing a costly, per-scene optimization bottleneck that hinders deployment scalability. In this work, we introduce Gen-LangSplat, that eliminates this requirement by replacing the scene-wise autoencoder with a generalized autoencoder, pre-trained extensively on the large-scale ScanNet dataset. This architectural shift enables the use of a fixed, compact latent space for language features across any new scene without any scene-specific training. By removing this dependency, our entire language field construction process achieves a efficiency boost while delivering querying performance comparable to, or exceeding, the original LangSplat method. To validate our design choice, we perform a thorough ablation study empirically determining the optimal latent embedding dimension and quantifying representational fidelity using Mean Squared Error and cosine similarity between the original and reprojected 512-dimensional CLIP embeddings. Our results demonstrate that generalized embeddings can efficiently and accurately support open-vocabulary querying in novel 3D scenes, paving the way for scalable, real-time interactive 3D AI applications.
☆ Estimating Pasture Biomass from Top-View Images: A Dataset for Precision Agriculture
Accurate estimation of pasture biomass is important for decision-making in livestock production systems. Estimates of pasture biomass can be used to manage stocking rates to maximise pasture utilisation, while minimising the risk of overgrazing and promoting overall system health. We present a comprehensive dataset of 1,162 annotated top-view images of pastures collected across 19 locations in Australia. The images were taken across multiple seasons and include a range of temperate pasture species. Each image captures a 70cm * 30cm quadrat and is paired with on-ground measurements including biomass sorted by component (green, dead, and legume fraction), vegetation height, and Normalized Difference Vegetation Index (NDVI) from Active Optical Sensors (AOS). The multidimensional nature of the data, which combines visual, spectral, and structural information, opens up new possibilities for advancing the use of precision grazing management. The dataset is released and hosted in a Kaggle competition that challenges the international Machine Learning community with the task of pasture biomass estimation. The dataset is available on the official Kaggle webpage: https://www.kaggle.com/competitions/csiro-biomass
comment: 9 pages, 2 figures, 2 tables, The dataset is available on the official Kaggle webpage: https://www.kaggle.com/competitions/csiro-biomass
♻ ☆ LayerComposer: Interactive Personalized T2I via Spatially-Aware Layered Canvas
Despite their impressive visual fidelity, existing personalized generative models lack interactive control over spatial composition and scale poorly to multiple subjects. To address these limitations, we present LayerComposer, an interactive framework for personalized, multi-subject text-to-image generation. Our approach introduces two main contributions: (1) a layered canvas, a novel representation in which each subject is placed on a distinct layer, enabling occlusion-free composition; and (2) a locking mechanism that preserves selected layers with high fidelity while allowing the remaining layers to adapt flexibly to the surrounding context. Similar to professional image-editing software, the proposed layered canvas allows users to place, resize, or lock input subjects through intuitive layer manipulation. Our versatile locking mechanism requires no architectural changes, relying instead on inherent positional embeddings combined with a new complementary data sampling strategy. Extensive experiments demonstrate that LayerComposer achieves superior spatial control and identity preservation compared to the state-of-the-art methods in multi-subject personalized image generation.
comment: 9 pages, preprint. Project page: https://snap-research.github.io/layercomposer/
♻ ☆ ReXGroundingCT: A 3D Chest CT Dataset for Segmentation of Findings from Free-Text Reports
We introduce ReXGroundingCT, the first publicly available dataset linking free-text findings to pixel-level 3D segmentations in chest CT scans. The dataset includes 3,142 non-contrast chest CT scans paired with standardized radiology reports from CT-RATE. Construction followed a structured three-stage pipeline. First, GPT-4 was used to extract and standardize findings, descriptors, and metadata from reports originally written in Turkish and machine-translated into English. Second, GPT-4o-mini categorized each finding into a hierarchical ontology of lung and pleural abnormalities. Third, 3D annotations were produced for all CT volumes: the training set was quality-assured by board-certified radiologists, and the validation and test sets were fully annotated by board-certified radiologists. Additionally, a complementary chain-of-thought dataset was created to provide step-by-step hierarchical anatomical reasoning for localizing findings within the CT volume, using GPT-4o and localization coordinates derived from organ segmentation models. ReXGroundingCT contains 16,301 annotated entities across 8,028 text-to-3D-segmentation pairs, covering diverse radiological patterns from 3,142 non-contrast CT scans. About 79% of findings are focal abnormalities and 21% are non-focal. The dataset includes a public validation set of 50 cases and a private test set of 100 cases, both annotated by board-certified radiologists. The dataset establishes a foundation for enabling free-text finding segmentation and grounded radiology report generation in CT imaging. Model performance on the private test set is hosted on a public leaderboard at https://rexrank.ai/ReXGroundingCT. The dataset is available at https://huggingface.co/datasets/rajpurkarlab/ReXGroundingCT.
♻ ☆ ESCA: Contextualizing Embodied Agents via Scene-Graph Generation NeurIPS 2025
Multi-modal large language models (MLLMs) are making rapid progress toward general-purpose embodied agents. However, existing MLLMs do not reliably capture fine-grained links between low-level visual features and high-level textual semantics, leading to weak grounding and inaccurate perception. To overcome this challenge, we propose ESCA, a framework that contextualizes embodied agents by grounding their perception in spatial-temporal scene graphs. At its core is SGCLIP, a novel, open-domain, promptable foundation model for generating scene graphs that is based on CLIP. SGCLIP is trained on 87K+ open-domain videos using a neurosymbolic pipeline that aligns automatically generated captions with scene graphs produced by the model itself, eliminating the need for human-labeled annotations. We demonstrate that SGCLIP excels in both prompt-based inference and task-specific fine-tuning, achieving state-of-the-art results on scene graph generation and action localization benchmarks. ESCA with SGCLIP improves perception for embodied agents based on both open-source and commercial MLLMs, achieving state of-the-art performance across two embodied environments. Notably, ESCA significantly reduces agent perception errors and enables open-source models to surpass proprietary baselines. We release the source code for SGCLIP model training at https://github.com/video-fm/LASER and for the embodied agent at https://github.com/video-fm/ESCA.
comment: Accepted as a Spotlight Paper at NeurIPS 2025
♻ ☆ Now you see me! Attribution Distributions Reveal What is Truly Important for a Prediction
Neural networks are regularly employed in high-stakes decision-making, where understanding and transparency is key. Attribution methods have been developed to gain understanding into which input features neural networks use for a specific prediction. Although widely used in computer vision, these methods often result in unspecific saliency maps that fail to identify the relevant information that led to a decision, supported by different benchmarks results. Here, we revisit the common attribution pipeline and identify one cause for the lack of specificity in attributions as the computation of attribution of isolated logits. Instead, we suggest to combine attributions of multiple class logits in analogy to how the softmax combines the information across logits. By computing probability distributions of attributions over classes for each spatial location in the image, we unleash the true capabilities of existing attribution methods, revealing better object- and instance-specificity and uncovering discriminative as well as shared features between classes. On common benchmarks, including the grid-pointing game and randomization-based sanity checks, we show that this reconsideration of how and where we compute attributions across the network improves established attribution methods while staying agnostic to model architectures. We make the code publicly available: https://github.com/nilspwalter/var.
♻ ☆ Noise Diffusion for Enhancing Semantic Faithfulness in Text-to-Image Synthesis
Diffusion models have achieved impressive success in generating photorealistic images, but challenges remain in ensuring precise semantic alignment with input prompts. Optimizing the initial noisy latent offers a more efficient alternative to modifying model architectures or prompt engineering for improving semantic alignment. A latest approach, InitNo, refines the initial noisy latent by leveraging attention maps; however, these maps capture only limited information, and the effectiveness of InitNo is highly dependent on the initial starting point, as it tends to converge on a local optimum near this point. To this end, this paper proposes leveraging the language comprehension capabilities of large vision-language models (LVLMs) to guide the optimization of the initial noisy latent, and introduces the Noise Diffusion process, which updates the noisy latent to generate semantically faithful images while preserving distribution consistency. Furthermore, we provide a theoretical analysis of the condition under which the update improves semantic faithfulness. Experimental results demonstrate the effectiveness and adaptability of our framework, consistently enhancing semantic alignment across various diffusion models. The code is available at https://github.com/Bomingmiao/NoiseDiffusion.
comment: Updated author formatting; no substantive changes
♻ ☆ RWKV-UNet: Improving UNet with Long-Range Cooperation for Effective Medical Image Segmentation
In recent years, significant advancements have been made in deep learning for medical image segmentation, particularly with convolutional neural networks (CNNs) and transformer models. However, CNNs face limitations in capturing long-range dependencies, while transformers suffer from high computational complexity. To address this, we propose RWKV-UNet, a novel model that integrates the RWKV (Receptance Weighted Key Value) structure into the U-Net architecture. This integration enhances the model's ability to capture long-range dependencies and to improve contextual understanding, which is crucial for accurate medical image segmentation. We build a strong encoder with developed Global-Local Spatial Perception (GLSP) blocks combining CNNs and RWKVs. We also propose a Cross-Channel Mix (CCM) module to improve skip connections with multi-scale feature fusion, achieving global channel information integration. Experiments on 11 benchmark datasets show that the RWKV-UNet achieves state-of-the-art performance on various types of medical image segmentation tasks. Additionally, smaller variants, RWKV-UNet-S and RWKV-UNet-T, balance accuracy and computational efficiency, making them suitable for broader clinical applications.
♻ ☆ Smartphone-based iris recognition through high-quality visible-spectrum iris image capture.V2
Smartphone-based iris recognition in the visible spectrum (VIS) remains difficult due to illumination variability, pigmentation differences, and the absence of standardized capture controls. This work presents a compact end-to-end pipeline that enforces ISO/IEC 29794-6 quality compliance at acquisition and demonstrates that accurate VIS iris recognition is feasible on commodity devices. Using a custom Android application performing real-time framing, sharpness evaluation, and feedback, we introduce the CUVIRIS dataset of 752 compliant images from 47 subjects. A lightweight MobileNetV3-based multi-task segmentation network (LightIrisNet) is developed for efficient on-device processing, and a transformer matcher (IrisFormer) is adapted to the VIS domain. Under a standardized protocol and comparative benchmarking against prior CNN baselines, OSIRIS attains a TAR of 97.9% at FAR=0.01 (EER=0.76%), while IrisFormer, trained only on UBIRIS.v2, achieves an EER of 0.057% on CUVIRIS. The acquisition app, trained models, and a public subset of the dataset are released to support reproducibility. These results confirm that standardized capture and VIS-adapted lightweight models enable accurate and practical iris recognition on smartphones.
comment: This submission has been withdrawn because it duplicates significant content from another version of the paper already available on arXiv as arXiv:2412.13063
♻ ☆ Synthesize Privacy-Preserving High-Resolution Images via Private Textual Intermediaries
Generating high fidelity, differentially private (DP) synthetic images offers a promising route to share and analyze sensitive visual data without compromising individual privacy. However, existing DP image synthesis methods struggle to produce high resolution outputs that faithfully capture the structure of the original data. In this paper, we introduce a novel method, referred to as Synthesis via Private Textual Intermediaries (SPTI), that can generate high resolution DP images with easy adoption. The key idea is to shift the challenge of DP image synthesis from the image domain to the text domain by leveraging state of the art DP text generation methods. SPTI first summarizes each private image into a concise textual description using image to text models, then applies a modified Private Evolution algorithm to generate DP text, and finally reconstructs images using text to image models. Notably, SPTI requires no model training, only inference with off the shelf models. Given a private dataset, SPTI produces synthetic images of substantially higher quality than prior DP approaches. On the LSUN Bedroom dataset, SPTI attains an FID equal to 26.71 under epsilon equal to 1.0, improving over Private Evolution FID of 40.36. Similarly, on MM CelebA HQ, SPTI achieves an FID equal to 33.27 at epsilon equal to 1.0, compared to 57.01 from DP fine tuning baselines. Overall, our results demonstrate that Synthesis via Private Textual Intermediaries provides a resource efficient and proprietary model compatible framework for generating high resolution DP synthetic images, greatly expanding access to private visual datasets.
♻ ☆ A Fine-Grained Attention and Geometric Correspondence Model for Musculoskeletal Risk Classification in Athletes Using Multimodal Visual and Skeletal Features
Musculoskeletal disorders pose significant risks to athletes, and assessing risk early is important for prevention. However, most existing methods are designed for controlled settings and fail to reliably assess risk in complex environments due to their reliance on a single type of data. This research introduces ViSK-GAT (Visual-Skeletal Geometric Attention Transformer), a novel multimodal deep learning framework that classifies musculoskeletal risk using both visual and skeletal coordinate-based features. A custom multimodal dataset (MusDis-Sports) was created by combining images and skeletal coordinates, with each sample labeled into eight risk categories based on the Rapid Entire Body Assessment (REBA) system. ViSK-GAT integrates two innovative modules: the Fine-Grained Attention Module (FGAM), which refines inter-modal features via cross-attention between visual and skeletal inputs, and the Multimodal Geometric Correspondence Module (MGCM), which enhances cross-modal alignment between image features and coordinates. The model achieved robust performance, with all key metrics exceeding 93%. Regression results also indicated a low RMSE of 0.1205 and MAE of 0.0156. ViSK-GAT consistently outperformed nine popular transfer learning backbones and showed its potential to advance AI-driven musculoskeletal risk assessment and enable early, impactful interventions in sports.
♻ ☆ Topology Sculptor, Shape Refiner: Discrete Diffusion Model for High-Fidelity 3D Meshes Generation
In this paper, we introduce Topology Sculptor, Shape Refiner (TSSR), a novel method for generating high-quality, artist-style 3D meshes based on Discrete Diffusion Models (DDMs). Our primary motivation for TSSR is to achieve highly accurate token prediction while enabling parallel generation, a significant advantage over sequential autoregressive methods. By allowing TSSR to "see" all mesh tokens concurrently, we unlock a new level of efficiency and control. We leverage this parallel generation capability through three key innovations: 1) Decoupled Training and Hybrid Inference, which distinctly separates the DDM-based generation into a topology sculpting stage and a subsequent shape refinement stage. This strategic decoupling enables TSSR to effectively capture both intricate local topology and overarching global shape. 2) An Improved Hourglass Architecture, featuring bidirectional attention enriched by face-vertex-sequence level Rotational Positional Embeddings (RoPE), thereby capturing richer contextual information across the mesh structure. 3) A novel Connection Loss, which acts as a topological constraint to further enhance the realism and fidelity of the generated meshes. Extensive experiments on complex datasets demonstrate that TSSR generates high-quality 3D artist-style meshes, capable of achieving up to 10,000 faces at a remarkable spatial resolution of $1024^3$. The code will be released at: https://github.com/psky1111/Tencent-TSSR.
♻ ☆ AlignCAT: Visual-Linguistic Alignment of Category and Attribute for Weakly Supervised Visual Grounding
Weakly supervised visual grounding (VG) aims to locate objects in images based on text descriptions. Despite significant progress, existing methods lack strong cross-modal reasoning to distinguish subtle semantic differences in text expressions due to category-based and attribute-based ambiguity. To address these challenges, we introduce AlignCAT, a novel query-based semantic matching framework for weakly supervised VG. To enhance visual-linguistic alignment, we propose a coarse-grained alignment module that utilizes category information and global context, effectively mitigating interference from category-inconsistent objects. Subsequently, a fine-grained alignment module leverages descriptive information and captures word-level text features to achieve attribute consistency. By exploiting linguistic cues to their fullest extent, our proposed AlignCAT progressively filters out misaligned visual queries and enhances contrastive learning efficiency. Extensive experiments on three VG benchmarks, namely RefCOCO, RefCOCO+, and RefCOCOg, verify the superiority of AlignCAT against existing weakly supervised methods on two VG tasks. Our code is available at: https://github.com/I2-Multimedia-Lab/AlignCAT.
♻ ☆ Med-R1: Reinforcement Learning for Generalizable Medical Reasoning in Vision-Language Models
Vision-language models (VLMs) have achieved impressive progress in natural image reasoning, yet their potential in medical imaging remains underexplored. Medical vision-language tasks demand precise understanding and clinically coherent answers, which are difficult to achieve due to the complexity of medical data and the scarcity of high-quality expert annotations. These challenges limit the effectiveness of conventional supervised fine-tuning (SFT) and Chain-of-Thought (CoT) strategies that work well in general domains. To address these challenges, we propose Med-R1, a reinforcement learning (RL)-enhanced vision-language model designed to improve generalization and reliability in medical reasoning. Built on the DeepSeek strategy, Med-R1 adopts Group Relative Policy Optimization (GRPO) to encourage reward-guided learning beyond static annotations. We comprehensively evaluate Med-R1 across eight distinct medical imaging modalities. Med-R1 achieves a 29.94% improvement in average accuracy over its base model Qwen2-VL-2B, and even outperforms Qwen2-VL-72B-a model with 36x more parameters. To assess cross-task generalization, we further evaluate Med-R1 on five question types. Med-R1 outperforms Qwen2-VL-2B by 32.06% in question-type generalization, also surpassing Qwen2-VL-72B. We further explore the thinking process in Med-R1, a crucial component for the success of Deepseek-R1. Our results show that omitting intermediate rationales (No-Thinking-Med-R1) not only improves in-domain and cross-domain generalization with less training, but also challenges the assumption that more reasoning always helps. These findings suggest that in medical VQA, it is not reasoning itself, but its quality and domain alignment, that determine effectiveness. Together, these results highlight that RL improves medical reasoning and generalization, enabling efficient and reliable VLMs for real-world deployment.
♻ ☆ Psi-Sampler: Initial Particle Sampling for SMC-Based Inference-Time Reward Alignment in Score Models NeurIPS 2025
We introduce $\Psi$-Sampler, an SMC-based framework incorporating pCNL-based initial particle sampling for effective inference-time reward alignment with a score-based generative model. Inference-time reward alignment with score-based generative models has recently gained significant traction, following a broader paradigm shift from pre-training to post-training optimization. At the core of this trend is the application of Sequential Monte Carlo (SMC) to the denoising process. However, existing methods typically initialize particles from the Gaussian prior, which inadequately captures reward-relevant regions and results in reduced sampling efficiency. We demonstrate that initializing from the reward-aware posterior significantly improves alignment performance. To enable posterior sampling in high-dimensional latent spaces, we introduce the preconditioned Crank-Nicolson Langevin (pCNL) algorithm, which combines dimension-robust proposals with gradient-informed dynamics. This approach enables efficient and scalable posterior sampling and consistently improves performance across various reward alignment tasks, including layout-to-image generation, quantity-aware generation, and aesthetic-preference generation, as demonstrated in our experiments. Project Webpage: https://psi-sampler.github.io/
comment: NeurIPS 2025, Spotlight Presentation
♻ ☆ Self-supervised Representation Learning with Local Aggregation for Image-based Profiling CVPR 2025
Image-based cell profiling aims to create informative representations of cell images. This technique is critical in drug discovery and has greatly advanced with recent improvements in computer vision. Inspired by recent developments in non-contrastive Self-Supervised Learning (SSL), this paper provides an initial exploration into training a generalizable feature extractor for cell images using such methods. However, there are two major challenges: 1) Unlike typical scenarios where each representation is based on a single image, cell profiling often involves multiple input images, making it difficult to effectively fuse all available information; and 2) There is a large difference between the distributions of cell images and natural images, causing the view-generation process in existing SSL methods to fail. To address these issues, we propose a self-supervised framework with local aggregation to improve cross-site consistency of cell representations. We introduce specialized data augmentation and representation post-processing methods tailored to cell images, which effectively address the issues mentioned above and result in a robust feature extractor. With these improvements, the proposed framework won the Cell Line Transferability challenge at CVPR 2025.
comment: CVPR 2025 Computer Vision for Drug Discovery
♻ ☆ TEn-CATG:Text-Enriched Audio-Visual Video Parsing with Multi-Scale Category-Aware Temporal Graph
Audio-visual video parsing (AVVP) aims to detect event categories and their temporal boundaries in videos, typically under weak supervision. Existing methods mainly focus on (i) improving temporal modeling using attention-based architectures or (ii) generating richer pseudo-labels to address the absence of frame-level annotations. However, attention-based models often overfit noisy pseudo-labels, leading to cumulative training errors, while pseudo-label generation approaches distribute attention uniformly across frames, weakening temporal localization accuracy. To address these challenges, we propose TEn-CATG, a text-enriched AVVP framework that combines semantic calibration with category-aware temporal reasoning. More specifically, we design a bi-directional text fusion (BiT) module by leveraging audio-visual features as semantic anchors to refine text embeddings, which departs from conventional text-to-feature alignment, thereby mitigating noise and enhancing cross-modal consistency. Furthermore, we introduce the category-aware temporal graph (CATG) module to model temporal relationships by selecting multi-scale temporal neighbors and learning category-specific temporal decay factors, enabling effective event-dependent temporal reasoning. Extensive experiments demonstrate that TEn-CATG achieves state-of-the-art results across multiple evaluation metrics on benchmark datasets LLP and UnAV-100, highlighting its robustness and superior ability to capture complex temporal and semantic dependencies in weakly supervised AVVP tasks.
♻ ☆ RotaTouille: Rotation Equivariant Deep Learning for Contours
Contours or closed planar curves are common in many domains. For example, they appear as object boundaries in computer vision, isolines in meteorology, and the orbits of rotating machinery. In many cases when learning from contour data, planar rotations of the input will result in correspondingly rotated outputs. It is therefore desirable that deep learning models be rotationally equivariant. In addition, contours are typically represented as an ordered sequence of edge points, where the choice of starting point is arbitrary. It is therefore also desirable for deep learning methods to be equivariant under cyclic shifts. We present RotaTouille, a deep learning framework for learning from contour data that achieves both rotation and cyclic shift equivariance through complex-valued circular convolution. We further introduce and characterize equivariant non-linearities, coarsening layers, and global pooling layers to obtain invariant representations for downstream tasks. Finally, we demonstrate the effectiveness of RotaTouille through experiments in shape classification, reconstruction, and contour regression.
comment: 19 pages, 6 figures
♻ ☆ Bootstrapping Referring Multi-Object Tracking
Referring understanding is a fundamental task that bridges natural language and visual content by localizing objects described in free-form expressions. However, existing works are constrained by limited language expressiveness, lacking the capacity to model object dynamics in spatial numbers and temporal states. To address these limitations, we introduce a new and general referring understanding task, termed referring multi-object tracking (RMOT). Its core idea is to employ a language expression as a semantic cue to guide the prediction of multi-object tracking, comprehensively accounting for variations in object quantity and temporal semantics. Along with RMOT, we introduce a RMOT benchmark named Refer-KITTI-V2, featuring scalable and diverse language expressions. To efficiently generate high-quality annotations covering object dynamics with minimal manual effort, we propose a semi-automatic labeling pipeline that formulates a total of 9,758 language prompts. In addition, we propose TempRMOT, an elegant end-to-end Transformer-based framework for RMOT. At its core is a query-driven Temporal Enhancement Module that represents each object as a Transformer query, enabling long-term spatial-temporal interactions with other objects and past frames to efficiently refine these queries. TempRMOT achieves state-of-the-art performance on both Refer-KITTI and Refer-KITTI-V2, demonstrating the effectiveness of our approach. The source code and dataset is available at https://github.com/zyn213/TempRMOT.
♻ ☆ Capture, Canonicalize, Splat: Zero-Shot 3D Gaussian Avatars from Unstructured Phone Images ICCV 2025
We present a novel, zero-shot pipeline for creating hyperrealistic, identity-preserving 3D avatars from a few unstructured phone images. Existing methods face several challenges: single-view approaches suffer from geometric inconsistencies and hallucinations, degrading identity preservation, while models trained on synthetic data fail to capture high-frequency details like skin wrinkles and fine hair, limiting realism. Our method introduces two key contributions: (1) a generative canonicalization module that processes multiple unstructured views into a standardized, consistent representation, and (2) a transformer-based model trained on a new, large-scale dataset of high-fidelity Gaussian splatting avatars derived from dome captures of real people. This "Capture, Canonicalize, Splat" pipeline produces static quarter-body avatars with compelling realism and robust identity preservation from unstructured photos.
comment: This work received the Best Paper Honorable Mention at the AMFG Workshop, ICCV 2025
♻ ☆ GRE Suite: Geo-localization Inference via Fine-Tuned Vision-Language Models and Enhanced Reasoning Chains
Recent advances in Visual Language Models (VLMs) have demonstrated exceptional performance in visual reasoning tasks. However, geo-localization presents unique challenges, requiring the extraction of multigranular visual cues from images and their integration with external world knowledge for systematic reasoning. Current approaches to geo-localization tasks often lack robust reasoning mechanisms and explainability, limiting their effectiveness. To address these limitations, we propose the Geo Reason Enhancement (GRE) Suite, a novel framework that augments VLMs with structured reasoning chains for accurate and interpretable location inference. The GRE Suite is systematically developed across three key dimensions: dataset, model, and benchmark. First, we introduce GRE30K, a high-quality geo-localization reasoning dataset designed to facilitate fine-grained visual and contextual analysis. Next, we present the GRE model, which employs a multi-stage reasoning strategy to progressively infer scene attributes, local details, and semantic features, thereby narrowing down potential geographic regions with enhanced precision. Finally, we construct the Geo Reason Evaluation Benchmark (GREval-Bench), a comprehensive evaluation framework that assesses VLMs across diverse urban, natural, and landmark scenes to measure both coarse-grained (e.g., country, continent) and fine-grained (e.g., city, street) localization performance. Experimental results demonstrate that GRE significantly outperforms existing methods across all granularities of geo-localization tasks, underscoring the efficacy of reasoning-augmented VLMs in complex geographic inference. Code and data will be released at https://github.com/Thorin215/GRE.
♻ ☆ Training-Free In-Context Forensic Chain for Image Manipulation Detection and Localization
Advances in image tampering pose serious security threats, underscoring the need for effective image manipulation localization (IML). While supervised IML achieves strong performance, it depends on costly pixel-level annotations. Existing weakly supervised or training-free alternatives often underperform and lack interpretability. We propose the In-Context Forensic Chain (ICFC), a training-free framework that leverages multi-modal large language models (MLLMs) for interpretable IML tasks. ICFC integrates an objectified rule construction with adaptive filtering to build a reliable knowledge base and a multi-step progressive reasoning pipeline that mirrors expert forensic workflows from coarse proposals to fine-grained forensics results. This design enables systematic exploitation of MLLM reasoning for image-level classification, pixel-level localization, and text-level interpretability. Across multiple benchmarks, ICFC not only surpasses state-of-the-art training-free methods but also achieves competitive or superior performance compared to weakly and fully supervised approaches.
♻ ☆ BTL-UI: Blink-Think-Link Reasoning Model for GUI Agent NeurIPS 2025
In the field of AI-driven human-GUI interaction automation, while rapid advances in multimodal large language models and reinforcement fine-tuning techniques have yielded remarkable progress, a fundamental challenge persists: their interaction logic significantly deviates from natural human-GUI communication patterns. To fill this gap, we propose "Blink-Think-Link" (BTL), a brain-inspired framework for human-GUI interaction that mimics the human cognitive process between users and graphical interfaces. The system decomposes interactions into three biologically plausible phases: (1) Blink - rapid detection and attention to relevant screen areas, analogous to saccadic eye movements; (2) Think - higher-level reasoning and decision-making, mirroring cognitive planning; and (3) Link - generation of executable commands for precise motor control, emulating human action selection mechanisms. Additionally, we introduce two key technical innovations for the BTL framework: (1) Blink Data Generation - an automated annotation pipeline specifically optimized for blink data, and (2) BTL Reward -- the first rule-based reward mechanism that enables reinforcement learning driven by both process and outcome. Building upon this framework, we develop a GUI agent model named BTL-UI, which demonstrates competitive performance across both static GUI understanding and dynamic interaction tasks in comprehensive benchmarks. These results provide conclusive empirical validation of the framework's efficacy in developing advanced GUI Agents.
comment: Accepted at NeurIPS 2025
♻ ☆ C-DiffDet+: Fusing Global Scene Context with Generative Denoising for High-Fidelity Car Damage Detection
Fine-grained object detection in challenging visual domains, such as vehicle damage assessment, presents a formidable challenge even for human experts to resolve reliably. While DiffusionDet has advanced the state-of-the-art through conditional denoising diffusion, its performance remains limited by local feature conditioning in context-dependent scenarios. We address this fundamental limitation by introducing Context-Aware Fusion (CAF), which leverages cross-attention mechanisms to integrate global scene context with local proposal features directly. The global context is generated using a separate dedicated encoder that captures comprehensive environmental information, enabling each object proposal to attend to scene-level understanding. Our framework significantly enhances the generative detection paradigm by enabling each object proposal to attend to comprehensive environmental information. Experimental results demonstrate an improvement over state-of-the-art models on the CarDD benchmark, establishing new performance benchmarks for context-aware object detection in fine-grained domains
♻ ☆ Integrating Reinforcement Learning with Visual Generative Models: Foundations and Advances
Generative models have made significant progress in synthesizing visual content, including images, videos, and 3D/4D structures. However, they are typically trained with surrogate objectives such as likelihood or reconstruction loss, which often misalign with perceptual quality, semantic accuracy, or physical realism. Reinforcement learning (RL) offers a principled framework for optimizing non-differentiable, preference-driven, and temporally structured objectives. Recent advances demonstrate its effectiveness in enhancing controllability, consistency, and human alignment across generative tasks. This survey provides a systematic overview of RL-based methods for visual content generation. We review the evolution of RL from classical control to its role as a general-purpose optimization tool, and examine its integration into image, video, and 3D/4D generation. Across these domains, RL serves not only as a fine-tuning mechanism but also as a structural component for aligning generation with complex, high-level goals. We conclude with open challenges and future research directions at the intersection of RL and generative modeling.
comment: Ongoing work
♻ ☆ Generalization Bounds for Robust Contrastive Learning: From Theory to Practice
Contrastive Learning first extracts features from unlabeled data, followed by linear probing with labeled data. Adversarial Contrastive Learning (ACL) integrates Adversarial Training into the first phase to enhance feature robustness against attacks in the probing phase. While ACL has shown strong empirical results, its theoretical understanding remains limited. Furthermore, while a fair amount of theoretical works analyze how the unsupervised loss can support the supervised loss in the probing phase, none has examined its role to the robust supervised loss. To fill this gap, our work develops rigorous theories to identify which components in the unsupervised training can help improve the robust supervised loss. Specifically, besides the adversarial contrastive loss, we reveal that the benign one, along with a global divergence between benign and adversarial examples can also improve robustness. Proper experiments are conducted to justify our findings.
comment: 13 pages, 1 figure, 4 tables
♻ ☆ Flow-GRPO: Training Flow Matching Models via Online RL
We propose Flow-GRPO, the first method to integrate online policy gradient reinforcement learning (RL) into flow matching models. Our approach uses two key strategies: (1) an ODE-to-SDE conversion that transforms a deterministic Ordinary Differential Equation (ODE) into an equivalent Stochastic Differential Equation (SDE) that matches the original model's marginal distribution at all timesteps, enabling statistical sampling for RL exploration; and (2) a Denoising Reduction strategy that reduces training denoising steps while retaining the original number of inference steps, significantly improving sampling efficiency without sacrificing performance. Empirically, Flow-GRPO is effective across multiple text-to-image tasks. For compositional generation, RL-tuned SD3.5-M generates nearly perfect object counts, spatial relations, and fine-grained attributes, increasing GenEval accuracy from $63\%$ to $95\%$. In visual text rendering, accuracy improves from $59\%$ to $92\%$, greatly enhancing text generation. Flow-GRPO also achieves substantial gains in human preference alignment. Notably, very little reward hacking occurred, meaning rewards did not increase at the cost of appreciable image quality or diversity degradation.
comment: Code: https://github.com/yifan123/flow_grpo
♻ ☆ Attention! Your Vision Language Model Could Be Maliciously Manipulated NeurIPS 2025
Large Vision-Language Models (VLMs) have achieved remarkable success in understanding complex real-world scenarios and supporting data-driven decision-making processes. However, VLMs exhibit significant vulnerability against adversarial examples, either text or image, which can lead to various adversarial outcomes, e.g., jailbreaking, hijacking, and hallucination, etc. In this work, we empirically and theoretically demonstrate that VLMs are particularly susceptible to image-based adversarial examples, where imperceptible perturbations can precisely manipulate each output token. To this end, we propose a novel attack called Vision-language model Manipulation Attack (VMA), which integrates first-order and second-order momentum optimization techniques with a differentiable transformation mechanism to effectively optimize the adversarial perturbation. Notably, VMA can be a double-edged sword: it can be leveraged to implement various attacks, such as jailbreaking, hijacking, privacy breaches, Denial-of-Service, and the generation of sponge examples, etc, while simultaneously enabling the injection of watermarks for copyright protection. Extensive empirical evaluations substantiate the efficacy and generalizability of VMA across diverse scenarios and datasets. Code is available at https://github.com/Trustworthy-AI-Group/VMA.
comment: NeurIPS 2025
♻ ☆ THUNDER: Tile-level Histopathology image UNDERstanding benchmark NeurIPS 2025
Progress in a research field can be hard to assess, in particular when many concurrent methods are proposed in a short period of time. This is the case in digital pathology, where many foundation models have been released recently to serve as feature extractors for tile-level images, being used in a variety of downstream tasks, both for tile- and slide-level problems. Benchmarking available methods then becomes paramount to get a clearer view of the research landscape. In particular, in critical domains such as healthcare, a benchmark should not only focus on evaluating downstream performance, but also provide insights about the main differences between methods, and importantly, further consider uncertainty and robustness to ensure a reliable usage of proposed models. For these reasons, we introduce THUNDER, a tile-level benchmark for digital pathology foundation models, allowing for efficient comparison of many models on diverse datasets with a series of downstream tasks, studying their feature spaces and assessing the robustness and uncertainty of predictions informed by their embeddings. THUNDER is a fast, easy-to-use, dynamic benchmark that can already support a large variety of state-of-the-art foundation, as well as local user-defined models for direct tile-based comparison. In this paper, we provide a comprehensive comparison of 23 foundation models on 16 different datasets covering diverse tasks, feature analysis, and robustness. The code for THUNDER is publicly available at https://github.com/MICS-Lab/thunder.
comment: Accepted at NeurIPS 2025 Datasets and Benchmarks Track (Spotlight)
♻ ☆ Can Less Precise Be More Reliable? A Systematic Evaluation of Quantization's Impact on CLIP Beyond Accuracy
The powerful zero-shot generalization capabilities of vision-language models (VLMs) like CLIP have enabled new paradigms for safety-related tasks such as out-of-distribution (OOD) detection. However, additional aspects crucial for the computationally efficient and reliable deployment of CLIP are still overlooked. In particular, the impact of quantization on CLIP's performance beyond accuracy remains underexplored. This work presents a large-scale evaluation of quantization on CLIP models, assessing not only in-distribution accuracy but a comprehensive suite of reliability metrics and revealing counterintuitive results driven by pre-training source. We demonstrate that quantization consistently improves calibration for typically underconfident pre-trained models, while often degrading it for overconfident variants. Intriguingly, this degradation in calibration does not preclude gains in other reliability metrics; we find that OOD detection can still improve for these same poorly calibrated models. Furthermore, we identify specific quantization-aware training (QAT) methods that yield simultaneous gains in zero-shot accuracy, calibration, and OOD robustness, challenging the view of a strict efficiency-performance trade-off. These findings offer critical insights for navigating the multi-objective problem of deploying efficient, reliable, and robust VLMs by utilizing quantization beyond its conventional role.
comment: Preprint, under peer review
♻ ☆ Identity-Preserving Text-to-Video Generation Guided by Simple yet Effective Spatial-Temporal Decoupled Representations
Identity-preserving text-to-video (IPT2V) generation, which aims to create high-fidelity videos with consistent human identity, has become crucial for downstream applications. However, current end-to-end frameworks suffer a critical spatial-temporal trade-off: optimizing for spatially coherent layouts of key elements (e.g., character identity preservation) often compromises instruction-compliant temporal smoothness, while prioritizing dynamic realism risks disrupting the spatial coherence of visual structures. To tackle this issue, we propose a simple yet effective spatial-temporal decoupled framework that decomposes representations into spatial features for layouts and temporal features for motion dynamics. Specifically, our paper proposes a semantic prompt optimization mechanism and stage-wise decoupled generation paradigm. The former module decouples the prompt into spatial and temporal components. Aligned with the subsequent stage-wise decoupled approach, the spatial prompts guide the text-to-image (T2I) stage to generate coherent spatial features, while the temporal prompts direct the sequential image-to-video (I2V) stage to ensure motion consistency. Experimental results validate that our approach achieves excellent spatiotemporal consistency, demonstrating outstanding performance in identity preservation, text relevance, and video quality. By leveraging this simple yet robust mechanism, our algorithm secures the runner-up position in 2025 ACM MultiMedia Challenge. Our code is available at https://github.com/rain152/IPVG.
comment: ACM Multimedia 2025; code URL: https://github.com/rain152/IPVG
♻ ☆ First SFT, Second RL, Third UPT: Continual Improving Multi-Modal LLM Reasoning via Unsupervised Post-Training NeurIPS 2025
Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL), which require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. This limitation has motivated a growing interest in unsupervised paradigms as a third stage of post-training after SFT and RL. While recent efforts have explored this direction, their methods are complex and difficult to iterate. To address this, we propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs, enabling continual self-improvement without any external supervision. The training method of MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that such training method effectively improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3\%$\rightarrow$72.9\% on MathVista, 62.9\%$\rightarrow$68.7\% on We-Math), using standard dataset without ground truth labels. To further explore scalability, we extend our framework to a data self-generation setting, designing two strategies that prompt the MLLM to synthesize new training samples on its own. Additional experiments show that combining these synthetic data with the unsupervised training method can also boost performance, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for autonomous enhancement of MLLMs, serving as a critical third step after initial SFT and RL in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.
comment: Accepted by NeurIPS 2025
♻ ☆ UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning NeurIPS 2025
Recent advances in Large Multi-modal Models (LMMs) have demonstrated their remarkable success as general-purpose multi-modal assistants, with particular focuses on holistic image- and video-language understanding. Conversely, less attention has been given to scaling fine-grained pixel-level understanding capabilities, where the models are expected to realize pixel-level alignment between visual signals and language semantics. Some previous studies have applied LMMs to related tasks such as region-level captioning and referring expression segmentation. However, these models are limited to performing either referring or segmentation tasks independently and fail to integrate these fine-grained perception capabilities into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal model capable of flexibly comprehending visual prompt inputs and generating mask-grounded responses. Our model distinguishes itself by seamlessly integrating pixel-level perception with general visual understanding capabilities. Specifically, UniPixel processes visual prompts and generates relevant masks on demand, and performs subsequent reasoning conditioning on these intermediate pointers during inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness of our approach has been verified on 10 benchmarks across a diverse set of tasks, including pixel-level referring/segmentation and object-centric understanding in images/videos. A novel PixelQA task that jointly requires referring, segmentation, and question answering is also designed to verify the flexibility of our method.
comment: NeurIPS 2025 Camera Ready. Project Page: https://polyu-chenlab.github.io/unipixel/
♻ ☆ Robust Modality-incomplete Anomaly Detection: A Modality-instructive Framework with Benchmark
Multimodal Industrial Anomaly Detection (MIAD), which utilizes 3D point clouds and 2D RGB images to identify abnormal regions in products, plays a crucial role in industrial quality inspection. However, traditional MIAD settings assume that all 2D and 3D modalities are paired, ignoring the fact that multimodal data collected from the real world is often imperfect due to missing modalities. Additionally, models trained on modality-incomplete data are prone to overfitting. Therefore, MIAD models that demonstrate robustness against modality-incomplete data are highly desirable in practice. To address this, we introduce a pioneering study that comprehensively investigates Modality-Incomplete Industrial Anomaly Detection (MIIAD), and under the guidance of experts, we construct the MIIAD Bench with rich modality-missing settings to account for imperfect learning environments with incomplete multimodal information. As expected, we find that most existing MIAD methods perform poorly on the MIIAD Bench, leading to significant performance degradation. To tackle this challenge, we propose a novel two-stage Robust modAlity-aware fusing and Detecting framewoRk, abbreviated as RADAR. Specifically: i) We propose Modality-incomplete Instruction to guide the multimodal Transformer to robustly adapt to various modality-incomplete scenarios, and implement adaptive parameter learning based on HyperNetwork. ii) Then, we construct a Double-Pseudo Hybrid Module to highlight the uniqueness of modality combinations, mitigating overfitting issues and further enhancing the robustness of the MIIAD model. Our experimental results demonstrate that the proposed RADAR significantly outperforms traditional MIAD methods on our newly created MIIAD dataset, proving its practical application value.
♻ ☆ Improving Video Generation with Human Feedback
Video generation has achieved significant advances through rectified flow techniques, but issues like unsmooth motion and misalignment between videos and prompts persist. In this work, we develop a systematic pipeline that harnesses human feedback to mitigate these problems and refine the video generation model. Specifically, we begin by constructing a large-scale human preference dataset focused on modern video generation models, incorporating pairwise annotations across multi-dimensions. We then introduce VideoReward, a multi-dimensional video reward model, and examine how annotations and various design choices impact its rewarding efficacy. From a unified reinforcement learning perspective aimed at maximizing reward with KL regularization, we introduce three alignment algorithms for flow-based models. These include two training-time strategies: direct preference optimization for flow (Flow-DPO) and reward weighted regression for flow (Flow-RWR), and an inference-time technique, Flow-NRG, which applies reward guidance directly to noisy videos. Experimental results indicate that VideoReward significantly outperforms existing reward models, and Flow-DPO demonstrates superior performance compared to both Flow-RWR and supervised fine-tuning methods. Additionally, Flow-NRG lets users assign custom weights to multiple objectives during inference, meeting personalized video quality needs.
comment: https://github.com/KwaiVGI/VideoAlign
♻ ☆ KAN or MLP? Point Cloud Shows the Way Forward
Multi-Layer Perceptrons (MLPs) have become one of the fundamental architectural component in point cloud analysis due to its effective feature learning mechanism. However, when processing complex geometric structures in point clouds, MLPs' fixed activation functions struggle to efficiently capture local geometric features, while suffering from poor parameter efficiency and high model redundancy. In this paper, we propose PointKAN, which applies Kolmogorov-Arnold Networks (KANs) to point cloud analysis tasks to investigate their efficacy in hierarchical feature representation. First, we introduce a Geometric Affine Module (GAM) to transform local features, improving the model's robustness to geometric variations. Next, in the Local Feature Processing (LFP), a parallel structure extracts both group-level features and global context, providing a rich representation of both fine details and overall structure. Finally, these features are combined and processed in the Global Feature Processing (GFP). By repeating these operations, the receptive field gradually expands, enabling the model to capture complete geometric information of the point cloud. To overcome the high parameter counts and computational inefficiency of standard KANs, we develop Efficient-KANs in the PointKAN-elite variant, which significantly reduces parameters while maintaining accuracy. Experimental results demonstrate that PointKAN outperforms PointMLP on benchmark datasets such as ModelNet40, ScanObjectNN, and ShapeNetPart, with particularly strong performance in Few-shot Learning task. Additionally, PointKAN achieves substantial reductions in parameter counts and computational complexity (FLOPs). This work highlights the potential of KANs-based architectures in 3D vision and opens new avenues for research in point cloud understanding.
♻ ☆ T2ICount: Enhancing Cross-modal Understanding for Zero-Shot Counting CVPR2025
Zero-shot object counting aims to count instances of arbitrary object categories specified by text descriptions. Existing methods typically rely on vision-language models like CLIP, but often exhibit limited sensitivity to text prompts. We present T2ICount, a diffusion-based framework that leverages rich prior knowledge and fine-grained visual understanding from pretrained diffusion models. While one-step denoising ensures efficiency, it leads to weakened text sensitivity. To address this challenge, we propose a Hierarchical Semantic Correction Module that progressively refines text-image feature alignment, and a Representational Regional Coherence Loss that provides reliable supervision signals by leveraging the cross-attention maps extracted from the denosing U-Net. Furthermore, we observe that current benchmarks mainly focus on majority objects in images, potentially masking models' text sensitivity. To address this, we contribute a challenging re-annotated subset of FSC147 for better evaluation of text-guided counting ability. Extensive experiments demonstrate that our method achieves superior performance across different benchmarks. Code is available at https://github.com/cha15yq/T2ICount.
comment: Accepted by CVPR2025
♻ ☆ Reconstruction Alignment Improves Unified Multimodal Models
Unified multimodal models (UMMs) unify visual understanding and generation within a single architecture. However, conventional training relies on image-text pairs (or sequences) whose captions are typically sparse and miss fine-grained visual details--even when they use hundreds of words to describe a simple image. We introduce Reconstruction Alignment (RecA), a resource-efficient post-training method that leverages visual understanding encoder embeddings as dense "text prompts," providing rich supervision without captions. Concretely, RecA conditions a UMM on its own visual understanding embeddings and optimizes it to reconstruct the input image with a self-supervised reconstruction loss, thereby realigning understanding and generation. Despite its simplicity, RecA is broadly applicable: across autoregressive, masked-autoregressive, and diffusion-based UMMs, it consistently improves generation and editing fidelity. With only 27 GPU-hours, post-training with RecA substantially improves image generation performance on GenEval (0.73$\rightarrow$0.90) and DPGBench (80.93$\rightarrow$88.15), while also boosting editing benchmarks (ImgEdit 3.38$\rightarrow$3.75, GEdit 6.94$\rightarrow$7.25). Notably, RecA surpasses much larger open-source models and applies broadly across diverse UMM architectures, establishing it as an efficient and general post-training alignment strategy for UMMs
comment: 34 pages, 28 figures and 11 tables; Update ablation study
♻ ☆ HoliSafe: Holistic Safety Benchmarking and Modeling for Vision-Language Model
Despite emerging efforts to enhance the safety of Vision-Language Models (VLMs), current approaches face two main shortcomings. 1) Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content, often overlooking contextually unsafe outcomes from seemingly benign pairs. This narrow coverage leaves VLMs vulnerable to jailbreak attacks in unseen configurations. 2) Prior methods rely primarily on data-centric tuning, with limited architectural innovations to intrinsically strengthen safety. We address these gaps by introducing a holistic safety dataset and benchmark, \textbf{HoliSafe}, that spans all five safe/unsafe image-text combinations, providing a more robust basis for both training and evaluation (HoliSafe-Bench). We further propose a novel modular framework for enhancing VLM safety with a visual guard module (VGM) designed to assess the harmfulness of input images for VLMs. This module endows VLMs with a dual functionality: they not only learn to generate safer responses but can also provide an interpretable harmfulness classification to justify their refusal decisions. A significant advantage of this approach is its modularity; the VGM is designed as a plug-in component, allowing for seamless integration with diverse pre-trained VLMs across various scales. Experiments show that Safe-VLM with VGM, trained on our HoliSafe, achieves state-of-the-art safety performance across multiple VLM benchmarks. Additionally, the HoliSafe-Bench itself reveals critical vulnerabilities in existing VLM models. We hope that HoliSafe and VGM will spur further research into robust and interpretable VLM safety, expanding future avenues for multimodal alignment.
comment: Project page: https://youngwanlee.github.io/holisafe
♻ ☆ A Novel Multi-branch ConvNeXt Architecture for Identifying Subtle Pathological Features in CT Scans
Intelligent analysis of medical imaging plays a crucial role in assisting clinical diagnosis, especially for identifying subtle pathological features. This paper introduces a novel multi-branch ConvNeXt architecture designed specifically for the nuanced challenges of medical image analysis. While applied here to the specific problem of COVID-19 diagnosis, the methodology offers a generalizable framework for classifying a wide range of pathologies from CT scans. The proposed model incorporates a rigorous end-to-end pipeline, from meticulous data preprocessing and augmentation to a disciplined two-phase training strategy that leverages transfer learning effectively. The architecture uniquely integrates features extracted from three parallel branches: Global Average Pooling, Global Max Pooling, and a new Attention-weighted Pooling mechanism. The model was trained and validated on a combined dataset of 2,609 CT slices derived from two distinct datasets. Experimental results demonstrate a superior performance on the validation set, achieving a final ROC-AUC of 0.9937, a validation accuracy of 0.9757, and an F1-score of 0.9825 for COVID-19 cases, outperforming all previously reported models on this dataset. These findings indicate that a modern, multi-branch architecture, coupled with careful data handling, can achieve performance comparable to or exceeding contemporary state-of-the-art models, thereby proving the efficacy of advanced deep learning techniques for robust medical diagnostics.
comment: Source Code : https://github.com/Irash-Perera/MedNeXt-Branch
♻ ☆ 3D-RAD: A Comprehensive 3D Radiology Med-VQA Dataset with Multi-Temporal Analysis and Diverse Diagnostic Tasks NeurIPS 2025
Medical Visual Question Answering (Med-VQA) holds significant potential for clinical decision support, yet existing efforts primarily focus on 2D imaging with limited task diversity. This paper presents 3D-RAD, a large-scale dataset designed to advance 3D Med-VQA using radiology CT scans. The 3D-RAD dataset encompasses six diverse VQA tasks: anomaly detection, image observation, medical computation, existence detection, static temporal diagnosis, and longitudinal temporal diagnosis. It supports both open- and closed-ended questions while introducing complex reasoning challenges, including computational tasks and multi-stage temporal analysis, to enable comprehensive benchmarking. Extensive evaluations demonstrate that existing vision-language models (VLMs), especially medical VLMs exhibit limited generalization, particularly in multi-temporal tasks, underscoring the challenges of real-world 3D diagnostic reasoning. To drive future advancements, we release a high-quality training set 3D-RAD-T of 136,195 expert-aligned samples, showing that fine-tuning on this dataset could significantly enhance model performance. Our dataset and code, aiming to catalyze multimodal medical AI research and establish a robust foundation for 3D medical visual understanding, are publicly available at https://github.com/Tang-xiaoxiao/3D-RAD.
comment: Accepted by NeurIPS 2025
♻ ☆ ORIGEN: Zero-Shot 3D Orientation Grounding in Text-to-Image Generation
We introduce ORIGEN, the first zero-shot method for 3D orientation grounding in text-to-image generation across multiple objects and diverse categories. While previous work on spatial grounding in image generation has mainly focused on 2D positioning, it lacks control over 3D orientation. To address this, we propose a reward-guided sampling approach using a pretrained discriminative model for 3D orientation estimation and a one-step text-to-image generative flow model. While gradient-ascent-based optimization is a natural choice for reward-based guidance, it struggles to maintain image realism. Instead, we adopt a sampling-based approach using Langevin dynamics, which extends gradient ascent by simply injecting random noise--requiring just a single additional line of code. Additionally, we introduce adaptive time rescaling based on the reward function to accelerate convergence. Our experiments show that ORIGEN outperforms both training-based and test-time guidance methods across quantitative metrics and user studies.
comment: Project Page: https://origen2025.github.io
♻ ☆ BCR-Net: Boundary-Category Refinement Network for Weakly Semi-Supervised X-Ray Prohibited Item Detection with Points
Automatic prohibited item detection in X-ray images is crucial for public safety. However, most existing detection methods either rely on expensive box annotations to achieve high performance or use weak annotations but suffer from limited accuracy. To balance annotation cost and detection performance, we study Weakly Semi-Supervised X-ray Prohibited Item Detection with Points (WSSPID-P) and propose a novel \textbf{B}oundary-\textbf{C}ategory \textbf{R}efinement \textbf{Net}work (\textbf{BCR-Net}) that requires only a few box annotations and a large number of point annotations. BCR-Net is built based on Group R-CNN and introduces a new Boundary Refinement (BR) module and a new Category Refinement (CR) module. The BR module develops a dual attention mechanism to focus on both the boundaries and salient features of prohibited items. Meanwhile, the CR module incorporates contrastive branches into the heads of RPN and ROI by introducing a scale- and rotation-aware contrastive loss, enhancing intra-class consistency and inter-class separability in the feature space. Based on the above designs, BCR-Net effectively addresses the closely related problems of imprecise localization and inaccurate classification. Experimental results on public X-ray datasets show the effectiveness of BCR-Net, achieving significant performance improvements to state-of-the-art methods under limited annotations.
comment: The authors withdraw this preprint because an error was found in a mathematical expression and the manuscript lacks evaluation on the COCO dataset. We will correct the error, extend experiments to include COCO, and resubmit a revised version
♻ ☆ UKANFormer: Noise-Robust Semantic Segmentation for Coral Reef Mapping via a Kolmogorov-Arnold Network-Transformer Hybrid
Coral reefs are vital yet fragile ecosystems that require accurate large-scale mapping for effective conservation. Although global products such as the Allen Coral Atlas provide unprecedented coverage of global coral reef distri-bution, their predictions are frequently limited in spatial precision and semantic consistency, especially in regions requiring fine-grained boundary delineation. To address these challenges, we propose UKANFormer, a novel se-mantic segmentation model designed to achieve high-precision mapping under noisy supervision derived from Allen Coral Atlas. Building upon the UKAN architecture, UKANFormer incorporates a Global-Local Transformer (GL-Trans) block in the decoder, enabling the extraction of both global semantic structures and local boundary details. In experiments, UKANFormer achieved a coral-class IoU of 67.00% and pixel accuracy of 83.98%, outperforming conventional baselines under the same noisy labels setting. Remarkably, the model produces predictions that are visually and structurally more accurate than the noisy labels used for training. These results challenge the notion that data quality directly limits model performance, showing that architectural design can mitigate label noise and sup-port scalable mapping under imperfect supervision. UKANFormer provides a foundation for ecological monitoring where reliable labels are scarce.
♻ ☆ CMIE: Combining MLLM Insights with External Evidence for Explainable Out-of-Context Misinformation Detection
Multimodal large language models (MLLMs) have demonstrated impressive capabilities in visual reasoning and text generation. While previous studies have explored the application of MLLM for detecting out-of-context (OOC) misinformation, our empirical analysis reveals two persisting challenges of this paradigm. Evaluating the representative GPT-4o model on direct reasoning and evidence augmented reasoning, results indicate that MLLM struggle to capture the deeper relationships-specifically, cases in which the image and text are not directly connected but are associated through underlying semantic links. Moreover, noise in the evidence further impairs detection accuracy. To address these challenges, we propose CMIE, a novel OOC misinformation detection framework that incorporates a Coexistence Relationship Generation (CRG) strategy and an Association Scoring (AS) mechanism. CMIE identifies the underlying coexistence relationships between images and text, and selectively utilizes relevant evidence to enhance misinformation detection. Experimental results demonstrate that our approach outperforms existing methods.
♻ ☆ Editable Noise Map Inversion: Encoding Target-image into Noise For High-Fidelity Image Manipulation ICML 2025
Text-to-image diffusion models have achieved remarkable success in generating high-quality and diverse images. Building on these advancements, diffusion models have also demonstrated exceptional performance in text-guided image editing. A key strategy for effective image editing involves inverting the source image into editable noise maps associated with the target image. However, previous inversion methods face challenges in adhering closely to the target text prompt. The limitation arises because inverted noise maps, while enabling faithful reconstruction of the source image, restrict the flexibility needed for desired edits. To overcome this issue, we propose Editable Noise Map Inversion (ENM Inversion), a novel inversion technique that searches for optimal noise maps to ensure both content preservation and editability. We analyze the properties of noise maps for enhanced editability. Based on this analysis, our method introduces an editable noise refinement that aligns with the desired edits by minimizing the difference between the reconstructed and edited noise maps. Extensive experiments demonstrate that ENM Inversion outperforms existing approaches across a wide range of image editing tasks in both preservation and edit fidelity with target prompts. Our approach can also be easily applied to video editing, enabling temporal consistency and content manipulation across frames.
comment: ICML 2025
♻ ☆ Neural Stereo Video Compression with Hybrid Disparity Compensation
Disparity compensation represents the primary strategy in stereo video compression (SVC) for exploiting cross-view redundancy. These mechanisms can be broadly categorized into two types: one that employs explicit horizontal shifting, and another that utilizes an implicit cross-attention mechanism to reduce cross-view disparity redundancy. In this work, we propose a hybrid disparity compensation (HDC) strategy that leverages explicit pixel displacement as a robust prior feature to simplify optimization and perform implicit cross-attention mechanisms for subsequent warping operations, thereby capturing a broader range of disparity information. Specifically, HDC first computes a similarity map by fusing the horizontally shifted cross-view features to capture pixel displacement information. This similarity map is then normalized into an "explicit pixel-wise attention score" to perform the cross-attention mechanism, implicitly aligning features from one view to another. Building upon HDC, we introduce a novel end-to-end optimized neural stereo video compression framework, which integrates HDC-based modules into key coding operations, including cross-view feature extraction and reconstruction (HDC-FER) and cross-view entropy modeling (HDC-EM). Extensive experiments on SVC benchmarks, including KITTI 2012, KITTI 2015, and Nagoya, which cover both autonomous driving and general scenes, demonstrate that our framework outperforms both neural and traditional SVC methodologies.
♻ ☆ DOS: Directional Object Separation in Text Embeddings for Multi-Object Image Generation
Recent progress in text-to-image (T2I) generative models has led to significant improvements in generating high-quality images aligned with text prompts. However, these models still struggle with prompts involving multiple objects, often resulting in object neglect or object mixing. Through extensive studies, we identify four problematic scenarios, Similar Shapes, Similar Textures, Dissimilar Background Biases, and Many Objects, where inter-object relationships frequently lead to such failures. Motivated by two key observations about CLIP embeddings, we propose DOS (Directional Object Separation), a method that modifies three types of CLIP text embeddings before passing them into text-to-image models. Experimental results show that DOS consistently improves the success rate of multi-object image generation and reduces object mixing. In human evaluations, DOS significantly outperforms four competing methods, receiving 26.24%-43.04% more votes across four benchmarks. These results highlight DOS as a practical and effective solution for improving multi-object image generation.
♻ ☆ Representational Difference Explanations
We propose a method for discovering and visualizing the differences between two learned representations, enabling more direct and interpretable model comparisons. We validate our method, which we call Representational Differences Explanations (RDX), by using it to compare models with known conceptual differences and demonstrate that it recovers meaningful distinctions where existing explainable AI (XAI) techniques fail. Applied to state-of-the-art models on challenging subsets of the ImageNet and iNaturalist datasets, RDX reveals both insightful representational differences and subtle patterns in the data. Although comparison is a cornerstone of scientific analysis, current tools in machine learning, namely post hoc XAI methods, struggle to support model comparison effectively. Our work addresses this gap by introducing an effective and explainable tool for contrasting model representations.
comment: 9 pages, 6 figures, 21 supplementary pages, 14 supp figs
♻ ☆ S$^2$Q-VDiT: Accurate Quantized Video Diffusion Transformer with Salient Data and Sparse Token Distillation
Diffusion transformers have emerged as the mainstream paradigm for video generation models. However, the use of up to billions of parameters incurs significant computational costs. Quantization offers a promising solution by reducing memory usage and accelerating inference. Nonetheless, we observe that the joint modeling of spatial and temporal information in video diffusion models (V-DMs) leads to extremely long token sequences, which introduces high calibration variance and learning challenges. To address these issues, we propose S$^2$Q-VDiT, a post-training quantization framework for V-DMs that leverages Salient data and Sparse token distillation. During the calibration phase, we identify that quantization performance is highly sensitive to the choice of calibration data. To mitigate this, we introduce \textit{Hessian-aware Salient Data Selection}, which constructs high-quality calibration datasets by considering both diffusion and quantization characteristics unique to V-DMs. To tackle the learning challenges, we further analyze the sparse attention patterns inherent in V-DMs. Based on this observation, we propose \textit{Attention-guided Sparse Token Distillation}, which exploits token-wise attention distributions to emphasize tokens that are more influential to the model's output. Under W4A6 quantization, S$^2$Q-VDiT achieves lossless performance while delivering $3.9\times$ model compression and $1.3\times$ inference acceleration. Code will be available at https://github.com/wlfeng0509/s2q-vdit.
♻ ☆ Image-Plane Geometric Decoding for View-Invariant Indoor Scene Reconstruction
Volume-based indoor scene reconstruction methods offer superior generalization capability and real-time deployment potential. However, existing methods rely on multi-view pixel back-projection ray intersections as weak geometric constraints to determine spatial positions. This dependence results in reconstruction quality being heavily influenced by input view density. Performance degrades in overlapping regions and unobserved areas.To address these limitations, we reduce dependency on inter-view geometric constraints by exploiting spatial information within individual views. We propose an image-plane decoding framework with three core components: Pixel-level Confidence Encoder, Affine Compensation Module, and Image-Plane Spatial Decoder. These modules decode three-dimensional structural information encoded in images through physical imaging processes. The framework effectively preserves spatial geometric features including edges, hollow structures, and complex textures. It significantly enhances view-invariant reconstruction.Experiments on indoor scene reconstruction datasets confirm superior reconstruction stability. Our method maintains nearly identical quality when view count reduces by 40%. It achieves a coefficient of variation of 0.24%, performance retention rate of 99.7%, and maximum performance drop of 0.42%. These results demonstrate that exploiting intra-view spatial information provides a robust solution for view-limited scenarios in practical applications.
♻ ☆ FaceTracer: Unveiling Source Identities from Swapped Face Images and Videos for Fraud Prevention
Face-swapping techniques have advanced rapidly with the evolution of deep learning, leading to widespread use and growing concerns about potential misuse, especially in cases of fraud. While many efforts have focused on detecting swapped face images or videos, these methods are insufficient for tracing the malicious users behind fraudulent activities. Intrusive watermark-based approaches also fail to trace unmarked identities, limiting their practical utility. To address these challenges, we introduce FaceTracer, the first non-intrusive framework specifically designed to trace the identity of the source person from swapped face images or videos. Specifically, FaceTracer leverages a disentanglement module that effectively suppresses identity information related to the target person while isolating the identity features of the source person. This allows us to extract robust identity information that can directly link the swapped face back to the original individual, aiding in uncovering the actors behind fraudulent activities. Extensive experiments demonstrate FaceTracer's effectiveness across various face-swapping techniques, successfully identifying the source person in swapped content and enabling the tracing of malicious actors involved in fraudulent activities. Additionally, FaceTracer shows strong transferability to unseen face-swapping methods including commercial applications and robustness against transmission distortions and adaptive attacks.Our code is available at: https://github.com/zzy224/FaceTracer.
comment: 17 pages, 16 figures, TPAMI version
♻ ☆ CXReasonBench: A Benchmark for Evaluating Structured Diagnostic Reasoning in Chest X-rays NeurIPS 2025
Recent progress in Large Vision-Language Models (LVLMs) has enabled promising applications in medical tasks, such as report generation and visual question answering. However, existing benchmarks focus mainly on the final diagnostic answer, offering limited insight into whether models engage in clinically meaningful reasoning. To address this, we present CheXStruct and CXReasonBench, a structured pipeline and benchmark built on the publicly available MIMIC-CXR-JPG dataset. CheXStruct automatically derives a sequence of intermediate reasoning steps directly from chest X-rays, such as segmenting anatomical regions, deriving anatomical landmarks and diagnostic measurements, computing diagnostic indices, and applying clinical thresholds. CXReasonBench leverages this pipeline to evaluate whether models can perform clinically valid reasoning steps and to what extent they can learn from structured guidance, enabling fine-grained and transparent assessment of diagnostic reasoning. The benchmark comprises 18,988 QA pairs across 12 diagnostic tasks and 1,200 cases, each paired with up to 4 visual inputs, and supports multi-path, multi-stage evaluation including visual grounding via anatomical region selection and diagnostic measurements. Even the strongest of 12 evaluated LVLMs struggle with structured reasoning and generalization, often failing to link abstract knowledge with anatomically grounded visual interpretation. The code is available at https://github.com/ttumyche/CXReasonBench
comment: Accepted at NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ GOOD: Training-Free Guided Diffusion Sampling for Out-of-Distribution Detection
Recent advancements have explored text-to-image diffusion models for synthesizing out-of-distribution (OOD) samples, substantially enhancing the performance of OOD detection. However, existing approaches typically rely on perturbing text-conditioned embeddings, resulting in semantic instability and insufficient shift diversity, which limit generalization to realistic OOD. To address these challenges, we propose GOOD, a novel and flexible framework that directly guides diffusion sampling trajectories towards OOD regions using off-the-shelf in-distribution (ID) classifiers. GOOD incorporates dual-level guidance: (1) Image-level guidance based on the gradient of log partition to reduce input likelihood, drives samples toward low-density regions in pixel space. (2) Feature-level guidance, derived from k-NN distance in the classifier's latent space, promotes sampling in feature-sparse regions. Hence, this dual-guidance design enables more controllable and diverse OOD sample generation. Additionally, we introduce a unified OOD score that adaptively combines image and feature discrepancies, enhancing detection robustness. We perform thorough quantitative and qualitative analyses to evaluate the effectiveness of GOOD, demonstrating that training with samples generated by GOOD can notably enhance OOD detection performance.
comment: 28 pages, 16 figures, conference
♻ ☆ Enhancing Feature Fusion of U-like Networks with Dynamic Skip Connections
U-like networks have become fundamental frameworks in medical image segmentation through skip connections that bridge high-level semantics and low-level spatial details. Despite their success, conventional skip connections exhibit two key limitations: inter-feature constraints and intra-feature constraints. The inter-feature constraint refers to the static nature of feature fusion in traditional skip connections, where information is transmitted along fixed pathways regardless of feature content. The intra-feature constraint arises from the insufficient modeling of multi-scale feature interactions, thereby hindering the effective aggregation of global contextual information. To overcome these limitations, we propose a novel Dynamic Skip Connection (DSC) block that fundamentally enhances cross-layer connectivity through adaptive mechanisms. The DSC block integrates two complementary components. (1) Test-Time Training (TTT) module. This module addresses the inter-feature constraint by enabling dynamic adaptation of hidden representations during inference, facilitating content-aware feature refinement. (2) Dynamic Multi-Scale Kernel (DMSK) module. To mitigate the intra-feature constraint, this module adaptively selects kernel sizes based on global contextual cues, enhancing the network capacity for multi-scale feature integration. The DSC block is architecture-agnostic and can be seamlessly incorporated into existing U-like network structures. Extensive experiments demonstrate the plug-and-play effectiveness of the proposed DSC block across CNN-based, Transformer-based, hybrid CNN-Transformer, and Mamba-based U-like networks.
♻ ☆ TokenCLIP: Token-wise Prompt Learning for Zero-shot Anomaly Detection
Adapting CLIP for anomaly detection on unseen objects has shown strong potential in a zero-shot manner. However, existing methods typically rely on a single textual space to align with visual semantics across diverse objects and domains. The indiscriminate alignment hinders the model from accurately capturing varied anomaly semantics. We propose TokenCLIP, a token-wise adaptation framework that enables dynamic alignment between visual and learnable textual spaces for fine-grained anomaly learning. Rather than mapping all visual tokens to a single, token-agnostic textual space, TokenCLIP aligns each token with a customized textual subspace that represents its visual characteristics. Explicitly assigning a unique learnable textual space to each token is computationally intractable and prone to insufficient optimization. We instead expand the token-agnostic textual space into a set of orthogonal subspaces, and then dynamically assign each token to a subspace combination guided by semantic affinity, which jointly supports customized and efficient token-wise adaptation. To this end, we formulate dynamic alignment as an optimal transport problem, where all visual tokens in an image are transported to textual subspaces based on semantic similarity. The transport constraints of OT ensure sufficient optimization across subspaces and encourage them to focus on different semantics. Solving the problem yields a transport plan that adaptively assigns each token to semantically relevant subspaces. A top-k masking is then applied to sparsify the plan and specialize subspaces for distinct visual regions. Extensive experiments demonstrate the superiority of TokenCLIP.
♻ ☆ A Training-Free Framework for Open-Vocabulary Image Segmentation and Recognition with EfficientNet and CLIP
This paper presents a novel training-free framework for open-vocabulary image segmentation and object recognition (OVSR), which leverages EfficientNetB0, a convolutional neural network, for unsupervised segmentation and CLIP, a vision-language model, for open-vocabulary object recognition. The proposed framework adopts a two stage pipeline: unsupervised image segmentation followed by segment-level recognition via vision-language alignment. In the first stage, pixel-wise features extracted from EfficientNetB0 are decomposed using singular value decomposition to obtain latent representations, which are then clustered using hierarchical clustering to segment semantically meaningful regions. The number of clusters is adaptively determined by the distribution of singular values. In the second stage, the segmented regions are localized and encoded into image embeddings using the Vision Transformer backbone of CLIP. Text embeddings are precomputed using CLIP's text encoder from category-specific prompts, including a generic something else prompt to support open set recognition. The image and text embeddings are concatenated and projected into a shared latent feature space via SVD to enhance cross-modal alignment. Recognition is performed by computing the softmax over the similarities between the projected image and text embeddings. The proposed method is evaluated on standard benchmarks, including COCO, ADE20K, and PASCAL VOC, achieving state-of-the-art performance in terms of Hungarian mIoU, precision, recall, and F1-score. These results demonstrate the effectiveness, flexibility, and generalizability of the proposed framework.
♻ ☆ Refusal as Silence: Gendered Disparities in Vision-Language Model Responses
Refusal behavior by Large Language Models is increasingly visible in content moderation, yet little is known about how refusals vary by the identity of the user making the request. This study investigates refusal as a sociotechnical outcome through a counterfactual persona design that varies gender identity--including male, female, non-binary, and transgender personas--while keeping the classification task and visual input constant. Focusing on a vision-language model (GPT-4V), we examine how identity-based language cues influence refusal in binary gender classification tasks. We find that transgender and non-binary personas experience significantly higher refusal rates, even in non-harmful contexts. Our findings also provide methodological implications for equity audits and content analysis using LLMs. Our findings underscore the importance of modeling identity-driven disparities and caution against uncritical use of AI systems for content coding. This study advances algorithmic fairness by reframing refusal as a communicative act that may unevenly regulate epistemic access and participation.
♻ ☆ Kuramoto Orientation Diffusion Models NeurIPS 2025
Orientation-rich images, such as fingerprints and textures, often exhibit coherent angular directional patterns that are challenging to model using standard generative approaches based on isotropic Euclidean diffusion. Motivated by the role of phase synchronization in biological systems, we propose a score-based generative model built on periodic domains by leveraging stochastic Kuramoto dynamics in the diffusion process. In neural and physical systems, Kuramoto models capture synchronization phenomena across coupled oscillators -- a behavior that we re-purpose here as an inductive bias for structured image generation. In our framework, the forward process performs \textit{synchronization} among phase variables through globally or locally coupled oscillator interactions and attraction to a global reference phase, gradually collapsing the data into a low-entropy von Mises distribution. The reverse process then performs \textit{desynchronization}, generating diverse patterns by reversing the dynamics with a learned score function. This approach enables structured destruction during forward diffusion and a hierarchical generation process that progressively refines global coherence into fine-scale details. We implement wrapped Gaussian transition kernels and periodicity-aware networks to account for the circular geometry. Our method achieves competitive results on general image benchmarks and significantly improves generation quality on orientation-dense datasets like fingerprints and textures. Ultimately, this work demonstrates the promise of biologically inspired synchronization dynamics as structured priors in generative modeling.
comment: NeurIPS 2025
♻ ☆ Gesplat: Robust Pose-Free 3D Reconstruction via Geometry-Guided Gaussian Splatting
Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have advanced 3D reconstruction and novel view synthesis, but remain heavily dependent on accurate camera poses and dense viewpoint coverage. These requirements limit their applicability in sparse-view settings, where pose estimation becomes unreliable and supervision is insufficient. To overcome these challenges, we introduce Gesplat, a 3DGS-based framework that enables robust novel view synthesis and geometrically consistent reconstruction from unposed sparse images. Unlike prior works that rely on COLMAP for sparse point cloud initialization, we leverage the VGGT foundation model to obtain more reliable initial poses and dense point clouds. Our approach integrates several key innovations: 1) a hybrid Gaussian representation with dual position-shape optimization enhanced by inter-view matching consistency; 2) a graph-guided attribute refinement module to enhance scene details; and 3) flow-based depth regularization that improves depth estimation accuracy for more effective supervision. Comprehensive quantitative and qualitative experiments demonstrate that our approach achieves more robust performance on both forward-facing and large-scale complex datasets compared to other pose-free methods.
♻ ☆ Task-Oriented Feature Compression for Multimodal Understanding via Device-Edge Co-Inference
With the rapid development of large multimodal models (LMMs), multimodal understanding applications are emerging. As most LMM inference requests originate from edge devices with limited computational capabilities, the predominant inference pipeline involves directly forwarding the input data to an edge server which handles all computations. However, this approach introduces high transmission latency due to limited uplink bandwidth of edge devices and significant computation latency caused by the prohibitive number of visual tokens, thus hindering delay-sensitive tasks and degrading user experience. To address this challenge, we propose a task-oriented feature compression (TOFC) method for multimodal understanding in a device-edge co-inference framework, where visual features are merged by clustering and encoded by a learnable and selective entropy model before feature projection. Specifically, we employ density peaks clustering based on K nearest neighbors to reduce the number of visual features, thereby minimizing both data transmission and computational complexity. Subsequently, a learnable entropy model with hyperprior is utilized to encode and decode merged features, further reducing transmission overhead. To enhance compression efficiency, multiple entropy models are adaptively selected based on the characteristics of the visual features, enabling a more accurate estimation of the probability distribution. Comprehensive experiments on seven visual question answering benchmarks validate the effectiveness of the proposed TOFC method. Results show that TOFC achieves up to 52% reduction in data transmission overhead and 63% reduction in system latency while maintaining identical task performance, compared with neural compression ELIC.
comment: Accepted by IEEE Transactions on Mobile Computing
♻ ☆ Dynamic Gaussian Splatting from Defocused and Motion-blurred Monocular Videos NeurIPS 2025
This paper presents a unified framework that allows high-quality dynamic Gaussian Splatting from both defocused and motion-blurred monocular videos. Due to the significant difference between the formation processes of defocus blur and motion blur, existing methods are tailored for either one of them, lacking the ability to simultaneously deal with both of them. Although the two can be jointly modeled as blur kernel-based convolution, the inherent difficulty in estimating accurate blur kernels greatly limits the progress in this direction. In this work, we go a step further towards this direction. Particularly, we propose to estimate per-pixel reliable blur kernels using a blur prediction network that exploits blur-related scene and camera information and is subject to a blur-aware sparsity constraint. Besides, we introduce a dynamic Gaussian densification strategy to mitigate the lack of Gaussians for incomplete regions, and boost the performance of novel view synthesis by incorporating unseen view information to constrain scene optimization. Extensive experiments show that our method outperforms the state-of-the-art methods in generating photorealistic novel view synthesis from defocused and motion-blurred monocular videos. Our code is available at \href{https://github.com/hhhddddddd/dydeblur}{\textcolor{cyan}{https://github.com/hhhddddddd/dydeblur}}.
comment: Accepted to NeurIPS 2025
♻ ☆ ControlText: Unlocking Controllable Fonts in Multilingual Text Rendering without Font Annotations EMNLP
This work demonstrates that diffusion models can achieve font-controllable multilingual text rendering using just raw images without font label annotations.Visual text rendering remains a significant challenge. While recent methods condition diffusion on glyphs, it is impossible to retrieve exact font annotations from large-scale, real-world datasets, which prevents user-specified font control. To address this, we propose a data-driven solution that integrates the conditional diffusion model with a text segmentation model, utilizing segmentation masks to capture and represent fonts in pixel space in a self-supervised manner, thereby eliminating the need for any ground-truth labels and enabling users to customize text rendering with any multilingual font of their choice. The experiment provides a proof of concept of our algorithm in zero-shot text and font editing across diverse fonts and languages, providing valuable insights for the community and industry toward achieving generalized visual text rendering. Code is available at github.com/bowen-upenn/ControlText.
comment: The 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP) Findings
♻ ☆ One Stone with Two Birds: A Null-Text-Null Frequency-Aware Diffusion Models for Text-Guided Image Inpainting NeurIPS 2025
Text-guided image inpainting aims at reconstructing the masked regions as per text prompts, where the longstanding challenges lie in the preservation for unmasked regions, while achieving the semantics consistency between unmasked and inpainted masked regions. Previous arts failed to address both of them, always with either of them to be remedied. Such facts, as we observed, stem from the entanglement of the hybrid (e.g., mid-and-low) frequency bands that encode varied image properties, which exhibit different robustness to text prompts during the denoising process. In this paper, we propose a null-text-null frequency-aware diffusion models, dubbed \textbf{NTN-Diff}, for text-guided image inpainting, by decomposing the semantics consistency across masked and unmasked regions into the consistencies as per each frequency band, while preserving the unmasked regions, to circumvent two challenges in a row. Based on the diffusion process, we further divide the denoising process into early (high-level noise) and late (low-level noise) stages, where the mid-and-low frequency bands are disentangled during the denoising process. As observed, the stable mid-frequency band is progressively denoised to be semantically aligned during text-guided denoising process, which, meanwhile, serves as the guidance to the null-text denoising process to denoise low-frequency band for the masked regions, followed by a subsequent text-guided denoising process at late stage, to achieve the semantics consistency for mid-and-low frequency bands across masked and unmasked regions, while preserve the unmasked regions. Extensive experiments validate the superiority of NTN-Diff over the state-of-the-art diffusion models to text-guided diffusion models. Our code can be accessed from https://github.com/htyjers/NTN-Diff.
comment: 27 pages, 11 figures, to appear at NeurIPS 2025
Information Retrieval
☆ LimRank: Less is More for Reasoning-Intensive Information Reranking EMNLP 2025
Existing approaches typically rely on large-scale fine-tuning to adapt LLMs for information reranking tasks, which is computationally expensive. In this work, we demonstrate that modern LLMs can be effectively adapted using only minimal, high-quality supervision. To enable this, we design LIMRANK-SYNTHESIZER, a reusable and open-source pipeline for generating diverse, challenging, and realistic reranking examples. Using this synthetic data, we fine-tune our reranker model, LIMRANK. We evaluate LIMRANK on two challenging benchmarks, i.e., BRIGHT for reasoning-intensive retrieval and FollowIR for instruction-following retrieval. Our experiments demonstrate that LIMRANK achieves competitive performance, while being trained on less than 5% of the data typically used in prior work. Further ablation studies demonstrate the effectiveness of LIMRANK-SYNTHESIZER and the strong generalization capabilities of LIMRANK across downstream tasks, including scientific literature search and retrieval-augmented generation for knowledge-intensive problem solving.
comment: EMNLP 2025 Main (Short)
☆ Accurate and Scalable Multimodal Pathology Retrieval via Attentive Vision-Language Alignment
The rapid digitization of histopathology slides has opened up new possibilities for computational tools in clinical and research workflows. Among these, content-based slide retrieval stands out, enabling pathologists to identify morphologically and semantically similar cases, thereby supporting precise diagnoses, enhancing consistency across observers, and assisting example-based education. However, effective retrieval of whole slide images (WSIs) remains challenging due to their gigapixel scale and the difficulty of capturing subtle semantic differences amid abundant irrelevant content. To overcome these challenges, we present PathSearch, a retrieval framework that unifies fine-grained attentive mosaic representations with global-wise slide embeddings aligned through vision-language contrastive learning. Trained on a corpus of 6,926 slide-report pairs, PathSearch captures both fine-grained morphological cues and high-level semantic patterns to enable accurate and flexible retrieval. The framework supports two key functionalities: (1) mosaic-based image-to-image retrieval, ensuring accurate and efficient slide research; and (2) multi-modal retrieval, where text queries can directly retrieve relevant slides. PathSearch was rigorously evaluated on four public pathology datasets and three in-house cohorts, covering tasks including anatomical site retrieval, tumor subtyping, tumor vs. non-tumor discrimination, and grading across diverse organs such as breast, lung, kidney, liver, and stomach. External results show that PathSearch outperforms traditional image-to-image retrieval frameworks. A multi-center reader study further demonstrates that PathSearch improves diagnostic accuracy, boosts confidence, and enhances inter-observer agreement among pathologists in real clinical scenarios. These results establish PathSearch as a scalable and generalizable retrieval solution for digital pathology.
☆ Leveraging Hierarchical Organization for Medical Multi-document Summarization
Medical multi-document summarization (MDS) is a complex task that requires effectively managing cross-document relationships. This paper investigates whether incorporating hierarchical structures in the inputs of MDS can improve a model's ability to organize and contextualize information across documents compared to traditional flat summarization methods. We investigate two ways of incorporating hierarchical organization across three large language models (LLMs), and conduct comprehensive evaluations of the resulting summaries using automated metrics, model-based metrics, and domain expert evaluation of preference, understandability, clarity, complexity, relevance, coverage, factuality, and coherence. Our results show that human experts prefer model-generated summaries over human-written summaries. Hierarchical approaches generally preserve factuality, coverage, and coherence of information, while also increasing human preference for summaries. Additionally, we examine whether simulated judgments from GPT-4 align with human judgments, finding higher agreement along more objective evaluation facets. Our findings demonstrate that hierarchical structures can improve the clarity of medical summaries generated by models while maintaining content coverage, providing a practical way to improve human preference for generated summaries.
☆ Think before Recommendation: Autonomous Reasoning-enhanced Recommender NeurIPS 2025
The core task of recommender systems is to learn user preferences from historical user-item interactions. With the rapid development of large language models (LLMs), recent research has explored leveraging the reasoning capabilities of LLMs to enhance rating prediction tasks. However, existing distillation-based methods suffer from limitations such as the teacher model's insufficient recommendation capability, costly and static supervision, and superficial transfer of reasoning ability. To address these issues, this paper proposes RecZero, a reinforcement learning (RL)-based recommendation paradigm that abandons the traditional multi-model and multi-stage distillation approach. Instead, RecZero trains a single LLM through pure RL to autonomously develop reasoning capabilities for rating prediction. RecZero consists of two key components: (1) "Think-before-Recommendation" prompt construction, which employs a structured reasoning template to guide the model in step-wise analysis of user interests, item features, and user-item compatibility; and (2) rule-based reward modeling, which adopts group relative policy optimization (GRPO) to compute rewards for reasoning trajectories and optimize the LLM. Additionally, the paper explores a hybrid paradigm, RecOne, which combines supervised fine-tuning with RL, initializing the model with cold-start reasoning samples and further optimizing it with RL. Experimental results demonstrate that RecZero and RecOne significantly outperform existing baseline methods on multiple benchmark datasets, validating the superiority of the RL paradigm in achieving autonomous reasoning-enhanced recommender systems.
comment: NeurIPS 2025 poster
☆ Multi-Stage Field Extraction of Financial Documents with OCR and Compact Vision-Language Models
Financial documents are essential sources of information for regulators, auditors, and financial institutions, particularly for assessing the wealth and compliance of Small and Medium-sized Businesses. However, SMB documents are often difficult to parse. They are rarely born digital and instead are distributed as scanned images that are none machine readable. The scans themselves are low in resolution, affected by skew or rotation, and often contain noisy backgrounds. These documents also tend to be heterogeneous, mixing narratives, tables, figures, and multilingual content within the same report. Such characteristics pose major challenges for automated information extraction, especially when relying on end to end large Vision Language Models, which are computationally expensive, sensitive to noise, and slow when applied to files with hundreds of pages. We propose a multistage pipeline that leverages traditional image processing models and OCR extraction, together with compact VLMs for structured field extraction of large-scale financial documents. Our approach begins with image pre-processing, including segmentation, orientation detection, and size normalization. Multilingual OCR is then applied to recover page-level text. Upon analyzing the text information, pages are retrieved for coherent sections. Finally, compact VLMs are operated within these narrowed-down scopes to extract structured financial indicators. Our approach is evaluated using an internal corpus of multi-lingual, scanned financial documents. The results demonstrate that compact VLMs, together with a multistage pipeline, achieves 8.8 times higher field level accuracy relative to directly feeding the whole document into large VLMs, only at 0.7 percent of the GPU cost and 92.6 percent less end-to-end service latency.
☆ Improving Product Search Relevance with EAR-MP: A Solution for the CIKM 2025 AnalytiCup
Multilingual e-commerce search is challenging due to linguistic diversity and the noise inherent in user-generated queries. This paper documents the solution employed by our team (EAR-MP) for the CIKM 2025 AnalytiCup, which addresses two core tasks: Query-Category (QC) relevance and Query-Item (QI) relevance. Our approach first normalizes the multilingual dataset by translating all text into English, then mitigates noise through extensive data cleaning and normalization. For model training, we build on DeBERTa-v3-large and improve performance with label smoothing, self-distillation, and dropout. In addition, we introduce task-specific upgrades, including hierarchical token injection for QC and a hybrid scoring mechanism for QI. Under constrained compute, our method achieves competitive results, attaining an F1 score of 0.8796 on QC and 0.8744 on QI. These findings underscore the importance of systematic data preprocessing and tailored training strategies for building robust, resource-efficient multilingual relevance systems.
☆ Tagging-Augmented Generation: Assisting Language Models in Finding Intricate Knowledge In Long Contexts EMNLP 2025
Recent investigations into effective context lengths of modern flagship large language models (LLMs) have revealed major limitations in effective question answering (QA) and reasoning over long and complex contexts for even the largest and most impressive cadre of models. While approaches like retrieval-augmented generation (RAG) and chunk-based re-ranking attempt to mitigate this issue, they are sensitive to chunking, embedding and retrieval strategies and models, and furthermore, rely on extensive pre-processing, knowledge acquisition and indexing steps. In this paper, we propose Tagging-Augmented Generation (TAG), a lightweight data augmentation strategy that boosts LLM performance in long-context scenarios, without degrading and altering the integrity and composition of retrieved documents. We validate our hypothesis by augmenting two challenging and directly relevant question-answering benchmarks -- NoLima and NovelQA -- and show that tagging the context or even just adding tag definitions into QA prompts leads to consistent performance gains over the baseline -- up to 17% for 32K token contexts, and 2.9% in complex reasoning question-answering for multi-hop queries requiring knowledge across a wide span of text. Additional details are available at https://sites.google.com/view/tag-emnlp.
comment: Paper accepted at EMNLP 2025
☆ GTR-Mamba: Geometry-to-Tangent Routing for Hyperbolic POI Recommendation ICDE 2026
Next Point-of-Interest (POI) recommendation is a critical task in modern Location-Based Social Networks (LBSNs), aiming to model the complex decision-making process of human mobility to provide personalized recommendations for a user's next check-in location. Existing POI recommendation models, predominantly based on Graph Neural Networks and sequential models, have been extensively studied. However, these models face a fundamental limitation: they struggle to simultaneously capture the inherent hierarchical structure of spatial choices and the dynamics and irregular shifts of user-specific temporal contexts. To overcome this limitation, we propose GTR-Mamba, a novel framework for cross-manifold conditioning and routing. GTR-Mamba leverages the distinct advantages of different mathematical spaces for different tasks: it models the static, tree-like preference hierarchies in hyperbolic geometry, while routing the dynamic sequence updates to a novel Mamba layer in the computationally stable and efficient Euclidean tangent space. This process is coordinated by a cross-manifold channel that fuses spatio-temporal information to explicitly steer the State Space Model (SSM), enabling flexible adaptation to contextual changes. Extensive experiments on three real-world datasets demonstrate that GTR-Mamba consistently outperforms state-of-the-art baseline models in next POI recommendation.
comment: 14 pages, 8 figures, 4 tables, submitted to ICDE 2026
☆ MGFRec: Towards Reinforced Reasoning Recommendation with Multiple Groundings and Feedback
The powerful reasoning and generative capabilities of large language models (LLMs) have inspired researchers to apply them to reasoning-based recommendation tasks, which require in-depth reasoning about user interests and the generation of recommended items. However, previous reasoning-based recommendation methods have typically performed inference within the language space alone, without incorporating the actual item space. This has led to over-interpreting user interests and deviating from real items. Towards this research gap, we propose performing multiple rounds of grounding during inference to help the LLM better understand the actual item space, which could ensure that its reasoning remains aligned with real items. Furthermore, we introduce a user agent that provides feedback during each grounding step, enabling the LLM to better recognize and adapt to user interests. Comprehensive experiments conducted on three Amazon review datasets demonstrate the effectiveness of incorporating multiple groundings and feedback. These findings underscore the critical importance of reasoning within the actual item space, rather than being confined to the language space, for recommendation tasks.
♻ ☆ Computational-Assisted Systematic Review and Meta-Analysis (CASMA): Effect of a Subclass of GnRH-a on Endometriosis Recurrence
Background: Evidence synthesis facilitates evidence-based medicine. This task becomes increasingly difficult to accomplished with applying computational solutions, since the medical literature grows at astonishing rates. Objective: This study evaluates an information retrieval-driven workflow, CASMA, to enhance the efficiency, transparency, and reproducibility of systematic reviews. Endometriosis recurrence serves as the ideal case due to its complex and ambiguous literature. Methods: The hybrid approach integrates PRISMA guidelines with fuzzy matching and regular expression (regex) to facilitate semi-automated deduplication and filtered records before manual screening. The workflow synthesised evidence from randomised controlled trials on the efficacy of a subclass of gonadotropin-releasing hormone agonists (GnRH-a). A modified splitting method addressed unit-of-analysis errors in multi-arm trials. Results: The workflow sharply reduced the screening workload, taking only 11 days to fetch and filter 33,444 records. Seven eligible RCTs were synthesized (841 patients). The pooled random-effects model yielded a Risk Ratio (RR) of $0.64$ ($95\%$ CI $0.48$ to $0.86$), demonstrating a $36\%$ reduction in recurrence, with non-significant heterogeneity ($I^2=0.00\%$, $\tau^2=0.00$). The findings were robust and stable, as they were backed by sensitivity analyses. Conclusion: This study demonstrates an application of an information-retrieval-driven workflow for medical evidence synthesis. The approach yields valuable clinical results and a generalisable framework to scale up the evidence synthesis, bridging the gap between clinical research and computer science.
comment: 15 pages, 12 figures and 4 tables. This work describes an information retrieval-driven workflow for medical evidence synthesis, with an application to endometriosis recurrence. The method can be generalized to other systematic reviews. The preregistered protocol is available: https://doi.org/10.17605/OSF.IO/R2DFA
♻ ☆ An Ecosystem for Ontology Interoperability
Ontology interoperability is one of the complicated issues that restricts the use of ontologies in knowledge graphs (KGs). Different ontologies with conflicting and overlapping concepts make it difficult to design, develop, and deploy an interoperable ontology for downstream tasks. We propose an ecosystem for ontology interoperability. The ecosystem employs three state-of-the-art semantic techniques in different phases of the ontology engineering life cycle: ontology design patterns (ODPs) in the design phase, ontology matching and versioning (OM\&OV) in the develop phase, and ontology-compliant knowledge graphs (OCKGs) in the deploy phase, to achieve better ontology interoperability and data integration in real-world applications. A case study of sensor observation in the building domain validates the usefulness of the proposed ecosystem.
comment: 5 pages, 8 figures
♻ ☆ The Atlas of In-Context Learning: How Attention Heads Shape In-Context Retrieval Augmentation NeurIPS 2025
Large language models are able to exploit in-context learning to access external knowledge beyond their training data through retrieval-augmentation. While promising, its inner workings remain unclear. In this work, we shed light on the mechanism of in-context retrieval augmentation for question answering by viewing a prompt as a composition of informational components. We propose an attribution-based method to identify specialized attention heads, revealing in-context heads that comprehend instructions and retrieve relevant contextual information, and parametric heads that store entities' relational knowledge. To better understand their roles, we extract function vectors and modify their attention weights to show how they can influence the answer generation process. Finally, we leverage the gained insights to trace the sources of knowledge used during inference, paving the way towards more safe and transparent language models.
comment: Accepted at NeurIPS 2025
♻ ☆ TaoSR1: The Thinking Model for E-commerce Relevance Search
Query-product relevance prediction is a core task in e-commerce search. BERT-based models excel at semantic matching but lack complex reasoning capabilities. While Large Language Models (LLMs) are explored, most still use discriminative fine-tuning or distill to smaller models for deployment. We propose a framework to directly deploy LLMs for this task, addressing key challenges: Chain-of-Thought (CoT) error accumulation, discriminative hallucination, and deployment feasibility. Our framework, TaoSR1, involves three stages: (1) Supervised Fine-Tuning (SFT) with CoT to instill reasoning; (2) Offline sampling with a pass@N strategy and Direct Preference Optimization (DPO) to improve generation quality; and (3) Difficulty-based dynamic sampling with Group Relative Policy Optimization (GRPO) to mitigate discriminative hallucination. Additionally, post-CoT processing and a cumulative probability-based partitioning method enable efficient online deployment. TaoSR1 significantly outperforms baselines on offline datasets and achieves substantial gains in online side-by-side human evaluations, introducing a novel paradigm for applying CoT reasoning to relevance classification.
♻ ☆ SBAN: A Framework & Multi-Dimensional Dataset for Large Language Model Pre-Training and Software Code Mining
This paper introduces SBAN (Source code, Binary, Assembly, and Natural Language Description), a large-scale, multi-dimensional dataset designed to advance the pre-training and evaluation of large language models (LLMs) for software code analysis. SBAN comprises more than 3 million samples, including 2.9 million benign and 672,000 malware respectively, each represented across four complementary layers: binary code, assembly instructions, natural language descriptions, and source code. This unique multimodal structure enables research on cross-representation learning, semantic understanding of software, and automated malware detection. Beyond security applications, SBAN supports broader tasks such as code translation, code explanation, and other software mining tasks involving heterogeneous data. It is particularly suited for scalable training of deep models, including transformers and other LLM architectures. By bridging low-level machine representations and high-level human semantics, SBAN provides a robust foundation for building intelligent systems that reason about code. We believe that this dataset opens new opportunities for mining software behavior, improving security analytics, and enhancing LLM capabilities in pre-training and fine-tuning tasks for software code mining.
♻ ☆ Understanding Embedding Scaling in Collaborative Filtering
Scaling recommendation models into large recommendation models has become one of the most widely discussed topics. Recent efforts focus on components beyond the scaling embedding dimension, as it is believed that scaling embedding may lead to performance degradation. Although there have been some initial observations on embedding, the root cause of their non-scalability remains unclear. Moreover, whether performance degradation occurs across different types of models and datasets is still an unexplored area. Regarding the effect of embedding dimensions on performance, we conduct large-scale experiments across 10 datasets with varying sparsity levels and scales, using 4 representative classical architectures. We surprisingly observe two novel phenomena: double-peak and logarithmic. For the former, as the embedding dimension increases, performance first improves, then declines, rises again, and eventually drops. For the latter, it exhibits a perfect logarithmic curve. Our contributions are threefold. First, we discover two novel phenomena when scaling collaborative filtering models. Second, we gain an understanding of the underlying causes of the double-peak phenomenon. Lastly, we theoretically analyze the noise robustness of collaborative filtering models, with results matching empirical observations.
♻ ☆ The Cross-Lingual Cost: Retrieval Biases in RAG over Arabic-English Corpora
Cross-lingual retrieval-augmented generation (RAG) is a critical capability for retrieving and generating answers across languages. Prior work in this context has mostly focused on generation and relied on benchmarks derived from open-domain sources, most notably Wikipedia. In such settings, retrieval challenges often remain hidden due to language imbalances, overlap with pretraining data, and memorized content. To address this gap, we study Arabic-English RAG in a domain-specific setting using benchmarks derived from real-world corporate datasets. Our benchmarks include all combinations of languages for the user query and the supporting document, drawn independently and uniformly at random. This enables a systematic study of multilingual retrieval behavior. Our findings reveal that retrieval is a critical bottleneck in cross-lingual domain-specific scenarios, with substantial performance drops occurring when the user query and supporting document languages differ. A key insight is that these failures stem primarily from the retriever's difficulty in ranking documents across languages. Finally, we propose two simple retrieval strategies that address this source of failure by enforcing equal retrieval from both languages or by translating the query, resulting in substantial improvements in cross-lingual and overall performance. These results highlight meaningful opportunities for improving multilingual retrieval, particularly in practical, real-world RAG applications.
comment: Accepted to ArabicNLP 2025
♻ ☆ CMIE: Combining MLLM Insights with External Evidence for Explainable Out-of-Context Misinformation Detection
Multimodal large language models (MLLMs) have demonstrated impressive capabilities in visual reasoning and text generation. While previous studies have explored the application of MLLM for detecting out-of-context (OOC) misinformation, our empirical analysis reveals two persisting challenges of this paradigm. Evaluating the representative GPT-4o model on direct reasoning and evidence augmented reasoning, results indicate that MLLM struggle to capture the deeper relationships-specifically, cases in which the image and text are not directly connected but are associated through underlying semantic links. Moreover, noise in the evidence further impairs detection accuracy. To address these challenges, we propose CMIE, a novel OOC misinformation detection framework that incorporates a Coexistence Relationship Generation (CRG) strategy and an Association Scoring (AS) mechanism. CMIE identifies the underlying coexistence relationships between images and text, and selectively utilizes relevant evidence to enhance misinformation detection. Experimental results demonstrate that our approach outperforms existing methods.
♻ ☆ Membership Inference Attacks on Recommender System: A Survey
Recommender systems (RecSys) have been widely applied to various applications, including E-commerce, finance, healthcare, social media and have become increasingly influential in shaping user behavior and decision-making, highlighting their growing impact in various domains. However, recent studies have shown that RecSys are vulnerable to membership inference attacks (MIAs), which aim to infer whether user interaction record was used to train a target model or not. MIAs on RecSys models can directly lead to a privacy breach. For example, via identifying the fact that a purchase record that has been used to train a RecSys associated with a specific user, an attacker can infer that user's special quirks. In recent years, MIAs have been shown to be effective on other ML tasks, e.g., classification models and natural language processing. However, traditional MIAs are ill-suited for RecSys due to the unseen posterior probability. Although MIAs on RecSys form a newly emerging and rapidly growing research area, there has been no systematic survey on this topic yet. In this article, we conduct the first comprehensive survey on RecSys MIAs. This survey offers a comprehensive review of the latest advancements in RecSys MIAs, exploring the design principles, challenges, attack and defense associated with this emerging field. We provide a unified taxonomy that categorizes different RecSys MIAs based on their characterizations and discuss their pros and cons. Based on the limitations and gaps identified in this survey, we point out several promising future research directions to inspire the researchers who wish to follow this area. This survey not only serves as a reference for the research community but also provides a clear description for researchers outside this research domain.
comment: under review
♻ ☆ From ID-based to ID-free: Rethinking ID Effectiveness in Multimodal Collaborative Filtering Recommendation
Most existing multimodal collaborative filtering recommendation (MCFRec) methods rely heavily on ID features and multimodal content to enhance recommendation performance. However, this paper reveals that ID features are effective but have limited benefits in multimodal collaborative filtering recommendation. Therefore, this paper systematically deconstruct the pros and cons of ID features: (i) they provide initial embedding but lack semantic richness, (ii) they provide a unique identifier for each user and item but hinder generalization to untrained data, and (iii) they assist in aligning and fusing multimodal features but may lead to representation shift. Based on these insights, this paper proposes IDFREE, an ID-free multimodal collaborative Filtering REcommEndation baseline. IDFREE replaces ID features with multimodal features and positional encodings to generate semantically meaningful ID-free embeddings. For ID-free multimodal collaborative filtering, it further proposes an adaptive similarity graph module to construct dynamic user-user and item-item graphs based on multimodal features. Then, an augmented user-item graph encoder is proposed to construct more effective user and item encoding. Finally, IDFREE achieves inter-multimodal alignment based on the contrastive learning and uses Softmax loss as recommendation loss. Basic experiments on three public datasets demonstrate that IDFREE outperforms existing ID-based MCFRec methods, achieving an average performance gain of 72.24% across standard metrics (Recall@5, 10, 20, 50 and NDCG@5, 10, 20, 50). Exploratory and extended experiments further validate our findings on the limitations of ID features in MCFRec. The code is released at https://github.com/G-H-Li/IDFREE.
comment: We identified that our current approach achieves its reported performance only under specific data conditions, and its robustness is weaker than we initially expected
♻ ☆ LIME: Link-based user-item Interaction Modeling with decoupled xor attention for Efficient test time scaling
Scaling large recommendation systems requires advancing three major frontiers: processing longer user histories, expanding candidate sets, and increasing model capacity. While promising, transformers' computational cost scales quadratically with the user sequence length and linearly with the number of candidates. This trade-off makes it prohibitively expensive to expand candidate sets or increase sequence length at inference, despite the significant performance improvements. We introduce \textbf{LIME}, a novel architecture that resolves this trade-off. Through two key innovations, LIME fundamentally reduces computational complexity. First, low-rank ``link embeddings" enable pre-computation of attention weights by decoupling user and candidate interactions, making the inference cost nearly independent of candidate set size. Second, a linear attention mechanism, \textbf{LIME-XOR}, reduces the complexity with respect to user sequence length from quadratic ($O(N^2)$) to linear ($O(N)$). Experiments on public and industrial datasets show LIME achieves near-parity with state-of-the-art transformers but with a 10$\times$ inference speedup on large candidate sets or long sequence lengths. When tested on a major recommendation platform, LIME improved user engagement while maintaining minimal inference costs with respect to candidate set size and user history length, establishing a new paradigm for efficient and expressive recommendation systems.
comment: 16 pages
Machine Learning
☆ Variational Masked Diffusion Models
Masked diffusion models have recently emerged as a flexible framework for discrete generative modeling. However, a key limitation of standard masked diffusion is its inability to effectively capture dependencies among tokens that are predicted concurrently, leading to degraded generation quality when dependencies among tokens are important. To explicitly model dependencies among tokens, we propose Variational Masked Diffusion (VMD), a framework that introduces latent variables into the masked diffusion process. Through controlled experiments on synthetic datasets, we demonstrate that VMD successfully learns dependencies that conventional masked diffusion fails to capture. We further validate the effectiveness of our approach on Sudoku puzzles and text datasets, where learning of dependencies among tokens improves global consistency. Across these domains, VMD enhances both generation quality and dependency awareness, highlighting the value of integrating variational inference into masked diffusion. Our code is available at: https://riccizz.github.io/VMD.
comment: Project Page: https://riccizz.github.io/VMD
☆ Track, Inpaint, Resplat: Subject-driven 3D and 4D Generation with Progressive Texture Infilling NeurIPS 2025
Current 3D/4D generation methods are usually optimized for photorealism, efficiency, and aesthetics. However, they often fail to preserve the semantic identity of the subject across different viewpoints. Adapting generation methods with one or few images of a specific subject (also known as Personalization or Subject-driven generation) allows generating visual content that align with the identity of the subject. However, personalized 3D/4D generation is still largely underexplored. In this work, we introduce TIRE (Track, Inpaint, REsplat), a novel method for subject-driven 3D/4D generation. It takes an initial 3D asset produced by an existing 3D generative model as input and uses video tracking to identify the regions that need to be modified. Then, we adopt a subject-driven 2D inpainting model for progressively infilling the identified regions. Finally, we resplat the modified 2D multi-view observations back to 3D while still maintaining consistency. Extensive experiments demonstrate that our approach significantly improves identity preservation in 3D/4D generation compared to state-of-the-art methods. Our project website is available at https://zsh2000.github.io/track-inpaint-resplat.github.io/.
comment: NeurIPS 2025, 38 pages, 22 figures
☆ Lightweight Robust Direct Preference Optimization
Direct Preference Optimization (DPO) has become a popular method for fine-tuning large language models (LLMs) due to its stability and simplicity. However, it is also known to be sensitive to noise in the data and prone to overfitting. Recent works have proposed using distributionally robust optimization (DRO) to address potential noise and distributional shift in the data. However, these methods often suffer from excessive conservatism and high computational cost. We propose DPO-PRO (DPO with Preference Robustness), a robust fine-tuning algorithm based on DPO which accounts for uncertainty in the preference distribution through a lightweight DRO formulation. Unlike prior DRO-based variants, DPO-PRO focuses solely on uncertainty in preferences, avoiding unnecessary conservatism and incurring negligible computational overhead. We further show that DPO-PRO is equivalent to a regularized DPO objective that penalizes model overconfidence under weak preference signals. We evaluate DPO-PRO on standard alignment benchmarks and a real-world public health task. Experimental results show that our method consistently improves robustness to noisy preference signals compared to existing DPO variants.
☆ Lookahead Anchoring: Preserving Character Identity in Audio-Driven Human Animation
Audio-driven human animation models often suffer from identity drift during temporal autoregressive generation, where characters gradually lose their identity over time. One solution is to generate keyframes as intermediate temporal anchors that prevent degradation, but this requires an additional keyframe generation stage and can restrict natural motion dynamics. To address this, we propose Lookahead Anchoring, which leverages keyframes from future timesteps ahead of the current generation window, rather than within it. This transforms keyframes from fixed boundaries into directional beacons: the model continuously pursues these future anchors while responding to immediate audio cues, maintaining consistent identity through persistent guidance. This also enables self-keyframing, where the reference image serves as the lookahead target, eliminating the need for keyframe generation entirely. We find that the temporal lookahead distance naturally controls the balance between expressivity and consistency: larger distances allow for greater motion freedom, while smaller ones strengthen identity adherence. When applied to three recent human animation models, Lookahead Anchoring achieves superior lip synchronization, identity preservation, and visual quality, demonstrating improved temporal conditioning across several different architectures. Video results are available at the following link: https://lookahead-anchoring.github.io.
comment: Project page: https://lookahead-anchoring.github.io
☆ RobotArena $\infty$: Scalable Robot Benchmarking via Real-to-Sim Translation
The pursuit of robot generalists - instructable agents capable of performing diverse tasks across diverse environments - demands rigorous and scalable evaluation. Yet real-world testing of robot policies remains fundamentally constrained: it is labor-intensive, slow, unsafe at scale, and difficult to reproduce. Existing simulation benchmarks are similarly limited, as they train and test policies within the same synthetic domains and cannot assess models trained from real-world demonstrations or alternative simulation environments. As policies expand in scope and complexity, these barriers only intensify, since defining "success" in robotics often hinges on nuanced human judgments of execution quality. In this paper, we introduce a new benchmarking framework that overcomes these challenges by shifting VLA evaluation into large-scale simulated environments augmented with online human feedback. Leveraging advances in vision-language models, 2D-to-3D generative modeling, and differentiable rendering, our approach automatically converts video demonstrations from widely used robot datasets into simulated counterparts. Within these digital twins, we assess VLA policies using both automated VLM-guided scoring and scalable human preference judgments collected from crowdworkers, transforming human involvement from tedious scene setup, resetting, and safety supervision into lightweight preference comparisons. To measure robustness, we systematically perturb simulated environments along multiple axes, such as textures and object placements, stress-testing policy generalization under controlled variation. The result is a continuously evolving, reproducible, and scalable benchmark for real-world trained robot manipulation policies, addressing a critical missing capability in today's robotics landscape.
comment: Website: https://robotarenainf.github.io
☆ ReCode: Unify Plan and Action for Universal Granularity Control
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.
☆ Minimizing Human Intervention in Online Classification
We introduce and study an online problem arising in question answering systems. In this problem, an agent must sequentially classify user-submitted queries represented by $d$-dimensional embeddings drawn i.i.d. from an unknown distribution. The agent may consult a costly human expert for the correct label, or guess on her own without receiving feedback. The goal is to minimize regret against an oracle with free expert access. When the time horizon $T$ is at least exponential in the embedding dimension $d$, one can learn the geometry of the class regions: in this regime, we propose the Conservative Hull-based Classifier (CHC), which maintains convex hulls of expert-labeled queries and calls the expert as soon as a query lands outside all known hulls. CHC attains $\mathcal{O}(\log^d T)$ regret in $T$ and is minimax optimal for $d=1$. Otherwise, the geometry cannot be reliably learned without additional distributional assumptions. We show that when the queries are drawn from a subgaussian mixture, for $T \le e^d$, a Center-based Classifier (CC) achieves regret proportional to $N\log{N}$ where $N$ is the number of labels. To bridge these regimes, we introduce the Generalized Hull-based Classifier (GHC), a practical extension of CHC that allows for more aggressive guessing via a tunable threshold parameter. Our approach is validated with experiments, notably on real-world question-answering datasets using embeddings derived from state-of-the-art large language models.
comment: 49 pages, 8 figures
☆ A U-Net and Transformer Pipeline for Multilingual Image Translation
This paper presents an end-to-end multilingual translation pipeline that integrates a custom U-Net for text detection, the Tesseract engine for text recognition, and a from-scratch sequence-to-sequence (Seq2Seq) Transformer for Neural Machine Translation (NMT). Our approach first utilizes a U-Net model, trained on a synthetic dataset , to accurately segment and detect text regions from an image. These detected regions are then processed by Tesseract to extract the source text. This extracted text is fed into a custom Transformer model trained from scratch on a multilingual parallel corpus spanning 5 languages. Unlike systems reliant on monolithic pre-trained models, our architecture emphasizes full customization and adaptability. The system is evaluated on its text detection accuracy, text recognition quality, and translation performance via BLEU scores. The complete pipeline demonstrates promising results, validating the viability of a custom-built system for translating text directly from images.
comment: 6 pages, 3 figures, 5 tables, and 2 algorithms. Prepared in IEEE double-column format
☆ Sequential Multi-Agent Dynamic Algorithm Configuration NeurIPS 2025
Dynamic algorithm configuration (DAC) is a recent trend in automated machine learning, which can dynamically adjust the algorithm's configuration during the execution process and relieve users from tedious trial-and-error tuning tasks. Recently, multi-agent reinforcement learning (MARL) approaches have improved the configuration of multiple heterogeneous hyperparameters, making various parameter configurations for complex algorithms possible. However, many complex algorithms have inherent inter-dependencies among multiple parameters (e.g., determining the operator type first and then the operator's parameter), which are, however, not considered in previous approaches, thus leading to sub-optimal results. In this paper, we propose the sequential multi-agent DAC (Seq-MADAC) framework to address this issue by considering the inherent inter-dependencies of multiple parameters. Specifically, we propose a sequential advantage decomposition network, which can leverage action-order information through sequential advantage decomposition. Experiments from synthetic functions to the configuration of multi-objective optimization algorithms demonstrate Seq-MADAC's superior performance over state-of-the-art MARL methods and show strong generalization across problem classes. Seq-MADAC establishes a new paradigm for the widespread dependency-aware automated algorithm configuration. Our code is available at https://github.com/lamda-bbo/seq-madac.
comment: NeurIPS 2025
☆ Direct Debiased Machine Learning via Bregman Divergence Minimization
We develop a direct debiased machine learning framework comprising Neyman targeted estimation and generalized Riesz regression. Our framework unifies Riesz regression for automatic debiased machine learning, covariate balancing, targeted maximum likelihood estimation (TMLE), and density-ratio estimation. In many problems involving causal effects or structural models, the parameters of interest depend on regression functions. Plugging regression functions estimated by machine learning methods into the identifying equations can yield poor performance because of first-stage bias. To reduce such bias, debiased machine learning employs Neyman orthogonal estimating equations. Debiased machine learning typically requires estimation of the Riesz representer and the regression function. For this problem, we develop a direct debiased machine learning framework with an end-to-end algorithm. We formulate estimation of the nuisance parameters, the regression function and the Riesz representer, as minimizing the discrepancy between Neyman orthogonal scores computed with known and unknown nuisance parameters, which we refer to as Neyman targeted estimation. Neyman targeted estimation includes Riesz representer estimation, and we measure discrepancies using the Bregman divergence. The Bregman divergence encompasses various loss functions as special cases, where the squared loss yields Riesz regression and the Kullback-Leibler divergence yields entropy balancing. We refer to this Riesz representer estimation as generalized Riesz regression. Neyman targeted estimation also yields TMLE as a special case for regression function estimation. Furthermore, for specific pairs of models and Riesz representer estimation methods, we can automatically obtain the covariate balancing property without explicitly solving the covariate balancing objective.
☆ When No Paths Lead to Rome: Benchmarking Systematic Neural Relational Reasoning NeurIPS 2025
Designing models that can learn to reason in a systematic way is an important and long-standing challenge. In recent years, a wide range of solutions have been proposed for the specific case of systematic relational reasoning, including Neuro-Symbolic approaches, variants of the Transformer architecture, and specialised Graph Neural Networks. However, existing benchmarks for systematic relational reasoning focus on an overly simplified setting, based on the assumption that reasoning can be reduced to composing relational paths. In fact, this assumption is hard-baked into the architecture of several recent models, leading to approaches that can perform well on existing benchmarks but are difficult to generalise to other settings. To support further progress in the field of systematic relational reasoning with neural networks, we introduce NoRA, a new benchmark which adds several levels of difficulty and requires models to go beyond path-based reasoning.
comment: accepted at NeurIPS 2025 D&B track
☆ Learning Linearity in Audio Consistency Autoencoders via Implicit Regularization
Audio autoencoders learn useful, compressed audio representations, but their non-linear latent spaces prevent intuitive algebraic manipulation such as mixing or scaling. We introduce a simple training methodology to induce linearity in a high-compression Consistency Autoencoder (CAE) by using data augmentation, thereby inducing homogeneity (equivariance to scalar gain) and additivity (the decoder preserves addition) without altering the model's architecture or loss function. When trained with our method, the CAE exhibits linear behavior in both the encoder and decoder while preserving reconstruction fidelity. We test the practical utility of our learned space on music source composition and separation via simple latent arithmetic. This work presents a straightforward technique for constructing structured latent spaces, enabling more intuitive and efficient audio processing.
☆ Toward Carbon-Neutral Human AI: Rethinking Data, Computation, and Learning Paradigms for Sustainable Intelligence
The rapid advancement of Artificial Intelligence (AI) has led to unprecedented computational demands, raising significant environmental and ethical concerns. This paper critiques the prevailing reliance on large-scale, static datasets and monolithic training paradigms, advocating for a shift toward human-inspired, sustainable AI solutions. We introduce a novel framework, Human AI (HAI), which emphasizes incremental learning, carbon-aware optimization, and human-in-the-loop collaboration to enhance adaptability, efficiency, and accountability. By drawing parallels with biological cognition and leveraging dynamic architectures, HAI seeks to balance performance with ecological responsibility. We detail the theoretical foundations, system design, and operational principles that enable AI to learn continuously and contextually while minimizing carbon footprints and human annotation costs. Our approach addresses pressing challenges in active learning, continual adaptation, and energy-efficient model deployment, offering a pathway toward responsible, human-centered artificial intelligence.
comment: 9 pages, 3 figures
☆ A Deep Latent Factor Graph Clustering with Fairness-Utility Trade-off Perspective
Fair graph clustering seeks partitions that respect network structure while maintaining proportional representation across sensitive groups, with applications spanning community detection, team formation, resource allocation, and social network analysis. Many existing approaches enforce rigid constraints or rely on multi-stage pipelines (e.g., spectral embedding followed by $k$-means), limiting trade-off control, interpretability, and scalability. We introduce \emph{DFNMF}, an end-to-end deep nonnegative tri-factorization tailored to graphs that directly optimizes cluster assignments with a soft statistical-parity regularizer. A single parameter $\lambda$ tunes the fairness--utility balance, while nonnegativity yields parts-based factors and transparent soft memberships. The optimization uses sparse-friendly alternating updates and scales near-linearly with the number of edges. Across synthetic and real networks, DFNMF achieves substantially higher group balance at comparable modularity, often dominating state-of-the-art baselines on the Pareto front. The code is available at https://github.com/SiamakGhodsi/DFNMF.git.
comment: Accepted to IEEE Big-Data 2025 main research track. The paper is 10 main pages and 4 pages of Appendix
☆ Bayes-Split-Edge: Bayesian Optimization for Constrained Collaborative Inference in Wireless Edge Systems
Mobile edge devices (e.g., AR/VR headsets) typically need to complete timely inference tasks while operating with limited on-board computing and energy resources. In this paper, we investigate the problem of collaborative inference in wireless edge networks, where energy-constrained edge devices aim to complete inference tasks within given deadlines. These tasks are carried out using neural networks, and the edge device seeks to optimize inference performance under energy and delay constraints. The inference process can be split between the edge device and an edge server, thereby achieving collaborative inference over wireless networks. We formulate an inference utility optimization problem subject to energy and delay constraints, and propose a novel solution called Bayes-Split-Edge, which leverages Bayesian optimization for collaborative split inference over wireless edge networks. Our solution jointly optimizes the transmission power and the neural network split point. The Bayes-Split-Edge framework incorporates a novel hybrid acquisition function that balances inference task utility, sample efficiency, and constraint violation penalties. We evaluate our approach using the VGG19 model on the ImageNet-Mini dataset, and Resnet101 on Tiny-ImageNet, and real-world mMobile wireless channel datasets. Numerical results demonstrate that Bayes-Split-Edge achieves up to 2.4x reduction in evaluation cost compared to standard Bayesian optimization and achieves near-linear convergence. It also outperforms several baselines, including CMA-ES, DIRECT, exhaustive search, and Proximal Policy Optimization (PPO), while matching exhaustive search performance under tight constraints. These results confirm that the proposed framework provides a sample-efficient solution requiring maximum 20 function evaluations and constraint-aware optimization for wireless split inference in edge computing systems.
☆ Towards Deep Physics-Informed Kolmogorov-Arnold Networks
Since their introduction, Kolmogorov-Arnold Networks (KANs) have been successfully applied across several domains, with physics-informed machine learning (PIML) emerging as one of the areas where they have thrived. In the PIML setting, Chebyshev-based physics-informed KANs (cPIKANs) have become the standard due to their computational efficiency. However, like their multilayer perceptron-based counterparts, cPIKANs face significant challenges when scaled to depth, leading to training instabilities that limit their applicability to several PDE problems. To address this, we propose a basis-agnostic, Glorot-like initialization scheme that preserves activation variance and yields substantial improvements in stability and accuracy over the default initialization of cPIKANs. Inspired by the PirateNet architecture, we further introduce Residual-Gated Adaptive KANs (RGA KANs), designed to mitigate divergence in deep cPIKANs where initialization alone is not sufficient. Through empirical tests and information bottleneck analysis, we show that RGA KANs successfully traverse all training phases, unlike baseline cPIKANs, which stagnate in the diffusion phase in specific PDE settings. Evaluations on seven standard forward PDE benchmarks under a fixed training pipeline with adaptive components demonstrate that RGA KANs consistently outperform parameter-matched cPIKANs and PirateNets - often by several orders of magnitude - while remaining stable in settings where the others diverge.
comment: 73 pages, 22 figures
☆ Mixed Precision Training of Neural ODEs
Exploiting low-precision computations has become a standard strategy in deep learning to address the growing computational costs imposed by ever larger models and datasets. However, naively performing all computations in low precision can lead to roundoff errors and instabilities. Therefore, mixed precision training schemes usually store the weights in high precision and use low-precision computations only for whitelisted operations. Despite their success, these principles are currently not reliable for training continuous-time architectures such as neural ordinary differential equations (Neural ODEs). This paper presents a mixed precision training framework for neural ODEs, combining explicit ODE solvers with a custom backpropagation scheme, and demonstrates its effectiveness across a range of learning tasks. Our scheme uses low-precision computations for evaluating the velocity, parameterized by the neural network, and for storing intermediate states, while stability is provided by a custom dynamic adjoint scaling and by accumulating the solution and gradients in higher precision. These contributions address two key challenges in training neural ODE: the computational cost of repeated network evaluations and the growth of memory requirements with the number of time steps or layers. Along with the paper, we publish our extendable, open-source PyTorch package rampde, whose syntax resembles that of leading packages to provide a drop-in replacement in existing codes. We demonstrate the reliability and effectiveness of our scheme using challenging test cases and on neural ODE applications in image classification and generative models, achieving approximately 50% memory reduction and up to 2x speedup while maintaining accuracy comparable to single-precision training.
comment: Code available at https://github.com/EmoryMLIP/rampde; 26 pages, 4 figures
☆ Quantum Phase Classification of Rydberg Atom Systems Using Resource-Efficient Variational Quantum Circuits and Classical Shadows
Quantum phase transitions in Rydberg atom arrays present significant opportunities for studying many-body physics, yet distinguishing between different ordered phases without explicit order parameters remains challenging. We present a resource-efficient quantum machine learning approach combining classical shadow tomography with variational quantum circuits (VQCs) for binary phase classification of Z2 and Z3 ordered phases. Our pipeline processes 500 randomized measurements per 51-atom chain state, reconstructs shadow operators, performs PCA dimensionality reduction (514 features), and encodes features using angle embedding onto a 2-qubit parameterized circuit. The circuit employs RY-RZ angle encoding, strong entanglement via all-to-all CZ gates, and a minimal 2-parameter ansatz achieving depth 7. Training via simultaneous perturbation stochastic approximation (SPSA) with hinge loss converged in 120 iterations. The model achieved 100% test accuracy with perfect precision, recall, and F1 scores, demonstrating that minimal quantum resources suffice for high-accuracy phase classification. This work establishes pathways for quantum-enhanced condensed matter physics on near-term quantum devices.
comment: 7 pages, 2 tables, and 3 figures. for associated code files, see https://github.com/Hemishahuja/FLIQ_Challenge_ClassiqDuQIS
☆ Learning to Reason Efficiently with Discounted Reinforcement Learning
Large reasoning models (LRMs) often consume excessive tokens, inflating computational cost and latency. We challenge the assumption that longer responses improve accuracy. By penalizing reasoning tokens using a discounted reinforcement learning setup (interpretable as a small token cost) and analyzing Blackwell optimality in restricted policy classes, we encourage concise yet accurate reasoning. Experiments confirm our theoretical results that this approach shortens chains of thought while preserving accuracy.
☆ Tighter CMI-Based Generalization Bounds via Stochastic Projection and Quantization NeurIPS 2025
In this paper, we leverage stochastic projection and lossy compression to establish new conditional mutual information (CMI) bounds on the generalization error of statistical learning algorithms. It is shown that these bounds are generally tighter than the existing ones. In particular, we prove that for certain problem instances for which existing MI and CMI bounds were recently shown in Attias et al. [2024] and Livni [2023] to become vacuous or fail to describe the right generalization behavior, our bounds yield suitable generalization guarantees of the order of $\mathcal{O}(1/\sqrt{n})$, where $n$ is the size of the training dataset. Furthermore, we use our bounds to investigate the problem of data "memorization" raised in those works, and which asserts that there are learning problem instances for which any learning algorithm that has good prediction there exist distributions under which the algorithm must "memorize" a big fraction of the training dataset. We show that for every learning algorithm, there exists an auxiliary algorithm that does not memorize and which yields comparable generalization error for any data distribution. In part, this shows that memorization is not necessary for good generalization.
comment: Accepted for oral presentation at NeurIPS 2025
☆ T-REGS: Minimum Spanning Tree Regularization for Self-Supervised Learning NeurIPS 2025
Self-supervised learning (SSL) has emerged as a powerful paradigm for learning representations without labeled data, often by enforcing invariance to input transformations such as rotations or blurring. Recent studies have highlighted two pivotal properties for effective representations: (i) avoiding dimensional collapse-where the learned features occupy only a low-dimensional subspace, and (ii) enhancing uniformity of the induced distribution. In this work, we introduce T-REGS, a simple regularization framework for SSL based on the length of the Minimum Spanning Tree (MST) over the learned representation. We provide theoretical analysis demonstrating that T-REGS simultaneously mitigates dimensional collapse and promotes distribution uniformity on arbitrary compact Riemannian manifolds. Several experiments on synthetic data and on classical SSL benchmarks validate the effectiveness of our approach at enhancing representation quality.
comment: NeurIPS 2025
☆ BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
Chip placement is a vital stage in modern chip design as it has a substantial impact on the subsequent processes and the overall quality of the final chip. The use of black-box optimization (BBO) for chip placement has a history of several decades. However, early efforts were limited by immature problem formulations and inefficient algorithm designs. Recent progress has shown the effectiveness and efficiency of BBO for chip placement, proving its potential to achieve state-of-the-art results. Despite these advancements, the field lacks a unified, BBO-specific benchmark for thoroughly assessing various problem formulations and BBO algorithms. To fill this gap, we propose BBOPlace-Bench, the first benchmark designed specifically for evaluating and developing BBO algorithms for chip placement tasks. It integrates three problem formulations of BBO for chip placement, and offers a modular, decoupled, and flexible framework that enables users to seamlessly implement, test, and compare their own algorithms. BBOPlace-Bench integrates a wide variety of existing BBO algorithms, including simulated annealing (SA), evolutionary algorithms (EAs), and Bayesian optimization (BO). Experimental results show that the problem formulations of mask-guided optimization and hyperparameter optimization exhibit superior performance than the sequence pair problem formulation, while EAs demonstrate better overall performance than SA and BO, especially in high-dimensional search spaces, and also achieve state-of-the-art performance compared to the mainstream chip placement methods. BBOPlace-Bench not only facilitates the development of efficient BBO-driven solutions for chip placement but also broadens the practical application scenarios (which are urgently needed) for the BBO community. The code of BBOPlace-Bench is available at https://github.com/lamda-bbo/BBOPlace-Bench.
☆ Robust Decision Making with Partially Calibrated Forecasts
Calibration has emerged as a foundational goal in ``trustworthy machine learning'', in part because of its strong decision theoretic semantics. Independent of the underlying distribution, and independent of the decision maker's utility function, calibration promises that amongst all policies mapping predictions to actions, the uniformly best policy is the one that ``trusts the predictions'' and acts as if they were correct. But this is true only of \emph{fully calibrated} forecasts, which are tractable to guarantee only for very low dimensional prediction problems. For higher dimensional prediction problems (e.g. when outcomes are multiclass), weaker forms of calibration have been studied that lack these decision theoretic properties. In this paper we study how a conservative decision maker should map predictions endowed with these weaker (``partial'') calibration guarantees to actions, in a way that is robust in a minimax sense: i.e. to maximize their expected utility in the worst case over distributions consistent with the calibration guarantees. We characterize their minimax optimal decision rule via a duality argument, and show that surprisingly, ``trusting the predictions and acting accordingly'' is recovered in this minimax sense by \emph{decision calibration} (and any strictly stronger notion of calibration), a substantially weaker and more tractable condition than full calibration. For calibration guarantees that fall short of decision calibration, the minimax optimal decision rule is still efficiently computable, and we provide an empirical evaluation of a natural one that applies to any regression model solved to optimize squared error.
☆ Adaptive Dual Prompting: Hierarchical Debiasing for Fairness-aware Graph Neural Networks
In recent years, pre-training Graph Neural Networks (GNNs) through self-supervised learning on unlabeled graph data has emerged as a widely adopted paradigm in graph learning. Although the paradigm is effective for pre-training powerful GNN models, the objective gap often exists between pre-training and downstream tasks. To bridge this gap, graph prompting adapts pre-trained GNN models to specific downstream tasks with extra learnable prompts while keeping the pre-trained GNN models frozen. As recent graph prompting methods largely focus on enhancing model utility on downstream tasks, they often overlook fairness concerns when designing prompts for adaptation. In fact, pre-trained GNN models will produce discriminative node representations across demographic subgroups, as downstream graph data inherently contains biases in both node attributes and graph structures. To address this issue, we propose an Adaptive Dual Prompting (ADPrompt) framework that enhances fairness for adapting pre-trained GNN models to downstream tasks. To mitigate attribute bias, we design an Adaptive Feature Rectification module that learns customized attribute prompts to suppress sensitive information at the input layer, reducing bias at the source. Afterward, we propose an Adaptive Message Calibration module that generates structure prompts at each layer, which adjust the message from neighboring nodes to enable dynamic and soft calibration of the information flow. Finally, ADPrompt jointly optimizes the two prompting modules to adapt the pre-trained GNN while enhancing fairness. We conduct extensive experiments on four datasets with four pre-training strategies to evaluate the performance of ADPrompt. The results demonstrate that our proposed ADPrompt outperforms seven baseline methods on node classification tasks.
☆ Differential Privacy as a Perk: Federated Learning over Multiple-Access Fading Channels with a Multi-Antenna Base Station
Federated Learning (FL) is a distributed learning paradigm that preserves privacy by eliminating the need to exchange raw data during training. In its prototypical edge instantiation with underlying wireless transmissions enabled by analog over-the-air computing (AirComp), referred to as \emph{over-the-air FL (AirFL)}, the inherent channel noise plays a unique role of \emph{frenemy} in the sense that it degrades training due to noisy global aggregation while providing a natural source of randomness for privacy-preserving mechanisms, formally quantified by \emph{differential privacy (DP)}. It remains, nevertheless, challenging to effectively harness such channel impairments, as prior arts, under assumptions of either simple channel models or restricted types of loss functions, mostly considering (local) DP enhancement with a single-round or non-convergent bound on privacy loss. In this paper, we study AirFL over multiple-access fading channels with a multi-antenna base station (BS) subject to user-level DP requirements. Despite a recent study, which claimed in similar settings that artificial noise (AN) must be injected to ensure DP in general, we demonstrate, on the contrary, that DP can be gained as a \emph{perk} even \emph{without} employing any AN. Specifically, we derive a novel bound on DP that converges under general bounded-domain assumptions on model parameters, along with a convergence bound with general smooth and non-convex loss functions. Next, we optimize over receive beamforming and power allocations to characterize the optimal convergence-privacy trade-offs, which also reveal explicit conditions in which DP is achievable without compromising training. Finally, our theoretical findings are validated by extensive numerical results.
comment: 15 pages, 5 figures, submitted for possible publication
☆ SGFusion: Stochastic Geographic Gradient Fusion in Federated Learning
This paper proposes Stochastic Geographic Gradient Fusion (SGFusion), a novel training algorithm to leverage the geographic information of mobile users in Federated Learning (FL). SGFusion maps the data collected by mobile devices onto geographical zones and trains one FL model per zone, which adapts well to the data and behaviors of users in that zone. SGFusion models the local data-based correlation among geographical zones as a hierarchical random graph (HRG) optimized by Markov Chain Monte Carlo sampling. At each training step, every zone fuses its local gradient with gradients derived from a small set of other zones sampled from the HRG. This approach enables knowledge fusion and sharing among geographical zones in a probabilistic and stochastic gradient fusion process with self-attention weights, such that "more similar" zones have "higher probabilities" of sharing gradients with "larger attention weights." SGFusion remarkably improves model utility without introducing undue computational cost. Extensive theoretical and empirical results using a heart-rate prediction dataset collected across 6 countries show that models trained with SGFusion converge with upper-bounded expected errors and significantly improve utility in all countries compared to existing approaches without notable cost in system scalability.
☆ Schrodinger Neural Network and Uncertainty Quantification: Quantum Machine
We introduce the Schrodinger Neural Network (SNN), a principled architecture for conditional density estimation and uncertainty quantification inspired by quantum mechanics. The SNN maps each input to a normalized wave function on the output domain and computes predictive probabilities via the Born rule. The SNN departs from standard parametric likelihood heads by learning complex coefficients of a spectral expansion (e . g ., Chebyshev polynomials) whose squared modulus yields the conditional density $p(y|x)=\left| \psi _x(y)\right| {}^2$ with analytic normalization. This representation confers three practical advantages: positivity and exact normalization by construction, native multimodality through interference among basis modes without explicit mixture bookkeeping, and yields closed-form (or efficiently computable) functionals$-$such as moments and several calibration diagnostics$-$as quadratic forms in coefficient space. We develop the statistical and computational foundations of the SNN, including (i) training by exact maximum-likelihood with unit-sphere coefficient parameterization, (ii) physics-inspired quadratic regularizers (kinetic and potential energies) motivated by uncertainty relations between localization and spectral complexity, (iii) scalable low-rank and separable extensions for multivariate outputs, (iv) operator-based extensions that represent observables, constraints, and weak labels as self-adjoint matrices acting on the amplitude space, and (v) a comprehensive framework for evaluating multimodal predictions. The SNN provides a coherent, tractable framework to elevate probabilistic prediction from point estimates to physically inspired amplitude-based distributions.
comment: 29 pages, 16 figures
☆ An Information-Theoretic Analysis of Out-of-Distribution Generalization in Meta-Learning with Applications to Meta-RL
In this work, we study out-of-distribution generalization in meta-learning from an information-theoretic perspective. We focus on two scenarios: (i) when the testing environment mismatches the training environment, and (ii) when the training environment is broader than the testing environment. The first corresponds to the standard distribution mismatch setting, while the second reflects a broad-to-narrow training scenario. We further formalize the generalization problem in meta-reinforcement learning and establish corresponding generalization bounds. Finally, we analyze the generalization performance of a gradient-based meta-reinforcement learning algorithm.
☆ Coresets for Clustering Under Stochastic Noise NeurIPS 2025
We study the problem of constructing coresets for $(k, z)$-clustering when the input dataset is corrupted by stochastic noise drawn from a known distribution. In this setting, evaluating the quality of a coreset is inherently challenging, as the true underlying dataset is unobserved. To address this, we investigate coreset construction using surrogate error metrics that are tractable and provably related to the true clustering cost. We analyze a traditional metric from prior work and introduce a new error metric that more closely aligns with the true cost. Although our metric is defined independently of the noise distribution, it enables approximation guarantees that scale with the noise level. We design a coreset construction algorithm based on this metric and show that, under mild assumptions on the data and noise, enforcing an $\varepsilon$-bound under our metric yields smaller coresets and tighter guarantees on the true clustering cost than those obtained via classical metrics. In particular, we prove that the coreset size can improve by a factor of up to $\mathrm{poly}(k)$, where $n$ is the dataset size. Experiments on real-world datasets support our theoretical findings and demonstrate the practical advantages of our approach.
comment: This paper has been accepted by NeurIPS 2025
☆ Improving Predictions of Molecular Properties with Graph Featurisation and Heterogeneous Ensemble Models
We explore a "best-of-both" approach to modelling molecular properties by combining learned molecular descriptors from a graph neural network (GNN) with general-purpose descriptors and a mixed ensemble of machine learning (ML) models. We introduce a MetaModel framework to aggregate predictions from a diverse set of leading ML models. We present a featurisation scheme for combining task-specific GNN-derived features with conventional molecular descriptors. We demonstrate that our framework outperforms the cutting-edge ChemProp model on all regression datasets tested and 6 of 9 classification datasets. We further show that including the GNN features derived from ChemProp boosts the ensemble model's performance on several datasets where it otherwise would have underperformed. We conclude that to achieve optimal performance across a wide set of problems, it is vital to combine general-purpose descriptors with task-specific learned features and use a diverse set of ML models to make the predictions.
☆ PrivacyGuard: A Modular Framework for Privacy Auditing in Machine Learning
The increasing deployment of Machine Learning (ML) models in sensitive domains motivates the need for robust, practical privacy assessment tools. PrivacyGuard is a comprehensive tool for empirical differential privacy (DP) analysis, designed to evaluate privacy risks in ML models through state-of-the-art inference attacks and advanced privacy measurement techniques. To this end, PrivacyGuard implements a diverse suite of privacy attack-- including membership inference , extraction, and reconstruction attacks -- enabling both off-the-shelf and highly configurable privacy analyses. Its modular architecture allows for the seamless integration of new attacks, and privacy metrics, supporting rapid adaptation to emerging research advances. We make PrivacyGuard available at https://github.com/facebookresearch/PrivacyGuard.
☆ Eigen-Value: Efficient Domain-Robust Data Valuation via Eigenvalue-Based Approach
Data valuation has become central in the era of data-centric AI. It drives efficient training pipelines and enables objective pricing in data markets by assigning a numeric value to each data point. Most existing data valuation methods estimate the effect of removing individual data points by evaluating changes in model validation performance under in-distribution (ID) settings, as opposed to out-of-distribution (OOD) scenarios where data follow different patterns. Since ID and OOD data behave differently, data valuation methods based on ID loss often fail to generalize to OOD settings, particularly when the validation set contains no OOD data. Furthermore, although OOD-aware methods exist, they involve heavy computational costs, which hinder practical deployment. To address these challenges, we introduce \emph{Eigen-Value} (EV), a plug-and-play data valuation framework for OOD robustness that uses only an ID data subset, including during validation. EV provides a new spectral approximation of domain discrepancy, which is the gap of loss between ID and OOD using ratios of eigenvalues of ID data's covariance matrix. EV then estimates the marginal contribution of each data point to this discrepancy via perturbation theory, alleviating the computational burden. Subsequently, EV plugs into ID loss-based methods by adding an EV term without any additional training loop. We demonstrate that EV achieves improved OOD robustness and stable value rankings across real-world datasets, while remaining computationally lightweight. These results indicate that EV is practical for large-scale settings with domain shift, offering an efficient path to OOD-robust data valuation.
☆ AutoStreamPipe: LLM Assisted Automatic Generation of Data Stream Processing Pipelines
Data pipelines are essential in stream processing as they enable the efficient collection, processing, and delivery of real-time data, supporting rapid data analysis. In this paper, we present AutoStreamPipe, a novel framework that employs Large Language Models (LLMs) to automate the design, generation, and deployment of stream processing pipelines. AutoStreamPipe bridges the semantic gap between high-level user intent and platform-specific implementations across distributed stream processing systems for structured multi-agent reasoning by integrating a Hypergraph of Thoughts (HGoT) as an extended version of GoT. AutoStreamPipe combines resilient execution strategies, advanced query analysis, and HGoT to deliver pipelines with good accuracy. Experimental evaluations on diverse pipelines demonstrate that AutoStreamPipe significantly reduces development time (x6.3) and error rates (x5.19), as measured by a novel Error-Free Score (EFS), compared to LLM code-generation methods.
comment: Under review
☆ The Best of N Worlds: Aligning Reinforcement Learning with Best-of-N Sampling via max@k Optimisation
The application of Reinforcement Learning with Verifiable Rewards (RLVR) to mathematical and coding domains has demonstrated significant improvements in the reasoning and problem-solving abilities of Large Language Models. Despite its success in single generation problem solving, the reinforcement learning fine-tuning process may harm the model's exploration ability, as reflected in decreased diversity of generations and a resulting degradation of performance during Best-of-N sampling for large N values. In this work, we focus on optimizing the max@k metric, a continuous generalization of pass@k. We derive an unbiased on-policy gradient estimate for direct optimization of this metric. Furthermore, we extend our derivations to the off-policy updates, a common element in modern RLVR algorithms, that allows better sample efficiency. Empirically, we show that our objective effectively optimizes max@k metric in off-policy scenarios, aligning the model with the Best-of-N inference strategy.
☆ Floating-Point Neural Network Verification at the Software Level
The behaviour of neural network components must be proven correct before deployment in safety-critical systems. Unfortunately, existing neural network verification techniques cannot certify the absence of faults at the software level. In this paper, we show how to specify and verify that neural networks are safe, by explicitly reasoning about their floating-point implementation. In doing so, we construct NeuroCodeBench 2.0, a benchmark comprising 912 neural network verification examples that cover activation functions, common layers, and full neural networks of up to 170K parameters. Our verification suite is written in plain C and is compatible with the format of the International Competition on Software Verification (SV-COMP). Thanks to it, we can conduct the first rigorous evaluation of eight state-of-the-art software verifiers on neural network code. The results show that existing automated verification tools can correctly solve an average of 11% of our benchmark, while producing around 3% incorrect verdicts. At the same time, a historical analysis reveals that the release of our benchmark has already had a significantly positive impact on the latter.
comment: Pre-print before submission to peer review
☆ Opinion Mining Based Entity Ranking using Fuzzy Logic Algorithmic Approach
Opinions are central to almost all human activities and are key influencers of our behaviors. In current times due to growth of social networking website and increase in number of e-commerce site huge amount of opinions are now available on web. Given a set of evaluative statements that contain opinions (or sentiments) about an Entity, opinion mining aims to extract attributes and components of the object that have been commented on in each statement and to determine whether the comments are positive, negative or neutral. While lot of research recently has been done in field of opinion mining and some of it dealing with ranking of entities based on review or opinion set, classifying opinions into finer granularity level and then ranking entities has never been done before. In this paper method for opinion mining from statements at a deeper level of granularity is proposed. This is done by using fuzzy logic reasoning, after which entities are ranked as per this information.
comment: 8 pages, 4 figures, Conference Paper
☆ Symbolic Neural Generation with Applications to Lead Discovery in Drug Design
We investigate a relatively underexplored class of hybrid neurosymbolic models integrating symbolic learning with neural reasoning to construct data generators meeting formal correctness criteria. In \textit{Symbolic Neural Generators} (SNGs), symbolic learners examine logical specifications of feasible data from a small set of instances -- sometimes just one. Each specification in turn constrains the conditional information supplied to a neural-based generator, which rejects any instance violating the symbolic specification. Like other neurosymbolic approaches, SNG exploits the complementary strengths of symbolic and neural methods. The outcome of an SNG is a triple $(H, X, W)$, where $H$ is a symbolic description of feasible instances constructed from data, $X$ a set of generated new instances that satisfy the description, and $W$ an associated weight. We introduce a semantics for such systems, based on the construction of appropriate \textit{base} and \textit{fibre} partially-ordered sets combined into an overall partial order, and outline a probabilistic extension relevant to practical applications. In this extension, SNGs result from searching over a weighted partial ordering. We implement an SNG combining a restricted form of Inductive Logic Programming (ILP) with a large language model (LLM) and evaluate it on early-stage drug design. Our main interest is the description and the set of potential inhibitor molecules generated by the SNG. On benchmark problems -- where drug targets are well understood -- SNG performance is statistically comparable to state-of-the-art methods. On exploratory problems with poorly understood targets, generated molecules exhibit binding affinities on par with leading clinical candidates. Experts further find the symbolic specifications useful as preliminary filters, with several generated molecules identified as viable for synthesis and wet-lab testing.
comment: 37 pages, 15 figures; partial overlap of experimental results with https://doi.org/10.1101/2025.02.14.634875
☆ Towards a Generalizable AI for Materials Discovery: Validation through Immersion Coolant Screening
Artificial intelligence (AI) has emerged as a powerful accelerator of materials discovery, yet most existing models remain problem-specific, requiring additional data collection and retraining for each new property. Here we introduce and validate GATE (Geometrically Aligned Transfer Encoder) -- a generalizable AI framework that jointly learns 34 physicochemical properties spanning thermal, electrical, mechanical, and optical domains. By aligning these properties within a shared geometric space, GATE captures cross-property correlations that reduce disjoint-property bias -- a key factor causing false negatives in multi-criteria screening. To demonstrate its generalizability, GATE -- without any problem-specific reconfiguration -- was directly applied to the discovery of immersion cooling fluids for data centers, a stringent real-world challenge defined by the Open Compute Project (OCP). Screening billions of candidates, GATE identified 92,861 molecules as promising for practical deployment. Four were experimentally or literarily validated, showing strong agreement with wet-lab measurements and performance comparable to or exceeding a commercial coolant. These results establish GATE as a ready-to-use, generalizable AI platform readily applicable across diverse materials discovery tasks.
comment: 16 pages, 4 figures
☆ ZeroFlood: A Geospatial Foundation Model for Data-Efficient Flood Susceptibility Mapping
Flood susceptibility mapping (FSM) is vital for disaster prevention but remains challenging in data-scarce regions where hydrodynamic models require dense geophysical inputs. This work introduces ZeroFlood, a geospatial foundation model framework for data-efficient FSM. The approach fine-tunes Geospatial Foundation Models (GFMs) with Thinking-in-Modality (TiM) reasoning, enabling flood prediction from basic Earth observation data such as Sentinel-1 or Sentinel-2 imagery. Using paired EO and simulated flood maps from data-rich regions, ZeroFlood bridges data availability gaps through cross-modal representation learning. Experiments with TerraMind and Prithvi GFMs show that TiM enhances model robustness, with the TerraMind-Large configuration achieving an F1 score of 67.21. The results demonstrate the feasibility of foundation-model-based FSM as a scalable and data-efficient solution for flood risk management.
comment: Preprint submitted to EUSAR 2026 (under review)
☆ Robust Non-negative Proximal Gradient Algorithm for Inverse Problems
Proximal gradient algorithms (PGA), while foundational for inverse problems like image reconstruction, often yield unstable convergence and suboptimal solutions by violating the critical non-negativity constraint. We identify the gradient descent step as the root cause of this issue, which introduces negative values and induces high sensitivity to hyperparameters. To overcome these limitations, we propose a novel multiplicative update proximal gradient algorithm (SSO-PGA) with convergence guarantees, which is designed for robustness in non-negative inverse problems. Our key innovation lies in superseding the gradient descent step with a learnable sigmoid-based operator, which inherently enforces non-negativity and boundedness by transforming traditional subtractive updates into multiplicative ones. This design, augmented by a sliding parameter for enhanced stability and convergence, not only improves robustness but also boosts expressive capacity and noise immunity. We further formulate a degradation model for multi-modal restoration and derive its SSO-PGA-based optimization algorithm, which is then unfolded into a deep network to marry the interpretability of optimization with the power of deep learning. Extensive numerical and real-world experiments demonstrate that our method significantly surpasses traditional PGA and other state-of-the-art algorithms, ensuring superior performance and stability.
☆ Macroeconomic Forecasting for the G7 countries under Uncertainty Shocks
Accurate macroeconomic forecasting has become harder amid geopolitical disruptions, policy reversals, and volatile financial markets. Conventional vector autoregressions (VARs) overfit in high dimensional settings, while threshold VARs struggle with time varying interdependencies and complex parameter structures. We address these limitations by extending the Sims Zha Bayesian VAR with exogenous variables (SZBVARx) to incorporate domain-informed shrinkage and four newspaper based uncertainty shocks such as economic policy uncertainty, geopolitical risk, US equity market volatility, and US monetary policy uncertainty. The framework improves structural interpretability, mitigates dimensionality, and imposes empirically guided regularization. Using G7 data, we study spillovers from uncertainty shocks to five core variables (unemployment, real broad effective exchange rates, short term rates, oil prices, and CPI inflation), combining wavelet coherence (time frequency dynamics) with nonlinear local projections (state dependent impulse responses). Out-of-sample results at 12 and 24 month horizons show that SZBVARx outperforms 14 benchmarks, including classical VARs and leading machine learning models, as confirmed by Murphy difference diagrams, multivariate Diebold Mariano tests, and Giacomini White predictability tests. Credible Bayesian prediction intervals deliver robust uncertainty quantification for scenario analysis and risk management. The proposed SZBVARx offers G7 policymakers a transparent, well calibrated tool for modern macroeconomic forecasting under pervasive uncertainty.
☆ Block-Diagonal LoRA for Eliminating Communication Overhead in Tensor Parallel LoRA Serving
When serving a single base LLM with several different LoRA adapters simultaneously, the adapters cannot simply be merged with the base model's weights as the adapter swapping would create overhead and requests using different adapters could not be batched. Rather, the LoRA computations have to be separated from the base LLM computations, and in a multi-device setup the LoRA adapters can be sharded in a way that is well aligned with the base model's tensor parallel execution, as proposed in S-LoRA. However, the S-LoRA sharding strategy encounters some communication overhead, which may be small in theory, but can be large in practice. In this paper, we propose to constrain certain LoRA factors to be block-diagonal, which allows for an alternative way of sharding LoRA adapters that does not require any additional communication for the LoRA computations. We demonstrate in extensive experiments that our block-diagonal LoRA approach is similarly parameter efficient as standard LoRA (i.e., for a similar number of parameters it achieves similar downstream performance) and that it leads to significant end-to-end speed-up over S-LoRA. For example, when serving on eight A100 GPUs, we observe up to 1.79x (1.23x) end-to-end speed-up with 0.87x (1.74x) the number of adapter parameters for Llama-3.1-70B, and up to 1.63x (1.3x) end-to-end speed-up with 0.86x (1.73x) the number of adapter parameters for Llama-3.1-8B.
☆ The First Star-by-star $N$-body/Hydrodynamics Simulation of Our Galaxy Coupling with a Surrogate Model SC25
A major goal of computational astrophysics is to simulate the Milky Way Galaxy with sufficient resolution down to individual stars. However, the scaling fails due to some small-scale, short-timescale phenomena, such as supernova explosions. We have developed a novel integration scheme of $N$-body/hydrodynamics simulations working with machine learning. This approach bypasses the short timesteps caused by supernova explosions using a surrogate model, thereby improving scalability. With this method, we reached 300 billion particles using 148,900 nodes, equivalent to 7,147,200 CPU cores, breaking through the billion-particle barrier currently faced by state-of-the-art simulations. This resolution allows us to perform the first star-by-star galaxy simulation, which resolves individual stars in the Milky Way Galaxy. The performance scales over $10^4$ CPU cores, an upper limit in the current state-of-the-art simulations using both A64FX and X86-64 processors and NVIDIA CUDA GPUs.
comment: 12 pages, 7 figures, 7 tables, IEEE/ACM Supercomputing Conference (SC25)
☆ GRAD: Real-Time Gated Recurrent Anomaly Detection in Autonomous Vehicle Sensors Using Reinforced EMA and Multi-Stage Sliding Window Techniques
This paper introduces GRAD, a real-time anomaly detection method for autonomous vehicle sensors that integrates statistical analysis and deep learning to ensure the reliability of sensor data. The proposed approach combines the Reinforced Exponential Moving Average (REMA), which adapts smoothing factors and thresholding for outlier detection, with the Multi-Stage Sliding Window (MS-SW) technique for capturing both short- and long-term patterns. These features are processed using a lightweight Gated Recurrent Unit (GRU) model, which detects and classifies anomalies based on bias types, while a recovery module restores damaged sensor data to ensure continuous system operation. GRAD has a lightweight architecture consisting of two layers of GRU with a limited number of neurons that make it appropriate for real-time applications while maintaining high detection accuracy. The GRAD framework achieved remarkable performance in anomaly detection and classification. The model demonstrated an overall F1-score of 97.6% for abnormal data and 99.4% for normal data, signifying its high accuracy in distinguishing between normal and anomalous sensor data. Regarding the anomaly classification, GRAD successfully categorized different anomaly types with high precision, enabling the recovery module to accurately restore damaged sensor data. Relative to analogous studies, GRAD surpasses current models by attaining a balance between elevated detection accuracy and diminished computational expense. These results demonstrate GRAD's potential as a reliable and efficient solution for real-time anomaly detection in autonomous vehicle systems, guaranteeing safe vehicle operation with minimal computational overhead.
☆ Multitask Multimodal Self-Supervised Learning for Medical Images
This thesis works to address a pivotal challenge in medical image analysis: the reliance on extensive labeled datasets, which are often limited due to the need for expert annotation and constrained by privacy and legal issues. By focusing on the development of self-supervised learning techniques and domain adaptation methods, this research aims to circumvent these limitations, presenting a novel approach to enhance the utility and efficacy of deep learning in medical imaging. Central to this thesis is the development of the Medformer, an innovative neural network architecture designed for multitask learning and deep domain adaptation. This model is adept at pre-training on diverse medical image datasets, handling varying sizes and modalities, and is equipped with a dynamic input-output adaptation mechanism. This enables efficient processing and integration of a wide range of medical image types, from 2D X-rays to complex 3D MRIs, thus mitigating the dependency on large labeled datasets. Further, the thesis explores the current state of self-supervised learning in medical imaging. It introduces novel pretext tasks that are capable of extracting meaningful information from unlabeled data, significantly advancing the model's interpretative abilities. This approach is validated through rigorous experimentation, including the use of the MedMNIST dataset, demonstrating the model's proficiency in learning generalized features applicable to various downstream tasks. In summary, this thesis contributes to the advancement of medical image analysis by offering a scalable, adaptable framework that reduces reliance on labeled data. It paves the way for more accurate, efficient diagnostic tools in healthcare, signifying a major step forward in the application of deep learning in medical imaging.
☆ Arabic Little STT: Arabic Children Speech Recognition Dataset
The performance of Artificial Intelligence (AI) systems fundamentally depends on high-quality training data. However, low-resource languages like Arabic suffer from severe data scarcity. Moreover, the absence of child-specific speech corpora is an essential gap that poses significant challenges. To address this gap, we present our created dataset, Arabic Little STT, a dataset of Levantine Arabic child speech recorded in classrooms, containing 355 utterances from 288 children (ages 6 - 13). We further conduct a systematic assessment of Whisper, a state-of-the-art automatic speech recognition (ASR) model, on this dataset and compare its performance with adult Arabic benchmarks. Our evaluation across eight Whisper variants reveals that even the best-performing model (Large_v3) struggles significantly, achieving a 0.66 word error rate (WER) on child speech, starkly contrasting with its sub 0.20 WER on adult datasets. These results align with other research on English speech. Results highlight the critical need for dedicated child speech benchmarks and inclusive training data in ASR development. Emphasizing that such data must be governed by strict ethical and privacy frameworks to protect sensitive child information. We hope that this study provides an initial step for future work on equitable speech technologies for Arabic-speaking children. We hope that our publicly available dataset enrich the children's demographic representation in ASR datasets.
☆ Predicting symbolic ODEs from multiple trajectories NeurIPS 2025
We introduce MIO, a transformer-based model for inferring symbolic ordinary differential equations (ODEs) from multiple observed trajectories of a dynamical system. By combining multiple instance learning with transformer-based symbolic regression, the model effectively leverages repeated observations of the same system to learn more generalizable representations of the underlying dynamics. We investigate different instance aggregation strategies and show that even simple mean aggregation can substantially boost performance. MIO is evaluated on systems ranging from one to four dimensions and under varying noise levels, consistently outperforming existing baselines.
comment: Published at: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Machine Learning and the Physical Sciences
☆ Learning from Frustration: Torsor CNNs on Graphs
Most equivariant neural networks rely on a single global symmetry, limiting their use in domains where symmetries are instead local. We introduce Torsor CNNs, a framework for learning on graphs with local symmetries encoded as edge potentials-- group-valued transformations between neighboring coordinate frames. We establish that this geometric construction is fundamentally equivalent to the classical group synchronization problem, yielding: (1) a Torsor Convolutional Layer that is provably equivariant to local changes in coordinate frames, and (2) the frustration loss--a standalone geometric regularizer that encourages locally equivariant representations when added to any NN's training objective. The Torsor CNN framework unifies and generalizes several architectures--including classical CNNs and Gauge CNNs on manifolds-- by operating on arbitrary graphs without requiring a global coordinate system or smooth manifold structure. We establish the mathematical foundations of this framework and demonstrate its applicability to multi-view 3D recognition, where relative camera poses naturally define the required edge potentials.
comment: 19 pages (main text + appendices), 1 figure
☆ A Novel Framework for Multi-Modal Protein Representation Learning
Accurate protein function prediction requires integrating heterogeneous intrinsic signals (e.g., sequence and structure) with noisy extrinsic contexts (e.g., protein-protein interactions and GO term annotations). However, two key challenges hinder effective fusion: (i) cross-modal distributional mismatch among embeddings produced by pre-trained intrinsic encoders, and (ii) noisy relational graphs of extrinsic data that degrade GNN-based information aggregation. We propose Diffused and Aligned Multi-modal Protein Embedding (DAMPE), a unified framework that addresses these through two core mechanisms. First, we propose Optimal Transport (OT)-based representation alignment that establishes correspondence between intrinsic embedding spaces of different modalities, effectively mitigating cross-modal heterogeneity. Second, we develop a Conditional Graph Generation (CGG)-based information fusion method, where a condition encoder fuses the aligned intrinsic embeddings to provide informative cues for graph reconstruction. Meanwhile, our theoretical analysis implies that the CGG objective drives this condition encoder to absorb graph-aware knowledge into its produced protein representations. Empirically, DAMPE outperforms or matches state-of-the-art methods such as DPFunc on standard GO benchmarks, achieving AUPR gains of 0.002-0.013 pp and Fmax gains 0.004-0.007 pp. Ablation studies further show that OT-based alignment contributes 0.043-0.064 pp AUPR, while CGG-based fusion adds 0.005-0.111 pp Fmax. Overall, DAMPE offers a scalable and theoretically grounded approach for robust multi-modal protein representation learning, substantially enhancing protein function prediction.
comment: 35 pages, 5 figures, 4 tables
☆ PAHQ: Accelerating Automated Circuit Discovery through Mixed-Precision Inference Optimization
Circuit discovery, which involves identifying sparse and task-relevant subnetworks in pre-trained language models, is a cornerstone of mechanistic interpretability. Automated Circuit Discovery (ACDC) has emerged as a pivotal methodology in circuit discovery, but its application to large language models is severely limited by computational inefficiency and prohibitively high memory requirements. Although several accelerated approaches have been proposed, they primarily rely on linear approximations to ACDC, which significantly compromises analytical faithfulness. Our proposed method for accelerating automated circuit discovery, Per Attention Head Quantization (PAHQ), takes a fundamentally different approach by optimizing the efficiency of each individual patching operation. PAHQ leverages a fundamental alignment between activation patching and mixed-precision quantization (MPQ): interpretability analysis through patching essentially performs targeted ablation studies. Therefore, we can maintain high precision exclusively for investigated components while safely reducing precision elsewhere in the network. PAHQ-accelerated ACDC reduces runtime by up to 80\% and memory consumption by up to 30\% compared to unaccelerated ACDC while maintaining faithfulness. Importantly, our method readily integrates with existing edge-based circuit discovery techniques by modifying the attention computation mechanism. This training-free approach provides a practical and novel pathway for accelerating mechanistic interpretability methods. Our code is available at https://github.com/626619403/PAHQ.
☆ Toward Interpretable Evaluation Measures for Time Series Segmentation
Time series segmentation is a fundamental task in analyzing temporal data across various domains, from human activity recognition to energy monitoring. While numerous state-of-the-art methods have been developed to tackle this problem, the evaluation of their performance remains critically limited. Existing measures predominantly focus on change point accuracy or rely on point-based measures such as Adjusted Rand Index (ARI), which fail to capture the quality of the detected segments, ignore the nature of errors, and offer limited interpretability. In this paper, we address these shortcomings by introducing two novel evaluation measures: WARI (Weighted Adjusted Rand Index), that accounts for the position of segmentation errors, and SMS (State Matching Score), a fine-grained measure that identifies and scores four fundamental types of segmentation errors while allowing error-specific weighting. We empirically validate WARI and SMS on synthetic and real-world benchmarks, showing that they not only provide a more accurate assessment of segmentation quality but also uncover insights, such as error provenance and type, that are inaccessible with traditional measures.
☆ GCAO: Group-driven Clustering via Gravitational Attraction and Optimization
Traditional clustering algorithms often struggle with high-dimensional and non-uniformly distributed data, where low-density boundary samples are easily disturbed by neighboring clusters, leading to unstable and distorted clustering results. To address this issue, we propose a Group-driven Clustering via Gravitational Attraction and Optimization (GCAO) algorithm. GCAO introduces a group-level optimization mechanism that aggregates low-density boundary points into collaboratively moving groups, replacing the traditional point-based contraction process. By combining local density estimation with neighborhood topology, GCAO constructs effective gravitational interactions between groups and their surroundings, enhancing boundary clarity and structural consistency. Using groups as basic motion units, a gravitational contraction strategy ensures globally stable and directionally consistent convergence. Experiments on multiple high-dimensional datasets demonstrate that GCAO outperforms 11 representative clustering methods, achieving average improvements of 37.13%, 52.08%, 44.98%, and 38.81% in NMI, ARI, Homogeneity, and ACC, respectively, while maintaining competitive efficiency and scalability. These results highlight GCAO's superiority in preserving cluster integrity, enhancing boundary separability, and ensuring robust performance on complex data distributions.
☆ Deep Active Inference with Diffusion Policy and Multiple Timescale World Model for Real-World Exploration and Navigation
Autonomous robotic navigation in real-world environments requires exploration to acquire environmental information as well as goal-directed navigation in order to reach specified targets. Active inference (AIF) based on the free-energy principle provides a unified framework for these behaviors by minimizing the expected free energy (EFE), thereby combining epistemic and extrinsic values. To realize this practically, we propose a deep AIF framework that integrates a diffusion policy as the policy model and a multiple timescale recurrent state-space model (MTRSSM) as the world model. The diffusion policy generates diverse candidate actions while the MTRSSM predicts their long-horizon consequences through latent imagination, enabling action selection that minimizes EFE. Real-world navigation experiments demonstrated that our framework achieved higher success rates and fewer collisions compared with the baselines, particularly in exploration-demanding scenarios. These results highlight how AIF based on EFE minimization can unify exploration and goal-directed navigation in real-world robotic settings.
comment: Preprint version
☆ Provable test-time adaptivity and distributional robustness of in-context learning
We study in-context learning problems where a Transformer is pretrained on tasks drawn from a mixture distribution $\pi=\sum_{\alpha\in\mathcal{A}} \lambda_{\alpha} \pi_{\alpha}$, called the pretraining prior, in which each mixture component $\pi_{\alpha}$ is a distribution on tasks of a specific difficulty level indexed by $\alpha$. Our goal is to understand the performance of the pretrained Transformer when evaluated on a different test distribution $\mu$, consisting of tasks of fixed difficulty $\beta\in\mathcal{A}$, and with potential distribution shift relative to $\pi_\beta$, subject to the chi-squared divergence $\chi^2(\mu,\pi_{\beta})$ being at most $\kappa$. In particular, we consider nonparametric regression problems with random smoothness, and multi-index models with random smoothness as well as random effective dimension. We prove that a large Transformer pretrained on sufficient data achieves the optimal rate of convergence corresponding to the difficulty level $\beta$, uniformly over test distributions $\mu$ in the chi-squared divergence ball. Thus, the pretrained Transformer is able to achieve faster rates of convergence on easier tasks and is robust to distribution shift at test time. Finally, we prove that even if an estimator had access to the test distribution $\mu$, the convergence rate of its expected risk over $\mu$ could not be faster than that of our pretrained Transformers, thereby providing a more appropriate optimality guarantee than minimax lower bounds.
comment: 44 pages
☆ Progressive Growing of Patch Size: Curriculum Learning for Accelerated and Improved Medical Image Segmentation MICCAI2024
In this work, we introduce Progressive Growing of Patch Size, an automatic curriculum learning approach for 3D medical image segmentation. Our approach progressively increases the patch size during model training, resulting in an improved class balance for smaller patch sizes and accelerated convergence of the training process. We evaluate our curriculum approach in two settings: a resource-efficient mode and a performance mode, both regarding Dice score performance and computational costs across 15 diverse and popular 3D medical image segmentation tasks. The resource-efficient mode matches the Dice score performance of the conventional constant patch size sampling baseline with a notable reduction in training time to only 44%. The performance mode improves upon constant patch size segmentation results, achieving a statistically significant relative mean performance gain of 1.28% in Dice Score. Remarkably, across all 15 tasks, our proposed performance mode manages to surpass the constant patch size baseline in Dice Score performance, while simultaneously reducing training time to only 89%. The benefits are particularly pronounced for highly imbalanced tasks such as lesion segmentation tasks. Rigorous experiments demonstrate that our performance mode not only improves mean segmentation performance but also reduces performance variance, yielding more trustworthy model comparison. Furthermore, our findings reveal that the proposed curriculum sampling is not tied to a specific architecture but represents a broadly applicable strategy that consistently boosts performance across diverse segmentation models, including UNet, UNETR, and SwinUNETR. In summary, we show that this simple yet elegant transformation on input data substantially improves both Dice Score performance and training runtime, while being compatible across diverse segmentation backbones.
comment: Journal Extension of "Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks" (MICCAI2024) submitted to MedIA
☆ Robust Iterative Learning Hidden Quantum Markov Models
Hidden Quantum Markov Models (HQMMs) extend classical Hidden Markov Models to the quantum domain, offering a powerful probabilistic framework for modeling sequential data with quantum coherence. However, existing HQMM learning algorithms are highly sensitive to data corruption and lack mechanisms to ensure robustness under adversarial perturbations. In this work, we introduce the Adversarially Corrupted HQMM (AC-HQMM), which formalizes robustness analysis by allowing a controlled fraction of observation sequences to be adversarially corrupted. To learn AC-HQMMs, we propose the Robust Iterative Learning Algorithm (RILA), a derivative-free method that integrates a Remove Corrupted Rows by Entropy Filtering (RCR-EF) module with an iterative stochastic resampling procedure for physically valid Kraus operator updates. RILA incorporates L1-penalized likelihood objectives to enhance stability, resist overfitting, and remain effective under non-differentiable conditions. Across multiple HQMM and HMM benchmarks, RILA demonstrates superior convergence stability, corruption resilience, and preservation of physical validity compared to existing algorithms, establishing a principled and efficient approach for robust quantum sequential learning.
comment: Quantum Computing, Bayesian Inference, Spatiotemporal Analysis, Robust Learning
☆ Grassmanian Interpolation of Low-Pass Graph Filters: Theory and Applications
Low-pass graph filters are fundamental for signal processing on graphs and other non-Euclidean domains. However, the computation of such filters for parametric graph families can be prohibitively expensive as computation of the corresponding low-frequency subspaces, requires the repeated solution of an eigenvalue problem. We suggest a novel algorithm of low-pass graph filter interpolation based on Riemannian interpolation in normal coordinates on the Grassmann manifold. We derive an error bound estimate for the subspace interpolation and suggest two possible applications for induced parametric graph families. First, we argue that the temporal evolution of the node features may be translated to the evolving graph topology via a similarity correction to adjust the homophily degree of the network. Second, we suggest a dot product graph family induced by a given static graph which allows to infer improved message passing scheme for node classification facilitated by the filter interpolation.
comment: 13 pages
☆ Human-Like Goalkeeping in a Realistic Football Simulation: a Sample-Efficient Reinforcement Learning Approach
While several high profile video games have served as testbeds for Deep Reinforcement Learning (DRL), this technique has rarely been employed by the game industry for crafting authentic AI behaviors. Previous research focuses on training super-human agents with large models, which is impractical for game studios with limited resources aiming for human-like agents. This paper proposes a sample-efficient DRL method tailored for training and fine-tuning agents in industrial settings such as the video game industry. Our method improves sample efficiency of value-based DRL by leveraging pre-collected data and increasing network plasticity. We evaluate our method training a goalkeeper agent in EA SPORTS FC 25, one of the best-selling football simulations today. Our agent outperforms the game's built-in AI by 10% in ball saving rate. Ablation studies show that our method trains agents 50% faster compared to standard DRL methods. Finally, qualitative evaluation from domain experts indicates that our approach creates more human-like gameplay compared to hand-crafted agents. As a testimony of the impact of the approach, the method is intended to replace the hand-crafted counterpart in next iterations of the series.
☆ Accelerating Eigenvalue Dataset Generation via Chebyshev Subspace Filter
Eigenvalue problems are among the most important topics in many scientific disciplines. With the recent surge and development of machine learning, neural eigenvalue methods have attracted significant attention as a forward pass of inference requires only a tiny fraction of the computation time compared to traditional solvers. However, a key limitation is the requirement for large amounts of labeled data in training, including operators and their eigenvalues. To tackle this limitation, we propose a novel method, named Sorting Chebyshev Subspace Filter (SCSF), which significantly accelerates eigenvalue data generation by leveraging similarities between operators -- a factor overlooked by existing methods. Specifically, SCSF employs truncated fast Fourier transform sorting to group operators with similar eigenvalue distributions and constructs a Chebyshev subspace filter that leverages eigenpairs from previously solved problems to assist in solving subsequent ones, reducing redundant computations. To the best of our knowledge, SCSF is the first method to accelerate eigenvalue data generation. Experimental results show that SCSF achieves up to a $3.5\times$ speedup compared to various numerical solvers.
☆ Increasing LLM Coding Capabilities through Diverse Synthetic Coding Tasks NeurIPS 2025
Large language models (LLMs) have shown impressive promise in code generation, yet their progress remains limited by the shortage of large-scale datasets that are both diverse and well-aligned with human reasoning. Most existing resources pair problems with solutions, but omit the intermediate thought process that guides coding. To close this gap, we present a scalable synthetic data generation pipeline that produces nearly 800k instruction-reasoning-code-test quadruplets. Each sample combines a task, a step-by-step reasoning trace, a working solution, and executable tests, enabling models to learn not just the what but also the how of problem solving. Our pipeline combines four key components: curated contest problems, web-mined content filtered by relevance classifiers, data expansion guided by reasoning patterns, and multi-stage execution-based validation. A genetic mutation algorithm further increases task diversity while maintaining consistency between reasoning traces and code implementations. Our key finding is that fine-tuning LLMs on this dataset yields consistent improvements on coding benchmarks. Beyond raw accuracy, reasoning-aware data can substitute for model scaling, generalize across architectures, and outperform leading open-source alternatives under identical sample budgets. Our work establishes reasoning-centered synthetic data generation as an efficient approach for advancing coding capabilities in LLMs. We publish our dataset and generation pipeline to facilitate further research.
comment: Presented at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: The 4th Deep Learning for Code Workshop (DL4C)
☆ Rate-optimal Design for Anytime Best Arm Identification
We consider the best arm identification problem, where the goal is to identify the arm with the highest mean reward from a set of $K$ arms under a limited sampling budget. This problem models many practical scenarios such as A/B testing. We consider a class of algorithms for this problem, which is provably minimax optimal up to a constant factor. This idea is a generalization of existing works in fixed-budget best arm identification, which are limited to a particular choice of risk measures. Based on the framework, we propose Almost Tracking, a closed-form algorithm that has a provable guarantee on the popular risk measure $H_1$. Unlike existing algorithms, Almost Tracking does not require the total budget in advance nor does it need to discard a significant part of samples, which gives a practical advantage. Through experiments on synthetic and real-world datasets, we show that our algorithm outperforms existing anytime algorithms as well as fixed-budget algorithms.
☆ PTPP-Aware Adaptation Scaling Laws: Predicting Domain-Adaptation Performance at Unseen Pre-Training Budgets
Continual pre-training (CPT) for domain adaptation must balance target-domain gains with stability on the base domain. Existing CPT scaling laws typically assume a fixed pre-training budget, which limits their ability to forecast adaptation outcomes for models trained at different tokens-per-parameter (PTPP). We present \emph{PTPP-aware} adaptation scaling laws that make the pre-training budget an explicit variable, enabling accurate \emph{prediction} of adaptation loss at unseen \ptpp. On a multilingual setup (English/Arabic $\rightarrow$ French), PTPP-aware formulations trained on early stages (\ptpp{}=\{15,31\}) predict target loss at \ptpp{}=279 and outperform a PTPP-agnostic \dcpt{} transfer baseline on metrics (Huber-on-log, MAE$_\mathrm{rel}$, calibration slope); full diagnostics (RMSE, MAPE) are in the appendix. Beyond forecasting, we show a practical use case: planning replay ratios and adaptation token budgets that satisfy target and forgetting constraints under compute limits.
☆ The Benchmarking Epistemology: Construct Validity for Evaluating Machine Learning Models
Predictive benchmarking, the evaluation of machine learning models based on predictive performance and competitive ranking, is a central epistemic practice in machine learning research and an increasingly prominent method for scientific inquiry. Yet, benchmark scores alone provide at best measurements of model performance relative to an evaluation dataset and a concrete learning problem. Drawing substantial scientific inferences from the results, say about theoretical tasks like image classification, requires additional assumptions about the theoretical structure of the learning problems, evaluation functions, and data distributions. We make these assumptions explicit by developing conditions of construct validity inspired by psychological measurement theory. We examine these assumptions in practice through three case studies, each exemplifying a typical intended inference: measuring engineering progress in computer vision with ImageNet; evaluating policy-relevant weather predictions with WeatherBench; and examining limitations of the predictability of life events with the Fragile Families Challenge. Our framework clarifies the conditions under which benchmark scores can support diverse scientific claims, bringing predictive benchmarking into perspective as an epistemological practice and a key site of conceptual and theoretical reasoning in machine learning.
☆ DREaM: Drug-Drug Relation Extraction via Transfer Learning Method
Relation extraction between drugs plays a crucial role in identifying drug drug interactions and predicting side effects. The advancement of machine learning methods in relation extraction, along with the development of large medical text databases, has enabled the low cost extraction of such relations compared to other approaches that typically require expert knowledge. However, to the best of our knowledge, there are limited datasets specifically designed for drug drug relation extraction currently available. Therefore, employing transfer learning becomes necessary to apply machine learning methods in this domain. In this study, we propose DREAM, a method that first employs a trained relation extraction model to discover relations between entities and then applies this model to a corpus of medical texts to construct an ontology of drug relationships. The extracted relations are subsequently validated using a large language model. Quantitative results indicate that the LLM agreed with 71 of the relations extracted from a subset of PubMed abstracts. Furthermore, our qualitative analysis indicates that this approach can uncover ambiguities in the medical domain, highlighting the challenges inherent in relation extraction in this field.
☆ Physics-informed diffusion models for extrapolating crystal structures beyond known motifs
Discovering materials with previously unreported crystal frameworks is key to achieving transformative functionality. Generative artificial intelligence offers a scalable means to propose candidate crystal structures, however existing approaches mainly reproduce decorated variants of established motifs rather than uncover new configurations. Here we develop a physics-informed diffusion method, supported by chemically grounded validation protocol, which embeds descriptors of compactness and local environment diversity to balance physical plausibility with structural novelty. Conditioning on these metrics improves generative performance across architectures, increasing the fraction of structures outside 100 most common prototypes up to 67%. When crystal structure prediction (CSP) is seeded with generative structures, most candidates (97%) are reconstructed by CSP, yielding 145 (66%) low-energy frameworks not matching any known prototypes. These results show that while generative models are not substitutes for CSP, their chemically informed, diversity-guided outputs can enhance CSP efficiency, establishing a practical generative-CSP synergy for discovery-oriented exploration of chemical space.
☆ TARC: Time-Adaptive Robotic Control
Fixed-frequency control in robotics imposes a trade-off between the efficiency of low-frequency control and the robustness of high-frequency control, a limitation not seen in adaptable biological systems. We address this with a reinforcement learning approach in which policies jointly select control actions and their application durations, enabling robots to autonomously modulate their control frequency in response to situational demands. We validate our method with zero-shot sim-to-real experiments on two distinct hardware platforms: a high-speed RC car and a quadrupedal robot. Our method matches or outperforms fixed-frequency baselines in terms of rewards while significantly reducing the control frequency and exhibiting adaptive frequency control under real-world conditions.
☆ Benchmarking VQE Configurations: Architectures, Initializations, and Optimizers for Silicon Ground State Energy
Quantum computing presents a promising path toward precise quantum chemical simulations, particularly for systems that challenge classical methods. This work investigates the performance of the Variational Quantum Eigensolver (VQE) in estimating the ground-state energy of the silicon atom, a relatively heavy element that poses significant computational complexity. Within a hybrid quantum-classical optimization framework, we implement VQE using a range of ansatz, including Double Excitation Gates, ParticleConservingU2, UCCSD, and k-UpCCGSD, combined with various optimizers such as gradient descent, SPSA, and ADAM. The main contribution of this work lies in a systematic methodological exploration of how these configuration choices interact to influence VQE performance, establishing a structured benchmark for selecting optimal settings in quantum chemical simulations. Key findings show that parameter initialization plays a decisive role in the algorithm's stability, and that the combination of a chemically inspired ansatz with adaptive optimization yields superior convergence and precision compared to conventional approaches.
☆ Enabling Vibration-Based Gesture Recognition on Everyday Furniture via Energy-Efficient FPGA Implementation of 1D Convolutional Networks
The growing demand for smart home interfaces has increased interest in non-intrusive sensing methods like vibration-based gesture recognition. While prior studies demonstrated feasibility, they often rely on complex preprocessing and large Neural Networks (NNs) requiring costly high-performance hardware, resulting in high energy usage and limited real-world deployability. This study proposes an energy-efficient solution deploying compact NNs on low-power Field-Programmable Gate Arrays (FPGAs) to enable real-time gesture recognition with competitive accuracy. We adopt a series of optimizations: (1) We replace complex spectral preprocessing with raw waveform input, eliminating complex on-board preprocessing while reducing input size by 21x without sacrificing accuracy. (2) We design two lightweight architectures (1D-CNN and 1D-SepCNN) tailored for embedded FPGAs, reducing parameters from 369 million to as few as 216 while maintaining comparable accuracy. (3) With integer-only quantization and automated RTL generation, we achieve seamless FPGA deployment. A ping-pong buffering mechanism in 1D-SepCNN further improves deployability under tight memory constraints. (4) We extend a hardware-aware search framework to support constraint-driven model configuration selection, considering accuracy, deployability, latency, and energy consumption. Evaluated on two swipe-direction datasets with multiple users and ordinary tables, our approach achieves low-latency, energy-efficient inference on the AMD Spartan-7 XC7S25 FPGA. Under the PS data splitting setting, the selected 6-bit 1D-CNN reaches 0.970 average accuracy across users with 9.22 ms latency. The chosen 8-bit 1D-SepCNN further reduces latency to 6.83 ms (over 53x CPU speedup) with slightly lower accuracy (0.949). Both consume under 1.2 mJ per inference, demonstrating suitability for long-term edge operation.
comment: 9 pages, 5 figures, 5 tables, accepted by 2025 IEEE Annual Congress on Artificial Intelligence of Things (IEEE AIoT)
☆ AG-Fusion: adaptive gated multimodal fusion for 3d object detection in complex scenes
Multimodal camera-LiDAR fusion technology has found extensive application in 3D object detection, demonstrating encouraging performance. However, existing methods exhibit significant performance degradation in challenging scenarios characterized by sensor degradation or environmental disturbances. We propose a novel Adaptive Gated Fusion (AG-Fusion) approach that selectively integrates cross-modal knowledge by identifying reliable patterns for robust detection in complex scenes. Specifically, we first project features from each modality into a unified BEV space and enhance them using a window-based attention mechanism. Subsequently, an adaptive gated fusion module based on cross-modal attention is designed to integrate these features into reliable BEV representations robust to challenging environments. Furthermore, we construct a new dataset named Excavator3D (E3D) focusing on challenging excavator operation scenarios to benchmark performance in complex conditions. Our method not only achieves competitive performance on the standard KITTI dataset with 93.92% accuracy, but also significantly outperforms the baseline by 24.88% on the challenging E3D dataset, demonstrating superior robustness to unreliable modal information in complex industrial scenes.
☆ Complexity Dependent Error Rates for Physics-informed Statistical Learning via the Small-ball Method
Physics-informed statistical learning (PISL) integrates empirical data with physical knowledge to enhance the statistical performance of estimators. While PISL methods are widely used in practice, a comprehensive theoretical understanding of how informed regularization affects statistical properties is still missing. Specifically, two fundamental questions have yet to be fully addressed: (1) what is the trade-off between considering soft penalties versus hard constraints, and (2) what is the statistical gain of incorporating physical knowledge compared to purely data-driven empirical error minimisation. In this paper, we address these questions for PISL in convex classes of functions under physical knowledge expressed as linear equations by developing appropriate complexity dependent error rates based on the small-ball method. We show that, under suitable assumptions, (1) the error rates of physics-informed estimators are comparable to those of hard constrained empirical error minimisers, differing only by constant terms, and that (2) informed penalization can effectively reduce model complexity, akin to dimensionality reduction, thereby improving learning performance. This work establishes a theoretical framework for evaluating the statistical properties of physics-informed estimators in convex classes of functions, contributing to closing the gap between statistical theory and practical PISL, with potential applications to cases not yet explored in the literature.
☆ Adapting Interleaved Encoders with PPO for Language-Guided Reinforcement Learning in BabyAI
Deep reinforcement learning agents often struggle when tasks require understanding both vision and language. Conventional architectures typically isolate perception (for example, CNN-based visual encoders) from decision-making (policy networks). This separation can be inefficient, since the policy's failures do not directly help the perception module learn what is important. To address this, we implement the Perception-Decision Interleaving Transformer (PDiT) architecture introduced by Mao et al. (2023), a model that alternates between perception and decision layers within a single transformer. This interleaving allows feedback from decision-making to refine perceptual features dynamically. In addition, we integrate a contrastive loss inspired by CLIP to align textual mission embeddings with visual scene features. We evaluate the PDiT encoders on the BabyAI GoToLocal environment and find that the approach achieves more stable rewards and stronger alignment compared to a standard PPO baseline. The results suggest that interleaved transformer encoders are a promising direction for developing more integrated autonomous agents.
comment: Undergraduate research project, IIT Palakkad, 2025
☆ Rethinking GSPO: The Perplexity-Entropy Equivalence
We provide a new perspective on GSPO's length-normalized importance ratios by establishing their connection to information-theoretic quantities. We show that GSPO's sequence-level weight $s(\theta) = (\pi_\theta/\pi_{\theta_{\text{old}}})^{1/|y|}$ can be equivalently expressed as the inverse perplexity ratio $\text{PPL}_{\theta_{\text{old}}}/\text{PPL}_\theta$ and as the exponential cross-entropy change $\exp(\Delta H)$. While the perplexity-entropy relationship follows from standard definitions, this observation provides a useful lens for understanding GSPO: the algorithm weights policy gradient updates by perplexity ratios, offering an information-theoretic interpretation of the importance weights. This perspective helps explain GSPO's empirical properties, including log-domain variance reduction through geometric averaging and stability in training mixture-of-experts models. We validate the mathematical equivalences and variance predictions through controlled experiments on mathematical reasoning tasks.
comment: 10 pages, 2 figures
☆ Treble10: A high-quality dataset for far-field speech recognition, dereverberation, and enhancement
Accurate far-field speech datasets are critical for tasks such as automatic speech recognition (ASR), dereverberation, speech enhancement, and source separation. However, current datasets are limited by the trade-off between acoustic realism and scalability. Measured corpora provide faithful physics but are expensive, low-coverage, and rarely include paired clean and reverberant data. In contrast, most simulation-based datasets rely on simplified geometrical acoustics, thus failing to reproduce key physical phenomena like diffraction, scattering, and interference that govern sound propagation in complex environments. We introduce Treble10, a large-scale, physically accurate room-acoustic dataset. Treble10 contains over 3000 broadband room impulse responses (RIRs) simulated in 10 fully furnished real-world rooms, using a hybrid simulation paradigm implemented in the Treble SDK that combines a wave-based and geometrical acoustics solver. The dataset provides six complementary subsets, spanning mono, 8th-order Ambisonics, and 6-channel device RIRs, as well as pre-convolved reverberant speech scenes paired with LibriSpeech utterances. All signals are simulated at 32 kHz, accurately modelling low-frequency wave effects and high-frequency reflections. Treble10 bridges the realism gap between measurement and simulation, enabling reproducible, physically grounded evaluation and large-scale data augmentation for far-field speech tasks. The dataset is openly available via the Hugging Face Hub, and is intended as both a benchmark and a template for next-generation simulation-driven audio research.
☆ A method for outlier detection based on cluster analysis and visual expert criteria
Outlier detection is an important problem occurring in a wide range of areas. Outliers are the outcome of fraudulent behaviour, mechanical faults, human error, or simply natural deviations. Many data mining applications perform outlier detection, often as a preliminary step in order to filter out outliers and build more representative models. In this paper, we propose an outlier detection method based on a clustering process. The aim behind the proposal outlined in this paper is to overcome the specificity of many existing outlier detection techniques that fail to take into account the inherent dispersion of domain objects. The outlier detection method is based on four criteria designed to represent how human beings (experts in each domain) visually identify outliers within a set of objects after analysing the clusters. This has an advantage over other clustering-based outlier detection techniques that are founded on a purely numerical analysis of clusters. Our proposal has been evaluated, with satisfactory results, on data (particularly time series) from two different domains: stabilometry, a branch of medicine studying balance-related functions in human beings and electroencephalography (EEG), a neurological exploration used to diagnose nervous system disorders. To validate the proposed method, we studied method outlier detection and efficiency in terms of runtime. The results of regression analyses confirm that our proposal is useful for detecting outlier data in different domains, with a false positive rate of less than 2% and a reliability greater than 99%.
☆ DeepSalt: Bridging Laboratory and Satellite Spectra through Domain Adaptation and Knowledge Distillation for Large-Scale Soil Salinity Estimation
Soil salinization poses a significant threat to both ecosystems and agriculture because it limits plants' ability to absorb water and, in doing so, reduces crop productivity. This phenomenon alters the soil's spectral properties, creating a measurable relationship between salinity and light reflectance that enables remote monitoring. While laboratory spectroscopy provides precise measurements, its reliance on in-situ sampling limits scalability to regional or global levels. Conversely, hyperspectral satellite imagery enables wide-area observation but lacks the fine-grained interpretability of laboratory instruments. To bridge this gap, we introduce DeepSalt, a deep-learning-based spectral transfer framework that leverages knowledge distillation and a novel Spectral Adaptation Unit to transfer high-resolution spectral insights from laboratory-based spectroscopy to satellite-based hyperspectral sensing. Our approach eliminates the need for extensive ground sampling while enabling accurate, large-scale salinity estimation, as demonstrated through comprehensive empirical benchmarks. DeepSalt achieves significant performance gains over methods without explicit domain adaptation, underscoring the impact of the proposed Spectral Adaptation Unit and the knowledge distillation strategy. The model also effectively generalized to unseen geographic regions, explaining a substantial portion of the salinity variance.
☆ Beyond Higher Rank: Token-wise Input-Output Projections for Efficient Low-Rank Adaptation NeurIPS 2025
Low-rank adaptation (LoRA) is a parameter-efficient fine-tuning (PEFT) method widely used in large language models (LLMs). LoRA essentially describes the projection of an input space into a low-dimensional output space, with the dimensionality determined by the LoRA rank. In standard LoRA, all input tokens share the same weights and undergo an identical input-output projection. This limits LoRA's ability to capture token-specific information due to the inherent semantic differences among tokens. To address this limitation, we propose Token-wise Projected Low-Rank Adaptation (TopLoRA), which dynamically adjusts LoRA weights according to the input token, thereby learning token-wise input-output projections in an end-to-end manner. Formally, the weights of TopLoRA can be expressed as $B\Sigma_X A$, where $A$ and $B$ are low-rank matrices (as in standard LoRA), and $\Sigma_X$ is a diagonal matrix generated from each input token $X$. Notably, TopLoRA does not increase the rank of LoRA weights but achieves more granular adaptation by learning token-wise LoRA weights (i.e., token-wise input-output projections). Extensive experiments across multiple models and datasets demonstrate that TopLoRA consistently outperforms LoRA and its variants. The code is available at https://github.com/Leopold1423/toplora-neurips25.
comment: Accepted by NeurIPS 2025
☆ Seeing Structural Failure Before it Happens: An Image-Based Physics-Informed Neural Network (PINN) for Spaghetti Bridge Load Prediction
Physics Informed Neural Networks (PINNs) are gaining attention for their ability to embed physical laws into deep learning models, which is particularly useful in structural engineering tasks with limited data. This paper aims to explore the use of PINNs to predict the weight of small scale spaghetti bridges, a task relevant to understanding load limits and potential failure modes in simplified structural models. Our proposed framework incorporates physics-based constraints to the prediction model for improved performance. In addition to standard PINNs, we introduce a novel architecture named Physics Informed Kolmogorov Arnold Network (PIKAN), which blends universal function approximation theory with physical insights. The structural parameters provided as input to the model are collected either manually or through computer vision methods. Our dataset includes 15 real bridges, augmented to 100 samples, and our best model achieves an $R^2$ score of 0.9603 and a mean absolute error (MAE) of 10.50 units. From applied perspective, we also provide a web based interface for parameter entry and prediction. These results show that PINNs can offer reliable estimates of structural weight, even with limited data, and may help inform early stage failure analysis in lightweight bridge designs. The complete data and code are available at https://github.com/OmerJauhar/PINNS-For-Spaghetti-Bridges.
comment: 12 pages, 17 figures. Preprint
☆ Neural Emulator Superiority: When Machine Learning for PDEs Surpasses its Training Data NeurIPS 2025
Neural operators or emulators for PDEs trained on data from numerical solvers are conventionally assumed to be limited by their training data's fidelity. We challenge this assumption by identifying "emulator superiority," where neural networks trained purely on low-fidelity solver data can achieve higher accuracy than those solvers when evaluated against a higher-fidelity reference. Our theoretical analysis reveals how the interplay between emulator inductive biases, training objectives, and numerical error characteristics enables superior performance during multi-step rollouts. We empirically validate this finding across different PDEs using standard neural architectures, demonstrating that emulators can implicitly learn dynamics that are more regularized or exhibit more favorable error accumulation properties than their training data, potentially surpassing training data limitations and mitigating numerical artifacts. This work prompts a re-evaluation of emulator benchmarking, suggesting neural emulators might achieve greater physical fidelity than their training source within specific operational regimes. Project Page: https://tum-pbs.github.io/emulator-superiority
comment: Accepted at NeurIPS 2025: https://neurips.cc/virtual/2025/poster/116770
♻ ☆ Constrained Entropic Unlearning: A Primal-Dual Framework for Large Language Models
Large Language Models (LLMs) deployed in real-world settings increasingly face the need to unlearn sensitive, outdated, or proprietary information. Existing unlearning methods typically formulate forgetting and retention as a regularized trade-off, combining both objectives into a single scalarized loss. This often leads to unstable optimization and degraded performance on retained data, especially under aggressive forgetting. We propose a new formulation of LLM unlearning as a constrained optimization problem: forgetting is enforced via a novel logit-margin flattening loss that explicitly drives the output distribution toward uniformity on a designated forget set, while retention is preserved through a hard constraint on a separate retain set. Compared to entropy-based objectives, our loss is softmax-free, numerically stable, and maintains non-vanishing gradients, enabling more efficient and robust optimization. We solve the constrained problem using a scalable primal-dual algorithm that exposes the trade-off between forgetting and retention through the dynamics of the dual variable, all without any extra computational overhead. Evaluations on the TOFU and MUSE benchmarks across diverse LLM architectures demonstrate that our approach consistently matches or exceeds state-of-the-art baselines, effectively removing targeted information while preserving downstream utility.
comment: The Thirty-Ninth Annual Conference on Neural Information Processing Systems
♻ ☆ UNDREAM: Bridging Differentiable Rendering and Photorealistic Simulation for End-to-end Adversarial Attacks
Deep learning models deployed in safety critical applications like autonomous driving use simulations to test their robustness against adversarial attacks in realistic conditions. However, these simulations are non-differentiable, forcing researchers to create attacks that do not integrate simulation environmental factors, reducing attack success. To address this limitation, we introduce UNDREAM, the first software framework that bridges the gap between photorealistic simulators and differentiable renderers to enable end-to-end optimization of adversarial perturbations on any 3D objects. UNDREAM enables manipulation of the environment by offering complete control over weather, lighting, backgrounds, camera angles, trajectories, and realistic human and object movements, thereby allowing the creation of diverse scenes. We showcase a wide array of distinct physically plausible adversarial objects that UNDREAM enables researchers to swiftly explore in different configurable environments. This combination of photorealistic simulation and differentiable optimization opens new avenues for advancing research of physical adversarial attacks.
♻ ☆ ESCA: Contextualizing Embodied Agents via Scene-Graph Generation NeurIPS 2025
Multi-modal large language models (MLLMs) are making rapid progress toward general-purpose embodied agents. However, existing MLLMs do not reliably capture fine-grained links between low-level visual features and high-level textual semantics, leading to weak grounding and inaccurate perception. To overcome this challenge, we propose ESCA, a framework that contextualizes embodied agents by grounding their perception in spatial-temporal scene graphs. At its core is SGCLIP, a novel, open-domain, promptable foundation model for generating scene graphs that is based on CLIP. SGCLIP is trained on 87K+ open-domain videos using a neurosymbolic pipeline that aligns automatically generated captions with scene graphs produced by the model itself, eliminating the need for human-labeled annotations. We demonstrate that SGCLIP excels in both prompt-based inference and task-specific fine-tuning, achieving state-of-the-art results on scene graph generation and action localization benchmarks. ESCA with SGCLIP improves perception for embodied agents based on both open-source and commercial MLLMs, achieving state of-the-art performance across two embodied environments. Notably, ESCA significantly reduces agent perception errors and enables open-source models to surpass proprietary baselines. We release the source code for SGCLIP model training at https://github.com/video-fm/LASER and for the embodied agent at https://github.com/video-fm/ESCA.
comment: Accepted as a Spotlight Paper at NeurIPS 2025
♻ ☆ Now you see me! Attribution Distributions Reveal What is Truly Important for a Prediction
Neural networks are regularly employed in high-stakes decision-making, where understanding and transparency is key. Attribution methods have been developed to gain understanding into which input features neural networks use for a specific prediction. Although widely used in computer vision, these methods often result in unspecific saliency maps that fail to identify the relevant information that led to a decision, supported by different benchmarks results. Here, we revisit the common attribution pipeline and identify one cause for the lack of specificity in attributions as the computation of attribution of isolated logits. Instead, we suggest to combine attributions of multiple class logits in analogy to how the softmax combines the information across logits. By computing probability distributions of attributions over classes for each spatial location in the image, we unleash the true capabilities of existing attribution methods, revealing better object- and instance-specificity and uncovering discriminative as well as shared features between classes. On common benchmarks, including the grid-pointing game and randomization-based sanity checks, we show that this reconsideration of how and where we compute attributions across the network improves established attribution methods while staying agnostic to model architectures. We make the code publicly available: https://github.com/nilspwalter/var.
♻ ☆ SafeCOMM: A Study on Safety Degradation in Fine-Tuned Telecom Large Language Models
Fine-tuning large language models (LLMs) on telecom datasets is a common practice to adapt general-purpose models to the telecom domain. However, little attention has been paid to how this process may compromise model safety. Recent research has shown that even benign fine-tuning can degrade the safety alignment of LLMs, causing them to respond to harmful or unethical user queries. In this paper, we investigate this issue by fine-tuning LLMs on three representative telecom datasets and show that safety degrades even for light telecom domain adaptation. To this end, we introduce TeleHarm, the first telecom-specific red-teaming benchmark, which we use alongside established Direct-Harm and HexPhi datasets to systematically assess harmful behavior. We further extend our analysis to publicly available TeleLLMs that were continually pre-trained on large telecom corpora, revealing that safety alignment is severely lacking, primarily due to the omission of safety-focused instruction tuning. To address these issues, we evaluate three realignment defenses: SafeInstruct, SafeLoRA, SafeMERGE. We show that, across all settings, the proposed defenses can effectively restore safety without compromising telecom task performance, leading to Safe teleCOMMunication (SafeCOMM) models. Our work serves as both a diagnostic study and practical guide for safety realignment in telecom-tuned LLMs, underscoring the need for safety-aware instruction and fine-tuning in the telecom domain.
♻ ☆ Enhancing Graph Neural Networks: A Mutual Learning Approach
Knowledge distillation (KD) techniques have emerged as a powerful tool for transferring expertise from complex teacher models to lightweight student models, particularly beneficial for deploying high-performance models in resource-constrained devices. This approach has been successfully applied to graph neural networks (GNNs), harnessing their expressive capabilities to generate node embeddings that capture structural and feature-related information. In this study, we depart from the conventional KD approach by exploring the potential of collaborative learning among GNNs. In the absence of a pre-trained teacher model, we show that relatively simple and shallow GNN architectures can synergetically learn efficient models capable of performing better during inference, particularly in tackling multiple tasks. We propose a collaborative learning framework where ensembles of student GNNs mutually teach each other throughout the training process. We introduce an adaptive logit weighting unit to facilitate efficient knowledge exchange among models and an entropy enhancement technique to improve mutual learning. These components dynamically empower the models to adapt their learning strategies during training, optimizing their performance for downstream tasks. Extensive experiments conducted on three datasets each for node and graph classification demonstrate the effectiveness of our approach.
♻ ☆ On the Stability of Graph Convolutional Neural Networks: A Probabilistic Perspective
Graph convolutional neural networks (GCNNs) have emerged as powerful tools for analyzing graph-structured data, achieving remarkable success across diverse applications. However, the theoretical understanding of the stability of these models, i.e., their sensitivity to small changes in the graph structure, remains in rather limited settings, hampering the development and deployment of robust and trustworthy models in practice. To fill this gap, we study how perturbations in the graph topology affect GCNN outputs and propose a novel formulation for analyzing model stability. Unlike prior studies that focus only on worst-case perturbations, our distribution-aware formulation characterizes output perturbations across a broad range of input data. This way, our framework enables, for the first time, a probabilistic perspective on the interplay between the statistical properties of the node data and perturbations in the graph topology. We conduct extensive experiments to validate our theoretical findings and demonstrate their benefits over existing baselines, in terms of both representation stability and adversarial attacks on downstream tasks. Our results demonstrate the practical significance of the proposed formulation and highlight the importance of incorporating data distribution into stability analysis.
♻ ☆ ProSpero: Active Learning for Robust Protein Design Beyond Wild-Type Neighborhoods NeurIPS 2025
Designing protein sequences of both high fitness and novelty is a challenging task in data-efficient protein engineering. Exploration beyond wild-type neighborhoods often leads to biologically implausible sequences or relies on surrogate models that lose fidelity in novel regions. Here, we propose ProSpero, an active learning framework in which a frozen pre-trained generative model is guided by a surrogate updated from oracle feedback. By integrating fitness-relevant residue selection with biologically-constrained Sequential Monte Carlo sampling, our approach enables exploration beyond wild-type neighborhoods while preserving biological plausibility. We show that our framework remains effective even when the surrogate is misspecified. ProSpero consistently outperforms or matches existing methods across diverse protein engineering tasks, retrieving sequences of both high fitness and novelty.
comment: NeurIPS 2025
♻ ☆ On the Structure of Stationary Solutions to McKean-Vlasov Equations with Applications to Noisy Transformers
We study stationary solutions of McKean-Vlasov equations on the circle. Our main contributions stem from observing an exact equivalence between solutions of the stationary McKean-Vlasov equation and an infinite-dimensional quadratic system of equations over Fourier coefficients, which allows explicit characterization of the stationary states in a sequence space rather than a function space. This framework provides a transparent description of local bifurcations, characterizing their periodicity, and resonance structures, while accommodating singular potentials. We derive analytic expressions that characterize the emergence, form and shape (supercritical, critical, subcritical or transcritical) of bifurcations involving possibly multiple Fourier modes and connect them with discontinuous phase transitions. We also characterize, under suitable assumptions, the detailed structure of the stationary bifurcating solutions that are accurate upto an arbitrary number of Fourier modes. At the global level, we establish regularity and concavity properties of the free energy landscape, proving existence, compactness, and coexistence of globally minimizing stationary measures, further identifying discontinuous phase transitions with points of non-differentiability of the minimum free energy map. As an application, we specialize the theory to the Noisy Mean-Field Transformer model, where we show how changing the inverse temperature parameter $\beta$ affects the geometry of the infinitely many bifurcations from the uniform measure. We also explain how increasing $\beta$ can lead to a rich class of approximate multi-mode stationary solutions which can be seen as `metastable states'. Further, a sharp transition from continuous to discontinuous (first-order) phase behavior is observed as $\beta$ increases.
comment: 46 pages, 5 figures
♻ ☆ WhaleVAD-BPN: Improving Baleen Whale Call Detection with Boundary Proposal Networks and Post-processing Optimisation
While recent sound event detection (SED) systems can identify baleen whale calls in marine audio, challenges related to false positive and minority-class detection persist. We propose the boundary proposal network (BPN), which extends an existing lightweight SED system. The BPN is inspired by work in image object detection and aims to reduce the number of false positive detections. It achieves this by using intermediate latent representations computed within the backbone classification model to gate the final output. When added to an existing SED system, the BPN achieves a 16.8 % absolute increase in precision, as well as 21.3 % and 9.4 % improvements in the F1-score for minority-class d-calls and bp-calls, respectively. We further consider two approaches to the selection of post-processing hyperparameters: a forward-search and a backward-search. By separately optimising event-level and frame-level hyperparameters, these two approaches lead to considerable performance improvements over parameters selected using empirical methods. The complete WhaleVAD-BPN system achieves a cross-validated development F1-score of 0.475, which is a 9.8 % absolute improvement over the baseline.
♻ ☆ DmC: Nearest Neighbor Guidance Diffusion Model for Offline Cross-domain Reinforcement Learning ECAI 2025
Cross-domain offline reinforcement learning (RL) seeks to enhance sample efficiency in offline RL by utilizing additional offline source datasets. A key challenge is to identify and utilize source samples that are most relevant to the target domain. Existing approaches address this challenge by measuring domain gaps through domain classifiers, target transition dynamics modeling, or mutual information estimation using contrastive loss. However, these methods often require large target datasets, which is impractical in many real-world scenarios. In this work, we address cross-domain offline RL under a limited target data setting, identifying two primary challenges: (1) Dataset imbalance, which is caused by large source and small target datasets and leads to overfitting in neural network-based domain gap estimators, resulting in uninformative measurements; and (2) Partial domain overlap, where only a subset of the source data is closely aligned with the target domain. To overcome these issues, we propose DmC, a novel framework for cross-domain offline RL with limited target samples. Specifically, DmC utilizes $k$-nearest neighbor ($k$-NN) based estimation to measure domain proximity without neural network training, effectively mitigating overfitting. Then, by utilizing this domain proximity, we introduce a nearest-neighbor-guided diffusion model to generate additional source samples that are better aligned with the target domain, thus enhancing policy learning with more effective source samples. Through theoretical analysis and extensive experiments in diverse MuJoCo environments, we demonstrate that DmC significantly outperforms state-of-the-art cross-domain offline RL methods, achieving substantial performance gains.
comment: accepted at ECAI 2025; offline cross-domain reinforcement learning with a guided diffusion model;
♻ ☆ Universal Sequence Preconditioning
We study the problem of preconditioning in sequential prediction. From the theoretical lens of linear dynamical systems, we show that convolving the input sequence corresponds to applying a polynomial to the hidden transition matrix. Building on this insight, we propose a universal preconditioning method that convolves the input with coefficients from orthogonal polynomials such as Chebyshev or Legendre. We prove that this approach reduces regret for two distinct prediction algorithms and yields the first ever sublinear and hidden-dimension independent regret bounds (up to logarithmic factors) that hold for systems with marginally stable and asymmetric transition matrices. Finally, extensive synthetic and real-world experiments show that this simple preconditioning strategy improves the performance of a diverse range of algorithms, including recurrent neural networks, and generalizes to signals beyond linear dynamical systems.
comment: 35 pages, 3 tables, 5 figures
♻ ☆ Deriving Transformer Architectures as Implicit Multinomial Regression
While attention has been empirically shown to improve model performance, it lacks a rigorous mathematical justification. This short paper establishes a novel connection between attention mechanisms and multinomial regression. Specifically, we show that in a fixed multinomial regression setting, optimizing over latent features yields solutions that align with the dynamics induced on features by attention blocks. In other words, the evolution of representations through a transformer can be interpreted as a trajectory that recovers the optimal features for classification.
comment: 4 pages, additional 3 pages of references and supplementary details
♻ ☆ The Marked Edge Walk: A Novel MCMC Algorithm for Sampling of Graph Partitions
Novel Markov Chain Monte Carlo (MCMC) methods have enabled the generation of large ensembles of redistricting plans through graph partitioning. However, existing algorithms such as Reversible Recombination (RevReCom) and Metropolized Forest Recombination (MFR) are constrained to sampling from distributions related to spanning trees. We introduce the marked edge walk (MEW), a novel MCMC algorithm for sampling from the space of graph partitions under a tunable distribution. The walk operates on the space of spanning trees with marked edges, allowing for calculable transition probabilities for use in the Metropolis-Hastings algorithm. Empirical results on real-world dual graphs show convergence under target distributions unrelated to spanning trees. For this reason, MEW represents an advancement in flexible ensemble generation.
♻ ☆ Leveraging Approximate Caching for Faster Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) improves the reliability of large language model (LLM) answers by integrating external knowledge. However, RAG increases the end-to-end inference time since looking for relevant documents from large vector databases is computationally expensive. To address this, we introduce Proximity, an approximate key-value cache that optimizes the RAG workflow by leveraging similarities in user queries. Instead of treating each query independently, Proximity reuses previously retrieved documents when similar queries appear, substantially reducing the reliance on expensive vector database lookups. To efficiently scale, Proximity employs a locality-sensitive hashing (LSH) scheme that enables fast cache lookups while preserving retrieval accuracy. We evaluate Proximity using the MMLU and MedRAG question-answering benchmarks. Our experiments demonstrate that Proximity with our LSH scheme and a realistically-skewed MedRAG workload reduces database calls by 77.2% while maintaining database recall and test accuracy. We experiment with different similarity tolerances and cache capacities, and show that the time spent within the Proximity cache remains low and constant (4.8 microseconds) even as the cache grows substantially in size. Our results demonstrate that approximate caching is a practical and effective strategy for optimizing RAG-based systems.
comment: Accepted at Middleware '25
♻ ☆ Validating LLM-as-a-Judge Systems under Rating Indeterminacy NeurIPS 2025
The LLM-as-a-judge paradigm, in which a judge LLM system replaces human raters in rating the outputs of other generative AI (GenAI) systems, plays a critical role in scaling and standardizing GenAI evaluations. To validate such judge systems, evaluators assess human--judge agreement by first collecting multiple human ratings for each item in a validation corpus, then aggregating the ratings into a single, per-item gold label rating. For many items, however, rating criteria may admit multiple valid interpretations, so a human or LLM rater may deem multiple ratings "reasonable" or "correct." We call this condition rating indeterminacy. Problematically, many rating tasks that contain rating indeterminacy rely on forced-choice elicitation, whereby raters are instructed to select only one rating for each item. In this paper, we introduce a framework for validating LLM-as-a-judge systems under rating indeterminacy. We draw theoretical connections between different measures of judge system performance under different human--judge agreement metrics, and different rating elicitation and aggregation schemes. We demonstrate that differences in how humans and LLMs resolve rating indeterminacy when responding to forced-choice rating instructions can heavily bias LLM-as-a-judge validation. Through extensive experiments involving 11 real-world rating tasks and 9 commercial LLMs, we show that standard validation approaches that rely upon forced-choice ratings select judge systems that are highly suboptimal, performing as much as 31% worse than judge systems selected by our approach that uses multi-label "response set" ratings to account for rating indeterminacy. We conclude with concrete recommendations for more principled approaches to LLM-as-a-judge validation.
comment: NeurIPS 2025
♻ ☆ Less is More: Local Intrinsic Dimensions of Contextual Language Models NeurIPS 2025
Understanding the internal mechanisms of large language models (LLMs) remains a challenging and complex endeavor. Even fundamental questions, such as how fine-tuning affects model behavior, often require extensive empirical evaluation. In this paper, we introduce a novel perspective based on the geometric properties of contextual latent embeddings to study the effects of training and fine-tuning. To that end, we measure the local dimensions of a contextual language model's latent space and analyze their shifts during training and fine-tuning. We show that the local dimensions provide insights into the model's training dynamics and generalization ability. Specifically, the mean of the local dimensions predicts when the model's training capabilities are exhausted, as exemplified in a dialogue state tracking task, overfitting, as demonstrated in an emotion recognition task, and grokking, as illustrated with an arithmetic task. Furthermore, our experiments suggest a practical heuristic: reductions in the mean local dimension tend to accompany and predict subsequent performance gains. Through this exploration, we aim to provide practitioners with a deeper understanding of the implications of fine-tuning on embedding spaces, facilitating informed decisions when configuring models for specific applications. The results of this work contribute to the ongoing discourse on the interpretability, adaptability, and generalizability of LLMs by bridging the gap between intrinsic model mechanisms and geometric properties in the respective embeddings.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025; in press). 10 pages, with an additional 17 pages in the appendix. Our code is available at https://github.com/aidos-lab/Topo_LLM_public and https://github.com/aidos-lab/grokking-via-lid
♻ ☆ Effortless, Simulation-Efficient Bayesian Inference using Tabular Foundation Models
Simulation-based inference (SBI) offers a flexible and general approach to performing Bayesian inference: In SBI, a neural network is trained on synthetic data simulated from a model and used to rapidly infer posterior distributions for observed data. A key goal for SBI is to achieve accurate inference with as few simulations as possible, especially for expensive simulators. In this work, we address this challenge by repurposing recent probabilistic foundation models for tabular data: We show how tabular foundation models -- specifically TabPFN -- can be used as pre-trained autoregressive conditional density estimators for SBI. We propose Neural Posterior Estimation with Prior-data Fitted Networks (NPE-PFN) and show that it is competitive with current SBI approaches in terms of accuracy for both benchmark tasks and two complex scientific inverse problems. Crucially, it often substantially outperforms them in terms of simulation efficiency, sometimes requiring orders of magnitude fewer simulations. NPE-PFN eliminates the need for inference network selection, training, and hyperparameter tuning. We also show that it exhibits superior robustness to model misspecification and can be scaled to simulation budgets that exceed the context size limit of TabPFN. NPE-PFN provides a new direction for SBI, where training-free, general-purpose inference models offer efficient, easy-to-use, and flexible solutions for a wide range of stochastic inverse problems.
♻ ☆ Boosting Revisited: Benchmarking and Advancing LP-Based Ensemble Methods
Despite their theoretical appeal, totally corrective boosting methods based on linear programming have received limited empirical attention. In this paper, we conduct the first large-scale experimental study of six LP-based boosting formulations, including two novel methods, NM-Boost and QRLP-Boost, across 20 diverse datasets. We evaluate the use of both heuristic and optimal base learners within these formulations, and analyze not only accuracy, but also ensemble sparsity, margin distribution, anytime performance, and hyperparameter sensitivity. We show that totally corrective methods can outperform or match state-of-the-art heuristics like XGBoost and LightGBM when using shallow trees, while producing significantly sparser ensembles. We further show that these methods can thin pre-trained ensembles without sacrificing performance, and we highlight both the strengths and limitations of using optimal decision trees in this context.
comment: Published in TMLR, see: https://openreview.net/forum?id=lscC4PZUE4
♻ ☆ Covering Multiple Objectives with a Small Set of Solutions Using Bayesian Optimization
In multi-objective black-box optimization, the goal is typically to find solutions that optimize a set of $T$ black-box objective functions, $f_1, \ldots f_T$, simultaneously. Traditional approaches often seek a single Pareto-optimal set that balances trade-offs among all objectives. In contrast, we consider a problem setting that departs from this paradigm: finding a small set of $K < T$ solutions, that collectively "cover" the $T$ objectives. A set of solutions is defined as "covering" if, for each objective $f_1, \ldots f_T$, there is at least one good solution. A motivating example for this problem setting occurs in drug design. For example, we may have $T$ pathogens and aim to identify a set of $K < T$ antibiotics such that at least one antibiotic can be used to treat each pathogen. This problem, known as coverage optimization, has yet to be tackled with the Bayesian optimization (BO) framework. To fill this void, we develop Multi-Objective Coverage Bayesian Optimization (MOCOBO), a BO algorithm for solving coverage optimization. Our approach is based on a new acquisition function reminiscent of expected improvement in the vanilla BO setup. We demonstrate the performance of our method on high-dimensional black-box optimization tasks, including applications in peptide and molecular design. Results show that the coverage of the $K < T$ solutions found by MOCOBO matches or nearly matches the coverage of $T$ solutions obtained by optimizing each objective individually. Furthermore, in in vitro experiments, the peptides found by MOCOBO exhibited high potency against drug-resistant pathogens, further demonstrating the potential of MOCOBO for drug discovery. All of our code is publicly available at the following link: https://github.com/nataliemaus/mocobo.
♻ ☆ Automatic Discovery of One Parameter Subgroups of $SO(n)$
We introduce a novel framework for the automatic discovery of one-parameter subgroups ($H_{\gamma}$) of $SO(3)$ and, more generally, $SO(n)$. One-parameter subgroups of $SO(n)$ are crucial in a wide range of applications, including robotics, quantum mechanics, and molecular structure analysis. Our method utilizes the standard Jordan form of skew-symmetric matrices, which define the Lie algebra of $SO(n)$, to establish a canonical form for orbits under the action of $H_{\gamma}$. This canonical form is then employed to derive a standardized representation for $H_{\gamma}$-invariant functions. By learning the appropriate parameters, the framework uncovers the underlying one-parameter subgroup $H_{\gamma}$. The effectiveness of the proposed approach is demonstrated through tasks such as double pendulum modeling, moment of inertia prediction, top quark tagging and invariant polynomial regression, where it successfully recovers meaningful subgroup structure and produces interpretable, symmetry-aware representations.
♻ ☆ Onboard Mission Replanning for Adaptive Cooperative Multi-Robot Systems
Cooperative autonomous robotic systems have significant potential for executing complex multi-task missions across space, air, ground, and maritime domains. But they commonly operate in remote, dynamic and hazardous environments, requiring rapid in-mission adaptation without reliance on fragile or slow communication links to centralised compute. Fast, on-board replanning algorithms are therefore needed to enhance resilience. Reinforcement Learning shows strong promise for efficiently solving mission planning tasks when formulated as Travelling Salesperson Problems (TSPs), but existing methods: 1) are unsuitable for replanning, where agents do not start at a single location; 2) do not allow cooperation between agents; 3) are unable to model tasks with variable durations; or 4) lack practical considerations for on-board deployment. Here we define the Cooperative Mission Replanning Problem as a novel variant of multiple TSP with adaptations to overcome these issues, and develop a new encoder/decoder-based model using Graph Attention Networks and Attention Models to solve it effectively and efficiently. Using a simple example of cooperative drones, we show our replanner consistently (90% of the time) maintains performance within 10% of the state-of-the-art LKH3 heuristic solver, whilst running 85-370 times faster on a Raspberry Pi. This work paves the way for increased resilience in autonomous multi-agent systems.
comment: 9 pages, 5 figures, 1 table
♻ ☆ Conformal Prediction for Hierarchical Data
We consider conformal prediction for multivariate data and focus on hierarchical data, where some components are linear combinations of others. Intuitively, the hierarchical structure can be leveraged to reduce the size of prediction regions for the same coverage level. We implement this intuition by including a projection step (also called a reconciliation step) in the split conformal prediction [SCP] procedure, and prove that the resulting prediction regions are indeed globally smaller. We do so both under the classic objective of joint coverage and under a new and challenging task: component-wise coverage, for which efficiency results are more difficult to obtain. The associated strategies and their analyses are based both on the literature of SCP and of forecast reconciliation, which we connect. We also illustrate the theoretical findings, for different scales of hierarchies on simulated data.
comment: 38 pages, 3 figures
♻ ☆ Psi-Sampler: Initial Particle Sampling for SMC-Based Inference-Time Reward Alignment in Score Models NeurIPS 2025
We introduce $\Psi$-Sampler, an SMC-based framework incorporating pCNL-based initial particle sampling for effective inference-time reward alignment with a score-based generative model. Inference-time reward alignment with score-based generative models has recently gained significant traction, following a broader paradigm shift from pre-training to post-training optimization. At the core of this trend is the application of Sequential Monte Carlo (SMC) to the denoising process. However, existing methods typically initialize particles from the Gaussian prior, which inadequately captures reward-relevant regions and results in reduced sampling efficiency. We demonstrate that initializing from the reward-aware posterior significantly improves alignment performance. To enable posterior sampling in high-dimensional latent spaces, we introduce the preconditioned Crank-Nicolson Langevin (pCNL) algorithm, which combines dimension-robust proposals with gradient-informed dynamics. This approach enables efficient and scalable posterior sampling and consistently improves performance across various reward alignment tasks, including layout-to-image generation, quantity-aware generation, and aesthetic-preference generation, as demonstrated in our experiments. Project Webpage: https://psi-sampler.github.io/
comment: NeurIPS 2025, Spotlight Presentation
♻ ☆ DataRater: Meta-Learned Dataset Curation NeurIPS 2025
The quality of foundation models depends heavily on their training data. Consequently, great efforts have been put into dataset curation. Yet most approaches rely on manual tuning of coarse-grained mixtures of large buckets of data, or filtering by hand-crafted heuristics. An approach that is ultimately more scalable (let alone more satisfying) is to \emph{learn} which data is actually valuable for training. This type of meta-learning could allow more sophisticated, fine-grained, and effective curation. Our proposed \emph{DataRater} is an instance of this idea. It estimates the value of training on any particular data point. This is done by meta-learning using `meta-gradients', with the objective of improving training efficiency on held out data. In extensive experiments across a range of model scales and datasets, we find that using our DataRater to filter data is highly effective, resulting in significantly improved compute efficiency.
comment: NeurIPS 2025
♻ ☆ A Principle of Targeted Intervention for Multi-Agent Reinforcement Learning NeurIPS 2025
Steering cooperative multi-agent reinforcement learning (MARL) towards desired outcomes is challenging, particularly when the global guidance from a human on the whole multi-agent system is impractical in a large-scale MARL. On the other hand, designing external mechanisms (e.g., intrinsic rewards and human feedback) to coordinate agents mostly relies on empirical studies, lacking a easy-to-use research tool. In this work, we employ multi-agent influence diagrams (MAIDs) as a graphical framework to address the above issues. First, we introduce the concept of MARL interaction paradigms (orthogonal to MARL learning paradigms), using MAIDs to analyze and visualize both unguided self-organization and global guidance mechanisms in MARL. Then, we design a new MARL interaction paradigm, referred to as the targeted intervention paradigm that is applied to only a single targeted agent, so the problem of global guidance can be mitigated. In implementation, we introduce a causal inference technique, referred to as Pre-Strategy Intervention (PSI), to realize the targeted intervention paradigm. Since MAIDs can be regarded as a special class of causal diagrams, a composite desired outcome that integrates the primary task goal and an additional desired outcome can be achieved by maximizing the corresponding causal effect through the PSI. Moreover, the bundled relevance graph analysis of MAIDs provides a tool to identify whether an MARL learning paradigm is workable under the design of an MARL interaction paradigm. In experiments, we demonstrate the effectiveness of our proposed targeted intervention, and verify the result of relevance graph analysis.
comment: Published in NeurIPS 2025
♻ ☆ Neural variational inference for cutting feedback during uncertainty propagation
In many scientific applications, uncertainty of estimates from an earlier (upstream) analysis needs to be propagated in subsequent (downstream) Bayesian analysis, without feedback. Cutting feedback methods, also termed cut-Bayes, achieve this by constructing a cut-posterior distribution that prevents backward information flow. Cutting feedback like nested MCMC is computationally challenging while variational inference (VI) cut-Bayes methods need two variational approximations and require access to the upstream data and model. In this manuscript we propose, NeVI-Cut, a provably accurate and modular neural network-based variational inference method for cutting feedback. We directly utilize samples from the upstream analysis without requiring access to the upstream data or model. This simultaneously preserves modularity of analysis and reduces approximation errors by avoiding a variational approximation for the upstream model. We then use normalizing flows to specify the conditional variational family for the downstream parameters and estimate the conditional cut-posterior as a variational solution of Monte Carlo average loss over all the upstream samples. We provide theoretical guarantees on the NeVI-Cut estimate to approximate any cut-posterior. Our results are in a fixed-data regime and provide convergence rates of the actual variational solution, quantifying how richness of the neural architecture and the complexity of the target cut-posterior dictate the approximation quality. In the process, we establish new results on uniform Kullback-Leibler approximation rates of conditional normalizing flows. Simulation studies and two real-world analyses illustrate how NeVI-Cut achieves significant computational gains over traditional cutting feedback methods and is considerably more accurate than parametric variational cut approaches.
♻ ☆ Interpretable Neural ODEs for Gene Regulatory Network Discovery under Perturbations
Modern high-throughput biological datasets with thousands of perturbations provide the opportunity for large-scale discovery of causal graphs that represent the regulatory interactions between genes. Differentiable causal graphical models have been proposed to infer a gene regulatory network (GRN) from large scale interventional datasets, capturing the causal gene regulatory relationships from genetic perturbations. However, existing models are limited in their expressivity and scalability while failing to address the dynamic nature of biological processes such as cellular differentiation. We propose PerturbODE, a novel framework that incorporates biologically informative neural ordinary differential equations (neural ODEs) to model cell state trajectories under perturbations and derive the causal GRN from the neural ODE's parameters. We demonstrate PerturbODE's efficacy in trajectory prediction and GRN inference across simulated and real over-expression datasets.
♻ ☆ Controllable Collision Scenario Generation via Collision Pattern Prediction
Evaluating the safety of autonomous vehicles (AVs) requires diverse, safety-critical scenarios, with collisions being especially important yet rare and unsafe to collect in the real world. Therefore, the community has been focusing on generating safety-critical scenarios in simulation. However, controlling attributes such as collision type and time-to-accident (TTA) remains challenging. We introduce a new task called controllable collision scenario generation, where the goal is to produce trajectories that realize a user-specified collision type and TTA, to investigate the feasibility of automatically generating desired collision scenarios. To support this task, we present COLLIDE, a large-scale collision scenario dataset constructed by transforming real-world driving logs into diverse collisions, balanced across five representative collision types and different TTA intervals. We propose a framework that predicts Collision Pattern, a compact and interpretable representation that captures the spatial configuration of the ego and the adversarial vehicles at impact, before rolling out full adversarial trajectories. Experiments show that our approach outperforms strong baselines in both collision rate and controllability. Furthermore, generated scenarios consistently induce higher planner failure rates, revealing limitations of existing planners. We demonstrate that these scenarios fine-tune planners for robustness improvements, contributing to safer AV deployment in different collision scenarios. Project page is available at https://submit-user.github.io/anon2025
comment: 8 pages, 3 figures
♻ ☆ Unveiling m-Sharpness Through the Structure of Stochastic Gradient Noise
Sharpness-aware minimization (SAM) has emerged as a highly effective technique for improving model generalization, but its underlying principles are not fully understood. We investigated the phenomenon known as m-sharpness, where the performance of SAM improves monotonically as the micro-batch size for computing perturbations decreases. In practice, the empirical m-sharpness effect underpins the deployment of SAM in distributed training, yet a rigorous theoretical account has remained lacking. To provide a theoretical explanation for m-sharpness, we leverage an extended Stochastic Differential Equation (SDE) framework and analyze the structure of stochastic gradient noise (SGN) to characterize the dynamics of various SAM variants, including n-SAM and m-SAM. Our findings reveal that the stochastic noise introduced during SAM perturbations inherently induces a variance-based sharpness regularization effect. Motivated by our theoretical insights, we introduce Reweighted SAM (RW-SAM), which employs sharpness-weighted sampling to mimic the generalization benefits of m-SAM while remaining parallelizable. Comprehensive experiments validate the effectiveness of our theoretical analysis and proposed method.
♻ ☆ Estimating LLM Consistency: A User Baseline vs Surrogate Metrics EMNLP 2025
Large language models (LLMs) are prone to hallucinations and sensitiveto prompt perturbations, often resulting in inconsistent or unreliablegenerated text. Different methods have been proposed to mitigate suchhallucinations and fragility, one of which is to measure theconsistency of LLM responses -- the model's confidence in the responseor likelihood of generating a similar response when resampled. Inprevious work, measuring LLM response consistency often relied oncalculating the probability of a response appearing within a pool of resampledresponses, analyzing internal states, or evaluating logits of resopnses.However, it was not clear how well theseapproaches approximated users' perceptions of consistency of LLMresponses. To find out, we performed a user study ($n=2,976$)demonstrating that current methods for measuring LLM responseconsistency typically do not align well with humans' perceptions of LLMconsistency. We propose a logit-based ensemble method for estimatingLLM consistency and show that our method matches the performance of thebest-performing existing metric in estimating human ratings of LLMconsistency. Our results suggest that methods for estimating LLMconsistency without human evaluation are sufficiently imperfect towarrant broader use of evaluation with human input; this would avoidmisjudging the adequacy of models because of the imperfections ofautomated consistency metrics.
comment: Published as a main conference paper at EMNLP 2025
♻ ☆ Can Large Language Models Unlock Novel Scientific Research Ideas? EMNLP 2025
The widespread adoption of Large Language Models (LLMs) and publicly available ChatGPT have marked a significant turning point in the integration of Artificial Intelligence (AI) into people's everyday lives. This study examines the ability of Large Language Models (LLMs) to generate future research ideas from scientific papers. Unlike tasks such as summarization or translation, idea generation lacks a clearly defined reference set or structure, making manual evaluation the default standard. However, human evaluation in this setting is extremely challenging ie: it requires substantial domain expertise, contextual understanding of the paper, and awareness of the current research landscape. This makes it time-consuming, costly, and fundamentally non-scalable, particularly as new LLMs are being released at a rapid pace. Currently, there is no automated evaluation metric specifically designed for this task. To address this gap, we propose two automated evaluation metrics: Idea Alignment Score (IAScore) and Idea Distinctness Index. We further conducted human evaluation to assess the novelty, relevance, and feasibility of the generated future research ideas. This investigation offers insights into the evolving role of LLMs in idea generation, highlighting both its capability and limitations. Our work contributes to the ongoing efforts in evaluating and utilizing language models for generating future research ideas. We make our datasets and codes publicly available
comment: EMNLP 2025 (Main)
♻ ☆ Reasoning as an Adaptive Defense for Safety
Reasoning methods that adaptively allocate test-time compute have advanced LLM performance on easy to verify domains such as math and code. In this work, we study how to utilize this approach to train models that exhibit a degree of robustness to safety vulnerabilities, and show that doing so can provide benefits. We build a recipe called $\textit{TARS}$ (Training Adaptive Reasoners for Safety), a reinforcement learning (RL) approach that trains models to reason about safety using chain-of-thought traces and a reward signal that balances safety with task completion. To build TARS, we identify three critical design choices: (1) a ``lightweight'' warmstart SFT stage, (2) a mix of harmful, harmless, and ambiguous prompts to prevent shortcut behaviors such as too many refusals, and (3) a reward function to prevent degeneration of reasoning capabilities during training. Models trained with TARS exhibit adaptive behaviors by spending more compute on ambiguous queries, leading to better safety-refusal trade-offs. They also internally learn to better distinguish between safe and unsafe prompts and attain greater robustness to both white-box (e.g., GCG) and black-box attacks (e.g., PAIR). Overall, our work provides an effective, open recipe for training LLMs against jailbreaks and harmful requests by reasoning per prompt.
comment: 44 pages, 10 Figures, 7 Tables
♻ ☆ RotaTouille: Rotation Equivariant Deep Learning for Contours
Contours or closed planar curves are common in many domains. For example, they appear as object boundaries in computer vision, isolines in meteorology, and the orbits of rotating machinery. In many cases when learning from contour data, planar rotations of the input will result in correspondingly rotated outputs. It is therefore desirable that deep learning models be rotationally equivariant. In addition, contours are typically represented as an ordered sequence of edge points, where the choice of starting point is arbitrary. It is therefore also desirable for deep learning methods to be equivariant under cyclic shifts. We present RotaTouille, a deep learning framework for learning from contour data that achieves both rotation and cyclic shift equivariance through complex-valued circular convolution. We further introduce and characterize equivariant non-linearities, coarsening layers, and global pooling layers to obtain invariant representations for downstream tasks. Finally, we demonstrate the effectiveness of RotaTouille through experiments in shape classification, reconstruction, and contour regression.
comment: 19 pages, 6 figures
♻ ☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
♻ ☆ HOPSE: Scalable Higher-Order Positional and Structural Encoder for Combinatorial Representations
While Graph Neural Networks (GNNs) have proven highly effective at modeling relational data, pairwise connections cannot fully capture multi-way relationships naturally present in complex real-world systems. In response to this, Topological Deep Learning (TDL) leverages more general combinatorial representations -- such as simplicial or cellular complexes -- to accommodate higher-order interactions. Existing TDL methods often extend GNNs through Higher-Order Message Passing (HOMP), but face critical \emph{scalability challenges} due to \textit{(i)} a combinatorial explosion of message-passing routes, and \textit{(ii)} significant complexity overhead from the propagation mechanism. This work presents HOPSE (Higher-Order Positional and Structural Encoder), an alternative method to solve tasks involving higher-order interactions \emph{without message passing}. Instead, HOPSE breaks \emph{arbitrary higher-order domains} into their neighborhood relationships using a Hasse graph decomposition. This method shows that decoupling the representation learning of neighborhood topology from that of attributes results in lower computational complexity, casting doubt on the need for HOMP. The experiments on molecular graph tasks and topological benchmarks show that HOPSE matches performance on traditional TDL datasets and outperforms HOMP methods on topological tasks, achieving up to $7\times$ speedups over HOMP-based models, opening a new path for scalable TDL.
♻ ☆ MOOSE-Chem: Large Language Models for Rediscovering Unseen Chemistry Scientific Hypotheses ICLR 2025
Scientific discovery plays a pivotal role in advancing human society, and recent progress in large language models (LLMs) suggests their potential to accelerate this process. However, it remains unclear whether LLMs can autonomously generate novel and valid hypotheses in chemistry. In this work, we investigate whether LLMs can discover high-quality chemistry hypotheses given only a research background-comprising a question and/or a survey-without restriction on the domain of the question. We begin with the observation that hypothesis discovery is a seemingly intractable task. To address this, we propose a formal mathematical decomposition grounded in a fundamental assumption: that most chemistry hypotheses can be composed from a research background and a set of inspirations. This decomposition leads to three practical subtasks-retrieving inspirations, composing hypotheses with inspirations, and ranking hypotheses - which together constitute a sufficient set of subtasks for the overall scientific discovery task. We further develop an agentic LLM framework, MOOSE-Chem, that is a direct implementation of this mathematical decomposition. To evaluate this framework, we construct a benchmark of 51 high-impact chemistry papers published and online after January 2024, each manually annotated by PhD chemists with background, inspirations, and hypothesis. The framework is able to rediscover many hypotheses with high similarity to the groundtruth, successfully capturing the core innovations-while ensuring no data contamination since it uses an LLM with knowledge cutoff date prior to 2024. Finally, based on LLM's surprisingly high accuracy on inspiration retrieval, a task with inherently out-of-distribution nature, we propose a bold assumption: that LLMs may already encode latent scientific knowledge associations not yet recognized by humans.
comment: Accepted by ICLR 2025
♻ ☆ Mixing It Up: Exploring Mixer Networks for Irregular Multivariate Time Series Forecasting
Forecasting Irregular Multivariate Time Series (IMTS) has recently emerged as a distinct research field, necessitating specialized models to address its unique challenges. While most forecasting literature assumes regularly spaced observations without missing values, many real-world datasets - particularly in healthcare, climate research, and biomechanics - violate these assumptions. Time Series (TS)-mixer models have achieved remarkable success in regular multivariate time series forecasting. However, they remain unexplored for IMTS due to their requirement for complete and evenly spaced observations. To bridge this gap, we introduce IMTS-Mixer, a novel forecasting architecture designed specifically for IMTS. Our approach retains the core principles of TS mixer models while introducing innovative methods to transform IMTS into fixed-size matrix representations, enabling their seamless integration with mixer modules. We evaluate IMTS-Mixer on a benchmark of four real-world datasets from various domains. Our results demonstrate that IMTS-Mixer establishes a new state-of-the-art in forecasting accuracy while also improving computational efficiency.
♻ ☆ TrajAgent: An LLM-Agent Framework for Trajectory Modeling via Large-and-Small Model Collaboration NeurIPS 2025
Trajectory modeling, which includes research on trajectory data pattern mining and future prediction, has widespread applications in areas such as life services, urban transportation, and public administration. Numerous methods have been proposed to address specific problems within trajectory modeling. However, the heterogeneity of data and the diversity of trajectory tasks make effective and reliable trajectory modeling an important yet highly challenging endeavor, even for domain experts. \fix In this paper, we propose \textit{TrajAgent}, a agent framework powered by large language models (LLMs), designed to facilitate robust and efficient trajectory modeling through automation modeling. This framework leverages and optimizes diverse specialized models to address various trajectory modeling tasks across different datasets effectively. \unfix~In \textit{TrajAgent}, we first develop \textit{UniEnv}, an execution environment with a unified data and model interface, to support the execution and training of various models. Building on \textit{UniEnv}, we introduce an agentic workflow designed for automatic trajectory modeling across various trajectory tasks and data. Furthermore, we introduce collaborative learning schema between LLM-based agents and small speciallized models, to enhance the performance of the whole framework effectively. Extensive experiments on four tasks using four real-world datasets demonstrate the effectiveness of \textit{TrajAgent} in automated trajectory modeling, achieving a performance improvement of \fix 2.38\%-69.91\% \unfix over baseline methods. The codes and data can be accessed via https://github.com/tsinghua-fib-lab/TrajAgent.
comment: Accepted by NeurIPS 2025, https://github.com/tsinghua-fib-lab/TrajAgent
♻ ☆ LLMs can hide text in other text of the same length
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages
♻ ☆ Assessing the Completeness of Traffic Scenario Categories for Automated Highway Driving Functions via Cluster-based Analysis
The ability to operate safely in increasingly complex traffic scenarios is a fundamental requirement for Automated Driving Systems (ADS). Ensuring the safe release of ADS functions necessitates a precise understanding of the occurring traffic scenarios. To support this objective, this work introduces a pipeline for traffic scenario clustering and the analysis of scenario category completeness. The Clustering Vector Quantized - Variational Autoencoder (CVQ-VAE) is employed for the clustering of highway traffic scenarios and utilized to create various catalogs with differing numbers of traffic scenario categories. Subsequently, the impact of the number of categories on the completeness considerations of the traffic scenario categories is analyzed. The results show an outperforming clustering performance compared to previous work. The trade-off between cluster quality and the amount of required data to maintain completeness is discussed based on the publicly available highD dataset.
♻ ☆ Noise-corrected GRPO: From Noisy Rewards to Unbiased Gradients
Reinforcement learning from human feedback (RLHF) or verifiable rewards (RLVR), the standard paradigm for aligning LLMs or building recent SOTA reasoning models, is highly sensitive to noise from inconsistent or erroneous rewards. Yet, the interaction between such noise and widely used group-based policy optimization methods remains underexplored. We introduce a noise-robust Group Relative Policy Optimization (GRPO) and Done Right GRPO (Dr.GRPO) framework that explicitly models reward corruption as Bernoulli noise. Our method applies noise correction after estimating reward flip probabilities to debias the learning signal, yielding provably unbiased gradient estimates. Theoretical analysis shows that group-based methods inherently mitigate individual-level noise, and our correction strategy amplifies this robustness. Empirically, we observe consistent improvements across math and code tasks when applying our noise correction to standard reward model usage, with particular gains of up to 6.7 percentage points in accuracy on math tasks and 1.5 on code tasks under realistic reward model conditions. This work bridges label-noise correction from supervised learning with modern RLHF, offering both theoretical insights and a practical algorithm for noisy real-world deployment.
♻ ☆ The Atlas of In-Context Learning: How Attention Heads Shape In-Context Retrieval Augmentation NeurIPS 2025
Large language models are able to exploit in-context learning to access external knowledge beyond their training data through retrieval-augmentation. While promising, its inner workings remain unclear. In this work, we shed light on the mechanism of in-context retrieval augmentation for question answering by viewing a prompt as a composition of informational components. We propose an attribution-based method to identify specialized attention heads, revealing in-context heads that comprehend instructions and retrieve relevant contextual information, and parametric heads that store entities' relational knowledge. To better understand their roles, we extract function vectors and modify their attention weights to show how they can influence the answer generation process. Finally, we leverage the gained insights to trace the sources of knowledge used during inference, paving the way towards more safe and transparent language models.
comment: Accepted at NeurIPS 2025
♻ ☆ ADPO: Anchored Direct Preference Optimization
Direct Preference Optimization (DPO) is an efficient alternative to reinforcement learning from human feedback (RLHF), yet it typically assumes hard binary labels and pairwise comparisons. Such assumptions can be brittle under noisy or distribution-shifted supervision. We present Anchored Direct Preference Optimization (ADPO), which (i) incorporates soft preference probabilities, (ii) aligns policy updates through reference anchoring that induces an implicit trust region, and (iii) extends to listwise learning via Plackett-Luce modeling. In controlled synthetic setups covering 12 scenarios (4 noise types x 3 severities) and 3 model scales, ADPO exhibits relative improvements ranging from 12% to 79% over a standard DPO baseline (10-seed means; 95% CIs in the Appendix). Hard labels tend to fare better under severe noise, whereas soft labels yield better calibration under distribution shift; listwise variants achieve the highest WinMass (expected probability mass on the ground-truth best item) in 9/12 scenarios. Larger models amplify ADPO's benefits (0.718 vs. 0.416 at hidden=256), suggesting that anchoring acts as an effective trust-region regularizer. We release code and configurations to facilitate reproducibility.
♻ ☆ Thought Anchors: Which LLM Reasoning Steps Matter?
Current frontier large-language models rely on reasoning to achieve state-of-the-art performance. Many existing interpretability are limited in this area, as standard methods have been designed to study single forward passes of a model rather than the multi-token computational steps that unfold during reasoning. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We introduce a black-box method that measures each sentence's counterfactual importance by repeatedly sampling replacement sentences from the model, filtering for semantically different ones, and continuing the chain of thought from that point onwards to quantify the sentence's impact on the distribution of final answers. We discover that certain sentences can have an outsized impact on the trajectory of the reasoning trace and final answer. We term these sentences \textit{thought anchors}. These are generally planning or uncertainty management sentences, and specialized attention heads consistently attend from subsequent sentences to thought anchors. We further show that examining sentence-sentence causal links within a reasoning trace gives insight into a model's behavior. Such information can be used to predict a problem's difficulty and the extent different question domains involve sequential or diffuse reasoning. As a proof-of-concept, we demonstrate that our techniques together provide a practical toolkit for analyzing reasoning models by conducting a detailed case study of how the model solves a difficult math problem, finding that our techniques yield a consistent picture of the reasoning trace's structure. We provide an open-source tool (thought-anchors.com) for visualizing the outputs of our methods on further problems. The convergence across our methods shows the potential of sentence-level analysis for a deeper understanding of reasoning models.
comment: Paul C. Bogdan and Uzay Macar contributed equally to this work, and their listed order was determined by coinflip. Neel Nanda and Arthur Conmy contributed equally to this work as senior authors, and their listed order was determined by coinflip
♻ ☆ Fast Rate Bounds for Multi-Task and Meta-Learning with Different Sample Sizes NeurIPS
We present new fast-rate PAC-Bayesian generalization bounds for multi-task and meta-learning in the unbalanced setting, i.e. when the tasks have training sets of different sizes, as is typically the case in real-world scenarios. Previously, only standard-rate bounds were known for this situation, while fast-rate bounds were limited to the setting where all training sets are of equal size. Our new bounds are numerically computable as well as interpretable, and we demonstrate their flexibility in handling a number of cases where they give stronger guarantees than previous bounds. Besides the bounds themselves, we also make conceptual contributions: we demonstrate that the unbalanced multi-task setting has different statistical properties than the balanced situation, specifically that proofs from the balanced situation do not carry over to the unbalanced setting. Additionally, we shed light on the fact that the unbalanced situation allows two meaningful definitions of multi-task risk, depending on whether all tasks should be considered equally important or if sample-rich tasks should receive more weight than sample-poor ones.
comment: Conference on Neural Information Processing Systems (NeurIPS), 2025
♻ ☆ WikiDBGraph: A Data Management Benchmark Suite for Collaborative Learning over Database Silos
Relational databases are often fragmented across organizations, creating data silos that hinder distributed data management and mining. Collaborative learning (CL) -- techniques that enable multiple parties to train models jointly without sharing raw data -- offers a principled approach to this challenge. However, existing CL frameworks (e.g., federated and split learning) remain limited in real-world deployments. Current CL benchmarks and algorithms primarily target the learning step under assumptions of isolated, aligned, and joinable databases, and they typically neglect the end-to-end data management pipeline, especially preprocessing steps such as table joins and data alignment. In contrast, our analysis of the real-world corpus WikiDBs shows that databases are interconnected, unaligned, and sometimes unjoinable, exposing a significant gap between CL algorithm design and practical deployment. To close this evaluation gap, we build WikiDBGraph, a large-scale dataset constructed from 100{,}000 real-world relational databases linked by 17 million weighted edges. Each node (database) and edge (relationship) is annotated with 13 and 12 properties, respectively, capturing a hybrid of instance- and feature-level overlap across databases. Experiments on WikiDBGraph demonstrate both the effectiveness and limitations of existing CL methods under realistic conditions, highlighting previously overlooked gaps in managing real-world data silos and pointing to concrete directions for practical deployment of collaborative learning systems.
♻ ☆ Local Learning for Covariate Selection in Nonparametric Causal Effect Estimation with Latent Variables
Estimating causal effects from nonexperimental data is a fundamental problem in many fields of science. A key component of this task is selecting an appropriate set of covariates for confounding adjustment to avoid bias. Most existing methods for covariate selection often assume the absence of latent variables and rely on learning the global network structure among variables. However, identifying the global structure can be unnecessary and inefficient, especially when our primary interest lies in estimating the effect of a treatment variable on an outcome variable. To address this limitation, we propose a novel local learning approach for covariate selection in nonparametric causal effect estimation, which accounts for the presence of latent variables. Our approach leverages testable independence and dependence relationships among observed variables to identify a valid adjustment set for a target causal relationship, ensuring both soundness and completeness under standard assumptions. We validate the effectiveness of our algorithm through extensive experiments on both synthetic and real-world data.
♻ ☆ PESTO: Real-Time Pitch Estimation with Self-supervised Transposition-equivariant Objective
In this paper, we introduce PESTO, a self-supervised learning approach for single-pitch estimation using a Siamese architecture. Our model processes individual frames of a Variable-$Q$ Transform (VQT) and predicts pitch distributions. The neural network is designed to be equivariant to translations, notably thanks to a Toeplitz fully-connected layer. In addition, we construct pitch-shifted pairs by translating and cropping the VQT frames and train our model with a novel class-based transposition-equivariant objective, eliminating the need for annotated data. Thanks to this architecture and training objective, our model achieves remarkable performances while being very lightweight ($130$k parameters). Evaluations on music and speech datasets (MIR-1K, MDB-stem-synth, and PTDB) demonstrate that PESTO not only outperforms self-supervised baselines but also competes with supervised methods, exhibiting superior cross-dataset generalization. Finally, we enhance PESTO's practical utility by developing a streamable VQT implementation using cached convolutions. Combined with our model's low latency (less than 10 ms) and minimal parameter count, this makes PESTO particularly suitable for real-time applications.
♻ ☆ Secure and Confidential Certificates of Online Fairness
The black-box service model enables ML service providers to serve clients while keeping their intellectual property and client data confidential. Confidentiality is critical for delivering ML services legally and responsibly, but makes it difficult for outside parties to verify important model properties such as fairness. Existing methods that assess model fairness confidentially lack either (i) reliability because they certify fairness with respect to a static set of data, and therefore fail to guarantee fairness in the presence of distribution shift or service provider malfeasance; and/or (ii) scalability due to the computational overhead of confidentiality-preserving cryptographic primitives. We address these problems by introducing online fairness certificates, which verify that a model is fair with respect to data received by the service provider online during deployment. We then present OATH, a deployably efficient and scalable zero-knowledge proof protocol for confidential online group fairness certification. OATH exploits statistical properties of group fairness via a cut-and-choose style protocol, enabling scalability improvements over baselines.
♻ ☆ Revisiting Agnostic Boosting NeurIPS 2025
Boosting is a key method in statistical learning, allowing for converting weak learners into strong ones. While well studied in the realizable case, the statistical properties of weak-to-strong learning remain less understood in the agnostic setting, where there are no assumptions on the distribution of the labels. In this work, we propose a new agnostic boosting algorithm with substantially improved sample complexity compared to prior works under very general assumptions. Our approach is based on a reduction to the realizable case, followed by a margin-based filtering of high-quality hypotheses. Furthermore, we show a nearly-matching lower bound, settling the sample complexity of agnostic boosting up to logarithmic factors.
comment: Camera-ready version: NeurIPS 2025
♻ ☆ Multi-turn Training with Basic Human Feedback Helps Little on LLM Reasoning
The reasoning capabilities of Large Language Models (LLMs) are typically developed through the single-turn reinforcement learning, whereas real-world applications often involve multi-turn interactions with human feedback, leading to a potential mismatch between training and deployment conditions. In this work, we study whether multi-turn training with human feedback is necessary for reasoning tasks. We compare conventional single-turn training with three multi-turn strategies and reach contrary conclusions to previous research. We find that models trained in a single-turn setting generalize effectively to both single- and multi-turn evaluations, while models trained with multi-turn strategies exhibit a significant degradation in single-turn reasoning performance. These results suggest that for tasks with complete information, robust single-turn training remains more effective and reliable, as multi-turn training with basic feedback provides limited benefits and can even degrade reasoning capabilities.
♻ ☆ A critical assessment of reinforcement learning methods for microswimmer navigation in complex flows
Navigating in a fluid flow while being carried by it, using only information accessible from on-board sensors, is a problem commonly faced by small planktonic organisms. It is also directly relevant to autonomous robots deployed in the oceans. In the last ten years, the fluid mechanics community has widely adopted reinforcement learning, often in the form of its simplest implementations, to address this challenge. But it is unclear how good are the strategies learned by these algorithms. In this paper, we perform a quantitative assessment of reinforcement learning methods applied to navigation in partially observable flows. We first introduce a well-posed problem of directional navigation for which a quasi-optimal policy is known analytically. We then report on the poor performance and robustness of commonly used algorithms (Q-Learning, Advantage Actor Critic) in flows regularly encountered in the literature: Taylor-Green vortices, Arnold-Beltrami-Childress flow, and two-dimensional turbulence. We show that they are vastly surpassed by PPO (Proximal Policy Optimization), a more advanced algorithm that has established dominance across a wide range of benchmarks in the reinforcement learning community. In particular, our custom implementation of PPO matches the theoretical quasi-optimal performance in turbulent flow and does so in a robust manner. Reaching this result required the use of several additional techniques, such as vectorized environments and generalized advantage estimation, as well as hyperparameter optimization. This study demonstrates the importance of algorithm selection, implementation details, and fine-tuning for discovering truly smart autonomous navigation strategies in complex flows.
♻ ☆ Zero-shot protein stability prediction by inverse folding models: a free energy interpretation
Inverse folding models have proven to be highly effective zero-shot predictors of protein stability. Despite this success, the link between the amino acid preferences of an inverse folding model and the free-energy considerations underlying thermodynamic stability remains incompletely understood. A better understanding would be of interest not only from a theoretical perspective, but also potentially provide the basis for stronger zero-shot stability prediction. In this paper, we take steps to clarify the free-energy foundations of inverse folding models. Our derivation reveals the standard practice of likelihood ratios as a simplistic approximation and suggests several paths towards better estimates of the relative stability. We empirically assess these approaches and demonstrate that considerable gains in zero-shot performance can be achieved with fairly simple means.
♻ ☆ Automatic Music Sample Identification with Multi-Track Contrastive Learning
Sampling, the technique of reusing pieces of existing audio tracks to create new music content, is a very common practice in modern music production. In this paper, we tackle the challenging task of automatic sample identification, that is, detecting such sampled content and retrieving the material from which it originates. To do so, we adopt a self-supervised learning approach that leverages a multi-track dataset to create positive pairs of artificial mixes, and design a novel contrastive learning objective. We show that such method significantly outperforms previous state-of-the-art baselines, that is robust to various genres, and that scales well when increasing the number of noise songs in the reference database. In addition, we extensively analyze the contribution of the different components of our training pipeline and highlight, in particular, the need for high-quality separated stems for this task.
♻ ☆ Generalization Bounds for Robust Contrastive Learning: From Theory to Practice
Contrastive Learning first extracts features from unlabeled data, followed by linear probing with labeled data. Adversarial Contrastive Learning (ACL) integrates Adversarial Training into the first phase to enhance feature robustness against attacks in the probing phase. While ACL has shown strong empirical results, its theoretical understanding remains limited. Furthermore, while a fair amount of theoretical works analyze how the unsupervised loss can support the supervised loss in the probing phase, none has examined its role to the robust supervised loss. To fill this gap, our work develops rigorous theories to identify which components in the unsupervised training can help improve the robust supervised loss. Specifically, besides the adversarial contrastive loss, we reveal that the benign one, along with a global divergence between benign and adversarial examples can also improve robustness. Proper experiments are conducted to justify our findings.
comment: 13 pages, 1 figure, 4 tables
♻ ☆ Permutation Equivariant Neural Controlled Differential Equations for Dynamic Graph Representation Learning
Dynamic graphs exhibit complex temporal dynamics due to the interplay between evolving node features and changing network structures. Recently, Graph Neural Controlled Differential Equations (Graph Neural CDEs) successfully adapted Neural CDEs from paths on Euclidean domains to paths on graph domains. Building on this foundation, we introduce Permutation Equivariant Neural Graph CDEs, which project Graph Neural CDEs onto permutation equivariant function spaces. This significantly reduces the model's parameter count without compromising representational power, resulting in more efficient training and improved generalisation. We empirically demonstrate the advantages of our approach through experiments on simulated dynamical systems and real-world tasks, showing improved performance in both interpolation and extrapolation scenarios.
♻ ☆ FlightKooba: A Fast Interpretable FTP Model
Flight trajectory prediction (FTP) and similar time series tasks typically require capturing smooth latent dynamics hidden within noisy signals. However, existing deep learning models face significant challenges of high computational cost and insufficient interpretability due to their complex black-box nature. This paper introduces FlightKooba, a novel modeling approach designed to extract such underlying dynamics analytically. Our framework uniquely integrates HiPPO theory, Koopman operator theory, and control theory. By leveraging Legendre polynomial bases, it constructs Koopman operators analytically, thereby avoiding large-scale parameter training. The method's core strengths lie in its exceptional computational efficiency and inherent interpretability. Experiments on multiple public datasets validate our design philosophy: for signals exhibiting strong periodicity or clear physical laws (e.g., in aviation, meteorology, and traffic flow), FlightKooba delivers competitive prediction accuracy while reducing trainable parameters by several orders of magnitude and achieving the fastest training speed. Furthermore, we analyze the model's theoretical boundaries, clarifying its inherent low-pass filtering characteristics that render it unsuitable for sequences dominated by high-frequency noise. In summary, FlightKooba offers a powerful, efficient, and interpretable new alternative for time series analysis, particularly in resource-constrained environments.
comment: Version 2: Major revision of the manuscript to refine the narrative, clarify the model's theoretical limitations and application scope, and improve overall presentation for journal submission
♻ ☆ GVPO: Group Variance Policy Optimization for Large Language Model Post-Training NeurIPS 2025
Post-training plays a crucial role in refining and aligning large language models to meet specific tasks and human preferences. While recent advancements in post-training techniques, such as Group Relative Policy Optimization (GRPO), leverage increased sampling with relative reward scoring to achieve superior performance, these methods often suffer from training instability that limits their practical adoption. As a next step, we present Group Variance Policy Optimization (GVPO). GVPO incorporates the analytical solution to KL-constrained reward maximization directly into its gradient weights, ensuring alignment with the optimal policy. The method provides intuitive physical interpretations: its gradient mirrors the mean squared error between the central distance of implicit rewards and that of actual rewards. GVPO offers two key advantages: (1) it guarantees a unique optimal solution, exactly the KL-constrained reward maximization objective, (2) it supports flexible sampling distributions that avoids on-policy and importance sampling limitations. By unifying theoretical guarantees with practical adaptability, GVPO establishes a new paradigm for reliable and versatile LLM post-training.
comment: Accepted by NeurIPS 2025
♻ ☆ Echo State Transformer: Attention Over Finite Memories
While Large Language Models and their underlying Transformer architecture are remarkably efficient, they do not reflect how our brain processes and learns a diversity of cognitive tasks such as language and working memory. Furthermore, sequential data processing with Transformers encounters a fundamental barrier: quadratic complexity growth with sequence length. Motivated by these limitations, our ambition is to create more efficient models that are less reliant on intensive computations. We introduce Echo State Transformers (EST), a hybrid architecture that elegantly resolves this challenge while demonstrating exceptional performance in classification and detection tasks. EST integrates the Transformer attention mechanisms with principles from Reservoir Computing to create a fixed-size window distributed memory system. Drawing inspiration from Echo State Networks, the most prominent instance of the Reservoir Computing paradigm, our approach leverages reservoirs (random recurrent networks) as a lightweight and efficient memory. Our architecture integrates a new module called ''Working Memory'' based on several reservoirs working in parallel. These reservoirs work as independent working memory units with distinct internal dynamics. A novelty here is that the classical reservoir hyperparameters, controlling the dynamics, are now trained. Thus, the EST dynamically adapts the reservoir memory/non-linearity trade-off. Thanks to these working memory units, EST achieves constant computational complexity at each processing step, effectively breaking the quadratic scaling problem of standard Transformers. We evaluate ESTs on a recent challenging timeseries benchmark: the Time Series Library, which comprises 69 tasks across five categories. Results show that ESTs ranks first overall in two of five categories, outperforming strong state-of-the-art baselines on classification and anomaly detection tasks, while remaining competitive on short-term forecasting. These results position ESTs as a compelling alternative for time-series classification and anomaly detection, and a practical complement to transformer-style models in applications that prioritize robust representations and sensitive event detection.
♻ ☆ Diffusion Generative Modeling on Lie Group Representations NeurIPS 2025
We introduce a novel class of score-based diffusion processes that operate directly in the representation space of Lie groups. Leveraging the framework of Generalized Score Matching, we derive a class of Langevin dynamics that decomposes as a direct sum of Lie algebra representations, enabling the modeling of any target distribution on any (non-Abelian) Lie group. Standard score-matching emerges as a special case of our framework when the Lie group is the translation group. We prove that our generalized generative processes arise as solutions to a new class of paired stochastic differential equations (SDEs), introduced here for the first time. We validate our approach through experiments on diverse data types, demonstrating its effectiveness in real-world applications such as SO(3)-guided molecular conformer generation and modeling ligand-specific global SE(3) transformations for molecular docking, showing improvement in comparison to Riemannian diffusion on the group itself. We show that an appropriate choice of Lie group enhances learning efficiency by reducing the effective dimensionality of the trajectory space and enables the modeling of transitions between complex data distributions.
comment: 29 pages. Accepted as a spotlight paper at NeurIPS 2025
♻ ☆ Can Less Precise Be More Reliable? A Systematic Evaluation of Quantization's Impact on CLIP Beyond Accuracy
The powerful zero-shot generalization capabilities of vision-language models (VLMs) like CLIP have enabled new paradigms for safety-related tasks such as out-of-distribution (OOD) detection. However, additional aspects crucial for the computationally efficient and reliable deployment of CLIP are still overlooked. In particular, the impact of quantization on CLIP's performance beyond accuracy remains underexplored. This work presents a large-scale evaluation of quantization on CLIP models, assessing not only in-distribution accuracy but a comprehensive suite of reliability metrics and revealing counterintuitive results driven by pre-training source. We demonstrate that quantization consistently improves calibration for typically underconfident pre-trained models, while often degrading it for overconfident variants. Intriguingly, this degradation in calibration does not preclude gains in other reliability metrics; we find that OOD detection can still improve for these same poorly calibrated models. Furthermore, we identify specific quantization-aware training (QAT) methods that yield simultaneous gains in zero-shot accuracy, calibration, and OOD robustness, challenging the view of a strict efficiency-performance trade-off. These findings offer critical insights for navigating the multi-objective problem of deploying efficient, reliable, and robust VLMs by utilizing quantization beyond its conventional role.
comment: Preprint, under peer review
♻ ☆ Enforcing Calibration in Multi-Output Probabilistic Regression with Pre-rank Regularization
Probabilistic models must be well calibrated to support reliable decision-making. While calibration in single-output regression is well studied, defining and achieving multivariate calibration in multi-output regression remains considerably more challenging. The existing literature on multivariate calibration primarily focuses on diagnostic tools based on pre-rank functions, which are projections that reduce multivariate prediction-observation pairs to univariate summaries to detect specific types of miscalibration. In this work, we go beyond diagnostics and introduce a general regularization framework to enforce multivariate calibration during training for arbitrary pre-rank functions. This framework encompasses existing approaches such as highest density region calibration and copula calibration. Our method enforces calibration by penalizing deviations of the projected probability integral transforms (PITs) from the uniform distribution, and can be added as a regularization term to the loss function of any probabilistic predictor. Specifically, we propose a regularization loss that jointly enforces both marginal and multivariate pre-rank calibration. We also introduce a new PCA-based pre-rank that captures calibration along directions of maximal variance in the predictive distribution, while also enabling dimensionality reduction. Across 18 real-world multi-output regression datasets, we show that unregularized models are consistently miscalibrated, and that our methods significantly improve calibration across all pre-rank functions without sacrificing predictive accuracy.
♻ ☆ Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens NeurIPS25
Concept-based Models are neural networks that learn a concept extractor to map inputs to high-level concepts and an inference layer to translate these into predictions. Ensuring these modules produce interpretable concepts and behave reliably in out-of-distribution is crucial, yet the conditions for achieving this remain unclear. We study this problem by establishing a novel connection between Concept-based Models and reasoning shortcuts (RSs), a common issue where models achieve high accuracy by learning low-quality concepts, even when the inference layer is fixed and provided upfront. Specifically, we extend RSs to the more complex setting of Concept-based Models and derive theoretical conditions for identifying both the concepts and the inference layer. Our empirical results highlight the impact of RSs and show that existing methods, even combined with multiple natural mitigation strategies, often fail to meet these conditions in practice.
comment: Accepted at NeurIPS25
♻ ☆ Continental-scale habitat distribution modelling with multimodal earth observation foundation models
Habitats integrate the abiotic conditions, vegetation composition and structure that support biodiversity and sustain nature's contributions to people. Most habitats face mounting pressures from human activities, which requires accurate, high-resolution habitat mapping for effective conservation and restoration. Yet, current habitat maps often fall short in thematic or spatial resolution because they must (1) model several mutually exclusive habitat types that co-occur across landscapes and (2) cope with severe class imbalance that complicates exhaustive multi-class training. Here, we evaluated how high-resolution remote sensing (RS) data and Artificial Intelligence (AI) tools can improve habitat mapping across large geographical extents at fine spatial and thematic resolution. Using vegetation plots from the European Vegetation Archive, we modelled the distribution of Level 3 EUNIS habitat types across Europe and assessed multiple modelling strategies against independent validation datasets. Strategies that exploited the hierarchical nature of habitat classifications resolved classification ambiguities, especially in fragmented habitats. Integrating satellite-borne multispectral and radar imagery, particularly through Earth Observation (EO) Foundation models (EO-FMs), enhanced within-formation discrimination and overall performance. Finally, ensemble machine learning that corrects class imbalance boosted predictive accuracy even further. Our methodological framework is transferable beyond Europe and adaptable to other classification systems. Future research should advance temporal modelling of habitat dynamics, extend to habitat segmentation and quality assessment, and exploit next-generation EO data paired with higher-quality in situ observations.
♻ ☆ First SFT, Second RL, Third UPT: Continual Improving Multi-Modal LLM Reasoning via Unsupervised Post-Training NeurIPS 2025
Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL), which require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. This limitation has motivated a growing interest in unsupervised paradigms as a third stage of post-training after SFT and RL. While recent efforts have explored this direction, their methods are complex and difficult to iterate. To address this, we propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs, enabling continual self-improvement without any external supervision. The training method of MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that such training method effectively improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3\%$\rightarrow$72.9\% on MathVista, 62.9\%$\rightarrow$68.7\% on We-Math), using standard dataset without ground truth labels. To further explore scalability, we extend our framework to a data self-generation setting, designing two strategies that prompt the MLLM to synthesize new training samples on its own. Additional experiments show that combining these synthetic data with the unsupervised training method can also boost performance, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for autonomous enhancement of MLLMs, serving as a critical third step after initial SFT and RL in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.
comment: Accepted by NeurIPS 2025
♻ ☆ Uncovering Singularities in Feynman Integrals via Machine Learning
We introduce a machine-learning framework based on symbolic regression to extract the full symbol alphabet of multi-loop Feynman integrals. By targeting the analytic structure rather than reduction, the method is broadly applicable and interpretable across different families of integrals. It successfully reconstructs complete symbol alphabets in nontrivial examples, demonstrating both robustness and generality. Beyond accelerating computations case by case, it uncovers the analytic structure universally. This framework opens new avenues for multi-loop amplitude analysis and provides a versatile tool for exploring scattering amplitudes.
♻ ☆ Analog Foundation Models NeurIPS
Analog in-memory computing (AIMC) is a promising compute paradigm to improve speed and power efficiency of neural network inference beyond the limits of conventional von Neumann-based architectures. However, AIMC introduces fundamental challenges such as noisy computations and strict constraints on input and output quantization. Because of these constraints and imprecisions, off-the-shelf LLMs are not able to achieve 4-bit-level performance when deployed on AIMC-based hardware. While researchers previously investigated recovering this accuracy gap on small, mostly vision-based models, a generic method applicable to LLMs pre-trained on trillions of tokens does not yet exist. In this work, we introduce a general and scalable method to robustly adapt LLMs for execution on noisy, low-precision analog hardware. Our approach enables state-of-the-art models $\unicode{x2013}$ including Phi-3-mini-4k-instruct and Llama-3.2-1B-Instruct $\unicode{x2013}$ to retain performance comparable to 4-bit weight, 8-bit activation baselines, despite the presence of analog noise and quantization constraints. Additionally, we show that as a byproduct of our training methodology, analog foundation models can be quantized for inference on low-precision digital hardware. Finally, we show that our models also benefit from test-time compute scaling, showing better scaling behavior than models trained with 4-bit weight and 8-bit static input quantization. Our work bridges the gap between high-capacity LLMs and efficient analog hardware, offering a path toward energy-efficient foundation models. Code is available at https://github.com/IBM/analog-foundation-models.
comment: Neural Information Processing Systems (NeurIPS) 2025
♻ ☆ Fairness under Competition NeurIPS 2025
Algorithmic fairness has emerged as a central issue in ML, and it has become standard practice to adjust ML algorithms so that they will satisfy fairness requirements such as Equal Opportunity. In this paper we consider the effects of adopting such fair classifiers on the overall level of ecosystem fairness. Specifically, we introduce the study of fairness with competing firms, and demonstrate the failure of fair classifiers in yielding fair ecosystems. Our results quantify the loss of fairness in systems, under a variety of conditions, based on classifiers' correlation and the level of their data overlap. We show that even if competing classifiers are individually fair, the ecosystem's outcome may be unfair; and that adjusting biased algorithms to improve their individual fairness may lead to an overall decline in ecosystem fairness. In addition to these theoretical results, we also provide supporting experimental evidence. Together, our model and results provide a novel and essential call for action.
comment: Accepted to NeurIPS 2025
♻ ☆ Efficient Resource-Constrained Training of Vision Transformers via Subspace Optimization
As AI increasingly shapes daily life, energy consumption and data privacy have become pressing concerns. On-device learning trains models directly on edge devices, cutting energy consumption and safeguarding data privacy. However, the expanding scale of modern neural networks creates a major obstacle for on-device training. Although prior work has concentrated on compact convolutional architectures, we instead apply subspace-based training to transformer models. Motivated by the idea that a model's essential information lies in a fixed subspace, we introduce Weight-Activation Subspace Iteration (WASI), a method that mitigates the memory bottleneck of backpropagation and boosts inference efficiency in transformer models by restricting training to this subspace. Our results demonstrate that WASI maintains accuracy comparable to vanilla training while reducing memory usage by up to $62\times$ and computational cost (FLOPs) by up to $2\times$. On a Raspberry Pi 5, WASI achieves roughly $1.5\times$ faster training and inference than vanilla training.
♻ ☆ Improving Video Generation with Human Feedback
Video generation has achieved significant advances through rectified flow techniques, but issues like unsmooth motion and misalignment between videos and prompts persist. In this work, we develop a systematic pipeline that harnesses human feedback to mitigate these problems and refine the video generation model. Specifically, we begin by constructing a large-scale human preference dataset focused on modern video generation models, incorporating pairwise annotations across multi-dimensions. We then introduce VideoReward, a multi-dimensional video reward model, and examine how annotations and various design choices impact its rewarding efficacy. From a unified reinforcement learning perspective aimed at maximizing reward with KL regularization, we introduce three alignment algorithms for flow-based models. These include two training-time strategies: direct preference optimization for flow (Flow-DPO) and reward weighted regression for flow (Flow-RWR), and an inference-time technique, Flow-NRG, which applies reward guidance directly to noisy videos. Experimental results indicate that VideoReward significantly outperforms existing reward models, and Flow-DPO demonstrates superior performance compared to both Flow-RWR and supervised fine-tuning methods. Additionally, Flow-NRG lets users assign custom weights to multiple objectives during inference, meeting personalized video quality needs.
comment: https://github.com/KwaiVGI/VideoAlign
♻ ☆ MPX: Mixed Precision Training for JAX
Mixed-precision training has emerged as an indispensable tool for enhancing the efficiency of neural network training in recent years. Concurrently, JAX has grown in popularity as a versatile machine learning toolbox. However, it currently lacks robust support for mixed-precision training. We propose MPX, a mixed-precision training toolbox for JAX that simplifies and accelerates the training of large-scale neural networks while preserving model accuracy. MPX seamlessly integrates with popular toolboxes such as Equinox and Flax, allowing users to convert full-precision pipelines to mixed-precision versions with minimal modifications. By casting both inputs and outputs to half precision, and introducing a dynamic loss-scaling mechanism, MPX alleviates issues like gradient underflow and overflow that commonly arise in half precision computations. Its design inherits critical features from JAX's type-promotion behavior, ensuring that operations take place in the correct precision and allowing for selective enforcement of full precision where needed (e.g., sums, means, or softmax). MPX further provides wrappers for automatic creation and management of mixed-precision gradients and optimizers, enabling straightforward integration into existing JAX training pipelines. MPX's source code, documentation, and usage examples are available at github.com/Data-Science-in-Mechanical-Engineering/mixed_precision_for_JAX .
Multimedia
☆ MMSD3.0: A Multi-Image Benchmark for Real-World Multimodal Sarcasm Detection
Despite progress in multimodal sarcasm detection, existing datasets and methods predominantly focus on single-image scenarios, overlooking potential semantic and affective relations across multiple images. This leaves a gap in modeling cases where sarcasm is triggered by multi-image cues in real-world settings. To bridge this gap, we introduce MMSD3.0, a new benchmark composed entirely of multi-image samples curated from tweets and Amazon reviews. We further propose the Cross-Image Reasoning Model (CIRM), which performs targeted cross-image sequence modeling to capture latent inter-image connections. In addition, we introduce a relevance-guided, fine-grained cross-modal fusion mechanism based on text-image correspondence to reduce information loss during integration. We establish a comprehensive suite of strong and representative baselines and conduct extensive experiments, showing that MMSD3.0 is an effective and reliable benchmark that better reflects real-world conditions. Moreover, CIRM demonstrates state-of-the-art performance across MMSD, MMSD2.0 and MMSD3.0, validating its effectiveness in both single-image and multi-image scenarios.
☆ Enabling American Sign Language Communication Under Low Data Rates
In recent years, video conferencing applications have become increasingly prevalent, relying heavily on high-speed internet connectivity. When such connectivity is lacking, users often default to audio-only communication, a mode that significantly disadvantages American Sign Language (ASL) users, whose communication relies on hand gestures, body movement, and facial expressions. In this work, we introduce VC4ASL, a system designed to enable ASL communication over the audio channel of existing video conferencing applications, even in the absence of reliable video. VC4ASL integrates seamlessly with current platforms without requiring any modifications. Our approach establishes a communication channel through audio by encoding and transmitting human pose information, which is then rendered to reconstruct signed content. We propose novel receive-side error detection and correction mechanisms that exploit the inherent structural constraints of human pose data. To evaluate the system, we simulate network-degraded environments, generate pose-based ASL video sequences, and conduct user studies to assess comprehension among ASL users. Experimental results demonstrate that VC4ASL effectively facilitates intelligible ASL communication over audio in low-bandwidth scenarios where video transmission is impaired.
♻ ☆ TEn-CATG:Text-Enriched Audio-Visual Video Parsing with Multi-Scale Category-Aware Temporal Graph
Audio-visual video parsing (AVVP) aims to detect event categories and their temporal boundaries in videos, typically under weak supervision. Existing methods mainly focus on (i) improving temporal modeling using attention-based architectures or (ii) generating richer pseudo-labels to address the absence of frame-level annotations. However, attention-based models often overfit noisy pseudo-labels, leading to cumulative training errors, while pseudo-label generation approaches distribute attention uniformly across frames, weakening temporal localization accuracy. To address these challenges, we propose TEn-CATG, a text-enriched AVVP framework that combines semantic calibration with category-aware temporal reasoning. More specifically, we design a bi-directional text fusion (BiT) module by leveraging audio-visual features as semantic anchors to refine text embeddings, which departs from conventional text-to-feature alignment, thereby mitigating noise and enhancing cross-modal consistency. Furthermore, we introduce the category-aware temporal graph (CATG) module to model temporal relationships by selecting multi-scale temporal neighbors and learning category-specific temporal decay factors, enabling effective event-dependent temporal reasoning. Extensive experiments demonstrate that TEn-CATG achieves state-of-the-art results across multiple evaluation metrics on benchmark datasets LLP and UnAV-100, highlighting its robustness and superior ability to capture complex temporal and semantic dependencies in weakly supervised AVVP tasks.
♻ ☆ Robust Modality-incomplete Anomaly Detection: A Modality-instructive Framework with Benchmark
Multimodal Industrial Anomaly Detection (MIAD), which utilizes 3D point clouds and 2D RGB images to identify abnormal regions in products, plays a crucial role in industrial quality inspection. However, traditional MIAD settings assume that all 2D and 3D modalities are paired, ignoring the fact that multimodal data collected from the real world is often imperfect due to missing modalities. Additionally, models trained on modality-incomplete data are prone to overfitting. Therefore, MIAD models that demonstrate robustness against modality-incomplete data are highly desirable in practice. To address this, we introduce a pioneering study that comprehensively investigates Modality-Incomplete Industrial Anomaly Detection (MIIAD), and under the guidance of experts, we construct the MIIAD Bench with rich modality-missing settings to account for imperfect learning environments with incomplete multimodal information. As expected, we find that most existing MIAD methods perform poorly on the MIIAD Bench, leading to significant performance degradation. To tackle this challenge, we propose a novel two-stage Robust modAlity-aware fusing and Detecting framewoRk, abbreviated as RADAR. Specifically: i) We propose Modality-incomplete Instruction to guide the multimodal Transformer to robustly adapt to various modality-incomplete scenarios, and implement adaptive parameter learning based on HyperNetwork. ii) Then, we construct a Double-Pseudo Hybrid Module to highlight the uniqueness of modality combinations, mitigating overfitting issues and further enhancing the robustness of the MIIAD model. Our experimental results demonstrate that the proposed RADAR significantly outperforms traditional MIAD methods on our newly created MIIAD dataset, proving its practical application value.
♻ ☆ CMIE: Combining MLLM Insights with External Evidence for Explainable Out-of-Context Misinformation Detection
Multimodal large language models (MLLMs) have demonstrated impressive capabilities in visual reasoning and text generation. While previous studies have explored the application of MLLM for detecting out-of-context (OOC) misinformation, our empirical analysis reveals two persisting challenges of this paradigm. Evaluating the representative GPT-4o model on direct reasoning and evidence augmented reasoning, results indicate that MLLM struggle to capture the deeper relationships-specifically, cases in which the image and text are not directly connected but are associated through underlying semantic links. Moreover, noise in the evidence further impairs detection accuracy. To address these challenges, we propose CMIE, a novel OOC misinformation detection framework that incorporates a Coexistence Relationship Generation (CRG) strategy and an Association Scoring (AS) mechanism. CMIE identifies the underlying coexistence relationships between images and text, and selectively utilizes relevant evidence to enhance misinformation detection. Experimental results demonstrate that our approach outperforms existing methods.
♻ ☆ From ID-based to ID-free: Rethinking ID Effectiveness in Multimodal Collaborative Filtering Recommendation
Most existing multimodal collaborative filtering recommendation (MCFRec) methods rely heavily on ID features and multimodal content to enhance recommendation performance. However, this paper reveals that ID features are effective but have limited benefits in multimodal collaborative filtering recommendation. Therefore, this paper systematically deconstruct the pros and cons of ID features: (i) they provide initial embedding but lack semantic richness, (ii) they provide a unique identifier for each user and item but hinder generalization to untrained data, and (iii) they assist in aligning and fusing multimodal features but may lead to representation shift. Based on these insights, this paper proposes IDFREE, an ID-free multimodal collaborative Filtering REcommEndation baseline. IDFREE replaces ID features with multimodal features and positional encodings to generate semantically meaningful ID-free embeddings. For ID-free multimodal collaborative filtering, it further proposes an adaptive similarity graph module to construct dynamic user-user and item-item graphs based on multimodal features. Then, an augmented user-item graph encoder is proposed to construct more effective user and item encoding. Finally, IDFREE achieves inter-multimodal alignment based on the contrastive learning and uses Softmax loss as recommendation loss. Basic experiments on three public datasets demonstrate that IDFREE outperforms existing ID-based MCFRec methods, achieving an average performance gain of 72.24% across standard metrics (Recall@5, 10, 20, 50 and NDCG@5, 10, 20, 50). Exploratory and extended experiments further validate our findings on the limitations of ID features in MCFRec. The code is released at https://github.com/G-H-Li/IDFREE.
comment: We identified that our current approach achieves its reported performance only under specific data conditions, and its robustness is weaker than we initially expected
♻ ☆ ControlText: Unlocking Controllable Fonts in Multilingual Text Rendering without Font Annotations EMNLP
This work demonstrates that diffusion models can achieve font-controllable multilingual text rendering using just raw images without font label annotations.Visual text rendering remains a significant challenge. While recent methods condition diffusion on glyphs, it is impossible to retrieve exact font annotations from large-scale, real-world datasets, which prevents user-specified font control. To address this, we propose a data-driven solution that integrates the conditional diffusion model with a text segmentation model, utilizing segmentation masks to capture and represent fonts in pixel space in a self-supervised manner, thereby eliminating the need for any ground-truth labels and enabling users to customize text rendering with any multilingual font of their choice. The experiment provides a proof of concept of our algorithm in zero-shot text and font editing across diverse fonts and languages, providing valuable insights for the community and industry toward achieving generalized visual text rendering. Code is available at github.com/bowen-upenn/ControlText.
comment: The 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP) Findings
♻ ☆ Adaptive 3D Mesh Steganography Based on Feature-Preserving Distortion
Current 3D mesh steganography algorithms relying on geometric modification are prone to detection by steganalyzers. In traditional steganography, adaptive steganography has proven to be an efficient means of enhancing steganography security. Taking inspiration from this, we propose a highly adaptive embedding algorithm, guided by the principle of minimizing a carefully crafted distortion through efficient steganography codes. Specifically, we tailor a payload-limited embedding optimization problem for 3D settings and devise a feature-preserving distortion (FPD) to measure the impact of message embedding. The distortion takes on an additive form and is defined as a weighted difference of the effective steganalytic subfeatures utilized by the current 3D steganalyzers. With practicality in mind, we refine the distortion to enhance robustness and computational efficiency. By minimizing the FPD, our algorithm can preserve mesh features to a considerable extent, including steganalytic and geometric features, while achieving a high embedding capacity. During the practical embedding phase, we employ the Q-layered syndrome trellis code (STC). However, calculating the bit modification probability (BMP) for each layer of the Q-layered STC, given the variation of Q, can be cumbersome. To address this issue, we design a universal and automatic approach for the BMP calculation. The experimental results demonstrate that our algorithm achieves state-of-the-art performance in countering 3D steganalysis. Code is available at https://github.com/zjhJOJO/3D-steganography-based-on-FPD.git.
comment: IEEE TVCG, corresponding author Jiahao Zhu, code is available at https://github.com/zjhJOJO/3D-steganography-based-on-FPD.git