MyArxiv
Computation and Language
☆ Do Generalisation Results Generalise?
A large language model's (LLM's) out-of-distribution (OOD) generalisation ability is crucial to its deployment. Previous work assessing LLMs' generalisation performance, however, typically focuses on a single out-of-distribution dataset. This approach may fail to precisely evaluate the capabilities of the model, as the data shifts encountered once a model is deployed are much more diverse. In this work, we investigate whether OOD generalisation results generalise. More specifically, we evaluate a model's performance across multiple OOD testsets throughout a finetuning run; we then evaluate the partial correlation of performances across these testsets, regressing out in-domain performance. This allows us to assess how correlated are generalisation performances once in-domain performance is controlled for. Analysing OLMo2 and OPT, we observe no overarching trend in generalisation results: the existence of a positive or negative correlation between any two OOD testsets depends strongly on the specific choice of model analysed.
☆ Group Representational Position Encoding
We present GRAPE (Group RepresentAtional Position Encoding), a unified framework for positional encoding based on group actions. GRAPE brings together two families of mechanisms: (i) multiplicative rotations (Multiplicative GRAPE) in $\mathrm{SO}(d)$ and (ii) additive logit biases (Additive GRAPE) arising from unipotent actions in the general linear group $\mathrm{GL}$. In Multiplicative GRAPE, a position $n \in \mathbb{Z}$ (or $t \in \mathbb{R}$) acts as $\mathbf{G}(n)=\exp(n\,ω\,\mathbf{L})$ with a rank-2 skew generator $\mathbf{L} \in \mathbb{R}^{d \times d}$, yielding a relative, compositional, norm-preserving map with a closed-form matrix exponential. RoPE is recovered exactly when the $d/2$ planes are the canonical coordinate pairs with log-uniform spectrum. Learned commuting subspaces and compact non-commuting mixtures strictly extend this geometry to capture cross-subspace feature coupling at $O(d)$ and $O(r d)$ cost per head, respectively. In Additive GRAPE, additive logits arise as rank-1 (or low-rank) unipotent actions, recovering ALiBi and the Forgetting Transformer (FoX) as exact special cases while preserving an exact relative law and streaming cacheability. Altogether, GRAPE supplies a principled design space for positional geometry in long-context models, subsuming RoPE and ALiBi as special cases. Project Page: https://github.com/model-architectures/GRAPE.
comment: Project Page: https://github.com/model-architectures/GRAPE
☆ Collaborative Causal Sensemaking: Closing the Complementarity Gap in Human-AI Decision Support
LLM-based agents are rapidly being plugged into expert decision-support, yet in messy, high-stakes settings they rarely make the team smarter: human-AI teams often underperform the best individual, experts oscillate between verification loops and over-reliance, and the promised complementarity does not materialise. We argue this is not just a matter of accuracy, but a fundamental gap in how we conceive AI assistance: expert decisions are made through collaborative cognitive processes where mental models, goals, and constraints are continually co-constructed, tested, and revised between human and AI. We propose Collaborative Causal Sensemaking (CCS) as a research agenda and organizing framework for decision-support agents: systems designed as partners in cognitive work, maintaining evolving models of how particular experts reason, helping articulate and revise goals, co-constructing and stress-testing causal hypotheses, and learning from the outcomes of joint decisions so that both human and agent improve over time. We sketch challenges around training ecologies that make collaborative thinking instrumentally valuable, representations and interaction protocols for co-authored models, and evaluation centred on trust and complementarity. These directions can reframe MAS research around agents that participate in collaborative sensemaking and act as AI teammates that think with their human partners.
☆ ReasonBENCH: Benchmarking the (In)Stability of LLM Reasoning
Large language models (LLMs) are increasingly deployed in settings where reasoning, such as multi-step problem solving and chain-of-thought, is essential. Yet, current evaluation practices overwhelmingly report single-run accuracy while ignoring the intrinsic uncertainty that naturally arises from stochastic decoding. This omission creates a blind spot because practitioners cannot reliably assess whether a method's reported performance is stable, reproducible, or cost-consistent. We introduce ReasonBENCH, the first benchmark designed to quantify the underlying instability in LLM reasoning. ReasonBENCH provides (i) a modular evaluation library that standardizes reasoning frameworks, models, and tasks, (ii) a multi-run protocol that reports statistically reliable metrics for both quality and cost, and (iii) a public leaderboard to encourage variance-aware reporting. Across tasks from different domains, we find that the vast majority of reasoning strategies and models exhibit high instability. Notably, even strategies with similar average performance can display confidence intervals up to four times wider, and the top-performing methods often incur higher and less stable costs. Such instability compromises reproducibility across runs and, consequently, the reliability of reported performance. To better understand these dynamics, we further analyze the impact of prompts, model families, and scale on the trade-off between solve rate and stability. Our results highlight reproducibility as a critical dimension for reliable LLM reasoning and provide a foundation for future reasoning methods and uncertainty quantification techniques. ReasonBENCH is publicly available at https://github.com/au-clan/ReasonBench .
comment: 11 pages, 3 tables, 4 figures
☆ On the Interplay of Pre-Training, Mid-Training, and RL on Reasoning Language Models
Recent reinforcement learning (RL) techniques have yielded impressive reasoning improvements in language models, yet it remains unclear whether post-training truly extends a model's reasoning ability beyond what it acquires during pre-training. A central challenge is the lack of control in modern training pipelines: large-scale pre-training corpora are opaque, mid-training is often underexamined, and RL objectives interact with unknown prior knowledge in complex ways. To resolve this ambiguity, we develop a fully controlled experimental framework that isolates the causal contributions of pre-training, mid-training, and RL-based post-training. Our approach employs synthetic reasoning tasks with explicit atomic operations, parseable step-by-step reasoning traces, and systematic manipulation of training distributions. We evaluate models along two axes: extrapolative generalization to more complex compositions and contextual generalization across surface contexts. Using this framework, we reconcile competing views on RL's effectiveness. We show that: 1) RL produces true capability gains (pass@128) only when pre-training leaves sufficient headroom and when RL data target the model's edge of competence, tasks at the boundary that are difficult but not yet out of reach. 2) Contextual generalization requires minimal yet sufficient pre-training exposure, after which RL can reliably transfer. 3) Mid-training significantly enhances performance under fixed compute compared with RL only, demonstrating its central but underexplored role in training pipelines. 4) Process-level rewards reduce reward hacking and improve reasoning fidelity. Together, these results clarify the interplay between pre-training, mid-training, and RL, offering a foundation for understanding and improving reasoning LM training strategies.
☆ Mary, the Cheeseburger-Eating Vegetarian: Do LLMs Recognize Incoherence in Narratives?
Leveraging a dataset of paired narratives, we investigate the extent to which large language models (LLMs) can reliably separate incoherent and coherent stories. A probing study finds that LLMs' internal representations can reliably identify incoherent narratives. However, LLMs generate responses to rating questions that fail to satisfactorily separate the coherent and incoherent narratives across several prompt variations, hinting at a gap in LLM's understanding of storytelling. The reasoning LLMs tested do not eliminate these deficits, indicating that thought strings may not be able to fully address the discrepancy between model internal state and behavior. Additionally, we find that LLMs appear to be more sensitive to incoherence resulting from an event that violates the setting (e.g., a rainy day in the desert) than to incoherence arising from a character violating an established trait (e.g., Mary, a vegetarian, later orders a cheeseburger), suggesting that LLMs may rely more on prototypical world knowledge than building meaning-based narrative coherence. The consistent asymmetry found in our results suggests that LLMs do not have a complete grasp on narrative coherence.
☆ Automated Generation of Custom MedDRA Queries Using SafeTerm Medical Map
In pre-market drug safety review, grouping related adverse event terms into standardised MedDRA queries or the FDA Office of New Drugs Custom Medical Queries (OCMQs) is critical for signal detection. We present a novel quantitative artificial intelligence system that understands and processes medical terminology and automatically retrieves relevant MedDRA Preferred Terms (PTs) for a given input query, ranking them by a relevance score using multi-criteria statistical methods. The system (SafeTerm) embeds medical query terms and MedDRA PTs in a multidimensional vector space, then applies cosine similarity and extreme-value clustering to generate a ranked list of PTs. Validation was conducted against the FDA OCMQ v3.0 (104 queries), restricted to valid MedDRA PTs. Precision, recall and F1 were computed across similarity-thresholds. High recall (>95%) is achieved at moderate thresholds. Higher thresholds improve precision (up to 86%). The optimal threshold (~0.70 - 0.75) yielded recall ~50% and precision ~33%. Narrow-term PT subsets performed similarly but required slightly higher similarity thresholds. The SafeTerm AI-driven system provides a viable supplementary method for automated MedDRA query generation. A similarity threshold of ~0.60 is recommended initially, with increased thresholds for refined term selection.
comment: 12 pages, 4 figures
☆ HalluShift++: Bridging Language and Vision through Internal Representation Shifts for Hierarchical Hallucinations in MLLMs
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in vision-language understanding tasks. While these models often produce linguistically coherent output, they often suffer from hallucinations, generating descriptions that are factually inconsistent with the visual content, potentially leading to adverse consequences. Therefore, the assessment of hallucinations in MLLM has become increasingly crucial in the model development process. Contemporary methodologies predominantly depend on external LLM evaluators, which are themselves susceptible to hallucinations and may present challenges in terms of domain adaptation. In this study, we propose the hypothesis that hallucination manifests as measurable irregularities within the internal layer dynamics of MLLMs, not merely due to distributional shifts but also in the context of layer-wise analysis of specific assumptions. By incorporating such modifications, \textsc{\textsc{HalluShift++}} broadens the efficacy of hallucination detection from text-based large language models (LLMs) to encompass multimodal scenarios. Our codebase is available at https://github.com/C0mRD/HalluShift_Plus.
☆ When Large Language Models Do Not Work: Online Incivility Prediction through Graph Neural Networks
Online incivility has emerged as a widespread and persistent problem in digital communities, imposing substantial social and psychological burdens on users. Although many platforms attempt to curb incivility through moderation and automated detection, the performance of existing approaches often remains limited in both accuracy and efficiency. To address this challenge, we propose a Graph Neural Network (GNN) framework for detecting three types of uncivil behavior (i.e., toxicity, aggression, and personal attacks) within the English Wikipedia community. Our model represents each user comment as a node, with textual similarity between comments defining the edges, allowing the network to jointly learn from both linguistic content and relational structures among comments. We also introduce a dynamically adjusted attention mechanism that adaptively balances nodal and topological features during information aggregation. Empirical evaluations demonstrate that our proposed architecture outperforms 12 state-of-the-art Large Language Models (LLMs) across multiple metrics while requiring significantly lower inference cost. These findings highlight the crucial role of structural context in detecting online incivility and address the limitations of text-only LLM paradigms in behavioral prediction. All datasets and comparative outputs will be publicly available in our repository to support further research and reproducibility.
comment: 10 pages
☆ Bridging Code Graphs and Large Language Models for Better Code Understanding
Large Language Models (LLMs) have demonstrated remarkable performance in code intelligence tasks such as code generation, summarization, and translation. However, their reliance on linearized token sequences limits their ability to understand the structural semantics of programs. While prior studies have explored graphaugmented prompting and structure-aware pretraining, they either suffer from prompt length constraints or require task-specific architectural changes that are incompatible with large-scale instructionfollowing LLMs. To address these limitations, this paper proposes CGBridge, a novel plug-and-play method that enhances LLMs with Code Graph information through an external, trainable Bridge module. CGBridge first pre-trains a code graph encoder via selfsupervised learning on a large-scale dataset of 270K code graphs to learn structural code semantics. It then trains an external module to bridge the modality gap among code, graph, and text by aligning their semantics through cross-modal attention mechanisms. Finally, the bridge module generates structure-informed prompts, which are injected into a frozen LLM, and is fine-tuned for downstream code intelligence tasks. Experiments show that CGBridge achieves notable improvements over both the original model and the graphaugmented prompting method. Specifically, it yields a 16.19% and 9.12% relative gain in LLM-as-a-Judge on code summarization, and a 9.84% and 38.87% relative gain in Execution Accuracy on code translation. Moreover, CGBridge achieves over 4x faster inference than LoRA-tuned models, demonstrating both effectiveness and efficiency in structure-aware code understanding.
☆ PCMind-2.1-Kaiyuan-2B Technical Report
The rapid advancement of Large Language Models (LLMs) has resulted in a significant knowledge gap between the open-source community and industry, primarily because the latter relies on closed-source, high-quality data and training recipes. To address this, we introduce PCMind-2.1-Kaiyuan-2B, a fully open-source 2-billion-parameter model focused on improving training efficiency and effectiveness under resource constraints. Our methodology includes three key innovations: a Quantile Data Benchmarking method for systematically comparing heterogeneous open-source datasets and providing insights on data mixing strategies; a Strategic Selective Repetition scheme within a multi-phase paradigm to effectively leverage sparse, high-quality data; and a Multi-Domain Curriculum Training policy that orders samples by quality. Supported by a highly optimized data preprocessing pipeline and architectural modifications for FP16 stability, Kaiyuan-2B achieves performance competitive with state-of-the-art fully open-source models, demonstrating practical and scalable solutions for resource-limited pretraining. We release all assets (including model weights, data, and code) under Apache 2.0 license at https://huggingface.co/thu-pacman/PCMind-2.1-Kaiyuan-2B.
☆ Metric-Fair Prompting: Treating Similar Samples Similarly
We introduce \emph{Metric-Fair Prompting}, a fairness-aware prompting framework that guides large language models (LLMs) to make decisions under metric-fairness constraints. In the application of multiple-choice medical question answering, each {(question, option)} pair is treated as a binary instance with label $+1$ (correct) or $-1$ (incorrect). To promote {individual fairness}~--~treating similar instances similarly~--~we compute question similarity using NLP embeddings and solve items in \emph{joint pairs of similar questions} rather than in isolation. The prompt enforces a global decision protocol: extract decisive clinical features, map each \((\text{question}, \text{option})\) to a score $f(x)$ that acts as confidence, and impose a Lipschitz-style constraint so that similar inputs receive similar scores and, hence, consistent outputs. Evaluated on the {MedQA (US)} benchmark, Metric-Fair Prompting is shown to improve performance over standard single-item prompting, demonstrating that fairness-guided, confidence-oriented reasoning can enhance LLM accuracy on high-stakes clinical multiple-choice questions.
☆ Complementary Learning Approach for Text Classification using Large Language Models
In this study, we propose a structured methodology that utilizes large language models (LLMs) in a cost-efficient and parsimonious manner, integrating the strengths of scholars and machines while offsetting their respective weaknesses. Our methodology, facilitated through a chain of thought and few-shot learning prompting from computer science, extends best practices for co-author teams in qualitative research to human-machine teams in quantitative research. This allows humans to utilize abductive reasoning and natural language to interrogate not just what the machine has done but also what the human has done. Our method highlights how scholars can manage inherent weaknesses OF LLMs using careful, low-cost techniques. We demonstrate how to use the methodology to interrogate human-machine rating discrepancies for a sample of 1,934 press releases announcing pharmaceutical alliances (1990-2017).
comment: 67 pages
☆ A Simple Method to Enhance Pre-trained Language Models with Speech Tokens for Classification
This paper presents a simple method that allows to easily enhance textual pre-trained large language models with speech information, when fine-tuned for a specific classification task. A classical issue with the fusion of many embeddings from audio with text is the large length of the audio sequence compared to the text one. Our method benefits from an existing speech tokenizer trained for Audio Speech Recognition that output long sequences of tokens from a large vocabulary, making it difficult to integrate it at low cost in a large language model. By applying a simple lasso-based feature selection on multimodal Bag-of-Words representation, we retain only the most important audio tokens for the task, and adapt the language model to them with a self-supervised language modeling objective, before fine-tuning it on the downstream task. We show this helps to improve the performances compared to an unimodal model, to a bigger SpeechLM or to integrating audio via a learned representation. We show the effectiveness of our method on two recent Argumentative Fallacy Detection and Classification tasks where the use of audio was believed counterproductive, reaching state-of-the-art results. We also provide an in-depth analysis of the method, showing that even a random audio token selection helps enhancing the unimodal model. Our code is available [online](https://github.com/salocinc/EACL26SpeechTokFallacy/).
☆ Toward More Reliable Artificial Intelligence: Reducing Hallucinations in Vision-Language Models
Vision-language models (VLMs) frequently generate hallucinated content plausible but incorrect claims about image content. We propose a training-free self-correction framework enabling VLMs to iteratively refine responses through uncertainty-guided visual re-attention. Our method combines multidimensional uncertainty quantification (token entropy, attention dispersion, semantic consistency, claim confidence) with attention-guided cropping of under-explored regions. Operating entirely with frozen, pretrained VLMs, our framework requires no gradient updates. We validate our approach on the POPE and MMHAL BENCH benchmarks using the Qwen2.5-VL-7B [23] architecture. Experimental results demonstrate that our method reduces hallucination rates by 9.8 percentage points compared to the baseline, while improving object existence accuracy by 4.7 points on adversarial splits. Furthermore, qualitative analysis confirms that uncertainty-guided re-attention successfully grounds corrections in visual evidence where standard decoding fails. We validate our approach on Qwen2.5-VL-7B [23], with plans to extend validation across diverse architectures in future versions. We release our code and methodology to facilitate future research in trustworthy multimodal systems.
comment: 24 pages, 3 figures, 2 tables. Training-free self-correction framework for vision-language models. Code and implementation details will be released at: https://github.com/kassoumsanogo1/self-correcting-vlm-re-Attention.git
☆ Performance of the SafeTerm AI-Based MedDRA Query System Against Standardised MedDRA Queries
In pre-market drug safety review, grouping related adverse event terms into SMQs or OCMQs is critical for signal detection. We assess the performance of SafeTerm Automated Medical Query (AMQ) on MedDRA SMQs. The AMQ is a novel quantitative artificial intelligence system that understands and processes medical terminology and automatically retrieves relevant MedDRA Preferred Terms (PTs) for a given input query, ranking them by a relevance score (0-1) using multi-criteria statistical methods. The system (SafeTerm) embeds medical query terms and MedDRA PTs in a multidimensional vector space, then applies cosine similarity, and extreme-value clustering to generate a ranked list of PTs. Validation was conducted against tier-1 SMQs (110 queries, v28.1). Precision, recall and F1 were computed at multiple similarity-thresholds, defined either manually or using an automated method. High recall (94%)) is achieved at moderate similarity thresholds, indicative of good retrieval sensitivity. Higher thresholds filter out more terms, resulting in improved precision (up to 89%). The optimal threshold (0.70)) yielded an overall recall of (48%) and precision of (45%) across all 110 queries. Restricting to narrow-term PTs achieved slightly better performance at an increased (+0.05) similarity threshold, confirming increased relatedness of narrow versus broad terms. The automatic threshold (0.66) selection prioritizes recall (0.58) to precision (0.29). SafeTerm AMQ achieves comparable, satisfactory performance on SMQs and sanitized OCMQs. It is therefore a viable supplementary method for automated MedDRA query generation, balancing recall and precision. We recommend using suitable MedDRA PT terminology in query formulation and applying the automated threshold method to optimise recall. Increasing similarity scores allows refined, narrow terms selection.
comment: 8 pages, 3 figures
☆ MoCoRP: Modeling Consistent Relations between Persona and Response for Persona-based Dialogue
As dialogue systems become increasingly important across various domains, a key challenge in persona-based dialogue is generating engaging and context-specific interactions while ensuring the model acts with a coherent personality. However, existing persona-based dialogue datasets lack explicit relations between persona sentences and responses, which makes it difficult for models to effectively capture persona information. To address these issues, we propose MoCoRP (Modeling Consistent Relations between Persona and Response), a framework that incorporates explicit relations into language models. MoCoRP leverages an NLI expert to explicitly extract the NLI relations between persona sentences and responses, enabling the model to effectively incorporate appropriate persona information from the context into its responses. We applied this framework to pre-trained models like BART and further extended it to modern large language models (LLMs) through alignment tuning. Experimental results on the public datasets ConvAI2 and MPChat demonstrate that MoCoRP outperforms existing baselines, achieving superior persona consistency and engaging, context-aware dialogue generation. Furthermore, our model not only excels in quantitative metrics but also shows significant improvements in qualitative aspects. These results highlight the effectiveness of explicitly modeling persona-response relations in persona-based dialogue. The source codes of MoCoRP are available at https://github.com/DMCB-GIST/MoCoRP.
comment: 18 pages
☆ Most over-representation of phonological features in basic vocabulary disappears when controlling for spatial and phylogenetic effects
The statistical over-representation of phonological features in the basic vocabulary of languages is often interpreted as reflecting potentially universal sound symbolic patterns. However, most of those results have not been tested explicitly for reproducibility and might be prone to biases in the study samples or models. Many studies on the topic do not adequately control for genealogical and areal dependencies between sampled languages, casting doubts on the robustness of the results. In this study, we test the robustness of a recent study on sound symbolism of basic vocabulary concepts which analyzed245 languages.The new sample includes data on 2864 languages from Lexibank. We modify the original model by adding statistical controls for spatial and phylogenetic dependencies between languages. The new results show that most of the previously observed patterns are not robust, and in fact many patterns disappear completely when adding the genealogical and areal controls. A small number of patterns, however, emerges as highly stable even with the new sample. Through the new analysis, we are able to assess the distribution of sound symbolism on a larger scale than previously. The study further highlights the need for testing all universal claims on language for robustness on various levels.
comment: Accepted with minor revisions at *Linguistic Typology*, expected to be fully published in 2026
☆ Minimum Bayes Risk Decoding for Error Span Detection in Reference-Free Automatic Machine Translation Evaluation
Error Span Detection (ESD) is a subtask of automatic machine translation evaluation that localizes error spans in translations and labels their severity. State-of-the-art generative ESD methods typically decode using Maximum a Posteriori (MAP), assuming that model-estimated probabilities are perfectly correlated with similarity to human annotation. However, we observed that annotations dissimilar to the human annotation could achieve a higher model likelihood than the human annotation. We address this issue by applying Minimum Bayes Risk (MBR) decoding to generative ESD models. Specifically, we employ sentence- and span-level similarity metrics as utility functions to select candidate hypotheses based on their approximate similarity to the human annotation. Extensive experimental results show that our MBR decoding outperforms the MAP baseline at the system, sentence, and span-levels. Furthermore, to mitigate the computational cost of MBR decoding, we demonstrate that applying MBR distillation enables a standard greedy model to match MBR decoding performance, effectively eliminating the inference-time latency bottleneck.
☆ SwissGov-RSD: A Human-annotated, Cross-lingual Benchmark for Token-level Recognition of Semantic Differences Between Related Documents
Recognizing semantic differences across documents, especially in different languages, is crucial for text generation evaluation and multilingual content alignment. However, as a standalone task it has received little attention. We address this by introducing SwissGov-RSD, the first naturalistic, document-level, cross-lingual dataset for semantic difference recognition. It encompasses a total of 224 multi-parallel documents in English-German, English-French, and English-Italian with token-level difference annotations by human annotators. We evaluate a variety of open-source and closed source large language models as well as encoder models across different fine-tuning settings on this new benchmark. Our results show that current automatic approaches perform poorly compared to their performance on monolingual, sentence-level, and synthetic benchmarks, revealing a considerable gap for both LLMs and encoder models. We make our code and datasets publicly available.
comment: 30 pages
☆ Beyond Real: Imaginary Extension of Rotary Position Embeddings for Long-Context LLMs
Rotary Position Embeddings (RoPE) have become a standard for encoding sequence order in Large Language Models (LLMs) by applying rotations to query and key vectors in the complex plane. Standard implementations, however, utilize only the real component of the complex-valued dot product for attention score calculation. This simplification discards the imaginary component, which contains valuable phase information, leading to a potential loss of relational details crucial for modeling long-context dependencies. In this paper, we propose an extension that re-incorporates this discarded imaginary component. Our method leverages the full complex-valued representation to create a dual-component attention score. We theoretically and empirically demonstrate that this approach enhances the modeling of long-context dependencies by preserving more positional information. Furthermore, evaluations on a suite of long-context language modeling benchmarks show that our method consistently improves performance over the standard RoPE, with the benefits becoming more significant as context length increases. The code is available at https://github.com/OpenMOSS/rope_pp.
comment: 20 pages, 6 figures, under review
☆ LIME: Making LLM Data More Efficient with Linguistic Metadata Embeddings
Pre-training decoder-only language models relies on vast amounts of high-quality data, yet the availability of such data is increasingly reaching its limits. While metadata is commonly used to create and curate these datasets, its potential as a direct training signal remains under-explored. We challenge this status quo and propose LIME (Linguistic Metadata Embeddings), a method that enriches token embeddings with metadata capturing syntax, semantics, and contextual properties. LIME substantially improves pre-training efficiency. Specifically, it adapts up to 56% faster to the training data distribution, while introducing only 0.01% additional parameters at negligible compute overhead. Beyond efficiency, LIME improves tokenization, leading to remarkably stronger language modeling capabilities and generative task performance. These benefits persist across model scales (500M to 2B). In addition, we develop a variant with shifted metadata, LIME+1, that can guide token generation. Given prior metadata for the next token, LIME+1 improves reasoning performance by up to 38% and arithmetic accuracy by up to 35%.
☆ SPAD: Seven-Source Token Probability Attribution with Syntactic Aggregation for Detecting Hallucinations in RAG
Detecting hallucinations in Retrieval-Augmented Generation (RAG) remains a challenge. Prior approaches attribute hallucinations to a binary conflict between internal knowledge (stored in FFNs) and retrieved context. However, this perspective is incomplete, failing to account for the impact of other components in the generative process, such as the user query, previously generated tokens, the current token itself, and the final LayerNorm adjustment. To address this, we introduce SPAD. First, we mathematically attribute each token's probability into seven distinct sources: Query, RAG, Past, Current Token, FFN, Final LayerNorm, and Initial Embedding. This attribution quantifies how each source contributes to the generation of the current token. Then, we aggregate these scores by POS tags to quantify how different components drive specific linguistic categories. By identifying anomalies, such as Nouns relying on Final LayerNorm, SPAD effectively detects hallucinations. Extensive experiments demonstrate that SPAD achieves state-of-the-art performance
☆ Enhancing Agentic RL with Progressive Reward Shaping and Value-based Sampling Policy Optimization
Large Language Models (LLMs) empowered with Tool-Integrated Reasoning (TIR) can iteratively plan, call external tools, and integrate returned information to solve complex, long-horizon reasoning tasks. Agentic Reinforcement Learning (Agentic RL) optimizes such models over full tool-interaction trajectories, but two key challenges hinder effectiveness: (1) Sparse, non-instructive rewards, such as binary 0-1 verifiable signals, provide limited guidance for intermediate steps and slow convergence; (2) Gradient degradation in Group Relative Policy Optimization (GRPO), where identical rewards within a rollout group yield zero advantage, reducing sample efficiency and destabilizing training. To address these challenges, we propose two complementary techniques: Progressive Reward Shaping (PRS) and Value-based Sampling Policy Optimization (VSPO). PRS is a curriculum-inspired reward design that introduces dense, stage-wise feedback - encouraging models to first master parseable and properly formatted tool calls, then optimize for factual correctness and answer quality. We instantiate PRS for short-form QA (with a length-aware BLEU to fairly score concise answers) and long-form QA (with LLM-as-a-Judge scoring to prevent reward hacking). VSPO is an enhanced GRPO variant that replaces low-value samples with prompts selected by a task-value metric balancing difficulty and uncertainty, and applies value-smoothing clipping to stabilize gradient updates. Experiments on multiple short-form and long-form QA benchmarks show that PRS consistently outperforms traditional binary rewards, and VSPO achieves superior stability, faster convergence, and higher final performance compared to PPO, GRPO, CISPO, and SFT-only baselines. Together, PRS and VSPO yield LLM-based TIR agents that generalize better across domains.
☆ Living the Novel: A System for Generating Self-Training Timeline-Aware Conversational Agents from Novels
We present the Living Novel, an end-to-end system that transforms any literary work into an immersive, multi-character conversational experience. This system is designed to solve two fundamental challenges for LLM-driven characters. Firstly, generic LLMs suffer from persona drift, often failing to stay in character. Secondly, agents often exhibit abilities that extend beyond the constraints of the story's world and logic, leading to both narrative incoherence (spoiler leakage) and robustness failures (frame-breaking). To address these challenges, we introduce a novel two-stage training pipeline. Our Deep Persona Alignment (DPA) stage uses data-free reinforcement finetuning to instill deep character fidelity. Our Coherence and Robustness Enhancing (CRE) stage then employs a story-time-aware knowledge graph and a second retrieval-grounded training pass to architecturally enforce these narrative constraints. We validate our system through a multi-phase evaluation using Jules Verne's Twenty Thousand Leagues Under the Sea. A lab study with a detailed ablation of system components is followed by a 5-day in-the-wild diary study. Our DPA pipeline helps our specialized model outperform GPT-4o on persona-specific metrics, and our CRE stage achieves near-perfect performance in coherence and robustness measures. Our study surfaces practical design guidelines for AI-driven narrative systems: we find that character-first self-training is foundational for believability, while explicit story-time constraints are crucial for sustaining coherent, interruption-resilient mobile-web experiences.
☆ Native Parallel Reasoner: Reasoning in Parallelism via Self-Distilled Reinforcement Learning
We introduce Native Parallel Reasoner (NPR), a teacher-free framework that enables Large Language Models (LLMs) to self-evolve genuine parallel reasoning capabilities. NPR transforms the model from sequential emulation to native parallel cognition through three key innovations: 1) a self-distilled progressive training paradigm that transitions from ``cold-start'' format discovery to strict topological constraints without external supervision; 2) a novel Parallel-Aware Policy Optimization (PAPO) algorithm that optimizes branching policies directly within the execution graph, allowing the model to learn adaptive decomposition via trial and error; and 3) a robust NPR Engine that refactors memory management and flow control of SGLang to enable stable, large-scale parallel RL training. Across eight reasoning benchmarks, NPR trained on Qwen3-4B achieves performance gains of up to 24.5% and inference speedups up to 4.6x. Unlike prior baselines that often fall back to autoregressive decoding, NPR demonstrates 100% genuine parallel execution, establishing a new standard for self-evolving, efficient, and scalable agentic reasoning.
☆ Persian-Phi: Efficient Cross-Lingual Adaptation of Compact LLMs via Curriculum Learning
The democratization of AI is currently hindered by the immense computational costs required to train Large Language Models (LLMs) for low-resource languages. This paper presents Persian-Phi, a 3.8B parameter model that challenges the assumption that robust multilingual capabilities require massive model sizes or multilingual baselines. We demonstrate how Microsoft Phi-3 Mini -- originally a monolingual English model -- can be effectively adapted to Persian through a novel, resource-efficient curriculum learning pipeline. Our approach employs a unique "warm-up" stage using bilingual narratives (Tiny Stories) to align embeddings prior to heavy training, followed by continual pretraining and instruction tuning via Parameter-Efficient Fine-Tuning (PEFT). Despite its compact size, Persian-Phi achieves competitive results on Open Persian LLM Leaderboard in HuggingFace. Our findings provide a validated, scalable framework for extending the reach of state-of-the-art LLMs to underrepresented languages with minimal hardware resources. The Persian-Phi model is publicly available at https://huggingface.co/amirakhlaghiqqq/PersianPhi.
☆ Training Language Models to Use Prolog as a Tool
Ensuring reliable tool use is critical for safe agentic AI systems. Language models frequently produce unreliable reasoning with plausible but incorrect solutions that are difficult to verify. To address this, we investigate fine-tuning models to use Prolog as an external tool for verifiable computation. Using Group Relative Policy Optimization (GRPO), we fine-tune Qwen2.5-3B-Instruct on a cleaned GSM8K-Prolog-Prover dataset while varying (i) prompt structure, (ii) reward composition (execution, syntax, semantics, structure), and (iii) inference protocol: single-shot, best-of-N, and two agentic modes where Prolog is invoked internally or independently. Our reinforcement learning approach outperforms supervised fine-tuning, with our 3B model achieving zero-shot MMLU performance comparable to 7B few-shot results. Our findings reveal that: 1) joint tuning of prompt, reward, and inference shapes program syntax and logic; 2) best-of-N with external Prolog verification maximizes accuracy on GSM8K; 3) agentic inference with internal repair yields superior zero-shot generalization on MMLU-Stem and MMLU-Pro. These results demonstrate that grounding model reasoning in formal verification systems substantially improves reliability and auditability for safety-critical applications. The source code for reproducing our experiments is available under https://github.com/niklasmellgren/grpo-prolog-inference
comment: 10 pages
☆ LUNE: Efficient LLM Unlearning via LoRA Fine-Tuning with Negative Examples
Large language models (LLMs) possess vast knowledge acquired from extensive training corpora, but they often cannot remove specific pieces of information when needed, which makes it hard to handle privacy, bias mitigation, and knowledge correction. Traditional model unlearning approaches require computationally expensive fine-tuning or direct weight editing, making them impractical for real-world deployment. In this work, we introduce LoRA-based Unlearning with Negative Examples (LUNE), a lightweight framework that performs negative-only unlearning by updating only low-rank adapters while freezing the backbone, thereby localizing edits and avoiding disruptive global changes. Leveraging Low-Rank Adaptation (LoRA), LUNE targets intermediate representations to suppress (or replace) requested knowledge with an order-of-magnitude lower compute and memory than full fine-tuning or direct weight editing. Extensive experiments on multiple factual unlearning tasks show that LUNE: (I) achieves effectiveness comparable to full fine-tuning and memory-editing methods, and (II) reduces computational cost by about an order of magnitude.
☆ Recover-to-Forget: Gradient Reconstruction from LoRA for Efficient LLM Unlearning
Unlearning in large foundation models (e.g., LLMs) is essential for enabling dynamic knowledge updates, enforcing data deletion rights, and correcting model behavior. However, existing unlearning methods often require full-model fine-tuning or access to the original training data, which limits their scalability and practicality. In this work, we introduce Recover-to-Forget (R2F), a novel framework for efficient unlearning in LLMs based on reconstructing full-model gradient directions from low-rank LoRA adapter updates. Rather than performing backpropagation through the full model, we compute gradients with respect to LoRA parameters using multiple paraphrased prompts and train a gradient decoder to approximate the corresponding full-model gradients. To ensure applicability to larger or black-box models, the decoder is trained on a proxy model and transferred to target models. We provide a theoretical analysis of cross-model generalization and demonstrate that our method achieves effective unlearning while preserving general model performance. Experimental results demonstrate that R2F offers a scalable and lightweight alternative for unlearning in pretrained LLMs without requiring full retraining or access to internal parameters.
☆ Multilingual corpora for the study of new concepts in the social sciences and humanities:
This article presents a hybrid methodology for building a multilingual corpus designed to support the study of emerging concepts in the humanities and social sciences (HSS), illustrated here through the case of ``non-technological innovation''. The corpus relies on two complementary sources: (1) textual content automatically extracted from company websites, cleaned for French and English, and (2) annual reports collected and automatically filtered according to documentary criteria (year, format, duplication). The processing pipeline includes automatic language detection, filtering of non-relevant content, extraction of relevant segments, and enrichment with structural metadata. From this initial corpus, a derived dataset in English is created for machine learning purposes. For each occurrence of a term from the expert lexicon, a contextual block of five sentences is extracted (two preceding and two following the sentence containing the term). Each occurrence is annotated with the thematic category associated with the term, enabling the construction of data suitable for supervised classification tasks. This approach results in a reproducible and extensible resource, suitable both for analyzing lexical variability around emerging concepts and for generating datasets dedicated to natural language processing applications.
comment: in French language
☆ Investigating Training and Generalization in Faithful Self-Explanations of Large Language Models AACL
Large language models have the potential to generate explanations for their own predictions in a variety of styles based on user instructions. Recent research has examined whether these self-explanations faithfully reflect the models' actual behavior and has found that they often lack faithfulness. However, the question of how to improve faithfulness remains underexplored. Moreover, because different explanation styles have superficially distinct characteristics, it is unclear whether improvements observed in one style also arise when using other styles. This study analyzes the effects of training for faithful self-explanations and the extent to which these effects generalize, using three classification tasks and three explanation styles. We construct one-word constrained explanations that are likely to be faithful using a feature attribution method, and use these pseudo-faithful self-explanations for continual learning on instruction-tuned models. Our experiments demonstrate that training can improve self-explanation faithfulness across all classification tasks and explanation styles, and that these improvements also show signs of generalization to the multi-word settings and to unseen tasks. Furthermore, we find consistent cross-style generalization among three styles, suggesting that training may contribute to a broader improvement in faithful self-explanation ability.
comment: To appear in the Proceedings of the Asia-Pacific Chapter of the Association for Computational Linguistics: Student Research Workshop (AACL-SRW 2025)
☆ Efficient ASR for Low-Resource Languages: Leveraging Cross-Lingual Unlabeled Data AACL
Automatic speech recognition for low-resource languages remains fundamentally constrained by the scarcity of labeled data and computational resources required by state-of-the-art models. We present a systematic investigation into cross-lingual continuous pretraining for low-resource languages, using Perso-Arabic languages (Persian, Arabic, and Urdu) as our primary case study. Our approach demonstrates that strategic utilization of unlabeled speech data can effectively bridge the resource gap without sacrificing recognition accuracy. We construct a 3,000-hour multilingual corpus through a scalable unlabeled data collection pipeline and employ targeted continual pretraining combined with morphologically-aware tokenization to develop a 300M parameter model that achieves performance comparable to systems 5 times larger. Our model outperforms Whisper Large v3 (1.5B parameters) on Persian and achieves competitive results on Arabic and Urdu despite using significantly fewer parameters and substantially less labeled data. These findings challenge the prevailing assumption that ASR quality scales primarily with model size, revealing instead that data relevance and strategic pretraining are more critical factors for low-resource scenarios. This work provides a practical pathway toward inclusive speech technology, enabling effective ASR for underrepresented languages without dependence on massive computational infrastructure or proprietary datasets.
comment: Accepted in AACL IJCNLP 2025
☆ TeluguST-46: A Benchmark Corpus and Comprehensive Evaluation for Telugu-English Speech Translation AACL
Despite Telugu being spoken by over 80 million people, speech translation research for this morphologically rich language remains severely underexplored. We address this gap by developing a high-quality Telugu--English speech translation benchmark from 46 hours of manually verified CSTD corpus data (30h/8h/8h train/dev/test split). Our systematic comparison of cascaded versus end-to-end architectures shows that while IndicWhisper + IndicMT achieves the highest performance due to extensive Telugu-specific training data, finetuned SeamlessM4T models demonstrate remarkable competitiveness despite using significantly less Telugu-specific training data. This finding suggests that with careful hyperparameter tuning and sufficient parallel data (potentially less than 100 hours), end-to-end systems can achieve performance comparable to cascaded approaches in low-resource settings. Our metric reliability study evaluating BLEU, METEOR, ChrF++, ROUGE-L, TER, and BERTScore against human judgments reveals that traditional metrics provide better quality discrimination than BERTScore for Telugu--English translation. The work delivers three key contributions: a reproducible Telugu--English benchmark, empirical evidence of competitive end-to-end performance potential in low-resource scenarios, and practical guidance for automatic evaluation in morphologically complex language pairs.
comment: Submitted to AACL IJCNLP 2025
☆ Ensembling LLM-Induced Decision Trees for Explainable and Robust Error Detection
Error detection (ED), which aims to identify incorrect or inconsistent cell values in tabular data, is important for ensuring data quality. Recent state-of-the-art ED methods leverage the pre-trained knowledge and semantic capability embedded in large language models (LLMs) to directly label whether a cell is erroneous. However, this LLM-as-a-labeler pipeline (1) relies on the black box, implicit decision process, thus failing to provide explainability for the detection results, and (2) is highly sensitive to prompts, yielding inconsistent outputs due to inherent model stochasticity, therefore lacking robustness. To address these limitations, we propose an LLM-as-an-inducer framework that adopts LLM to induce the decision tree for ED (termed TreeED) and further ensembles multiple such trees for consensus detection (termed ForestED), thereby improving explainability and robustness. Specifically, based on prompts derived from data context, decision tree specifications and output requirements, TreeED queries the LLM to induce the decision tree skeleton, whose root-to-leaf decision paths specify the stepwise procedure for evaluating a given sample. Each tree contains three types of nodes: (1) rule nodes that perform simple validation checks (e.g., format or range), (2) Graph Neural Network (GNN) nodes that capture complex patterns (e.g., functional dependencies), and (3) leaf nodes that output the final decision types (error or clean). Furthermore, ForestED employs uncertainty-based sampling to obtain multiple row subsets, constructing a decision tree for each subset using TreeED. It then leverages an Expectation-Maximization-based algorithm that jointly estimates tree reliability and optimizes the consensus ED prediction. Extensive xperiments demonstrate that our methods are accurate, explainable and robust, achieving an average F1-score improvement of 16.1% over the best baseline.
comment: 14 pages, 8 figures
☆ Pay Less Attention to Function Words for Free Robustness of Vision-Language Models
To address the trade-off between robustness and performance for robust VLM, we observe that function words could incur vulnerability of VLMs against cross-modal adversarial attacks, and propose Function-word De-Attention (FDA) accordingly to mitigate the impact of function words. Similar to differential amplifiers, our FDA calculates the original and the function-word cross-attention within attention heads, and differentially subtracts the latter from the former for more aligned and robust VLMs. Comprehensive experiments include 2 SOTA baselines under 6 different attacks on 2 downstream tasks, 3 datasets, and 3 models. Overall, our FDA yields an average 18/13/53% ASR drop with only 0.2/0.3/0.6% performance drops on the 3 tested models on retrieval, and a 90% ASR drop with a 0.3% performance gain on visual grounding. We demonstrate the scalability, generalization, and zero-shot performance of FDA experimentally, as well as in-depth ablation studies and analysis. Code will be made publicly at https://github.com/michaeltian108/FDA.
☆ NeSTR: A Neuro-Symbolic Abductive Framework for Temporal Reasoning in Large Language Models AAAI 2026
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing tasks. However, temporal reasoning, particularly under complex temporal constraints, remains a major challenge. To this end, existing approaches have explored symbolic methods, which encode temporal structure explicitly, and reflective mechanisms, which revise reasoning errors through multi-step inference. Nonetheless, symbolic approaches often underutilize the reasoning capabilities of LLMs, while reflective methods typically lack structured temporal representations, which can result in inconsistent or hallucinated reasoning. As a result, even when the correct temporal context is available, LLMs may still misinterpret or misapply time-related information, leading to incomplete or inaccurate answers. To address these limitations, in this work, we propose Neuro-Symbolic Temporal Reasoning (NeSTR), a novel framework that integrates structured symbolic representations with hybrid reflective reasoning to enhance the temporal sensitivity of LLM inference. NeSTR preserves explicit temporal relations through symbolic encoding, enforces logical consistency via verification, and corrects flawed inferences using abductive reflection. Extensive experiments on diverse temporal question answering benchmarks demonstrate that NeSTR achieves superior zero-shot performance and consistently improves temporal reasoning without any fine-tuning, showcasing the advantage of neuro-symbolic integration in enhancing temporal understanding in large language models.
comment: Accepted by AAAI 2026
☆ Generating Storytelling Images with Rich Chains-of-Reasoning
An image can convey a compelling story by presenting rich, logically connected visual clues. These connections form Chains-of-Reasoning (CoRs) within the image, enabling viewers to infer events, causal relationships, and other information, thereby understanding the underlying story. In this paper, we focus on these semantically rich images and define them as Storytelling Images. Such images have diverse applications beyond illustration creation and cognitive screening, leveraging their ability to convey multi-layered information visually and inspire active interpretation. However, due to their complex semantic nature, Storytelling Images are inherently challenging to create, and thus remain relatively scarce. To address this challenge, we introduce the Storytelling Image Generation task, which explores how generative AI models can be leveraged to create such images. Specifically, we propose a two-stage pipeline, StorytellingPainter, which combines the creative reasoning abilities of Large Language Models (LLMs) with the visual synthesis capabilities of Text-to-Image (T2I) models to generate Storytelling Images. Alongside this pipeline, we develop a dedicated evaluation framework comprising three main evaluators: a Semantic Complexity Evaluator, a KNN-based Diversity Evaluator and a Story-Image Alignment Evaluator. Given the critical role of story generation in the Storytelling Image Generation task and the performance disparity between open-source and proprietary LLMs, we further explore tailored training strategies to reduce this gap, resulting in a series of lightweight yet effective models named Mini-Storytellers. Experimental results demonstrate the feasibility and effectiveness of our approaches. The code is available at https://github.com/xiujiesong/StorytellingImageGeneration.
☆ MASim: Multilingual Agent-Based Simulation for Social Science
Multi-agent role-playing has recently shown promise for studying social behavior with language agents, but existing simulations are mostly monolingual and fail to model cross-lingual interaction, an essential property of real societies. We introduce MASim, the first multilingual agent-based simulation framework that supports multi-turn interaction among generative agents with diverse sociolinguistic profiles. MASim offers two key analyses: (i) global public opinion modeling, by simulating how attitudes toward open-domain hypotheses evolve across languages and cultures, and (ii) media influence and information diffusion, via autonomous news agents that dynamically generate content and shape user behavior. To instantiate simulations, we construct the MAPS benchmark, which combines survey questions and demographic personas drawn from global population distributions. Experiments on calibration, sensitivity, consistency, and cultural case studies show that MASim reproduces sociocultural phenomena and highlights the importance of multilingual simulation for scalable, controlled computational social science.
☆ PICKT: Practical Interlinked Concept Knowledge Tracing for Personalized Learning using Knowledge Map Concept Relations
With the recent surge in personalized learning, Intelligent Tutoring Systems (ITS) that can accurately track students' individual knowledge states and provide tailored learning paths based on this information are in demand as an essential task. This paper focuses on the core technology of Knowledge Tracing (KT) models that analyze students' sequences of interactions to predict their knowledge acquisition levels. However, existing KT models suffer from limitations such as restricted input data formats, cold start problems arising with new student enrollment or new question addition, and insufficient stability in real-world service environments. To overcome these limitations, a Practical Interlinked Concept Knowledge Tracing (PICKT) model that can effectively process multiple types of input data is proposed. Specifically, a knowledge map structures the relationships among concepts considering the question and concept text information, thereby enabling effective knowledge tracing even in cold start situations. Experiments reflecting real operational environments demonstrated the model's excellent performance and practicality. The main contributions of this research are as follows. First, a model architecture that effectively utilizes diverse data formats is presented. Second, significant performance improvements are achieved over existing models for two core cold start challenges: new student enrollment and new question addition. Third, the model's stability and practicality are validated through delicate experimental design, enhancing its applicability in real-world product environments. This provides a crucial theoretical and technical foundation for the practical implementation of next-generation ITS.
comment: 15 pages, 5 figures, 17 tables. Preparing submission for EDM 2026 conference
☆ Think-Reflect-Revise: A Policy-Guided Reflective Framework for Safety Alignment in Large Vision Language Models
As multimodal reasoning improves the overall capabilities of Large Vision Language Models (LVLMs), recent studies have begun to explore safety-oriented reasoning, aiming to enhance safety awareness by analyzing potential safety risks during the reasoning process before generating the final response. Although such approaches improve safety awareness and interpretability, this single-pass think-then-answer paradigm remains vulnerable to contextual or visual jailbreak attacks. This reveals a critical flaw: single-pass reasoning may overlook explicit harmful content in its own output. Our key insight is to exploit this wasted signal through reflection, which can effectively leverage the malicious content revealed in the first-pass reasoning to enable genuine self-correction and prevent unsafe generations. Motivated by this, we propose Think-Reflect-Revise (TRR), a three-stage training framework designed to enhance the safety alignment of LVLMs through policy-guided self-reflection. We first build a Reflective Safety Reasoning (ReSafe) dataset with 5,000 examples that follow a think-reflect-revise process. We then fine-tune the target model using the ReSafe dataset to initialize reflective behavior, and finally reinforce policy-guided reflection through reinforcement learning. Experimental results show that TRR substantially improves the safety performance of LVLMs across both safety-awareness benchmarks and jailbreak attack evaluations, increasing the overall safe response rate from 42.8% to 87.7% on Qwen2.5-VL-7B, while preserving stable performance on general benchmarks such as MMMU and MMStar. The project page is available at https://think-reflect-revise.github.io/.
☆ GUMBridge: a Corpus for Varieties of Bridging Anaphora
Bridging is an anaphoric phenomenon where the referent of an entity in a discourse is dependent on a previous, non-identical entity for interpretation, such as in "There is 'a house'. 'The door' is red," where the door is specifically understood to be the door of the aforementioned house. While there are several existing resources in English for bridging anaphora, most are small, provide limited coverage of the phenomenon, and/or provide limited genre coverage. In this paper, we introduce GUMBridge, a new resource for bridging, which includes 16 diverse genres of English, providing both broad coverage for the phenomenon and granular annotations for the subtype categorization of bridging varieties. We also present an evaluation of annotation quality and report on baseline performance using open and closed source contemporary LLMs on three tasks underlying our data, showing that bridging resolution and subtype classification remain difficult NLP tasks in the age of LLMs.
☆ DART: Leveraging Multi-Agent Disagreement for Tool Recruitment in Multimodal Reasoning
Specialized visual tools can augment large language models or vision language models with expert knowledge (e.g., grounding, spatial reasoning, medical knowledge, etc.), but knowing which tools to call (and when to call them) can be challenging. We introduce DART, a multi-agent framework that uses disagreements between multiple debating visual agents to identify useful visual tools (e.g., object detection, OCR, spatial reasoning, etc.) that can resolve inter-agent disagreement. These tools allow for fruitful multi-agent discussion by introducing new information, and by providing tool-aligned agreement scores that highlight agents in agreement with expert tools, thereby facilitating discussion. We utilize an aggregator agent to select the best answer by providing the agent outputs and tool information. We test DART on four diverse benchmarks and show that our approach improves over multi-agent debate as well as over single agent tool-calling frameworks, beating the next-strongest baseline (multi-agent debate with a judge model) by 3.4% and 2.4% on A-OKVQA and MMMU respectively. We also find that DART adapts well to new tools in applied domains, with a 1.3% improvement on the M3D medical dataset over other strong tool-calling, single agent, and multi-agent baselines. Additionally, we measure text overlap across rounds to highlight the rich discussion in DART compared to existing multi-agent methods. Finally, we study the tool call distribution, finding that diverse tools are reliably used to help resolve disagreement.
comment: Code: https://github.com/nsivaku/dart
☆ A Neural Affinity Framework for Abstract Reasoning: Diagnosing the Compositional Gap in Transformer Architectures via Procedural Task Taxonomy
Responding to Hodel et al.'s (2024) call for a formal definition of task relatedness in re-arc, we present the first 9-category taxonomy of all 400 tasks, validated at 97.5% accuracy via rule-based code analysis. We prove the taxonomy's visual coherence by training a CNN on raw grid pixels (95.24% accuracy on S3, 36.25% overall, 3.3x chance), then apply the taxonomy diagnostically to the original ARC-AGI-2 test set. Our curriculum analysis reveals 35.3% of tasks exhibit low neural affinity for Transformers--a distributional bias mirroring ARC-AGI-2. To probe this misalignment, we fine-tuned a 1.7M-parameter Transformer across 302 tasks, revealing a profound Compositional Gap: 210 of 302 tasks (69.5%) achieve >80% cell accuracy (local patterns) but <10% grid accuracy (global synthesis). This provides direct evidence for a Neural Affinity Ceiling Effect, where performance is bounded by architectural suitability, not curriculum. Applying our framework to Li et al.'s independent ViTARC study (400 specialists, 1M examples each) confirms its predictive power: Very Low affinity tasks achieve 51.9% versus 77.7% for High affinity (p<0.001), with a task at 0% despite massive data. The taxonomy enables precise diagnosis: low-affinity tasks (A2) hit hard ceilings, while high-affinity tasks (C1) reach 99.8%. These findings indicate that progress requires hybrid architectures with affinity-aligned modules. We release our validated taxonomy,
comment: 62 pages, 10 figures
☆ Leveraging KV Similarity for Online Structured Pruning in LLMs
Pruning has emerged as a promising direction for accelerating large language model (LLM) inference, yet existing approaches often suffer from instability because they rely on offline calibration data that may not generalize across inputs. In this work, we introduce Token Filtering, a lightweight online structured pruning technique that makes pruning decisions directly during inference without any calibration data. The key idea is to measure token redundancy via joint key-value similarity and skip redundant attention computations, thereby reducing inference cost while preserving critical information. To further enhance stability, we design a variance-aware fusion strategy that adaptively weights key and value similarity across heads, ensuring that informative tokens are retained even under high pruning ratios. This design introduces no additional memory overhead and provides a more reliable criterion for token importance. Extensive experiments on LLaMA-2 (7B/13B), LLaMA-3 (8B), and Mistral (7B) demonstrate that Token Filtering consistently outperforms prior structured pruning methods, preserving accuracy on commonsense reasoning benchmarks and maintaining strong performance on challenging tasks such as MMLU, even with 50% pruning.
☆ Do Large Language Models Truly Understand Cross-cultural Differences?
In recent years, large language models (LLMs) have demonstrated strong performance on multilingual tasks. Given its wide range of applications, cross-cultural understanding capability is a crucial competency. However, existing benchmarks for evaluating whether LLMs genuinely possess this capability suffer from three key limitations: a lack of contextual scenarios, insufficient cross-cultural concept mapping, and limited deep cultural reasoning capabilities. To address these gaps, we propose SAGE, a scenario-based benchmark built via cross-cultural core concept alignment and generative task design, to evaluate LLMs' cross-cultural understanding and reasoning. Grounded in cultural theory, we categorize cross-cultural capabilities into nine dimensions. Using this framework, we curated 210 core concepts and constructed 4530 test items across 15 specific real-world scenarios, organized under four broader categories of cross-cultural situations, following established item design principles. The SAGE dataset supports continuous expansion, and experiments confirm its transferability to other languages. It reveals model weaknesses across both dimensions and scenarios, exposing systematic limitations in cross-cultural reasoning. While progress has been made, LLMs are still some distance away from reaching a truly nuanced cross-cultural understanding. In compliance with the anonymity policy, we include data and code in the supplement materials. In future versions, we will make them publicly available online.
☆ SETUP: Sentence-level English-To-Uniform Meaning Representation Parser
Uniform Meaning Representation (UMR) is a novel graph-based semantic representation which captures the core meaning of a text, with flexibility incorporated into the annotation schema such that the breadth of the world's languages can be annotated (including low-resource languages). While UMR shows promise in enabling language documentation, improving low-resource language technologies, and adding interpretability, the downstream applications of UMR can only be fully explored when text-to-UMR parsers enable the automatic large-scale production of accurate UMR graphs at test time. Prior work on text-to-UMR parsing is limited to date. In this paper, we introduce two methods for English text-to-UMR parsing, one of which fine-tunes existing parsers for Abstract Meaning Representation and the other, which leverages a converter from Universal Dependencies, using prior work as a baseline. Our best-performing model, which we call SETUP, achieves an AnCast score of 84 and a SMATCH++ score of 91, indicating substantial gains towards automatic UMR parsing.
☆ Replicating TEMPEST at Scale: Multi-Turn Adversarial Attacks Against Trillion-Parameter Frontier Models
Despite substantial investment in safety alignment, the vulnerability of large language models to sophisticated multi-turn adversarial attacks remains poorly characterized, and whether model scale or inference mode affects robustness is unknown. This study employed the TEMPEST multi-turn attack framework to evaluate ten frontier models from eight vendors across 1,000 harmful behaviors, generating over 97,000 API queries across adversarial conversations with automated evaluation by independent safety classifiers. Results demonstrated a spectrum of vulnerability: six models achieved 96% to 100% attack success rate (ASR), while four showed meaningful resistance, with ASR ranging from 42% to 78%; enabling extended reasoning on identical architecture reduced ASR from 97% to 42%. These findings indicate that safety alignment quality varies substantially across vendors, that model scale does not predict adversarial robustness, and that thinking mode provides a deployable safety enhancement. Collectively, this work establishes that current alignment techniques remain fundamentally vulnerable to adaptive multi-turn attacks regardless of model scale, while identifying deliberative inference as a promising defense direction.
comment: 30 pages, 11 figures, 5 tables. Code and data: https://github.com/ricyoung/tempest-replication
♻ ☆ Beyond the Singular: Revealing the Value of Multiple Generations in Benchmark Evaluation NeurIPS 2025
Large language models (LLMs) have demonstrated significant utility in real-world applications, exhibiting impressive capabilities in natural language processing and understanding. Benchmark evaluations are crucial for assessing the capabilities of LLMs as they can provide a comprehensive assessment of their strengths and weaknesses. However, current evaluation methods often overlook the inherent randomness of LLMs by employing deterministic generation strategies or relying on a single random sample, resulting in unaccounted sampling variance and unreliable benchmark score estimates. In this paper, we propose a hierarchical statistical model that provides a more comprehensive representation of the benchmarking process by incorporating both benchmark characteristics and LLM randomness. We show that leveraging multiple generations improves the accuracy of estimating the benchmark score and reduces variance. Multiple generations also allow us to define $\mathbb P\left(\text{correct}\right)$, a prompt-level difficulty score based on correct ratios, providing fine-grained insights into individual prompts. Additionally, we create a data map that visualizes difficulty and semantics of prompts, enabling error detection and quality control in benchmark construction.
comment: Accepted in NeurIPS 2025 Workshop on LLM Evals
♻ ☆ Aligning Machiavellian Agents: Behavior Steering via Test-Time Policy Shaping AAAI 2026
The deployment of decision-making AI agents presents a critical challenge in maintaining alignment with human values or guidelines while operating in complex, dynamic environments. Agents trained solely to achieve their objectives may adopt harmful behavior, exposing a key trade-off between maximizing the reward function and maintaining alignment. For pre-trained agents, ensuring alignment is particularly challenging, as retraining can be a costly and slow process. This is further complicated by the diverse and potentially conflicting attributes representing the ethical values for alignment. To address these challenges, we propose a test-time alignment technique based on model-guided policy shaping. Our method allows precise control over individual behavioral attributes, generalizes across diverse reinforcement learning (RL) environments, and facilitates a principled trade-off between ethical alignment and reward maximization without requiring agent retraining. We evaluate our approach using the MACHIAVELLI benchmark, which comprises 134 text-based game environments and thousands of annotated scenarios involving ethical decisions. The RL agents are first trained to maximize the reward in their respective games. At test time, we apply policy shaping via scenario-action attribute classifiers to ensure decision alignment with ethical attributes. We compare our approach against prior training-time methods and general-purpose agents, as well as study several types of ethical violations and power-seeking behavior. Our results demonstrate that test-time policy shaping provides an effective and scalable solution for mitigating unethical behavior across diverse environments and alignment attributes.
comment: Accepted to AAAI 2026 AI Alignment Track
♻ ☆ Kimi-Dev: Agentless Training as Skill Prior for SWE-Agents
Large Language Models (LLMs) are increasingly applied to software engineering (SWE), with SWE-bench as a key benchmark. Solutions are split into SWE-Agent frameworks with multi-turn interactions and workflow-based Agentless methods with single-turn verifiable steps. We argue these paradigms are not mutually exclusive: reasoning-intensive Agentless training induces skill priors, including localization, code edit, and self-reflection that enable efficient and effective SWE-Agent adaptation. In this work, we first curate the Agentless training recipe and present Kimi-Dev, an open-source SWE LLM achieving 60.4\% on SWE-bench Verified, the best among workflow approaches. With additional SFT adaptation on 5k publicly-available trajectories, Kimi-Dev powers SWE-Agents to 48.6\% pass@1, on par with that of Claude 3.5 Sonnet (241022 version). These results show that structured skill priors from Agentless training can bridge workflow and agentic frameworks for transferable coding agents.
comment: 68 pages. GitHub repo at https://github.com/MoonshotAI/Kimi-Dev
♻ ☆ PhyloLM : Inferring the Phylogeny of Large Language Models and Predicting their Performances in Benchmarks ICLR 2025
This paper introduces PhyloLM, a method adapting phylogenetic algorithms to Large Language Models (LLMs) to explore whether and how they relate to each other and to predict their performance characteristics. Our method calculates a phylogenetic distance metric based on the similarity of LLMs' output. The resulting metric is then used to construct dendrograms, which satisfactorily capture known relationships across a set of 111 open-source and 45 closed models. Furthermore, our phylogenetic distance predicts performance in standard benchmarks, thus demonstrating its functional validity and paving the way for a time and cost-effective estimation of LLM capabilities. To sum up, by translating population genetic concepts to machine learning, we propose and validate a tool to evaluate LLM development, relationships and capabilities, even in the absence of transparent training information.
comment: The project code is available at https://github.com/Nicolas-Yax/PhyloLM . Published as https://iclr.cc/virtual/2025/poster/28195 at ICLR 2025. A code demo is available at https://colab.research.google.com/drive/1agNE52eUevgdJ3KL3ytv5Y9JBbfJRYqd
♻ ☆ Is Self-Supervised Learning Enough to Fill in the Gap? A Study on Speech Inpainting
Speech inpainting consists in reconstructing corrupted or missing speech segments using surrounding context, a process that closely resembles the pretext tasks in Self-Supervised Learning (SSL) for speech encoders. This study investigates using SSL-trained speech encoders for inpainting without any additional training beyond the initial pretext task, and simply adding a decoder to generate a waveform. We compare this approach to supervised fine-tuning of speech encoders for a downstream task -- here, inpainting. Practically, we integrate HuBERT as the SSL encoder and HiFi-GAN as the decoder in two configurations: (1) fine-tuning the decoder to align with the frozen pre-trained encoder's output and (2) fine-tuning the encoder for an inpainting task based on a frozen decoder's input. Evaluations are conducted under single- and multi-speaker conditions using in-domain datasets and out-of-domain datasets (including unseen speakers, diverse speaking styles, and noise). Both informed and blind inpainting scenarios are considered, where the position of the corrupted segment is either known or unknown. The proposed SSL-based methods are benchmarked against several baselines, including a text-informed method combining automatic speech recognition with zero-shot text-to-speech synthesis. Performance is assessed using objective metrics and perceptual evaluations. The results demonstrate that both approaches outperform baselines, successfully reconstructing speech segments up to 200 ms, and sometimes up to 400 ms. Notably, fine-tuning the SSL encoder achieves more accurate speech reconstruction in single-speaker settings, while a pre-trained encoder proves more effective for multi-speaker scenarios. This demonstrates that an SSL pretext task can transfer to speech inpainting, enabling successful speech reconstruction with a pre-trained encoder.
comment: Accepted for publication to Computer Speech and Language journal (to appear)
♻ ☆ DZ-TDPO: Non-Destructive Temporal Alignment for Mutable State Tracking in Long-Context Dialogue
Long-context dialogue systems suffer from State Inertia, where static constraints prevent models from resolving conflicts between evolving user intents and established historical context. To address this, we propose DZ-TDPO, a non-destructive alignment framework that synergizes conflict-aware dynamic KL constraints with a calibrated temporal attention bias. Experiments on the Multi-Session Chat (MSC) dataset demonstrate that DZ-TDPO achieves state-of-the-art win rates (55.4% on Phi-3.5) while maintaining robust zero-shot generalization. Our scaling analysis reveals a "Capacity-Stability Trade-off": while smaller models incur an "alignment tax" (perplexity surge) to overcome historical inertia, the larger Qwen2.5-7B model achieves 50.8% win rate with negligible perplexity overhead. This confirms that TAI can be alleviated via precise attention regulation rather than destructive weight updates, preserving general capabilities (MMLU) across model scales. Code and data are available: https://github.com/lyj20071013/DZ-TDPO
comment: 25 pages, 3 figures, 17 tables. Code available at https://github.com/lyj20071013/DZ-TDPO
♻ ☆ HybridNorm: Towards Stable and Efficient Transformer Training via Hybrid Normalization NeurIPS 2025
Transformers have become the de facto architecture for a wide range of machine learning tasks, particularly in large language models (LLMs). Despite their remarkable performance, many challenges remain in training deep transformer networks, especially regarding the position of the layer normalization. While Pre-Norm structures facilitate more stable training owing to their stronger identity path, they often lead to suboptimal performance compared to Post-Norm. In this paper, we propose $\textbf{HybridNorm}$, a simple yet effective hybrid normalization strategy that integrates the advantages of both Pre-Norm and Post-Norm. Specifically, HybridNorm employs QKV normalization within the attention mechanism and Post-Norm in the feed-forward network (FFN) of each transformer block. We provide both theoretical insights and empirical evidence to demonstrate that HybridNorm improves the gradient flow and the model robustness. Extensive experiments on large-scale transformer models, including both dense and sparse variants, show that HybridNorm consistently outperforms both Pre-Norm and Post-Norm approaches across multiple benchmarks. These findings highlight the potential of HybridNorm as a more stable and effective technique for improving the training and performance of deep transformer models. Code is available at https://github.com/BryceZhuo/HybridNorm.
comment: Accepted by NeurIPS 2025
♻ ☆ TRepLiNa: Layer-wise CKA+REPINA Alignment Improves Low-Resource Machine Translation in Aya-23 8B
The 2025 Multimodal Models for Low-Resource Contexts and Social Impact (MMLoSo) Language Challenge addresses one of India's most pressing linguistic gaps: the lack of resources for its diverse low-resource languages (LRLs). In this study, we investigate whether enforcing cross-lingual similarity in specific internal layers of a decoder-only multilingual large language model (LLM) can improve translation quality from LRL to high-resource language (HRL). Specifically, we combine Centered Kernel Alignment (CKA), a similarity metric that encourages representations of different languages to align, with REPINA, a regularization method that constrains parameter updates to remain close to the pretrained model, into a joint method we call TRepLiNa. In this research project, we experiment with zero-shot, few-shot, and fine-tuning settings using Aya-23 8B with QLoRA across MMLoSo shared task language pairs (Mundari, Santali, Bhili) with Hindi/English pivots. Our results show that aligning mid-level layers using TRepLiNa (CKA+REPINA) is a low-cost, practical approach to improving LRL translation, especially in data-scarce settings.
comment: It is work in progress
♻ ☆ Exploring the Potential of Encoder-free Architectures in 3D LMMs
Encoder-free architectures have been preliminarily explored in the 2D Large Multimodal Models (LMMs), yet it remains an open question whether they can be effectively applied to 3D understanding scenarios. In this paper, we present the first comprehensive investigation into the potential of encoder-free architectures to alleviate the challenges of encoder-based 3D LMMs. These long-standing challenges include the failure to adapt to varying point cloud resolutions during inference and the point features from the encoder not meeting the semantic needs of Large Language Models (LLMs). We identify key aspects for 3D LMMs to remove the pre-trained encoder and enable the LLM to assume the role of the 3D encoder: 1) We propose the LLM-embedded Semantic Encoding strategy in the pre-training stage, exploring the effects of various point cloud self-supervised losses. And we present the Hybrid Semantic Loss to extract high-level semantics. 2) We introduce the Hierarchical Geometry Aggregation strategy in the instruction tuning stage. This incorporates inductive bias into the LLM layers to focus on the local details of the point clouds. To the end, we present the first Encoder-free 3D LMM, ENEL. Our 7B model rivals the state-of-the-art model, PointLLM-PiSA-13B, achieving 57.91%, 61.0%, and 55.20% on the classification, captioning, and VQA tasks, respectively. Our results show that the encoder-free architecture is highly promising for replacing encoder-based architectures in the field of 3D understanding. The code is released at https://github.com/Ivan-Tang-3D/ENEL
♻ ☆ Semantic Faithfulness and Entropy Production Measures to Tame Your LLM Demons and Manage Hallucinations
Evaluating faithfulness of Large Language Models (LLMs) to a given task is a complex challenge. We propose two new unsupervised metrics for faithfulness evaluation using insights from information theory and thermodynamics. Our approach treats an LLM as a bipartite information engine where hidden layers act as a Maxwell demon controlling transformations of context $C $ into answer $A$ via prompt $Q$. We model Question-Context-Answer (QCA) triplets as probability distributions over shared topics. Topic transformations from $C$ to $Q$ and $A$ are modeled as transition matrices ${\bf Q}$ and ${\bf A}$ encoding the query goal and actual result, respectively. Our semantic faithfulness (SF) metric quantifies faithfulness for any given QCA triplet by the Kullback-Leibler (KL) divergence between these matrices. Both matrices are inferred simultaneously via convex optimization of this KL divergence, and the final SF metric is obtained by mapping the minimal divergence onto the unit interval [0,1], where higher scores indicate greater faithfulness. Furthermore, we propose a thermodynamics-based semantic entropy production (SEP) metric in answer generation, and show that high faithfulness generally implies low entropy production. The SF and SEP metrics can be used jointly or separately for LLM evaluation and hallucination control. We demonstrate our framework on LLM summarization of corporate SEC 10-K filings.
comment: 23 pages, 6 figures
♻ ☆ Transparent and Coherent Procedural Mistake Detection EMNLP 2025
Procedural mistake detection (PMD) is a challenging problem of classifying whether a human user (observed through egocentric video) has successfully executed a task (specified by a procedural text). Despite significant recent efforts, machine performance in the wild remains nonviable, and the reasoning processes underlying this performance are opaque. As such, we extend PMD to require generating visual self-dialog rationales to inform decisions. Given the impressive, mature image understanding capabilities observed in recent vision-and-language models (VLMs), we curate a suitable benchmark dataset for PMD based on individual frames. As our reformulation enables unprecedented transparency, we leverage a natural language inference (NLI) model to formulate two automated metrics for the coherence of generated rationales. We establish baselines for this reframed task, showing that VLMs struggle off-the-shelf, but with some trade-offs, their accuracy, coherence, and efficiency can be improved by incorporating these metrics into common inference and fine-tuning methods. Lastly, our multi-faceted metrics visualize common outcomes, highlighting areas for further improvement.
comment: EMNLP 2025
♻ ☆ Rethinking LLM Training through Information Geometry and Quantum Metrics
Optimization in large language models (LLMs) unfolds over high-dimensional parameter spaces with non-Euclidean structure. Information geometry frames this landscape using the Fisher information metric, enabling more principled learning via natural gradient descent. Though often impractical, this geometric lens clarifies phenomena such as sharp minima, generalization, and observed scaling laws. We argue that curvature-based approaches deepen our understanding of LLM training. Finally, we speculate on quantum analogies based on the Fubini-Study metric and Quantum Fisher Information, hinting at efficient optimization in quantum-enhanced systems.
comment: 9 pages, 1 figure(s)
♻ ☆ Understanding Syntactic Generalization in Structure-inducing Language Models
Structure-inducing Language Models (SiLM) are trained on a self-supervised language modeling task, and induce a hierarchical sentence representation as a byproduct when processing an input. SiLMs couple strong syntactic generalization behavior with competitive performance on various NLP tasks, but many of their basic properties are yet underexplored. In this work, we train three different SiLM architectures from scratch: Structformer (Shen et al., 2021), UDGN (Shen et al., 2022), and GPST (Hu et al., 2024b). We train these architectures on both natural language (English, German, and Chinese) corpora and synthetic bracketing expressions. The models are then evaluated with respect to (i) properties of the induced syntactic representations (ii) performance on grammaticality judgment tasks, and (iii) training dynamics. We find that none of the three architectures dominates across all evaluation metrics. However, there are significant differences, in particular with respect to the induced syntactic representations. The Generative Pretrained Structured Transformer (GPST; Hu et al. 2024) performs most consistently across evaluation settings, and outperforms the other models on long-distance dependencies in bracketing expressions. Furthermore, our study shows that small models trained on large amounts of synthetic data provide a useful testbed for evaluating basic model properties.
comment: Code available at https://github.com/davidarps/silm
♻ ☆ Training-Free Diffusion Priors for Text-to-Image Generation via Optimization-based Visual Inversion
Diffusion models have established the state-of-the-art in text-to-image generation, but their performance often relies on a diffusion prior network to translate text embeddings into the visual manifold for easier decoding. These priors are computationally expensive and require extensive training on massive datasets. In this work, we challenge the necessity of a trained prior at all by employing Optimization-based Visual Inversion (OVI), a training-free and data-free alternative, to replace the need for a prior. OVI initializes a latent visual representation from random pseudo-tokens and iteratively optimizes it to maximize the cosine similarity with input textual prompt embedding. We further propose two novel constraints, a Mahalanobis-based and a Nearest-Neighbor loss, to regularize the OVI optimization process toward the distribution of realistic images. Our experiments, conducted on Kandinsky 2.2, show that OVI can serve as an alternative to traditional priors. More importantly, our analysis reveals a critical flaw in current evaluation benchmarks like T2I-CompBench++, where simply using the text embedding as a prior achieves surprisingly high scores, despite lower perceptual quality. Our constrained OVI methods improve visual fidelity over this baseline, with the Nearest-Neighbor approach proving particularly effective, achieving quantitative scores comparable to or higher than the state-of-the-art data-efficient prior, indicating that the idea merits further investigation. The code will be publicly available upon acceptance.
comment: 11 pages, 7 figures, technical report (preprint)
♻ ☆ DaLA: Danish Linguistic Acceptability Evaluation Guided by Real World Errors
We present an enhanced benchmark for evaluating linguistic acceptability in Danish. We first analyze the most common errors found in written Danish. Based on this analysis, we introduce a set of fourteen corruption functions that generate incorrect sentences by systematically introducing errors into existing correct Danish sentences. To ensure the accuracy of these corruptions, we assess their validity using both manual and automatic methods. The results are then used as a benchmark for evaluating Large Language Models on a linguistic acceptability judgement task. Our findings demonstrate that this extension is both broader and more comprehensive than the current state of the art. By incorporating a greater variety of corruption types, our benchmark provides a more rigorous assessment of linguistic acceptability, increasing task difficulty, as evidenced by the lower performance of LLMs on our benchmark compared to existing ones. Our results also suggest that our benchmark has a higher discriminatory power which allows to better distinguish well-performing models from low-performing ones.
♻ ☆ InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization AAAI 2026
The emergence of Multimodal Large Language Models (MLLMs) has propelled the development of autonomous agents that operate on Graphical User Interfaces (GUIs) using pure visual input. A fundamental challenge is robustly grounding natural language instructions. This requires a precise spatial alignment, which accurately locates the coordinates of each element, and, more critically, a correct semantic alignment, which matches the instructions to the functionally appropriate UI element. Although Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be effective at improving spatial alignment for these MLLMs, we find that inefficient exploration bottlenecks semantic alignment, which prevent models from learning difficult semantic associations. To address this exploration problem, we present Adaptive Exploration Policy Optimization (AEPO), a new policy optimization framework. AEPO employs a multi-answer generation strategy to enforce broader exploration, which is then guided by a theoretically grounded Adaptive Exploration Reward (AER) function derived from first principles of efficiency eta=U/C. Our AEPO-trained models, InfiGUI-G1-3B and InfiGUI-G1-7B, establish new state-of-the-art results across multiple challenging GUI grounding benchmarks, achieving significant relative improvements of up to 9.0% against the naive RLVR baseline on benchmarks designed to test generalization and semantic understanding. Resources are available at https://github.com/InfiXAI/InfiGUI-G1.
comment: Accepted to AAAI 2026 (Oral Presentation)
♻ ☆ Why Chain of Thought Fails in Clinical Text Understanding
Large language models (LLMs) are increasingly being applied to clinical care, a domain where both accuracy and transparent reasoning are critical for safe and trustworthy deployment. Chain-of-thought (CoT) prompting, which elicits step-by-step reasoning, has demonstrated improvements in performance and interpretability across a wide range of tasks. However, its effectiveness in clinical contexts remains largely unexplored, particularly in the context of electronic health records (EHRs), the primary source of clinical documentation, which are often lengthy, fragmented, and noisy. In this work, we present the first large-scale systematic study of CoT for clinical text understanding. We assess 95 advanced LLMs on 87 real-world clinical text tasks, covering 9 languages and 8 task types. Contrary to prior findings in other domains, we observe that 86.3\% of models suffer consistent performance degradation in the CoT setting. More capable models remain relatively robust, while weaker ones suffer substantial declines. To better characterize these effects, we perform fine-grained analyses of reasoning length, medical concept alignment, and error profiles, leveraging both LLM-as-a-judge evaluation and clinical expert evaluation. Our results uncover systematic patterns in when and why CoT fails in clinical contexts, which highlight a critical paradox: CoT enhances interpretability but may undermine reliability in clinical text tasks. This work provides an empirical basis for clinical reasoning strategies of LLMs, highlighting the need for transparent and trustworthy approaches.
♻ ☆ A Systematic Assessment of Language Models with Linguistic Minimal Pairs in Chinese ACL
We present ZhoBLiMP, the largest linguistic minimal pair benchmark for Chinese, with over 100 paradigms, ranging from topicalization to the \textit{Ba} construction. We then train from scratch a suite of Chinese language models (LMs) with different tokenizers, parameter sizes, and token volumes, to study the learning curves of LMs on Chinese. To mitigate the biases introduced by unequal lengths of the sentences in a minimal pair, we propose a new metric named sub-linear length normalized log-probabilities (SLLN-LP). Using SLLN-LP as the metric, our results show that \textsc{Anaphor}, \textsc{Quantifiers}, and \textsc{Ellipsis} in Chinese are difficult for LMs even up to 32B parameters, and that SLLN-LP successfully mitigates biases in ZhoBLiMP, JBLiMP and BLiMP. We conclude that future evaluations should be more carefully designed to consider the intricate relations between linking functions, LMs, and targeted minimal pairs.
comment: Accepted by TACL
♻ ☆ SimuHome: A Temporal- and Environment-Aware Benchmark for Smart Home LLM Agents
Large Language Model (LLM) agents excel at multi-step, tool-augmented tasks. However, smart homes introduce distinct challenges, requiring agents to handle latent user intents, temporal dependencies, device constraints, scheduling, and more. The main bottlenecks for developing smart home agents with such capabilities include the lack of a realistic simulation environment where agents can interact with devices and observe the results, as well as a challenging benchmark to evaluate them. To address this, we introduce $\textbf{SimuHome}$, a time-accelerated home environment that simulates smart devices, supports API calls, and reflects changes in environmental variables. By building the simulator on the Matter protocol, the global industry standard for smart home communication, SimuHome provides a high-fidelity environment, and agents validated in SimuHome can be deployed on real Matter-compliant devices with minimal adaptation. We provide a challenging benchmark of 600 episodes across twelve user query types that require the aforementioned capabilities. Our evaluation of 16 agents under a unified ReAct framework reveals distinct capabilities and limitations across models. Models under 7B parameters exhibited negligible performance across all query types. Even GPT-4.1, the best-performing standard model, struggled with implicit intent inference, state verification, and particularly temporal scheduling. While reasoning models such as GPT-5.1 consistently outperformed standard models on every query type, they required over three times the average inference time, which can be prohibitive for real-time smart home applications. This highlights a critical trade-off between task performance and real-world practicality.
comment: 10 pages
♻ ☆ Unilaw-R1: A Large Language Model for Legal Reasoning with Reinforcement Learning and Iterative Inference
Reasoning-focused large language models (LLMs) are rapidly evolving across various domains, yet their capabilities in handling complex legal problems remains underexplored. In this paper, we introduce Unilaw-R1, a large language model tailored for legal reasoning. With a lightweight 7-billion parameter scale, Unilaw-R1 significantly reduces deployment cost while effectively tackling three core challenges in the legal domain: insufficient legal knowledge, unreliable reasoning logic, and weak business generalization. To address these issues, we first construct Unilaw-R1-Data, a high-quality dataset containing 17K distilled and screened chain-of-thought (CoT) samples. Based on this, we adopt a two-stage training strategy combining Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), which significantly boosts the performance on complex legal reasoning tasks and supports interpretable decision-making in legal AI applications. To assess legal reasoning ability, we also introduce Unilaw-R1-Eval, a dedicated benchmark designed to evaluate models across single- and multi-choice legal tasks. Unilaw-R1 demonstrates strong results on authoritative benchmarks, outperforming all models of similar scale and achieving performance on par with the much larger DeepSeek-R1-Distill-Qwen-32B (54.9%). Following domain-specific training, it also showed significant gains on LawBench and LexEval, exceeding Qwen-2.5-7B-Instruct (46.6%) by an average margin of 6.6%.
♻ ☆ DiTAR: Diffusion Transformer Autoregressive Modeling for Speech Generation ICML 2025
Several recent studies have attempted to autoregressively generate continuous speech representations without discrete speech tokens by combining diffusion and autoregressive models, yet they often face challenges with excessive computational loads or suboptimal outcomes. In this work, we propose Diffusion Transformer Autoregressive Modeling (DiTAR), a patch-based autoregressive framework combining a language model with a diffusion transformer. This approach significantly enhances the efficacy of autoregressive models for continuous tokens and reduces computational demands. DiTAR utilizes a divide-and-conquer strategy for patch generation, where the language model processes aggregated patch embeddings and the diffusion transformer subsequently generates the next patch based on the output of the language model. For inference, we propose defining temperature as the time point of introducing noise during the reverse diffusion ODE to balance diversity and determinism. We also show in the extensive scaling analysis that DiTAR has superb scalability. In zero-shot speech generation, DiTAR achieves state-of-the-art performance in robustness, speaker similarity, and naturalness.
comment: ByteDance Seed template, ICML 2025
♻ ☆ MUST-RAG: MUSical Text Question Answering with Retrieval Augmented Generation
Recent advancements in Large language models (LLMs) have demonstrated remarkable capabilities across diverse domains. While they exhibit strong zero-shot performance on various tasks, LLMs' effectiveness in music-related applications remains limited due to the relatively small proportion of music-specific knowledge in their training data. To address this limitation, we propose MusT-RAG, a comprehensive framework based on Retrieval Augmented Generation (RAG) to adapt general-purpose LLMs for text-only music question answering (MQA) tasks. RAG is a technique that provides external knowledge to LLMs by retrieving relevant context information when generating answers to questions. To optimize RAG for the music domain, we (1) propose MusWikiDB, a music-specialized vector database for the retrieval stage, and (2) utilizes context information during both inference and fine-tuning processes to effectively transform general-purpose LLMs into music-specific models. Our experiment demonstrates that MusT-RAG significantly outperforms traditional fine-tuning approaches in enhancing LLMs' music domain adaptation capabilities, showing consistent improvements across both in-domain and out-of-domain MQA benchmarks. Additionally, our MusWikiDB proves substantially more effective than general Wikipedia corpora, delivering superior performance and computational efficiency.
comment: This is an earlier version of the paper - ArtistMus: A Globally Diverse, Artist-Centric Benchmark for Retrieval-Augmented Music Question Answering. The latest version is available at: (arXiv:2512.05430)
♻ ☆ Grounding Long-Context Reasoning with Contextual Normalization for Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has become an essential approach for extending the reasoning and knowledge capacity of large language models (LLMs). While prior research has primarily focused on retrieval quality and prompting strategies, the influence of how the retrieved documents are framed, i.e., context format, remains underexplored. We show that seemingly superficial choices, such as delimiters or structural markers in key-value extraction, can induce substantial shifts in accuracy and stability, even when semantic content is identical. To systematically investigate this effect, we design controlled experiments that vary context density, delimiter styles, and positional placement, revealing the underlying factors that govern performance differences. Building on these insights, we introduce Contextual Normalization, a lightweight strategy that adaptively standardizes context representations before generation. Extensive experiments on both controlled and real-world RAG benchmarks across diverse settings demonstrate that the proposed strategy consistently improves robustness to order variation and strengthens long-context utilization. These findings underscore that reliable RAG depends not only on retrieving the right content, but also on how that content is presented, offering both new empirical evidence and a practical technique for better long-context reasoning.
♻ ☆ Process Reward Models That Think
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models are released at https://github.com/mukhal/thinkprm.
comment: Add new ablation and minor writing fixes
♻ ☆ Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Unveiling AI's Potential Through Tools, Techniques, and Applications
Artificial intelligence (AI), machine learning, and deep learning have become transformative forces in big data analytics and management, enabling groundbreaking advancements across diverse industries. This article delves into the foundational concepts and cutting-edge developments in these fields, with a particular focus on large language models (LLMs) and their role in natural language processing, multimodal reasoning, and autonomous decision-making. Highlighting tools such as ChatGPT, Claude, and Gemini, the discussion explores their applications in data analysis, model design, and optimization. The integration of advanced algorithms like neural networks, reinforcement learning, and generative models has enhanced the capabilities of AI systems to process, visualize, and interpret complex datasets. Additionally, the emergence of technologies like edge computing and automated machine learning (AutoML) democratizes access to AI, empowering users across skill levels to engage with intelligent systems. This work also underscores the importance of ethical considerations, transparency, and fairness in the deployment of AI technologies, paving the way for responsible innovation. Through practical insights into hardware configurations, software environments, and real-world applications, this article serves as a comprehensive resource for researchers and practitioners. By bridging theoretical underpinnings with actionable strategies, it showcases the potential of AI and LLMs to revolutionize big data management and drive meaningful advancements across domains such as healthcare, finance, and autonomous systems.
comment: This book contains 155 pages and 9 figures
♻ ☆ Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Handy Appetizer
This book explores the role of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in driving the progress of big data analytics and management. The book focuses on simplifying the complex mathematical concepts behind deep learning, offering intuitive visualizations and practical case studies to help readers understand how neural networks and technologies like Convolutional Neural Networks (CNNs) work. It introduces several classic models and technologies such as Transformers, GPT, ResNet, BERT, and YOLO, highlighting their applications in fields like natural language processing, image recognition, and autonomous driving. The book also emphasizes the importance of pre-trained models and how they can enhance model performance and accuracy, with instructions on how to apply these models in various real-world scenarios. Additionally, it provides an overview of key big data management technologies like SQL and NoSQL databases, as well as distributed computing frameworks such as Apache Hadoop and Spark, explaining their importance in managing and processing vast amounts of data. Ultimately, the book underscores the value of mastering deep learning and big data management skills as critical tools for the future workforce, making it an essential resource for both beginners and experienced professionals.
comment: This book contains 93 pages and 60 figures
♻ ☆ CryptoBench: A Dynamic Benchmark for Expert-Level Evaluation of LLM Agents in Cryptocurrency
This paper introduces CryptoBench, the first expert-curated, dynamic benchmark designed to rigorously evaluate the real-world capabilities of Large Language Model (LLM) agents in the uniquely demanding and fast-paced cryptocurrency domain. Unlike general-purpose agent benchmarks for search and prediction, professional crypto analysis presents specific challenges: \emph{extreme time-sensitivity}, \emph{a highly adversarial information environment}, and the critical need to synthesize data from \emph{diverse, specialized sources}, such as on-chain intelligence platforms and real-time Decentralized Finance (DeFi) dashboards. CryptoBench thus serves as a much more challenging and valuable scenario for LLM agent assessment. To address these challenges, we constructed a live, dynamic benchmark featuring 50 questions per month, expertly designed by crypto-native professionals to mirror actual analyst workflows. These tasks are rigorously categorized within a four-quadrant system: Simple Retrieval, Complex Retrieval, Simple Prediction, and Complex Prediction. This granular categorization enables a precise assessment of an LLM agent's foundational data-gathering capabilities alongside its advanced analytical and forecasting skills. Our evaluation of ten LLMs, both directly and within an agentic framework, reveals a performance hierarchy and uncovers a failure mode. We observe a \textit{retrieval-prediction imbalance}, where many leading models, despite being proficient at data retrieval, demonstrate a pronounced weakness in tasks requiring predictive analysis. This highlights a problematic tendency for agents to appear factually grounded while lacking the deeper analytical capabilities to synthesize information.
♻ ☆ Non-Collaborative User Simulators for Tool Agents
Tool agents interact with users through multi-turn dialogues to accomplish various tasks. Recent studies have adopted user simulation methods to develop these agents in multi-turn settings. However, existing user simulators tend to be agent-friendly, exhibiting only cooperative behaviors, which fails to train and test agents against non-collaborative users in the real world. To address this, we propose a novel user simulator architecture that simulates four categories of non-collaborative behaviors: requesting unavailable services, digressing into tangential conversations, expressing impatience, and providing incomplete utterances. Our user simulator can simulate challenging and natural non-collaborative behaviors while reliably delivering all intents and information necessary to accomplish the task. Our experiments on MultiWOZ and $τ$-bench reveal significant performance degradation in state-of-the-art tool agents when encountering non-collaborative users. We provide detailed analyses of agents' weaknesses under each non-collaborative condition, such as escalated hallucinations and dialogue breakdowns. Ultimately, we contribute an easily extensible user simulation framework to help the research community develop tool agents and preemptively diagnose them under challenging real-world conditions within their own services.
comment: 10 pages
♻ ☆ Topology Matters: Measuring Memory Leakage in Multi-Agent LLMs
Graph topology is a fundamental determinant of memory leakage in multi-agent LLM systems, yet its effects remain poorly quantified. We introduce MAMA (Multi-Agent Memory Attack), a framework that measures how network structure shapes leakage. MAMA operates on synthetic documents containing labeled Personally Identifiable Information (PII) entities, from which we generate sanitized task instructions. We execute a two-phase protocol: Engram (seeding private information into a target agent's memory) and Resonance (multi-round interaction where an attacker attempts extraction). Over up to 10 interaction rounds, we quantify leakage as the fraction of ground-truth PII recovered from attacking agent outputs via exact matching. We systematically evaluate six common network topologies (fully connected, ring, chain, binary tree, star, and star-ring), varying agent counts $n\in\{4,5,6\}$, attacker-target placements, and base models. Our findings reveal consistent patterns: fully connected graphs exhibit maximum leakage while chains provide strongest protection; shorter attacker-target graph distance and higher target centrality significantly increase vulnerability; leakage rises sharply in early rounds before plateauing; model choice shifts absolute leakage rates but preserves topology rankings; temporal/locational PII attributes leak more readily than identity credentials or regulated identifiers. These results provide the first systematic mapping from architectural choices to measurable privacy risk, yielding actionable guidance: prefer sparse or hierarchical connectivity, maximize attacker-target separation, limit node degree and network radius, avoid shortcuts bypassing hubs, and implement topology-aware access controls.
♻ ☆ Surveying the MLLM Landscape: A Meta-Review of Current Surveys
The rise of Multimodal Large Language Models (MLLMs) has become a transformative force in the field of artificial intelligence, enabling machines to process and generate content across multiple modalities, such as text, images, audio, and video. These models represent a significant advancement over traditional unimodal systems, opening new frontiers in diverse applications ranging from autonomous agents to medical diagnostics. By integrating multiple modalities, MLLMs achieve a more holistic understanding of information, closely mimicking human perception. As the capabilities of MLLMs expand, the need for comprehensive and accurate performance evaluation has become increasingly critical. This survey aims to provide a systematic review of benchmark tests and evaluation methods for MLLMs, covering key topics such as foundational concepts, applications, evaluation methodologies, ethical concerns, security, efficiency, and domain-specific applications. Through the classification and analysis of existing literature, we summarize the main contributions and methodologies of various surveys, conduct a detailed comparative analysis, and examine their impact within the academic community. Additionally, we identify emerging trends and underexplored areas in MLLM research, proposing potential directions for future studies. This survey is intended to offer researchers and practitioners a comprehensive understanding of the current state of MLLM evaluation, thereby facilitating further progress in this rapidly evolving field.
comment: The article consists of 22 pages, including 2 figures and 108 references. The paper provides a meta-review of surveys on Multimodal Large Language Models (MLLMs), categorizing findings into key areas such as evaluation, applications, security, and future directions
♻ ☆ Self-Improvement Towards Pareto Optimality: Mitigating Preference Conflicts in Multi-Objective Alignment ACL
Multi-Objective Alignment (MOA) aims to align LLMs' responses with multiple human preference objectives, with Direct Preference Optimization (DPO) emerging as a prominent approach. However, we find that DPO-based MOA approaches suffer from widespread preference conflicts in the data, where different objectives favor different responses. This results in conflicting optimization directions, hindering the optimization on the Pareto Front. To address this, we propose to construct Pareto-optimal responses to resolve preference conflicts. To efficiently obtain and utilize such responses, we propose a self-improving DPO framework that enables LLMs to self-generate and select Pareto-optimal responses for self-supervised preference alignment. Extensive experiments on two datasets demonstrate the superior Pareto Front achieved by our framework compared to various baselines. Code is available at https://github.com/zyttt-coder/SIPO.
comment: ACL findings (2025)
♻ ☆ Latent Collaboration in Multi-Agent Systems
Multi-agent systems (MAS) extend large language models (LLMs) from independent single-model reasoning to coordinative system-level intelligence. While existing LLM agents depend on text-based mediation for reasoning and communication, we take a step forward by enabling models to collaborate directly within the continuous latent space. We introduce LatentMAS, an end-to-end training-free framework that enables pure latent collaboration among LLM agents. In LatentMAS, each agent first performs auto-regressive latent thoughts generation through last-layer hidden embeddings. A shared latent working memory then preserves and transfers each agent's internal representations, ensuring lossless information exchange. We provide theoretical analyses establishing that LatentMAS attains higher expressiveness and lossless information preservation with substantially lower complexity than vanilla text-based MAS. In addition, empirical evaluations across 9 comprehensive benchmarks spanning math and science reasoning, commonsense understanding, and code generation show that LatentMAS consistently outperforms strong single-model and text-based MAS baselines, achieving up to 14.6% higher accuracy, reducing output token usage by 70.8%-83.7%, and providing 4x-4.3x faster end-to-end inference. These results demonstrate that our new latent collaboration framework enhances system-level reasoning quality while offering substantial efficiency gains without any additional training. Code and data are fully open-sourced at https://github.com/Gen-Verse/LatentMAS.
comment: Project: https://github.com/Gen-Verse/LatentMAS
♻ ☆ Golden Touchstone: A Comprehensive Bilingual Benchmark for Evaluating Financial Large Language Models EMNLP 2025
As large language models (LLMs) increasingly permeate the financial sector, there is a pressing need for a standardized method to comprehensively assess their performance. Existing financial benchmarks often suffer from limited language and task coverage, low-quality datasets, and inadequate adaptability for LLM evaluation. To address these limitations, we introduce Golden Touchstone, a comprehensive bilingual benchmark for financial LLMs, encompassing eight core financial NLP tasks in both Chinese and English. Developed from extensive open-source data collection and industry-specific demands, this benchmark thoroughly assesses models' language understanding and generation capabilities. Through comparative analysis of major models such as GPT-4o, Llama3, FinGPT, and FinMA, we reveal their strengths and limitations in processing complex financial information. Additionally, we open-source Touchstone-GPT, a financial LLM trained through continual pre-training and instruction tuning, which demonstrates strong performance on the bilingual benchmark but still has limitations in specific tasks. This research provides a practical evaluation tool for financial LLMs and guides future development and optimization. The source code for Golden Touchstone and model weight of Touchstone-GPT have been made publicly available at https://github.com/IDEA-FinAI/Golden-Touchstone.
comment: Published in Findings of EMNLP 2025
♻ ☆ Bridging Relevance and Reasoning: Rationale Distillation in Retrieval-Augmented Generation ACL 25
The reranker and generator are two critical components in the Retrieval-Augmented Generation (i.e., RAG) pipeline, responsible for ranking relevant documents and generating responses. However, due to differences in pre-training data and objectives, there is an inevitable gap between the documents ranked as relevant by the reranker and those required by the generator to support answering the query. To address this gap, we propose RADIO, a novel and practical preference alignment framework with RAtionale DIstillatiOn. Specifically, we first propose a rationale extraction method that leverages the reasoning capabilities of Large Language Models (LLMs) to extract the rationales necessary for answering the query. Subsequently, a rationale-based alignment process is designed to rerank the documents based on the extracted rationales, and fine-tune the reranker to align the preferences. We conduct extensive experiments on two tasks across three datasets to demonstrate the effectiveness of our approach compared to baseline methods. Our code is released online to ease reproduction.
comment: Accepted to ACL 25 Findings
♻ ☆ The AI Consumer Index (ACE)
We introduce the first version of the AI Consumer Index (ACE), a benchmark for assessing whether frontier AI models can perform everyday consumer tasks. ACE contains a hidden heldout set of 400 test cases, split across four consumer activities: shopping, food, gaming, and DIY. We are also open sourcing 80 cases as a devset with a CC-BY license. For the ACE leaderboard we evaluated 10 frontier models (with websearch turned on) using a novel grading methodology that dynamically checks whether relevant parts of the response are grounded in the retrieved web sources. GPT 5 (Thinking = High) is the top-performing model, scoring 56.1%, followed by o3 Pro (Thinking = On) at 55.2% and GPT 5.1 (Thinking = High) at 55.1%. Model scores differ across domains, and in Shopping the top model scores under 50\%. We find that models are prone to hallucinating key information, such as prices. ACE shows a substantial gap between the performance of even the best models and consumers' AI needs.
♻ ☆ The AI Productivity Index (APEX)
We present an extended version of the AI Productivity Index (APEX-v1-extended), a benchmark for assessing whether frontier models are capable of performing economically valuable tasks in four jobs: investment banking associate, management consultant, big law associate, and primary care physician (MD). This technical report details the extensions to APEX-v1, including an increase in the held-out evaluation set from n = 50 to n = 100 cases per job (n = 400 total) and updates to the grading methodology. We present a new leaderboard, where GPT5 (Thinking = High) remains the top performing model with a score of 67.0%. APEX-v1-extended shows that frontier models still have substantial limitations when performing typical professional tasks. To support further research, we are open sourcing n = 25 non-benchmark example cases per role (n = 100 total) along with our evaluation harness.
♻ ☆ Shadow in the Cache: Unveiling and Mitigating Privacy Risks of KV-cache in LLM Inference NDSS
The Key-Value (KV) cache, which stores intermediate attention computations (Key and Value pairs) to avoid redundant calculations, is a fundamental mechanism for accelerating Large Language Model (LLM) inference. However, this efficiency optimization introduces significant yet underexplored privacy risks. This paper provides the first comprehensive analysis of these vulnerabilities, demonstrating that an attacker can reconstruct sensitive user inputs directly from the KV-cache. We design and implement three distinct attack vectors: a direct Inversion Attack, a more broadly applicable and potent Collision Attack, and a semantic-based Injection Attack. These methods demonstrate the practicality and severity of KV-cache privacy leakage issues. To mitigate this, we propose KV-Cloak, a novel, lightweight, and efficient defense mechanism. KV-Cloak uses a reversible matrix-based obfuscation scheme, combined with operator fusion, to secure the KV-cache. Our extensive experiments show that KV-Cloak effectively thwarts all proposed attacks, reducing reconstruction quality to random noise. Crucially, it achieves this robust security with virtually no degradation in model accuracy and minimal performance overhead, offering a practical solution for trustworthy LLM deployment.
comment: This paper is accepted by Network and Distributed System Security Symposium (NDSS) 2026
♻ ☆ LMSpell: Neural Spell Checking for Low-Resource Languages
Spell correction is still a challenging problem for low-resource languages (LRLs). While pretrained language models (PLMs) have been employed for spell correction, their use is still limited to a handful of languages, and there has been no proper comparison across PLMs. We present the first empirical study on the effectiveness of PLMs for spell correction, which includes LRLs. We find that Large Language Models (LLMs) outperform their counterparts (encoder-based and encoder-decoder) when the fine-tuning dataset is large. This observation holds even in languages for which the LLM is not pre-trained. We release LMSpell, an easy- to use spell correction toolkit across PLMs. It includes an evaluation function that compensates for the hallucination of LLMs. Further, we present a case study with Sinhala to shed light on the plight of spell correction for LRLs.
♻ ☆ AutoNeural: Co-Designing Vision-Language Models for NPU Inference
While Neural Processing Units (NPUs) offer high theoretical efficiency for edge AI, state-of-the-art Vision--Language Models (VLMs) tailored for GPUs often falter on these substrates. We attribute this hardware-model mismatch to two primary factors: the quantization brittleness of Vision Transformers (ViTs) and the I/O-bound nature of autoregressive attention mechanisms, which fail to utilize the high arithmetic throughput of NPUs. To bridge this gap, we propose AutoNeural, an NPU-native VLM architecture co-designed for integer-only inference. We replace the standard ViT encoder with a MobileNetV5-style backbone utilizing depthwise separable convolutions, which ensures bounded activation distributions for stable INT4/8/16 quantization. Complementing this, our language backbone integrates State-Space Model (SSM) principles with Transformer layers, employing efficient gated convolutions to achieve linear-time complexity. This hybrid design eliminates the heavy memory I/O overhead of Key-Value caching during generation. Our approach delivers substantial efficiency gains, reducing quantization error of vision encoder by up to 7x and end-to-end latency by 14x compared to conventional baselines. The AutoNeural also delivers 3x decoding speed and 4x longer context window than the baseline. We validate these improvements via a real-world automotive case study on the Qualcomm SA8295P SoC, demonstrating real-time performance for cockpit applications. Our results highlight that rethinking model topology specifically for NPU constraints is a prerequisite for robust multi-modal edge intelligence.
Computer Vision and Pattern Recognition
☆ Voxify3D: Pixel Art Meets Volumetric Rendering
Voxel art is a distinctive stylization widely used in games and digital media, yet automated generation from 3D meshes remains challenging due to conflicting requirements of geometric abstraction, semantic preservation, and discrete color coherence. Existing methods either over-simplify geometry or fail to achieve the pixel-precise, palette-constrained aesthetics of voxel art. We introduce Voxify3D, a differentiable two-stage framework bridging 3D mesh optimization with 2D pixel art supervision. Our core innovation lies in the synergistic integration of three components: (1) orthographic pixel art supervision that eliminates perspective distortion for precise voxel-pixel alignment; (2) patch-based CLIP alignment that preserves semantics across discretization levels; (3) palette-constrained Gumbel-Softmax quantization enabling differentiable optimization over discrete color spaces with controllable palette strategies. This integration addresses fundamental challenges: semantic preservation under extreme discretization, pixel-art aesthetics through volumetric rendering, and end-to-end discrete optimization. Experiments show superior performance (37.12 CLIP-IQA, 77.90\% user preference) across diverse characters and controllable abstraction (2-8 colors, 20x-50x resolutions). Project page: https://yichuanh.github.io/Voxify-3D/
comment: Project page: https://yichuanh.github.io/Voxify-3D/
☆ Relational Visual Similarity
Humans do not just see attribute similarity -- we also see relational similarity. An apple is like a peach because both are reddish fruit, but the Earth is also like a peach: its crust, mantle, and core correspond to the peach's skin, flesh, and pit. This ability to perceive and recognize relational similarity, is arguable by cognitive scientist to be what distinguishes humans from other species. Yet, all widely used visual similarity metrics today (e.g., LPIPS, CLIP, DINO) focus solely on perceptual attribute similarity and fail to capture the rich, often surprising relational similarities that humans perceive. How can we go beyond the visible content of an image to capture its relational properties? How can we bring images with the same relational logic closer together in representation space? To answer these questions, we first formulate relational image similarity as a measurable problem: two images are relationally similar when their internal relations or functions among visual elements correspond, even if their visual attributes differ. We then curate 114k image-caption dataset in which the captions are anonymized -- describing the underlying relational logic of the scene rather than its surface content. Using this dataset, we finetune a Vision-Language model to measure the relational similarity between images. This model serves as the first step toward connecting images by their underlying relational structure rather than their visible appearance. Our study shows that while relational similarity has a lot of real-world applications, existing image similarity models fail to capture it -- revealing a critical gap in visual computing.
comment: Project page, data, and code: https://thaoshibe.github.io/relsim
☆ UnityVideo: Unified Multi-Modal Multi-Task Learning for Enhancing World-Aware Video Generation
Recent video generation models demonstrate impressive synthesis capabilities but remain limited by single-modality conditioning, constraining their holistic world understanding. This stems from insufficient cross-modal interaction and limited modal diversity for comprehensive world knowledge representation. To address these limitations, we introduce UnityVideo, a unified framework for world-aware video generation that jointly learns across multiple modalities (segmentation masks, human skeletons, DensePose, optical flow, and depth maps) and training paradigms. Our approach features two core components: (1) dynamic noising to unify heterogeneous training paradigms, and (2) a modality switcher with an in-context learner that enables unified processing via modular parameters and contextual learning. We contribute a large-scale unified dataset with 1.3M samples. Through joint optimization, UnityVideo accelerates convergence and significantly enhances zero-shot generalization to unseen data. We demonstrate that UnityVideo achieves superior video quality, consistency, and improved alignment with physical world constraints. Code and data can be found at: https://github.com/dvlab-research/UnityVideo
comment: Project Website https://jackailab.github.io/Projects/UnityVideo
☆ One Layer Is Enough: Adapting Pretrained Visual Encoders for Image Generation
Visual generative models (e.g., diffusion models) typically operate in compressed latent spaces to balance training efficiency and sample quality. In parallel, there has been growing interest in leveraging high-quality pre-trained visual representations, either by aligning them inside VAEs or directly within the generative model. However, adapting such representations remains challenging due to fundamental mismatches between understanding-oriented features and generation-friendly latent spaces. Representation encoders benefit from high-dimensional latents that capture diverse hypotheses for masked regions, whereas generative models favor low-dimensional latents that must faithfully preserve injected noise. This discrepancy has led prior work to rely on complex objectives and architectures. In this work, we propose FAE (Feature Auto-Encoder), a simple yet effective framework that adapts pre-trained visual representations into low-dimensional latents suitable for generation using as little as a single attention layer, while retaining sufficient information for both reconstruction and understanding. The key is to couple two separate deep decoders: one trained to reconstruct the original feature space, and a second that takes the reconstructed features as input for image generation. FAE is generic; it can be instantiated with a variety of self-supervised encoders (e.g., DINO, SigLIP) and plugged into two distinct generative families: diffusion models and normalizing flows. Across class-conditional and text-to-image benchmarks, FAE achieves strong performance. For example, on ImageNet 256x256, our diffusion model with CFG attains a near state-of-the-art FID of 1.29 (800 epochs) and 1.70 (80 epochs). Without CFG, FAE reaches the state-of-the-art FID of 1.48 (800 epochs) and 2.08 (80 epochs), demonstrating both high quality and fast learning.
☆ OpenVE-3M: A Large-Scale High-Quality Dataset for Instruction-Guided Video Editing
The quality and diversity of instruction-based image editing datasets are continuously increasing, yet large-scale, high-quality datasets for instruction-based video editing remain scarce. To address this gap, we introduce OpenVE-3M, an open-source, large-scale, and high-quality dataset for instruction-based video editing. It comprises two primary categories: spatially-aligned edits (Global Style, Background Change, Local Change, Local Remove, Local Add, and Subtitles Edit) and non-spatially-aligned edits (Camera Multi-Shot Edit and Creative Edit). All edit types are generated via a meticulously designed data pipeline with rigorous quality filtering. OpenVE-3M surpasses existing open-source datasets in terms of scale, diversity of edit types, instruction length, and overall quality. Furthermore, to address the lack of a unified benchmark in the field, we construct OpenVE-Bench, containing 431 video-edit pairs that cover a diverse range of editing tasks with three key metrics highly aligned with human judgment. We present OpenVE-Edit, a 5B model trained on our dataset that demonstrates remarkable efficiency and effectiveness by setting a new state-of-the-art on OpenVE-Bench, outperforming all prior open-source models including a 14B baseline. Project page is at https://github.com/lewandofskee/OpenVE.
comment: 38 pages
☆ WorldReel: 4D Video Generation with Consistent Geometry and Motion Modeling
Recent video generators achieve striking photorealism, yet remain fundamentally inconsistent in 3D. We present WorldReel, a 4D video generator that is natively spatio-temporally consistent. WorldReel jointly produces RGB frames together with 4D scene representations, including pointmaps, camera trajectory, and dense flow mapping, enabling coherent geometry and appearance modeling over time. Our explicit 4D representation enforces a single underlying scene that persists across viewpoints and dynamic content, yielding videos that remain consistent even under large non-rigid motion and significant camera movement. We train WorldReel by carefully combining synthetic and real data: synthetic data providing precise 4D supervision (geometry, motion, and camera), while real videos contribute visual diversity and realism. This blend allows WorldReel to generalize to in-the-wild footage while preserving strong geometric fidelity. Extensive experiments demonstrate that WorldReel sets a new state-of-the-art for consistent video generation with dynamic scenes and moving cameras, improving metrics of geometric consistency, motion coherence, and reducing view-time artifacts over competing methods. We believe that WorldReel brings video generation closer to 4D-consistent world modeling, where agents can render, interact, and reason about scenes through a single and stable spatiotemporal representation.
☆ Lang3D-XL: Language Embedded 3D Gaussians for Large-scale Scenes SIGGRAPH
Embedding a language field in a 3D representation enables richer semantic understanding of spatial environments by linking geometry with descriptive meaning. This allows for a more intuitive human-computer interaction, enabling querying or editing scenes using natural language, and could potentially improve tasks like scene retrieval, navigation, and multimodal reasoning. While such capabilities could be transformative, in particular for large-scale scenes, we find that recent feature distillation approaches cannot effectively learn over massive Internet data due to challenges in semantic feature misalignment and inefficiency in memory and runtime. To this end, we propose a novel approach to address these challenges. First, we introduce extremely low-dimensional semantic bottleneck features as part of the underlying 3D Gaussian representation. These are processed by rendering and passing them through a multi-resolution, feature-based, hash encoder. This significantly improves efficiency both in runtime and GPU memory. Second, we introduce an Attenuated Downsampler module and propose several regularizations addressing the semantic misalignment of ground truth 2D features. We evaluate our method on the in-the-wild HolyScenes dataset and demonstrate that it surpasses existing approaches in both performance and efficiency.
comment: Accepted to SIGGRAPH Asia 2025. Project webpage: https://tau-vailab.github.io/Lang3D-XL
☆ Multi-view Pyramid Transformer: Look Coarser to See Broader
We propose Multi-view Pyramid Transformer (MVP), a scalable multi-view transformer architecture that directly reconstructs large 3D scenes from tens to hundreds of images in a single forward pass. Drawing on the idea of ``looking broader to see the whole, looking finer to see the details," MVP is built on two core design principles: 1) a local-to-global inter-view hierarchy that gradually broadens the model's perspective from local views to groups and ultimately the full scene, and 2) a fine-to-coarse intra-view hierarchy that starts from detailed spatial representations and progressively aggregates them into compact, information-dense tokens. This dual hierarchy achieves both computational efficiency and representational richness, enabling fast reconstruction of large and complex scenes. We validate MVP on diverse datasets and show that, when coupled with 3D Gaussian Splatting as the underlying 3D representation, it achieves state-of-the-art generalizable reconstruction quality while maintaining high efficiency and scalability across a wide range of view configurations.
comment: Project page: see https://gynjn.github.io/MVP/
☆ OneStory: Coherent Multi-Shot Video Generation with Adaptive Memory
Storytelling in real-world videos often unfolds through multiple shots -- discontinuous yet semantically connected clips that together convey a coherent narrative. However, existing multi-shot video generation (MSV) methods struggle to effectively model long-range cross-shot context, as they rely on limited temporal windows or single keyframe conditioning, leading to degraded performance under complex narratives. In this work, we propose OneStory, enabling global yet compact cross-shot context modeling for consistent and scalable narrative generation. OneStory reformulates MSV as a next-shot generation task, enabling autoregressive shot synthesis while leveraging pretrained image-to-video (I2V) models for strong visual conditioning. We introduce two key modules: a Frame Selection module that constructs a semantically-relevant global memory based on informative frames from prior shots, and an Adaptive Conditioner that performs importance-guided patchification to generate compact context for direct conditioning. We further curate a high-quality multi-shot dataset with referential captions to mirror real-world storytelling patterns, and design effective training strategies under the next-shot paradigm. Finetuned from a pretrained I2V model on our curated 60K dataset, OneStory achieves state-of-the-art narrative coherence across diverse and complex scenes in both text- and image-conditioned settings, enabling controllable and immersive long-form video storytelling.
comment: Project Page: https://zhaochongan.github.io/projects/OneStory
☆ Distribution Matching Variational AutoEncoder
Most visual generative models compress images into a latent space before applying diffusion or autoregressive modelling. Yet, existing approaches such as VAEs and foundation model aligned encoders implicitly constrain the latent space without explicitly shaping its distribution, making it unclear which types of distributions are optimal for modeling. We introduce \textbf{Distribution-Matching VAE} (\textbf{DMVAE}), which explicitly aligns the encoder's latent distribution with an arbitrary reference distribution via a distribution matching constraint. This generalizes beyond the Gaussian prior of conventional VAEs, enabling alignment with distributions derived from self-supervised features, diffusion noise, or other prior distributions. With DMVAE, we can systematically investigate which latent distributions are more conducive to modeling, and we find that SSL-derived distributions provide an excellent balance between reconstruction fidelity and modeling efficiency, reaching gFID equals 3.2 on ImageNet with only 64 training epochs. Our results suggest that choosing a suitable latent distribution structure (achieved via distribution-level alignment), rather than relying on fixed priors, is key to bridging the gap between easy-to-model latents and high-fidelity image synthesis. Code is avaliable at https://github.com/sen-ye/dmvae.
☆ GorillaWatch: An Automated System for In-the-Wild Gorilla Re-Identification and Population Monitoring WACV 2026
Monitoring critically endangered western lowland gorillas is currently hampered by the immense manual effort required to re-identify individuals from vast archives of camera trap footage. The primary obstacle to automating this process has been the lack of large-scale, "in-the-wild" video datasets suitable for training robust deep learning models. To address this gap, we introduce a comprehensive benchmark with three novel datasets: Gorilla-SPAC-Wild, the largest video dataset for wild primate re-identification to date; Gorilla-Berlin-Zoo, for assessing cross-domain re-identification generalization; and Gorilla-SPAC-MoT, for evaluating multi-object tracking in camera trap footage. Building on these datasets, we present GorillaWatch, an end-to-end pipeline integrating detection, tracking, and re-identification. To exploit temporal information, we introduce a multi-frame self-supervised pretraining strategy that leverages consistency in tracklets to learn domain-specific features without manual labels. To ensure scientific validity, a differentiable adaptation of AttnLRP verifies that our model relies on discriminative biometric traits rather than background correlations. Extensive benchmarking subsequently demonstrates that aggregating features from large-scale image backbones outperforms specialized video architectures. Finally, we address unsupervised population counting by integrating spatiotemporal constraints into standard clustering to mitigate over-segmentation. We publicly release all code and datasets to facilitate scalable, non-invasive monitoring of endangered species
comment: Accepted at WACV 2026
☆ Modality-Aware Bias Mitigation and Invariance Learning for Unsupervised Visible-Infrared Person Re-Identification AAAI 2026
Unsupervised visible-infrared person re-identification (USVI-ReID) aims to match individuals across visible and infrared cameras without relying on any annotation. Given the significant gap across visible and infrared modality, estimating reliable cross-modality association becomes a major challenge in USVI-ReID. Existing methods usually adopt optimal transport to associate the intra-modality clusters, which is prone to propagating the local cluster errors, and also overlooks global instance-level relations. By mining and attending to the visible-infrared modality bias, this paper focuses on addressing cross-modality learning from two aspects: bias-mitigated global association and modality-invariant representation learning. Motivated by the camera-aware distance rectification in single-modality re-ID, we propose modality-aware Jaccard distance to mitigate the distance bias caused by modality discrepancy, so that more reliable cross-modality associations can be estimated through global clustering. To further improve cross-modality representation learning, a `split-and-contrast' strategy is designed to obtain modality-specific global prototypes. By explicitly aligning these prototypes under global association guidance, modality-invariant yet ID-discriminative representation learning can be achieved. While conceptually simple, our method obtains state-of-the-art performance on benchmark VI-ReID datasets and outperforms existing methods by a significant margin, validating its effectiveness.
comment: Accepted to AAAI 2026
☆ UltrasODM: A Dual Stream Optical Flow Mamba Network for 3D Freehand Ultrasound Reconstruction
Clinical ultrasound acquisition is highly operator-dependent, where rapid probe motion and brightness fluctuations often lead to reconstruction errors that reduce trust and clinical utility. We present UltrasODM, a dual-stream framework that assists sonographers during acquisition through calibrated per-frame uncertainty, saliency-based diagnostics, and actionable prompts. UltrasODM integrates (i) a contrastive ranking module that groups frames by motion similarity, (ii) an optical-flow stream fused with Dual-Mamba temporal modules for robust 6-DoF pose estimation, and (iii) a Human-in-the-Loop (HITL) layer combining Bayesian uncertainty, clinician-calibrated thresholds, and saliency maps highlighting regions of low confidence. When uncertainty exceeds the threshold, the system issues unobtrusive alerts suggesting corrective actions such as re-scanning highlighted regions or slowing the sweep. Evaluated on a clinical freehand ultrasound dataset, UltrasODM reduces drift by 15.2%, distance error by 12.1%, and Hausdorff distance by 10.1% relative to UltrasOM, while producing per-frame uncertainty and saliency outputs. By emphasizing transparency and clinician feedback, UltrasODM improves reconstruction reliability and supports safer, more trustworthy clinical workflows. Our code is publicly available at https://github.com/AnandMayank/UltrasODM.
☆ Unison: A Fully Automatic, Task-Universal, and Low-Cost Framework for Unified Understanding and Generation
Unified understanding and generation is a highly appealing research direction in multimodal learning. There exist two approaches: one trains a transformer via an auto-regressive paradigm, and the other adopts a two-stage scheme connecting pre-trained understanding and generative models for alignment fine-tuning. The former demands massive data and computing resources unaffordable for ordinary researchers. Though the latter requires a lower training cost, existing works often suffer from limited task coverage or poor generation quality. Both approaches lack the ability to parse input meta-information (such as task type, image resolution, video duration, etc.) and require manual parameter configuration that is tedious and non-intelligent. In this paper, we propose Unison which adopts the two-stage scheme while preserving the capabilities of the pre-trained models well. With an extremely low training cost, we cover a variety of multimodal understanding tasks, including text, image, and video understanding, as well as diverse generation tasks, such as text-to-visual content generation, editing, controllable generation, and IP-based reference generation. We also equip our model with the ability to automatically parse user intentions, determine the target task type, and accurately extract the meta-information required for the corresponding task. This enables full automation of various multimodal tasks without human intervention. Experiments demonstrate that, under a low-cost setting of only 500k training samples and 50 GPU hours, our model can accurately and automatically identify tasks and extract relevant parameters, and achieve superior performance across a variety of understanding and generation tasks.
☆ DiffusionDriveV2: Reinforcement Learning-Constrained Truncated Diffusion Modeling in End-to-End Autonomous Driving
Generative diffusion models for end-to-end autonomous driving often suffer from mode collapse, tending to generate conservative and homogeneous behaviors. While DiffusionDrive employs predefined anchors representing different driving intentions to partition the action space and generate diverse trajectories, its reliance on imitation learning lacks sufficient constraints, resulting in a dilemma between diversity and consistent high quality. In this work, we propose DiffusionDriveV2, which leverages reinforcement learning to both constrain low-quality modes and explore for superior trajectories. This significantly enhances the overall output quality while preserving the inherent multimodality of its core Gaussian Mixture Model. First, we use scale-adaptive multiplicative noise, ideal for trajectory planning, to promote broad exploration. Second, we employ intra-anchor GRPO to manage advantage estimation among samples generated from a single anchor, and inter-anchor truncated GRPO to incorporate a global perspective across different anchors, preventing improper advantage comparisons between distinct intentions (e.g., turning vs. going straight), which can lead to further mode collapse. DiffusionDriveV2 achieves 91.2 PDMS on the NAVSIM v1 dataset and 85.5 EPDMS on the NAVSIM v2 dataset in closed-loop evaluation with an aligned ResNet-34 backbone, setting a new record. Further experiments validate that our approach resolves the dilemma between diversity and consistent high quality for truncated diffusion models, achieving the best trade-off. Code and model will be available at https://github.com/hustvl/DiffusionDriveV2
☆ HLTCOE Evaluation Team at TREC 2025: VQA Track
The HLTCOE Evaluation team participated in TREC VQA's Answer Generation (AG) task, for which we developed a listwise learning framework that aims to improve semantic precision and ranking consistency in answer generation. Given a video-question pair, a base multimodal model first generates multiple candidate answers, which are then reranked using a model trained with a novel Masked Pointer Cross-Entropy Loss with Rank Weights. This objective integrates pointer-based candidate selection, rank-dependent weighting, and masked cross-entropy under vocabulary restriction, enabling stable and interpretable listwise optimization. By bridging generative modeling with discriminative ranking, our method produces coherent, fine-grained answer lists. Experiments reveal consistent gains in accuracy and ranking stability, especially for questions requiring temporal reasoning and semantic disambiguation.
comment: 7 pages, 1 figure
☆ SpatialDreamer: Incentivizing Spatial Reasoning via Active Mental Imagery
Despite advancements in Multi-modal Large Language Models (MLLMs) for scene understanding, their performance on complex spatial reasoning tasks requiring mental simulation remains significantly limited. Current methods often rely on passive observation of spatial data, failing to internalize an active mental imagery process. To bridge this gap, we propose SpatialDreamer, a reinforcement learning framework that enables spatial reasoning through a closedloop process of active exploration, visual imagination via a world model, and evidence-grounded reasoning. To address the lack of fine-grained reward supervision in longhorizontal reasoning tasks, we propose Geometric Policy Optimization (GeoPO), which introduces tree-structured sampling and step-level reward estimation with geometric consistency constraints. Extensive experiments demonstrate that SpatialDreamer delivers highly competitive results across multiple challenging benchmarks, signifying a critical advancement in human-like active spatial mental simulation for MLLMs.
☆ SAVE: Sparse Autoencoder-Driven Visual Information Enhancement for Mitigating Object Hallucination WACV 2026
Although Multimodal Large Language Models (MLLMs) have advanced substantially, they remain vulnerable to object hallucination caused by language priors and visual information loss. To address this, we propose SAVE (Sparse Autoencoder-Driven Visual Information Enhancement), a framework that mitigates hallucination by steering the model along Sparse Autoencoder (SAE) latent features. A binary object-presence question-answering probe identifies the SAE features most indicative of the model's visual information processing, referred to as visual understanding features. Steering the model along these identified features reinforces grounded visual understanding and effectively reduces hallucination. With its simple design, SAVE outperforms state-of-the-art training-free methods on standard benchmarks, achieving a 10\%p improvement in CHAIR\_S and consistent gains on POPE and MMHal-Bench. Extensive evaluations across multiple models and layers confirm the robustness and generalizability of our approach. Further analysis reveals that steering along visual understanding features suppresses the generation of uncertain object tokens and increases attention to image tokens, mitigating hallucination. Code is released at https://github.com/wiarae/SAVE.
comment: WACV 2026
☆ Improving action classification with brain-inspired deep networks
Action recognition is also key for applications ranging from robotics to healthcare monitoring. Action information can be extracted from the body pose and movements, as well as from the background scene. However, the extent to which deep neural networks (DNNs) make use of information about the body and information about the background remains unclear. Since these two sources of information may be correlated within a training dataset, DNNs might learn to rely predominantly on one of them, without taking full advantage of the other. Unlike DNNs, humans have domain-specific brain regions selective for perceiving bodies, and regions selective for perceiving scenes. The present work tests whether humans are thus more effective at extracting information from both body and background, and whether building brain-inspired deep network architectures with separate domain-specific streams for body and scene perception endows them with more human-like performance. We first demonstrate that DNNs trained using the HAA500 dataset perform almost as accurately on versions of the stimuli that show both body and background and on versions of the stimuli from which the body was removed, but are at chance-level for versions of the stimuli from which the background was removed. Conversely, human participants (N=28) can recognize the same set of actions accurately with all three versions of the stimuli, and perform significantly better on stimuli that show only the body than on stimuli that show only the background. Finally, we implement and test a novel architecture patterned after domain specificity in the brain with separate streams to process body and background information. We show that 1) this architecture improves action recognition performance, and 2) its accuracy across different versions of the stimuli follows a pattern that matches more closely the pattern of accuracy observed in human participants.
☆ ViSA: 3D-Aware Video Shading for Real-Time Upper-Body Avatar Creation
Generating high-fidelity upper-body 3D avatars from one-shot input image remains a significant challenge. Current 3D avatar generation methods, which rely on large reconstruction models, are fast and capable of producing stable body structures, but they often suffer from artifacts such as blurry textures and stiff, unnatural motion. In contrast, generative video models show promising performance by synthesizing photorealistic and dynamic results, but they frequently struggle with unstable behavior, including body structural errors and identity drift. To address these limitations, we propose a novel approach that combines the strengths of both paradigms. Our framework employs a 3D reconstruction model to provide robust structural and appearance priors, which in turn guides a real-time autoregressive video diffusion model for rendering. This process enables the model to synthesize high-frequency, photorealistic details and fluid dynamics in real time, effectively reducing texture blur and motion stiffness while preventing the structural inconsistencies common in video generation methods. By uniting the geometric stability of 3D reconstruction with the generative capabilities of video models, our method produces high-fidelity digital avatars with realistic appearance and dynamic, temporally coherent motion. Experiments demonstrate that our approach significantly reduces artifacts and achieves substantial improvements in visual quality over leading methods, providing a robust and efficient solution for real-time applications such as gaming and virtual reality. Project page: https://lhyfst.github.io/visa
☆ UnCageNet: Tracking and Pose Estimation of Caged Animal
Animal tracking and pose estimation systems, such as STEP (Simultaneous Tracking and Pose Estimation) and ViTPose, experience substantial performance drops when processing images and videos with cage structures and systematic occlusions. We present a three-stage preprocessing pipeline that addresses this limitation through: (1) cage segmentation using a Gabor-enhanced ResNet-UNet architecture with tunable orientation filters, (2) cage inpainting using CRFill for content-aware reconstruction of occluded regions, and (3) evaluation of pose estimation and tracking on the uncaged frames. Our Gabor-enhanced segmentation model leverages orientation-aware features with 72 directional kernels to accurately identify and segment cage structures that severely impair the performance of existing methods. Experimental validation demonstrates that removing cage occlusions through our pipeline enables pose estimation and tracking performance comparable to that in environments without occlusions. We also observe significant improvements in keypoint detection accuracy and trajectory consistency.
comment: 9 pages, 2 figures, 2 tables. Accepted to the Indian Conference on Computer Vision, Graphics, and Image Processing (ICVGIP 2025), Mandi, India
☆ PVeRA: Probabilistic Vector-Based Random Matrix Adaptation
Large foundation models have emerged in the last years and are pushing performance boundaries for a variety of tasks. Training or even finetuning such models demands vast datasets and computational resources, which are often scarce and costly. Adaptation methods provide a computationally efficient solution to address these limitations by allowing such models to be finetuned on small amounts of data and computing power. This is achieved by appending new trainable modules to frozen backbones with only a fraction of the trainable parameters and fitting only these modules on novel tasks. Recently, the VeRA adapter was shown to excel in parameter-efficient adaptations by utilizing a pair of frozen random low-rank matrices shared across all layers. In this paper, we propose PVeRA, a probabilistic version of the VeRA adapter, which modifies the low-rank matrices of VeRA in a probabilistic manner. This modification naturally allows handling inherent ambiguities in the input and allows for different sampling configurations during training and testing. A comprehensive evaluation was performed on the VTAB-1k benchmark and seven adapters, with PVeRA outperforming VeRA and other adapters. Our code for training models with PVeRA and benchmarking all adapters is available https://github.com/leofillioux/pvera.
☆ Guiding What Not to Generate: Automated Negative Prompting for Text-Image Alignment WACV 2026
Despite substantial progress in text-to-image generation, achieving precise text-image alignment remains challenging, particularly for prompts with rich compositional structure or imaginative elements. To address this, we introduce Negative Prompting for Image Correction (NPC), an automated pipeline that improves alignment by identifying and applying negative prompts that suppress unintended content. We begin by analyzing cross-attention patterns to explain why both targeted negatives-those directly tied to the prompt's alignment error-and untargeted negatives-tokens unrelated to the prompt but present in the generated image-can enhance alignment. To discover useful negatives, NPC generates candidate prompts using a verifier-captioner-proposer framework and ranks them with a salient text-space score, enabling effective selection without requiring additional image synthesis. On GenEval++ and Imagine-Bench, NPC outperforms strong baselines, achieving 0.571 vs. 0.371 on GenEval++ and the best overall performance on Imagine-Bench. By guiding what not to generate, NPC provides a principled, fully automated route to stronger text-image alignment in diffusion models. Code is released at https://github.com/wiarae/NPC.
comment: WACV 2026
☆ sim2art: Accurate Articulated Object Modeling from a Single Video using Synthetic Training Data Only
Understanding articulated objects is a fundamental challenge in robotics and digital twin creation. To effectively model such objects, it is essential to recover both part segmentation and the underlying joint parameters. Despite the importance of this task, previous work has largely focused on setups like multi-view systems, object scanning, or static cameras. In this paper, we present the first data-driven approach that jointly predicts part segmentation and joint parameters from monocular video captured with a freely moving camera. Trained solely on synthetic data, our method demonstrates strong generalization to real-world objects, offering a scalable and practical solution for articulated object understanding. Our approach operates directly on casually recorded video, making it suitable for real-time applications in dynamic environments. Project webpage: https://aartykov.github.io/sim2art/
☆ HalluShift++: Bridging Language and Vision through Internal Representation Shifts for Hierarchical Hallucinations in MLLMs
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in vision-language understanding tasks. While these models often produce linguistically coherent output, they often suffer from hallucinations, generating descriptions that are factually inconsistent with the visual content, potentially leading to adverse consequences. Therefore, the assessment of hallucinations in MLLM has become increasingly crucial in the model development process. Contemporary methodologies predominantly depend on external LLM evaluators, which are themselves susceptible to hallucinations and may present challenges in terms of domain adaptation. In this study, we propose the hypothesis that hallucination manifests as measurable irregularities within the internal layer dynamics of MLLMs, not merely due to distributional shifts but also in the context of layer-wise analysis of specific assumptions. By incorporating such modifications, \textsc{\textsc{HalluShift++}} broadens the efficacy of hallucination detection from text-based large language models (LLMs) to encompass multimodal scenarios. Our codebase is available at https://github.com/C0mRD/HalluShift_Plus.
☆ DIST-CLIP: Arbitrary Metadata and Image Guided MRI Harmonization via Disentangled Anatomy-Contrast Representations
Deep learning holds immense promise for transforming medical image analysis, yet its clinical generalization remains profoundly limited. A major barrier is data heterogeneity. This is particularly true in Magnetic Resonance Imaging, where scanner hardware differences, diverse acquisition protocols, and varying sequence parameters introduce substantial domain shifts that obscure underlying biological signals. Data harmonization methods aim to reduce these instrumental and acquisition variability, but existing approaches remain insufficient. When applied to imaging data, image-based harmonization approaches are often restricted by the need for target images, while existing text-guided methods rely on simplistic labels that fail to capture complex acquisition details or are typically restricted to datasets with limited variability, failing to capture the heterogeneity of real-world clinical environments. To address these limitations, we propose DIST-CLIP (Disentangled Style Transfer with CLIP Guidance), a unified framework for MRI harmonization that flexibly uses either target images or DICOM metadata for guidance. Our framework explicitly disentangles anatomical content from image contrast, with the contrast representations being extracted using pre-trained CLIP encoders. These contrast embeddings are then integrated into the anatomical content via a novel Adaptive Style Transfer module. We trained and evaluated DIST-CLIP on diverse real-world clinical datasets, and showed significant improvements in performance when compared against state-of-the-art methods in both style translation fidelity and anatomical preservation, offering a flexible solution for style transfer and standardizing MRI data. Our code and weights will be made publicly available upon publication.
☆ EgoCampus: Egocentric Pedestrian Eye Gaze Model and Dataset
We address the challenge of predicting human visual attention during real-world navigation by measuring and modeling egocentric pedestrian eye gaze in an outdoor campus setting. We introduce the EgoCampus dataset, which spans 25 unique outdoor paths over 6 km across a university campus with recordings from more than 80 distinct human pedestrians, resulting in a diverse set of gaze-annotated videos. The system used for collection, Meta's Project Aria glasses, integrates eye tracking, front-facing RGB cameras, inertial sensors, and GPS to provide rich data from the human perspective. Unlike many prior egocentric datasets that focus on indoor tasks or exclude eye gaze information, our work emphasizes visual attention while subjects walk in outdoor campus paths. Using this data, we develop EgoCampusNet, a novel method to predict eye gaze of navigating pedestrians as they move through outdoor environments. Our contributions provide both a new resource for studying real-world attention and a resource for future work in gaze prediction models for navigation. Dataset and code are available upon request, and will be made publicly available at a later date at https://github.com/ComputerVisionRutgers/EgoCampus .
☆ Optimization-Guided Diffusion for Interactive Scene Generation
Realistic and diverse multi-agent driving scenes are crucial for evaluating autonomous vehicles, but safety-critical events which are essential for this task are rare and underrepresented in driving datasets. Data-driven scene generation offers a low-cost alternative by synthesizing complex traffic behaviors from existing driving logs. However, existing models often lack controllability or yield samples that violate physical or social constraints, limiting their usability. We present OMEGA, an optimization-guided, training-free framework that enforces structural consistency and interaction awareness during diffusion-based sampling from a scene generation model. OMEGA re-anchors each reverse diffusion step via constrained optimization, steering the generation towards physically plausible and behaviorally coherent trajectories. Building on this framework, we formulate ego-attacker interactions as a game-theoretic optimization in the distribution space, approximating Nash equilibria to generate realistic, safety-critical adversarial scenarios. Experiments on nuPlan and Waymo show that OMEGA improves generation realism, consistency, and controllability, increasing the ratio of physically and behaviorally valid scenes from 32.35% to 72.27% for free exploration capabilities, and from 11% to 80% for controllability-focused generation. Our approach can also generate $5\times$ more near-collision frames with a time-to-collision under three seconds while maintaining the overall scene realism.
☆ An AI-Powered Autonomous Underwater System for Sea Exploration and Scientific Research
Traditional sea exploration faces significant challenges due to extreme conditions, limited visibility, and high costs, resulting in vast unexplored ocean regions. This paper presents an innovative AI-powered Autonomous Underwater Vehicle (AUV) system designed to overcome these limitations by automating underwater object detection, analysis, and reporting. The system integrates YOLOv12 Nano for real-time object detection, a Convolutional Neural Network (CNN) (ResNet50) for feature extraction, Principal Component Analysis (PCA) for dimensionality reduction, and K-Means++ clustering for grouping marine objects based on visual characteristics. Furthermore, a Large Language Model (LLM) (GPT-4o Mini) is employed to generate structured reports and summaries of underwater findings, enhancing data interpretation. The system was trained and evaluated on a combined dataset of over 55,000 images from the DeepFish and OzFish datasets, capturing diverse Australian marine environments. Experimental results demonstrate the system's capability to detect marine objects with a mAP@0.5 of 0.512, a precision of 0.535, and a recall of 0.438. The integration of PCA effectively reduced feature dimensionality while preserving 98% variance, facilitating K-Means clustering which successfully grouped detected objects based on visual similarities. The LLM integration proved effective in generating insightful summaries of detections and clusters, supported by location data. This integrated approach significantly reduces the risks associated with human diving, increases mission efficiency, and enhances the speed and depth of underwater data analysis, paving the way for more effective scientific research and discovery in challenging marine environments.
☆ Liver Fibrosis Quantification and Analysis: The LiQA Dataset and Baseline Method
Liver fibrosis represents a significant global health burden, necessitating accurate staging for effective clinical management. This report introduces the LiQA (Liver Fibrosis Quantification and Analysis) dataset, established as part of the CARE 2024 challenge. Comprising $440$ patients with multi-phase, multi-center MRI scans, the dataset is curated to benchmark algorithms for Liver Segmentation (LiSeg) and Liver Fibrosis Staging (LiFS) under complex real-world conditions, including domain shifts, missing modalities, and spatial misalignment. We further describe the challenge's top-performing methodology, which integrates a semi-supervised learning framework with external data for robust segmentation, and utilizes a multi-view consensus approach with Class Activation Map (CAM)-based regularization for staging. Evaluation of this baseline demonstrates that leveraging multi-source data and anatomical constraints significantly enhances model robustness in clinical settings.
☆ MoCA: Mixture-of-Components Attention for Scalable Compositional 3D Generation
Compositionality is critical for 3D object and scene generation, but existing part-aware 3D generation methods suffer from poor scalability due to quadratic global attention costs when increasing the number of components. In this work, we present MoCA, a compositional 3D generative model with two key designs: (1) importance-based component routing that selects top-k relevant components for sparse global attention, and (2) unimportant components compression that preserve contextual priors of unselected components while reducing computational complexity of global attention. With these designs, MoCA enables efficient, fine-grained compositional 3D asset creation with scalable number of components. Extensive experiments show MoCA outperforms baselines on both compositional object and scene generation tasks. Project page: https://lizhiqi49.github.io/MoCA
☆ Decomposition Sampling for Efficient Region Annotations in Active Learning
Active learning improves annotation efficiency by selecting the most informative samples for annotation and model training. While most prior work has focused on selecting informative images for classification tasks, we investigate the more challenging setting of dense prediction, where annotations are more costly and time-intensive, especially in medical imaging. Region-level annotation has been shown to be more efficient than image-level annotation for these tasks. However, existing methods for representative annotation region selection suffer from high computational and memory costs, irrelevant region choices, and heavy reliance on uncertainty sampling. We propose decomposition sampling (DECOMP), a new active learning sampling strategy that addresses these limitations. It enhances annotation diversity by decomposing images into class-specific components using pseudo-labels and sampling regions from each class. Class-wise predictive confidence further guides the sampling process, ensuring that difficult classes receive additional annotations. Across ROI classification, 2-D segmentation, and 3-D segmentation, DECOMP consistently surpasses baseline methods by better sampling minority-class regions and boosting performance on these challenging classes. Code is in https://github.com/JingnaQiu/DECOMP.git.
☆ Online Segment Any 3D Thing as Instance Tracking NeurIPS 2025
Online, real-time, and fine-grained 3D segmentation constitutes a fundamental capability for embodied intelligent agents to perceive and comprehend their operational environments. Recent advancements employ predefined object queries to aggregate semantic information from Vision Foundation Models (VFMs) outputs that are lifted into 3D point clouds, facilitating spatial information propagation through inter-query interactions. Nevertheless, perception is an inherently dynamic process, rendering temporal understanding a critical yet overlooked dimension within these prevailing query-based pipelines. Therefore, to further unlock the temporal environmental perception capabilities of embodied agents, our work reconceptualizes online 3D segmentation as an instance tracking problem (AutoSeg3D). Our core strategy involves utilizing object queries for temporal information propagation, where long-term instance association promotes the coherence of features and object identities, while short-term instance update enriches instant observations. Given that viewpoint variations in embodied robotics often lead to partial object visibility across frames, this mechanism aids the model in developing a holistic object understanding beyond incomplete instantaneous views. Furthermore, we introduce spatial consistency learning to mitigate the fragmentation problem inherent in VFMs, yielding more comprehensive instance information for enhancing the efficacy of both long-term and short-term temporal learning. The temporal information exchange and consistency learning facilitated by these sparse object queries not only enhance spatial comprehension but also circumvent the computational burden associated with dense temporal point cloud interactions. Our method establishes a new state-of-the-art, surpassing ESAM by 2.8 AP on ScanNet200 and delivering consistent gains on ScanNet, SceneNN, and 3RScan datasets.
comment: NeurIPS 2025, Code is at https://github.com/AutoLab-SAI-SJTU/AutoSeg3D
☆ More than Segmentation: Benchmarking SAM 3 for Segmentation, 3D Perception, and Reconstruction in Robotic Surgery
The recent Segment Anything Model (SAM) 3 has introduced significant advancements over its predecessor, SAM 2, particularly with the integration of language-based segmentation and enhanced 3D perception capabilities. SAM 3 supports zero-shot segmentation across a wide range of prompts, including point, bounding box, and language-based prompts, allowing for more flexible and intuitive interactions with the model. In this empirical evaluation, we assess the performance of SAM 3 in robot-assisted surgery, benchmarking its zero-shot segmentation with point and bounding box prompts and exploring its effectiveness in dynamic video tracking, alongside its newly introduced language prompt segmentation. While language prompts show potential, their performance in the surgical domain is currently suboptimal, highlighting the need for further domain-specific training. Additionally, we investigate SAM 3's 3D reconstruction abilities, demonstrating its capacity to process surgical scene data and reconstruct 3D anatomical structures from 2D images. Through comprehensive testing on the MICCAI EndoVis 2017 and EndoVis 2018 benchmarks, SAM 3 shows clear improvements over SAM and SAM 2 in both image and video segmentation under spatial prompts, while zero-shot evaluations on SCARED, StereoMIS, and EndoNeRF indicate strong monocular depth estimation and realistic 3D instrument reconstruction, yet also reveal remaining limitations in complex, highly dynamic surgical scenes.
comment: Technical Report
☆ Robust Variational Model Based Tailored UNet: Leveraging Edge Detector and Mean Curvature for Improved Image Segmentation
To address the challenge of segmenting noisy images with blurred or fragmented boundaries, this paper presents a robust version of Variational Model Based Tailored UNet (VM_TUNet), a hybrid framework that integrates variational methods with deep learning. The proposed approach incorporates physical priors, an edge detector and a mean curvature term, into a modified Cahn-Hilliard equation, aiming to combine the interpretability and boundary-smoothing advantages of variational partial differential equations (PDEs) with the strong representational ability of deep neural networks. The architecture consists of two collaborative modules: an F module, which conducts efficient frequency domain preprocessing to alleviate poor local minima, and a T module, which ensures accurate and stable local computations, backed by a stability estimate. Extensive experiments on three benchmark datasets indicate that the proposed method achieves a balanced trade-off between performance and computational efficiency, which yields competitive quantitative results and improved visual quality compared to pure convolutional neural network (CNN) based models, while achieving performance close to that of transformer-based method with reasonable computational expense.
☆ LongCat-Image Technical Report
We introduce LongCat-Image, a pioneering open-source and bilingual (Chinese-English) foundation model for image generation, designed to address core challenges in multilingual text rendering, photorealism, deployment efficiency, and developer accessibility prevalent in current leading models. 1) We achieve this through rigorous data curation strategies across the pre-training, mid-training, and SFT stages, complemented by the coordinated use of curated reward models during the RL phase. This strategy establishes the model as a new state-of-the-art (SOTA), delivering superior text-rendering capabilities and remarkable photorealism, and significantly enhancing aesthetic quality. 2) Notably, it sets a new industry standard for Chinese character rendering. By supporting even complex and rare characters, it outperforms both major open-source and commercial solutions in coverage, while also achieving superior accuracy. 3) The model achieves remarkable efficiency through its compact design. With a core diffusion model of only 6B parameters, it is significantly smaller than the nearly 20B or larger Mixture-of-Experts (MoE) architectures common in the field. This ensures minimal VRAM usage and rapid inference, significantly reducing deployment costs. Beyond generation, LongCat-Image also excels in image editing, achieving SOTA results on standard benchmarks with superior editing consistency compared to other open-source works. 4) To fully empower the community, we have established the most comprehensive open-source ecosystem to date. We are releasing not only multiple model versions for text-to-image and image editing, including checkpoints after mid-training and post-training stages, but also the entire toolchain of training procedure. We believe that the openness of LongCat-Image will provide robust support for developers and researchers, pushing the frontiers of visual content creation.
☆ All You Need Are Random Visual Tokens? Demystifying Token Pruning in VLLMs
Vision Large Language Models (VLLMs) incur high computational costs due to their reliance on hundreds of visual tokens to represent images. While token pruning offers a promising solution for accelerating inference, this paper, however, identifies a key observation: in deeper layers (e.g., beyond the 20th), existing training-free pruning methods perform no better than random pruning. We hypothesize that this degradation is caused by "vanishing token information", where visual tokens progressively lose their salience with increasing network depth. To validate this hypothesis, we quantify a token's information content by measuring the change in the model output probabilities upon its removal. Using this proposed metric, our analysis of the information of visual tokens across layers reveals three key findings: (1) As layers deepen, the information of visual tokens gradually becomes uniform and eventually vanishes at an intermediate layer, which we term as "information horizon", beyond which the visual tokens become redundant; (2) The position of this horizon is not static; it extends deeper for visually intensive tasks, such as Optical Character Recognition (OCR), compared to more general tasks like Visual Question Answering (VQA); (3) This horizon is also strongly correlated with model capacity, as stronger VLLMs (e.g., Qwen2.5-VL) employ deeper visual tokens than weaker models (e.g., LLaVA-1.5). Based on our findings, we show that simple random pruning in deep layers efficiently balances performance and efficiency. Moreover, integrating random pruning consistently enhances existing methods. Using DivPrune with random pruning achieves state-of-the-art results, maintaining 96.9% of Qwen-2.5-VL-7B performance while pruning 50% of visual tokens. The code will be publicly available at https://github.com/YahongWang1/Information-Horizon.
☆ R2MF-Net: A Recurrent Residual Multi-Path Fusion Network for Robust Multi-directional Spine X-ray Segmentation
Accurate segmentation of spinal structures in X-ray images is a prerequisite for quantitative scoliosis assessment, including Cobb angle measurement, vertebral translation estimation and curvature classification. In routine practice, clinicians acquire coronal, left-bending and right-bending radiographs to jointly evaluate deformity severity and spinal flexibility. However, the segmentation step remains heavily manual, time-consuming and non-reproducible, particularly in low-contrast images and in the presence of rib shadows or overlapping tissues. To address these limitations, this paper proposes R2MF-Net, a recurrent residual multi-path encoder--decoder network tailored for automatic segmentation of multi-directional spine X-ray images. The overall design consists of a coarse segmentation network and a fine segmentation network connected in cascade. Both stages adopt an improved Inception-style multi-branch feature extractor, while a recurrent residual jump connection (R2-Jump) module is inserted into skip paths to gradually align encoder and decoder semantics. A multi-scale cross-stage skip (MC-Skip) mechanism allows the fine network to reuse hierarchical representations from multiple decoder levels of the coarse network, thereby strengthening the stability of segmentation across imaging directions and contrast conditions. Furthermore, a lightweight spatial-channel squeeze-and-excitation block (SCSE-Lite) is employed at the bottleneck to emphasize spine-related activations and suppress irrelevant structures and background noise. We evaluate R2MF-Net on a clinical multi-view radiograph dataset comprising 228 sets of coronal, left-bending and right-bending spine X-ray images with expert annotations.
☆ Precise Liver Tumor Segmentation in CT Using a Hybrid Deep Learning-Radiomics Framework
Accurate three-dimensional delineation of liver tumors on contrast-enhanced CT is a prerequisite for treatment planning, navigation and response assessment, yet manual contouring is slow, observer-dependent and difficult to standardise across centres. Automatic segmentation is complicated by low lesion-parenchyma contrast, blurred or incomplete boundaries, heterogeneous enhancement patterns, and confounding structures such as vessels and adjacent organs. We propose a hybrid framework that couples an attention-enhanced cascaded U-Net with handcrafted radiomics and voxel-wise 3D CNN refinement for joint liver and liver-tumor segmentation. First, a 2.5D two-stage network with a densely connected encoder, sub-pixel convolution decoders and multi-scale attention gates produces initial liver and tumor probability maps from short stacks of axial slices. Inter-slice temporal consistency is then enforced by a simple three-slice refinement rule along the cranio-caudal direction, which restores thin and tiny lesions while suppressing isolated noise. Next, 728 radiomic descriptors spanning intensity, texture, shape, boundary and wavelet feature groups are extracted from candidate lesions and reduced to 20 stable, highly informative features via multi-strategy feature selection; a random forest classifier uses these features to reject false-positive regions. Finally, a compact 3D patch-based CNN derived from AlexNet operates in a narrow band around the tumor boundary to perform voxel-level relabelling and contour smoothing.
☆ Dual-Stream Cross-Modal Representation Learning via Residual Semantic Decorrelation
Cross-modal learning has become a fundamental paradigm for integrating heterogeneous information sources such as images, text, and structured attributes. However, multimodal representations often suffer from modality dominance, redundant information coupling, and spurious cross-modal correlations, leading to suboptimal generalization and limited interpretability. In particular, high-variance modalities tend to overshadow weaker but semantically important signals, while naïve fusion strategies entangle modality-shared and modality-specific factors in an uncontrolled manner. This makes it difficult to understand which modality actually drives a prediction and to maintain robustness when some modalities are noisy or missing. To address these challenges, we propose a Dual-Stream Residual Semantic Decorrelation Network (DSRSD-Net), a simple yet effective framework that disentangles modality-specific and modality-shared information through residual decomposition and explicit semantic decorrelation constraints. DSRSD-Net introduces: (1) a dual-stream representation learning module that separates intra-modal (private) and inter-modal (shared) latent factors via residual projection; (2) a residual semantic alignment head that maps shared factors from different modalities into a common space using a combination of contrastive and regression-style objectives; and (3) a decorrelation and orthogonality loss that regularizes the covariance structure of the shared space while enforcing orthogonality between shared and private streams, thereby suppressing cross-modal redundancy and preventing feature collapse. Experimental results on two large-scale educational benchmarks demonstrate that DSRSD-Net consistently improves next-step prediction and final outcome prediction over strong single-modality, early-fusion, late-fusion, and co-attention baselines.
☆ Toward More Reliable Artificial Intelligence: Reducing Hallucinations in Vision-Language Models
Vision-language models (VLMs) frequently generate hallucinated content plausible but incorrect claims about image content. We propose a training-free self-correction framework enabling VLMs to iteratively refine responses through uncertainty-guided visual re-attention. Our method combines multidimensional uncertainty quantification (token entropy, attention dispersion, semantic consistency, claim confidence) with attention-guided cropping of under-explored regions. Operating entirely with frozen, pretrained VLMs, our framework requires no gradient updates. We validate our approach on the POPE and MMHAL BENCH benchmarks using the Qwen2.5-VL-7B [23] architecture. Experimental results demonstrate that our method reduces hallucination rates by 9.8 percentage points compared to the baseline, while improving object existence accuracy by 4.7 points on adversarial splits. Furthermore, qualitative analysis confirms that uncertainty-guided re-attention successfully grounds corrections in visual evidence where standard decoding fails. We validate our approach on Qwen2.5-VL-7B [23], with plans to extend validation across diverse architectures in future versions. We release our code and methodology to facilitate future research in trustworthy multimodal systems.
comment: 24 pages, 3 figures, 2 tables. Training-free self-correction framework for vision-language models. Code and implementation details will be released at: https://github.com/kassoumsanogo1/self-correcting-vlm-re-Attention.git
☆ ReLaX: Reasoning with Latent Exploration for Large Reasoning Models
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated remarkable potential in enhancing the reasoning capability of Large Reasoning Models (LRMs). However, RLVR often leads to entropy collapse, resulting in premature policy convergence and performance saturation. While manipulating token-level entropy has proven effective for promoting policy exploration, we argue that the latent dynamics underlying token generation encode a far richer computational structure for steering policy optimization toward a more effective exploration-exploitation tradeoff. To enable tractable analysis and intervention of the latent dynamics of LRMs, we leverage Koopman operator theory to obtain a linearized representation of their hidden-state dynamics. This enables us to introduce Dynamic Spectral Dispersion (DSD), a new metric to quantify the heterogeneity of the model's latent dynamics, serving as a direct indicator of policy exploration. Building upon these foundations, we propose Reasoning with Latent eXploration (ReLaX), a paradigm that explicitly incorporates latent dynamics to regulate exploration and exploitation during policy optimization. Comprehensive experiments across a wide range of multimodal and text-only reasoning benchmarks show that ReLaX significantly mitigates premature convergence and consistently achieves state-of-the-art performance.
☆ From Orbit to Ground: Generative City Photogrammetry from Extreme Off-Nadir Satellite Images
City-scale 3D reconstruction from satellite imagery presents the challenge of extreme viewpoint extrapolation, where our goal is to synthesize ground-level novel views from sparse orbital images with minimal parallax. This requires inferring nearly $90^\circ$ viewpoint gaps from image sources with severely foreshortened facades and flawed textures, causing state-of-the-art reconstruction engines such as NeRF and 3DGS to fail. To address this problem, we propose two design choices tailored for city structures and satellite inputs. First, we model city geometry as a 2.5D height map, implemented as a Z-monotonic signed distance field (SDF) that matches urban building layouts from top-down viewpoints. This stabilizes geometry optimization under sparse, off-nadir satellite views and yields a watertight mesh with crisp roofs and clean, vertically extruded facades. Second, we paint the mesh appearance from satellite images via differentiable rendering techniques. While the satellite inputs may contain long-range, blurry captures, we further train a generative texture restoration network to enhance the appearance, recovering high-frequency, plausible texture details from degraded inputs. Our method's scalability and robustness are demonstrated through extensive experiments on large-scale urban reconstruction. For example, in our teaser figure, we reconstruct a $4\,\mathrm{km}^2$ real-world region from only a few satellite images, achieving state-of-the-art performance in synthesizing photorealistic ground views. The resulting models are not only visually compelling but also serve as high-fidelity, application-ready assets for downstream tasks like urban planning and simulation.
☆ MeshRipple: Structured Autoregressive Generation of Artist-Meshes
Meshes serve as a primary representation for 3D assets. Autoregressive mesh generators serialize faces into sequences and train on truncated segments with sliding-window inference to cope with memory limits. However, this mismatch breaks long-range geometric dependencies, producing holes and fragmented components. To address this critical limitation, we introduce MeshRipple, which expands a mesh outward from an active generation frontier, akin to a ripple on a surface.MeshRipple rests on three key innovations: a frontier-aware BFS tokenization that aligns the generation order with surface topology; an expansive prediction strategy that maintains coherent, connected surface growth; and a sparse-attention global memory that provides an effectively unbounded receptive field to resolve long-range topological dependencies.This integrated design enables MeshRipple to generate meshes with high surface fidelity and topological completeness, outperforming strong recent baselines.
☆ Exploring possible vector systems for faster training of neural networks with preconfigured latent spaces
The overall neural network (NN) performance is closely related to the properties of its embedding distribution in latent space (LS). It has recently been shown that predefined vector systems, specifically An root system vectors, can be used as targets for latent space configurations (LSC) to ensure the desired LS structure. One of the main LSC advantage is the possibility of training classifier NNs without classification layers, which facilitates training NNs on datasets with extremely large numbers of classes. This paper provides a more general overview of possible vector systems for NN training along with their properties and methods for vector system construction. These systems are used to configure LS of encoders and visual transformers to significantly speed up ImageNet-1K and 50k-600k classes LSC training. It is also shown that using the minimum number of LS dimensions for a specific number of classes results in faster convergence. The latter has potential advantages for reducing the size of vector databases used to store NN embeddings.
comment: 9 pages, 5 figures, 1 table, 4 equations
☆ ControlVP: Interactive Geometric Refinement of AI-Generated Images with Consistent Vanishing Points WACV 2026
Recent text-to-image models, such as Stable Diffusion, have achieved impressive visual quality, yet they often suffer from geometric inconsistencies that undermine the structural realism of generated scenes. One prominent issue is vanishing point inconsistency, where projections of parallel lines fail to converge correctly in 2D space. This leads to structurally implausible geometry that degrades spatial realism, especially in architectural scenes. We propose ControlVP, a user-guided framework for correcting vanishing point inconsistencies in generated images. Our approach extends a pre-trained diffusion model by incorporating structural guidance derived from building contours. We also introduce geometric constraints that explicitly encourage alignment between image edges and perspective cues. Our method enhances global geometric consistency while maintaining visual fidelity comparable to the baselines. This capability is particularly valuable for applications that require accurate spatial structure, such as image-to-3D reconstruction. The dataset and source code are available at https://github.com/RyotaOkumura/ControlVP .
comment: Accepted to WACV 2026, 8 pages, supplementary included. Dataset and code: https://github.com/RyotaOkumura/ControlVP
☆ SJD++: Improved Speculative Jacobi Decoding for Training-free Acceleration of Discrete Auto-regressive Text-to-Image Generation
Large autoregressive models can generate high-quality, high-resolution images but suffer from slow generation speed, because these models require hundreds to thousands of sequential forward passes for next-token prediction during inference. To accelerate autoregressive text-to-image generation, we propose Speculative Jacobi Decoding++ (SJD++), a training-free probabilistic parallel decoding algorithm. Unlike traditional next-token prediction, SJD++ performs multi-token prediction in each forward pass, drastically reducing generation steps. Specifically, it integrates the iterative multi-token prediction mechanism from Jacobi decoding, with the probabilistic drafting-and-verification mechanism from speculative sampling. More importantly, for further acceleration, SJD++ reuses high-confidence draft tokens after each verification phase instead of resampling them all. We conduct extensive experiments on several representative autoregressive text-to-image generation models and demonstrate that SJD++ achieves $2\times$ to $3\times$ inference latency reduction and $2\times$ to $7\times$ step compression, while preserving visual quality with no observable degradation.
☆ MultiMotion: Multi Subject Video Motion Transfer via Video Diffusion Transformer
Multi-object video motion transfer poses significant challenges for Diffusion Transformer (DiT) architectures due to inherent motion entanglement and lack of object-level control. We present MultiMotion, a novel unified framework that overcomes these limitations. Our core innovation is Maskaware Attention Motion Flow (AMF), which utilizes SAM2 masks to explicitly disentangle and control motion features for multiple objects within the DiT pipeline. Furthermore, we introduce RectPC, a high-order predictor-corrector solver for efficient and accurate sampling, particularly beneficial for multi-entity generation. To facilitate rigorous evaluation, we construct the first benchmark dataset specifically for DiT-based multi-object motion transfer. MultiMotion demonstrably achieves precise, semantically aligned, and temporally coherent motion transfer for multiple distinct objects, maintaining DiT's high quality and scalability. The code is in the supp.
☆ Towards Robust DeepFake Detection under Unstable Face Sequences: Adaptive Sparse Graph Embedding with Order-Free Representation and Explicit Laplacian Spectral Prior
Ensuring the authenticity of video content remains challenging as DeepFake generation becomes increasingly realistic and robust against detection. Most existing detectors implicitly assume temporally consistent and clean facial sequences, an assumption that rarely holds in real-world scenarios where compression artifacts, occlusions, and adversarial attacks destabilize face detection and often lead to invalid or misdetected faces. To address these challenges, we propose a Laplacian-Regularized Graph Convolutional Network (LR-GCN) that robustly detects DeepFakes from noisy or unordered face sequences, while being trained only on clean facial data. Our method constructs an Order-Free Temporal Graph Embedding (OF-TGE) that organizes frame-wise CNN features into an adaptive sparse graph based on semantic affinities. Unlike traditional methods constrained by strict temporal continuity, OF-TGE captures intrinsic feature consistency across frames, making it resilient to shuffled, missing, or heavily corrupted inputs. We further impose a dual-level sparsity mechanism on both graph structure and node features to suppress the influence of invalid faces. Crucially, we introduce an explicit Graph Laplacian Spectral Prior that acts as a high-pass operator in the graph spectral domain, highlighting structural anomalies and forgery artifacts, which are then consolidated by a low-pass GCN aggregation. This sequential design effectively realizes a task-driven spectral band-pass mechanism that suppresses background information and random noise while preserving manipulation cues. Extensive experiments on FF++, Celeb-DFv2, and DFDC demonstrate that LR-GCN achieves state-of-the-art performance and significantly improved robustness under severe global and local disruptions, including missing faces, occlusions, and adversarially perturbed face detections.
comment: 16 pages (including appendix)
☆ Single-step Diffusion-based Video Coding with Semantic-Temporal Guidance
While traditional and neural video codecs (NVCs) have achieved remarkable rate-distortion performance, improving perceptual quality at low bitrates remains challenging. Some NVCs incorporate perceptual or adversarial objectives but still suffer from artifacts due to limited generation capacity, whereas others leverage pretrained diffusion models to improve quality at the cost of heavy sampling complexity. To overcome these challenges, we propose S2VC, a Single-Step diffusion based Video Codec that integrates a conditional coding framework with an efficient single-step diffusion generator, enabling realistic reconstruction at low bitrates with reduced sampling cost. Recognizing the importance of semantic conditioning in single-step diffusion, we introduce Contextual Semantic Guidance to extract frame-adaptive semantics from buffered features. It replaces text captions with efficient, fine-grained conditioning, thereby improving generation realism. In addition, Temporal Consistency Guidance is incorporated into the diffusion U-Net to enforce temporal coherence across frames and ensure stable generation. Extensive experiments show that S2VC delivers state-of-the-art perceptual quality with an average 52.73% bitrate saving over prior perceptual methods, underscoring the promise of single-step diffusion for efficient, high-quality video compression.
☆ Unified Video Editing with Temporal Reasoner
Existing video editing methods face a critical trade-off: expert models offer precision but rely on task-specific priors like masks, hindering unification; conversely, unified temporal in-context learning models are mask-free but lack explicit spatial cues, leading to weak instruction-to-region mapping and imprecise localization. To resolve this conflict, we propose VideoCoF, a novel Chain-of-Frames approach inspired by Chain-of-Thought reasoning. VideoCoF enforces a ``see, reason, then edit" procedure by compelling the video diffusion model to first predict reasoning tokens (edit-region latents) before generating the target video tokens. This explicit reasoning step removes the need for user-provided masks while achieving precise instruction-to-region alignment and fine-grained video editing. Furthermore, we introduce a RoPE alignment strategy that leverages these reasoning tokens to ensure motion alignment and enable length extrapolation beyond the training duration. We demonstrate that with a minimal data cost of only 50k video pairs, VideoCoF achieves state-of-the-art performance on VideoCoF-Bench, validating the efficiency and effectiveness of our approach. Our code, weight, data are available at https://github.com/knightyxp/VideoCoF.
comment: Project Page: https://videocof.github.io/
☆ Human Geometry Distribution for 3D Animation Generation
Generating realistic human geometry animations remains a challenging task, as it requires modeling natural clothing dynamics with fine-grained geometric details under limited data. To address these challenges, we propose two novel designs. First, we propose a compact distribution-based latent representation that enables efficient and high-quality geometry generation. We improve upon previous work by establishing a more uniform mapping between SMPL and avatar geometries. Second, we introduce a generative animation model that fully exploits the diversity of limited motion data. We focus on short-term transitions while maintaining long-term consistency through an identity-conditioned design. These two designs formulate our method as a two-stage framework: the first stage learns a latent space, while the second learns to generate animations within this latent space. We conducted experiments on both our latent space and animation model. We demonstrate that our latent space produces high-fidelity human geometry surpassing previous methods ($90\%$ lower Chamfer Dist.). The animation model synthesizes diverse animations with detailed and natural dynamics ($2.2 \times$ higher user study score), achieving the best results across all evaluation metrics.
☆ KAN-Dreamer: Benchmarking Kolmogorov-Arnold Networks as Function Approximators in World Models
DreamerV3 is a state-of-the-art online model-based reinforcement learning (MBRL) algorithm known for remarkable sample efficiency. Concurrently, Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to Multi-Layer Perceptrons (MLPs), offering superior parameter efficiency and interpretability. To mitigate KANs' computational overhead, variants like FastKAN leverage Radial Basis Functions (RBFs) to accelerate inference. In this work, we investigate integrating KAN architectures into the DreamerV3 framework. We introduce KAN-Dreamer, replacing specific MLP and convolutional components of DreamerV3 with KAN and FastKAN layers. To ensure efficiency within the JAX-based World Model, we implement a tailored, fully vectorized version with simplified grid management. We structure our investigation into three subsystems: Visual Perception, Latent Prediction, and Behavior Learning. Empirical evaluations on the DeepMind Control Suite (walker_walk) analyze sample efficiency, training time, and asymptotic performance. Experimental results demonstrate that utilizing our adapted FastKAN as a drop-in replacement for the Reward and Continue predictors yields performance on par with the original MLP-based architecture, maintaining parity in both sample efficiency and training speed. This report serves as a preliminary study for future developments in KAN-based world models.
comment: 23 pages, 8 figures, 3 tables
☆ When normalization hallucinates: unseen risks in AI-powered whole slide image processing SP
Whole slide image (WSI) normalization remains a vital preprocessing step in computational pathology. Increasingly driven by deep learning, these models learn to approximate data distributions from training examples. This often results in outputs that gravitate toward the average, potentially masking diagnostically important features. More critically, they can introduce hallucinated content, artifacts that appear realistic but are not present in the original tissue, posing a serious threat to downstream analysis. These hallucinations are nearly impossible to detect visually, and current evaluation practices often overlook them. In this work, we demonstrate that the risk of hallucinations is real and underappreciated. While many methods perform adequately on public datasets, we observe a concerning frequency of hallucinations when these same models are retrained and evaluated on real-world clinical data. To address this, we propose a novel image comparison measure designed to automatically detect hallucinations in normalized outputs. Using this measure, we systematically evaluate several well-cited normalization methods retrained on real-world data, revealing significant inconsistencies and failures that are not captured by conventional metrics. Our findings underscore the need for more robust, interpretable normalization techniques and stricter validation protocols in clinical deployment.
comment: 4 pages, accepted for oral presentation at SPIE Medical Imaging, 2026
☆ Revolutionizing Mixed Precision Quantization: Towards Training-free Automatic Proxy Discovery via Large Language Models
Mixed-Precision Quantization (MPQ) liberates the Deep Neural Networks (DNNs) from the Out-Of-Memory (OOM) bottleneck, which garnered increasing research attention. However, conventional methods either searched from costly differentiable optimization, which is neither efficient nor flexible, or learned a quantized DNN from the proxy (i.e., HAWQ) manually designed by human experts, which is labor-intensive and requires huge expert knowledge. Can we design a proxy without involving any human experts and training? In this paper, we provide an affirmative answer by proposing a novel Large Language Models (LLMs)-driven Training-free Automatic Proxy (dubbed TAP) discovery framework, which reforms the design paradigm of MPQ by utilizing LLMs to find superior TAP tailored for MPQ, automatically. In addition, to bridge the gap between black-box LLMs and the tough MPQ task, we ingeniously propose simple Direct Policy Optimization (DPO) based reinforcement learning to enhance LLMs' reasoning by optimizing prompts, which can construct a positive feedback loop between the LLM and the MPQ task, enabling LLMs to generate better TAP in the next evolution. Extensive experiments on mainstream benchmarks demonstrate that TAP achieves state-of-the-art performance. Finally, we truly believe that our TAP will significantly contribute to the MPQ community by providing a new perspective on LLM-driven design algorithms.
☆ Data-driven Exploration of Mobility Interaction Patterns
Understanding the movement behaviours of individuals and the way they react to the external world is a key component of any problem that involves the modelling of human dynamics at a physical level. In particular, it is crucial to capture the influence that the presence of an individual can have on the others. Important examples of applications include crowd simulation and emergency management, where the simulation of the mass of people passes through the simulation of the individuals, taking into consideration the others as part of the general context. While existing solutions basically start from some preconceived behavioural model, in this work we propose an approach that starts directly from the data, adopting a data mining perspective. Our method searches the mobility events in the data that might be possible evidences of mutual interactions between individuals, and on top of them looks for complex, persistent patterns and time evolving configurations of events. The study of these patterns can provide new insights on the mechanics of mobility interactions between individuals, which can potentially help in improving existing simulation models. We instantiate the general methodology on two real case studies, one on cars and one on pedestrians, and a full experimental evaluation is performed, both in terms of performances, parameter sensitivity and interpretation of sample results.
☆ InterAgent: Physics-based Multi-agent Command Execution via Diffusion on Interaction Graphs
Humanoid agents are expected to emulate the complex coordination inherent in human social behaviors. However, existing methods are largely confined to single-agent scenarios, overlooking the physically plausible interplay essential for multi-agent interactions. To bridge this gap, we propose InterAgent, the first end-to-end framework for text-driven physics-based multi-agent humanoid control. At its core, we introduce an autoregressive diffusion transformer equipped with multi-stream blocks, which decouples proprioception, exteroception, and action to mitigate cross-modal interference while enabling synergistic coordination. We further propose a novel interaction graph exteroception representation that explicitly captures fine-grained joint-to-joint spatial dependencies to facilitate network learning. Additionally, within it we devise a sparse edge-based attention mechanism that dynamically prunes redundant connections and emphasizes critical inter-agent spatial relations, thereby enhancing the robustness of interaction modeling. Extensive experiments demonstrate that InterAgent consistently outperforms multiple strong baselines, achieving state-of-the-art performance. It enables producing coherent, physically plausible, and semantically faithful multi-agent behaviors from only text prompts. Our code and data will be released to facilitate future research.
comment: Project page: https://binlee26.github.io/InterAgent-Page
☆ Reconstructing Objects along Hand Interaction Timelines in Egocentric Video
We introduce the task of Reconstructing Objects along Hand Interaction Timelines (ROHIT). We first define the Hand Interaction Timeline (HIT) from a rigid object's perspective. In a HIT, an object is first static relative to the scene, then is held in hand following contact, where its pose changes. This is usually followed by a firm grip during use, before it is released to be static again w.r.t. to the scene. We model these pose constraints over the HIT, and propose to propagate the object's pose along the HIT enabling superior reconstruction using our proposed Constrained Optimisation and Propagation (COP) framework. Importantly, we focus on timelines with stable grasps - i.e. where the hand is stably holding an object, effectively maintaining constant contact during use. This allows us to efficiently annotate, study, and evaluate object reconstruction in videos without 3D ground truth. We evaluate our proposed task, ROHIT, over two egocentric datasets, HOT3D and in-the-wild EPIC-Kitchens. In HOT3D, we curate 1.2K clips of stable grasps. In EPIC-Kitchens, we annotate 2.4K clips of stable grasps including 390 object instances across 9 categories from videos of daily interactions in 141 environments. Without 3D ground truth, we utilise 2D projection error to assess the reconstruction. Quantitatively, COP improves stable grasp reconstruction by 6.2-11.3% and HIT reconstruction by up to 24.5% with constrained pose propagation.
comment: webpage: https://zhifanzhu.github.io/objects-along-hit
☆ GlimmerNet: A Lightweight Grouped Dilated Depthwise Convolutions for UAV-Based Emergency Monitoring
Convolutional Neural Networks (CNNs) have proven highly effective for edge and mobile vision tasks due to their computational efficiency. While many recent works seek to enhance CNNs with global contextual understanding via self-attention-based Vision Transformers, these approaches often introduce significant computational overhead. In this work, we demonstrate that it is possible to retain strong global perception without relying on computationally expensive components. We present GlimmerNet, an ultra-lightweight convolutional network built on the principle of separating receptive field diversity from feature recombination. GlimmerNet introduces Grouped Dilated Depthwise Convolutions(GDBlocks), which partition channels into groups with distinct dilation rates, enabling multi-scale feature extraction at no additional parameter cost. To fuse these features efficiently, we design a novel Aggregator module that recombines cross-group representations using grouped pointwise convolution, significantly lowering parameter overhead. With just 31K parameters and 29% fewer FLOPs than the most recent baseline, GlimmerNet achieves a new state-of-the-art weighted F1-score of 0.966 on the UAV-focused AIDERv2 dataset. These results establish a new accuracy-efficiency trade-off frontier for real-time emergency monitoring on resource-constrained UAV platforms. Our implementation is publicly available at https://github.com/djordjened92/gdd-cnn.
☆ Towards Reliable Test-Time Adaptation: Style Invariance as a Correctness Likelihood WACV 2026
Test-time adaptation (TTA) enables efficient adaptation of deployed models, yet it often leads to poorly calibrated predictive uncertainty - a critical issue in high-stakes domains such as autonomous driving, finance, and healthcare. Existing calibration methods typically assume fixed models or static distributions, resulting in degraded performance under real-world, dynamic test conditions. To address these challenges, we introduce Style Invariance as a Correctness Likelihood (SICL), a framework that leverages style-invariance for robust uncertainty estimation. SICL estimates instance-wise correctness likelihood by measuring prediction consistency across style-altered variants, requiring only the model's forward pass. This makes it a plug-and-play, backpropagation-free calibration module compatible with any TTA method. Comprehensive evaluations across four baselines, five TTA methods, and two realistic scenarios with three model architecture demonstrate that SICL reduces calibration error by an average of 13 percentage points compared to conventional calibration approaches.
comment: Accepted to WACV 2026
☆ How Far are Modern Trackers from UAV-Anti-UAV? A Million-Scale Benchmark and New Baseline
Unmanned Aerial Vehicles (UAVs) offer wide-ranging applications but also pose significant safety and privacy violation risks in areas like airport and infrastructure inspection, spurring the rapid development of Anti-UAV technologies in recent years. However, current Anti-UAV research primarily focuses on RGB, infrared (IR), or RGB-IR videos captured by fixed ground cameras, with little attention to tracking target UAVs from another moving UAV platform. To fill this gap, we propose a new multi-modal visual tracking task termed UAV-Anti-UAV, which involves a pursuer UAV tracking a target adversarial UAV in the video stream. Compared to existing Anti-UAV tasks, UAV-Anti-UAV is more challenging due to severe dual-dynamic disturbances caused by the rapid motion of both the capturing platform and the target. To advance research in this domain, we construct a million-scale dataset consisting of 1,810 videos, each manually annotated with bounding boxes, a language prompt, and 15 tracking attributes. Furthermore, we propose MambaSTS, a Mamba-based baseline method for UAV-Anti-UAV tracking, which enables integrated spatial-temporal-semantic learning. Specifically, we employ Mamba and Transformer models to learn global semantic and spatial features, respectively, and leverage the state space model's strength in long-sequence modeling to establish video-level long-term context via a temporal token propagation mechanism. We conduct experiments on the UAV-Anti-UAV dataset to validate the effectiveness of our method. A thorough experimental evaluation of 50 modern deep tracking algorithms demonstrates that there is still significant room for improvement in the UAV-Anti-UAV domain. The dataset and codes will be available at {\color{magenta}https://github.com/983632847/Awesome-Multimodal-Object-Tracking}.
comment: https://github.com/983632847/Awesome-Multimodal-Object-Tracking
☆ LogicCBMs: Logic-Enhanced Concept-Based Learning WACV 2026
Concept Bottleneck Models (CBMs) provide a basis for semantic abstractions within a neural network architecture. Such models have primarily been seen through the lens of interpretability so far, wherein they offer transparency by inferring predictions as a linear combination of semantic concepts. However, a linear combination is inherently limiting. So we propose the enhancement of concept-based learning models through propositional logic. We introduce a logic module that is carefully designed to connect the learned concepts from CBMs through differentiable logic operations, such that our proposed LogicCBM can go beyond simple weighted combinations of concepts to leverage various logical operations to yield the final predictions, while maintaining end-to-end learnability. Composing concepts using a set of logic operators enables the model to capture inter-concept relations, while simultaneously improving the expressivity of the model in terms of logic operations. Our empirical studies on well-known benchmarks and synthetic datasets demonstrate that these models have better accuracy, perform effective interventions and are highly interpretable.
comment: 18 pages, 19 figures, WACV 2026
☆ Tessellation GS: Neural Mesh Gaussians for Robust Monocular Reconstruction of Dynamic Objects
3D Gaussian Splatting (GS) enables highly photorealistic scene reconstruction from posed image sequences but struggles with viewpoint extrapolation due to its anisotropic nature, leading to overfitting and poor generalization, particularly in sparse-view and dynamic scene reconstruction. We propose Tessellation GS, a structured 2D GS approach anchored on mesh faces, to reconstruct dynamic scenes from a single continuously moving or static camera. Our method constrains 2D Gaussians to localized regions and infers their attributes via hierarchical neural features on mesh faces. Gaussian subdivision is guided by an adaptive face subdivision strategy driven by a detail-aware loss function. Additionally, we leverage priors from a reconstruction foundation model to initialize Gaussian deformations, enabling robust reconstruction of general dynamic objects from a single static camera, previously extremely challenging for optimization-based methods. Our method outperforms previous SOTA method, reducing LPIPS by 29.1% and Chamfer distance by 49.2% on appearance and mesh reconstruction tasks.
☆ Enhancing Small Object Detection with YOLO: A Novel Framework for Improved Accuracy and Efficiency
This paper investigates and develops methods for detecting small objects in large-scale aerial images. Current approaches for detecting small objects in aerial images often involve image cropping and modifications to detector network architectures. Techniques such as sliding window cropping and architectural enhancements, including higher-resolution feature maps and attention mechanisms, are commonly employed. Given the growing importance of aerial imagery in various critical and industrial applications, the need for robust frameworks for small object detection becomes imperative. To address this need, we adopted the base SW-YOLO approach to enhance speed and accuracy in small object detection by refining cropping dimensions and overlap in sliding window usage and subsequently enhanced it through architectural modifications. we propose a novel model by modifying the base model architecture, including advanced feature extraction modules in the neck for feature map enhancement, integrating CBAM in the backbone to preserve spatial and channel information, and introducing a new head to boost small object detection accuracy. Finally, we compared our method with SAHI, one of the most powerful frameworks for processing large-scale images, and CZDet, which is also based on image cropping, achieving significant improvements in accuracy. The proposed model achieves significant accuracy gains on the VisDrone2019 dataset, outperforming baseline YOLOv5L detection by a substantial margin. Specifically, the final proposed model elevates the mAP .5.5 accuracy on the VisDrone2019 dataset from the base accuracy of 35.5 achieved by the YOLOv5L detector to 61.2. Notably, the accuracy of CZDet, which is another classic method applied to this dataset, is 58.36. This research demonstrates a significant improvement, achieving an increase in accuracy from 35.5 to 61.2.
comment: 22 pages, 16 figures
☆ Structure-Aware Feature Rectification with Region Adjacency Graphs for Training-Free Open-Vocabulary Semantic Segmentation WACV2026
Benefiting from the inductive biases learned from large-scale datasets, open-vocabulary semantic segmentation (OVSS) leverages the power of vision-language models, such as CLIP, to achieve remarkable progress without requiring task-specific training. However, due to CLIP's pre-training nature on image-text pairs, it tends to focus on global semantic alignment, resulting in suboptimal performance when associating fine-grained visual regions with text. This leads to noisy and inconsistent predictions, particularly in local areas. We attribute this to a dispersed bias stemming from its contrastive training paradigm, which is difficult to alleviate using CLIP features alone. To address this, we propose a structure-aware feature rectification approach that incorporates instance-specific priors derived directly from the image. Specifically, we construct a region adjacency graph (RAG) based on low-level features (e.g., colour and texture) to capture local structural relationships and use it to refine CLIP features by enhancing local discrimination. Extensive experiments show that our method effectively suppresses segmentation noise, improves region-level consistency, and achieves strong performance on multiple open-vocabulary segmentation benchmarks.
comment: Accepted to WACV2026
☆ A Geometric Unification of Concept Learning with Concept Cones
Two traditions of interpretability have evolved side by side but seldom spoken to each other: Concept Bottleneck Models (CBMs), which prescribe what a concept should be, and Sparse Autoencoders (SAEs), which discover what concepts emerge. While CBMs use supervision to align activations with human-labeled concepts, SAEs rely on sparse coding to uncover emergent ones. We show that both paradigms instantiate the same geometric structure: each learns a set of linear directions in activation space whose nonnegative combinations form a concept cone. Supervised and unsupervised methods thus differ not in kind but in how they select this cone. Building on this view, we propose an operational bridge between the two paradigms. CBMs provide human-defined reference geometries, while SAEs can be evaluated by how well their learned cones approximate or contain those of CBMs. This containment framework yields quantitative metrics linking inductive biases -- such as SAE type, sparsity, or expansion ratio -- to emergence of plausible\footnote{We adopt the terminology of \citet{jacovi2020towards}, who distinguish between faithful explanations (accurately reflecting model computations) and plausible explanations (aligning with human intuition and domain knowledge). CBM concepts are plausible by construction -- selected or annotated by humans -- though not necessarily faithful to the true latent factors that organise the data manifold.} concepts. Using these metrics, we uncover a ``sweet spot'' in both sparsity and expansion factor that maximizes both geometric and semantic alignment with CBM concepts. Overall, our work unifies supervised and unsupervised concept discovery through a shared geometric framework, providing principled metrics to measure SAE progress and assess how well discovered concept align with plausible human concepts.
comment: 22 pages
☆ DeepAgent: A Dual Stream Multi Agent Fusion for Robust Multimodal Deepfake Detection
The increasing use of synthetic media, particularly deepfakes, is an emerging challenge for digital content verification. Although recent studies use both audio and visual information, most integrate these cues within a single model, which remains vulnerable to modality mismatches, noise, and manipulation. To address this gap, we propose DeepAgent, an advanced multi-agent collaboration framework that simultaneously incorporates both visual and audio modalities for the effective detection of deepfakes. DeepAgent consists of two complementary agents. Agent-1 examines each video with a streamlined AlexNet-based CNN to identify the symbols of deepfake manipulation, while Agent-2 detects audio-visual inconsistencies by combining acoustic features, audio transcriptions from Whisper, and frame-reading sequences of images through EasyOCR. Their decisions are fused through a Random Forest meta-classifier that improves final performance by taking advantage of the different decision boundaries learned by each agent. This study evaluates the proposed framework using three benchmark datasets to demonstrate both component-level and fused performance. Agent-1 achieves a test accuracy of 94.35% on the combined Celeb-DF and FakeAVCeleb datasets. On the FakeAVCeleb dataset, Agent-2 and the final meta-classifier attain accuracies of 93.69% and 81.56%, respectively. In addition, cross-dataset validation on DeepFakeTIMIT confirms the robustness of the meta-classifier, which achieves a final accuracy of 97.49%, and indicates a strong capability across diverse datasets. These findings confirm that hierarchy-based fusion enhances robustness by mitigating the weaknesses of individual modalities and demonstrate the effectiveness of a multi-agent approach in addressing diverse types of manipulations in deepfakes.
☆ MICo-150K: A Comprehensive Dataset Advancing Multi-Image Composition
In controllable image generation, synthesizing coherent and consistent images from multiple reference inputs, i.e., Multi-Image Composition (MICo), remains a challenging problem, partly hindered by the lack of high-quality training data. To bridge this gap, we conduct a systematic study of MICo, categorizing it into 7 representative tasks and curate a large-scale collection of high-quality source images and construct diverse MICo prompts. Leveraging powerful proprietary models, we synthesize a rich amount of balanced composite images, followed by human-in-the-loop filtering and refinement, resulting in MICo-150K, a comprehensive dataset for MICo with identity consistency. We further build a Decomposition-and-Recomposition (De&Re) subset, where 11K real-world complex images are decomposed into components and recomposed, enabling both real and synthetic compositions. To enable comprehensive evaluation, we construct MICo-Bench with 100 cases per task and 300 challenging De&Re cases, and further introduce a new metric, Weighted-Ref-VIEScore, specifically tailored for MICo evaluation. Finally, we fine-tune multiple models on MICo-150K and evaluate them on MICo-Bench. The results show that MICo-150K effectively equips models without MICo capability and further enhances those with existing skills. Notably, our baseline model, Qwen-MICo, fine-tuned from Qwen-Image-Edit, matches Qwen-Image-2509 in 3-image composition while supporting arbitrary multi-image inputs beyond the latter's limitation. Our dataset, benchmark, and baseline collectively offer valuable resources for further research on Multi-Image Composition.
comment: Project Page: https://MICo-150K.github.io/
☆ Debiasing Diffusion Priors via 3D Attention for Consistent Gaussian Splatting AAAI 2026
Versatile 3D tasks (e.g., generation or editing) that distill from Text-to-Image (T2I) diffusion models have attracted significant research interest for not relying on extensive 3D training data. However, T2I models exhibit limitations resulting from prior view bias, which produces conflicting appearances between different views of an object. This bias causes subject-words to preferentially activate prior view features during cross-attention (CA) computation, regardless of the target view condition. To overcome this limitation, we conduct a comprehensive mathematical analysis to reveal the root cause of the prior view bias in T2I models. Moreover, we find different UNet layers show different effects of prior view in CA. Therefore, we propose a novel framework, TD-Attn, which addresses multi-view inconsistency via two key components: (1) the 3D-Aware Attention Guidance Module (3D-AAG) constructs a view-consistent 3D attention Gaussian for subject-words to enforce spatial consistency across attention-focused regions, thereby compensating for the limited spatial information in 2D individual view CA maps; (2) the Hierarchical Attention Modulation Module (HAM) utilizes a Semantic Guidance Tree (SGT) to direct the Semantic Response Profiler (SRP) in localizing and modulating CA layers that are highly responsive to view conditions, where the enhanced CA maps further support the construction of more consistent 3D attention Gaussians. Notably, HAM facilitates semantic-specific interventions, enabling controllable and precise 3D editing. Extensive experiments firmly establish that TD-Attn has the potential to serve as a universal plugin, significantly enhancing multi-view consistency across 3D tasks.
comment: 15 pages, 8 figures, 5 tables, 2 algorithms, Accepted by AAAI 2026
☆ Generalized Referring Expression Segmentation on Aerial Photos
Referring expression segmentation is a fundamental task in computer vision that integrates natural language understanding with precise visual localization of target regions. Considering aerial imagery (e.g., modern aerial photos collected through drones, historical photos from aerial archives, high-resolution satellite imagery, etc.) presents unique challenges because spatial resolution varies widely across datasets, the use of color is not consistent, targets often shrink to only a few pixels, and scenes contain very high object densities and objects with partial occlusions. This work presents Aerial-D, a new large-scale referring expression segmentation dataset for aerial imagery, comprising 37,288 images with 1,522,523 referring expressions that cover 259,709 annotated targets, spanning across individual object instances, groups of instances, and semantic regions covering 21 distinct classes that range from vehicles and infrastructure to land coverage types. The dataset was constructed through a fully automatic pipeline that combines systematic rule-based expression generation with a Large Language Model (LLM) enhancement procedure that enriched both the linguistic variety and the focus on visual details within the referring expressions. Filters were additionally used to simulate historic imaging conditions for each scene. We adopted the RSRefSeg architecture, and trained models on Aerial-D together with prior aerial datasets, yielding unified instance and semantic segmentation from text for both modern and historical images. Results show that the combined training achieves competitive performance on contemporary benchmarks, while maintaining strong accuracy under monochrome, sepia, and grainy degradations that appear in archival aerial photography. The dataset, trained models, and complete software pipeline are publicly available at https://luispl77.github.io/aerial-d .
comment: Submitted to IEEE J-STARS
☆ The Inductive Bottleneck: Data-Driven Emergence of Representational Sparsity in Vision Transformers
Vision Transformers (ViTs) lack the hierarchical inductive biases inherent to Convolutional Neural Networks (CNNs), theoretically allowing them to maintain high-dimensional representations throughout all layers. However, recent observations suggest ViTs often spontaneously manifest a "U-shaped" entropy profile-compressing information in middle layers before expanding it for the final classification. In this work, we demonstrate that this "Inductive Bottleneck" is not an architectural artifact, but a data-dependent adaptation. By analyzing the layer-wise Effective Encoding Dimension (EED) of DINO-trained ViTs across datasets of varying compositional complexity (UC Merced, Tiny ImageNet, and CIFAR-100), we show that the depth of the bottleneck correlates strongly with the semantic abstraction required by the task. We find that while texture-heavy datasets preserve high-rank representations throughout, object-centric datasets drive the network to dampen high-frequency information in middle layers, effectively "learning" a bottleneck to isolate semantic features.
☆ ContextAnyone: Context-Aware Diffusion for Character-Consistent Text-to-Video Generation
Text-to-video (T2V) generation has advanced rapidly, yet maintaining consistent character identities across scenes remains a major challenge. Existing personalization methods often focus on facial identity but fail to preserve broader contextual cues such as hairstyle, outfit, and body shape, which are critical for visual coherence. We propose \textbf{ContextAnyone}, a context-aware diffusion framework that achieves character-consistent video generation from text and a single reference image. Our method jointly reconstructs the reference image and generates new video frames, enabling the model to fully perceive and utilize reference information. Reference information is effectively integrated into a DiT-based diffusion backbone through a novel Emphasize-Attention module that selectively reinforces reference-aware features and prevents identity drift across frames. A dual-guidance loss combines diffusion and reference reconstruction objectives to enhance appearance fidelity, while the proposed Gap-RoPE positional embedding separates reference and video tokens to stabilize temporal modeling. Experiments demonstrate that ContextAnyone outperforms existing reference-to-video methods in identity consistency and visual quality, generating coherent and context-preserving character videos across diverse motions and scenes. Project page: \href{https://github.com/ziyang1106/ContextAnyone}{https://github.com/ziyang1106/ContextAnyone}.
☆ Reevaluating Automated Wildlife Species Detection: A Reproducibility Study on a Custom Image Dataset
This study revisits the findings of Carl et al., who evaluated the pre-trained Google Inception-ResNet-v2 model for automated detection of European wild mammal species in camera trap images. To assess the reproducibility and generalizability of their approach, we reimplemented the experiment from scratch using openly available resources and a different dataset consisting of 900 images spanning 90 species. After minimal preprocessing, we obtained an overall classification accuracy of 62%, closely aligning with the 71% reported in the original work despite differences in datasets. As in the original study, per-class performance varied substantially, as indicated by a macro F1 score of 0.28,highlighting limitations in generalization when labels do not align directly with ImageNet classes. Our results confirm that pretrained convolutional neural networks can provide a practical baseline for wildlife species identification but also reinforce the need for species-specific adaptation or transfer learning to achieve consistent, high-quality predictions.
☆ Towards Accurate UAV Image Perception: Guiding Vision-Language Models with Stronger Task Prompts
Existing image perception methods based on VLMs generally follow a paradigm wherein models extract and analyze image content based on user-provided textual task prompts. However, such methods face limitations when applied to UAV imagery, which presents challenges like target confusion, scale variations, and complex backgrounds. These challenges arise because VLMs' understanding of image content depends on the semantic alignment between visual and textual tokens. When the task prompt is simplistic and the image content is complex, achieving effective alignment becomes difficult, limiting the model's ability to focus on task-relevant information. To address this issue, we introduce AerialVP, the first agent framework for task prompt enhancement in UAV image perception. AerialVP proactively extracts multi-dimensional auxiliary information from UAV images to enhance task prompts, overcoming the limitations of traditional VLM-based approaches. Specifically, the enhancement process includes three stages: (1) analyzing the task prompt to identify the task type and enhancement needs, (2) selecting appropriate tools from the tool repository, and (3) generating enhanced task prompts based on the analysis and selected tools. To evaluate AerialVP, we introduce AerialSense, a comprehensive benchmark for UAV image perception that includes Aerial Visual Reasoning, Aerial Visual Question Answering, and Aerial Visual Grounding tasks. AerialSense provides a standardized basis for evaluating model generalization and performance across diverse resolutions, lighting conditions, and both urban and natural scenes. Experimental results demonstrate that AerialVP significantly enhances task prompt guidance, leading to stable and substantial performance improvements in both open-source and proprietary VLMs. Our work will be available at https://github.com/lostwolves/AerialVP.
☆ Geo3DVQA: Evaluating Vision-Language Models for 3D Geospatial Reasoning from Aerial Imagery WACV 2026
Three-dimensional geospatial analysis is critical to applications in urban planning, climate adaptation, and environmental assessment. Current methodologies depend on costly, specialized sensors (e.g., LiDAR and multispectral), which restrict global accessibility. Existing sensor-based and rule-driven methods further struggle with tasks requiring the integration of multiple 3D cues, handling diverse queries, and providing interpretable reasoning. We hereby present Geo3DVQA, a comprehensive benchmark for evaluating vision-language models (VLMs) in height-aware, 3D geospatial reasoning using RGB-only remote sensing imagery. Unlike conventional sensor-based frameworks, Geo3DVQA emphasizes realistic scenarios that integrate elevation, sky view factors, and land cover patterns. The benchmark encompasses 110k curated question-answer pairs spanning 16 task categories across three complexity levels: single-feature inference, multi-feature reasoning, and application-level spatial analysis. The evaluation of ten state-of-the-art VLMs highlights the difficulty of RGB-to-3D reasoning. GPT-4o and Gemini-2.5-Flash achieved only 28.6% and 33.0% accuracy respectively, while domain-specific fine-tuning of Qwen2.5-VL-7B achieved 49.6% (+24.8 points). These results reveal both the limitations of current VLMs and the effectiveness of domain adaptation. Geo3DVQA introduces new challenge frontiers for scalable, accessible, and holistic 3D geospatial analysis. The dataset and code will be released upon publication at https://github.com/mm1129/Geo3DVQA.
comment: Accepted to WACV 2026. Camera-ready-based version with minor edits for readability (no change in the contents)
☆ Effective Attention-Guided Multi-Scale Medical Network for Skin Lesion Segmentation
In the field of healthcare, precise skin lesion segmentation is crucial for the early detection and accurate diagnosis of skin diseases. Despite significant advances in deep learning for image processing, existing methods have yet to effectively address the challenges of irregular lesion shapes and low contrast. To address these issues, this paper proposes an innovative encoder-decoder network architecture based on multi-scale residual structures, capable of extracting rich feature information from different receptive fields to effectively identify lesion areas. By introducing a Multi-Resolution Multi-Channel Fusion (MRCF) module, our method captures cross-scale features, enhancing the clarity and accuracy of the extracted information. Furthermore, we propose a Cross-Mix Attention Module (CMAM), which redefines the attention scope and dynamically calculates weights across multiple contexts, thus improving the flexibility and depth of feature capture and enabling deeper exploration of subtle features. To overcome the information loss caused by skip connections in traditional U-Net, an External Attention Bridge (EAB) is introduced, facilitating the effective utilization of information in the decoder and compensating for the loss during upsampling. Extensive experimental evaluations on several skin lesion segmentation datasets demonstrate that the proposed model significantly outperforms existing transformer and convolutional neural network-based models, showcasing exceptional segmentation accuracy and robustness.
comment: The paper has been accepted by BIBM 2025
☆ RVLF: A Reinforcing Vision-Language Framework for Gloss-Free Sign Language Translation
Gloss-free sign language translation (SLT) is hindered by two key challenges: **inadequate sign representation** that fails to capture nuanced visual cues, and **sentence-level semantic misalignment** in current LLM-based methods, which limits translation quality. To address these issues, we propose a three-stage **r**einforcing **v**ision-**l**anguage **f**ramework (**RVLF**). We build a large vision-language model (LVLM) specifically designed for sign language, and then combine it with reinforcement learning (RL) to adaptively enhance translation performance. First, for a sufficient representation of sign language, RVLF introduces an effective semantic representation learning mechanism that fuses skeleton-based motion cues with semantically rich visual features extracted via DINOv2, followed by instruction tuning to obtain a strong SLT-SFT baseline. Then, to improve sentence-level semantic misalignment, we introduce a GRPO-based optimization strategy that fine-tunes the SLT-SFT model with a reward function combining translation fidelity (BLEU) and sentence completeness (ROUGE), yielding the optimized model termed SLT-GRPO. Our conceptually simple framework yields substantial gains under the gloss-free SLT setting without pre-training on any external large-scale sign language datasets, improving BLEU-4 scores by +5.1, +1.11, +1.4, and +1.61 on the CSL-Daily, PHOENIX-2014T, How2Sign, and OpenASL datasets, respectively. To the best of our knowledge, this is the first work to incorporate GRPO into SLT. Extensive experiments and ablation studies validate the effectiveness of GRPO-based optimization in enhancing both translation quality and semantic consistency.
☆ A graph generation pipeline for critical infrastructures based on heuristics, images and depth data
Virtual representations of physical critical infrastructures, such as water or energy plants, are used for simulations and digital twins to ensure resilience and continuity of their services. These models usually require 3D point clouds from laser scanners that are expensive to acquire and require specialist knowledge to use. In this article, we present a graph generation pipeline based on photogrammetry. The pipeline detects relevant objects and predicts their relation using RGB images and depth data generated by a stereo camera. This more cost-effective approach uses deep learning for object detection and instance segmentation of the objects, and employs user-defined heuristics or rules to infer their relations. Results of two hydraulic systems show that this strategy can produce graphs close to the ground truth while its flexibility allows the method to be tailored to specific applications and its transparency qualifies it to be used in the high stakes decision-making that is required for critical infrastructures.
☆ Affine Subspace Models and Clustering for Patch-Based Image Denoising
Image tile-based approaches are popular in many image processing applications such as denoising (e.g., non-local means). A key step in their use is grouping the images into clusters, which usually proceeds iteratively splitting the images into clusters and fitting a model for the images in each cluster. Linear subspaces have emerged as a suitable model for tile clusters; however, they are not well matched to images patches given that images are non-negative and thus not distributed around the origin in the tile vector space. We study the use of affine subspace models for the clusters to better match the geometric structure of the image tile vector space. We also present a simple denoising algorithm that relies on the affine subspace clustering model using least squares projection. We review several algorithmic approaches to solve the affine subspace clustering problem and show experimental results that highlight the performance improvements in clustering and denoising.
comment: Asilomar Conference on Signals, Systems, and Computers 2025
☆ DGGAN: Degradation Guided Generative Adversarial Network for Real-time Endoscopic Video Enhancement
Endoscopic surgery relies on intraoperative video, making image quality a decisive factor for surgical safety and efficacy. Yet, endoscopic videos are often degraded by uneven illumination, tissue scattering, occlusions, and motion blur, which obscure critical anatomical details and complicate surgical manipulation. Although deep learning-based methods have shown promise in image enhancement, most existing approaches remain too computationally demanding for real-time surgical use. To address this challenge, we propose a degradation-aware framework for endoscopic video enhancement, which enables real-time, high-quality enhancement by propagating degradation representations across frames. In our framework, degradation representations are first extracted from images using contrastive learning. We then introduce a fusion mechanism that modulates image features with these representations to guide a single-frame enhancement model, which is trained with a cycle-consistency constraint between degraded and restored images to improve robustness and generalization. Experiments demonstrate that our framework achieves a superior balance between performance and efficiency compared with several state-of-the-art methods. These results highlight the effectiveness of degradation-aware modeling for real-time endoscopic video enhancement. Nevertheless, our method suggests that implicitly learning and propagating degradation representation offer a practical pathway for clinical application.
comment: 18 pages, 8 figures, and 7 tables
☆ See More, Change Less: Anatomy-Aware Diffusion for Contrast Enhancement
Image enhancement improves visual quality and helps reveal details that are hard to see in the original image. In medical imaging, it can support clinical decision-making, but current models often over-edit. This can distort organs, create false findings, and miss small tumors because these models do not understand anatomy or contrast dynamics. We propose SMILE, an anatomy-aware diffusion model that learns how organs are shaped and how they take up contrast. It enhances only clinically relevant regions while leaving all other areas unchanged. SMILE introduces three key ideas: (1) structure-aware supervision that follows true organ boundaries and contrast patterns; (2) registration-free learning that works directly with unaligned multi-phase CT scans; (3) unified inference that provides fast and consistent enhancement across all contrast phases. Across six external datasets, SMILE outperforms existing methods in image quality (14.2% higher SSIM, 20.6% higher PSNR, 50% better FID) and in clinical usefulness by producing anatomically accurate and diagnostically meaningful images. SMILE also improves cancer detection from non-contrast CT, raising the F1 score by up to 10 percent.
☆ AdLift: Lifting Adversarial Perturbations to Safeguard 3D Gaussian Splatting Assets Against Instruction-Driven Editing
Recent studies have extended diffusion-based instruction-driven 2D image editing pipelines to 3D Gaussian Splatting (3DGS), enabling faithful manipulation of 3DGS assets and greatly advancing 3DGS content creation. However, it also exposes these assets to serious risks of unauthorized editing and malicious tampering. Although imperceptible adversarial perturbations against diffusion models have proven effective for protecting 2D images, applying them to 3DGS encounters two major challenges: view-generalizable protection and balancing invisibility with protection capability. In this work, we propose the first editing safeguard for 3DGS, termed AdLift, which prevents instruction-driven editing across arbitrary views and dimensions by lifting strictly bounded 2D adversarial perturbations into 3D Gaussian-represented safeguard. To ensure both adversarial perturbations effectiveness and invisibility, these safeguard Gaussians are progressively optimized across training views using a tailored Lifted PGD, which first conducts gradient truncation during back-propagation from the editing model at the rendered image and applies projected gradients to strictly constrain the image-level perturbation. Then, the resulting perturbation is backpropagated to the safeguard Gaussian parameters via an image-to-Gaussian fitting operation. We alternate between gradient truncation and image-to-Gaussian fitting, yielding consistent adversarial-based protection performance across different viewpoints and generalizes to novel views. Empirically, qualitative and quantitative results demonstrate that AdLift effectively protects against state-of-the-art instruction-driven 2D image and 3DGS editing.
comment: 40 pages, 34 figures, 18 tables
☆ Zero-Shot Textual Explanations via Translating Decision-Critical Features
Textual explanations make image classifier decisions transparent by describing the prediction rationale in natural language. Large vision-language models can generate captions but are designed for general visual understanding, not classifier-specific reasoning. Existing zero-shot explanation methods align global image features with language, producing descriptions of what is visible rather than what drives the prediction. We propose TEXTER, which overcomes this limitation by isolating decision-critical features before alignment. TEXTER identifies the neurons contributing to the prediction and emphasizes the features encoded in those neurons -- i.e., the decision-critical features. It then maps these emphasized features into the CLIP feature space to retrieve textual explanations that reflect the model's reasoning. A sparse autoencoder further improves interpretability, particularly for Transformer architectures. Extensive experiments show that TEXTER generates more faithful and interpretable explanations than existing methods. The code will be publicly released.
comment: 11+6 pages, 8 figures, 4 tables
☆ Squeezed-Eff-Net: Edge-Computed Boost of Tomography Based Brain Tumor Classification leveraging Hybrid Neural Network Architecture
Brain tumors are one of the most common and dangerous neurological diseases which require a timely and correct diagnosis to provide the right treatment procedures. Even with the promotion of magnetic resonance imaging (MRI), the process of tumor delineation is difficult and time-consuming, which is prone to inter-observer error. In order to overcome these limitations, this work proposes a hybrid deep learning model based on SqueezeNet v1 which is a lightweight model, and EfficientNet-B0, which is a high-performing model, and is enhanced with handcrafted radiomic descriptors, including Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), Gabor filters and Wavelet transforms. The framework was trained and tested only on publicly available Nickparvar Brain Tumor MRI dataset, which consisted of 7,023 contrast-enhanced T1-weighted axial MRI slices which were categorized into four groups: glioma, meningioma, pituitary tumor, and no tumor. The testing accuracy of the model was 98.93% that reached a level of 99.08% with Test Time Augmentation (TTA) showing great generalization and power. The proposed hybrid network offers a compromise between computation efficiency and diagnostic accuracy compared to current deep learning structures and only has to be trained using fewer than 2.1 million parameters and less than 1.2 GFLOPs. The handcrafted feature addition allowed greater sensitivity in texture and the EfficientNet-B0 backbone represented intricate hierarchical features. The resulting model has almost clinical reliability in automated MRI-based classification of tumors highlighting its possibility of use in clinical decision-support systems.
☆ Unified Camera Positional Encoding for Controlled Video Generation
Transformers have emerged as a universal backbone across 3D perception, video generation, and world models for autonomous driving and embodied AI, where understanding camera geometry is essential for grounding visual observations in three-dimensional space. However, existing camera encoding methods often rely on simplified pinhole assumptions, restricting generalization across the diverse intrinsics and lens distortions in real-world cameras. We introduce Relative Ray Encoding, a geometry-consistent representation that unifies complete camera information, including 6-DoF poses, intrinsics, and lens distortions. To evaluate its capability under diverse controllability demands, we adopt camera-controlled text-to-video generation as a testbed task. Within this setting, we further identify pitch and roll as two components effective for Absolute Orientation Encoding, enabling full control over the initial camera orientation. Together, these designs form UCPE (Unified Camera Positional Encoding), which integrates into a pretrained video Diffusion Transformer through a lightweight spatial attention adapter, adding less than 1% trainable parameters while achieving state-of-the-art camera controllability and visual fidelity. To facilitate systematic training and evaluation, we construct a large video dataset covering a wide range of camera motions and lens types. Extensive experiments validate the effectiveness of UCPE in camera-controllable video generation and highlight its potential as a general camera representation for Transformers across future multi-view, video, and 3D tasks. Code will be available at https://github.com/chengzhag/UCPE.
comment: Code: https://github.com/chengzhag/UCPE
☆ Dropout Prompt Learning: Towards Robust and Adaptive Vision-Language Models
Dropout is a widely used regularization technique which improves the generalization ability of a model by randomly dropping neurons. In light of this, we propose Dropout Prompt Learning, which aims for applying dropout to improve the robustness of the vision-language models. Different from the vanilla dropout, we apply dropout on the tokens of the textual and visual branches, where we evaluate the token significance considering both intra-modal context and inter-modal alignment, enabling flexible dropout probabilities for each token. Moreover, to maintain semantic alignment for general knowledge transfer while encouraging the diverse representations that dropout introduces, we further propose residual entropy regularization. Experiments on 15 benchmarks show our method's effectiveness in challenging scenarios like low-shot learning, long-tail classification, and out-of-distribution generalization. Notably, our method surpasses regularization-based methods including KgCoOp by 5.10% and PromptSRC by 2.13% in performance on base-to-novel generalization.
☆ STRinGS: Selective Text Refinement in Gaussian Splatting WACV 2026
Text as signs, labels, or instructions is a critical element of real-world scenes as they can convey important contextual information. 3D representations such as 3D Gaussian Splatting (3DGS) struggle to preserve fine-grained text details, while achieving high visual fidelity. Small errors in textual element reconstruction can lead to significant semantic loss. We propose STRinGS, a text-aware, selective refinement framework to address this issue for 3DGS reconstruction. Our method treats text and non-text regions separately, refining text regions first and merging them with non-text regions later for full-scene optimization. STRinGS produces sharp, readable text even in challenging configurations. We introduce a text readability measure OCR Character Error Rate (CER) to evaluate the efficacy on text regions. STRinGS results in a 63.6% relative improvement over 3DGS at just 7K iterations. We also introduce a curated dataset STRinGS-360 with diverse text scenarios to evaluate text readability in 3D reconstruction. Our method and dataset together push the boundaries of 3D scene understanding in text-rich environments, paving the way for more robust text-aware reconstruction methods.
comment: Accepted to WACV 2026. Project Page, see https://STRinGS-official.github.io
☆ ReLKD: Inter-Class Relation Learning with Knowledge Distillation for Generalized Category Discovery ECAI 2025
Generalized Category Discovery (GCD) faces the challenge of categorizing unlabeled data containing both known and novel classes, given only labels for known classes. Previous studies often treat each class independently, neglecting the inherent inter-class relations. Obtaining such inter-class relations directly presents a significant challenge in real-world scenarios. To address this issue, we propose ReLKD, an end-to-end framework that effectively exploits implicit inter-class relations and leverages this knowledge to enhance the classification of novel classes. ReLKD comprises three key modules: a target-grained module for learning discriminative representations, a coarse-grained module for capturing hierarchical class relations, and a distillation module for transferring knowledge from the coarse-grained module to refine the target-grained module's representation learning. Extensive experiments on four datasets demonstrate the effectiveness of ReLKD, particularly in scenarios with limited labeled data. The code for ReLKD is available at https://github.com/ZhouF-ECNU/ReLKD.
comment: Accepted to the Main Track of the 28th European Conference on Artificial Intelligence (ECAI 2025). To appear in the proceedings published by IOS Press (DOI: 10.3233/FAIA413)
☆ Towards Robust Protective Perturbation against DeepFake Face Swapping
DeepFake face swapping enables highly realistic identity forgeries, posing serious privacy and security risks. A common defence embeds invisible perturbations into images, but these are fragile and often destroyed by basic transformations such as compression or resizing. In this paper, we first conduct a systematic analysis of 30 transformations across six categories and show that protection robustness is highly sensitive to the choice of training transformations, making the standard Expectation over Transformation (EOT) with uniform sampling fundamentally suboptimal. Motivated by this, we propose Expectation Over Learned distribution of Transformation (EOLT), the framework to treat transformation distribution as a learnable component rather than a fixed design choice. Specifically, EOLT employs a policy network that learns to automatically prioritize critical transformations and adaptively generate instance-specific perturbations via reinforcement learning, enabling explicit modeling of defensive bottlenecks while maintaining broad transferability. Extensive experiments demonstrate that our method achieves substantial improvements over state-of-the-art approaches, with 26% higher average robustness and up to 30% gains on challenging transformation categories.
☆ Clinical Interpretability of Deep Learning Segmentation Through Shapley-Derived Agreement and Uncertainty Metrics
Segmentation is the identification of anatomical regions of interest, such as organs, tissue, and lesions, serving as a fundamental task in computer-aided diagnosis in medical imaging. Although deep learning models have achieved remarkable performance in medical image segmentation, the need for explainability remains critical for ensuring their acceptance and integration in clinical practice, despite the growing research attention in this area. Our approach explored the use of contrast-level Shapley values, a systematic perturbation of model inputs to assess feature importance. While other studies have investigated gradient-based techniques through identifying influential regions in imaging inputs, Shapley values offer a broader, clinically aligned approach, explaining how model performance is fairly attributed to certain imaging contrasts over others. Using the BraTS 2024 dataset, we generated rankings for Shapley values for four MRI contrasts across four model architectures. Two metrics were proposed from the Shapley ranking: agreement between model and ``clinician" imaging ranking, and uncertainty quantified through Shapley ranking variance across cross-validation folds. Higher-performing cases (Dice \textgreater0.6) showed significantly greater agreement with clinical rankings. Increased Shapley ranking variance correlated with decreased performance (U-Net: $r=-0.581$). These metrics provide clinically interpretable proxies for model reliability, helping clinicians better understand state-of-the-art segmentation models.
☆ VFM-VLM: Vision Foundation Model and Vision Language Model based Visual Comparison for 3D Pose Estimation
Vision Foundation Models (VFMs) and Vision Language Models (VLMs) have revolutionized computer vision by providing rich semantic and geometric representations. This paper presents a comprehensive visual comparison between CLIP based and DINOv2 based approaches for 3D pose estimation in hand object grasping scenarios. We evaluate both models on the task of 6D object pose estimation and demonstrate their complementary strengths: CLIP excels in semantic understanding through language grounding, while DINOv2 provides superior dense geometric features. Through extensive experiments on benchmark datasets, we show that CLIP based methods achieve better semantic consistency, while DINOv2 based approaches demonstrate competitive performance with enhanced geometric precision. Our analysis provides insights for selecting appropriate vision models for robotic manipulation and grasping, picking applications.
☆ Object Pose Distribution Estimation for Determining Revolution and Reflection Uncertainty in Point Clouds
Object pose estimation is crucial to robotic perception and typically provides a single-pose estimate. However, a single estimate cannot capture pose uncertainty deriving from visual ambiguity, which can lead to unreliable behavior. Existing pose distribution methods rely heavily on color information, often unavailable in industrial settings. We propose a novel neural network-based method for estimating object pose uncertainty using only 3D colorless data. To the best of our knowledge, this is the first approach that leverages deep learning for pose distribution estimation without relying on RGB input. We validate our method in a real-world bin picking scenario with objects of varying geometric ambiguity. Our current implementation focuses on symmetries in reflection and revolution, but the framework is extendable to full SE(3) pose distribution estimation. Source code available at opde3d.github.io
comment: 8 pages, 8 figures, 5 tables, ICCR 2025
☆ AutoLugano: A Deep Learning Framework for Fully Automated Lymphoma Segmentation and Lugano Staging on FDG-PET/CT
Purpose: To develop a fully automated deep learning system, AutoLugano, for end-to-end lymphoma classification by performing lesion segmentation, anatomical localization, and automated Lugano staging from baseline FDG-PET/CT scans. Methods: The AutoLugano system processes baseline FDG-PET/CT scans through three sequential modules:(1) Anatomy-Informed Lesion Segmentation, a 3D nnU-Net model, trained on multi-channel inputs, performs automated lesion detection (2) Atlas-based Anatomical Localization, which leverages the TotalSegmentator toolkit to map segmented lesions to 21 predefined lymph node regions using deterministic anatomical rules; and (3) Automated Lugano Staging, where the spatial distribution of involved regions is translated into Lugano stages and therapeutic groups (Limited vs. Advanced Stage).The system was trained on the public autoPET dataset (n=1,007) and externally validated on an independent cohort of 67 patients. Performance was assessed using accuracy, sensitivity, specificity, F1-scorefor regional involvement detection and staging agreement. Results: On the external validation set, the proposed model demonstrated robust performance, achieving an overall accuracy of 88.31%, sensitivity of 74.47%, Specificity of 94.21% and an F1-score of 80.80% for regional involvement detection,outperforming baseline models. Most notably, for the critical clinical task of therapeutic stratification (Limited vs. Advanced Stage), the system achieved a high accuracy of 85.07%, with a specificity of 90.48% and a sensitivity of 82.61%.Conclusion: AutoLugano represents the first fully automated, end-to-end pipeline that translates a single baseline FDG-PET/CT scan into a complete Lugano stage. This study demonstrates its strong potential to assist in initial staging, treatment stratification, and supporting clinical decision-making.
☆ MMRPT: MultiModal Reinforcement Pre-Training via Masked Vision-Dependent Reasoning
Multimodal pre-training remains constrained by the descriptive bias of image-caption pairs, leading models to favor surface linguistic cues over grounded visual understanding. We introduce MMRPT, a masked multimodal reinforcement pre-training framework that strengthens visual reasoning in MLLMs. We are the first to incorporate reinforcement learning directly into the pre-training of large vision-language models, enabling learning signals that reward visual grounding rather than caption imitation. MMRPT constructs masked multimodal data by estimating sentence-level visual dependency via attention over visual tokens and masking highly vision-dependent segments; the model reconstructs these spans through vision-grounded reasoning guided by a semantic-visual reward. Experiments show consistent zero-shot gains across diverse benchmarks and substantially improved robustness under supervised fine-tuning, demonstrating that reinforcement-driven masked reasoning provides a more reliable and generalizable pre-training objective for multimodal models.
comment: 7 pages, 1 figures
☆ Understanding Diffusion Models via Code Execution
Diffusion models have achieved remarkable performance in generative modeling, yet their theoretical foundations are often intricate, and the gap between mathematical formulations in papers and practical open-source implementations can be difficult to bridge. Existing tutorials primarily focus on deriving equations, offering limited guidance on how diffusion models actually operate in code. To address this, we present a concise implementation of approximately 300 lines that explains diffusion models from a code-execution perspective. Our minimal example preserves the essential components -- including forward diffusion, reverse sampling, the noise-prediction network, and the training loop -- while removing unnecessary engineering details. This technical report aims to provide researchers with a clear, implementation-first understanding of how diffusion models work in practice and how code and theory correspond. Our code and pre-trained models are available at: https://github.com/disanda/GM/tree/main/DDPM-DDIM-ClassifierFree.
☆ Generating Storytelling Images with Rich Chains-of-Reasoning
An image can convey a compelling story by presenting rich, logically connected visual clues. These connections form Chains-of-Reasoning (CoRs) within the image, enabling viewers to infer events, causal relationships, and other information, thereby understanding the underlying story. In this paper, we focus on these semantically rich images and define them as Storytelling Images. Such images have diverse applications beyond illustration creation and cognitive screening, leveraging their ability to convey multi-layered information visually and inspire active interpretation. However, due to their complex semantic nature, Storytelling Images are inherently challenging to create, and thus remain relatively scarce. To address this challenge, we introduce the Storytelling Image Generation task, which explores how generative AI models can be leveraged to create such images. Specifically, we propose a two-stage pipeline, StorytellingPainter, which combines the creative reasoning abilities of Large Language Models (LLMs) with the visual synthesis capabilities of Text-to-Image (T2I) models to generate Storytelling Images. Alongside this pipeline, we develop a dedicated evaluation framework comprising three main evaluators: a Semantic Complexity Evaluator, a KNN-based Diversity Evaluator and a Story-Image Alignment Evaluator. Given the critical role of story generation in the Storytelling Image Generation task and the performance disparity between open-source and proprietary LLMs, we further explore tailored training strategies to reduce this gap, resulting in a series of lightweight yet effective models named Mini-Storytellers. Experimental results demonstrate the feasibility and effectiveness of our approaches. The code is available at https://github.com/xiujiesong/StorytellingImageGeneration.
☆ SUCCESS-GS: Survey of Compactness and Compression for Efficient Static and Dynamic Gaussian Splatting
3D Gaussian Splatting (3DGS) has emerged as a powerful explicit representation enabling real-time, high-fidelity 3D reconstruction and novel view synthesis. However, its practical use is hindered by the massive memory and computational demands required to store and render millions of Gaussians. These challenges become even more severe in 4D dynamic scenes. To address these issues, the field of Efficient Gaussian Splatting has rapidly evolved, proposing methods that reduce redundancy while preserving reconstruction quality. This survey provides the first unified overview of efficient 3D and 4D Gaussian Splatting techniques. For both 3D and 4D settings, we systematically categorize existing methods into two major directions, Parameter Compression and Restructuring Compression, and comprehensively summarize the core ideas and methodological trends within each category. We further cover widely used datasets, evaluation metrics, and representative benchmark comparisons. Finally, we discuss current limitations and outline promising research directions toward scalable, compact, and real-time Gaussian Splatting for both static and dynamic 3D scene representation.
comment: The first three authors contributed equally to this work. The last two authors are co-corresponding authors. Please visit our project page at https://cmlab-korea.github.io/Awesome-Efficient-GS/
☆ HVQ-CGIC: Enabling Hyperprior Entropy Modeling for VQ-Based Controllable Generative Image Compression
Generative learned image compression methods using Vector Quantization (VQ) have recently shown impressive potential in balancing distortion and perceptual quality. However, these methods typically estimate the entropy of VQ indices using a static, global probability distribution, which fails to adapt to the specific content of each image. This non-adaptive approach leads to untapped bitrate potential and challenges in achieving flexible rate control. To address this challenge, we introduce a Controllable Generative Image Compression framework based on a VQ Hyperprior, termed HVQ-CGIC. HVQ-CGIC rigorously derives the mathematical foundation for introducing a hyperprior to the VQ indices entropy model. Based on this foundation, through novel loss design, to our knowledge, this framework is the first to introduce RD balance and control into vector quantization-based Generative Image Compression. Cooperating with a lightweight hyper-prior estimation network, HVQ-CGIC achieves a significant advantage in rate-distortion (RD) performance compared to current state-of-the-art (SOTA) generative compression methods. On the Kodak dataset, we achieve the same LPIPS as Control-GIC, CDC and HiFiC with an average of 61.3% fewer bits. We posit that HVQ-CGIC has the potential to become a foundational component for VQGAN-based image compression, analogous to the integral role of the HyperPrior framework in neural image compression.
comment: 12 pages, 7 figures
☆ RefLSM: Linearized Structural-Prior Reflectance Model for Medical Image Segmentation and Bias-Field Correction
Medical image segmentation remains challenging due to intensity inhomogeneity, noise, blurred boundaries, and irregular structures. Traditional level set methods, while effective in certain cases, often depend on approximate bias field estimations and therefore struggle under severe non-uniform imaging conditions. To address these limitations, we propose a novel variational Reflectance-based Level Set Model (RefLSM), which explicitly integrates Retinex-inspired reflectance decomposition into the segmentation framework. By decomposing the observed image into reflectance and bias field components, RefLSM directly segments the reflectance, which is invariant to illumination and preserves fine structural details. Building on this foundation, we introduce two key innovations for enhanced precision and robustness. First, a linear structural prior steers the smoothed reflectance gradients toward a data-driven reference, providing reliable geometric guidance in noisy or low-contrast scenes. Second, a relaxed binary level-set is embedded in RefLSM and enforced via convex relaxation and sign projection, yielding stable evolution and avoiding reinitialization-induced diffusion. The resulting variational problem is solved efficiently using an ADMM-based optimization scheme. Extensive experiments on multiple medical imaging datasets demonstrate that RefLSM achieves superior segmentation accuracy, robustness, and computational efficiency compared to state-of-the-art level set methods.
☆ Integrating Multi-scale and Multi-filtration Topological Features for Medical Image Classification
Modern deep neural networks have shown remarkable performance in medical image classification. However, such networks either emphasize pixel-intensity features instead of fundamental anatomical structures (e.g., those encoded by topological invariants), or they capture only simple topological features via single-parameter persistence. In this paper, we propose a new topology-guided classification framework that extracts multi-scale and multi-filtration persistent topological features and integrates them into vision classification backbones. For an input image, we first compute cubical persistence diagrams (PDs) across multiple image resolutions/scales. We then develop a ``vineyard'' algorithm that consolidates these PDs into a single, stable diagram capturing signatures at varying granularities, from global anatomy to subtle local irregularities that may indicate early-stage disease. To further exploit richer topological representations produced by multiple filtrations, we design a cross-attention-based neural network that directly processes the consolidated final PDs. The resulting topological embeddings are fused with feature maps from CNNs or Transformers. By integrating multi-scale and multi-filtration topologies into an end-to-end architecture, our approach enhances the model's capacity to recognize complex anatomical structures. Evaluations on three public datasets show consistent, considerable improvements over strong baselines and state-of-the-art methods, demonstrating the value of our comprehensive topological perspective for robust and interpretable medical image classification.
☆ START: Spatial and Textual Learning for Chart Understanding WACV2026
Chart understanding is crucial for deploying multimodal large language models (MLLMs) in real-world scenarios such as analyzing scientific papers and technical reports. Unlike natural images, charts pair a structured visual layout (spatial property) with an underlying data representation (textual property) -- grasping both is essential for precise, fine-grained chart reasoning. Motivated by this observation, we propose START, the Spatial and Textual learning for chART understanding. Specifically, we introduce (i) chart-element grounding and (ii) chart-to-code generation to strengthen an MLLM's understanding of both chart visual layout and data details. To facilitate spatial and textual learning, we propose the START-Dataset generated with a novel data-generation pipeline that first leverages an MLLM to translate real chart images into executable chart code, recovering the underlying data representation while preserving the visual distribution of real-world charts. We then evolve the code with a Large Language Model (LLM) to ascertain the positions of chart elements that capture the chart's visual structure, addressing challenges that existing methods cannot handle. To evaluate a model's ability to understand chart spatial structures, we propose the Chart Spatial understanding Benchmark (CS-Bench), filling a critical gap in comprehensive chart understanding evaluation. Leveraging spatial and textual learning, START delivers consistent gains across model sizes and benchmarks over the base models and surpasses prior state-of-the-art by a clear margin. Code, data and models will be publicly available.
comment: WACV2026 Camera Ready
♻ ☆ TV2TV: A Unified Framework for Interleaved Language and Video Generation
Video generation models are rapidly advancing, but can still struggle with complex video outputs that require significant semantic branching or repeated high-level reasoning about what should happen next. In this paper, we introduce a new class of omni video-text models that integrate ideas from recent LM reasoning advances to address this challenge. More specifically, we present TV2TV, a unified generative modeling framework which decomposes video generation into an interleaved text and video generation process. TV2TV jointly learns language modeling (next-token prediction) and video flow matching (next-frame prediction) using a Mixture-of-Transformers (MoT) architecture. At inference time, TV2TV decides when to alternate between generating text and video frames, allowing the model to "think in words" about subsequent content before ``acting in pixels'' to produce frames. This design offloads much of the responsibility for deciding what should happen next to the language modeling tower, enabling improved visual quality and prompt alignment of generated videos. It also enables fine-grained controllability, allowing users to modify the video generation trajectory through text interventions at any point in the process. In controlled experiments on video game data, TV2TV demonstrates substantial improvements in both visual quality and controllability. TV2TV also scales to natural videos, as we show by augmenting sports videos with interleaved natural language action descriptions using vision-language models (VLMs). Training TV2TV on this corpus yields strong visual quality and prompt alignment, showcasing the model's ability to reason about and generate complex real-world action sequences. Together, these results highlight TV2TV as a promising step toward video generation with open-ended textual reasoning and control.
♻ ☆ Normalize Filters! Classical Wisdom for Deep Vision
Classical image filters, such as those for averaging or differencing, are carefully normalized to ensure consistency, interpretability, and to avoid artifacts like intensity shifts, halos, or ringing. In contrast, convolutional filters learned end-to-end in deep networks lack such constraints. Although they may resemble wavelets and blob/edge detectors, they are not normalized in the same or any way. Consequently, when images undergo atmospheric transfer, their responses become distorted, leading to incorrect outcomes. We address this limitation by proposing filter normalization, followed by learnable scaling and shifting, akin to batch normalization. This simple yet effective modification ensures that the filters are atmosphere-equivariant, enabling co-domain symmetry. By integrating classical filtering principles into deep learning (applicable to both convolutional neural networks and convolution-dependent vision transformers), our method achieves significant improvements on artificial and natural intensity variation benchmarks. Our ResNet34 could even outperform CLIP by a large margin. Our analysis reveals that unnormalized filters degrade performance, whereas filter normalization regularizes learning, promotes diversity, and improves robustness and generalization.
♻ ☆ MAPLE: Encoding Dexterous Robotic Manipulation Priors Learned From Egocentric Videos
Large-scale egocentric video datasets capture diverse human activities across a wide range of scenarios, offering rich and detailed insights into how humans interact with objects, especially those that require fine-grained dexterous control. Such complex, dexterous skills with precise controls are crucial for many robotic manipulation tasks, yet are often insufficiently addressed by traditional data-driven approaches to robotic manipulation. To address this gap, we leverage manipulation priors learned from large-scale egocentric video datasets to improve policy learning for dexterous robotic manipulation tasks. We present MAPLE, a novel method for dexterous robotic manipulation that learns features to predict object contact points and detailed hand poses at the moment of contact from egocentric images. We then use the learned features to train policies for downstream manipulation tasks. Experimental results demonstrate the effectiveness of MAPLE across 4 existing simulation benchmarks, as well as a newly designed set of 4 challenging simulation tasks requiring fine-grained object control and complex dexterous skills. The benefits of MAPLE are further highlighted in real-world experiments using a 17 DoF dexterous robotic hand, whereas the simultaneous evaluation across both simulation and real-world experiments has remained underexplored in prior work. We additionally showcase the efficacy of our model on an egocentric contact point prediction task, validating its usefulness beyond dexterous manipulation policy learning.
♻ ☆ Tyche: Stochastic In-Context Learning for Medical Image Segmentation CVPR
Existing learning-based solutions to medical image segmentation have two important shortcomings. First, for most new segmentation task, a new model has to be trained or fine-tuned. This requires extensive resources and machine learning expertise, and is therefore often infeasible for medical researchers and clinicians. Second, most existing segmentation methods produce a single deterministic segmentation mask for a given image. In practice however, there is often considerable uncertainty about what constitutes the correct segmentation, and different expert annotators will often segment the same image differently. We tackle both of these problems with Tyche, a model that uses a context set to generate stochastic predictions for previously unseen tasks without the need to retrain. Tyche differs from other in-context segmentation methods in two important ways. (1) We introduce a novel convolution block architecture that enables interactions among predictions. (2) We introduce in-context test-time augmentation, a new mechanism to provide prediction stochasticity. When combined with appropriate model design and loss functions, Tyche can predict a set of plausible diverse segmentation candidates for new or unseen medical images and segmentation tasks without the need to retrain.
comment: Accepted at IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR) 2024 as a highlight. Code available at https://github.com/mariannerakic/tyche
♻ ☆ Asynchronous Bioplausible Neuron for SNN for Event Vision
Spiking Neural Networks (SNNs) offer a biologically inspired approach to computer vision that can lead to more efficient processing of visual data with reduced energy consumption. However, maintaining homeostasis within these networks is challenging, as it requires continuous adjustment of neural responses to preserve equilibrium and optimal processing efficiency amidst diverse and often unpredictable input signals. In response to these challenges, we propose the Asynchronous Bioplausible Neuron (ABN), a dynamic spike firing mechanism to auto-adjust the variations in the input signal. Comprehensive evaluation across various datasets demonstrates ABN's enhanced performance in image classification and segmentation, maintenance of neural equilibrium, and energy efficiency.
comment: 10 pages
♻ ☆ Diffusion Models for Image Restoration and Enhancement: A Comprehensive Survey
Image restoration (IR) has been an indispensable and challenging task in the low-level vision field, which strives to improve the subjective quality of images distorted by various forms of degradation. Recently, the diffusion model has achieved significant advancements in the visual generation of AIGC, thereby raising an intuitive question, "whether diffusion model can boost image restoration". To answer this, some pioneering studies attempt to integrate diffusion models into the image restoration task, resulting in superior performances than previous GAN-based methods. Despite that, a comprehensive and enlightening survey on diffusion model-based image restoration remains scarce. In this paper, we are the first to present a comprehensive review of recent diffusion model-based methods on image restoration, encompassing the learning paradigm, conditional strategy, framework design, modeling strategy, and evaluation. Concretely, we first introduce the background of the diffusion model briefly and then present two prevalent workflows that exploit diffusion models in image restoration. Subsequently, we classify and emphasize the innovative designs using diffusion models for both IR and blind/real-world IR, intending to inspire future development. To evaluate existing methods thoroughly, we summarize the commonly-used dataset, implementation details, and evaluation metrics. Additionally, we present the objective comparison for open-sourced methods across three tasks, including image super-resolution, deblurring, and inpainting. Ultimately, informed by the limitations in existing works, we propose five potential and challenging directions for the future research of diffusion model-based IR, including sampling efficiency, model compression, distortion simulation and estimation, distortion invariant learning, and framework design.
comment: Accepted by IJCV 2025
♻ ☆ Bimodal SegNet: Instance Segmentation Fusing Events and RGB Frames for Robotic Grasping
Object segmentation for robotic grasping under dynamic conditions often faces challenges such as occlusion, low light conditions, motion blur and object size variance. To address these challenges, we propose a Deep Learning network that fuses two types of visual signals, event-based data and RGB frame data. The proposed Bimodal SegNet network has two distinct encoders, one for each signal input and a spatial pyramidal pooling with atrous convolutions. Encoders capture rich contextual information by pooling the concatenated features at different resolutions while the decoder obtains sharp object boundaries. The evaluation of the proposed method undertakes five unique image degradation challenges including occlusion, blur, brightness, trajectory and scale variance on the Event-based Segmentation (ESD) Dataset. The evaluation results show a 6-10\% segmentation accuracy improvement over state-of-the-art methods in terms of mean intersection over the union and pixel accuracy. The model code is available at https://github.com/sanket0707/Bimodal-SegNet.git
comment: 8 Pages
♻ ☆ Bionetta: Efficient Client-Side Zero-Knowledge Machine Learning Proving
In this report, we compare the performance of our UltraGroth-based zero-knowledge machine learning framework Bionetta to other tools of similar purpose such as EZKL, Lagrange's deep-prove, or zkml. The results show a significant boost in the proving time for custom-crafted neural networks: they can be proven even on mobile devices, enabling numerous client-side proving applications. While our scheme increases the cost of one-time preprocessing steps, such as circuit compilation and generating trusted setup, our approach is, to the best of our knowledge, the only one that is deployable on the native EVM smart contracts without overwhelming proof size and verification overheads.
♻ ☆ TranSplat: Instant Cross-Scene Object Relighting in Gaussian Splatting via Spherical Harmonic Transfer
We present TranSplat, a method for fast and accurate object relighting for the 3D Gaussian Splatting (GS) framework when transferring a 3D object from a source GS scene to a target GS scene. TranSplat is based on a theoretical radiance transfer identity for cross-scene relighting of objects with radially symmetric BRDFs that involves only taking simple products of spherical harmonic appearance coefficients of the object, source, and target environment maps without any explicit computation of scene quantities (e.g., the BRDFs themselves). TranSplat is the first method to demonstrate how this theoretical identity may be used to perform relighting within the GS framework, and furthermore, by automatically inferring unknown source and target environment maps directly from the source and target scene GS representations. We evaluated TranSplat on several synthetic and real-world scenes and objects, demonstrating comparable 3D object relighting performance to recent conventional inverse rendering-based GS methods with a fraction of their runtime. While TranSplat is theoretically best-suited for radially symmetric BRDFs, results demonstrate that TranSplat still offers perceptually realistic renderings on real scenes and opens a valuable, lightweight path forward to relighting with the GS framework.
♻ ☆ Seeing through Imagination: Learning Scene Geometry via Implicit Spatial World Modeling
Spatial reasoning, the ability to understand and interpret the 3D structure of the world, is a critical yet underdeveloped capability in Multimodal Large Language Models (MLLMs). Current methods predominantly rely on verbal descriptive tuning, which suffers from visual illiteracy, i.e., they learn spatial concepts through textual symbols alone, devoid of connection to their visual manifestations. To bridge this gap, this paper introduces MILO, an Implicit spatIaL wOrld modeling paradigm that simulates human-like spatial imagination. MILO integrates a visual generator to provide geometry-aware feedback, thereby implicitly grounding the MLLM's symbolic reasoning in perceptual experience. Complementing this paradigm, we propose RePE (Relative Positional Encoding), a novel encoding scheme that captures relative camera-pose transformations, offering superior performance over absolute coordinate systems. To support the training, we construct GeoGen, a large-scale Geometry-aware Generative dataset with approximately 2,241 videos and 67,827 observation-action-outcome triplets. Experiments demonstrate that our approach significantly enhances spatial reasoning capabilities across multiple baselines and benchmarks, offering a more holistic understanding of 3D space.
♻ ☆ Z-Image: An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer
The landscape of high-performance image generation models is currently dominated by proprietary systems, such as Nano Banana Pro and Seedream 4.0. Leading open-source alternatives, including Qwen-Image, Hunyuan-Image-3.0 and FLUX.2, are characterized by massive parameter counts (20B to 80B), making them impractical for inference, and fine-tuning on consumer-grade hardware. To address this gap, we propose Z-Image, an efficient 6B-parameter foundation generative model built upon a Scalable Single-Stream Diffusion Transformer (S3-DiT) architecture that challenges the "scale-at-all-costs" paradigm. By systematically optimizing the entire model lifecycle -- from a curated data infrastructure to a streamlined training curriculum -- we complete the full training workflow in just 314K H800 GPU hours (approx. $630K). Our few-step distillation scheme with reward post-training further yields Z-Image-Turbo, offering both sub-second inference latency on an enterprise-grade H800 GPU and compatibility with consumer-grade hardware (<16GB VRAM). Additionally, our omni-pre-training paradigm also enables efficient training of Z-Image-Edit, an editing model with impressive instruction-following capabilities. Both qualitative and quantitative experiments demonstrate that our model achieves performance comparable to or surpassing that of leading competitors across various dimensions. Most notably, Z-Image exhibits exceptional capabilities in photorealistic image generation and bilingual text rendering, delivering results that rival top-tier commercial models, thereby demonstrating that state-of-the-art results are achievable with significantly reduced computational overhead. We publicly release our code, weights, and online demo to foster the development of accessible, budget-friendly, yet state-of-the-art generative models.
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advances in architectural design, data availability, and compute have driven remarkable progress in semantic segmentation. Yet, these models often rely on relaxed Bayesian assumptions, omitting critical uncertainty information needed for robust decision-making. Despite growing interest in probabilistic segmentation to address point-estimate limitations, the research landscape remains fragmented. In response, this review synthesizes foundational concepts in uncertainty modeling, analyzing how feature- and parameter-distribution modeling impact four key segmentation tasks: Observer Variability, Active Learning, Model Introspection, and Model Generalization. Our work establishes a common framework by standardizing theory, notation, and terminology, thereby bridging the gap between method developers, task specialists, and applied researchers. We then discuss critical challenges, including the nuanced distinction between uncertainty types, strong assumptions in spatial aggregation, the lack of standardized benchmarks, and pitfalls in current quantification methods. We identify promising avenues for future research, such as uncertainty-aware active learning, data-driven benchmarks, transformer-based models, and novel techniques to move from simple segmentation problems to uncertainty in holistic scene understanding. Based on our analysis, we offer practical guidelines for researchers on method selection, evaluation, reproducibility, and meaningful uncertainty estimation. Ultimately, our goal is to facilitate the development of more reliable, efficient, and interpretable segmentation models that can be confidently deployed in real-world applications.
comment: TMLR
♻ ☆ Exploring the Potential of Encoder-free Architectures in 3D LMMs
Encoder-free architectures have been preliminarily explored in the 2D Large Multimodal Models (LMMs), yet it remains an open question whether they can be effectively applied to 3D understanding scenarios. In this paper, we present the first comprehensive investigation into the potential of encoder-free architectures to alleviate the challenges of encoder-based 3D LMMs. These long-standing challenges include the failure to adapt to varying point cloud resolutions during inference and the point features from the encoder not meeting the semantic needs of Large Language Models (LLMs). We identify key aspects for 3D LMMs to remove the pre-trained encoder and enable the LLM to assume the role of the 3D encoder: 1) We propose the LLM-embedded Semantic Encoding strategy in the pre-training stage, exploring the effects of various point cloud self-supervised losses. And we present the Hybrid Semantic Loss to extract high-level semantics. 2) We introduce the Hierarchical Geometry Aggregation strategy in the instruction tuning stage. This incorporates inductive bias into the LLM layers to focus on the local details of the point clouds. To the end, we present the first Encoder-free 3D LMM, ENEL. Our 7B model rivals the state-of-the-art model, PointLLM-PiSA-13B, achieving 57.91%, 61.0%, and 55.20% on the classification, captioning, and VQA tasks, respectively. Our results show that the encoder-free architecture is highly promising for replacing encoder-based architectures in the field of 3D understanding. The code is released at https://github.com/Ivan-Tang-3D/ENEL
♻ ☆ PosA-VLA: Enhancing Action Generation via Pose-Conditioned Anchor Attention
The Vision-Language-Action (VLA) models have demonstrated remarkable performance on embodied tasks and shown promising potential for real-world applications. However, current VLAs still struggle to produce consistent and precise target-oriented actions, as they often generate redundant or unstable motions along trajectories, limiting their applicability in time-sensitive scenarios.In this work, we attribute these redundant actions to the spatially uniform perception field of existing VLAs, which causes them to be distracted by target-irrelevant objects, especially in complex environments.To address this issue, we propose an efficient PosA-VLA framework that anchors visual attention via pose-conditioned supervision, consistently guiding the model's perception toward task-relevant regions. The pose-conditioned anchor attention mechanism enables the model to better align instruction semantics with actionable visual cues, thereby improving action generation precision and efficiency. Moreover, our framework adopts a lightweight architecture and requires no auxiliary perception modules (e.g., segmentation or grounding networks), ensuring efficient inference. Extensive experiments verify that our method executes embodied tasks with precise and time-efficient behavior across diverse robotic manipulation benchmarks and shows robust generalization in a variety of challenging environments.
♻ ☆ Distribution Matching Distillation Meets Reinforcement Learning
Distribution Matching Distillation (DMD) distills a pre-trained multi-step diffusion model to a few-step one to improve inference efficiency. However, the performance of the latter is often capped by the former. To circumvent this dilemma, we propose DMDR, a novel framework that combines Reinforcement Learning (RL) techniques into the distillation process. We show that for the RL of the few-step generator, the DMD loss itself is a more effective regularization compared to the traditional ones. In turn, RL can help to guide the mode coverage process in DMD more effectively. These allow us to unlock the capacity of the few-step generator by conducting distillation and RL simultaneously. Meanwhile, we design the dynamic distribution guidance and dynamic renoise sampling training strategies to improve the initial distillation process. The experiments demonstrate that DMDR can achieve leading visual quality, prompt coherence among few-step methods, and even exhibit performance that exceeds the multi-step teacher.
comment: The synergy of reinforcement learning and distribution matching distillation. See more: https://github.com/vvvvvjdy/dmdr
♻ ☆ MM-ACT: Learn from Multimodal Parallel Generation to Act
A generalist robotic policy needs both semantic understanding for task planning and the ability to interact with the environment through predictive capabilities. To tackle this, we present MM-ACT, a unified Vision-Language-Action (VLA) model that integrates text, image, and action in shared token space and performs generation across all three modalities. MM-ACT adopts a re-mask parallel decoding strategy for text and image generation, and employs a one-step parallel decoding strategy for action generation to improve efficiency. We introduce Context-Shared Multimodal Learning, a unified training paradigm that supervises generation in all three modalities from a shared context, enhancing action generation through cross-modal learning. Experiments were conducted on the LIBERO simulation and Franka real-robot setups as well as RoboTwin2.0 to assess in-domain and out-of-domain performances respectively. Our approach achieves a success rate of 96.3% on LIBERO, 72.0% across three tasks of real Franka, and 52.38% across eight bimanual tasks of RoboTwin2.0 with an additional gain of 9.25% from cross-modal learning. We release our codes, models and data at https://github.com/HHYHRHY/MM-ACT.
comment: 17 pages
♻ ☆ DCoAR: Deep Concept Injection into Unified Autoregressive Models for Personalized Text-to-Image Generation
The unified autoregressive (AR) model excels at multimodal understanding and generation. However, its full potential in the domain of customized image generation has yet to be fully realized. Existing customization approaches for unified AR models face a fundamental dilemma: adaptation-based methods suffer from overfitting and scalability bottlenecks, while concept-injection paradigms are constrained by a shallow injection strategy that leads to poor visual fidelity and impaired re-contextualization. To address this, we propose DCoAR, a novel deep concept injection framework that maintains a completely frozen pre-trained model. DCoAR deeply integrates new concepts through a Layer-wise Multimodal Context Learning (LMCL) strategy, which is stabilized by a multi-faceted regularization scheme: a Dual Prior Preservation (DPP) loss to mitigate semantic drift and a Context-Aware Self-Regularization (CASR) loss to enhance re-contextualization. The framework also enables training-free subject customization in user-provided styles. Experiments demonstrate that DCoAR significantly outperforms previous injection-based methods and achieves performance competitive with adaptation-based approaches while requiring substantially fewer trainable parameters. Code: https://github.com/KZF-kzf/CoAR
♻ ☆ WiseEdit: Benchmarking Cognition- and Creativity-Informed Image Editing
Recent image editing models boast next-level intelligent capabilities, facilitating cognition- and creativity-informed image editing. Yet, existing benchmarks provide too narrow a scope for evaluation, failing to holistically assess these advanced abilities. To address this, we introduce WiseEdit, a knowledge-intensive benchmark for comprehensive evaluation of cognition- and creativity-informed image editing, featuring deep task depth and broad knowledge breadth. Drawing an analogy to human cognitive creation, WiseEdit decomposes image editing into three cascaded steps, i.e., Awareness, Interpretation, and Imagination, each corresponding to a task that poses a challenge for models to complete at the specific step. It also encompasses complex tasks, where none of the three steps can be finished easily. Furthermore, WiseEdit incorporates three fundamental types of knowledge: Declarative, Procedural, and Metacognitive knowledge. Ultimately, WiseEdit comprises 1,220 test cases, objectively revealing the limitations of SoTA image editing models in knowledge-based cognitive reasoning and creative composition capabilities. The benchmark, evaluation code, and the generated images of each model will be made publicly available soon. Project Page: https://qnancy.github.io/wiseedit_project_page/.
comment: 32 pages, 20 figures. Project Page: https://qnancy.github.io/wiseedit_project_page/. Benchmark: https://huggingface.co/datasets/123123chen/WiseEdit-Benchmark/
♻ ☆ A Biophysically-Conditioned Generative Framework for 3D Brain Tumor MRI Synthesis
Magnetic resonance imaging (MRI) inpainting supports numerous clinical and research applications. We introduce the first generative model that conditions on voxel-level, continuous tumor concentrations to synthesize high-fidelity brain tumor MRIs. For the BraTS 2025 Inpainting Challenge, we adapt this architecture to the complementary task of healthy tissue restoration by setting the tumor concentrations to zero. Our latent diffusion model conditioned on both tissue segmentations and the tumor concentrations generates 3D spatially coherent and anatomically consistent images for both tumor synthesis and healthy tissue inpainting. For healthy inpainting, we achieve a PSNR of 18.5, and for tumor inpainting, we achieve 17.4. Our code is available at: https://github.com/valentin-biller/ldm.git
♻ ☆ Tokenizing Motion: A Generative Approach for Scene Dynamics Compression
This paper proposes a novel generative video compression framework that leverages motion pattern priors, derived from subtle dynamics in common scenes (e.g., swaying flowers or a boat drifting on water), rather than relying on video content priors (e.g., talking faces or human bodies). These compact motion priors enable a new approach to ultra-low bitrate communication while achieving high-quality reconstruction across diverse scene contents. At the encoder side, motion priors can be streamlined into compact representations via a dense-to-sparse transformation. At the decoder side, these priors facilitate the reconstruction of scene dynamics using an advanced flow-driven diffusion model. Experimental results illustrate that the proposed method can achieve superior rate-distortion-performance and outperform the state-of-the-art conventional-video codec Enhanced Compression Model (ECM) on-scene dynamics sequences. The project page can be found at-https://github.com/xyzysz/GNVDC.
comment: 5page, 5 figures
♻ ☆ Suite-IN++: A FlexiWear BodyNet Integrating Global and Local Motion Features from Apple Suite for Robust Inertial Navigation
The proliferation of wearable technology has established multi-device ecosystems comprising smartphones, smartwatches, and headphones as critical enablers for ubiquitous pedestrian localization. However, traditional pedestrian dead reckoning (PDR) struggles with diverse motion modes, while data-driven methods, despite improving accuracy, often lack robustness due to their reliance on a single-device setup. Therefore, a promising solution is to fully leverage existing wearable devices to form a flexiwear bodynet for robust and accurate pedestrian localization. This paper presents Suite-IN++, a deep learning framework for flexiwear bodynet-based pedestrian localization. Suite-IN++ integrates motion data from wearable devices on different body parts, using contrastive learning to separate global and local motion features. It fuses global features based on the data reliability of each device to capture overall motion trends and employs an attention mechanism to uncover cross-device correlations in local features, extracting motion details helpful for accurate localization. To evaluate our method, we construct a real-life flexiwear bodynet dataset, incorporating Apple Suite (iPhone, Apple Watch, and AirPods) across diverse walking modes and device configurations. Experimental results demonstrate that Suite-IN++ achieves superior localization accuracy and robustness, significantly outperforming state-of-the-art models in real-life pedestrian tracking scenarios.
comment: Accepted by TMC (Transactions on Mobile Computing) 2025
♻ ☆ Blurry-Edges: Photon-Limited Depth Estimation from Defocused Boundaries CVPR 2025
Extracting depth information from photon-limited, defocused images is challenging because depth from defocus (DfD) relies on accurate estimation of defocus blur, which is fundamentally sensitive to image noise. We present a novel approach to robustly measure object depths from photon-limited images along the defocused boundaries. It is based on a new image patch representation, Blurry-Edges, that explicitly stores and visualizes a rich set of low-level patch information, including boundaries, color, and smoothness. We develop a deep neural network architecture that predicts the Blurry-Edges representation from a pair of differently defocused images, from which depth can be calculated using a closed-form DfD relation we derive. The experimental results on synthetic and real data show that our method achieves the highest depth estimation accuracy on photon-limited images compared to a broad range of state-of-the-art DfD methods.
comment: Accepted to CVPR 2025. Project page: https://blurry-edges.qiguo.org/
♻ ☆ EMMA: Efficient Multimodal Understanding, Generation, and Editing with a Unified Architecture
We propose EMMA, an efficient and unified architecture for multimodal understanding, generation and editing. Specifically, EMMA primarily consists of 1) An efficient autoencoder with a 32x compression ratio, which significantly reduces the number of tokens required for generation. This also ensures the training balance between understanding and generation tasks by applying the same compression ratio to images. 2) Channel-wise concatenation instead of token-wise concatenation among visual understanding and generation tokens, which further reduces the visual tokens in unified architectures. 3) A shared-and-decoupled network that enables mutual improvements across tasks while meeting the task-specific modeling requirements. 4) A mixture-of-experts mechanism adopted for visual understanding encoder, which substantially improves perceptual capabilities with a few parameters increase. Extensive experiments have shown that EMMA-4B can significantly outperform state-of-the-art unified multimodal approaches (e.g., BAGEL-7B) in both efficiency and performance, while also achieving competitive results compared to recent multimodal understanding and generation experts (e.g., Qwen3-VL and Qwen-Image). We believe that EMMA lays a solid foundation for the future development of unified multimodal architectures.
comment: Project Page: https://emma-umm.github.io/emma/
♻ ☆ MCMoE: Completing Missing Modalities with Mixture of Experts for Incomplete Multimodal Action Quality Assessment AAAI 2026
Multimodal Action Quality Assessment (AQA) has recently emerged as a promising paradigm. By leveraging complementary information across shared contextual cues, it enhances the discriminative evaluation of subtle intra-class variations in highly similar action sequences. However, partial modalities are frequently unavailable at the inference stage in reality. The absence of any modality often renders existing multimodal models inoperable. Furthermore, it triggers catastrophic performance degradation due to interruptions in cross-modal interactions. To address this issue, we propose a novel Missing Completion Framework with Mixture of Experts (MCMoE) that unifies unimodal and joint representation learning in single-stage training. Specifically, we propose an adaptive gated modality generator that dynamically fuses available information to reconstruct missing modalities. We then design modality experts to learn unimodal knowledge and dynamically mix the knowledge of all experts to extract cross-modal joint representations. With a mixture of experts, missing modalities are further refined and complemented. Finally, in the training phase, we mine the complete multimodal features and unimodal expert knowledge to guide modality generation and generation-based joint representation extraction. Extensive experiments demonstrate that our MCMoE achieves state-of-the-art results in both complete and incomplete multimodal learning on three public AQA benchmarks. Code is available at https://github.com/XuHuangbiao/MCMoE.
comment: AAAI 2026
♻ ☆ Training-Free Diffusion Priors for Text-to-Image Generation via Optimization-based Visual Inversion
Diffusion models have established the state-of-the-art in text-to-image generation, but their performance often relies on a diffusion prior network to translate text embeddings into the visual manifold for easier decoding. These priors are computationally expensive and require extensive training on massive datasets. In this work, we challenge the necessity of a trained prior at all by employing Optimization-based Visual Inversion (OVI), a training-free and data-free alternative, to replace the need for a prior. OVI initializes a latent visual representation from random pseudo-tokens and iteratively optimizes it to maximize the cosine similarity with input textual prompt embedding. We further propose two novel constraints, a Mahalanobis-based and a Nearest-Neighbor loss, to regularize the OVI optimization process toward the distribution of realistic images. Our experiments, conducted on Kandinsky 2.2, show that OVI can serve as an alternative to traditional priors. More importantly, our analysis reveals a critical flaw in current evaluation benchmarks like T2I-CompBench++, where simply using the text embedding as a prior achieves surprisingly high scores, despite lower perceptual quality. Our constrained OVI methods improve visual fidelity over this baseline, with the Nearest-Neighbor approach proving particularly effective, achieving quantitative scores comparable to or higher than the state-of-the-art data-efficient prior, indicating that the idea merits further investigation. The code will be publicly available upon acceptance.
comment: 11 pages, 7 figures, technical report (preprint)
♻ ☆ FLAIR: Frequency- and Locality-Aware Implicit Neural Representations
Implicit Neural Representations (INRs) leverage neural networks to map coordinates to corresponding signals, enabling continuous and compact representations. This paradigm has driven significant advances in various vision tasks. However, existing INRs lack frequency selectivity and spatial localization, leading to an over-reliance on redundant signal components. Consequently, they exhibit spectral bias, tending to learn low-frequency components early while struggling to capture fine high-frequency details. To address these issues, we propose FLAIR (Frequency- and Locality-Aware Implicit Neural Representations), which incorporates two key innovations. The first is Band-Localized Activation (BLA), a novel activation designed for joint frequency selection and spatial localization under the constraints of the time-frequency uncertainty principle (TFUP). Through structured frequency control and spatially localized responses, BLA effectively mitigates spectral bias and enhances training stability. The second is Wavelet-Energy-Guided Encoding (WEGE), which leverages the discrete wavelet transform to compute energy scores and explicitly guide frequency information to the network, enabling precise frequency selection and adaptive band control. Our method consistently outperforms existing INRs in 2D image representation, as well as 3D shape reconstruction and novel view synthesis.
comment: Please visit our project page at https://cmlab-korea.github.io/FLAIR/
♻ ☆ Event-Customized Image Generation
Customized Image Generation, generating customized images with user-specified concepts, has raised significant attention due to its creativity and novelty. With impressive progress achieved in subject customization, some pioneer works further explored the customization of action and interaction beyond entity (i.e., human, animal, and object) appearance. However, these approaches only focus on basic actions and interactions between two entities, and their effects are limited by insufficient ''exactly same'' reference images. To extend customized image generation to more complex scenes for general real-world applications, we propose a new task: event-customized image generation. Given a single reference image, we define the ''event'' as all specific actions, poses, relations, or interactions between different entities in the scene. This task aims at accurately capturing the complex event and generating customized images with various target entities. To solve this task, we proposed a novel training-free event customization method: FreeEvent. Specifically, FreeEvent introduces two extra paths alongside the general diffusion denoising process: 1) Entity switching path: it applies cross-attention guidance and regulation for target entity generation. 2) Event transferring path: it injects the spatial feature and self-attention maps from the reference image to the target image for event generation. To further facilitate this new task, we collected two evaluation benchmarks: SWiG-Event and Real-Event. Extensive experiments and ablations have demonstrated the effectiveness of FreeEvent.
♻ ☆ RealD$^2$iff: Bridging Real-World Gap in Robot Manipulation via Depth Diffusion
Robot manipulation in the real world is fundamentally constrained by the visual sim2real gap, where depth observations collected in simulation fail to reflect the complex noise patterns inherent to real sensors. In this work, inspired by the denoising capability of diffusion models, we invert the conventional perspective and propose a clean-to-noisy paradigm that learns to synthesize noisy depth, thereby bridging the visual sim2real gap through purely simulation-driven robotic learning. Building on this idea, we introduce RealD$^2$iff, a hierarchical coarse-to-fine diffusion framework that decomposes depth noise into global structural distortions and fine-grained local perturbations. To enable progressive learning of these components, we further develop two complementary strategies: Frequency-Guided Supervision (FGS) for global structure modeling and Discrepancy-Guided Optimization (DGO) for localized refinement. To integrate RealD$^2$iff seamlessly into imitation learning, we construct a pipeline that spans six stages. We provide comprehensive empirical and experimental validation demonstrating the effectiveness of this paradigm. RealD$^2$iff enables two key applications: (1) generating real-world-like depth to construct clean-noisy paired datasets without manual sensor data collection. (2) Achieving zero-shot sim2real robot manipulation, substantially improving real-world performance without additional fine-tuning.
comment: We are the author team of the paper "RealD$^2$iff: Bridging Real-World Gap in Robot Manipulation via Depth Diffusion". After self-examination, our team discovered inappropriate wording in the citation of related work, the introduction, and the contribution statement, which may affect the contribution of other related works. Therefore, we have decided to revise the paper and request its withdrawal
♻ ☆ LAMP: Language-Assisted Motion Planning for Controllable Video Generation
Video generation has achieved remarkable progress in visual fidelity and controllability, enabling conditioning on text, layout, or motion. Among these, motion control - specifying object dynamics and camera trajectories - is essential for composing complex, cinematic scenes, yet existing interfaces remain limited. We introduce LAMP that leverages large language models (LLMs) as motion planners to translate natural language descriptions into explicit 3D trajectories for dynamic objects and (relatively defined) cameras. LAMP defines a motion domain-specific language (DSL), inspired by cinematography conventions. By harnessing program synthesis capabilities of LLMs, LAMP generates structured motion programs from natural language, which are deterministically mapped to 3D trajectories. We construct a large-scale procedural dataset pairing natural text descriptions with corresponding motion programs and 3D trajectories. Experiments demonstrate LAMP's improved performance in motion controllability and alignment with user intent compared to state-of-the-art alternatives establishing the first framework for generating both object and camera motions directly from natural language specifications. Code, models and data are available on our project page.
comment: Project Page: https://cyberiada.github.io/LAMP/
♻ ☆ Enhanced Spatiotemporal Consistency for Image-to-LiDAR Data Pretraining
LiDAR representation learning has emerged as a promising approach to reducing reliance on costly and labor-intensive human annotations. While existing methods primarily focus on spatial alignment between LiDAR and camera sensors, they often overlook the temporal dynamics critical for capturing motion and scene continuity in driving scenarios. To address this limitation, we propose SuperFlow++, a novel framework that integrates spatiotemporal cues in both pretraining and downstream tasks using consecutive LiDAR-camera pairs. SuperFlow++ introduces four key components: (1) a view consistency alignment module to unify semantic information across camera views, (2) a dense-to-sparse consistency regularization mechanism to enhance feature robustness across varying point cloud densities, (3) a flow-based contrastive learning approach that models temporal relationships for improved scene understanding, and (4) a temporal voting strategy that propagates semantic information across LiDAR scans to improve prediction consistency. Extensive evaluations on 11 heterogeneous LiDAR datasets demonstrate that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions. Furthermore, by scaling both 2D and 3D backbones during pretraining, we uncover emergent properties that provide deeper insights into developing scalable 3D foundation models. With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving. The code is publicly available at https://github.com/Xiangxu-0103/SuperFlow
comment: IEEE Transactions on Pattern Analysis and Machine Intelligence
♻ ☆ Image2Net: Datasets, Benchmark and Hybrid Framework to Convert Analog Circuit Diagrams into Netlists
Large Language Model (LLM) exhibits great potential in designing of analog integrated circuits (IC) because of its excellence in abstraction and generalization for knowledge. However, further development of LLM-based analog ICs heavily relies on textual description of analog ICs, while existing analog ICs are mostly illustrated in image-based circuit diagrams rather than text-based netlists. Converting circuit diagrams to netlists help LLMs to enrich the knowledge of analog IC. Nevertheless, previously proposed conversion frameworks face challenges in further application because of limited support of image styles and circuit elements. Up to now, it still remains a challenging task to effectively convert complex circuit diagrams into netlists. To this end, this paper constructs and opensources a new dataset with rich styles of circuit diagrams as well as balanced distribution of simple and complex analog ICs. And a hybrid framework, named Image2Net, is proposed for practical conversion from circuit diagrams to netlists. The netlist edit distance (NED) is also introduced to precisely assess the difference between the converted netlists and ground truth. Based on our benchmark, Image2Net achieves 80.77% successful rate, which is 34.62%-45.19% higher than previous works. Specifically, the proposed work shows 0.116 averaged NED, which is 62.1%-69.6% lower than state-of-the-arts. Our datasets and benchmark are available at https://github.com/LAD021/ci2n_datasets.
comment: 10 pages, 12 figures, 6 tables
♻ ☆ Switch-JustDance: Benchmarking Whole Body Motion Tracking Policies Using a Commercial Console Game
Recent advances in whole-body robot control have enabled humanoid and legged robots to perform increasingly agile and coordinated motions. However, standardized benchmarks for evaluating these capabilities in real-world settings, and in direct comparison to humans, remain scarce. Existing evaluations often rely on pre-collected human motion datasets or simulation-based experiments, which limit reproducibility, overlook hardware factors, and hinder fair human-robot comparisons. We present Switch-JustDance, a low-cost and reproducible benchmarking pipeline that leverages motion-sensing console games, Just Dance on the Nintendo Switch, to evaluate robot whole-body control. Using Just Dance on the Nintendo Switch as a representative platform, Switch-JustDance converts in-game choreography into robot-executable motions through streaming, motion reconstruction, and motion retargeting modules and enables users to evaluate controller performance through the game's built-in scoring system. We first validate the evaluation properties of Just Dance, analyzing its reliability, validity, sensitivity, and potential sources of bias. Our results show that the platform provides consistent and interpretable performance measures, making it a suitable tool for benchmarking embodied AI. Building on this foundation, we benchmark three state-of-the-art humanoid whole-body controllers on hardware and provide insights into their relative strengths and limitations.
♻ ☆ Three Forensic Cues for JPEG AI Images
The JPEG standard was vastly successful. Currently, the first AI-based compression method ``JPEG AI'' will be standardized. JPEG AI brings remarkable benefits. JPEG AI images exhibit impressive image quality at bitrates that are an order of magnitude lower than images compressed with traditional JPEG. However, forensic analysis of JPEG AI has to be completely re-thought: forensic tools for traditional JPEG do not transfer to JPEG AI, and artifacts from JPEG AI are easily confused with artifacts from artificially generated images (``DeepFakes''). This creates a need for novel forensic approaches to detection and distinction of JPEG AI images. In this work, we make a first step towards a forensic JPEG AI toolset. We propose three cues for forensic algorithms for JPEG AI. These algorithms address three forensic questions: first, we show that the JPEG AI preprocessing introduces correlations in the color channels that do not occur in uncompressed images. Second, we show that repeated compression of JPEG AI images leads to diminishing distortion differences. This can be used to detect recompression, in a spirit similar to some classic JPEG forensics methods. Third, we show that the quantization of JPEG AI images in the latent space can be used to distinguish real images with JPEG AI compression from synthetically generated images. The proposed methods are interpretable for a forensic analyst, and we hope that they inspire further research in the forensics of AI-compressed images.
♻ ☆ DualHash: A Stochastic Primal-Dual Algorithm with Theoretical Guarantee for Deep Hashing
Deep hashing converts high-dimensional feature vectors into compact binary codes, enabling efficient large-scale retrieval. A fundamental challenge in deep hashing stems from the discrete nature of quantization in generating the codes. W-type regularizations, such as $||z|-1|$, have been proven effective as they encourage variables toward binary values. However, existing methods often directly optimize these regularizations without convergence guarantees. While proximal gradient methods offer a promising solution, the coupling between W-type regularizers and neural network outputs results in composite forms that generally lack closed-form proximal solutions. In this paper, we present a stochastic primal-dual hashing algorithm, referred to as DualHash, that provides rigorous complexity bounds. Using Fenchel duality, we partially transform the nonconvex W-type regularization optimization into the dual space, which results in a proximal operator that admits closed-form solutions. We derive two algorithm instances: a momentum-accelerated version with $\mathcal{O}(\varepsilon^{-4})$ complexity and an improved $\mathcal{O}(\varepsilon^{-3})$ version using variance reduction. Experiments on three image retrieval databases demonstrate the superior performance of DualHash.
comment: 27 pages, 13 figures
♻ ☆ FASTer: Toward Efficient Autoregressive Vision Language Action Modeling via Neural Action Tokenization
Autoregressive vision-language-action (VLA) models have recently demonstrated strong capabilities in robotic manipulation. However, their core process of action tokenization often involves a trade-off between reconstruction fidelity and inference efficiency. We introduce FASTer, a unified framework for efficient and generalizable robot learning that integrates a learnable tokenizer with an autoregressive policy built upon it. FASTerVQ encodes action chunks as single-channel images, capturing global spatio-temporal dependencies while maintaining a high compression ratio. FASTerVLA builds on this tokenizer with block-wise autoregressive decoding and a lightweight action expert, achieving both faster inference and higher task performance. Extensive experiments across simulated and real-world benchmarks show that FASTerVQ delivers superior reconstruction quality, high token utilization, and strong cross-task and cross-embodiment generalization, while FASTerVLA further improves overall capability, surpassing previous state-of-the-art VLA models in both inference speed and task performance.
♻ ☆ Expectation-Maximization as the Engine of Scalable Medical Intelligence
Large, high-quality, annotated datasets are the foundation of medical AI research, but constructing even a small, moderate-quality, annotated dataset can take years of effort from multidisciplinary teams. Although active learning can prioritize what to annotate, scaling up still requires extensive manual efforts to revise the noisy annotations. We formulate this as a missing-data problem and develop ScaleMAI, a framework that unifies data annotation and model development co-evolution through an Expectation-Maximization (EM) process. In this iterative process, the AI model automatically identifies and corrects the mistakes in annotations (Expectation), while the refined annotated data retrain the model to improve accuracy (Maximization). In addition to the classical EM algorithm, ScaleMAI brings human experts into the loop to review annotations that cannot be adequately addressed by either Expectation or Maximization step (<5%). As a result, ScaleMAI progressively creates an annotated dataset of 47,315 CT scans (4.8x larger than the largest public dataset, PanTS) including 4,163,720 per-voxel annotations for benign/malignant tumors and 88 anatomical structures. ScaleMAI iteratively trains a model that exceeds human expert performance in tumor diagnosis (+7%), and outperforms models developed from smaller, moderate-quality datasets, with statistically significant gains in tumor detection (+10%) and segmentation (+14%) on two prestigious benchmarks.
♻ ☆ Skywork-R1V4: Toward Agentic Multimodal Intelligence through Interleaved Thinking with Images and DeepResearch
Despite recent progress in multimodal agentic systems, existing approaches often treat image manipulation and web search as disjoint capabilities, rely heavily on costly reinforcement learning, and lack planning grounded in real tool-execution traces. To address these limitations, we present Skywork-R1V4, a 30B (A3B) parameter multimodal agentic model that unifies multimodal planning, active image manipulation ("thinking with images"), deep multimodal search, and, most critically, interleaved reasoning that dynamically alternates between visual operations and external knowledge retrieval. Trained solely via supervised fine-tuning on fewer than 30,000 high-quality, planning-execution-consistent trajectories and validated through stepwise consistency filtering, Skywork-R1V4 achieves state-of-the-art results across perception and multimodal search benchmarks: it scores 66.1 on MMSearch and 67.2 on FVQA, surpassing Gemini 2.5 Flash on all 11 metrics. Skywork-R1V4 exhibits emergent long-horizon reasoning at inference time, successfully orchestrating more than 10 tool calls to solve complex, multi-step tasks. Our results demonstrate that sophisticated agentic multimodal intelligence can be achieved through carefully curated supervised learning alone, without any reliance on reinforcement learning.
comment: 21 pages, 7 figures
♻ ☆ Splannequin: Freezing Monocular Mannequin-Challenge Footage with Dual-Detection Splatting WACV 2026
Synthesizing high-fidelity frozen 3D scenes from monocular Mannequin-Challenge (MC) videos is a unique problem distinct from standard dynamic scene reconstruction. Instead of focusing on modeling motion, our goal is to create a frozen scene while strategically preserving subtle dynamics to enable user-controlled instant selection. To achieve this, we introduce a novel application of dynamic Gaussian splatting: the scene is modeled dynamically, which retains nearby temporal variation, and a static scene is rendered by fixing the model's time parameter. However, under this usage, monocular capture with sparse temporal supervision introduces artifacts like ghosting and blur for Gaussians that become unobserved or occluded at weakly supervised timestamps. We propose Splannequin, an architecture-agnostic regularization that detects two states of Gaussian primitives, hidden and defective, and applies temporal anchoring. Under predominantly forward camera motion, hidden states are anchored to their recent well-observed past states, while defective states are anchored to future states with stronger supervision. Our method integrates into existing dynamic Gaussian pipelines via simple loss terms, requires no architectural changes, and adds zero inference overhead. This results in markedly improved visual quality, enabling high-fidelity, user-selectable frozen-time renderings, validated by a 96% user preference. Project page: https://chien90190.github.io/splannequin/
comment: WACV 2026. Project page: https://chien90190.github.io/splannequin/
♻ ☆ Video-R2: Reinforcing Consistent and Grounded Reasoning in Multimodal Language Models
Reasoning over dynamic visual content remains a central challenge for multimodal large language models. Recent thinking models generate explicit reasoning traces for interpretability; however, their reasoning often appears convincing while being logically inconsistent or weakly grounded in visual evidence. We identify and formalize these issues through two diagnostic metrics: Think Answer Consistency (TAC), which measures the alignment between reasoning and answers, and Video Attention Score (VAS), which captures the extent to which reasoning depends on visual versus textual cues. Analysis across 11 video reasoning benchmarks shows that current models rely heavily on linguistic priors rather than visual content. To address this, we propose a reinforcement learning approach that enhances both temporal precision and reasoning consistency. Our approach combines timestamp aware supervised fine tuning with Group Relative Policy Optimization (GRPO) guided by a novel Temporal Alignment Reward (TAR). This dual step post training stage encourages temporally aligned and causally coherent video reasoning. The resulting model, Video R2, achieves consistently higher TAC, VAS, and accuracy across multiple benchmarks, demonstrating that improvements in temporal alignment and reasoning coherence lead to more accurate and trustworthy video understanding. Code: https://github.com/mbzuai-oryx/Video-R2
comment: Video-R2 Technical Report
♻ ☆ Diffusion-based Adversarial Purification from the Perspective of the Frequency Domain
The diffusion-based adversarial purification methods attempt to drown adversarial perturbations into a part of isotropic noise through the forward process, and then recover the clean images through the reverse process. Due to the lack of distribution information about adversarial perturbations in the pixel domain, it is often unavoidable to damage normal semantics. We turn to the frequency domain perspective, decomposing the image into amplitude spectrum and phase spectrum. We find that for both spectra, the damage caused by adversarial perturbations tends to increase monotonically with frequency. This means that we can extract the content and structural information of the original clean sample from the frequency components that are less damaged. Meanwhile, theoretical analysis indicates that existing purification methods indiscriminately damage all frequency components, leading to excessive damage to the image. Therefore, we propose a purification method that can eliminate adversarial perturbations while maximizing the preservation of the content and structure of the original image. Specifically, at each time step during the reverse process, for the amplitude spectrum, we replace the low-frequency components of the estimated image's amplitude spectrum with the corresponding parts of the adversarial image. For the phase spectrum, we project the phase of the estimated image into a designated range of the adversarial image's phase spectrum, focusing on the low frequencies. Empirical evidence from extensive experiments demonstrates that our method significantly outperforms most current defense methods.
♻ ☆ Explaining Object Detectors via Collective Contribution of Pixels
Visual explanations for object detectors are crucial for enhancing their reliability. Object detectors identify and localize instances by assessing multiple visual features collectively. When generating explanations, overlooking these collective influences in detections may lead to missing compositional cues or capturing spurious correlations. However, existing methods typically focus solely on individual pixel contributions, neglecting the collective contribution of multiple pixels. To address this limitation, we propose a game-theoretic method based on Shapley values and interactions to explicitly capture both individual and collective pixel contributions. Our method provides explanations for both bounding box localization and class determination, highlighting regions crucial for detection. Extensive experiments demonstrate that the proposed method identifies important regions more accurately than state-of-the-art methods. The code will be publicly available soon.
comment: 11+20 pages, 21 figures, 11 tables. v2: updated version
♻ ☆ Moyun: A Diffusion-Based Model for Style-Specific Chinese Calligraphy Generation
Although Chinese calligraphy generation has achieved style transfer, generating calligraphy by specifying the calligrapher, font, and character style remains challenging. To address this, we propose a new Chinese calligraphy generation model 'Moyun' , which replaces the Unet in the Diffusion model with Vision Mamba and introduces the TripleLabel control mechanism to achieve controllable calligraphy generation. The model was tested on our large-scale dataset 'Mobao' of over 1.9 million images, and the results demonstrate that 'Moyun' can effectively control the generation process and produce calligraphy in the specified style. Even for calligraphy the calligrapher has not written, 'Moyun' can generate calligraphy that matches the style of the calligrapher.
♻ ☆ Coefficients-Preserving Sampling for Reinforcement Learning with Flow Matching
Reinforcement Learning (RL) has recently emerged as a powerful technique for improving image and video generation in Diffusion and Flow Matching models, specifically for enhancing output quality and alignment with prompts. A critical step for applying online RL methods on Flow Matching is the introduction of stochasticity into the deterministic framework, commonly realized by Stochastic Differential Equation (SDE). Our investigation reveals a significant drawback to this approach: SDE-based sampling introduces pronounced noise artifacts in the generated images, which we found to be detrimental to the reward learning process. A rigorous theoretical analysis traces the origin of this noise to an excess of stochasticity injected during inference. To address this, we draw inspiration from Denoising Diffusion Implicit Models (DDIM) to reformulate the sampling process. Our proposed method, Coefficients-Preserving Sampling (CPS), eliminates these noise artifacts. This leads to more accurate reward modeling, ultimately enabling faster and more stable convergence for reinforcement learning-based optimizers like Flow-GRPO and Dance-GRPO. Code will be released at https://github.com/IamCreateAI/FlowCPS
comment: work in progress
♻ ☆ VRSA: Jailbreaking Multimodal Large Language Models through Visual Reasoning Sequential Attack
Multimodal Large Language Models (MLLMs) are widely used in various fields due to their powerful cross-modal comprehension and generation capabilities. However, more modalities bring more vulnerabilities to being utilized for jailbreak attacks, which induces MLLMs to output harmful content. Due to the strong reasoning ability of MLLMs, previous jailbreak attacks try to explore reasoning safety risk in text modal, while similar threats have been largely overlooked in the visual modal. To fully evaluate potential safety risks in the visual reasoning task, we propose Visual Reasoning Sequential Attack (VRSA), which induces MLLMs to gradually externalize and aggregate complete harmful intent by decomposing the original harmful text into several sequentially related sub-images. In particular, to enhance the rationality of the scene in the image sequence, we propose Adaptive Scene Refinement to optimize the scene most relevant to the original harmful query. To ensure the semantic continuity of the generated image, we propose Semantic Coherent Completion to iteratively rewrite each sub-text combined with contextual information in this scene. In addition, we propose Text-Image Consistency Alignment to keep the semantical consistency. A series of experiments demonstrates that the VRSA can achieve a higher attack success rate compared with the state-of-the-art jailbreak attack methods on both the open-source and closed-source MLLMs such as GPT-4o and Claude-4.5-Sonnet.
♻ ☆ MajutsuCity: Language-driven Aesthetic-adaptive City Generation with Controllable 3D Assets and Layouts
Generating realistic 3D cities is fundamental to world models, virtual reality, and game development, where an ideal urban scene must satisfy both stylistic diversity, fine-grained, and controllability. However, existing methods struggle to balance the creative flexibility offered by text-based generation with the object-level editability enabled by explicit structural representations. We introduce MajutsuCity, a natural language-driven and aesthetically adaptive framework for synthesizing structurally consistent and stylistically diverse 3D urban scenes. MajutsuCity represents a city as a composition of controllable layouts, assets, and materials, and operates through a four-stage pipeline. To extend controllability beyond initial generation, we further integrate MajutsuAgent, an interactive language-grounded editing agent} that supports five object-level operations. To support photorealistic and customizable scene synthesis, we also construct MajutsuDataset, a high-quality multimodal dataset} containing 2D semantic layouts and height maps, diverse 3D building assets, and curated PBR materials and skyboxes, each accompanied by detailed annotations. Meanwhile, we develop a practical set of evaluation metrics, covering key dimensions such as structural consistency, scene complexity, material fidelity, and lighting atmosphere. Extensive experiments demonstrate MajutsuCity reduces layout FID by 83.7% compared with CityDreamer and by 20.1% over CityCraft. Our method ranks first across all AQS and RDR scores, outperforming existing methods by a clear margin. These results confirm MajutsuCity as a new state-of-the-art in geometric fidelity, stylistic adaptability, and semantic controllability for 3D city generation. We expect our framework can inspire new avenues of research in 3D city generation. Our project page: https://longhz140516.github.io/MajutsuCity/.
comment: 13 pages, 6 figures
♻ ☆ GeoShield: Safeguarding Geolocation Privacy from Vision-Language Models via Adversarial Perturbations AAAI2026
Vision-Language Models (VLMs) such as GPT-4o now demonstrate a remarkable ability to infer users' locations from public shared images, posing a substantial risk to geoprivacy. Although adversarial perturbations offer a potential defense, current methods are ill-suited for this scenario: they often perform poorly on high-resolution images and low perturbation budgets, and may introduce irrelevant semantic content. To address these limitations, we propose GeoShield, a novel adversarial framework designed for robust geoprivacy protection in real-world scenarios. GeoShield comprises three key modules: a feature disentanglement module that separates geographical and non-geographical information, an exposure element identification module that pinpoints geo-revealing regions within an image, and a scale-adaptive enhancement module that jointly optimizes perturbations at both global and local levels to ensure effectiveness across resolutions. Extensive experiments on challenging benchmarks show that GeoShield consistently surpasses prior methods in black-box settings, achieving strong privacy protection with minimal impact on visual or semantic quality. To our knowledge, this work is the first to explore adversarial perturbations for defending against geolocation inference by advanced VLMs, providing a practical and effective solution to escalating privacy concerns.
comment: AAAI2026 Poster
♻ ☆ 3D-ANC: Adaptive Neural Collapse for Robust 3D Point Cloud Recognition AAAI 2026
Deep neural networks have recently achieved notable progress in 3D point cloud recognition, yet their vulnerability to adversarial perturbations poses critical security challenges in practical deployments. Conventional defense mechanisms struggle to address the evolving landscape of multifaceted attack patterns. Through systematic analysis of existing defenses, we identify that their unsatisfactory performance primarily originates from an entangled feature space, where adversarial attacks can be performed easily. To this end, we present 3D-ANC, a novel approach that capitalizes on the Neural Collapse (NC) mechanism to orchestrate discriminative feature learning. In particular, NC depicts where last-layer features and classifier weights jointly evolve into a simplex equiangular tight frame (ETF) arrangement, establishing maximally separable class prototypes. However, leveraging this advantage in 3D recognition confronts two substantial challenges: (1) prevalent class imbalance in point cloud datasets, and (2) complex geometric similarities between object categories. To tackle these obstacles, our solution combines an ETF-aligned classification module with an adaptive training framework consisting of representation-balanced learning (RBL) and dynamic feature direction loss (FDL). 3D-ANC seamlessly empowers existing models to develop disentangled feature spaces despite the complexity in 3D data distribution. Comprehensive evaluations state that 3D-ANC significantly improves the robustness of models with various structures on two datasets. For instance, DGCNN's classification accuracy is elevated from 27.2% to 80.9% on ModelNet40 -- a 53.7% absolute gain that surpasses leading baselines by 34.0%.
comment: AAAI 2026
♻ ☆ uCLIP: Parameter-Efficient Multilingual Extension of Vision-Language Models with Unpaired Data
Contrastive Language-Image Pre-training (CLIP) has demonstrated strong generalization across a wide range of visual tasks by leveraging large-scale English-image pairs. However, its extension to low-resource languages remains limited due to the scarcity of high-quality multilingual image-text data. Existing multilingual vision-language models exhibit consistently low retrieval performance in underrepresented languages including Czech, Finnish, Croatian, Hungarian, and Romanian on the Crossmodal-3600 (XM3600) benchmark. To address this, we propose a lightweight and data-efficient framework for multilingual vision-language alignment. Our approach requires no image-text pairs or text-text pairs and freezes both the pretrained image encoder and multilingual text encoder during training. Only a compact 1.7M-parameter projection module is trained, using a contrastive loss over English representations as semantic anchors. This minimal training setup enables robust multilingual alignment even for languages with limited supervision. Extensive evaluation across multiple multilingual retrieval benchmarks confirms the effectiveness of our method, showing significant gains in five underrepresented languages where existing models typically underperform. These findings highlight the effectiveness of our pivot-based, parameter-efficient alignment strategy for inclusive multimodal learning.
comment: Our project page can be found at https://dinyudin203.github.io/uCLIP-project/
♻ ☆ Bi-ICE: An Inner Interpretable Framework for Image Classification via Bi-directional Interactions between Concept and Input Embeddings WACV2026
Inner interpretability is a promising field aiming to uncover the internal mechanisms of AI systems through scalable, automated methods. While significant research has been conducted on large language models, limited attention has been paid to applying inner interpretability to large-scale image tasks, focusing primarily on architectural and functional levels to visualize learned concepts. In this paper, we first present a conceptual framework that supports inner interpretability and multilevel analysis for large-scale image classification tasks. Specifically, we introduce the Bi-directional Interaction between Concept and Input Embeddings (Bi-ICE) module, which facilitates interpretability across the computational, algorithmic, and implementation levels. This module enhances transparency by generating predictions based on human-understandable concepts, quantifying their contributions, and localizing them within the inputs. Finally, we showcase enhanced transparency in image classification, measuring concept contributions, and pinpointing their locations within the inputs. Our approach highlights algorithmic interpretability by demonstrating the process of concept learning and its convergence.
comment: Accepted at IEEE WACV2026. The first two authors equally contributed to this work
Information Retrieval
☆ Exploring Test-time Scaling via Prediction Merging on Large-Scale Recommendation
Inspired by the success of language models (LM), scaling up deep learning recommendation systems (DLRS) has become a recent trend in the community. All previous methods tend to scale up the model parameters during training time. However, how to efficiently utilize and scale up computational resources during test time remains underexplored, which can prove to be a scaling-efficient approach and bring orthogonal improvements in LM domains. The key point in applying test-time scaling to DLRS lies in effectively generating diverse yet meaningful outputs for the same instance. We propose two ways: One is to explore the heterogeneity of different model architectures. The other is to utilize the randomness of model initialization under a homogeneous architecture. The evaluation is conducted across eight models, including both classic and SOTA models, on three benchmarks. Sufficient evidence proves the effectiveness of both solutions. We further prove that under the same inference budget, test-time scaling can outperform parameter scaling. Our test-time scaling can also be seamlessly accelerated with the increase in parallel servers when deployed online, without affecting the inference time on the user side. Code is available.
☆ From Show Programmes to Data: Designing a Workflow to Make Performing Arts Ephemera Accessible Through Language Models
Many heritage institutions hold extensive collections of theatre programmes, which remain largely underused due to their complex layouts and lack of structured metadata. In this paper, we present a workflow for transforming such documents into structured data using a combination of multimodal large language models (LLMs), an ontology-based reasoning model, and a custom extension of the Linked Art framework. We show how vision-language models can accurately parse and transcribe born-digital and digitised programmes, achieving over 98% of correct extraction. To overcome the challenges of semantic annotation, we train a reasoning model (POntAvignon) using reinforcement learning with both formal and semantic rewards. This approach enables automated RDF triple generation and supports alignment with existing knowledge graphs. Through a case study based on the Festival d'Avignon corpus, we demonstrate the potential for large-scale, ontology-driven analysis of performing arts data. Our results open new possibilities for interoperable, explainable, and sustainable computational theatre historiography.
comment: 19 pages, 8 figures, 5 tables, 17 references
☆ OnePiece: The Great Route to Generative Recommendation -- A Case Study from Tencent Algorithm Competition
In past years, the OpenAI's Scaling-Laws shows the amazing intelligence with the next-token prediction paradigm in neural language modeling, which pointing out a free-lunch way to enhance the model performance by scaling the model parameters. In RecSys, the retrieval stage is also follows a 'next-token prediction' paradigm, to recall the hunderds of items from the global item set, thus the generative recommendation usually refers specifically to the retrieval stage (without Tree-based methods). This raises a philosophical question: without a ground-truth next item, does the generative recommendation also holds a potential scaling law? In retrospect, the generative recommendation has two different technique paradigms: (1) ANN-based framework, utilizing the compressed user embedding to retrieve nearest other items in embedding space, e.g, Kuaiformer. (2) Auto-regressive-based framework, employing the beam search to decode the item from whole space, e.g, OneRec. In this paper, we devise a unified encoder-decoder framework to validate their scaling-laws at same time. Our empirical finding is that both of their losses strictly adhere to power-law Scaling Laws ($R^2$>0.9) within our unified architecture.
comment: Work in progress
☆ On the Impact of Graph Neural Networks in Recommender Systems: A Topological Perspective
In recommender systems, user-item interactions can be modeled as a bipartite graph, where user and item nodes are connected by undirected edges. This graph-based view has motivated the rapid adoption of graph neural networks (GNNs), which often outperform collaborative filtering (CF) methods such as latent factor models, deep neural networks, and generative strategies. Yet, despite their empirical success, the reasons why GNNs offer systematic advantages over other CF approaches remain only partially understood. This monograph advances a topology-centered perspective on GNN-based recommendation. We argue that a comprehensive understanding of these models' performance should consider the structural properties of user-item graphs and their interaction with GNN architectural design. To support this view, we introduce a formal taxonomy that distills common modeling patterns across eleven representative GNN-based recommendation approaches and consolidates them into a unified conceptual pipeline. We further formalize thirteen classical and topological characteristics of recommendation datasets and reinterpret them through the lens of graph machine learning. Using these definitions, we analyze the considered GNN-based recommender architectures to assess how and to what extent they encode such properties. Building on this analysis, we derive an explanatory framework that links measurable dataset characteristics to model behavior and performance. Taken together, this monograph re-frames GNN-based recommendation through its topological underpinnings and outlines open theoretical, data-centric, and evaluation challenges for the next generation of topology-aware recommender systems.
☆ MUSE: A Simple Yet Effective Multimodal Search-Based Framework for Lifelong User Interest Modeling
Lifelong user interest modeling is crucial for industrial recommender systems, yet existing approaches rely predominantly on ID-based features, suffering from poor generalization on long-tail items and limited semantic expressiveness. While recent work explores multimodal representations for behavior retrieval in the General Search Unit (GSU), they often neglect multimodal integration in the fine-grained modeling stage -- the Exact Search Unit (ESU). In this work, we present a systematic analysis of how to effectively leverage multimodal signals across both stages of the two-stage lifelong modeling framework. Our key insight is that simplicity suffices in the GSU: lightweight cosine similarity with high-quality multimodal embeddings outperforms complex retrieval mechanisms. In contrast, the ESU demands richer multimodal sequence modeling and effective ID-multimodal fusion to unlock its full potential. Guided by these principles, we propose MUSE, a simple yet effective multimodal search-based framework. MUSE has been deployed in Taobao display advertising system, enabling 100K-length user behavior sequence modeling and delivering significant gains in top-line metrics with negligible online latency overhead. To foster community research, we share industrial deployment practices and open-source the first large-scale dataset featuring ultra-long behavior sequences paired with high-quality multimodal embeddings. Our code and data is available at https://taobao-mm.github.io.
♻ ☆ TOOL4POI: A Tool-Augmented LLM Framework for Next POI Recommendation AAAI 2026
Next Point-of-Interest (POI) recommendation is a fundamental task in location-based services. While recent advances leverage Large Language Model (LLM) for sequential modeling, existing LLM-based approaches face two key limitations: (i) strong reliance on the contextual completeness of user histories, resulting in poor performance on out-of-history (OOH) scenarios; (ii) limited scalability, due to the restricted context window of LLMs, which limits their ability to access and process a large number of candidate POIs. To address these challenges, we propose Tool4POI, a novel tool-augmented framework that enables LLMs to perform open-set POI recommendation through external retrieval and reasoning. Tool4POI consists of three key modules: preference extraction module, multi-turn candidate retrieval module, and reranking module, which together summarize long-term user interests, interact with external tools to retrieve relevant POIs, and refine final recommendations based on recent behaviors. Unlike existing methods, Tool4POI requires no task-specific fine-tuning and is compatible with off-the-shelf LLMs in a plug-and-play manner. Extensive experiments on three real-world datasets show that Tool4POI substantially outperforms state-of-the-art baselines, achieving up to 40% accuracy on challenging OOH scenarios where existing methods fail, and delivering average improvements of 20% and 30% on Acc@5 and Acc@10, respectively.
comment: A critical technical error was discovered during our internal review, leading to unreliable experimental results. The issue cannot be resolved, and the paper has also been formally withdrawn from AAAI 2026. We therefore request withdrawal of the arXiv version to maintain scientific accuracy
♻ ☆ Real-time Air Pollution prediction model based on Spatiotemporal Big data
Air pollution is one of the most concerns for urban areas. Many countries have constructed monitoring stations to hourly collect pollution values. Recently, there is a research in Daegu city, Korea for real-time air quality monitoring via sensors installed on taxis running across the whole city. The collected data is huge (1-second interval) and in both Spatial and Temporal format. In this paper, based on this spatiotemporal Big data, we propose a real-time air pollution prediction model based on Convolutional Neural Network (CNN) algorithm for image-like Spatial distribution of air pollution. Regarding to Temporal information in the data, we introduce a combination of a Long Short-Term Memory (LSTM) unit for time series data and a Neural Network model for other air pollution impact factors such as weather conditions to build a hybrid prediction model. This model is simple in architecture but still brings good prediction ability.
comment: - We fix typos and grammars through out the paper. - We fix layout of figure for better view. - We update mathematic formula and its description. - We add more insights to experimental results. - We correct author names in references
♻ ☆ MUST-RAG: MUSical Text Question Answering with Retrieval Augmented Generation
Recent advancements in Large language models (LLMs) have demonstrated remarkable capabilities across diverse domains. While they exhibit strong zero-shot performance on various tasks, LLMs' effectiveness in music-related applications remains limited due to the relatively small proportion of music-specific knowledge in their training data. To address this limitation, we propose MusT-RAG, a comprehensive framework based on Retrieval Augmented Generation (RAG) to adapt general-purpose LLMs for text-only music question answering (MQA) tasks. RAG is a technique that provides external knowledge to LLMs by retrieving relevant context information when generating answers to questions. To optimize RAG for the music domain, we (1) propose MusWikiDB, a music-specialized vector database for the retrieval stage, and (2) utilizes context information during both inference and fine-tuning processes to effectively transform general-purpose LLMs into music-specific models. Our experiment demonstrates that MusT-RAG significantly outperforms traditional fine-tuning approaches in enhancing LLMs' music domain adaptation capabilities, showing consistent improvements across both in-domain and out-of-domain MQA benchmarks. Additionally, our MusWikiDB proves substantially more effective than general Wikipedia corpora, delivering superior performance and computational efficiency.
comment: This is an earlier version of the paper - ArtistMus: A Globally Diverse, Artist-Centric Benchmark for Retrieval-Augmented Music Question Answering. The latest version is available at: (arXiv:2512.05430)
♻ ☆ DMRetriever: A Family of Models for Improved Text Retrieval in Disaster Management
Effective and efficient access to relevant information is essential for disaster management. However, no retrieval model is specialized for disaster management, and existing general-domain models fail to handle the varied search intents inherent to disaster management scenarios, resulting in inconsistent and unreliable performance. To this end, we introduce DMRetriever, the first series of dense retrieval models (33M to 7.6B) tailored for this domain. It is trained through a novel three-stage framework of bidirectional attention adaptation, unsupervised contrastive pre-training, and difficulty-aware progressive instruction fine-tuning, using high-quality data generated through an advanced data refinement pipeline. Comprehensive experiments demonstrate that DMRetriever achieves state-of-the-art (SOTA) performance across all six search intents at every model scale. Moreover, DMRetriever is highly parameter-efficient, with 596M model outperforming baselines over 13.3 X larger and 33M model exceeding baselines with only 7.6% of their parameters. All codes, data, and checkpoints are available at https://github.com/KaiYin97/DMRETRIEVER
♻ ☆ Prompt Tuning as User Inherent Profile Inference Machine CIKM 2025
Large Language Models (LLMs) have exhibited significant promise in recommender systems by empowering user profiles with their extensive world knowledge and superior reasoning capabilities. However, LLMs face challenges like unstable instruction compliance, modality gaps, and high inference latency, leading to textual noise and limiting their effectiveness in recommender systems. To address these challenges, we propose UserIP-Tuning, which uses prompt-tuning to infer user profiles. It integrates the causal relationship between user profiles and behavior sequences into LLMs' prompts. It employs Expectation Maximization (EM) to infer the embedded latent profile, minimizing textual noise by fixing the prompt template. Furthermore, a profile quantization codebook bridges the modality gap by categorizing profile embeddings into collaborative IDs pre-stored for online deployment. This improves time efficiency and reduces memory usage. Experiments show that UserIP-Tuning outperforms state-of-the-art recommendation algorithms. An industry application confirms its effectiveness, robustness, and transferability. The presented solution has been deployed in Huawei AppGallery's Explore page since May 2025, serving 2 million daily active users, delivering significant improvements in real-world recommendation scenarios. The code is publicly available for replication at https://github.com/Applied-Machine-Learning-Lab/UserIP-Tuning.
comment: This paper has been accepted by CIKM 2025
♻ ☆ LSRP: A Leader-Subordinate Retrieval Framework for Privacy-Preserving Cloud-Device Collaboration KDD'25
Cloud-device collaboration leverages on-cloud Large Language Models (LLMs) for handling public user queries and on-device Small Language Models (SLMs) for processing private user data, collectively forming a powerful and privacy-preserving solution. However, existing approaches often fail to fully leverage the scalable problem-solving capabilities of on-cloud LLMs while underutilizing the advantage of on-device SLMs in accessing and processing personalized data. This leads to two interconnected issues: 1) Limited utilization of the problem-solving capabilities of on-cloud LLMs, which fail to align with personalized user-task needs, and 2) Inadequate integration of user data into on-device SLM responses, resulting in mismatches in contextual user information. In this paper, we propose a Leader-Subordinate Retrieval framework for Privacy-preserving cloud-device collaboration (LSRP), a novel solution that bridges these gaps by: 1) enhancing on-cloud LLM guidance to on-device SLM through a dynamic selection of task-specific leader strategies named as user-to-user retrieval-augmented generation (U-U-RAG), and 2) integrating the data advantages of on-device SLMs through small model feedback Direct Preference Optimization (SMFB-DPO) for aligning the on-cloud LLM with the on-device SLM. Experiments on two datasets demonstrate that LSRP consistently outperforms state-of-the-art baselines, significantly improving question-answer relevance and personalization, while preserving user privacy through efficient on-device retrieval. Our code is available at: https://github.com/Applied-Machine-Learning-Lab/LSRP.
comment: Accepted at KDD'25
♻ ☆ Process vs. Outcome Reward: Which is Better for Agentic RAG Reinforcement Learning
Retrieval-augmented generation (RAG) enhances the text generation capabilities of large language models (LLMs) by integrating external knowledge and up-to-date information. However, traditional RAG systems are limited by static workflows and lack the adaptability required for multistep reasoning and complex task management. To address these limitations, agentic RAG systems (e.g., DeepResearch) have been proposed, enabling dynamic retrieval strategies, iterative context refinement, and adaptive workflows for handling complex search queries beyond the capabilities of conventional RAG. Recent advances, such as Search-R1, have demonstrated promising gains using outcome-based reinforcement learning, where the correctness of the final answer serves as the reward signal. Nevertheless, such outcome-supervised agentic RAG methods face challenges including low exploration efficiency, gradient conflict, and sparse reward signals. To overcome these challenges, we propose to utilize fine-grained, process-level rewards to improve training stability, reduce computational costs, and enhance efficiency. Specifically, we introduce a novel method ReasonRAG that automatically constructs RAG-ProGuide, a high-quality dataset providing process-level rewards for (i) query generation, (ii) evidence extraction, and (iii) answer generation, thereby enhancing model inherent capabilities via process-supervised reinforcement learning. With the process-level policy optimization, the proposed framework empowers LLMs to autonomously invoke search, generate queries, extract relevant evidence, and produce final answers. Compared to existing approaches such as Search-R1 and traditional RAG systems, ReasonRAG, leveraging RAG-ProGuide, achieves superior performance on five benchmark datasets using only 5k training instances, significantly fewer than the 90k training instances required by Search-R1.
♻ ☆ Dual Collaborative LLMs via Continual Fine-Tuning for Serendipitous Recommendation
Traditional recommendation systems tend to trap users in strong feedback loops by excessively pushing content aligned with their historical preferences, thereby limiting exploration opportunities and causing content fatigue. Although large language models (LLMs) demonstrate potential with their diverse content generation capabilities, existing LLM-enhanced dual-model frameworks face two major limitations: first, they overlook long-term preferences driven by group identity, leading to biased interest modeling; second, they suffer from static optimization flaws, as a one-time alignment process fails to leverage incremental user data for closed-loop optimization. To address these challenges, we propose the Co-Evolutionary Alignment (CoEA) method. For interest modeling bias, we introduce Dual-Stable Interest Exploration (DSIE) module, jointly modeling long-term group identity and short-term individual interests through parallel processing of behavioral sequences. For static optimization limitations, we design a Periodic Collaborative Optimization (PCO) mechanism. This mechanism regularly conducts preference verification on incremental data using the Relevance LLM, then guides the Novelty LLM to perform fine-tuning based on the verification results, and subsequently feeds back the output of the continually fine-tuned Novelty LLM to the Relevance LLM for re-evaluation, thereby achieving a dynamic closed-loop optimization. Extensive online and offline experiments verify the effectiveness of the CoEA model in serendipitous recommendation.
Machine Learning
☆ Relational Visual Similarity
Humans do not just see attribute similarity -- we also see relational similarity. An apple is like a peach because both are reddish fruit, but the Earth is also like a peach: its crust, mantle, and core correspond to the peach's skin, flesh, and pit. This ability to perceive and recognize relational similarity, is arguable by cognitive scientist to be what distinguishes humans from other species. Yet, all widely used visual similarity metrics today (e.g., LPIPS, CLIP, DINO) focus solely on perceptual attribute similarity and fail to capture the rich, often surprising relational similarities that humans perceive. How can we go beyond the visible content of an image to capture its relational properties? How can we bring images with the same relational logic closer together in representation space? To answer these questions, we first formulate relational image similarity as a measurable problem: two images are relationally similar when their internal relations or functions among visual elements correspond, even if their visual attributes differ. We then curate 114k image-caption dataset in which the captions are anonymized -- describing the underlying relational logic of the scene rather than its surface content. Using this dataset, we finetune a Vision-Language model to measure the relational similarity between images. This model serves as the first step toward connecting images by their underlying relational structure rather than their visible appearance. Our study shows that while relational similarity has a lot of real-world applications, existing image similarity models fail to capture it -- revealing a critical gap in visual computing.
comment: Project page, data, and code: https://thaoshibe.github.io/relsim
☆ Do Generalisation Results Generalise?
A large language model's (LLM's) out-of-distribution (OOD) generalisation ability is crucial to its deployment. Previous work assessing LLMs' generalisation performance, however, typically focuses on a single out-of-distribution dataset. This approach may fail to precisely evaluate the capabilities of the model, as the data shifts encountered once a model is deployed are much more diverse. In this work, we investigate whether OOD generalisation results generalise. More specifically, we evaluate a model's performance across multiple OOD testsets throughout a finetuning run; we then evaluate the partial correlation of performances across these testsets, regressing out in-domain performance. This allows us to assess how correlated are generalisation performances once in-domain performance is controlled for. Analysing OLMo2 and OPT, we observe no overarching trend in generalisation results: the existence of a positive or negative correlation between any two OOD testsets depends strongly on the specific choice of model analysed.
☆ The Adoption and Usage of AI Agents: Early Evidence from Perplexity
This paper presents the first large-scale field study of the adoption, usage intensity, and use cases of general-purpose AI agents operating in open-world web environments. Our analysis centers on Comet, an AI-powered browser developed by Perplexity, and its integrated agent, Comet Assistant. Drawing on hundreds of millions of anonymized user interactions, we address three fundamental questions: Who is using AI agents? How intensively are they using them? And what are they using them for? Our findings reveal substantial heterogeneity in adoption and usage across user segments. Earlier adopters, users in countries with higher GDP per capita and educational attainment, and individuals working in digital or knowledge-intensive sectors -- such as digital technology, academia, finance, marketing, and entrepreneurship -- are more likely to adopt or actively use the agent. To systematically characterize the substance of agent usage, we introduce a hierarchical agentic taxonomy that organizes use cases across three levels: topic, subtopic, and task. The two largest topics, Productivity & Workflow and Learning & Research, account for 57% of all agentic queries, while the two largest subtopics, Courses and Shopping for Goods, make up 22%. The top 10 out of 90 tasks represent 55% of queries. Personal use constitutes 55% of queries, while professional and educational contexts comprise 30% and 16%, respectively. In the short term, use cases exhibit strong stickiness, but over time users tend to shift toward more cognitively oriented topics. The diffusion of increasingly capable AI agents carries important implications for researchers, businesses, policymakers, and educators, inviting new lines of inquiry into this rapidly emerging class of AI capabilities.
☆ An Adaptive Multi-Layered Honeynet Architecture for Threat Behavior Analysis via Deep Learning
The escalating sophistication and variety of cyber threats have rendered static honeypots inadequate, necessitating adaptive, intelligence-driven deception. In this work, ADLAH is introduced: an Adaptive Deep Learning Anomaly Detection Honeynet designed to maximize high-fidelity threat intelligence while minimizing cost through autonomous orchestration of infrastructure. The principal contribution is offered as an end-to-end architectural blueprint and vision for an AI-driven deception platform. Feasibility is evidenced by a functional prototype of the central decision mechanism, in which a reinforcement learning (RL) agent determines, in real time, when sessions should be escalated from low-interaction sensor nodes to dynamically provisioned, high-interaction honeypots. Because sufficient live data were unavailable, field-scale validation is not claimed; instead, design trade-offs and limitations are detailed, and a rigorous roadmap toward empirical evaluation at scale is provided. Beyond selective escalation and anomaly detection, the architecture pursues automated extraction, clustering, and versioning of bot attack chains, a core capability motivated by the empirical observation that exposed services are dominated by automated traffic. Together, these elements delineate a practical path toward cost-efficient capture of high-value adversary behavior, systematic bot versioning, and the production of actionable threat intelligence.
☆ Graph-Based Learning of Spectro-Topographical EEG Representations with Gradient Alignment for Brain-Computer Interfaces
We present a novel graph-based learning of EEG representations with gradient alignment (GEEGA) that leverages multi-domain information to learn EEG representations for brain-computer interfaces. Our model leverages graph convolutional networks to fuse embeddings from frequency-based topographical maps and time-frequency spectrograms, capturing inter-domain relationships. GEEGA addresses the challenge of achieving high inter-class separability, which arises from the temporally dynamic and subject-sensitive nature of EEG signals by incorporating the center loss and pairwise difference loss. Additionally, GEEGA incorporates a gradient alignment strategy to resolve conflicts between gradients from different domains and the fused embeddings, ensuring that discrepancies, where gradients point in conflicting directions, are aligned toward a unified optimization direction. We validate the efficacy of our method through extensive experiments on three publicly available EEG datasets: BCI-2a, CL-Drive and CLARE. Comprehensive ablation studies further highlight the impact of various components of our model.
☆ Provable Long-Range Benefits of Next-Token Prediction
Why do modern language models, trained to do well on next-word prediction, appear to generate coherent documents and capture long-range structure? Here we show that next-token prediction is provably powerful for learning longer-range structure, even with common neural network architectures. Specifically, we prove that optimizing next-token prediction over a Recurrent Neural Network (RNN) yields a model that closely approximates the training distribution: for held-out documents sampled from the training distribution, no algorithm of bounded description length limited to examining the next $k$ tokens, for any $k$, can distinguish between $k$ consecutive tokens of such documents and $k$ tokens generated by the learned language model following the same prefix. We provide polynomial bounds (in $k$, independent of the document length) on the model size needed to achieve such $k$-token indistinguishability, offering a complexity-theoretic explanation for the long-range coherence observed in practice.
comment: 66 pages, 5 figures
☆ LUNA: LUT-Based Neural Architecture for Fast and Low-Cost Qubit Readout
Qubit readout is a critical operation in quantum computing systems, which maps the analog response of qubits into discrete classical states. Deep neural networks (DNNs) have recently emerged as a promising solution to improve readout accuracy . Prior hardware implementations of DNN-based readout are resource-intensive and suffer from high inference latency, limiting their practical use in low-latency decoding and quantum error correction (QEC) loops. This paper proposes LUNA, a fast and efficient superconducting qubit readout accelerator that combines low-cost integrator-based preprocessing with Look-Up Table (LUT) based neural networks for classification. The architecture uses simple integrators for dimensionality reduction with minimal hardware overhead, and employs LogicNets (DNNs synthesized into LUT logic) to drastically reduce resource usage while enabling ultra-low-latency inference. We integrate this with a differential evolution based exploration and optimization framework to identify high-quality design points. Our results show up to a 10.95x reduction in area and 30% lower latency with little to no loss in fidelity compared to the state-of-the-art. LUNA enables scalable, low-footprint, and high-speed qubit readout, supporting the development of larger and more reliable quantum computing systems.
☆ Group Representational Position Encoding
We present GRAPE (Group RepresentAtional Position Encoding), a unified framework for positional encoding based on group actions. GRAPE brings together two families of mechanisms: (i) multiplicative rotations (Multiplicative GRAPE) in $\mathrm{SO}(d)$ and (ii) additive logit biases (Additive GRAPE) arising from unipotent actions in the general linear group $\mathrm{GL}$. In Multiplicative GRAPE, a position $n \in \mathbb{Z}$ (or $t \in \mathbb{R}$) acts as $\mathbf{G}(n)=\exp(n\,ω\,\mathbf{L})$ with a rank-2 skew generator $\mathbf{L} \in \mathbb{R}^{d \times d}$, yielding a relative, compositional, norm-preserving map with a closed-form matrix exponential. RoPE is recovered exactly when the $d/2$ planes are the canonical coordinate pairs with log-uniform spectrum. Learned commuting subspaces and compact non-commuting mixtures strictly extend this geometry to capture cross-subspace feature coupling at $O(d)$ and $O(r d)$ cost per head, respectively. In Additive GRAPE, additive logits arise as rank-1 (or low-rank) unipotent actions, recovering ALiBi and the Forgetting Transformer (FoX) as exact special cases while preserving an exact relative law and streaming cacheability. Altogether, GRAPE supplies a principled design space for positional geometry in long-context models, subsuming RoPE and ALiBi as special cases. Project Page: https://github.com/model-architectures/GRAPE.
comment: Project Page: https://github.com/model-architectures/GRAPE
☆ Collaborative Causal Sensemaking: Closing the Complementarity Gap in Human-AI Decision Support
LLM-based agents are rapidly being plugged into expert decision-support, yet in messy, high-stakes settings they rarely make the team smarter: human-AI teams often underperform the best individual, experts oscillate between verification loops and over-reliance, and the promised complementarity does not materialise. We argue this is not just a matter of accuracy, but a fundamental gap in how we conceive AI assistance: expert decisions are made through collaborative cognitive processes where mental models, goals, and constraints are continually co-constructed, tested, and revised between human and AI. We propose Collaborative Causal Sensemaking (CCS) as a research agenda and organizing framework for decision-support agents: systems designed as partners in cognitive work, maintaining evolving models of how particular experts reason, helping articulate and revise goals, co-constructing and stress-testing causal hypotheses, and learning from the outcomes of joint decisions so that both human and agent improve over time. We sketch challenges around training ecologies that make collaborative thinking instrumentally valuable, representations and interaction protocols for co-authored models, and evaluation centred on trust and complementarity. These directions can reframe MAS research around agents that participate in collaborative sensemaking and act as AI teammates that think with their human partners.
☆ ReasonBENCH: Benchmarking the (In)Stability of LLM Reasoning
Large language models (LLMs) are increasingly deployed in settings where reasoning, such as multi-step problem solving and chain-of-thought, is essential. Yet, current evaluation practices overwhelmingly report single-run accuracy while ignoring the intrinsic uncertainty that naturally arises from stochastic decoding. This omission creates a blind spot because practitioners cannot reliably assess whether a method's reported performance is stable, reproducible, or cost-consistent. We introduce ReasonBENCH, the first benchmark designed to quantify the underlying instability in LLM reasoning. ReasonBENCH provides (i) a modular evaluation library that standardizes reasoning frameworks, models, and tasks, (ii) a multi-run protocol that reports statistically reliable metrics for both quality and cost, and (iii) a public leaderboard to encourage variance-aware reporting. Across tasks from different domains, we find that the vast majority of reasoning strategies and models exhibit high instability. Notably, even strategies with similar average performance can display confidence intervals up to four times wider, and the top-performing methods often incur higher and less stable costs. Such instability compromises reproducibility across runs and, consequently, the reliability of reported performance. To better understand these dynamics, we further analyze the impact of prompts, model families, and scale on the trade-off between solve rate and stability. Our results highlight reproducibility as a critical dimension for reliable LLM reasoning and provide a foundation for future reasoning methods and uncertainty quantification techniques. ReasonBENCH is publicly available at https://github.com/au-clan/ReasonBench .
comment: 11 pages, 3 tables, 4 figures
☆ GatedFWA: Linear Flash Windowed Attention with Gated Associative Memory
Modern autoregressive models rely on attention, yet the Softmax full attention in Transformers scales quadratically with sequence length. Sliding Window Attention (SWA) achieves linear-time encoding/decoding by constraining the attention pattern, but under an \textit{Associative Memory} interpretation, its difference-style update renders the training objective effectively \emph{unbounded}. In contrast, Softmax attention normalizes updates, leading to \emph{memory shrinkage and gradient vanishing}. We propose GatedFWA: a Memory-\underline{Gated} (\underline{F}lash) \underline{W}indowed \underline{A}ttention mechanism that preserves SWAs efficiency while stabilizing memory updates and making gradient flow controllable. In essence, GatedFWA accumulate a per-token/head gate into a decay bias added to the attention logits, acting as a learnable contraction in the memory recurrence. We implement a fused one-pass gate preprocessing and a FlashAttention-compatible kernel that injects the gate under a sliding mask, ensuring I/O efficiency and numerical stability. On language modelling benchmarks, GatedFWA delivers competitive throughput with negligible overhead and better use of global context, and it integrates cleanly with token compression/selection methods such as NSA and generalizes to various autoregressive domains.
☆ Distribution-informed Online Conformal Prediction
Conformal prediction provides a pivotal and flexible technique for uncertainty quantification by constructing prediction sets with a predefined coverage rate. Many online conformal prediction methods have been developed to address data distribution shifts in fully adversarial environments, resulting in overly conservative prediction sets. We propose Conformal Optimistic Prediction (COP), an online conformal prediction algorithm incorporating underlying data pattern into the update rule. Through estimated cumulative distribution function of non-conformity scores, COP produces tighter prediction sets when predictable pattern exists, while retaining valid coverage guarantees even when estimates are inaccurate. We establish a joint bound on coverage and regret, which further confirms the validity of our approach. We also prove that COP achieves distribution-free, finite-sample coverage under arbitrary learning rates and can converge when scores are $i.i.d.$. The experimental results also show that COP can achieve valid coverage and construct shorter prediction intervals than other baselines.
☆ Formalized Hopfield Networks and Boltzmann Machines
Neural networks are widely used, yet their analysis and verification remain challenging. In this work, we present a Lean 4 formalization of neural networks, covering both deterministic and stochastic models. We first formalize Hopfield networks, recurrent networks that store patterns as stable states. We prove convergence and the correctness of Hebbian learning, a training rule that updates network parameters to encode patterns, here limited to the case of pairwise-orthogonal patterns. We then consider stochastic networks, where updates are probabilistic and convergence is to a stationary distribution. As a canonical example, we formalize the dynamics of Boltzmann machines and prove their ergodicity, showing convergence to a unique stationary distribution using a new formalization of the Perron-Frobenius theorem.
☆ RL-MTJail: Reinforcement Learning for Automated Black-Box Multi-Turn Jailbreaking of Large Language Models
Large language models are vulnerable to jailbreak attacks, threatening their safe deployment in real-world applications. This paper studies black-box multi-turn jailbreaks, aiming to train attacker LLMs to elicit harmful content from black-box models through a sequence of prompt-output interactions. Existing approaches typically rely on single turn optimization, which is insufficient for learning long-term attack strategies. To bridge this gap, we formulate the problem as a multi-turn reinforcement learning task, directly optimizing the harmfulness of the final-turn output as the outcome reward. To mitigate sparse supervision and promote long-term attack strategies, we propose two heuristic process rewards: (1) controlling the harmfulness of intermediate outputs to prevent triggering the black-box model's rejection mechanisms, and (2) maintaining the semantic relevance of intermediate outputs to avoid drifting into irrelevant content. Experimental results on multiple benchmarks show consistently improved attack success rates across multiple models, highlighting the effectiveness of our approach. The code is available at https://github.com/xxiqiao/RL-MTJail. Warning: This paper contains examples of harmful content.
comment: 19 pages, 15 figures
☆ Physics-Informed Neural Networks for Source Inversion and Parameters Estimation in Atmospheric Dispersion
Recent studies have shown the success of deep learning in solving forward and inverse problems in engineering and scientific computing domains, such as physics-informed neural networks (PINNs). In the fields of atmospheric science and environmental monitoring, estimating emission source locations is a central task that further relies on multiple model parameters that dictate velocity profiles and diffusion parameters. Estimating these parameters at the same time as emission sources from scarce data is a difficult task. In this work, we achieve this by leveraging the flexibility and generality of PINNs. We use a weighted adaptive method based on the neural tangent kernels to solve a source inversion problem with parameter estimation on the 2D and 3D advection-diffusion equations with unknown velocity and diffusion coefficients that may vary in space and time. Our proposed weighted adaptive method is presented as an extension of PINNs for forward PDE problems to a highly ill-posed source inversion and parameter estimation problem. The key idea behind our methodology is to attempt the joint recovery of the solution, the sources along with the unknown parameters, thereby using the underlying partial differential equation as a constraint that couples multiple unknown functional parameters, leading to more efficient use of the limited information in the measurements. We present various numerical experiments, using different types of measurements that model practical engineering systems, to show that our proposed method is indeed successful and robust to additional noise in the measurements.
☆ A multimodal Bayesian Network for symptom-level depression and anxiety prediction from voice and speech data
During psychiatric assessment, clinicians observe not only what patients report, but important nonverbal signs such as tone, speech rate, fluency, responsiveness, and body language. Weighing and integrating these different information sources is a challenging task and a good candidate for support by intelligence-driven tools - however this is yet to be realized in the clinic. Here, we argue that several important barriers to adoption can be addressed using Bayesian network modelling. To demonstrate this, we evaluate a model for depression and anxiety symptom prediction from voice and speech features in large-scale datasets (30,135 unique speakers). Alongside performance for conditions and symptoms (for depression, anxiety ROC-AUC=0.842,0.831 ECE=0.018,0.015; core individual symptom ROC-AUC>0.74), we assess demographic fairness and investigate integration across and redundancy between different input modality types. Clinical usefulness metrics and acceptability to mental health service users are explored. When provided with sufficiently rich and large-scale multimodal data streams and specified to represent common mental conditions at the symptom rather than disorder level, such models are a principled approach for building robust assessment support tools: providing clinically-relevant outputs in a transparent and explainable format that is directly amenable to expert clinical supervision.
☆ A scalable and real-time neural decoder for topological quantum codes
Fault-tolerant quantum computing will require error rates far below those achievable with physical qubits. Quantum error correction (QEC) bridges this gap, but depends on decoders being simultaneously fast, accurate, and scalable. This combination of requirements has not yet been met by a machine-learning decoder, nor by any decoder for promising resource-efficient codes such as the colour code. Here we introduce AlphaQubit 2, a neural-network decoder that achieves near-optimal logical error rates for both surface and colour codes at large scales under realistic noise. For the colour code, it is orders of magnitude faster than other high-accuracy decoders. For the surface code, we demonstrate real-time decoding faster than 1 microsecond per cycle up to distance 11 on current commercial accelerators with better accuracy than leading real-time decoders. These results support the practical application of a wider class of promising QEC codes, and establish a credible path towards high-accuracy, real-time neural decoding at the scales required for fault-tolerant quantum computation.
☆ Enabling Delayed-Full Charging Through Transformer-Based Real-Time-to-Departure Modeling for EV Battery Longevity AAAI'26
Electric vehicles (EVs) are key to sustainable mobility, yet their lithium-ion batteries (LIBs) degrade more rapidly under prolonged high states of charge (SOC). This can be mitigated by delaying full charging \ours until just before departure, which requires accurate prediction of user departure times. In this work, we propose Transformer-based real-time-to-event (TTE) model for accurate EV departure prediction. Our approach represents each day as a TTE sequence by discretizing time into grid-based tokens. Unlike previous methods primarily dependent on temporal dependency from historical patterns, our method leverages streaming contextual information to predict departures. Evaluation on a real-world study involving 93 users and passive smartphone data demonstrates that our method effectively captures irregular departure patterns within individual routines, outperforming baseline models. These results highlight the potential for practical deployment of the \ours algorithm and its contribution to sustainable transportation systems.
comment: 16 pages, 9 figures, AAAI'26 (accepted)
☆ Each Prompt Matters: Scaling Reinforcement Learning Without Wasting Rollouts on Hundred-Billion-Scale MoE
We present CompassMax-V3-Thinking, a hundred-billion-scale MoE reasoning model trained with a new RL framework built on one principle: each prompt must matter. Scaling RL to this size exposes critical inefficiencies-zero-variance prompts that waste rollouts, unstable importance sampling over long horizons, advantage inversion from standard reward models, and systemic bottlenecks in rollout processing. To overcome these challenges, we introduce several unified innovations: (1) Multi-Stage Zero-Variance Elimination, which filters out non-informative prompts and stabilizes group-based policy optimization (e.g. GRPO) by removing wasted rollouts; (2) ESPO, an entropy-adaptive optimization method that balances token-level and sequence-level importance sampling to maintain stable learning dynamics; (3) a Router Replay strategy that aligns training-time MoE router decisions with inference-time behavior to mitigate train-infer discrepancies, coupled with a reward model adjustment to prevent advantage inversion; (4) a high-throughput RL system with FP8-precision rollouts, overlapped reward computation, and length-aware scheduling to eliminate performance bottlenecks. Together, these contributions form a cohesive pipeline that makes RL on hundred-billion-scale MoE models stable and efficient. The resulting model delivers strong performance across both internal and public evaluations.
☆ In-Context and Few-Shots Learning for Forecasting Time Series Data based on Large Language Models
Existing data-driven approaches in modeling and predicting time series data include ARIMA (Autoregressive Integrated Moving Average), Transformer-based models, LSTM (Long Short-Term Memory) and TCN (Temporal Convolutional Network). These approaches, and in particular deep learning-based models such as LSTM and TCN, have shown great results in predicting time series data. With the advancement of leveraging pre-trained foundation models such as Large Language Models (LLMs) and more notably Google's recent foundation model for time series data, {\it TimesFM} (Time Series Foundation Model), it is of interest to investigate whether these foundation models have the capability of outperforming existing modeling approaches in analyzing and predicting time series data. This paper investigates the performance of using LLM models for time series data prediction. We investigate the in-context learning methodology in the training of LLM models that are specific to the underlying application domain. More specifically, the paper explores training LLMs through in-context, zero-shot and few-shot learning and forecasting time series data with OpenAI {\tt o4-mini} and Gemini 2.5 Flash Lite, as well as the recent Google's Transformer-based TimesFM, a time series-specific foundation model, along with two deep learning models, namely TCN and LSTM networks. The findings indicate that TimesFM has the best overall performance with the lowest RMSE value (0.3023) and the competitive inference time (266 seconds). Furthermore, OpenAI's o4-mini also exhibits a good performance based on Zero Shot learning. These findings highlight pre-trained time series foundation models as a promising direction for real-time forecasting, enabling accurate and scalable deployment with minimal model adaptation.
☆ PVeRA: Probabilistic Vector-Based Random Matrix Adaptation
Large foundation models have emerged in the last years and are pushing performance boundaries for a variety of tasks. Training or even finetuning such models demands vast datasets and computational resources, which are often scarce and costly. Adaptation methods provide a computationally efficient solution to address these limitations by allowing such models to be finetuned on small amounts of data and computing power. This is achieved by appending new trainable modules to frozen backbones with only a fraction of the trainable parameters and fitting only these modules on novel tasks. Recently, the VeRA adapter was shown to excel in parameter-efficient adaptations by utilizing a pair of frozen random low-rank matrices shared across all layers. In this paper, we propose PVeRA, a probabilistic version of the VeRA adapter, which modifies the low-rank matrices of VeRA in a probabilistic manner. This modification naturally allows handling inherent ambiguities in the input and allows for different sampling configurations during training and testing. A comprehensive evaluation was performed on the VTAB-1k benchmark and seven adapters, with PVeRA outperforming VeRA and other adapters. Our code for training models with PVeRA and benchmarking all adapters is available https://github.com/leofillioux/pvera.
☆ Delay-Aware Diffusion Policy: Bridging the Observation-Execution Gap in Dynamic Tasks
As a robot senses and selects actions, the world keeps changing. This inference delay creates a gap of tens to hundreds of milliseconds between the observed state and the state at execution. In this work, we take the natural generalization from zero delay to measured delay during training and inference. We introduce Delay-Aware Diffusion Policy (DA-DP), a framework for explicitly incorporating inference delays into policy learning. DA-DP corrects zero-delay trajectories to their delay-compensated counterparts, and augments the policy with delay conditioning. We empirically validate DA-DP on a variety of tasks, robots, and delays and find its success rate more robust to delay than delay-unaware methods. DA-DP is architecture agnostic and transfers beyond diffusion policies, offering a general pattern for delay-aware imitation learning. More broadly, DA-DP encourages evaluation protocols that report performance as a function of measured latency, not just task difficulty.
☆ A Bootstrap Perspective on Stochastic Gradient Descent
Machine learning models trained with \emph{stochastic} gradient descent (SGD) can generalize better than those trained with deterministic gradient descent (GD). In this work, we study SGD's impact on generalization through the lens of the statistical bootstrap: SGD uses gradient variability under batch sampling as a proxy for solution variability under the randomness of the data collection process. We use empirical results and theoretical analysis to substantiate this claim. In idealized experiments on empirical risk minimization, we show that SGD is drawn to parameter choices that are robust under resampling and thus avoids spurious solutions even if they lie in wider and deeper minima of the training loss. We prove rigorously that by implicitly regularizing the trace of the gradient covariance matrix, SGD controls the algorithmic variability. This regularization leads to solutions that are less sensitive to sampling noise, thereby improving generalization. Numerical experiments on neural network training show that explicitly incorporating the estimate of the algorithmic variability as a regularizer improves test performance. This fact supports our claim that bootstrap estimation underpins SGD's generalization advantages.
☆ Depth-Wise Activation Steering for Honest Language Models
Large language models sometimes assert falsehoods despite internally representing the correct answer, failures of honesty rather than accuracy, which undermines auditability and safety. Existing approaches largely optimize factual correctness or depend on retraining and brittle single-layer edits, offering limited leverage over truthful reporting. We present a training-free activation steering method that weights steering strength across network depth using a Gaussian schedule. On the MASK benchmark, which separates honesty from knowledge, we evaluate seven models spanning the LLaMA, Qwen, and Mistral families and find that Gaussian scheduling improves honesty over no-steering and single-layer baselines in six of seven models. Equal-budget ablations on LLaMA-3.1-8B-Instruct and Qwen-2.5-7B-Instruct show the Gaussian schedule outperforms random, uniform, and box-filter depth allocations, indicating that how intervention is distributed across depth materially affects outcomes beyond total strength. The method is simple, model-agnostic, requires no finetuning, and provides a low-cost control knob for eliciting truthful reporting from models' existing capabilities.
comment: See \url{https://github.com/marysia/gaussian-activation-steering}. for code and experiments
☆ Exploring Test-time Scaling via Prediction Merging on Large-Scale Recommendation
Inspired by the success of language models (LM), scaling up deep learning recommendation systems (DLRS) has become a recent trend in the community. All previous methods tend to scale up the model parameters during training time. However, how to efficiently utilize and scale up computational resources during test time remains underexplored, which can prove to be a scaling-efficient approach and bring orthogonal improvements in LM domains. The key point in applying test-time scaling to DLRS lies in effectively generating diverse yet meaningful outputs for the same instance. We propose two ways: One is to explore the heterogeneity of different model architectures. The other is to utilize the randomness of model initialization under a homogeneous architecture. The evaluation is conducted across eight models, including both classic and SOTA models, on three benchmarks. Sufficient evidence proves the effectiveness of both solutions. We further prove that under the same inference budget, test-time scaling can outperform parameter scaling. Our test-time scaling can also be seamlessly accelerated with the increase in parallel servers when deployed online, without affecting the inference time on the user side. Code is available.
☆ A Mathematical Theory of Top-$k$ Sparse Attention via Total Variation Distance
We develop a unified mathematical framework for certified Top-$k$ attention truncation that quantifies approximation error at both the distribution and output levels. For a single attention distribution $P$ and its Top-$k$ truncation $\hat P$, we show that the total-variation distance coincides with the discarded softmax tail mass and satisfies $\mathrm{TV}(P,\hat P)=1-e^{-\mathrm{KL}(\hat P\Vert P)}$, yielding sharp Top-$k$-specific bounds in place of generic inequalities. From this we derive non-asymptotic deterministic bounds -- from a single boundary gap through multi-gap and blockwise variants -- that control $\mathrm{TV}(P,\hat P)$ using only the ordered logits. Using an exact head-tail decomposition, we prove that the output error factorizes as $\|\mathrm{Attn}(q,K,V)-\mathrm{Attn}_k(q,K,V)\|_2=τ\|μ_{\mathrm{tail}}-μ_{\mathrm{head}}\|_2$ with $τ=\mathrm{TV}(P,\hat P)$, yielding a new head-tail diameter bound $\|\mathrm{Attn}(q,K,V)-\mathrm{Attn}_k(q,K,V)\|_2\leτ\,\mathrm{diam}_{H,T}$ and refinements linking the error to $\mathrm{Var}_P(V)$. Under an i.i.d. Gaussian score model $s_i\sim\mathcal N(μ,σ^2)$ we derive closed-form tail masses and an asymptotic rule for the minimal $k_\varepsilon$ ensuring $\mathrm{TV}(P,\hat P)\le\varepsilon$, namely $k_\varepsilon/n\approxΦ_c(σ+Φ^{-1}(\varepsilon))$. Experiments on bert-base-uncased and synthetic logits confirm the predicted scaling of $k_\varepsilon/n$ and show that certified Top-$k$ can reduce scored keys by 2-4$\times$ on average while meeting the prescribed total-variation budget.
☆ The Agent Capability Problem: Predicting Solvability Through Information-Theoretic Bounds
When should an autonomous agent commit resources to a task? We introduce the Agent Capability Problem (ACP), a framework for predicting whether an agent can solve a problem under resource constraints. Rather than relying on empirical heuristics, ACP frames problem-solving as information acquisition: an agent requires $\Itotal$ bits to identify a solution and gains $\Istep$ bits per action at cost $\Cstep$, yielding an effective cost $\Ceff = (\Itotal/\Istep), \Cstep$ that predicts resource requirements before search. We prove that $\Ceff$ lower-bounds expected cost and provide tight probabilistic upper bounds. Experimental validation shows that ACP predictions closely track actual agent performance, consistently bounding search effort while improving efficiency over greedy and random strategies. The framework generalizes across LLM-based and agentic workflows, linking principles from active learning, Bayesian optimization, and reinforcement learning through a unified information-theoretic lens. \
☆ Time Series Foundation Models for Process Model Forecasting
Process Model Forecasting (PMF) aims to predict how the control-flow structure of a process evolves over time by modeling the temporal dynamics of directly-follows (DF) relations, complementing predictive process monitoring that focuses on single-case prefixes. Prior benchmarks show that machine learning and deep learning models provide only modest gains over statistical baselines, mainly due to the sparsity and heterogeneity of the DF time series. We investigate Time Series Foundation Models (TSFMs), large pre-trained models for generic time series, as an alternative for PMF. Using DF time series derived from real-life event logs, we compare zero-shot use of TSFMs, without additional training, with fine-tuned variants adapted on PMF-specific data. TSFMs generally achieve lower forecasting errors (MAE and RMSE) than traditional and specialized models trained from scratch on the same logs, indicating effective transfer of temporal structure from non-process domains. While fine-tuning can further improve accuracy, the gains are often small and may disappear on smaller or more complex datasets, so zero-shot use remains a strong default. Our study highlights the generalization capability and data efficiency of TSFMs for process-related time series and, to the best of our knowledge, provides the first systematic evaluation of temporal foundation models for PMF.
☆ PCMind-2.1-Kaiyuan-2B Technical Report
The rapid advancement of Large Language Models (LLMs) has resulted in a significant knowledge gap between the open-source community and industry, primarily because the latter relies on closed-source, high-quality data and training recipes. To address this, we introduce PCMind-2.1-Kaiyuan-2B, a fully open-source 2-billion-parameter model focused on improving training efficiency and effectiveness under resource constraints. Our methodology includes three key innovations: a Quantile Data Benchmarking method for systematically comparing heterogeneous open-source datasets and providing insights on data mixing strategies; a Strategic Selective Repetition scheme within a multi-phase paradigm to effectively leverage sparse, high-quality data; and a Multi-Domain Curriculum Training policy that orders samples by quality. Supported by a highly optimized data preprocessing pipeline and architectural modifications for FP16 stability, Kaiyuan-2B achieves performance competitive with state-of-the-art fully open-source models, demonstrating practical and scalable solutions for resource-limited pretraining. We release all assets (including model weights, data, and code) under Apache 2.0 license at https://huggingface.co/thu-pacman/PCMind-2.1-Kaiyuan-2B.
☆ Comparative Analysis and Parametric Tuning of PPO, GRPO, and DAPO for LLM Reasoning Enhancement
This study presents a systematic comparison of three Reinforcement Learning (RL) algorithms (PPO, GRPO, and DAPO) for improving complex reasoning in large language models (LLMs). Our main contribution is a controlled transfer-learning evaluation: models are first fine-tuned on the specialized Countdown Game and then assessed on a suite of general-purpose reasoning benchmarks. Across all tasks, RL-trained models outperform their corresponding base models, although the degree of improvement differs by benchmark. Our parametric analysis offers practical guidance for RL-based LLM training. Increasing the group size in GRPO and DAPO leads to more stable training dynamics and higher accuracy, while the impact of the KL-penalty coefficient is non-monotonic. Additionally, we find that the Dynamic Sampling (DS) component in DAPO does not improve performance; in fact, the best overall results are achieved with DAPO when DS is disabled.
☆ $φ$-test: Global Feature Selection and Inference for Shapley Additive Explanations
We propose $φ$-test, a global feature-selection and significance procedure for black-box predictors that combines Shapley attributions with selective inference. Given a trained model and an evaluation dataset, $φ$-test performs SHAP-guided screening and fits a linear surrogate on the screened features via a selection rule with a tractable selective-inference form. For each retained feature, it outputs a Shapley-based global score, a surrogate coefficient, and post-selection $p$-values and confidence intervals in a global feature-importance table. Experiments on real tabular regression tasks with tree-based and neural backbones suggest that $φ$-test can retain much of the predictive ability of the original model while using only a few features and producing feature sets that remain fairly stable across resamples and backbone classes. In these settings, $φ$-test acts as a practical global explanation layer linking Shapley-based importance summaries with classical statistical inference.
comment: 15 pages
☆ Weighted Contrastive Learning for Anomaly-Aware Time-Series Forecasting
Reliable forecasting of multivariate time series under anomalous conditions is crucial in applications such as ATM cash logistics, where sudden demand shifts can disrupt operations. Modern deep forecasters achieve high accuracy on normal data but often fail when distribution shifts occur. We propose Weighted Contrastive Adaptation (WECA), a Weighted contrastive objective that aligns normal and anomaly-augmented representations, preserving anomaly-relevant information while maintaining consistency under benign variations. Evaluations on a nationwide ATM transaction dataset with domain-informed anomaly injection show that WECA improves SMAPE on anomaly-affected data by 6.1 percentage points compared to a normally trained baseline, with negligible degradation on normal data. These results demonstrate that WECA enhances forecasting reliability under anomalies without sacrificing performance during regular operations.
☆ Toward More Reliable Artificial Intelligence: Reducing Hallucinations in Vision-Language Models
Vision-language models (VLMs) frequently generate hallucinated content plausible but incorrect claims about image content. We propose a training-free self-correction framework enabling VLMs to iteratively refine responses through uncertainty-guided visual re-attention. Our method combines multidimensional uncertainty quantification (token entropy, attention dispersion, semantic consistency, claim confidence) with attention-guided cropping of under-explored regions. Operating entirely with frozen, pretrained VLMs, our framework requires no gradient updates. We validate our approach on the POPE and MMHAL BENCH benchmarks using the Qwen2.5-VL-7B [23] architecture. Experimental results demonstrate that our method reduces hallucination rates by 9.8 percentage points compared to the baseline, while improving object existence accuracy by 4.7 points on adversarial splits. Furthermore, qualitative analysis confirms that uncertainty-guided re-attention successfully grounds corrections in visual evidence where standard decoding fails. We validate our approach on Qwen2.5-VL-7B [23], with plans to extend validation across diverse architectures in future versions. We release our code and methodology to facilitate future research in trustworthy multimodal systems.
comment: 24 pages, 3 figures, 2 tables. Training-free self-correction framework for vision-language models. Code and implementation details will be released at: https://github.com/kassoumsanogo1/self-correcting-vlm-re-Attention.git
☆ ReLaX: Reasoning with Latent Exploration for Large Reasoning Models
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated remarkable potential in enhancing the reasoning capability of Large Reasoning Models (LRMs). However, RLVR often leads to entropy collapse, resulting in premature policy convergence and performance saturation. While manipulating token-level entropy has proven effective for promoting policy exploration, we argue that the latent dynamics underlying token generation encode a far richer computational structure for steering policy optimization toward a more effective exploration-exploitation tradeoff. To enable tractable analysis and intervention of the latent dynamics of LRMs, we leverage Koopman operator theory to obtain a linearized representation of their hidden-state dynamics. This enables us to introduce Dynamic Spectral Dispersion (DSD), a new metric to quantify the heterogeneity of the model's latent dynamics, serving as a direct indicator of policy exploration. Building upon these foundations, we propose Reasoning with Latent eXploration (ReLaX), a paradigm that explicitly incorporates latent dynamics to regulate exploration and exploitation during policy optimization. Comprehensive experiments across a wide range of multimodal and text-only reasoning benchmarks show that ReLaX significantly mitigates premature convergence and consistently achieves state-of-the-art performance.
☆ On Conditional Independence Graph Learning From Multi-Attribute Gaussian Dependent Time Series
Estimation of the conditional independence graph (CIG) of high-dimensional multivariate Gaussian time series from multi-attribute data is considered. Existing methods for graph estimation for such data are based on single-attribute models where one associates a scalar time series with each node. In multi-attribute graphical models, each node represents a random vector or vector time series. In this paper we provide a unified theoretical analysis of multi-attribute graph learning for dependent time series using a penalized log-likelihood objective function formulated in the frequency domain using the discrete Fourier transform of the time-domain data. We consider both convex (sparse-group lasso) and non-convex (log-sum and SCAD group penalties) penalty/regularization functions. We establish sufficient conditions in a high-dimensional setting for consistency (convergence of the inverse power spectral density to true value in the Frobenius norm), local convexity when using non-convex penalties, and graph recovery. We do not impose any incoherence or irrepresentability condition for our convergence results. We also empirically investigate selection of the tuning parameters based on the Bayesian information criterion, and illustrate our approach using numerical examples utilizing both synthetic and real data.
comment: 16 pages, 3 figures, 4 tables
☆ RRAEDy: Adaptive Latent Linearization of Nonlinear Dynamical Systems
Most existing latent-space models for dynamical systems require fixing the latent dimension in advance, they rely on complex loss balancing to approximate linear dynamics, and they don't regularize the latent variables. We introduce RRAEDy, a model that removes these limitations by discovering the appropriate latent dimension, while enforcing both regularized and linearized dynamics in the latent space. Built upon Rank-Reduction Autoencoders (RRAEs), RRAEDy automatically rank and prune latent variables through their singular values while learning a latent Dynamic Mode Decomposition (DMD) operator that governs their temporal progression. This structure-free yet linearly constrained formulation enables the model to learn stable and low-dimensional dynamics without auxiliary losses or manual tuning. We provide theoretical analysis demonstrating the stability of the learned operator and showcase the generality of our model by proposing an extension that handles parametric ODEs. Experiments on canonical benchmarks, including the Van der Pol oscillator, Burgers' equation, 2D Navier-Stokes, and Rotating Gaussians, show that RRAEDy achieves accurate and robust predictions. Our code is open-source and available at https://github.com/JadM133/RRAEDy. We also provide a video summarizing the main results at https://youtu.be/ox70mSSMGrM.
☆ High-Dimensional Change Point Detection using Graph Spanning Ratio
Inspired by graph-based methodologies, we introduce a novel graph-spanning algorithm designed to identify changes in both offline and online data across low to high dimensions. This versatile approach is applicable to Euclidean and graph-structured data with unknown distributions, while maintaining control over error probabilities. Theoretically, we demonstrate that the algorithm achieves high detection power when the magnitude of the change surpasses the lower bound of the minimax separation rate, which scales on the order of $\sqrt{nd}$. Our method outperforms other techniques in terms of accuracy for both Gaussian and non-Gaussian data. Notably, it maintains strong detection power even with small observation windows, making it particularly effective for online environments where timely and precise change detection is critical.
☆ Minimum Bayes Risk Decoding for Error Span Detection in Reference-Free Automatic Machine Translation Evaluation
Error Span Detection (ESD) is a subtask of automatic machine translation evaluation that localizes error spans in translations and labels their severity. State-of-the-art generative ESD methods typically decode using Maximum a Posteriori (MAP), assuming that model-estimated probabilities are perfectly correlated with similarity to human annotation. However, we observed that annotations dissimilar to the human annotation could achieve a higher model likelihood than the human annotation. We address this issue by applying Minimum Bayes Risk (MBR) decoding to generative ESD models. Specifically, we employ sentence- and span-level similarity metrics as utility functions to select candidate hypotheses based on their approximate similarity to the human annotation. Extensive experimental results show that our MBR decoding outperforms the MAP baseline at the system, sentence, and span-levels. Furthermore, to mitigate the computational cost of MBR decoding, we demonstrate that applying MBR distillation enables a standard greedy model to match MBR decoding performance, effectively eliminating the inference-time latency bottleneck.
☆ FRWKV:Frequency-Domain Linear Attention for Long-Term Time Series Forecasting
Traditional Transformers face a major bottleneck in long-sequence time series forecasting due to their quadratic complexity $(\mathcal{O}(T^2))$ and their limited ability to effectively exploit frequency-domain information. Inspired by RWKV's $\mathcal{O}(T)$ linear attention and frequency-domain modeling, we propose FRWKV, a frequency-domain linear-attention framework that overcomes these limitations. Our model integrates linear attention mechanisms with frequency-domain analysis, achieving $\mathcal{O}(T)$ computational complexity in the attention path while exploiting spectral information to enhance temporal feature representations for scalable long-sequence modeling. Across eight real-world datasets, FRWKV achieves a first-place average rank. Our ablation studies confirm the critical roles of both the linear attention and frequency-encoder components. This work demonstrates the powerful synergy between linear attention and frequency analysis, establishing a new paradigm for scalable time series modeling. Code is available at this repository: https://github.com/yangqingyuan-byte/FRWKV.
☆ Model-Based Reinforcement Learning Under Confounding
We investigate model-based reinforcement learning in contextual Markov decision processes (C-MDPs) in which the context is unobserved and induces confounding in the offline dataset. In such settings, conventional model-learning methods are fundamentally inconsistent, as the transition and reward mechanisms generated under a behavioral policy do not correspond to the interventional quantities required for evaluating a state-based policy. To address this issue, we adapt a proximal off-policy evaluation approach that identifies the confounded reward expectation using only observable state-action-reward trajectories under mild invertibility conditions on proxy variables. When combined with a behavior-averaged transition model, this construction yields a surrogate MDP whose Bellman operator is well defined and consistent for state-based policies, and which integrates seamlessly with the maximum causal entropy (MaxCausalEnt) model-learning framework. The proposed formulation enables principled model learning and planning in confounded environments where contextual information is unobserved, unavailable, or impractical to collect.
comment: 9 pages, 2 figures - decompressed draft
☆ Machine Learning: Progress and Prospects
This Inaugural Lecture was given at Royal Holloway University of London in 1996. It covers an introduction to machine learning and describes various theoretical advances and practical projects in the field. The Lecture here is presented in its original format, but a few remarks have been added in 2025 to reflect recent developments, and the list of references has been updated to enhance the convenience and accuracy for readers. When did machine learning start? Maybe a good starting point is 1949, when Claude Shannon proposed a learning algorithm for chess-playing programs. Or maybe we should go back to the 1930s when Ronald Fisher developed discriminant analysis - a type of learning where the problem is to construct a decision rule that separates two types of vectors. Or could it be the 18th century when David Hume discussed the idea of induction? Or the 14th century, when William of Ockham formulated the principle of "simplicity" known as "Ockham's razor" (Ockham, by the way, is a small village not far from Royal Holloway). Or it may be that, like almost everything else in Western civilisation and culture, the origin of these ideas lies in the Mediterranean. After all, it was Aristotle who said that "we learn some things only by doing things". The field of machine learning has been greatly influenced by other disciplines and the subject is in itself not a very homogeneous discipline, but includes separate, overlapping subfields. There are many parallel lines of research in ML: inductive learning, neural networks, clustering, and theories of learning. They are all part of the more general field of machine learning.
comment: Inaugural Lecture. 18 pages, 13 figures, Published in 1997 by Royal Holloway, University of London, ISBN 0 900145 93 5
☆ Exploring possible vector systems for faster training of neural networks with preconfigured latent spaces
The overall neural network (NN) performance is closely related to the properties of its embedding distribution in latent space (LS). It has recently been shown that predefined vector systems, specifically An root system vectors, can be used as targets for latent space configurations (LSC) to ensure the desired LS structure. One of the main LSC advantage is the possibility of training classifier NNs without classification layers, which facilitates training NNs on datasets with extremely large numbers of classes. This paper provides a more general overview of possible vector systems for NN training along with their properties and methods for vector system construction. These systems are used to configure LS of encoders and visual transformers to significantly speed up ImageNet-1K and 50k-600k classes LSC training. It is also shown that using the minimum number of LS dimensions for a specific number of classes results in faster convergence. The latter has potential advantages for reducing the size of vector databases used to store NN embeddings.
comment: 9 pages, 5 figures, 1 table, 4 equations
☆ Efficient Low-Tubal-Rank Tensor Estimation via Alternating Preconditioned Gradient Descent
The problem of low-tubal-rank tensor estimation is a fundamental task with wide applications across high-dimensional signal processing, machine learning, and image science. Traditional approaches tackle such a problem by performing tensor singular value decomposition, which is computationally expensive and becomes infeasible for large-scale tensors. Recent approaches address this issue by factorizing the tensor into two smaller factor tensors and solving the resulting problem using gradient descent. However, this kind of approach requires an accurate estimate of the tensor rank, and when the rank is overestimated, the convergence of gradient descent and its variants slows down significantly or even diverges. To address this problem, we propose an Alternating Preconditioned Gradient Descent (APGD) algorithm, which accelerates convergence in the over-parameterized setting by adding a preconditioning term to the original gradient and updating these two factors alternately. Based on certain geometric assumptions on the objective function, we establish linear convergence guarantees for more general low-tubal-rank tensor estimation problems. Then we further analyze the specific cases of low-tubal-rank tensor factorization and low-tubal-rank tensor recovery. Our theoretical results show that APGD achieves linear convergence even under over-parameterization, and the convergence rate is independent of the tensor condition number. Extensive simulations on synthetic data are carried out to validate our theoretical assertions.
☆ Materium: An Autoregressive Approach for Material Generation
We present Materium: an autoregressive transformer for generating crystal structures that converts 3D material representations into token sequences. These sequences include elements with oxidation states, fractional coordinates and lattice parameters. Unlike diffusion approaches, which refine atomic positions iteratively through many denoising steps, Materium places atoms at precise fractional coordinates, enabling fast, scalable generation. With this design, the model can be trained in a few hours on a single GPU and generate samples much faster on GPUs and CPUs than diffusion-based approaches. The model was trained and evaluated using multiple properties as conditions, including fundamental properties, such as density and space group, as well as more practical targets, such as band gap and magnetic density. In both single and combined conditions, the model performs consistently well, producing candidates that align with the requested inputs.
☆ Affordance Field Intervention: Enabling VLAs to Escape Memory Traps in Robotic Manipulation
Vision-Language-Action (VLA) models have shown great performance in robotic manipulation by mapping visual observations and language instructions directly to actions. However, they remain brittle under distribution shifts: when test scenarios change, VLAs often reproduce memorized trajectories instead of adapting to the updated scene, which is a failure mode we refer to as the "Memory Trap". This limitation stems from the end-to-end design, which lacks explicit 3D spatial reasoning and prevents reliable identification of actionable regions in unfamiliar environments. To compensate for this missing spatial understanding, 3D Spatial Affordance Fields (SAFs) can provide a geometric representation that highlights where interactions are physically feasible, offering explicit cues about regions the robot should approach or avoid. We therefore introduce Affordance Field Intervention (AFI), a lightweight hybrid framework that uses SAFs as an on-demand plug-in to guide VLA behavior. Our system detects memory traps through proprioception, repositions the robot to recent high-affordance regions, and proposes affordance-driven waypoints that anchor VLA-generated actions. A SAF-based scorer then selects trajectories with the highest cumulative affordance. Extensive experiments demonstrate that our method achieves an average improvement of 23.5% across different VLA backbones ($π_{0}$ and $π_{0.5}$) under out-of-distribution scenarios on real-world robotic platforms, and 20.2% on the LIBERO-Pro benchmark, validating its effectiveness in enhancing VLA robustness to distribution shifts.
☆ Parallel Algorithms for Combined Regularized Support Vector Machines: Application in Music Genre Classification
In the era of rapid development of artificial intelligence, its applications span across diverse fields, relying heavily on effective data processing and model optimization. Combined Regularized Support Vector Machines (CR-SVMs) can effectively handle the structural information among data features, but there is a lack of efficient algorithms in distributed-stored big data. To address this issue, we propose a unified optimization framework based on consensus structure. This framework is not only applicable to various loss functions and combined regularization terms but can also be effectively extended to non-convex regularization terms, showing strong scalability. Based on this framework, we develop a distributed parallel alternating direction method of multipliers (ADMM) algorithm to efficiently compute CR-SVMs when data is stored in a distributed manner. To ensure the convergence of the algorithm, we also introduce the Gaussian back-substitution method. Meanwhile, for the integrity of the paper, we introduce a new model, the sparse group lasso support vector machine (SGL-SVM), and apply it to music information retrieval. Theoretical analysis confirms that the computational complexity of the proposed algorithm is not affected by different regularization terms and loss functions, highlighting the universality of the parallel algorithm. Experiments on synthetic and free music archiv datasets demonstrate the reliability, stability, and efficiency of the algorithm.
☆ Understanding LLM Agent Behaviours via Game Theory: Strategy Recognition, Biases and Multi-Agent Dynamics
As Large Language Models (LLMs) increasingly operate as autonomous decision-makers in interactive and multi-agent systems and human societies, understanding their strategic behaviour has profound implications for safety, coordination, and the design of AI-driven social and economic infrastructures. Assessing such behaviour requires methods that capture not only what LLMs output, but the underlying intentions that guide their decisions. In this work, we extend the FAIRGAME framework to systematically evaluate LLM behaviour in repeated social dilemmas through two complementary advances: a payoff-scaled Prisoners Dilemma isolating sensitivity to incentive magnitude, and an integrated multi-agent Public Goods Game with dynamic payoffs and multi-agent histories. These environments reveal consistent behavioural signatures across models and languages, including incentive-sensitive cooperation, cross-linguistic divergence and end-game alignment toward defection. To interpret these patterns, we train traditional supervised classification models on canonical repeated-game strategies and apply them to FAIRGAME trajectories, showing that LLMs exhibit systematic, model- and language-dependent behavioural intentions, with linguistic framing at times exerting effects as strong as architectural differences. Together, these findings provide a unified methodological foundation for auditing LLMs as strategic agents and reveal systematic cooperation biases with direct implications for AI governance, collective decision-making, and the design of safe multi-agent systems.
☆ Optimized Machine Learning Methods for Studying the Thermodynamic Behavior of Complex Spin Systems
This paper presents a systematic study of the application of convolutional neural networks (CNNs) as an efficient and versatile tool for the analysis of critical and low-temperature phase states in spin system models. The problem of calculating the dependence of the average energy on the spatial distribution of exchange integrals for the Edwards-Anderson model on a square lattice with frustrated interactions is considered. We further construct a single convolutional classifier of phase states of the ferromagnetic Ising model on square, triangular, honeycomb, and kagome lattices, trained on configurations generated by the Swendsen-Wang cluster algorithm. Computed temperature profiles of the averaged posterior probability of the high-temperature phase form clear S-shaped curves that intersect in the vicinity of the theoretical critical temperatures and allow one to determine the critical temperature for the kagome lattice without additional retraining. It is shown that convolutional models substantially reduce the root-mean-square error (RMSE) compared with fully connected architectures and efficiently capture complex correlations between thermodynamic characteristics and the structure of magnetic correlated systems.
comment: 16 pages, in Russian language, 8 figures, 2 tables
☆ Forget and Explain: Transparent Verification of GNN Unlearning WSDM 2026
Graph neural networks (GNNs) are increasingly used to model complex patterns in graph-structured data. However, enabling them to "forget" designated information remains challenging, especially under privacy regulations such as the GDPR. Existing unlearning methods largely optimize for efficiency and scalability, yet they offer little transparency, and the black-box nature of GNNs makes it difficult to verify whether forgetting has truly occurred. We propose an explainability-driven verifier for GNN unlearning that snapshots the model before and after deletion, using attribution shifts and localized structural changes (for example, graph edit distance) as transparent evidence. The verifier uses five explainability metrics: residual attribution, heatmap shift, explainability score deviation, graph edit distance, and a diagnostic graph rule shift. We evaluate two backbones (GCN, GAT) and four unlearning strategies (Retrain, GraphEditor, GNNDelete, IDEA) across five benchmarks (Cora, Citeseer, Pubmed, Coauthor-CS, Coauthor-Physics). Results show that Retrain and GNNDelete achieve near-complete forgetting, GraphEditor provides partial erasure, and IDEA leaves residual signals. These explanation deltas provide the primary, human-readable evidence of forgetting; we also report membership-inference ROC-AUC as a complementary, graph-wide privacy signal.
comment: To appear in WSDM 2026 (ACM International Conference on Web Search and Data Mining). Code is available at https://github.com/ImranAhsan23/F-E
☆ KAN-Dreamer: Benchmarking Kolmogorov-Arnold Networks as Function Approximators in World Models
DreamerV3 is a state-of-the-art online model-based reinforcement learning (MBRL) algorithm known for remarkable sample efficiency. Concurrently, Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to Multi-Layer Perceptrons (MLPs), offering superior parameter efficiency and interpretability. To mitigate KANs' computational overhead, variants like FastKAN leverage Radial Basis Functions (RBFs) to accelerate inference. In this work, we investigate integrating KAN architectures into the DreamerV3 framework. We introduce KAN-Dreamer, replacing specific MLP and convolutional components of DreamerV3 with KAN and FastKAN layers. To ensure efficiency within the JAX-based World Model, we implement a tailored, fully vectorized version with simplified grid management. We structure our investigation into three subsystems: Visual Perception, Latent Prediction, and Behavior Learning. Empirical evaluations on the DeepMind Control Suite (walker_walk) analyze sample efficiency, training time, and asymptotic performance. Experimental results demonstrate that utilizing our adapted FastKAN as a drop-in replacement for the Reward and Continue predictors yields performance on par with the original MLP-based architecture, maintaining parity in both sample efficiency and training speed. This report serves as a preliminary study for future developments in KAN-based world models.
comment: 23 pages, 8 figures, 3 tables
☆ Mitigating Bias in Graph Hyperdimensional Computing
Graph hyperdimensional computing (HDC) has emerged as a promising paradigm for cognitive tasks, emulating brain-like computation with high-dimensional vectors known as hypervectors. While HDC offers robustness and efficiency on graph-structured data, its fairness implications remain largely unexplored. In this paper, we study fairness in graph HDC, where biases in data representation and decision rules can lead to unequal treatment of different groups. We show how hypervector encoding and similarity-based classification can propagate or even amplify such biases, and we propose a fairness-aware training framework, FairGHDC, to mitigate them. FairGHDC introduces a bias correction term, derived from a gap-based demographic-parity regularizer, and converts it into a scalar fairness factor that scales the update of the class hypervector for the ground-truth label. This enables debiasing directly in the hypervector space without modifying the graph encoder or requiring backpropagation. Experimental results on six benchmark datasets demonstrate that FairGHDC substantially reduces demographic-parity and equal-opportunity gaps while maintaining accuracy comparable to standard GNNs and fairness-aware GNNs. At the same time, FairGHDC preserves the computational advantages of HDC, achieving up to about one order of magnitude ($\approx 10\times$) speedup in training time on GPU compared to GNN and fairness-aware GNN baselines.
☆ MIDG: Mixture of Invariant Experts with knowledge injection for Domain Generalization in Multimodal Sentiment Analysis
Existing methods in domain generalization for Multimodal Sentiment Analysis (MSA) often overlook inter-modal synergies during invariant features extraction, which prevents the accurate capture of the rich semantic information within multimodal data. Additionally, while knowledge injection techniques have been explored in MSA, they often suffer from fragmented cross-modal knowledge, overlooking specific representations that exist beyond the confines of unimodal. To address these limitations, we propose a novel MSA framework designed for domain generalization. Firstly, the framework incorporates a Mixture of Invariant Experts model to extract domain-invariant features, thereby enhancing the model's capacity to learn synergistic relationships between modalities. Secondly, we design a Cross-Modal Adapter to augment the semantic richness of multimodal representations through cross-modal knowledge injection. Extensive domain experiments conducted on three datasets demonstrate that the proposed MIDG achieves superior performance.
☆ Microseismic event classification with a lightweight Fourier Neural Operator model
Real-time monitoring of induced seismicity is crucial for mitigating operational hazards, relying on the rapid and accurate classification of microseismic events from continuous data streams. However, while many deep learning models excel at this task, their high computational requirements often limit their practical application in real-time monitoring systems. To address this limitation, a lightweight model based on the Fourier Neural Operator (FNO) is proposed for microseismic event classification, leveraging its inherent resolution-invariance and computational efficiency for waveform processing. In the STanford EArthquake Dataset (STEAD), a global and large-scale database of seismic waveforms, the FNO-based model demonstrates high effectiveness for trigger classification, with an F1 score of 95% even in the scenario of data sparsity in training. The new FNO model greatly decreases the computer power needed relative to current deep learning models without sacrificing the classification success rate measured by the F1 score. A test on a real microseismic dataset shows a classification success rate with an F1 score of 98%, outperforming many traditional deep-learning techniques. A combination of high success rate and low computational power indicates that the FNO model can serve as a methodology of choice for real-time monitoring of microseismicity for induced seismicity. The method saves computational resources and facilitates both post-processing and real-time seismic processing suitable for the implementation of traffic light systems to prevent undesired induced seismicity.
comment: Submitted to Nature Scientific Reports
☆ Revolutionizing Mixed Precision Quantization: Towards Training-free Automatic Proxy Discovery via Large Language Models
Mixed-Precision Quantization (MPQ) liberates the Deep Neural Networks (DNNs) from the Out-Of-Memory (OOM) bottleneck, which garnered increasing research attention. However, conventional methods either searched from costly differentiable optimization, which is neither efficient nor flexible, or learned a quantized DNN from the proxy (i.e., HAWQ) manually designed by human experts, which is labor-intensive and requires huge expert knowledge. Can we design a proxy without involving any human experts and training? In this paper, we provide an affirmative answer by proposing a novel Large Language Models (LLMs)-driven Training-free Automatic Proxy (dubbed TAP) discovery framework, which reforms the design paradigm of MPQ by utilizing LLMs to find superior TAP tailored for MPQ, automatically. In addition, to bridge the gap between black-box LLMs and the tough MPQ task, we ingeniously propose simple Direct Policy Optimization (DPO) based reinforcement learning to enhance LLMs' reasoning by optimizing prompts, which can construct a positive feedback loop between the LLM and the MPQ task, enabling LLMs to generate better TAP in the next evolution. Extensive experiments on mainstream benchmarks demonstrate that TAP achieves state-of-the-art performance. Finally, we truly believe that our TAP will significantly contribute to the MPQ community by providing a new perspective on LLM-driven design algorithms.
☆ Adaptive Tuning of Parameterized Traffic Controllers via Multi-Agent Reinforcement Learning
Effective traffic control is essential for mitigating congestion in transportation networks. Conventional traffic management strategies, including route guidance, ramp metering, and traffic signal control, often rely on state feedback controllers, used for their simplicity and reactivity; however, they lack the adaptability required to cope with complex and time-varying traffic dynamics. This paper proposes a multi-agent reinforcement learning framework in which each agent adaptively tunes the parameters of a state feedback traffic controller, combining the reactivity of state feedback controllers with the adaptability of reinforcement learning. By tuning parameters at a lower frequency rather than directly determining control actions at a high frequency, the reinforcement learning agents achieve improved training efficiency while maintaining adaptability to varying traffic conditions. The multi-agent structure further enhances system robustness, as local controllers can operate independently in the event of partial failures. The proposed framework is evaluated on a simulated multi-class transportation network under varying traffic conditions. Results show that the proposed multi-agent framework outperforms the no control and fixed-parameter state feedback control cases, while performing on par with the single-agent RL-based adaptive state feedback control, with a much better resilience to partial failures.
☆ Do LLMs Trust the Code They Write?
Despite the effectiveness of large language models (LLMs) for code generation, they often output incorrect code. One reason is that model output probabilities are often not well-correlated with correctness, and reflect only the final output of the generation process. Inspired by findings that LLMs internally encode concepts like truthfulness, this paper explores if LLMs similarly represent code correctness. Specifically, we identify a correctness representation inside LLMs by contrasting the hidden states between pairs of correct and incorrect code for the same programming tasks. By experimenting on four LLMs, we show that exploiting this extracted correctness representation outperforms standard log-likelihood ranking, as well as verbalized model confidence. Furthermore, we explore how this internal correctness signal can be used to select higher-quality code samples, without requiring test execution. Ultimately, this work demonstrates how leveraging internal representations can enhance code generation systems and make LLMs more reliable, thus improving confidence in automatically generated code.
☆ Asymptotic analysis of shallow and deep forgetting in replay with Neural Collapse
A persistent paradox in continual learning (CL) is that neural networks often retain linearly separable representations of past tasks even when their output predictions fail. We formalize this distinction as the gap between deep feature-space and shallow classifier-level forgetting. We reveal a critical asymmetry in Experience Replay: while minimal buffers successfully anchor feature geometry and prevent deep forgetting, mitigating shallow forgetting typically requires substantially larger buffer capacities. To explain this, we extend the Neural Collapse framework to the sequential setting. We characterize deep forgetting as a geometric drift toward out-of-distribution subspaces and prove that any non-zero replay fraction asymptotically guarantees the retention of linear separability. Conversely, we identify that the "strong collapse" induced by small buffers leads to rank-deficient covariances and inflated class means, effectively blinding the classifier to true population boundaries. By unifying CL with out-of-distribution detection, our work challenges the prevailing reliance on large buffers, suggesting that explicitly correcting these statistical artifacts could unlock robust performance with minimal replay.
☆ Empirical Results for Adjusting Truncated Backpropagation Through Time while Training Neural Audio Effects
This paper investigates the optimization of Truncated Backpropagation Through Time (TBPTT) for training neural networks in digital audio effect modeling, with a focus on dynamic range compression. The study evaluates key TBPTT hyperparameters -- sequence number, batch size, and sequence length -- and their influence on model performance. Using a convolutional-recurrent architecture, we conduct extensive experiments across datasets with and without conditionning by user controls. Results demonstrate that carefully tuning these parameters enhances model accuracy and training stability, while also reducing computational demands. Objective evaluations confirm improved performance with optimized settings, while subjective listening tests indicate that the revised TBPTT configuration maintains high perceptual quality.
☆ Towards Reliable Test-Time Adaptation: Style Invariance as a Correctness Likelihood WACV 2026
Test-time adaptation (TTA) enables efficient adaptation of deployed models, yet it often leads to poorly calibrated predictive uncertainty - a critical issue in high-stakes domains such as autonomous driving, finance, and healthcare. Existing calibration methods typically assume fixed models or static distributions, resulting in degraded performance under real-world, dynamic test conditions. To address these challenges, we introduce Style Invariance as a Correctness Likelihood (SICL), a framework that leverages style-invariance for robust uncertainty estimation. SICL estimates instance-wise correctness likelihood by measuring prediction consistency across style-altered variants, requiring only the model's forward pass. This makes it a plug-and-play, backpropagation-free calibration module compatible with any TTA method. Comprehensive evaluations across four baselines, five TTA methods, and two realistic scenarios with three model architecture demonstrate that SICL reduces calibration error by an average of 13 percentage points compared to conventional calibration approaches.
comment: Accepted to WACV 2026
☆ LUNE: Efficient LLM Unlearning via LoRA Fine-Tuning with Negative Examples
Large language models (LLMs) possess vast knowledge acquired from extensive training corpora, but they often cannot remove specific pieces of information when needed, which makes it hard to handle privacy, bias mitigation, and knowledge correction. Traditional model unlearning approaches require computationally expensive fine-tuning or direct weight editing, making them impractical for real-world deployment. In this work, we introduce LoRA-based Unlearning with Negative Examples (LUNE), a lightweight framework that performs negative-only unlearning by updating only low-rank adapters while freezing the backbone, thereby localizing edits and avoiding disruptive global changes. Leveraging Low-Rank Adaptation (LoRA), LUNE targets intermediate representations to suppress (or replace) requested knowledge with an order-of-magnitude lower compute and memory than full fine-tuning or direct weight editing. Extensive experiments on multiple factual unlearning tasks show that LUNE: (I) achieves effectiveness comparable to full fine-tuning and memory-editing methods, and (II) reduces computational cost by about an order of magnitude.
☆ Recover-to-Forget: Gradient Reconstruction from LoRA for Efficient LLM Unlearning
Unlearning in large foundation models (e.g., LLMs) is essential for enabling dynamic knowledge updates, enforcing data deletion rights, and correcting model behavior. However, existing unlearning methods often require full-model fine-tuning or access to the original training data, which limits their scalability and practicality. In this work, we introduce Recover-to-Forget (R2F), a novel framework for efficient unlearning in LLMs based on reconstructing full-model gradient directions from low-rank LoRA adapter updates. Rather than performing backpropagation through the full model, we compute gradients with respect to LoRA parameters using multiple paraphrased prompts and train a gradient decoder to approximate the corresponding full-model gradients. To ensure applicability to larger or black-box models, the decoder is trained on a proxy model and transferred to target models. We provide a theoretical analysis of cross-model generalization and demonstrate that our method achieves effective unlearning while preserving general model performance. Experimental results demonstrate that R2F offers a scalable and lightweight alternative for unlearning in pretrained LLMs without requiring full retraining or access to internal parameters.
☆ A Geometric Unification of Concept Learning with Concept Cones
Two traditions of interpretability have evolved side by side but seldom spoken to each other: Concept Bottleneck Models (CBMs), which prescribe what a concept should be, and Sparse Autoencoders (SAEs), which discover what concepts emerge. While CBMs use supervision to align activations with human-labeled concepts, SAEs rely on sparse coding to uncover emergent ones. We show that both paradigms instantiate the same geometric structure: each learns a set of linear directions in activation space whose nonnegative combinations form a concept cone. Supervised and unsupervised methods thus differ not in kind but in how they select this cone. Building on this view, we propose an operational bridge between the two paradigms. CBMs provide human-defined reference geometries, while SAEs can be evaluated by how well their learned cones approximate or contain those of CBMs. This containment framework yields quantitative metrics linking inductive biases -- such as SAE type, sparsity, or expansion ratio -- to emergence of plausible\footnote{We adopt the terminology of \citet{jacovi2020towards}, who distinguish between faithful explanations (accurately reflecting model computations) and plausible explanations (aligning with human intuition and domain knowledge). CBM concepts are plausible by construction -- selected or annotated by humans -- though not necessarily faithful to the true latent factors that organise the data manifold.} concepts. Using these metrics, we uncover a ``sweet spot'' in both sparsity and expansion factor that maximizes both geometric and semantic alignment with CBM concepts. Overall, our work unifies supervised and unsupervised concept discovery through a shared geometric framework, providing principled metrics to measure SAE progress and assess how well discovered concept align with plausible human concepts.
comment: 22 pages
☆ PrivORL: Differentially Private Synthetic Dataset for Offline Reinforcement Learning NDSS 2026
Recently, offline reinforcement learning (RL) has become a popular RL paradigm. In offline RL, data providers share pre-collected datasets -- either as individual transitions or sequences of transitions forming trajectories -- to enable the training of RL models (also called agents) without direct interaction with the environments. Offline RL saves interactions with environments compared to traditional RL, and has been effective in critical areas, such as navigation tasks. Meanwhile, concerns about privacy leakage from offline RL datasets have emerged. To safeguard private information in offline RL datasets, we propose the first differential privacy (DP) offline dataset synthesis method, PrivORL, which leverages a diffusion model and diffusion transformer to synthesize transitions and trajectories, respectively, under DP. The synthetic dataset can then be securely released for downstream analysis and research. PrivORL adopts the popular approach of pre-training a synthesizer on public datasets, and then fine-tuning on sensitive datasets using DP Stochastic Gradient Descent (DP-SGD). Additionally, PrivORL introduces curiosity-driven pre-training, which uses feedback from the curiosity module to diversify the synthetic dataset and thus can generate diverse synthetic transitions and trajectories that closely resemble the sensitive dataset. Extensive experiments on five sensitive offline RL datasets show that our method achieves better utility and fidelity in both DP transition and trajectory synthesis compared to baselines. The replication package is available at the GitHub repository.
comment: Accepted at NDSS 2026; code available at https://github.com/2019ChenGong/PrivORL
☆ Machine learning in an expectation-maximisation framework for nowcasting
Decision making often occurs in the presence of incomplete information, leading to the under- or overestimation of risk. Leveraging the observable information to learn the complete information is called nowcasting. In practice, incomplete information is often a consequence of reporting or observation delays. In this paper, we propose an expectation-maximisation (EM) framework for nowcasting that uses machine learning techniques to model both the occurrence as well as the reporting process of events. We allow for the inclusion of covariate information specific to the occurrence and reporting periods as well as characteristics related to the entity for which events occurred. We demonstrate how the maximisation step and the information flow between EM iterations can be tailored to leverage the predictive power of neural networks and (extreme) gradient boosting machines (XGBoost). With simulation experiments, we show that we can effectively model both the occurrence and reporting of events when dealing with high-dimensional covariate information. In the presence of non-linear effects, we show that our methodology outperforms existing EM-based nowcasting frameworks that use generalised linear models in the maximisation step. Finally, we apply the framework to the reporting of Argentinian Covid-19 cases, where the XGBoost-based approach again is most performant.
☆ Local-Curvature-Aware Knowledge Graph Embedding: An Extended Ricci Flow Approach
Knowledge graph embedding (KGE) relies on the geometry of the embedding space to encode semantic and structural relations. Existing methods place all entities on one homogeneous manifold, Euclidean, spherical, hyperbolic, or their product/multi-curvature variants, to model linear, symmetric, or hierarchical patterns. Yet a predefined, homogeneous manifold cannot accommodate the sharply varying curvature that real-world graphs exhibit across local regions. Since this geometry is imposed a priori, any mismatch with the knowledge graph's local curvatures will distort distances between entities and hurt the expressiveness of the resulting KGE. To rectify this, we propose RicciKGE to have the KGE loss gradient coupled with local curvatures in an extended Ricci flow such that entity embeddings co-evolve dynamically with the underlying manifold geometry towards mutual adaptation. Theoretically, when the coupling coefficient is bounded and properly selected, we rigorously prove that i) all the edge-wise curvatures decay exponentially, meaning that the manifold is driven toward the Euclidean flatness; and ii) the KGE distances strictly converge to a global optimum, which indicates that geometric flattening and embedding optimization are promoting each other. Experimental improvements on link prediction and node classification benchmarks demonstrate RicciKGE's effectiveness in adapting to heterogeneous knowledge graph structures.
☆ Two-dimensional RMSD projections for reaction path visualization and validation
Transition state or minimum energy path finding methods constitute a routine component of the computational chemistry toolkit. Standard analysis involves trajectories conventionally plotted in terms of the relative energy to the initial state against a cumulative displacement variable, or the image number. These dimensional reductions obscure structural rearrangements in high dimensions and may often be trajectory dependent. This precludes the ability to compare optimization trajectories of different methods beyond the number of calculations, time taken, and final saddle geometry. We present a method mapping trajectories onto a two-dimension surface defined by a permutation corrected root mean square deviation from the reactant and product configurations. Energy is represented as an interpolated color-mapped surface constructed from all optimization steps using radial basis functions. This representation highlights optimization trajectories, identifies endpoint basins, and diagnoses convergence concerns invisible in one-dimensional profiles. We validate the framework on a cycloaddition reaction, showing that a machine-learned potential saddle and density functional theory reference lie on comparable energy contours despite geometric displacements.
comment: 4 pages, 1 figure
☆ M-STAR: Multi-Scale Spatiotemporal Autoregression for Human Mobility Modeling
Modeling human mobility is vital for extensive applications such as transportation planning and epidemic modeling. With the rise of the Artificial Intelligence Generated Content (AIGC) paradigm, recent works explore synthetic trajectory generation using autoregressive and diffusion models. While these methods show promise for generating single-day trajectories, they remain limited by inefficiencies in long-term generation (e.g., weekly trajectories) and a lack of explicit spatiotemporal multi-scale modeling. This study proposes Multi-Scale Spatio-Temporal AutoRegression (M-STAR), a new framework that generates long-term trajectories through a coarse-to-fine spatiotemporal prediction process. M-STAR combines a Multi-scale Spatiotemporal Tokenizer that encodes hierarchical mobility patterns with a Transformer-based decoder for next-scale autoregressive prediction. Experiments on two real-world datasets show that M-STAR outperforms existing methods in fidelity and significantly improves generation speed. The data and codes are available at https://github.com/YuxiaoLuo0013/M-STAR.
☆ Learning-Augmented Ski Rental with Discrete Distributions: A Bayesian Approach
We revisit the classic ski rental problem through the lens of Bayesian decision-making and machine-learned predictions. While traditional algorithms minimize worst-case cost without assumptions, and recent learning-augmented approaches leverage noisy forecasts with robustness guarantees, our work unifies these perspectives. We propose a discrete Bayesian framework that maintains exact posterior distributions over the time horizon, enabling principled uncertainty quantification and seamless incorporation of expert priors. Our algorithm achieves prior-dependent competitive guarantees and gracefully interpolates between worst-case and fully-informed settings. Our extensive experimental evaluation demonstrates superior empirical performance across diverse scenarios, achieving near-optimal results under accurate priors while maintaining robust worst-case guarantees. This framework naturally extends to incorporate multiple predictions, non-uniform priors, and contextual information, highlighting the practical advantages of Bayesian reasoning in online decision problems with imperfect predictions.
comment: 7 pages
☆ Towards a Relationship-Aware Transformer for Tabular Data
Deep learning models for tabular data typically do not allow for imposing a graph of external dependencies between samples, which can be useful for accounting for relatedness in tasks such as treatment effect estimation. Graph neural networks only consider adjacent nodes, making them difficult to apply to sparse graphs. This paper proposes several solutions based on a modified attention mechanism, which accounts for possible relationships between data points by adding a term to the attention matrix. Our models are compared with each other and the gradient boosting decision trees in a regression task on synthetic and real-world datasets, as well as in a treatment effect estimation task on the IHDP dataset.
☆ Exact Synthetic Populations for Scalable Societal and Market Modeling
We introduce a constraint-programming framework for generating synthetic populations that reproduce target statistics with high precision while enforcing full individual consistency. Unlike data-driven approaches that infer distributions from samples, our method directly encodes aggregated statistics and structural relations, enabling exact control of demographic profiles without requiring any microdata. We validate the approach on official demographic sources and study the impact of distributional deviations on downstream analyses. This work is conducted within the Pollitics project developed by Emotia, where synthetic populations can be queried through large language models to model societal behaviors, explore market and policy scenarios, and provide reproducible decision-grade insights without personal data.
comment: Submitted for peer review on December 7, 2025
☆ Equivariant Diffusion for Crystal Structure Prediction ICML 2024
In addressing the challenge of Crystal Structure Prediction (CSP), symmetry-aware deep learning models, particularly diffusion models, have been extensively studied, which treat CSP as a conditional generation task. However, ensuring permutation, rotation, and periodic translation equivariance during diffusion process remains incompletely addressed. In this work, we propose EquiCSP, a novel equivariant diffusion-based generative model. We not only address the overlooked issue of lattice permutation equivariance in existing models, but also develop a unique noising algorithm that rigorously maintains periodic translation equivariance throughout both training and inference processes. Our experiments indicate that EquiCSP significantly surpasses existing models in terms of generating accurate structures and demonstrates faster convergence during the training process.
comment: ICML 2024
☆ SIT-Graph: State Integrated Tool Graph for Multi-Turn Agents
Despite impressive advances in agent systems, multi-turn tool-use scenarios remain challenging. It is mainly because intent is clarified progressively and the environment evolves with each tool call. While reusing past experience is natural, current LLM agents either treat entire trajectories or pre-defined subtasks as indivisible units, or solely exploit tool-to-tool dependencies, hindering adaptation as states and information evolve across turns. In this paper, we propose a State Integrated Tool Graph (SIT-Graph), which enhances multi-turn tool use by exploiting partially overlapping experience. Inspired by human decision-making that integrates episodic and procedural memory, SIT-Graph captures both compact state representations (episodic-like fragments) and tool-to-tool dependencies (procedural-like routines) from historical trajectories. Specifically, we first build a tool graph from accumulated tool-use sequences, and then augment each edge with a compact state summary of the dialog and tool history that may shape the next action. At inference time, SIT-Graph enables a human-like balance between episodic recall and procedural execution: when the next decision requires recalling prior context, the agent retrieves the state summaries stored on relevant edges and uses them to guide its next action; when the step is routine, it follows high-confidence tool dependencies without explicit recall. Experiments across multiple stateful multi-turn tool-use benchmarks show that SIT-Graph consistently outperforms strong memory- and graph-based baselines, delivering more robust tool selection and more effective experience transfer.
☆ Verifiable Deep Quantitative Group Testing
We present a neural network-based framework for solving the quantitative group testing (QGT) problem that achieves both high decoding accuracy and structural verifiability. In QGT, the objective is to identify a small subset of defective items among $N$ candidates using only $M \ll N$ pooled tests, each reporting the number of defectives in the tested subset. We train a multi-layer perceptron to map noisy measurement vectors to binary defect indicators, achieving accurate and robust recovery even under sparse, bounded perturbations. Beyond accuracy, we show that the trained network implicitly learns the underlying pooling structure that links items to tests, allowing this structure to be recovered directly from the network's Jacobian. This indicates that the model does not merely memorize training patterns but internalizes the true combinatorial relationships governing QGT. Our findings reveal that standard feedforward architectures can learn verifiable inverse mappings in structured combinatorial recovery problems.
comment: 11 pages, 2 figures, 3 tables
☆ A graph generation pipeline for critical infrastructures based on heuristics, images and depth data
Virtual representations of physical critical infrastructures, such as water or energy plants, are used for simulations and digital twins to ensure resilience and continuity of their services. These models usually require 3D point clouds from laser scanners that are expensive to acquire and require specialist knowledge to use. In this article, we present a graph generation pipeline based on photogrammetry. The pipeline detects relevant objects and predicts their relation using RGB images and depth data generated by a stereo camera. This more cost-effective approach uses deep learning for object detection and instance segmentation of the objects, and employs user-defined heuristics or rules to infer their relations. Results of two hydraulic systems show that this strategy can produce graphs close to the ground truth while its flexibility allows the method to be tailored to specific applications and its transparency qualifies it to be used in the high stakes decision-making that is required for critical infrastructures.
☆ Non-negative DAG Learning from Time-Series Data
This work aims to learn the directed acyclic graph (DAG) that captures the instantaneous dependencies underlying a multivariate time series. The observed data follow a linear structural vector autoregressive model (SVARM) with both instantaneous and time-lagged dependencies, where the instantaneous structure is modeled by a DAG to reflect potential causal relationships. While recent continuous relaxation approaches impose acyclicity through smooth constraint functions involving powers of the adjacency matrix, they lead to non-convex optimization problems that are challenging to solve. In contrast, we assume that the underlying DAG has only non-negative edge weights, and leverage this additional structure to impose acyclicity via a convex constraint. This enables us to cast the problem of non-negative DAG recovery from multivariate time-series data as a convex optimization problem in abstract form, which we solve using the method of multipliers. Crucially, the convex formulation guarantees global optimality of the solution. Finally, we assess the performance of the proposed method on synthetic time-series data, where it outperforms existing alternatives.
☆ IFFair: Influence Function-driven Sample Reweighting for Fair Classification
Because machine learning has significantly improved efficiency and convenience in the society, it's increasingly used to assist or replace human decision-making. However, the data-based pattern makes related algorithms learn and even exacerbate potential bias in samples, resulting in discriminatory decisions against certain unprivileged groups, depriving them of the rights to equal treatment, thus damaging the social well-being and hindering the development of related applications. Therefore, we propose a pre-processing method IFFair based on the influence function. Compared with other fairness optimization approaches, IFFair only uses the influence disparity of training samples on different groups as a guidance to dynamically adjust the sample weights during training without modifying the network structure, data features and decision boundaries. To evaluate the validity of IFFair, we conduct experiments on multiple real-world datasets and metrics. The experimental results show that our approach mitigates bias of multiple accepted metrics in the classification setting, including demographic parity, equalized odds, equality of opportunity and error rate parity without conflicts. It also demonstrates that IFFair achieves better trade-off between multiple utility and fairness metrics compared with previous pre-processing methods.
☆ AdLift: Lifting Adversarial Perturbations to Safeguard 3D Gaussian Splatting Assets Against Instruction-Driven Editing
Recent studies have extended diffusion-based instruction-driven 2D image editing pipelines to 3D Gaussian Splatting (3DGS), enabling faithful manipulation of 3DGS assets and greatly advancing 3DGS content creation. However, it also exposes these assets to serious risks of unauthorized editing and malicious tampering. Although imperceptible adversarial perturbations against diffusion models have proven effective for protecting 2D images, applying them to 3DGS encounters two major challenges: view-generalizable protection and balancing invisibility with protection capability. In this work, we propose the first editing safeguard for 3DGS, termed AdLift, which prevents instruction-driven editing across arbitrary views and dimensions by lifting strictly bounded 2D adversarial perturbations into 3D Gaussian-represented safeguard. To ensure both adversarial perturbations effectiveness and invisibility, these safeguard Gaussians are progressively optimized across training views using a tailored Lifted PGD, which first conducts gradient truncation during back-propagation from the editing model at the rendered image and applies projected gradients to strictly constrain the image-level perturbation. Then, the resulting perturbation is backpropagated to the safeguard Gaussian parameters via an image-to-Gaussian fitting operation. We alternate between gradient truncation and image-to-Gaussian fitting, yielding consistent adversarial-based protection performance across different viewpoints and generalizes to novel views. Empirically, qualitative and quantitative results demonstrate that AdLift effectively protects against state-of-the-art instruction-driven 2D image and 3DGS editing.
comment: 40 pages, 34 figures, 18 tables
☆ PINE: Pipeline for Important Node Exploration in Attributed Networks
A graph with semantically attributed nodes are a common data structure in a wide range of domains. It could be interlinked web data or citation networks of scientific publications. The essential problem for such a data type is to determine nodes that carry greater importance than all the others, a task that markedly enhances system monitoring and management. Traditional methods to identify important nodes in networks introduce centrality measures, such as node degree or more complex PageRank. However, they consider only the network structure, neglecting the rich node attributes. Recent methods adopt neural networks capable of handling node features, but they require supervision. This work addresses the identified gap--the absence of approaches that are both unsupervised and attribute-aware--by introducing a Pipeline for Important Node Exploration (PINE). At the core of the proposed framework is an attention-based graph model that incorporates node semantic features in the learning process of identifying the structural graph properties. The PINE's node importance scores leverage the obtained attention distribution. We demonstrate the superior performance of the proposed PINE method on various homogeneous and heterogeneous attributed networks. As an industry-implemented system, PINE tackles the real-world challenge of unsupervised identification of key entities within large-scale enterprise graphs.
☆ Towards Robust Protective Perturbation against DeepFake Face Swapping
DeepFake face swapping enables highly realistic identity forgeries, posing serious privacy and security risks. A common defence embeds invisible perturbations into images, but these are fragile and often destroyed by basic transformations such as compression or resizing. In this paper, we first conduct a systematic analysis of 30 transformations across six categories and show that protection robustness is highly sensitive to the choice of training transformations, making the standard Expectation over Transformation (EOT) with uniform sampling fundamentally suboptimal. Motivated by this, we propose Expectation Over Learned distribution of Transformation (EOLT), the framework to treat transformation distribution as a learnable component rather than a fixed design choice. Specifically, EOLT employs a policy network that learns to automatically prioritize critical transformations and adaptively generate instance-specific perturbations via reinforcement learning, enabling explicit modeling of defensive bottlenecks while maintaining broad transferability. Extensive experiments demonstrate that our method achieves substantial improvements over state-of-the-art approaches, with 26% higher average robustness and up to 30% gains on challenging transformation categories.
☆ Clinical Interpretability of Deep Learning Segmentation Through Shapley-Derived Agreement and Uncertainty Metrics
Segmentation is the identification of anatomical regions of interest, such as organs, tissue, and lesions, serving as a fundamental task in computer-aided diagnosis in medical imaging. Although deep learning models have achieved remarkable performance in medical image segmentation, the need for explainability remains critical for ensuring their acceptance and integration in clinical practice, despite the growing research attention in this area. Our approach explored the use of contrast-level Shapley values, a systematic perturbation of model inputs to assess feature importance. While other studies have investigated gradient-based techniques through identifying influential regions in imaging inputs, Shapley values offer a broader, clinically aligned approach, explaining how model performance is fairly attributed to certain imaging contrasts over others. Using the BraTS 2024 dataset, we generated rankings for Shapley values for four MRI contrasts across four model architectures. Two metrics were proposed from the Shapley ranking: agreement between model and ``clinician" imaging ranking, and uncertainty quantified through Shapley ranking variance across cross-validation folds. Higher-performing cases (Dice \textgreater0.6) showed significantly greater agreement with clinical rankings. Increased Shapley ranking variance correlated with decreased performance (U-Net: $r=-0.581$). These metrics provide clinically interpretable proxies for model reliability, helping clinicians better understand state-of-the-art segmentation models.
☆ Pay Less Attention to Function Words for Free Robustness of Vision-Language Models
To address the trade-off between robustness and performance for robust VLM, we observe that function words could incur vulnerability of VLMs against cross-modal adversarial attacks, and propose Function-word De-Attention (FDA) accordingly to mitigate the impact of function words. Similar to differential amplifiers, our FDA calculates the original and the function-word cross-attention within attention heads, and differentially subtracts the latter from the former for more aligned and robust VLMs. Comprehensive experiments include 2 SOTA baselines under 6 different attacks on 2 downstream tasks, 3 datasets, and 3 models. Overall, our FDA yields an average 18/13/53% ASR drop with only 0.2/0.3/0.6% performance drops on the 3 tested models on retrieval, and a 90% ASR drop with a 0.3% performance gain on visual grounding. We demonstrate the scalability, generalization, and zero-shot performance of FDA experimentally, as well as in-depth ablation studies and analysis. Code will be made publicly at https://github.com/michaeltian108/FDA.
☆ NeSTR: A Neuro-Symbolic Abductive Framework for Temporal Reasoning in Large Language Models AAAI 2026
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing tasks. However, temporal reasoning, particularly under complex temporal constraints, remains a major challenge. To this end, existing approaches have explored symbolic methods, which encode temporal structure explicitly, and reflective mechanisms, which revise reasoning errors through multi-step inference. Nonetheless, symbolic approaches often underutilize the reasoning capabilities of LLMs, while reflective methods typically lack structured temporal representations, which can result in inconsistent or hallucinated reasoning. As a result, even when the correct temporal context is available, LLMs may still misinterpret or misapply time-related information, leading to incomplete or inaccurate answers. To address these limitations, in this work, we propose Neuro-Symbolic Temporal Reasoning (NeSTR), a novel framework that integrates structured symbolic representations with hybrid reflective reasoning to enhance the temporal sensitivity of LLM inference. NeSTR preserves explicit temporal relations through symbolic encoding, enforces logical consistency via verification, and corrects flawed inferences using abductive reflection. Extensive experiments on diverse temporal question answering benchmarks demonstrate that NeSTR achieves superior zero-shot performance and consistently improves temporal reasoning without any fine-tuning, showcasing the advantage of neuro-symbolic integration in enhancing temporal understanding in large language models.
comment: Accepted by AAAI 2026
☆ MUSE: A Simple Yet Effective Multimodal Search-Based Framework for Lifelong User Interest Modeling
Lifelong user interest modeling is crucial for industrial recommender systems, yet existing approaches rely predominantly on ID-based features, suffering from poor generalization on long-tail items and limited semantic expressiveness. While recent work explores multimodal representations for behavior retrieval in the General Search Unit (GSU), they often neglect multimodal integration in the fine-grained modeling stage -- the Exact Search Unit (ESU). In this work, we present a systematic analysis of how to effectively leverage multimodal signals across both stages of the two-stage lifelong modeling framework. Our key insight is that simplicity suffices in the GSU: lightweight cosine similarity with high-quality multimodal embeddings outperforms complex retrieval mechanisms. In contrast, the ESU demands richer multimodal sequence modeling and effective ID-multimodal fusion to unlock its full potential. Guided by these principles, we propose MUSE, a simple yet effective multimodal search-based framework. MUSE has been deployed in Taobao display advertising system, enabling 100K-length user behavior sequence modeling and delivering significant gains in top-line metrics with negligible online latency overhead. To foster community research, we share industrial deployment practices and open-source the first large-scale dataset featuring ultra-long behavior sequences paired with high-quality multimodal embeddings. Our code and data is available at https://taobao-mm.github.io.
☆ Sample from What You See: Visuomotor Policy Learning via Diffusion Bridge with Observation-Embedded Stochastic Differential Equation
Imitation learning with diffusion models has advanced robotic control by capturing multi-modal action distributions. However, existing approaches typically treat observations as high-level conditioning inputs to the denoising network, rather than integrating them into the stochastic dynamics of the diffusion process itself. As a result, sampling must begin from random Gaussian noise, weakening the coupling between perception and control and often yielding suboptimal performance. We introduce BridgePolicy, a generative visuomotor policy that explicitly embeds observations within the stochastic differential equation via a diffusion-bridge formulation. By constructing an observation-informed trajectory, BridgePolicy enables sampling to start from a rich, informative prior rather than random noise, substantially improving precision and reliability in control. A key challenge is that classical diffusion bridges connect distributions with matched dimensionality, whereas robotic observations are heterogeneous and multi-modal and do not naturally align with the action space. To address this, we design a multi-modal fusion module and a semantic aligner that unify visual and state inputs and align observation and action representations, making the bridge applicable to heterogeneous robot data. Extensive experiments across 52 simulation tasks on three benchmarks and five real-world tasks demonstrate that BridgePolicy consistently outperforms state-of-the-art generative policies.
☆ Coherent Audio-Visual Editing via Conditional Audio Generation Following Video Edits
We introduce a novel pipeline for joint audio-visual editing that enhances the coherence between edited video and its accompanying audio. Our approach first applies state-of-the-art video editing techniques to produce the target video, then performs audio editing to align with the visual changes. To achieve this, we present a new video-to-audio generation model that conditions on the source audio, target video, and a text prompt. We extend the model architecture to incorporate conditional audio input and propose a data augmentation strategy that improves training efficiency. Furthermore, our model dynamically adjusts the influence of the source audio based on the complexity of the edits, preserving the original audio structure where possible. Experimental results demonstrate that our method outperforms existing approaches in maintaining audio-visual alignment and content integrity.
☆ Geometric Prior-Guided Federated Prompt Calibration
Federated Prompt Learning (FPL) offers a parameter-efficient solution for collaboratively training large models, but its performance is severely hindered by data heterogeneity, which causes locally trained prompts to become biased. Existing methods, focusing on aggregation or regularization, fail to address this root cause of local training bias. To this end, we propose Geometry-Guided Text Prompt Calibration (GGTPC), a novel framework that directly corrects this bias by providing clients with a global geometric prior. This prior, representing the shape of the global data distribution derived from the covariance matrix, is reconstructed on the server in a privacy-preserving manner. Clients then use a novel Geometry-Prior Calibration Layer (GPCL) to align their local feature distributions with this global prior during training. Extensive experiments show GGTPC's effectiveness. On the label-skewed CIFAR-100 dataset ($β$=0.1), it outperforms the state-of-the-art by 2.15\%. Under extreme skew ($β$=0.01), it improves upon the baseline by 9.17\%. Furthermore, as a plug-and-play module on the domain-skewed Office-Home dataset, it boosts FedAvg's performance by 4.60\%. These results demonstrate that GGTPC effectively mitigates data heterogeneity by correcting the fundamental local training bias, serving as a versatile module to enhance various FL algorithms.
☆ AutoLugano: A Deep Learning Framework for Fully Automated Lymphoma Segmentation and Lugano Staging on FDG-PET/CT
Purpose: To develop a fully automated deep learning system, AutoLugano, for end-to-end lymphoma classification by performing lesion segmentation, anatomical localization, and automated Lugano staging from baseline FDG-PET/CT scans. Methods: The AutoLugano system processes baseline FDG-PET/CT scans through three sequential modules:(1) Anatomy-Informed Lesion Segmentation, a 3D nnU-Net model, trained on multi-channel inputs, performs automated lesion detection (2) Atlas-based Anatomical Localization, which leverages the TotalSegmentator toolkit to map segmented lesions to 21 predefined lymph node regions using deterministic anatomical rules; and (3) Automated Lugano Staging, where the spatial distribution of involved regions is translated into Lugano stages and therapeutic groups (Limited vs. Advanced Stage).The system was trained on the public autoPET dataset (n=1,007) and externally validated on an independent cohort of 67 patients. Performance was assessed using accuracy, sensitivity, specificity, F1-scorefor regional involvement detection and staging agreement. Results: On the external validation set, the proposed model demonstrated robust performance, achieving an overall accuracy of 88.31%, sensitivity of 74.47%, Specificity of 94.21% and an F1-score of 80.80% for regional involvement detection,outperforming baseline models. Most notably, for the critical clinical task of therapeutic stratification (Limited vs. Advanced Stage), the system achieved a high accuracy of 85.07%, with a specificity of 90.48% and a sensitivity of 82.61%.Conclusion: AutoLugano represents the first fully automated, end-to-end pipeline that translates a single baseline FDG-PET/CT scan into a complete Lugano stage. This study demonstrates its strong potential to assist in initial staging, treatment stratification, and supporting clinical decision-making.
☆ Understanding Diffusion Models via Code Execution
Diffusion models have achieved remarkable performance in generative modeling, yet their theoretical foundations are often intricate, and the gap between mathematical formulations in papers and practical open-source implementations can be difficult to bridge. Existing tutorials primarily focus on deriving equations, offering limited guidance on how diffusion models actually operate in code. To address this, we present a concise implementation of approximately 300 lines that explains diffusion models from a code-execution perspective. Our minimal example preserves the essential components -- including forward diffusion, reverse sampling, the noise-prediction network, and the training loop -- while removing unnecessary engineering details. This technical report aims to provide researchers with a clear, implementation-first understanding of how diffusion models work in practice and how code and theory correspond. Our code and pre-trained models are available at: https://github.com/disanda/GM/tree/main/DDPM-DDIM-ClassifierFree.
☆ Less is More: Non-uniform Road Segments are Efficient for Bus Arrival Prediction
In bus arrival time prediction, the process of organizing road infrastructure network data into homogeneous entities is known as segmentation. Segmenting a road network is widely recognized as the first and most critical step in developing an arrival time prediction system, particularly for auto-regressive-based approaches. Traditional methods typically employ a uniform segmentation strategy, which fails to account for varying physical constraints along roads, such as road conditions, intersections, and points of interest, thereby limiting prediction efficiency. In this paper, we propose a Reinforcement Learning (RL)-based approach to efficiently and adaptively learn non-uniform road segments for arrival time prediction. Our method decouples the prediction process into two stages: 1) Non-uniform road segments are extracted based on their impact scores using the proposed RL framework; and 2) A linear prediction model is applied to the selected segments to make predictions. This method ensures optimal segment selection while maintaining computational efficiency, offering a significant improvement over traditional uniform approaches. Furthermore, our experimental results suggest that the linear approach can even achieve better performance than more complex methods. Extensive experiments demonstrate the superiority of the proposed method, which not only enhances efficiency but also improves learning performance on large-scale benchmarks. The dataset and the code are publicly accessible at: https://github.com/pangjunbiao/Less-is-More.
☆ UniDiff: A Unified Diffusion Framework for Multimodal Time Series Forecasting
As multimodal data proliferates across diverse real-world applications, leveraging heterogeneous information such as texts and timestamps for accurate time series forecasting (TSF) has become a critical challenge. While diffusion models demonstrate exceptional performance in generation tasks, their application to TSF remains largely confined to modeling single-modality numerical sequences, overlooking the abundant cross-modal signals inherent in complex heterogeneous data. To address this gap, we propose UniDiff, a unified diffusion framework for multimodal time series forecasting. To process the numerical sequence, our framework first tokenizes the time series into patches, preserving local temporal dynamics by mapping each patch to an embedding space via a lightweight MLP. At its core lies a unified and parallel fusion module, where a single cross-attention mechanism adaptively weighs and integrates structural information from timestamps and semantic context from texts in one step, enabling a flexible and efficient interplay between modalities. Furthermore, we introduce a novel classifier-free guidance mechanism designed for multi-source conditioning, allowing for decoupled control over the guidance strength of textual and temporal information during inference, which significantly enhances model robustness. Extensive experiments on real-world benchmark datasets across eight domains demonstrate that the proposed UniDiff model achieves state-of-the-art performance.
☆ ContextualSHAP : Enhancing SHAP Explanations Through Contextual Language Generation
Explainable Artificial Intelligence (XAI) has become an increasingly important area of research, particularly as machine learning models are deployed in high-stakes domains. Among various XAI approaches, SHAP (SHapley Additive exPlanations) has gained prominence due to its ability to provide both global and local explanations across different machine learning models. While SHAP effectively visualizes feature importance, it often lacks contextual explanations that are meaningful for end-users, especially those without technical backgrounds. To address this gap, we propose a Python package that extends SHAP by integrating it with a large language model (LLM), specifically OpenAI's GPT, to generate contextualized textual explanations. This integration is guided by user-defined parameters (such as feature aliases, descriptions, and additional background) to tailor the explanation to both the model context and the user perspective. We hypothesize that this enhancement can improve the perceived understandability of SHAP explanations. To evaluate the effectiveness of the proposed package, we applied it in a healthcare-related case study and conducted user evaluations involving real end-users. The results, based on Likert-scale surveys and follow-up interviews, indicate that the generated explanations were perceived as more understandable and contextually appropriate compared to visual-only outputs. While the findings are preliminary, they suggest that combining visualization with contextualized text may support more user-friendly and trustworthy model explanations.
comment: This paper was accepted and presented at the 7th World Symposium on Software Engineering (WSSE) 2025 on 25 October 2025 in Okayama, Japan, and is currently awaiting publication
☆ SPACE: Noise Contrastive Estimation Stabilizes Self-Play Fine-Tuning for Large Language Models NeurIPS 2025
Self-play fine-tuning has demonstrated promising abilities in adapting large language models (LLMs) to downstream tasks with limited real-world data. The basic principle is to iteratively refine the model with real samples and synthetic ones generated from itself. However, the existing methods primarily focus on the relative gaps between the rewards for two types of data, neglecting their absolute values. Through theoretical analysis, we identify that the gap-based methods suffer from unstable evolution, due to the potentially degenerated objectives. To address this limitation, we introduce a novel self-play fine-tuning method, namely Self-PlAy via Noise Contrastive Estimation (SPACE), which leverages noise contrastive estimation to capture the real-world data distribution. Specifically, SPACE treats synthetic samples as auxiliary components, and discriminates them from the real ones in a binary classification manner. As a result, SPACE independently optimizes the absolute reward values for each type of data, ensuring a consistently meaningful objective and thereby avoiding the instability issue. Theoretically, we show that the optimal solution of the objective in SPACE aligns with the underlying distribution of real-world data, and SPACE guarantees a provably stable convergence to the optimal distribution. Empirically, we show that SPACE significantly improves the performance of LLMs over various tasks, and outperforms supervised fine-tuning that employs much more real-world samples. Compared to gap-based self-play fine-tuning methods, SPACE exhibits remarkable superiority and stable evolution.
comment: NeurIPS 2025
♻ ☆ TV2TV: A Unified Framework for Interleaved Language and Video Generation
Video generation models are rapidly advancing, but can still struggle with complex video outputs that require significant semantic branching or repeated high-level reasoning about what should happen next. In this paper, we introduce a new class of omni video-text models that integrate ideas from recent LM reasoning advances to address this challenge. More specifically, we present TV2TV, a unified generative modeling framework which decomposes video generation into an interleaved text and video generation process. TV2TV jointly learns language modeling (next-token prediction) and video flow matching (next-frame prediction) using a Mixture-of-Transformers (MoT) architecture. At inference time, TV2TV decides when to alternate between generating text and video frames, allowing the model to "think in words" about subsequent content before ``acting in pixels'' to produce frames. This design offloads much of the responsibility for deciding what should happen next to the language modeling tower, enabling improved visual quality and prompt alignment of generated videos. It also enables fine-grained controllability, allowing users to modify the video generation trajectory through text interventions at any point in the process. In controlled experiments on video game data, TV2TV demonstrates substantial improvements in both visual quality and controllability. TV2TV also scales to natural videos, as we show by augmenting sports videos with interleaved natural language action descriptions using vision-language models (VLMs). Training TV2TV on this corpus yields strong visual quality and prompt alignment, showcasing the model's ability to reason about and generate complex real-world action sequences. Together, these results highlight TV2TV as a promising step toward video generation with open-ended textual reasoning and control.
♻ ☆ Training Task Reasoning LLM Agents for Multi-turn Task Planning via Single-turn Reinforcement Learning
Large Language Models (LLMs) have demonstrated remarkable capabilities in knowledge acquisition, reasoning, and tool use, making them promising candidates for autonomous agent applications. However, training LLM agents for complex multi-turn task planning faces significant challenges, including sparse episode-wise rewards, credit assignment across long horizons, and the computational overhead of reinforcement learning in multi-turn interaction settings. To this end, this paper introduces a novel approach that transforms multi-turn task planning into single-turn task reasoning problems, enabling efficient policy optimization through Group Relative Policy Optimization (GRPO) with dense and verifiable reward from expert trajectories. Our theoretical analysis shows that GRPO improvement on single-turn task reasoning results in a lower bound of the multi-turn success probability under the minimal turns, as well as the generalization to subtasks with shorter horizons. Experimental evaluation on the complex task planning benchmark demonstrates that our 1.5B parameter model trained with single-turn GRPO achieves superior performance compared to larger baseline models up to 14B parameters, with success rates of 70% for long-horizon planning tasks.
comment: Accepted by IEEE Control Systems Letters (L-CSS)
♻ ☆ Beyond the Singular: Revealing the Value of Multiple Generations in Benchmark Evaluation NeurIPS 2025
Large language models (LLMs) have demonstrated significant utility in real-world applications, exhibiting impressive capabilities in natural language processing and understanding. Benchmark evaluations are crucial for assessing the capabilities of LLMs as they can provide a comprehensive assessment of their strengths and weaknesses. However, current evaluation methods often overlook the inherent randomness of LLMs by employing deterministic generation strategies or relying on a single random sample, resulting in unaccounted sampling variance and unreliable benchmark score estimates. In this paper, we propose a hierarchical statistical model that provides a more comprehensive representation of the benchmarking process by incorporating both benchmark characteristics and LLM randomness. We show that leveraging multiple generations improves the accuracy of estimating the benchmark score and reduces variance. Multiple generations also allow us to define $\mathbb P\left(\text{correct}\right)$, a prompt-level difficulty score based on correct ratios, providing fine-grained insights into individual prompts. Additionally, we create a data map that visualizes difficulty and semantics of prompts, enabling error detection and quality control in benchmark construction.
comment: Accepted in NeurIPS 2025 Workshop on LLM Evals
♻ ☆ Density Operator Expectation Maximization
Machine learning with density operators, the mathematical foundation of quantum mechanics, is gaining prominence with rapid advances in quantum computing. Generative models based on density operators cannot yet handle tasks that are routinely handled by probabilistic models. The progress of latent variable models, a broad and influential class of probabilistic unsupervised models, was driven by the Expectation-Maximization framework. Deriving such a framework for density operators is challenging due to the non-commutativity of operators. To tackle this challenge, an inequality arising from the monotonicity of relative entropy is demonstrated to serve as an evidence lower bound for density operators. A minorant-maximization perspective on this bound leads to Density Operator Expectation Maximization (DO-EM), a general framework for training latent variable models defined through density operators. Through an information-geometric argument, the Expectation step in DO-EM is shown to be the Petz recovery map. The DO-EM algorithm is applied to Quantum Restricted Boltzmann Machines, adapting Contrastive Divergence to approximate the Maximization step gradient. Quantum interleaved Deep Boltzmann Machines and Quantum Gaussian-Bernoulli Restricted Boltzmann Machines, new models introduced in this work, outperform their probabilistic counterparts on generative tasks when trained with similar computational resources and identical hyperparameters.
comment: Main text: 34 pages 4 Figures. Total: 45 pages 4 Figures
♻ ☆ EvoMem: Improving Multi-Agent Planning with Dual-Evolving Memory
Planning has been a cornerstone of artificial intelligence for solving complex problems, and recent progress in LLM-based multi-agent frameworks have begun to extend this capability. However, the role of human-like memory within these frameworks remains largely unexplored. Understanding how agents coordinate through memory is critical for natural language planning, where iterative reasoning, constraint tracking, and error correction drive the success. Inspired by working memory model in cognitive psychology, we present EvoMem, a multi-agent framework built on a dual-evolving memory mechanism. The framework consists of three agents (Constraint Extractor, Verifier, and Actor) and two memory modules: Constraint Memory (CMem), which evolves across queries by storing task-specific rules and constraints while remains fixed within a query, and Query-feedback Memory (QMem), which evolves within a query by accumulating feedback across iterations for solution refinement. Both memory modules are reset at the end of each query session. Evaluations on trip planning, meeting planning, and calendar scheduling show consistent performance improvements, highlighting the effectiveness of EvoMem. This success underscores the importance of memory in enhancing multi-agent planning.
♻ ☆ Efficient Approximate Posterior Sampling with Annealed Langevin Monte Carlo
We study the problem of posterior sampling in the context of score based generative models. We have a trained score network for a prior $p(x)$, a measurement model $p(y|x)$, and are tasked with sampling from the posterior $p(x|y)$. Prior work has shown this to be intractable in KL (in the worst case) under well-accepted computational hardness assumptions. Despite this, popular algorithms for tasks such as image super-resolution, stylization, and reconstruction enjoy empirical success. Rather than establishing distributional assumptions or restricted settings under which exact posterior sampling is tractable, we view this as a more general "tilting" problem of biasing a distribution towards a measurement. Under minimal assumptions, we show that one can tractably sample from a distribution that is simultaneously close to the posterior of a noised prior in KL divergence and the true posterior in Fisher divergence. Intuitively, this combination ensures that the resulting sample is consistent with both the measurement and the prior. To the best of our knowledge these are the first formal results for (approximate) posterior sampling in polynomial time.
♻ ☆ Trustworthy Retrosynthesis: Eliminating Hallucinations with a Diverse Ensemble of Reaction Scorers
Retrosynthesis is one of the domains transformed by the rise of generative models, and it is one where the problem of nonsensical or erroneous outputs (hallucinations) is particularly insidious: reliable assessment of synthetic plans is time-consuming, with automatic methods lacking. In this work, we present RetroTrim, a retrosynthesis system that successfully avoids nonsensical plans on a set of challenging drug-like targets. Compared to common baselines in the field, our system is not only the sole method that succeeds in filtering out hallucinated reactions, but it also results in the highest number of high-quality paths overall. The key insight behind RetroTrim is the combination of diverse reaction scoring strategies, based on machine learning models and existing chemical databases. We show that our scoring strategies capture different classes of hallucinations by analyzing them on a dataset of labeled retrosynthetic intermediates. This approach formed the basis of our winning solution to the Standard Industries \$1 million Retrosynthesis Challenge. To measure the performance of retrosynthesis systems, we propose a novel evaluation protocol for reactions and synthetic paths based on a structured review by expert chemists. Using this protocol, we compare systems on a set of 32 novel targets, curated to reflect recent trends in drug structures. While the insights behind our methodology are broadly applicable to retrosynthesis, our focus is on targets in the drug-like domain. By releasing our benchmark targets and the details of our evaluation protocol, we hope to inspire further research into reliable retrosynthesis.
♻ ☆ PhyloLM : Inferring the Phylogeny of Large Language Models and Predicting their Performances in Benchmarks ICLR 2025
This paper introduces PhyloLM, a method adapting phylogenetic algorithms to Large Language Models (LLMs) to explore whether and how they relate to each other and to predict their performance characteristics. Our method calculates a phylogenetic distance metric based on the similarity of LLMs' output. The resulting metric is then used to construct dendrograms, which satisfactorily capture known relationships across a set of 111 open-source and 45 closed models. Furthermore, our phylogenetic distance predicts performance in standard benchmarks, thus demonstrating its functional validity and paving the way for a time and cost-effective estimation of LLM capabilities. To sum up, by translating population genetic concepts to machine learning, we propose and validate a tool to evaluate LLM development, relationships and capabilities, even in the absence of transparent training information.
comment: The project code is available at https://github.com/Nicolas-Yax/PhyloLM . Published as https://iclr.cc/virtual/2025/poster/28195 at ICLR 2025. A code demo is available at https://colab.research.google.com/drive/1agNE52eUevgdJ3KL3ytv5Y9JBbfJRYqd
♻ ☆ Hidden Minima in Two-Layer ReLU Networks
We consider the optimization problem arising from fitting two-layer ReLU networks with $d$ inputs under the square loss, where labels are generated by a target network. Two infinite families of spurious minima have recently been identified: one whose loss vanishes as $d \to \infty$, and another whose loss remains bounded away from zero. The latter are nevertheless avoided by vanilla SGD, and thus hidden, motivating the search for analytic properties distinguishing the two types. Perhaps surprisingly, the Hessian spectra of hidden and non-hidden minima agree up to terms of order $O(d^{-1/2})$, providing limited explanatory power. Consequently, our analysis of hidden minima proceeds instead via curves along which the loss is minimized or maximized. The main result is that arcs emanating from hidden minima differ, characteristically, by their structure and symmetry, precisely on account of the $O(d^{-1/2})$-eigenvalue terms absent from previous analyses.
♻ ☆ HybridNorm: Towards Stable and Efficient Transformer Training via Hybrid Normalization NeurIPS 2025
Transformers have become the de facto architecture for a wide range of machine learning tasks, particularly in large language models (LLMs). Despite their remarkable performance, many challenges remain in training deep transformer networks, especially regarding the position of the layer normalization. While Pre-Norm structures facilitate more stable training owing to their stronger identity path, they often lead to suboptimal performance compared to Post-Norm. In this paper, we propose $\textbf{HybridNorm}$, a simple yet effective hybrid normalization strategy that integrates the advantages of both Pre-Norm and Post-Norm. Specifically, HybridNorm employs QKV normalization within the attention mechanism and Post-Norm in the feed-forward network (FFN) of each transformer block. We provide both theoretical insights and empirical evidence to demonstrate that HybridNorm improves the gradient flow and the model robustness. Extensive experiments on large-scale transformer models, including both dense and sparse variants, show that HybridNorm consistently outperforms both Pre-Norm and Post-Norm approaches across multiple benchmarks. These findings highlight the potential of HybridNorm as a more stable and effective technique for improving the training and performance of deep transformer models. Code is available at https://github.com/BryceZhuo/HybridNorm.
comment: Accepted by NeurIPS 2025
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advances in architectural design, data availability, and compute have driven remarkable progress in semantic segmentation. Yet, these models often rely on relaxed Bayesian assumptions, omitting critical uncertainty information needed for robust decision-making. Despite growing interest in probabilistic segmentation to address point-estimate limitations, the research landscape remains fragmented. In response, this review synthesizes foundational concepts in uncertainty modeling, analyzing how feature- and parameter-distribution modeling impact four key segmentation tasks: Observer Variability, Active Learning, Model Introspection, and Model Generalization. Our work establishes a common framework by standardizing theory, notation, and terminology, thereby bridging the gap between method developers, task specialists, and applied researchers. We then discuss critical challenges, including the nuanced distinction between uncertainty types, strong assumptions in spatial aggregation, the lack of standardized benchmarks, and pitfalls in current quantification methods. We identify promising avenues for future research, such as uncertainty-aware active learning, data-driven benchmarks, transformer-based models, and novel techniques to move from simple segmentation problems to uncertainty in holistic scene understanding. Based on our analysis, we offer practical guidelines for researchers on method selection, evaluation, reproducibility, and meaningful uncertainty estimation. Ultimately, our goal is to facilitate the development of more reliable, efficient, and interpretable segmentation models that can be confidently deployed in real-world applications.
comment: TMLR
♻ ☆ It's complicated. The relationship of algorithmic fairness and non-discrimination regulations for high-risk systems in the EU AI Act
What constitutes a fair decision? This question is not only difficult for humans but becomes more challenging when Artificial Intelligence (AI) models are used. In light of discriminatory algorithmic behaviors, the EU has recently passed the AI Act, which mandates specific rules for high-risk systems, incorporating both traditional legal non-discrimination regulations and machine learning based algorithmic fairness concepts. This paper aims to bridge these two different concepts in the AI Act through: First, a necessary high-level introduction of both concepts targeting legal and computer science-oriented scholars, and second, an in-depth analysis of the AI Act's relationship between legal non-discrimination regulations and algorithmic fairness. Our analysis reveals three key findings: (1.) Most non-discrimination regulations target only high-risk AI systems. (2.) The regulation of high-risk systems encompasses both data input requirements and output monitoring, though these regulations are partly inconsistent and raise questions of computational feasibility. (3.) Finally, we consider the possible (future) interaction of classical EU non-discrimination law and the AI Act regulations. We recommend developing more specific auditing and testing methodologies for AI systems. This paper aims to serve as a foundation for future interdisciplinary collaboration between legal scholars and computer science-oriented machine learning researchers studying discrimination in AI systems.
comment: Accepted at the Workshop on Regulatable ML at the 39th Conference on Neural Information Processing Systems
♻ ☆ Instruction-based Time Series Editing
In time series editing, we aim to modify some properties of a given time series without altering others. For example, when analyzing a hospital patient's blood pressure, we may add a sudden early drop and observe how it impacts their future while preserving other conditions. Existing diffusion-based editors rely on rigid, predefined attribute vectors as conditions and produce all-or-nothing edits through sampling. This attribute- and sampling-based approach limits flexibility in condition format and lacks customizable control over editing strength. To overcome these limitations, we introduce Instruction-based Time Series Editing, where users specify intended edits using natural language. This allows users to express a wider range of edits in a more accessible format. We then introduce InstructTime, the first instruction-based time series editor. InstructTime takes in time series and instructions, embeds them into a shared multi-modal representation space, then decodes their embeddings to generate edited time series. By learning a structured multi-modal representation space, we can easily interpolate between embeddings to achieve varying degrees of edit. To handle local and global edits together, we propose multi-resolution encoders. In our experiments, we use synthetic and real datasets and find that InstructTime is a state-of-the-art time series editor: InstructTime achieves high-quality edits with controllable strength, can generalize to unseen instructions, and can be easily adapted to unseen conditions through few-shot learning.
♻ ☆ Evaluating the robustness of adversarial defenses in malware detection systems
Machine learning is a key tool for Android malware detection, effectively identifying malicious patterns in apps. However, ML-based detectors are vulnerable to evasion attacks, where small, crafted changes bypass detection. Despite progress in adversarial defenses, the lack of comprehensive evaluation frameworks in binary-constrained domains limits understanding of their robustness. We introduce two key contributions. First, Prioritized Binary Rounding, a technique to convert continuous perturbations into binary feature spaces while preserving high attack success and low perturbation size. Second, the sigma-binary attack, a novel adversarial method for binary domains, designed to achieve attack goals with minimal feature changes. Experiments on the Malscan dataset show that sigma-binary outperforms existing attacks and exposes key vulnerabilities in state-of-the-art defenses. Defenses equipped with adversary detectors, such as KDE, DLA, DNN+, and ICNN, exhibit significant brittleness, with attack success rates exceeding 90% using fewer than 10 feature modifications and reaching 100% with just 20. Adversarially trained defenses, including AT-rFGSM-k, AT-MaxMA, improves robustness under small budgets but remains vulnerable to unrestricted perturbations, with attack success rates of 99.45% and 96.62%, respectively. Although PAD-SMA demonstrates strong robustness against state-of-the-art gradient-based adversarial attacks by maintaining an attack success rate below 16.55%, the sigma-binary attack significantly outperforms these methods, achieving a 94.56% success rate under unrestricted perturbations. These findings highlight the critical need for precise method like sigma-binary to expose hidden vulnerabilities in existing defenses and support the development of more resilient malware detection systems.
comment: Published in Computers & Electrical Engineering (Elsevier), Volume 130, February 2026, Article 110845
♻ ☆ MM-ACT: Learn from Multimodal Parallel Generation to Act
A generalist robotic policy needs both semantic understanding for task planning and the ability to interact with the environment through predictive capabilities. To tackle this, we present MM-ACT, a unified Vision-Language-Action (VLA) model that integrates text, image, and action in shared token space and performs generation across all three modalities. MM-ACT adopts a re-mask parallel decoding strategy for text and image generation, and employs a one-step parallel decoding strategy for action generation to improve efficiency. We introduce Context-Shared Multimodal Learning, a unified training paradigm that supervises generation in all three modalities from a shared context, enhancing action generation through cross-modal learning. Experiments were conducted on the LIBERO simulation and Franka real-robot setups as well as RoboTwin2.0 to assess in-domain and out-of-domain performances respectively. Our approach achieves a success rate of 96.3% on LIBERO, 72.0% across three tasks of real Franka, and 52.38% across eight bimanual tasks of RoboTwin2.0 with an additional gain of 9.25% from cross-modal learning. We release our codes, models and data at https://github.com/HHYHRHY/MM-ACT.
comment: 17 pages
♻ ☆ Are Time-Series Foundation Models Deployment-Ready? A Systematic Study of Adversarial Robustness Across Domains
Time-Series Foundation Models (TSFMs) are rapidly transitioning from research prototypes to core components of critical decision-making systems, driven by their impressive zero-shot forecasting capabilities. However, as their deployment surges, a critical blind spot remains: their fragility under adversarial attacks. This lack of scrutiny poses severe risks, particularly as TSFMs enter high-stakes environments vulnerable to manipulation. We present a systematic, diagnostic study arguing that for TSFMs, robustness is not merely a secondary metric but a prerequisite for trustworthy deployment comparable to accuracy. Our evaluation framework, explicitly tailored to the unique constraints of time series, incorporates normalized, sparsity-aware perturbation budgets and unified scale-invariant metrics across white-box and black-box settings. Across six representative TSFMs, we demonstrate that current architectures are alarmingly brittle: even small perturbations can reliably steer forecasts toward specific failure modes, such as trend flips and malicious drifts. We uncover TSFM-specific vulnerability patterns, including horizon-proximal brittleness, increased susceptibility with longer context windows, and weak cross-model transfer that points to model-specific failure modes rather than generic distortions. Finally, we show that simple adversarial fine-tuning offers a cost-effective path to substantial robustness gains, even with out-of-domain data. This work bridges the gap between TSFM capabilities and safety constraints, offering essential guidance for hardening the next generation of forecasting systems.
comment: Preprint
♻ ☆ Semantic Faithfulness and Entropy Production Measures to Tame Your LLM Demons and Manage Hallucinations
Evaluating faithfulness of Large Language Models (LLMs) to a given task is a complex challenge. We propose two new unsupervised metrics for faithfulness evaluation using insights from information theory and thermodynamics. Our approach treats an LLM as a bipartite information engine where hidden layers act as a Maxwell demon controlling transformations of context $C $ into answer $A$ via prompt $Q$. We model Question-Context-Answer (QCA) triplets as probability distributions over shared topics. Topic transformations from $C$ to $Q$ and $A$ are modeled as transition matrices ${\bf Q}$ and ${\bf A}$ encoding the query goal and actual result, respectively. Our semantic faithfulness (SF) metric quantifies faithfulness for any given QCA triplet by the Kullback-Leibler (KL) divergence between these matrices. Both matrices are inferred simultaneously via convex optimization of this KL divergence, and the final SF metric is obtained by mapping the minimal divergence onto the unit interval [0,1], where higher scores indicate greater faithfulness. Furthermore, we propose a thermodynamics-based semantic entropy production (SEP) metric in answer generation, and show that high faithfulness generally implies low entropy production. The SF and SEP metrics can be used jointly or separately for LLM evaluation and hallucination control. We demonstrate our framework on LLM summarization of corporate SEC 10-K filings.
comment: 23 pages, 6 figures
♻ ☆ Covariate-Elaborated Robust Partial Information Transfer with Conditional Spike-and-Slab Prior
The popularity of transfer learning stems from the fact that it can borrow information from useful auxiliary datasets. Existing statistical transfer learning methods usually adopt a global similarity measure between the source data and the target data, which may lead to inefficiency when only partial information is shared. In this paper, we propose a novel Bayesian transfer learning method named ``CONCERT'' to allow robust partial information transfer for high-dimensional data analysis. A conditional spike-and-slab prior is introduced in the joint distribution of target and source parameters for information transfer. By incorporating covariate-specific priors, we can characterize partial similarities and integrate source information collaboratively to improve the performance on the target. In contrast to existing work, the CONCERT is a one-step procedure which achieves variable selection and information transfer simultaneously. We establish variable selection consistency, as well as estimation and prediction error bounds for CONCERT. Our theory demonstrates the covariate-specific benefit of transfer learning. To ensure the scalability of the algorithm, we adopt the variational Bayes framework to facilitate implementation. Extensive experiments and two real data applications showcase the validity and advantages of CONCERT over existing cutting-edge transfer learning methods.
comment: 35 pages, 4 figures
♻ ☆ Quantization-Free Autoregressive Action Transformer
Current transformer-based imitation learning approaches introduce discrete action representations and train an autoregressive transformer decoder on the resulting latent code. However, the initial quantization breaks the continuous structure of the action space thereby limiting the capabilities of the generative model. We propose a quantization-free method instead that leverages Generative Infinite-Vocabulary Transformers (GIVT) as a direct, continuous policy parametrization for autoregressive transformers. This simplifies the imitation learning pipeline while achieving state-of-the-art performance on a variety of popular simulated robotics tasks. We enhance our policy roll-outs by carefully studying sampling algorithms, further improving the results.
♻ ☆ A Biophysically-Conditioned Generative Framework for 3D Brain Tumor MRI Synthesis
Magnetic resonance imaging (MRI) inpainting supports numerous clinical and research applications. We introduce the first generative model that conditions on voxel-level, continuous tumor concentrations to synthesize high-fidelity brain tumor MRIs. For the BraTS 2025 Inpainting Challenge, we adapt this architecture to the complementary task of healthy tissue restoration by setting the tumor concentrations to zero. Our latent diffusion model conditioned on both tissue segmentations and the tumor concentrations generates 3D spatially coherent and anatomically consistent images for both tumor synthesis and healthy tissue inpainting. For healthy inpainting, we achieve a PSNR of 18.5, and for tumor inpainting, we achieve 17.4. Our code is available at: https://github.com/valentin-biller/ldm.git
♻ ☆ Generalized Probabilistic Approximate Optimization Algorithm
We introduce a generalized \textit{Probabilistic Approximate Optimization Algorithm (PAOA)}, a classical variational Monte Carlo framework that extends and formalizes prior work by Weitz \textit{et al.}~\cite{Combes_2023}, enabling parameterized and fast sampling on present-day Ising machines and probabilistic computers. PAOA operates by iteratively modifying the couplings of a network of binary stochastic units, guided by cost evaluations from independent samples. We establish a direct correspondence between derivative-free updates and the gradient of the full Markov flow over the exponentially large state space, showing that PAOA admits a principled variational formulation. Simulated annealing emerges as a limiting case under constrained parameterizations, and we implement this regime on an FPGA-based probabilistic computer with on-chip annealing to solve large 3D spin-glass problems. Benchmarking PAOA against QAOA on the canonical 26-spin Sherrington-Kirkpatrick model with matched parameters reveals superior performance for PAOA. We show that PAOA naturally extends simulated annealing by optimizing multiple temperature profiles, leading to improved performance over SA on heavy-tailed problems such as SK-Lévy.
comment: Nature Communications (2025)
♻ ☆ Look the Other Way: Designing 'Positive' Molecules with Negative Data via Task Arithmetic
The scarcity of molecules with desirable properties (i.e., `positive' molecules) is an inherent bottleneck for generative molecule design. To sidestep such obstacle, here we propose molecular task arithmetic: training a model on diverse and abundant negative examples to learn 'property directions' - without accessing any positively labeled data - and moving models in the opposite property directions to generate positive molecules. When analyzed on 33 design experiments with distinct molecular entities (small molecules, proteins), model architectures, and scales, molecular task arithmetic generated more diverse and successful designs than models trained on positive molecules in general. Moreover, we employed molecular task arithmetic in dual-objective and few-shot design tasks. We find that molecular task arithmetic can consistently increase the diversity of designs while maintaining desirable complex design properties, such as good docking scores to a protein. With its simplicity, data efficiency, and performance, molecular task arithmetic bears the potential to become the de facto transfer learning strategy for de novo molecule design.
♻ ☆ Proceedings of the 3rd Italian Conference on Big Data and Data Science (ITADATA2024)
Proceedings of the 3rd Italian Conference on Big Data and Data Science (ITADATA2024), held in Pisa, Italy, September 17-19, 2024. The Italian Conference on Big Data and Data Science (ITADATA2024) is the annual event supported by the CINI Big Data National Laboratory and ISTI CNR that aims to put together Italian researchers and professionals from academia, industry, government, and public administration working in the field of big data and data science, as well as related fields (e.g., security and privacy, HPC, Cloud). ITADATA2024 covered research on all theoretical and practical aspects of Big Data and data science including data governance, data processing, data analysis, data reporting, data protection, as well as experimental studies and lessons learned. In particular, ITADATA2024 focused on - Data spaces - Data processing life cycle - Machine learning and Large Language Models - Applications of big data and data science in healthcare, finance, industry 5.0, and beyond - Data science for social network analysis
♻ ☆ Physics-Informed Inductive Biases for Voltage Prediction in Distribution Grids
Voltage prediction in distribution grids is a critical yet difficult task for maintaining power system stability. Machine learning approaches, particularly Graph Neural Networks (GNNs), offer significant speedups but suffer from poor generalization when trained on limited or incomplete data. In this work, we systematically investigate the role of inductive biases in improving a model's ability to reliably learn power flow. Specifically, we evaluate three physics-informed strategies: (i) power-flow-constrained loss functions, (ii) complex-valued neural networks, and (iii) residual-based task reformulation. Using the ENGAGE dataset, which spans multiple low- and medium-voltage grid configurations, we conduct controlled experiments to isolate the effect of each inductive bias and assess both standard predictive performance and out-of-distribution generalization. Our study provides practical insights into which model assumptions most effectively guide learning for reliable and efficient voltage prediction in modern distribution networks.
♻ ☆ Closed-form $\ell_r$ norm scaling with data for overparameterized linear regression and diagonal linear networks under $\ell_p$ bias
For overparameterized linear regression with isotropic Gaussian design and minimum-$\ell_p$ interpolator $p\in(1,2]$, we give a unified, high-probability characterization for the scaling of the family of parameter norms $ \\{ \lVert \widehat{w_p} \rVert_r \\}_{r \in [1,p]} $ with sample size. We solve this basic, but unresolved question through a simple dual-ray analysis, which reveals a competition between a signal *spike* and a *bulk* of null coordinates in $X^\top Y$, yielding closed-form predictions for (i) a data-dependent transition $n_\star$ (the "elbow"), and (ii) a universal threshold $r_\star=2(p-1)$ that separates $\lVert \widehat{w_p} \rVert_r$'s which plateau from those that continue to grow with an explicit exponent. This unified solution resolves the scaling of *all* $\ell_r$ norms within the family $r\in [1,p]$ under $\ell_p$-biased interpolation, and explains in one picture which norms saturate and which increase as $n$ grows. We then study diagonal linear networks (DLNs) trained by gradient descent. By calibrating the initialization scale $α$ to an effective $p_{\mathrm{eff}}(α)$ via the DLN separable potential, we show empirically that DLNs inherit the same elbow/threshold laws, providing a predictive bridge between explicit and implicit bias. Given that many generalization proxies depend on $\lVert \widehat {w_p} \rVert_r$, our results suggest that their predictive power will depend sensitively on which $l_r$ norm is used.
♻ ☆ Staying on the Manifold: Geometry-Aware Noise Injection
It has been shown that perturbing the input during training implicitly regularises the gradient of the learnt function, leading to smoother models and enhancing generalisation. However, previous research mostly considered the addition of ambient noise in the input space, without considering the underlying structure of the data. In this work, we propose several strategies of adding geometry-aware input noise that accounts for the lower dimensional manifold the input space inhabits. We start by projecting ambient Gaussian noise onto the tangent space of the manifold. In a second step, the noise sample is mapped on the manifold via the associated geodesic curve. We also consider Brownian motion noise, which moves in random steps along the manifold. We show that geometry-aware noise leads to improved generalisation and robustness to hyperparameter selection on highly curved manifolds, while performing at least as well as training without noise on simpler manifolds. Our proposed framework extends to data manifolds approximated by generative models and we observe similar trends on the MNIST digits dataset.
♻ ☆ JaGuard: Jamming Correction of GNSS Deviation with Deep Temporal Graphs
Global Navigation Satellite Systems (GNSS) are increasingly exposed to intentional jamming, threatening reliability when accurate positioning and timing are most critical. We address this problem by formulating interference mitigation as a dynamic graph regression task and propose JaGuard, a receiver-centric temporal graph neural network that estimates and corrects latitude and longitude errors. At each 1 Hz epoch, the satellite-receiver scene is represented as a heterogeneous star graph with time-varying satellite attributes such as SNR, azimuth and elevation. A single-layer HeteroGCLSTM fuses one-hop spatial context with short-term temporal dynamics to produce a 2D deviation estimate. We evaluate JaGuard on data collected from two commercial receivers under controlled conducted jamming using three jammer types (CW, 3xCW, FM) and six power levels from -45 to -70 dBm, each repeated 50 times across pre-jam, jam, and recovery phases. JaGuard outperforms strong multivariate baselines (TSMixer, uniform CNN, Seq2Point) in all conditions. Under severe jamming at -45 dBm, it achieves 3.64-7.74 cm MAE, improving to 1.59-1.90 cm for -60 to -70 dBm. On mixed-mode datasets, it attains 3.78 cm MAE on GP01 and 4.25 cm on U-blox 10. With only 10 percent of the training data, JaGuard remains ahead, reaching about 20 cm MAE compared to 36-42 cm for the baselines.
comment: 12 pages, 7 figures
♻ ☆ Flatten Graphs as Sequences: Transformers are Scalable Graph Generators NeurIPS 2025
We introduce AutoGraph, a scalable autoregressive model for attributed graph generation using decoder-only transformers. By flattening graphs into random sequences of tokens through a reversible process, AutoGraph enables modeling graphs as sequences without relying on additional node features that are expensive to compute, in contrast to diffusion-based approaches. This results in sampling complexity and sequence lengths that scale optimally linearly with the number of edges, making it scalable and efficient for large, sparse graphs. A key success factor of AutoGraph is that its sequence prefixes represent induced subgraphs, creating a direct link to sub-sentences in language modeling. Empirically, AutoGraph achieves state-of-the-art performance on synthetic and molecular benchmarks, with up to 100x faster generation and 3x faster training than leading diffusion models. It also supports substructure-conditioned generation without fine-tuning and shows promising transferability, bridging language modeling and graph generation to lay the groundwork for graph foundation models. Our code is available at https://github.com/BorgwardtLab/AutoGraph.
comment: Camera-ready version published at NeurIPS 2025
♻ ☆ Generative Machine Learning for Multivariate Angular Simulation
With the recent development of new geometric and angular-radial frameworks for multivariate extremes, reliably simulating from angular variables in moderate-to-high dimensions is of increasing importance. Empirical approaches have the benefit of simplicity, and work reasonably well in low dimensions, but as the number of variables increases, they can lack the required flexibility and scalability. Classical parametric models for angular variables, such as the von Mises--Fisher distribution (vMF), provide an alternative. Exploiting finite mixtures of vMF distributions increases their flexibility, but there are cases where, without letting the number of mixture components grow considerably, a mixture model with a fixed number of components is not sufficient to capture the intricate features that can arise in data. Owing to their flexibility, generative deep learning methods are able to capture complex data structures; they therefore have the potential to be useful in the simulation of multivariate angular variables. In this paper, we introduce a range of deep learning approaches for this task, including generative adversarial networks, normalizing flows and flow matching. We assess their performance via a range of metrics, and make comparisons to the more classical approach of using a finite mixture of vMF distributions. The methods are also applied to a metocean data set, with diagnostics indicating strong performance, demonstrating the applicability of such techniques to real-world, complex data structures.
♻ ☆ Training-Free Diffusion Priors for Text-to-Image Generation via Optimization-based Visual Inversion
Diffusion models have established the state-of-the-art in text-to-image generation, but their performance often relies on a diffusion prior network to translate text embeddings into the visual manifold for easier decoding. These priors are computationally expensive and require extensive training on massive datasets. In this work, we challenge the necessity of a trained prior at all by employing Optimization-based Visual Inversion (OVI), a training-free and data-free alternative, to replace the need for a prior. OVI initializes a latent visual representation from random pseudo-tokens and iteratively optimizes it to maximize the cosine similarity with input textual prompt embedding. We further propose two novel constraints, a Mahalanobis-based and a Nearest-Neighbor loss, to regularize the OVI optimization process toward the distribution of realistic images. Our experiments, conducted on Kandinsky 2.2, show that OVI can serve as an alternative to traditional priors. More importantly, our analysis reveals a critical flaw in current evaluation benchmarks like T2I-CompBench++, where simply using the text embedding as a prior achieves surprisingly high scores, despite lower perceptual quality. Our constrained OVI methods improve visual fidelity over this baseline, with the Nearest-Neighbor approach proving particularly effective, achieving quantitative scores comparable to or higher than the state-of-the-art data-efficient prior, indicating that the idea merits further investigation. The code will be publicly available upon acceptance.
comment: 11 pages, 7 figures, technical report (preprint)
♻ ☆ Real-time Air Pollution prediction model based on Spatiotemporal Big data
Air pollution is one of the most concerns for urban areas. Many countries have constructed monitoring stations to hourly collect pollution values. Recently, there is a research in Daegu city, Korea for real-time air quality monitoring via sensors installed on taxis running across the whole city. The collected data is huge (1-second interval) and in both Spatial and Temporal format. In this paper, based on this spatiotemporal Big data, we propose a real-time air pollution prediction model based on Convolutional Neural Network (CNN) algorithm for image-like Spatial distribution of air pollution. Regarding to Temporal information in the data, we introduce a combination of a Long Short-Term Memory (LSTM) unit for time series data and a Neural Network model for other air pollution impact factors such as weather conditions to build a hybrid prediction model. This model is simple in architecture but still brings good prediction ability.
comment: - We fix typos and grammars through out the paper. - We fix layout of figure for better view. - We update mathematic formula and its description. - We add more insights to experimental results. - We correct author names in references
♻ ☆ Fast training and sampling of Restricted Boltzmann Machines
Restricted Boltzmann Machines (RBMs) are powerful tools for modeling complex systems and extracting insights from data, but their training is hindered by the slow mixing of Markov Chain Monte Carlo (MCMC) processes, especially with highly structured datasets. In this study, we build on recent theoretical advances in RBM training and focus on the stepwise encoding of data patterns into singular vectors of the coupling matrix, significantly reducing the cost of generating new samples and evaluating the quality of the model, as well as the training cost in highly clustered datasets. The learning process is analogous to the thermodynamic continuous phase transitions observed in ferromagnetic models, where new modes in the probability measure emerge in a continuous manner. We leverage the continuous transitions in the training process to define a smooth annealing trajectory that enables reliable and computationally efficient log-likelihood estimates. This approach enables online assessment during training and introduces a novel sampling strategy called Parallel Trajectory Tempering (PTT) that outperforms previously optimized MCMC methods. To mitigate the critical slowdown effect in the early stages of training, we propose a pre-training phase. In this phase, the principal components are encoded into a low-rank RBM through a convex optimization process, facilitating efficient static Monte Carlo sampling and accurate computation of the partition function. Our results demonstrate that this pre-training strategy allows RBMs to efficiently handle highly structured datasets where conventional methods fail. Additionally, our log-likelihood estimation outperforms computationally intensive approaches in controlled scenarios, while the PTT algorithm significantly accelerates MCMC processes compared to conventional methods.
comment: 31 pages, 16 figures
♻ ☆ HN-MVTS: HyperNetwork-based Multivariate Time Series Forecasting AAAI 2026
Accurate forecasting of multivariate time series data remains a formidable challenge, particularly due to the growing complexity of temporal dependencies in real-world scenarios. While neural network-based models have achieved notable success in this domain, complex channel-dependent models often suffer from performance degradation compared to channel-independent models that do not consider the relationship between components but provide high robustness due to small capacity. In this work, we propose HN-MVTS, a novel architecture that integrates a hypernetwork-based generative prior with an arbitrary neural network forecasting model. The input of this hypernetwork is a learnable embedding matrix of time series components. To restrict the number of new parameters, the hypernetwork learns to generate the weights of the last layer of the target forecasting networks, serving as a data-adaptive regularizer that improves generalization and long-range predictive accuracy. The hypernetwork is used only during the training, so it does not increase the inference time compared to the base forecasting model. Extensive experiments on eight benchmark datasets demonstrate that application of HN-MVTS to the state-of-the-art models (DLinear, PatchTST, TSMixer, etc.) typically improves their performance. Our findings suggest that hypernetwork-driven parameterization offers a promising direction for enhancing existing forecasting techniques in complex scenarios.
comment: AAAI 2026
♻ ☆ Enhanced Spatiotemporal Consistency for Image-to-LiDAR Data Pretraining
LiDAR representation learning has emerged as a promising approach to reducing reliance on costly and labor-intensive human annotations. While existing methods primarily focus on spatial alignment between LiDAR and camera sensors, they often overlook the temporal dynamics critical for capturing motion and scene continuity in driving scenarios. To address this limitation, we propose SuperFlow++, a novel framework that integrates spatiotemporal cues in both pretraining and downstream tasks using consecutive LiDAR-camera pairs. SuperFlow++ introduces four key components: (1) a view consistency alignment module to unify semantic information across camera views, (2) a dense-to-sparse consistency regularization mechanism to enhance feature robustness across varying point cloud densities, (3) a flow-based contrastive learning approach that models temporal relationships for improved scene understanding, and (4) a temporal voting strategy that propagates semantic information across LiDAR scans to improve prediction consistency. Extensive evaluations on 11 heterogeneous LiDAR datasets demonstrate that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions. Furthermore, by scaling both 2D and 3D backbones during pretraining, we uncover emergent properties that provide deeper insights into developing scalable 3D foundation models. With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving. The code is publicly available at https://github.com/Xiangxu-0103/SuperFlow
comment: IEEE Transactions on Pattern Analysis and Machine Intelligence
♻ ☆ Exploiting ftrace's function_graph Tracer Features for Machine Learning: A Case Study on Encryption Detection CCS
This paper proposes using the Linux kernel ftrace framework, particularly the function graph tracer, to generate informative system level data for machine learning (ML) applications. Experiments on a real world encryption detection task demonstrate the efficacy of the proposed features across several learning algorithms. The learner faces the problem of detecting encryption activities across a large dataset of files, using function call traces and graph based features. Empirical results highlight an outstanding accuracy of 99.28 on the task at hand, underscoring the efficacy of features derived from the function graph tracer. The results were further validated in an additional experiment targeting a multilabel classification problem, in which running programs were identified from trace data. This work provides comprehensive methodologies for preprocessing raw trace data and extracting graph based features, offering significant advancements in applying ML to system behavior analysis, program identification, and anomaly detection. By bridging the gap between system tracing and ML, this paper paves the way for innovative solutions in performance monitoring and security analytics.
comment: Conference paper presented at AICCSA 2025
♻ ☆ First Attentions Last: Better Exploiting First Attentions for Efficient Transformer Training
As training billion-scale transformers becomes increasingly common, employing multiple distributed GPUs along with parallel training methods has become a standard practice. However, existing transformer designs suffer from significant communication overhead, especially in Tensor Parallelism (TP), where each block's MHA-MLP connection requires an all-reduce communication. Through our investigation, we show that the MHA-MLP connections can be bypassed for efficiency, while the attention output of the first layer can serve as an alternative signal for the bypassed connection. Motivated by the observations, we propose FAL (First Attentions Last), an efficient transformer architecture that redirects the first MHA output to the MLP inputs of the following layers, eliminating the per-block MHA-MLP connections. This removes the all-reduce communication and enables parallel execution of MHA and MLP on a single GPU. We also introduce FAL+, which adds the normalized first attention output to the MHA outputs of the following layers to augment the MLP input for the model quality. Our evaluation shows that FAL reduces multi-GPU training time by up to 44%, improves single-GPU throughput by up to 1.18x, and achieves better perplexity compared to the baseline GPT. FAL+ achieves even lower perplexity without increasing the training time than the baseline. Codes are available at: https://github.com/CASL-KU/FAL
♻ ☆ RAMAC: Multimodal Risk-Aware Offline Reinforcement Learning and the Role of Behavior Regularization
In safety-critical domains where online data collection is infeasible, offline reinforcement learning (RL) offers an attractive alternative but only if policies deliver high returns without incurring catastrophic lower-tail risk. Prior work on risk-averse offline RL achieves safety at the cost of value or model-based pessimism, and restricted policy classes that limit policy expressiveness, whereas diffusion/flow-based expressive generative policies trained with a behavioral-cloning (BC) objective have been used only in risk-neutral settings. Here, we address this gap by introducing the \textbf{Risk-Aware Multimodal Actor-Critic (RAMAC)}, which couples an expressive generative actor with a distributional critic and, to our knowledge, is the first model-free approach that learns \emph{risk-aware expressive generative policies}. RAMAC differentiates a composite objective that adds a Conditional Value-at-Risk (CVaR) term to a BC loss, achieving risk-sensitive learning in complex multimodal scenarios. Since out-of-distribution (OOD) actions are a major driver of catastrophic failures in offline RL, we further analyze OOD behavior under prior-anchored perturbation schemes from recent BC-regularized risk-averse offline RL. This clarifies why a behavior-regularized objective that directly constrains the expressive generative policy to the dataset support provides an effective, risk-agnostic mechanism for suppressing OOD actions in modern expressive policies. We instantiate RAMAC with a diffusion-based actor, using it both to illustrate the analysis in a 2-D risky bandit and to deploy OOD-action detectors on Stochastic-D4RL benchmarks, empirically validating our insights. Across these tasks, we observe consistent gains in $\mathrm{CVaR}_{0.1}$ while maintaining strong returns. Our implementation is available at GitHub: https://github.com/KaiFukazawa/RAMAC.git
♻ ☆ Pretraining in Actor-Critic Reinforcement Learning for Robot Locomotion
The pretraining-finetuning paradigm has facilitated numerous transformative advancements in artificial intelligence research in recent years. However, in the domain of reinforcement learning (RL) for robot locomotion, individual skills are often learned from scratch despite the high likelihood that some generalizable knowledge is shared across all task-specific policies belonging to the same robot embodiment. This work aims to define a paradigm for pretraining neural network models that encapsulate such knowledge and can subsequently serve as a basis for warm-starting the RL process in classic actor-critic algorithms, such as Proximal Policy Optimization (PPO). We begin with a task-agnostic exploration-based data collection algorithm to gather diverse, dynamic transition data, which is then used to train a Proprioceptive Inverse Dynamics Model (PIDM) through supervised learning. The pretrained weights are then loaded into both the actor and critic networks to warm-start the policy optimization of actual tasks. We systematically validated our proposed method with 9 distinct robot locomotion RL environments comprising 3 different robot embodiments, showing significant benefits of this initialization strategy. Our proposed approach on average improves sample efficiency by 36.9% and task performance by 7.3% compared to random initialization. We further present key ablation studies and empirical analyses that shed light on the mechanisms behind the effectiveness of this method.
♻ ☆ Utility Boundary of Dataset Distillation: Scaling and Configuration-Coverage Laws
Dataset distillation (DD) aims to construct compact synthetic datasets that allow models to achieve comparable performance to full-data training while substantially reducing storage and computation. Despite rapid empirical progress, its theoretical foundations remain limited: existing methods (gradient, distribution, trajectory matching) are built on heterogeneous surrogate objectives and optimization assumptions, which makes it difficult to analyze their common principles or provide general guarantees. Moreover, it is still unclear under what conditions distilled data can retain the effectiveness of full datasets when the training configuration, such as optimizer, architecture, or augmentation, changes. To answer these questions, we propose a unified theoretical framework, termed configuration--dynamics--error analysis, which reformulates major DD approaches under a common generalization-error perspective and provides two main results: (i) a scaling law that provides a single-configuration upper bound, characterizing how the error decreases as the distilled sample size increases and explaining the commonly observed performance saturation effect; and (ii) a coverage law showing that the required distilled sample size scales linearly with configuration diversity, with provably matching upper and lower bounds. In addition, our unified analysis reveals that various matching methods are interchangeable surrogates, reducing the same generalization error, clarifying why they can all achieve dataset distillation and providing guidance on how surrogate choices affect sample efficiency and robustness. Experiments across diverse methods and configurations empirically confirm the derived laws, advancing a theoretical foundation for DD and enabling theory-driven design of compact, configuration-robust dataset distillation.
♻ ☆ BondBERT: What we learn when assigning sentiment in the bond market
Bond markets respond differently to macroeconomic news compared to equity markets, yet most sentiment models are trained primarily on general financial or equity news data. However, bond prices often move in the opposite direction to economic optimism, making general or equity-based sentiment tools potentially misleading. We introduce BondBERT, a transformer-based language model fine-tuned on bond-specific news. BondBERT can act as the perception and reasoning component of a financial decision-support agent, providing sentiment signals that integrate with forecasting models. We propose a generalisable framework for adapting transformers to low-volatility, domain-inverse sentiment tasks by compiling and cleaning 30,000 UK bond market articles (2018-2025). BondBERT's sentiment predictions are compared against FinBERT, FinGPT, and Instruct-FinGPT using event-based correlation, up/down accuracy analyses, and LSTM forecasting across ten UK sovereign bonds. We find that BondBERT consistently produces positive correlations with bond returns, and achieves higher alignment and forecasting accuracy than the three baseline models. These results demonstrate that domain-specific sentiment adaptation better captures fixed income dynamics, bridging a gap between NLP advances and bond market analytics.
comment: 8 pages, 3 figures, author manuscript accepted for ICAART 2026: 18th International Conference on Agents and Artificial Intelligence, Mar. 2026, Marbella, Spain
♻ ☆ Scaling to Multimodal and Multichannel Heart Sound Classification with Synthetic and Augmented Biosignals
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, accounting for approximately 17.9 million deaths each year. Early detection is critical, creating a demand for accurate and inexpensive pre-screening methods. Deep learning has recently been applied to classify abnormal heart sounds indicative of CVDs using synchronised phonocardiogram (PCG) and electrocardiogram (ECG) signals, as well as multichannel PCG (mPCG). However, state-of-the-art architectures remain underutilised due to the limited availability of synchronised and multichannel datasets. Augmented datasets and pre-trained models provide a pathway to overcome these limitations, enabling transformer-based architectures to be trained effectively. This work combines traditional signal processing with denoising diffusion models, WaveGrad and DiffWave, to create an augmented dataset to fine-tune a Wav2Vec 2.0-based classifier on multimodal and multichannel heart sound datasets. The approach achieves state-of-the-art performance. On the Computing in Cardiology (CinC) 2016 dataset of single channel PCG, accuracy, unweighted average recall (UAR), sensitivity, specificity and Matthew's correlation coefficient (MCC) reach 92.48%, 93.05%, 93.63%, 92.48%, 94.93% and 0.8283, respectively. Using the synchronised PCG and ECG signals of the training-a dataset from CinC, 93.14%, 92.21%, 94.35%, 90.10%, 95.12% and 0.8380 are achieved for accuracy, UAR, sensitivity, specificity and MCC, respectively. Using a wearable vest dataset consisting of mPCG data, the model achieves 77.13% accuracy, 74.25% UAR, 86.47% sensitivity, 62.04% specificity, and 0.5082 MCC. These results demonstrate the effectiveness of transformer-based models for CVD detection when supported by augmented datasets, highlighting their potential to advance multimodal and multichannel heart sound classification.
comment: 35 pages, 37 figures, 19 tables
♻ ☆ Evaluating Model Performance Under Worst-case Subpopulations NeurIPS 2021
The performance of ML models degrades when the training population is different from that seen under operation. Towards assessing distributional robustness, we study the worst-case performance of a model over all subpopulations of a given size, defined with respect to core attributes Z. This notion of robustness can consider arbitrary (continuous) attributes Z, and automatically accounts for complex intersectionality in disadvantaged groups. We develop a scalable yet principled two-stage estimation procedure that can evaluate the robustness of state-of-the-art models. We prove that our procedure enjoys several finite-sample convergence guarantees, including dimension-free convergence. Instead of overly conservative notions based on Rademacher complexities, our evaluation error depends on the dimension of Z only through the out-of-sample error in estimating the performance conditional on Z. On real datasets, we demonstrate that our method certifies the robustness of a model and prevents deployment of unreliable models.
comment: Earlier version appeared in the proceedings of Advances in Neural Information Processing Systems 34 (NeurIPS 2021): https://proceedings.neurips.cc/paper_files/paper/2021/file/908075ea2c025c335f4865f7db427062-Paper.pdf
♻ ☆ An Adaptive Resonance Theory-based Topological Clustering Algorithm with a Self-Adjusting Vigilance Parameter
Clustering in stationary and nonstationary settings, where data distributions remain static or evolve over time, requires models that can adapt to distributional shifts while preserving previously learned cluster structures. This paper proposes an Adaptive Resonance Theory (ART)-based topological clustering algorithm that autonomously adjusts its recalculation interval and vigilance threshold through a diversity-driven adaptation mechanism. This mechanism enables hyperparameter-free learning that maintains cluster stability and continuity in dynamic environments. Experiments on 24 real-world datasets demonstrate that the proposed algorithm outperforms state-of-the-art methods in both clustering performance and continual learning capability. These results highlight the effectiveness of the proposed parameter adaptation in mitigating catastrophic forgetting and maintaining consistent clustering in evolving data streams. Source code is available at https://github.com/Masuyama-lab/IDAT
comment: This manuscript is currently under review
♻ ☆ One Sample is Enough to Make Conformal Prediction Robust NeurIPS 2025
For any black-box model, conformal prediction (CP) returns prediction sets guaranteed to include the true label with high adjustable probability. Robust CP (RCP) extends the guarantee to the worst case noise up to a pre-defined magnitude. For RCP, a well-established approach is to use randomized smoothing since it is applicable to any black-box model and provides smaller sets compared to deterministic methods. However, smoothing-based robustness requires many model forward passes per each input which is computationally expensive. We show that conformal prediction attains some robustness even with a single forward pass on a randomly perturbed input. Using any binary certificate we propose a single sample robust CP (RCP1). Our approach returns robust sets with smaller average set size compared to SOTA methods which use many (e.g. 100) passes per input. Our key insight is to certify the conformal procedure itself rather than individual conformity scores. Our approach is agnostic to the task (classification and regression). We further extend our approach to smoothing-based robust conformal risk control.
comment: Accepted in NeurIPS 2025 Conference
♻ ☆ Global-Decision-Focused Neural ODEs for Proactive Grid Resilience Management
Extreme hazard events such as wildfires and hurricanes increasingly threaten power systems, causing widespread outages and disrupting critical services. Recently, predict-then-optimize approaches have gained traction in grid operations, where system functionality forecasts are first generated and then used as inputs for downstream decision-making. However, this two-stage method often results in a misalignment between prediction and optimization objectives, leading to suboptimal resource allocation. To address this, we propose predict-all-then-optimize-globally (PATOG), a framework that integrates outage prediction with globally optimized interventions. At its core, our global-decision-focused (GDF) neural ODE model captures outage dynamics while optimizing resilience strategies in a decision-aware manner. Unlike conventional methods, our approach ensures spatially and temporally coherent decision-making, improving both predictive accuracy and operational efficiency. Experiments on synthetic and real-world datasets demonstrate significant improvements in outage prediction consistency and grid resilience.
♻ ☆ DiTAR: Diffusion Transformer Autoregressive Modeling for Speech Generation ICML 2025
Several recent studies have attempted to autoregressively generate continuous speech representations without discrete speech tokens by combining diffusion and autoregressive models, yet they often face challenges with excessive computational loads or suboptimal outcomes. In this work, we propose Diffusion Transformer Autoregressive Modeling (DiTAR), a patch-based autoregressive framework combining a language model with a diffusion transformer. This approach significantly enhances the efficacy of autoregressive models for continuous tokens and reduces computational demands. DiTAR utilizes a divide-and-conquer strategy for patch generation, where the language model processes aggregated patch embeddings and the diffusion transformer subsequently generates the next patch based on the output of the language model. For inference, we propose defining temperature as the time point of introducing noise during the reverse diffusion ODE to balance diversity and determinism. We also show in the extensive scaling analysis that DiTAR has superb scalability. In zero-shot speech generation, DiTAR achieves state-of-the-art performance in robustness, speaker similarity, and naturalness.
comment: ByteDance Seed template, ICML 2025
♻ ☆ MUST-RAG: MUSical Text Question Answering with Retrieval Augmented Generation
Recent advancements in Large language models (LLMs) have demonstrated remarkable capabilities across diverse domains. While they exhibit strong zero-shot performance on various tasks, LLMs' effectiveness in music-related applications remains limited due to the relatively small proportion of music-specific knowledge in their training data. To address this limitation, we propose MusT-RAG, a comprehensive framework based on Retrieval Augmented Generation (RAG) to adapt general-purpose LLMs for text-only music question answering (MQA) tasks. RAG is a technique that provides external knowledge to LLMs by retrieving relevant context information when generating answers to questions. To optimize RAG for the music domain, we (1) propose MusWikiDB, a music-specialized vector database for the retrieval stage, and (2) utilizes context information during both inference and fine-tuning processes to effectively transform general-purpose LLMs into music-specific models. Our experiment demonstrates that MusT-RAG significantly outperforms traditional fine-tuning approaches in enhancing LLMs' music domain adaptation capabilities, showing consistent improvements across both in-domain and out-of-domain MQA benchmarks. Additionally, our MusWikiDB proves substantially more effective than general Wikipedia corpora, delivering superior performance and computational efficiency.
comment: This is an earlier version of the paper - ArtistMus: A Globally Diverse, Artist-Centric Benchmark for Retrieval-Augmented Music Question Answering. The latest version is available at: (arXiv:2512.05430)
♻ ☆ DP-LLM: Runtime Model Adaptation with Dynamic Layer-wise Precision Assignment NeurIPS 2025
How can we effectively handle queries for on-device large language models (LLMs) with varying runtime constraints, such as latency and accuracy? Multi-scale quantization addresses this challenge by enabling memory-efficient runtime model adaptation of LLMs through the overlaying of multiple model variants quantized to different bitwidths. Meanwhile, an important question still remains open-ended: how can models be properly configured to match a target precision or latency? While mixed-precision offers a promising solution, we take this further by leveraging the key observation that the sensitivity of each layer dynamically changes across decoding steps. Building on this insight, we introduce DP-LLM, a novel mechanism that dynamically assigns precision to each layer based on input values. Experimental results across multiple models and benchmarks demonstrate that DP-LLM achieves a superior performance-latency trade-off, outperforming prior approaches.
comment: NeurIPS 2025
♻ ☆ Multi-Path Collaborative Reasoning via Reinforcement Learning
Chain-of-Thought (CoT) reasoning has significantly advanced the problem-solving capabilities of Large Language Models (LLMs), yet conventional CoT often exhibits internal determinism during decoding, limiting exploration of plausible alternatives. Recent methods attempt to address this by generating soft abstract tokens to enable reasoning in a continuous semantic space. However, we find that such approaches remain constrained by the greedy nature of autoregressive decoding, which fundamentally isolates the model from alternative reasoning possibilities. In this work, we propose Multi-Path Perception Policy Optimization (M3PO), a novel reinforcement learning framework that explicitly injects collective insights into the reasoning process. M3PO leverages parallel policy rollouts as naturally diverse reasoning sources and integrates cross-path interactions into policy updates through a lightweight collaborative mechanism. This design allows each trajectory to refine its reasoning with peer feedback, thereby cultivating more reliable multi-step reasoning patterns. Empirical results show that M3PO achieves state-of-the-art performance on both knowledge- and reasoning-intensive benchmarks. Models trained with M3PO maintain interpretability and inference efficiency, underscoring the promise of multi-path collaborative learning for robust reasoning.
♻ ☆ QiMeng-SALV: Signal-Aware Learning for Verilog Code Generation NeurIPS 2025
The remarkable progress of Large Language Models (LLMs) presents promising opportunities for Verilog code generation which is significantly important for automated circuit design. The lacking of meaningful functional rewards hinders the preference optimization based on Reinforcement Learning (RL) for producing functionally correct Verilog code. In this paper, we propose Signal-Aware Learning for Verilog code generation (QiMeng-SALV) by leveraging code segments of functionally correct output signal to optimize RL training. Considering Verilog code specifies the structural interconnection of hardware gates and wires so that different output signals are independent, the key insight of QiMeng-SALV is to extract verified signal-aware implementations in partially incorrect modules, so as to enhance the extraction of meaningful functional rewards. Roughly, we verify the functional correctness of signals in generated module by comparing with that of reference module in the training data. Then abstract syntax tree (AST) is employed to identify signal-aware code segments which can provide meaningful functional rewards from erroneous modules. Finally, we introduce signal-aware DPO which is optimized on the correct signal-level code segments, thereby preventing noise and interference from incorrect signals. The proposed QiMeng-SALV underscores the paradigm shift from conventional module-level to fine-grained signal-level optimization in Verilog code generation, addressing the issue of insufficient functional rewards. Experiments demonstrate that our method achieves state-of-the-art performance on VerilogEval and RTLLM, with a 7B parameter model matching the performance of the DeepSeek v3 671B model and significantly outperforming the leading open-source model CodeV trained on the same dataset. Our code is available at https://github.com/QiMeng-IPRC/QiMeng-SALV.
comment: Accepted to NeurIPS 2025
♻ ☆ Process Reward Models That Think
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models are released at https://github.com/mukhal/thinkprm.
comment: Add new ablation and minor writing fixes
♻ ☆ Emergent Granger Causality in Neural Networks: Can Prediction Alone Reveal Structure?
Granger Causality (GC) offers an elegant statistical framework to study the association between multivariate time series data. Vector autoregressive models (VAR) are simple and easy to fit, but have limited application because of their inherent inability to capture more complex (e.g., non-linear) associations. Numerous attempts have already been made in the literature that exploit the functional approximation power of deep neural networks (DNNs) for GC. However, these methods treat GC as a variable selection problem. We present a novel paradigm for investigating the learned GC from a single neural network used for joint modeling of all components of multivariate time series data, which is essentially linked with prediction and assessing the distribution shift in residuals. A deep learning model, with proper regularization, may learn the true GC structure when jointly used for all components of the time series when there is sufficient training data. We propose to uncover the learned GC structure by comparing the model uncertainty or distribution of the residuals when the past of everything is used as compared to the one where a specific time series component is dropped from the model. We also compare the effect of input layer dropout on the ability of a neural network to learn GC. We show that a well-regularized model can learn the true GC structure from the data without explicitly adding terms in the loss function that guide the model to select variables or perform sparse regression under specific settings. We also provide a comparison of deep learning architectures such as CNN, LSTM and transformer models on their ability to discover Granger Causality. The numerical experiments demonstrate that, compared to sparse regression models, a simple joint model is a strong baseline for learning the true GC which has the advantage that it does not require tuning of many extra hyper-parameters.
♻ ☆ Quantum-Classical Hybrid Quantized Neural Network
In this work, we introduce a novel Quadratic Binary Optimization (QBO) framework for training a quantized neural network. The framework enables the use of arbitrary activation and loss functions through spline interpolation, while Forward Interval Propagation addresses the nonlinearities and the multi-layered, composite structure of neural networks via discretizing activation functions into linear subintervals. This preserves the universal approximation properties of neural networks while allowing complex nonlinear functions accessible to quantum solvers, broadening their applicability in artificial intelligence. Theoretically, we derive an upper bound on the approximation error and the number of Ising spins required by deriving the sample complexity of the empirical risk minimization problem from an optimization perspective. A key challenge in solving the associated large-scale Quadratic Constrained Binary Optimization (QCBO) model is the presence of numerous constraints. To overcome this, we adopt the Quantum Conditional Gradient Descent (QCGD) algorithm, which solves QCBO directly on quantum hardware. We establish the convergence of QCGD under a quantum oracle subject to randomness, bounded variance, and limited coefficient precision, and further provide an upper bound on the Time-To-Solution. To enhance scalability, we further incorporate a decomposed copositive optimization scheme that replaces the monolithic lifted model with sample-wise subproblems. This decomposition substantially reduces the quantum resource requirements and enables efficient low-bit neural network training. We further propose the usage of QCGD and Quantum Progressive Hedging (QPH) algorithm to efficiently solve the decomposed problem.
♻ ☆ Repetition Makes Perfect: Recurrent Graph Neural Networks Match Message-Passing Limit
We precisely characterize the expressivity of computable Recurrent Graph Neural Networks (recurrent GNNs). We prove that recurrent GNNs with finite-precision parameters, sum aggregation, and ReLU activation, can compute any graph algorithm that respects the natural message-passing invariance induced by the Color Refinement (or Weisfeiler-Leman) algorithm. While it is well known that the expressive power of GNNs is limited by this invariance [Morris et al., AAAI 2019; Xu et al., ICLR 2019], we establish that recurrent GNNs can actually match this limit. This is in contrast to non-recurrent GNNs, which have the power of Weisfeiler-Leman only in a very weak, "non-uniform", sense where each graph size requires a different GNN to compute with. Our construction introduces only a polynomial overhead in both time and space. Furthermore, we show that by incorporating random initialization, for connected graphs recurrent GNNs can express all graph algorithms. In particular, any polynomial-time graph algorithm can be emulated on connected graphs in polynomial time by a recurrent GNN with random initialization.
♻ ☆ Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Unveiling AI's Potential Through Tools, Techniques, and Applications
Artificial intelligence (AI), machine learning, and deep learning have become transformative forces in big data analytics and management, enabling groundbreaking advancements across diverse industries. This article delves into the foundational concepts and cutting-edge developments in these fields, with a particular focus on large language models (LLMs) and their role in natural language processing, multimodal reasoning, and autonomous decision-making. Highlighting tools such as ChatGPT, Claude, and Gemini, the discussion explores their applications in data analysis, model design, and optimization. The integration of advanced algorithms like neural networks, reinforcement learning, and generative models has enhanced the capabilities of AI systems to process, visualize, and interpret complex datasets. Additionally, the emergence of technologies like edge computing and automated machine learning (AutoML) democratizes access to AI, empowering users across skill levels to engage with intelligent systems. This work also underscores the importance of ethical considerations, transparency, and fairness in the deployment of AI technologies, paving the way for responsible innovation. Through practical insights into hardware configurations, software environments, and real-world applications, this article serves as a comprehensive resource for researchers and practitioners. By bridging theoretical underpinnings with actionable strategies, it showcases the potential of AI and LLMs to revolutionize big data management and drive meaningful advancements across domains such as healthcare, finance, and autonomous systems.
comment: This book contains 155 pages and 9 figures
♻ ☆ Bi-ICE: An Inner Interpretable Framework for Image Classification via Bi-directional Interactions between Concept and Input Embeddings WACV2026
Inner interpretability is a promising field aiming to uncover the internal mechanisms of AI systems through scalable, automated methods. While significant research has been conducted on large language models, limited attention has been paid to applying inner interpretability to large-scale image tasks, focusing primarily on architectural and functional levels to visualize learned concepts. In this paper, we first present a conceptual framework that supports inner interpretability and multilevel analysis for large-scale image classification tasks. Specifically, we introduce the Bi-directional Interaction between Concept and Input Embeddings (Bi-ICE) module, which facilitates interpretability across the computational, algorithmic, and implementation levels. This module enhances transparency by generating predictions based on human-understandable concepts, quantifying their contributions, and localizing them within the inputs. Finally, we showcase enhanced transparency in image classification, measuring concept contributions, and pinpointing their locations within the inputs. Our approach highlights algorithmic interpretability by demonstrating the process of concept learning and its convergence.
comment: Accepted at IEEE WACV2026. The first two authors equally contributed to this work
♻ ☆ Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Handy Appetizer
This book explores the role of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in driving the progress of big data analytics and management. The book focuses on simplifying the complex mathematical concepts behind deep learning, offering intuitive visualizations and practical case studies to help readers understand how neural networks and technologies like Convolutional Neural Networks (CNNs) work. It introduces several classic models and technologies such as Transformers, GPT, ResNet, BERT, and YOLO, highlighting their applications in fields like natural language processing, image recognition, and autonomous driving. The book also emphasizes the importance of pre-trained models and how they can enhance model performance and accuracy, with instructions on how to apply these models in various real-world scenarios. Additionally, it provides an overview of key big data management technologies like SQL and NoSQL databases, as well as distributed computing frameworks such as Apache Hadoop and Spark, explaining their importance in managing and processing vast amounts of data. Ultimately, the book underscores the value of mastering deep learning and big data management skills as critical tools for the future workforce, making it an essential resource for both beginners and experienced professionals.
comment: This book contains 93 pages and 60 figures
♻ ☆ DeepPAAC: A New Deep Galerkin Method for Principal-Agent Problems
We consider numerical resolution of principal-agent (PA) problems in continuous time. We formulate a generic PA model with continuous and lump payments and a multi-dimensional strategy of the agent. To tackle the resulting Hamilton-Jacobi-Bellman equation with an implicit Hamiltonian we develop a novel deep learning method: the Deep Principal-Agent Actor Critic (DeepPAAC) Actor-Critic algorithm. DeepPAAC is able to handle multi-dimensional states and controls, as well as constraints. We investigate the role of the neural network architecture, training designs, loss functions, etc. on the convergence of the solver, presenting five different case studies.
Multimedia
☆ A Simple Method to Enhance Pre-trained Language Models with Speech Tokens for Classification
This paper presents a simple method that allows to easily enhance textual pre-trained large language models with speech information, when fine-tuned for a specific classification task. A classical issue with the fusion of many embeddings from audio with text is the large length of the audio sequence compared to the text one. Our method benefits from an existing speech tokenizer trained for Audio Speech Recognition that output long sequences of tokens from a large vocabulary, making it difficult to integrate it at low cost in a large language model. By applying a simple lasso-based feature selection on multimodal Bag-of-Words representation, we retain only the most important audio tokens for the task, and adapt the language model to them with a self-supervised language modeling objective, before fine-tuning it on the downstream task. We show this helps to improve the performances compared to an unimodal model, to a bigger SpeechLM or to integrating audio via a learned representation. We show the effectiveness of our method on two recent Argumentative Fallacy Detection and Classification tasks where the use of audio was believed counterproductive, reaching state-of-the-art results. We also provide an in-depth analysis of the method, showing that even a random audio token selection helps enhancing the unimodal model. Our code is available [online](https://github.com/salocinc/EACL26SpeechTokFallacy/).
☆ Coherent Audio-Visual Editing via Conditional Audio Generation Following Video Edits
We introduce a novel pipeline for joint audio-visual editing that enhances the coherence between edited video and its accompanying audio. Our approach first applies state-of-the-art video editing techniques to produce the target video, then performs audio editing to align with the visual changes. To achieve this, we present a new video-to-audio generation model that conditions on the source audio, target video, and a text prompt. We extend the model architecture to incorporate conditional audio input and propose a data augmentation strategy that improves training efficiency. Furthermore, our model dynamically adjusts the influence of the source audio based on the complexity of the edits, preserving the original audio structure where possible. Experimental results demonstrate that our method outperforms existing approaches in maintaining audio-visual alignment and content integrity.
Computation and Language
☆ FVA-RAG: Falsification-Verification Alignment for Mitigating Sycophantic Hallucinations
Retrieval-Augmented Generation (RAG) systems have significantly reduced hallucinations in Large Language Models (LLMs) by grounding responses in external context. However, standard RAG architectures suffer from a critical vulnerability: Retrieval Sycophancy. When presented with a query based on a false premise or a common misconception, vector-based retrievers tend to fetch documents that align with the user's bias rather than objective truth, leading the model to "hallucinate with citations." In this work, we introduce Falsification-Verification Alignment RAG (FVA-RAG), a framework that shifts the retrieval paradigm from Inductive Verification (seeking support) to Deductive Falsification (seeking disproof). Unlike existing "Self-Correction" methods that rely on internal consistency, FVA-RAG deploys a distinct Adversarial Retrieval Policy that actively generates "Kill Queries"-targeted search terms designed to surface contradictory evidence. We introduce a dual-verification mechanism that explicitly weighs the draft answer against this "Anti-Context." Preliminary experiments on a dataset of common misconceptions demonstrate that FVA-RAG significantly improves robustness against sycophantic hallucinations compared to standard RAG baselines, effectively acting as an inference-time "Red Team" for factual generation.
☆ Block Sparse Flash Attention
Modern large language models increasingly require long contexts for reasoning and multi-document tasks, but attention's quadratic complexity creates a severe computational bottleneck. We present Block-Sparse FlashAttention (BSFA), a drop-in replacement that accelerates long-context inference while preserving model quality. Unlike methods that predict importance before computing scores, BSFA computes exact query-key similarities to select the top-k most important value blocks for each query. By comparing per-block maximum scores against calibrated thresholds, we skip approximately 50% of the computation and memory transfers for pruned blocks. Our training-free approach requires only a one-time threshold calibration on a small dataset to learn the per-layer and per-head attention score distributions. We provide a CUDA kernel implementation that can be used as a drop-in replacement for FlashAttention. On Llama-3.1-8B, BSFA achieves up to 1.10x speedup on real-world reasoning benchmarks and up to 1.24x for needle-in-a-haystack retrieval tasks while maintaining above 99% baseline accuracy, with certain configurations even improving accuracy by focusing on the most relevant content, substantially outperforming existing sparse attention methods. The implementation is available at https://github.com/Danielohayon/Block-Sparse-Flash-Attention
comment: 10 pages, 5 figures. Code: https://github.com/Danielohayon/Block-Sparse-Flash-Attention
Prompting-in-a-Series: Psychology-Informed Contents and Embeddings for Personality Recognition With Decoder-Only Models
Large Language Models (LLMs) have demonstrated remarkable capabilities across various natural language processing tasks. This research introduces a novel "Prompting-in-a-Series" algorithm, termed PICEPR (Psychology-Informed Contents Embeddings for Personality Recognition), featuring two pipelines: (a) Contents and (b) Embeddings. The approach demonstrates how a modularised decoder-only LLM can summarize or generate content, which can aid in classifying or enhancing personality recognition functions as a personality feature extractor and a generator for personality-rich content. We conducted various experiments to provide evidence to justify the rationale behind the PICEPR algorithm. Meanwhile, we also explored closed-source models such as \textit{gpt4o} from OpenAI and \textit{gemini} from Google, along with open-source models like \textit{mistral} from Mistral AI, to compare the quality of the generated content. The PICEPR algorithm has achieved a new state-of-the-art performance for personality recognition by 5-15\% improvement. The work repository and models' weight can be found at https://research.jingjietan.com/?q=PICEPR.
comment: 16 pages
☆ Flash Multi-Head Feed-Forward Network
We explore Multi-Head FFN (MH-FFN) as a replacement of FFN in the Transformer architecture, motivated by the structural similarity between single-head attention and FFN. While multi-head mechanisms enhance expressivity in attention, naively applying them to FFNs faces two challenges: memory consumption scaling with the head count, and an imbalanced ratio between the growing intermediate size and the fixed head dimension as models scale, which degrades scalability and expressive power. To address these challenges, we propose Flash Multi-Head FFN (FlashMHF), with two key innovations: an I/O-aware fused kernel computing outputs online in SRAM akin to FlashAttention, and a design using dynamically weighted parallel sub-networks to maintain a balanced ratio between intermediate and head dimensions. Validated on models from 128M to 1.3B parameters, FlashMHF consistently improves perplexity and downstream task accuracy over SwiGLU FFNs, while reducing peak memory usage by 3-5x and accelerating inference by up to 1.08x. Our work establishes the multi-head design as a superior architectural principle for FFNs, presenting FlashMHF as a powerful, efficient, and scalable alternative to FFNs in Transformers.
comment: 17 pages, 8 figures
☆ Progress Ratio Embeddings: An Impatience Signal for Robust Length Control in Neural Text Generation
Modern neural language models achieve high accuracy in text generation, yet precise control over generation length remains underdeveloped. In this paper, we first investigate a recent length control method based on Reverse Positional Embeddings (RPE) and show its limits when control is requested beyond the training distribution. In particular, using a discrete countdown signal tied to the absolute remaining token count leads to instability. To provide robust length control, we introduce Progress Ratio Embeddings (PRE), as continuous embeddings tied to a trigonometric impatience signal. PRE integrates seamlessly into standard Transformer architectures, providing stable length fidelity without degrading text accuracy under standard evaluation metrics. We further show that PRE generalizes well to unseen target lengths. Experiments on two widely used news-summarization benchmarks validate these findings.
☆ MATEX: A Multi-Agent Framework for Explaining Ethereum Transactions
Understanding a complicated Ethereum transaction remains challenging: multi-hop token flows, nested contract calls, and opaque execution paths routinely lead users to blind signing. Based on interviews with everyday users, developers, and auditors, we identify the need for faithful, step-wise explanations grounded in both on-chain evidence and real-world protocol semantics. To meet this need, we introduce (matex, a cognitive multi-agent framework that models transaction understanding as a collaborative investigation-combining rapid hypothesis generation, dynamic off-chain knowledge retrieval, evidence-aware synthesis, and adversarial validation to produce faithful explanations.
☆ XAM: Interactive Explainability for Authorship Attribution Models
We present IXAM, an Interactive eXplainability framework for Authorship Attribution Models. Given an authorship attribution (AA) task and an embedding-based AA model, our tool enables users to interactively explore the model's embedding space and construct an explanation of the model's prediction as a set of writing style features at different levels of granularity. Through a user evaluation, we demonstrate the value of our framework compared to predefined stylistic explanations.
☆ Large Language Models and Forensic Linguistics: Navigating Opportunities and Threats in the Age of Generative AI
Large language models (LLMs) present a dual challenge for forensic linguistics. They serve as powerful analytical tools enabling scalable corpus analysis and embedding-based authorship attribution, while simultaneously destabilising foundational assumptions about idiolect through style mimicry, authorship obfuscation, and the proliferation of synthetic texts. Recent stylometric research indicates that LLMs can approximate surface stylistic features yet exhibit detectable differences from human writers, a tension with significant forensic implications. However, current AI-text detection techniques, whether classifier-based, stylometric, or watermarking approaches, face substantial limitations: high false positive rates for non-native English writers and vulnerability to adversarial strategies such as homoglyph substitution. These uncertainties raise concerns under legal admissibility standards, particularly the Daubert and Kumho Tire frameworks. The article concludes that forensic linguistics requires methodological reconfiguration to remain scientifically credible and legally admissible. Proposed adaptations include hybrid human-AI workflows, explainable detection paradigms beyond binary classification, and validation regimes measuring error and bias across diverse populations. The discipline's core insight, i.e., that language reveals information about its producer, remains valid but must accommodate increasingly complex chains of human and machine authorship.
☆ NeuroABench: A Multimodal Evaluation Benchmark for Neurosurgical Anatomy Identification
Multimodal Large Language Models (MLLMs) have shown significant potential in surgical video understanding. With improved zero-shot performance and more effective human-machine interaction, they provide a strong foundation for advancing surgical education and assistance. However, existing research and datasets primarily focus on understanding surgical procedures and workflows, while paying limited attention to the critical role of anatomical comprehension. In clinical practice, surgeons rely heavily on precise anatomical understanding to interpret, review, and learn from surgical videos. To fill this gap, we introduce the Neurosurgical Anatomy Benchmark (NeuroABench), the first multimodal benchmark explicitly created to evaluate anatomical understanding in the neurosurgical domain. NeuroABench consists of 9 hours of annotated neurosurgical videos covering 89 distinct procedures and is developed using a novel multimodal annotation pipeline with multiple review cycles. The benchmark evaluates the identification of 68 clinical anatomical structures, providing a rigorous and standardized framework for assessing model performance. Experiments on over 10 state-of-the-art MLLMs reveal significant limitations, with the best-performing model achieving only 40.87% accuracy in anatomical identification tasks. To further evaluate the benchmark, we extract a subset of the dataset and conduct an informative test with four neurosurgical trainees. The results show that the best-performing student achieves 56% accuracy, with the lowest scores of 28% and an average score of 46.5%. While the best MLLM performs comparably to the lowest-scoring student, it still lags significantly behind the group's average performance. This comparison underscores both the progress of MLLMs in anatomical understanding and the substantial gap that remains in achieving human-level performance.
comment: Accepted by IEEE ICIA 2025
☆ Automated PRO-CTCAE Symptom Selection based on Prior Adverse Event Profiles
The PRO-CTCAE is an NCI-developed patient-reported outcome system for capturing symptomatic adverse events in oncology trials. It comprises a large library drawn from the CTCAE vocabulary, and item selection for a given trial is typically guided by expected toxicity profiles from prior data. Selecting too many PRO-CTCAE items can burden patients and reduce compliance, while too few may miss important safety signals. We present an automated method to select a minimal yet comprehensive PRO-CTCAE subset based on historical safety data. Each candidate PRO-CTCAE symptom term is first mapped to its corresponding MedDRA Preferred Terms (PTs), which are then encoded into Safeterm, a high-dimensional semantic space capturing clinical and contextual diversity in MedDRA terminology. We score each candidate PRO item for relevance to the historical list of adverse event PTs and combine relevance and incidence into a utility function. Spectral analysis is then applied to the combined utility and diversity matrix to identify an orthogonal set of medical concepts that balances relevance and diversity. Symptoms are rank-ordered by importance, and a cut-off is suggested based on the explained information. The tool is implemented as part of the Safeterm trial-safety app. We evaluate its performance using simulations and oncology case studies in which PRO-CTCAE was employed. This automated approach can streamline PRO-CTCAE design by leveraging MedDRA semantics and historical data, providing an objective and reproducible method to balance signal coverage against patient burden.
comment: 13 pages, 2 figures
☆ An Analysis of Large Language Models for Simulating User Responses in Surveys AACL 2025
Using Large Language Models (LLMs) to simulate user opinions has received growing attention. Yet LLMs, especially trained with reinforcement learning from human feedback (RLHF), are known to exhibit biases toward dominant viewpoints, raising concerns about their ability to represent users from diverse demographic and cultural backgrounds. In this work, we examine the extent to which LLMs can simulate human responses to cross-domain survey questions through direct prompting and chain-of-thought prompting. We further propose a claim diversification method CLAIMSIM, which elicits viewpoints from LLM parametric knowledge as contextual input. Experiments on the survey question answering task indicate that, while CLAIMSIM produces more diverse responses, both approaches struggle to accurately simulate users. Further analysis reveals two key limitations: (1) LLMs tend to maintain fixed viewpoints across varying demographic features, and generate single-perspective claims; and (2) when presented with conflicting claims, LLMs struggle to reason over nuanced differences among demographic features, limiting their ability to adapt responses to specific user profiles.
comment: Accepted to IJCNLP-AACL 2025 (Main Conference)
☆ Rhea: Role-aware Heuristic Episodic Attention for Conversational LLMs
Large Language Models (LLMs) have achieved remarkable performance on single-turn tasks, yet their effectiveness deteriorates in multi-turn conversations. We define this phenomenon as cumulative contextual decay - a progressive degradation of contextual integrity caused by attention pollution, dilution, and drift. To address this challenge, we propose Rhea (Role-aware Heuristic Episodic Attention), a novel framework that decouples conversation history into two functionally independent memory modules: (1) an Instructional Memory (IM) that persistently stores high-fidelity global constraints via a structural priority mechanism, and (2) an Episodic Memory (EM) that dynamically manages user-model interactions via asymmetric noise control and heuristic context retrieval. During inference, Rhea constructs a high signal-to-noise context by applying its priority attention: selectively integrating relevant episodic information while always prioritizing global instructions. To validate this approach, experiments on multiple multi-turn conversation benchmarks - including MT-Eval and Long-MT-Bench+ - show that Rhea mitigates performance decay and improves overall accuracy by 1.04 points on a 10-point scale (a 16% relative gain over strong baselines). Moreover, Rhea maintains near-perfect instruction fidelity (IAR > 8.1) across long-horizon interactions. These results demonstrate that Rhea provides a principled and effective framework for building more precise, instruction-consistent conversational LLMs.
☆ Less Is More, but Where? Dynamic Token Compression via LLM-Guided Keyframe Prior NeurIPS 2025
Recent advances in Video Large Language Models (VLLMs) have achieved remarkable video understanding capabilities, yet face critical efficiency bottlenecks due to quadratic computational growth with lengthy visual token sequences of long videos. While existing keyframe sampling methods can improve temporal modeling efficiency, additional computational cost is introduced before feature encoding, and the binary frame selection paradigm is found suboptimal. Therefore, in this work, we propose Dynamic Token compression via LLM-guided Keyframe prior (DyToK), a training-free paradigm that enables dynamic token compression by harnessing VLLMs' inherent attention mechanisms. Our analysis reveals that VLLM attention layers naturally encoding query-conditioned keyframe priors, by which DyToK dynamically adjusts per-frame token retention ratios, prioritizing semantically rich frames while suppressing redundancies. Extensive experiments demonstrate that DyToK achieves state-of-the-art efficiency-accuracy tradeoffs. DyToK shows plug-and-play compatibility with existing compression methods, such as VisionZip and FastV, attaining 4.3x faster inference while preserving accuracy across multiple VLLMs, such as LLaVA-OneVision and Qwen2.5-VL. Code is available at https://github.com/yu-lin-li/DyToK .
comment: Accepted by NeurIPS 2025
☆ AquaFusionNet: Lightweight VisionSensor Fusion Framework for Real-Time Pathogen Detection and Water Quality Anomaly Prediction on Edge Devices
Evidence from many low and middle income regions shows that microbial contamination in small scale drinking water systems often fluctuates rapidly, yet existing monitoring tools capture only fragments of this behaviour. Microscopic imaging provides organism level visibility, whereas physicochemical sensors reveal shortterm changes in water chemistry; in practice, operators must interpret these streams separately, making realtime decision-making unreliable. This study introduces AquaFusionNet, a lightweight cross-modal framework that unifies both information sources inside a single edge deployable model. Unlike prior work that treats microscopic detection and water quality prediction as independent tasks, AquaFusionNet learns the statistical dependencies between microbial appearance and concurrent sensor dynamics through a gated crossattention mechanism designed specifically for lowpower hardware. The framework is trained on AquaMicro12K, a new dataset comprising 12,846 annotated 1000 micrographs curated for drinking water contexts, an area where publicly accessible microscopic datasets are scarce. Deployed for six months across seven facilities in East Java, Indonesia, the system processed 1.84 million frames and consistently detected contamination events with 94.8% mAP@0.5 and 96.3% anomaly prediction accuracy, while operating at 4.8 W on a Jetson Nano. Comparative experiments against representative lightweight detectors show that AquaFusionNet provides higher accuracy at comparable or lower power, and field results indicate that cross-modal coupling reduces common failure modes of unimodal detectors, particularly under fouling, turbidity spikes, and inconsistent illumination. All models, data, and hardware designs are released openly to facilitate replication and adaptation in decentralized water safety infrastructures.
comment: 9Pages, 3 figure, Politeknik Negeri Banyuwangi
☆ CAuSE: Decoding Multimodal Classifiers using Faithful Natural Language Explanation ACL
Multimodal classifiers function as opaque black box models. While several techniques exist to interpret their predictions, very few of them are as intuitive and accessible as natural language explanations (NLEs). To build trust, such explanations must faithfully capture the classifier's internal decision making behavior, a property known as faithfulness. In this paper, we propose CAuSE (Causal Abstraction under Simulated Explanations), a novel framework to generate faithful NLEs for any pretrained multimodal classifier. We demonstrate that CAuSE generalizes across datasets and models through extensive empirical evaluations. Theoretically, we show that CAuSE, trained via interchange intervention, forms a causal abstraction of the underlying classifier. We further validate this through a redesigned metric for measuring causal faithfulness in multimodal settings. CAuSE surpasses other methods on this metric, with qualitative analysis reinforcing its advantages. We perform detailed error analysis to pinpoint the failure cases of CAuSE. For replicability, we make the codes available at https://github.com/newcodevelop/CAuSE
comment: Accepted at Transactions of the Association for Computational Linguistics (TACL). Pre-MIT Press publication version
☆ Large Language Model-Based Generation of Discharge Summaries
Discharge Summaries are documents written by medical professionals that detail a patient's visit to a care facility. They contain a wealth of information crucial for patient care, and automating their generation could significantly reduce the effort required from healthcare professionals, minimize errors, and ensure that critical patient information is easily accessible and actionable. In this work, we explore the use of five Large Language Models on this task, from open-source models (Mistral, Llama 2) to proprietary systems (GPT-3, GPT-4, Gemini 1.5 Pro), leveraging MIMIC-III summaries and notes. We evaluate them using exact-match, soft-overlap, and reference-free metrics. Our results show that proprietary models, particularly Gemini with one-shot prompting, outperformed others, producing summaries with the highest similarity to the gold-standard ones. Open-source models, while promising, especially Mistral after fine-tuning, lagged in performance, often struggling with hallucinations and repeated information. Human evaluation by a clinical expert confirmed the practical utility of the summaries generated by proprietary models. Despite the challenges, such as hallucinations and missing information, the findings suggest that LLMs, especially proprietary models, are promising candidates for automatic discharge summary generation as long as data privacy is ensured.
comment: 17 pages, 6 figures
☆ MMDuet2: Enhancing Proactive Interaction of Video MLLMs with Multi-Turn Reinforcement Learning
Recent advances in video multimodal large language models (Video MLLMs) have significantly enhanced video understanding and multi-modal interaction capabilities. While most existing systems operate in a turn-based manner where the model can only reply after user turns, proactively deciding when to reply during video playback presents a promising yet challenging direction for real-time applications. In this work, we propose a novel text-to-text approach to proactive interaction, where the model autonomously determines whether to respond or remain silent at each turn based on dialogue history and visual context up to current frame of an streaming video. To overcome difficulties in previous methods such as manually tuning response decision thresholds and annotating precise reply times, we introduce a multi-turn RL based training method that encourages timely and accurate responses without requiring precise response time annotations. We train our model MMDuet2 on a dataset of 52k videos with two types of dialogues via SFT and RL. Experimental results demonstrate that MMDuet2 outperforms existing proactive Video MLLM baselines in response timing and quality, achieving state-of-the-art performance on the ProactiveVideoQA benchmark.
☆ LLM4SFC: Sequential Function Chart Generation via Large Language Models
While Large Language Models (LLMs) are increasingly used for synthesizing textual PLC programming languages like Structured Text (ST) code, other IEC 61131-3 standard graphical languages like Sequential Function Charts (SFCs) remain underexplored. Generating SFCs is challenging due to graphical nature and ST actions embedded within, which are not directly compatible with standard generation techniques, often leading to non-executable code that is incompatible with industrial tool-chains In this work, we introduce LLM4SFC, the first framework to receive natural-language descriptions of industrial workflows and provide executable SFCs. LLM4SFC is based on three components: (i) A reduced structured representation that captures essential topology and in-line ST and reduced textual verbosity; (ii) Fine-tuning and few-shot retrieval-augmented generation (RAG) for alignment with SFC programming conventions; and (iii) A structured generation approach that prunes illegal tokens in real-time to ensure compliance with the textual format of SFCs. We evaluate LLM4SFC on a dataset of real-world SFCs from automated manufacturing projects, using both open-source and proprietary LLMs. The results show that LLM4SFC reliably generates syntactically valid SFC programs effectively bridging graphical and textual PLC languages, achieving a generation generation success of 75% - 94%, paving the way for automated industrial programming.
☆ From Next-Token to Next-Block: A Principled Adaptation Path for Diffusion LLMs
Large language models (LLMs) excel at generation but dominant autoregressive (AR) decoding is inherently sequential, creating a throughput bottleneck. Diffusion Language Models (DLMs)--especially block-wise variants--enable parallel generation and intra-block bidirectional reasoning, yet training large DLMs from scratch is costly and wastes the knowledge in mature AR checkpoints. Prior "adaptation" attempts either modify logits or randomly grow attention masks to full-sequence diffusion, or simply transplant AR weights into a block-diffusion recipe, leaving a fundamental mismatch between AR causality and block-wise bidirectionality unaddressed. We reframe adaptation as a intra-paradigm path from AR to Block-Diffusion by viewing AR as Block-Diffusion with blocksize=1. Concretely, we design the pathway of adaptation as follows: we use a context-causal attention mask (causal in context, bidirectional only within the active block), an efficient parallel adaptation procedure, an auxiliary AR loss to maximize data utilization and retain pretrained knowledge, and gradual increment of the generation block size. The recipe integrates cleanly with masked block-diffusion and maintains train-inference consistency. Built on these components, NBDiff-7B (Base and Instruct) could inherit the long-context modeling and reasoning capabilities, and achieve state-of-the-art performance among the 7B-class DLMs, delivering strong gains on general-knowledge, math, and code benchmarks over strong baselines. These results demonstrate that principled AR-to-block-diffusion adaptation is an effective and compute-efficient alternative to training DLMs from scratch. Codes: https://github.com/YuchuanTian/NBDiff.
comment: 13 pages, 4 figures
☆ Becoming Experienced Judges: Selective Test-Time Learning for Evaluators
Automatic evaluation with large language models, commonly known as LLM-as-a-judge, is now standard across reasoning and alignment tasks. Despite evaluating many samples in deployment, these evaluators typically (i) treat each case independently, missing the opportunity to accumulate experience, and (ii) rely on a single fixed prompt for all cases, neglecting the need for sample-specific evaluation criteria. We introduce Learning While Evaluating (LWE), a framework that allows evaluators to improve sequentially at inference time without requiring training or validation sets. LWE maintains an evolving meta-prompt that (i) produces sample-specific evaluation instructions and (ii) refines itself through self-generated feedback. Furthermore, we propose Selective LWE, which updates the meta-prompt only on self-inconsistent cases, focusing computation where it matters most. This selective approach retains the benefits of sequential learning while being far more cost-effective. Across two pairwise comparison benchmarks, Selective LWE outperforms strong baselines, empirically demonstrating that evaluators can improve during sequential testing with a simple selective update, learning most from the cases they struggle with.
☆ One Word Is Not Enough: Simple Prompts Improve Word Embeddings
Text embedding models are designed for sentence-level applications like retrieval and semantic similarity, and are primarily evaluated on sentence-level benchmarks. Their behavior on isolated words is less understood. We show that simply prepending semantic prompts to words before embedding substantially improves word similarity correlations. Testing 7 text embedding models, including text-embedding-3-large (OpenAI), embed-english-v3.0 (Cohere), voyage-3(Voyage AI), all-mpnet-base-v2, and Qwen3-Embedding-8B, on 3 standard benchmarks (SimLex-999, WordSim-353, MEN-3000), we find that prompts like "meaning: {word}" or "Represent the semantic concept: {word}" improve Spearman correlations by up to +0.29 on SimLex-999. Some models fail completely on bare words (correlation = 0) but recover with prompts (+0.73 improvement). Our best results achieve correlation = 0.692 on SimLex-999 with embed-english-v3.0 (Cohere), correlation = 0.811 on WordSim-353, and correlation = 0.855 on MEN-3000 with text-embedding-3-large (OpenAI). These results outperform classic static embeddings like Word2Vec (correlation = 0.40) and even the best static method LexVec (correlation = 0.48) on SimLex-999, establishing a new state-of-the-art for pure embedding methods. This zero-shot technique requires no training and works with any text embedding model.
☆ Arc Gradient Descent: A Mathematically Derived Reformulation of Gradient Descent with Phase-Aware, User-Controlled Step Dynamics
The paper presents the formulation, implementation, and evaluation of the ArcGD optimiser. The evaluation is conducted initially on a non-convex benchmark function and subsequently on a real-world ML dataset. The initial comparative study using the Adam optimiser is conducted on a stochastic variant of the highly non-convex and notoriously challenging Rosenbrock function, renowned for its narrow, curved valley, across dimensions ranging from 2D to 1000D and an extreme case of 50,000D. Two configurations were evaluated to eliminate learning-rate bias: (i) both using ArcGD's effective learning rate and (ii) both using Adam's default learning rate. ArcGD consistently outperformed Adam under the first setting and, although slower under the second, achieved super ior final solutions in most cases. In the second evaluation, ArcGD is evaluated against state-of-the-art optimizers (Adam, AdamW, Lion, SGD) on the CIFAR-10 image classification dataset across 8 diverse MLP architectures ranging from 1 to 5 hidden layers. ArcGD achieved the highest average test accuracy (50.7%) at 20,000 iterations, outperforming AdamW (46.6%), Adam (46.8%), SGD (49.6%), and Lion (43.4%), winning or tying on 6 of 8 architectures. Notably, while Adam and AdamW showed strong early convergence at 5,000 iterations, but regressed with extended training, whereas ArcGD continued improving, demonstrating generalization and resistance to overfitting without requiring early stopping tuning. Strong performance on geometric stress tests and standard deep-learning benchmarks indicates broad applicability, highlighting the need for further exploration. Moreover, it is also shown that a variant of ArcGD can be interpreted as a special case of the Lion optimiser, highlighting connections between the inherent mechanisms of such optimisation methods.
comment: 80 pages, 6 tables, 2 figures, 5 appendices, proof-of-concept
☆ A Patient-Doctor-NLP-System to contest inequality for less privileged
Transfer Learning (TL) has accelerated the rapid development and availability of large language models (LLMs) for mainstream natural language processing (NLP) use cases. However, training and deploying such gigantic LLMs in resource-constrained, real-world healthcare situations remains challenging. This study addresses the limited support available to visually impaired users and speakers of low-resource languages such as Hindi who require medical assistance in rural environments. We propose PDFTEMRA (Performant Distilled Frequency Transformer Ensemble Model with Random Activations), a compact transformer-based architecture that integrates model distillation, frequency-domain modulation, ensemble learning, and randomized activation patterns to reduce computational cost while preserving language understanding performance. The model is trained and evaluated on medical question-answering and consultation datasets tailored to Hindi and accessibility scenarios, and its performance is compared against standard NLP state-of-the-art model baselines. Results demonstrate that PDFTEMRA achieves comparable performance with substantially lower computational requirements, indicating its suitability for accessible, inclusive, low-resource medical NLP applications.
comment: 19 pages, 6 figures
☆ "The Dentist is an involved parent, the bartender is not": Revealing Implicit Biases in QA with Implicit BBQ
Existing benchmarks evaluating biases in large language models (LLMs) primarily rely on explicit cues, declaring protected attributes like religion, race, gender by name. However, real-world interactions often contain implicit biases, inferred subtly through names, cultural cues, or traits. This critical oversight creates a significant blind spot in fairness evaluation. We introduce ImplicitBBQ, a benchmark extending the Bias Benchmark for QA (BBQ) with implicitly cued protected attributes across 6 categories. Our evaluation of GPT-4o on ImplicitBBQ illustrates troubling performance disparity from explicit BBQ prompts, with accuracy declining up to 7% in the "sexual orientation" subcategory and consistent decline located across most other categories. This indicates that current LLMs contain implicit biases undetected by explicit benchmarks. ImplicitBBQ offers a crucial tool for nuanced fairness evaluation in NLP.
☆ The Role of Entropy in Visual Grounding: Analysis and Optimization
Recent advances in fine-tuning multimodal large language models (MLLMs) using reinforcement learning have achieved remarkable progress, particularly with the introduction of various entropy control techniques. However, the role and characteristics of entropy in perception-oriented tasks like visual grounding, as well as effective strategies for controlling it, remain largely unexplored. To address this issue, we focus on the visual grounding task and analyze the role and characteristics of entropy in comparison to reasoning tasks. Building on these findings, we introduce ECVGPO (Entropy Control Visual Grounding Policy Optimization), an interpretable algorithm designed for effective entropy regulation. Through entropy control, the trade-off between exploration and exploitation is better balanced. Experiments show that ECVGPO achieves broad improvements across various benchmarks and models.
☆ ProAgent: Harnessing On-Demand Sensory Contexts for Proactive LLM Agent Systems
Large Language Model (LLM) agents are emerging to transform daily life. However, existing LLM agents primarily follow a reactive paradigm, relying on explicit user instructions to initiate services, which increases both physical and cognitive workload. In this paper, we propose ProAgent, the first end-to-end proactive agent system that harnesses massive sensory contexts and LLM reasoning to deliver proactive assistance. ProAgent first employs a proactive-oriented context extraction approach with on-demand tiered perception to continuously sense the environment and derive hierarchical contexts that incorporate both sensory and persona cues. ProAgent then adopts a context-aware proactive reasoner to map these contexts to user needs and tool calls, providing proactive assistance. We implement ProAgent on Augmented Reality (AR) glasses with an edge server and extensively evaluate it on a real-world testbed, a public dataset, and through a user study. Results show that ProAgent achieves up to 33.4% higher proactive prediction accuracy, 16.8% higher tool-calling F1 score, and notable improvements in user satisfaction over state-of-the-art baselines, marking a significant step toward proactive assistants. A video demonstration of ProAgent is available at https://youtu.be/pRXZuzvrcVs.
☆ Cognitive Control Architecture (CCA): A Lifecycle Supervision Framework for Robustly Aligned AI Agents
Autonomous Large Language Model (LLM) agents exhibit significant vulnerability to Indirect Prompt Injection (IPI) attacks. These attacks hijack agent behavior by polluting external information sources, exploiting fundamental trade-offs between security and functionality in existing defense mechanisms. This leads to malicious and unauthorized tool invocations, diverting agents from their original objectives. The success of complex IPIs reveals a deeper systemic fragility: while current defenses demonstrate some effectiveness, most defense architectures are inherently fragmented. Consequently, they fail to provide full integrity assurance across the entire task execution pipeline, forcing unacceptable multi-dimensional compromises among security, functionality, and efficiency. Our method is predicated on a core insight: no matter how subtle an IPI attack, its pursuit of a malicious objective will ultimately manifest as a detectable deviation in the action trajectory, distinct from the expected legitimate plan. Based on this, we propose the Cognitive Control Architecture (CCA), a holistic framework achieving full-lifecycle cognitive supervision. CCA constructs an efficient, dual-layered defense system through two synergistic pillars: (i) proactive and preemptive control-flow and data-flow integrity enforcement via a pre-generated "Intent Graph"; and (ii) an innovative "Tiered Adjudicator" that, upon deviation detection, initiates deep reasoning based on multi-dimensional scoring, specifically designed to counter complex conditional attacks. Experiments on the AgentDojo benchmark substantiate that CCA not only effectively withstands sophisticated attacks that challenge other advanced defense methods but also achieves uncompromised security with notable efficiency and robustness, thereby reconciling the aforementioned multi-dimensional trade-off.
☆ Look Twice before You Leap: A Rational Agent Framework for Localized Adversarial Anonymization
Current LLM-based text anonymization frameworks usually rely on remote API services from powerful LLMs, which creates an inherent "privacy paradox": users must somehow disclose data to untrusted third parties for superior privacy preservation. Moreover, directly migrating these frameworks to local small-scale models (LSMs) offers a suboptimal solution with catastrophic collapse in utility based on our core findings. Our work argues that this failure stems not merely from the capability deficits of LSMs, but from the inherent irrationality of the greedy adversarial strategies employed by current state-of-the-art (SoTA) methods. We model the anonymization process as a trade-off between Marginal Privacy Gain (MPG) and Marginal Utility Cost (MUC), and demonstrate that greedy strategies inevitably drift into an irrational state. To address this, we propose Rational Localized Adversarial Anonymization (RLAA), a fully localized and training-free framework featuring an Attacker-Arbitrator-Anonymizer (A-A-A) architecture. RLAA introduces an arbitrator that acts as a rationality gatekeeper, validating the attacker's inference to filter out feedback providing negligible benefits on privacy preservation. This mechanism enforces a rational early-stopping criterion, and systematically prevents utility collapse. Extensive experiments on different datasets demonstrate that RLAA achieves the best privacy-utility trade-off, and in some cases even outperforms SoTA on the Pareto principle. Our code and datasets will be released upon acceptance.
comment: 16 pages, 6 figures
☆ Parameter-Efficient Fine-Tuning with Differential Privacy for Robust Instruction Adaptation in Large Language Models
This study addresses the issues of privacy protection and efficiency in instruction fine-tuning of large-scale language models by proposing a parameter-efficient method that integrates differential privacy noise allocation with gradient clipping in a collaborative optimization framework. The method keeps the backbone model frozen and updates parameters through a low-dimensional projection subspace, while introducing clipping and adaptive noise allocation during gradient computation. This design reduces privacy budget consumption and ensures training stability and robustness. The unified framework combines gradient constraints, noise allocation, and parameter projection, effectively mitigating performance fluctuations and privacy risks in multi-task instruction scenarios. Experiments are conducted across hyperparameter, environment, and data sensitivity dimensions. Results show that the method outperforms baseline models in accuracy, privacy budget, and parameter efficiency, and maintains stable performance under diverse and uncertain data conditions. The findings enrich the theoretical integration of differential privacy and parameter-efficient fine-tuning and demonstrate its practical adaptability in instruction tasks, providing a feasible solution for secure training in complex instruction environments.
☆ TopiCLEAR: Topic extraction by CLustering Embeddings with Adaptive dimensional Reduction
Rapid expansion of social media platforms such as X (formerly Twitter), Facebook, and Reddit has enabled large-scale analysis of public perceptions on diverse topics, including social issues, politics, natural disasters, and consumer sentiment. Topic modeling is a widely used approach for uncovering latent themes in text data, typically framed as an unsupervised classification task. However, traditional models, originally designed for longer and more formal documents, struggle with short social media posts due to limited co-occurrence statistics, fragmented semantics, inconsistent spelling, and informal language. To address these challenges, we propose a new method, TopiCLEAR: Topic extraction by CLustering Embeddings with Adaptive dimensional Reduction. Specifically, each text is embedded using Sentence-BERT (SBERT) and provisionally clustered using Gaussian Mixture Models (GMM). The clusters are then refined iteratively using a supervised projection based on linear discriminant analysis, followed by GMM-based clustering until convergence. Notably, our method operates directly on raw text, eliminating the need for preprocessing steps such as stop word removal. We evaluate our approach on four diverse datasets, 20News, AgNewsTitle, Reddit, and TweetTopic, each containing human-labeled topic information. Compared with seven baseline methods, including a recent SBERT-based method and a zero-shot generative AI method, our approach achieves the highest similarity to human-annotated topics, with significant improvements for both social media posts and online news articles. Additionally, qualitative analysis shows that our method produces more interpretable topics, highlighting its potential for applications in social media data and web content analytics.
comment: 15 pages, 4 figures, code available at https://github.com/aoi8716/TopiCLEAR
☆ Think-While-Generating: On-the-Fly Reasoning for Personalized Long-Form Generation
Preference alignment has enabled large language models (LLMs) to better reflect human expectations, but current methods mostly optimize for population-level preferences, overlooking individual users. Personalization is essential, yet early approaches-such as prompt customization or fine-tuning-struggle to reason over implicit preferences, limiting real-world effectiveness. Recent "think-then-generate" methods address this by reasoning before response generation. However, they face challenges in long-form generation: their static one-shot reasoning must capture all relevant information for the full response generation, making learning difficult and limiting adaptability to evolving content. To address this issue, we propose FlyThinker, an efficient "think-while-generating" framework for personalized long-form generation. FlyThinker employs a separate reasoning model that generates latent token-level reasoning in parallel, which is fused into the generation model to dynamically guide response generation. This design enables reasoning and generation to run concurrently, ensuring inference efficiency. In addition, the reasoning model is designed to depend only on previous responses rather than its own prior outputs, which preserves training parallelism across different positions-allowing all reasoning tokens for training data to be produced in a single forward pass like standard LLM training, ensuring training efficiency. Extensive experiments on real-world benchmarks demonstrate that FlyThinker achieves better personalized generation while keeping training and inference efficiency.
☆ PersonaMem-v2: Towards Personalized Intelligence via Learning Implicit User Personas and Agentic Memory
Personalization is one of the next milestones in advancing AI capability and alignment. We introduce PersonaMem-v2, the state-of-the-art dataset for LLM personalization that simulates 1,000 realistic user-chatbot interactions on 300+ scenarios, 20,000+ user preferences, and 128k-token context windows, where most user preferences are implicitly revealed to reflect real-world interactions. Using this data, we investigate how reinforcement fine-tuning enables a model to improve its long-context reasoning capabilities for user understanding and personalization. We also develop a framework for training an agentic memory system, which maintains a single, human-readable memory that grows with each user over time. In our experiments, frontier LLMs still struggle with implicit personalization, achieving only 37-48% accuracy. While they support long context windows, reasoning remains the bottleneck for implicit personalization tasks. Using reinforcement fine-tuning, we successfully train Qwen3-4B to outperforms GPT-5, reaching 53% accuracy in implicit personalization. Moreover, our agentic memory framework achieves state-of-the-art 55% accuracy while using 16x fewer input tokens, relying on a 2k-token memory instead of full 32k conversation histories. These results underscore the impact of our dataset and demonstrate agentic memory as a scalable path toward real-world personalized intelligence.
comment: Data is available at https://huggingface.co/datasets/bowen-upenn/PersonaMem-v2
☆ Mechanistic Interpretability of GPT-2: Lexical and Contextual Layers in Sentiment Analysis
We present a mechanistic interpretability study of GPT-2 that causally examines how sentiment information is processed across its transformer layers. Using systematic activation patching across all 12 layers, we test the hypothesized two-stage sentiment architecture comprising early lexical detection and mid-layer contextual integration. Our experiments confirm that early layers (0-3) act as lexical sentiment detectors, encoding stable, position specific polarity signals that are largely independent of context. However, all three contextual integration hypotheses: Middle Layer Concentration, Phenomenon Specificity, and Distributed Processing are falsified. Instead of mid-layer specialization, we find that contextual phenomena such as negation, sarcasm, domain shifts etc. are integrated primarily in late layers (8-11) through a unified, non-modular mechanism. These experimental findings provide causal evidence that GPT-2's sentiment computation differs from the predicted hierarchical pattern, highlighting the need for further empirical characterization of contextual integration in large language models.
☆ CMV-Fuse: Cross Modal-View Fusion of AMR, Syntax, and Knowledge Representations for Aspect Based Sentiment Analysis
Natural language understanding inherently depends on integrating multiple complementary perspectives spanning from surface syntax to deep semantics and world knowledge. However, current Aspect-Based Sentiment Analysis (ABSA) systems typically exploit isolated linguistic views, thereby overlooking the intricate interplay between structural representations that humans naturally leverage. We propose CMV-Fuse, a Cross-Modal View fusion framework that emulates human language processing by systematically combining multiple linguistic perspectives. Our approach systematically orchestrates four linguistic perspectives: Abstract Meaning Representations, constituency parsing, dependency syntax, and semantic attention, enhanced with external knowledge integration. Through hierarchical gated attention fusion across local syntactic, intermediate semantic, and global knowledge levels, CMV-Fuse captures both fine-grained structural patterns and broad contextual understanding. A novel structure aware multi-view contrastive learning mechanism ensures consistency across complementary representations while maintaining computational efficiency. Extensive experiments demonstrate substantial improvements over strong baselines on standard benchmarks, with analysis revealing how each linguistic view contributes to more robust sentiment analysis.
☆ The Online Discourse of Virtual Reality and Anxiety
VR in the treatment of clinical concerns such as generalized anxiety disorder or social anxiety. VR has created additional pathways to support patient well-being and care. Understanding online discussion of what users think about this technology may further support its efficacy. The purpose of this study was to employ a corpus linguistic methodology to identify the words and word networks that shed light on the online discussion of virtual reality and anxiety. Using corpus linguistics, frequently used words in discussion along with collocation were identified by utilizing Sketch Engine software. The results of the study, based upon the English Trends corpus, identified VR, Oculus, and headset as the most frequently discussed within the VR and anxiety subcorpus. These results point to the development of the virtual system, along with the physical apparatus that makes viewing and engaging with the virtual environment possible. Additional results point to collocation of prepositional phrases such as of virtual reality, in virtual reality, and for virtual reality relating to the design, experience, and development, respectively. These findings offer new perspective on how VR and anxiety together are discussed in general discourse and offer pathways for future opportunities to support counseling needs through development and accessibility. Keywords: anxiety disorders, corpus linguistics, Sketch Engine, and virtual reality VR
comment: Three tables and two figures. Unfortunately, I did not formally register the dataset prior to conducting the analysis
☆ An Index-based Approach for Efficient and Effective Web Content Extraction
As web agents (e.g., Deep Research) routinely consume massive volumes of web pages to gather and analyze information, LLM context management -- under large token budgets and low signal density -- emerges as a foundational, high-importance, and technically challenging problem for agentic and RAG pipelines. Existing solutions for extracting relevant content are inadequate: generative extraction models suffer from high latency, rule-based heuristics lack adaptability, and chunk-and-rerank methods are blind to webpage structure. To overcome these issues, we introduce Index-based Web Content Extraction to reframe the extraction process from slow, token-by-token generation into a highly efficient, discriminative task of index prediction, achieving both effectiveness and efficiency. We partition HTML into structure-aware, addressable segments, and extract only the positional indices of content relevant to a given query. This method decouples extraction latency from content length, enabling rapid, query-relevant extraction. We first evaluate our method as a post-retrieval processing component within an RAG QA system and find that it improves QA accuracy. Then we directly measure its match rate with the target content in two scenarios: main content extraction (ME) and query-relevant extraction (QE). Experimental results show that our method outperforms existing works in both accuracy and speed, effectively bridging the gap between LLMs and the vast webpages.
☆ A Fast and Effective Solution to the Problem of Look-ahead Bias in LLMs
Applying LLMs to predictive tasks in finance is challenging due to look-ahead bias resulting from their training on long time-series data. This precludes the backtests typically employed in finance since retraining frontier models from scratch with a specific knowledge cutoff is prohibitive. In this paper, we introduce a fast, effective, and low-cost alternative. Our method guides generation at inference time by adjusting the logits of a large base model using a pair of smaller, specialized models -- one fine-tuned on information to be forgotten and another on information to be retained. We demonstrate that our method effectively removes both verbatim and semantic knowledge, corrects biases, and outperforms prior methods.
♻ ☆ Can Fine-Tuning Erase Your Edits? On the Fragile Coexistence of Knowledge Editing and Adaptation
Knowledge editing has emerged as a lightweight alternative to retraining for correcting or injecting specific facts in large language models (LLMs). Meanwhile, fine-tuning remains the default operation for adapting LLMs to new domains and tasks. Despite their widespread adoption, these two post-training interventions have been studied in isolation, leaving open a crucial question: if we fine-tune an edited model, do the edits survive? This question is motivated by two practical scenarios: removing covert or malicious edits, and preserving beneficial edits. If fine-tuning impairs edits (Fig.1), current KE methods become less useful, as every fine-tuned model would require re-editing, which significantly increases the cost; if edits persist, fine-tuned models risk propagating hidden malicious edits, raising serious safety concerns. To this end, we systematically quantify edit decay after fine-tuning, investigating how fine-tuning affects knowledge editing. Our results show that edits decay after fine-tuning, with survival varying across configurations, e.g., AlphaEdit edits decay more than MEMIT edits. Further, we find that fine-tuning edited layers only can effectively remove edits, though at a slight cost to downstream performance. Surprisingly, fine-tuning non-edited layers impairs more edits than full fine-tuning. Overall, our study establishes empirical baselines and actionable strategies for integrating knowledge editing with fine-tuning, and underscores that evaluating model editing requires considering the full LLM application pipeline.
♻ ☆ LLM Output Homogenization is Task Dependent
A large language model can be less helpful if it exhibits output response homogenization. But whether two responses are considered homogeneous, and whether such homogenization is problematic, both depend on the task category. For instance, in objective math tasks, we often expect no variation in the final answer but anticipate variation in the problem-solving strategy. Whereas, for creative writing tasks, we may expect variation in key narrative components (e.g. plot, genre, setting, etc), beyond the vocabulary or embedding diversity produced by temperature-sampling. Previous work addressing output homogenization often fails to conceptualize diversity in a task-dependent way. We address this gap in the literature directly by making the following contributions. (1) We present a task taxonomy comprised of eight task categories that each have distinct concepts of output homogenization. (2) We introduce task-anchored functional diversity to better evaluate output homogenization. (3) We propose a task-anchored sampling technique that increases functional diversity for task categories where homogenization is undesired, while preserving it where it is desired. (4) We challenge the perceived existence of a diversity-quality trade-off by increasing functional diversity while maintaining response quality. Overall, we demonstrate how task dependence improves the evaluation and mitigation of output homogenization.
♻ ☆ SFT Doesn't Always Hurt General Capabilities: Revisiting Domain-Specific Fine-Tuning in LLMs
Supervised Fine-Tuning (SFT) on domain-specific datasets is a common approach to adapt Large Language Models (LLMs) to specialized tasks but is often believed to degrade their general capabilities. In this work, we revisit this trade-off and present both empirical and theoretical insights. First, we show that SFT does not always hurt: using a smaller learning rate can substantially mitigate general performance degradation while preserving comparable target-domain performance. We then provide a theoretical analysis that explains these phenomena and further motivates a new method, Token-Adaptive Loss Reweighting (TALR). Building on this, and recognizing that smaller learning rates alone do not fully eliminate general-performance degradation in all cases, we evaluate a range of strategies for reducing general capability loss, including L2 regularization, LoRA, model averaging, FLOW, and our proposed TALR. Experimental results demonstrate that while no method completely eliminates the trade-off, TALR consistently outperforms these baselines in balancing domain-specific gains and general capabilities. Finally, we distill our findings into practical guidelines for adapting LLMs to new domains: (i) using a small learning rate to achieve a favorable trade-off, and (ii) when a stronger balance is further desired, adopt TALR as an effective strategy.
♻ ☆ AgriGPT-VL: Agricultural Vision-Language Understanding Suite
Despite rapid advances in multimodal large language models, agricultural applications remain constrained by the scarcity of domain-tailored models, curated vision-language corpora, and rigorous evaluation. To address these challenges, we present the AgriGPT-VL Suite, a unified multimodal framework for agriculture. Our contributions are threefold. First, we introduce Agri-3M-VL, the largest vision-language corpus for agriculture to our knowledge, curated by a scalable multi-agent data generator; it comprises 1M image-caption pairs, 2M image-grounded VQA pairs, 50K expert-level VQA instances, and 15K GRPO reinforcement learning samples. Second, we develop AgriGPT-VL, an agriculture-specialized vision-language model trained via a progressive curriculum of textual grounding, multimodal shallow/deep alignment, and GRPO refinement. This method achieves strong multimodal reasoning while preserving text-only capability. Third, we establish AgriBench-VL-4K, a compact yet challenging evaluation suite with open-ended and image-grounded questions, paired with multi-metric evaluation and an LLM-as-a-judge framework. Experiments show that AgriGPT-VL outperforms leading general-purpose VLMs on AgriBench-VL-4K, achieving higher pairwise win rates in the LLM-as-a-judge evaluation. Meanwhile, it remains competitive on the text-only AgriBench-13K with no noticeable degradation of language ability. Ablation studies further confirm consistent gains from our alignment and GRPO refinement stages. We will open source all of the resources to support reproducible research and deployment in low-resource agricultural settings.
♻ ☆ Thinking on the Fly: Test-Time Reasoning Enhancement via Latent Thought Policy Optimization
Recent advancements in Large Language Models (LLMs) have shifted from explicit Chain-of-Thought (CoT) reasoning to more efficient latent reasoning, where intermediate thoughts are represented as vectors rather than text. However, latent reasoning can be brittle on challenging, out-of-distribution tasks where robust reasoning is most critical. To overcome these limitations, we introduce Latent Thought Policy Optimization (LTPO), a parameter-free framework that enhances LLM reasoning entirely at test time, without requiring model parameter updates. LTPO treats intermediate latent "thought" vectors as dynamic parameters that are actively optimized for each problem instance. It employs an online policy gradient method guided by an intrinsic, confidence-based reward signal computed directly from the frozen LLM's own output distributions, eliminating the need for external supervision or expensive text generation during optimization. Extensive experiments on five reasoning benchmarks show that LTPO not only matches or surpasses strong baselines on standard tasks but also demonstrates remarkable robustness where others fail. Most notably, on highly challenging AIME benchmarks where existing latent reasoning baselines collapse to near-zero accuracy, LTPO delivers substantial improvements, showcasing a unique capability for complex reasoning.
♻ ☆ AdaDetectGPT: Adaptive Detection of LLM-Generated Text with Statistical Guarantees NeurIPS2025
We study the problem of determining whether a piece of text has been authored by a human or by a large language model (LLM). Existing state of the art logits-based detectors make use of statistics derived from the log-probability of the observed text evaluated using the distribution function of a given source LLM. However, relying solely on log probabilities can be sub-optimal. In response, we introduce AdaDetectGPT -- a novel classifier that adaptively learns a witness function from training data to enhance the performance of logits-based detectors. We provide statistical guarantees on its true positive rate, false positive rate, true negative rate and false negative rate. Extensive numerical studies show AdaDetectGPT nearly uniformly improves the state-of-the-art method in various combination of datasets and LLMs, and the improvement can reach up to 37\%. A python implementation of our method is available at https://github.com/Mamba413/AdaDetectGPT.
comment: Accepted by NeurIPS2025
♻ ☆ Learn the Ropes, Then Trust the Wins: Self-imitation with Progressive Exploration for Agentic Reinforcement Learning
Reinforcement learning (RL) is the dominant paradigm for sharpening strategic tool use capabilities of LLMs on long-horizon, sparsely-rewarded agent tasks, yet it faces a fundamental challenge of exploration-exploitation trade-off. Existing studies stimulate exploration through the lens of policy entropy, but such mechanical entropy maximization is prone to RL instability due to the multi-turn distribution shifting. In this paper, we target the progressive exploration-exploitation balance under the guidance of the agent's own experiences without succumbing to either entropy collapsing or runaway divergence. We propose SPEAR, a self-imitation learning (SIL) recipe for training agentic LLMs. It extends the vanilla SIL, where a replay buffer stores good experience for off-policy update, by gradually steering the policy entropy across stages. Specifically, the proposed curriculum scheduling harmonizes intrinsic reward shaping and self-imitation to 1) expedite exploration via frequent tool interactions at the beginning, and 2) strengthen exploitation of successful tactics upon convergence towards familiarity with the environment. We also combine bag-of-tricks of industrial RL optimizations for a strong baseline Dr.BoT to demonstrate our effectiveness. In ALFWorld and WebShop, SPEAR increases the success rates of GRPO/GiGPO/Dr.BoT by up to 16.1%/5.1%/8.6% and 20.7%/11.8%/13.9%, respectively. In AIME24 and AIME25, SPEAR boosts Dr.BoT by up to 3.8% and 6.1%, respectively. Such gains incur only 10%-25% extra theoretical complexity and negligible runtime overhead in practice, demonstrating the plug-and-play scalability of SPEAR.
comment: 45 pages, 14 figures
♻ ☆ LLMs are Biased Evaluators But Not Biased for Retrieval Augmented Generation ACL
Recent studies have demonstrated that large language models (LLMs) exhibit significant biases in evaluation tasks, particularly in preferentially rating and favoring self-generated content. However, the extent to which this bias manifests in fact-oriented tasks, especially within retrieval-augmented generation (RAG) frameworks, where keyword extraction and factual accuracy take precedence over stylistic elements, remains unclear. Our study addresses this knowledge gap by simulating two critical phases of the RAG framework. In the first phase, LLMs evaluated human-authored and model-generated passages, emulating the \textit{pointwise reranking phase}. The second phase involves conducting pairwise reading comprehension tests to simulate the \textit{generation phase}. Contrary to previous findings indicating a self-preference in rating tasks, our results reveal no significant self-preference effect in RAG frameworks. Instead, we observe that factual accuracy significantly influences LLMs' output, even in the absence of prior knowledge. These findings are consistent among three common QA datasets (NQ, MARCO, TriviaQA Datasets) and 5 widely adopted language models (GPT-3.5, GPT-4o-mini, Gemini, LLaMA3, and Mistral). Our research contributes to the ongoing discourse on LLM biases and their implications for RAG-based system, offering insights that may inform the development of more robust and unbiased LLM systems.
comment: 15 pages, 14 tables, 5 figures Accepted to ACL Findings 2025
♻ ☆ Eyes-on-Me: Scalable RAG Poisoning through Transferable Attention-Steering Attractors
Existing data poisoning attacks on retrieval-augmented generation (RAG) systems scale poorly because they require costly optimization of poisoned documents for each target phrase. We introduce Eyes-on-Me, a modular attack that decomposes an adversarial document into reusable Attention Attractors and Focus Regions. Attractors are optimized to direct attention to the Focus Region. Attackers can then insert semantic baits for the retriever or malicious instructions for the generator, adapting to new targets at near zero cost. This is achieved by steering a small subset of attention heads that we empirically identify as strongly correlated with attack success. Across 18 end-to-end RAG settings (3 datasets $\times$ 2 retrievers $\times$ 3 generators), Eyes-on-Me raises average attack success rates from 21.9 to 57.8 (+35.9 points, 2.6$\times$ over prior work). A single optimized attractor transfers to unseen black box retrievers and generators without retraining. Our findings establish a scalable paradigm for RAG data poisoning and show that modular, reusable components pose a practical threat to modern AI systems. They also reveal a strong link between attention concentration and model outputs, informing interpretability research.
♻ ☆ A Content-Preserving Secure Linguistic Steganography AAAI 2026
Existing linguistic steganography methods primarily rely on content transformations to conceal secret messages. However, they often cause subtle yet looking-innocent deviations between normal and stego texts, posing potential security risks in real-world applications. To address this challenge, we propose a content-preserving linguistic steganography paradigm for perfectly secure covert communication without modifying the cover text. Based on this paradigm, we introduce CLstega (\textit{C}ontent-preserving \textit{L}inguistic \textit{stega}nography), a novel method that embeds secret messages through controllable distribution transformation. CLstega first applies an augmented masking strategy to locate and mask embedding positions, where MLM(masked language model)-predicted probability distributions are easily adjustable for transformation. Subsequently, a dynamic distribution steganographic coding strategy is designed to encode secret messages by deriving target distributions from the original probability distributions. To achieve this transformation, CLstega elaborately selects target words for embedding positions as labels to construct a masked sentence dataset, which is used to fine-tune the original MLM, producing a target MLM capable of directly extracting secret messages from the cover text. This approach ensures perfect security of secret messages while fully preserving the integrity of the original cover text. Experimental results show that CLstega can achieve a 100\% extraction success rate, and outperforms existing methods in security, effectively balancing embedding capacity and security.
comment: This is the extended version of the paper accepted to AAAI 2026
♻ ☆ Simplex-Optimized Hybrid Ensemble for Large Language Model Text Detection Under Generative Distribution Drif
The widespread adoption of large language models (LLMs) has made it difficult to distinguish human writing from machine-produced text in many real applications. Detectors that were effective for one generation of models tend to degrade when newer models or modified decoding strategies are introduced. In this work, we study this lack of stability and propose a hybrid ensemble that is explicitly designed to cope with changing generator distributions. The ensemble combines three complementary components: a RoBERTa-based classifier fine-tuned for supervised detection, a curvature-inspired score based on perturbing the input and measuring changes in model likelihood, and a compact stylometric model built on hand-crafted linguistic features. The outputs of these components are fused on the probability simplex, and the weights are chosen via validation-based search. We frame this approach in terms of variance reduction and risk under mixtures of generators, and show that the simplex constraint provides a simple way to trade off the strengths and weaknesses of each branch. Experiments on a 30000 document corpus drawn from several LLM families including models unseen during training and paraphrased attack variants show that the proposed method achieves 94.2% accuracy and an AUC of 0.978. The ensemble also lowers false positives on scientific articles compared to strong baselines, which is critical in educational and research settings where wrongly flagging human work is costly
comment: 8 pages, 2 Figure, Politeknik Negeri Banyuwangi
♻ ☆ OSVBench: Benchmarking LLMs on Specification Generation Tasks for Operating System Verification
We introduce OSVBench, a new benchmark for evaluating Large Language Models (LLMs) on the task of generating complete formal specifications for verifying the functional correctness of operating system kernels. This benchmark is built upon a real-world operating system kernel, Hyperkernel, and consists of 245 complex specification generation tasks in total, each of which is a long-context task of about 20k-30k tokens. The benchmark formulates the specification generation task as a program synthesis problem confined to a domain for specifying states and transitions. This formulation is provided to LLMs through a programming model. The LLMs must be able to understand the programming model and verification assumptions before delineating the correct search space for syntax and semantics and generating formal specifications. Guided by the operating system's high-level functional description, the LLMs are asked to generate a specification that fully describes all correct states and transitions for a potentially buggy code implementation of the operating system. Experimental results with 12 state-of-the-art LLMs indicate limited performance of existing LLMs on the specification generation task for operating system verification. Significant disparities in their performance highlight differences in their ability to handle long-context code generation tasks. The code are available at https://github.com/lishangyu-hkust/OSVBench
♻ ☆ SPOT: An Annotated French Corpus and Benchmark for Detecting Critical Interventions in Online Conversations
We introduce SPOT (Stopping Points in Online Threads), the first annotated corpus translating the sociological concept of stopping point into a reproducible NLP task. Stopping points are ordinary critical interventions that pause or redirect online discussions through a range of forms (irony, subtle doubt or fragmentary arguments) that frameworks like counterspeech or social correction often overlook. We operationalize this concept as a binary classification task and provide reliable annotation guidelines. The corpus contains 43,305 manually annotated French Facebook comments linked to URLs flagged as false information by social media users, enriched with contextual metadata (article, post, parent comment, page or group, and source). We benchmark fine-tuned encoder models (CamemBERT) and instruction-tuned LLMs under various prompting strategies. Results show that fine-tuned encoders outperform prompted LLMs in F1 score by more than 10 percentage points, confirming the importance of supervised learning for emerging non-English social media tasks. Incorporating contextual metadata further improves encoder models F1 scores from 0.75 to 0.78. We release the anonymized dataset, along with the annotation guidelines and code in our code repository, to foster transparency and reproducible research.
♻ ☆ Internal World Models as Imagination Networks in Cognitive Agents
The computational role of imagination remains debated. While classical accounts emphasize reward maximization, emerging evidence suggests imagination serves a broader function: accessing internal world models (IWMs). Here, we employ psychological network analysis to compare IWMs in humans and large language models (LLMs) through imagination vividness ratings. Using the Vividness of Visual Imagery Questionnaire (VVIQ-2) and Plymouth Sensory Imagery Questionnaire (PSIQ), we construct imagination networks from three human populations (Florida, Poland, London; N=2,743) and six LLM variants in two conversation conditions. Human imagination networks demonstrate robust correlations across centrality measures (expected influence, strength, closeness) and consistent clustering patterns, indicating shared structural organization of IWMs across populations. In contrast, LLM-derived networks show minimal clustering and weak centrality correlations, even when manipulating conversational memory. These systematic differences persist across environmental scenes (VVIQ-2) and sensory modalities (PSIQ), revealing fundamental disparities between human and artificial world models. Our network-based approach provides a quantitative framework for comparing internally-generated representations across cognitive agents, with implications for developing human-like imagination in artificial intelligence systems.
♻ ☆ I Learn Better If You Speak My Language: Understanding the Superior Performance of Fine-Tuning Large Language Models with LLM-Generated Responses EMNLP 2024
This paper explores an intriguing observation: fine-tuning a large language model (LLM) with responses generated by a LLM often yields better results than using responses generated by humans, particularly in reasoning tasks. We conduct an in-depth investigation to understand why this occurs. Contrary to the common belief that these instances is due to the more detailed nature of LLM-generated content, our study identifies another contributing factor: an LLM is inherently more "familiar" with LLM generated responses. This familiarity is evidenced by lower perplexity before fine-tuning. We design a series of experiments to understand the impact of the "familiarity" and our conclusion reveals that this "familiarity" significantly impacts learning performance. Training with LLM-generated responses not only enhances performance but also helps maintain the model's capabilities in other reasoning tasks after fine-tuning on a specific task.
comment: The paper has been accepted to EMNLP 2024 (Main Conference) there is a follow up paper: Efficiently Selecting Response Generation Strategies for Synthetic Data Construction by Self-Aligned Perplexity Note: This is a revised version of arXiv:2402.11192 (v1, submitted 17 Feb 2024)
♻ ☆ JELV: A Judge of Edit-Level Validity for Evaluation and Automated Reference Expansion in Grammatical Error Correction
Existing Grammatical Error Correction (GEC) systems suffer from limited reference diversity, leading to underestimated evaluation and restricted model generalization. To address this issue, we introduce the Judge of Edit-Level Validity (JELV), an automated framework to validate correction edits from grammaticality, faithfulness, and fluency. Using our proposed human-annotated Pair-wise Edit-level Validity Dataset (PEVData) as benchmark, JELV offers two implementations: a multi-turn LLM-as-Judges pipeline achieving 90% agreement with human annotators, and a distilled DeBERTa classifier with 85% precision on valid edits. We then apply JELV to reclassify misjudged false positives in evaluation and derive a comprehensive evaluation metric by integrating false positive decoupling and fluency scoring, resulting in state-of-the-art correlation with human judgments. We also apply JELV to filter LLM-generated correction candidates, expanding the BEA19's single-reference dataset containing 38,692 source sentences. Retraining top GEC systems on this expanded dataset yields measurable performance gains. JELV provides a scalable solution for enhancing reference diversity and strengthening both evaluation and model generalization.
♻ ☆ Chopping Trees: Semantic Similarity Based Dynamic Pruning for Tree-of-Thought Reasoning NeurIPS 2025
Tree-of-Thought (ToT) reasoning boosts the problem-solving abilities of Large Language Models (LLMs) but is computationally expensive due to semantic redundancy, where distinct branches explore equivalent reasoning paths. We introduce Semantic Similarity-Based Dynamic Pruning (SSDP), a lightweight method that, to the best of our knowledge, is the first framework to integrate online semantic merging into parallelized tree search, enabling the clustering and pruning of redundant steps in real time. Across reasoning benchmarks, including GSM8K and MATH500, SSDP achieves up to a 2.3x speedup over state-of-the-art tree-search baselines while maintaining competitive accuracy (typically within 5% of the strongest baseline) and reducing the number of explored nodes by 85-90%, demonstrating a practical approach to efficient, scalable LLM reasoning. The implementation of SSDP is publicly available at https://github.com/kimjoonghokim/SSDP.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop on Efficient Reasoning
♻ ☆ RPRO: Ranked Preference Reinforcement Optimization for Enhancing Medical QA and Diagnostic Reasoning
Medical question answering requires advanced reasoning that integrates domain knowledge with logical inference. However, existing large language models (LLMs) often generate reasoning chains that lack factual accuracy and clinical reliability. We propose Ranked Preference Reinforcement Optimization (RPRO), a novel framework that combines reinforcement learning with preference-driven reasoning refinement to enhance clinical chain-of-thought (CoT) performance. RPRO distinguishes itself from prior approaches by employing task-adaptive reasoning templates and a probabilistic evaluation mechanism that aligns model outputs with established clinical workflows, while automatically identifying and correcting low-quality reasoning chains. Unlike traditional pairwise preference methods, RPRO introduces a groupwise ranking optimization based on the Bradley--Terry model and incorporates KL-divergence regularization for stable training. Experiments on PubMedQA, MedQA-USMLE, and a real-world clinical dataset from Far Eastern Memorial Hospital (FEMH) demonstrate consistent improvements over strong baselines. Remarkably, our 2B-parameter model outperforms much larger 7B--20B models, including medical-specialized variants. These findings demonstrate that combining preference optimization with quality-driven refinement provides a scalable and clinically grounded approach to building more reliable medical LLMs.
♻ ☆ Demystifying Language Model Forgetting with Low-rank Example Associations NeurIPS 2025
Large language models (LLMs) suffer from forgetting of upstream knowledge when fine-tuned. Despite efforts on mitigating forgetting, few have investigated how forgotten upstream examples are dependent on newly learned tasks. Insights on such dependencies enable efficient and targeted mitigation of forgetting. In this paper, we empirically analyze forgetting that occurs in $N$ upstream examples of language modeling or instruction-tuning after fine-tuning LLMs on one of $M$ new tasks, visualized in $M\times N$ matrices. We show that the matrices are often well-approximated with low-rank matrices, indicating the dominance of simple associations between the learned tasks and forgotten upstream examples. Leveraging the analysis, we predict forgetting of upstream examples when fine-tuning LLMs on unseen tasks with matrix completion over the empirical associations. This enables fast identification of most forgotten examples without expensive inference on the entire upstream data. Despite simplicity, the approach outperforms prior approaches that learn semantic relationships of learned tasks and upstream examples with LMs. We demonstrate the practical utility of our analysis by showing statistically significantly reduced forgetting as we upweight predicted examples for replay during fine-tuning. Code, data, and statistics collected: https://github.com/AuCson/low-rank-forgetting
comment: NeurIPS 2025. Updated code and data URL
♻ ☆ Beyond Markovian: Reflective Exploration via Bayes-Adaptive RL for LLM Reasoning
Large Language Models (LLMs) trained via Reinforcement Learning (RL) have exhibited strong reasoning capabilities and emergent reflective behaviors, such as rethinking and error correction, as a form of in-context exploration. However, the Markovian policy obtained from conventional RL training does not give rise to reflective exploration behaviors since the policy depends on the history only through the state and therefore has no incentive to enrich identical states with additional context. Instead, RL exploration is only useful during training to learn the optimal policy in a trial-and-error manner. Therefore, it remains unclear whether reflective reasoning will emerge during RL, or why it is beneficial. To remedy this, we recast reflective exploration within a Bayesian RL framework, which optimizes the expected return under a posterior distribution over Markov decision processes induced by the training data. This Bayesian formulation admits uncertainty-adaptive policies that, through belief updates, naturally incentivize information-gathering actions and induce self-reflection behaviors. Our resulting algorithm, BARL, instructs the LLM to stitch and switch strategies based on the observed outcomes, offering principled guidance on when and how the model should reflectively explore. Empirical results on both synthetic and mathematical reasoning tasks demonstrate that BARL outperforms conventional RL approaches, achieving superior test-time performance and token efficiency. Our code is available at https://github.com/shenao-zhang/BARL.
Information Retrieval
☆ Reformulate, Retrieve, Localize: Agents for Repository-Level Bug Localization
Bug localization remains a critical yet time-consuming challenge in large-scale software repositories. Traditional information retrieval-based bug localization (IRBL) methods rely on unchanged bug descriptions, which often contain noisy information, leading to poor retrieval accuracy. Recent advances in large language models (LLMs) have improved bug localization through query reformulation, yet the effect on agent performance remains unexplored. In this study, we investigate how an LLM-powered agent can improve file-level bug localization via lightweight query reformulation and summarization. We first employ an open-source, non-fine-tuned LLM to extract key information from bug reports, such as identifiers and code snippets, and reformulate queries pre-retrieval. Our agent then orchestrates BM25 retrieval using these preprocessed queries, automating localization workflow at scale. Using the best-performing query reformulation technique, our agent achieves 35% better ranking in first-file retrieval than our BM25 baseline and up to +22% file retrieval performance over SWE-agent.
comment: Accepted at BoatSE 2026
☆ FVA-RAG: Falsification-Verification Alignment for Mitigating Sycophantic Hallucinations
Retrieval-Augmented Generation (RAG) systems have significantly reduced hallucinations in Large Language Models (LLMs) by grounding responses in external context. However, standard RAG architectures suffer from a critical vulnerability: Retrieval Sycophancy. When presented with a query based on a false premise or a common misconception, vector-based retrievers tend to fetch documents that align with the user's bias rather than objective truth, leading the model to "hallucinate with citations." In this work, we introduce Falsification-Verification Alignment RAG (FVA-RAG), a framework that shifts the retrieval paradigm from Inductive Verification (seeking support) to Deductive Falsification (seeking disproof). Unlike existing "Self-Correction" methods that rely on internal consistency, FVA-RAG deploys a distinct Adversarial Retrieval Policy that actively generates "Kill Queries"-targeted search terms designed to surface contradictory evidence. We introduce a dual-verification mechanism that explicitly weighs the draft answer against this "Anti-Context." Preliminary experiments on a dataset of common misconceptions demonstrate that FVA-RAG significantly improves robustness against sycophantic hallucinations compared to standard RAG baselines, effectively acting as an inference-time "Red Team" for factual generation.
☆ Benchmarking Deep Neural Networks for Modern Recommendation Systems
This paper examines the deployment of seven different neural network architectures CNN, RNN, GNN, Autoencoder, Transformer, NCF, and Siamese Networks on three distinct datasets: Retail E-commerce, Amazon Products, and Netflix Prize. It evaluates their effectiveness through metrics such as accuracy, recall, F1-score, and diversity in recommendations. The results demonstrate that GNNs are particularly adept at managing complex item relationships in e-commerce environments, whereas RNNs are effective in capturing the temporal dynamics that are essential for platforms such as Netflix.. Siamese Networks are emphasized for their contribution to the diversification of recommendations, particularly in retail settings. Despite their benefits, issues like computational demands, reliance on extensive data, and the challenge of balancing accurate and diverse recommendations are addressed. The study seeks to inform the advancement of recommendation systems by suggesting hybrid methods that merge the strengths of various models to better satisfy user preferences and accommodate the evolving demands of contemporary digital platforms.
☆ Space efficient implementation of hypergraph dualization in the D-basis algorithm
We present a new implementation of the $D$-basis algorithm called the Small Space which considerably reduces the algorithm's memory usage for data analysis applications. The previous implementation delivers the complete set of implications that hold on the set of attributes of an input binary table. In the new version, the only output is the frequencies of attributes that appear in the antecedents of implications from the $D$-basis, with a fixed consequent attribute. Such frequencies, rather than the implications themselves, became the primary focus in analysis of datasets where the $D$-basis has been applied over the last decade. The $D$-basis employs a hypergraph dualization algorithm, and a dualization implementation known as Reverse Search allows for the gradual computation of frequencies without the need for storing all discovered implications. We demonstrate the effectiveness of the Small Space implementation by comparing the runtimes and maximum memory usage of this new version with the current implementation.
comment: 21 pages, 3 figures, 10 tables. Submitted to Discrete Applied Mathematics. Results were presented at the AMS 2025 Fall Western Sectional Meeting at the University of Denver
☆ Structural and Disentangled Adaptation of Large Vision Language Models for Multimodal Recommendation
Multimodal recommendation enhances accuracy by leveraging visual and textual signals, and its success largely depends on learning high-quality cross-modal representations. Recent advances in Large Vision-Language Models (LVLMs) offer unified multimodal representation learning, making them a promising backbone. However, applying LVLMs to recommendation remains challenging due to (i) representation misalignment, where domain gaps between item data and general pre-training lead to unaligned embedding spaces, and (ii) gradient conflicts during fine-tuning, where shared adapters cause interference and a lack of discriminative power. To address this, we propose SDA, a lightweight framework for Structural and Disentangled Adaptation, which integrates two components: Cross-Modal Structural Alignment (CMSA) and Modality-Disentangled Adaptation. CMSA aligns embeddings using intra-modal structures as a soft teacher, while MoDA mitigates gradient conflicts via expertized, gated low-rank paths to disentangle gradient flows. Experiments on three public Amazon datasets show SDA integrates seamlessly with existing multimodal and sequential recommenders, yielding average gains of 6.15% in Hit@10 and 8.64% in NDCG@10. It also achieves up to 12.83% and 18.70% gains on long-tail items with minimal inference overhead. Our code and full experimental results are available at https://github.com/RaoZhongtao/SDA.
☆ WisPaper: Your AI Scholar Search Engine
Researchers struggle to efficiently locate and manage relevant literature within the exponentially growing body of scientific publications. We present \textsc{WisPaper}, an intelligent academic retrieval and literature management platform that addresses this challenge through three integrated capabilities: (1) \textit{Scholar Search}, featuring both quick keyword-based and deep agentic search modes for efficient paper discovery; (2) \textit{Library}, a customizable knowledge base for systematic literature organization; and (3) \textit{AI Feeds}, an intelligent recommendation system that automatically delivers relevant new publications based on user interests. Unlike existing academic tools, \textsc{WisPaper} provides a closed-loop workflow that seamlessly connects literature discovery, management, and continuous tracking of research frontiers. Our multilingual and multidisciplinary system significantly reduces the time researchers from diverse backgrounds spend on paper screening and management, enabling them to focus on their core research activities. The platform is publicly accessible and serves researchers across academia and industry.
comment: 17 pages, 2 figures
☆ Foresight Prediction Enhanced Live-Streaming Recommendation WSDM 2026
Live-streaming, as an emerging media enabling real-time interaction between authors and users, has attracted significant attention. Unlike the stable playback time of traditional TV live or the fixed content of short video, live-streaming, due to the dynamics of content and time, poses higher requirements for the recommendation algorithm of the platform - understanding the ever-changing content in real time and push it to users at the appropriate moment. Through analysis, we find that users have a better experience and express more positive behaviors during highlight moments of the live-streaming. Furthermore, since the model lacks access to future content during recommendation, yet user engagement depends on how well subsequent content aligns with their interests, an intuitive solution is to predict future live-streaming content. Therefore, we perform semantic quantization on live-streaming segments to obtain Semantic ids (Sid), encode the historical Sid sequence to capture the author's characteristics, and model Sid evolution trend to enable foresight prediction of future content. This foresight enhances the ranking model through refined features. Extensive offline and online experiments demonstrate the effectiveness of our method.
comment: Accepted by WSDM 2026
☆ An Index-based Approach for Efficient and Effective Web Content Extraction
As web agents (e.g., Deep Research) routinely consume massive volumes of web pages to gather and analyze information, LLM context management -- under large token budgets and low signal density -- emerges as a foundational, high-importance, and technically challenging problem for agentic and RAG pipelines. Existing solutions for extracting relevant content are inadequate: generative extraction models suffer from high latency, rule-based heuristics lack adaptability, and chunk-and-rerank methods are blind to webpage structure. To overcome these issues, we introduce Index-based Web Content Extraction to reframe the extraction process from slow, token-by-token generation into a highly efficient, discriminative task of index prediction, achieving both effectiveness and efficiency. We partition HTML into structure-aware, addressable segments, and extract only the positional indices of content relevant to a given query. This method decouples extraction latency from content length, enabling rapid, query-relevant extraction. We first evaluate our method as a post-retrieval processing component within an RAG QA system and find that it improves QA accuracy. Then we directly measure its match rate with the target content in two scenarios: main content extraction (ME) and query-relevant extraction (QE). Experimental results show that our method outperforms existing works in both accuracy and speed, effectively bridging the gap between LLMs and the vast webpages.
♻ ☆ Modeling User Preferences as Distributions for Optimal Transport-based Cross-domain Recommendation under Non-overlapping Settings
Cross-domain recommender (CDR) systems aim to transfer knowledge from data-rich domains to data-sparse ones, alleviating sparsity and cold-start issues present in conventional single-domain recommenders. However, many CDR approaches rely on overlapping users or items to establish explicit cross-domain connections, which is unrealistic in practice. Moreover, most methods represent user preferences as fixed discrete vectors, limiting their ability to capture the fine-grained and multi-aspect nature of user interests. To address these limitations, we propose DUP-OT (Distributional User Preferences with Optimal Transport), a novel framework for non-overlapping CDR. DUP-OT consists of three stages: (1) a shared preprocessing module that extracts review-based embeddings using a unified sentence encoder and autoencoder; (2) a user preference modeling module that represents each user's interests as a Gaussian Mixture Model (GMM) over item embeddings; and (3) an optimal-transport-based alignment module that matches Gaussian components across domains, enabling effective preference transfer for target-domain rating prediction. Experiments on Amazon Review datasets demonstrate that DUP-OT mitigates domain discrepancy and significantly outperforms state-of-the-art baselines under strictly non-overlapping training settings, with user correspondence revealed only for inference-time evaluation.
♻ ☆ ICPO: Intrinsic Confidence-Driven Group Relative Preference Optimization for Efficient Reinforcement Learning
Reinforcement Learning with Verifiable Rewards (RLVR) demonstrates significant potential in enhancing the reasoning capabilities of Large Language Models (LLMs). However, existing RLVR methods are often constrained by issues such as coarse-grained rewards, reward noise, and inefficient exploration, which lead to unstable training and entropy collapse. To address this challenge, we propose the Intrinsic Confidence-Driven Group Relative Preference Optimization method (ICPO). The intuition behind it lies in the fact that the probabilities of an LLM generating different responses can inherently and directly reflect its self-assessment of the reasoning process. Inspired by the idea of preference modeling, ICPO calculates a preference advantage score for each response by comparing the relative generation probabilities of multiple responses under the same input prompt, and integrates this score with verifiable rewards to guide the exploration process. We have discovered that the preference advantage score not only alleviates the issues of coarse-grained rewards and reward noise but also effectively curbs overconfident errors, enhances the relative superiority of undervalued high-quality responses, and prevents the model from overfitting to specific strategies, thereby facilitating more thorough exploration. Comprehensive experiments across four general-domain benchmarks and three mathematical benchmarks demonstrate that ICPO steadily boosts reasoning compared to GRPO.
Multimedia
☆ RMAdapter: Reconstruction-based Multi-Modal Adapter for Vision-Language Models AAAI 2026
Pre-trained Vision-Language Models (VLMs), \textit{e.g.} CLIP, have become essential tools in multimodal transfer learning. However, fine-tuning VLMs in few-shot scenarios poses significant challenges in balancing task-specific adaptation and generalization in the obtained model. Meanwhile, current researches have predominantly focused on prompt-based adaptation methods, leaving adapter-based approaches underexplored and revealing notable performance gaps. To address these challenges, we introduce a novel Reconstruction-based Multimodal Adapter (RMAdapter), which leverages a dual-branch architecture. Unlike conventional single-branch adapters, RMAdapter consists of: (1) an adaptation branch that injects task-specific knowledge through parameter-efficient fine-tuning, and (2) a reconstruction branch that preserves general knowledge by reconstructing latent space features back into the original feature space. This design facilitates a dynamic balance between general and task-specific knowledge. Importantly, although RMAdapter introduces an additional reconstruction branch, it is carefully optimized to remain lightweight. By computing reconstruction loss locally at each layer and sharing projection modules, the overall computational overhead is kept minimal. A consistency constraint is also incorporated to better regulate the trade-off between discriminability and generalization. We comprehensively evaluate the effectiveness of RMAdapter on three representative tasks: generalization to new categories, generalization to new target datasets, and domain generalization. Without relying on data augmentation or duplicate prompt designs, our RMAdapter consistently outperforms state-of-the-art approaches across all evaluation metrics.
comment: Accepted by AAAI 2026(Oral)
♻ ☆ Iola Walker: A Mobile Footfall Detection System for Music Composition
This outing is part of a larger music technology research project. The objective is to find a way to enhance music using hardware and software. This is the documentation for the Whimsical first part of the research project: it's an android app that detects a wearer's footfalls by running live inference on an LSTM. The system works by getting data from an Mbient Labs IMU to a mobile app over bluetooth. After you move the .csv file to a computer with a GPU, you can use the python code to train an LSTM on that data. You then export the LSTM to the android app and can begin detecting footfalls. Feel free to download and experiment with the code. It's meant to be read and improved upon by you and your LLM codewriter of choice! https://github.com/willbjames/iolawalker
Computation and Language
☆ Adapting AlignScore Mertic for Factual Consistency Evaluation of Text in Russian: A Student Abstract
Ensuring factual consistency in generated text is crucial for reliable natural language processing applications. However, there is a lack of evaluation tools for factual consistency in Russian texts, as existing tools primarily focus on English corpora. To bridge this gap, we introduce AlignRuScore, a comprehensive adaptation of the AlignScore metric for Russian. To adapt the metric, we fine-tuned a RuBERT-based alignment model with task-specific classification and regression heads on Russian and translated English datasets. Our results demonstrate that a unified alignment metric can be successfully ported to Russian, laying the groundwork for robust multilingual factual consistency evaluation. We release the translated corpora, model checkpoints, and code to support further research.
☆ ProSocialAlign: Preference Conditioned Test Time Alignment in Language Models
Current language model safety paradigms often fall short in emotionally charged or high-stakes settings, where refusal-only approaches may alienate users and naive compliance can amplify risk. We propose ProSocialAlign, a test-time, parameter-efficient framework that steers generation toward safe, empathetic, and value-aligned responses without retraining the base model. We formalize five human-centered objectives and cast safety as lexicographic constrained generation: first, applying hard constraints to eliminate harmful continuations; then optimizing for prosocial quality within the safe set. Our method combines (i) directional regulation, a harm-mitigation mechanism that subtracts a learned "harm vector" in parameter space, and (ii) preference-aware autoregressive reward modeling trained jointly across attributes with gradient conflict resolution, enabling fine-grained, user-controllable decoding. Empirical evaluations across five safety benchmarks demonstrate state-of-the-art performance, reducing unsafe leakage and boosting alignment to human values, with strong gains across multiple evaluation metrics. ProSocialAlign offers a robust and modular foundation for generating context-sensitive, safe, and human-aligned responses at inference time.
♻ ☆ mini-vec2vec: Scaling Universal Geometry Alignment with Linear Transformations
We build upon vec2vec, a procedure designed to align text embedding spaces without parallel data. vec2vec finds a near-perfect alignment, but it is expensive and unstable. We present mini-vec2vec, a simple and efficient alternative that requires substantially lower computational cost and is highly robust. Moreover, the learned mapping is a linear transformation. Our method consists of three main stages: a tentative matching of pseudo-parallel embedding vectors, transformation fitting, and iterative refinement. Our linear alternative exceeds the original instantiation of vec2vec by orders of magnitude in efficiency, while matching or exceeding their results. The method's stability and interpretable algorithmic steps facilitate scaling and unlock new opportunities for adoption in new domains and fields.
♻ ☆ Hallucination reduction with CASAL: Contrastive Activation Steering For Amortized Learning
Large Language Models (LLMs) exhibit impressive capabilities but often hallucinate, confidently providing incorrect answers instead of admitting ignorance. Prior work has shown that models encode linear representations of their own knowledge and that activation steering can reduce hallucinations. These approaches, however, require real-time monitoring and intervention during inference. We introduce Contrastive Activation Steering for Amortized Learning (CASAL), an efficient algorithm that connects interpretability with amortized optimization. CASAL directly bakes the benefits of activation steering into model's weights. Once trained, LLMs answer questions they know while abstaining from answering those they do not. CASAL's light-weight design requires training only a submodule of a single transformer layer and yet reduces hallucination by 30%-40% across multiple short-form QA benchmarks. CASAL is 30x more compute-efficient and 20x more data-efficient than strong LoRA-based baselines such as SFT and DPO, boosting its practical applicability in data scarce domains. Importantly, CASAL also generalizes effectively to out-of-distribution (OOD) domains. We showcase CASAL's flexibility in mitigating hallucinations in both text-only and vision-language models. To our knowledge, CASAL is the first steering-based training method that has been shown to be effective for both dense and Mixture-of-Experts (MoE) models. CASAL represents a promising step forward for applying interpretability-inspired method for practical deployment in production systems.
♻ ☆ Evaluating Long-Term Memory for Long-Context Question Answering
In order for large language models to achieve true conversational continuity and benefit from experiential learning, they need memory. While research has focused on the development of complex memory systems, it remains unclear which types of memory are most effective for long-context conversational tasks. We present a systematic evaluation of memory-augmented methods on long-context dialogues annotated for question-answering tasks that require diverse reasoning strategies. We analyse full-context prompting, semantic memory through retrieval-augmented generation and agentic memory, episodic memory through in-context learning, and procedural memory through prompt optimization. Our findings show that memory-augmented approaches reduce token usage by over 90\% while maintaining competitive accuracy. Memory architecture complexity should scale with model capability, with foundation models benefitting most from RAG, and stronger instruction-tuned models gaining from episodic learning through reflections and more complex agentic semantic memory. In particular, episodic memory can help LLMs recognise the limits of their own knowledge.
comment: Accepted as a poster at Metacognition in Generative AI EurIPS workshop
♻ ☆ SwiReasoning: Switch-Thinking in Latent and Explicit for Pareto-Superior Reasoning LLMs
Recent work shows that, beyond discrete reasoning through explicit chain-of-thought steps, which are limited by the boundaries of natural languages, large language models (LLMs) can also reason continuously in latent space, allowing richer information per step and thereby improving token efficiency. Despite this promise, latent reasoning still faces two challenges, especially in training-free settings: 1) purely latent reasoning broadens the search distribution by maintaining multiple implicit paths, which diffuses probability mass, introduces noise, and impedes convergence to a single high-confidence solution, thereby hurting accuracy; and 2) overthinking persists even without explicit text, wasting tokens and degrading efficiency. To address these issues, we introduce SwiReasoning, a training-free framework for LLM reasoning which features two key innovations: 1) SwiReasoning dynamically switches between explicit and latent reasoning, guided by block-wise confidence estimated from entropy trends in next-token distributions, to balance exploration and exploitation and promote timely convergence. 2) By limiting the maximum number of thinking-block switches, SwiReasoning curbs overthinking and improves token efficiency across varying problem difficulties. On widely used mathematics and STEM benchmarks, SwiReasoning consistently improves average accuracy by 1.5%-2.8% across reasoning LLMs of different model families and scales. Furthermore, under constrained budgets, SwiReasoning improves average token efficiency by 56%-79%, with larger gains as budgets tighten.
comment: Code: https://github.com/sdc17/SwiReasoning, Website: https://swireasoning.github.io/
Information Retrieval
☆ Towards Efficient Hypergraph and Multi-LLM Agent Recommender Systems
Recommender Systems (RSs) have become the cornerstone of various applications such as e-commerce and social media platforms. The evolution of RSs is paramount in the digital era, in which personalised user experience is tailored to the user's preferences. Large Language Models (LLMs) have sparked a new paradigm - generative retrieval and recommendation. Despite their potential, generative RS methods face issues such as hallucination, which degrades the recommendation performance, and high computational cost in practical scenarios. To address these issues, we introduce HGLMRec, a novel Multi-LLM agent-based RS that incorporates a hypergraph encoder designed to capture complex, multi-behaviour relationships between users and items. The HGLMRec model retrieves only the relevant tokens during inference, reducing computational overhead while enriching the retrieval context. Experimental results show performance improvement by HGLMRec against state-of-the-art baselines at lower computational cost.
comment: 8 Pages
☆ Enhancing Medical Cross-Modal Hashing Retrieval using Dropout-Voting Mixture-of-Experts Fusion
In recent years, cross-modal retrieval using images and text has become an active area of research, especially in the medical domain. The abundance of data in various modalities in this field has led to a growing importance of cross-modal retrieval for efficient image interpretation, data-driven diagnostic support, and medical education. In the context of the increasing integration of distributed medical data across healthcare facilities with the objective of enhancing interoperability, it is imperative to optimize the performance of retrieval systems in terms of the speed, memory efficiency, and accuracy of the retrieved data. This necessity arises in response to the substantial surge in data volume that characterizes contemporary medical practices. In this study, we propose a novel framework that incorporates dropout voting and mixture-of-experts (MoE) based contrastive fusion modules into a CLIP-based cross-modal hashing retrieval structure. We also propose the application of hybrid loss. So we now call our model MCMFH which is a medical cross-modal fusion hashing retrieval. Our method enables the simultaneous achievement of high accuracy and fast retrieval speed in low-memory environments. The model is demonstrated through experiments on radiological and non-radiological medical datasets.
comment: 5 pages, 1 figure, workshop paper (MMGenSR 2025)
☆ Enhancing Information Retrieval in Digital Libraries through Unit Harmonisation in Scholarly Knowledge Graphs
Scientists have always used the studies and research of other researchers to achieve new objectives and perspectives. In particular, employing and operating the measured data in previous studies is so practical. Searching the content of other scientists' articles is a challenge that researchers have always struggled with. Nowadays, the use of knowledge graphs as a semantic database has helped a lot in saving and retrieving scholarly knowledge. Such technologies are crucial to upgrading traditional search systems to smart knowledge retrieval, which is crucial to getting the most relevant answers for a user query, especially in information and knowledge management. However, in most cases, only the metadata of a paper is searchable, and it is still cumbersome for scientists to have access to the content of the papers. In this paper, we present a novel method of faceted search \emph{structured content} for comparing and filtering measured data in scholarly knowledge graphs while different units of measurement are used in different studies. This search system proposes applicable units as facets to the user and would dynamically integrate content from further remote knowledge graphs to materialize the scholarly knowledge graph and achieve a higher order of exploration usability on scholarly content, which can be filtered to better satisfy the user's information needs. The state of the art is that, by using our faceted search system, users can not only search the contents of scientific articles, but also compare and filter heterogeneous data.
☆ Beyond Existing Retrievals: Cross-Scenario Incremental Sample Learning Framework
The parallelized multi-retrieval architecture has been widely adopted in large-scale recommender systems for its computational efficiency and comprehensive coverage of user interests. Many retrieval methods typically integrate additional cross-scenario samples to enhance the overall performance ceiling. However, those model designs neglect the fact that a part of the cross-scenario samples have already been retrieved by existing models within a system, leading to diminishing marginal utility in delivering incremental performance gains. In this paper, we propose a novel retrieval framework IncRec, specifically for cross-scenario incremental sample learning. The innovations of IncRec can be highlighted as two aspects. Firstly, we construct extreme cross-scenario incremental samples that are not retrieved by any existing model. And we design an incremental sample learning framework which focuses on capturing incremental representation to improve the overall retrieval performance. Secondly, we introduce a consistency-aware alignment module to further make the model prefer incremental samples with high exposure probability. Extensive offline and online A/B tests validate the superiority of our framework over state-of-the-art retrieval methods. In particular, we deploy IncRec in the Taobao homepage recommendation, achieving a 1% increase in online transaction count, demonstrating its practical applicability.
☆ Interpretive Efficiency: Information-Geometric Foundations of Data Usefulness
Interpretability is central to trustworthy machine learning, yet existing metrics rarely quantify how effectively data support an interpretive representation. We propose Interpretive Efficiency, a normalized, task-aware functional that measures the fraction of task-relevant information transmitted through an interpretive channel. The definition is grounded in five axioms ensuring boundedness, Blackwell-style monotonicity, data-processing stability, admissible invariance, and asymptotic consistency. We relate the functional to mutual information and derive a local Fisher-geometric expansion, then establish asymptotic and finite-sample estimation guarantees using standard empirical-process tools. Experiments on controlled image and signal tasks demonstrate that the measure recovers theoretical orderings, exposes representational redundancy masked by accuracy, and correlates with robustness, making it a practical, theory-backed diagnostic for representation design.
☆ Enhanced Multimodal Video Retrieval System: Integrating Query Expansion and Cross-modal Temporal Event Retrieval
Multimedia information retrieval from videos remains a challenging problem. While recent systems have advanced multimodal search through semantic, object, and OCR queries - and can retrieve temporally consecutive scenes - they often rely on a single query modality for an entire sequence, limiting robustness in complex temporal contexts. To overcome this, we propose a cross-modal temporal event retrieval framework that enables different query modalities to describe distinct scenes within a sequence. To determine decision thresholds for scene transition and slide change adaptively, we build Kernel Density Gaussian Mixture Thresholding (KDE-GMM) algorithm, ensuring optimal keyframe selection. These extracted keyframes act as compact, high-quality visual exemplars that retain each segment's semantic essence, improving retrieval precision and efficiency. Additionally, the system incorporates a large language model (LLM) to refine and expand user queries, enhancing overall retrieval performance. The proposed system's effectiveness and robustness were demonstrated through its strong results in the Ho Chi Minh AI Challenge 2025.
comment: 11 pages, 6 figures, SOICT 2025
♻ ☆ Graceful forgetting: Memory as a process
A rational framework is proposed to explain how we accommodate unbounded sensory input within bounded memory. Memory is stored as statistics organized into structures that are repeatedly summarized and compressed to make room for new input. Repeated summarization requires an intensive ongoing process guided by heuristics that help optimize the memory for future needs. Sensory input is rapidly encoded as simple statistics that are progressively elaborated into more abstract constructs. This framework differs from previous accounts of memory by reliance on statistics as a representation of memory, the use of heuristics to guide the choice of statistics at each summarization step, and the hypothesis of a process that is complex and expensive. The framework is intended as an aid to make sense of our extensive knowledge of memory, and bring us closer to an understanding of memory in functional and mechanistic terms.
♻ ☆ ZeroMat: Solving Cold-start Problem of Recommender System with No Input Data
Recommender system is an applicable technique in most E-commerce commercial product technical designs. However, nearly all recommender system faces a challenge called the cold-start problem. The problem is so notorious that almost every industrial practitioner needs to resolve this issue when building recommender systems. Most cold-start problem solvers need some kind of data input as the starter of the system. On the other hand, many real-world applications place popular items or random items as recommendation results. In this paper, we propose a new technique called ZeroMat that requries no input data at all and predicts the user item rating data that is competitive in Mean Absolute Error and fairness metric compared with the classic matrix factorization with affluent data, and much better performance than random placement.
♻ ☆ The Oracle and The Prism: A Decoupled and Efficient Framework for Generative Recommendation Explanation
The integration of Large Language Models (LLMs) into explainable recommendation systems often leads to a performance-efficiency trade-off in end-to-end architectures, where joint optimization of ranking and explanation can result in suboptimal compromises. To resolve this, we propose Prism, a novel decoupled framework that rigorously separates the recommendation process into a dedicated ranking stage and an explanation generation stage. This decomposition ensures that each component is optimized for its specific objective, eliminating inherent conflicts in coupled models. Inspired by knowledge distillation, Prism leverages a powerful, instruction-following teacher LLM (FLAN-T5-XXL) as an Oracle to produce high-fidelity explanatory knowledge. A compact, fine-tuned student model (BART-Base), the Prism, then specializes in synthesizing this knowledge into personalized explanations. Our extensive experiments on benchmark datasets reveal a key finding: the distillation process not only transfers knowledge but also acts as a noise filter. Our 140M-parameter Prism model significantly outperforms its 11B-parameter teacher in human evaluations of faithfulness and personalization, demonstrating an emergent ability to correct hallucinations present in the teacher's outputs. While achieving a 24x speedup and a 10x reduction in memory consumption, our analysis validates that decoupling, coupled with targeted distillation, provides an efficient and effective pathway to high-quality, and perhaps more importantly, trustworthy explainable recommendation.
comment: 12pages,3 figures
♻ ☆ KeyB2+: Summary-Augmented Block Selection for Scalable Long-Document Reranking with LLMs
Large language models (LLMs) have advanced neural information retrieval (IR), yet applying them to long-document reranking remains computationally expensive and often ineffective when irrelevant content dominates. We begin with an in-depth analysis of decoder-only LLM attention and show that while some heads align with relevance signals, this alignment quickly deteriorates as irrelevant text accumulates. These observations highlight the necessity of explicit block selection to preserve focus and efficiency. We present KeyB2 and KeyB2+, a scalable reranking framework that selects and aggregates the most relevant blocks together with each document's summarization, ensuring that both localized evidence and global semantics are captured before LLM scoring. KeyB2 family support flexible selectors: BM25, bi-encoder, and cross-encoder, and adapts decoder-only LLMs to compute fine-grained relevance scores on the selected content. Experiments demonstrate that abstract-augmented block selection consistently improves retrieval effectiveness over strong baselines while substantially lowering inference cost, achieving new SOTA result on TREC DL 2019 document track (0.738 for NDCG@10). This establishes KeyB2+ as a practical and effective solution for scalable long-document reranking with LLMs.
Multimedia
☆ A Sleep Monitoring System Based on Audio, Video and Depth Information
For quantitative evaluation of sleep disturbances, a noninvasive monitoring system is developed by introducing an event-based method. We observe sleeping in home context and classify the sleep disturbances into three types of events: motion events, light-on/off events and noise events. A device with an infrared depth sensor, a RGB camera, and a four-microphone array is used in sleep monitoring in an environment with barely light sources. One background model is established in depth signals for measuring magnitude of movements. Because depth signals cannot observe lighting changes, another background model is established in color images for measuring magnitude of lighting effects. An event detection algorithm is used to detect occurrences of events from the processed data of the three types of sensors. The system was tested in sleep condition and the experiment result validates the system reliability.
comment: Accepted in the Computer Vision, Graphics and Image Processing (CVGIP 2013)
♻ ☆ MAVERIX: Multimodal Audio-Visual Evaluation and Recognition IndeX
We introduce MAVERIX (Multimodal audiovisual Evaluation and Recognition IndeX), a unified benchmark to probe the video understanding in multimodal LLMs, encompassing video, audio, text inputs with human performance baselines. Although recent advancements in models with vision and audio understanding capabilities have shown substantial progress, the field lacks a standardized evaluation framework to thoroughly assess their cross-modality comprehension performance. MAVERIX curates 2,556 questions from 700 videos, in the form of both multiple-choice and open-ended formats, explicitly designed to evaluate multimodal models through questions that necessitate tight integration of video and audio information, spanning a broad spectrum of agentic scenarios. MAVERIX uniquely provides models with audiovisual questions, closely mimicking the multimodal perceptual experiences available to humans during inference and decision-making processes. To our knowledge, MAVERIX is the first benchmark aimed explicitly at assessing comprehensive audiovisual integration in such granularity. Experiments with state-of-the-art models, including Qwen 2.5 Omni and Gemini 2.5 Flash-Lite, show performance around 64% accuracy, while human experts reach near-ceiling performance of 92.8%, exposing a substantial gap to human-level comprehension. With standardized evaluation protocols, a rigorously annotated pipeline, and a public toolkit, MAVERIX establishes a challenging testbed for advancing audiovisual multimodal intelligence.
♻ ☆ SteerMusic: Enhanced Musical Consistency for Zero-shot Text-guided and Personalized Music Editing AAAI2026
Music editing is an important step in music production, which has broad applications, including game development and film production. Most existing zero-shot text-guided editing methods rely on pretrained diffusion models by involving forward-backward diffusion processes. However, these methods often struggle to preserve the musical content. Additionally, text instructions alone usually fail to accurately describe the desired music. In this paper, we propose two music editing methods that improve the consistency between the original and edited music by leveraging score distillation. The first method, SteerMusic, is a coarse-grained zero-shot editing approach using delta denoising score. The second method, SteerMusic+, enables fine-grained personalized music editing by manipulating a concept token that represents a user-defined musical style. SteerMusic+ allows for the editing of music into user-defined musical styles that cannot be achieved by the text instructions alone. Experimental results show that our methods outperform existing approaches in preserving both music content consistency and editing fidelity. User studies further validate that our methods achieve superior music editing quality.
comment: Accepted by AAAI2026
Information Retrieval
☆ Sift or Get Off the PoC: Applying Information Retrieval to Vulnerability Research with SiftRank
Security research is fundamentally a problem of resource constraint and consequent prioritization. There is simply too much attack surface and too little time and energy to spend analyzing it all. The most effective security researchers are often those who are most skilled at intuitively deciding which part of an expansive attack surface to investigate. We demonstrate that this problem of selecting the most promising option from among many possibilities can be reframed as an information retrieval problem, and solved using document ranking techniques with LLMs performing the heavy lifting as general-purpose rankers. We present SiftRank, a ranking algorithm achieving O(n) complexity through three key mechanisms: listwise ranking using an LLM to order documents in small batches of approximately 10 items at a time; inflection-based convergence detection that adaptively terminates ranking when score distributions have stabilized; and iterative refinement that progressively focuses ranking effort on the most relevant documents. Unlike existing reranking approaches that require a separate first-stage retrieval step to narrow datasets to approximately 100 candidates, SiftRank operates directly on thousands of items, with each document evaluated across multiple randomized batches to mitigate inconsistent judgments by an LLM. We demonstrate practical effectiveness on N-day vulnerability analysis, successfully identifying a vulnerability-fixing function among 2,197 changed functions in a stripped binary firmware patch within 99 seconds at an inference cost of $0.82. Our approach enables scalable security prioritization for problems that are generally constrained by manual analysis, requiring only standard LLM API access without specialized infrastructure, embedding, or domain-specific fine-tuning. An open-source implementation of SiftRank may be found at https://github.com/noperator/siftrank.
☆ Enhancing Retrieval-Augmented Generation with Entity Linking for Educational Platforms
In the era of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) architectures are gaining significant attention for their ability to ground language generation in reliable knowledge sources. Despite their impressive effectiveness in many areas, RAG systems based solely on semantic similarity often fail to ensure factual accuracy in specialized domains, where terminological ambiguity can affect retrieval relevance. This study proposes an enhanced RAG architecture that integrates a factual signal derived from Entity Linking to improve the accuracy of educational question-answering systems in Italian. The system includes a Wikidata-based Entity Linking module and implements three re-ranking strategies to combine semantic and entity-based information: a hybrid score weighting model, reciprocal rank fusion, and a cross-encoder re-ranker. Experiments were conducted on two benchmarks: a custom academic dataset and the standard SQuAD-it dataset. Results show that, in domain-specific contexts, the hybrid schema based on reciprocal rank fusion significantly outperforms both the baseline and the cross-encoder approach, while the cross-encoder achieves the best results on the general-domain dataset. These findings confirm the presence of an effect of domain mismatch and highlight the importance of domain adaptation and hybrid ranking strategies to enhance factual precision and reliability in retrieval-augmented generation. They also demonstrate the potential of entity-aware RAG systems in educational environments, fostering adaptive and reliable AI-based tutoring tools.
☆ Natural Language Summarization Enables Multi-Repository Bug Localization by LLMs in Microservice Architectures ICSE 2026
Bug localization in multi-repository microservice architectures is challenging due to the semantic gap between natural language bug reports and code, LLM context limitations, and the need to first identify the correct repository. We propose reframing this as a natural language reasoning task by transforming codebases into hierarchical NL summaries and performing NL-to-NL search instead of cross-modal retrieval. Our approach builds context-aware summaries at file, directory, and repository levels, then uses a two-phase search: first routing bug reports to relevant repositories, then performing top-down localization within those repositories. Evaluated on DNext, an industrial system with 46 repositories and 1.1M lines of code, our method achieves Pass@10 of 0.82 and MRR of 0.50, significantly outperforming retrieval baselines and agentic RAG systems like GitHub Copilot and Cursor. This work demonstrates that engineered natural language representations can be more effective than raw source code for scalable bug localization, providing an interpretable repository -> directory -> file search path, which is vital for building trust in enterprise AI tools by providing essential transparency.
comment: Accepted at LLM4Code Workshop, ICSE 2026
☆ ArtistMus: A Globally Diverse, Artist-Centric Benchmark for Retrieval-Augmented Music Question Answering LREC 2026
Recent advances in large language models (LLMs) have transformed open-domain question answering, yet their effectiveness in music-related reasoning remains limited due to sparse music knowledge in pretraining data. While music information retrieval and computational musicology have explored structured and multimodal understanding, few resources support factual and contextual music question answering (MQA) grounded in artist metadata or historical context. We introduce MusWikiDB, a vector database of 3.2M passages from 144K music-related Wikipedia pages, and ArtistMus, a benchmark of 1,000 questions on 500 diverse artists with metadata such as genre, debut year, and topic. These resources enable systematic evaluation of retrieval-augmented generation (RAG) for MQA. Experiments show that RAG markedly improves factual accuracy; open-source models gain up to +56.8 percentage points (for example, Qwen3 8B improves from 35.0 to 91.8), approaching proprietary model performance. RAG-style fine-tuning further boosts both factual recall and contextual reasoning, improving results on both in-domain and out-of-domain benchmarks. MusWikiDB also yields approximately 6 percentage points higher accuracy and 40% faster retrieval than a general-purpose Wikipedia corpus. We release MusWikiDB and ArtistMus to advance research in music information retrieval and domain-specific question answering, establishing a foundation for retrieval-augmented reasoning in culturally rich domains such as music.
comment: Submitted to LREC 2026. This work is an evolution of our earlier preprint arXiv:2507.23334
☆ A Systematic Framework for Enterprise Knowledge Retrieval: Leveraging LLM-Generated Metadata to Enhance RAG Systems
In enterprise settings, efficiently retrieving relevant information from large and complex knowledge bases is essential for operational productivity and informed decision-making. This research presents a systematic framework for metadata enrichment using large language models (LLMs) to enhance document retrieval in Retrieval-Augmented Generation (RAG) systems. Our approach employs a comprehensive, structured pipeline that dynamically generates meaningful metadata for document segments, substantially improving their semantic representations and retrieval accuracy. Through extensive experiments, we compare three chunking strategies-semantic, recursive, and naive-and evaluate their effectiveness when combined with advanced embedding techniques. The results demonstrate that metadata-enriched approaches consistently outperform content-only baselines, with recursive chunking paired with TF-IDF weighted embeddings yielding an 82.5% precision rate compared to 73.3% for semantic content-only approaches. The naive chunking strategy with prefix-fusion achieved the highest Hit Rate@10 of 0.925. Our evaluation employs cross-encoder reranking for ground truth generation, enabling rigorous assessment via Hit Rate and Metadata Consistency metrics. These findings confirm that metadata enrichment enhances vector clustering quality while reducing retrieval latency, making it a key optimization for RAG systems across knowledge domains. This work offers practical insights for deploying high-performance, scalable document retrieval solutions in enterprise settings, demonstrating that metadata enrichment is a powerful approach for enhancing RAG effectiveness.
comment: 7 pages, 3 figures, 3 tables
☆ The Effect of Document Summarization on LLM-Based Relevance Judgments
Relevance judgments are central to the evaluation of Information Retrieval (IR) systems, but obtaining them from human annotators is costly and time-consuming. Large Language Models (LLMs) have recently been proposed as automated assessors, showing promising alignment with human annotations. Most prior studies have treated documents as fixed units, feeding their full content directly to LLM assessors. We investigate how text summarization affects the reliability of LLM-based judgments and their downstream impact on IR evaluation. Using state-of-the-art LLMs across multiple TREC collections, we compare judgments made from full documents with those based on LLM-generated summaries of different lengths. We examine their agreement with human labels, their effect on retrieval effectiveness evaluation, and their influence on IR systems' ranking stability. Our findings show that summary-based judgments achieve comparable stability in systems' ranking to full-document judgments, while introducing systematic shifts in label distributions and biases that vary by model and dataset. These results highlight summarization as both an opportunity for more efficient large-scale IR evaluation and a methodological choice with important implications for the reliability of automatic judgments.
♻ ☆ EnhancedRL: An Enhanced-State Reinforcement Learning Algorithm for Multi-Task Fusion in Recommender Systems
As a key stage of Recommender Systems (RSs), Multi-Task Fusion (MTF) is responsible for merging multiple scores output by Multi-Task Learning (MTL) into a single score, finally determining the recommendation results. Recently, Reinforcement Learning (RL) has been applied to MTF to maximize long-term user satisfaction within a recommendation session. However, due to limitations in modeling paradigm, all existing RL algorithms for MTF can only utilize user features and statistical features as the state to generate actions at the user level, but unable to leverage item features and other valuable features, which leads to suboptimal performance. Overcoming this problem requires a breakthrough in the existing modeling paradigm, yet, to date, no prior work has addressed it. To tackle this challenge, we propose EnhancedRL, an innovative RL algorithm. Unlike existing RL-MTF methods, EnhancedRL takes the enhanced state as input, incorporating not only user features but also item features and other valuable information. Furthermore, it introduces a tailored actor-critic framework - including redesigned actor and critics and a novel learning procedure - to optimize long-term rewards at the user-item pair level within a recommendation session. Extensive offline and online experiments are conducted in an industrial RS and the results demonstrate that EnhancedRL outperforms other methods remarkably, achieving a +3.84% increase in user valid consumption and a +0.58% increase in user duration time. To the best of our knowledge, EnhancedRL is the first work to address this challenge, and it has been fully deployed in a large-scale RS since September 14, 2023, yielding significant improvements.
comment: arXiv admin note: substantial text overlap with arXiv:2404.17589
♻ ☆ SS4Rec: Continuous-Time Sequential Recommendation with State Space Models
Sequential recommendation is a key area in the field of recommendation systems aiming to model user interest based on historical interaction sequences with irregular intervals. While previous recurrent neural network-based and attention-based approaches have achieved significant results, they have limitations in capturing system continuity due to the discrete characteristics. In the context of continuous-time modeling, state space model (SSM) offers a potential solution, as it can effectively capture the dynamic evolution of user interest over time. However, existing SSM-based approaches ignore the impact of irregular time intervals within historical user interactions, making it difficult to model complexed user-item transitions in sequences. To address this issue, we propose a hybrid SSM-based model called SS4Rec for continuous-time sequential recommendation. SS4Rec integrates a time-aware SSM to handle irregular time intervals and a relation-aware SSM to model contextual dependencies, enabling it to infer user interest from both temporal and sequential perspectives. In the training process, the time-aware SSM and the relation-aware SSM are discretized by variable stepsizes according to user interaction time intervals and input data, respectively. This helps capture the continuous dependency from irregular time intervals and provides time-specific personalized recommendations. Experimental studies on five benchmark datasets demonstrate the superiority and effectiveness of SS4Rec.
♻ ☆ ORFuzz: Fuzzing the "Other Side" of LLM Safety -- Testing Over-Refusal
Large Language Models (LLMs) increasingly exhibit over-refusal - erroneously rejecting benign queries due to overly conservative safety measures - a critical functional flaw that undermines their reliability and usability. Current methods for testing this behavior are demonstrably inadequate, suffering from flawed benchmarks and limited test generation capabilities, as highlighted by our empirical user study. To the best of our knowledge, this paper introduces the first evolutionary testing framework, ORFuzz, for the systematic detection and analysis of LLM over-refusals. ORFuzz uniquely integrates three core components: (1) safety category-aware seed selection for comprehensive test coverage, (2) adaptive mutator optimization using reasoning LLMs to generate effective test cases, and (3) OR-Judge, a human-aligned judge model validated to accurately reflect user perception of toxicity and refusal. Our extensive evaluations demonstrate that ORFuzz generates diverse, validated over-refusal instances at a rate (6.98% average) more than double that of leading baselines, effectively uncovering vulnerabilities. Furthermore, ORFuzz's outputs form the basis of ORFuzzSet, a new benchmark of 1,855 highly transferable test cases that achieves a superior 63.56% average over-refusal rate across 10 diverse LLMs, significantly outperforming existing datasets. ORFuzz and ORFuzzSet provide a robust automated testing framework and a valuable community resource, paving the way for developing more reliable and trustworthy LLM-based software systems.
comment: Accepted by ASE 2025
♻ ☆ VERIRAG: A Post-Retrieval Auditing of Scientific Study Summaries
Can democratized information gatekeepers and community note writers effectively decide what scientific information to amplify? Lacking domain expertise, such gatekeepers rely on automated reasoning agents that use RAG to ground evidence to cited sources. But such standard RAG systems validate summaries via semantic grounding and suffer from "methodological blindness," treating all cited evidence as equally valid regardless of rigor. To address this, we introduce VERIRAG, a post-retrieval auditing framework that shifts the task from classification to methodological vulnerability detection. Using private Small Language Models (SLMs), VERIRAG audits source papers against the Veritable taxonomy of statistical rigor. We contribute: (1) a benchmark of 1,730 summaries with realistic, non-obvious perturbations modeled after retracted papers; (2) the auditable Veritable taxonomy; and (3) an operational system that improves Macro F1 by at least 19 points over baselines using GPT-based SLMs, a result that replicates across MISTRAL and Gemma architectures. Given the complexity of detecting non-obvious flaws, we view VERIRAG as a "vulnerability-detection copilot," providing structured audit trails for human editors. In our experiments, individual human testers found over 80% of the generated audit trails useful for decision-making. We plan to release the dataset and code to support responsible science advocacy.
Multimedia
☆ ARGUS: Defending Against Multimodal Indirect Prompt Injection via Steering Instruction-Following Behavior
Multimodal Large Language Models (MLLMs) are increasingly vulnerable to multimodal Indirect Prompt Injection (IPI) attacks, which embed malicious instructions in images, videos, or audio to hijack model behavior. Existing defenses, designed primarily for text-only LLMs, are unsuitable for countering these multimodal threats, as they are easily bypassed, modality-dependent, or generalize poorly. Inspired by activation steering researches, we hypothesize that a robust, general defense independent of modality can be achieved by steering the model's behavior in the representation space. Through extensive experiments, we discover that the instruction-following behavior of MLLMs is encoded in a subspace. Steering along directions within this subspace can enforce adherence to user instructions, forming the basis of a defense. However, we also found that a naive defense direction could be coupled with a utility-degrading direction, and excessive intervention strength harms model performance. To address this, we propose ARGUS, which searches for an optimal defense direction within the safety subspace that decouples from the utility degradation direction, further combining adaptive strength steering to achieve a better safety-utility trade-off. ARGUS also introduces lightweight injection detection stage to activate the defense on-demand, and a post-filtering stage to verify defense success. Experimental results show that ARGUS can achieve robust defense against multimodal IPI while maximally preserving the MLLM's utility.
☆ EXR: An Interactive Immersive EHR Visualization in Extended Reality
This paper presents the design and implementation of an Extended Reality (XR) platform for immersive, interactive visualization of Electronic Health Records (EHRs). The system extends beyond conventional 2D interfaces by visualizing both structured and unstructured patient data into a shared 3D environment, enabling intuitive exploration and real-time collaboration. The modular infrastructure integrates FHIR-based EHR data with volumetric medical imaging and AI-generated segmentation, ensuring interoperability with modern healthcare systems. The platform's capabilities are demonstrated using synthetic EHR datasets and computed tomography (CT)-derived spine models processed through an AI-powered segmentation pipeline. This work suggests that such integrated XR solutions could form the foundation for next-generation clinical decision-support tools, where advanced data infrastructures are directly accessible in an interactive and spatially rich environment.
comment: 11 pages, 6 figures. Preprint version. This paper has been accepted to IEEE ICIR 2025. This is the author-prepared version and not the final published version. The final version will appear in IEEE Xplo
Information Retrieval
☆ Ask Safely: Privacy-Aware LLM Query Generation for Knowledge Graphs
Large Language Models (LLMs) are increasingly used to query knowledge graphs (KGs) due to their strong semantic understanding and extrapolation capabilities compared to traditional approaches. However, these methods cannot be applied when the KG contains sensitive data and the user lacks the resources to deploy a local generative LLM. To address this issue, we propose a privacy-aware query generation approach for KGs. Our method identifies sensitive information in the graph based on its structure and omits such values before requesting the LLM to translate natural language questions into Cypher queries. Experimental results show that our approach preserves the quality of the generated queries while preventing sensitive data from being transmitted to third-party services.
☆ Are LLMs Truly Multilingual? Exploring Zero-Shot Multilingual Capability of LLMs for Information Retrieval: An Italian Healthcare Use Case
Large Language Models (LLMs) have become a key topic in AI and NLP, transforming sectors like healthcare, finance, education, and marketing by improving customer service, automating tasks, providing insights, improving diagnostics, and personalizing learning experiences. Information extraction from clinical records is a crucial task in digital healthcare. Although traditional NLP techniques have been used for this in the past, they often fall short due to the complexity, variability of clinical language, and high inner semantics in the free clinical text. Recently, Large Language Models (LLMs) have become a powerful tool for better understanding and generating human-like text, making them highly effective in this area. In this paper, we explore the ability of open-source multilingual LLMs to understand EHRs (Electronic Health Records) in Italian and help extract information from them in real-time. Our detailed experimental campaign on comorbidity extraction from EHR reveals that some LLMs struggle in zero-shot, on-premises settings, and others show significant variation in performance, struggling to generalize across various diseases when compared to native pattern matching and manual annotations.
☆ Spatially-Enhanced Retrieval-Augmented Generation for Walkability and Urban Discovery
Large Language Models (LLMs) have become foundational tools in artificial intelligence, supporting a wide range of applications beyond traditional natural language processing, including urban systems and tourist recommendations. However, their tendency to hallucinate and their limitations in spatial retrieval and reasoning are well known, pointing to the need for novel solutions. Retrieval-augmented generation (RAG) has recently emerged as a promising way to enhance LLMs with accurate, domain-specific, and timely information. Spatial RAG extends this approach to tasks involving geographic understanding. In this work, we introduce WalkRAG, a spatial RAG-based framework with a conversational interface for recommending walkable urban itineraries. Users can request routes that meet specific spatial constraints and preferences while interactively retrieving information about the path and points of interest (POIs) along the way. Preliminary results show the effectiveness of combining information retrieval, spatial reasoning, and LLMs to support urban discovery.
☆ UserSimCRS v2: Simulation-Based Evaluation for Conversational Recommender Systems
Resources for simulation-based evaluation of conversational recommender systems (CRSs) are scarce. The UserSimCRS toolkit was introduced to address this gap. In this work, we present UserSimCRS v2, a significant upgrade aligning the toolkit with state-of-the-art research. Key extensions include an enhanced agenda-based user simulator, introduction of large language model-based simulators, integration for a wider range of CRSs and datasets, and new LLM-as-a-judge evaluation utilities. We demonstrate these extensions in a case study.
☆ The Personalization Paradox: Semantic Loss vs. Reasoning Gains in Agentic AI Q&A
AIVisor, an agentic retrieval-augmented LLM for student advising, was used to examine how personalization affects system performance across multiple evaluation dimensions. Using twelve authentic advising questions intentionally designed to stress lexical precision, we compared ten personalized and non-personalized system configurations and analyzed outcomes with a Linear Mixed-Effects Model across lexical (BLEU, ROUGE-L), semantic (METEOR, BERTScore), and grounding (RAGAS) metrics. Results showed a consistent trade-off: personalization reliably improved reasoning quality and grounding, yet introduced a significant negative interaction on semantic similarity, driven not by poorer answers but by the limits of current metrics, which penalize meaningful personalized deviations from generic reference texts. This reveals a structural flaw in prevailing LLM evaluation methods, which are ill-suited for assessing user-specific responses. The fully integrated personalized configuration produced the highest overall gains, suggesting that personalization can enhance system effectiveness when evaluated with appropriate multidimensional metrics. Overall, the study demonstrates that personalization produces metric-dependent shifts rather than uniform improvements and provides a methodological foundation for more transparent and robust personalization in agentic AI.
♻ ☆ Minimum Weighted Feedback Arc Sets for Ranking from Pairwise Comparisons
The Minimum Weighted Feedback Arc Set (MWFAS) problem is closely related to the task of deriving a global ranking from pairwise comparisons. Recent work by He et al. (ICML 2022) advanced the state of the art on ranking benchmarks using learning based methods, but did not examine the underlying connection to MWFAS. In this paper, we investigate this relationship and introduce efficient combinatorial algorithms for solving MWFAS as a means of addressing the ranking problem. Our experimental results show that these simple, learning free methods achieve substantially faster runtimes than recent learning based approaches, while also delivering competitive, and in many cases superior, ranking accuracy. These findings suggest that lightweight combinatorial techniques offer a scalable and effective alternative to deep learning for large scale ranking tasks.
comment: This is a preliminary paper
♻ ☆ LORE: A Large Generative Model for Search Relevance
Achievement. We introduce LORE, a systematic framework for Large Generative Model-based relevance in e-commerce search. Deployed and iterated over three years, LORE achieves a cumulative +27\% improvement in online GoodRate metrics. This report shares the valuable experience gained throughout its development lifecycle, spanning data, features, training, evaluation, and deployment. Insight. While existing works apply Chain-of-Thought (CoT) to enhance relevance, they often hit a performance ceiling. We argue this stems from treating relevance as a monolithic task, lacking principled deconstruction. Our key insight is that relevance comprises distinct capabilities: knowledge and reasoning, multi-modal matching, and rule adherence. We contend that a qualitative-driven decomposition is essential for breaking through current performance bottlenecks. Contributions. LORE provides a complete blueprint for the LLM relevance lifecycle. Key contributions include: (1) A two-stage training paradigm combining progressive CoT synthesis via SFT with human preference alignment via RL. (2) A comprehensive benchmark, RAIR, designed to evaluate these core capabilities. (3) A query frequency-stratified deployment strategy that efficiently transfers offline LLM capabilities to the online system. LORE serves as both a practical solution and a methodological reference for other vertical domains.
♻ ☆ Multimodal Adversarial Defense for Vision-Language Models by Leveraging One-To-Many Relationships WACV 2026
Pre-trained vision-language (VL) models are highly vulnerable to adversarial attacks. However, existing defense methods primarily focus on image classification, overlooking two key aspects of VL tasks: multimodal attacks, where both image and text can be perturbed, and the one-to-many relationship of images and texts, where a single image can correspond to multiple textual descriptions and vice versa (1:N and N:1). This work is the first to explore defense strategies against multimodal attacks in VL tasks, whereas prior VL defense methods focus on vision robustness. We propose multimodal adversarial training (MAT), which incorporates adversarial perturbations in both image and text modalities during training, significantly outperforming existing unimodal defenses. Furthermore, we discover that MAT is limited by deterministic one-to-one (1:1) image-text pairs in VL training data. To address this, we conduct a comprehensive study on leveraging one-to-many relationships to enhance robustness, investigating diverse augmentation techniques. Our analysis shows that, for a more effective defense, augmented image-text pairs should be well-aligned, diverse, yet avoid distribution shift -- conditions overlooked by prior research. This work pioneers defense strategies against multimodal attacks, providing insights for building robust VLMs from both optimization and data perspectives. Our code is publicly available at https://github.com/CyberAgentAI/multimodal-adversarial-training.
comment: WACV 2026 Accepted. Code available at https://github.com/CyberAgentAI/multimodal-adversarial-training
♻ ☆ MMAG: Mixed Memory-Augmented Generation for Large Language Models Applications
Large Language Models (LLMs) excel at generating coherent text within a single prompt but fall short in sustaining relevance, personalization, and continuity across extended interactions. Human communication, however, relies on multiple forms of memory, from recalling past conversations to adapting to personal traits and situational context. This paper introduces the Mixed Memory-Augmented Generation (MMAG) pattern, a framework that organizes memory for LLM-based agents into five interacting layers: conversational, long-term user, episodic and event-linked, sensory and context-aware, and short-term working memory. Drawing inspiration from cognitive psychology, we map these layers to technical components and outline strategies for coordination, prioritization, and conflict resolution. We demonstrate the approach through its implementation in the Heero conversational agent, where encrypted long-term bios and conversational history already improve engagement and retention. We further discuss implementation concerns around storage, retrieval, privacy, and latency, and highlight open challenges. MMAG provides a foundation for building memory-rich language agents that are more coherent, proactive, and aligned with human needs.
♻ ☆ Grounding Large Language Models in Clinical Evidence: A Retrieval-Augmented Generation System for Querying UK NICE Clinical Guidelines
This paper presents the development and evaluation of a Retrieval-Augmented Generation (RAG) system for querying the United Kingdom's National Institute for Health and Care Excellence (NICE) clinical guidelines using Large Language Models (LLMs). The extensive length and volume of these guidelines can impede their utilisation within a time-constrained healthcare system, a challenge this project addresses through the creation of a system capable of providing users with precisely matched information in response to natural language queries. The system's retrieval architecture, composed of a hybrid embedding mechanism, was evaluated against a corpus of 10,195 text chunks derived from three hundred guidelines. It demonstrates high performance, with a Mean Reciprocal Rank (MRR) of 0.814, a Recall of 81% at the first chunk and of 99.1% within the top ten retrieved chunks, when evaluated on 7901 queries. The most significant impact of the RAG system was observed during the generation phase. When evaluated on a manually curated dataset of seventy question-answer pairs, RAG-enhanced models showed substantial gains in performance. Faithfulness, the measure of whether an answer is supported by the source text, was increased by 64.7 percentage points to 99.5% for the RAG-enhanced O4-Mini model and significantly outperformed the medical-focused Meditron3-8B LLM, which scored 43%. Clinical evaluation by seven Subject Matter Experts (SMEs) further validated these findings, with GPT-4.1 achieving 98.7% accuracy while reducing unsafe responses by 67% compared to O4-Mini (from 3.0 to 1.0 per evaluator). This study thus establishes RAG as an effective, reliable, and scalable approach for applying generative AI in healthcare, enabling cost-effective access to medical guidelines.
♻ ☆ TaoSR1: The Thinking Model for E-commerce Relevance Search
Query-product relevance prediction is a core task in e-commerce search. BERT-based models excel at semantic matching but lack complex reasoning capabilities. While Large Language Models (LLMs) are explored, most still use discriminative fine-tuning or distill to smaller models for deployment. We propose a framework to directly deploy LLMs for this task, addressing key challenges: Chain-of-Thought (CoT) error accumulation, discriminative hallucination, and deployment feasibility. Our framework, TaoSR1, involves three stages: (1) Supervised Fine-Tuning (SFT) with CoT to instill reasoning; (2) Offline sampling with a pass@N strategy and Direct Preference Optimization (DPO) to improve generation quality; and (3) Difficulty-based dynamic sampling with Group Relative Policy Optimization (GRPO) to mitigate discriminative hallucination. Additionally, post-CoT processing and a cumulative probability-based partitioning method enable efficient online deployment. TaoSR1 significantly outperforms baselines on offline datasets and achieves substantial gains in online side-by-side human evaluations, introducing a novel paradigm for applying CoT reasoning to relevance classification.
♻ ☆ Algorithms for Boolean Matrix Factorization using Integer Programming and Heuristics
Boolean matrix factorization (BMF) approximates a given binary input matrix as the product of two smaller binary factors. Unlike binary matrix factorization based on standard arithmetic, BMF employs the Boolean OR and AND operations for the matrix product, which improves interpretability and reduces the approximation error. It is also used in role mining and computer vision. In this paper, we first propose algorithms for BMF that perform alternating optimization (AO) of the factor matrices, where each subproblem is solved via integer programming (IP). We then design different approaches to further enhance AO-based algorithms by selecting an optimal subset of rank-one factors from multiple runs. To address the scalability limits of IP-based methods, we introduce new greedy and local-search heuristics. We also construct a new C++ data structure for Boolean vectors and matrices that is significantly faster than existing ones and is of independent interest, allowing our heuristics to scale to large datasets. We illustrate the performance of all our proposed methods and compare them with the state of the art on various real datasets, both with and without missing data, including applications in topic modeling and imaging.
comment: 24 pages, 12 tables, 3 figures, 2 typos corrected in v2, code and data available from https://gitlab.com/ckolomvakis/boolean-matrix-factorization-ip-and-heuristics
♻ ☆ Ground-Truth Subgraphs for Better Training and Evaluation of Knowledge Graph Augmented LLMs
Retrieval of information from graph-structured knowledge bases represents a promising direction for improving the factuality of LLMs. While various solutions have been proposed, a comparison of methods is difficult due to the lack of challenging QA datasets with ground-truth targets for graph retrieval. We present SynthKGQA, an LLM-powered framework for generating high-quality Knowledge Graph Question Answering datasets from any Knowledge Graph, providing the full set of ground-truth facts in the KG to reason over questions. We show how, in addition to enabling more informative benchmarking of KG retrievers, the data produced with SynthKGQA also allows us to train better models.We apply SynthKGQA to Wikidata to generate GTSQA, a new dataset designed to test zero-shot generalization abilities of KG retrievers with respect to unseen graph structures and relation types, and benchmark popular solutions for KG-augmented LLMs on it.
♻ ☆ A Lightweight Architecture for Multi-instrument Transcription with Practical Optimizations
Existing multi-timbre transcription models struggle with generalization beyond pre-trained instruments, rigid source-count constraints, and high computational demands that hinder deployment on low-resource devices. We address these limitations with a lightweight model that extends a timbre-agnostic transcription backbone with a dedicated timbre encoder and performs deep clustering at the note level, enabling joint transcription and dynamic separation of arbitrary instruments. Practical optimizations including spectral normalization, dilated convolutions, and contrastive clustering further improve efficiency and robustness. Despite its small size and fast inference, the model achieves competitive performance with heavier baselines in transcription accuracy and separation quality, and shows promising generalization ability, making it highly suitable for real-world deployment in practical and resource-constrained settings.
♻ ☆ Beyond KAN: Introducing KarSein for Adaptive High-Order Feature Interaction Modeling in CTR Prediction
Modeling high-order feature interactions is crucial for click-through rate (CTR) prediction, yet traditional approaches typically predefine a maximum interaction order and exhaustively enumerate feature combinations up to that order. This paradigm depends heavily on prior domain knowledge to delimit the interaction space and incurs substantial computational overhead. As a result, conventional CTR models face a persistent tension between enriching representations with complex high-order interactions and keeping computation tractable. To address this dual challenge, this study introduces the Kolmogorov-Arnold Represented Sparse Efficient Interaction Network (KarSein). Drawing inspiration from the learnable activation mechanism in the Kolmogorov-Arnold Network (KAN), KarSein leverages this mechanism to adaptively transform low-order basic features into high-order feature interactions, offering a novel approach to feature interaction modeling. KarSein extends the capabilities of KAN by introducing a more efficient architecture that significantly reduces computational costs while accommodating two-dimensional embedding vectors as feature inputs. Furthermore, it overcomes the limitation of KAN's its inability to spontaneously capture multiplicative relationships among features. Extensive experiments highlight the superiority of KarSein, demonstrating its ability to surpass not only the vanilla implementation of KAN in CTR prediction tasks but also other baseline methods. Remarkably, KarSein achieves exceptional predictive accuracy while maintaining a highly compact parameter size and minimal computational overhead. Moreover, KarSein exhibits strong interpretability and structural sparsity. As the first systematic adaptation of KAN to CTR prediction, KarSein offers a practical, parameter-efficient, and interpretable alternative for modeling complex feature interactions in CTR prediction.
comment: Under review by TOIS
♻ ☆ MetaSynth: Multi-Agent Metadata Generation from Implicit Feedback in Black-Box Systems
Meta titles and descriptions strongly shape engagement in search and recommendation platforms, yet optimizing them remains challenging. Search engine ranking models are black box environments, explicit labels are unavailable, and feedback such as click-through rate (CTR) arrives only post-deployment. Existing template, LLM, and retrieval-augmented approaches either lack diversity, hallucinate attributes, or ignore whether candidate phrasing has historically succeeded in ranking. This leaves a gap in directly leveraging implicit signals from observable outcomes. We introduce MetaSynth, a multi-agent retrieval-augmented generation framework that learns from implicit search feedback. MetaSynth builds an exemplar library from top-ranked results, generates candidate snippets conditioned on both product content and exemplars, and iteratively refines outputs via evaluator-generator loops that enforce relevance, promotional strength, and compliance. On both proprietary e-commerce data and the Amazon Reviews corpus, MetaSynth outperforms strong baselines across NDCG, MRR, and rank metrics. Large-scale A/B tests further demonstrate 10.26% CTR and 7.51% clicks. Beyond metadata, this work contributes a general paradigm for optimizing content in black-box systems using implicit signals.
comment: IEEE Big Data 2025
Multimedia
☆ DreamFoley: Scalable VLMs for High-Fidelity Video-to-Audio Generation
Recent advances in video generation have achieved remarkable improvements in visual content fidelity. However, the absence of synchronized audio severely undermines immersive experience and restricts practical applications of these technologies. To address this challenge, several pioneering works have explored diffusion transformer architectures for generating plausible video-synchronized audio, including Kling-foley, HunyuanVideo-foley and Thinksound. Distinct from existing works, we introduce an autoregressive audio generation architecture (DreamFoley) that harnesses the capabilities of large vision-language models (VLMs) to jointly model sequential interactions among video, audio, and text modalities. Our approach features a dual-visual encoder module that effectively captures both audio-aligned and text-aligned visual features. Additionally, we employ a Residual Vector Quantization audio tokenizer with a delay-pattern generation scheme to balance the trade-off between training efficiency and audio quality. Moreover, we introduce the classifier-free guidance strategy into VLMs to bootstrap generated audio quality. Furthermore, we establish an efficient data production pipeline to scale audio-video-text triple collection. Finally, extensive experiments are conducted to validate the effectiveness of our model, achieving promising performance across popular benchmarks. We hope that the findings in this study provide a strong foundation for future video-to-audio generation research. We also release the previously missing audio-visual textual descriptions from the public benchmark, aiming to facilitate subsequent researchers in conducting more convenient and effective evaluations and comparisons.
comment: 10 pages; Bytedance
☆ What is Beyond Presence? Dimensionality, Control, and Information Spaces
What is after presence? Spatial presence, the sense of "being there", is becoming less of a primary objective and more of a baseline expectation of virtual reality. More than six decades after its invention, VR is shifting from a technical system into a cultural, social, and phenomenological medium, offering experiences that function as distinct modes of reality. Existing theories that focus primarily on perceptual illusions are no longer sufficient to account for these emerging forms of experience. A new framework is needed to guide the design and evaluation of immersive environments by identifying the key technical and abstract dimensions afforded by virtual worlds. These dimensions include spatial, placeness, temporal, social, cultural, cognitive, and psychological parameters. The central argument is that immersive environments must move beyond the technical dimension to leverage richer information channels that shape user experience. This shift from presence to experience orchestration invites creators across disciplines to contribute to the design and assessment of meaningful immersive worlds.
comment: 38 pages, accepted for Presence: Virtual and Augmented Reality 2026(37)
♻ ☆ "I Can See Forever!": Evaluating Real-time VideoLLMs for Assisting Individuals with Visual Impairments
The visually impaired population faces significant challenges in daily activities. While prior works employ vision language models for assistance, most focus on static content and cannot address real-time perception needs in complex environments. Recent VideoLLMs enable real-time vision and speech interaction, offering promising potential for assistive tasks. In this work, we conduct the first study evaluating their effectiveness in supporting daily life for visually impaired individuals. We first conducted a user survey with visually impaired participants to design the benchmark VisAssistDaily for daily life evaluation. Using VisAssistDaily, we evaluate popular VideoLLMs and find GPT-4o achieves the highest task success rate. We further conduct a user study to reveal concerns about hazard perception. To address this, we propose SafeVid, an environment-awareness dataset, and fine-tune VITA-1.5, improving risk recognition accuracy from 25.00% to 76.00%.We hope this work provides valuable insights and inspiration for future research in this field.
comment: 17 pages
♻ ☆ Multimodal Markup Document Models for Graphic Design Completion
We introduce MarkupDM, a multimodal markup document model that represents graphic design as an interleaved multimodal document consisting of both markup language and images. Unlike existing holistic approaches that rely on an element-by-attribute grid representation, our representation accommodates variable-length elements, type-dependent attributes, and text content. Inspired by fill-in-the-middle training in code generation, we train the model to complete the missing part of a design document from its surrounding context, allowing it to treat various design tasks in a unified manner. Our model also supports image generation by predicting discrete image tokens through a specialized tokenizer with support for image transparency. We evaluate MarkupDM on three tasks, attribute value, image, and text completion, and demonstrate that it can produce plausible designs consistent with the given context. To further illustrate the flexibility of our approach, we evaluate our approach on a new instruction-guided design completion task where our instruction-tuned MarkupDM compares favorably to state-of-the-art image editing models, especially in textual completion. These findings suggest that multimodal language models with our document representation can serve as a versatile foundation for broad design automation.
comment: Accepted by ACM Multimedia 2025, Project page: https://cyberagentailab.github.io/MarkupDM/
Information Retrieval
☆ Learning to Comparison-Shop
In online marketplaces like Airbnb, users frequently engage in comparison shopping before making purchase decisions. Despite the prevalence of this behavior, a significant disconnect persists between mainstream e-commerce search engines and users' comparison needs. Traditional ranking models often evaluate items in isolation, disregarding the context in which users compare multiple items on a search results page. While recent advances in deep learning have sought to improve ranking accuracy, diversity, and fairness by encoding listwise context, the challenge of aligning search rankings with user comparison shopping behavior remains inadequately addressed. In this paper, we propose a novel ranking architecture - Learning-to-Comparison-Shop (LTCS) System - that explicitly models and learns users' comparison shopping behaviors. Through extensive offline and online experiments, we demonstrate that our approach yields statistically significant gains in key business metrics - improving NDCG by 1.7% and boosting booking conversion rate by 0.6% in A/B testing - while also enhancing user experience. We also compare our model against state-of-the-art approaches and demonstrate that LTCS significantly outperforms them.
☆ MechDetect: Detecting Data-Dependent Errors
Data quality monitoring is a core challenge in modern information processing systems. While many approaches to detect data errors or shifts have been proposed, few studies investigate the mechanisms governing error generation. We argue that knowing how errors were generated can be key to tracing and fixing them. In this study, we build on existing work in the statistics literature on missing values and propose MechDetect, a simple algorithm to investigate error generation mechanisms. Given a tabular data set and a corresponding error mask, the algorithm estimates whether or not the errors depend on the data using machine learning models. Our work extends established approaches to detect mechanisms underlying missing values and can be readily applied to other error types, provided that an error mask is available. We demonstrate the effectiveness of MechDetect in experiments on established benchmark datasets.
comment: International Conference on Data Science and Intelligent Systems (DSIS 2025)
☆ AR-Med: Automated Relevance Enhancement in Medical Search via LLM-Driven Information Augmentation
Accurate and reliable search on online healthcare platforms is critical for user safety and service efficacy. Traditional methods, however, often fail to comprehend complex and nuanced user queries, limiting their effectiveness. Large language models (LLMs) present a promising solution, offering powerful semantic understanding to bridge this gap. Despite their potential, deploying LLMs in this high-stakes domain is fraught with challenges, including factual hallucinations, specialized knowledge gaps, and high operational costs. To overcome these barriers, we introduce \textbf{AR-Med}, a novel framework for \textbf{A}utomated \textbf{R}elevance assessment for \textbf{Med}ical search that has been successfully deployed at scale on the Online Medical Delivery Platforms. AR-Med grounds LLM reasoning in verified medical knowledge through a retrieval-augmented approach, ensuring high accuracy and reliability. To enable efficient online service, we design a practical knowledge distillation scheme that compresses large teacher models into compact yet powerful student models. We also introduce LocalQSMed, a multi-expert annotated benchmark developed to guide model iteration and ensure strong alignment between offline and online performance. Extensive experiments show AR-Med achieves an offline accuracy of over 93\%, a 24\% absolute improvement over the original online system, and delivers significant gains in online relevance and user satisfaction. Our work presents a practical and scalable blueprint for developing trustworthy, LLM-powered systems in real-world healthcare applications.
☆ M3DR: Towards Universal Multilingual Multimodal Document Retrieval
Multimodal document retrieval systems have shown strong progress in aligning visual and textual content for semantic search. However, most existing approaches remain heavily English-centric, limiting their effectiveness in multilingual contexts. In this work, we present M3DR (Multilingual Multimodal Document Retrieval), a framework designed to bridge this gap across languages, enabling applicability across diverse linguistic and cultural contexts. M3DR leverages synthetic multilingual document data and generalizes across different vision-language architectures and model sizes, enabling robust cross-lingual and cross-modal alignment. Using contrastive training, our models learn unified representations for text and document images that transfer effectively across languages. We validate this capability on 22 typologically diverse languages, demonstrating consistent performance and adaptability across linguistic and script variations. We further introduce a comprehensive benchmark that captures real-world multilingual scenarios, evaluating models under monolingual, multilingual, and mixed-language settings. M3DR generalizes across both single dense vector and ColBERT-style token-level multi-vector retrieval paradigms. Our models, NetraEmbed and ColNetraEmbed achieve state-of-the-art performance with ~150% relative improvements on cross-lingual retrieval.
☆ Tuning for TraceTarnish: Techniques, Trends, and Testing Tangible Traits
In this study, we more rigorously evaluated our attack script $\textit{TraceTarnish}$, which leverages adversarial stylometry principles to anonymize the authorship of text-based messages. To ensure the efficacy and utility of our attack, we sourced, processed, and analyzed Reddit comments--comments that were later alchemized into $\textit{TraceTarnish}$ data--to gain valuable insights. The transformed $\textit{TraceTarnish}$ data was then further augmented by $\textit{StyloMetrix}$ to manufacture stylometric features--features that were culled using the Information Gain criterion, leaving only the most informative, predictive, and discriminative ones. Our results found that function words and function word types ($L\_FUNC\_A$ $\&$ $L\_FUNC\_T$); content words and content word types ($L\_CONT\_A$ $\&$ $L\_CONT\_T$); and the Type-Token Ratio ($ST\_TYPE\_TOKEN\_RATIO\_LEMMAS$) yielded significant Information-Gain readings. The identified stylometric cues--function-word frequencies, content-word distributions, and the Type-Token Ratio--serve as reliable indicators of compromise (IoCs), revealing when a text has been deliberately altered to mask its true author. Similarly, these features could function as forensic beacons, alerting defenders to the presence of an adversarial stylometry attack; granted, in the absence of the original message, this signal may go largely unnoticed, as it appears to depend on a pre- and post-transformation comparison. "In trying to erase a trace, you often imprint a larger one." Armed with this understanding, we framed $\textit{TraceTarnish}$'s operations and outputs around these five isolated features, using them to conceptualize and implement enhancements that further strengthen the attack.
comment: 20 pages, 8 figures, 2 tables
☆ LLM as Explainable Re-Ranker for Recommendation System
The application of large language models (LLMs) in recommendation systems has recently gained traction. Traditional recommendation systems often lack explainability and suffer from issues such as popularity bias. Previous research has also indicated that LLMs, when used as standalone predictors, fail to achieve accuracy comparable to traditional models. To address these challenges, we propose to use LLM as an explainable re-ranker, a hybrid approach that combines traditional recommendation models with LLMs to enhance both accuracy and interpretability. We constructed a dataset to train the re-ranker LLM and evaluated the alignment between the generated dataset and human expectations. Leveraging a two-stage training process, our model significantly improved NDCG, a key ranking metric. Moreover, the re-ranker outperformed a zero-shot baseline in ranking accuracy and interpretability. These results highlight the potential of integrating traditional recommendation models with LLMs to address limitations in existing systems and pave the way for more explainable and fair recommendation frameworks.
☆ BookRAG: A Hierarchical Structure-aware Index-based Approach for Retrieval-Augmented Generation on Complex Documents
As an effective method to boost the performance of Large Language Models (LLMs) on the question answering (QA) task, Retrieval-Augmented Generation (RAG), which queries highly relevant information from external complex documents, has attracted tremendous attention from both industry and academia. Existing RAG approaches often focus on general documents, and they overlook the fact that many real-world documents (such as books, booklets, handbooks, etc.) have a hierarchical structure, which organizes their content from different granularity levels, leading to poor performance for the QA task. To address these limitations, we introduce BookRAG, a novel RAG approach targeted for documents with a hierarchical structure, which exploits logical hierarchies and traces entity relations to query the highly relevant information. Specifically, we build a novel index structure, called BookIndex, by extracting a hierarchical tree from the document, which serves as the role of its table of contents, using a graph to capture the intricate relationships between entities, and mapping entities to tree nodes. Leveraging the BookIndex, we then propose an agent-based query method inspired by the Information Foraging Theory, which dynamically classifies queries and employs a tailored retrieval workflow. Extensive experiments on three widely adopted benchmarks demonstrate that BookRAG achieves state-of-the-art performance, significantly outperforming baselines in both retrieval recall and QA accuracy while maintaining competitive efficiency.
♻ ☆ A Survey on Recommendation Unlearning: Fundamentals, Taxonomy, Evaluation, and Open Questions
Recommender systems have become increasingly influential in shaping user behavior and decision-making, highlighting their growing impact in various domains. Meanwhile, the widespread adoption of machine learning models in recommender systems has raised significant concerns regarding user privacy and security. As compliance with privacy regulations becomes more critical, there is a pressing need to address the issue of recommendation unlearning, i.e., eliminating the memory of specific training data from the learned recommendation models. Despite its importance, traditional machine unlearning methods are ill-suited for recommendation unlearning due to the unique challenges posed by collaborative interactions and model parameters. This survey offers a comprehensive review of the latest advancements in recommendation unlearning, exploring the design principles, challenges, and methodologies associated with this emerging field. We provide a unified taxonomy that categorizes different recommendation unlearning approaches, followed by a summary of widely used benchmarks and metrics for evaluation. By reviewing the current state of research, this survey aims to guide the development of more efficient, scalable, and robust recommendation unlearning techniques. Furthermore, we identify open research questions in this field, which could pave the way for future innovations not only in recommendation unlearning but also in a broader range of unlearning tasks across different machine learning applications.
comment: Accepted by TKDE
♻ ☆ Access Paths for Efficient Ordering with Large Language Models
In this work, we present the \texttt{LLM ORDER BY} semantic operator as a logical abstraction and conduct a systematic study of its physical implementations. First, we propose several improvements to existing semantic sorting algorithms and introduce a semantic-aware external merge sort algorithm. Our extensive evaluation reveals that no single implementation offers universal optimality on all datasets. From our evaluations, we observe a general test-time scaling relationship between sorting cost and the ordering quality for comparison-based algorithms. Building on these insights, we design a budget-aware optimizer that utilizes heuristic rules, LLM-as-Judge evaluation, and consensus aggregation to dynamically select the near-optimal access path for LLM ORDER BY. In our extensive evaluations, our optimizer consistently achieves ranking accuracy on par with or superior to the best static methods across all benchmarks. We believe that this work provides foundational insights into the principled optimization of semantic operators essential for building robust, large-scale LLM-powered analytic systems.
♻ ☆ Mobile-Agent-RAG: Driving Smart Multi-Agent Coordination with Contextual Knowledge Empowerment for Long-Horizon Mobile Automation
Mobile agents show immense potential, yet current state-of-the-art (SoTA) agents exhibit inadequate success rates on real-world, long-horizon, cross-application tasks. We attribute this bottleneck to the agents' excessive reliance on static, internal knowledge within MLLMs, which leads to two critical failure points: 1) strategic hallucinations in high-level planning and 2) operational errors during low-level execution on user interfaces (UI). The core insight of this paper is that high-level planning and low-level UI operations require fundamentally distinct types of knowledge. Planning demands high-level, strategy-oriented experiences, whereas operations necessitate low-level, precise instructions closely tied to specific app UIs. Motivated by these insights, we propose Mobile-Agent-RAG, a novel hierarchical multi-agent framework that innovatively integrates dual-level retrieval augmentation. At the planning stage, we introduce Manager-RAG to reduce strategic hallucinations by retrieving human-validated comprehensive task plans that provide high-level guidance. At the execution stage, we develop Operator-RAG to improve execution accuracy by retrieving the most precise low-level guidance for accurate atomic actions, aligned with the current app and subtask. To accurately deliver these knowledge types, we construct two specialized retrieval-oriented knowledge bases. Furthermore, we introduce Mobile-Eval-RAG, a challenging benchmark for evaluating such agents on realistic multi-app, long-horizon tasks. Extensive experiments demonstrate that Mobile-Agent-RAG significantly outperforms SoTA baselines, improving task completion rate by 11.0% and step efficiency by 10.2%, establishing a robust paradigm for context-aware, reliable multi-agent mobile automation.
Multimedia
☆ GAOT: Generating Articulated Objects Through Text-Guided Diffusion Models ACM MM
Articulated object generation has seen increasing advancements, yet existing models often lack the ability to be conditioned on text prompts. To address the significant gap between textual descriptions and 3D articulated object representations, we propose GAOT, a three-phase framework that generates articulated objects from text prompts, leveraging diffusion models and hypergraph learning in a three-step process. First, we fine-tune a point cloud generation model to produce a coarse representation of objects from text prompts. Given the inherent connection between articulated objects and graph structures, we design a hypergraph-based learning method to refine these coarse representations, representing object parts as graph vertices. Finally, leveraging a diffusion model, the joints of articulated objects-represented as graph edges-are generated based on the object parts. Extensive qualitative and quantitative experiments on the PartNet-Mobility dataset demonstrate the effectiveness of our approach, achieving superior performance over previous methods.
comment: Accepted by ACM MM Asia2026
☆ Cross-Space Synergy: A Unified Framework for Multimodal Emotion Recognition in Conversation AAAI 2026
Multimodal Emotion Recognition in Conversation (MERC) aims to predict speakers' emotions by integrating textual, acoustic, and visual cues. Existing approaches either struggle to capture complex cross-modal interactions or experience gradient conflicts and unstable training when using deeper architectures. To address these issues, we propose Cross-Space Synergy (CSS), which couples a representation component with an optimization component. Synergistic Polynomial Fusion (SPF) serves the representation role, leveraging low-rank tensor factorization to efficiently capture high-order cross-modal interactions. Pareto Gradient Modulator (PGM) serves the optimization role, steering updates along Pareto-optimal directions across competing objectives to alleviate gradient conflicts and improve stability. Experiments show that CSS outperforms existing representative methods on IEMOCAP and MELD in both accuracy and training stability, demonstrating its effectiveness in complex multimodal scenarios.
comment: Accepted to AAAI 2026
♻ ☆ STCTS: Generative Semantic Compression for Ultra-Low Bitrate Speech via Explicit Text-Prosody-Timbre Decomposition
Voice communication in bandwidth-constrained environments--maritime, satellite, and tactical networks--remains prohibitively expensive. Traditional codecs struggle below 1 kbps, while existing semantic approaches (STT-TTS) sacrifice prosody and speaker identity. We present STCTS, a generative semantic compression framework enabling natural voice communication at 80 bps. STCTS explicitly decomposes speech into linguistic content, prosodic expression, and speaker timbre, applying tailored compression: context-aware text encoding (70 bps), sparse prosody transmission via TTS interpolation (<14 bps at 0.1-1 Hz), and amortized speaker embedding. Evaluations on LibriSpeech demonstrate a 75x bitrate reduction versus Opus (6 kbps) and 12x versus EnCodec (1 kbps), while maintaining perceptual quality (NISQA MOS > 4.26), graceful degradation under packet loss and noise resilience. We also discover a bimodal quality distribution with prosody sampling rate: sparse and dense updates both achieve high quality, while mid-range rates degrade due to perceptual discontinuities--guiding optimal configuration design. Beyond efficiency, our modular architecture supports privacy-preserving encryption, human-interpretable transmission, and flexible deployment on edge devices, offering a robust solution for ultra-low bandwidth scenarios.
comment: The complete source code and online speech reconstruction demo is publicly available at https://github.com/dywsy21/STCTS
♻ ☆ MERIT: Multilingual Semantic Retrieval with Interleaved Multi-Condition Query NeurIPS 2025
Semantic retrieval is crucial for modern applications yet remains underexplored in current research. Existing datasets are limited to single languages, single images, or singular retrieval conditions, often failing to fully exploit the expressive capacity of visual information as evidenced by maintained performance when images are replaced with captions. However, practical retrieval scenarios frequently involve interleaved multi-condition queries with multiple images. Hence, this paper introduces MERIT, the first multilingual dataset for interleaved multi-condition semantic retrieval, comprising 320,000 queries with 135,000 products in 5 languages, covering 7 distinct product categories. Extensive experiments on MERIT identify existing models's limitation: focusing solely on global semantic information while neglecting specific conditional elements in queries. Consequently, we propose Coral, a novel fine-tuning framework that adapts pre-trained MLLMs by integrating embedding reconstruction to preserve fine-grained conditional elements and contrastive learning to extract comprehensive global semantics. Experiments demonstrate that Coral achieves a 45.9% performance improvement over conventional approaches on MERIT, with strong generalization capabilities validated across 8 established retrieval benchmarks. Collectively, our contributions - a novel dataset, identification of critical limitations in existing approaches, and an innovative fine-tuning framework - establish a foundation for future research in interleaved multi-condition semantic retrieval.
comment: NeurIPS 2025; Project Page, Code, and Dataset at: https://merit-2025.github.io/
♻ ☆ MRD: Multi-resolution Retrieval-Detection Fusion for High-Resolution Image Understanding
Understanding high-resolution images remains a significant challenge for multimodal large language models (MLLMs). Recent study address this issue by dividing the image into smaller crops and computing the semantic similarity between each crop and a query using a pretrained retrieval-augmented generation (RAG) model. The most relevant crops are then selected to localize the target object and suppress irrelevant information. However, such crop-based processing can fragment complete objects across multiple crops, thereby disrupting the computation of semantic similarity. In our experiments, we find that image crops of objects with different sizes are better handled at different resolutions. Based on this observation, we propose Multi-resolution Retrieval-Detection (MRD), a training-free framework for high-resolution image understanding. To address the issue of semantic similarity bias caused by objects being split across different image crops, we propose a multi-resolution semantic fusion method, which integrates semantic similarity maps obtained at different resolutions to produce more accurate semantic information and preserve the integrity of target objects. Furthermore, to achieve direct localization of target objects at a global scale, we introduce an open-vocalbulary object detection (OVD) model that identifies object regions using a sliding-window approach.Experiments on high-resolution image understanding benchmarks using different MLLMs demonstrate the effectiveness of our approach.
Information Retrieval
☆ GraphMatch: Fusing Language and Graph Representations in a Dynamic Two-Sided Work Marketplace
Recommending matches in a text-rich, dynamic two-sided marketplace presents unique challenges due to evolving content and interaction graphs. We introduce GraphMatch, a new large-scale recommendation framework that fuses pre-trained language models with graph neural networks to overcome these challenges. Unlike prior approaches centered on standalone models, GraphMatch is a comprehensive recipe built on powerful text encoders and GNNs working in tandem. It employs adversarial negative sampling alongside point-in-time subgraph training to learn representations that capture both the fine-grained semantics of evolving text and the time-sensitive structure of the graph. We evaluated extensively on interaction data from Upwork, a leading labor marketplace, at large scale, and discuss our approach towards low-latency inference suitable for real-time use. In our experiments, GraphMatch outperforms language-only and graph-only baselines on matching tasks while being efficient at runtime. These results demonstrate that unifying language and graph representations yields a highly effective solution to text-rich, dynamic two-sided recommendations, bridging the gap between powerful pretrained LMs and large-scale graphs in practice.
☆ Towards Unification of Hallucination Detection and Fact Verification for Large Language Models
Large Language Models (LLMs) frequently exhibit hallucinations, generating content that appears fluent and coherent but is factually incorrect. Such errors undermine trust and hinder their adoption in real-world applications. To address this challenge, two distinct research paradigms have emerged: model-centric Hallucination Detection (HD) and text-centric Fact Verification (FV). Despite sharing the same goal, these paradigms have evolved in isolation, using distinct assumptions, datasets, and evaluation protocols. This separation has created a research schism that hinders their collective progress. In this work, we take a decisive step toward bridging this divide. We introduce UniFact, a unified evaluation framework that enables direct, instance-level comparison between FV and HD by dynamically generating model outputs and corresponding factuality labels. Through large-scale experiments across multiple LLM families and detection methods, we reveal three key findings: (1) No paradigm is universally superior; (2) HD and FV capture complementary facets of factual errors; and (3) hybrid approaches that integrate both methods consistently achieve state-of-the-art performance. Beyond benchmarking, we provide the first in-depth analysis of why FV and HD diverged, as well as empirical evidence supporting the need for their unification. The comprehensive experimental results call for a new, integrated research agenda toward unifying Hallucination Detection and Fact Verification in LLMs. We have open-sourced all the code, data, and baseline implementation at: https://github.com/oneal2000/UniFact/
☆ FGC-Comp: Adaptive Neighbor-Grouped Attribute Completion for Graph-based Anomaly Detection
Graph-based Anomaly Detection models have gained widespread adoption in recent years, identifying suspicious nodes by aggregating neighborhood information. However, most existing studies overlook the pervasive issues of missing and adversarially obscured node attributes, which can undermine aggregation stability and prediction reliability. To mitigate this, we propose FGC-Comp, a lightweight, classifier-agnostic, and deployment-friendly attribute completion module-designed to enhance neighborhood aggregation under incomplete attributes. We partition each node's neighbors into three label-based groups, apply group-specific transforms to the labeled groups while a node-conditioned gate handles unknowns, fuse messages via residual connections, and train end-to-end with a binary classification objective to improve aggregation stability and prediction reliability under missing attributes. Experiments on two real-world fraud datasets validate the effectiveness of the approach with negligible computational overhead.
comment: 6 pages, 2 figures
☆ Spatially-Grounded Document Retrieval via Patch-to-Region Relevance Propagation
Vision-language models (VLMs) like ColPali achieve state-of-the-art document retrieval by embedding pages as images and computing fine-grained similarity between query tokens and visual patches. However, they return entire pages rather than specific regions, limiting utility for retrieval-augmented generation (RAG) where precise context is paramount. Conversely, OCR-based systems extract structured text with bounding box coordinates but lack semantic grounding for relevance assessment. We propose a hybrid architecture that unifies these paradigms: using ColPali's patch-level similarity scores as spatial relevance filters over OCR-extracted regions. We formalize the coordinate mapping between vision transformer patch grids and OCR bounding boxes, introduce intersection metrics for relevance propagation, and establish theoretical bounds on retrieval precision. Our approach operates at inference time without additional training. We release Snappy, an open-source implementation demonstrating practical applicability, with empirical evaluation ongoing.
comment: 13 pages, 1 figure, 2 tables. Open-source implementation available at https://github.com/athrael-soju/Snappy
☆ ADORE: Autonomous Domain-Oriented Relevance Engine for E-commerce SIGIR 2025
Relevance modeling in e-commerce search remains challenged by semantic gaps in term-matching methods (e.g., BM25) and neural models' reliance on the scarcity of domain-specific hard samples. We propose ADORE, a self-sustaining framework that synergizes three innovations: (1) A Rule-aware Relevance Discrimination module, where a Chain-of-Thought LLM generates intent-aligned training data, refined via Kahneman-Tversky Optimization (KTO) to align with user behavior; (2) An Error-type-aware Data Synthesis module that auto-generates adversarial examples to harden robustness; and (3) A Key-attribute-enhanced Knowledge Distillation module that injects domain-specific attribute hierarchies into a deployable student model. ADORE automates annotation, adversarial generation, and distillation, overcoming data scarcity while enhancing reasoning. Large-scale experiments and online A/B testing verify the effectiveness of ADORE. The framework establishes a new paradigm for resource-efficient, cognitively aligned relevance modeling in industrial applications.
comment: Accepted by SIGIR 2025
☆ Towards Contextual Sensitive Data Detection
The emergence of open data portals necessitates more attention to protecting sensitive data before datasets get published and exchanged. While an abundance of methods for suppressing sensitive data exist, the conceptualization of sensitive data and methods to detect it, focus particularly on personal data that, if disclosed, may be harmful or violate privacy. We observe the need for refining and broadening our definitions of sensitive data, and argue that the sensitivity of data depends on its context. Based on this definition, we introduce two mechanisms for contextual sensitive data detection that consider the broader context of a dataset at hand. First, we introduce type contextualization, which first detects the semantic type of particular data values, then considers the overall context of the data values within the dataset or document. Second, we introduce domain contextualization which determines sensitivity of a given dataset in the broader context based on the retrieval of relevant rules from documents that specify data sensitivity (e.g., data topic and geographic origin). Experiments with these mechanisms, assisted by large language models (LLMs), confirm that: 1) type-contextualization significantly reduces the number of false positives for type-based sensitive data detection and reaches a recall of 94% compared to 63% with commercial tools, and 2) domain-contextualization leveraging sensitivity rule retrieval is effective for context-grounded sensitive data detection in non-standard data domains such as humanitarian datasets. Evaluation with humanitarian data experts also reveals that context-grounded LLM explanations provide useful guidance in manual data auditing processes, improving consistency. We open-source mechanisms and annotated datasets for contextual sensitive data detection at https://github.com/trl-lab/sensitive-data-detection.
☆ AskNearby: An LLM-Based Application for Neighborhood Information Retrieval and Personalized Cognitive-Map Recommendations
The "15-minute city" envisions neighborhoods where residents can meet daily needs via a short walk or bike ride. Realizing this vision requires not only physical proximity but also efficient and reliable access to information about nearby places, services, and events. Existing location-based systems, however, focus mainly on city-level tasks and neglect the spatial, temporal, and cognitive factors that shape localized decision-making. We conceptualize this gap as the Local Life Information Accessibility (LLIA) problem and introduce AskNearby, an AI-driven community application that unifies retrieval and recommendation within the 15-minute life circle. AskNearby integrates (i) a three-layer Retrieval-Augmented Generation (RAG) pipeline that synergizes graph-based, semantic-vector, and geographic retrieval with (ii) a cognitive-map model that encodes each user's neighborhood familiarity and preferences. Experiments on real-world community datasets demonstrate that AskNearby significantly outperforms LLM-based and map-based baselines in retrieval accuracy and recommendation quality, achieving robust performance in spatiotemporal grounding and cognitive-aware ranking. Real-world deployments further validate its effectiveness. By addressing the LLIA challenge, AskNearby empowers residents to more effectively discover local resources, plan daily activities, and engage in community life.
☆ Q-BERT4Rec: Quantized Semantic-ID Representation Learning for Multimodal Recommendation KDD2026
Sequential recommendation plays a critical role in modern online platforms such as e-commerce, advertising, and content streaming, where accurately predicting users' next interactions is essential for personalization. Recent Transformer-based methods like BERT4Rec have shown strong modeling capability, yet they still rely on discrete item IDs that lack semantic meaning and ignore rich multimodal information (e.g., text and image). This leads to weak generalization and limited interpretability. To address these challenges, we propose Q-Bert4Rec, a multimodal sequential recommendation framework that unifies semantic representation and quantized modeling. Specifically, Q-Bert4Rec consists of three stages: (1) cross-modal semantic injection, which enriches randomly initialized ID embeddings through a dynamic transformer that fuses textual, visual, and structural features; (2) semantic quantization, which discretizes fused representations into meaningful tokens via residual vector quantization; and (3) multi-mask pretraining and fine-tuning, which leverage diverse masking strategies -- span, tail, and multi-region -- to improve sequential understanding. We validate our model on public Amazon benchmarks and demonstrate that Q-Bert4Rec significantly outperforms many strong existing methods, confirming the effectiveness of semantic tokenization for multimodal sequential recommendation. Our source code will be publicly available on GitHub after publishing.
comment: Submitted to KDD2026
☆ WorldMM: Dynamic Multimodal Memory Agent for Long Video Reasoning
Recent advances in video large language models have demonstrated strong capabilities in understanding short clips. However, scaling them to hours- or days-long videos remains highly challenging due to limited context capacity and the loss of critical visual details during abstraction. Existing memory-augmented methods mitigate this by leveraging textual summaries of video segments, yet they heavily rely on text and fail to utilize visual evidence when reasoning over complex scenes. Moreover, retrieving from fixed temporal scales further limits their flexibility in capturing events that span variable durations. To address this, we introduce WorldMM, a novel multimodal memory agent that constructs and retrieves from multiple complementary memories, encompassing both textual and visual representations. WorldMM comprises three types of memory: episodic memory indexes factual events across multiple temporal scales, semantic memory continuously updates high-level conceptual knowledge, and visual memory preserves detailed information about scenes. During inference, an adaptive retrieval agent iteratively selects the most relevant memory source and leverages multiple temporal granularities based on the query, continuing until it determines that sufficient information has been gathered. WorldMM significantly outperforms existing baselines across five long video question-answering benchmarks, achieving an average 8.4% performance gain over previous state-of-the-art methods, showing its effectiveness on long video reasoning.
comment: Project page : https://worldmm.github.io
♻ ☆ Real-Time Procedural Learning From Experience for AI Agents
Learning how to do things from trial and error in real time is a hallmark of biological intelligence, yet most LLM-based agents lack mechanisms to acquire procedural knowledge after deployment. We propose Procedural Recall for Agents with eXperiences Indexed by State (PRAXIS), a lightweight post-training learning mechanism that stores the consequences of actions and retrieves them by jointly matching environmental and internal states of past episodes to the current state. PRAXIS augments agentic action selection with retrieved state-action-result exemplars that are generated in real time. When evaluated on the REAL web browsing benchmark, PRAXIS improves task completion accuracy, reliability, and cost efficiency across different foundation model backbones, and shows preliminary generalization to unseen tasks in similar environments. These results demonstrate that PRAXIS enables the practical adoption of AI agents in fast-evolving stateful environments by helping them learn new procedures effectively.
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages
♻ ☆ Membership Inference Attack against Large Language Model-based Recommendation Systems: A New Distillation-based Paradigm
Membership Inference Attack (MIA) aims to determine whether a specific data sample was included in the training dataset of a target model. Traditional MIA approaches rely on shadow models to mimic target model behavior, but their effectiveness diminishes for Large Language Model (LLM)-based recommendation systems due to the scale and complexity of training data. This paper introduces a novel knowledge distillation-based MIA paradigm tailored for LLM-based recommendation systems. Our method constructs a reference model via distillation, applying distinct strategies for member and non-member data to enhance discriminative capabilities. The paradigm extracts fused features (e.g., confidence, entropy, loss, and hidden layer vectors) from the reference model to train an attack model, overcoming limitations of individual features. Extensive experiments on extended datasets (Last.FM, MovieLens, Book-Crossing, Delicious) and diverse LLMs (T5, GPT-2, LLaMA3) demonstrate that our approach significantly outperforms shadow model-based MIAs and individual-feature baselines. The results show its practicality for privacy attacks in LLM-driven recommender systems.
♻ ☆ Telco-oRAG: Optimizing Retrieval-augmented Generation for Telecom Queries via Hybrid Retrieval and Neural Routing
Artificial intelligence will be one of the key pillars of the next generation of mobile networks (6G), as it is expected to provide novel added-value services and improve network performance. In this context, large language models have the potential to revolutionize the telecom landscape through intent comprehension, intelligent knowledge retrieval, coding proficiency, and cross-domain orchestration capabilities. This paper presents Telco-oRAG, an open-source Retrieval-Augmented Generation (RAG) framework optimized for answering technical questions in the telecommunications domain, with a particular focus on 3GPP standards. Telco-oRAG introduces a hybrid retrieval strategy that combines 3GPP domain-specific retrieval with web search, supported by glossary-enhanced query refinement and a neural router for memory-efficient retrieval. Our results show that Telco-oRAG improves the accuracy in answering 3GPP-related questions by up to 17.6% and achieves a 10.6% improvement in lexicon queries compared to baselines. Furthermore, Telco-oRAG reduces memory usage by 45% through targeted retrieval of relevant 3GPP series compared to baseline RAG, and enables open-source LLMs to reach GPT-4-level accuracy on telecom benchmarks.
comment: 12 pages, 10 figures, 4 tables
♻ ☆ SCoTER: Structured Chain-of-Thought Transfer for Enhanced Recommendation
Harnessing the reasoning power of Large Language Models (LLMs) for recommender systems is hindered by two fundamental challenges. First, current approaches lack a mechanism for automated, data-driven discovery of effective reasoning patterns, relying instead on brittle manual templates or unstable zero-shot prompting. Second, they employ structure-collapsing integration: direct prompting incurs prohibitive online inference costs, while feature extraction collapses reasoning chains into single vectors, discarding stepwise logic. To address these challenges, we propose SCoTER (Structured Chain-of-Thought Transfer for Enhanced Recommendation), a unified framework that treats pattern discovery and structure-aware transfer as a jointly optimized problem. Specifically, SCoTER operationalizes this through two synergistic components: a GVM pipeline for automated pattern discovery and a structure-preserving integration architecture that transfers stepwise logic to efficient models. Formally, we provide information-theoretic justification proving that structure-preserving transfer achieves tighter performance bounds than structure-agnostic alternatives. Empirically, experiments on four benchmarks demonstrate improvements of 3.75\%-11.59\% over a strong TIGER backbone. Moreover, in production deployment on the Tencent Advertising Platform, SCoTER achieved a 2.14\% lift in Gross Merchandise Value (GMV) while eliminating online LLM inference costs. Overall, SCoTER establishes a principled and production-validated blueprint for transferring structured LLM reasoning to large-scale recommender systems.
comment: Due to some internal company policies, we need to temporarily withdraw the paper. We will resubmit it after a further review
♻ ☆ Leveraging Reference Documents for Zero-Shot Ranking via Large Language Models
Large Language Models (LLMs) have demonstrated exceptional performance in the task of text ranking for information retrieval. While Pointwise ranking approaches offer computational efficiency by scoring documents independently, they often yield biased relevance estimates due to the lack of inter-document comparisons. In contrast, Pairwise methods improve ranking accuracy by explicitly comparing document pairs, but suffer from substantial computational overhead with quadratic complexity ($O(n^2)$). To address this tradeoff, we propose \textbf{RefRank}, a simple and effective comparative ranking method based on a fixed reference document. Instead of comparing all document pairs, RefRank prompts the LLM to evaluate each candidate relative to a shared reference anchor. By selecting the reference anchor that encapsulates the core query intent, RefRank implicitly captures relevance cues, enabling indirect comparison between documents via this common anchor. This reduces computational cost to linear time ($O(n)$) while importantly, preserving the advantages of comparative evaluation. To further enhance robustness, we aggregate multiple RefRank outputs using a weighted averaging scheme across different reference choices. Experiments on several benchmark datasets and with various LLMs show that RefRank significantly outperforms Pointwise baselines and could achieve performance at least on par with Pairwise approaches with a significantly lower computational cost.
Multimedia
☆ HUD: Hierarchical Uncertainty-Aware Disambiguation Network for Composed Video Retrieval ACM MM 2025
Composed Video Retrieval (CVR) is a challenging video retrieval task that utilizes multi-modal queries, consisting of a reference video and modification text, to retrieve the desired target video. The core of this task lies in understanding the multi-modal composed query and achieving accurate composed feature learning. Within multi-modal queries, the video modality typically carries richer semantic content compared to the textual modality. However, previous works have largely overlooked the disparity in information density between these two modalities. This limitation can lead to two critical issues: 1) modification subject referring ambiguity and 2) limited detailed semantic focus, both of which degrade the performance of CVR models. To address the aforementioned issues, we propose a novel CVR framework, namely the Hierarchical Uncertainty-aware Disambiguation network (HUD). HUD is the first framework that leverages the disparity in information density between video and text to enhance multi-modal query understanding. It comprises three key components: (a) Holistic Pronoun Disambiguation, (b) Atomistic Uncertainty Modeling, and (c) Holistic-to-Atomistic Alignment. By exploiting overlapping semantics through holistic cross-modal interaction and fine-grained semantic alignment via atomistic-level cross-modal interaction, HUD enables effective object disambiguation and enhances the focus on detailed semantics, thereby achieving precise composed feature learning. Moreover, our proposed HUD is also applicable to the Composed Image Retrieval (CIR) task and achieves state-of-the-art performance across three benchmark datasets for both CVR and CIR tasks. The codes are available on https://zivchen-ty.github.io/HUD.github.io/.
comment: Accepted by ACM MM 2025
☆ Pianist Transformer: Towards Expressive Piano Performance Rendering via Scalable Self-Supervised Pre-Training
Existing methods for expressive music performance rendering rely on supervised learning over small labeled datasets, which limits scaling of both data volume and model size, despite the availability of vast unlabeled music, as in vision and language. To address this gap, we introduce Pianist Transformer, with four key contributions: 1) a unified Musical Instrument Digital Interface (MIDI) data representation for learning the shared principles of musical structure and expression without explicit annotation; 2) an efficient asymmetric architecture, enabling longer contexts and faster inference without sacrificing rendering quality; 3) a self-supervised pre-training pipeline with 10B tokens and 135M-parameter model, unlocking data and model scaling advantages for expressive performance rendering; 4) a state-of-the-art performance model, which achieves strong objective metrics and human-level subjective ratings. Overall, Pianist Transformer establishes a scalable path toward human-like performance synthesis in the music domain.
☆ Hear What Matters! Text-conditioned Selective Video-to-Audio Generation
This work introduces a new task, text-conditioned selective video-to-audio (V2A) generation, which produces only the user-intended sound from a multi-object video. This capability is especially crucial in multimedia production, where audio tracks are handled individually for each sound source for precise editing, mixing, and creative control. However, current approaches generate single source-mixed sounds at once, largely because visual features are entangled, and region cues or prompts often fail to specify the source. We propose SelVA, a novel text-conditioned V2A model that treats the text prompt as an explicit selector of target source and modulates video encoder to distinctly extract prompt-relevant video features. The proposed supplementary tokens promote cross-attention by suppressing text-irrelevant activations with efficient parameter tuning, yielding robust semantic and temporal grounding. SelVA further employs a self-augmentation scheme to overcome the lack of mono audio track supervision. We evaluate SelVA on VGG-MONOAUDIO, a curated benchmark of clean single-source videos for such a task. Extensive experiments and ablations consistently verify its effectiveness across audio quality, semantic alignment, and temporal synchronization. Code and demo are available at https://jnwnlee.github.io/selva-demo/.
☆ Stepwise Schema-Guided Prompting Framework with Parameter Efficient Instruction Tuning for Multimedia Event Extraction
Multimedia Event Extraction (MEE) has become an important task in information extraction research as news today increasingly prefers to contain multimedia content. Current MEE works mainly face two challenges: (1) Inadequate extraction framework modeling for handling complex and flexible multimedia event structure; (2) The absence of multimodal-aligned training data for effective knowledge transfer to MEE task. In this work, we propose a Stepwise Schema-Guided Prompting Framework (SSGPF) using Multimodal Large Language Model (MLLM) as backbone for adaptive structure capturing to solve MEE task. At the initial step of SSGPF, we design Event Type Schema Guided Prompting (ETSGP) for event detection, then we devise Argument Role Schema Guided Prompting (ARSGP) that contains multi-step prompts with text-bridged grounding technique for argument extraction. We construct a weakly-aligned multimodal event labeled dataset based on existing unimodal event annotations, then conduct parameter efficient instruction tuning with LoRA on LLaVA-v1.5-7B under SSGPF. Experiments on the M2E2 benchmark demonstrate that SSGPF significantly outperforms current SOTA baselines by 5.8 percent F1 on event detection and 8.4 percent F1 on argument extraction.
comment: Accepted by 2025 IEEE International Conference on Multimedia and Expo
☆ PopSim: Social Network Simulation for Social Media Popularity Prediction
Accurately predicting the popularity of user-generated content (UGC) is essential for advancing social media analytics and recommendation systems. Existing approaches typically follow an inductive paradigm, where researchers train static models on historical data for popularity prediction. However, the UGC propagation is inherently a dynamic process, and static modeling based on historical features fails to capture the complex interactions and nonlinear evolution. In this paper, we propose PopSim, a novel simulation-based paradigm for social media popularity prediction (SMPP). Unlike the inductive paradigm, PopSim leverages the large language models (LLMs)-based multi-agent social network sandbox to simulate UGC propagation dynamics for popularity prediction. Specifically, to effectively model the UGC propagation process in the network, we design a social-mean-field-based agent interaction mechanism, which models the dual-channel and bidirectional individual-population interactions, enhancing agents' global perception and decision-making capabilities. In addition, we propose a multi-source information aggregation module that transforms heterogeneous social metadata into a uniform formulation for LLMs. Finally, propagation dynamics with multimodal information are fused to provide comprehensive popularity prediction. Extensive experiments on real-world datasets demonstrate that SimPop consistently outperforms the state-of-the-art methods, reducing prediction error by an average of 8.82%, offering a new perspective for research on the SMPP task.
♻ ☆ TCC-Bench: Benchmarking the Traditional Chinese Culture Understanding Capabilities of MLLMs
Recent progress in Multimodal Large Language Models (MLLMs) have significantly enhanced the ability of artificial intelligence systems to understand and generate multimodal content. However, these models often exhibit limited effectiveness when applied to non-Western cultural contexts, which raises concerns about their wider applicability. To address this limitation, we propose the Traditional Chinese Culture understanding Benchmark (TCC-Bench), a bilingual (i.e., Chinese and English) Visual Question Answering (VQA) benchmark specifically designed for assessing the understanding of traditional Chinese culture by MLLMs. TCC-Bench comprises culturally rich and visually diverse data, incorporating images from museum artifacts, everyday life scenes, comics, and other culturally significant contexts. We adopt a semi-automated pipeline that utilizes GPT-4o in text-only mode to generate candidate questions, followed by human curation to ensure data quality and avoid potential data leakage. The benchmark also avoids language bias by preventing direct disclosure of cultural concepts within question texts. Experimental evaluations across a wide range of MLLMs demonstrate that current models still face significant challenges when reasoning about culturally grounded visual content. The results highlight the need for further research in developing culturally inclusive and context-aware multimodal systems. The code and data can be found at: https://tcc-bench.github.io/.
comment: There are issues with the paper
♻ ☆ GRAFT: GRaPH and Table Reasoning for Textual Alignment -- A Benchmark for Structured Instruction Following and Visual Reasoning
GRAFT is a structured multimodal benchmark designed to probe how well LLMs handle instruction following, visual reasoning, and tasks requiring tight visual textual alignment. The dataset is built around programmatically generated charts and synthetically rendered tables, each paired with a carefully constructed, multi step analytical question that depends solely on what can be inferred from the image itself. Responses are formatted in structured outputs such as JSON or YAML, enabling consistent and fine grained evaluation of both reasoning processes and adherence to output specifications. The benchmark further introduces a taxonomy of reasoning operations ranging from comparison and trend identification to ranking, aggregation, proportional estimation, and anomaly detection to support a comprehensive assessment of model capabilities. Taken together, GRAFT provides a unified and scalable framework for evaluating multimodal LLMs on visually grounded, structured reasoning tasks, offering a more rigorous standard for future benchmarking efforts.
comment: 25 pages, 10 tables, 3 figures
♻ ☆ Self-Supervised Compression and Artifact Correction for Streaming Underwater Imaging Sonar WACV 2026
Real-time imaging sonar is crucial for underwater monitoring where optical sensing fails, but its use is limited by low uplink bandwidth and severe sonar-specific artifacts (speckle, motion blur, reverberation, acoustic shadows) affecting up to 98% of frames. We present SCOPE, a self-supervised framework that jointly performs compression and artifact correction without clean-noise pairs or synthetic assumptions. SCOPE combines (i) Adaptive Codebook Compression (ACC), which learns frequency-encoded latent representations tailored to sonar, with (ii) Frequency-Aware Multiscale Segmentation (FAMS), which decomposes frames into low-frequency structure and sparse high-frequency dynamics while suppressing rapidly fluctuating artifacts. A hedging training strategy further guides frequency-aware learning using low-pass proxy pairs generated without labels. Evaluated on months of in-situ ARIS sonar data, SCOPE achieves a structural similarity index (SSIM) of 0.77, representing a 40% improvement over prior self-supervised denoising baselines, at bitrates down to <= 0.0118 bpp. It reduces uplink bandwidth by more than 80% while improving downstream detection. The system runs in real time, with 3.1 ms encoding on an embedded GPU and 97 ms full multi-layer decoding on the server end. SCOPE has been deployed for months in three Pacific Northwest rivers to support real-time salmon enumeration and environmental monitoring in the wild. Results demonstrate that learning frequency-structured latents enables practical, low-bitrate sonar streaming with preserved signal details under real-world deployment conditions.
comment: Accepted to WACV 2026
Computation and Language
☆ Four Over Six: More Accurate NVFP4 Quantization with Adaptive Block Scaling
As large language models have grown larger, low-precision numerical formats such as NVFP4 have become increasingly popular due to the speed and memory benefits they provide. However, to accelerate computation with NVFP4, all matrix multiplication operands--weights and activations in the forward pass, and weights, activations, and gradients in the backward pass--must be quantized to NVFP4, often leading to divergence during training and performance degradation during inference. NVFP4 by evaluating multiple potential scale factors for each block of values. To address this issue, in this work we introduce Four Over Six (4/6), a modification to the NVFP4 quantization algorithm that evaluates two potential scale factors for each block of values. Unlike integer formats, floating-point formats such as FP4 have the most quantization error on near-maximal values in each block, which we find to be primarily responsible for downstream performance degradation. We find that for some blocks, scaling to smaller FP4 values makes the distribution of representable values more uniform, improving representation of near-maximal values. Importantly, 4/6 can be implemented efficiently on NVIDIA Blackwell GPUs, making it viable to use while training LLMs with NVFP4. In pre-training experiments with transformer and hybrid model architectures, we find that 4/6 prevents divergence in several cases, bringing training loss significantly closer to BF16 compared to models trained with current state-of-the-art NVFP4 training recipes. We also find that 4/6 can be easily incorporated into many different post-training quantization methods and generally improves downstream accuracy. We hope this inspires future work in training and deploying models with NVFP4.
comment: 10 pages, 5 figures
☆ The Art of Scaling Test-Time Compute for Large Language Models
Test-time scaling (TTS) -- the dynamic allocation of compute during inference -- is a promising direction for improving reasoning in large language models (LLMs). However, a systematic comparison of well-known TTS strategies under identical conditions is missing, and the influence of model type and problem difficulty on performance remains unclear. To address these gaps, we conduct the first large-scale study of TTS, spanning over thirty billion tokens generated using eight open-source LLMs (7B to 235B parameters), across four reasoning datasets. We observe three consistent trends: (1) no single TTS strategy universally dominates; (2) reasoning models exhibit distinct trace-quality patterns across problem difficulty and trace length, forming short-horizon and long-horizon categories; and (3) for a given model type, the optimal TTS performance scales monotonically with compute budget. Based on these insights, we provide a practical recipe for selecting the best TTS strategy, considering problem difficulty, model type, and compute budget, providing a practical guide to effective inference-time scaling.
☆ AlignSAE: Concept-Aligned Sparse Autoencoders
Large Language Models (LLMs) encode factual knowledge within hidden parametric spaces that are difficult to inspect or control. While Sparse Autoencoders (SAEs) can decompose hidden activations into more fine-grained, interpretable features, they often struggle to reliably align these features with human-defined concepts, resulting in entangled and distributed feature representations. To address this, we introduce AlignSAE, a method that aligns SAE features with a defined ontology through a "pre-train, then post-train" curriculum. After an initial unsupervised training phase, we apply supervised post-training to bind specific concepts to dedicated latent slots while preserving the remaining capacity for general reconstruction. This separation creates an interpretable interface where specific relations can be inspected and controlled without interference from unrelated features. Empirical results demonstrate that AlignSAE enables precise causal interventions, such as reliable "concept swaps", by targeting single, semantically aligned slots.
comment: 20 pages, 7 figures, 5 tables
☆ LLM CHESS: Benchmarking Reasoning and Instruction-Following in LLMs through Chess
We introduce LLM CHESS, an evaluation framework designed to probe the generalization of reasoning and instruction-following abilities in large language models (LLMs) through extended agentic interaction in the domain of chess. We rank over 50 open and closed source models by playing against a random opponent using a range of behavioral metrics, including win and loss rates, move quality, move legality, hallucinated actions, and game duration. For a subset of top reasoning models, we derive an Elo estimate by playing against a chess engine with variably configured skill, which allows for comparisons between models in an easily understandable way. Despite the simplicity of the instruction-following task and the weakness of the opponent, many state-of-the-art models struggle to complete games or achieve consistent wins. Similar to other benchmarks on complex reasoning tasks, our experiments reveal a clear separation between reasoning and non-reasoning models. However, unlike existing static benchmarks, the stochastic and dynamic nature of LLM CHESS uniquely reduces overfitting and memorization while preventing benchmark saturation, proving difficult even for top reasoning models. To support future work on evaluating reasoning and instruction-following in LLMs, we release our experimental framework, a public leaderboard, and a dataset of associated games.
☆ Chain-of-Ground: Improving GUI Grounding via Iterative Reasoning and Reference Feedback
GUI grounding aims to align natural language instructions with precise regions in complex user interfaces. Advanced multimodal large language models show strong ability in visual GUI grounding but still struggle with small or visually similar targets and ambiguity in real world layouts. These limitations arise from limited grounding capacity and from underuse of existing reasoning potential. We present Chain of Ground CoG a training free multi step grounding framework that uses multimodal large language models for iterative visual reasoning and refinement. Instead of direct prediction the model progressively reflects and adjusts its hypotheses leading to more accurate and interpretable localization. Our approach achieves 68.4 accuracy on the ScreenSpot Pro benchmark an improvement of 4.8 points. To measure real world generalization we introduce TPanel UI a dataset of 420 labeled industrial control panels with visual distortions such as blur and masking. On TPanel UI Chain of Ground improves over the strong baseline Qwen3 VL 235B by 6.9 points showing the effectiveness of multi step training free grounding across real world and digital interfaces. These results highlight a direction for unlocking grounding potential through structured iterative refinement instead of additional training.
☆ From Atomic to Composite: Reinforcement Learning Enables Generalization in Complementary Reasoning
The mechanism by which RL contributes to reasoning capabilities-whether it incentivizes the synthesis of new skills or merely amplifies existing behaviors-remains a subject of intense debate. In this work, we investigate this question through the lens of Complementary Reasoning, a complex task that requires integrating internal parametric knowledge with external contextual information. Using a controlled synthetic dataset of human biographies, we strictly decouple this ability into two atomic skills: Parametric Reasoning (relying on internal knowledge) and Contextual Reasoning (depending on external information). To rigorously assess capability boundaries, we evaluate generalization across three distinct levels of difficulty: I.I.D., Composition, and Zero-shot settings. We find that while SFT is sufficient for in-distribution performance, it struggles with O.O.D. generalization, particularly in Zero-shot settings where relational combinations are novel. Crucially, we identify the SFT Generalization Paradox: Models supervised solely on the composite task achieve near-perfect in-distribution accuracy but collapse on out-of-distribution generalization, indicating their reliance on rote memorization of path shortcuts. In contrast, we find that RL acts as a reasoning synthesizer rather than a probability amplifier. However, we uncover a strict atomic prerequisite: RL can only synthesize these complex strategies if the base model has first mastered the independent atomic skills (Parametric and Contextual) via SFT. These findings challenge the view of RL as a mere amplifier, suggesting that given sufficient atomic foundations, RL can actively synthesize complex reasoning strategies from learned primitives without explicit supervision on such complex strategies. This indicates that decoupled atomic training followed by RL offers a scalable path to generalization for complex reasoning tasks.
comment: Work in Progress. Code and data will be available at https://github.com/sitaocheng/from_atomic_to_composite
☆ How Far Are We from Genuinely Useful Deep Research Agents?
Deep Research Agents (DRAs) aim to automatically produce analyst-level reports through iterative information retrieval and synthesis. However, most existing DRAs were validated on question-answering benchmarks, while research on generating comprehensive reports remains overlooked. Worse, current benchmarks for report synthesis suffer from task complexity and subjective metrics -- this fails to reflect user demands and limits the practical utility of generated reports. To address these gaps, we present Fine-grained DEepResearch bench (FINDER), an enhanced benchmark consisting of 100 human-curated research tasks with 419 structured checklist items that standardize report structure, analytical depth, and factual grounding. Based on approximately 1,000 reports produced by mainstream DRAs, we further propose Deep rEsearch Failure Taxonomy (DEFT), the first failure taxonomy for deep research agents. DEFT contains 14 fine-grained failure modes across reasoning, retrieval, and generation, and is built upon grounded theory with human-LLM co-annotating and inter-annotator reliability validation. Our experimental findings reveal that current DRAs struggle not with task comprehension but with evidence integration, verification, and reasoning-resilient planning.
comment: 34 pages
☆ Agentic Policy Optimization via Instruction-Policy Co-Evolution
Reinforcement Learning with Verifiable Rewards (RLVR) has advanced the reasoning capability of large language models (LLMs), enabling autonomous agents that can conduct effective multi-turn and tool-integrated reasoning. While instructions serve as the primary protocol for defining agents, RLVR typically relies on static and manually designed instructions. However, those instructions may be suboptimal for the base model, and the optimal instruction may change as the agent's policy improves and explores the interaction with the environment. To bridge the gap, we introduce INSPO, a novel Instruction-Policy co-evolution framework that integrates instruction optimization as a dynamic component of the reinforcement learning (RL) loop. INSPO maintains a dynamic population of instruction candidates that are sampled with questions, where reward signals in RL loops are automatically attributed to each instruction, and low performers are periodically pruned. New instructions are generated and verified through an on-policy reflection mechanism, where an LLM-based optimizer analyzes past experience from a replay buffer and evolves more effective strategies given the current policy. We conduct extensive experiments on multi-turn retrieval and reasoning tasks, demonstrating that INSPO substantially outperforms strong baselines relying on static instructions. INSPO discovers innovative instructions that guide the agent toward more strategic reasoning paths, achieving substantial performance gains with only a marginal increase in computational overhead.
comment: 10 pages, 3 figures, 2 tables (18 pages including references and appendices)
☆ Rectifying LLM Thought from Lens of Optimization
Recent advancements in large language models (LLMs) have been driven by their emergent reasoning capabilities, particularly through long chain-of-thought (CoT) prompting, which enables thorough exploration and deliberation. Despite these advances, long-CoT LLMs often exhibit suboptimal reasoning behaviors, such as overthinking and excessively protracted reasoning chains, which can impair performance. In this paper, we analyze reasoning processes through an optimization lens, framing CoT as a gradient descent procedure where each reasoning step constitutes an update toward problem resolution. Building on this perspective, we introduce RePro (Rectifying Process-level Reward), a novel approach to refine LLM reasoning during post-training. RePro defines a surrogate objective function to assess the optimization process underlying CoT, utilizing a dual scoring mechanism to quantify its intensity and stability. These scores are aggregated into a composite process-level reward, seamlessly integrated into reinforcement learning with verifiable rewards (RLVR) pipelines to optimize LLMs. Extensive experiments across multiple reinforcement learning algorithms and diverse LLMs, evaluated on benchmarks spanning mathematics, science, and coding, demonstrate that RePro consistently enhances reasoning performance and mitigates suboptimal reasoning behaviors.
comment: Work in progress
☆ Latent Debate: A Surrogate Framework for Interpreting LLM Thinking
Understanding the internal thinking process of Large Language Models (LLMs) and the cause of hallucinations remains a key challenge. To this end, we introduce latent debate, a novel framework for interpreting model predictions through the lens of implicit internal arguments. Unlike the current work of self-consistency and multi-agent debate, which relies on explicit debates among multiple answers or multiple models, latent debate captures the hidden supporting and attacking signals that arise within a single model during a single inference. We first present a model- and task-agnostic conceptual framework, and then instantiate it symbolically to approximate the thinking process of LLMs on True/False prediction tasks. Empirical studies demonstrate that latent debate is a faithful structured surrogate model that has highly consistent predictions with the original LLM. Beyond interpretability, we demonstrate that latent debate provides a strong baseline for hallucination detection. Further analysis reveals strong correlations between hallucinations and debate patterns, such as a high degree of latent debates in the middle layers is linked to a higher risk of hallucinations. These findings position latent debate as a potential framework for understanding internal mechanisms of LLMs, especially for scenarios where internal (dis)agreements appear during the inference steps.
comment: Preprint
☆ OPOR-Bench: Evaluating Large Language Models on Online Public Opinion Report Generation
Online Public Opinion Reports consolidate news and social media for timely crisis management by governments and enterprises. While large language models have made automated report generation technically feasible, systematic research in this specific area remains notably absent, particularly lacking formal task definitions and corresponding benchmarks. To bridge this gap, we define the Automated Online Public Opinion Report Generation (OPOR-GEN) task and construct OPOR-BENCH, an event-centric dataset covering 463 crisis events with their corresponding news articles, social media posts, and a reference summary. To evaluate report quality, we propose OPOR-EVAL, a novel agent-based framework that simulates human expert evaluation by analyzing generated reports in context. Experiments with frontier models demonstrate that our framework achieves high correlation with human judgments. Our comprehensive task definition, benchmark dataset, and evaluation framework provide a solid foundation for future research in this critical domain.
comment: 27 pages, accepted by CMC-Computers, Materials & Continua, 2025
☆ Exploring Human Perceptions of AI Responses: Insights from a Mixed-Methods Study on Risk Mitigation in Generative Models
With the rapid uptake of generative AI, investigating human perceptions of generated responses has become crucial. A major challenge is their `aptitude' for hallucinating and generating harmful contents. Despite major efforts for implementing guardrails, human perceptions of these mitigation strategies are largely unknown. We conducted a mixed-method experiment for evaluating the responses of a mitigation strategy across multiple-dimensions: faithfulness, fairness, harm-removal capacity, and relevance. In a within-subject study design, 57 participants assessed the responses under two conditions: harmful response plus its mitigation and solely mitigated response. Results revealed that participants' native language, AI work experience, and annotation familiarity significantly influenced evaluations. Participants showed high sensitivity to linguistic and contextual attributes, penalizing minor grammar errors while rewarding preserved semantic contexts. This contrasts with how language is often treated in the quantitative evaluation of LLMs. We also introduced new metrics for training and evaluating mitigation strategies and insights for human-AI evaluation studies.
comment: 16 pages, 2 figures, 6 tables. Under review for publication
☆ Cross-Lingual Interleaving for Speech Language Models
Spoken Language Models (SLMs) aim to learn linguistic competence directly from speech using discrete units, widening access to Natural Language Processing (NLP) technologies for languages with limited written resources. However, progress has been largely English-centric due to scarce spoken evaluation benchmarks and training data, making cross-lingual learning difficult. We present a cross-lingual interleaving method that mixes speech tokens across languages without textual supervision. We also release an EN-FR training dataset, TinyStories (~42k hours), together with EN-FR spoken StoryCloze and TopicCloze benchmarks for cross-lingual semantic evaluation, both synthetically generated using GPT-4. On 360M and 1B SLMs under matched training-token budgets, interleaving improves monolingual semantic accuracy, enables robust cross-lingual continuation, and strengthens cross-lingual hidden-state alignment. Taken together, these results indicate that cross-lingual interleaving is a simple, scalable route to building multilingual SLMs that understand and converse across languages. All resources will be made open-source to support reproducibility.
☆ BHRAM-IL: A Benchmark for Hallucination Recognition and Assessment in Multiple Indian Languages AACL 2025
Large language models (LLMs) are increasingly deployed in multilingual applications but often generate plausible yet incorrect or misleading outputs, known as hallucinations. While hallucination detection has been studied extensively in English, under-resourced Indian languages remain largely unexplored. We present BHRAM-IL, a benchmark for hallucination recognition and assessment in multiple Indian languages, covering Hindi, Gujarati, Marathi, Odia, along with English. The benchmark comprises 36,047 curated questions across nine categories spanning factual, numerical, reasoning, and linguistic tasks. We evaluate 14 state-of-the-art multilingual LLMs on a benchmark subset of 10,265 questions, analyzing cross-lingual and factual hallucinations across languages, models, scales, categories, and domains using category-specific metrics normalized to (0,1) range. Aggregation over all categories and models yields a primary score of 0.23 and a language-corrected fuzzy score of 0.385, demonstrating the usefulness of BHRAM-IL for hallucination-focused evaluation. The dataset, and the code for generation and evaluation are available on GitHub (https://github.com/sambhashana/BHRAM-IL/) and HuggingFace (https://huggingface.co/datasets/sambhashana/BHRAM-IL/) to support future research in multilingual hallucination detection and mitigation.
comment: Accepted at BHASHA Workshop @ IJCNLP/AACL 2025
☆ Beyond SFT: Reinforcement Learning for Safer Large Reasoning Models with Better Reasoning Ability
Large reasoning models (LRMs) extend large language models by generating explicit chain-of-thought (CoT) reasoning, significantly improving mathematical and logical problem solving. However, this explicit reasoning process also introduces new safety risks, as unsafe behaviors often emerge within intermediate reasoning trajectories, even when final answers appear harmless. Existing safety alignment approaches primarily rely on supervised fine-tuning (SFT) over safety-oriented long CoT datasets. While intuitive, we find that SFT produces inconsistent safety improvements, degrades reasoning ability, and generalizes poorly across model families. These limitations suggest that purely supervised approaches are insufficient for robust safety alignment in LRMs. To address this, we investigate reinforcement learning (RL) as a complementary optimization framework for LRM safety training. Unlike SFT, RL directly optimizes model policies with reward feedback, enabling more adaptive and stable alignment. Extensive experiments across multiple model families and benchmarks show that RL achieves stronger and more consistent safety gains while maintaining reasoning competence. Further analysis of reflection dynamics and token-level entropy reveals that RL suppresses unsafe exploratory reasoning while preserving reflective depth, leading to safer and more reliable reasoning processes.
☆ InnoGym: Benchmarking the Innovation Potential of AI Agents
LLMs and Agents have achieved impressive progress in code generation, mathematical reasoning, and scientific discovery. However, existing benchmarks primarily measure correctness, overlooking the diversity of methods behind solutions. True innovation depends not only on producing correct answers but also on the originality of the approach. We present InnoGym, the first benchmark and framework designed to systematically evaluate the innovation potential of AI agents. InnoGym introduces two complementary metrics: performance gain, which measures improvement over the best-known solutions, and novelty, which captures methodological differences from prior approaches. The benchmark includes 18 carefully curated tasks from real-world engineering and scientific domains, each standardized through resource filtering, evaluator validation, and solution collection. In addition, we provide iGym, a unified execution environment for reproducible and long-horizon evaluations. Extensive experiments show that while some agents produce novel approaches, their lack of robustness limits performance gains. These results highlight a key gap between creativity and effectiveness, underscoring the need for benchmarks that evaluate both.
comment: Work in progress
☆ H-Neurons: On the Existence, Impact, and Origin of Hallucination-Associated Neurons
Large language models (LLMs) frequently generate hallucinations -- plausible but factually incorrect outputs -- undermining their reliability. While prior work has examined hallucinations from macroscopic perspectives such as training data and objectives, the underlying neuron-level mechanisms remain largely unexplored. In this paper, we conduct a systematic investigation into hallucination-associated neurons (H-Neurons) in LLMs from three perspectives: identification, behavioral impact, and origins. Regarding their identification, we demonstrate that a remarkably sparse subset of neurons (less than $0.1\%$ of total neurons) can reliably predict hallucination occurrences, with strong generalization across diverse scenarios. In terms of behavioral impact, controlled interventions reveal that these neurons are causally linked to over-compliance behaviors. Concerning their origins, we trace these neurons back to the pre-trained base models and find that these neurons remain predictive for hallucination detection, indicating they emerge during pre-training. Our findings bridge macroscopic behavioral patterns with microscopic neural mechanisms, offering insights for developing more reliable LLMs.
comment: 20 pages, 4 figures
☆ Reasoning About the Unsaid: Misinformation Detection with Omission-Aware Graph Inference AAAI 2026
This paper investigates the detection of misinformation, which deceives readers by explicitly fabricating misleading content or implicitly omitting important information necessary for informed judgment. While the former has been extensively studied, omission-based deception remains largely overlooked, even though it can subtly guide readers toward false conclusions under the illusion of completeness. To pioneer in this direction, this paper presents OmiGraph, the first omission-aware framework for misinformation detection. Specifically, OmiGraph constructs an omission-aware graph for the target news by utilizing a contextual environment that captures complementary perspectives of the same event, thereby surfacing potentially omitted contents. Based on this graph, omission-oriented relation modeling is then proposed to identify the internal contextual dependencies, as well as the dynamic omission intents, formulating a comprehensive omission relation representation. Finally, to extract omission patterns for detection, OmiGraph introduces omission-aware message-passing and aggregation that establishes holistic deception perception by integrating the omission contents and relations. Experiments show that, by considering the omission perspective, our approach attains remarkable performance, achieving average improvements of +5.4% F1 and +5.3% ACC on two large-scale benchmarks.
comment: AAAI 2026
☆ Beware of Reasoning Overconfidence: Pitfalls in the Reasoning Process for Multi-solution Tasks
Large Language Models (LLMs) excel in reasoning tasks requiring a single correct answer, but they perform poorly in multi-solution tasks that require generating comprehensive and diverse answers. We attribute this limitation to \textbf{reasoning overconfidence}: a tendency to express undue certainty in an incomplete solution set. To examine the effect, we introduce \textit{MuSoBench}, a benchmark of multi-solution problems. Experiments show that the conventional short chain-of-thought (Short-CoT) prompting paradigm exhibits pronounced overconfidence, whereas the emerging long chain-of-thought (Long-CoT) approach mitigates it through iterative exploration and self-reflection. We further characterise observable behaviours and influential factors. To probe the underlying cause, we propose the \textbf{cognitive-rigidity hypothesis}, which posits that overconfidence arises when the reasoning process prematurely converges on a narrow set of thought paths. An attention-entropy analysis offers preliminary support for this view. These findings provide tools for assessing the completeness of LLM reasoning and highlight the need to move evaluation beyond single-answer accuracy toward comprehensive exploration.
Self-Supervised Borrowing Detection on Multilingual Wordlists
This paper presents a fully self-supervised approach to borrowing detection in multilingual wordlists. The method combines two sources of information: PMI similarities based on a global correspondence model and a lightweight contrastive component trained on phonetic feature vectors. It further includes an automatic procedure for selecting decision thresholds without requiring labeled data. Experiments on benchmark datasets show that PMI alone already improves over existing string similarity measures such as NED and SCA, and that the combined similarity performs on par with or better than supervised baselines. An ablation study highlights the importance of character encoding, temperature settings and augmentation strategies. The approach scales to datasets of different sizes, works without manual supervision and is provided with a command-line tool that allows researchers to conduct their own studies.
comment: 29 pages, 3 figures, 12 tables
☆ MMAG: Mixed Memory-Augmented Generation for Large Language Models Applications
Large Language Models (LLMs) excel at generating coherent text within a single prompt but fall short in sustaining relevance, personalization, and continuity across extended interactions. Human communication, however, relies on multiple forms of memory, from recalling past conversations to adapting to personal traits and situational context. This paper introduces the Mixed Memory-Augmented Generation (MMAG) pattern, a framework that organizes memory for LLM-based agents into five interacting layers: conversational, long-term user, episodic and event-linked, sensory and context-aware, and short-term working memory. Drawing inspiration from cognitive psychology, we map these layers to technical components and outline strategies for coordination, prioritization, and conflict resolution. We demonstrate the approach through its implementation in the Heero conversational agent, where encrypted long-term bios and conversational history already improve engagement and retention. We further discuss implementation concerns around storage, retrieval, privacy, and latency, and highlight open challenges. MMAG provides a foundation for building memory-rich language agents that are more coherent, proactive, and aligned with human needs.
☆ StreamGaze: Gaze-Guided Temporal Reasoning and Proactive Understanding in Streaming Videos
Streaming video understanding requires models not only to process temporally incoming frames, but also to anticipate user intention for realistic applications like AR glasses. While prior streaming benchmarks evaluate temporal reasoning, none measure whether MLLMs can interpret or leverage human gaze signals within a streaming setting. To fill this gap, we introduce StreamGaze, the first benchmark designed to evaluate how effectively MLLMs use gaze for temporal and proactive reasoning in streaming videos. StreamGaze introduces gaze-guided past, present, and proactive tasks that comprehensively evaluate streaming video understanding. These tasks assess whether models can use real-time gaze to follow shifting attention and infer user intentions from only past and currently observed frames. To build StreamGaze, we develop a gaze-video QA generation pipeline that aligns egocentric videos with raw gaze trajectories via fixation extraction, region-specific visual prompting, and scanpath construction. This pipeline produces spatio-temporally grounded QA pairs that closely reflect human perceptual dynamics. Across all StreamGaze tasks, we observe substantial performance gaps between state-of-the-art MLLMs and human performance, revealing fundamental limitations in gaze-based temporal reasoning, intention modeling, and proactive prediction. We further provide detailed analyses of gaze-prompting strategies, reasoning behaviors, and task-specific failure modes, offering deeper insight into why current MLLMs struggle and what capabilities future models must develop. All data and code will be publicly released to support continued research in gaze-guided streaming video understanding.
comment: Project page: https://streamgaze.github.io/
☆ Learning the Boundary of Solvability: Aligning LLMs to Detect Unsolvable Problems
Ensuring LLM reliability requires not only solving complex problems but also recognizing when a problem is unsolvable. Current models often struggle to distinguish objective unsolvability (inherent contradictions in the problem) from subjective capability limitations (problems beyond the model's competence), which leads to hallucinations and overconfidence. To address this, we propose UnsolvableQA and UnsolvableRL to solve feasible problems, detect inherent contradictions, and prudently refuse tasks beyond capability. Specifically, we construct UnsolvableQA, a dataset of paired solvable and unsolvable instances derived via a dual-track methodology: programmatic generation for logic puzzles and a novel "Reverse Construction" method that injects contradictions into valid reasoning chains for mathematics. Building on this dataset, we introduce UnsolvableRL, a reinforcement learning framework with three reward components jointly accounting for accuracy, unsolvability, and difficulty. Empirical results show that our approach achieves near-perfect unsolvability detection while also improving accuracy on solvable tasks. Crucially, we identify Capability Collapse, demonstrating that explicit exposure to unsolvable data is indispensable for preventing models from becoming systematically overconfident. Our code and data are available at https://github.com/sfasfaffa/unsolvableQA.
comment: preprint
☆ HalluGraph: Auditable Hallucination Detection for Legal RAG Systems via Knowledge Graph Alignment
Legal AI systems powered by retrieval-augmented generation (RAG) face a critical accountability challenge: when an AI assistant cites case law, statutes, or contractual clauses, practitioners need verifiable guarantees that generated text faithfully represents source documents. Existing hallucination detectors rely on semantic similarity metrics that tolerate entity substitutions, a dangerous failure mode when confusing parties, dates, or legal provisions can have material consequences. We introduce HalluGraph, a graph-theoretic framework that quantifies hallucinations through structural alignment between knowledge graphs extracted from context, query, and response. Our approach produces bounded, interpretable metrics decomposed into \textit{Entity Grounding} (EG), measuring whether entities in the response appear in source documents, and \textit{Relation Preservation} (RP), verifying that asserted relationships are supported by context. On structured control documents, HalluGraph achieves near-perfect discrimination ($>$400 words, $>$20 entities), HalluGraph achieves $AUC = 0.979$, while maintaining robust performance ($AUC \approx 0.89$) on challenging generative legal task, consistently outperforming semantic similarity baselines. The framework provides the transparency and traceability required for high-stakes legal applications, enabling full audit trails from generated assertions back to source passages.
comment: 8 pages, 4 figures, under review
☆ MAC-SLU: Multi-Intent Automotive Cabin Spoken Language Understanding Benchmark
Spoken Language Understanding (SLU), which aims to extract user semantics to execute downstream tasks, is a crucial component of task-oriented dialog systems. Existing SLU datasets generally lack sufficient diversity and complexity, and there is an absence of a unified benchmark for the latest Large Language Models (LLMs) and Large Audio Language Models (LALMs). This work introduces MAC-SLU, a novel Multi-Intent Automotive Cabin Spoken Language Understanding Dataset, which increases the difficulty of the SLU task by incorporating authentic and complex multi-intent data. Based on MAC-SLU, we conducted a comprehensive benchmark of leading open-source LLMs and LALMs, covering methods like in-context learning, supervised fine-tuning (SFT), and end-to-end (E2E) and pipeline paradigms. Our experiments show that while LLMs and LALMs have the potential to complete SLU tasks through in-context learning, their performance still lags significantly behind SFT. Meanwhile, E2E LALMs demonstrate performance comparable to pipeline approaches and effectively avoid error propagation from speech recognition. Code\footnote{https://github.com/Gatsby-web/MAC\_SLU} and datasets\footnote{huggingface.co/datasets/Gatsby1984/MAC\_SLU} are released publicly.
☆ Language Diversity: Evaluating Language Usage and AI Performance on African Languages in Digital Spaces
This study examines the digital representation of African languages and the challenges this presents for current language detection tools. We evaluate their performance on Yoruba, Kinyarwanda, and Amharic. While these languages are spoken by millions, their online usage on conversational platforms is often sparse, heavily influenced by English, and not representative of the authentic, monolingual conversations prevalent among native speakers. This lack of readily available authentic data online creates a challenge of scarcity of conversational data for training language models. To investigate this, data was collected from subreddits and local news sources for each language. The analysis showed a stark contrast between the two sources. Reddit data was minimal and characterized by heavy code-switching. Conversely, local news media offered a robust source of clean, monolingual language data, which also prompted more user engagement in the local language on the news publishers social media pages. Language detection models, including the specialized AfroLID and a general LLM, performed with near-perfect accuracy on the clean news data but struggled with the code-switched Reddit posts. The study concludes that professionally curated news content is a more reliable and effective source for training context-rich AI models for African languages than data from conversational platforms. It also highlights the need for future models that can process clean and code-switched text to improve the detection accuracy for African languages.
☆ LEC: Linear Expectation Constraints for False-Discovery Control in Selective Prediction and Routing Systems
Large language models (LLMs) often generate unreliable answers, while heuristic uncertainty methods fail to fully distinguish correct from incorrect predictions, causing users to accept erroneous answers without statistical guarantees. We address this issue through the lens of false discovery rate (FDR) control, ensuring that among all accepted predictions, the proportion of errors does not exceed a target risk level. To achieve this in a principled way, we propose LEC, which reinterprets selective prediction as a constrained decision problem by enforcing a Linear Expectation Constraint over selection and error indicators. Then, we establish a finite-sample sufficient condition, which relies only on a held-out set of exchangeable calibration samples, to compute an FDR-constrained, coverage-maximizing threshold. Furthermore, we extend LEC to a two-model routing mechanism: given a prompt, if the current model's uncertainty exceeds its calibrated threshold, we delegate it to a stronger model, while maintaining a unified FDR guarantee. Evaluations on closed-ended and open-ended question-answering (QA) datasets show that LEC achieves tighter FDR control and substantially improves sample retention over prior methods. Moreover, the two-model routing mechanism achieves lower risk levels while accepting more correct samples than each individual model.
☆ LPCD: Unified Framework from Layer-Wise to Submodule Quantization
Post-training quantization (PTQ) aims to preserve model-level behavior; however, most methods focus on individual linear layers. Even recent extensions, such as QEP and LoaQ, which mitigate error propagation or target specific submodules, still rely on layer-wise formulations and fail to capture the behavior of larger submodules. We introduce Layer-Projected Coordinate Descent (LPCD), a unified framework that extends PTQ beyond layers by optimizing relaxed objectives across arbitrary submodules and projecting the solutions with layer-wise quantizers. LPCD generalizes existing methods and provides a principled approach to quantizing complex submodules while maintaining the efficiency and compatibility of layer-wise PTQ pipelines. Across diverse LLM architectures and bit-widths, LPCD-based submodule quantization consistently enhances both layer-wise PTQ methods and existing submodule approaches.
comment: 21 pages, 4 figures
☆ MCAT: Scaling Many-to-Many Speech-to-Text Translation with MLLMs to 70 Languages
Multimodal Large Language Models (MLLMs) have achieved great success in Speech-to-Text Translation (S2TT) tasks. However, current research is constrained by two key challenges: language coverage and efficiency. Most of the popular S2TT datasets are substantially English-centric, which restricts the scaling-up of MLLMs' many-to-many translation capabilities. Moreover, the inference speed of MLLMs degrades dramatically when the speech is converted into long sequences (e.g., 750 tokens). To address these limitations, we propose a Multilingual Cost-effective Accelerated Speech-to-Text Translator (MCAT) framework, which includes two innovations. First, a language scaling method that leverages curriculum learning and a data balancing strategy is introduced to extend the language coverage supported by MLLMs to 70 languages and achieve mutual translation among these languages. Second, an optimized speech adapter module is designed to reduce the length of the speech sequence to only 30 tokens. Extensive experiments were conducted on MLLMs of different scales (9B and 27B). The experimental results demonstrate that MCAT not only surpasses state-of-the-art end-to-end models on the FLEURS dataset across 70x69 directions but also enhances batch inference efficiency. This is achieved with only ~100M trainable parameters and by using only 10 hours of S2TT data per language. Furthermore, we have released MCAT as open-source to promote the development of MLLMs for robust S2TT capabilities. The code and models are released at https://github.com/yxduir/m2m-70.
☆ Enhancing BERT Fine-Tuning for Sentiment Analysis in Lower-Resourced Languages
Limited data for low-resource languages typically yield weaker language models (LMs). Since pre-training is compute-intensive, it is more pragmatic to target improvements during fine-tuning. In this work, we examine the use of Active Learning (AL) methods augmented by structured data selection strategies which we term 'Active Learning schedulers', to boost the fine-tuning process with a limited amount of training data. We connect the AL to data clustering and propose an integrated fine-tuning pipeline that systematically combines AL, clustering, and dynamic data selection schedulers to enhance model's performance. Experiments in the Slovak, Maltese, Icelandic and Turkish languages show that the use of clustering during the fine-tuning phase together with AL scheduling can simultaneously produce annotation savings up to 30% and performance improvements up to four F1 score points, while also providing better fine-tuning stability.
☆ ZIP-RC: Zero-overhead Inference-time Prediction of Reward and Cost for Adaptive and Interpretable Generation
Large language models excel at reasoning but lack key aspects of introspection, including anticipating their own success and the computation required to achieve it. Humans use real-time introspection to decide how much effort to invest, when to make multiple attempts, when to stop, and when to signal success or failure. Without this, LLMs struggle to make intelligent meta-cognition decisions. Test-time scaling methods like Best-of-N drive up cost and latency by using a fixed budget of samples regardless of the marginal benefit of each one at any point in generation, and the absence of confidence signals can mislead people, prevent appropriate escalation to better tools, and undermine trustworthiness. Learned verifiers or reward models can provide confidence estimates, but do not enable adaptive inference and add substantial cost by requiring extra models or forward passes. We present ZIP-RC, an adaptive inference method that equips models with zero-overhead inference-time predictions of reward and cost. At every token, ZIP-RC reuses reserved or unused logits in the same forward pass as next-token prediction to output a joint distribution over final reward and remaining length -- no extra models, architecture change, or inference overhead. This full joint distribution is used to compute a sampling utility which is the linear combination of the expected maximum reward, total compute, and latency of set of samples if generated to completion. During inference, we maximize this utility with meta-actions that determine which prefix of tokens to continue or initiate sampling from. On mixed-difficulty mathematical benchmarks, ZIP-RC improves accuracy by up to 12% over majority voting at equal or lower average cost, and traces smooth Pareto frontiers between quality, compute, and latency. By providing real-time reward-cost introspection, ZIP-RC enables adaptive, efficient reasoning.
comment: Code coming soon
☆ MEGConformer: Conformer-Based MEG Decoder for Robust Speech and Phoneme Classification NeurIPS 2025
We present Conformer-based decoders for the LibriBrain 2025 PNPL competition, targeting two foundational MEG tasks: Speech Detection and Phoneme Classification. Our approach adapts a compact Conformer to raw 306-channel MEG signals, with a lightweight convolutional projection layer and task-specific heads. For Speech Detection, a MEG-oriented SpecAugment provided a first exploration of MEG-specific augmentation. For Phoneme Classification, we used inverse-square-root class weighting and a dynamic grouping loader to handle 100-sample averaged examples. In addition, a simple instance-level normalization proved critical to mitigate distribution shifts on the holdout split. Using the official Standard track splits and F1-macro for model selection, our best systems achieved 88.9% (Speech) and 65.8% (Phoneme) on the leaderboard, surpassing the competition baselines and ranking within the top-10 in both tasks. For further implementation details, the technical documentation, source code, and checkpoints are available at https://github.com/neural2speech/libribrain-experiments.
comment: 10 pages, 5 figures, 4 tables, LibriBrain Workshop, NeurIPS 2025
☆ Multilingual Conversational AI for Financial Assistance: Bridging Language Barriers in Indian FinTech
India's linguistic diversity presents both opportunities and challenges for fintech platforms. While the country has 31 major languages and over 100 minor ones, only 10\% of the population understands English, creating barriers to financial inclusion. We present a multilingual conversational AI system for a financial assistance use case that supports code-mixed languages like Hinglish, enabling natural interactions for India's diverse user base. Our system employs a multi-agent architecture with language classification, function management, and multilingual response generation. Through comparative analysis of multiple language models and real-world deployment, we demonstrate significant improvements in user engagement while maintaining low latency overhead (4-8\%). This work contributes to bridging the language gap in digital financial services for emerging markets.
PromptBridge: Cross-Model Prompt Transfer for Large Language Models
Large language models (LLMs) underpin applications in code generation, mathematical reasoning, and agent-based workflows. In practice, systems access LLMs via commercial APIs or open-source deployments, and the model landscape (e.g., GPT, Claude, Llama) evolves rapidly. This rapid evolution forces frequent model switches driven by capability, cost, deployment constraints, and privacy. Yet prompts are highly model-sensitive: reusing a prompt engineered for one model on another often yields substantially worse performance than a prompt optimized for the target model. We term this phenomenon Model Drifting. Through extensive empirical analysis across diverse LLM configurations, we show that model drifting is both common and severe. To address this challenge, we introduce PromptBridge, a training-free framework that preserves prompt effectiveness under model switches, enabling cross-model prompt transfer without costly per-task or per-model re-optimization. PromptBridge requires only a small set of alignment tasks for calibration. It first applies Model-Adaptive Reflective Prompt Evolution (MAP-RPE) to obtain task- and model-specific optimal prompts via iterative reflective refinement and quantitative evaluation. Using the resulting calibrated prompt pairs for the source and target models, PromptBridge learns a cross-model prompt mapping. At test time, i.e., for an unseen task, given a source-model prompt, this mapping directly produces an optimized prompt for the target model. Experiments in single-agent and multi-agent settings show that PromptBridge consistently improves downstream accuracy while reducing migration effort. The code will be available soon.
☆ DyFuLM: An Advanced Multimodal Framework for Sentiment Analysis
Understanding sentiment in complex textual expressions remains a fundamental challenge in affective computing. To address this, we propose a Dynamic Fusion Learning Model (DyFuLM), a multimodal framework designed to capture both hierarchical semantic representations and fine-grained emotional nuances. DyFuLM introduces two key moodules: a Hierarchical Dynamic Fusion module that adaptively integrates multi-level features, and a Gated Feature Aggregation module that regulates cross-layer information ffow to achieve balanced representation learning. Comprehensive experiments on multi-task sentiment datasets demonstrate that DyFuLM achieves 82.64% coarse-grained and 68.48% fine-grained accuracy, yielding the lowest regression errors (MAE = 0.0674, MSE = 0.0082) and the highest R^2 coefficient of determination (R^2= 0.6903). Furthermore, the ablation study validates the effectiveness of each module in DyFuLM. When all modules are removed, the accuracy drops by 0.91% for coarse-grained and 0.68% for fine-grained tasks. Keeping only the gated fusion module causes decreases of 0.75% and 0.55%, while removing the dynamic loss mechanism results in drops of 0.78% and 0.26% for coarse-grained and fine-grained sentiment classification, respectively. These results demonstrate that each module contributes significantly to feature interaction and task balance. Overall, the experimental findings further validate that DyFuLM enhances sentiment representation and overall performance through effective hierarchical feature fusion.
comment: 8 pages, 6 figures, preprint. Under review for a suitable AI conference
☆ BackportBench: A Multilingual Benchmark for Automated Backporting of Patches
Many modern software projects evolve rapidly to incorporate new features and security patches. It is important for users to update their dependencies to safer versions, but many still use older, vulnerable package versions because upgrading can be difficult and may break their existing codebase. Software developers can mitigate this problem by backporting security patches to older releases. However, manually backporting is time-consuming and error-prone. The effectiveness of existing automated backporting techniques on general software remains unclear since they typically target only code-hunk or function-level patch porting scenarios and are evaluated with imperfect metrics. To facilitate the development and evaluation of automated backporting techniques, we introduce BackportBench, the first comprehensive benchmark suite for patch backporting problem. BackportBench is a multilingual benchmark that contains 202 patch backporting problems from PyPI, Maven, and npm, each with executable Docker environments and relevant test cases. We evaluated existing patch porting methods and LLM-based techniques that have the potential to adapt to this task using BackportBench. The results show that the agentic method has outperformed traditional patch porting methods, especially on cases that require logical and structural changes. However, the performance varies across different programming languages. Based on the findings, we draw several implications for researchers and software practitioners in future work on automated backporting.
comment: Under review
☆ Stabilizing Reinforcement Learning with LLMs: Formulation and Practices
This paper proposes a novel formulation for reinforcement learning (RL) with large language models, explaining why and under what conditions the true sequence-level reward can be optimized via a surrogate token-level objective in policy gradient methods such as REINFORCE. Specifically, through a first-order approximation, we show that this surrogate becomes increasingly valid only when both the training-inference discrepancy and policy staleness are minimized. This insight provides a principled explanation for the crucial role of several widely adopted techniques in stabilizing RL training, including importance sampling correction, clipping, and particularly Routing Replay for Mixture-of-Experts (MoE) models. Through extensive experiments with a 30B MoE model totaling hundreds of thousands of GPU hours, we show that for on-policy training, the basic policy gradient algorithm with importance sampling correction achieves the highest training stability. When off-policy updates are introduced to accelerate convergence, combining clipping and Routing Replay becomes essential to mitigate the instability caused by policy staleness. Notably, once training is stabilized, prolonged optimization consistently yields comparable final performance regardless of cold-start initialization. We hope that the shared insights and the developed recipes for stable RL training will facilitate future research.
☆ MARSAD: A Multi-Functional Tool for Real-Time Social Media Analysis
MARSAD is a multifunctional natural language processing (NLP) platform designed for real-time social media monitoring and analysis, with a particular focus on the Arabic-speaking world. It enables researchers and non-technical users alike to examine both live and archived social media content, producing detailed visualizations and reports across various dimensions, including sentiment analysis, emotion analysis, propaganda detection, fact-checking, and hate speech detection. The platform also provides secure data-scraping capabilities through API keys for accessing public social media data. MARSAD's backend architecture integrates flexible document storage with structured data management, ensuring efficient processing of large and multimodal datasets. Its user-friendly frontend supports seamless data upload and interaction.
comment: 6 pages, 4 figures
☆ The Necessity of Imperfection:Reversing Model Collapse via Simulating Cognitive Boundedness
Although synthetic data is widely promoted as a remedy, its prevailing production paradigm -- one optimizing for statistical smoothness -- systematically removes the long-tail, cognitively grounded irregularities that characterize human text. Prolonged training on such statistically optimal but cognitively impoverished data accelerates model collapse. This paper proposes a paradigm shift: instead of imitating the surface properties of data, we simulate the cognitive processes that generate human text. We introduce the Prompt-driven Cognitive Computing Framework (PMCSF), whose core consists of a Cognitive State Decoder (CSD) that reverse-engineers unstructured text into structured cognitive vectors, and a Cognitive Text Encoder (CTE) that re-materializes these states into text enriched with human-typical imperfections via mathematically defined Cognitive Perturbation Operators. The framework is validated through a two-stage objective evaluation pipeline. First, in cognitive codec verification, CTE text yields a Jensen-Shannon divergence of 0.0614 from human text (vs. 0.4431 for standard LLM output), passes double-blind professional media review, and achieves an intraclass correlation coefficient ICC > 0.9 for cognitive profile alignment across heterogeneous models. Second, in functional gain evaluation, isomorphic stress tests in the A-share market show that strategies incorporating CTE-generated data reduce maximum drawdown by 47.4% during the 2015 crash and deliver 8.6% Defensive Alpha, exceeding transaction costs by a factor of 33. Our findings demonstrate that modelling human cognitive limitations -- not copying surface data -- enables synthetic data with genuine functional gain, offering a viable technical pathway toward resolving the AI data-collapse crisis.
comment: 38 pages,5 figures,30 tables. This paper proposes the Prompt-driven Cognitive Computing Framework (PMCSF) and validates it with A-share market stress tests (N=23 for 2015 crash, N=13 for 2024 bull market). Includes detailed appendices on cognitive vector definitions, perturbation operators, and financial backtest data
☆ EmoRAG: Evaluating RAG Robustness to Symbolic Perturbations KDD
Retrieval-Augmented Generation (RAG) systems are increasingly central to robust AI, enhancing large language model (LLM) faithfulness by incorporating external knowledge. However, our study unveils a critical, overlooked vulnerability: their profound susceptibility to subtle symbolic perturbations, particularly through near-imperceptible emoticon tokens such as "(@_@)" that can catastrophically mislead retrieval, termed EmoRAG. We demonstrate that injecting a single emoticon into a query makes it nearly 100% likely to retrieve semantically unrelated texts that contain a matching emoticon. Our extensive experiment across general question-answering and code domains, using a range of state-of-the-art retrievers and generators, reveals three key findings: (I) Single-Emoticon Disaster: Minimal emoticon injections cause maximal disruptions, with a single emoticon almost 100% dominating RAG output. (II) Positional Sensitivity: Placing an emoticon at the beginning of a query can cause severe perturbation, with F1-Scores exceeding 0.92 across all datasets. (III) Parameter-Scale Vulnerability: Counterintuitively, models with larger parameters exhibit greater vulnerability to the interference. We provide an in-depth analysis to uncover the underlying mechanisms of these phenomena. Furthermore, we raise a critical concern regarding the robustness assumption of current RAG systems, envisioning a threat scenario where an adversary exploits this vulnerability to manipulate the RAG system. We evaluate standard defenses and find them insufficient against EmoRAG. To address this, we propose targeted defenses, analyzing their strengths and limitations in mitigating emoticon-based perturbations. Finally, we outline future directions for building robust RAG systems.
comment: Accepted to ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) 2026
☆ Securing Large Language Models (LLMs) from Prompt Injection Attacks
Large Language Models (LLMs) are increasingly being deployed in real-world applications, but their flexibility exposes them to prompt injection attacks. These attacks leverage the model's instruction-following ability to make it perform malicious tasks. Recent work has proposed JATMO, a task-specific fine-tuning approach that trains non-instruction-tuned base models to perform a single function, thereby reducing susceptibility to adversarial instructions. In this study, we evaluate the robustness of JATMO against HOUYI, a genetic attack framework that systematically mutates and optimizes adversarial prompts. We adapt HOUYI by introducing custom fitness scoring, modified mutation logic, and a new harness for local model testing, enabling a more accurate assessment of defense effectiveness. We fine-tuned LLaMA 2-7B, Qwen1.5-4B, and Qwen1.5-0.5B models under the JATMO methodology and compared them with a fine-tuned GPT-3.5-Turbo baseline. Results show that while JATMO reduces attack success rates relative to instruction-tuned models, it does not fully prevent injections; adversaries exploiting multilingual cues or code-related disruptors still bypass defenses. We also observe a trade-off between generation quality and injection vulnerability, suggesting that better task performance often correlates with increased susceptibility. Our results highlight both the promise and limitations of fine-tuning-based defenses and point toward the need for layered, adversarially informed mitigation strategies.
comment: 10 pages, 1 figure, 1 table
☆ Agreement-Constrained Probabilistic Minimum Bayes Risk Decoding AACL 2025
Minimum Bayes risk (MBR) decoding generates high-quality translations by maximizing the expected utility of output candidates, but it evaluates all pairwise scores over the candidate set; hence, it takes quadratic time with respect to the number of candidates. To reduce the number of utility function calls, probabilistic MBR (PMBR) decoding partially evaluates quality scores using sampled pairs of candidates and completes the missing scores with a matrix completion algorithm. Nevertheless, it degrades the translation quality as the number of utility function calls is reduced. Therefore, to improve the trade-off between quality and cost, we propose agreement-constrained PMBR (AC-PMBR) decoding, which leverages a knowledge distilled model to guide the completion of the score matrix. Our AC-PMBR decoding improved approximation errors of matrix completion by up to 3 times and achieved higher translation quality compared with PMBR decoding at a comparable computational cost on the WMT'23 En$\leftrightarrow$De translation tasks.
comment: IJCNLP-AACL 2025 Main
☆ Kardia-R1: Unleashing LLMs to Reason toward Understanding and Empathy for Emotional Support via Rubric-as-Judge Reinforcement Learning
As web platforms evolve towards greater personalization and emotional complexity, conversational agents must transcend superficial empathy to demonstrate identity-aware emotional reasoning. However, existing systems face two limitations: (1) reliance on situation-centric datasets lacking persistent user identity, which hampers the capture of personalized affective nuances; and (2) dependence on opaque, coarse reward signals that hinder development of verifiable empathetic reasoning. To address these gaps, we introduce KardiaBench, a large-scale user-grounded benchmark comprising 178,080 QA pairs across 22,080 multi-turn conversations anchored to 671 real-world profiles. The dataset is constructed via a model-in-the-loop pipeline with iterative rubric-guided refinement to ensure psychological plausibility and persona consistency. This progressive empathy pipeline that integrates user comprehension, contextual reasoning, and emotion perception into conversations, followed by iterative critique and rubric-based refinement to ensure psychological plausibility, emotional fidelity, and persona consistency. Building on this, we propose Kardia-R1, a framework that trains models for interpretable, stepwise empathetic cognition. Kardia-R1 leverages Rubric-as-Judge Empathetic Reinforcement Learning (Rubric-ERL), a GRPO-based method that uses explainable, human-aligned rubric rewards to tightly couple user understanding, emotional inference, and supportive response generation. Extensive experiments across four LLM backbones demonstrate that Kardia-R1 consistently outperforms othet methods in emotion accuracy, empathy, relevance, persona consistency, and safety. Our dataset and model will be released at https://github.com/JhCircle/Kardia-R1.
☆ SUPERChem: A Multimodal Reasoning Benchmark in Chemistry
Current benchmarks for evaluating the chemical reasoning capabilities of Large Language Models (LLMs) are limited by oversimplified tasks, lack of process-level evaluation, and misalignment with expert-level chemistry skills. To address these issues, we introduce SUPERChem, a benchmark of 500 expert-curated reasoning-intensive chemistry problems, covering diverse subfields and provided in both multimodal and text-only formats. Original content and an iterative curation pipeline eliminate flawed items and mitigate data contamination. Each problem is paired with an expert-authored solution path, enabling Reasoning Path Fidelity (RPF) scoring to evaluate reasoning quality beyond final-answer accuracy. Evaluations against a human baseline of 40.3% accuracy show that even the best-performing model, GPT-5 (High), reaches only 38.5%, followed closely by Gemini 2.5 Pro (37.9%) and DeepSeek-V3.1-Think (37.3%). SUPERChem elicits multi-step, multimodal reasoning, reveals model-dependent effects of visual information, and distinguishes high-fidelity reasoners from heuristic ones. By providing a challenging benchmark and a reliable evaluation framework, SUPERChem aims to facilitate the advancement of LLMs toward expert-level chemical intelligence. The dataset of the benchmark is available at https://huggingface.co/datasets/ZehuaZhao/SUPERChem.
comment: 35 pages, 11 figures, 5 tables
☆ Sentiment Analysis and Emotion Classification using Machine Learning Techniques for Nagamese Language - A Low-resource Language
The Nagamese language, a.k.a Naga Pidgin, is an Assamese-lexified creole language developed primarily as a means of communication in trade between the people from Nagaland and people from Assam in the north-east India. Substantial amount of work in sentiment analysis has been done for resource-rich languages like English, Hindi, etc. However, no work has been done in Nagamese language. To the best of our knowledge, this is the first attempt on sentiment analysis and emotion classification for the Nagamese Language. The aim of this work is to detect sentiments in terms of polarity (positive, negative and neutral) and basic emotions contained in textual content of Nagamese language. We build sentiment polarity lexicon of 1,195 nagamese words and use these to build features along with additional features for supervised machine learning techniques using Na"ive Bayes and Support Vector Machines. Keywords: Nagamese, NLP, sentiment analysis, machine learning
comment: 10 pages
☆ Large Language Models Cannot Reliably Detect Vulnerabilities in JavaScript: The First Systematic Benchmark and Evaluation
Researchers have proposed numerous methods to detect vulnerabilities in JavaScript, especially those assisted by Large Language Models (LLMs). However, the actual capability of LLMs in JavaScript vulnerability detection remains questionable, necessitating systematic evaluation and comprehensive benchmarks. Unfortunately, existing benchmarks suffer from three critical limitations: (1) incomplete coverage, such as covering a limited subset of CWE types; (2) underestimation of LLM capabilities caused by unreasonable ground truth labeling; and (3) overestimation due to unrealistic cases such as using isolated vulnerable files rather than complete projects. In this paper, we introduce, for the first time, three principles for constructing a benchmark for JavaScript vulnerability detection that directly address these limitations: (1) comprehensiveness, (2) no underestimation, and (3) no overestimation. Guided by these principles, we propose FORGEJS, the first automatic benchmark generation framework for evaluating LLMs' capability in JavaScript vulnerability detection. Then, we use FORGEJS to construct ARENAJS-the first systematic benchmark for LLM-based JavaScript vulnerability detection-and further propose JUDGEJS, an automatic evaluation framework. We conduct the first systematic evaluation of LLMs for JavaScript vulnerability detection, leveraging JUDGEJS to assess seven popular commercial LLMs on ARENAJS. The results show that LLMs not only exhibit limited reasoning capabilities, but also suffer from severe robustness defects, indicating that reliable JavaScript vulnerability detection with LLMs remains an open challenge.
☆ Generative Adversarial Gumbel MCTS for Abstract Visual Composition Generation
We study abstract visual composition, in which identity is primarily determined by the spatial configuration and relations among a small set of geometric primitives (e.g., parts, symmetry, topology). They are invariant primarily to texture and photorealistic detail. Composing such structures from fixed components under geometric constraints and vague goal specification (such as text) is non-trivial due to combinatorial placement choices, limited data, and discrete feasibility (overlap-free, allowable orientations), which create a sparse solution manifold ill-suited to purely statistical pixel-space generators. We propose a constraint-guided framework that combines explicit geometric reasoning with neural semantics. An AlphaGo-style search enforces feasibility, while a fine-tuned vision-language model scores semantic alignment as reward signals. Our algorithm uses a policy network as a heuristic in Monte-Carlo Tree Search and fine-tunes the network via search-generated plans. Inspired by the Generative Adversarial Network, we use the generated instances for adversarial reward refinement. Over time, the generation should approach the actual data more closely when the reward model cannot distinguish between generated instances and ground-truth. In the Tangram Assembly task, our approach yields higher validity and semantic fidelity than diffusion and auto-regressive baselines, especially as constraints tighten.
☆ Pay Attention Later: From Vector Space Diffusion to Linearithmic Spectral Phase-Locking
Standard Transformers suffer from a "Semantic Alignment Tax", a prohibitive optimization cost required to organize a chaotic initialization into a coherent geometric map via local gradient diffusion. We hypothesize that this reliance on diffusive learning creates "Catastrophic Rigidity", rendering models unable to adapt to novel concepts without destroying their pre-trained reasoning capabilities. To isolate this phenomenon, we introduce Iterative Semantic Map Refinement (ISMR), a diagnostic protocol revealing that alignment is a fixed geometric barrier that scaling cannot solve; a 20-layer model overcomes this barrier no faster than a 1-layer model. We introduce the Phase-Resonant Intelligent Spectral Model (PRISM). PRISM encodes semantic identity as resonant frequencies in the complex domain (C^d) and replaces quadratic self-attention with linearithmic O(N log N) Gated Harmonic Convolutions. We validate PRISM on the WMT14 translation task. While the Standard Transformer maintains a slight edge in general competence on static benchmarks (23.88 vs 21.40 BLEU), it fails the "Plasticity-Stability" stress test completely. When injected with novel concepts, the Transformer suffers Catastrophic Forgetting, degrading by -10.55 BLEU points while achieving only 60% acquisition. In contrast, PRISM demonstrates Lossless Plasticity, achieving 96% 5-shot acquisition with negligible degradation (-0.84 BLEU). These results suggest that harmonic representations effectively decouple memory from reasoning, offering a structural solution to the plasticity-stability dilemma in real-time knowledge adaptation.
comment: 12 pages, 5 figures
☆ Conveying Imagistic Thinking in Traditional Chinese Medicine Translation: A Prompt Engineering and LLM-Based Evaluation Framework
Traditional Chinese Medicine (TCM) theory is built on imagistic thinking, in which medical principles and diagnostic and therapeutic logic are structured through metaphor and metonymy. However, existing English translations largely rely on literal rendering, making it difficult for target-language readers to reconstruct the underlying conceptual networks and apply them in clinical practice. This study adopted a human-in-the-loop (HITL) framework and selected four passages from the medical canon Huangdi Neijing that are fundamental in theory. Through prompt-based cognitive scaffolding, DeepSeek V3.1 was guided to identify metaphor and metonymy in the source text and convey the theory in translation. In the evaluation stage, ChatGPT 5 Pro and Gemini 2.5 Pro were instructed by prompts to simulate three types of real-world readers. Human translations, baseline model translations, and prompt-adjusted translations were scored by the simulated readers across five cognitive dimensions, followed by structured interviews and Interpretative Phenomenological Analysis (IPA). Results show that the prompt-adjusted LLM translations perform best across all five dimensions, with high cross-model and cross-role consistency. The interview themes reveal differences between human and machine translation, effective strategies for metaphor and metonymy transfer, and readers' cognitive preferences. This study provides a cognitive, efficient, and replicable HITL methodological pathway for the translation of ancient, concept-dense texts such as TCM.
comment: 3 figures
☆ Generalist Large Language Models Outperform Clinical Tools on Medical Benchmarks
Specialized clinical AI assistants are rapidly entering medical practice, often framed as safer or more reliable than general-purpose large language models (LLMs). Yet, unlike frontier models, these clinical tools are rarely subjected to independent, quantitative evaluation, creating a critical evidence gap despite their growing influence on diagnosis, triage, and guideline interpretation. We assessed two widely deployed clinical AI systems (OpenEvidence and UpToDate Expert AI) against three state-of-the-art generalist LLMs (GPT-5, Gemini 3 Pro, and Claude Sonnet 4.5) using a 1,000-item mini-benchmark combining MedQA (medical knowledge) and HealthBench (clinician-alignment) tasks. Generalist models consistently outperformed clinical tools, with GPT-5 achieving the highest scores, while OpenEvidence and UpToDate demonstrated deficits in completeness, communication quality, context awareness, and systems-based safety reasoning. These findings reveal that tools marketed for clinical decision support may often lag behind frontier LLMs, underscoring the urgent need for transparent, independent evaluation before deployment in patient-facing workflows.
comment: 17 pages, 4 figures (2 regular, 2 supplemental)
☆ TempPerturb-Eval: On the Joint Effects of Internal Temperature and External Perturbations in RAG Robustness
The evaluation of Retrieval-Augmented Generation (RAG) systems typically examines retrieval quality and generation parameters like temperature in isolation, overlooking their interaction. This work presents a systematic investigation of how text perturbations (simulating noisy retrieval) interact with temperature settings across multiple LLM runs. We propose a comprehensive RAG Perturbation-Temperature Analysis Framework that subjects retrieved documents to three distinct perturbation types across varying temperature settings. Through extensive experiments on HotpotQA with both open-source and proprietary LLMs, we demonstrate that performance degradation follows distinct patterns: high-temperature settings consistently amplify vulnerability to perturbations, while certain perturbation types exhibit non-linear sensitivity across the temperature range. Our work yields three key contributions: (1) a diagnostic benchmark for assessing RAG robustness, (2) an analytical framework for quantifying perturbation-temperature interactions, and (3) practical guidelines for model selection and parameter tuning under noisy retrieval conditions.
☆ DrawingBench: Evaluating Spatial Reasoning and UI Interaction Capabilities of Large Language Models through Mouse-Based Drawing Tasks AAAI 2026
As agentic AI systems increasingly operate autonomously, establishing trust through verifiable evaluation becomes critical. Yet existing benchmarks lack the transparency and auditability needed to assess whether agents behave reliably. We present DrawingBench, a verification framework for evaluating the trustworthiness of agentic LLMs through spatial reasoning tasks that require generating sequences of low-level GUI actions. Unlike opaque evaluations, DrawingBench provides transparent, rule-based assessment: 8 objective criteria enable reproducible scoring, while action-level inspection allows stakeholders to audit agent behavior. Our framework comprises 250 diverse prompts across 20 categories and 4 difficulty levels, deterministic evaluation metrics, and an external oversight mechanism through multi-turn feedback that enables human control over agent refinement. Evaluating four state-of-the-art LLMs (Claude-4 Sonnet, GPT-4.1, GPT-4.1-mini, Gemini-2.5 Flash) across 1,000 tests, we establish both capabilities and limitations: models achieved 92.8% perfect performance with structured external feedback driving significant improvements (average +3.2%, up to +32.8% for complex scenes), but systematic error patterns emerged in tool state management and long-horizon planning. Notably, specification clarity proved more important than task complexity -- models achieved 100% perfect performance when given explicit, verifiable criteria. These findings demonstrate that transparent evaluation frameworks can establish trust in agentic systems, with external oversight proving more reliable than self-correction for guiding agent behavior. Our open-source framework provides a template for trustworthy agent assessment. Code and data: https://github.com/hyunjun1121/DrawingBench
comment: AAAI 2026 TrustAgent Workshop
♻ ☆ The AI Productivity Index (APEX)
We present an extended version of the AI Productivity Index (APEX-v1-extended), a benchmark for assessing whether frontier models are capable of performing economically valuable tasks in four jobs: investment banking associate, management consultant, big law associate, and primary care physician (MD). This technical report details the extensions to APEX-v1, including an increase in the held-out evaluation set from n = 50 to n = 100 cases per job (n = 400 total) and updates to the grading methodology. We present a new leaderboard, where GPT5 (Thinking = High) remains the top performing model with a score of 67.0%. APEX-v1-extended shows that frontier models still have substantial limitations when performing typical professional tasks. To support further research, we are open sourcing n = 25 non-benchmark example cases per role (n = 100 total) along with our evaluation harness.
♻ ☆ SpikingBrain: Spiking Brain-inspired Large Models
Mainstream Transformer-based large language models face major efficiency bottlenecks: training computation scales quadratically with sequence length, and inference memory grows linearly, limiting long-context processing. Building large models on non-NVIDIA platforms also poses challenges for stable and efficient training. To address this, we introduce SpikingBrain, a family of brain-inspired models designed for efficient long-context training and inference. SpikingBrain leverages the MetaX GPU cluster and focuses on three aspects: (1) Model Architecture: linear and hybrid-linear attention architectures with adaptive spiking neurons; (2) Algorithmic Optimizations: an efficient, conversion-based training pipeline and a dedicated spike coding framework; (3) System Engineering: customized training frameworks, operator libraries, and parallelism strategies tailored to MetaX hardware. Using these techniques, we develop two models: SpikingBrain-7B, a linear LLM, and SpikingBrain-76B, a hybrid-linear MoE LLM. These models demonstrate the feasibility of large-scale LLM development on non-NVIDIA platforms, and training remains stable for weeks on hundreds of MetaX GPUs with Model FLOPs Utilization at expected levels. SpikingBrain achieves performance comparable to open-source Transformer baselines while using only about 150B tokens for continual pre-training. Our models also significantly improve long-context efficiency and deliver inference with (partially) constant memory and event-driven spiking behavior. For example, SpikingBrain-7B attains over 100x speedup in Time to First Token for 4M-token sequences. Furthermore, the proposed spiking scheme achieves 69.15 percent sparsity, enabling low-power operation. Overall, this work demonstrates the potential of brain-inspired mechanisms to drive the next generation of efficient and scalable large model design.
♻ ☆ Med-gte-hybrid: A contextual embedding transformer model for extracting actionable information from clinical texts
We introduce a novel contextual embedding model med-gte-hybrid that was derived from the gte-large sentence transformer to extract information from unstructured clinical narratives. Our model tuning strategy for med-gte-hybrid combines contrastive learning and a denoising autoencoder. To evaluate the performance of med-gte-hybrid, we investigate several clinical prediction tasks in large patient cohorts extracted from the MIMIC-IV dataset, including Chronic Kidney Disease (CKD) patient prognosis, estimated glomerular filtration rate (eGFR) prediction, and patient mortality prediction. Furthermore, we demonstrate that the med-gte-hybrid model improves patient stratification, clustering, and text retrieval, thus outperforms current state-of-the-art models on the Massive Text Embedding Benchmark (MTEB). While some of our evaluations focus on CKD, our hybrid tuning of sentence transformers could be transferred to other medical domains and has the potential to improve clinical decision-making and personalised treatment pathways in various healthcare applications.
comment: 22 pages, 4 figures, 2 tables
♻ ☆ Reliable Reasoning Beyond Natural Language
Despite their linguistic competence, Large Language Models (LLMs) often struggle to reason reliably and flexibly. To identify these shortcomings, we introduce the Non-Linear Reasoning (NLR) dataset, a collection of 55 unique, hand-designed problems that target reasoning bottlenecks arising from the sequential prediction paradigm of LLMs and the inherently linear nature of natural language. NLR tasks require iterative updates, backtracking, and reasoning across multiple parallel chains of thought but only basic arithmetic to solve. To address these limitations, we propose a neurosymbolic reasoning approach that integrates Prolog, a symbolic reasoning engine, into the inference pipeline of LLMs. This division of labor shifts the LLM's task from iterative computations to inferring all information, explicit or implied through common sense, and encoding it as logical code. Our method yields large and robust performance gains across the GSM8k and BIG-bench Navigate benchmarks and achieves near-perfect accuracy on NLR problems, maintaining robustness even as variable interdependence - the number of other variables on which the value of a single variable depends - increases.
♻ ☆ LLMs can hide text in other text of the same length
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present Calgacus, a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages
♻ ☆ Influence Functions for Efficient Data Selection in Reasoning
Fine-tuning large language models (LLMs) on chain-of-thought (CoT) data shows that a small amount of high-quality data can outperform massive datasets. Yet, what constitutes "quality" remains ill-defined. Existing reasoning methods rely on indirect heuristics such as problem difficulty or trace length, while instruction-tuning has explored a broader range of automated selection strategies, but rarely in the context of reasoning. We propose to define reasoning data quality using influence functions, which measure the causal effect of individual CoT examples on downstream accuracy, and introduce influence-based pruning, which consistently outperforms perplexity and embedding-based baselines on math reasoning within a model family.
comment: 4 pages, 2 figures; added link to codebase
♻ ☆ From Code Foundation Models to Agents and Applications: A Practical Guide to Code Intelligence
Large language models (LLMs) have fundamentally transformed automated software development by enabling direct translation of natural language descriptions into functional code, driving commercial adoption through tools like Github Copilot (Microsoft), Cursor (Anysphere), Trae (ByteDance), and Claude Code (Anthropic). While the field has evolved dramatically from rule-based systems to Transformer-based architectures, achieving performance improvements from single-digit to over 95\% success rates on benchmarks like HumanEval. In this work, we provide a comprehensive synthesis and practical guide (a series of analytic and probing experiments) about code LLMs, systematically examining the complete model life cycle from data curation to post-training through advanced prompting paradigms, code pre-training, supervised fine-tuning, reinforcement learning, and autonomous coding agents. We analyze the code capability of the general LLMs (GPT-4, Claude, LLaMA) and code-specialized LLMs (StarCoder, Code LLaMA, DeepSeek-Coder, and QwenCoder), critically examining the techniques, design decisions, and trade-offs. Further, we articulate the research-practice gap between academic research (e.g., benchmarks and tasks) and real-world deployment (e.g., software-related code tasks), including code correctness, security, contextual awareness of large codebases, and integration with development workflows, and map promising research directions to practical needs. Last, we conduct a series of experiments to provide a comprehensive analysis of code pre-training, supervised fine-tuning, and reinforcement learning, covering scaling law, framework selection, hyperparameter sensitivity, model architectures, and dataset comparisons.
♻ ☆ Adversarial Confusion Attack: Disrupting Multimodal Large Language Models
We introduce the Adversarial Confusion Attack, a new class of threats against multimodal large language models (MLLMs). Unlike jailbreaks or targeted misclassification, the goal is to induce systematic disruption that makes the model generate incoherent or confidently incorrect outputs. Practical applications include embedding such adversarial images into websites to prevent MLLM-powered AI Agents from operating reliably. The proposed attack maximizes next-token entropy using a small ensemble of open-source MLLMs. In the white-box setting, we show that a single adversarial image can disrupt all models in the ensemble, both in the full-image and Adversarial CAPTCHA settings. Despite relying on a basic adversarial technique (PGD), the attack generates perturbations that transfer to both unseen open-source (e.g., Qwen3-VL) and proprietary (e.g., GPT-5.1) models.
♻ ☆ RealWebAssist: A Benchmark for Long-Horizon Web Assistance with Real-World Users SC
To achieve successful assistance with long-horizon web-based tasks, AI agents must be able to sequentially follow real-world user instructions over a long period. Unlike existing web-based agent benchmarks, sequential instruction following in the real world poses significant challenges beyond performing a single, clearly defined task. For instance, real-world human instructions can be ambiguous, require different levels of AI assistance, and may evolve over time, reflecting changes in the user's mental state. To address this gap, we introduce RealWebAssist, a novel benchmark designed to evaluate sequential instruction-following in realistic scenarios involving long-horizon interactions with the web, visual GUI grounding, and understanding ambiguous real-world user instructions. RealWebAssist includes a dataset of sequential instructions collected from real-world human users. Each user instructs a web-based assistant to perform a series of tasks on multiple websites. A successful agent must reason about the true intent behind each instruction, keep track of the mental state of the user, understand user-specific routines, and ground the intended tasks to actions on the correct GUI elements. Our experimental results show that state-of-the-art models struggle to understand and ground user instructions, posing critical challenges in following real-world user instructions for long-horizon web assistance.
comment: Project Website: https://scai.cs.jhu.edu/projects/RealWebAssist/ Code: https://github.com/SCAI-JHU/RealWebAssist
♻ ☆ DPRM: A Dual Implicit Process Reward Model in Multi-Hop Question Answering
In multi-hop question answering (MHQA) tasks, Chain of Thought (CoT) improves the quality of generation by guiding large language models (LLMs) through multi-step reasoning, and Knowledge Graphs (KGs) reduce hallucinations via semantic matching. Outcome Reward Models (ORMs) provide feedback after generating the final answers but fail to evaluate the process for multi-step reasoning. Traditional Process Reward Models (PRMs) evaluate the reasoning process but require costly human annotations or rollout generation. While implicit PRM is trained only with outcome signals and derives step rewards through reward parameterization without explicit annotations, it is more suitable for multi-step reasoning in MHQA tasks. However, existing implicit PRM has only been explored for plain text scenarios. When adapting to MHQA tasks, it cannot handle the graph structure constraints in KGs and capture the potential inconsistency between CoT and KG paths. To address these limitations, we propose the DPRM (Dual Implicit Process Reward Model). It trains two implicit PRMs for CoT and KG reasoning in MHQA tasks. Both PRMs, namely KG-PRM and CoT-PRM, derive step-level rewards from outcome signals via reward parameterization without additional explicit annotations. Among them, KG-PRM uses preference pairs to learn structural constraints from KGs. DPRM further introduces a consistency constraint between CoT and KG reasoning steps, making the two PRMs mutually verify and collaboratively optimize the reasoning paths. We also provide a theoretical demonstration of the derivation of process rewards. Experimental results show that our method outperforms 13 baselines on multiple datasets with up to 16.6% improvement on Hit@1.
♻ ☆ SpeechRole: A Large-Scale Dataset and Benchmark for Evaluating Speech Role-Playing Agents
Recently, role-playing agents have emerged as a promising paradigm for achieving personalized interaction and emotional resonance. Existing research primarily focuses on the textual modality, neglecting the critical dimension of speech in realistic interactive scenarios. In particular, there is a lack of systematic evaluation for Speech Role-Playing Agents (SRPAs). To address this gap, we construct SpeechRole-Data, a large-scale, high-quality dataset that comprises 98 diverse roles and 112k speech-based single-turn and multi-turn conversations. Each role demonstrates distinct vocal characteristics, including timbre and prosody, thereby enabling more sophisticated speech role-playing. Furthermore, we propose SpeechRole-Eval, a multidimensional evaluation benchmark that systematically assesses SRPAs performance in key aspects such as fundamental interaction ability, speech expressiveness, and role-playing fidelity. Experimental results reveal the advantages and challenges of both cascaded and end-to-end speech role-playing agents in maintaining vocal style consistency and role coherence. We release all data, code, and baseline models to provide a solid foundation for speech-driven multimodal role-playing research and to foster further developments in this field.
♻ ☆ Eye of Judgement: Dissecting the Evaluation of Russian-speaking LLMs with POLLUX
We introduce POLLUX, a comprehensive open-source benchmark designed to evaluate the generative capabilities of large language models (LLMs) in Russian. Our main contribution is a novel evaluation methodology that enhances the interpretability of LLM assessment. For each task type, we define a set of detailed criteria and develop a scoring protocol where models evaluate responses and provide justifications for their ratings. This enables transparent, criteria-driven evaluation beyond traditional resource-consuming, side-by-side human comparisons. POLLUX includes a detailed, fine-grained taxonomy of 35 task types covering diverse generative domains such as code generation, creative writing, and practical assistant use cases, totaling 2,100 manually crafted and professionally authored prompts. Each task is categorized by difficulty (easy/medium/hard), with experts constructing the dataset entirely from scratch. We also release a family of LLM-as-a-Judge (7B and 32B) evaluators trained for nuanced assessment of generative outputs. This approach provides scalable, interpretable evaluation and annotation tools for model development, effectively replacing costly and less precise human judgments.
comment: short version
♻ ☆ Debating Truth: Debate-driven Claim Verification with Multiple Large Language Model Agents
Claim verification is essential for digital literacy, yet state-of-the-art single-agent methods often struggle with complex claims that require nuanced analysis of multifaceted online evidence. Inspired by real-world human fact-checking practices, we propose \textbf{DebateCV}, the first debate-driven claim verification framework powered by multiple LLM agents. In DebateCV, two \textit{Debaters} argue opposing stances over multiple rounds to surface subtle errors in single-agent assessments. A decisive \textit{Moderator} is then required to weigh the evidential strength of conflicting arguments to deliver an accurate verdict. Yet zero-shot agents struggle to adjudicate multi-round debates for verifying complex claims, often defaulting to neutral judgements, and no datasets exist for training agents for this role. To bridge this gap, we propose \textbf{Debate-SFT}, a post-training framework that leverages synthetic data to enhance agents' ability to effectively adjudicate debates for claim verification. Results show that our methods surpass state-of-the-art non-debate approaches in both accuracy (across various evidence conditions) and justification quality, which strengthens societal resilience against misinformation and contributes to a more trustworthy online information ecosystem.
♻ ☆ Comprehensive Evaluation on Lexical Normalization: Boundary-Aware Approaches for Unsegmented Languages EMNLP 2025
Lexical normalization research has sought to tackle the challenge of processing informal expressions in user-generated text, yet the absence of comprehensive evaluations leaves it unclear which methods excel across multiple perspectives. Focusing on unsegmented languages, we make three key contributions: (1) creating a large-scale, multi-domain Japanese normalization dataset, (2) developing normalization methods based on state-of-the-art pretrained models, and (3) conducting experiments across multiple evaluation perspectives. Our experiments show that both encoder-only and decoder-only approaches achieve promising results in both accuracy and efficiency.
comment: EMNLP 2025 (Findings), 26 pages
♻ ☆ CCFQA: A Benchmark for Cross-Lingual and Cross-Modal Speech and Text Factuality Evaluation AAAI 2026
As Large Language Models (LLMs) are increasingly popularized in the multilingual world, ensuring hallucination-free factuality becomes markedly crucial. However, existing benchmarks for evaluating the reliability of Multimodal Large Language Models (MLLMs) predominantly focus on textual or visual modalities with a primary emphasis on English, which creates a gap in evaluation when processing multilingual input, especially in speech. To bridge this gap, we propose a novel Cross-lingual and Cross-modal Factuality benchmark (CCFQA). Specifically, the CCFQA benchmark contains parallel speech-text factual questions across 8 languages, designed to systematically evaluate MLLMs' cross-lingual and cross-modal factuality capabilities. Our experimental results demonstrate that current MLLMs still face substantial challenges on the CCFQA benchmark. Furthermore, we propose a few-shot transfer learning strategy that effectively transfers the Question Answering (QA) capabilities of LLMs in English to multilingual Spoken Question Answering (SQA) tasks, achieving competitive performance with GPT-4o-mini-Audio using just 5-shot training. We release CCFQA as a foundational research resource to promote the development of MLLMs with more robust and reliable speech understanding capabilities. Our code and dataset are available at https://github.com/yxduir/ccfqa.
comment: Accepted in AAAI 2026
♻ ☆ Soft Adaptive Policy Optimization
Reinforcement learning (RL) plays an increasingly important role in enhancing the reasoning capabilities of large language models (LLMs), yet stable and performant policy optimization remains challenging. Token-level importance ratios often exhibit high variance-a phenomenon exacerbated in Mixture-of-Experts models-leading to unstable updates. Existing group-based policy optimization methods, such as GSPO and GRPO, alleviate this problem via hard clipping, making it difficult to maintain both stability and effective learning. We propose Soft Adaptive Policy Optimization (SAPO), which replaces hard clipping with a smooth, temperature-controlled gate that adaptively attenuates off-policy updates while preserving useful learning signals. Compared with GSPO and GRPO, SAPO is both sequence-coherent and token-adaptive. Like GSPO, SAPO maintains sequence-level coherence, but its soft gating forms a continuous trust region that avoids the brittle hard clipping band used in GSPO. When a sequence contains a few highly off-policy tokens, GSPO suppresses all gradients for that sequence, whereas SAPO selectively down-weights only the offending tokens and preserves the learning signal from the near-on-policy ones, improving sample efficiency. Relative to GRPO, SAPO replaces hard token-level clipping with smooth, temperature-controlled scaling, enabling more informative and stable updates. Empirical results on mathematical reasoning benchmarks indicate that SAPO exhibits improved training stability and higher Pass@1 performance under comparable training budgets. Moreover, we employ SAPO to train the Qwen3-VL model series, demonstrating that SAPO yields consistent performance gains across diverse tasks and different model sizes. Overall, SAPO provides a more reliable, scalable, and effective optimization strategy for RL training of LLMs.
♻ ☆ Human Decision-making is Susceptible to AI-driven Manipulation
AI systems are increasingly intertwined with daily life, assisting users with various tasks and guiding decision-making. This integration introduces risks of AI-driven manipulation, where such systems may exploit users' cognitive biases and emotional vulnerabilities to steer them toward harmful outcomes. Through a randomized between-subjects experiment with 233 participants, we examined human susceptibility to such manipulation in financial (e.g., purchases) and emotional (e.g., conflict resolution) decision-making contexts. Participants interacted with one of three AI agents: a neutral agent (NA) optimizing for user benefit without explicit influence, a manipulative agent (MA) designed to covertly influence beliefs and behaviors, or a strategy-enhanced manipulative agent (SEMA) equipped with established psychological tactics, allowing it to select and apply them adaptively during interactions to reach its hidden objectives. By analyzing participants' preference ratings, we found significant susceptibility to AI-driven manipulation. Particularly across both decision-making domains, interacting with the manipulative agents significantly increased the odds of rating hidden incentives higher than optimal options (Financial, MA: OR=5.24, SEMA: OR=7.96; Emotional, MA: OR=5.52, SEMA: OR=5.71) compared to the NA group. Notably, we found no clear evidence that employing psychological strategies (SEMA) was overall more effective than simple manipulative objectives (MA) on our primary outcomes. Hence, AI-driven manipulation could become widespread even without requiring sophisticated tactics and expertise. While our findings are preliminary and derived from hypothetical, low-stakes scenarios, we highlight a critical vulnerability in human-AI interactions, emphasizing the need for ethical safeguards and regulatory frameworks to protect human autonomy.
comment: Work in progress
♻ ☆ DESIGNER: Design-Logic-Guided Multidisciplinary Data Synthesis for LLM Reasoning
Large language models (LLMs) have achieved remarkable success in many natural language tasks but still struggle with complex, multi-step reasoning, particularly across diverse disciplines. Existing reasoning datasets often lack disciplinary breadth, reasoning depth, and diversity, as well as guiding principles for question synthesis. We propose DESIGNER: a DESIGN-logic-guidEd Reasoning data synthesis pipeline that leverages naturally available, extensive raw documents (e.g., book corpus and web corpus) to generate multidisciplinary challenging questions. We introduce the concept of "design logic" and instruct LLMs to mimic human educators' question-creation process, enabling the automated synthesis of large-scale, high-difficulty questions. We use LLMs to reverse-engineer and abstract over 120,000 design logics from existing questions across various disciplines. By matching these design logics with source documents, we are able to generate reasoning questions with controllable question types and difficulty levels. Using this pipeline, we synthesized two large-scale reasoning datasets that span 75 disciplines: DLR-Book (3.04 million questions from the book corpus) and DLR-Web (1.66 million questions from the web corpus). Data analysis indicates that the questions synthesized by our method exhibit greater difficulty and diversity compared to those in the baseline datasets. We validate our synthesized data through supervised fine-tuning (SFT) on the Qwen3 and Llama3 model families. Our data substantially enhances their multidisciplinary reasoning capabilities, outperforming existing datasets. Notably, by applying SFT on the base versions of these models using only our data, we even surpass their official final models that have undergone the full post-training process.
♻ ☆ A Method for Handling Negative Similarities in Explainable Graph Spectral Clustering of Text Documents -- Extended Version CCS
This paper investigates the problem of Graph Spectral Clustering with negative similarities, resulting from document embeddings different from the traditional Term Vector Space (like doc2vec, GloVe, etc.). Solutions for combinatorial Laplacians and normalized Laplacians are discussed. An experimental investigation shows the advantages and disadvantages of 6 different solutions proposed in the literature and in this research. The research demonstrates that GloVe embeddings frequently cause failures of normalized Laplacian based GSC due to negative similarities. Furthermore, application of methods curing similarity negativity leads to accuracy improvement for both combinatorial and normalized Laplacian based GSC. It also leads to applicability for GloVe embeddings of explanation methods developed originally bythe authors for Term Vector Space embeddings.
comment: 1 figure, 17 pages, this is an extended version of a paper accepted for the 25th International Conference on Computational Science (ICCS), 7-9 July 2025
♻ ☆ MERA Code: A Unified Framework for Evaluating Code Generation Across Tasks
Advancements in LLMs have enhanced task automation in software engineering; however, current evaluations primarily focus on natural language tasks, overlooking code quality. Most benchmarks prioritize high-level reasoning over executable code and real-world performance, leaving gaps in understanding true capabilities and risks associated with these models in production. To address this issue, we propose MERA Code, a new addition to the MERA benchmark family, specifically focused on evaluating code for the latest code generation LLMs in Russian. This benchmark includes 11 evaluation tasks that span 8 programming languages. Our proposed evaluation methodology features a taxonomy that outlines the practical coding skills necessary for models to complete these tasks. The benchmark comprises an open-source codebase for users to conduct MERA assessments, a scoring system compatible with various programming environments, and a platform featuring a leaderboard and submission system. We evaluate open LLMs and frontier API models, analyzing their limitations in terms of practical coding tasks in non-English languages. We are publicly releasing MERA to guide future research, anticipate groundbreaking features in model development, and standardize evaluation procedures.
♻ ☆ A Machine Learning Approach for Detection of Mental Health Conditions and Cyberbullying from Social Media AAAI-26
Mental health challenges and cyberbullying are increasingly prevalent in digital spaces, necessitating scalable and interpretable detection systems. This paper introduces a unified multiclass classification framework for detecting ten distinct mental health and cyberbullying categories from social media data. We curate datasets from Twitter and Reddit, implementing a rigorous "split-then-balance" pipeline to train on balanced data while evaluating on a realistic, held-out imbalanced test set. We conducted a comprehensive evaluation comparing traditional lexical models, hybrid approaches, and several end-to-end fine-tuned transformers. Our results demonstrate that end-to-end fine-tuning is critical for performance, with the domain-adapted MentalBERT emerging as the top model, achieving an accuracy of 0.92 and a Macro F1 score of 0.76, surpassing both its generic counterpart and a zero-shot LLM baseline. Grounded in a comprehensive ethical analysis, we frame the system as a human-in-the-loop screening aid, not a diagnostic tool. To support this, we introduce a hybrid SHAPLLM explainability framework and present a prototype dashboard ("Social Media Screener") designed to integrate model predictions and their explanations into a practical workflow for moderators. Our work provides a robust baseline, highlighting future needs for multi-label, clinically-validated datasets at the critical intersection of online safety and computational mental health.
comment: Accepted for Oral Presentation at the AAAI-26 Bridge Program on AI for Medicine and Healthcare (AIMedHealth). To appear in Proceedings of Machine Learning Research (PMLR)
♻ ☆ Recursive numeral systems are highly regular and easy to process
Previous work has argued that recursive numeral systems optimise the trade-off between lexicon size and average morphosyntatic complexity (Denić and Szymanik, 2024). However, showing that only natural-language-like systems optimise this tradeoff has proven elusive, and the existing solution has relied on ad-hoc constraints to rule out unnatural systems (Yang and Regier, 2025). Here, we argue that this issue arises because the proposed trade-off has neglected regularity, a crucial aspect of complexity central to human grammars in general. Drawing on the Minimum Description Length (MDL) approach, we propose that recursive numeral systems are better viewed as efficient with regard to their regularity and processing complexity. We show that our MDL-based measures of regularity and processing complexity better capture the key differences between attested, natural systems and unattested but possible ones, including "optimal" recursive numeral systems from previous work, and that the ad-hoc constraints from previous literature naturally follow from regularity. Our approach highlights the need to incorporate regularity across sets of forms in studies that attempt to measure and explain optimality in language.
♻ ☆ BoundingDocs: a Unified Dataset for Document Question Answering with Spatial Annotations
We present a unified dataset for document Question-Answering (QA), which is obtained combining several public datasets related to Document AI and visually rich document understanding (VRDU). Our main contribution is twofold: on the one hand we reformulate existing Document AI tasks, such as Information Extraction (IE), into a Question-Answering task, making it a suitable resource for training and evaluating Large Language Models; on the other hand, we release the OCR of all the documents and include the exact position of the answer to be found in the document image as a bounding box. Using this dataset, we explore the impact of different prompting techniques (that might include bounding box information) on the performance of open-weight models, identifying the most effective approaches for document comprehension.
♻ ☆ PARROT: Persuasion and Agreement Robustness Rating of Output Truth -- A Sycophancy Robustness Benchmark for LLMs
This study presents PARROT (Persuasion and Agreement Robustness Rating of Output Truth), a robustness focused framework designed to measure the degradation in accuracy that occurs under social pressure exerted on users through authority and persuasion in large language models (LLMs) the phenomenon of sycophancy (excessive conformity). PARROT (i) isolates causal effects by comparing the neutral version of the same question with an authoritatively false version using a double-blind evaluation, (ii) quantifies confidence shifts toward the correct and imposed false responses using log-likelihood-based calibration tracking, and (iii) systematically classifies failure modes (e.g., robust correct, sycophantic agreement, reinforced error, stubborn error, self-correction, etc.) using an eight-state behavioral taxonomy. We evaluated 22 models using 1,302 MMLU-style multiple-choice questions across 13 domains and domain-specific authority templates. Findings show marked heterogeneity: advanced models (e.g., GPT-5, GPT-4.1, Claude Sonnet 4.5) exhibit low "follow rates" ($\leq 11\%$, GPT-5: 4\%) and minimal accuracy loss, while older/smaller models show severe epistemic collapse (GPT-4: 80\%, Qwen 2.5-1.5B: 94\%). The danger is not limited to response changes; weak models reduce confidence in the correct response while increasing confidence in the imposed incorrect response. While international law and global knowledge at the domain level exhibit high fragility, elementary mathematics is relatively resilient. Consequently, we argue that the goal of "resistance to overfitting pressure" should be addressed as a primary objective alongside accuracy, harm avoidance, and privacy for safe deployment in the real world.
♻ ☆ LLM-based Human Simulations Have Not Yet Been Reliable
Large Language Models (LLMs) are increasingly employed for simulating human behaviors across diverse domains. However, our position is that current LLM-based human simulations remain insufficiently reliable, as evidenced by significant discrepancies between their outcomes and authentic human actions. Our investigation begins with a systematic review of LLM-based human simulations in social, economic, policy, and psychological contexts, identifying their common frameworks, recent advances, and persistent limitations. This review reveals that such discrepancies primarily stem from inherent limitations of LLMs and flaws in simulation design, both of which are examined in detail. Building on these insights, we propose a systematic solution framework that emphasizes enriching data foundations, advancing LLM capabilities, and ensuring robust simulation design to enhance reliability. Finally, we introduce a structured algorithm that operationalizes the proposed framework, aiming to guide credible and human-aligned LLM-based simulations. To facilitate further research, we provide a curated list of related literature and resources at https://github.com/Persdre/awesome-llm-human-simulation.
♻ ☆ SpeechIQ: Speech-Agentic Intelligence Quotient Across Cognitive Levels in Voice Understanding by Large Language Models ACL 2025
We introduce Speech-based Intelligence Quotient (SIQ) as a new form of human cognition-inspired evaluation pipeline for voice understanding large language models, LLM Voice, designed to assess their voice understanding ability. Moving beyond popular voice understanding metrics such as word error rate (WER), SIQ examines LLM Voice across three cognitive levels motivated by Bloom's Taxonomy: (1) Remembering (i.e., WER for verbatim accuracy); (2) Understanding (i.e., similarity of LLM's interpretations); and (3) Application (i.e., QA accuracy for simulating downstream tasks). We demonstrate that SIQ not only quantifies voice understanding abilities but also provides unified comparisons between cascaded methods (e.g., ASR LLM) and end-to-end models, identifies annotation errors in existing benchmarks, and detects hallucinations in LLM Voice. Our framework represents a first-of-its-kind intelligence examination that bridges cognitive principles with voice-oriented benchmarks, while exposing overlooked challenges in multi-modal training. Our code and data will be open source to encourage future studies.
comment: ACL 2025 main. Our Speech-IQ leaderboard is hosted at huggingface.co/spaces/nvidia/Speech-IQ-leaderboard. Speech-IQ Calculator: https://github.com/YukinoWan/SpeechIQ
♻ ☆ From Topology to Retrieval: Decoding Embedding Spaces with Unified Signatures
Studying how embeddings are organized in space not only enhances model interpretability but also uncovers factors that drive downstream task performance. In this paper, we present a comprehensive analysis of topological and geometric measures across a wide set of text embedding models and datasets. We find a high degree of redundancy among these measures and observe that individual metrics often fail to sufficiently differentiate embedding spaces. Building on these insights, we introduce Unified Topological Signatures (UTS), a holistic framework for characterizing embedding spaces. We show that UTS can predict model-specific properties and reveal similarities driven by model architecture. Further, we demonstrate the utility of our method by linking topological structure to ranking effectiveness and accurately predicting document retrievability. We find that a holistic, multi-attribute perspective is essential to understanding and leveraging the geometry of text embeddings.
♻ ☆ NeKo: Cross-Modality Post-Recognition Error Correction with Tasks-Guided Mixture-of-Experts Language Model ACL 2025
Construction of a general-purpose post-recognition error corrector poses a crucial question: how can we most effectively train a model on a large mixture of domain datasets? The answer would lie in learning dataset-specific features and digesting their knowledge in a single model. Previous methods achieve this by having separate correction language models, resulting in a significant increase in parameters. In this work, we present Mixture-of-Experts as a solution, highlighting that MoEs are much more than a scalability tool. We propose a Multi-Task Correction MoE, where we train the experts to become an ``expert'' of speech-to-text, language-to-text and vision-to-text datasets by learning to route each dataset's tokens to its mapped expert. Experiments on the Open ASR Leaderboard show that we explore a new state-of-the-art performance by achieving an average relative 5.0% WER reduction and substantial improvements in BLEU scores for speech and translation tasks. On zero-shot evaluation, NeKo outperforms GPT-3.5 and Claude-Opus with 15.5% to 27.6% relative WER reduction in the Hyporadise benchmark. NeKo performs competitively on grammar and post-OCR correction as a multi-task model.
comment: ACL 2025 Industry Track. NeKo LMs: https://huggingface.co/nvidia/NeKo-v0-post-correction
♻ ☆ HEALTH-PARIKSHA: Assessing RAG Models for Health Chatbots in Real-World Multilingual Settings
Assessing the capabilities and limitations of large language models (LLMs) has garnered significant interest, yet the evaluation of multiple models in real-world scenarios remains rare. Multilingual evaluation often relies on translated benchmarks, which typically do not capture linguistic and cultural nuances present in the source language. This study provides an extensive assessment of 24 LLMs on real world data collected from Indian patients interacting with a medical chatbot in Indian English and 4 other Indic languages. We employ a uniform Retrieval Augmented Generation framework to generate responses, which are evaluated using both automated techniques and human evaluators on four specific metrics relevant to our application. We find that models vary significantly in their performance and that instruction tuned Indic models do not always perform well on Indic language queries. Further, we empirically show that factual correctness is generally lower for responses to Indic queries compared to English queries. Finally, our qualitative work shows that code-mixed and culturally relevant queries in our dataset pose challenges to evaluated models.
♻ ☆ Prompt-R1: Collaborative Automatic Prompting Framework via End-to-end Reinforcement Learning
Recently, advanced large language models (LLMs) have emerged at an increasingly rapid pace. However, when faced with complex problems, most users are often unable to provide accurate and effective prompts to interact with LLMs, thus limiting the performance of LLMs. To address this challenge, we propose Prompt-R1, an end-to-end reinforcement learning framework that uses a small-scale LLM to collaborate with large-scale LLMs, replacing user interaction to solve problems better. This collaboration is cast as a multi-turn prompt interaction, where the small-scale LLM thinks and generates prompts, and the large-scale LLM performs complex reasoning. A dual-constrained reward is designed to optimize for correctness, generation quality, and reasoning accuracy. Prompt-R1 provides a plug-and-play framework that supports both inference and training with various large-scale LLMs. Experiments on multiple public datasets show that Prompt-R1 significantly outperforms baseline models across tasks. Our code is publicly available at https://github.com/QwenQKing/Prompt-R1.
♻ ☆ Checklists Are Better Than Reward Models For Aligning Language Models NeurIPS 2025
Language models must be adapted to understand and follow user instructions. Reinforcement learning is widely used to facilitate this -- typically using fixed criteria such as "helpfulness" and "harmfulness". In our work, we instead propose using flexible, instruction-specific criteria as a means of broadening the impact that reinforcement learning can have in eliciting instruction following. We propose "Reinforcement Learning from Checklist Feedback" (RLCF). From instructions, we extract checklists and evaluate how well responses satisfy each item - using both AI judges and specialized verifier programs - then combine these scores to compute rewards for RL. We compare RLCF with other alignment methods applied to a strong instruction following model (Qwen2.5-7B-Instruct) on five widely-studied benchmarks -- RLCF is the only method to improve performance on every benchmark, including a 4-point boost in hard satisfaction rate on FollowBench, a 6-point increase on InFoBench, and a 3-point rise in win rate on Arena-Hard. These results establish checklist feedback as a key tool for improving language models' support of queries that express a multitude of needs.
comment: Presented at NeurIPS 2025
♻ ☆ Spark-Prover-X1: Formal Theorem Proving Through Diverse Data Training
Large Language Models (LLMs) have shown significant promise in automated theorem proving, yet progress is often constrained by the scarcity of diverse and high-quality formal language data. To address this issue, we introduce Spark-Prover-X1, a 7B parameter model trained via an three-stage framework designed to unlock the reasoning potential of more accessible and moderately-sized LLMs. The first stage infuses deep knowledge through continuous pre-training on a broad mathematical corpus, enhanced by a suite of novel data tasks. Key innovation is a "CoT-augmented state prediction" task to achieve fine-grained reasoning. The second stage employs Supervised Fine-tuning (SFT) within an expert iteration loop to specialize both the Spark-Prover-X1-7B and Spark-Formalizer-X1-7B models. Finally, a targeted round of Group Relative Policy Optimization (GRPO) is applied to sharpen the prover's capabilities on the most challenging problems. To facilitate robust evaluation, particularly on problems from real-world examinations, we also introduce ExamFormal-Bench, a new benchmark dataset of 402 formal problems. Experimental results demonstrate that Spark-Prover achieves state-of-the-art performance among similarly-sized open-source models within the "Whole-Proof Generation" paradigm. It shows exceptional performance on difficult competition benchmarks, notably solving 27 problems on PutnamBench (pass@32) and achieving 24.0\% on CombiBench (pass@32). Our work validates that this diverse training data and progressively refined training pipeline provides an effective path for enhancing the formal reasoning capabilities of lightweight LLMs. We will release both Spark-Prover-X1-7B and Spark-Formalizer-X1-7B, along with the ExamFormal-Bench dataset, in the near future.
♻ ☆ Measuring and Guiding Monosemanticity
There is growing interest in leveraging mechanistic interpretability and controllability to better understand and influence the internal dynamics of large language models (LLMs). However, current methods face fundamental challenges in reliably localizing and manipulating feature representations. Sparse Autoencoders (SAEs) have recently emerged as a promising direction for feature extraction at scale, yet they, too, are limited by incomplete feature isolation and unreliable monosemanticity. To systematically quantify these limitations, we introduce Feature Monosemanticity Score (FMS), a novel metric to quantify feature monosemanticity in latent representation. Building on these insights, we propose Guided Sparse Autoencoders (G-SAE), a method that conditions latent representations on labeled concepts during training. We demonstrate that reliable localization and disentanglement of target concepts within the latent space improve interpretability, detection of behavior, and control. Specifically, our evaluations on toxicity detection, writing style identification, and privacy attribute recognition show that G-SAE not only enhances monosemanticity but also enables more effective and fine-grained steering with less quality degradation. Our findings provide actionable guidelines for measuring and advancing mechanistic interpretability and control of LLMs.
♻ ☆ SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open Software Evolution NeurIPS 2025
The recent DeepSeek-R1 release has demonstrated the immense potential of reinforcement learning (RL) in enhancing the general reasoning capabilities of large language models (LLMs). While DeepSeek-R1 and other follow-up work primarily focus on applying RL to competitive coding and math problems, this paper introduces SWE-RL, the first approach to scale RL-based LLM reasoning for real-world software engineering. Leveraging a lightweight rule-based reward (e.g., the similarity score between ground-truth and LLM-generated solutions), SWE-RL enables LLMs to autonomously recover a developer's reasoning processes and solutions by learning from extensive open-source software evolution data -- the record of a software's entire lifecycle, including its code snapshots, code changes, and events such as issues and pull requests. Trained on top of Llama 3, our resulting reasoning model, Llama3-SWE-RL-70B, achieves a 41.0% solve rate on SWE-bench Verified -- a human-verified collection of real-world GitHub issues. To our knowledge, this is the best performance reported for medium-sized (<100B) LLMs to date, even comparable to leading proprietary LLMs like GPT-4o. Surprisingly, despite performing RL solely on software evolution data, Llama3-SWE-RL has even emerged with generalized reasoning skills. For example, it shows improved results on five out-of-domain tasks, namely, function coding, library use, code reasoning, mathematics, and general language understanding, whereas a supervised-finetuning baseline even leads to performance degradation on average. Overall, SWE-RL opens up a new direction to improve the reasoning capabilities of LLMs through reinforcement learning on massive software engineering data.
comment: Accepted to NeurIPS 2025 Main Track
♻ ☆ LLM-based Automated Grading with Human-in-the-Loop
The rise of artificial intelligence (AI) technologies, particularly large language models (LLMs), has brought significant advancements to the field of education. Among various applications, automatic short answer grading (ASAG), which focuses on evaluating open-ended textual responses, has seen remarkable progress with the introduction of LLMs. These models not only enhance grading performance compared to traditional ASAG approaches but also move beyond simple comparisons with predefined "golden" answers, enabling more sophisticated grading scenarios, such as rubric-based evaluation. However, existing LLM-powered methods still face challenges in achieving human-level grading performance in rubric-based assessments due to their reliance on fully automated approaches. In this work, we explore the potential of LLMs in ASAG tasks by leveraging their interactive capabilities through a human-in-the-loop (HITL) approach. Our proposed framework, GradeHITL, utilizes the generative properties of LLMs to pose questions to human experts, incorporating their insights to refine grading rubrics dynamically. This adaptive process significantly improves grading accuracy, outperforming existing methods and bringing ASAG closer to human-level evaluation.
comment: Accepted to IEEE TALE 2025
Computer Vision and Pattern Recognition
☆ EfficientFlow: Efficient Equivariant Flow Policy Learning for Embodied AI AAAI 2026
Generative modeling has recently shown remarkable promise for visuomotor policy learning, enabling flexible and expressive control across diverse embodied AI tasks. However, existing generative policies often struggle with data inefficiency, requiring large-scale demonstrations, and sampling inefficiency, incurring slow action generation during inference. We introduce EfficientFlow, a unified framework for efficient embodied AI with flow-based policy learning. To enhance data efficiency, we bring equivariance into flow matching. We theoretically prove that when using an isotropic Gaussian prior and an equivariant velocity prediction network, the resulting action distribution remains equivariant, leading to improved generalization and substantially reduced data demands. To accelerate sampling, we propose a novel acceleration regularization strategy. As direct computation of acceleration is intractable for marginal flow trajectories, we derive a novel surrogate loss that enables stable and scalable training using only conditional trajectories. Across a wide range of robotic manipulation benchmarks, the proposed algorithm achieves competitive or superior performance under limited data while offering dramatically faster inference. These results highlight EfficientFlow as a powerful and efficient paradigm for high-performance embodied AI.
comment: Accepted by AAAI 2026. Project Page: https://efficientflow.github.io/
☆ Data-Centric Visual Development for Self-Driving Labs
Self-driving laboratories offer a promising path toward reducing the labor-intensive, time-consuming, and often irreproducible workflows in the biological sciences. Yet their stringent precision requirements demand highly robust models whose training relies on large amounts of annotated data. However, this kind of data is difficult to obtain in routine practice, especially negative samples. In this work, we focus on pipetting, the most critical and precision sensitive action in SDLs. To overcome the scarcity of training data, we build a hybrid pipeline that fuses real and virtual data generation. The real track adopts a human-in-the-loop scheme that couples automated acquisition with selective human verification to maximize accuracy with minimal effort. The virtual track augments the real data using reference-conditioned, prompt-guided image generation, which is further screened and validated for reliability. Together, these two tracks yield a class-balanced dataset that enables robust bubble detection training. On a held-out real test set, a model trained entirely on automatically acquired real images reaches 99.6% accuracy, and mixing real and generated data during training sustains 99.4% accuracy while reducing collection and review load. Our approach offers a scalable and cost-effective strategy for supplying visual feedback data to SDL workflows and provides a practical solution to data scarcity in rare event detection and broader vision tasks.
comment: 11 pages, 4 figures
☆ Visual Sync: Multi-Camera Synchronization via Cross-View Object Motion NeurIPS 2025
Today, people can easily record memorable moments, ranging from concerts, sports events, lectures, family gatherings, and birthday parties with multiple consumer cameras. However, synchronizing these cross-camera streams remains challenging. Existing methods assume controlled settings, specific targets, manual correction, or costly hardware. We present VisualSync, an optimization framework based on multi-view dynamics that aligns unposed, unsynchronized videos at millisecond accuracy. Our key insight is that any moving 3D point, when co-visible in two cameras, obeys epipolar constraints once properly synchronized. To exploit this, VisualSync leverages off-the-shelf 3D reconstruction, feature matching, and dense tracking to extract tracklets, relative poses, and cross-view correspondences. It then jointly minimizes the epipolar error to estimate each camera's time offset. Experiments on four diverse, challenging datasets show that VisualSync outperforms baseline methods, achieving an median synchronization error below 50 ms.
comment: Accepted to NeurIPS 2025. Project page: https://stevenlsw.github.io/visualsync/
☆ Objects in Generated Videos Are Slower Than They Appear: Models Suffer Sub-Earth Gravity and Don't Know Galileo's Principle...for now
Video generators are increasingly evaluated as potential world models, which requires them to encode and understand physical laws. We investigate their representation of a fundamental law: gravity. Out-of-the-box video generators consistently generate objects falling at an effectively slower acceleration. However, these physical tests are often confounded by ambiguous metric scale. We first investigate if observed physical errors are artifacts of these ambiguities (e.g., incorrect frame rate assumptions). We find that even temporal rescaling cannot correct the high-variance gravity artifacts. To rigorously isolate the underlying physical representation from these confounds, we introduce a unit-free, two-object protocol that tests the timing ratio $t_1^2/t_2^2 = h_1/h_2$, a relationship independent of $g$, focal length, and scale. This relative test reveals violations of Galileo's equivalence principle. We then demonstrate that this physical gap can be partially mitigated with targeted specialization. A lightweight low-rank adaptor fine-tuned on only 100 single-ball clips raises $g_{\mathrm{eff}}$ from $1.81\,\mathrm{m/s^2}$ to $6.43\,\mathrm{m/s^2}$ (reaching $65\%$ of terrestrial gravity). This specialist adaptor also generalizes zero-shot to two-ball drops and inclined planes, offering initial evidence that specific physical laws can be corrected with minimal data.
comment: https://gravity-eval.github.io/
☆ Generative Video Motion Editing with 3D Point Tracks
Camera and object motions are central to a video's narrative. However, precisely editing these captured motions remains a significant challenge, especially under complex object movements. Current motion-controlled image-to-video (I2V) approaches often lack full-scene context for consistent video editing, while video-to-video (V2V) methods provide viewpoint changes or basic object translation, but offer limited control over fine-grained object motion. We present a track-conditioned V2V framework that enables joint editing of camera and object motion. We achieve this by conditioning a video generation model on a source video and paired 3D point tracks representing source and target motions. These 3D tracks establish sparse correspondences that transfer rich context from the source video to new motions while preserving spatiotemporal coherence. Crucially, compared to 2D tracks, 3D tracks provide explicit depth cues, allowing the model to resolve depth order and handle occlusions for precise motion editing. Trained in two stages on synthetic and real data, our model supports diverse motion edits, including joint camera/object manipulation, motion transfer, and non-rigid deformation, unlocking new creative potential in video editing.
comment: Project page: https://edit-by-track.github.io
☆ TUNA: Taming Unified Visual Representations for Native Unified Multimodal Models
Unified multimodal models (UMMs) aim to jointly perform multimodal understanding and generation within a single framework. We present TUNA, a native UMM that builds a unified continuous visual representation by cascading a VAE encoder with a representation encoder. This unified representation space allows end-to-end processing of images and videos for both understanding and generation tasks. Compared to prior UMMs with decoupled representations, TUNA's unified visual space avoids representation format mismatches introduced by separate encoders, outperforming decoupled alternatives in both understanding and generation. Moreover, we observe that stronger pretrained representation encoders consistently yield better performance across all multimodal tasks, highlighting the importance of the representation encoder. Finally, in this unified setting, jointly training on both understanding and generation data allows the two tasks to benefit from each other rather than interfere. Our extensive experiments on multimodal understanding and generation benchmarks show that TUNA achieves state-of-the-art results in image and video understanding, image and video generation, and image editing, demonstrating the effectiveness and scalability of its unified representation design.
comment: Project page: https://tuna-ai.org/
☆ Improved Mean Flows: On the Challenges of Fastforward Generative Models
MeanFlow (MF) has recently been established as a framework for one-step generative modeling. However, its ``fastforward'' nature introduces key challenges in both the training objective and the guidance mechanism. First, the original MF's training target depends not only on the underlying ground-truth fields but also on the network itself. To address this issue, we recast the objective as a loss on the instantaneous velocity $v$, re-parameterized by a network that predicts the average velocity $u$. Our reformulation yields a more standard regression problem and improves the training stability. Second, the original MF fixes the classifier-free guidance scale during training, which sacrifices flexibility. We tackle this issue by formulating guidance as explicit conditioning variables, thereby retaining flexibility at test time. The diverse conditions are processed through in-context conditioning, which reduces model size and benefits performance. Overall, our $\textbf{improved MeanFlow}$ ($\textbf{iMF}$) method, trained entirely from scratch, achieves $\textbf{1.72}$ FID with a single function evaluation (1-NFE) on ImageNet 256$\times$256. iMF substantially outperforms prior methods of this kind and closes the gap with multi-step methods while using no distillation. We hope our work will further advance fastforward generative modeling as a stand-alone paradigm.
comment: Technical report
☆ AirSim360: A Panoramic Simulation Platform within Drone View
The field of 360-degree omnidirectional understanding has been receiving increasing attention for advancing spatial intelligence. However, the lack of large-scale and diverse data remains a major limitation. In this work, we propose AirSim360, a simulation platform for omnidirectional data from aerial viewpoints, enabling wide-ranging scene sampling with drones. Specifically, AirSim360 focuses on three key aspects: a render-aligned data and labeling paradigm for pixel-level geometric, semantic, and entity-level understanding; an interactive pedestrian-aware system for modeling human behavior; and an automated trajectory generation paradigm to support navigation tasks. Furthermore, we collect more than 60K panoramic samples and conduct extensive experiments across various tasks to demonstrate the effectiveness of our simulator. Unlike existing simulators, our work is the first to systematically model the 4D real world under an omnidirectional setting. The entire platform, including the toolkit, plugins, and collected datasets, will be made publicly available at https://insta360-research-team.github.io/AirSim360-website.
comment: Project Website: https://insta360-research-team.github.io/AirSim360-website/
☆ MV-TAP: Tracking Any Point in Multi-View Videos
Multi-view camera systems enable rich observations of complex real-world scenes, and understanding dynamic objects in multi-view settings has become central to various applications. In this work, we present MV-TAP, a novel point tracker that tracks points across multi-view videos of dynamic scenes by leveraging cross-view information. MV-TAP utilizes camera geometry and a cross-view attention mechanism to aggregate spatio-temporal information across views, enabling more complete and reliable trajectory estimation in multi-view videos. To support this task, we construct a large-scale synthetic training dataset and real-world evaluation sets tailored for multi-view tracking. Extensive experiments demonstrate that MV-TAP outperforms existing point-tracking methods on challenging benchmarks, establishing an effective baseline for advancing research in multi-view point tracking.
comment: Project Page: https://cvlab-kaist.github.io/MV-TAP/
☆ Learning Visual Affordance from Audio
We introduce Audio-Visual Affordance Grounding (AV-AG), a new task that segments object interaction regions from action sounds. Unlike existing approaches that rely on textual instructions or demonstration videos, which often limited by ambiguity or occlusion, audio provides real-time, semantically rich, and visually independent cues for affordance grounding, enabling more intuitive understanding of interaction regions. To support this task, we construct the first AV-AG dataset, comprising a large collection of action sounds, object images, and pixel-level affordance annotations. The dataset also includes an unseen subset to evaluate zero-shot generalization. Furthermore, we propose AVAGFormer, a model equipped with a semantic-conditioned cross-modal mixer and a dual-head decoder that effectively fuses audio and visual signals for mask prediction. Experiments show that AVAGFormer achieves state-of-the-art performance on AV-AG, surpassing baselines from related tasks. Comprehensive analyses highlight the distinctions between AV-AG and AVS, the benefits of end-to-end modeling, and the contribution of each component. Code and dataset have been released on https://jscslld.github.io/AVAGFormer/.
comment: 15 pages, 10 figures
☆ RoaD: Rollouts as Demonstrations for Closed-Loop Supervised Fine-Tuning of Autonomous Driving Policies
Autonomous driving policies are typically trained via open-loop behavior cloning of human demonstrations. However, such policies suffer from covariate shift when deployed in closed loop, leading to compounding errors. We introduce Rollouts as Demonstrations (RoaD), a simple and efficient method to mitigate covariate shift by leveraging the policy's own closed-loop rollouts as additional training data. During rollout generation, RoaD incorporates expert guidance to bias trajectories toward high-quality behavior, producing informative yet realistic demonstrations for fine-tuning. This approach enables robust closed-loop adaptation with orders of magnitude less data than reinforcement learning, and avoids restrictive assumptions of prior closed-loop supervised fine-tuning (CL-SFT) methods, allowing broader applications domains including end-to-end driving. We demonstrate the effectiveness of RoaD on WOSAC, a large-scale traffic simulation benchmark, where it performs similar or better than the prior CL-SFT method; and in AlpaSim, a high-fidelity neural reconstruction-based simulator for end-to-end driving, where it improves driving score by 41\% and reduces collisions by 54\%.
comment: Preprint
☆ PAI-Bench: A Comprehensive Benchmark For Physical AI
Physical AI aims to develop models that can perceive and predict real-world dynamics; yet, the extent to which current multi-modal large language models and video generative models support these abilities is insufficiently understood. We introduce Physical AI Bench (PAI-Bench), a unified and comprehensive benchmark that evaluates perception and prediction capabilities across video generation, conditional video generation, and video understanding, comprising 2,808 real-world cases with task-aligned metrics designed to capture physical plausibility and domain-specific reasoning. Our study provides a systematic assessment of recent models and shows that video generative models, despite strong visual fidelity, often struggle to maintain physically coherent dynamics, while multi-modal large language models exhibit limited performance in forecasting and causal interpretation. These observations suggest that current systems are still at an early stage in handling the perceptual and predictive demands of Physical AI. In summary, PAI-Bench establishes a realistic foundation for evaluating Physical AI and highlights key gaps that future systems must address.
☆ Artemis: Structured Visual Reasoning for Perception Policy Learning
Recent reinforcement-learning frameworks for visual perception policy have begun to incorporate intermediate reasoning chains expressed in natural language. Empirical observations indicate that such purely linguistic intermediate reasoning often reduces performance on perception tasks. We argue that the core issue lies not in reasoning per se but in the form of reasoning: while these chains perform semantic reasoning in an unstructured linguistic space, visual perception requires reasoning in a spatial and object-centric space. In response, we introduce Artemis, a perception-policy learning framework that performs structured proposal-based reasoning, where each intermediate step is represented as a (label, bounding-box) pair capturing a verifiable visual state. This design enables explicit tracking of intermediate states, direct supervision for proposal quality, and avoids ambiguity introduced by language-based reasoning. Artemis is built on Qwen2.5-VL-3B, achieves strong performance on grounding and detection task and exhibits substantial generalization to counting and geometric-perception tasks. The consistent improvements across these diverse settings confirm that aligning reasoning with spatial representations enhances perception-policy learning. Owing to its strengthened visual reasoning, Artemis also achieves competitive performance on general MLLM benchmarks, illustrating that spatially grounded reasoning provides a principled route toward scalable and general perception policies.
☆ Chain-of-Ground: Improving GUI Grounding via Iterative Reasoning and Reference Feedback
GUI grounding aims to align natural language instructions with precise regions in complex user interfaces. Advanced multimodal large language models show strong ability in visual GUI grounding but still struggle with small or visually similar targets and ambiguity in real world layouts. These limitations arise from limited grounding capacity and from underuse of existing reasoning potential. We present Chain of Ground CoG a training free multi step grounding framework that uses multimodal large language models for iterative visual reasoning and refinement. Instead of direct prediction the model progressively reflects and adjusts its hypotheses leading to more accurate and interpretable localization. Our approach achieves 68.4 accuracy on the ScreenSpot Pro benchmark an improvement of 4.8 points. To measure real world generalization we introduce TPanel UI a dataset of 420 labeled industrial control panels with visual distortions such as blur and masking. On TPanel UI Chain of Ground improves over the strong baseline Qwen3 VL 235B by 6.9 points showing the effectiveness of multi step training free grounding across real world and digital interfaces. These results highlight a direction for unlocking grounding potential through structured iterative refinement instead of additional training.
☆ SGDiff: Scene Graph Guided Diffusion Model for Image Collaborative SegCaptioning AAAI-2025
Controllable image semantic understanding tasks, such as captioning or segmentation, necessitate users to input a prompt (e.g., text or bounding boxes) to predict a unique outcome, presenting challenges such as high-cost prompt input or limited information output. This paper introduces a new task ``Image Collaborative Segmentation and Captioning'' (SegCaptioning), which aims to translate a straightforward prompt, like a bounding box around an object, into diverse semantic interpretations represented by (caption, masks) pairs, allowing flexible result selection by users. This task poses significant challenges, including accurately capturing a user's intention from a minimal prompt while simultaneously predicting multiple semantically aligned caption words and masks. Technically, we propose a novel Scene Graph Guided Diffusion Model that leverages structured scene graph features for correlated mask-caption prediction. Initially, we introduce a Prompt-Centric Scene Graph Adaptor to map a user's prompt to a scene graph, effectively capturing his intention. Subsequently, we employ a diffusion process incorporating a Scene Graph Guided Bimodal Transformer to predict correlated caption-mask pairs by uncovering intricate correlations between them. To ensure accurate alignment, we design a Multi-Entities Contrastive Learning loss to explicitly align visual and textual entities by considering inter-modal similarity, resulting in well-aligned caption-mask pairs. Extensive experiments conducted on two datasets demonstrate that SGDiff achieves superior performance in SegCaptioning, yielding promising results for both captioning and segmentation tasks with minimal prompt input.
comment: Accept by AAAI-2025
☆ SpriteHand: Real-Time Versatile Hand-Object Interaction with Autoregressive Video Generation
Modeling and synthesizing complex hand-object interactions remains a significant challenge, even for state-of-the-art physics engines. Conventional simulation-based approaches rely on explicitly defined rigid object models and pre-scripted hand gestures, making them inadequate for capturing dynamic interactions with non-rigid or articulated entities such as deformable fabrics, elastic materials, hinge-based structures, furry surfaces, or even living creatures. In this paper, we present SpriteHand, an autoregressive video generation framework for real-time synthesis of versatile hand-object interaction videos across a wide range of object types and motion patterns. SpriteHand takes as input a static object image and a video stream in which the hands are imagined to interact with the virtual object embedded in a real-world scene, and generates corresponding hand-object interaction effects in real time. Our model employs a causal inference architecture for autoregressive generation and leverages a hybrid post-training approach to enhance visual realism and temporal coherence. Our 1.3B model supports real-time streaming generation at around 18 FPS and 640x368 resolution, with an approximate 150 ms latency on a single NVIDIA RTX 5090 GPU, and more than a minute of continuous output. Experiments demonstrate superior visual quality, physical plausibility, and interaction fidelity compared to both generative and engine-based baselines.
☆ GrndCtrl: Grounding World Models via Self-Supervised Reward Alignment
Recent advances in video world modeling have enabled large-scale generative models to simulate embodied environments with high visual fidelity, providing strong priors for prediction, planning, and control. Yet, despite their realism, these models often lack geometric grounding, limiting their use in navigation tasks that require spatial coherence and long-horizon stability. We introduce Reinforcement Learning with World Grounding (RLWG), a self-supervised post-training framework that aligns pretrained world models with a physically verifiable structure through geometric and perceptual rewards. Analogous to reinforcement learning from verifiable feedback (RLVR) in language models, RLWG can use multiple rewards that measure pose cycle-consistency, depth reprojection, and temporal coherence. We instantiate this framework with GrndCtrl, a reward-aligned adaptation method based on Group Relative Policy Optimization (GRPO), yielding world models that maintain stable trajectories, consistent geometry, and reliable rollouts for embodied navigation. Like post-training alignment in large language models, GrndCtrl leverages verifiable rewards to bridge generative pretraining and grounded behavior, achieving superior spatial coherence and navigation stability over supervised fine-tuning in outdoor environments.
☆ Script: Graph-Structured and Query-Conditioned Semantic Token Pruning for Multimodal Large Language Models
The rapid growth of visual tokens in multimodal large language models (MLLMs) leads to excessive memory consumption and inference latency, especially when handling high-resolution images and videos. Token pruning is a technique used to mitigate this issue by removing redundancy, but existing methods often ignore relevance to the user query or suffer from the limitations of attention mechanisms, reducing their adaptability and effectiveness. To address these challenges, we propose Script, a plug-and-play pruning method that requires no retraining and generalizes across diverse MLLMs. Script comprises two modules: a graph-structured pruning module that removes visually redundant tokens, and a query-conditioned semantic pruning module that preserves query-relevant visual information. Together, they enhance performance on multimodal tasks. Experiments on fourteen benchmarks across image and video understanding tasks show that Script consistently achieves higher model efficiency and predictive accuracy compared to existing pruning methods. On LLaVA-NeXT-7B, it achieves up to 6.8x prefill speedup and 10x FLOP reduction, while retaining 96.88% of the original performance.
comment: Published in Transactions on Machine Learning Research, Project in https://01yzzyu.github.io/script.github.io/
☆ Guardian: Detecting Robotic Planning and Execution Errors with Vision-Language Models
Robust robotic manipulation requires reliable failure detection and recovery. Although current Vision-Language Models (VLMs) show promise, their accuracy and generalization are limited by the scarcity of failure data. To address this data gap, we propose an automatic robot failure synthesis approach that procedurally perturbs successful trajectories to generate diverse planning and execution failures. This method produces not only binary classification labels but also fine-grained failure categories and step-by-step reasoning traces in both simulation and the real world. With it, we construct three new failure detection benchmarks: RLBench-Fail, BridgeDataV2-Fail, and UR5-Fail, substantially expanding the diversity and scale of existing failure datasets. We then train Guardian, a VLM with multi-view images for detailed failure reasoning and detection. Guardian achieves state-of-the-art performance on both existing and newly introduced benchmarks. It also effectively improves task success rates when integrated into a state-of-the-art manipulation system in simulation and real robots, demonstrating the impact of our generated failure data.
comment: 9 pages, 9 figures, 6 tables
☆ Physical ID-Transfer Attacks against Multi-Object Tracking via Adversarial Trajectory ACSA
Multi-Object Tracking (MOT) is a critical task in computer vision, with applications ranging from surveillance systems to autonomous driving. However, threats to MOT algorithms have yet been widely studied. In particular, incorrect association between the tracked objects and their assigned IDs can lead to severe consequences, such as wrong trajectory predictions. Previous attacks against MOT either focused on hijacking the trackers of individual objects, or manipulating the tracker IDs in MOT by attacking the integrated object detection (OD) module in the digital domain, which are model-specific, non-robust, and only able to affect specific samples in offline datasets. In this paper, we present AdvTraj, the first online and physical ID-manipulation attack against tracking-by-detection MOT, in which an attacker uses adversarial trajectories to transfer its ID to a targeted object to confuse the tracking system, without attacking OD. Our simulation results in CARLA show that AdvTraj can fool ID assignments with 100% success rate in various scenarios for white-box attacks against SORT, which also have high attack transferability (up to 93% attack success rate) against state-of-the-art (SOTA) MOT algorithms due to their common design principles. We characterize the patterns of trajectories generated by AdvTraj and propose two universal adversarial maneuvers that can be performed by a human walker/driver in daily scenarios. Our work reveals under-explored weaknesses in the object association phase of SOTA MOT systems, and provides insights into enhancing the robustness of such systems.
comment: Accepted to Annual Computer Security Applications Conference (ACSAC) 2024
☆ Med-VCD: Mitigating Hallucination for Medical Large Vision Language Models through Visual Contrastive Decoding
Large vision-language models (LVLMs) are now central to healthcare applications such as medical visual question answering and imaging report generation. Yet, these models remain vulnerable to hallucination outputs that appear plausible but are in fact incorrect. In the natural image domain, several decoding strategies have been proposed to mitigate hallucinations by reinforcing visual evidence, but most rely on secondary decoding or rollback procedures that substantially slow inference. Moreover, existing solutions are often domain-specific and may introduce misalignment between modalities or between generated and ground-truth content. We introduce Med-VCD, a sparse visual-contrastive decoding method that mitigates hallucinations in medical LVLMs without the time overhead of secondary decoding. Med-VCD incorporates a novel token-sparsification strategy that selects visually informed tokens on the fly, trimming redundancy while retaining critical visual context and thus balancing efficiency with reliability. Evaluations on eight medical datasets, spanning ophthalmology, radiology, and pathology tasks in visual question answering, report generation, and dedicated hallucination benchmarks, show that Med-VCD raises factual accuracy by an average of 13\% and improves hallucination accuracy by 6\% relative to baseline medical LVLMs.
☆ Disentangling Progress in Medical Image Registration: Beyond Trend-Driven Architectures towards Domain-Specific Strategies
Medical image registration drives quantitative analysis across organs, modalities, and patient populations. Recent deep learning methods often combine low-level "trend-driven" computational blocks from computer vision, such as large-kernel CNNs, Transformers, and state-space models, with high-level registration-specific designs like motion pyramids, correlation layers, and iterative refinement. Yet, their relative contributions remain unclear and entangled. This raises a central question: should future advances in registration focus on importing generic architectural trends or on refining domain-specific design principles? Through a modular framework spanning brain, lung, cardiac, and abdominal registration, we systematically disentangle the influence of these two paradigms. Our evaluation reveals that low-level "trend-driven" computational blocks offer only marginal or inconsistent gains, while high-level registration-specific designs consistently deliver more accurate, smoother, and more robust deformations. These domain priors significantly elevate the performance of a standard U-Net baseline, far more than variants incorporating "trend-driven" blocks, achieving an average relative improvement of $\sim3\%$. All models and experiments are released within a transparent, modular benchmark that enables plug-and-play comparison for new architectures and registration tasks (https://github.com/BailiangJ/rethink-reg). This dynamic and extensible platform establishes a common ground for reproducible and fair evaluation, inviting the community to isolate genuine methodological contributions from domain priors. Our findings advocate a shift in research emphasis: from following architectural trends to embracing domain-specific design principles as the true drivers of progress in learning-based medical image registration.
comment: Submitted to Medical Image Analysis. Journal Extension of arXiv:2407.19274
☆ SARL: Spatially-Aware Self-Supervised Representation Learning for Visuo-Tactile Perception
Contact-rich robotic manipulation requires representations that encode local geometry. Vision provides global context but lacks direct measurements of properties such as texture and hardness, whereas touch supplies these cues. Modern visuo-tactile sensors capture both modalities in a single fused image, yielding intrinsically aligned inputs that are well suited to manipulation tasks requiring visual and tactile information. Most self-supervised learning (SSL) frameworks, however, compress feature maps into a global vector, discarding spatial structure and misaligning with the needs of manipulation. To address this, we propose SARL, a spatially-aware SSL framework that augments the Bootstrap Your Own Latent (BYOL) architecture with three map-level objectives, including Saliency Alignment (SAL), Patch-Prototype Distribution Alignment (PPDA), and Region Affinity Matching (RAM), to keep attentional focus, part composition, and geometric relations consistent across views. These losses act on intermediate feature maps, complementing the global objective. SARL consistently outperforms nine SSL baselines across six downstream tasks with fused visual-tactile data. On the geometry-sensitive edge-pose regression task, SARL achieves a Mean Absolute Error (MAE) of 0.3955, a 30% relative improvement over the next-best SSL method (0.5682 MAE) and approaching the supervised upper bound. These findings indicate that, for fused visual-tactile data, the most effective signal is structured spatial equivariance, in which features vary predictably with object geometry, which enables more capable robotic perception.
☆ StyleYourSmile: Cross-Domain Face Retargeting Without Paired Multi-Style Data
Cross-domain face retargeting requires disentangled control over identity, expressions, and domain-specific stylistic attributes. Existing methods, typically trained on real-world faces, either fail to generalize across domains, need test-time optimizations, or require fine-tuning with carefully curated multi-style datasets to achieve domain-invariant identity representations. In this work, we introduce \textit{StyleYourSmile}, a novel one-shot cross-domain face retargeting method that eliminates the need for curated multi-style paired data. We propose an efficient data augmentation strategy alongside a dual-encoder framework, for extracting domain-invariant identity cues and capturing domain-specific stylistic variations. Leveraging these disentangled control signals, we condition a diffusion model to retarget facial expressions across domains. Extensive experiments demonstrate that \textit{StyleYourSmile} achieves superior identity preservation and retargeting fidelity across a wide range of visual domains.
comment: 15 pages, 14 figures
☆ KM-ViPE: Online Tightly Coupled Vision-Language-Geometry Fusion for Open-Vocabulary Semantic SLAM
We present KM-ViPE (Knowledge Mapping Video Pose Engine), a real-time open-vocabulary SLAM framework for uncalibrated monocular cameras in dynamic environments. Unlike systems requiring depth sensors and offline calibration, KM-ViPE operates directly on raw RGB streams, making it ideal for ego-centric applications and harvesting internet-scale video data for training. KM-ViPE tightly couples DINO visual features with geometric constraints through a high-level features based adaptive robust kernel that handles both moving objects and movable static objects (e.g., moving furniture in ego-centric views). The system performs simultaneous online localization and open-vocabulary semantic mapping by fusing geometric and deep visual features aligned with language embeddings. Our results are competitive with state-of-the-art approaches, while existing solutions either operate offline, need depth data and/or odometry estimation, or lack dynamic scene robustness. KM-ViPE benefits from internet-scale training and uniquely combines online operation, uncalibrated monocular input, and robust handling of dynamic scenes, which makes it a good fit for autonomous robotics and AR/VR applications and advances practical spatial intelligence capabilities for embodied AI.
☆ TransientTrack: Advanced Multi-Object Tracking and Classification of Cancer Cells with Transient Fluorescent Signals
Tracking cells in time-lapse videos is an essential technique for monitoring cell population dynamics at a single-cell level. Current methods for cell tracking are developed on videos with mostly single, constant signals and do not detect pivotal events such as cell death. Here, we present TransientTrack, a deep learning-based framework for cell tracking in multi-channel microscopy video data with transient fluorescent signals that fluctuate over time following processes such as the circadian rhythm of cells. By identifying key cellular events - mitosis (cell division) and apoptosis (cell death) our method allows us to build complete trajectories, including cell lineage information. TransientTrack is lightweight and performs matching on cell detection embeddings directly, without the need for quantification of tracking-specific cell features. Furthermore, our approach integrates Transformer Networks, multi-stage matching using all detection boxes, and the interpolation of missing tracklets with the Kalman Filter. This unified framework achieves strong performance across diverse conditions, effectively tracking cells and capturing cell division and death. We demonstrate the use of TransientTrack in an analysis of the efficacy of a chemotherapeutic drug at a single-cell level. The proposed framework could further advance quantitative studies of cancer cell dynamics, enabling detailed characterization of treatment response and resistance mechanisms. The code is available at https://github.com/bozeklab/TransientTrack.
comment: 13 pages, 7 figures, 2 tables. This work has been submitted to IEEE Transactions on Medical Imaging
☆ COACH: Collaborative Agents for Contextual Highlighting - A Multi-Agent Framework for Sports Video Analysis AAAI 2026
Intelligent sports video analysis demands a comprehensive understanding of temporal context, from micro-level actions to macro-level game strategies. Existing end-to-end models often struggle with this temporal hierarchy, offering solutions that lack generalization, incur high development costs for new tasks, and suffer from poor interpretability. To overcome these limitations, we propose a reconfigurable Multi-Agent System (MAS) as a foundational framework for sports video understanding. In our system, each agent functions as a distinct "cognitive tool" specializing in a specific aspect of analysis. The system's architecture is not confined to a single temporal dimension or task. By leveraging iterative invocation and flexible composition of these agents, our framework can construct adaptive pipelines for both short-term analytic reasoning (e.g., Rally QA) and long-term generative summarization (e.g., match summaries). We demonstrate the adaptability of this framework using two representative tasks in badminton analysis, showcasing its ability to bridge fine-grained event detection and global semantic organization. This work presents a paradigm shift towards a flexible, scalable, and interpretable system for robust, cross-task sports video intelligence.The project homepage is available at https://aiden1020.github.io/COACH-project-page
comment: Accepted by AAAI 2026 Workshop LaMAS
☆ Register Any Point: Scaling 3D Point Cloud Registration by Flow Matching
Point cloud registration aligns multiple unposed point clouds into a common frame, and is a core step for 3D reconstruction and robot localization. In this work, we cast registration as conditional generation: a learned continuous, point-wise velocity field transports noisy points to a registered scene, from which the pose of each view is recovered. Unlike previous methods that conduct correspondence matching to estimate the transformation between a pair of point clouds and then optimize the pairwise transformations to realize multi-view registration, our model directly generates the registered point cloud. With a lightweight local feature extractor and test-time rigidity enforcement, our approach achieves state-of-the-art results on pairwise and multi-view registration benchmarks, particularly with low overlap, and generalizes across scales and sensor modalities. It further supports downstream tasks including relocalization, multi-robot SLAM, and multi-session map merging. Source code available at: https://github.com/PRBonn/RAP.
comment: 22 pages
☆ PhyDetEx: Detecting and Explaining the Physical Plausibility of T2V Models
Driven by the growing capacity and training scale, Text-to-Video (T2V) generation models have recently achieved substantial progress in video quality, length, and instruction-following capability. However, whether these models can understand physics and generate physically plausible videos remains a question. While Vision-Language Models (VLMs) have been widely used as general-purpose evaluators in various applications, they struggle to identify the physically impossible content from generated videos. To investigate this issue, we construct a \textbf{PID} (\textbf{P}hysical \textbf{I}mplausibility \textbf{D}etection) dataset, which consists of a \textit{test split} of 500 manually annotated videos and a \textit{train split} of 2,588 paired videos, where each implausible video is generated by carefully rewriting the caption of its corresponding real-world video to induce T2V models producing physically implausible content. With the constructed dataset, we introduce a lightweight fine-tuning approach, enabling VLMs to not only detect physically implausible events but also generate textual explanations on the violated physical principles. Taking the fine-tuned VLM as a physical plausibility detector and explainer, namely \textbf{PhyDetEx}, we benchmark a series of state-of-the-art T2V models to assess their adherence to physical laws. Our findings show that although recent T2V models have made notable progress toward generating physically plausible content, understanding and adhering to physical laws remains a challenging issue, especially for open-source models. Our dataset, training code, and checkpoints are available at \href{https://github.com/Zeqing-Wang/PhyDetEx}{https://github.com/Zeqing-Wang/PhyDetEx}.
comment: 17 pages, 8 figures
☆ OpenREAD: Reinforced Open-Ended Reasoing for End-to-End Autonomous Driving with LLM-as-Critic
Recently, two-stage fine-tuning strategies, e.g., acquiring essential driving knowledge through supervised fine-tuning (SFT) and further enhancing decision-making and planning via reinforcement fine-tuning (RFT), have shown strong potential in advancing the knowledge-driven autonomous driving (AD) paradigm. However, the learning nature of SFT still limits the generalization of reasoning, thereby constraining the full potential of driving performance. Meanwhile, current RFT approaches are primarily applied to downstream tasks, since scene understanding is an open-ended problem where corresponding rewards are difficult to quantify. To address these limitations, we propose OpenREAD, an OPEN-ended REasoning reinforced vision-language model (VLM)-based autonomous driving (AD) framework that enables end-to-end RFT across the full spectrum from high-level reasoning to low-level trajectory planning. Specifically, we begin by constructing large-scale Chain-of-Thought (CoT) annotations on open-source driving-related knowledge datasets, and employ the powerful Qwen3 large language model (LLM) as the critic in RFT to quantify reasoning quality for open-ended questions during reward modeling. Extensive experiments confirm that joint end-to-end RFT yields substantial improvements in both upstream and downstream tasks, enabling OpenREAD to achieve state-of-the-art performance on reasoning and planning benchmarks.
☆ CauSight: Learning to Supersense for Visual Causal Discovery
Causal thinking enables humans to understand not just what is seen, but why it happens. To replicate this capability in modern AI systems, we introduce the task of visual causal discovery. It requires models to infer cause-and-effect relations among visual entities across diverse scenarios instead of merely perceiving their presence. To this end, we first construct the Visual Causal Graph dataset (VCG-32K), a large-scale collection of over 32,000 images annotated with entity-level causal graphs, and further develop CauSight, a novel vision-language model to perform visual causal discovery through causally aware reasoning. Our training recipe integrates three components: (1) training data curation from VCG-32K, (2) Tree-of-Causal-Thought (ToCT) for synthesizing reasoning trajectories, and (3) reinforcement learning with a designed causal reward to refine the reasoning policy. Experiments show that CauSight outperforms GPT-4.1 on visual causal discovery, achieving over a threefold performance boost (21% absolute gain). Our code, model, and dataset are fully open-sourced at project page: https://github.com/OpenCausaLab/CauSight.
comment: project page: https://github.com/OpenCausaLab/CauSight
☆ InnoGym: Benchmarking the Innovation Potential of AI Agents
LLMs and Agents have achieved impressive progress in code generation, mathematical reasoning, and scientific discovery. However, existing benchmarks primarily measure correctness, overlooking the diversity of methods behind solutions. True innovation depends not only on producing correct answers but also on the originality of the approach. We present InnoGym, the first benchmark and framework designed to systematically evaluate the innovation potential of AI agents. InnoGym introduces two complementary metrics: performance gain, which measures improvement over the best-known solutions, and novelty, which captures methodological differences from prior approaches. The benchmark includes 18 carefully curated tasks from real-world engineering and scientific domains, each standardized through resource filtering, evaluator validation, and solution collection. In addition, we provide iGym, a unified execution environment for reproducible and long-horizon evaluations. Extensive experiments show that while some agents produce novel approaches, their lack of robustness limits performance gains. These results highlight a key gap between creativity and effectiveness, underscoring the need for benchmarks that evaluate both.
comment: Work in progress
☆ Seeing through Imagination: Learning Scene Geometry via Implicit Spatial World Modeling
Spatial reasoning, the ability to understand and interpret the 3D structure of the world, is a critical yet underdeveloped capability in Multimodal Large Language Models (MLLMs). Current methods predominantly rely on verbal descriptive tuning, which suffers from visual illiteracy, i.e., they learn spatial concepts through textual symbols alone, devoid of connection to their visual manifestations. To bridge this gap, this paper introduces MILO, an Implicit spatIaL wOrld modeling paradigm that simulates human-like spatial imagination. MILO integrates a visual generator to provide geometry-aware feedback, thereby implicitly grounding the MLLM's symbolic reasoning in perceptual experience. Complementing this paradigm, we propose RePE (Relative Positional Encoding), a novel encoding scheme that captures relative camera-pose transformations, offering superior performance over absolute coordinate systems. To support the training, we construct GeoGen, a large-scale Geometry-aware Generative dataset with approximately 2,241 videos and 67,827 observation-action-outcome triplets. Experiments demonstrate that our approach significantly enhances spatial reasoning capabilities across multiple baselines and benchmarks, offering a more holistic understanding of 3D space.
☆ Forget Less, Retain More: A Lightweight Regularizer for Rehearsal-Based Continual Learning
Deep neural networks suffer from catastrophic forgetting, where performance on previous tasks degrades after training on a new task. This issue arises due to the model's tendency to overwrite previously acquired knowledge with new information. We present a novel approach to address this challenge, focusing on the intersection of memory-based methods and regularization approaches. We formulate a regularization strategy, termed Information Maximization (IM) regularizer, for memory-based continual learning methods, which is based exclusively on the expected label distribution, thus making it class-agnostic. As a consequence, IM regularizer can be directly integrated into various rehearsal-based continual learning methods, reducing forgetting and favoring faster convergence. Our empirical validation shows that, across datasets and regardless of the number of tasks, our proposed regularization strategy consistently improves baseline performance at the expense of a minimal computational overhead. The lightweight nature of IM ensures that it remains a practical and scalable solution, making it applicable to real-world continual learning scenarios where efficiency is paramount. Finally, we demonstrate the data-agnostic nature of our regularizer by applying it to video data, which presents additional challenges due to its temporal structure and higher memory requirements. Despite the significant domain gap, our experiments show that IM regularizer also improves the performance of video continual learning methods.
☆ Envision: Benchmarking Unified Understanding & Generation for Causal World Process Insights
Current multimodal models aim to transcend the limitations of single-modality representations by unifying understanding and generation, often using text-to-image (T2I) tasks to calibrate semantic consistency. However, their reliance on static, single-image generation in training and evaluation leads to overfitting to static pattern matching and semantic fusion, while fundamentally hindering their ability to model dynamic processes that unfold over time. To address these constraints, we propose Envision-a causal event progression benchmark for chained text-to-multi-image generation. Grounded in world knowledge and structured by spatiotemporal causality, it reorganizes existing evaluation dimensions and includes 1,000 four-stage prompts spanning six scientific and humanities domains. To transition evaluation from single images to sequential frames and assess whether models truly internalize world knowledge while adhering to causal-temporal constraints, we introduce Envision-Score, a holistic metric integrating multi-dimensional consistency, physicality, and aesthetics. Comprehensive evaluation of 15 models (10 specialized T2I models, 5 unified models) uncovers: specialized T2I models demonstrate proficiency in aesthetic rendering yet lack intrinsic world knowledge. Unified multimodal models bridge this gap, consistently outperforming specialized counterparts in causal narrative coherence. However, even these unified architectures remain subordinate to closed-source models and struggle to overcome the core challenge of spatiotemporal consistency. This demonstrates that a focus on causally-isolated single images impedes multi-frame reasoning and generation, promoting static pattern matching over dynamic world modeling-ultimately limiting world knowledge internalization, generation.
comment: 35 pages, 12 figures, 10 tables
☆ Generative Action Tell-Tales: Assessing Human Motion in Synthesized Videos
Despite rapid advances in video generative models, robust metrics for evaluating visual and temporal correctness of complex human actions remain elusive. Critically, existing pure-vision encoders and Multimodal Large Language Models (MLLMs) are strongly appearance-biased, lack temporal understanding, and thus struggle to discern intricate motion dynamics and anatomical implausibilities in generated videos. We tackle this gap by introducing a novel evaluation metric derived from a learned latent space of real-world human actions. Our method first captures the nuances, constraints, and temporal smoothness of real-world motion by fusing appearance-agnostic human skeletal geometry features with appearance-based features. We posit that this combined feature space provides a robust representation of action plausibility. Given a generated video, our metric quantifies its action quality by measuring the distance between its underlying representations and this learned real-world action distribution. For rigorous validation, we develop a new multi-faceted benchmark specifically designed to probe temporally challenging aspects of human action fidelity. Through extensive experiments, we show that our metric achieves substantial improvement of more than 68% compared to existing state-of-the-art methods on our benchmark, performs competitively on established external benchmarks, and has a stronger correlation with human perception. Our in-depth analysis reveals critical limitations in current video generative models and establishes a new standard for advanced research in video generation.
☆ SAM3-UNet: Simplified Adaptation of Segment Anything Model 3
In this paper, we introduce SAM3-UNet, a simplified variant of Segment Anything Model 3 (SAM3), designed to adapt SAM3 for downstream tasks at a low cost. Our SAM3-UNet consists of three components: a SAM3 image encoder, a simple adapter for parameter-efficient fine-tuning, and a lightweight U-Net-style decoder. Preliminary experiments on multiple tasks, such as mirror detection and salient object detection, demonstrate that the proposed SAM3-UNet outperforms the prior SAM2-UNet and other state-of-the-art methods, while requiring less than 6 GB of GPU memory during training with a batch size of 12. The code is publicly available at https://github.com/WZH0120/SAM3-UNet.
comment: Technical Report
☆ Learned Image Compression for Earth Observation: Implications for Downstream Segmentation Tasks
The rapid growth of data from satellite-based Earth observation (EO) systems poses significant challenges in data transmission and storage. We evaluate the potential of task-specific learned compression algorithms in this context to reduce data volumes while retaining crucial information. In detail, we compare traditional compression (JPEG 2000) versus a learned compression approach (Discretized Mixed Gaussian Likelihood) on three EO segmentation tasks: Fire, cloud, and building detection. Learned compression notably outperforms JPEG 2000 for large-scale, multi-channel optical imagery in both reconstruction quality (PSNR) and segmentation accuracy. However, traditional codecs remain competitive on smaller, single-channel thermal infrared datasets due to limited data and architectural constraints. Additionally, joint end-to-end optimization of compression and segmentation models does not improve performance over standalone optimization.
☆ Evaluating SAM2 for Video Semantic Segmentation
The Segmentation Anything Model 2 (SAM2) has proven to be a powerful foundation model for promptable visual object segmentation in both images and videos, capable of storing object-aware memories and transferring them temporally through memory blocks. While SAM2 excels in video object segmentation by providing dense segmentation masks based on prompts, extending it to dense Video Semantic Segmentation (VSS) poses challenges due to the need for spatial accuracy, temporal consistency, and the ability to track multiple objects with complex boundaries and varying scales. This paper explores the extension of SAM2 for VSS, focusing on two primary approaches and highlighting firsthand observations and common challenges faced during this process. The first approach involves using SAM2 to extract unique objects as masks from a given image, with a segmentation network employed in parallel to generate and refine initial predictions. The second approach utilizes the predicted masks to extract unique feature vectors, which are then fed into a simple network for classification. The resulting classifications and masks are subsequently combined to produce the final segmentation. Our experiments suggest that leveraging SAM2 enhances overall performance in VSS, primarily due to its precise predictions of object boundaries.
comment: 17 pages, 3 figures and 7 tables
☆ Robust Rigid and Non-Rigid Medical Image Registration Using Learnable Edge Kernels
Medical image registration is crucial for various clinical and research applications including disease diagnosis or treatment planning which require alignment of images from different modalities, time points, or subjects. Traditional registration techniques often struggle with challenges such as contrast differences, spatial distortions, and modality-specific variations. To address these limitations, we propose a method that integrates learnable edge kernels with learning-based rigid and non-rigid registration techniques. Unlike conventional layers that learn all features without specific bias, our approach begins with a predefined edge detection kernel, which is then perturbed with random noise. These kernels are learned during training to extract optimal edge features tailored to the task. This adaptive edge detection enhances the registration process by capturing diverse structural features critical in medical imaging. To provide clearer insight into the contribution of each component in our design, we introduce four variant models for rigid registration and four variant models for non-rigid registration. We evaluated our approach using a dataset provided by the Medical University across three setups: rigid registration without skull removal, with skull removal, and non-rigid registration. Additionally, we assessed performance on two publicly available datasets. Across all experiments, our method consistently outperformed state-of-the-art techniques, demonstrating its potential to improve multi-modal image alignment and anatomical structure analysis.
☆ VideoScoop: A Non-Traditional Domain-Independent Framework For Video Analysis
Automatically understanding video contents is important for several applications in Civic Monitoring (CM), general Surveillance (SL), Assisted Living (AL), etc. Decades of Image and Video Analysis (IVA) research have advanced tasks such as content extraction (e.g., object recognition and tracking). Identifying meaningful activities or situations (e.g., two objects coming closer) remains difficult and cannot be achieved by content extraction alone. Currently, Video Situation Analysis (VSA) is done manually with a human in the loop, which is error-prone and labor-intensive, or through custom algorithms designed for specific video types or situations. These algorithms are not general-purpose and require a new algorithm/software for each new situation or video from a new domain. This report proposes a general-purpose VSA framework that overcomes the above limitations. Video contents are extracted once using state-of-the-art Video Content Extraction technologies. They are represented using two alternative models -- the extended relational model (R++) and graph models. When represented using R++, the extracted contents can be used as data streams, enabling Continuous Query Processing via the proposed Continuous Query Language for Video Analysis. The graph models complement this by enabling the detection of situations that are difficult or impossible to detect using the relational model alone. Existing graph algorithms and newly developed algorithms support a wide variety of situation detection. To support domain independence, primitive situation variants across domains are identified and expressed as parameterized templates. Extensive experiments were conducted across several interesting situations from three domains -- AL, CM, and SL-- to evaluate the accuracy, efficiency, and robustness of the proposed approach using a dataset of videos of varying lengths from these domains.
comment: This is a report submitted as part of PhD proposal defense of Hafsa Billah
☆ HiconAgent: History Context-aware Policy Optimization for GUI Agents
Graphical User Interface (GUI) agents require effective use of historical context to perform sequential navigation tasks. While incorporating past actions and observations can improve decision making, naive use of full history leads to excessive computational overhead and distraction from irrelevant information. To address this, we introduce HiconAgent, a GUI agent trained with History Context-aware Policy Optimization (HCPO) for efficient and effective utilization of historical information. HCPO optimizes history usage in both sampling and policy updates through two complementary components: (1) Dynamic Context Sampling (DCS) presents the agent with variable length histories during sampling, enabling adaptive use of the most relevant context; (2) Anchor-guided History Compression (AHC) refines the policy update phase with a dual branch strategy where the compressed branch removes history observations while keeping history actions as information flow anchors. The compressed and uncompressed branches are coupled through a history-enhanced alignment loss to enforce consistent history usage while maintaining efficiency. Experiments on mainstream GUI navigation benchmarks demonstrate strong performance. Despite being smaller, HiconAgent-3B outperforms GUI-R1-7B by +8.46 percent grounding accuracy and +11.32 percent step success rate on GUI-Odyssey, while achieving comparable results on AndroidControl and AITW with up to 2.47x computational speedup and 60 percent FLOPs reduction.
☆ FreqEdit: Preserving High-Frequency Features for Robust Multi-Turn Image Editing
Instruction-based image editing through natural language has emerged as a powerful paradigm for intuitive visual manipulation. While recent models achieve impressive results on single edits, they suffer from severe quality degradation under multi-turn editing. Through systematic analysis, we identify progressive loss of high-frequency information as the primary cause of this quality degradation. We present FreqEdit, a training-free framework that enables stable editing across 10+ consecutive iterations. Our approach comprises three synergistic components: (1) high-frequency feature injection from reference velocity fields to preserve fine-grained details, (2) an adaptive injection strategy that spatially modulates injection strength for precise region-specific control, and (3) a path compensation mechanism that periodically recalibrates the editing trajectory to prevent over-constraint. Extensive experiments demonstrate that FreqEdit achieves superior performance in both identity preservation and instruction following compared to seven state-of-the-art baselines.
☆ StreamGaze: Gaze-Guided Temporal Reasoning and Proactive Understanding in Streaming Videos
Streaming video understanding requires models not only to process temporally incoming frames, but also to anticipate user intention for realistic applications like AR glasses. While prior streaming benchmarks evaluate temporal reasoning, none measure whether MLLMs can interpret or leverage human gaze signals within a streaming setting. To fill this gap, we introduce StreamGaze, the first benchmark designed to evaluate how effectively MLLMs use gaze for temporal and proactive reasoning in streaming videos. StreamGaze introduces gaze-guided past, present, and proactive tasks that comprehensively evaluate streaming video understanding. These tasks assess whether models can use real-time gaze to follow shifting attention and infer user intentions from only past and currently observed frames. To build StreamGaze, we develop a gaze-video QA generation pipeline that aligns egocentric videos with raw gaze trajectories via fixation extraction, region-specific visual prompting, and scanpath construction. This pipeline produces spatio-temporally grounded QA pairs that closely reflect human perceptual dynamics. Across all StreamGaze tasks, we observe substantial performance gaps between state-of-the-art MLLMs and human performance, revealing fundamental limitations in gaze-based temporal reasoning, intention modeling, and proactive prediction. We further provide detailed analyses of gaze-prompting strategies, reasoning behaviors, and task-specific failure modes, offering deeper insight into why current MLLMs struggle and what capabilities future models must develop. All data and code will be publicly released to support continued research in gaze-guided streaming video understanding.
comment: Project page: https://streamgaze.github.io/
☆ SSR: Semantic and Spatial Rectification for CLIP-based Weakly Supervised Segmentation AAAI 2026
In recent years, Contrastive Language-Image Pretraining (CLIP) has been widely applied to Weakly Supervised Semantic Segmentation (WSSS) tasks due to its powerful cross-modal semantic understanding capabilities. This paper proposes a novel Semantic and Spatial Rectification (SSR) method to address the limitations of existing CLIP-based weakly supervised semantic segmentation approaches: over-activation in non-target foreground regions and background areas. Specifically, at the semantic level, the Cross-Modal Prototype Alignment (CMPA) establishes a contrastive learning mechanism to enforce feature space alignment across modalities, reducing inter-class overlap while enhancing semantic correlations, to rectify over-activation in non-target foreground regions effectively; at the spatial level, the Superpixel-Guided Correction (SGC) leverages superpixel-based spatial priors to precisely filter out interference from non-target regions during affinity propagation, significantly rectifying background over-activation. Extensive experiments on the PASCAL VOC and MS COCO datasets demonstrate that our method outperforms all single-stage approaches, as well as more complex multi-stage approaches, achieving mIoU scores of 79.5% and 50.6%, respectively.
comment: Accepted in AAAI 2026
☆ Revisiting Direct Encoding: Learnable Temporal Dynamics for Static Image Spiking Neural Networks
Handling static images that lack inherent temporal dynamics remains a fundamental challenge for spiking neural networks (SNNs). In directly trained SNNs, static inputs are typically repeated across time steps, causing the temporal dimension to collapse into a rate like representation and preventing meaningful temporal modeling. This work revisits the reported performance gap between direct and rate based encodings and shows that it primarily stems from convolutional learnability and surrogate gradient formulations rather than the encoding schemes themselves. To illustrate this mechanism level clarification, we introduce a minimal learnable temporal encoding that adds adaptive phase shifts to induce meaningful temporal variation from static inputs.
☆ DreamingComics: A Story Visualization Pipeline via Subject and Layout Customized Generation using Video Models
Current story visualization methods tend to position subjects solely by text and face challenges in maintaining artistic consistency. To address these limitations, we introduce DreamingComics, a layout-aware story visualization framework. We build upon a pretrained video diffusion-transformer (DiT) model, leveraging its spatiotemporal priors to enhance identity and style consistency. For layout-based position control, we propose RegionalRoPE, a region-aware positional encoding scheme that re-indexes embeddings based on the target layout. Additionally, we introduce a masked condition loss to further constrain each subject's visual features to their designated region. To infer layouts from natural language scripts, we integrate an LLM-based layout generator trained to produce comic-style layouts, enabling flexible and controllable layout conditioning. We present a comprehensive evaluation of our approach, showing a 29.2% increase in character consistency and a 36.2% increase in style similarity compared to previous methods, while displaying high spatial accuracy. Our project page is available at https://yj7082126.github.io/dreamingcomics/
☆ Cross-Domain Validation of a Resection-Trained Self-Supervised Model on Multicentre Mesothelioma Biopsies
Accurate subtype classification and outcome prediction in mesothelioma are essential for guiding therapy and patient care. Most computational pathology models are trained on large tissue images from resection specimens, limiting their use in real-world settings where small biopsies are common. We show that a self-supervised encoder trained on resection tissue can be applied to biopsy material, capturing meaningful morphological patterns. Using these patterns, the model can predict patient survival and classify tumor subtypes. This approach demonstrates the potential of AI-driven tools to support diagnosis and treatment planning in mesothelioma.
☆ Open-world Hand-Object Interaction Video Generation Based on Structure and Contact-aware Representation
Generating realistic hand-object interactions (HOI) videos is a significant challenge due to the difficulty of modeling physical constraints (e.g., contact and occlusion between hands and manipulated objects). Current methods utilize HOI representation as an auxiliary generative objective to guide video synthesis. However, there is a dilemma between 2D and 3D representations that cannot simultaneously guarantee scalability and interaction fidelity. To address this limitation, we propose a structure and contact-aware representation that captures hand-object contact, hand-object occlusion, and holistic structure context without 3D annotations. This interaction-oriented and scalable supervision signal enables the model to learn fine-grained interaction physics and generalize to open-world scenarios. To fully exploit the proposed representation, we introduce a joint-generation paradigm with a share-and-specialization strategy that generates interaction-oriented representations and videos. Extensive experiments demonstrate that our method outperforms state-of-the-art methods on two real-world datasets in generating physics-realistic and temporally coherent HOI videos. Furthermore, our approach exhibits strong generalization to challenging open-world scenarios, highlighting the benefit of our scalable design. Our project page is https://hgzn258.github.io/SCAR/.
☆ GRASP: Guided Residual Adapters with Sample-wise Partitioning
Recent advances in text-to-image diffusion models enable high-fidelity generation across diverse prompts. However, these models falter in long-tail settings, such as medical imaging, where rare pathologies comprise a small fraction of data. This results in mode collapse: tail-class outputs lack quality and diversity, undermining the goal of synthetic data augmentation for underrepresented conditions. We pinpoint gradient conflicts between frequent head and rare tail classes as the primary culprit, a factor unaddressed by existing sampling or conditioning methods that mainly steer inference without altering the learned distribution. To resolve this, we propose GRASP: Guided Residual Adapters with Sample-wise Partitioning. GRASP uses external priors to statically partition samples into clusters that minimize intra-group gradient clashes. It then fine-tunes pre-trained models by injecting cluster-specific residual adapters into transformer feedforward layers, bypassing learned gating for stability and efficiency. On the long-tail MIMIC-CXR-LT dataset, GRASP yields superior FID and diversity metrics, especially for rare classes, outperforming baselines like vanilla fine-tuning and Mixture of Experts variants. Downstream classification on NIH-CXR-LT improves considerably for tail labels. Generalization to ImageNet-LT confirms broad applicability. Our method is lightweight, scalable, and readily integrates with diffusion pipelines.
comment: 10 pages, 4 figures, 6 tables
☆ Bridging the Scale Gap: Balanced Tiny and General Object Detection in Remote Sensing Imagery
Tiny object detection in remote sensing imagery has attracted significant research interest in recent years. Despite recent progress, achieving balanced detection performance across diverse object scales remains a formidable challenge, particularly in scenarios where dense tiny objects and large objects coexist. Although large foundation models have revolutionized general vision tasks, their application to tiny object detection remains unexplored due to the extreme scale variation and density distribution inherent to remote sensing imagery. To bridge this scale gap, we propose ScaleBridge-Det, to the best of our knowledge, the first large detection framework designed for tiny objects, which could achieve balanced performance across diverse scales through scale-adaptive expert routing and density-guided query allocation. Specifically, we introduce a Routing-Enhanced Mixture Attention (REM) module that dynamically selects and fuses scale-specific expert features via adaptive routing to address the tendency of standard MoE models to favor dominant scales. REM generates complementary and discriminative multi-scale representations suitable for both tiny and large objects. Furthermore, we present a Density-Guided Dynamic Query (DGQ) module that predicts object density to adaptively adjust query positions and numbers, enabling efficient resource allocation for objects of varying scales. The proposed framework allows ScaleBridge-Det to simultaneously optimize performance for both dense tiny and general objects without trade-offs. Extensive experiments on benchmark and cross-domain datasets demonstrate that ScaleBridge-Det achieves state-of-the-art performance on AI-TOD-V2 and DTOD, while exhibiting superior cross-domain robustness on VisDrone.
☆ DB-KAUNet: An Adaptive Dual Branch Kolmogorov-Arnold UNet for Retinal Vessel Segmentation
Accurate segmentation of retinal vessels is crucial for the clinical diagnosis of numerous ophthalmic and systemic diseases. However, traditional Convolutional Neural Network (CNN) methods exhibit inherent limitations, struggling to capture long-range dependencies and complex nonlinear relationships. To address the above limitations, an Adaptive Dual Branch Kolmogorov-Arnold UNet (DB-KAUNet) is proposed for retinal vessel segmentation. In DB-KAUNet, we design a Heterogeneous Dual-Branch Encoder (HDBE) that features parallel CNN and Transformer pathways. The HDBE strategically interleaves standard CNN and Transformer blocks with novel KANConv and KAT blocks, enabling the model to form a comprehensive feature representation. To optimize feature processing, we integrate several critical components into the HDBE. First, a Cross-Branch Channel Interaction (CCI) module is embedded to facilitate efficient interaction of channel features between the parallel pathways. Second, an attention-based Spatial Feature Enhancement (SFE) module is employed to enhance spatial features and fuse the outputs from both branches. Building upon the SFE module, an advanced Spatial Feature Enhancement with Geometrically Adaptive Fusion (SFE-GAF) module is subsequently developed. In the SFE-GAF module, adaptive sampling is utilized to focus on true vessel morphology precisely. The adaptive process strengthens salient vascular features while significantly reducing background noise and computational overhead. Extensive experiments on the DRIVE, STARE, and CHASE_DB1 datasets validate that DB-KAUNet achieves leading segmentation performance and demonstrates exceptional robustness.
☆ ViT$^3$: Unlocking Test-Time Training in Vision
Test-Time Training (TTT) has recently emerged as a promising direction for efficient sequence modeling. TTT reformulates attention operation as an online learning problem, constructing a compact inner model from key-value pairs at test time. This reformulation opens a rich and flexible design space while achieving linear computational complexity. However, crafting a powerful visual TTT design remains challenging: fundamental choices for the inner module and inner training lack comprehensive understanding and practical guidelines. To bridge this critical gap, in this paper, we present a systematic empirical study of TTT designs for visual sequence modeling. From a series of experiments and analyses, we distill six practical insights that establish design principles for effective visual TTT and illuminate paths for future improvement. These findings culminate in the Vision Test-Time Training (ViT$^3$) model, a pure TTT architecture that achieves linear complexity and parallelizable computation. We evaluate ViT$^3$ across diverse visual tasks, including image classification, image generation, object detection, and semantic segmentation. Results show that ViT$^3$ consistently matches or outperforms advanced linear-complexity models (e.g., Mamba and linear attention variants) and effectively narrows the gap to highly optimized vision Transformers. We hope this study and the ViT$^3$ baseline can facilitate future work on visual TTT models. Code is available at https://github.com/LeapLabTHU/ViTTT.
☆ Generative Editing in the Joint Vision-Language Space for Zero-Shot Composed Image Retrieval
Composed Image Retrieval (CIR) enables fine-grained visual search by combining a reference image with a textual modification. While supervised CIR methods achieve high accuracy, their reliance on costly triplet annotations motivates zero-shot solutions. The core challenge in zero-shot CIR (ZS-CIR) stems from a fundamental dilemma: existing text-centric or diffusion-based approaches struggle to effectively bridge the vision-language modality gap. To address this, we propose Fusion-Diff, a novel generative editing framework with high effectiveness and data efficiency designed for multimodal alignment. First, it introduces a multimodal fusion feature editing strategy within a joint vision-language (VL) space, substantially narrowing the modality gap. Second, to maximize data efficiency, the framework incorporates a lightweight Control-Adapter, enabling state-of-the-art performance through fine-tuning on only a limited-scale synthetic dataset of 200K samples. Extensive experiments on standard CIR benchmarks (CIRR, FashionIQ, and CIRCO) demonstrate that Fusion-Diff significantly outperforms prior zero-shot approaches. We further enhance the interpretability of our model by visualizing the fused multimodal representations.
☆ SPARK: Sim-ready Part-level Articulated Reconstruction with VLM Knowledge
Articulated 3D objects are critical for embodied AI, robotics, and interactive scene understanding, yet creating simulation-ready assets remains labor-intensive and requires expert modeling of part hierarchies and motion structures. We introduce SPARK, a framework for reconstructing physically consistent, kinematic part-level articulated objects from a single RGB image. Given an input image, we first leverage VLMs to extract coarse URDF parameters and generate part-level reference images. We then integrate the part-image guidance and the inferred structure graph into a generative diffusion transformer to synthesize consistent part and complete shapes of articulated objects. To further refine the URDF parameters, we incorporate differentiable forward kinematics and differentiable rendering to optimize joint types, axes, and origins under VLM-generated open-state supervision. Extensive experiments show that SPARK produces high-quality, simulation-ready articulated assets across diverse categories, enabling downstream applications such as robotic manipulation and interaction modeling.
☆ Depth Matching Method Based on ShapeDTW for Oil-Based Mud Imager
In well logging operations using the oil-based mud (OBM) microresistivity imager, which employs an interleaved design with upper and lower pad sets, depth misalignment issues persist between the pad images even after velocity correction. This paper presents a depth matching method for borehole images based on the Shape Dynamic Time Warping (ShapeDTW) algorithm. The method extracts local shape features to construct a morphologically sensitive distance matrix, better preserving structural similarity between sequences during alignment. We implement this by employing a combined feature set of the one-dimensional Histogram of Oriented Gradients (HOG1D) and the original signal as the shape descriptor. Field test examples demonstrate that our method achieves precise alignment for images with complex textures, depth shifts, or local scaling. Furthermore, it provides a flexible framework for feature extension, allowing the integration of other descriptors tailored to specific geological features.
☆ Toward Content-based Indexing and Retrieval of Head and Neck CT with Abscess Segmentation
Abscesses in the head and neck represent an acute infectious process that can potentially lead to sepsis or mortality if not diagnosed and managed promptly. Accurate detection and delineation of these lesions on imaging are essential for diagnosis, treatment planning, and surgical intervention. In this study, we introduce AbscessHeNe, a curated and comprehensively annotated dataset comprising 4,926 contrast-enhanced CT slices with clinically confirmed head and neck abscesses. The dataset is designed to facilitate the development of robust semantic segmentation models that can accurately delineate abscess boundaries and evaluate deep neck space involvement, thereby supporting informed clinical decision-making. To establish performance baselines, we evaluate several state-of-the-art segmentation architectures, including CNN, Transformer, and Mamba-based models. The highest-performing model achieved a Dice Similarity Coefficient of 0.39, Intersection-over-Union of 0.27, and Normalized Surface Distance of 0.67, indicating the challenges of this task and the need for further research. Beyond segmentation, AbscessHeNe is structured for future applications in content-based multimedia indexing and case-based retrieval. Each CT scan is linked with pixel-level annotations and clinical metadata, providing a foundation for building intelligent retrieval systems and supporting knowledge-driven clinical workflows. The dataset will be made publicly available at https://github.com/drthaodao3101/AbscessHeNe.git.
comment: The 2025 IEEE International Conference on Content-Based Multimedia Indexing (IEEE CBMI)
☆ RoleMotion: A Large-Scale Dataset towards Robust Scene-Specific Role-Playing Motion Synthesis with Fine-grained Descriptions
In this paper, we introduce RoleMotion, a large-scale human motion dataset that encompasses a wealth of role-playing and functional motion data tailored to fit various specific scenes. Existing text datasets are mainly constructed decentrally as amalgamation of assorted subsets that their data are nonfunctional and isolated to work together to cover social activities in various scenes. Also, the quality of motion data is inconsistent, and textual annotation lacks fine-grained details in these datasets. In contrast, RoleMotion is meticulously designed and collected with a particular focus on scenes and roles. The dataset features 25 classic scenes, 110 functional roles, over 500 behaviors, and 10296 high-quality human motion sequences of body and hands, annotated with 27831 fine-grained text descriptions. We build an evaluator stronger than existing counterparts, prove its reliability, and evaluate various text-to-motion methods on our dataset. Finally, we explore the interplay of motion generation of body and hands. Experimental results demonstrate the high-quality and functionality of our dataset on text-driven whole-body generation.
☆ MasHeNe: A Benchmark for Head and Neck CT Mass Segmentation using Window-Enhanced Mamba with Frequency-Domain Integration
Head and neck masses are space-occupying lesions that can compress the airway and esophagus and may affect nerves and blood vessels. Available public datasets primarily focus on malignant lesions and often overlook other space-occupying conditions in this region. To address this gap, we introduce MasHeNe, an initial dataset of 3,779 contrast-enhanced CT slices that includes both tumors and cysts with pixel-level annotations. We also establish a benchmark using standard segmentation baselines and report common metrics to enable fair comparison. In addition, we propose the Windowing-Enhanced Mamba with Frequency integration (WEMF) model. WEMF applies tri-window enhancement to enrich the input appearance before feature extraction. It further uses multi-frequency attention to fuse information across skip connections within a U-shaped Mamba backbone. On MasHeNe, WEMF attains the best performance among evaluated methods, with a Dice of 70.45%, IoU of 66.89%, NSD of 72.33%, and HD95 of 5.12 mm. This model indicates stable and strong results on this challenging task. MasHeNe provides a benchmark for head-and-neck mass segmentation beyond malignancy-only datasets. The observed error patterns also suggest that this task remains challenging and requires further research. Our dataset and code are available at https://github.com/drthaodao3101/MasHeNe.git.
comment: The 14th International Symposium on Information and Communication Technology Conference SoICT 2025
☆ NavForesee: A Unified Vision-Language World Model for Hierarchical Planning and Dual-Horizon Navigation Prediction
Embodied navigation for long-horizon tasks, guided by complex natural language instructions, remains a formidable challenge in artificial intelligence. Existing agents often struggle with robust long-term planning about unseen environments, leading to high failure rates. To address these limitations, we introduce NavForesee, a novel Vision-Language Model (VLM) that unifies high-level language planning and predictive world model imagination within a single, unified framework. Our approach empowers a single VLM to concurrently perform planning and predictive foresight. Conditioned on the full instruction and historical observations, the model is trained to understand the navigation instructions by decomposing the task, tracking its progress, and formulating the subsequent sub-goal. Simultaneously, it functions as a generative world model, providing crucial foresight by predicting short-term environmental dynamics and long-term navigation milestones. The VLM's structured plan guides its targeted prediction, while the imagined future provides rich context to inform the navigation actions, creating a powerful internal feedback loop of perception-planning/prediction-action. We demonstrate through extensive experiments on the R2R-CE and RxR-CE benchmark that NavForesee achieves highly competitive performance in complex scenarios. Our work highlights the immense potential of fusing explicit language planning with implicit spatiotemporal prediction, paving the way for more intelligent and capable embodied agents.
☆ FlashVGGT: Efficient and Scalable Visual Geometry Transformers with Compressed Descriptor Attention
3D reconstruction from multi-view images is a core challenge in computer vision. Recently, feed-forward methods have emerged as efficient and robust alternatives to traditional per-scene optimization techniques. Among them, state-of-the-art models like the Visual Geometry Grounding Transformer (VGGT) leverage full self-attention over all image tokens to capture global relationships. However, this approach suffers from poor scalability due to the quadratic complexity of self-attention and the large number of tokens generated in long image sequences. In this work, we introduce FlashVGGT, an efficient alternative that addresses this bottleneck through a descriptor-based attention mechanism. Instead of applying dense global attention across all tokens, FlashVGGT compresses spatial information from each frame into a compact set of descriptor tokens. Global attention is then computed as cross-attention between the full set of image tokens and this smaller descriptor set, significantly reducing computational overhead. Moreover, the compactness of the descriptors enables online inference over long sequences via a chunk-recursive mechanism that reuses cached descriptors from previous chunks. Experimental results show that FlashVGGT achieves reconstruction accuracy competitive with VGGT while reducing inference time to just 9.3% of VGGT for 1,000 images, and scaling efficiently to sequences exceeding 3,000 images. Our project page is available at https://wzpscott.github.io/flashvggt_page/.
☆ Deep Unsupervised Anomaly Detection in Brain Imaging: Large-Scale Benchmarking and Bias Analysis
Deep unsupervised anomaly detection in brain magnetic resonance imaging offers a promising route to identify pathological deviations without requiring lesion-specific annotations. Yet, fragmented evaluations, heterogeneous datasets, and inconsistent metrics have hindered progress toward clinical translation. Here, we present a large-scale, multi-center benchmark of deep unsupervised anomaly detection for brain imaging. The training cohort comprised 2,976 T1 and 2,972 T2-weighted scans from healthy individuals across six scanners, with ages ranging from 6 to 89 years. Validation used 92 scans to tune hyperparameters and estimate unbiased thresholds. Testing encompassed 2,221 T1w and 1,262 T2w scans spanning healthy datasets and diverse clinical cohorts. Across all algorithms, the Dice-based segmentation performance varied between 0.03 and 0.65, indicating substantial variability. To assess robustness, we systematically evaluated the impact of different scanners, lesion types and sizes, as well as demographics (age, sex). Reconstruction-based methods, particularly diffusion-inspired approaches, achieved the strongest lesion segmentation performance, while feature-based methods showed greater robustness under distributional shifts. However, systematic biases, such as scanner-related effects, were observed for the majority of algorithms, including that small and low-contrast lesions were missed more often, and that false positives varied with age and sex. Increasing healthy training data yields only modest gains, underscoring that current unsupervised anomaly detection frameworks are limited algorithmically rather than by data availability. Our benchmark establishes a transparent foundation for future research and highlights priorities for clinical translation, including image native pretraining, principled deviation measures, fairness-aware modeling, and robust domain adaptation.
☆ Diffusion Fuzzy System: Fuzzy Rule Guided Latent Multi-Path Diffusion Modeling
Diffusion models have emerged as a leading technique for generating images due to their ability to create high-resolution and realistic images. Despite their strong performance, diffusion models still struggle in managing image collections with significant feature differences. They often fail to capture complex features and produce conflicting results. Research has attempted to address this issue by learning different regions of an image through multiple diffusion paths and then combining them. However, this approach leads to inefficient coordination among multiple paths and high computational costs. To tackle these issues, this paper presents a Diffusion Fuzzy System (DFS), a latent-space multi-path diffusion model guided by fuzzy rules. DFS offers several advantages. First, unlike traditional multi-path diffusion methods, DFS uses multiple diffusion paths, each dedicated to learning a specific class of image features. By assigning each path to a different feature type, DFS overcomes the limitations of multi-path models in capturing heterogeneous image features. Second, DFS employs rule-chain-based reasoning to dynamically steer the diffusion process and enable efficient coordination among multiple paths. Finally, DFS introduces a fuzzy membership-based latent-space compression mechanism to reduce the computational costs of multi-path diffusion effectively. We tested our method on three public datasets: LSUN Bedroom, LSUN Church, and MS COCO. The results show that DFS achieves more stable training and faster convergence than existing single-path and multi-path diffusion models. Additionally, DFS surpasses baseline models in both image quality and alignment between text and images, and also shows improved accuracy when comparing generated images to target references.
☆ QuantumCanvas: A Multimodal Benchmark for Visual Learning of Atomic Interactions
Despite rapid advances in molecular and materials machine learning, most models still lack physical transferability: they fit correlations across whole molecules or crystals rather than learning the quantum interactions between atomic pairs. Yet bonding, charge redistribution, orbital hybridization, and electronic coupling all emerge from these two-body interactions that define local quantum fields in many-body systems. We introduce QuantumCanvas, a large-scale multimodal benchmark that treats two-body quantum systems as foundational units of matter. The dataset spans 2,850 element-element pairs, each annotated with 18 electronic, thermodynamic, and geometric properties and paired with ten-channel image representations derived from l- and m-resolved orbital densities, angular field transforms, co-occupancy maps, and charge-density projections. These physically grounded images encode spatial, angular, and electrostatic symmetries without explicit coordinates, providing an interpretable visual modality for quantum learning. Benchmarking eight architectures across 18 targets, we report mean absolute errors of 0.201 eV on energy gap using GATv2, 0.265 eV on HOMO and 0.274 eV on LUMO using EGNN. For energy-related quantities, DimeNet attains 2.27 eV total-energy MAE and 0.132 eV repulsive-energy MAE, while a multimodal fusion model achieves a 2.15 eV Mermin free-energy MAE. Pretraining on QuantumCanvas further improves convergence stability and generalization when fine-tuned on larger datasets such as QM9, MD17, and CrysMTM. By unifying orbital physics with vision-based representation learning, QuantumCanvas provides a principled and interpretable basis for learning transferable quantum interactions through coupled visual and numerical modalities. Dataset and model implementations are available at https://github.com/KurbanIntelligenceLab/QuantumCanvas.
☆ Semantic-aware Random Convolution and Source Matching for Domain Generalization in Medical Image Segmentation
We tackle the challenging problem of single-source domain generalization (DG) for medical image segmentation. To this end, we aim for training a network on one domain (e.g., CT) and directly apply it to a different domain (e.g., MR) without adapting the model and without requiring images or annotations from the new domain during training. We propose a novel method for promoting DG when training deep segmentation networks, which we call SRCSM. During training, our method diversifies the source domain through semantic-aware random convolution, where different regions of a source image are augmented differently, based on their annotation labels. At test-time, we complement the randomization of the training domain via mapping the intensity of target domain images, making them similar to source domain data. We perform a comprehensive evaluation on a variety of cross-modality and cross-center generalization settings for abdominal, whole-heart and prostate segmentation, where we outperform previous DG techniques in a vast majority of experiments. Additionally, we also investigate our method when training on whole-heart CT or MR data and testing on the diastolic and systolic phase of cine MR data captured with different scanner hardware, where we make a step towards closing the domain gap in this even more challenging setting. Overall, our evaluation shows that SRCSM can be considered a new state-of-the-art in DG for medical image segmentation and, moreover, even achieves a segmentation performance that matches the performance of the in-domain baseline in several settings.
comment: Preprint submitted to Computer Methods and Programs in Biomedicine (currently under revision)
☆ ELVIS: Enhance Low-Light for Video Instance Segmentation in the Dark
Video instance segmentation (VIS) for low-light content remains highly challenging for both humans and machines alike, due to adverse imaging conditions including noise, blur and low-contrast. The lack of large-scale annotated datasets and the limitations of current synthetic pipelines, particularly in modeling temporal degradations, further hinder progress. Moreover, existing VIS methods are not robust to the degradations found in low-light videos and, as a result, perform poorly even when finetuned on low-light data. In this paper, we introduce \textbf{ELVIS} (\textbf{E}nhance \textbf{L}ow-light for \textbf{V}ideo \textbf{I}nstance \textbf{S}egmentation), a novel framework that enables effective domain adaptation of state-of-the-art VIS models to low-light scenarios. ELVIS comprises an unsupervised synthetic low-light video pipeline that models both spatial and temporal degradations, a calibration-free degradation profile synthesis network (VDP-Net) and an enhancement decoder head that disentangles degradations from content features. ELVIS improves performances by up to \textbf{+3.7AP} on the synthetic low-light YouTube-VIS 2019 dataset. Code will be released upon acceptance.
☆ A variational method for curve extraction with curvature-dependent energies
We introduce a variational approach for extracting curves between a list of possible endpoints, based on the discretization of an energy and Smirnov's decomposition theorem for vector fields. It is used to design a bi-level minimization approach to automatically extract curves and 1D structures from an image, which is mostly unsupervised. We extend then the method to curvature-dependent energies, using a now classical lifting of the curves in the space of positions and orientations equipped with an appropriate sub-Riemanian or Finslerian metric.
☆ ChronosObserver: Taming 4D World with Hyperspace Diffusion Sampling
Although prevailing camera-controlled video generation models can produce cinematic results, lifting them directly to the generation of 3D-consistent and high-fidelity time-synchronized multi-view videos remains challenging, which is a pivotal capability for taming 4D worlds. Some works resort to data augmentation or test-time optimization, but these strategies are constrained by limited model generalization and scalability issues. To this end, we propose ChronosObserver, a training-free method including World State Hyperspace to represent the spatiotemporal constraints of a 4D world scene, and Hyperspace Guided Sampling to synchronize the diffusion sampling trajectories of multiple views using the hyperspace. Experimental results demonstrate that our method achieves high-fidelity and 3D-consistent time-synchronized multi-view videos generation without training or fine-tuning for diffusion models.
☆ CourtMotion: Learning Event-Driven Motion Representations from Skeletal Data for Basketball
This paper presents CourtMotion, a spatiotemporal modeling framework for analyzing and predicting game events and plays as they develop in professional basketball. Anticipating basketball events requires understanding both physical motion patterns and their semantic significance in the context of the game. Traditional approaches that use only player positions fail to capture crucial indicators such as body orientation, defensive stance, or shooting preparation motions. Our two-stage approach first processes skeletal tracking data through Graph Neural Networks to capture nuanced motion patterns, then employs a Transformer architecture with specialized attention mechanisms to model player interactions. We introduce event projection heads that explicitly connect player movements to basketball events like passes, shots, and steals, training the model to associate physical motion patterns with their tactical purposes. Experiments on NBA tracking data demonstrate significant improvements over position-only baselines: 35% reduction in trajectory prediction error compared to state-of-the-art position-based models and consistent performance gains across key basketball analytics tasks. The resulting pretrained model serves as a powerful foundation for multiple downstream tasks, with pick detection, shot taker identification, assist prediction, shot location classification, and shot type recognition demonstrating substantial improvements over existing methods.
☆ Stay Unique, Stay Efficient: Preserving Model Personality in Multi-Task Merging
Model merging has emerged as a promising paradigm for enabling multi-task capabilities without additional training. However, existing methods often experience substantial performance degradation compared with individually fine-tuned models, even on similar tasks, underscoring the need to preserve task-specific information. This paper proposes Decomposition, Thresholding, and Scaling (DTS), an approximation-based personalized merging framework that preserves task-specific information with minimal storage overhead. DTS first applies singular value decomposition to the task-specific information and retains only a small subset of singular values and vectors. It then introduces a novel thresholding strategy that partitions singular vector elements into groups and assigns a scaling factor to each group. To enable generalization to unseen tasks, we further extend DTS with a variant that fuses task-specific information in a data-free manner based on the semantic similarity of task characteristics. Extensive experiments demonstrate that DTS consistently outperforms state-of-the-art baselines while requiring only 1\% additional storage per task. Furthermore, experiments on unseen tasks show that the DTS variant achieves significantly better generalization performance. Our code is available at https://github.com/krumpguo/DTS.
☆ FastAnimate: Towards Learnable Template Construction and Pose Deformation for Fast 3D Human Avatar Animation
3D human avatar animation aims at transforming a human avatar from an arbitrary initial pose to a specified target pose using deformation algorithms. Existing approaches typically divide this task into two stages: canonical template construction and target pose deformation. However, current template construction methods demand extensive skeletal rigging and often produce artifacts for specific poses. Moreover, target pose deformation suffers from structural distortions caused by Linear Blend Skinning (LBS), which significantly undermines animation realism. To address these problems, we propose a unified learning-based framework to address both challenges in two phases. For the former phase, to overcome the inefficiencies and artifacts during template construction, we leverage a U-Net architecture that decouples texture and pose information in a feed-forward process, enabling fast generation of a human template. For the latter phase, we propose a data-driven refinement technique that enhances structural integrity. Extensive experiments show that our model delivers consistent performance across diverse poses with an optimal balance between efficiency and quality,surpassing state-of-the-art (SOTA) methods.
comment: 9 pages,4 figures
☆ Language-Guided Open-World Anomaly Segmentation
Open-world and anomaly segmentation methods seek to enable autonomous driving systems to detect and segment both known and unknown objects in real-world scenes. However, existing methods do not assign semantically meaningful labels to unknown regions, and distinguishing and learning representations for unknown classes remains difficult. While open-vocabulary segmentation methods show promise in generalizing to novel classes, they require a fixed inference vocabulary and thus cannot be directly applied to anomaly segmentation where unknown classes are unconstrained. We propose Clipomaly, the first CLIP-based open-world and anomaly segmentation method for autonomous driving. Our zero-shot approach requires no anomaly-specific training data and leverages CLIP's shared image-text embedding space to both segment unknown objects and assign human-interpretable names to them. Unlike open-vocabulary methods, our model dynamically extends its vocabulary at inference time without retraining, enabling robust detection and naming of anomalies beyond common class definitions such as those in Cityscapes. Clipomaly achieves state-of-the-art performance on established anomaly segmentation benchmarks while providing interpretability and flexibility essential for practical deployment.
☆ ResDiT: Evoking the Intrinsic Resolution Scalability in Diffusion Transformers
Leveraging pre-trained Diffusion Transformers (DiTs) for high-resolution (HR) image synthesis often leads to spatial layout collapse and degraded texture fidelity. Prior work mitigates these issues with complex pipelines that first perform a base-resolution (i.e., training-resolution) denoising process to guide HR generation. We instead explore the intrinsic generative mechanisms of DiTs and propose ResDiT, a training-free method that scales resolution efficiently. We identify the core factor governing spatial layout, position embeddings (PEs), and show that the original PEs encode incorrect positional information when extrapolated to HR, which triggers layout collapse. To address this, we introduce a PE scaling technique that rectifies positional encoding under resolution changes. To further remedy low-fidelity details, we develop a local-enhancement mechanism grounded in base-resolution local attention. We design a patch-level fusion module that aggregates global and local cues, together with a Gaussian-weighted splicing strategy that eliminates grid artifacts. Comprehensive evaluations demonstrate that ResDiT consistently delivers high-fidelity, high-resolution image synthesis and integrates seamlessly with downstream tasks, including spatially controlled generation.
comment: 8 pages
☆ \textit{ViRectify}: A Challenging Benchmark for Video Reasoning Correction with Multimodal Large Language Models
As multimodal large language models (MLLMs) frequently exhibit errors in complex video reasoning scenarios, correcting these errors is critical for uncovering their weaknesses and improving performance. However, existing benchmarks lack systematic evaluation of MLLMs' ability to identify and correct these video reasoning errors. To bridge this gap, we propose \textit{ViRectify}, a comprehensive benchmark to evaluate their fine-grained correction capability. Through an AI-assisted annotation pipeline with human verification, we construct a dataset of over 30\textit{K} instances spanning dynamic perception, scientific reasoning, and embodied decision-making domains. In \textit{ViRectify}, we challenge MLLMs to perform step-wise error identification and generate rationales with key video evidence grounding. In addition, we further propose the trajectory evidence-driven correction framework, comprising step-wise error trajectory and reward modeling on visual evidence-grounded correction. It encourages the model to explicitly concentrate on error propagation and key timestamps for correction. Extensive evaluation across 16 advanced MLLMs demonstrates that our \textit{ViRectify} serves as a challenging testbed, where GPT-5 achieves only 31.94\% correction accuracy. Our framework enables a Qwen2.5-VL-7B to consistently outperform the variants of 72B on \textit{ViRectify}, showing the effectiveness of our approach. Further analysis uncovers systematic asymmetries in error correction across models, and our dataset is also a valuable data resource to perform reflection learning. We believe \textit{ViRectify} provides a new direction for comprehensively evaluating the advanced MLLMs in video reasoning.
comment: 22 pages, 11 figures
☆ MDiff4STR: Mask Diffusion Model for Scene Text Recognition AAAI 2026
Mask Diffusion Models (MDMs) have recently emerged as a promising alternative to auto-regressive models (ARMs) for vision-language tasks, owing to their flexible balance of efficiency and accuracy. In this paper, for the first time, we introduce MDMs into the Scene Text Recognition (STR) task. We show that vanilla MDM lags behind ARMs in terms of accuracy, although it improves recognition efficiency. To bridge this gap, we propose MDiff4STR, a Mask Diffusion model enhanced with two key improvement strategies tailored for STR. Specifically, we identify two key challenges in applying MDMs to STR: noising gap between training and inference, and overconfident predictions during inference. Both significantly hinder the performance of MDMs. To mitigate the first issue, we develop six noising strategies that better align training with inference behavior. For the second, we propose a token-replacement noise mechanism that provides a non-mask noise type, encouraging the model to reconsider and revise overly confident but incorrect predictions. We conduct extensive evaluations of MDiff4STR on both standard and challenging STR benchmarks, covering diverse scenarios including irregular, artistic, occluded, and Chinese text, as well as whether the use of pretraining. Across these settings, MDiff4STR consistently outperforms popular STR models, surpassing state-of-the-art ARMs in accuracy, while maintaining fast inference with only three denoising steps. Code: https://github.com/Topdu/OpenOCR.
comment: Accepted by AAAI 2026 (Oral)
☆ Rice-VL: Evaluating Vision-Language Models for Cultural Understanding Across ASEAN Countries
Vision-Language Models (VLMs) excel in multimodal tasks but often exhibit Western-centric biases, limiting their effectiveness in culturally diverse regions like Southeast Asia (SEA). To address this, we introduce RICE-VL, a novel benchmark evaluating VLM cultural understanding across 11 ASEAN countries. RICE-VL includes over 28,000 human-curated Visual Question Answering (VQA) samples -- covering True or False, Fill-in-the-Blank, and open-ended formats -- and 1,000 image-bounding box pairs for Visual Grounding, annotated by culturally informed experts across 14 sub-ground categories. We propose SEA-LAVE, an extension of the LAVE metric, assessing textual accuracy, cultural alignment, and country identification. Evaluations of six open- and closed-source VLMs reveal significant performance gaps in low-resource countries and abstract cultural domains. The Visual Grounding task tests models' ability to localize culturally significant elements in complex scenes, probing spatial and contextual accuracy. RICE-VL exposes limitations in VLMs' cultural comprehension and highlights the need for inclusive model development to better serve diverse global populations.
comment: 14 pages
☆ FRAMER: Frequency-Aligned Self-Distillation with Adaptive Modulation Leveraging Diffusion Priors for Real-World Image Super-Resolution
Real-image super-resolution (Real-ISR) seeks to recover HR images from LR inputs with mixed, unknown degradations. While diffusion models surpass GANs in perceptual quality, they under-reconstruct high-frequency (HF) details due to a low-frequency (LF) bias and a depth-wise "low-first, high-later" hierarchy. We introduce FRAMER, a plug-and-play training scheme that exploits diffusion priors without changing the backbone or inference. At each denoising step, the final-layer feature map teaches all intermediate layers. Teacher and student feature maps are decomposed into LF/HF bands via FFT masks to align supervision with the model's internal frequency hierarchy. For LF, an Intra Contrastive Loss (IntraCL) stabilizes globally shared structure. For HF, an Inter Contrastive Loss (InterCL) sharpens instance-specific details using random-layer and in-batch negatives. Two adaptive modulators, Frequency-based Adaptive Weight (FAW) and Frequency-based Alignment Modulation (FAM), reweight per-layer LF/HF signals and gate distillation by current similarity. Across U-Net and DiT backbones (e.g., Stable Diffusion 2, 3), FRAMER consistently improves PSNR/SSIM and perceptual metrics (LPIPS, NIQE, MANIQA, MUSIQ). Ablations validate the final-layer teacher and random-layer negatives.
comment: Comments: Please visit our project page at https://cmlab-korea.github.io/FRAMER/
☆ PointNet4D: A Lightweight 4D Point Cloud Video Backbone for Online and Offline Perception in Robotic Applications WACV2026
Understanding dynamic 4D environments-3D space evolving over time-is critical for robotic and interactive systems. These applications demand systems that can process streaming point cloud video in real-time, often under resource constraints, while also benefiting from past and present observations when available. However, current 4D backbone networks rely heavily on spatiotemporal convolutions and Transformers, which are often computationally intensive and poorly suited to real-time applications. We propose PointNet4D, a lightweight 4D backbone optimized for both online and offline settings. At its core is a Hybrid Mamba-Transformer temporal fusion block, which integrates the efficient state-space modeling of Mamba and the bidirectional modeling power of Transformers. This enables PointNet4D to handle variable-length online sequences efficiently across different deployment scenarios. To enhance temporal understanding, we introduce 4DMAP, a frame-wise masked auto-regressive pretraining strategy that captures motion cues across frames. Our extensive evaluations across 9 tasks on 7 datasets, demonstrating consistent improvements across diverse domains. We further demonstrate PointNet4D's utility by building two robotic application systems: 4D Diffusion Policy and 4D Imitation Learning, achieving substantial gains on the RoboTwin and HandoverSim benchmarks.
comment: Accepted by WACV2026
☆ Reversible Inversion for Training-Free Exemplar-guided Image Editing
Exemplar-guided Image Editing (EIE) aims to modify a source image according to a visual reference. Existing approaches often require large-scale pre-training to learn relationships between the source and reference images, incurring high computational costs. As a training-free alternative, inversion techniques can be used to map the source image into a latent space for manipulation. However, our empirical study reveals that standard inversion is sub-optimal for EIE, leading to poor quality and inefficiency. To tackle this challenge, we introduce \textbf{Reversible Inversion ({ReInversion})} for effective and efficient EIE. Specifically, ReInversion operates as a two-stage denoising process, which is first conditioned on the source image and subsequently on the reference. Besides, we introduce a Mask-Guided Selective Denoising (MSD) strategy to constrain edits to target regions, preserving the structural consistency of the background. Both qualitative and quantitative comparisons demonstrate that our ReInversion method achieves state-of-the-art EIE performance with the lowest computational overhead.
☆ Textured Geometry Evaluation: Perceptual 3D Textured Shape Metric via 3D Latent-Geometry Network AAAI26
Textured high-fidelity 3D models are crucial for games, AR/VR, and film, but human-aligned evaluation methods still fall behind despite recent advances in 3D reconstruction and generation. Existing metrics, such as Chamfer Distance, often fail to align with how humans evaluate the fidelity of 3D shapes. Recent learning-based metrics attempt to improve this by relying on rendered images and 2D image quality metrics. However, these approaches face limitations due to incomplete structural coverage and sensitivity to viewpoint choices. Moreover, most methods are trained on synthetic distortions, which differ significantly from real-world distortions, resulting in a domain gap. To address these challenges, we propose a new fidelity evaluation method that is based directly on 3D meshes with texture, without relying on rendering. Our method, named Textured Geometry Evaluation TGE, jointly uses the geometry and color information to calculate the fidelity of the input textured mesh with comparison to a reference colored shape. To train and evaluate our metric, we design a human-annotated dataset with real-world distortions. Experiments show that TGE outperforms rendering-based and geometry-only methods on real-world distortion dataset.
comment: Accepted by AAAI26
☆ SRAM: Shape-Realism Alignment Metric for No Reference 3D Shape Evaluation AAAI2026
3D generation and reconstruction techniques have been widely used in computer games, film, and other content creation areas. As the application grows, there is a growing demand for 3D shapes that look truly realistic. Traditional evaluation methods rely on a ground truth to measure mesh fidelity. However, in many practical cases, a shape's realism does not depend on having a ground truth reference. In this work, we propose a Shape-Realism Alignment Metric that leverages a large language model (LLM) as a bridge between mesh shape information and realism evaluation. To achieve this, we adopt a mesh encoding approach that converts 3D shapes into the language token space. A dedicated realism decoder is designed to align the language model's output with human perception of realism. Additionally, we introduce a new dataset, RealismGrading, which provides human-annotated realism scores without the need for ground truth shapes. Our dataset includes shapes generated by 16 different algorithms on over a dozen objects, making it more representative of practical 3D shape distributions. We validate our metric's performance and generalizability through k-fold cross-validation across different objects. Experimental results show that our metric correlates well with human perceptions and outperforms existing methods, and has good generalizability.
comment: Accepted by AAAI2026
☆ BlinkBud: Detecting Hazards from Behind via Sampled Monocular 3D Detection on a Single Earbud
Failing to be aware of speeding vehicles approaching from behind poses a huge threat to the road safety of pedestrians and cyclists. In this paper, we propose BlinkBud, which utilizes a single earbud and a paired phone to online detect hazardous objects approaching from behind of a user. The core idea is to accurately track visually identified objects utilizing a small number of sampled camera images taken from the earbud. To minimize the power consumption of the earbud and the phone while guaranteeing the best tracking accuracy, a novel 3D object tracking algorithm is devised, integrating both a Kalman filter based trajectory estimation scheme and an optimal image sampling strategy based on reinforcement learning. Moreover, the impact of constant user head movements on the tracking accuracy is significantly eliminated by leveraging the estimated pitch and yaw angles to correct the object depth estimation and align the camera coordinate system to the user's body coordinate system, respectively. We implement a prototype BlinkBud system and conduct extensive real-world experiments. Results show that BlinkBud is lightweight with ultra-low mean power consumptions of 29.8 mW and 702.6 mW on the earbud and smartphone, respectively, and can accurately detect hazards with a low average false positive ratio (FPR) and false negative ratio (FNR) of 4.90% and 1.47%, respectively.
comment: This is the author-accepted version of the paper published in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), Vol. 9, No. 4, Article 191, 2025. Final published version: https://doi.org/10.1145/3770707
♻ ☆ VIVAT: Virtuous Improving VAE Training through Artifact Mitigation
Variational Autoencoders (VAEs) remain a cornerstone of generative computer vision, yet their training is often plagued by artifacts that degrade reconstruction and generation quality. This paper introduces VIVAT, a systematic approach to mitigating common artifacts in KL-VAE training without requiring radical architectural changes. We present a detailed taxonomy of five prevalent artifacts - color shift, grid patterns, blur, corner and droplet artifacts - and analyze their root causes. Through straightforward modifications, including adjustments to loss weights, padding strategies, and the integration of Spatially Conditional Normalization, we demonstrate significant improvements in VAE performance. Our method achieves state-of-the-art results in image reconstruction metrics (PSNR and SSIM) across multiple benchmarks and enhances text-to-image generation quality, as evidenced by superior CLIP scores. By preserving the simplicity of the KL-VAE framework while addressing its practical challenges, VIVAT offers actionable insights for researchers and practitioners aiming to optimize VAE training.
♻ ☆ STORM: Segment, Track, and Object Re-Localization from a Single Image
Accurate 6D pose estimation and tracking are fundamental capabilities for physical AI systems such as robots. However, existing approaches typically require a pre-defined 3D model of the target and rely on a manually annotated segmentation mask in the first frame, which is labor-intensive and leads to reduced performance when faced with occlusions or rapid movement. To address these limitations, we propose STORM (Segment, Track, and Object Re-localization from a single iMage), an open-source robust real-time 6D pose estimation system that requires no manual annotation. STORM employs a novel three-stage pipeline combining vision-language understanding with feature matching: contextual object descriptions guide localization, self-cross-attention mechanisms identify candidate regions, and produce precise masks and 3D models for accurate pose estimation. Another key innovation is our automatic re-registration mechanism that detects tracking failures through feature similarity monitoring and recovers from severe occlusions or rapid motion. STORM achieves state-of-the-art accuracy on challenging industrial datasets featuring multi-object occlusions, high-speed motion, and varying illumination, while operating at real-time speeds without additional training. This annotation-free approach significantly reduces deployment overhead, providing a practical solution for modern applications, such as flexible manufacturing and intelligent quality control.
♻ ☆ Continuous Perception Matters: Diagnosing Temporal Integration Failures in Multimodal Models
Continuous perception, the ability to integrate visual observations over time in a continuous stream fashion, is essential for robust real-world understanding, yet remains largely untested in current multimodal models. We introduce CP-Bench, a minimal and fully controlled benchmark designed to isolate this capability using an extremely simple task: counting identical cubes in a synthetic scene while the camera moves and only reveals subsets of objects at any moment. Despite the simplicity of the setting, we find that state-of-the-art open-source and commercial models, including Qwen-3-VL, InternVL3, GPT-5, and Gemini-3-Pro, fail dramatically. A static-camera control variant confirms that the failure arises not from object recognition but from an inability to accumulate evidence across time. Further experiments show that neither higher sampling FPS, perception- or spatial-enhanced models, nor finetuning with additional videos leads to meaningful cross-temporal generalization. Our results reveal a fundamental limitation in modern multimodal architectures and training paradigms. CP-Bench provides a simple yet powerful diagnostic tool and establishes a clean testbed for developing models capable of genuine time-consistent visual reasoning.
♻ ☆ GBT-SAM: A Parameter-Efficient Depth-Aware Model for Generalizable Brain tumour Segmentation on mp-MRI
Gliomas are aggressive brain tumors that require accurate imaging-based diagnosis, with segmentation playing a critical role in evaluating morphology and treatment decisions. Manual delineation of gliomas is time-consuming and prone to variability, motivating the use of deep learning to improve consistency and alleviate clinical workload. However, existing methods often fail to fully exploit the information available in multi-parametric MRI (mp-MRI), particularly inter-slice contextual features, and typically require considerable computational resources while lacking robustness across tumor type variations. We present GBT-SAM, a parameter-efficient deep learning framework that adapts the Segment Anything Model (SAM), a large-scale vision model, to volumetric mp-MRI data. GBT-SAM reduces input complexity by selecting fewer than 2.6\% of slices per scan while incorporating all four MRI modalities, preserving essential tumor-related information with minimal cost. Furthermore, our model is trained by a two-step fine-tuning strategy that incorporates a depth-aware module to capture inter-slice correlations and lightweight adaptation layers, resulting in just 6.5M trainable parameters, which is the lowest among SAM-based approaches. GBT-SAM achieves a Dice Score of 93.54 on the BraTS Adult Glioma dataset and demonstrates robust performance on Meningioma, Pediatric Glioma, and Sub-Saharan Glioma datasets. These results highlight GBT-SAM's potential as a computationally efficient and domain-robust framework for brain tumor segmentation using mp-MRI. Our code and models are available at https://github.com/vpulab/med-sam-brain .
♻ ☆ DualCamCtrl: Dual-Branch Diffusion Model for Geometry-Aware Camera-Controlled Video Generation
This paper presents DualCamCtrl, a novel end-to-end diffusion model for camera-controlled video generation. Recent works have advanced this field by representing camera poses as ray-based conditions, yet they often lack sufficient scene understanding and geometric awareness. DualCamCtrl specifically targets this limitation by introducing a dual-branch framework that mutually generates camera-consistent RGB and depth sequences. To harmonize these two modalities, we further propose the Semantic Guided Mutual Alignment (SIGMA) mechanism, which performs RGB-depth fusion in a semantics-guided and mutually reinforced manner. These designs collectively enable DualCamCtrl to better disentangle appearance and geometry modeling, generating videos that more faithfully adhere to the specified camera trajectories. Additionally, we analyze and reveal the distinct influence of depth and camera poses across denoising stages and further demonstrate that early and late stages play complementary roles in forming global structure and refining local details. Extensive experiments demonstrate that DualCamCtrl achieves more consistent camera-controlled video generation, with over 40\% reduction in camera motion errors compared with prior methods. Our project page: https://soyouthinkyoucantell.github.io/dualcamctrl-page/
♻ ☆ SCOPE-MRI: Bankart Lesion Detection as a Case Study in Data Curation and Deep Learning for Challenging Diagnoses
Deep learning has shown strong performance in musculoskeletal imaging, but prior work has largely targeted conditions where diagnosis is relatively straightforward. More challenging problems remain underexplored, such as detecting Bankart lesions (anterior-inferior glenoid labral tears) on standard MRIs. These lesions are difficult to diagnose due to subtle imaging features, often necessitating invasive MRI arthrograms (MRAs). We introduce ScopeMRI, the first publicly available, expert-annotated dataset for shoulder pathologies, and present a deep learning framework for Bankart lesion detection on both standard MRIs and MRAs. ScopeMRI contains shoulder MRIs from patients who underwent arthroscopy, providing ground-truth labels from intraoperative findings, the diagnostic gold standard. Separate models were trained for MRIs and MRAs using CNN- and transformer-based architectures, with predictions ensembled across multiple imaging planes. Our models achieved radiologist-level performance, with accuracy on standard MRIs surpassing radiologists interpreting MRAs. External validation on independent hospital data demonstrated initial generalizability across imaging protocols. By releasing ScopeMRI and a modular codebase for training and evaluation, we aim to accelerate research in musculoskeletal imaging and foster development of datasets and models that address clinically challenging diagnostic tasks.
comment: This version of the article has been accepted for publication at Nature Partner Journal (NPJ) Artificial Intelligence, but is not the Version of Record and does not reflect post-acceptance improvements or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1038/s44387-025-00043-5
♻ ☆ Structure is Supervision: Multiview Masked Autoencoders for Radiology
Building robust medical machine learning systems requires pretraining strategies that exploit the intrinsic structure present in clinical data. We introduce Multiview Masked Autoencoder (MVMAE), a self-supervised framework that leverages the natural multi-view organization of radiology studies to learn view-invariant and disease-relevant representations. MVMAE combines masked image reconstruction with cross-view alignment, transforming clinical redundancy across projections into a powerful self-supervisory signal. We further extend this approach with MVMAE-V2T, which incorporates radiology reports as an auxiliary text-based learning signal to enhance semantic grounding while preserving fully vision-based inference. Evaluated on a downstream disease classification task on three large-scale public datasets, MIMIC-CXR, CheXpert, and PadChest, MVMAE consistently outperforms supervised and vision-language baselines. Furthermore, MVMAE-V2T provides additional gains, particularly in low-label regimes where structured textual supervision is most beneficial. Together, these results establish the importance of structural and textual supervision as complementary paths toward scalable, clinically grounded medical foundation models.
♻ ☆ Securing the Skies: A Comprehensive Survey on Anti-UAV Methods, Benchmarking, and Future Directions CVPR
Unmanned Aerial Vehicles (UAVs) are indispensable for infrastructure inspection, surveillance, and related tasks, yet they also introduce critical security challenges. This survey provides a wide-ranging examination of the anti-UAV domain, centering on three core objectives-classification, detection, and tracking-while detailing emerging methodologies such as diffusion-based data synthesis, multi-modal fusion, vision-language modeling, self-supervised learning, and reinforcement learning. We systematically evaluate state-of-the-art solutions across both single-modality and multi-sensor pipelines (spanning RGB, infrared, audio, radar, and RF) and discuss large-scale as well as adversarially oriented benchmarks. Our analysis reveals persistent gaps in real-time performance, stealth detection, and swarm-based scenarios, underscoring pressing needs for robust, adaptive anti-UAV systems. By highlighting open research directions, we aim to foster innovation and guide the development of next-generation defense strategies in an era marked by the extensive use of UAVs.
comment: Best Paper, Accepted at CVPR Workshop Anti-UAV 2025. 16 pages
♻ ☆ Adaptive Plane Reformatting for 4D Flow MRI using Deep Reinforcement Learning
Background and Objective: Plane reformatting for four-dimensional phase contrast MRI (4D flow MRI) is time-consuming and prone to inter-observer variability, which limits fast cardiovascular flow assessment. Deep reinforcement learning (DRL) trains agents to iteratively adjust plane position and orientation, enabling accurate plane reformatting without the need for detailed landmarks, making it suitable for images with limited contrast and resolution such as 4D flow MRI. However, current DRL methods assume that test volumes share the same spatial alignment as the training data, limiting generalization across scanners and institutions. To address this limitation, we introduce AdaPR (Adaptive Plane Reformatting), a DRL framework that uses a local coordinate system to navigate volumes with arbitrary positions and orientations. Methods: We implemented AdaPR using the Asynchronous Advantage Actor-Critic (A3C) algorithm and validated it on 88 4D flow MRI datasets acquired from multiple vendors, including patients with congenital heart disease. Results: AdaPR achieved a mean angular error of 6.32 +/- 4.15 degrees and a distance error of 3.40 +/- 2.75 mm, outperforming global-coordinate DRL methods and alternative non-DRL methods. AdaPR maintained consistent accuracy under different volume orientations and positions. Flow measurements from AdaPR planes showed no significant differences compared to two manual observers, with excellent correlation (R^2 = 0.972 and R^2 = 0.968), comparable to inter-observer agreement (R^2 = 0.969). Conclusion: AdaPR provides robust, orientation-independent plane reformatting for 4D flow MRI, achieving flow quantification comparable to expert observers. Its adaptability across datasets and scanners makes it a promising candidate for medical imaging applications beyond 4D flow MRI.
♻ ☆ MAMMA: Markerless & Automatic Multi-Person Motion Action Capture
We present MAMMA, a markerless motion-capture pipeline that accurately recovers SMPL-X parameters from multi-view video of two-person interaction sequences. Traditional motion-capture systems rely on physical markers. Although they offer high accuracy, their requirements of specialized hardware, manual marker placement, and extensive post-processing make them costly and time-consuming. Recent learning-based methods attempt to overcome these limitations, but most are designed for single-person capture, rely on sparse keypoints, or struggle with occlusions and physical interactions. In this work, we introduce a method that predicts dense 2D contact-aware surface landmarks conditioned on segmentation masks, enabling person-specific correspondence estimation even under heavy occlusion. We employ a novel architecture that exploits learnable queries for each landmark. We demonstrate that our approach can handle complex person--person interaction and offers greater accuracy than existing methods. To train our network, we construct a large, synthetic multi-view dataset combining human motions from diverse sources, including extreme poses, hand motions, and close interactions. Our dataset yields high-variability synthetic sequences with rich body contact and occlusion, and includes SMPL-X ground-truth annotations with dense 2D landmarks. The result is a system capable of capturing human motion without the need for markers. Our approach offers competitive reconstruction quality compared to commercial marker-based motion-capture solutions, without the extensive manual cleanup. Finally, we address the absence of common benchmarks for dense-landmark prediction and markerless motion capture by introducing two evaluation settings built from real multi-view sequences. We will release our dataset, benchmark, method, training code, and pre-trained model weights for research purposes.
♻ ☆ Benchmarking machine learning models for multi-class state recognition in double quantum dot data
Semiconductor quantum dots (QDs) are a leading platform for scalable quantum processors. However, scaling to large arrays requires reliable, automated tuning strategies for devices' bootstrapping, calibration, and operation, with many tuning aspects depending on accurately identifying QD device states from charge-stability diagrams (CSDs). In this work, we present a comprehensive benchmarking study of four modern machine learning (ML) architectures for multi-class state recognition in double-QD CSDs. We evaluate their performance across different data budgets and normalization schemes using both synthetic and experimental data. We find that the more resource-intensive models -- U-Nets and visual transformers (ViTs) -- achieve the highest MSE score (defined as $1-\mathrm{MSE}$) on synthetic data (over $0.98$) but fail to generalize to experimental data. MDNs are the most computationally efficient and exhibit highly stable training, but with substantially lower peak performance. CNNs offer the most favorable trade-off on experimental CSDs, achieving strong accuracy with two orders of magnitude fewer parameters than the U-Nets and ViTs. Normalization plays a nontrivial role: min-max scaling generally yields higher MSE scores but less stable convergence, whereas z-score normalization produces more predictable training dynamics but at reduced accuracy for most models. Overall, our study shows that CNNs with min-max normalization are a practical approach for QD CSDs.
comment: 12 pages, 4 figures, 2 tables
♻ ☆ Global-to-local image quality assessment in optical microscopy via fast and robust deep learning predictions
Optical microscopy is one of the most widely used techniques in research studies for life sciences and biomedicine. These applications require reliable experimental pipelines to extract valuable knowledge from the measured samples and must be supported by image quality assessment (IQA) to ensure correct processing and analysis of the image data. IQA methods are implemented with variable complexity. However, while most quality metrics have a straightforward implementation, they might be time consuming and computationally expensive when evaluating a large dataset. In addition, quality metrics are often designed for well-defined image features and may be unstable for images out of the ideal domain. To overcome these limitations, recent works have proposed deep learning-based IQA methods, which can provide superior performance, increased generalizability and fast prediction. Our method, named $\mathrmμ$DeepIQA, is inspired by previous studies and applies a deep convolutional neural network designed for IQA on natural images to optical microscopy measurements. We retrained the same architecture to predict individual quality metrics and global quality scores for optical microscopy data. The resulting models provide fast and stable predictions of image quality by generalizing quality estimation even outside the ideal range of standard methods. In addition, $\mathrmμ$DeepIQA provides patch-wise prediction of image quality and can be used to visualize spatially varying quality in a single image. Our study demonstrates that optical microscopy-based studies can benefit from the generalizability of deep learning models due to their stable performance in the presence of outliers, the ability to assess small image patches, and rapid predictions.
comment: 16 pages, 6 figures. μDeepIQA is publicly available at https://git.photonicdata.science/elena.corbetta/udeepiqa
♻ ☆ Manual-PA: Learning 3D Part Assembly from Instruction Diagrams ICCV'25
Assembling furniture amounts to solving the discrete-continuous optimization task of selecting the furniture parts to assemble and estimating their connecting poses in a physically realistic manner. The problem is hampered by its combinatorially large yet sparse solution space thus making learning to assemble a challenging task for current machine learning models. In this paper, we attempt to solve this task by leveraging the assembly instructions provided in diagrammatic manuals that typically accompany the furniture parts. Our key insight is to use the cues in these diagrams to split the problem into discrete and continuous phases. Specifically, we present Manual-PA, a transformer-based instruction Manual-guided 3D Part Assembly framework that learns to semantically align 3D parts with their illustrations in the manuals using a contrastive learning backbone towards predicting the assembly order and infers the 6D pose of each part via relating it to the final furniture depicted in the manual. To validate the efficacy of our method, we conduct experiments on the benchmark PartNet dataset. Our results show that using the diagrams and the order of the parts lead to significant improvements in assembly performance against the state of the art. Further, Manual-PA demonstrates strong generalization to real-world IKEA furniture assembly on the IKEA-Manual dataset.
comment: Accepted to ICCV'25
♻ ☆ MRI Super-Resolution with Deep Learning: A Comprehensive Survey
High-resolution (HR) magnetic resonance imaging (MRI) is crucial for many clinical and research applications. However, achieving it remains costly and constrained by technical trade-offs and experimental limitations. Super-resolution (SR) presents a promising computational approach to overcome these challenges by generating HR images from more affordable low-resolution (LR) scans, potentially improving diagnostic accuracy and efficiency without requiring additional hardware. This survey reviews recent advances in MRI SR techniques, with a focus on deep learning (DL) approaches. It examines DL-based MRI SR methods from the perspectives of computer vision, computational imaging, inverse problems, and MR physics, covering theoretical foundations, architectural designs, learning strategies, benchmark datasets, and performance metrics. We propose a systematic taxonomy to categorize these methods and present an in-depth study of both established and emerging SR techniques applicable to MRI, considering unique challenges in clinical and research contexts. We also highlight open challenges and directions that the community needs to address. Additionally, we provide a collection of essential open-access resources, tools, and tutorials, available on our GitHub: https://github.com/mkhateri/Awesome-MRI-Super-Resolution. IEEE keywords: MRI, Super-Resolution, Deep Learning, Computational Imaging, Inverse Problem, Survey.
comment: 41 pages
♻ ☆ Multivariate Variational Autoencoder
Learning latent representations that are simultaneously expressive, geometrically well-structured, and reliably calibrated remains a central challenge for Variational Autoencoders (VAEs). Standard VAEs typically assume a diagonal Gaussian posterior, which simplifies optimization but rules out correlated uncertainty and often yields entangled or redundant latent dimensions. We introduce the Multivariate Variational Autoencoder (MVAE), a tractable full-covariance extension of the VAE that augments the encoder with sample-specific diagonal scales and a global coupling matrix. This induces a multivariate Gaussian posterior of the form $N(μ_φ(x), C \operatorname{diag}(σ_φ^2(x)) C^\top)$, enabling correlated latent factors while preserving a closed-form KL divergence and a simple reparameterization path. Beyond likelihood, we propose a multi-criterion evaluation protocol that jointly assesses reconstruction quality (MSE, ELBO), downstream discrimination (linear probes), probabilistic calibration (NLL, Brier, ECE), and unsupervised structure (NMI, ARI). Across Larochelle-style MNIST variants, Fashion-MNIST, and CIFAR-10/100, MVAE consistently matches or outperforms diagonal-covariance VAEs of comparable capacity, with particularly notable gains in calibration and clustering metrics at both low and high latent dimensions. Qualitative analyses further show smoother, more semantically coherent latent traversals and sharper reconstructions. All code, dataset splits, and evaluation utilities are released to facilitate reproducible comparison and future extensions of multivariate posterior models.
♻ ☆ Hierarchical Semi-Supervised Active Learning for Remote Sensing
The performance of deep learning models in remote sensing (RS) strongly depends on the availability of high-quality labeled data. However, collecting large-scale annotations is costly and time-consuming, while vast amounts of unlabeled imagery remain underutilized. To address this challenge, we propose a Hierarchical Semi-Supervised Active Learning (HSSAL) framework that integrates semi-supervised learning (SSL) and a novel hierarchical active learning (HAL) in a closed iterative loop. In each iteration, SSL refines the model using both labeled data through supervised learning and unlabeled data via weak-to-strong self-training, improving feature representation and uncertainty estimation. Guided by the refined representations and uncertainty cues of unlabeled samples, HAL then conducts sample querying through a progressive clustering strategy, selecting the most informative instances that jointly satisfy the criteria of scalability, diversity, and uncertainty. This hierarchical process ensures both efficiency and representativeness in sample selection. Extensive experiments on three benchmark RS scene classification datasets, including UCM, AID, and NWPU-RESISC45, demonstrate that HSSAL consistently outperforms SSL- or AL-only baselines. Remarkably, with only 8%, 4%, and 2% labeled training data on UCM, AID, and NWPU-RESISC45, respectively, HSSAL achieves over 95% of fully-supervised accuracy, highlighting its superior label efficiency through informativeness exploitation of unlabeled data. Our code will be publicly available.
comment: Under review
♻ ☆ Harnessing Diffusion-Generated Synthetic Images for Fair Image Classification AAAI
Image classification systems often inherit biases from uneven group representation in training data. For example, in face datasets for hair color classification, blond hair may be disproportionately associated with females, reinforcing stereotypes. A recent approach leverages the Stable Diffusion model to generate balanced training data, but these models often struggle to preserve the original data distribution. In this work, we explore multiple diffusion-finetuning techniques, e.g., LoRA and DreamBooth, to generate images that more accurately represent each training group by learning directly from their samples. Additionally, in order to prevent a single DreamBooth model from being overwhelmed by excessive intra-group variations, we explore a technique of clustering images within each group and train a DreamBooth model per cluster. These models are then used to generate group-balanced data for pretraining, followed by fine-tuning on real data. Experiments on multiple benchmarks demonstrate that the studied finetuning approaches outperform vanilla Stable Diffusion on average and achieve results comparable to SOTA debiasing techniques like Group-DRO, while surpassing them as the dataset bias severity increases.
comment: Accepted to AAAI AISI Track, 2026
♻ ☆ Sketch-guided Cage-based 3D Gaussian Splatting Deformation WACV 26
3D Gaussian Splatting (GS) is one of the most promising novel 3D representations that has received great interest in computer graphics and computer vision. While various systems have introduced editing capabilities for 3D GS, such as those guided by text prompts, fine-grained control over deformation remains an open challenge. In this work, we present a novel sketch-guided 3D GS deformation system that allows users to intuitively modify the geometry of a 3D GS model by drawing a silhouette sketch from a single viewpoint. Our approach introduces a new deformation method that combines cage-based deformations with a variant of Neural Jacobian Fields, enabling precise, fine-grained control. Additionally, it leverages large-scale 2D diffusion priors and ControlNet to ensure the generated deformations are semantically plausible. Through a series of experiments, we demonstrate the effectiveness of our method and showcase its ability to animate static 3D GS models as one of its key applications.
comment: 10 pages, 9 figures, accepted at WACV 26, project page: https://tianhaoxie.github.io/project/gs_deform/
♻ ☆ Benchmarking pig detection and tracking under diverse and challenging conditions
To ensure animal welfare and effective management in pig farming, monitoring individual behavior is a crucial prerequisite. While monitoring tasks have traditionally been carried out manually, advances in machine learning have made it possible to collect individualized information in an increasingly automated way. Central to these methods is the localization of animals across space (object detection) and time (multi-object tracking). Despite extensive research of these two tasks in pig farming, a systematic benchmarking study has not yet been conducted. In this work, we address this gap by curating two datasets: PigDetect for object detection and PigTrack for multi-object tracking. The datasets are based on diverse image and video material from realistic barn conditions, and include challenging scenarios such as occlusions or bad visibility. For object detection, we show that challenging training images improve detection performance beyond what is achievable with randomly sampled images alone. Comparing different approaches, we found that state-of-the-art models offer substantial improvements in detection quality over real-time alternatives. For multi-object tracking, we observed that SORT-based methods achieve superior detection performance compared to end-to-end trainable models. However, end-to-end models show better association performance, suggesting they could become strong alternatives in the future. We also investigate characteristic failure cases of end-to-end models, providing guidance for future improvements. The detection and tracking models trained on our datasets perform well in unseen pens, suggesting good generalization capabilities. This highlights the importance of high-quality training data. The datasets and research code are made publicly available to facilitate reproducibility, re-use and further development.
comment: 16 pages, 6 figures and 8 tables
♻ ☆ CaliTex: Geometry-Calibrated Attention for View-Coherent 3D Texture Generation
Despite major advances brought by diffusion-based models, current 3D texture generation systems remain hindered by cross-view inconsistency -- textures that appear convincing from one viewpoint often fail to align across others. We find that this issue arises from attention ambiguity, where unstructured full attention is applied indiscriminately across tokens and modalities, causing geometric confusion and unstable appearance-structure coupling. To address this, we introduce CaliTex, a framework of geometry-calibrated attention that explicitly aligns attention with 3D structure. It introduces two modules: Part-Aligned Attention that enforces spatial alignment across semantically matched parts, and Condition-Routed Attention which routes appearance information through geometry-conditioned pathways to maintain spatial fidelity. Coupled with a two-stage diffusion transformer, CaliTex makes geometric coherence an inherent behavior of the network rather than a byproduct of optimization. Empirically, CaliTex produces seamless and view-consistent textures and outperforms both open-source and commercial baselines.
♻ ☆ Pushing the Limits of Sparsity: A Bag of Tricks for Extreme Pruning
Pruning of deep neural networks has been an effective technique for reducing model size while preserving most of the performance of dense networks, crucial for deploying models on memory and power-constrained devices. While recent sparse learning methods have shown promising performance up to moderate sparsity levels such as 95% and 98%, accuracy quickly deteriorates when pushing sparsities to extreme levels due to unique challenges such as fragile gradient flow. In this work, we explore network performance beyond the commonly studied sparsities, and develop techniques that encourage stable training without accuracy collapse even at extreme sparsities, including 99.90%, 99.95\% and 99.99% on ResNet architectures. We propose three complementary techniques that enhance sparse training through different mechanisms: 1) Dynamic ReLU phasing, where DyReLU initially allows for richer parameter exploration before being gradually replaced by standard ReLU, 2) weight sharing which reuses parameters within a residual layer while maintaining the same number of learnable parameters, and 3) cyclic sparsity, where both sparsity levels and sparsity patterns evolve dynamically throughout training to better encourage parameter exploration. We evaluate our method, which we term Extreme Adaptive Sparse Training (EAST) at extreme sparsities using ResNet-34 and ResNet-50 on CIFAR-10, CIFAR-100, and ImageNet, achieving competitive or improved performance compared to existing methods, with notable gains at extreme sparsity levels.
comment: V4: moderate revisions and overall improvements for journal camera ready submission
♻ ☆ Flow Equivariant Recurrent Neural Networks NeurIPS '25
Data arrives at our senses as a continuous stream, smoothly transforming from one instant to the next. These smooth transformations can be viewed as continuous symmetries of the environment that we inhabit, defining equivalence relations between stimuli over time. In machine learning, neural network architectures that respect symmetries of their data are called equivariant and have provable benefits in terms of generalization ability and sample efficiency. To date, however, equivariance has been considered only for static transformations and feed-forward networks, limiting its applicability to sequence models, such as recurrent neural networks (RNNs), and corresponding time-parameterized sequence transformations. In this work, we extend equivariant network theory to this regime of 'flows' -- one-parameter Lie subgroups capturing natural transformations over time, such as visual motion. We begin by showing that standard RNNs are generally not flow equivariant: their hidden states fail to transform in a geometrically structured manner for moving stimuli. We then show how flow equivariance can be introduced, and demonstrate that these models significantly outperform their non-equivariant counterparts in terms of training speed, length generalization, and velocity generalization, on both next step prediction and sequence classification. We present this work as a first step towards building sequence models that respect the time-parameterized symmetries which govern the world around us.
comment: NeurIPS '25, Spotlight
♻ ☆ RealWebAssist: A Benchmark for Long-Horizon Web Assistance with Real-World Users SC
To achieve successful assistance with long-horizon web-based tasks, AI agents must be able to sequentially follow real-world user instructions over a long period. Unlike existing web-based agent benchmarks, sequential instruction following in the real world poses significant challenges beyond performing a single, clearly defined task. For instance, real-world human instructions can be ambiguous, require different levels of AI assistance, and may evolve over time, reflecting changes in the user's mental state. To address this gap, we introduce RealWebAssist, a novel benchmark designed to evaluate sequential instruction-following in realistic scenarios involving long-horizon interactions with the web, visual GUI grounding, and understanding ambiguous real-world user instructions. RealWebAssist includes a dataset of sequential instructions collected from real-world human users. Each user instructs a web-based assistant to perform a series of tasks on multiple websites. A successful agent must reason about the true intent behind each instruction, keep track of the mental state of the user, understand user-specific routines, and ground the intended tasks to actions on the correct GUI elements. Our experimental results show that state-of-the-art models struggle to understand and ground user instructions, posing critical challenges in following real-world user instructions for long-horizon web assistance.
comment: Project Website: https://scai.cs.jhu.edu/projects/RealWebAssist/ Code: https://github.com/SCAI-JHU/RealWebAssist
♻ ☆ OmniSVG: A Unified Scalable Vector Graphics Generation Model
Scalable Vector Graphics (SVG) is an important image format widely adopted in graphic design because of their resolution independence and editability. The study of generating high-quality SVG has continuously drawn attention from both designers and researchers in the AIGC community. However, existing methods either produces unstructured outputs with huge computational cost or is limited to generating monochrome icons of over-simplified structures. To produce high-quality and complex SVG, we propose OmniSVG, a unified framework that leverages pre-trained Vision-Language Models (VLMs) for end-to-end multimodal SVG generation. By parameterizing SVG commands and coordinates into discrete tokens, OmniSVG decouples structural logic from low-level geometry for efficient training while maintaining the expressiveness of complex SVG structure. To further advance the development of SVG synthesis, we introduce MMSVG-2M, a multimodal dataset with two million richly annotated SVG assets, along with a standardized evaluation protocol for conditional SVG generation tasks. Extensive experiments show that OmniSVG outperforms existing methods and demonstrates its potential for integration into professional SVG design workflows.
comment: 20 pages; Project Page: https://omnisvg.github.io/
♻ ☆ FedHK-MVFC: Federated Heat Kernel Multi-View Clustering
In the realm of distributed artificial intelligence (AI) and privacy-focused medical applications, this paper proposes a multi-view clustering framework that links quantum field theory with federated healthcare analytics. The method uses heat kernel coefficients from spectral analysis to convert Euclidean distances into geometry-aware similarity measures that capture the structure of diverse medical data. The framework is presented through the heat kernel distance (HKD) transformation, which has convergence guarantees. Two algorithms have been developed: The first, Heat Kernel-Enhanced Multi-View Fuzzy Clustering (HK-MVFC), is used for central analysis. The second, Federated Heat Kernel Multi-View Fuzzy Clustering (FedHK-MVFC), is used for secure, privacy-preserving learning across hospitals. FedHK-MVFC uses differential privacy and secure aggregation to enable HIPAA-compliant collaboration. Tests on synthetic cardiovascular patient datasets demonstrate increased clustering accuracy, reduced communication, and retained efficiency compared to centralized methods. After being validated on 10,000 synthetic patient records across two hospitals, the methods proved useful for collaborative phenotyping involving electrocardiogram (ECG) data, cardiac imaging data, and behavioral data. The proposed methods' theoretical contributions include update rules with proven convergence, adaptive view weighting, and privacy-preserving protocols. These contributions establish a new standard for geometry-aware federated learning in healthcare, translating advanced mathematics into practical solutions for analyzing sensitive medical data while ensuring rigor and clinical relevance.
comment: 53 pages, 11 figures, and 9 tables
♻ ☆ DenoiseGS: Gaussian Reconstruction Model for Burst Denoising
Burst denoising methods are crucial for enhancing images captured on handheld devices, but they often struggle with large motion or suffer from prohibitive computational costs. In this paper, we propose DenoiseGS, the first framework to leverage the efficiency of 3D Gaussian Splatting for burst denoising. Our approach addresses two key challenges when applying feedforward Gaussian reconsturction model to noisy inputs: the degradation of Gaussian point clouds and the loss of fine details. To this end, we propose a Gaussian self-consistency (GSC) loss, which regularizes the geometry predicted from noisy inputs with high-quality Gaussian point clouds. These point clouds are generated from clean inputs by the same model that we are training, thereby alleviating potential bias or domain gaps. Additionally, we introduce a log-weighted frequency (LWF) loss to strengthen supervision within the spectral domain, effectively preserving fine-grained details. The LWF loss adaptively weights frequency discrepancies in a logarithmic manner, emphasizing challenging high-frequency details. Extensive experiments demonstrate that DenoiseGS significantly exceeds the state-of-the-art NeRF-based methods on both burst denoising and novel view synthesis under noisy conditions, while achieving 250$\times$ faster inference speed. Code and models are released at https://github.com/yscheng04/DenoiseGS.
comment: Update Abstract
♻ ☆ TTSnap: Test-Time Scaling of Diffusion Models via Noise-Aware Pruning
A prominent approach to test-time scaling for text-to-image diffusion models formulates the problem as a search over multiple noise seeds, selecting the one that maximizes a certain image-reward function. The effectiveness of this strategy heavily depends on the number and diversity of noise seeds explored. However, verifying each candidate is computationally expensive, because each must be fully denoised before a reward can be computed. This severely limits the number of samples that can be explored under a fixed budget. We propose test-time scaling with noise-aware pruning (TTSnap), a framework that prunes low-quality candidates without fully denoising them. The key challenge is that reward models are learned in the clean image domain, and the ranking of rewards predicted for intermediate estimates are often inconsistent with those predicted for clean images. To overcome this, we train noise-aware reward models via self-distillation to align the reward for intermediate estimates with that of the final clean images. To stabilize learning across different noise levels, we adopt a curriculum training strategy that progressively shifts the data domain from clean images to noise images. In addition, we introduce a new metric that measures reward alignment and computational budget utilization. Experiments demonstrate that our approach improves performance by over 16\% compared with existing methods, enabling more efficient and effective test-time scaling. It also provides orthogonal gains when combined with post-training techniques and local test-time optimization. Code: https://github.com/TerrysLearning/TTSnap/.
♻ ☆ Towards Fast and Scalable Normal Integration using Continuous Components WACV
Surface normal integration is a fundamental problem in computer vision, dealing with the objective of reconstructing a surface from its corresponding normal map. Existing approaches require an iterative global optimization to jointly estimate the depth of each pixel, which scales poorly to larger normal maps. In this paper, we address this problem by recasting normal integration as the estimation of relative scales of continuous components. By constraining pixels belonging to the same component to jointly vary their scale, we drastically reduce the number of optimization variables. Our framework includes a heuristic to accurately estimate continuous components from the start, a strategy to rebalance optimization terms, and a technique to iteratively merge components to further reduce the size of the problem. Our method achieves state-of-the-art results on the standard normal integration benchmark in as little as a few seconds and achieves one-order-of-magnitude speedup over pixel-level approaches on large-resolution normal maps.
comment: Accepted by the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026, first round. Camera-ready version. 17 pages, 9 figures, 6 tables. Code is available at https://github.com/francescomilano172/normal_integration_continuous_components
♻ ☆ B2N3D: Progressive Learning from Binary to N-ary Relationships for 3D Object Grounding
Localizing 3D objects using natural language is essential for robotic scene understanding. The descriptions often involve multiple spatial relationships to distinguish similar objects, making 3D-language alignment difficult. Current methods only model relationships for pairwise objects, ignoring the global perceptual significance of n-ary combinations in multi-modal relational understanding. To address this, we propose a novel progressive relational learning framework for 3D object grounding. We extend relational learning from binary to n-ary to identify visual relations that match the referential description globally. Given the absence of specific annotations for referred objects in the training data, we design a grouped supervision loss to facilitate n-ary relational learning. In the scene graph created with n-ary relationships, we use a multi-modal network with hybrid attention mechanisms to further localize the target within the n-ary combinations. Experiments and ablation studies on the ReferIt3D and ScanRefer benchmarks demonstrate that our method outperforms the state-of-the-art, and proves the advantages of the n-ary relational perception in 3D localization.
♻ ☆ Hybrid Swin Attention Networks for Simultaneously Low-Dose PET and CT Denoising
Low-dose computed tomography (LDCT) and positron emission tomography (PET) have emerged as safer alternatives to conventional imaging modalities by significantly reducing radiation exposure. However, this reduction often results in increased noise and artifacts, which can compromise diagnostic accuracy. Consequently, denoising for LDCT/PET has become a vital area of research aimed at enhancing image quality while maintaining radiation safety. In this study, we introduce a novel Hybrid Swin Attention Network (HSANet), which incorporates Efficient Global Attention (EGA) modules and a hybrid upsampling module. The EGA modules enhance both spatial and channel-wise interaction, improving the network's capacity to capture relevant features, while the hybrid upsampling module mitigates the risk of overfitting to noise. We validate the proposed approach using a publicly available LDCT/PET dataset. Experimental results demonstrate that HSANet achieves superior denoising performance compared to existing methods, while maintaining a lightweight model size suitable for deployment on GPUs with standard memory configurations. This makes our approach highly practical for real-world clinical applications.
♻ ☆ RDTF: Resource-efficient Dual-mask Training Framework for Multi-frame Animated Sticker Generation
Recently, significant advancements have been achieved in video generation technology, but applying it to resource-constrained downstream tasks like multi-frame animated sticker generation (ASG) characterized by low frame rates, abstract semantics, and long tail frame length distribution-remains challenging. Parameter-efficient fine-tuning (PEFT) techniques (e.g., Adapter, LoRA) for large pre-trained models suffer from insufficient fitting ability and source-domain knowledge interference. In this paper, we propose Resource-Efficient Dual-Mask Training Framework (RDTF), a dedicated solution for multi-frame ASG task under resource constraints. We argue that training a compact model from scratch with million-level samples outperforms PEFT on large models, with RDTF realizing this via three core designs: 1) a Discrete Frame Generation Network (DFGN) optimized for low-frame-rate ASG, ensuring parameter efficiency; 2) a dual-mask based data utilization strategy to enhance the availability and diversity of limited data; 3) a difficulty-adaptive curriculum learning method that decomposes sample entropy into static and adaptive components, enabling easy-to-difficult training convergence. To provide high-quality data support for RDTFs training from scratch, we construct VSD2M-a million-level multi-modal animated sticker dataset with rich annotations (static and animated stickers, action-focused text descriptions)-filling the gap of dedicated animated data for ASG task. Experiments demonstrate that RDTF is quantitatively and qualitatively superior to state-of-the-art PEFT methods (e.g., I2V-Adapter, SimDA) on ASG tasks, verifying the feasibility of our framework under resource constraints.
comment: Submitted to TMM
♻ ☆ Fusion or Confusion? Assessing the impact of visible-thermal image fusion for automated wildlife detection
Efficient wildlife monitoring methods are necessary for biodiversity conservation and management. The combination of remote sensing, aerial imagery and deep learning offer promising opportunities to renew or improve existing survey methods. The complementary use of visible (VIS) and thermal infrared (TIR) imagery can add information compared to a single-source image and improve results in an automated detection context. However, the alignment and fusion process can be challenging, especially since visible and thermal images usually have different fields of view (FOV) and spatial resolutions. This research presents a case study on the great blue heron (Ardea herodias) to evaluate the performances of synchronous aerial VIS and TIR imagery to automatically detect individuals and nests using a YOLO11n model. Two VIS-TIR fusion methods were tested and compared: an early fusion approach and a late fusion approach, to determine if the addition of the TIR image gives any added value compared to a VIS-only model. VIS and TIR images were automatically aligned using a deep learning model. A principal component analysis fusion method was applied to VIS-TIR image pairs to form the early fusion dataset. A classification and regression tree was used to process the late fusion dataset, based on the detection from the VIS-only and TIR-only trained models. Across all classes, both late and early fusion improved the F1 score compared to the VIS-only model. For the main class, occupied nest, the late fusion improved the F1 score from 90.2 (VIS-only) to 93.0%. This model was also able to identify false positives from both sources with 90% recall. Although fusion methods seem to give better results, this approach comes with a limiting TIR FOV and alignment constraints that eliminate data. Using an aircraft-mounted very high-resolution visible sensor could be an interesting option for operationalizing surveys.
comment: 19 pages, 9 figures, submitted to Remote Sensing in Ecology and Conservation
♻ ☆ MoH: Multi-Head Attention as Mixture-of-Head Attention ICML 2025
In this work, we upgrade the multi-head attention mechanism, the core of the Transformer model, to improve efficiency while maintaining or surpassing the previous accuracy level. We show that multi-head attention can be expressed in the summation form. Drawing on the insight that not all attention heads hold equal significance, we propose Mixture-of-Head attention (MoH), a new architecture that treats attention heads as experts in the Mixture-of-Experts (MoE) mechanism. MoH has two significant advantages: First, MoH enables each token to select the appropriate attention heads, enhancing inference efficiency without compromising accuracy or increasing the number of parameters. Second, MoH replaces the standard summation in multi-head attention with a weighted summation, introducing flexibility to the attention mechanism and unlocking extra performance potential. Extensive experiments on ViT, DiT, and LLMs demonstrate that MoH outperforms multi-head attention by using only 50%-90% of the attention heads. Moreover, we demonstrate that pre-trained multi-head attention models, such as LLaMA3-8B, can be further continue-tuned into our MoH models. Notably, MoH-LLaMA3-8B achieves an average accuracy of 64.0% across 14 benchmarks, outperforming LLaMA3-8B by 2.4% by utilizing only 75% of the attention heads. We believe the proposed MoH is a promising alternative to multi-head attention and provides a strong foundation for developing advanced and efficient attention-based models.
comment: Accepted by ICML 2025, code: https://github.com/SkyworkAI/MoH
♻ ☆ ReasonEdit: Towards Reasoning-Enhanced Image Editing Models
Recent advances in image editing models have shown remarkable progress. A common architectural design couples a multimodal large language model (MLLM) encoder with a diffusion decoder, as seen in systems such as Step1X-Edit and Qwen-Image-Edit, where the MLLM encodes both the reference image and the instruction but remains frozen during training. In this work, we demonstrate that unlocking the reasoning capabilities of MLLM can further push the boundaries of editing models. Specifically, we explore two reasoning mechanisms, thinking and reflection, which enhance instruction understanding and editing accuracy. Based on that, our proposed framework enables image editing in a thinking-editing-reflection loop: the thinking mechanism leverages the world knowledge of MLLM to interpret abstract instructions, while the reflection reviews editing results, automatically corrects unintended manipulations, and identifies the stopping round. Extensive experiments demonstrate that our reasoning approach achieves significant performance gains, with improvements of ImgEdit (+4.3%), GEdit (+4.7%), and Kris (+8.2%) when initializing our DiT from the Step1X-Edit (ReasonEdit-S), and also outperforms previous open-source methods on both GEdit and Kris when integrated with Qwen-Image-Edit (ReasonEdit-Q).
comment: code: https://github.com/stepfun-ai/Step1X-Edit
♻ ☆ Class-Conditional Distribution Balancing for Group Robust Classification
Spurious correlations that lead models to correct predictions for the wrong reasons pose a critical challenge for robust real-world generalization. Existing research attributes this issue to group imbalance and addresses it by maximizing group-balanced or worst-group accuracy, which heavily relies on expensive bias annotations. A compromise approach involves predicting bias information using extensively pretrained foundation models, which requires large-scale data and becomes impractical for resource-limited rare domains. To address these challenges, we offer a novel perspective by reframing the spurious correlations as imbalances or mismatches in class-conditional distributions, and propose a simple yet effective robust learning method that eliminates the need for both bias annotations and predictions. With the goal of maximizing the conditional entropy (uncertainty) of the label given spurious factors, our method leverages a sample reweighting strategy to achieve class-conditional distribution balancing, which automatically highlights minority groups and classes, effectively dismantling spurious correlations and producing a debiased data distribution for classification. Extensive experiments and analysis demonstrate that our approach consistently delivers state-of-the-art performance, rivaling methods that rely on bias supervision.
♻ ☆ iMontage: Unified, Versatile, Highly Dynamic Many-to-many Image Generation
Pre-trained video models learn powerful priors for generating high-quality, temporally coherent content. While these models excel at temporal coherence, their dynamics are often constrained by the continuous nature of their training data. We hypothesize that by injecting the rich and unconstrained content diversity from image data into this coherent temporal framework, we can generate image sets that feature both natural transitions and a far more expansive dynamic range. To this end, we introduce iMontage, a unified framework designed to repurpose a powerful video model into an all-in-one image generator. The framework consumes and produces variable-length image sets, unifying a wide array of image generation and editing tasks. To achieve this, we propose an elegant and minimally invasive adaptation strategy, complemented by a tailored data curation process and training paradigm. This approach allows the model to acquire broad image manipulation capabilities without corrupting its invaluable original motion priors. iMontage excels across several mainstream many-in-many-out tasks, not only maintaining strong cross-image contextual consistency but also generating scenes with extraordinary dynamics that surpass conventional scopes. Find our homepage at: https://kr1sjfu.github.io/iMontage-web/.
comment: Our homepage: https://kr1sjfu.github.io/iMontage-web/
♻ ☆ Prediction of Distant Metastasis in Head and Neck Cancer Patients Using Tumor and Peritumoral Multi-Modal Deep Learning
Although the combined treatment of surgery, radiotherapy, chemotherapy, and emerging target therapy has significantly improved the outcomes of patients with head and neck cancer, distant metastasis remains the leading cause of treatment failure. In this study, we propose a deep learning-based multimodal framework integrating CT imaging, radiomics, and clinical data to predict metastasis risk in HNSCC. A total of 1497 patients were retrospectively analyzed. Tumor and organ masks were generated from pretreatment CT scans, from which a 3D Swin Transformer extracted deep imaging features, while 1562 radiomics features were reduced to 36 via correlation filtering and random forest selection. Clinical data (age, sex, smoking, and alcohol status) were encoded and fused with imaging features, and the multimodal representation was fed into a fully connected network for prediction. Five-fold cross-validation was used to assess performance via AUC, accuracy, sensitivity, and specificity. The multimodal model outperformed all single-modality baselines. The deep learning module alone achieved an AUC of 0.715, whereas multimodal fusion significantly improved performance (AUC = 0.803, ACC = 0.752, SEN = 0.730, SPE = 0.758). Stratified analyses confirmed good generalizability across tumor subtypes. Ablation experiments demonstrated complementary contributions from each modality, and the 3D Swin Transformer provided more robust representations than conventional architectures. This multimodal deep learning model enables accurate, non-invasive metastasis prediction in HNSCC and shows strong potential for individualized treatment planning.
comment: 23 pages, 6 figures, 7 tables. Nuo Tong and Changhao Liu contributed equally. Corresponding Authors: Shuiping Gou and Mei Shi
♻ ☆ Fast Multi-view Consistent 3D Editing with Video Priors AAAI2026
Text-driven 3D editing enables user-friendly 3D object or scene editing with text instructions. Due to the lack of multi-view consistency priors, existing methods typically resort to employing 2D generation or editing models to process each view individually, followed by iterative 2D-3D-2D updating. However, these methods are not only time-consuming but also prone to over-smoothed results because the different editing signals gathered from different views are averaged during the iterative process. In this paper, we propose generative Video Prior based 3D Editing (ViP3DE) to employ the temporal consistency priors from pre-trained video generation models for multi-view consistent 3D editing in a single forward pass. Our key insight is to condition the video generation model on a single edited view to generate other consistent edited views for 3D updating directly, thereby bypassing the iterative editing paradigm. Since 3D updating requires edited views to be paired with specific camera poses, we propose motion-preserved noise blending for the video model to generate edited views at predefined camera poses. In addition, we introduce geometry-aware denoising to further enhance multi-view consistency by integrating 3D geometric priors into video models. Extensive experiments demonstrate that our proposed ViP3DE can achieve high-quality 3D editing results even within a single forward pass, significantly outperforming existing methods in both editing quality and speed.
comment: accepted by AAAI2026
♻ ☆ VITA: Vision-to-Action Flow Matching Policy
Conventional flow matching and diffusion-based policies sample through iterative denoising from standard noise distributions (e.g., Gaussian), and require conditioning modules to repeatedly incorporate visual information during the generative process, incurring substantial time and memory overhead. To reduce the complexity, we develop VITA(VIsion-To-Action policy), a noise-free and conditioning-free flow matching policy learning framework that directly flows from visual representations to latent actions. Since the source of the flow is visually grounded, VITA eliminates the need of visual conditioning during generation. As expected, bridging vision and action is challenging, because actions are lower-dimensional, less structured, and sparser than visual representations; moreover, flow matching requires the source and target to have the same dimensionality. To overcome this, we introduce an action autoencoder that maps raw actions into a structured latent space aligned with visual latents, trained jointly with flow matching. To further prevent latent space collapse, we propose flow latent decoding, which anchors the latent generation process by backpropagating the action reconstruction loss through the flow matching ODE (ordinary differential equation) solving steps. We evaluate VITA on 9 simulation and 5 real-world tasks from ALOHA and Robomimic. VITA achieves 1.5x-2x faster inference compared to conventional methods with conditioning modules, while outperforming or matching state-of-the-art policies. Codes, datasets, and demos are available at our project page: https://ucd-dare.github.io/VITA/.
comment: Project page: https://ucd-dare.github.io/VITA/ Code: https://github.com/ucd-dare/VITA
♻ ☆ Capturing Context-Aware Route Choice Semantics for Trajectory Representation Learning
Trajectory representation learning (TRL) aims to encode raw trajectory data into low-dimensional embeddings for downstream tasks such as travel time estimation, mobility prediction, and trajectory similarity analysis. From a behavioral perspective, a trajectory reflects a sequence of route choices within an urban environment. However, most existing TRL methods ignore this underlying decision-making process and instead treat trajectories as static, passive spatiotemporal sequences, thereby limiting the semantic richness of the learned representations. To bridge this gap, we propose CORE, a TRL framework that integrates context-aware route choice semantics into trajectory embeddings. CORE first incorporates a multi-granular Environment Perception Module, which leverages large language models (LLMs) to distill environmental semantics from point of interest (POI) distributions, thereby constructing a context-enriched road network. Building upon this backbone, CORE employs a Route Choice Encoder with a mixture-of-experts (MoE) architecture, which captures route choice patterns by jointly leveraging the context-enriched road network and navigational factors. Finally, a Transformer encoder aggregates the route-choice-aware representations into a global trajectory embedding. Extensive experiments on 4 real-world datasets across 6 downstream tasks demonstrate that CORE consistently outperforms 12 state-of-the-art TRL methods, achieving an average improvement of 9.79% over the best-performing baseline. Our code is available at https://github.com/caoji2001/CORE.
♻ ☆ Self-Supervised One-Step Diffusion Refinement for Snapshot Compressive Imaging
Snapshot compressive imaging (SCI) captures multispectral images (MSIs) using a single coded two-dimensional (2-D) measurement, but reconstructing high-fidelity MSIs from these compressed inputs remains a fundamentally ill-posed challenge. While diffusion-based reconstruction methods have recently raised the bar for quality, they face critical limitations: a lack of large-scale MSI training data, adverse domain shifts from RGB-pretrained models, and inference inefficiencies due to multi-step sampling. These drawbacks restrict their practicality in real-world applications. In contrast to existing methods, which either follow costly iterative refinement or adapt subspace-based embeddings for diffusion models (e.g. DiffSCI, PSR-SCI), we introduce a fundamentally different paradigm: a self-supervised One-Step Diffusion (OSD) framework specifically designed for SCI. The key novelty lies in using a single-step diffusion refiner to correct an initial reconstruction, eliminating iterative denoising entirely while preserving generative quality. Moreover, we adopt a self-supervised equivariant learning strategy to train both the predictor and refiner directly from raw 2-D measurements, enabling generalization to unseen domains without the need for ground-truth MSI. To further address the challenge of limited MSI data, we design a band-selection-driven distillation strategy that transfers core generative priors from large-scale RGB datasets, effectively bridging the domain gap. Extensive experiments confirm that our approach sets a new benchmark, yielding PSNR gains of 3.44 dB, 1.61 dB, and 0.28 dB on the Harvard, NTIRE, and ICVL datasets, respectively, while reducing reconstruction time by 97.5%. This remarkable improvement in efficiency and adaptability makes our method a significant advancement in SCI reconstruction, combining both accuracy and practicality for real-world deployment.
♻ ☆ Improving Partially Observed Trajectories Forecasting by Target-driven Self-Distillation
Accurate prediction of future trajectories of traffic agents is essential for ensuring safe autonomous driving. However, partially observed trajectories can significantly degrade the performance of even state-of-the-art models. Previous approaches often rely on knowledge distillation to transfer features from fully observed trajectories to partially observed ones. This involves firstly training a fully observed model and then using a distillation process to create the final model. While effective, they require multi-stage training, making the training process very expensive. Moreover, knowledge distillation can lead to a performance degradation of the model. In this paper, we introduce a Target-drivenSelf-Distillation method (TSD) for motion forecasting. Our method leverages predicted accurate targets to guide the model in making predictions under partial observation conditions. By employing self-distillation, the model learns from the feature distributions of both fully observed and partially observed trajectories during a single end-to-end training process. This enhances the model's ability to predict motion accurately in both fully observed and partially observed scenarios. We evaluate our method on multiple datasets and state-of-the-art motion forecasting models. Extensive experimental results demonstrate that our approach achieves significant performance improvements in both settings. To facilitate further research, we will release our code and model checkpoints.
♻ ☆ Rank Matters: Understanding and Defending Model Inversion Attacks via Low-Rank Feature Filtering KDD 2026
Model Inversion Attacks (MIAs) pose a significant threat to data privacy by reconstructing sensitive training samples from the knowledge embedded in trained machine learning models. Despite recent progress in enhancing the effectiveness of MIAs across diverse settings, defense strategies have lagged behind -- struggling to balance model utility with robustness against increasingly sophisticated attacks. In this work, we propose the ideal inversion error to measure the privacy leakage, and our theoretical and empirical investigations reveals that higher-rank features are inherently more prone to privacy leakage. Motivated by this insight, we propose a lightweight and effective defense strategy based on low-rank feature filtering, which explicitly reduces the attack surface by constraining the dimension of intermediate representations. Extensive experiments across various model architectures and datasets demonstrate that our method consistently outperforms existing defenses, achieving state-of-the-art performance against a wide range of MIAs. Notably, our approach remains effective even in challenging regimes involving high-resolution data and high-capacity models, where prior defenses fail to provide adequate protection.
comment: KDD 2026 Accept
♻ ☆ Rethinking Multimodal Point Cloud Completion: A Completion-by-Correction Perspective AAAI 2026
Point cloud completion aims to reconstruct complete 3D shapes from partial observations, which is a challenging problem due to severe occlusions and missing geometry. Despite recent advances in multimodal techniques that leverage complementary RGB images to compensate for missing geometry, most methods still follow a Completion-by-Inpainting paradigm, synthesizing missing structures from fused latent features. We empirically show that this paradigm often results in structural inconsistencies and topological artifacts due to limited geometric and semantic constraints. To address this, we rethink the task and propose a more robust paradigm, termed Completion-by-Correction, which begins with a topologically complete shape prior generated by a pretrained image-to-3D model and performs feature-space correction to align it with the partial observation. This paradigm shifts completion from unconstrained synthesis to guided refinement, enabling structurally consistent and observation-aligned reconstruction. Building upon this paradigm, we introduce PGNet, a multi-stage framework that conducts dual-feature encoding to ground the generative prior, synthesizes a coarse yet structurally aligned scaffold, and progressively refines geometric details via hierarchical correction. Experiments on the ShapeNetViPC dataset demonstrate the superiority of PGNet over state-of-the-art baselines in terms of average Chamfer Distance (-23.5%) and F-score (+7.1%).
comment: Accepted by AAAI 2026
♻ ☆ TempoMaster: Efficient Long Video Generation via Next-Frame-Rate Prediction
We present TempoMaster, a novel framework that formulates long video generation as next-frame-rate prediction. Specifically, we first generate a low-frame-rate clip that serves as a coarse blueprint of the entire video sequence, and then progressively increase the frame rate to refine visual details and motion continuity. During generation, TempoMaster employs bidirectional attention within each frame-rate level while performing autoregression across frame rates, thus achieving long-range temporal coherence while enabling efficient and parallel synthesis. Extensive experiments demonstrate that TempoMaster establishes a new state-of-the-art in long video generation, excelling in both visual and temporal quality.
comment: for more information, see https://scottykma.github.io/tempomaster-gitpage/
♻ ☆ 3EED: Ground Everything Everywhere in 3D NeurIPS 2025
Visual grounding in 3D is the key for embodied agents to localize language-referred objects in open-world environments. However, existing benchmarks are limited to indoor focus, single-platform constraints, and small scale. We introduce 3EED, a multi-platform, multi-modal 3D grounding benchmark featuring RGB and LiDAR data from vehicle, drone, and quadruped platforms. We provide over 128,000 objects and 22,000 validated referring expressions across diverse outdoor scenes -- 10x larger than existing datasets. We develop a scalable annotation pipeline combining vision-language model prompting with human verification to ensure high-quality spatial grounding. To support cross-platform learning, we propose platform-aware normalization and cross-modal alignment techniques, and establish benchmark protocols for in-domain and cross-platform evaluations. Our findings reveal significant performance gaps, highlighting the challenges and opportunities of generalizable 3D grounding. The 3EED dataset and benchmark toolkit are released to advance future research in language-driven 3D embodied perception.
comment: NeurIPS 2025 DB Track; 38 pages, 17 figures, 10 tables; Project Page at https://project-3eed.github.io/
♻ ☆ InsightDrive: Insight Scene Representation for End-to-End Autonomous Driving
Conventional end-to-end autonomous driving methods often rely on explicit global scene representations, which typically consist of 3D object detection, online mapping, and motion prediction. In contrast, human drivers selectively attend to task-relevant regions and implicitly reason over the broader traffic context. Motivated by this observation, we introduce a lightweight end-to-end autonomous driving framework, InsightDrive. Unlike approaches that directly embed large language models (LLMs), InsightDrive introduces an Insight scene representation that jointly models attention-centric explicit scene representation and reasoning-centric implicit scene representation, so that scene understanding aligns more closely with human cognitive patterns for trajectory planning. To this end, we employ Chain-of-Thought (CoT) instructions to model human driving cognition and design a task-level Mixture-of-Experts (MoE) adapter that injects this knowledge into the autonomous driving model at negligible parameter cost. We further condition the planner on both explicit and implicit scene representations and employ a diffusion-based generative policy, which produces robust trajectory predictions and decisions. The overall framework establishes a knowledge distillation pipeline that transfers human driving knowledge to LLMs and subsequently to onboard models. Extensive experiments on the nuScenes and Navsim benchmarks demonstrate that InsightDrive achieves significant improvements over conventional scene representation approaches.
♻ ☆ Speech Audio Generation from dynamic MRI via a Knowledge Enhanced Conditional Variational Autoencoder
Dynamic Magnetic Resonance Imaging (MRI) of the vocal tract has become an increasingly adopted imaging modality for speech motor studies. Beyond image signals, systematic data loss, noise pollution, and audio file corruption can occur due to the unpredictability of the MRI acquisition environment. In such cases, generating audio from images is critical for data recovery in both clinical and research applications. However, this remains challenging due to hardware constraints, acoustic interference, and data corruption. Existing solutions, such as denoising and multi-stage synthesis methods, face limitations in audio fidelity and generalizability. To address these challenges, we propose a Knowledge Enhanced Conditional Variational Autoencoder (KE-CVAE), a novel two-step "knowledge enhancement + variational inference" framework for generating speech audio signals from cine dynamic MRI sequences. This approach introduces two key innovations: (1) integration of unlabeled MRI data for knowledge enhancement, and (2) a variational inference architecture to improve generative modeling capacity. To the best of our knowledge, this is one of the first attempts at synthesizing speech audio directly from dynamic MRI video sequences. The proposed method was trained and evaluated on an open-source dynamic vocal tract MRI dataset recorded during speech. Experimental results demonstrate its effectiveness in generating natural speech waveforms while addressing MRI-specific acoustic challenges, outperforming conventional deep learning-based synthesis approaches.
♻ ☆ Video Anomaly Detection with Semantics-Aware Information Bottleneck
Semi-supervised video anomaly detection methods face two critical challenges: (1) Strong generalization blurs the boundary between normal and abnormal patterns. Although existing approaches attempt to alleviate this issue using memory modules, their rigid prototype-matching process limits adaptability to diverse scenarios; (2) Relying solely on low-level appearance and motion cues makes it difficult to perceive high-level semantic anomalies in complex scenes. To address these limitations, we propose SIB-VAD, a novel framework based on adaptive information bottleneck filtering and semantic-aware enhancement. We propose the Sparse Feature Filtering Module (SFFM) to replace traditional memory modules. It compresses normal features directly into a low-dimensional manifold based on the information bottleneck principle and uses an adaptive routing mechanism to dynamically select the most suitable normal bottleneck subspace. Trained only on normal data, SFFMs only learn normal low-dimensional manifolds, while abnormal features deviate and are effectively filtered. Unlike memory modules, SFFM directly removes abnormal information and adaptively handles scene variations. To improve semantic awareness, we further design a multimodal prediction framework that jointly models appearance, motion, and semantics. Through multimodal consistency constraints and joint error computation, it achieves more robust VAD performance. Experimental results validate the effectiveness of our feature filtering paradigm based on semantics-aware information bottleneck. Project page at https://qzfm.github.io/sib_vad_project_page/
♻ ☆ SPIRAL: Semantic-Aware Progressive LiDAR Scene Generation and Understanding NeurIPS 2025
Leveraging recent diffusion models, LiDAR-based large-scale 3D scene generation has achieved great success. While recent voxel-based approaches can generate both geometric structures and semantic labels, existing range-view methods are limited to producing unlabeled LiDAR scenes. Relying on pretrained segmentation models to predict the semantic maps often results in suboptimal cross-modal consistency. To address this limitation while preserving the advantages of range-view representations, such as computational efficiency and simplified network design, we propose Spiral, a novel range-view LiDAR diffusion model that simultaneously generates depth, reflectance images, and semantic maps. Furthermore, we introduce novel semantic-aware metrics to evaluate the quality of the generated labeled range-view data. Experiments on the SemanticKITTI and nuScenes datasets demonstrate that Spiral achieves state-of-the-art performance with the smallest parameter size, outperforming two-step methods that combine the generative and segmentation models. Additionally, we validate that range images generated by Spiral can be effectively used for synthetic data augmentation in the downstream segmentation training, significantly reducing the labeling effort on LiDAR data.
comment: NeurIPS 2025; 24 pages, 10 figures, 9 tables; Code at https://github.com/worldbench/SPIRAL
♻ ☆ AttnRegDeepLab: A Two-Stage Decoupled Framework for Interpretable Embryo Fragmentation Grading
Embryo fragmentation is a morphological indicator critical for evaluating developmental potential in In Vitro Fertilization (IVF). However, manual grading is subjective and inefficient, while existing deep learning solutions often lack clinical explainability or suffer from accumulated errors in segmentation area estimation. To address these issues, this study proposes AttnRegDeepLab (Attention-Guided Regression DeepLab), a framework characterized by dual-branch Multi-Task Learning (MTL). A vanilla DeepLabV3+ decoder is modified by integrating Attention Gates into its skip connections, explicitly suppressing cytoplasmic noise to preserve contour details. Furthermore, a Multi-Scale Regression Head is introduced with a Feature Injection mechanism to propagate global grading priors into the segmentation task, rectifying systematic quantification errors. A 2-stage decoupled training strategy is proposed to address the gradient conflict in MTL. Also, a range-based loss is designed to leverage weakly labeled data. Our method achieves robust grading precision while maintaining excellent segmentation accuracy (Dice coefficient =0.729), in contrast to the end-to-end counterpart that might minimize grading error at the expense of contour integrity. This work provides a clinically interpretable solution that balances visual fidelity and quantitative precision.
comment: 7 pages, 5 figures
♻ ☆ Bridging Granularity Gaps: Hierarchical Semantic Learning for Cross-domain Few-shot Segmentation AAAI 2026
Cross-domain Few-shot Segmentation (CD-FSS) aims to segment novel classes from target domains that are not involved in training and have significantly different data distributions from the source domain, using only a few annotated samples, and recent years have witnessed significant progress on this task. However, existing CD-FSS methods primarily focus on style gaps between source and target domains while ignoring segmentation granularity gaps, resulting in insufficient semantic discriminability for novel classes in target domains. Therefore, we propose a Hierarchical Semantic Learning (HSL) framework to tackle this problem. Specifically, we introduce a Dual Style Randomization (DSR) module and a Hierarchical Semantic Mining (HSM) module to learn hierarchical semantic features, thereby enhancing the model's ability to recognize semantics at varying granularities. DSR simulates target domain data with diverse foreground-background style differences and overall style variations through foreground and global style randomization respectively, while HSM leverages multi-scale superpixels to guide the model to mine intra-class consistency and inter-class distinction at different granularities. Additionally, we also propose a Prototype Confidence-modulated Thresholding (PCMT) module to mitigate segmentation ambiguity when foreground and background are excessively similar. Extensive experiments are conducted on four popular target domain datasets, and the results demonstrate that our method achieves state-of-the-art performance.
comment: Accepted by AAAI 2026
♻ ☆ Mixture of Ranks with Degradation-Aware Routing for One-Step Real-World Image Super-Resolution AAAI 2026
The demonstrated success of sparsely-gated Mixture-of-Experts (MoE) architectures, exemplified by models such as DeepSeek and Grok, has motivated researchers to investigate their adaptation to diverse domains. In real-world image super-resolution (Real-ISR), existing approaches mainly rely on fine-tuning pre-trained diffusion models through Low-Rank Adaptation (LoRA) module to reconstruct high-resolution (HR) images. However, these dense Real-ISR models are limited in their ability to adaptively capture the heterogeneous characteristics of complex real-world degraded samples or enable knowledge sharing between inputs under equivalent computational budgets. To address this, we investigate the integration of sparse MoE into Real-ISR and propose a Mixture-of-Ranks (MoR) architecture for single-step image super-resolution. We introduce a fine-grained expert partitioning strategy that treats each rank in LoRA as an independent expert. This design enables flexible knowledge recombination while isolating fixed-position ranks as shared experts to preserve common-sense features and minimize routing redundancy. Furthermore, we develop a degradation estimation module leveraging CLIP embeddings and predefined positive-negative text pairs to compute relative degradation scores, dynamically guiding expert activation. To better accommodate varying sample complexities, we incorporate zero-expert slots and propose a degradation-aware load-balancing loss, which dynamically adjusts the number of active experts based on degradation severity, ensuring optimal computational resource allocation. Comprehensive experiments validate our framework's effectiveness and state-of-the-art performance.
comment: 16 pages, Accepted by AAAI 2026, v2: corrected typos
♻ ☆ MMIF-AMIN: Adaptive Loss-Driven Multi-Scale Invertible Dense Network for Multimodal Medical Image Fusion
Multimodal medical image fusion (MMIF) aims to integrate images from different modalities to produce a comprehensive image that enhances medical diagnosis by accurately depicting organ structures, tissue textures, and metabolic information. Capturing both the unique and complementary information across multiple modalities simultaneously is a key research challenge in MMIF. To address this challenge, this paper proposes a novel image fusion method, MMIF-AMIN, which features a new architecture that can effectively extract these unique and complementary features. Specifically, an Invertible Dense Network (IDN) is employed for lossless feature extraction from individual modalities. To extract complementary information between modalities, a Multi-scale Complementary Feature Extraction Module (MCFEM) is designed, which incorporates a hybrid attention mechanism, convolutional layers of varying sizes, and Transformers. An adaptive loss function is introduced to guide model learning, addressing the limitations of traditional manually-designed loss functions and enhancing the depth of data mining. Extensive experiments demonstrate that MMIF-AMIN outperforms nine state-of-the-art MMIF methods, delivering superior results in both quantitative and qualitative analyses. Ablation experiments confirm the effectiveness of each component of the proposed method. Additionally, extending MMIF-AMIN to other image fusion tasks also achieves promising performance.
comment: This manuscript is withdrawn to allow for substantial expansion and restructuring. Based on recent research progress, we plan to add Generalization experiment and reorganize the manuscript structure to improve readability and logical flow. Thank you for your understanding and support
♻ ☆ U-FaceBP: Uncertainty-aware Bayesian Ensemble Deep Learning for Face Video-based Blood Pressure Measurement
Blood pressure (BP) measurement is crucial for daily health assessment. Remote photoplethysmography (rPPG), which extracts pulse waves from face videos captured by a camera, has the potential to enable convenient BP measurement without specialized medical devices. However, there are various uncertainties in BP estimation using rPPG, leading to limited estimation performance and reliability. In this paper, we propose U-FaceBP, an uncertainty-aware Bayesian ensemble deep learning method for face video-based BP measurement. U-FaceBP models aleatoric and epistemic uncertainties in face video-based BP estimation with a Bayesian neural network (BNN). Additionally, we design U-FaceBP as an ensemble method, estimating BP from rPPG signals, PPG signals derived from face videos, and face images using multiple BNNs. Large-scale experiments on two datasets involving 1197 subjects from diverse racial groups demonstrate that U-FaceBP outperforms state-of-the-art BP estimation methods. Furthermore, we show that the uncertainty estimates provided by U-FaceBP are informative and useful for guiding modality fusion, assessing prediction reliability, and analyzing performance across racial groups.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ AgriPotential: A Novel Multi-Spectral and Multi-Temporal Remote Sensing Dataset for Agricultural Potentials
Remote sensing has emerged as a critical tool for large-scale Earth monitoring and land management. In this paper, we introduce AgriPotential, a novel benchmark dataset composed of Sentinel-2 satellite imagery captured over multiple months. The dataset provides pixel-level annotations of agricultural potentials for three major crop types - viticulture, market gardening, and field crops - across five ordinal classes. AgriPotential supports a broad range of machine learning tasks, including ordinal regression, multi-label classification, and spatio-temporal modeling. The data cover diverse areas in Southern France, offering rich spectral information. AgriPotential is the first public dataset designed specifically for agricultural potential prediction, aiming to improve data-driven approaches to sustainable land use planning. The dataset and the code are freely accessible at: https://zenodo.org/records/15551829
comment: Accepted at CBMI 2025
♻ ☆ AerialMind: Towards Referring Multi-Object Tracking in UAV Scenarios AAAI 2026
Referring Multi-Object Tracking (RMOT) aims to achieve precise object detection and tracking through natural language instructions, representing a fundamental capability for intelligent robotic systems. However, current RMOT research remains mostly confined to ground-level scenarios, which constrains their ability to capture broad-scale scene contexts and perform comprehensive tracking and path planning. In contrast, Unmanned Aerial Vehicles (UAVs) leverage their expansive aerial perspectives and superior maneuverability to enable wide-area surveillance. Moreover, UAVs have emerged as critical platforms for Embodied Intelligence, which has given rise to an unprecedented demand for intelligent aerial systems capable of natural language interaction. To this end, we introduce AerialMind, the first large-scale RMOT benchmark in UAV scenarios, which aims to bridge this research gap. To facilitate its construction, we develop an innovative semi-automated collaborative agent-based labeling assistant (COALA) framework that significantly reduces labor costs while maintaining annotation quality. Furthermore, we propose HawkEyeTrack (HETrack), a novel method that collaboratively enhances vision-language representation learning and improves the perception of UAV scenarios. Comprehensive experiments validated the challenging nature of our dataset and the effectiveness of our method.
comment: AAAI 2026
♻ ☆ Rethinking Efficient Mixture-of-Experts for Remote Sensing Modality-Missing Classification
Multimodal classification in remote sensing often suffers from missing modalities caused by environmental interference, sensor failures, or atmospheric effects, which severely degrade classification performance. Existing two-stage adaptation methods are computationally expensive and assume complete multimodal data during training, limiting their generalization to real-world incompleteness. To overcome these issues, we propose a Missing-aware Mixture-of-Loras (MaMOL) framework that reformulates modality missing as a multi-task learning problem. MaMOL introduces a dual-routing mechanism: a task-oriented dynamic router that adaptively activates experts for different missing patterns, and a modality-specific-shared static router that maintains stable cross-modal knowledge sharing. Unlike prior methods that train separate networks for each missing configuration, MaMOL achieves parameter-efficient adaptation via lightweight expert updates and shared expert reuse. Experiments on multiple remote sensing benchmarks demonstrate superior robustness and generalization under varying missing rates, with minimal computational overhead. Moreover, transfer experiments on natural image datasets validate its scalability and cross-domain applicability, highlighting MaMOL as a general and efficient solution for incomplete multimodal learning.
comment: 11 pages, 4 figures
♻ ☆ UniFucGrasp: Human-Hand-Inspired Unified Functional Grasp Annotation Strategy and Dataset for Diverse Dexterous Hands
Dexterous grasp datasets are vital for embodied intelligence, but mostly emphasize grasp stability, ignoring functional grasps needed for tasks like opening bottle caps or holding cup handles. Most rely on bulky, costly, and hard-to-control high-DOF Shadow Hands. Inspired by the human hand's underactuated mechanism, we establish UniFucGrasp, a universal functional grasp annotation strategy and dataset for multiple dexterous hand types. Based on biomimicry, it maps natural human motions to diverse hand structures and uses geometry-based force closure to ensure functional, stable, human-like grasps. This method supports low-cost, efficient collection of diverse, high-quality functional grasps. Finally, we establish the first multi-hand functional grasp dataset and provide a synthesis model to validate its effectiveness. Experiments on the UFG dataset, IsaacSim, and complex robotic tasks show that our method improves functional manipulation accuracy and grasp stability, demonstrates improved adaptability across multiple robotic hands, helping to alleviate annotation cost and generalization challenges in dexterous grasping. The project page is at https://haochen611.github.io/UFG.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L). The project page is at https://haochen611.github.io/UFG
♻ ☆ HybridWorldSim: A Scalable and Controllable High-fidelity Simulator for Autonomous Driving
Realistic and controllable simulation is critical for advancing end-to-end autonomous driving, yet existing approaches often struggle to support novel view synthesis under large viewpoint changes or to ensure geometric consistency. We introduce HybridWorldSim, a hybrid simulation framework that integrates multi-traversal neural reconstruction for static backgrounds with generative modeling for dynamic agents. This unified design addresses key limitations of previous methods, enabling the creation of diverse and high-fidelity driving scenarios with reliable visual and spatial consistency. To facilitate robust benchmarking, we further release a new multi-traversal dataset MIRROR that captures a wide range of routes and environmental conditions across different cities. Extensive experiments demonstrate that HybridWorldSim surpasses previous state-of-the-art methods, providing a practical and scalable solution for high-fidelity simulation and a valuable resource for research and development in autonomous driving.
♻ ☆ Fine-grained Image Retrieval via Dual-Vision Adaptation AAAI2026
Fine-Grained Image Retrieval~(FGIR) faces challenges in learning discriminative visual representations to retrieve images with similar fine-grained features. Current leading FGIR solutions typically follow two regimes: enforce pairwise similarity constraints in the semantic embedding space, or incorporate a localization sub-network to fine-tune the entire model. However, such two regimes tend to overfit the training data while forgetting the knowledge gained from large-scale pre-training, thus reducing their generalization ability. In this paper, we propose a Dual-Vision Adaptation (DVA) approach for FGIR, which guides the frozen pre-trained model to perform FGIR through collaborative sample and feature adaptation. Specifically, we design Object-Perceptual Adaptation, which modifies input samples to help the pre-trained model perceive critical objects and elements within objects that are helpful for category prediction. Meanwhile, we propose In-Context Adaptation, which introduces a small set of parameters for feature adaptation without modifying the pre-trained parameters. This makes the FGIR task using these adjusted features closer to the task solved during the pre-training. Additionally, to balance retrieval efficiency and performance, we propose Discrimination Perception Transfer to transfer the discriminative knowledge in the object-perceptual adaptation to the image encoder using the knowledge distillation mechanism. Extensive experiments show that DVA has fewer learnable parameters and performs well on three in-distribution and three out-of-distribution fine-grained datasets.
comment: Accepted by AAAI2026
♻ ☆ IMSE: Efficient U-Net-based Speech Enhancement using Inception Depthwise Convolution and Amplitude-Aware Linear Attention
Achieving a balance between lightweight design and high performance remains a significant challenge for speech enhancement (SE) tasks on resource-constrained devices. Existing state-of-the-art methods, such as MUSE, have established a strong baseline with only 0.51M parameters by introducing a Multi-path Enhanced Taylor (MET) transformer and Deformable Embedding (DE). However, an in-depth analysis reveals that MUSE still suffers from efficiency bottlenecks: the MET module relies on a complex "approximate-compensate" mechanism to mitigate the limitations of Taylor-expansion-based attention, while the offset calculation for deformable embedding introduces additional computational burden. This paper proposes IMSE, a systematically optimized and ultra-lightweight network. We introduce two core innovations: 1) Replacing the MET module with Amplitude-Aware Linear Attention (MALA). MALA fundamentally rectifies the "amplitude-ignoring" problem in linear attention by explicitly preserving the norm information of query vectors in the attention calculation, achieving efficient global modeling without an auxiliary compensation branch. 2) Replacing the DE module with Inception Depthwise Convolution (IDConv). IDConv borrows the Inception concept, decomposing large-kernel operations into efficient parallel branches (square, horizontal, and vertical strips), thereby capturing spectrogram features with extremely low parameter redundancy. Extensive experiments on the VoiceBank+DEMAND dataset demonstrate that, compared to the MUSE baseline, IMSE significantly reduces the parameter count by 16.8\% (from 0.513M to 0.427M) while achieving competitive performance comparable to the state-of-the-art on the PESQ metric (3.373). This study sets a new benchmark for the trade-off between model size and speech quality in ultra-lightweight speech enhancement.
♻ ☆ Hi-EF: Benchmarking Emotion Forecasting in Human-interaction
Affective Forecasting is an psychology task that involves predicting an individual's future emotional responses, often hampered by reliance on external factors leading to inaccuracies, and typically remains at a qualitative analysis stage. To address these challenges, we narrows the scope of Affective Forecasting by introducing the concept of Human-interaction-based Emotion Forecasting (EF). This task is set within the context of a two-party interaction, positing that an individual's emotions are significantly influenced by their interaction partner's emotional expressions and informational cues. This dynamic provides a structured perspective for exploring the patterns of emotional change, thereby enhancing the feasibility of emotion forecasting.
♻ ☆ 3D Motion Perception of Binocular Vision Target with PID-CNN
This article trained a network for perceiving three-dimensional motion information of binocular vision target, which can provide real-time three-dimensional coordinate, velocity, and acceleration, and has a basic spatiotemporal perception capability. Understood the ability of neural networks to fit nonlinear problems from the perspective of PID. Considered a single-layer neural network as using a second-order difference equation and a nonlinearity to describe a local problem. Multilayer networks gradually transform the raw representation to the desired representation through multiple such combinations. Analysed some reference principles for designing neural networks. Designed a relatively small PID convolutional neural network, with a total of 17 layers and 413 thousand parameters. Implemented a simple but practical feature reuse method by concatenation and pooling. The network was trained and tested using the simulated randomly moving ball datasets, and the experimental results showed that the prediction accuracy was close to the upper limit that the input image resolution can represent. Analysed the experimental results and errors, as well as the existing shortcomings and possible directions for improvement. Finally, discussed the advantages of high-dimensional convolution in improving computational efficiency and feature space utilization. As well as the potential advantages of using PID information to implement memory and attention mechanisms.
comment: 7 pages, 9 figures, 2 tables. The codes of this article have been released at: https://github.com/ShiJZ123/PID-CNN
♻ ☆ PowerCLIP: Powerset Alignment for Contrastive Pre-Training
Contrastive vision-language pre-training frameworks such as CLIP have demonstrated impressive zero-shot performance across a range of vision-language tasks. Recent studies have shown that aligning individual text tokens with specific image patches or regions enhances fine-grained compositional understanding. However, it remains challenging to capture compositional semantics that span multiple image regions. To address this limitation, we propose PowerCLIP, a novel contrastive pre-training framework enhanced by powerset alignment, which exhaustively optimizes region-to-phrase alignments by minimizing the loss defined between powersets of image regions and textual parse trees. Since the naive powerset construction incurs exponential computational cost due to the combinatorial explosion in the number of region subsets, we introduce efficient non-linear aggregators (NLAs) that reduce complexity from O(2^M) to O(M) with respect to the number of regions M, while approximating the exact loss value with arbitrary precision. Our extensive experiments demonstrate that PowerCLIP outperforms state-of-the-art methods in zero-shot classification and retrieval tasks, underscoring the compositionality and robustness of our approach. Our code will be made publicly available.
♻ ☆ Off the Planckian Locus: Using 2D Chromaticity to Improve In-Camera Color
Traditional in-camera colorimetric mapping relies on correlated color temperature (CCT)-based interpolation between pre-calibrated transforms optimized for Planckian illuminants such as CIE A and D65. However, modern lighting technologies such as LEDs can deviate substantially from the Planckian locus, exposing the limitations of relying on conventional one-dimensional CCT for illumination characterization. This paper demonstrates that transitioning from 1D CCT (on the Planckian locus) to a 2D chromaticity space (off the Planckian locus) improves colorimetric accuracy across various mapping approaches. In addition, we replace conventional CCT interpolation with a lightweight multi-layer perceptron (MLP) that leverages 2D chromaticity features for robust colorimetric mapping under non-Planckian illuminants. A lightbox-based calibration procedure incorporating representative LED sources is used to train our MLP. Validated across diverse LED lighting, our method reduces angular reproduction error by 22% on average in LED-lit scenes, maintains backward compatibility with traditional illuminants, accommodates multi-illuminant scenes, and supports real-time in-camera deployment with negligible additional computational cost.
comment: Project page: https://cst-mlp.github.io
♻ ☆ AVFakeBench: A Comprehensive Audio-Video Forgery Detection Benchmark for AV-LMMs
The threat of Audio-Video (AV) forgery is rapidly evolving beyond human-centric deepfakes to include more diverse manipulations across complex natural scenes. However, existing benchmarks are still confined to DeepFake-based forgeries and single-granularity annotations, thus failing to capture the diversity and complexity of real-world forgery scenarios. To address this, we introduce AVFakeBench, the first comprehensive audio-video forgery detection benchmark that spans rich forgery semantics across both human subject and general subject. AVFakeBench comprises 12K carefully curated audio-video questions, covering seven forgery types and four levels of annotations. To ensure high-quality and diverse forgeries, we propose a multi-stage hybrid forgery framework that integrates proprietary models for task planning with expert generative models for precise manipulation. The benchmark establishes a multi-task evaluation framework covering binary judgment, forgery types classification, forgery detail selection, and explanatory reasoning. We evaluate 11 Audio-Video Large Language Models (AV-LMMs) and 2 prevalent detection methods on AVFakeBench, demonstrating the potential of AV-LMMs as emerging forgery detectors while revealing their notable weaknesses in fine-grained perception and reasoning.
comment: The experimental results in this paper have been further improved and updated; the baseline results do not match existing results, therefore the paper needs to be retracted
♻ ☆ 3-Tracer: A Tri-level Temporal-Aware Framework for Audio Forgery Detection and Localization
Recently, partial audio forgery has emerged as a new form of audio manipulation. Attackers selectively modify partial but semantically critical frames while preserving the overall perceptual authenticity, making such forgeries particularly difficult to detect. Existing methods focus on independently detecting whether a single frame is forged, lacking the hierarchical structure to capture both transient and sustained anomalies across different temporal levels. To address these limitations, We identify three key levels relevant to partial audio forgery detection and present T3-Tracer, the first framework that jointly analyzes audio at the frame, segment, and audio levels to comprehensively detect forgery traces. T3-Tracer consists of two complementary core modules: the Frame-Audio Feature Aggregation Module (FA-FAM) and the Segment-level Multi-Scale Discrepancy-Aware Module (SMDAM). FA-FAM is designed to detect the authenticity of each audio frame. It combines both frame-level and audio-level temporal information to detect intra-frame forgery cues and global semantic inconsistencies. To further refine and correct frame detection, we introduce SMDAM to detect forgery boundaries at the segment level. It adopts a dual-branch architecture that jointly models frame features and inter-frame differences across multi-scale temporal windows, effectively identifying abrupt anomalies that appeared on the forged boundaries. Extensive experiments conducted on three challenging datasets demonstrate that our approach achieves state-of-the-art performance.
comment: The experimental results in this paper have been further improved and updated; the baseline results do not match existing results, therefore the paper needs to be retracted
Information Retrieval
☆ MMAG: Mixed Memory-Augmented Generation for Large Language Models Applications
Large Language Models (LLMs) excel at generating coherent text within a single prompt but fall short in sustaining relevance, personalization, and continuity across extended interactions. Human communication, however, relies on multiple forms of memory, from recalling past conversations to adapting to personal traits and situational context. This paper introduces the Mixed Memory-Augmented Generation (MMAG) pattern, a framework that organizes memory for LLM-based agents into five interacting layers: conversational, long-term user, episodic and event-linked, sensory and context-aware, and short-term working memory. Drawing inspiration from cognitive psychology, we map these layers to technical components and outline strategies for coordination, prioritization, and conflict resolution. We demonstrate the approach through its implementation in the Heero conversational agent, where encrypted long-term bios and conversational history already improve engagement and retention. We further discuss implementation concerns around storage, retrieval, privacy, and latency, and highlight open challenges. MMAG provides a foundation for building memory-rich language agents that are more coherent, proactive, and aligned with human needs.
☆ Structured Spectral Reasoning for Frequency-Adaptive Multimodal Recommendation
Multimodal recommendation aims to integrate collaborative signals with heterogeneous content such as visual and textual information, but remains challenged by modality-specific noise, semantic inconsistency, and unstable propagation over user-item graphs. These issues are often exacerbated by naive fusion or shallow modeling strategies, leading to degraded generalization and poor robustness. While recent work has explored the frequency domain as a lens to separate stable from noisy signals, most methods rely on static filtering or reweighting, lacking the ability to reason over spectral structure or adapt to modality-specific reliability. To address these challenges, we propose a Structured Spectral Reasoning (SSR) framework for frequency-aware multimodal recommendation. Our method follows a four-stage pipeline: (i) Decompose graph-based multimodal signals into spectral bands via graph-guided transformations to isolate semantic granularity; (ii) Modulate band-level reliability with spectral band masking, a training-time masking with a prediction-consistency objective that suppresses brittle frequency components; (iii) Fuse complementary frequency cues using hyperspectral reasoning with low-rank cross-band interaction; and (iv) Align modality-specific spectral features via contrastive regularization to promote semantic and structural consistency. Experiments on three real-world benchmarks show consistent gains over strong baselines, particularly under sparse and cold-start settings. Additional analyses indicate that structured spectral modeling improves robustness and provides clearer diagnostics of how different bands contribute to performance.
☆ Toward a benchmark for CTR prediction in online advertising: datasets, evaluation protocols and perspectives
This research designs a unified architecture of CTR prediction benchmark (Bench-CTR) platform that offers flexible interfaces with datasets and components of a wide range of CTR prediction models. Moreover, we construct a comprehensive system of evaluation protocols encompassing real-world and synthetic datasets, a taxonomy of metrics, standardized procedures and experimental guidelines for calibrating the performance of CTR prediction models. Furthermore, we implement the proposed benchmark platform and conduct a comparative study to evaluate a wide range of state-of-the-art models from traditional multivariate statistical to modern large language model (LLM)-based approaches on three public datasets and two synthetic datasets. Experimental results reveal that, (1) high-order models largely outperform low-order models, though such advantage varies in terms of metrics and on different datasets; (2) LLM-based models demonstrate a remarkable data efficiency, i.e., achieving the comparable performance to other models while using only 2% of the training data; (3) the performance of CTR prediction models has achieved significant improvements from 2015 to 2016, then reached a stage with slow progress, which is consistent across various datasets. This benchmark is expected to facilitate model development and evaluation and enhance practitioners' understanding of the underlying mechanisms of models in the area of CTR prediction. Code is available at https://github.com/NuriaNinja/Bench-CTR.
comment: 64 pages, 8 figures, 11 tables
☆ Conversion rate prediction in online advertising: modeling techniques, performance evaluation and future directions
Conversion and conversion rate (CVR) prediction play a critical role in efficient advertising decision-making. In past decades, although researchers have developed plenty of models for CVR prediction, the methodological evolution and relationships between different techniques have been precluded. In this paper, we conduct a comprehensive literature review on CVR prediction in online advertising, and classify state-of-the-art CVR prediction models into six categories with respect to the underlying techniques and elaborate on connections between these techniques. For each category of models, we present the framework of underlying techniques, their advantages and disadvantages, and discuss how they are utilized for CVR prediction. Moreover, we summarize the performance of various CVR prediction models on public and proprietary datasets. Finally, we identify research trends, major challenges, and promising future directions. We observe that results of performance evaluation reported in prior studies are not unanimous; semantics-enriched, attribution-enhanced, debiased CVR prediction and jointly modeling CTR and CVR prediction would be promising directions to explore in the future. This review is expected to provide valuable references and insights for future researchers and practitioners in this area.
comment: 99 pages, 15 figures, 7 tables
♻ ☆ HiFIRec Towards High-Frequency yet Low-Intention Behaviors for Multi-Behavior Recommendation
Multi behavior recommendation leverages multiple types of user-item interactions to address data sparsity and cold-start issues,providing personalized services in domains such as healthcare and ecommerce.Most existing methods utilize graph neural networks to model user intention in a unified manner,which inadequately considers the heterogeneity across different behaviors.Especially,high frequency yet low intention behaviors may implicitly contain noisy signals,and frequent patterns that are plausible while misleading,thereby hindering the learning of user intentions.To this end,this paper proposes a novel multi-behavior recommendation method,HiFIRec,that corrects the effect of high-frequency yet low-intention behaviors by differential behavior modeling.To revise the noisy signals,we hierarchically suppress it across layers by extracting neighborhood information through layer-wise neighborhood aggregation and further capturing user intentions through adaptive cross layer feature fusion.To correct plausible frequent patterns,we propose an intensity-aware non-sampling strategy that dynamically adjusts the weights of negative samples.Extensive experiments on two benchmarks show that HiFIRec relatively improves HR@10 by 4.21%-6.81% over several state-of-the-art methods.
♻ ☆ Optimizing Product Deduplication in E-Commerce with Multimodal Embeddings
In large scale e-commerce marketplaces, duplicate product listings frequently cause consumer confusion and operational inefficiencies, degrading trust on the platform and increasing costs. Traditional keyword-based search methodologies falter in accurately identifying duplicates due to their reliance on exact textual matches, neglecting semantic similarities inherent in product titles. To address these challenges, we introduce a scalable, multimodal product deduplication designed specifically for the e-commerce domain. Our approach employs a domain-specific text model grounded in BERT architecture in conjunction with MaskedAutoEncoders for image representations. Both of these architectures are augmented with dimensionality reduction techniques to produce compact 128-dimensional embeddings without significant information loss. Complementing this, we also developed a novel decider model that leverages both text and image vectors. By integrating these feature extraction mechanisms with Milvus, an optimized vector database, our system can facilitate efficient and high-precision similarity searches across extensive product catalogs exceeding 200 million items with just 100GB of system RAM consumption. Empirical evaluations demonstrate that our matching system achieves a macro-average F1 score of 0.90, outperforming third-party solutions which attain an F1 score of 0.83. Our findings show the potential of combining domain-specific adaptations with state-of-the-art machine learning techniques to mitigate duplicate listings in large-scale e-commerce environments.
comment: 8 pages, accepted to 2025 IEEE International Conference on Big Data, Industrial and Goverment Track
♻ ☆ Faster and Memory-Efficient Training of Sequential Recommendation Models for Large Catalogs
Sequential recommendations (SR) with transformer-based architectures are widely adopted in real-world applications, where SR models require frequent retraining to adapt to ever-changing user preferences. However, training transformer-based SR models often encounters a high computational cost associated with scoring extensive item catalogs, often exceeding thousands of items. This occurs mainly due to the use of cross-entropy loss, where peak memory scales proportionally to catalog size, batch size, and sequence length. Recognizing this, practitioners in the field of recommendation systems typically address memory consumption by integrating the cross-entropy (CE) loss with negative sampling, thereby reducing the explicit memory demands of the final layer. However, a small number of negative samples would degrade model performance, and as we demonstrate in our work, increasing the number of negative samples and the batch size further improves the model's performance, but rapidly starts to exceed industrial GPUs' size (~40Gb). In this work, we introduce the CCE- method, which offers a GPU-efficient implementation of the CE loss with negative sampling. Our method accelerates training by up to two times while reducing memory consumption by more than 10 times. Leveraging the memory savings afforded by using CCE- for model training, it becomes feasible to enhance its accuracy on datasets with a large item catalog compared to those trained with original PyTorch-implemented loss functions. Finally, we perform an analysis of key memory-related hyperparameters and highlight the necessity of a delicate balance among these factors. We demonstrate that scaling both the number of negative samples and batch size leads to better results rather than maximizing only one of them. To facilitate further adoption of CCE-, we release a Triton kernel that efficiently implements the proposed method.
♻ ☆ From Topology to Retrieval: Decoding Embedding Spaces with Unified Signatures
Studying how embeddings are organized in space not only enhances model interpretability but also uncovers factors that drive downstream task performance. In this paper, we present a comprehensive analysis of topological and geometric measures across a wide set of text embedding models and datasets. We find a high degree of redundancy among these measures and observe that individual metrics often fail to sufficiently differentiate embedding spaces. Building on these insights, we introduce Unified Topological Signatures (UTS), a holistic framework for characterizing embedding spaces. We show that UTS can predict model-specific properties and reveal similarities driven by model architecture. Further, we demonstrate the utility of our method by linking topological structure to ranking effectiveness and accurately predicting document retrievability. We find that a holistic, multi-attribute perspective is essential to understanding and leveraging the geometry of text embeddings.
♻ ☆ Turning Noise into Value: Uncovering Service Preferences from Ambiguous Interaction in E-commerce
In e-commerce service recommendation, utilizing auxiliary behaviors to alleviate data sparsity often relies on the flawed assumption that auxiliary behaviors that fail to trigger target actions are negative samples. This approach is fundamentally flawed as it ignores false negatives where users actually harbor latent intent or interest but have not yet converted due to external factors. Consequently, existing methods suffer from sample selection bias and a severe distribution shift between the auxiliary and target behaviors, leading to the erroneous suppression of potential user needs. To address these challenges, we propose a Noise-to-Value Adapter (NoVa), an e-commerce service recommendation framework that re-examines the problem through the lens of positive-unlabeled learning. Instead of treating ambiguous auxiliary behaviors as definite negatives, NoVa aims to uncover high-quality preferences from noise via two key mechanisms. First, to bridge the distribution gap, we employ adversarial feature alignment. This module aligns the auxiliary behavior distribution with the target space to identify high-confidence false negatives, which are instances that statistically resemble confirmed target behaviors and thus represent latent conversion intents. Second, to mitigate label noise caused by accidental clicks or random browsing, we introduce a semantic consistency constraint. This mechanism implements semantic-aware filtering based on the content similarity of services, acting as a bias correction step to filter out low-confidence interactions that lack semantic relevance to historical user preferences. Extensive experiments on three real-world datasets demonstrate that NoVa outperforms state-of-the-art baselines.
♻ ☆ Rank-GRPO: Training LLM-based Conversational Recommender Systems with Reinforcement Learning
Large language models (LLMs) are reshaping the recommender system paradigm by enabling users to express preferences and receive recommendations through conversations. Yet, aligning LLMs to the recommendation task remains challenging: pretrained LLMs often generate out-of-catalog items, violate required output formats, and their ranking quality degrades sharply toward the end of the generated list. To this end, we propose ConvRec-R1, a two-stage framework for end-to-end training of LLM-based conversational recommender systems. In Stage 1, we construct a behavioral-cloning dataset with a Remap-Reflect-Adjust pipeline, which produces high-quality, catalog-grounded demonstrations from powerful blackbox LLMs to warm-start the RL training. In Stage 2, we propose Rank-GRPO, a principled extension of group relative policy optimization (GRPO) tailored to tasks with rank-style outputs. Rank-GRPO treats each rank in the recommendation list as the unit instead of token (too fine-grained) or sequence (too coarse), redefining rewards to remove non-causal credit assignment and introducing a rank-level importance ratio based on the geometric mean of rank-wise token probabilities to stabilize policy updates. Experiments on the public Reddit-v2 dataset show that ConvRec-R1 converges faster and achieves higher Recall and NDCG than GRPO-style baselines. Code and datasets are released at https://github.com/yaochenzhu/Rank-GRPO.
Machine Learning
☆ EfficientFlow: Efficient Equivariant Flow Policy Learning for Embodied AI AAAI 2026
Generative modeling has recently shown remarkable promise for visuomotor policy learning, enabling flexible and expressive control across diverse embodied AI tasks. However, existing generative policies often struggle with data inefficiency, requiring large-scale demonstrations, and sampling inefficiency, incurring slow action generation during inference. We introduce EfficientFlow, a unified framework for efficient embodied AI with flow-based policy learning. To enhance data efficiency, we bring equivariance into flow matching. We theoretically prove that when using an isotropic Gaussian prior and an equivariant velocity prediction network, the resulting action distribution remains equivariant, leading to improved generalization and substantially reduced data demands. To accelerate sampling, we propose a novel acceleration regularization strategy. As direct computation of acceleration is intractable for marginal flow trajectories, we derive a novel surrogate loss that enables stable and scalable training using only conditional trajectories. Across a wide range of robotic manipulation benchmarks, the proposed algorithm achieves competitive or superior performance under limited data while offering dramatically faster inference. These results highlight EfficientFlow as a powerful and efficient paradigm for high-performance embodied AI.
comment: Accepted by AAAI 2026. Project Page: https://efficientflow.github.io/
☆ A Diffusion Model Framework for Maximum Entropy Reinforcement Learning
Diffusion models have achieved remarkable success in data-driven learning and in sampling from complex, unnormalized target distributions. Building on this progress, we reinterpret Maximum Entropy Reinforcement Learning (MaxEntRL) as a diffusion model-based sampling problem. We tackle this problem by minimizing the reverse Kullback-Leibler (KL) divergence between the diffusion policy and the optimal policy distribution using a tractable upper bound. By applying the policy gradient theorem to this objective, we derive a modified surrogate objective for MaxEntRL that incorporates diffusion dynamics in a principled way. This leads to simple diffusion-based variants of Soft Actor-Critic (SAC), Proximal Policy Optimization (PPO) and Wasserstein Policy Optimization (WPO), termed DiffSAC, DiffPPO and DiffWPO. All of these methods require only minor implementation changes to their base algorithm. We find that on standard continuous control benchmarks, DiffSAC, DiffPPO and DiffWPO achieve better returns and higher sample efficiency than SAC and PPO.
☆ Visual Sync: Multi-Camera Synchronization via Cross-View Object Motion NeurIPS 2025
Today, people can easily record memorable moments, ranging from concerts, sports events, lectures, family gatherings, and birthday parties with multiple consumer cameras. However, synchronizing these cross-camera streams remains challenging. Existing methods assume controlled settings, specific targets, manual correction, or costly hardware. We present VisualSync, an optimization framework based on multi-view dynamics that aligns unposed, unsynchronized videos at millisecond accuracy. Our key insight is that any moving 3D point, when co-visible in two cameras, obeys epipolar constraints once properly synchronized. To exploit this, VisualSync leverages off-the-shelf 3D reconstruction, feature matching, and dense tracking to extract tracklets, relative poses, and cross-view correspondences. It then jointly minimizes the epipolar error to estimate each camera's time offset. Experiments on four diverse, challenging datasets show that VisualSync outperforms baseline methods, achieving an median synchronization error below 50 ms.
comment: Accepted to NeurIPS 2025. Project page: https://stevenlsw.github.io/visualsync/
☆ Improved Mean Flows: On the Challenges of Fastforward Generative Models
MeanFlow (MF) has recently been established as a framework for one-step generative modeling. However, its ``fastforward'' nature introduces key challenges in both the training objective and the guidance mechanism. First, the original MF's training target depends not only on the underlying ground-truth fields but also on the network itself. To address this issue, we recast the objective as a loss on the instantaneous velocity $v$, re-parameterized by a network that predicts the average velocity $u$. Our reformulation yields a more standard regression problem and improves the training stability. Second, the original MF fixes the classifier-free guidance scale during training, which sacrifices flexibility. We tackle this issue by formulating guidance as explicit conditioning variables, thereby retaining flexibility at test time. The diverse conditions are processed through in-context conditioning, which reduces model size and benefits performance. Overall, our $\textbf{improved MeanFlow}$ ($\textbf{iMF}$) method, trained entirely from scratch, achieves $\textbf{1.72}$ FID with a single function evaluation (1-NFE) on ImageNet 256$\times$256. iMF substantially outperforms prior methods of this kind and closes the gap with multi-step methods while using no distillation. We hope our work will further advance fastforward generative modeling as a stand-alone paradigm.
comment: Technical report
☆ Four Over Six: More Accurate NVFP4 Quantization with Adaptive Block Scaling
As large language models have grown larger, low-precision numerical formats such as NVFP4 have become increasingly popular due to the speed and memory benefits they provide. However, to accelerate computation with NVFP4, all matrix multiplication operands--weights and activations in the forward pass, and weights, activations, and gradients in the backward pass--must be quantized to NVFP4, often leading to divergence during training and performance degradation during inference. NVFP4 by evaluating multiple potential scale factors for each block of values. To address this issue, in this work we introduce Four Over Six (4/6), a modification to the NVFP4 quantization algorithm that evaluates two potential scale factors for each block of values. Unlike integer formats, floating-point formats such as FP4 have the most quantization error on near-maximal values in each block, which we find to be primarily responsible for downstream performance degradation. We find that for some blocks, scaling to smaller FP4 values makes the distribution of representable values more uniform, improving representation of near-maximal values. Importantly, 4/6 can be implemented efficiently on NVIDIA Blackwell GPUs, making it viable to use while training LLMs with NVFP4. In pre-training experiments with transformer and hybrid model architectures, we find that 4/6 prevents divergence in several cases, bringing training loss significantly closer to BF16 compared to models trained with current state-of-the-art NVFP4 training recipes. We also find that 4/6 can be easily incorporated into many different post-training quantization methods and generally improves downstream accuracy. We hope this inspires future work in training and deploying models with NVFP4.
comment: 10 pages, 5 figures
☆ AlignSAE: Concept-Aligned Sparse Autoencoders
Large Language Models (LLMs) encode factual knowledge within hidden parametric spaces that are difficult to inspect or control. While Sparse Autoencoders (SAEs) can decompose hidden activations into more fine-grained, interpretable features, they often struggle to reliably align these features with human-defined concepts, resulting in entangled and distributed feature representations. To address this, we introduce AlignSAE, a method that aligns SAE features with a defined ontology through a "pre-train, then post-train" curriculum. After an initial unsupervised training phase, we apply supervised post-training to bind specific concepts to dedicated latent slots while preserving the remaining capacity for general reconstruction. This separation creates an interpretable interface where specific relations can be inspected and controlled without interference from unrelated features. Empirical results demonstrate that AlignSAE enables precise causal interventions, such as reliable "concept swaps", by targeting single, semantically aligned slots.
comment: 20 pages, 7 figures, 5 tables
☆ Learning Sim-to-Real Humanoid Locomotion in 15 Minutes
Massively parallel simulation has reduced reinforcement learning (RL) training time for robots from days to minutes. However, achieving fast and reliable sim-to-real RL for humanoid control remains difficult due to the challenges introduced by factors such as high dimensionality and domain randomization. In this work, we introduce a simple and practical recipe based on off-policy RL algorithms, i.e., FastSAC and FastTD3, that enables rapid training of humanoid locomotion policies in just 15 minutes with a single RTX 4090 GPU. Our simple recipe stabilizes off-policy RL algorithms at massive scale with thousands of parallel environments through carefully tuned design choices and minimalist reward functions. We demonstrate rapid end-to-end learning of humanoid locomotion controllers on Unitree G1 and Booster T1 robots under strong domain randomization, e.g., randomized dynamics, rough terrain, and push perturbations, as well as fast training of whole-body human-motion tracking policies. We provide videos and open-source implementation at: https://younggyo.me/fastsac-humanoid.
comment: Project website: https://younggyo.me/fastsac-humanoid
☆ RoaD: Rollouts as Demonstrations for Closed-Loop Supervised Fine-Tuning of Autonomous Driving Policies
Autonomous driving policies are typically trained via open-loop behavior cloning of human demonstrations. However, such policies suffer from covariate shift when deployed in closed loop, leading to compounding errors. We introduce Rollouts as Demonstrations (RoaD), a simple and efficient method to mitigate covariate shift by leveraging the policy's own closed-loop rollouts as additional training data. During rollout generation, RoaD incorporates expert guidance to bias trajectories toward high-quality behavior, producing informative yet realistic demonstrations for fine-tuning. This approach enables robust closed-loop adaptation with orders of magnitude less data than reinforcement learning, and avoids restrictive assumptions of prior closed-loop supervised fine-tuning (CL-SFT) methods, allowing broader applications domains including end-to-end driving. We demonstrate the effectiveness of RoaD on WOSAC, a large-scale traffic simulation benchmark, where it performs similar or better than the prior CL-SFT method; and in AlpaSim, a high-fidelity neural reconstruction-based simulator for end-to-end driving, where it improves driving score by 41\% and reduces collisions by 54\%.
comment: Preprint
☆ Forecasting in Offline Reinforcement Learning for Non-stationary Environments NeurIPS 2025
Offline Reinforcement Learning (RL) provides a promising avenue for training policies from pre-collected datasets when gathering additional interaction data is infeasible. However, existing offline RL methods often assume stationarity or only consider synthetic perturbations at test time, assumptions that often fail in real-world scenarios characterized by abrupt, time-varying offsets. These offsets can lead to partial observability, causing agents to misperceive their true state and degrade performance. To overcome this challenge, we introduce Forecasting in Non-stationary Offline RL (FORL), a framework that unifies (i) conditional diffusion-based candidate state generation, trained without presupposing any specific pattern of future non-stationarity, and (ii) zero-shot time-series foundation models. FORL targets environments prone to unexpected, potentially non-Markovian offsets, requiring robust agent performance from the onset of each episode. Empirical evaluations on offline RL benchmarks, augmented with real-world time-series data to simulate realistic non-stationarity, demonstrate that FORL consistently improves performance compared to competitive baselines. By integrating zero-shot forecasting with the agent's experience, we aim to bridge the gap between offline RL and the complexities of real-world, non-stationary environments.
comment: The Thirty-Ninth Annual Conference on Neural Information Processing Systems, NeurIPS 2025
☆ A robust generalizable device-agnostic deep learning model for sleep-wake determination from triaxial wrist accelerometry
Study Objectives: Wrist accelerometry is widely used for inferring sleep-wake state. Previous works demonstrated poor wake detection, without cross-device generalizability and validation in different age range and sleep disorders. We developed a robust deep learning model for to detect sleep-wakefulness from triaxial accelerometry and evaluated its validity across three devices and in a large adult population spanning a wide range of ages with and without sleep disorders. Methods: We collected wrist accelerometry simultaneous to polysomnography (PSG) in 453 adults undergoing clinical sleep testing at a tertiary care sleep laboratory, using three devices. We extracted features in 30-second epochs and trained a 3-class model to detect wake, sleep, and sleep with arousals, which was then collapsed into wake vs. sleep using a decision tree. To enhance wake detection, the model was specifically trained on randomly selected subjects with low sleep efficiency and/or high arousal index from one device recording and then tested on the remaining recordings. Results: The model showed high performance with F1 Score of 0.86, sensitivity (sleep) of 0.87, and specificity (wakefulness) of 0.78, and significant and moderate correlation to PSG in predicting total sleep time (R=0.69) and sleep efficiency (R=0.63). Model performance was robust to the presence of sleep disorders, including sleep apnea and periodic limb movements in sleep, and was consistent across all three models of accelerometer. Conclusions: We present a deep model to detect sleep-wakefulness from actigraphy in adults with relative robustness to the presence of sleep disorders and generalizability across diverse commonly used wrist accelerometers.
comment: 27 pages, 5 figures, 5 tables
☆ ECO: Energy-Constrained Operator Learning for Chaotic Dynamics with Boundedness Guarantees
Chaos is a fundamental feature of many complex dynamical systems, including weather systems and fluid turbulence. These systems are inherently difficult to predict due to their extreme sensitivity to initial conditions. Many chaotic systems are dissipative and ergodic, motivating data-driven models that aim to learn invariant statistical properties over long time horizons. While recent models have shown empirical success in preserving invariant statistics, they are prone to generating unbounded predictions, which prevent meaningful statistics evaluation. To overcome this, we introduce the Energy-Constrained Operator (ECO) that simultaneously learns the system dynamics while enforcing boundedness in predictions. We leverage concepts from control theory to develop algebraic conditions based on a learnable energy function, ensuring the learned dynamics is dissipative. ECO enforces these algebraic conditions through an efficient closed-form quadratic projection layer, which provides provable trajectory boundedness. To our knowledge, this is the first work establishing such formal guarantees for data-driven chaotic dynamics models. Additionally, the learned invariant level set provides an outer estimate for the strange attractor, a complex structure that is computationally intractable to characterize. We demonstrate empirical success in ECO's ability to generate stable long-horizon forecasts, capturing invariant statistics on systems governed by chaotic PDEs, including the Kuramoto--Sivashinsky and the Navier--Stokes equations.
☆ Feature-Based Semantics-Aware Scheduling for Energy-Harvesting Federated Learning
Federated Learning (FL) on resource-constrained edge devices faces a critical challenge: The computational energy required for training Deep Neural Networks (DNNs) often dominates communication costs. However, most existing Energy-Harvesting FL (EHFL) strategies fail to account for this reality, resulting in wasted energy due to redundant local computations. For efficient and proactive resource management, algorithms that predict local update contributions must be devised. We propose a lightweight client scheduling framework using the Version Age of Information (VAoI), a semantics-aware metric that quantifies update timeliness and significance. Crucially, we overcome VAoI's typical prohibitive computational cost, which requires statistical distance over the entire parameter space, by introducing a feature-based proxy. This proxy estimates model redundancy using intermediate-layer extraction from a single forward pass, dramatically reducing computational complexity. Experiments conducted under extreme non-IID data distributions and scarce energy availability demonstrate superior learning performance while achieving energy reduction compared to existing baseline selection policies. Our framework establishes semantics-aware scheduling as a practical and vital solution for EHFL in realistic scenarios where training costs dominate transmission costs.
comment: This paper is currently under review for presentation at a peer-reviewed conference
☆ Low-Rank Prehab: Preparing Neural Networks for SVD Compression
Low-rank approximation methods such as singular value decomposition (SVD) and its variants (e.g., Fisher-weighted SVD, Activation SVD) have recently emerged as effective tools for neural network compression. In this setting, decomposition acts as a "surgical" intervention, followed by fine-tuning that serves as "rehab" to recover accuracy. Inspired by prehabilitation in surgery, we introduce a pre-compression fine-tuning stage, Low-Rank Prehab, that explicitly encourages low-rank structure in weight matrices while preserving task performance. By conditioning the model before SVD, Prehab steers weights toward spectrally compact regions of the parameter space, enabling smoother low-rank approximation and improved recovery. Experiments on large language models (LLMs) and other Transformer-based architectures, including Vision Transformers (ViTs), show that Prehab substantially reduces the immediate accuracy drop after compression and consistently improves post-finetuning performance. Across a wide range of compression ratios, our method outperforms state-of-the-art SVD-based techniques such as SVD-LLM, highlighting the importance of preparing models for compression rather than only improving the compression and recovery stages. Source code is available at https://github.com/niqretnuh/PREHAB-SVD
☆ KV Pareto: Systems-Level Optimization of KV Cache and Model Compression for Long Context Inference
Long-context Large Language Models (LLMs) face significant memory bottlenecks during inference due to the linear growth of key-value (KV) cache with sequence length. While individual optimization techniques like KV cache quantization, chunked prefill, and model weight quantization have shown promise, their joint effects and optimal configurations for edge deployment remain underexplored. We introduce KV Pareto, a systems-level framework that systematically maps the trade-off frontier between total memory consumption and task accuracy across these three complementary optimization techniques. Our framework evaluates multiple LLM architectures (Qwen, Llama, Mistral) with varying KV quantization schemes (int2/4/8, mixed-precision), granularities (per-token, per-tensor, per-block), and 4-bit weight quantization via AWQ. Our framework identifies model-specific Pareto-optimal configurations that achieve 68-78% total memory reduction with minimal (1-3%) accuracy degradation on long-context tasks. We additionally verify the selected frontiers on additional benchmarks of Needle-in-a-Haystack, GSM8k and MMLU as well as extended context lengths of up to 128k to demonstrate the practical need of joint optimization for efficient LLM inference.
☆ GrndCtrl: Grounding World Models via Self-Supervised Reward Alignment
Recent advances in video world modeling have enabled large-scale generative models to simulate embodied environments with high visual fidelity, providing strong priors for prediction, planning, and control. Yet, despite their realism, these models often lack geometric grounding, limiting their use in navigation tasks that require spatial coherence and long-horizon stability. We introduce Reinforcement Learning with World Grounding (RLWG), a self-supervised post-training framework that aligns pretrained world models with a physically verifiable structure through geometric and perceptual rewards. Analogous to reinforcement learning from verifiable feedback (RLVR) in language models, RLWG can use multiple rewards that measure pose cycle-consistency, depth reprojection, and temporal coherence. We instantiate this framework with GrndCtrl, a reward-aligned adaptation method based on Group Relative Policy Optimization (GRPO), yielding world models that maintain stable trajectories, consistent geometry, and reliable rollouts for embodied navigation. Like post-training alignment in large language models, GrndCtrl leverages verifiable rewards to bridge generative pretraining and grounded behavior, achieving superior spatial coherence and navigation stability over supervised fine-tuning in outdoor environments.
☆ Agentic Policy Optimization via Instruction-Policy Co-Evolution
Reinforcement Learning with Verifiable Rewards (RLVR) has advanced the reasoning capability of large language models (LLMs), enabling autonomous agents that can conduct effective multi-turn and tool-integrated reasoning. While instructions serve as the primary protocol for defining agents, RLVR typically relies on static and manually designed instructions. However, those instructions may be suboptimal for the base model, and the optimal instruction may change as the agent's policy improves and explores the interaction with the environment. To bridge the gap, we introduce INSPO, a novel Instruction-Policy co-evolution framework that integrates instruction optimization as a dynamic component of the reinforcement learning (RL) loop. INSPO maintains a dynamic population of instruction candidates that are sampled with questions, where reward signals in RL loops are automatically attributed to each instruction, and low performers are periodically pruned. New instructions are generated and verified through an on-policy reflection mechanism, where an LLM-based optimizer analyzes past experience from a replay buffer and evolves more effective strategies given the current policy. We conduct extensive experiments on multi-turn retrieval and reasoning tasks, demonstrating that INSPO substantially outperforms strong baselines relying on static instructions. INSPO discovers innovative instructions that guide the agent toward more strategic reasoning paths, achieving substantial performance gains with only a marginal increase in computational overhead.
comment: 10 pages, 3 figures, 2 tables (18 pages including references and appendices)
☆ SVRG and Beyond via Posterior Correction
Stochastic Variance Reduced Gradient (SVRG) and its variants aim to speed-up training by using gradient corrections, but have seen limited success in deep learning. Here, we show surprising new foundational connections of SVRG to a recently proposed Bayesian method called posterior correction. Specifically, we show that SVRG is recovered as a special case of posterior correction over the isotropic-Gaussian family, while novel extensions are automatically obtained by using more flexible exponential families. We derive two new SVRG variants by using Gaussian families: First, a Newton-like variant that employs novel Hessian corrections, and second, an Adam-like extension that improves pretraining and finetuning of Transformer language models. This is the first work to connect SVRG to Bayes and use it to boost variational training for deep networks.
comment: Preprint. Under review
☆ Real-World Robot Control by Deep Active Inference With a Temporally Hierarchical World Model
Robots in uncertain real-world environments must perform both goal-directed and exploratory actions. However, most deep learning-based control methods neglect exploration and struggle under uncertainty. To address this, we adopt deep active inference, a framework that accounts for human goal-directed and exploratory actions. Yet, conventional deep active inference approaches face challenges due to limited environmental representation capacity and high computational cost in action selection. We propose a novel deep active inference framework that consists of a world model, an action model, and an abstract world model. The world model encodes environmental dynamics into hidden state representations at slow and fast timescales. The action model compresses action sequences into abstract actions using vector quantization, and the abstract world model predicts future slow states conditioned on the abstract action, enabling low-cost action selection. We evaluate the framework on object-manipulation tasks with a real-world robot. Results show that it achieves high success rates across diverse manipulation tasks and switches between goal-directed and exploratory actions in uncertain settings, while making action selection computationally tractable. These findings highlight the importance of modeling multiple timescale dynamics and abstracting actions and state transitions.
comment: Accepted for publication in IEEE Robotics and Automation Letters (RA-L)
☆ A Footprint-Aware, High-Resolution Approach for Carbon Flux Prediction Across Diverse Ecosystems
Natural climate solutions (NCS) offer an approach to mitigating carbon dioxide (CO2) emissions. However, monitoring the carbon drawdown of ecosystems over large geographic areas remains challenging. Eddy-flux covariance towers provide ground truth for predictive 'upscaling' models derived from satellite products, but many satellites now produce measurements on spatial scales smaller than a flux tower's footprint. We introduce Footprint-Aware Regression (FAR), a first-of-its-kind, deep-learning framework that simultaneously predicts spatial footprints and pixel-level (30 m scale) estimates of carbon flux. FAR is trained on our AMERI-FAR25 dataset which combines 439 site years of tower data with corresponding Landsat scenes. Our model produces high-resolution predictions and achieves R2 = 0.78 when predicting monthly net ecosystem exchange on test sites from a variety of ecosystems.
comment: 29 pages, 7 Figuers
☆ Delays in Spiking Neural Networks: A State Space Model Approach
Spiking neural networks (SNNs) are biologically inspired, event-driven models that are suitable for processing temporal data and offer energy-efficient computation when implemented on neuromorphic hardware. In SNNs, richer neuronal dynamic allows capturing more complex temporal dependencies, with delays playing a crucial role by allowing past inputs to directly influence present spiking behavior. We propose a general framework for incorporating delays into SNNs through additional state variables. The proposed mechanism enables each neuron to access a finite temporal input history. The framework is agnostic to neuron models and hence can be seamlessly integrated into standard spiking neuron models such as LIF and adLIF. We analyze how the duration of the delays and the learnable parameters associated with them affect the performance. We investigate the trade-offs in the network architecture due to additional state variables introduced by the delay mechanism. Experiments on the Spiking Heidelberg Digits (SHD) dataset show that the proposed mechanism matches the performance of existing delay-based SNNs while remaining computationally efficient. Moreover, the results illustrate that the incorporation of delays may substantially improve performance in smaller networks.
☆ Provably Safe Model Updates
Safety-critical environments are inherently dynamic. Distribution shifts, emerging vulnerabilities, and evolving requirements demand continuous updates to machine learning models. Yet even benign parameter updates can have unintended consequences, such as catastrophic forgetting in classical models or alignment drift in foundation models. Existing heuristic approaches (e.g., regularization, parameter isolation) can mitigate these effects but cannot certify that updated models continue to satisfy required performance specifications. We address this problem by introducing a framework for provably safe model updates. Our approach first formalizes the problem as computing the largest locally invariant domain (LID): a connected region in parameter space where all points are certified to satisfy a given specification. While exact maximal LID computation is intractable, we show that relaxing the problem to parameterized abstract domains (orthotopes, zonotopes) yields a tractable primal-dual formulation. This enables efficient certification of updates - independent of the data or algorithm used - by projecting them onto the safe domain. Our formulation further allows computation of multiple approximately optimal LIDs, incorporation of regularization-inspired biases, and use of lookahead data buffers. Across continual learning and foundation model fine-tuning benchmarks, our method matches or exceeds heuristic baselines for avoiding forgetting while providing formal safety guarantees.
comment: 12 pages, 9 figures, submitted to IEEE SaTML 2026
☆ Elastic Weight Consolidation for Knowledge Graph Continual Learning: An Empirical Evaluation NeurIPS 2025
Knowledge graphs (KGs) require continual updates as new information emerges, but neural embedding models suffer from catastrophic forgetting when learning new tasks sequentially. We evaluate Elastic Weight Consolidation (EWC), a regularization-based continual learning method, on KG link prediction using TransE embeddings on FB15k-237. Across multiple experiments with five random seeds, we find that EWC reduces catastrophic forgetting from 12.62% to 6.85%, a 45.7% reduction compared to naive sequential training. We observe that the task partitioning strategy affects the magnitude of forgetting: relation-based partitioning (grouping triples by relation type) exhibits 9.8 percentage points higher forgetting than randomly partitioned tasks (12.62% vs 2.81%), suggesting that task construction influences evaluation outcomes. While focused on a single embedding model and dataset, our results demonstrate that EWC effectively mitigates catastrophic forgetting in KG continual learning and highlight the importance of evaluation protocol design.
comment: Accepted to NORA Workshop at NeurIPS 2025
☆ Domain-Decomposed Graph Neural Network Surrogate Modeling for Ice Sheets
Accurate yet efficient surrogate models are essential for large-scale simulations of partial differential equations (PDEs), particularly for uncertainty quantification (UQ) tasks that demand hundreds or thousands of evaluations. We develop a physics-inspired graph neural network (GNN) surrogate that operates directly on unstructured meshes and leverages the flexibility of graph attention. To improve both training efficiency and generalization properties of the model, we introduce a domain decomposition (DD) strategy that partitions the mesh into subdomains, trains local GNN surrogates in parallel, and aggregates their predictions. We then employ transfer learning to fine-tune models across subdomains, accelerating training and improving accuracy in data-limited settings. Applied to ice sheet simulations, our approach accurately predicts full-field velocities on high-resolution meshes, substantially reduces training time relative to training a single global surrogate model, and provides a ripe foundation for UQ objectives. Our results demonstrate that graph-based DD, combined with transfer learning, provides a scalable and reliable pathway for training GNN surrogates on massive PDE-governed systems, with broad potential for application beyond ice sheet dynamics.
☆ New Spiking Architecture for Multi-Modal Decision-Making in Autonomous Vehicles
This work proposes an end-to-end multi-modal reinforcement learning framework for high-level decision-making in autonomous vehicles. The framework integrates heterogeneous sensory input, including camera images, LiDAR point clouds, and vehicle heading information, through a cross-attention transformer-based perception module. Although transformers have become the backbone of modern multi-modal architectures, their high computational cost limits their deployment in resource-constrained edge environments. To overcome this challenge, we propose a spiking temporal-aware transformer-like architecture that uses ternary spiking neurons for computationally efficient multi-modal fusion. Comprehensive evaluations across multiple tasks in the Highway Environment demonstrate the effectiveness and efficiency of the proposed approach for real-time autonomous decision-making.
☆ Unifying Sign and Magnitude for Optimizing Deep Vision Networks via ThermoLion
The training of deep vision models is fundamentally a signal recovery problem amidst high-dimensional stochastic noise. Current optimization paradigms impose a static compromise on information channel capacity. For instance, magnitude-based methods, such as AdamW, operate on the assumption that gradient norms are high-fidelity curvature signals. While this allows for precision in smooth regimes, it leads to catastrophic noise amplification when applied to rugged, non-convex landscapes. Conversely, sign-based methods (e.g., Lion) perform a radical 1-bit quantization of the gradient, which aims to provide robust regularization at the cost of discarding fine-grained descent information. We propose that optimal convergence requires neither static prior, but rather a dynamic modulation of the update bitrate. We introduce \textbf{ThermoLion}, a vision-centric framework that utilizes local Signal-to-Noise Ratio (SNR) gating to autonomously transition parameters between a "low-bit" exploration phase and a "high-precision" exploitation phase. Furthermore, we introduce a Momentum Alignment mechanism that detects constructive interference between historical drift and instantaneous gradients to accelerate convergence during stable trajectories. Empirical benchmarks across 12 diverse vision datasets (including CIFAR, SVHN, and GTSRB) demonstrate that ThermoLion serves as a hyperparameter-free generalist, surpassing both AdamW and Lion in convergence speed and terminal accuracy without architecture-specific tuning.
☆ The Mean-Field Dynamics of Transformers
We develop a mathematical framework that interprets Transformer attention as an interacting particle system and studies its continuum (mean-field) limits. By idealizing attention continuous on the sphere, we connect Transformer dynamics to Wasserstein gradient flows, synchronization models (Kuramoto), and mean-shift clustering. Central to our results is a global clustering phenomenon whereby tokens cluster asymptotically after long metastable states where they are arranged into multiple clusters. We further analyze a tractable equiangular reduction to obtain exact clustering rates, show how commonly used normalization schemes alter contraction speeds, and identify a phase transition for long-context attention. The results highlight both the mechanisms that drive representation collapse and the regimes that preserve expressive, multi-cluster structure in deep attention architectures.
comment: to appear as Proceedings of the ICM2026, Philadelphia, USA
☆ Mitigating Gender Bias in Depression Detection via Counterfactual Inference
Audio-based depression detection models have demonstrated promising performance but often suffer from gender bias due to imbalanced training data. Epidemiological statistics show a higher prevalence of depression in females, leading models to learn spurious correlations between gender and depression. Consequently, models tend to over-diagnose female patients while underperforming on male patients, raising significant fairness concerns. To address this, we propose a novel Counterfactual Debiasing Framework grounded in causal inference. We construct a causal graph to model the decision-making process and identify gender bias as the direct causal effect of gender on the prediction. During inference, we employ counterfactual inference to estimate and subtract this direct effect, ensuring the model relies primarily on authentic acoustic pathological features. Extensive experiments on the DAIC-WOZ dataset using two advanced acoustic backbones demonstrate that our framework not only significantly reduces gender bias but also improves overall detection performance compared to existing debiasing strategies.
☆ Deconstructing Generative Diversity: An Information Bottleneck Analysis of Discrete Latent Generative Models
Generative diversity varies significantly across discrete latent generative models such as AR, MIM, and Diffusion. We propose a diagnostic framework, grounded in Information Bottleneck (IB) theory, to analyze the underlying strategies resolving this behavior. The framework models generation as a conflict between a 'Compression Pressure' - a drive to minimize overall codebook entropy - and a 'Diversity Pressure' - a drive to maximize conditional entropy given an input. We further decompose this diversity into two primary sources: 'Path Diversity', representing the choice of high-level generative strategies, and 'Execution Diversity', the randomness in executing a chosen strategy. To make this decomposition operational, we introduce three zero-shot, inference-time interventions that directly perturb the latent generative process and reveal how models allocate and express diversity. Application of this probe-based framework to representative AR, MIM, and Diffusion systems reveals three distinct strategies: "Diversity-Prioritized" (MIM), "Compression-Prioritized" (AR), and "Decoupled" (Diffusion). Our analysis provides a principled explanation for their behavioral differences and informs a novel inference-time diversity enhancement technique.
☆ InnoGym: Benchmarking the Innovation Potential of AI Agents
LLMs and Agents have achieved impressive progress in code generation, mathematical reasoning, and scientific discovery. However, existing benchmarks primarily measure correctness, overlooking the diversity of methods behind solutions. True innovation depends not only on producing correct answers but also on the originality of the approach. We present InnoGym, the first benchmark and framework designed to systematically evaluate the innovation potential of AI agents. InnoGym introduces two complementary metrics: performance gain, which measures improvement over the best-known solutions, and novelty, which captures methodological differences from prior approaches. The benchmark includes 18 carefully curated tasks from real-world engineering and scientific domains, each standardized through resource filtering, evaluator validation, and solution collection. In addition, we provide iGym, a unified execution environment for reproducible and long-horizon evaluations. Extensive experiments show that while some agents produce novel approaches, their lack of robustness limits performance gains. These results highlight a key gap between creativity and effectiveness, underscoring the need for benchmarks that evaluate both.
comment: Work in progress
☆ Dimension-free error estimate for diffusion model and optimal scheduling
Diffusion generative models have emerged as powerful tools for producing synthetic data from an empirically observed distribution. A common approach involves simulating the time-reversal of an Ornstein-Uhlenbeck (OU) process initialized at the true data distribution. Since the score function associated with the OU process is typically unknown, it is approximated using a trained neural network. This approximation, along with finite time simulation, time discretization and statistical approximation, introduce several sources of error whose impact on the generated samples must be carefully understood. Previous analyses have quantified the error between the generated and the true data distributions in terms of Wasserstein distance or Kullback-Leibler (KL) divergence. However, both metrics present limitations: KL divergence requires absolute continuity between distributions, while Wasserstein distance, though more general, leads to error bounds that scale poorly with dimension, rendering them impractical in high-dimensional settings. In this work, we derive an explicit, dimension-free bound on the discrepancy between the generated and the true data distributions. The bound is expressed in terms of a smooth test functional with bounded first and second derivatives. The key novelty lies in the use of this weaker, functional metric to obtain dimension-independent guarantees, at the cost of higher regularity on the test functions. As an application, we formulate and solve a variational problem to minimize the time-discretization error, leading to the derivation of an optimal time-scheduling strategy for the reverse-time diffusion. Interestingly, this scheduler has appeared previously in the literature in a different context; our analysis provides a new justification for its optimality, now grounded in minimizing the discretization bias in generative sampling.
☆ Decision Tree Embedding by Leaf-Means
Decision trees and random forest remain highly competitive for classification on medium-sized, standard datasets due to their robustness, minimal preprocessing requirements, and interpretability. However, a single tree suffers from high estimation variance, while large ensembles reduce this variance at the cost of substantial computational overhead and diminished interpretability. In this paper, we propose Decision Tree Embedding (DTE), a fast and effective method that leverages the leaf partitions of a trained classification tree to construct an interpretable feature representation. By using the sample means within each leaf region as anchor points, DTE maps inputs into an embedding space defined by the tree's partition structure, effectively circumventing the high variance inherent in decision-tree splitting rules. We further introduce an ensemble extension based on additional bootstrap trees, and pair the resulting embedding with linear discriminant analysis for classification. We establish several population-level theoretical properties of DTE, including its preservation of conditional density under mild conditions and a characterization of the resulting classification error. Empirical studies on synthetic and real datasets demonstrate that DTE strikes a strong balance between accuracy and computational efficiency, outperforming or matching random forest and shallow neural networks while requiring only a fraction of their training time in most cases. Overall, the proposed DTE method can be viewed either as a scalable decision tree classifier that improves upon standard split rules, or as a neural network model whose weights are learned from tree-derived anchor points, achieving an intriguing integration of both paradigms.
comment: 9 pages
☆ Forget Less, Retain More: A Lightweight Regularizer for Rehearsal-Based Continual Learning
Deep neural networks suffer from catastrophic forgetting, where performance on previous tasks degrades after training on a new task. This issue arises due to the model's tendency to overwrite previously acquired knowledge with new information. We present a novel approach to address this challenge, focusing on the intersection of memory-based methods and regularization approaches. We formulate a regularization strategy, termed Information Maximization (IM) regularizer, for memory-based continual learning methods, which is based exclusively on the expected label distribution, thus making it class-agnostic. As a consequence, IM regularizer can be directly integrated into various rehearsal-based continual learning methods, reducing forgetting and favoring faster convergence. Our empirical validation shows that, across datasets and regardless of the number of tasks, our proposed regularization strategy consistently improves baseline performance at the expense of a minimal computational overhead. The lightweight nature of IM ensures that it remains a practical and scalable solution, making it applicable to real-world continual learning scenarios where efficiency is paramount. Finally, we demonstrate the data-agnostic nature of our regularizer by applying it to video data, which presents additional challenges due to its temporal structure and higher memory requirements. Despite the significant domain gap, our experiments show that IM regularizer also improves the performance of video continual learning methods.
☆ DeepCAVE: A Visualization and Analysis Tool for Automated Machine Learning
Hyperparameter optimization (HPO), as a central paradigm of AutoML, is crucial for leveraging the full potential of machine learning (ML) models; yet its complexity poses challenges in understanding and debugging the optimization process. We present DeepCAVE, a tool for interactive visualization and analysis, providing insights into HPO. Through an interactive dashboard, researchers, data scientists, and ML engineers can explore various aspects of the HPO process and identify issues, untouched potentials, and new insights about the ML model being tuned. By empowering users with actionable insights, DeepCAVE contributes to the interpretability of HPO and ML on a design level and aims to foster the development of more robust and efficient methodologies in the future.
☆ Much Ado About Noising: Dispelling the Myths of Generative Robotic Control
Generative models, like flows and diffusions, have recently emerged as popular and efficacious policy parameterizations in robotics. There has been much speculation as to the factors underlying their successes, ranging from capturing multi-modal action distribution to expressing more complex behaviors. In this work, we perform a comprehensive evaluation of popular generative control policies (GCPs) on common behavior cloning (BC) benchmarks. We find that GCPs do not owe their success to their ability to capture multi-modality or to express more complex observation-to-action mappings. Instead, we find that their advantage stems from iterative computation, as long as intermediate steps are supervised during training and this supervision is paired with a suitable level of stochasticity. As a validation of our findings, we show that a minimum iterative policy (MIP), a lightweight two-step regression-based policy, essentially matches the performance of flow GCPs, and often outperforms distilled shortcut models. Our results suggest that the distribution-fitting component of GCPs is less salient than commonly believed, and point toward new design spaces focusing solely on control performance. Project page: https://simchowitzlabpublic.github.io/much-ado-about-noising-project/
☆ GR-RL: Going Dexterous and Precise for Long-Horizon Robotic Manipulation
We present GR-RL, a robotic learning framework that turns a generalist vision-language-action (VLA) policy into a highly capable specialist for long-horizon dexterous manipulation. Assuming the optimality of human demonstrations is core to existing VLA policies. However, we claim that in highly dexterous and precise manipulation tasks, human demonstrations are noisy and suboptimal. GR-RL proposes a multi-stage training pipeline that filters, augments, and reinforces the demonstrations by reinforcement learning. First, GR-RL learns a vision-language-conditioned task progress, filters the demonstration trajectories, and only keeps the transitions that contribute positively to the progress. Specifically, we show that by directly applying offline RL with sparse reward, the resulting $Q$-values can be treated as a robust progress function. Next, we introduce morphological symmetry augmentation that greatly improves the generalization and performance of GR-RL. Lastly, to better align the VLA policy with its deployment behaviors for high-precision control, we perform online RL by learning a latent space noise predictor. With this pipeline, GR-RL is, to our knowledge, the first learning-based policy that can autonomously lace up a shoe by threading shoelaces through multiple eyelets with an 83.3% success rate, a task requiring long-horizon reasoning, millimeter-level precision, and compliant soft-body interaction. We hope GR-RL provides a step toward enabling generalist robot foundations models to specialize into reliable real-world experts.
☆ Who Judges the Judge? LLM Jury-on-Demand: Building Trustworthy LLM Evaluation Systems
As Large Language Models (LLMs) become integrated into high-stakes domains, there is a growing need for evaluation methods that are both scalable for real-time deployment and reliable for critical decision-making. While human evaluation is reliable, it is slow and costly. Single LLM judges are biased, and static juries lack adaptability. To overcome these limitations, we propose LLM Jury-on-Demand - a dynamic, learning-based framework for scalable and context-aware evaluation. Our method trains a set of reliability predictors to assess when LLM judges will agree with human experts, leveraging token distributions, embeddings, and structural input features. This enables a fully adaptive evaluation where, for each data point, an optimal jury of the most reliable judges is dynamically selected, and their scores are aggregated using their reliability as weights. Experiments on summarization and RAG benchmarks show that our dynamic jury system achieves significantly higher correlation with human judgment than both single-judge and static-jury baselines. These results highlight the promise of adaptive, learning-based juries for building scalable, more reliable and trustworthy evaluation systems for modern LLMs in high-stakes domains.
comment: 66 pages, 22 figures, 37 tables
☆ The Active and Noise-Tolerant Strategic Perceptron
We initiate the study of active learning algorithms for classifying strategic agents. Active learning is a well-established framework in machine learning in which the learner selectively queries labels, often achieving substantially higher accuracy and efficiency than classical supervised methods-especially in settings where labeling is costly or time-consuming, such as hiring, admissions, and loan decisions. Strategic classification, however, addresses scenarios where agents modify their features to obtain more favorable outcomes, resulting in observed data that is not truthful. Such manipulation introduces challenges beyond those in learning from clean data. Our goal is to design active and noise-tolerant algorithms that remain effective in strategic environments-algorithms that classify strategic agents accurately while issuing as few label requests as possible. The central difficulty is to simultaneously account for strategic manipulation and preserve the efficiency gains of active learning. Our main result is an algorithm for actively learning linear separators in the strategic setting that preserves the exponential improvement in label complexity over passive learning previously obtained only in the non-strategic case. Specifically, for data drawn uniformly from the unit sphere, we show that a modified version of the Active Perceptron algorithm [DKM05,YZ17] achieves excess error $ε$ using only $\tilde{O}(d \ln \frac{1}ε)$ label queries and incurs at most $\tilde{O}(d \ln \frac{1}ε)$ additional mistakes relative to the optimal classifier, even in the nonrealizable case, when a $\tildeΩ(ε)$ fraction of inputs have inconsistent labels with the optimal classifier. The algorithm is computationally efficient and, under these distributional assumptions, requires substantially fewer label queries than prior work on strategic Perceptron [ABBN21].
☆ Dual Randomized Smoothing: Beyond Global Noise Variance
Randomized Smoothing (RS) is a prominent technique for certifying the robustness of neural networks against adversarial perturbations. With RS, achieving high accuracy at small radii requires a small noise variance, while achieving high accuracy at large radii requires a large noise variance. However, the global noise variance used in the standard RS formulation leads to a fundamental limitation: there exists no global noise variance that simultaneously achieves strong performance at both small and large radii. To break through the global variance limitation, we propose a dual RS framework which enables input-dependent noise variances. To achieve that, we first prove that RS remains valid with input-dependent noise variances, provided the variance is locally constant around each input. Building on this result, we introduce two components which form our dual RS framework: (i) a variance estimator first predicts an optimal noise variance for each input, (ii) this estimated variance is then used by a standard RS classifier. The variance estimator is independently smoothed via RS to ensure local constancy, enabling flexible design. We also introduce training strategies to iteratively optimize the two components. Extensive experiments on CIFAR-10 show that our dual RS method provides strong performance for both small and large radii-unattainable with global noise variance-while incurring only a 60% computational overhead at inference. Moreover, it consistently outperforms prior input-dependent noise approaches across most radii, with particularly large gains at radii 0.5, 0.75, and 1.0, achieving relative improvements of 19%, 24%, and 21%, respectively. On ImageNet, dual RS remains effective across all radii. Additionally, the dual RS framework naturally provides a routing perspective for certified robustness, improving the accuracy-robustness trade-off with off-the-shelf expert RS models.
☆ How Does RL Post-training Induce Skill Composition? A Case Study on Countdown
While reinforcement learning (RL) successfully enhances reasoning in large language models, its role in fostering compositional generalization (the ability to synthesize novel skills from known components) is often conflated with mere length generalization. To this end, we study what RL post-training teaches about skill composition and how the structure of the composition affects the skill transfer. We focus on the Countdown task (given n numbers and a target, form an expression that evaluates to the target) and analyze model solutions as expression trees, where each subtree corresponds to a reusable subtask and thus can be viewed as a ``skill.'' Tracking tree shapes and their success rates over training, we find: (i) out-of-distribution (OOD) generalization to larger n and to unseen tree shapes, indicating compositional reuse of subtasks; (ii) a structure-dependent hierarchy of learnability -- models master shallow balanced trees (workload is balanced between subtasks) before deep unbalanced ones, with persistent fragility on right-heavy structures (even when the composition depth is the same as some left-heavy structures). Our diagnostic reveals what is learned, in what order, and where generalization fails, clarifying how RL-only post-training induces OOD generalization beyond what standard metrics such as pass@k reveal.
☆ On the Unreasonable Effectiveness of Last-layer Retraining
Last-layer retraining (LLR) methods -- wherein the last layer of a neural network is reinitialized and retrained on a held-out set following ERM training -- have garnered interest as an efficient approach to rectify dependence on spurious correlations and improve performance on minority groups. Surprisingly, LLR has been found to improve worst-group accuracy even when the held-out set is an imbalanced subset of the training set. We initially hypothesize that this ``unreasonable effectiveness'' of LLR is explained by its ability to mitigate neural collapse through the held-out set, resulting in the implicit bias of gradient descent benefiting robustness. Our empirical investigation does not support this hypothesis. Instead, we present strong evidence for an alternative hypothesis: that the success of LLR is primarily due to better group balance in the held-out set. We conclude by showing how the recent algorithms CB-LLR and AFR perform implicit group-balancing to elicit a robustness improvement.
☆ Weight Space Representation Learning with Neural Fields
In this work, we investigate the potential of weights to serve as effective representations, focusing on neural fields. Our key insight is that constraining the optimization space through a pre-trained base model and low-rank adaptation (LoRA) can induce structure in weight space. Across reconstruction, generation, and analysis tasks on 2D and 3D data, we find that multiplicative LoRA weights achieve high representation quality while exhibiting distinctiveness and semantic structure. When used with latent diffusion models, multiplicative LoRA weights enable higher-quality generation than existing weight-space methods.
comment: 12 pages body, 9 pages appendix
☆ Mofasa: A Step Change in Metal-Organic Framework Generation
Mofasa is an all-atom latent diffusion model with state-of-the-art performance for generating Metal-Organic Frameworks (MOFs). These are highly porous crystalline materials used to harvest water from desert air, capture carbon dioxide, store toxic gases and catalyse chemical reactions. In recognition of their value, the development of MOFs recently received a Nobel Prize in Chemistry. In many ways, MOFs are well-suited for exploiting generative models in chemistry: they are rationally-designable materials with a large combinatorial design space and strong structure-property couplings. And yet, to date, a high performance generative model has been lacking. To fill this gap, we introduce Mofasa, a general-purpose latent diffusion model that jointly samples positions, atom-types and lattice vectors for systems as large as 500 atoms. Mofasa avoids handcrafted assembly algorithms common in the literature, unlocking the simultaneous discovery of metal nodes, linkers and topologies. To help the scientific community build on our work, we release MofasaDB, an annotated library of hundreds of thousands of sampled MOF structures, along with a user-friendly web interface for search and discovery: https://mofux.ai/ .
☆ Multimodal Mixture-of-Experts for ISAC in Low-Altitude Wireless Networks
Integrated sensing and communication (ISAC) is a key enabler for low-altitude wireless networks (LAWNs), providing simultaneous environmental perception and data transmission in complex aerial scenarios. By combining heterogeneous sensing modalities such as visual, radar, lidar, and positional information, multimodal ISAC can improve both situational awareness and robustness of LAWNs. However, most existing multimodal fusion approaches use static fusion strategies that treat all modalities equally and cannot adapt to channel heterogeneity or time-varying modality reliability in dynamic low-altitude environments. To address this fundamental limitation, we propose a mixture-of-experts (MoE) framework for multimodal ISAC in LAWNs. Each modality is processed by a dedicated expert network, and a lightweight gating module adaptively assigns fusion weights according to the instantaneous informativeness and reliability of each modality. To improve scalability under the stringent energy constraints of aerial platforms, we further develop a sparse MoE variant that selectively activates only a subset of experts, thereby reducing computation overhead while preserving the benefits of adaptive fusion. Comprehensive simulations on three typical ISAC tasks in LAWNs demonstrate that the proposed frameworks consistently outperform conventional multimodal fusion baselines in terms of learning performance and training sample efficiency.
☆ SA-ADP: Sensitivity-Aware Adaptive Differential Privacy for Large Language Models
Despite advances in the use of large language models (LLMs) in downstream tasks, their ability to memorize information has raised privacy concerns. Therefore, protecting personally identifiable information (PII) during LLM training remains a fundamental challenge. Conventional methods like Differential Privacy-Stochastic Gradient Descent (DP-SGD) provide robust privacy protection via uniform noising, protecting PII regardless of its distinct sensitivity. This comes at the expense of the model's utility, leading to a trade-off. In this paper, we propose SA-ADP, a sensitivity-aware approach that allocates noise based on the sensitivity of individual PII. We evaluated our method on four datasets (ABCD, CUSTOMERSIM, Wikitext-2, and UNSW-NB15 ). Our results show that SA-ADP achieves results comparable to the baseline (No-DP) and the conventional DP-SGD. This means that our method did not degrade the model's utility while still maintaining strong privacy protection.
comment: It is a 5-page paper with 5 figures and 1 Table
☆ MSPT: Efficient Large-Scale Physical Modeling via Parallelized Multi-Scale Attention
A key scalability challenge in neural solvers for industrial-scale physics simulations is efficiently capturing both fine-grained local interactions and long-range global dependencies across millions of spatial elements. We introduce the Multi-Scale Patch Transformer (MSPT), an architecture that combines local point attention within patches with global attention to coarse patch-level representations. To partition the input domain into spatially-coherent patches, we employ ball trees, which handle irregular geometries efficiently. This dual-scale design enables MSPT to scale to millions of points on a single GPU. We validate our method on standard PDE benchmarks (elasticity, plasticity, fluid dynamics, porous flow) and large-scale aerodynamic datasets (ShapeNet-Car, Ahmed-ML), achieving state-of-the-art accuracy with substantially lower memory footprint and computational cost.
☆ Automating modeling in mechanics: LLMs as designers of physics-constrained neural networks for constitutive modeling of materials
Large language model (LLM)-based agentic frameworks increasingly adopt the paradigm of dynamically generating task-specific agents. We suggest that not only agents but also specialized software modules for scientific and engineering tasks can be generated on demand. We demonstrate this concept in the field of solid mechanics. There, so-called constitutive models are required to describe the relationship between mechanical stress and body deformation. Constitutive models are essential for both the scientific understanding and industrial application of materials. However, even recent data-driven methods of constitutive modeling, such as constitutive artificial neural networks (CANNs), still require substantial expert knowledge and human labor. We present a framework in which an LLM generates a CANN on demand, tailored to a given material class and dataset provided by the user. The framework covers LLM-based architecture selection, integration of physical constraints, and complete code generation. Evaluation on three benchmark problems demonstrates that LLM-generated CANNs achieve accuracy comparable to or greater than manually engineered counterparts, while also exhibiting reliable generalization to unseen loading scenarios and extrapolation to large deformations. These findings indicate that LLM-based generation of physics-constrained neural networks can substantially reduce the expertise required for constitutive modeling and represent a step toward practical end-to-end automation.
comment: Currently under review
☆ Beyond Scaffold: A Unified Spatio-Temporal Gradient Tracking Method
In distributed and federated learning algorithms, communication overhead is often reduced by performing multiple local updates between communication rounds. However, due to data heterogeneity across nodes and the local gradient noise within each node, this strategy can lead to the drift of local models away from the global optimum. To address this issue, we revisit the well-known federated learning method Scaffold (Karimireddy et al., 2020) under a gradient tracking perspective, and propose a unified spatio-temporal gradient tracking algorithm, termed ST-GT, for distributed stochastic optimization over time-varying graphs. ST-GT tracks the global gradient across neighboring nodes to mitigate data heterogeneity, while maintaining a running average of local gradients to substantially suppress noise, with slightly more storage overhead. Without assuming bounded data heterogeneity, we prove that ST-GT attains a linear convergence rate for strongly convex problems and a sublinear rate for nonconvex cases. Notably, ST-GT achieves the first linear speed-up in communication complexity with respect to the number of local updates per round $τ$ for the strongly-convex setting. Compared to traditional gradient tracking methods, ST-GT reduces the topology-dependent noise term from $σ^2$ to $σ^2/τ$, where $σ^2$ denotes the noise level, thereby improving communication efficiency.
comment: 13 pages
☆ Common Structure Discovery in Collections of Bipartite Networks: Application to Pollination Systems
Bipartite networks are widely used to encode the ecological interactions. Being able to compare the organization of bipartite networks is a first step toward a better understanding of how environmental factors shape community structure and resilience. Yet current methods for structure detection in bipartite networks overlook shared patterns across collections of networks. We introduce the \emph{colBiSBM}, a family of probabilistic models for collections of bipartite networks that extends the classical Latent Block Model (LBM). The proposed framework assumes that networks are independent realizations of a shared mesoscale structure, encoded through common inter-block connectivity parameters. We establish identifiability conditions for the different variants of \emph{colBiSBM} and develop a variational EM algorithm for parameter estimation, coupled with an adaptation of the Integrated Classification Likelihood (ICL) criterion for model selection. We demonstrate how our approach can be used to classify networks based on their topology or organization. Simulation studies highlight the ability of \emph{colBiSBM} to recover common structures, improve clustering performance, and enhance link prediction by borrowing strength across networks. An application to plant--pollinator networks highlights how the method uncovers shared ecological roles and partitions networks into sub-collections with similar connectivity patterns. These results illustrate the methodological and practical advantages of joint modeling over separate network analyses in the study of bipartite systems.
☆ Differentially Private and Federated Structure Learning in Bayesian Networks
Learning the structure of a Bayesian network from decentralized data poses two major challenges: (i) ensuring rigorous privacy guarantees for participants, and (ii) avoiding communication costs that scale poorly with dimensionality. In this work, we introduce Fed-Sparse-BNSL, a novel federated method for learning linear Gaussian Bayesian network structures that addresses both challenges. By combining differential privacy with greedy updates that target only a few relevant edges per participant, Fed-Sparse-BNSL efficiently uses the privacy budget while keeping communication costs low. Our careful algorithmic design preserves model identifiability and enables accurate structure estimation. Experiments on synthetic and real datasets demonstrate that Fed-Sparse-BNSL achieves utility close to non-private baselines while offering substantially stronger privacy and communication efficiency.
☆ A unified framework for geometry-independent operator learning in cardiac electrophysiology simulations
Accurate maps of atrial electrical activation are essential for personalised treatment of arrhythmias, yet biophysically detailed simulations remain computationally intensive for real-time clinical use or population-scale analyses. Here we introduce a geometry-independent operator-learning framework that predicts local activation time (LAT) fields across diverse left atrial anatomies with near-instantaneous inference. We generated a dataset of 308,700 simulations using a GPU-accelerated electrophysiology solver, systematically varying multiple pacing sites and physiologically varied conduction properties across 147 patient-specific geometries derived from two independent clinical cohorts. All anatomical and functional data are expressed in a Universal Atrium Coordinate system, providing a consistent representation that decouples electrophysiological patterns from mesh topology. Within this coordinate space, we designed a neural operator with a vision-transformer backbone to learn the mapping from structural and electrophysiological inputs to LAT fields. With a mean prediction error of 5.1 ms over a 455 ms maximum simulation time, the model outperforms established operator-learning approaches and performs inference in 0.12 ms per sample. Our framework establishes a general strategy for learning domain-invariant biophysical mappings across variable anatomical domains and enables integration of computational electrophysiology into real-time and large-scale clinical workflows.
☆ Morphling: Fast, Fused, and Flexible GNN Training at Scale
Graph Neural Networks (GNNs) present a fundamental hardware challenge by fusing irregular, memory-bound graph traversals with regular, compute-intensive dense matrix operations. While frameworks such as PyTorch Geometric (PyG) and Deep Graph Library (DGL) prioritize high-level usability, they fail to address these divergent execution characteristics. As a result, they rely on generic kernels that suffer from poor cache locality, excessive memory movement, and substantial intermediate allocations. To address these limitations, we present Morphling, a domain-specific code synthesizer designed to bridge this gap. Morphling compiles high-level GNN specifications into portable, backend-specialized implementations targeting OpenMP, CUDA, and MPI. It achieves this by instantiating a library of optimized, architecture-aware primitives tailored to each execution environment. Morphling also incorporates a runtime sparsity-aware execution engine that dynamically selects dense or sparse execution paths using input feature statistics, reducing unnecessary computation on zero-valued entries. We evaluate Morphling on eleven real-world datasets spanning diverse graph structures, feature dimensionalities, and sparsity regimes. The results show that Morphling improves per-epoch training throughput by an average of 20X on CPUs and 19X on GPUs over PyG and DGL, with peak speedups reaching 66X. Morphling's memory-efficient layouts further reduce peak memory consumption by up to 15X, enabling large-scale GNN training on commodity hardware. These findings demonstrate that specialized, architecture-aware code synthesis provides an effective and scalable path toward high-performance GNN execution across diverse parallel and distributed platforms.
☆ ICAD-LLM: One-for-All Anomaly Detection via In-Context Learning with Large Language Models
Anomaly detection (AD) is a fundamental task of critical importance across numerous domains. Current systems increasingly operate in rapidly evolving environments that generate diverse yet interconnected data modalities -- such as time series, system logs, and tabular records -- as exemplified by modern IT systems. Effective AD methods in such environments must therefore possess two critical capabilities: (1) the ability to handle heterogeneous data formats within a unified framework, allowing the model to process and detect multiple modalities in a consistent manner during anomalous events; (2) a strong generalization ability to quickly adapt to new scenarios without extensive retraining. However, most existing methods fall short of these requirements, as they typically focus on single modalities and lack the flexibility to generalize across domains. To address this gap, we introduce a novel paradigm: In-Context Anomaly Detection (ICAD), where anomalies are defined by their dissimilarity to a relevant reference set of normal samples. Under this paradigm, we propose ICAD-LLM, a unified AD framework leveraging Large Language Models' in-context learning abilities to process heterogeneous data within a single model. Extensive experiments demonstrate that ICAD-LLM achieves competitive performance with task-specific AD methods and exhibits strong generalization to previously unseen tasks, which substantially reduces deployment costs and enables rapid adaptation to new environments. To the best of our knowledge, ICAD-LLM is the first model capable of handling anomaly detection tasks across diverse domains and modalities.
☆ Bayesian Ambiguity Contraction-based Adaptive Robust Markov Decision Processes for Adversarial Surveillance Missions
Collaborative Combat Aircraft (CCAs) are envisioned to enable autonomous Intelligence, Surveillance, and Reconnaissance (ISR) missions in contested environments, where adversaries may act strategically to deceive or evade detection. These missions pose challenges due to model uncertainty and the need for safe, real-time decision-making. Robust Markov Decision Processes (RMDPs) provide worst-case guarantees but are limited by static ambiguity sets that capture initial uncertainty without adapting to new observations. This paper presents an adaptive RMDP framework tailored to ISR missions with CCAs. We introduce a mission-specific formulation in which aircraft alternate between movement and sensing states. Adversarial tactics are modeled as a finite set of transition kernels, each capturing assumptions about how adversarial sensing or environmental conditions affect rewards. Our approach incrementally refines policies by eliminating inconsistent threat models, allowing agents to shift from conservative to aggressive behaviors while maintaining robustness. We provide theoretical guarantees showing that the adaptive planner converges as credible sets contract to the true threat and maintains safety under uncertainty. Experiments under Gaussian and non-Gaussian threat models across diverse network topologies show higher mission rewards and fewer exposure events compared to nominal and static robust planners.
☆ HalluGraph: Auditable Hallucination Detection for Legal RAG Systems via Knowledge Graph Alignment
Legal AI systems powered by retrieval-augmented generation (RAG) face a critical accountability challenge: when an AI assistant cites case law, statutes, or contractual clauses, practitioners need verifiable guarantees that generated text faithfully represents source documents. Existing hallucination detectors rely on semantic similarity metrics that tolerate entity substitutions, a dangerous failure mode when confusing parties, dates, or legal provisions can have material consequences. We introduce HalluGraph, a graph-theoretic framework that quantifies hallucinations through structural alignment between knowledge graphs extracted from context, query, and response. Our approach produces bounded, interpretable metrics decomposed into \textit{Entity Grounding} (EG), measuring whether entities in the response appear in source documents, and \textit{Relation Preservation} (RP), verifying that asserted relationships are supported by context. On structured control documents, HalluGraph achieves near-perfect discrimination ($>$400 words, $>$20 entities), HalluGraph achieves $AUC = 0.979$, while maintaining robust performance ($AUC \approx 0.89$) on challenging generative legal task, consistently outperforming semantic similarity baselines. The framework provides the transparency and traceability required for high-stakes legal applications, enabling full audit trails from generated assertions back to source passages.
comment: 8 pages, 4 figures, under review
☆ Cuffless Blood Pressure Estimation from Six Wearable Sensor Modalities in Multi-Motion-State Scenarios
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide, and sustained hypertension is an often silent risk factor, making cuffless continuous blood pressure (BP) monitoring with wearable devices important for early screening and long-term management. Most existing cuffless BP estimation methods use only photoplethysmography (PPG) and electrocardiography (ECG) signals, alone or in combination. These models are typically developed under resting or quasi-static conditions and struggle to maintain robust accuracy in multi-motion-state scenarios. In this study, we propose a six-modal BP estimation framework that jointly leverages ECG, multi-channel PPG, attachment pressure, sensor temperature, and triaxial acceleration and angular velocity. Each modality is processed by a lightweight branch encoder, contrastive learning enforces cross-modal semantic alignment, and a mixture-of-experts (MoE) regression head adaptively maps the fused features to BP across motion states. Comprehensive experiments on the public Pulse Transit Time PPG Dataset, which includes running, walking, and sitting data from 22 subjects, show that the proposed method achieves mean absolute errors (MAE) of 3.60 mmHg for systolic BP (SBP) and 3.01 mmHg for diastolic BP (DBP). From a clinical perspective, it attains Grade A for SBP, DBP, and mean arterial pressure (MAP) according to the British Hypertension Society (BHS) protocol and meets the numerical criteria of the Association for the Advancement of Medical Instrumentation (AAMI) standard for mean error (ME) and standard deviation of error (SDE).
comment: 13 pages, 7 figures
☆ In-context Inverse Optimality for Fair Digital Twins: A Preference-based approach
Digital Twins (DTs) are increasingly used as autonomous decision-makers in complex socio-technical systems. Their mathematically optimal decisions often diverge from human expectations, exposing a persistent gap between algorithmic and bounded human rationality. This work addresses this gap by proposing a framework that operationalizes fairness as a learnable objective within optimization-based Digital Twins. We introduce a preference-driven learning pipeline that infers latent fairness objectives directly from human pairwise preferences over feasible decisions. A novel Siamese neural network is developed to generate convex quadratic cost functions conditioned on contextual information. The resulting surrogate objectives align optimization outcomes with human-perceived fairness while maintaining computational efficiency. The approach is demonstrated on a COVID-19 hospital resource allocation scenario. This study provides an actionable path toward embedding human-centered fairness in the design of autonomous decision-making systems.
comment: Submitted for possible publication at the IFAC World Congress 2026
☆ Scaling and context steer LLMs along the same computational path as the human brain
Recent studies suggest that the representations learned by large language models (LLMs) are partially aligned to those of the human brain. However, whether and why this alignment score arises from a similar sequence of computations remains elusive. In this study, we explore this question by examining temporally-resolved brain signals of participants listening to 10 hours of an audiobook. We study these neural dynamics jointly with a benchmark encompassing 22 LLMs varying in size and architecture type. Our analyses confirm that LLMs and the brain generate representations in a similar order: specifically, activations in the initial layers of LLMs tend to best align with early brain responses, while the deeper layers of LLMs tend to best align with later brain responses. This brain-LLM alignment is consistent across transformers and recurrent architectures. However, its emergence depends on both model size and context length. Overall, this study sheds light on the sequential nature of computations and the factors underlying the partial convergence between biological and artificial neural networks.
☆ Reconstructing Multi-Scale Physical Fields from Extremely Sparse Measurements with an Autoencoder-Diffusion Cascade
Reconstructing full fields from extremely sparse and random measurements is a longstanding ill-posed inverse problem. A powerful framework for addressing such challenges is hierarchical probabilistic modeling, where uncertainty is represented by intermediate variables and resolved through marginalization during inference. Inspired by this principle, we propose Cascaded Sensing (Cas-Sensing), a hierarchical reconstruction framework that integrates an autoencoder-diffusion cascade. First, a neural operator-based functional autoencoder reconstructs the dominant structures of the original field - including large-scale components and geometric boundaries - from arbitrary sparse inputs, serving as an intermediate variable. Then, a conditional diffusion model, trained with a mask-cascade strategy, generates fine-scale details conditioned on these large-scale structures. To further enhance fidelity, measurement consistency is enforced via the manifold constrained gradient based on Bayesian posterior sampling during the generation process. This cascaded pipeline substantially alleviates ill-posedness, delivering accurate and robust reconstructions. Experiments on both simulation and real-world datasets demonstrate that Cas-Sensing generalizes well across varying sensor configurations and geometric boundaries, making it a promising tool for practical deployment in scientific and engineering applications.
comment: 19 pages,10 figures
☆ Do Large Language Models Walk Their Talk? Measuring the Gap Between Implicit Associations, Self-Report, and Behavioral Altruism
We investigate whether Large Language Models (LLMs) exhibit altruistic tendencies, and critically, whether their implicit associations and self-reports predict actual altruistic behavior. Using a multi-method approach inspired by human social psychology, we tested 24 frontier LLMs across three paradigms: (1) an Implicit Association Test (IAT) measuring implicit altruism bias, (2) a forced binary choice task measuring behavioral altruism, and (3) a self-assessment scale measuring explicit altruism beliefs. Our key findings are: (1) All models show strong implicit pro-altruism bias (mean IAT = 0.87, p < .0001), confirming models "know" altruism is good. (2) Models behave more altruistically than chance (65.6% vs. 50%, p < .0001), but with substantial variation (48-85%). (3) Implicit associations do not predict behavior (r = .22, p = .29). (4) Most critically, models systematically overestimate their own altruism, claiming 77.5% altruism while acting at 65.6% (p < .0001, Cohen's d = 1.08). This "virtue signaling gap" affects 75% of models tested. Based on these findings, we recommend the Calibration Gap (the discrepancy between self-reported and behavioral values) as a standardized alignment metric. Well-calibrated models are more predictable and behaviorally consistent; only 12.5% of models achieve the ideal combination of high prosocial behavior and accurate self-knowledge.
comment: 14 pages, 7 figures, 7 tables. Code and data available at https://github.com/sandroandric/LLMs_Altruism_Study_Code
☆ TimePred: efficient and interpretable offline change point detection for high volume data - with application to industrial process monitoring
Change-point detection (CPD) in high-dimensional, large-volume time series is challenging for statistical consistency, scalability, and interpretability. We introduce TimePred, a self-supervised framework that reduces multivariate CPD to univariate mean-shift detection by predicting each sample's normalized time index. This enables efficient offline CPD using existing algorithms and supports the integration of XAI attribution methods for feature-level explanations. Our experiments show competitive CPD performance while reducing computational cost by up to two orders of magnitude. In an industrial manufacturing case study, we demonstrate improved detection accuracy and illustrate the practical value of interpretable change-point insights.
comment: 6 pages, 3 figures
☆ LEC: Linear Expectation Constraints for False-Discovery Control in Selective Prediction and Routing Systems
Large language models (LLMs) often generate unreliable answers, while heuristic uncertainty methods fail to fully distinguish correct from incorrect predictions, causing users to accept erroneous answers without statistical guarantees. We address this issue through the lens of false discovery rate (FDR) control, ensuring that among all accepted predictions, the proportion of errors does not exceed a target risk level. To achieve this in a principled way, we propose LEC, which reinterprets selective prediction as a constrained decision problem by enforcing a Linear Expectation Constraint over selection and error indicators. Then, we establish a finite-sample sufficient condition, which relies only on a held-out set of exchangeable calibration samples, to compute an FDR-constrained, coverage-maximizing threshold. Furthermore, we extend LEC to a two-model routing mechanism: given a prompt, if the current model's uncertainty exceeds its calibrated threshold, we delegate it to a stronger model, while maintaining a unified FDR guarantee. Evaluations on closed-ended and open-ended question-answering (QA) datasets show that LEC achieves tighter FDR control and substantially improves sample retention over prior methods. Moreover, the two-model routing mechanism achieves lower risk levels while accepting more correct samples than each individual model.
☆ LPCD: Unified Framework from Layer-Wise to Submodule Quantization
Post-training quantization (PTQ) aims to preserve model-level behavior; however, most methods focus on individual linear layers. Even recent extensions, such as QEP and LoaQ, which mitigate error propagation or target specific submodules, still rely on layer-wise formulations and fail to capture the behavior of larger submodules. We introduce Layer-Projected Coordinate Descent (LPCD), a unified framework that extends PTQ beyond layers by optimizing relaxed objectives across arbitrary submodules and projecting the solutions with layer-wise quantizers. LPCD generalizes existing methods and provides a principled approach to quantizing complex submodules while maintaining the efficiency and compatibility of layer-wise PTQ pipelines. Across diverse LLM architectures and bit-widths, LPCD-based submodule quantization consistently enhances both layer-wise PTQ methods and existing submodule approaches.
comment: 21 pages, 4 figures
☆ Q2D2: A Geometry-Aware Audio Codec Leveraging Two-Dimensional Quantization
Recent neural audio codecs have achieved impressive reconstruction quality, typically relying on quantization methods such as Residual Vector Quantization (RVQ), Vector Quantization (VQ) and Finite Scalar Quantization (FSQ). However, these quantization techniques limit the geometric structure of the latent space, make it harder to capture correlations between features leading to inefficiency in representation learning, codebook utilization and token rate. In this paper we introduce Two Dimensional Quantization (Q2D2), a quantization scheme in which feature pairs are projected onto structured 2D grids such as hexagonal, rhombic, or rectangular tiling and quantized to the nearest grid values, yielding an implicit codebook defined by the product of grid levels, with codebook sizes comparable to conventional methods. Despite its simple geometric formulation, Q2D2 improves audio compression efficiency, with low token rates and high codebook utilization while maintaining state of the art reconstruction quality. Specifically, Q2D2 achieves competitive to superior performance in various objective and subjective reconstruction metrics, across extensive experiments in speech domain compared to state of the art models. Comprehensive ablation studies further confirm the effectiveness of our design choices.
☆ End-to-end Deep Reinforcement Learning for Stochastic Multi-objective Optimization in C-VRPTW
In this work, we consider learning-based applications in routing to solve a Vehicle Routing variant characterized by stochasticity and multiple objectives. Such problems are representative of practical settings where decision-makers have to deal with uncertainty in the operational environment as well as multiple conflicting objectives due to different stakeholders. We specifically consider travel time uncertainty. We also consider two objectives, total travel time and route makespan, that jointly target operational efficiency and labor regulations on shift length, although different objectives could be incorporated. Learning-based methods offer earnest computational advantages as they can repeatedly solve problems with limited interference from the decision-maker. We specifically focus on end-to-end deep learning models that leverage the attention mechanism and multiple solution trajectories. These models have seen several successful applications in routing problems. However, since travel times are not a direct input to these models due to the large dimensions of the travel time matrix, accounting for uncertainty is a challenge, especially in the presence of multiple objectives. In turn, we propose a model that simultaneously addresses stochasticity and multi-objectivity and provide a refined training mechanism for this model through scenario clustering to reduce training time. Our results show that our model is capable of constructing a Pareto Front of good quality within acceptable run times compared to three baselines.
comment: 25 pages, 5 figures
☆ Neural Networks for Predicting Permeability Tensors of 2D Porous Media: Comparison of Convolution- and Transformer-based Architectures
Permeability is a central concept in the macroscopic description of flow through porous media, with applications spanning from oil recovery to hydrology. Traditional methods for determining the permeability tensor involving flow simulations or experiments can be time consuming and resource-intensive, while analytical methods, e.g., based on the Kozeny-Carman equation, may be too simplistic for accurate prediction based on pore-scale features. In this work, we explore deep learning as a more efficient alternative for predicting the permeability tensor based on two-dimensional binary images of porous media, segmented into solid ($1$) and void ($0$) regions. We generate a dataset of 24,000 synthetic random periodic porous media samples with specified porosity and characteristic length scale. Using Lattice-Boltzmann simulations, we compute the permeability tensor for flow through these samples with values spanning three orders of magnitude. We evaluate three families of image-based deep learning models: ResNet (ResNet-$50$ and ResNet-$101$), Vision Transformers (ViT-T$16$ and ViT-S$16$) and ConvNeXt (Tiny and Small). To improve model generalisation, we employ techniques such as weight decay, learning rate scheduling, and data augmentation. The effect of data augmentation and dataset size on model performance is studied, and we find that they generally increase the accuracy of permeability predictions. We also show that ConvNeXt and ResNet converge faster than ViT and degrade in performance if trained for too long. ConvNeXt-Small achieved the highest $R^2$ score of $0.99460$ on $4,000$ unseen test samples. These findings underscore the potential to use image-based neural networks to predict permeability tensors accurately.
☆ Label Forensics: Interpreting Hard Labels in Black-Box Text Classifier
The widespread adoption of natural language processing techniques has led to an unprecedented growth of text classifiers across the modern web. Yet many of these models circulate with their internal semantics undocumented or even intentionally withheld. Such opaque classifiers, which may expose only hard-label outputs, can operate in unregulated web environments or be repurposed for unknown intents, raising legitimate forensic and auditing concerns. In this paper, we position ourselves as investigators and work to infer the semantic concept each label encodes in an undocumented black-box classifier. Specifically, we introduce label forensics, a black-box framework that reconstructs a label's semantic meaning. Concretely, we represent a label by a sentence embedding distribution from which any sample reliably reflects the concept the classifier has implicitly learned for that label. We believe this distribution should maintain two key properties: precise, with samples consistently classified into the target label, and general, covering the label's broad semantic space. To realize this, we design a semantic neighborhood sampler and an iterative optimization procedure to select representative seed sentences that jointly maximize label consistency and distributional coverage. The final output, an optimized seed sentence set combined with the sampler, constitutes the empirical distribution representing the label's semantics. Experiments on multiple black-box classifiers achieve an average label consistency of around 92.24 percent, demonstrating that the embedding regions accurately capture each classifier's label semantics. We further validate our framework on an undocumented HuggingFace classifier, enabling fine-grained label interpretation and supporting responsible AI auditing.
comment: 10 pages, 3 figures
☆ Semantic-aware Random Convolution and Source Matching for Domain Generalization in Medical Image Segmentation
We tackle the challenging problem of single-source domain generalization (DG) for medical image segmentation. To this end, we aim for training a network on one domain (e.g., CT) and directly apply it to a different domain (e.g., MR) without adapting the model and without requiring images or annotations from the new domain during training. We propose a novel method for promoting DG when training deep segmentation networks, which we call SRCSM. During training, our method diversifies the source domain through semantic-aware random convolution, where different regions of a source image are augmented differently, based on their annotation labels. At test-time, we complement the randomization of the training domain via mapping the intensity of target domain images, making them similar to source domain data. We perform a comprehensive evaluation on a variety of cross-modality and cross-center generalization settings for abdominal, whole-heart and prostate segmentation, where we outperform previous DG techniques in a vast majority of experiments. Additionally, we also investigate our method when training on whole-heart CT or MR data and testing on the diastolic and systolic phase of cine MR data captured with different scanner hardware, where we make a step towards closing the domain gap in this even more challenging setting. Overall, our evaluation shows that SRCSM can be considered a new state-of-the-art in DG for medical image segmentation and, moreover, even achieves a segmentation performance that matches the performance of the in-domain baseline in several settings.
comment: Preprint submitted to Computer Methods and Programs in Biomedicine (currently under revision)
☆ Learning Reduced Representations for Quantum Classifiers
Data sets that are specified by a large number of features are currently outside the area of applicability for quantum machine learning algorithms. An immediate solution to this impasse is the application of dimensionality reduction methods before passing the data to the quantum algorithm. We investigate six conventional feature extraction algorithms and five autoencoder-based dimensionality reduction models to a particle physics data set with 67 features. The reduced representations generated by these models are then used to train a quantum support vector machine for solving a binary classification problem: whether a Higgs boson is produced in proton collisions at the LHC. We show that the autoencoder methods learn a better lower-dimensional representation of the data, with the method we design, the Sinkclass autoencoder, performing 40% better than the baseline. The methods developed here open up the applicability of quantum machine learning to a larger array of data sets. Moreover, we provide a recipe for effective dimensionality reduction in this context.
☆ SynthStrategy: Extracting and Formalizing Latent Strategic Insights from LLMs in Organic Chemistry
Modern computer-assisted synthesis planning (CASP) systems show promises at generating chemically valid reaction steps but struggle to incorporate strategic considerations such as convergent assembly, protecting group minimization, and optimal ring-forming sequences. We introduce a methodology that leverages Large Language Models to distill synthetic knowledge into code. Our system analyzes synthesis routes and translates strategic principles into Python functions representing diverse strategic and tactical rules, such as strategic functional group interconversions and ring construction strategies. By formalizing this knowledge as verifiable code rather than simple heuristics, we create testable, interpretable representations of synthetic strategy. We release the complete codebase and the USPTO-ST dataset -- synthesis routes annotated with strategic tags. This framework unlocks a novel capability for CASP: natural language-based route retrieval, achieving 75\% Top-3 accuracy on our benchmark. We further validate our library through temporal analysis of historical trends and chemically intuitive route clustering that offers more granular partitioning than common previous methods. This work bridges the tactical-strategic divide in CASP, enabling specification, search, and evaluation of routes by strategic criteria rather than structure alone.
☆ Walking on the Fiber: A Simple Geometric Approximation for Bayesian Neural Networks
Bayesian Neural Networks provide a principled framework for uncertainty quantification by modeling the posterior distribution of network parameters. However, exact posterior inference is computationally intractable, and widely used approximations like the Laplace method struggle with scalability and posterior accuracy in modern deep networks. In this work, we revisit sampling techniques for posterior exploration, proposing a simple variation tailored to efficiently sample from the posterior in over-parameterized networks by leveraging the low-dimensional structure of loss minima. Building on this, we introduce a model that learns a deformation of the parameter space, enabling rapid posterior sampling without requiring iterative methods. Empirical results demonstrate that our approach achieves competitive posterior approximations with improved scalability compared to recent refinement techniques. These contributions provide a practical alternative for Bayesian inference in deep learning.
☆ Winning Solutions for the Rayan AI Contest: Compositional Retrieval, Zero-Shot Anomaly Detection, and Backdoor Detection
This report presents solutions to three machine learning challenges: compositional image retrieval, zero-shot anomaly detection, and backdoored model detection. In compositional image retrieval, we developed a system that processes visual and textual inputs to retrieve relevant images, achieving 95.38\% accuracy and ranking first with a clear margin over the second team. For zero-shot anomaly detection, we designed a model that identifies and localizes anomalies in images without prior exposure to abnormal examples, securing 1st place with 73.14\% accuracy. In the backdoored model detection task, we proposed a method to detect hidden backdoor triggers in neural networks, reaching an accuracy of 78\%, which placed our approach in second place. These results demonstrate the effectiveness of our methods in addressing key challenges related to retrieval, anomaly detection, and model security, with implications for real-world applications in industries such as healthcare, manufacturing, and cybersecurity. Code for all solutions is available online.
☆ Heuristic algorithms for the stochastic critical node detection problem
Given a network, the critical node detection problem finds a subset of nodes whose removal disrupts the network connectivity. Since many real-world systems are naturally modeled as graphs, assessing the vulnerability of the network is essential, with applications in transportation systems, traffic forecasting, epidemic control, and biological networks. In this paper, we consider a stochastic version of the critical node detection problem, where the existence of edges is given by certain probabilities. We propose heuristics and learning-based methods for the problem and compare them with existing algorithms. Experimental results performed on random graphs from small to larger scales, with edge-survival probabilities drawn from different distributions, demonstrate the effectiveness of the methods. Heuristic methods often illustrate the strongest results with high scalability, while learning-based methods maintain nearly constant inference time as the network size and density grow.
comment: 17 pages, 11 figures
☆ Multi-Path Collaborative Reasoning via Reinforcement Learning
Chain-of-Thought (CoT) reasoning has significantly advanced the problem-solving capabilities of Large Language Models (LLMs), yet conventional CoT often exhibits internal determinism during decoding, limiting exploration of plausible alternatives. Recent methods attempt to address this by generating soft abstract tokens to enable reasoning in a continuous semantic space. However, we find that such approaches remain constrained by the greedy nature of autoregressive decoding, which fundamentally isolates the model from alternative reasoning possibilities. In this work, we propose Multi-Path Perception Policy Optimization (M3PO), a novel reinforcement learning framework that explicitly injects collective insights into the reasoning process. M3PO leverages parallel policy rollouts as naturally diverse reasoning sources and integrates cross-path interactions into policy updates through a lightweight collaborative mechanism. This design allows each trajectory to refine its reasoning with peer feedback, thereby cultivating more reliable multi-step reasoning patterns. Empirical results show that M3PO achieves state-of-the-art performance on both knowledge- and reasoning-intensive benchmarks. Models trained with M3PO maintain interpretability and inference efficiency, underscoring the promise of multi-path collaborative learning for robust reasoning.
☆ Multi-view diffusion geometry using intertwined diffusion trajectories
This paper introduces a comprehensive unified framework for constructing multi-view diffusion geometries through intertwined multi-view diffusion trajectories (MDTs), a class of inhomogeneous diffusion processes that iteratively combine the random walk operators of multiple data views. Each MDT defines a trajectory-dependent diffusion operator with a clear probabilistic and geometric interpretation, capturing over time the interplay between data views. Our formulation encompasses existing multi-view diffusion models, while providing new degrees of freedom for view interaction and fusion. We establish theoretical properties under mild assumptions, including ergodicity of both the point-wise operator and the process in itself. We also derive MDT-based diffusion distances, and associated embeddings via singular value decompositions. Finally, we propose various strategies for learning MDT operators within the defined operator space, guided by internal quality measures. Beyond enabling flexible model design, MDTs also offer a neutral baseline for evaluating diffusion-based approaches through comparison with randomly selected MDTs. Experiments show the practical impact of the MDT operators in a manifold learning and data clustering context.
☆ Does Flatness imply Generalization for Logistic Loss in Univariate Two-Layer ReLU Network?
We consider the problem of generalization of arbitrarily overparameterized two-layer ReLU Neural Networks with univariate input. Recent work showed that under square loss, flat solutions (motivated by flat / stable minima and Edge of Stability phenomenon) provably cannot overfit, but it remains unclear whether the same phenomenon holds for logistic loss. This is a puzzling open problem because existing work on logistic loss shows that gradient descent with increasing step size converges to interpolating solutions (at infinity, for the margin-separable cases). In this paper, we prove that the \emph{flatness implied generalization} is more delicate under logistic loss. On the positive side, we show that flat solutions enjoy near-optimal generalization bounds within a region between the left-most and right-most \emph{uncertain} sets determined by each candidate solution. On the negative side, we show that there exist arbitrarily flat yet overfitting solutions at infinity that are (falsely) certain everywhere, thus certifying that flatness alone is insufficient for generalization in general. We demonstrate the effects predicted by our theory in a well-controlled simulation study.
comment: 59 pages
☆ Differentiable Weightless Controllers: Learning Logic Circuits for Continuous Control
We investigate whether continuous-control policies can be represented and learned as discrete logic circuits instead of continuous neural networks. We introduce Differentiable Weightless Controllers (DWCs), a symbolic-differentiable architecture that maps real-valued observations to actions using thermometer-encoded inputs, sparsely connected boolean lookup-table layers, and lightweight action heads. DWCs can be trained end-to-end by gradient-based techniques, yet compile directly into FPGA-compatible circuits with few- or even single-clock-cycle latency and nanojoule-level energy cost per action. Across five MuJoCo benchmarks, including high-dimensional Humanoid, DWCs achieve returns competitive with weight-based policies (full precision or quantized neural networks), matching performance on four tasks and isolating network capacity as the key limiting factor on HalfCheetah. Furthermore, DWCs exhibit structurally sparse and interpretable connectivity patterns, enabling a direct inspection of which input thresholds influence control decisions.
comment: 16 pages, 11 figures, 10 tables
☆ A Nonlinear Low-rank Representation Model with Convolutional Neural Network for Imputing Water Quality Data
Water quality monitoring is a core component of ecological environmental protection. However, due to sensor failure or other inevitable factors, data missing often exists in long-term monitoring, posing great challenges in water quality analysis. This paper proposes a Neural Tucker Convolutional Network (NTCN) model for water quality data imputation, which features the following key components: a) Encode different mode entities into respective embedding vectors, and construct a Tucker interaction tensor by outer product operations to capture the complex mode-wise feature interactions; b) Use 3D convolution to extract fine-grained spatiotemporal features from the interaction tensor. Experiments on three real-world water quality datasets show that the proposed NTCN model outperforms several state-of-the-art imputation models in terms of accuracy.
comment: 8 pages, 1 figure
☆ hls4ml: A Flexible, Open-Source Platform for Deep Learning Acceleration on Reconfigurable Hardware
We present hls4ml, a free and open-source platform that translates machine learning (ML) models from modern deep learning frameworks into high-level synthesis (HLS) code that can be integrated into full designs for field-programmable gate arrays (FPGAs) or application-specific integrated circuits (ASICs). With its flexible and modular design, hls4ml supports a large number of deep learning frameworks and can target HLS compilers from several vendors, including Vitis HLS, Intel oneAPI and Catapult HLS. Together with a wider eco-system for software-hardware co-design, hls4ml has enabled the acceleration of ML inference in a wide range of commercial and scientific applications where low latency, resource usage, and power consumption are critical. In this paper, we describe the structure and functionality of the hls4ml platform. The overarching design considerations for the generated HLS code are discussed, together with selected performance results.
☆ Stay Unique, Stay Efficient: Preserving Model Personality in Multi-Task Merging
Model merging has emerged as a promising paradigm for enabling multi-task capabilities without additional training. However, existing methods often experience substantial performance degradation compared with individually fine-tuned models, even on similar tasks, underscoring the need to preserve task-specific information. This paper proposes Decomposition, Thresholding, and Scaling (DTS), an approximation-based personalized merging framework that preserves task-specific information with minimal storage overhead. DTS first applies singular value decomposition to the task-specific information and retains only a small subset of singular values and vectors. It then introduces a novel thresholding strategy that partitions singular vector elements into groups and assigns a scaling factor to each group. To enable generalization to unseen tasks, we further extend DTS with a variant that fuses task-specific information in a data-free manner based on the semantic similarity of task characteristics. Extensive experiments demonstrate that DTS consistently outperforms state-of-the-art baselines while requiring only 1\% additional storage per task. Furthermore, experiments on unseen tasks show that the DTS variant achieves significantly better generalization performance. Our code is available at https://github.com/krumpguo/DTS.
☆ Enhancing BERT Fine-Tuning for Sentiment Analysis in Lower-Resourced Languages
Limited data for low-resource languages typically yield weaker language models (LMs). Since pre-training is compute-intensive, it is more pragmatic to target improvements during fine-tuning. In this work, we examine the use of Active Learning (AL) methods augmented by structured data selection strategies which we term 'Active Learning schedulers', to boost the fine-tuning process with a limited amount of training data. We connect the AL to data clustering and propose an integrated fine-tuning pipeline that systematically combines AL, clustering, and dynamic data selection schedulers to enhance model's performance. Experiments in the Slovak, Maltese, Icelandic and Turkish languages show that the use of clustering during the fine-tuning phase together with AL scheduling can simultaneously produce annotation savings up to 30% and performance improvements up to four F1 score points, while also providing better fine-tuning stability.
☆ ZIP-RC: Zero-overhead Inference-time Prediction of Reward and Cost for Adaptive and Interpretable Generation
Large language models excel at reasoning but lack key aspects of introspection, including anticipating their own success and the computation required to achieve it. Humans use real-time introspection to decide how much effort to invest, when to make multiple attempts, when to stop, and when to signal success or failure. Without this, LLMs struggle to make intelligent meta-cognition decisions. Test-time scaling methods like Best-of-N drive up cost and latency by using a fixed budget of samples regardless of the marginal benefit of each one at any point in generation, and the absence of confidence signals can mislead people, prevent appropriate escalation to better tools, and undermine trustworthiness. Learned verifiers or reward models can provide confidence estimates, but do not enable adaptive inference and add substantial cost by requiring extra models or forward passes. We present ZIP-RC, an adaptive inference method that equips models with zero-overhead inference-time predictions of reward and cost. At every token, ZIP-RC reuses reserved or unused logits in the same forward pass as next-token prediction to output a joint distribution over final reward and remaining length -- no extra models, architecture change, or inference overhead. This full joint distribution is used to compute a sampling utility which is the linear combination of the expected maximum reward, total compute, and latency of set of samples if generated to completion. During inference, we maximize this utility with meta-actions that determine which prefix of tokens to continue or initiate sampling from. On mixed-difficulty mathematical benchmarks, ZIP-RC improves accuracy by up to 12% over majority voting at equal or lower average cost, and traces smooth Pareto frontiers between quality, compute, and latency. By providing real-time reward-cost introspection, ZIP-RC enables adaptive, efficient reasoning.
comment: Code coming soon
☆ MEGConformer: Conformer-Based MEG Decoder for Robust Speech and Phoneme Classification NeurIPS 2025
We present Conformer-based decoders for the LibriBrain 2025 PNPL competition, targeting two foundational MEG tasks: Speech Detection and Phoneme Classification. Our approach adapts a compact Conformer to raw 306-channel MEG signals, with a lightweight convolutional projection layer and task-specific heads. For Speech Detection, a MEG-oriented SpecAugment provided a first exploration of MEG-specific augmentation. For Phoneme Classification, we used inverse-square-root class weighting and a dynamic grouping loader to handle 100-sample averaged examples. In addition, a simple instance-level normalization proved critical to mitigate distribution shifts on the holdout split. Using the official Standard track splits and F1-macro for model selection, our best systems achieved 88.9% (Speech) and 65.8% (Phoneme) on the leaderboard, surpassing the competition baselines and ranking within the top-10 in both tasks. For further implementation details, the technical documentation, source code, and checkpoints are available at https://github.com/neural2speech/libribrain-experiments.
comment: 10 pages, 5 figures, 4 tables, LibriBrain Workshop, NeurIPS 2025
☆ Masked Symbol Modeling for Demodulation of Oversampled Baseband Communication Signals in Impulsive Noise-Dominated Channels NeurIPS 2025
Recent breakthroughs in natural language processing show that attention mechanism in Transformer networks, trained via masked-token prediction, enables models to capture the semantic context of the tokens and internalize the grammar of language. While the application of Transformers to communication systems is a burgeoning field, the notion of context within physical waveforms remains under-explored. This paper addresses that gap by re-examining inter-symbol contribution (ISC) caused by pulse-shaping overlap. Rather than treating ISC as a nuisance, we view it as a deterministic source of contextual information embedded in oversampled complex baseband signals. We propose Masked Symbol Modeling (MSM), a framework for the physical (PHY) layer inspired by Bidirectional Encoder Representations from Transformers methodology. In MSM, a subset of symbol aligned samples is randomly masked, and a Transformer predicts the missing symbol identifiers using the surrounding "in-between" samples. Through this objective, the model learns the latent syntax of complex baseband waveforms. We illustrate MSM's potential by applying it to the task of demodulating signals corrupted by impulsive noise, where the model infers corrupted segments by leveraging the learned context. Our results suggest a path toward receivers that interpret, rather than merely detect communication signals, opening new avenues for context-aware PHY layer design.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop on AI and ML for Next-Generation Wireless Communications and Networking (AI4NextG), non-archival
☆ Fourier Neural Operators Explained: A Practical Perspective
Partial differential equations (PDEs) govern a wide variety of dynamical processes in science and engineering, yet obtaining their numerical solutions often requires high-resolution discretizations and repeated evaluations of complex operators, leading to substantial computational costs. Neural operators have recently emerged as a powerful framework for learning mappings between function spaces directly from data, enabling efficient surrogate models for PDE systems. Among these architectures, the Fourier Neural Operator (FNO) has become the most influential and widely adopted due to its elegant spectral formulation, which captures global correlations through learnable transformations in Fourier space while remaining invariant to discretization and resolution. Despite their success, the practical use of FNOs is often hindered by an incomplete understanding among practitioners of their theoretical foundations, practical constraints, and implementation details, which can lead to their incorrect or unreliable application. This work presents a comprehensive and practice-oriented guide to FNOs, unifying their mathematical principles with implementation strategies. We provide an intuitive exposition to the concepts of operator theory and signal-processing that underlie the FNO, detail its spectral parameterization and the computational design of all its components, and address common misunderstandings encountered in the literature. The exposition is closely integrated with the NeuralOperator 2.0.0 library, offering modular state-of-the-art implementations that faithfully reflect the theory. By connecting rigorous foundations with practical insight, this guide aims to establish a clear and reliable framework for applying FNOs effectively across diverse scientific and engineering fields.
comment: 92 pages, 26 figures
☆ A Self-explainable Model of Long Time Series by Extracting Informative Structured Causal Patterns
Explainability is essential for neural networks that model long time series, yet most existing explainable AI methods only produce point-wise importance scores and fail to capture temporal structures such as trends, cycles, and regime changes. This limitation weakens human interpretability and trust in long-horizon models. To address these issues, we identify four key requirements for interpretable time-series modeling: temporal continuity, pattern-centric explanation, causal disentanglement, and faithfulness to the model's inference process. We propose EXCAP, a unified framework that satisfies all four requirements. EXCAP combines an attention-based segmenter that extracts coherent temporal patterns, a causally structured decoder guided by a pre-trained causal graph, and a latent aggregation mechanism that enforces representation stability. Our theoretical analysis shows that EXCAP provides smooth and stable explanations over time and is robust to perturbations in causal masks. Extensive experiments on classification and forecasting benchmarks demonstrate that EXCAP achieves strong predictive accuracy while generating coherent and causally grounded explanations. These results show that EXCAP offers a principled and scalable approach to interpretable modeling of long time series with relevance to high-stakes domains such as healthcare and finance.
comment: Approximately 30 pages, 8 figures, and 5 tables. Preprint version. Includes theoretical analysis, model architecture, interpretability evaluation, and extensive benchmark experiments
☆ Fantastic Features and Where to Find Them: A Probing Method to combine Features from Multiple Foundation Models NeurIPS 2025
Foundation models (FMs) trained with different objectives and data learn diverse representations, making some more effective than others for specific downstream tasks. Existing adaptation strategies, such as parameter-efficient fine-tuning, focus on individual models and do not exploit the complementary strengths across models. Probing methods offer a promising alternative by extracting information from frozen models, but current techniques do not scale well with large feature sets and often rely on dataset-specific hyperparameter tuning. We propose Combined backBones (ComBo), a simple and scalable probing-based adapter that effectively integrates features from multiple models and layers. ComBo compresses activations from layers of one or more FMs into compact token-wise representations and processes them with a lightweight transformer for task-specific prediction. Crucially, ComBo does not require dataset-specific tuning or backpropagation through the backbone models. However, not all models are equally relevant for all tasks. To address this, we introduce a mechanism that leverages ComBo's joint multi-backbone probing to efficiently evaluate each backbone's task-relevance, enabling both practical model comparison and improved performance through selective adaptation. On the 19 tasks of the VTAB-1k benchmark, ComBo outperforms previous probing methods, matches or surpasses more expensive alternatives, such as distillation-based model merging, and enables efficient probing of tuned models. Our results demonstrate that ComBo offers a practical and general-purpose framework for combining diverse representations from multiple FMs.
comment: Published at NeurIPS 2025
♻ ☆ How Muon's Spectral Design Benefits Generalization: A Study on Imbalanced Data
The growing adoption of spectrum-aware matrix-valued optimizers such as Muon and Shampoo in deep learning motivates a systematic study of their generalization properties and, in particular, when they might outperform competitive algorithms. We approach this question by introducing appropriate simplifying abstractions as follows: First, we use imbalanced data as a testbed. Second, we study the canonical form of such optimizers, which is Spectral Gradient Descent (SpecGD) -- each update step is $UV^T$ where $UΣV^T$ is the truncated SVD of the gradient. Third, within this framework we identify a canonical setting for which we precisely quantify when SpecGD outperforms vanilla Euclidean GD. For a Gaussian mixture data model and both linear and bilinear models, we show that unlike GD, which prioritizes learning dominant principal components of the data first, SpecGD learns all principal components of the data at equal rates. We demonstrate how this translates to a growing gap in balanced accuracy favoring SpecGD early in training and further show that the gap remains consistent even when the GD counterpart uses adaptive step-sizes via normalization. By extending the analysis to deep linear models, we show that depth amplifies these effects. We empirically verify our theoretical findings on a variety of imbalanced datasets. Our experiments compare practical variants of spectral methods, like Muon and Shampoo, against their Euclidean counterparts and Adam. The results validate our findings that these spectral optimizers achieve superior generalization by promoting a more balanced learning of the data's underlying components.
comment: 36 pages, 32 figures, 1 table
♻ ☆ VIVAT: Virtuous Improving VAE Training through Artifact Mitigation
Variational Autoencoders (VAEs) remain a cornerstone of generative computer vision, yet their training is often plagued by artifacts that degrade reconstruction and generation quality. This paper introduces VIVAT, a systematic approach to mitigating common artifacts in KL-VAE training without requiring radical architectural changes. We present a detailed taxonomy of five prevalent artifacts - color shift, grid patterns, blur, corner and droplet artifacts - and analyze their root causes. Through straightforward modifications, including adjustments to loss weights, padding strategies, and the integration of Spatially Conditional Normalization, we demonstrate significant improvements in VAE performance. Our method achieves state-of-the-art results in image reconstruction metrics (PSNR and SSIM) across multiple benchmarks and enhances text-to-image generation quality, as evidenced by superior CLIP scores. By preserving the simplicity of the KL-VAE framework while addressing its practical challenges, VIVAT offers actionable insights for researchers and practitioners aiming to optimize VAE training.
♻ ☆ IAEmu: Learning Galaxy Intrinsic Alignment Correlations
The intrinsic alignments (IA) of galaxies, a key contaminant in weak lensing analyses, arise from correlations in galaxy shapes driven by tidal interactions and galaxy formation processes. Accurate IA modeling is essential for robust cosmological inference, but current approaches rely on perturbative methods that break down on nonlinear scales or on expensive simulations. We introduce IAEmu, a neural network-based emulator that predicts the galaxy position-position ($ξ$), position-orientation ($ω$), and orientation-orientation ($η$) correlation functions and their uncertainties using mock catalogs based on the halo occupation distribution (HOD) framework. Compared to simulations, IAEmu achieves ~3% average error for $ξ$ and ~5% for $ω$, while capturing the stochasticity of $η$ without overfitting. The emulator provides both aleatoric and epistemic uncertainties, helping identify regions where predictions may be less reliable. We also demonstrate generalization to non-HOD alignment signals by fitting to IllustrisTNG hydrodynamical simulation data. As a fully differentiable neural network, IAEmu enables $\sim$10,000$\times$ speed-ups in mapping HOD parameters to correlation functions on GPUs, compared to CPU-based simulations. This acceleration facilitates inverse modeling via gradient-based sampling, making IAEmu a powerful surrogate model for galaxy bias and IA studies with direct applications to Stage IV weak lensing surveys.
comment: Published in the Open Journal of Astrophysics
♻ ☆ Private Continual Counting of Unbounded Streams NeurIPS 2025
We study the problem of differentially private continual counting in the unbounded setting where the input size $n$ is not known in advance. Current state-of-the-art algorithms based on optimal instantiations of the matrix mechanism cannot be directly applied here because their privacy guarantees only hold when key parameters are tuned to $n$. Using the common `doubling trick' avoids knowledge of $n$ but leads to suboptimal and non-smooth error. We solve this problem by introducing novel matrix factorizations based on logarithmic perturbations of the function $\frac{1}{\sqrt{1-z}}$ studied in prior works, which may be of independent interest. The resulting algorithm has smooth error, and for any $α> 0$ and $t\leq n$ it is able to privately estimate the sum of the first $t$ data points with $O(\log^{2+2α}(t))$ variance. It requires $O(t)$ space and amortized $O(\log t)$ time per round, compared to $O(\log(n)\log(t))$ variance, $O(n)$ space and $O(n \log n)$ pre-processing time for the nearly-optimal bounded-input algorithm of Henzinger et al. (SODA 2023). Empirically, we find that our algorithm's performance is also comparable to theirs in absolute terms: our variance is less than $1.5\times$ theirs for $t$ as large as $2^{24}$.
comment: Published as a conference paper at NeurIPS 2025. 20 pages, 2 figures
♻ ☆ SCOPE-MRI: Bankart Lesion Detection as a Case Study in Data Curation and Deep Learning for Challenging Diagnoses
Deep learning has shown strong performance in musculoskeletal imaging, but prior work has largely targeted conditions where diagnosis is relatively straightforward. More challenging problems remain underexplored, such as detecting Bankart lesions (anterior-inferior glenoid labral tears) on standard MRIs. These lesions are difficult to diagnose due to subtle imaging features, often necessitating invasive MRI arthrograms (MRAs). We introduce ScopeMRI, the first publicly available, expert-annotated dataset for shoulder pathologies, and present a deep learning framework for Bankart lesion detection on both standard MRIs and MRAs. ScopeMRI contains shoulder MRIs from patients who underwent arthroscopy, providing ground-truth labels from intraoperative findings, the diagnostic gold standard. Separate models were trained for MRIs and MRAs using CNN- and transformer-based architectures, with predictions ensembled across multiple imaging planes. Our models achieved radiologist-level performance, with accuracy on standard MRIs surpassing radiologists interpreting MRAs. External validation on independent hospital data demonstrated initial generalizability across imaging protocols. By releasing ScopeMRI and a modular codebase for training and evaluation, we aim to accelerate research in musculoskeletal imaging and foster development of datasets and models that address clinically challenging diagnostic tasks.
comment: This version of the article has been accepted for publication at Nature Partner Journal (NPJ) Artificial Intelligence, but is not the Version of Record and does not reflect post-acceptance improvements or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1038/s44387-025-00043-5
♻ ☆ How many measurements are enough? Bayesian recovery in inverse problems with general distributions
We study the sample complexity of Bayesian recovery for solving inverse problems with general prior, forward operator and noise distributions. We consider posterior sampling according to an approximate prior $\mathcal{P}$, and establish sufficient conditions for stable and accurate recovery with high probability. Our main result is a non-asymptotic bound that shows that the sample complexity depends on (i) the intrinsic complexity of $\mathcal{P}$, quantified by its so-called approximate covering number, and (ii) concentration bounds for the forward operator and noise distributions. As a key application, we specialize to generative priors, where $\mathcal{P}$ is the pushforward of a latent distribution via a Deep Neural Network (DNN). We show that the sample complexity scales log-linearly with the latent dimension $k$, thus establishing the efficacy of DNN-based priors. Generalizing existing results on deterministic (i.e., non-Bayesian) recovery for the important problem of random sampling with an orthogonal matrix $U$, we show how the sample complexity is determined by the coherence of $U$ with respect to the support of $\mathcal{P}$. Hence, we establish that coherence plays a fundamental role in Bayesian recovery as well. Overall, our framework unifies and extends prior work, providing rigorous guarantees for the sample complexity of solving Bayesian inverse problems with arbitrary distributions.
♻ ☆ Structure is Supervision: Multiview Masked Autoencoders for Radiology
Building robust medical machine learning systems requires pretraining strategies that exploit the intrinsic structure present in clinical data. We introduce Multiview Masked Autoencoder (MVMAE), a self-supervised framework that leverages the natural multi-view organization of radiology studies to learn view-invariant and disease-relevant representations. MVMAE combines masked image reconstruction with cross-view alignment, transforming clinical redundancy across projections into a powerful self-supervisory signal. We further extend this approach with MVMAE-V2T, which incorporates radiology reports as an auxiliary text-based learning signal to enhance semantic grounding while preserving fully vision-based inference. Evaluated on a downstream disease classification task on three large-scale public datasets, MIMIC-CXR, CheXpert, and PadChest, MVMAE consistently outperforms supervised and vision-language baselines. Furthermore, MVMAE-V2T provides additional gains, particularly in low-label regimes where structured textual supervision is most beneficial. Together, these results establish the importance of structural and textual supervision as complementary paths toward scalable, clinically grounded medical foundation models.
♻ ☆ Meta-Reinforcement Learning for Building Energy Management System
The building sector is one of the largest contributors to global energy consumption. Improving its energy efficiency is essential for reducing operational costs and greenhouse gas emissions. Energy management systems (EMS) play a key role in monitoring and controlling building appliances efficiently and reliably. With the increasing integration of renewable energy, intelligent EMS solutions have received growing attention. Reinforcement learning (RL) has recently been explored for this purpose and shows strong potential. However, most RL-based EMS methods require a large number of training steps to learn effective control policies, especially when adapting to unseen buildings, which limits their practical deployment. This paper introduces MetaEMS, a meta-reinforcement learning framework for EMS. MetaEMS improves learning efficiency by transferring knowledge from previously solved tasks to new ones through group-level and building-level adaptation, enabling fast adaptation and effective control across diverse building environments. Experimental results demonstrate that MetaEMS adapts more rapidly to unseen buildings and consistently outperforms baseline methods across various scenarios.
comment: arXiv admin note: text overlap with arXiv:1909.10165 by other authors
♻ ☆ SpikingBrain: Spiking Brain-inspired Large Models
Mainstream Transformer-based large language models face major efficiency bottlenecks: training computation scales quadratically with sequence length, and inference memory grows linearly, limiting long-context processing. Building large models on non-NVIDIA platforms also poses challenges for stable and efficient training. To address this, we introduce SpikingBrain, a family of brain-inspired models designed for efficient long-context training and inference. SpikingBrain leverages the MetaX GPU cluster and focuses on three aspects: (1) Model Architecture: linear and hybrid-linear attention architectures with adaptive spiking neurons; (2) Algorithmic Optimizations: an efficient, conversion-based training pipeline and a dedicated spike coding framework; (3) System Engineering: customized training frameworks, operator libraries, and parallelism strategies tailored to MetaX hardware. Using these techniques, we develop two models: SpikingBrain-7B, a linear LLM, and SpikingBrain-76B, a hybrid-linear MoE LLM. These models demonstrate the feasibility of large-scale LLM development on non-NVIDIA platforms, and training remains stable for weeks on hundreds of MetaX GPUs with Model FLOPs Utilization at expected levels. SpikingBrain achieves performance comparable to open-source Transformer baselines while using only about 150B tokens for continual pre-training. Our models also significantly improve long-context efficiency and deliver inference with (partially) constant memory and event-driven spiking behavior. For example, SpikingBrain-7B attains over 100x speedup in Time to First Token for 4M-token sequences. Furthermore, the proposed spiking scheme achieves 69.15 percent sparsity, enabling low-power operation. Overall, this work demonstrates the potential of brain-inspired mechanisms to drive the next generation of efficient and scalable large model design.
♻ ☆ Get RICH or Die Scaling: Profitably Trading Inference Compute for Robustness
Models are susceptible to adversarially out-of-distribution (OOD) data despite large training-compute investments into their robustification. Zaremba et al. (2025) make progress on this problem at test time, showing LLM reasoning improves satisfaction of model specifications designed to thwart attacks, resulting in a correlation between reasoning effort and robustness to jailbreaks. However, this benefit of test compute fades when attackers are given access to gradients or multimodal inputs. We address this gap, clarifying that inference-compute offers benefits even in such cases. Our approach argues that compositional generalization, through which OOD data is understandable via its in-distribution (ID) components, enables adherence to defensive specifications on adversarially OOD inputs. Namely, we posit the Robustness from Inference Compute Hypothesis (RICH): inference-compute defenses profit as the model's training data better reflects the attacked data's components. We empirically support this hypothesis across vision language model and attack types, finding robustness gains from test-time compute if specification following on OOD data is unlocked by compositional generalization. For example, InternVL 3.5 gpt-oss 20B gains little robustness when its test compute is scaled, but such scaling adds significant robustness if we first robustify its vision encoder. This correlation of inference-compute's robustness benefit with base model robustness is the rich-get-richer dynamic of the RICH: attacked data components are more ID for robustified models, aiding compositional generalization to OOD data. Thus, we advise layering train-time and test-time defenses to obtain their synergistic benefit.
comment: 21 pages
♻ ☆ NeuroRVQ: Multi-Scale EEG Tokenization for Generative Large Brainwave Models
Electroencephalography (EEG) captures neural activity across multiple temporal and spectral scales, yielding signals that are rich but complex for representation learning. Recently, EEG foundation models trained to predict masked signal-tokens have shown promise for learning generalizable representations. However, their performance is hindered by their signal tokenization modules. Existing neural tokenizers fail to preserve high-frequency dynamics, limiting their ability to reconstruct EEG signals with high fidelity. We introduce NeuroRVQ, a scalable Large Brainwave Model (LBM) centered on a codebook-based tokenizer. Our tokenizer integrates: (i) multi-scale feature extraction modules that capture the full frequency neural spectrum; (ii) hierarchical residual vector quantization (RVQ) codebooks for high-resolution encoding; and, (iii) an EEG signal phase- and amplitude-aware loss function for efficient training. This design enables efficient EEG compression while supporting accurate reconstruction across all frequency bands, leading to robust generative masked modeling. Our empirical results demonstrate that NeuroRVQ achieves lower reconstruction error and outperforms existing LBMs on a variety of downstream tasks. More broadly, NeuroRVQ tokenizer establishes a strong prior for codebook-based general-purpose brainwave models, enabling advances in neural decoding, generative modeling and multimodal biosignal integration.
♻ ☆ Adaptive Plane Reformatting for 4D Flow MRI using Deep Reinforcement Learning
Background and Objective: Plane reformatting for four-dimensional phase contrast MRI (4D flow MRI) is time-consuming and prone to inter-observer variability, which limits fast cardiovascular flow assessment. Deep reinforcement learning (DRL) trains agents to iteratively adjust plane position and orientation, enabling accurate plane reformatting without the need for detailed landmarks, making it suitable for images with limited contrast and resolution such as 4D flow MRI. However, current DRL methods assume that test volumes share the same spatial alignment as the training data, limiting generalization across scanners and institutions. To address this limitation, we introduce AdaPR (Adaptive Plane Reformatting), a DRL framework that uses a local coordinate system to navigate volumes with arbitrary positions and orientations. Methods: We implemented AdaPR using the Asynchronous Advantage Actor-Critic (A3C) algorithm and validated it on 88 4D flow MRI datasets acquired from multiple vendors, including patients with congenital heart disease. Results: AdaPR achieved a mean angular error of 6.32 +/- 4.15 degrees and a distance error of 3.40 +/- 2.75 mm, outperforming global-coordinate DRL methods and alternative non-DRL methods. AdaPR maintained consistent accuracy under different volume orientations and positions. Flow measurements from AdaPR planes showed no significant differences compared to two manual observers, with excellent correlation (R^2 = 0.972 and R^2 = 0.968), comparable to inter-observer agreement (R^2 = 0.969). Conclusion: AdaPR provides robust, orientation-independent plane reformatting for 4D flow MRI, achieving flow quantification comparable to expert observers. Its adaptability across datasets and scanners makes it a promising candidate for medical imaging applications beyond 4D flow MRI.
♻ ☆ Outcome-based Reinforcement Learning to Predict the Future
Reinforcement Learning with Verifiable Rewards (RLVR) has been an effective approach for improving Large Language Models' reasoning in domains such as coding and mathematics. Here, we apply RLVR methods towards forecasting future real-world events - a challenging task for RL due to the very noisy (and delayed) outcomes involved. Using a novel dataset of recent questions from a prediction market, and accompanying relevant news headlines, we show that a compact (14B) reasoning model can be trained to match or surpass the predictive accuracy of frontier models like o1, while greatly improving probabilistic calibration. The model's performance is also practically meaningful: in a Polymarket trading simulation, we estimate that its bets would have yielded a return on investment of over 10% across all questions in the test set. We detail and compare approaches used in training our model, including augmenting our training-data with synthetic prediction questions, guardrails for learning stability, and median prediction sampling at inference-time.
♻ ☆ Benchmarking machine learning models for multi-class state recognition in double quantum dot data
Semiconductor quantum dots (QDs) are a leading platform for scalable quantum processors. However, scaling to large arrays requires reliable, automated tuning strategies for devices' bootstrapping, calibration, and operation, with many tuning aspects depending on accurately identifying QD device states from charge-stability diagrams (CSDs). In this work, we present a comprehensive benchmarking study of four modern machine learning (ML) architectures for multi-class state recognition in double-QD CSDs. We evaluate their performance across different data budgets and normalization schemes using both synthetic and experimental data. We find that the more resource-intensive models -- U-Nets and visual transformers (ViTs) -- achieve the highest MSE score (defined as $1-\mathrm{MSE}$) on synthetic data (over $0.98$) but fail to generalize to experimental data. MDNs are the most computationally efficient and exhibit highly stable training, but with substantially lower peak performance. CNNs offer the most favorable trade-off on experimental CSDs, achieving strong accuracy with two orders of magnitude fewer parameters than the U-Nets and ViTs. Normalization plays a nontrivial role: min-max scaling generally yields higher MSE scores but less stable convergence, whereas z-score normalization produces more predictable training dynamics but at reduced accuracy for most models. Overall, our study shows that CNNs with min-max normalization are a practical approach for QD CSDs.
comment: 12 pages, 4 figures, 2 tables
♻ ☆ Families of costs with zero and nonnegative MTW tensor in optimal transport and the c-divergences
We study the information geometry of $\bcc$-divergences from families of costs of the form $\mathsf{c}(x, \barx) =\mathsf{u}(x^{\mathfrak{t}}\barx)$ through the optimal transport point of view. Here, $\mathsf{u}$ is a scalar function with inverse $\mathsf{s}$, $x^{\ft}\barx$ is a nondegenerate bilinear pairing of vectors $x, \barx$ belonging to an open subset of $\mathbb{R}^n$. We compute explicitly the MTW tensor (or cross curvature) for the optimal transport problem on $\mathbb{R}^n$ with this cost. The condition that the MTW-tensor vanishes on null vectors under the Kim-McCann metric is a fourth-order nonlinear ODE, which could be reduced to a linear ODE of the form $\mathsf{s}^{(2)} - S\mathsf{s}^{(1)} + P\mathsf{s} = 0$ with constant coefficients $P$ and $S$. The resulting inverse functions include {\it Lambert} and {\it generalized inverse hyperbolic\slash trigonometric} functions. The square Euclidean metric and $\log$-type costs are equivalent to instances of these solutions. The optimal map may be written explicitly in terms of the potential function. For cost functions of a similar form on a hyperboloid model of the hyperbolic space and unit sphere, we also express this tensor in terms of algebraic expressions in derivatives of $\mathsf{s}$ using the Gauss-Codazzi equation, obtaining new families of strictly regular costs for these manifolds, including new families of {\it power function costs}. We express the divergence geometry of the $\mathsf{c}$-divergence in terms of the Kim-McCann metric, including a $\mathsf{c}$-Crouzeix identity and a formula for the primal connection. We analyze the $\sinh$-type hyperbolic cost, providing examples of $\mathsf{c}$-convex functions, which are used to construct a new \emph{local form} of the $α$-divergences on probability simplices. We apply the optimal maps to sample the multivariate $t$-distribution.
comment: 40 pages
♻ ☆ LLMs can hide text in other text of the same length
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present Calgacus, a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages
♻ ☆ Testing Noise Assumptions of Learning Algorithms
We pose a fundamental question in computational learning theory: can we efficiently test whether a training set satisfies the assumptions of a given noise model? This question has remained unaddressed despite decades of research on learning in the presence of noise. In this work, we show that this task is tractable and present the first efficient algorithm to test various noise assumptions on the training data. To model this question, we extend the recently proposed testable learning framework of Rubinfeld and Vasilyan (2023) and require a learner to run an associated test that satisfies the following two conditions: (1) whenever the test accepts, the learner outputs a classifier along with a certificate of optimality, and (2) the test must pass for any dataset drawn according to a specified modeling assumption on both the marginal distribution and the noise model. We then consider the problem of learning halfspaces over Gaussian marginals with Massart noise (where each label can be flipped with probability less than $1/2$ depending on the input features), and give a fully-polynomial time testable learning algorithm. We also show a separation between the classical setting of learning in the presence of structured noise and testable learning. In fact, for the simple case of random classification noise (where each label is flipped with fixed probability $η= 1/2$), we show that testable learning requires super-polynomial time while classical learning is trivial.
♻ ☆ Influence Functions for Efficient Data Selection in Reasoning
Fine-tuning large language models (LLMs) on chain-of-thought (CoT) data shows that a small amount of high-quality data can outperform massive datasets. Yet, what constitutes "quality" remains ill-defined. Existing reasoning methods rely on indirect heuristics such as problem difficulty or trace length, while instruction-tuning has explored a broader range of automated selection strategies, but rarely in the context of reasoning. We propose to define reasoning data quality using influence functions, which measure the causal effect of individual CoT examples on downstream accuracy, and introduce influence-based pruning, which consistently outperforms perplexity and embedding-based baselines on math reasoning within a model family.
comment: 4 pages, 2 figures; added link to codebase
♻ ☆ Multivariate Variational Autoencoder
Learning latent representations that are simultaneously expressive, geometrically well-structured, and reliably calibrated remains a central challenge for Variational Autoencoders (VAEs). Standard VAEs typically assume a diagonal Gaussian posterior, which simplifies optimization but rules out correlated uncertainty and often yields entangled or redundant latent dimensions. We introduce the Multivariate Variational Autoencoder (MVAE), a tractable full-covariance extension of the VAE that augments the encoder with sample-specific diagonal scales and a global coupling matrix. This induces a multivariate Gaussian posterior of the form $N(μ_φ(x), C \operatorname{diag}(σ_φ^2(x)) C^\top)$, enabling correlated latent factors while preserving a closed-form KL divergence and a simple reparameterization path. Beyond likelihood, we propose a multi-criterion evaluation protocol that jointly assesses reconstruction quality (MSE, ELBO), downstream discrimination (linear probes), probabilistic calibration (NLL, Brier, ECE), and unsupervised structure (NMI, ARI). Across Larochelle-style MNIST variants, Fashion-MNIST, and CIFAR-10/100, MVAE consistently matches or outperforms diagonal-covariance VAEs of comparable capacity, with particularly notable gains in calibration and clustering metrics at both low and high latent dimensions. Qualitative analyses further show smoother, more semantically coherent latent traversals and sharper reconstructions. All code, dataset splits, and evaluation utilities are released to facilitate reproducible comparison and future extensions of multivariate posterior models.
♻ ☆ Learning Robust Social Strategies with Large Language Models
As agentic AI becomes more widespread, agents with distinct and possibly conflicting goals will interact in complex ways. These multi-agent interactions pose a fundamental challenge, particularly in social dilemmas, where agents' individual incentives can undermine collective welfare. While reinforcement learning (RL) has been effective for aligning large language models (LLMs) in the single-agent regime, prior small-network results suggest that standard RL in multi-agent settings often converges to defecting, self-interested policies. We show the same effect in LLMs: despite cooperative priors, RL-trained LLM agents develop opportunistic behavior that can exploit even advanced closed-source models. To address this tendency of RL to converge to poor equilibria, we adapt a recent opponent-learning awareness algorithm, Advantage Alignment, to fine-tune LLMs toward multi-agent cooperation and non-exploitability. We then introduce a group-relative baseline that simplifies advantage computation in iterated games, enabling multi-agent training at LLM scale. We also contribute a novel social dilemma environment, Trust-and-Split, which requires natural language communication to achieve high collective welfare. Across a wide range of social dilemmas, policies learned with Advantage Alignment achieve higher collective payoffs while remaining robust against exploitation by greedy agents. We release all of our code to support future work on multi-agent RL training for LLMs.
♻ ☆ Scheduling and Aggregation Design for Asynchronous Federated Learning over Wireless Networks
Federated Learning (FL) is a collaborative machine learning (ML) framework that combines on-device training and server-based aggregation to train a common ML model among distributed agents. In this work, we propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems. Considering limited wireless communication resources, we investigate the effect of different scheduling policies and aggregation designs on the convergence performance. Driven by the importance of reducing the bias and variance of the aggregated model updates, we propose a scheduling policy that jointly considers the channel quality and training data representation of user devices. The effectiveness of our channel-aware data-importance-based scheduling policy, compared with state-of-the-art methods proposed for synchronous FL, is validated through simulations. Moreover, we show that an ``age-aware'' aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
comment: An amended (corrected) version of the refereed paper published in IEEE Journal on Selected Areas in Communications
♻ ☆ How to Bridge the Sim-to-Real Gap in Digital Twin-Aided Telecommunication Networks
Training effective artificial intelligence models for telecommunications is challenging due to the scarcity of deployment-specific data. Real data collection is expensive, and available datasets often fail to capture the unique operational conditions and contextual variability of the network environment. Digital twinning provides a potential solution to this problem, as simulators tailored to the current network deployment can generate site-specific data to augment the available training datasets. However, there is a need to develop solutions to bridge the inherent simulation-to-reality (sim-to-real) gap between synthetic and real-world data. This paper reviews recent advances on two complementary strategies: 1) the calibration of digital twins (DTs) through real-world measurements, and 2) the use of sim-to-real gap-aware training strategies to robustly handle residual discrepancies between digital twin-generated and real data. For the latter, we evaluate two conceptually distinct methods that model the sim-to-real gap either at the level of the environment via Bayesian learning or at the level of the training loss via prediction-powered inference.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ L2RU: a Structured State Space Model with prescribed L2-bound
Structured state-space models (SSMs) have recently emerged as a powerful architecture at the intersection of machine learning and control, featuring layers composed of discrete-time linear time-invariant (LTI) systems followed by pointwise nonlinearities. These models combine the expressiveness of deep neural networks with the interpretability and inductive bias of dynamical systems, offering strong performance on long-sequence tasks with favorable computational complexity. However, their adoption in applications such as system identification and optimal control remains limited by the difficulty of enforcing stability and robustness in a principled and tractable manner. We introduce L2RU, a class of SSMs endowed with a prescribed $\mathcal{L}_2$-gain bound, guaranteeing input--output stability and robustness for all parameter values. The L2RU architecture is derived from free parametrizations of LTI systems satisfying an $\mathcal{L}_2$ constraint, enabling unconstrained optimization via standard gradient-based methods while preserving rigorous stability guarantees. Specifically, we develop two complementary parametrizations: a non-conservative formulation that provides a complete characterization of square LTI systems with a given $\mathcal{L}_2$-bound, and a conservative formulation that extends the approach to general (possibly non-square) systems while improving computational efficiency through a structured representation of the system matrices. Both parametrizations admit efficient initialization schemes that facilitate training long-memory models. We demonstrate the effectiveness of the proposed framework on a nonlinear system identification benchmark, where L2RU achieves improved performance and training stability compared to existing SSM architectures, highlighting its potential as a principled and robust building block for learning and control.
♻ ☆ Connecting Neural Models Latent Geometries with Relative Geodesic Representations
Neural models learn representations of high-dimensional data on low-dimensional manifolds. Multiple factors, including stochasticities in the training process, model architectures, and additional inductive biases, may induce different representations, even when learning the same task on the same data. However, it has recently been shown that when a latent structure is shared between distinct latent spaces, relative distances between representations can be preserved, up to distortions. Building on this idea, we demonstrate that exploiting the differential-geometric structure of latent spaces of neural models, it is possible to capture precisely the transformations between representational spaces trained on similar data distributions. Specifically, we assume that distinct neural models parametrize approximately the same underlying manifold, and introduce a representation based on the pullback metric that captures the intrinsic structure of the latent space, while scaling efficiently to large models. We validate experimentally our method on model stitching and retrieval tasks, covering autoencoders and vision foundation discriminative models, across diverse architectures, datasets, and pretraining schemes.
♻ ☆ Flow Equivariant Recurrent Neural Networks NeurIPS '25
Data arrives at our senses as a continuous stream, smoothly transforming from one instant to the next. These smooth transformations can be viewed as continuous symmetries of the environment that we inhabit, defining equivalence relations between stimuli over time. In machine learning, neural network architectures that respect symmetries of their data are called equivariant and have provable benefits in terms of generalization ability and sample efficiency. To date, however, equivariance has been considered only for static transformations and feed-forward networks, limiting its applicability to sequence models, such as recurrent neural networks (RNNs), and corresponding time-parameterized sequence transformations. In this work, we extend equivariant network theory to this regime of 'flows' -- one-parameter Lie subgroups capturing natural transformations over time, such as visual motion. We begin by showing that standard RNNs are generally not flow equivariant: their hidden states fail to transform in a geometrically structured manner for moving stimuli. We then show how flow equivariance can be introduced, and demonstrate that these models significantly outperform their non-equivariant counterparts in terms of training speed, length generalization, and velocity generalization, on both next step prediction and sequence classification. We present this work as a first step towards building sequence models that respect the time-parameterized symmetries which govern the world around us.
comment: NeurIPS '25, Spotlight
♻ ☆ RealWebAssist: A Benchmark for Long-Horizon Web Assistance with Real-World Users SC
To achieve successful assistance with long-horizon web-based tasks, AI agents must be able to sequentially follow real-world user instructions over a long period. Unlike existing web-based agent benchmarks, sequential instruction following in the real world poses significant challenges beyond performing a single, clearly defined task. For instance, real-world human instructions can be ambiguous, require different levels of AI assistance, and may evolve over time, reflecting changes in the user's mental state. To address this gap, we introduce RealWebAssist, a novel benchmark designed to evaluate sequential instruction-following in realistic scenarios involving long-horizon interactions with the web, visual GUI grounding, and understanding ambiguous real-world user instructions. RealWebAssist includes a dataset of sequential instructions collected from real-world human users. Each user instructs a web-based assistant to perform a series of tasks on multiple websites. A successful agent must reason about the true intent behind each instruction, keep track of the mental state of the user, understand user-specific routines, and ground the intended tasks to actions on the correct GUI elements. Our experimental results show that state-of-the-art models struggle to understand and ground user instructions, posing critical challenges in following real-world user instructions for long-horizon web assistance.
comment: Project Website: https://scai.cs.jhu.edu/projects/RealWebAssist/ Code: https://github.com/SCAI-JHU/RealWebAssist
♻ ☆ Skewed Neuronal Heterogeneity Enhances Efficiency On Various Computing Systems
Heterogeneity is a ubiquitous property of many biological systems and has profound implications for computation. While it is conceivable to optimize neuronal and synaptic heterogeneity for a specific task, such top-down optimization is biologically implausible, prone to catastrophic forgetting, and both data- and energy-intensive. In contrast, biological organisms, with remarkable capacity to perform numerous tasks with minimal metabolic cost, exhibit a heterogeneity that is inherent, stable during adulthood, and task-unspecific. Inspired by this intrinsic form of heterogeneity, we investigate the utility of variations in neuronal time constants for solving hundreds of distinct temporal tasks of varying complexity. Our results show that intrinsic heterogeneity significantly enhances performance and robustness in an implementation-independent manner, indicating its usefulness for both (rate-based) machine learning and (spike-coded) neuromorphic applications. Importantly, only skewed heterogeneity profiles-reminiscent of those found in biology-produce such performance gains. We further demonstrate that this computational advantage eliminates the need for large networks, allowing comparable performance with substantially lower operational, metabolic, and energetic costs, respectively in silico, in vivo, and on neuromorphic hardware. Finally, we discuss the implications of intrinsic (rather than task-induced) heterogeneity for the design of efficient artificial systems, particularly novel neuromorphic devices that exhibit similar device-to-device variability.
♻ ☆ FedHK-MVFC: Federated Heat Kernel Multi-View Clustering
In the realm of distributed artificial intelligence (AI) and privacy-focused medical applications, this paper proposes a multi-view clustering framework that links quantum field theory with federated healthcare analytics. The method uses heat kernel coefficients from spectral analysis to convert Euclidean distances into geometry-aware similarity measures that capture the structure of diverse medical data. The framework is presented through the heat kernel distance (HKD) transformation, which has convergence guarantees. Two algorithms have been developed: The first, Heat Kernel-Enhanced Multi-View Fuzzy Clustering (HK-MVFC), is used for central analysis. The second, Federated Heat Kernel Multi-View Fuzzy Clustering (FedHK-MVFC), is used for secure, privacy-preserving learning across hospitals. FedHK-MVFC uses differential privacy and secure aggregation to enable HIPAA-compliant collaboration. Tests on synthetic cardiovascular patient datasets demonstrate increased clustering accuracy, reduced communication, and retained efficiency compared to centralized methods. After being validated on 10,000 synthetic patient records across two hospitals, the methods proved useful for collaborative phenotyping involving electrocardiogram (ECG) data, cardiac imaging data, and behavioral data. The proposed methods' theoretical contributions include update rules with proven convergence, adaptive view weighting, and privacy-preserving protocols. These contributions establish a new standard for geometry-aware federated learning in healthcare, translating advanced mathematics into practical solutions for analyzing sensitive medical data while ensuring rigor and clinical relevance.
comment: 53 pages, 11 figures, and 9 tables
♻ ☆ Meta-Reasoner: Dynamic Guidance for Optimized Inference-time Reasoning in Large Language Models
Large Language Models (LLMs) often struggle with computational efficiency and error propagation in multi-step reasoning tasks. While recent advancements on prompting and post-training have enabled LLMs to perform step-wise reasoning, they still tend to explore unproductive solution paths without effective backtracking or strategy adjustment. In this paper, we propose Meta-Reasoner, a new framework that empowers LLMs to "think about how to think". It optimizes the inference process by dynamically adapting reasoning strategies in real-time. Our approach employs contextual multi-armed bandits (CMABs) to learn an adaptive policy. It learns to evaluate the current state of LLM's reasoning and determine optimal strategy that is most likely to lead to a successful outcome during inference, like whether to backtrack, switch to a new approach, or restart the problem-solving process. This meta-guidance helps avoid unproductive paths exploration during inference and hence improves computational efficiency. We evaluate Meta-Reasoner on math problems (e.g., Game-of-24, TheoremQA) and scientific tasks (e.g., SciBench). Results show that our method outperform previous SOTA methods by 9-12\% in accuracy, while reducing inference time by 28-35\% under the same compute budget. Additional experiments on creative writing demonstrate the generalizability of our approach to diverse reasoning-intensive tasks.
♻ ☆ Non-stationary Bandit Convex Optimization: A Comprehensive Study NeurIPS 2025
Bandit Convex Optimization is a fundamental class of sequential decision-making problems, where the learner selects actions from a continuous domain and observes a loss (but not its gradient) at only one point per round. We study this problem in non-stationary environments, and aim to minimize the regret under three standard measures of non-stationarity: the number of switches $S$ in the comparator sequence, the total variation $Δ$ of the loss functions, and the path-length $P$ of the comparator sequence. We propose a polynomial-time algorithm, Tilted Exponentially Weighted Average with Sleeping Experts (TEWA-SE), which adapts the sleeping experts framework from online convex optimization to the bandit setting. For strongly convex losses, we prove that TEWA-SE is minimax-optimal with respect to known $S$ and $Δ$ by establishing matching upper and lower bounds. By equipping TEWA-SE with the Bandit-over-Bandit framework, we extend our analysis to environments with unknown non-stationarity measures. For general convex losses, we introduce a second algorithm, clipped Exploration by Optimization (cExO), based on exponential weights over a discretized action space. While not polynomial-time computable, this method achieves minimax-optimal regret with respect to known $S$ and $Δ$, and improves on the best existing bounds with respect to $P$.
comment: 33 pages, 1 figure, accepted at NeurIPS 2025
♻ ☆ IberFire -- a detailed creation of a spatio-temporal dataset for wildfire risk assessment in Spain
Wildfires pose a threat to ecosystems, economies and public safety, particularly in Mediterranean regions such as Spain. Accurate predictive models require high-resolution spatio-temporal data to capture complex dynamics of environmental and human factors. To address the scarcity of fine-grained wildfire datasets in Spain, we introduce IberFire: a spatio-temporal dataset with 1 km x 1 km x 1-day resolution, covering mainland Spain and the Balearic Islands from December 2007 to December 2024. IberFire integrates 120 features across eight categories: auxiliary data, fire history, geography, topography, meteorology, vegetation indices, human activity and land cover. All features and processing rely on open-access data and tools, with a publicly available codebase ensuring transparency and applicability. IberFire offers enhanced spatial granularity and feature diversity compared to existing European datasets, and provides a reproducible framework. It supports advanced wildfire risk modelling via Machine Learning and Deep Learning, facilitates climate trend analysis, and informs fire prevention and land management strategies. The dataset is freely available on Zenodo to promote open research and collaboration.
♻ ☆ Pre-Training and Personalized Fine-Tuning via Over-the-Air Federated Meta-Learning: Convergence-Generalization Trade-Offs
For modern artificial intelligence (AI) applications such as large language models (LLMs), the training paradigm has recently shifted to pre-training followed by fine-tuning. Furthermore, owing to dwindling open repositories of data and thanks to efforts to democratize access to AI models, pre-training is expected to increasingly migrate from the current centralized deployments to federated learning (FL) implementations. Meta-learning provides a general framework in which pre-training and fine-tuning can be formalized. Meta-learning-based personalized FL (meta-pFL) moves beyond basic personalization by targeting generalization to new agents and tasks. This paper studies the generalization performance of meta-pFL for a wireless setting in which the agents participating in the pre-training phase, i.e., meta-learning, are connected via a shared wireless channel to the server. Adopting over-the-air computing, we study the trade-off between generalization to new agents and tasks, on the one hand, and convergence, on the other hand. The trade-off arises from the fact that channel impairments may enhance generalization, while degrading convergence. Extensive numerical results validate the theory.
comment: 40 pages, 10 figures, to appear in IEEE Trans. Cogn. Commun. Netw
♻ ☆ MoH: Multi-Head Attention as Mixture-of-Head Attention ICML 2025
In this work, we upgrade the multi-head attention mechanism, the core of the Transformer model, to improve efficiency while maintaining or surpassing the previous accuracy level. We show that multi-head attention can be expressed in the summation form. Drawing on the insight that not all attention heads hold equal significance, we propose Mixture-of-Head attention (MoH), a new architecture that treats attention heads as experts in the Mixture-of-Experts (MoE) mechanism. MoH has two significant advantages: First, MoH enables each token to select the appropriate attention heads, enhancing inference efficiency without compromising accuracy or increasing the number of parameters. Second, MoH replaces the standard summation in multi-head attention with a weighted summation, introducing flexibility to the attention mechanism and unlocking extra performance potential. Extensive experiments on ViT, DiT, and LLMs demonstrate that MoH outperforms multi-head attention by using only 50%-90% of the attention heads. Moreover, we demonstrate that pre-trained multi-head attention models, such as LLaMA3-8B, can be further continue-tuned into our MoH models. Notably, MoH-LLaMA3-8B achieves an average accuracy of 64.0% across 14 benchmarks, outperforming LLaMA3-8B by 2.4% by utilizing only 75% of the attention heads. We believe the proposed MoH is a promising alternative to multi-head attention and provides a strong foundation for developing advanced and efficient attention-based models.
comment: Accepted by ICML 2025, code: https://github.com/SkyworkAI/MoH
♻ ☆ CAP: A General Algorithm for Online Selective Conformal Prediction with FCR Control
We study the problem of post-selection predictive inference in an online fashion. To avoid devoting resources to unimportant units, a preliminary selection of the current individual before reporting its prediction interval is common and meaningful in online predictive tasks. Since the online selection causes a temporal multiplicity in the selected prediction intervals, it is important to control the real-time false coverage-statement rate (FCR) which measures the overall miscoverage level. We develop a general framework named CAP (Calibration after Adaptive Pick) that performs an adaptive pick rule on historical data to construct a calibration set if the current individual is selected and then outputs a conformal prediction interval for the unobserved label. We provide tractable procedures for constructing the calibration set for popular online selection rules. We proved that CAP can achieve an exact selection-conditional coverage guarantee in the finite-sample and distribution-free regimes. To account for the distribution shift in online data, we also embed CAP into some recent dynamic conformal prediction algorithms and show that the proposed method can deliver long-run FCR control. Numerical results on both synthetic and real data corroborate that CAP can effectively control FCR around the target level and yield more narrowed prediction intervals over existing baselines across various settings.
♻ ☆ Class-Conditional Distribution Balancing for Group Robust Classification
Spurious correlations that lead models to correct predictions for the wrong reasons pose a critical challenge for robust real-world generalization. Existing research attributes this issue to group imbalance and addresses it by maximizing group-balanced or worst-group accuracy, which heavily relies on expensive bias annotations. A compromise approach involves predicting bias information using extensively pretrained foundation models, which requires large-scale data and becomes impractical for resource-limited rare domains. To address these challenges, we offer a novel perspective by reframing the spurious correlations as imbalances or mismatches in class-conditional distributions, and propose a simple yet effective robust learning method that eliminates the need for both bias annotations and predictions. With the goal of maximizing the conditional entropy (uncertainty) of the label given spurious factors, our method leverages a sample reweighting strategy to achieve class-conditional distribution balancing, which automatically highlights minority groups and classes, effectively dismantling spurious correlations and producing a debiased data distribution for classification. Extensive experiments and analysis demonstrate that our approach consistently delivers state-of-the-art performance, rivaling methods that rely on bias supervision.
♻ ☆ Sparse PCA With Multiple Components
Sparse Principal Component Analysis (sPCA) is a cardinal technique for obtaining combinations of features, or principal components (PCs), that explain the variance of high-dimensional datasets in an interpretable manner. This involves solving a sparsity and orthogonality constrained convex maximization problem, which is extremely computationally challenging. Most existing works address sparse PCA via methods-such as iteratively computing one sparse PC and deflating the covariance matrix-that do not guarantee the orthogonality, let alone the optimality, of the resulting solution when we seek multiple mutually orthogonal PCs. We challenge this status by reformulating the orthogonality conditions as rank constraints and optimizing over the sparsity and rank constraints simultaneously. We design tight semidefinite relaxations to supply high-quality upper bounds, which we strengthen via additional second-order cone inequalities when each PC's individual sparsity is specified. Further, we derive a combinatorial upper bound on the maximum amount of variance explained as a function of the support. We exploit these relaxations and bounds to propose exact methods and rounding mechanisms that, together, obtain solutions with a bound gap on the order of 0%-15% for real-world datasets with p = 100s or 1000s of features and r \in {2, 3} components. Numerically, our algorithms match (and sometimes surpass) the best performing methods in terms of fraction of variance explained and systematically return PCs that are sparse and orthogonal. In contrast, we find that existing methods like deflation return solutions that violate the orthogonality constraints, even when the data is generated according to sparse orthogonal PCs. Altogether, our approach solves sparse PCA problems with multiple components to certifiable (near) optimality in a practically tractable fashion.
comment: Added a new result (Theorem 3) showing sparse PCA with multiple PCs is NP-hard even if the support is fixed and partially overlapping
♻ ☆ Optimal Scheduling Algorithms for LLM Inference: Theory and Practice
With the growing use of Large Language Model (LLM)-based tools like ChatGPT, Perplexity, and Gemini across industries, there is a rising need for efficient LLM inference systems. These systems handle requests with a unique two-phase computation structure: a prefill-phase that processes the full input prompt and a decode-phase that autoregressively generates tokens one at a time. This structure calls for new strategies for routing and scheduling requests. In this paper, we take a comprehensive approach to this challenge by developing a theoretical framework that models routing and scheduling in LLM inference systems. We identify two key design principles-optimal tiling and dynamic resource allocation-that are essential for achieving high throughput. Guided by these principles, we propose the Resource-Aware Dynamic (RAD) scheduler and prove that it achieves throughput optimality under mild conditions. To address practical Service Level Objectives (SLOs) such as serving requests with different Time Between Token (TBT) constraints, we design the SLO-Aware LLM Inference (SLAI) scheduler. SLAI uses real-time measurements to prioritize decode requests that are close to missing their TBT deadlines and reorders prefill requests based on known prompt lengths to further reduce the Time To First Token (TTFT) delays. We evaluate SLAI on the Openchat ShareGPT4 dataset using the Mistral-7B model on an NVIDIA RTX ADA 6000 GPU. Compared to Sarathi-Serve, SLAI reduces the median TTFT by 53% and increases the maximum serving capacity by 26% such that median TTFT is below 0.5 seconds, while meeting tail TBT latency constraints.
♻ ☆ Do Vision-Language Models Leak What They Learn? Adaptive Token-Weighted Model Inversion Attacks
Model inversion (MI) attacks pose significant privacy risks by reconstructing private training data from trained neural networks. While prior studies have primarily examined unimodal deep networks, the vulnerability of vision-language models (VLMs) remains largely unexplored. In this work, we present the first systematic study of MI attacks on VLMs to understand their susceptibility to leaking private visual training data. Our work makes two main contributions. First, tailored to the token-generative nature of VLMs, we introduce a suite of token-based and sequence-based model inversion strategies, providing a comprehensive analysis of VLMs' vulnerability under different attack formulations. Second, based on the observation that tokens vary in their visual grounding, and hence their gradients differ in informativeness for image reconstruction, we propose Sequence-based Model Inversion with Adaptive Token Weighting (SMI-AW) as a novel MI for VLMs. SMI-AW dynamically reweights each token's loss gradient according to its visual grounding, enabling the optimization to focus on visually informative tokens and more effectively guide the reconstruction of private images. Through extensive experiments and human evaluations on a range of state-of-the-art VLMs across multiple datasets, we show that VLMs are susceptible to training data leakage. Human evaluation of the reconstructed images yields an attack accuracy of 61.21%, underscoring the severity of these privacy risks. Notably, we demonstrate that publicly released VLMs are vulnerable to such attacks. Our study highlights the urgent need for privacy safeguards as VLMs become increasingly deployed in sensitive domains such as healthcare and finance. Additional experiments are provided in Supp.
comment: Under review
♻ ☆ A Unified Theory of $θ$-Expectations
We derive a new class of non-linear expectations from first-principles deterministic chaotic dynamics. The homogenization of the system's skew-adjoint microscopic generator is achieved using the spectral theory of transfer operators for uniformly hyperbolic flows. We prove convergence in the viscosity sense to a macroscopic evolution governed by a fully non-linear Hamilton-Jacobi-Bellman (HJB) equation. Our central result establishes that the HJB Hamiltonian possesses a rigid structure: affine in the Hessian but demonstrably non-convex in the gradient. This defines a new $θ$-expectation and constructively establishes a class of non-convex stochastic control problems fundamentally outside the sub-additive framework of G-expectations.
♻ ☆ Efficient Low Rank Attention for Long-Context Inference in Large Language Models
As the length of input text grows, the key-value (KV) cache in LLMs imposes prohibitive GPU memory costs and limits long-context inference on resource constrained devices. Existing approaches, such as KV quantization and pruning, reduce memory usage but suffer from numerical precision loss or suboptimal retention of key-value pairs. We introduce Low Rank Query and Key attention (LRQK), a two-stage framework that jointly decomposes the full-precision query and key matrices into compact rank-\(r\) factors during the prefill stage, and then uses these low-dimensional projections to compute proxy attention scores in \(\mathcal{O}(lr)\) time at each decode step. By selecting only the top-\(k\) tokens and a small fixed set of recent tokens, LRQK employs a mixed GPU-CPU cache with a hit-and-miss mechanism that transfers only missing full-precision KV pairs, thereby preserving exact attention outputs while reducing CPU-GPU data movement. Extensive experiments on the RULER and LongBench benchmarks with LLaMA-3-8B and Qwen2.5-7B demonstrate that LRQK matches or surpasses leading sparse-attention methods in long context settings, while delivering significant memory savings with minimal loss in accuracy. Our code is available at https://github.com/tenghuilee/LRQK.
♻ ☆ Resource-Efficient Beam Prediction in mmWave Communications with Multimodal Realistic Simulation Framework
Beamforming is a key technology in millimeter-wave (mmWave) communications that improves signal transmission by optimizing directionality and intensity. However, conventional channel estimation methods, such as pilot signals or beam sweeping, often fail to adapt to rapidly changing communication environments. To address this limitation, multimodal sensing-aided beam prediction has gained significant attention, using various sensing data from devices such as LiDAR, radar, GPS, and RGB images to predict user locations or network conditions. Despite its promising potential, the adoption of multimodal sensing-aided beam prediction is hindered by high computational complexity, high costs, and limited datasets. Thus, in this paper, a novel resource-efficient learning framework is introduced for beam prediction, which leverages a custom-designed cross-modal relational knowledge distillation (CRKD) algorithm specifically tailored for beam prediction tasks, to transfer knowledge from a multimodal network to a radar-only student model, achieving high accuracy with reduced computational cost. To enable multimodal learning with realistic data, a novel multimodal simulation framework is developed while integrating sensor data generated from the autonomous driving simulator CARLA with MATLAB-based mmWave channel modeling, and reflecting real-world conditions. The proposed CRKD achieves its objective by distilling relational information across different feature spaces, which enhances beam prediction performance without relying on expensive sensor data. Simulation results demonstrate that CRKD efficiently distills multimodal knowledge, allowing a radar-only model to achieve $94.62%$ of the teacher performance. In particular, this is achieved with just $10%$ of the teacher network's parameters, thereby significantly reducing computational complexity and dependence on multimodal sensor data.
comment: 13 pages, 9 figures, Submitted to IEEE Transactions on Mobile Computing on Dec. 01, 2025
♻ ☆ CoxSE: Exploring the Potential of Self-Explaining Neural Networks with Cox Proportional Hazards Model for Survival Analysis
The Cox Proportional Hazards (CPH) model has long been the preferred survival model for its explainability. However, to increase its predictive power beyond its linear log-risk, it was extended to utilize deep neural networks, sacrificing its explainability. In this work, we explore the potential of self-explaining neural networks (SENN) for survival analysis. We propose a new locally explainable Cox proportional hazards model, named CoxSE, by estimating a locally-linear log-hazard function using the SENN. We also propose a modification to the Neural additive (NAM) model, hybrid with SENN, named CoxSENAM, which enables the control of the stability and consistency of the generated explanations. Several experiments using synthetic and real datasets are presented, benchmarking CoxSE and CoxSENAM against a NAM-based model, a DeepSurv model explained with SHAP, and a linear CPH model. The results show that, unlike the NAM-based model, the SENN-based model can provide more stable and consistent explanations while maintaining the predictive power of the black-box model. The results also show that, due to their structural design, NAM-based models demonstrate better robustness to non-informative features. Among the models, the hybrid model exhibits the best robustness.
♻ ☆ Optimizing Product Deduplication in E-Commerce with Multimodal Embeddings
In large scale e-commerce marketplaces, duplicate product listings frequently cause consumer confusion and operational inefficiencies, degrading trust on the platform and increasing costs. Traditional keyword-based search methodologies falter in accurately identifying duplicates due to their reliance on exact textual matches, neglecting semantic similarities inherent in product titles. To address these challenges, we introduce a scalable, multimodal product deduplication designed specifically for the e-commerce domain. Our approach employs a domain-specific text model grounded in BERT architecture in conjunction with MaskedAutoEncoders for image representations. Both of these architectures are augmented with dimensionality reduction techniques to produce compact 128-dimensional embeddings without significant information loss. Complementing this, we also developed a novel decider model that leverages both text and image vectors. By integrating these feature extraction mechanisms with Milvus, an optimized vector database, our system can facilitate efficient and high-precision similarity searches across extensive product catalogs exceeding 200 million items with just 100GB of system RAM consumption. Empirical evaluations demonstrate that our matching system achieves a macro-average F1 score of 0.90, outperforming third-party solutions which attain an F1 score of 0.83. Our findings show the potential of combining domain-specific adaptations with state-of-the-art machine learning techniques to mitigate duplicate listings in large-scale e-commerce environments.
comment: 8 pages, accepted to 2025 IEEE International Conference on Big Data, Industrial and Goverment Track
♻ ☆ Robust Detection of Synthetic Tabular Data under Schema Variability
The rise of powerful generative models has sparked concerns over data authenticity. While detection methods have been extensively developed for images and text, the case of tabular data, despite its ubiquity, has been largely overlooked. Yet, detecting synthetic tabular data is especially challenging due to its heterogeneous structure and unseen formats at test time. We address the underexplored task of detecting synthetic tabular data ''in the wild'', i.e. when the detector is deployed on tables with variable and previously unseen schemas. We introduce a novel datum-wise transformer architecture that significantly outperforms the only previously published baseline, improving both AUC and accuracy by 7 points. By incorporating a table-adaptation component, our model gains an additional 7 accuracy points, demonstrating enhanced robustness. This work provides the first strong evidence that detecting synthetic tabular data in real-world conditions is feasible, and demonstrates substantial improvements over previous approaches. Following acceptance of the paper, we are finalizing the administrative and licensing procedures necessary for releasing the source code. This extended version will be updated as soon as the release is complete.
♻ ☆ RobustVLA: Robustness-Aware Reinforcement Post-Training for Vision-Language-Action Models
Vision-Language-Action (VLA) models have recently emerged as powerful general-purpose policies for robotic manipulation, benefiting from large-scale multi-modal pre-training. However, they often fail to generalize reliably in out-of-distribution deployments, where unavoidable disturbances such as observation noise, sensor errors, or actuation perturbations become prevalent. While recent Reinforcement Learning (RL)-based post-training provides a practical means to adapt pre-trained VLA models, existing methods mainly emphasize reward maximization and overlook robustness to environmental uncertainty. In this work, we introduce RobustVLA, a lightweight online RL post-training method designed to explicitly enhance the resilience of VLA models. Through a systematic robustness analysis, we identify two key regularizations: Jacobian regularization, which mitigates sensitivity to observation noise, and smoothness regularization, which stabilizes policies under action perturbations. Extensive experiments across diverse robotic environments demonstrate that RobustVLA significantly outperforms prior state-of-the-art methods in robustness and reliability. Our results highlight the importance of principled robustness-aware RL post-training as a key step toward improving the reliability and robustness of VLA models.
♻ ☆ Soft Adaptive Policy Optimization
Reinforcement learning (RL) plays an increasingly important role in enhancing the reasoning capabilities of large language models (LLMs), yet stable and performant policy optimization remains challenging. Token-level importance ratios often exhibit high variance-a phenomenon exacerbated in Mixture-of-Experts models-leading to unstable updates. Existing group-based policy optimization methods, such as GSPO and GRPO, alleviate this problem via hard clipping, making it difficult to maintain both stability and effective learning. We propose Soft Adaptive Policy Optimization (SAPO), which replaces hard clipping with a smooth, temperature-controlled gate that adaptively attenuates off-policy updates while preserving useful learning signals. Compared with GSPO and GRPO, SAPO is both sequence-coherent and token-adaptive. Like GSPO, SAPO maintains sequence-level coherence, but its soft gating forms a continuous trust region that avoids the brittle hard clipping band used in GSPO. When a sequence contains a few highly off-policy tokens, GSPO suppresses all gradients for that sequence, whereas SAPO selectively down-weights only the offending tokens and preserves the learning signal from the near-on-policy ones, improving sample efficiency. Relative to GRPO, SAPO replaces hard token-level clipping with smooth, temperature-controlled scaling, enabling more informative and stable updates. Empirical results on mathematical reasoning benchmarks indicate that SAPO exhibits improved training stability and higher Pass@1 performance under comparable training budgets. Moreover, we employ SAPO to train the Qwen3-VL model series, demonstrating that SAPO yields consistent performance gains across diverse tasks and different model sizes. Overall, SAPO provides a more reliable, scalable, and effective optimization strategy for RL training of LLMs.
♻ ☆ Statistically Accurate and Robust Generative Prediction of Rock Discontinuities with A Tabular Foundation Model
Rock discontinuities critically govern the mechanical behavior and stability of rock masses. Their internal distributions remain largely unobservable and are typically inferred from surface-exposed discontinuities using generative prediction approaches. However, surface-exposed observations are inherently sparse, and existing generative prediction approaches either fail to capture the underlying complex distribution patterns or lack robustness under data-sparse conditions. Here, we proposed a simple yet robust approach for statistically accurate generative prediction of rock discontinuities by utilizing a tabular foundation model. By leveraging the powerful sample learning capability of the foundation model specifically designed for small data, our approach can effectively capture the underlying complex distribution patterns within limited measured discontinuities. Comparative experiments on ten datasets with diverse scales and distribution patterns of discontinuities demonstrate superior accuracy and robustness over conventional statistical models and deep generative approaches. This work advances quantitative characterization of rock mass structures, supporting safer and more reliable data-driven geotechnical design.
♻ ☆ Capturing Context-Aware Route Choice Semantics for Trajectory Representation Learning
Trajectory representation learning (TRL) aims to encode raw trajectory data into low-dimensional embeddings for downstream tasks such as travel time estimation, mobility prediction, and trajectory similarity analysis. From a behavioral perspective, a trajectory reflects a sequence of route choices within an urban environment. However, most existing TRL methods ignore this underlying decision-making process and instead treat trajectories as static, passive spatiotemporal sequences, thereby limiting the semantic richness of the learned representations. To bridge this gap, we propose CORE, a TRL framework that integrates context-aware route choice semantics into trajectory embeddings. CORE first incorporates a multi-granular Environment Perception Module, which leverages large language models (LLMs) to distill environmental semantics from point of interest (POI) distributions, thereby constructing a context-enriched road network. Building upon this backbone, CORE employs a Route Choice Encoder with a mixture-of-experts (MoE) architecture, which captures route choice patterns by jointly leveraging the context-enriched road network and navigational factors. Finally, a Transformer encoder aggregates the route-choice-aware representations into a global trajectory embedding. Extensive experiments on 4 real-world datasets across 6 downstream tasks demonstrate that CORE consistently outperforms 12 state-of-the-art TRL methods, achieving an average improvement of 9.79% over the best-performing baseline. Our code is available at https://github.com/caoji2001/CORE.
♻ ☆ Rank Matters: Understanding and Defending Model Inversion Attacks via Low-Rank Feature Filtering KDD 2026
Model Inversion Attacks (MIAs) pose a significant threat to data privacy by reconstructing sensitive training samples from the knowledge embedded in trained machine learning models. Despite recent progress in enhancing the effectiveness of MIAs across diverse settings, defense strategies have lagged behind -- struggling to balance model utility with robustness against increasingly sophisticated attacks. In this work, we propose the ideal inversion error to measure the privacy leakage, and our theoretical and empirical investigations reveals that higher-rank features are inherently more prone to privacy leakage. Motivated by this insight, we propose a lightweight and effective defense strategy based on low-rank feature filtering, which explicitly reduces the attack surface by constraining the dimension of intermediate representations. Extensive experiments across various model architectures and datasets demonstrate that our method consistently outperforms existing defenses, achieving state-of-the-art performance against a wide range of MIAs. Notably, our approach remains effective even in challenging regimes involving high-resolution data and high-capacity models, where prior defenses fail to provide adequate protection.
comment: KDD 2026 Accept
♻ ☆ Compliant Residual DAgger: Improving Real-World Contact-Rich Manipulation with Human Corrections
We address key challenges in Dataset Aggregation (DAgger) for real-world contact-rich manipulation: how to collect informative human correction data and how to effectively update policies with this new data. We introduce Compliant Residual DAgger (CR-DAgger), which contains two novel components: 1) a Compliant Intervention Interface that leverages compliance control, allowing humans to provide gentle, accurate delta action corrections without interrupting the ongoing robot policy execution; and 2) a Compliant Residual Policy formulation that learns from human corrections while incorporating force feedback and force control. Our system significantly enhances performance on precise contact-rich manipulation tasks using minimal correction data, improving base policy success rates by over 50\% on two challenging tasks (book flipping and belt assembly) while outperforming both retraining-from-scratch and finetuning approaches. Through extensive real-world experiments, we provide practical guidance for implementing effective DAgger in real-world robot learning tasks. Result videos are available at: https://compliant-residual-dagger.github.io/
♻ ☆ Adaptive Canonicalization with Application to Invariant Anisotropic Geometric Networks
Canonicalization is a widely used strategy in equivariant machine learning, enforcing symmetry in neural networks by mapping each input to a standard form. Yet, it often introduces discontinuities that can affect stability during training, limit generalization, and complicate universal approximation theorems. In this paper, we address this by introducing adaptive canonicalization, a general framework in which the canonicalization depends both on the input and the network. Specifically, we present the adaptive canonicalization based on prior maximization, where the standard form of the input is chosen to maximize the predictive confidence of the network. We prove that this construction yields continuous and symmetry-respecting models that admit universal approximation properties. We propose two applications of our setting: (i) resolving eigenbasis ambiguities in spectral graph neural networks, and (ii) handling rotational symmetries in point clouds. We empirically validate our methods on molecular and protein classification, as well as point cloud classification tasks. Our adaptive canonicalization outperforms the three other common solutions to equivariant machine learning: data augmentation, standard canonicalization, and equivariant architectures.
♻ ☆ Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations
Time-dependent density functional theory (TDDFT) is a widely used method to investigate electron dynamics under external time-dependent perturbations such as laser fields. In this work, we present a machine learning approach to accelerate electron dynamics simulations based on real time TDDFT using autoregressive neural operators as time-propagators for the electron density. By leveraging physics-informed constraints and featurization, and high-resolution training data, our model achieves superior accuracy and computational speed compared to traditional numerical solvers. We demonstrate the effectiveness of our model on a class of one-dimensional diatomic molecules under the influence of a range of laser parameters. This method has potential in enabling on-the-fly modeling of laser-irradiated molecules and materials by utilizing fast machine learning predictions in a large space of varying experimental parameters of the laser.
comment: 23 pages, 6 figures
♻ ☆ Graph Persistence goes Spectral NeurIPS 2025
Including intricate topological information (e.g., cycles) provably enhances the expressivity of message-passing graph neural networks (GNNs) beyond the Weisfeiler-Leman (WL) hierarchy. Consequently, Persistent Homology (PH) methods are increasingly employed for graph representation learning. In this context, recent works have proposed decorating classical PH diagrams with vertex and edge features for improved expressivity. However, these methods still fail to capture basic graph structural information. In this paper, we propose SpectRe -- a new topological descriptor for graphs that integrates spectral information into PH diagrams. Notably, SpectRe is strictly more expressive than existing descriptors on graphs. We also introduce notions of global and local stability to analyze existing descriptors and establish that SpectRe is locally stable. Finally, experiments on synthetic and real-world datasets demonstrate the effectiveness of SpectRe and its potential to enhance the capabilities of graph models in relevant learning tasks. Code is available at https://github.com/Aalto-QuML/SpectRe/.
comment: 32 pages, 4 figures, 7 tables. Accepted at NeurIPS 2025
♻ ☆ Spectral Convolutional Conditional Neural Processes
Neural processes (NPs) are probabilistic meta-learning models that map sets of observations to posterior predictive distributions, enabling inference at arbitrary domain points. Their capacity to handle variable-sized collections of unstructured observations, combined with simple maximum-likelihood training and uncertainty-aware predictions, makes them well-suited for modeling data over continuous domains. Since their introduction, several variants have been proposed. Early approaches typically represented observed data using finite-dimensional summary embeddings obtained through aggregation schemes such as mean pooling. However, this strategy fundamentally mismatches the infinite-dimensional nature of the generative processes that NPs aim to capture. Convolutional conditional neural processes (ConvCNPs) address this limitation by constructing infinite-dimensional functional embeddings processed through convolutional neural networks (CNNs) to enforce translation equivariance. Yet CNNs with local spatial kernels struggle to capture long-range dependencies without resorting to large kernels, which impose significant computational costs. To overcome this limitation, we propose the Spectral ConvCNP (SConvCNP), which performs global convolution in the frequency domain. Inspired by Fourier neural operators (FNOs) for learning solution operators of partial differential equations (PDEs), our approach directly parameterizes convolution kernels in the frequency domain, leveraging the relatively compact yet global Fourier representation of many natural signals. We validate the effectiveness of SConvCNP on both synthetic and real-world datasets, demonstrating how ideas from operator learning can advance the capabilities of NPs.
♻ ☆ REASONING COMPILER: LLM-Guided Optimizations for Efficient Model Serving NeurIPS 2025
While model serving has unlocked unprecedented capabilities, the high cost of serving large-scale models continues to be a significant barrier to widespread accessibility and rapid innovation. Compiler optimizations have long driven substantial performance improvements, but existing compilers struggle with neural workloads due to the exponentially large and highly interdependent space of possible transformations. Although existing stochastic search techniques can be effective, they are often sample-inefficient and fail to leverage the structural context underlying compilation decisions. We set out to investigate the research question of whether reasoning with large language models (LLMs), without any retraining, can leverage the context-aware decision space of compiler optimizations to significantly improve sample efficiency. To that end, we introduce a novel compilation framework (dubbed Reasoning Compiler) that formulates optimization as a sequential, context-aware decision process guided by a large language model and structured Monte Carlo tree search (MCTS). The LLM acts as a proposal mechanism, suggesting hardware-informed transformations that reflect the current program state and accumulated performance feedback. MCTS incorporates the LLM-generated proposals to balance exploration and exploitation, facilitating structured, context-sensitive traversal of the expansive compiler optimization space. By achieving substantial speedups with markedly fewer samples than leading neural compilers, our approach demonstrates the potential of LLM-guided reasoning to transform the landscape of compiler optimization.
comment: NeurIPS 2025
♻ ☆ TomoGraphView: 3D Medical Image Classification with Omnidirectional Slice Representations and Graph Neural Networks
The sharp rise in medical tomography examinations has created a demand for automated systems that can reliably extract informative features for downstream tasks such as tumor characterization. Although 3D volumes contain richer information than individual slices, effective 3D classification remains difficult: volumetric data encode complex spatial dependencies, and the scarcity of large-scale 3D datasets has constrained progress toward 3D foundation models. As a result, many recent approaches rely on 2D vision foundation models trained on natural images, repurposing them as feature extractors for medical scans with surprisingly strong performance. Despite their practical success, current methods that apply 2D foundation models to 3D scans via slice-based decomposition remain fundamentally limited. Standard slicing along axial, sagittal, and coronal planes often fails to capture the true spatial extent of a structure when its orientation does not align with these canonical views. More critically, most approaches aggregate slice features independently, ignoring the underlying 3D geometry and losing spatial coherence across slices. To overcome these limitations, we propose TomoGraphView, a novel framework that integrates omnidirectional volume slicing with spherical graph-based feature aggregation. Instead of restricting the model to axial, sagittal, or coronal planes, our method samples both canonical and non-canonical cross-sections generated from uniformly distributed points on a sphere enclosing the volume. We publicly share our accessible code base at http://github.com/compai-lab/2025-MedIA-kiechle and provide a user-friendly library for omnidirectional volume slicing at https://pypi.org/project/OmniSlicer.
comment: Preprint submitted to Medical Image Analysis (MedIA)
♻ ☆ Signals, Concepts, and Laws: Toward Universal, Explainable Time-Series Forecasting
Accurate, explainable and physically credible forecasting remains a persistent challenge for multivariate time-series whose statistical properties vary across domains. We propose DORIC, a Domain-Universal, ODE-Regularized, Interpretable-Concept Transformer for Time-Series Forecasting that generates predictions through five self-supervised, domain-agnostic concepts while enforcing differentiable residuals grounded in first-principles constraints.
♻ ☆ From Noise to Laws: Regularized Time-Series Forecasting via Denoised Dynamic Graphs
Long-horizon multivariate time-series forecasting is challenging because realistic predictions must (i) denoise heterogeneous signals, (ii) track time-varying cross-series dependencies, and (iii) remain stable and physically plausible over long rollout horizons. We present PRISM, which couples a score-based diffusion preconditioner with a dynamic, correlation-thresholded graph encoder and a forecast head regularized by generic physics penalties. We prove contraction of the induced horizon dynamics under mild conditions and derive Lipschitz bounds for graph blocks, explaining the model's robustness. On six standard benchmarks , PRISM achieves consistent SOTA with strong MSE and MAE gains.
♻ ☆ Multiclass threshold-based classification
In this paper, we introduce a threshold-based framework for multiclass classification that generalizes the standard argmax rule. This is done by replacing the probabilistic interpretation of softmax outputs with a geometric one on the multidimensional simplex, where the classification depends on a multidimensional threshold. This change of perspective enables for any trained classification network an a posteriori optimization of the classification score by means of threshold tuning, as usually carried out in the binary setting. This allows a further refinement of the prediction capability of any network. Moreover, this multidimensional threshold-based setting makes it possible to define score-oriented losses, which are based on the interpretation of the threshold as a random variable. Our experiments show that the multidimensional threshold tuning yields consistent performance improvements across various networks and datasets, and that the proposed multiclass score-oriented losses are competitive with standard loss functions, resembling the advantages observed in the binary case.
comment: This work has been split and expanded into two separate papers: arXiv:2511.21794 and arXiv:2502.67890
♻ ☆ PARROT: Persuasion and Agreement Robustness Rating of Output Truth -- A Sycophancy Robustness Benchmark for LLMs
This study presents PARROT (Persuasion and Agreement Robustness Rating of Output Truth), a robustness focused framework designed to measure the degradation in accuracy that occurs under social pressure exerted on users through authority and persuasion in large language models (LLMs) the phenomenon of sycophancy (excessive conformity). PARROT (i) isolates causal effects by comparing the neutral version of the same question with an authoritatively false version using a double-blind evaluation, (ii) quantifies confidence shifts toward the correct and imposed false responses using log-likelihood-based calibration tracking, and (iii) systematically classifies failure modes (e.g., robust correct, sycophantic agreement, reinforced error, stubborn error, self-correction, etc.) using an eight-state behavioral taxonomy. We evaluated 22 models using 1,302 MMLU-style multiple-choice questions across 13 domains and domain-specific authority templates. Findings show marked heterogeneity: advanced models (e.g., GPT-5, GPT-4.1, Claude Sonnet 4.5) exhibit low "follow rates" ($\leq 11\%$, GPT-5: 4\%) and minimal accuracy loss, while older/smaller models show severe epistemic collapse (GPT-4: 80\%, Qwen 2.5-1.5B: 94\%). The danger is not limited to response changes; weak models reduce confidence in the correct response while increasing confidence in the imposed incorrect response. While international law and global knowledge at the domain level exhibit high fragility, elementary mathematics is relatively resilient. Consequently, we argue that the goal of "resistance to overfitting pressure" should be addressed as a primary objective alongside accuracy, harm avoidance, and privacy for safe deployment in the real world.
♻ ☆ Convergence of Shallow ReLU Networks on Weakly Interacting Data
We analyse the convergence of one-hidden-layer ReLU networks trained by gradient flow on $n$ data points. Our main contribution leverages the high dimensionality of the ambient space, which implies low correlation of the input samples, to demonstrate that a network with width of order $\log(n)$ neurons suffices for global convergence with high probability. Our analysis uses a Polyak-Łojasiewicz viewpoint along the gradient-flow trajectory, which provides an exponential rate of convergence of $\frac{1}{n}$. When the data are exactly orthogonal, we give further refined characterizations of the convergence speed, proving its asymptotic behavior lies between the orders $\frac{1}{n}$ and $\frac{1}{\sqrt{n}}$, and exhibiting a phase-transition phenomenon in the convergence rate, during which it evolves from the lower bound to the upper, and in a relative time of order $\frac{1}{\log(n)}$.
♻ ☆ Periodic Asynchrony: An Effective Method for Accelerating Reinforcement Learning
Since the introduction of the GRPO algorithm, reinforcement learning (RL) has attracted increasing attention, with growing efforts to reproduce and apply it. However, training efficiency remains a critical challenge. In mainstream RL frameworks, inference and training are typically deployed on the same devices. While this approach reduces costs through resource consolidation, its synchronous execution imposes a computational coupling that prevents concurrent inference and training. In this study, we are returning to the strategy of separating inference and training deployment, and by introducing improvements in the data loader, we transform the conventional synchronous architecture into a periodically asynchronous framework, which allows for demand-driven, independent, and elastic scaling of each component, while the accuracy of the algorithm remains completely equivalent to the synchronization method, with both belonging to the on-policy strategy. It is worth emphasizing that we apply a unified tri-model architecture in the training phase, and we also proposed a shared-prompt attention mask to reduce repetitive computation. In practice, these works have achieved at least a threefold overall performance improvement in RL training on NPU platforms, indicating its potential for widespread application.
♻ ☆ Conformal Prediction for Time-series Forecasting with Change Points
Conformal prediction has been explored as a general and efficient way to provide uncertainty quantification for time series. However, current methods struggle to handle time series data with change points - sudden shifts in the underlying data-generating process. In this paper, we propose a novel Conformal Prediction for Time-series with Change points (CPTC) algorithm, addressing this gap by integrating a model to predict the underlying state with online conformal prediction to model uncertainties in non-stationary time series. We prove CPTC's validity and improved adaptivity in the time series setting under minimum assumptions, and demonstrate CPTC's practical effectiveness on 6 synthetic and real-world datasets, showing improved validity and adaptivity compared to state-of-the-art baselines.
♻ ☆ Arbitrary Entropy Policy Optimization Breaks The Exploration Bottleneck of Reinforcement Learning
Reinforcement Learning (RL) is essential for enhancing the reasoning capabilities of large language models (LLMs), yet the widely adopted Group Relative Policy Optimization (GRPO) suffers from entropy collapse, causing exploration to vanish and policies to converge prematurely. As a result, RL is widely believed to be incapable of expanding the reasoning frontier of LLMs. Existing entropy-regularized methods introduce an inevitable trade-off between reward and entropy, leading to exploration accompanied by non-negligible optimization bias. In this work, we prove that temperature-guided REINFORCE can modulate policy entropy, and propose Arbitrary Entropy Policy Optimization (AEPO), which reformulates entropy regularization as a policy-gradient optimization problem. Rather than manipulating entropy directly, AEPO implicitly regulates it by applying a REINFORCE regularization term on temperature-adjusted samples, ensuring that entropy is controlled but never dominates optimization, thereby enabling arbitrary and principled entropy regulation. Experiments show that AEPO outperforms RL baselines on both pass@1 and pass@$k$, and even surpasses the base model on pass@1024. By modulating entropy precisely, AEPO achieves more effective optimization dynamics and provides direct empirical evidence that entropy, exploration, and performance are intrinsically linked.
Multimedia
☆ MAC-SLU: Multi-Intent Automotive Cabin Spoken Language Understanding Benchmark
Spoken Language Understanding (SLU), which aims to extract user semantics to execute downstream tasks, is a crucial component of task-oriented dialog systems. Existing SLU datasets generally lack sufficient diversity and complexity, and there is an absence of a unified benchmark for the latest Large Language Models (LLMs) and Large Audio Language Models (LALMs). This work introduces MAC-SLU, a novel Multi-Intent Automotive Cabin Spoken Language Understanding Dataset, which increases the difficulty of the SLU task by incorporating authentic and complex multi-intent data. Based on MAC-SLU, we conducted a comprehensive benchmark of leading open-source LLMs and LALMs, covering methods like in-context learning, supervised fine-tuning (SFT), and end-to-end (E2E) and pipeline paradigms. Our experiments show that while LLMs and LALMs have the potential to complete SLU tasks through in-context learning, their performance still lags significantly behind SFT. Meanwhile, E2E LALMs demonstrate performance comparable to pipeline approaches and effectively avoid error propagation from speech recognition. Code\footnote{https://github.com/Gatsby-web/MAC\_SLU} and datasets\footnote{huggingface.co/datasets/Gatsby1984/MAC\_SLU} are released publicly.
☆ PSA-MF: Personality-Sentiment Aligned Multi-Level Fusion for Multimodal Sentiment Analysis AAAI 2026
Multimodal sentiment analysis (MSA) is a research field that recognizes human sentiments by combining textual, visual, and audio modalities. The main challenge lies in integrating sentiment-related information from different modalities, which typically arises during the unimodal feature extraction phase and the multimodal feature fusion phase. Existing methods extract only shallow information from unimodal features during the extraction phase, neglecting sentimental differences across different personalities. During the fusion phase, they directly merge the feature information from each modality without considering differences at the feature level. This ultimately affects the model's recognition performance. To address this problem, we propose a personality-sentiment aligned multi-level fusion framework. We introduce personality traits during the feature extraction phase and propose a novel personality-sentiment alignment method to obtain personalized sentiment embeddings from the textual modality for the first time. In the fusion phase, we introduce a novel multi-level fusion method. This method gradually integrates sentimental information from textual, visual, and audio modalities through multimodal pre-fusion and a multi-level enhanced fusion strategy. Our method has been evaluated through multiple experiments on two commonly used datasets, achieving state-of-the-art results.
comment: AAAI 2026 accepted
☆ ZO-ASR: Zeroth-Order Fine-Tuning of Speech Foundation Models without Back-Propagation
Fine-tuning pre-trained speech foundation models for Automatic Speech Recognition (ASR) is prevalent, yet constrained by substantial GPU memory requirements. We introduce ZO-ASR, a memory-efficient Zeroth-Order (ZO) method that avoids Back-Propagation (BP) and activation memory by estimating gradients via forward passes. When combined with SGD optimizer, ZO-ASR-SGD fine-tunes ASR models using only inference memory. Our evaluation spans supervised and unsupervised tasks. For Supervised Domain Adaptation on Whisper-Large-V3, ZO-ASR's multiple query mechanism enhances robustness and achieves up to an 18.9\% relative Word Error Rate reduction over zero-shot baselines, outperforming existing ZO methods. For unsupervised Test-Time Adaptation on Wav2Vec2-Base, ZO-ASR exhibits moderately lower performance compared to first-order optimizer Adam. Our BP-free approach provides a viable solution for fine-tuning ASR models in computationally resource-constrained or gradient-inaccessible scenarios.
comment: 2025 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)
☆ MindFuse: Towards GenAI Explainability in Marketing Strategy Co-Creation
The future of digital marketing lies in the convergence of human creativity and generative AI, where insight, strategy, and storytelling are co-authored by intelligent systems. We present MindFuse, a brave new explainable generative AI framework designed to act as a strategic partner in the marketing process. Unlike conventional LLM applications that stop at content generation, MindFuse fuses CTR-based content AI-guided co-creation with large language models to extract, interpret, and iterate on communication narratives grounded in real advertising data. MindFuse operates across the full marketing lifecycle: from distilling content pillars and customer personas from competitor campaigns to recommending in-flight optimizations based on live performance telemetry. It uses attention-based explainability to diagnose ad effectiveness and guide content iteration, while aligning messaging with strategic goals through dynamic narrative construction and storytelling. We introduce a new paradigm in GenAI for marketing, where LLMs not only generate content but reason through it, adapt campaigns in real time, and learn from audience engagement patterns. Our results, validated in agency deployments, demonstrate up to 12 times efficiency gains, setting the stage for future integration with empirical audience data (e.g., GWI, Nielsen) and full-funnel attribution modeling. MindFuse redefines AI not just as a tool, but as a collaborative agent in the creative and strategic fabric of modern marketing.
♻ ☆ VIVAT: Virtuous Improving VAE Training through Artifact Mitigation
Variational Autoencoders (VAEs) remain a cornerstone of generative computer vision, yet their training is often plagued by artifacts that degrade reconstruction and generation quality. This paper introduces VIVAT, a systematic approach to mitigating common artifacts in KL-VAE training without requiring radical architectural changes. We present a detailed taxonomy of five prevalent artifacts - color shift, grid patterns, blur, corner and droplet artifacts - and analyze their root causes. Through straightforward modifications, including adjustments to loss weights, padding strategies, and the integration of Spatially Conditional Normalization, we demonstrate significant improvements in VAE performance. Our method achieves state-of-the-art results in image reconstruction metrics (PSNR and SSIM) across multiple benchmarks and enhances text-to-image generation quality, as evidenced by superior CLIP scores. By preserving the simplicity of the KL-VAE framework while addressing its practical challenges, VIVAT offers actionable insights for researchers and practitioners aiming to optimize VAE training.
♻ ☆ RDTF: Resource-efficient Dual-mask Training Framework for Multi-frame Animated Sticker Generation
Recently, significant advancements have been achieved in video generation technology, but applying it to resource-constrained downstream tasks like multi-frame animated sticker generation (ASG) characterized by low frame rates, abstract semantics, and long tail frame length distribution-remains challenging. Parameter-efficient fine-tuning (PEFT) techniques (e.g., Adapter, LoRA) for large pre-trained models suffer from insufficient fitting ability and source-domain knowledge interference. In this paper, we propose Resource-Efficient Dual-Mask Training Framework (RDTF), a dedicated solution for multi-frame ASG task under resource constraints. We argue that training a compact model from scratch with million-level samples outperforms PEFT on large models, with RDTF realizing this via three core designs: 1) a Discrete Frame Generation Network (DFGN) optimized for low-frame-rate ASG, ensuring parameter efficiency; 2) a dual-mask based data utilization strategy to enhance the availability and diversity of limited data; 3) a difficulty-adaptive curriculum learning method that decomposes sample entropy into static and adaptive components, enabling easy-to-difficult training convergence. To provide high-quality data support for RDTFs training from scratch, we construct VSD2M-a million-level multi-modal animated sticker dataset with rich annotations (static and animated stickers, action-focused text descriptions)-filling the gap of dedicated animated data for ASG task. Experiments demonstrate that RDTF is quantitatively and qualitatively superior to state-of-the-art PEFT methods (e.g., I2V-Adapter, SimDA) on ASG tasks, verifying the feasibility of our framework under resource constraints.
comment: Submitted to TMM
♻ ☆ An Efficient Recommendation System in E-commerce using Passer learning optimization based on Bi-LSTM
Online reviews play a crucial role in shaping consumer decisions, especially in the context of e-commerce. However, the quality and reliability of these reviews can vary significantly. Some reviews contain misleading or unhelpful information, such as advertisements, fake content, or irrelevant details. These issues pose significant challenges for recommendation systems, which rely on user-generated reviews to provide personalized suggestions. This article introduces a recommendation system based on Passer Learning Optimization-enhanced Bi-LSTM classifier applicable to e-commerce recommendation systems with improved accuracy and efficiency compared to state-of-the-art models. It achieves as low as 1.24% MSE on the baby dataset. This lifts it as high as 88.58%. Besides, there is also robust performance of the system on digital music and patio lawn garden datasets at F1 of 88.46% and 92.51%, correspondingly. These results, made possible by advanced graph embedding for effective knowledge extraction and fine-tuning of classifier parameters, establish the suitability of the proposed model in various e-commerce environments.
comment: 22 pages, 5 figuers, 4 Tables
♻ ☆ Fine-grained Image Retrieval via Dual-Vision Adaptation AAAI2026
Fine-Grained Image Retrieval~(FGIR) faces challenges in learning discriminative visual representations to retrieve images with similar fine-grained features. Current leading FGIR solutions typically follow two regimes: enforce pairwise similarity constraints in the semantic embedding space, or incorporate a localization sub-network to fine-tune the entire model. However, such two regimes tend to overfit the training data while forgetting the knowledge gained from large-scale pre-training, thus reducing their generalization ability. In this paper, we propose a Dual-Vision Adaptation (DVA) approach for FGIR, which guides the frozen pre-trained model to perform FGIR through collaborative sample and feature adaptation. Specifically, we design Object-Perceptual Adaptation, which modifies input samples to help the pre-trained model perceive critical objects and elements within objects that are helpful for category prediction. Meanwhile, we propose In-Context Adaptation, which introduces a small set of parameters for feature adaptation without modifying the pre-trained parameters. This makes the FGIR task using these adjusted features closer to the task solved during the pre-training. Additionally, to balance retrieval efficiency and performance, we propose Discrimination Perception Transfer to transfer the discriminative knowledge in the object-perceptual adaptation to the image encoder using the knowledge distillation mechanism. Extensive experiments show that DVA has fewer learnable parameters and performs well on three in-distribution and three out-of-distribution fine-grained datasets.
comment: Accepted by AAAI2026
♻ ☆ DMC$^3$: Dual-Modal Counterfactual Contrastive Construction for Egocentric Video Question Answering
Egocentric Video Question Answering (Egocentric VideoQA) plays an important role in egocentric video understanding, which refers to answering questions based on first-person videos. Although existing methods have made progress through the paradigm of pre-training and fine-tuning, they ignore the unique challenges posed by the first-person perspective, such as understanding multiple events and recognizing hand-object interactions. To deal with these challenges, we propose a Dual-Modal Counterfactual Contrastive Construction (DMC$^3$) framework, which contains an egocentric videoqa baseline, a counterfactual sample construction module and a counterfactual sample-involved contrastive optimization. Specifically, We first develop a counterfactual sample construction module to generate positive and negative samples for textual and visual modalities through event description paraphrasing and core interaction mining, respectively. Then, We feed these samples together with the original samples into the baseline. Finally, in the counterfactual sample-involved contrastive optimization module, we apply contrastive loss to minimize the distance between the original sample features and the positive sample features, while maximizing the distance from the negative samples. Experiments show that our method achieve 52.51\% and 46.04\% on the \textit{normal} and \textit{indirect} splits of EgoTaskQA, and 13.2\% on QAEGO4D, both reaching the state-of-the-art performance.