MyArxiv
Computation and Language
☆ Variational Masked Diffusion Models
Masked diffusion models have recently emerged as a flexible framework for discrete generative modeling. However, a key limitation of standard masked diffusion is its inability to effectively capture dependencies among tokens that are predicted concurrently, leading to degraded generation quality when dependencies among tokens are important. To explicitly model dependencies among tokens, we propose Variational Masked Diffusion (VMD), a framework that introduces latent variables into the masked diffusion process. Through controlled experiments on synthetic datasets, we demonstrate that VMD successfully learns dependencies that conventional masked diffusion fails to capture. We further validate the effectiveness of our approach on Sudoku puzzles and text datasets, where learning of dependencies among tokens improves global consistency. Across these domains, VMD enhances both generation quality and dependency awareness, highlighting the value of integrating variational inference into masked diffusion. Our code is available at: https://riccizz.github.io/VMD.
comment: Project Page: https://riccizz.github.io/VMD
☆ Think Twice: Branch-and-Rethink Reasoning Reward Model
Large language models (LLMs) increasingly rely on thinking models that externalize intermediate steps and allocate extra test-time compute, with think-twice strategies showing that a deliberate second pass can elicit stronger reasoning. In contrast, most reward models (RMs) still compress many quality dimensions into a single scalar in one shot, a design that induces judgment diffusion: attention spreads across evaluation criteria, yielding diluted focus and shallow analysis. We introduce branch-and-rethink (BR-RM), a two-turn RM that transfers the think-twice principle to reward modeling. Turn 1 performs adaptive branching, selecting a small set of instance-critical dimensions (such as factuality and safety) and sketching concise, evidence-seeking hypotheses. Turn 2 executes branch-conditioned rethinking, a targeted reread that tests those hypotheses and scrutinizes only what matters most. We train with GRPO-style reinforcement learning over structured two-turn traces using a simple binary outcome reward with strict format checks, making the approach compatible with standard RLHF pipelines. By converting all-at-oncescoringintofocused, second-lookreasoning, BR-RMreducesjudgmentdiffusionandimproves sensitivity to subtle yet consequential errors while remaining practical and scalable. Experimental results demonstrate that our model achieves state-of-the-art performance on three challenging reward modeling benchmarks across diverse domains. The code and the model will be released soon.
☆ Hope Speech Detection in Social Media English Corpora: Performance of Traditional and Transformer Models
The identification of hope speech has become a promised NLP task, considering the need to detect motivational expressions of agency and goal-directed behaviour on social media platforms. This proposal evaluates traditional machine learning models and fine-tuned transformers for a previously split hope speech dataset as train, development and test set. On development test, a linear-kernel SVM and logistic regression both reached a macro-F1 of 0.78; SVM with RBF kernel reached 0.77, and Na\"ive Bayes hit 0.75. Transformer models delivered better results, the best model achieved weighted precision of 0.82, weighted recall of 0.80, weighted F1 of 0.79, macro F1 of 0.79, and 0.80 accuracy. These results suggest that while optimally configured traditional machine learning models remain agile, transformer architectures detect some subtle semantics of hope to achieve higher precision and recall in hope speech detection, suggesting that larges transformers and LLMs could perform better in small datasets.
☆ ReCode: Unify Plan and Action for Universal Granularity Control
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.
☆ ISA-Bench: Benchmarking Instruction Sensitivity for Large Audio Language Models
Large Audio Language Models (LALMs), which couple acoustic perception with large language models (LLMs) to extract and understand diverse information from audio, have attracted intense interest from both academic and industrial communities. However, existing LALMs are highly sensitive to how instructions are phrased, affecting both (i) instruction-following rates and (ii) task performance. Yet, no existing benchmarks offer a systematic and comprehensive evaluation of this sensitivity. We introduce ISA-Bench, a dynamic benchmark evaluating instruction sensitivity for LALMs along three axes: instruction description, output format, and task composition. We assess recent open-source and proprietary LALMs using ISA-Bench, profiling both compliance and accuracy under controlled instruction variations. Experimental results reveal that even state-of-the-art LALMs suffer significant instruction sensitivity, leading to degraded performance on fundamental audio understanding tasks. To mitigate this issue, we fine-tune Qwen2-Audio on a specifically constructed complex instruction-variant dataset, achieving a marked improvement in instruction-following performance. However, this also induces nontrivial catastrophic forgetting: the model loses some previously mastered task capabilities when exposed to new instruction styles. Our benchmark provides a standardized basis for assessing and improving instruction sensitivity in LALMs, underscoring the need for instruction-robust audio understanding in real-world pipelines.
comment: submitted to icassp 2026
☆ A U-Net and Transformer Pipeline for Multilingual Image Translation
This paper presents an end-to-end multilingual translation pipeline that integrates a custom U-Net for text detection, the Tesseract engine for text recognition, and a from-scratch sequence-to-sequence (Seq2Seq) Transformer for Neural Machine Translation (NMT). Our approach first utilizes a U-Net model, trained on a synthetic dataset , to accurately segment and detect text regions from an image. These detected regions are then processed by Tesseract to extract the source text. This extracted text is fed into a custom Transformer model trained from scratch on a multilingual parallel corpus spanning 5 languages. Unlike systems reliant on monolithic pre-trained models, our architecture emphasizes full customization and adaptability. The system is evaluated on its text detection accuracy, text recognition quality, and translation performance via BLEU scores. The complete pipeline demonstrates promising results, validating the viability of a custom-built system for translating text directly from images.
comment: 6 pages, 3 figures, 5 tables, and 2 algorithms. Prepared in IEEE double-column format
☆ LimRank: Less is More for Reasoning-Intensive Information Reranking EMNLP 2025
Existing approaches typically rely on large-scale fine-tuning to adapt LLMs for information reranking tasks, which is computationally expensive. In this work, we demonstrate that modern LLMs can be effectively adapted using only minimal, high-quality supervision. To enable this, we design LIMRANK-SYNTHESIZER, a reusable and open-source pipeline for generating diverse, challenging, and realistic reranking examples. Using this synthetic data, we fine-tune our reranker model, LIMRANK. We evaluate LIMRANK on two challenging benchmarks, i.e., BRIGHT for reasoning-intensive retrieval and FollowIR for instruction-following retrieval. Our experiments demonstrate that LIMRANK achieves competitive performance, while being trained on less than 5% of the data typically used in prior work. Further ablation studies demonstrate the effectiveness of LIMRANK-SYNTHESIZER and the strong generalization capabilities of LIMRANK across downstream tasks, including scientific literature search and retrieval-augmented generation for knowledge-intensive problem solving.
comment: EMNLP 2025 Main (Short)
☆ JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence
The scope of neural code intelligence is rapidly expanding beyond text-based source code to encompass the rich visual outputs that programs generate. This visual dimension is critical for advanced applications like flexible content generation and precise, program-driven editing of visualizations. However, progress has been impeded by the scarcity of high-quality multimodal code data, a bottleneck stemming from challenges in synthesis and quality assessment. To address these challenges, we make contributions from both a data and modeling perspective. We first introduce a complete synthesis toolkit that leverages reciprocal synergies between data modalities to efficiently produce a large-scale, high-quality corpus spanning from standard charts to complex interactive web UIs and code-driven animations. Leveraging this toolkit, we construct JanusCode-800K, the largest multimodal code corpus to date. This powers the training of our models, JanusCoder and JanusCoderV, which establish a visual-programmatic interface for generating code from textual instructions, visual inputs, or a combination of both. Our unified model is a departure from existing approaches that build specialized models for isolated tasks. Extensive experiments on both text-centric and vision-centric coding tasks demonstrate the superior performance of the JanusCoder series, with our 7B to 14B scale models approaching or even exceeding the performance of commercial models. Furthermore, extensive analysis provides key insights into harmonizing programmatic logic with its visual expression. Our code and checkpoints will are available at https://github.com/InternLM/JanusCoder.
comment: Work in progress
☆ IPQA: A Benchmark for Core Intent Identification in Personalized Question Answering
Intent identification serves as the foundation for generating appropriate responses in personalized question answering (PQA). However, existing benchmarks evaluate only response quality or retrieval performance without directly measuring intent identification capabilities. This gap is critical because without understanding which intents users prioritize, systems cannot generate responses satisfying individual information needs. To address this, we introduce the concept of core intents: intents users prioritize when selecting answers to satisfy their information needs. To evaluate these core intents, we propose IPQA, a benchmark for core Intent identification in Personalized Question Answering. Since users do not explicitly state their prioritized intents, we derive core intents from observable behavior patterns in answer selection, grounded in satisficing theory where users choose answers meeting their acceptance thresholds. We construct a dataset with various domains through systematic filtering, LLM-based annotation, and rigorous quality control combining automated verification with human validation. Experimental evaluations across state-of-the-art language models reveal that current systems struggle with core intent identification in personalized contexts. Models fail to identify core intents from user histories, with performance degrading as question complexity increases. The code and dataset will be made publicly available to facilitate future research in this direction.
☆ M4FC: a Multimodal, Multilingual, Multicultural, Multitask Real-World Fact-Checking Dataset
Existing real-world datasets for multimodal automated fact-checking have multiple limitations: they contain few instances, focus on only one or two languages and tasks, suffer from evidence leakage, or depend on external sets of news articles for sourcing true claims. To address these shortcomings, we introduce M4FC, a new real-world dataset comprising 4,982 images paired with 6,980 claims. The images, verified by professional fact-checkers from 22 organizations, represent diverse cultural and geographic contexts. Each claim is available in one or two out of ten languages. M4FC spans six multimodal fact-checking tasks: visual claim extraction, claimant intent prediction, fake detection, image contextualization, location verification, and verdict prediction. We provide baseline results for all tasks and analyze how combining intermediate tasks influence downstream verdict prediction performance. We make our dataset and code available.
comment: Preprint under review. Code and data available at: https://github.com/UKPLab/M4FC
☆ MMTutorBench: The First Multimodal Benchmark for AI Math Tutoring
Effective math tutoring requires not only solving problems but also diagnosing students' difficulties and guiding them step by step. While multimodal large language models (MLLMs) show promise, existing benchmarks largely overlook these tutoring skills. We introduce MMTutorBench, the first benchmark for AI math tutoring, consisting of 685 problems built around pedagogically significant key-steps. Each problem is paired with problem-specific rubrics that enable fine-grained evaluation across six dimensions, and structured into three tasks-Insight Discovery, Operation Formulation, and Operation Execution. We evaluate 12 leading MLLMs and find clear performance gaps between proprietary and open-source systems, substantial room compared to human tutors, and consistent trends across input variants: OCR pipelines degrade tutoring quality, few-shot prompting yields limited gains, and our rubric-based LLM-as-a-Judge proves highly reliable. These results highlight both the difficulty and diagnostic value of MMTutorBench for advancing AI tutoring.
☆ Evaluating Large Language Models for Stance Detection on Financial Targets from SEC Filing Reports and Earnings Call Transcripts
Financial narratives from U.S. Securities and Exchange Commission (SEC) filing reports and quarterly earnings call transcripts (ECTs) are very important for investors, auditors, and regulators. However, their length, financial jargon, and nuanced language make fine-grained analysis difficult. Prior sentiment analysis in the financial domain required a large, expensive labeled dataset, making the sentence-level stance towards specific financial targets challenging. In this work, we introduce a sentence-level corpus for stance detection focused on three core financial metrics: debt, earnings per share (EPS), and sales. The sentences were extracted from Form 10-K annual reports and ECTs, and labeled for stance (positive, negative, neutral) using the advanced ChatGPT-o3-pro model under rigorous human validation. Using this corpus, we conduct a systematic evaluation of modern large language models (LLMs) using zero-shot, few-shot, and Chain-of-Thought (CoT) prompting strategies. Our results show that few-shot with CoT prompting performs best compared to supervised baselines, and LLMs' performance varies across the SEC and ECT datasets. Our findings highlight the practical viability of leveraging LLMs for target-specific stance in the financial domain without requiring extensive labeled data.
☆ BrowseConf: Confidence-Guided Test-Time Scaling for Web Agents
Confidence in LLMs is a useful indicator of model uncertainty and answer reliability. Existing work mainly focused on single-turn scenarios, while research on confidence in complex multi-turn interactions is limited. In this paper, we investigate whether LLM-based search agents have the ability to communicate their own confidence through verbalized confidence scores after long sequences of actions, a significantly more challenging task compared to outputting confidence in a single interaction. Experimenting on open-source agentic models, we first find that models exhibit much higher task accuracy at high confidence while having near-zero accuracy when confidence is low. Based on this observation, we propose Test-Time Scaling (TTS) methods that use confidence scores to determine answer quality, encourage the model to try again until reaching a satisfactory confidence level. Results show that our proposed methods significantly reduce token consumption while demonstrating competitive performance compared to baseline fixed budget TTS methods.
comment: 25 pages
☆ Omni-Reward: Towards Generalist Omni-Modal Reward Modeling with Free-Form Preferences
Reward models (RMs) play a critical role in aligning AI behaviors with human preferences, yet they face two fundamental challenges: (1) Modality Imbalance, where most RMs are mainly focused on text and image modalities, offering limited support for video, audio, and other modalities; and (2) Preference Rigidity, where training on fixed binary preference pairs fails to capture the complexity and diversity of personalized preferences. To address the above challenges, we propose Omni-Reward, a step toward generalist omni-modal reward modeling with support for free-form preferences, consisting of: (1) Evaluation: We introduce Omni-RewardBench, the first omni-modal RM benchmark with free-form preferences, covering nine tasks across five modalities including text, image, video, audio, and 3D; (2) Data: We construct Omni-RewardData, a multimodal preference dataset comprising 248K general preference pairs and 69K instruction-tuning pairs for training generalist omni-modal RMs; (3) Model: We propose Omni-RewardModel, which includes both discriminative and generative RMs, and achieves strong performance on Omni-RewardBench as well as other widely used reward modeling benchmarks.
comment: 48 pages, 17 figures
☆ A Neuro-Symbolic Multi-Agent Approach to Legal-Cybersecurity Knowledge Integration
The growing intersection of cybersecurity and law creates a complex information space where traditional legal research tools struggle to deal with nuanced connections between cases, statutes, and technical vulnerabilities. This knowledge divide hinders collaboration between legal experts and cybersecurity professionals. To address this important gap, this work provides a first step towards intelligent systems capable of navigating the increasingly intricate cyber-legal domain. We demonstrate promising initial results on multilingual tasks.
comment: 7 pages
☆ EMTSF:Extraordinary Mixture of SOTA Models for Time Series Forecasting
The immense success of the Transformer architecture in Natural Language Processing has led to its adoption in Time Se ries Forecasting (TSF), where superior performance has been shown. However, a recent important paper questioned their effectiveness by demonstrating that a simple single layer linear model outperforms Transformer-based models. This was soon shown to be not as valid, by a better transformer-based model termed PatchTST. More re cently, TimeLLM demonstrated even better results by repurposing a Large Language Model (LLM) for the TSF domain. Again, a follow up paper challenged this by demonstrating that removing the LLM component or replacing it with a basic attention layer in fact yields better performance. One of the challenges in forecasting is the fact that TSF data favors the more recent past, and is sometimes subject to unpredictable events. Based upon these recent insights in TSF, we propose a strong Mixture of Experts (MoE) framework. Our method combines the state-of-the-art (SOTA) models including xLSTM, en hanced Linear, PatchTST, and minGRU, among others. This set of complimentary and diverse models for TSF are integrated in a Trans former based MoE gating network. Our proposed model outperforms all existing TSF models on standard benchmarks, surpassing even the latest approaches based on MoE frameworks.
☆ Detecting Religious Language in Climate Discourse
Religious language continues to permeate contemporary discourse, even in ostensibly secular domains such as environmental activism and climate change debates. This paper investigates how explicit and implicit forms of religious language appear in climate-related texts produced by secular and religious nongovernmental organizations (NGOs). We introduce a dual methodological approach: a rule-based model using a hierarchical tree of religious terms derived from ecotheology literature, and large language models (LLMs) operating in a zero-shot setting. Using a dataset of more than 880,000 sentences, we compare how these methods detect religious language and analyze points of agreement and divergence. The results show that the rule-based method consistently labels more sentences as religious than LLMs. These findings highlight not only the methodological challenges of computationally detecting religious language but also the broader tension over whether religious language should be defined by vocabulary alone or by contextual meaning. This study contributes to digital methods in religious studies by demonstrating both the potential and the limitations of approaches for analyzing how the sacred persists in climate discourse.
☆ How AI Forecasts AI Jobs: Benchmarking LLM Predictions of Labor Market Changes
Artificial intelligence is reshaping labor markets, yet we lack tools to systematically forecast its effects on employment. This paper introduces a benchmark for evaluating how well large language models (LLMs) can anticipate changes in job demand, especially in occupations affected by AI. Existing research has shown that LLMs can extract sentiment, summarize economic reports, and emulate forecaster behavior, but little work has assessed their use for forward-looking labor prediction. Our benchmark combines two complementary datasets: a high-frequency index of sector-level job postings in the United States, and a global dataset of projected occupational changes due to AI adoption. We format these data into forecasting tasks with clear temporal splits, minimizing the risk of information leakage. We then evaluate LLMs using multiple prompting strategies, comparing task-scaffolded, persona-driven, and hybrid approaches across model families. We assess both quantitative accuracy and qualitative consistency over time. Results show that structured task prompts consistently improve forecast stability, while persona prompts offer advantages on short-term trends. However, performance varies significantly across sectors and horizons, highlighting the need for domain-aware prompting and rigorous evaluation protocols. By releasing our benchmark, we aim to support future research on labor forecasting, prompt design, and LLM-based economic reasoning. This work contributes to a growing body of research on how LLMs interact with real-world economic data, and provides a reproducible testbed for studying the limits and opportunities of AI as a forecasting tool in the context of labor markets.
comment: 8 pages + Limitations + References
☆ LightKGG: Simple and Efficient Knowledge Graph Generation from Textual Data
The scarcity of high-quality knowledge graphs (KGs) remains a critical bottleneck for downstream AI applications, as existing extraction methods rely heavily on error-prone pattern-matching techniques or resource-intensive large language models (LLMs). While recent tools leverage LLMs to generate KGs, their computational demands limit accessibility for low-resource environments. Our paper introduces LightKGG, a novel framework that enables efficient KG extraction from textual data using small-scale language models (SLMs) through two key technical innovations: (1) Context-integrated Graph extraction integrates contextual information with nodes and edges into a unified graph structure, reducing the reliance on complex semantic processing while maintaining more key information; (2) Topology-enhanced relationship inference leverages the inherent topology of the extracted graph to efficiently infer relationships, enabling relationship discovery without relying on complex language understanding capabilities of LLMs. By enabling accurate KG construction with minimal hardware requirements, this work bridges the gap between automated knowledge extraction and practical deployment scenarios while introducing scientifically rigorous methods for optimizing SLM efficiency in structured NLP tasks.
☆ Planning Ahead with RSA: Efficient Signalling in Dynamic Environments by Projecting User Awareness across Future Timesteps
Adaptive agent design offers a way to improve human-AI collaboration on time-sensitive tasks in rapidly changing environments. In such cases, to ensure the human maintains an accurate understanding of critical task elements, an assistive agent must not only identify the highest priority information but also estimate how and when this information can be communicated most effectively, given that human attention represents a zero-sum cognitive resource where focus on one message diminishes awareness of other or upcoming information. We introduce a theoretical framework for adaptive signalling which meets these challenges by using principles of rational communication, formalised as Bayesian reference resolution using the Rational Speech Act (RSA) modelling framework, to plan a sequence of messages which optimise timely alignment between user belief and a dynamic environment. The agent adapts message specificity and timing to the particulars of a user and scenario based on projections of how prior-guided interpretation of messages will influence attention to the interface and subsequent belief update, across several timesteps out to a fixed horizon. In a comparison to baseline methods, we show that this effectiveness depends crucially on combining multi-step planning with a realistic model of user awareness. As the first application of RSA for communication in a dynamic environment, and for human-AI interaction in general, we establish theoretical foundations for pragmatic communication in human-agent teams, highlighting how insights from cognitive science can be capitalised to inform the design of assistive agents.
comment: 11 pages, 3 figures
☆ BaZi-Based Character Simulation Benchmark: Evaluating AI on Temporal and Persona Reasoning
Human-like virtual characters are crucial for games, storytelling, and virtual reality, yet current methods rely heavily on annotated data or handcrafted persona prompts, making it difficult to scale up and generate realistic, contextually coherent personas. We create the first QA dataset for BaZi-based persona reasoning, where real human experiences categorized into wealth, health, kinship, career, and relationships are represented as life-event questions and answers. Furthermore, we propose the first BaZi-LLM system that integrates symbolic reasoning with large language models to generate temporally dynamic and fine-grained virtual personas. Compared with mainstream LLMs such as DeepSeek-v3 and GPT-5-mini, our method achieves a 30.3%-62.6% accuracy improvement. In addition, when incorrect BaZi information is used, our model's accuracy drops by 20%-45%, showing the potential of culturally grounded symbolic-LLM integration for realistic character simulation.
☆ Adaptive Blockwise Search: Inference-Time Alignment for Large Language Models
LLM alignment remains a critical challenge. Inference-time methods provide a flexible alternative to fine-tuning, but their uniform computational effort often yields suboptimal alignment. We hypothesize that for many alignment tasks, the initial tokens of a response are disproportionately more critical. To leverage this principle, we introduce AdaSearch, a novel blockwise search strategy. It adaptively allocates a fixed computational budget using a sampling schedule, focusing search effort on these critical tokens. We apply AdaSearch to sequential decoding and introduce its tree-search counterpart, AdaBeam. Our comprehensive evaluation across eight LLMs demonstrates that AdaSearch outperforms strong Best-of-N and fine-tuning baselines. Specifically, win-rates improve by over 10% for harmlessness generation, controlled sentiment generation, and for mathematical reasoning tasks relative to Best-of-N.
☆ LibriConvo: Simulating Conversations from Read Literature for ASR and Diarization LREC 2026
We introduce LibriConvo, a simulated multi-speaker conversational dataset based on speaker-aware conversation simulation (SASC), designed to support training and evaluation of speaker diarization and automatic speech recognition (ASR) systems. Unlike prior resources that mostly rely on semantically disconnected utterances and implausible temporal gaps, LibriConvo ensures semantic coherence and realistic conversational timing. Our pipeline leverages CallHome with external VAD for reliable boundaries, applies compression to reduce unnaturally long silences, and organizes LibriTTS utterances by book to maintain contextual consistency. Acoustic realism is enhanced via a novel room impulse response selection procedure that ranks speaker-microphone configurations by spatial plausibility, balancing realism and diversity. The dataset comprises 240.1 hours across 1,496 dialogues with 830 unique speakers, split in a speaker-disjoint manner for robust evaluation. Baselines show that the sortformer model outperforms the pyannote pipeline in diarization, while a fine-tuned Fast Conformer-CTC XLarge with Serialized Output Training achieves 7.29\% WER for ASR, surpassing zero-shot Whisper-large-v3. LibriConvo provides a valuable resource for advancing multi-speaker speech processing research with realistic conversational dynamics and controlled experimental conditions.
comment: Submitted to LREC 2026
☆ Arabic Little STT: Arabic Children Speech Recognition Dataset
The performance of Artificial Intelligence (AI) systems fundamentally depends on high-quality training data. However, low-resource languages like Arabic suffer from severe data scarcity. Moreover, the absence of child-specific speech corpora is an essential gap that poses significant challenges. To address this gap, we present our created dataset, Arabic Little STT, a dataset of Levantine Arabic child speech recorded in classrooms, containing 355 utterances from 288 children (ages 6 - 13). We further conduct a systematic assessment of Whisper, a state-of-the-art automatic speech recognition (ASR) model, on this dataset and compare its performance with adult Arabic benchmarks. Our evaluation across eight Whisper variants reveals that even the best-performing model (Large_v3) struggles significantly, achieving a 0.66 word error rate (WER) on child speech, starkly contrasting with its sub 0.20 WER on adult datasets. These results align with other research on English speech. Results highlight the critical need for dedicated child speech benchmarks and inclusive training data in ASR development. Emphasizing that such data must be governed by strict ethical and privacy frameworks to protect sensitive child information. We hope that this study provides an initial step for future work on equitable speech technologies for Arabic-speaking children. We hope that our publicly available dataset enrich the children's demographic representation in ASR datasets.
☆ DCMM-SQL: Automated Data-Centric Pipeline and Multi-Model Collaboration Training for Text-to-SQL Model
Text-to-SQL tasks have gained attractive improvements since the release of ChatGPT. Among them, agent-based frameworks have been widely used in this field. However, the impact of data-centric strategies on text-to-SQL tasks has rarely been explored. In this paper, we systemically design a fully automated data-centric pipeline for text-to-SQL tasks, including \emph{adaptive data repair}, which can automatically find and fix errors in the training dataset; and \emph{error data augmentation}, where we specifically diffuse and enhance erroneous data predicted by the initially trained models. Meanwhile, we propose a Multi-Model collaboration training schema, aiming to train multiple models with different augmented data, enabling them to possess distinct capabilities and work together to complement each other, because it has been found that the capability of a single fine-tuned model is very limited. Furthermore, we utilize an ensemble strategy to integrate the capabilities of multiple models to solve a multiple-choice question, aiming to further improve the accuracy of text-to-SQL tasks. The experiment results and ablation study have demonstrated the effectiveness of data-centric pipeline and Multi-Model(MM) interactive iterative strategies, achieving first place in lightweight text-to-SQL models (within 70B).
☆ A Cocktail-Party Benchmark: Multi-Modal dataset and Comparative Evaluation Results ICASSP 2026
We introduce the task of Multi-Modal Context-Aware Recognition (MCoRec) in the ninth CHiME Challenge, which addresses the cocktail-party problem of overlapping conversations in a single-room setting using audio, visual, and contextual cues. MCoRec captures natural multi-party conversations where the recordings focus on unscripted, casual group chats, leading to extreme speech overlap of up to 100% and highly fragmented conversational turns. The task requires systems to answer the question "Who speaks when, what, and with whom?" by jointly transcribing each speaker's speech and clustering them into their respective conversations from audio-visual recordings. Audio-only baselines exceed 100% word error rate, whereas incorporating visual cues yields substantial 50% improvements, highlighting the importance of multi-modality. In this manuscript, we present the motivation behind the task, outline the data collection process, and report the baseline systems developed for the MCoRec.
comment: Submitted to ICASSP 2026
☆ Code Aesthetics with Agentic Reward Feedback
Large Language Models (LLMs) have become valuable assistants for developers in code-related tasks. While LLMs excel at traditional programming tasks such as code generation and bug fixing, they struggle with visually-oriented coding tasks, often producing suboptimal aesthetics. In this paper, we introduce a new pipeline to enhance the aesthetic quality of LLM-generated code. We first construct AesCode-358K, a large-scale instruction-tuning dataset focused on code aesthetics. Next, we propose agentic reward feedback, a multi-agent system that evaluates executability, static aesthetics, and interactive aesthetics. Building on this, we develop GRPO-AR, which integrates these signals into the GRPO algorithm for joint optimization of functionality and code aesthetics. Finally, we develop OpenDesign, a benchmark for assessing code aesthetics. Experimental results show that combining supervised fine-tuning on AesCode-358K with reinforcement learning using agentic reward feedback significantly improves performance on OpenDesign and also enhances results on existing benchmarks such as PandasPlotBench. Notably, our AesCoder-4B surpasses GPT-4o and GPT-4.1, and achieves performance comparable to large open-source models with 480B-685B parameters, underscoring the effectiveness of our approach.
comment: 30 pages, 7 figures
☆ Mubeen AI: A Specialized Arabic Language Model for Heritage Preservation and User Intent Understanding
Mubeen is a proprietary Arabic language model developed by MASARAT SA, optimized for deep understanding of Arabic linguistics, Islamic studies, and cultural heritage. Trained on an extensive collection of authentic Arabic sources significantly expanded by digitizing historical manuscripts via a proprietary Arabic OCR engine, the model incorporates seminal scholarly works in linguistics, jurisprudence, hadith, and Quranic exegesis, alongside thousands of academic theses and peer-reviewed research papers. Conditioned through a deep linguistic engineering framework, Mubeen masters not just the meaning but the eloquence of Arabic, enabling precise understanding across classical texts, contemporary writing, and regional dialects with focus on comprehending user intent and delivering accurate, contextually relevant responses. Unlike other Arabic models relying on translated English data that often fail in intent detection or retrieval-augmented generation (RAG), Mubeen uses native Arabic sources to ensure cultural authenticity and accuracy. Its core innovation is the Practical Closure Architecture, designed to solve the "Utility Gap Crisis" where factually correct answers fail to resolve users' core needs, forcing them into frustrating cycles of re-prompting. By prioritizing clarity and decisive guidance, Mubeen transforms from an information repository into a decisive guide, aligning with Saudi Vision 2030. The model's architecture combines deep heritage specialization with multi-disciplinary expert modules, enabling robust performance across both cultural preservation and general knowledge domains.
comment: 21 pages, 2 figures, 3 tables. Includes appendices on ethical guidelines and training framework. Submitted September 04, 2025
☆ Are ASR foundation models generalized enough to capture features of regional dialects for low-resource languages? AACL
Conventional research on speech recognition modeling relies on the canonical form for most low-resource languages while automatic speech recognition (ASR) for regional dialects is treated as a fine-tuning task. To investigate the effects of dialectal variations on ASR we develop a 78-hour annotated Bengali Speech-to-Text (STT) corpus named Ben-10. Investigation from linguistic and data-driven perspectives shows that speech foundation models struggle heavily in regional dialect ASR, both in zero-shot and fine-tuned settings. We observe that all deep learning methods struggle to model speech data under dialectal variations but dialect specific model training alleviates the issue. Our dataset also serves as a out of-distribution (OOD) resource for ASR modeling under constrained resources in ASR algorithms. The dataset and code developed for this project are publicly available
comment: This manuscript contains 11 pages, 5 tables and 16 figures This was accepted at International Joint Conference on Natural Language Processing & Asia-Pacific Chapter of the Association for Computational Linguistics (IJCNLP-AACL) 2025
☆ Process Reward Models for Sentence-Level Verification of LVLM Radiology Reports
Automating radiology report generation with Large Vision-Language Models (LVLMs) holds great potential, yet these models often produce clinically critical hallucinations, posing serious risks. Existing hallucination detection methods frequently lack the necessary sentence-level granularity or robust generalization across different LVLM generators. We introduce a novel approach: a sentence-level Process Reward Model (PRM) adapted for this vision-language task. Our PRM predicts the factual correctness of each generated sentence, conditioned on clinical context and preceding text. When fine-tuned on MIMIC-CXR with weakly-supervised labels, a lightweight 0.5B-parameter PRM outperforms existing verification techniques, demonstrating, for instance, relative improvements of 7.5% in Matthews Correlation Coefficient and 1.8% in AUROC over strong white-box baselines on outputs from one LVLM. Unlike methods reliant on internal model states, our PRM demonstrates strong generalization to an unseen LVLM. We further show its practical utility: PRM scores effectively filter low-quality reports, improving F1-CheXbert scores by 4.5% (when discarding the worst 10% of reports). Moreover, when guiding a novel weighted best-of-N selection process on the MIMIC-CXR test set, our PRM show relative improvements in clinical metrics of 7.4% for F1-CheXbert and 0.6% for BERTScore. These results demonstrate that a lightweight, context-aware PRM provides a model-agnostic safety layer for clinical LVLMs without access to internal activations
☆ PTPP-Aware Adaptation Scaling Laws: Predicting Domain-Adaptation Performance at Unseen Pre-Training Budgets
Continual pre-training (CPT) for domain adaptation must balance target-domain gains with stability on the base domain. Existing CPT scaling laws typically assume a fixed pre-training budget, which limits their ability to forecast adaptation outcomes for models trained at different tokens-per-parameter (PTPP). We present \emph{PTPP-aware} adaptation scaling laws that make the pre-training budget an explicit variable, enabling accurate \emph{prediction} of adaptation loss at unseen \ptpp. On a multilingual setup (English/Arabic $\rightarrow$ French), PTPP-aware formulations trained on early stages (\ptpp{}=\{15,31\}) predict target loss at \ptpp{}=279 and outperform a PTPP-agnostic \dcpt{} transfer baseline on metrics (Huber-on-log, MAE$_\mathrm{rel}$, calibration slope); full diagnostics (RMSE, MAPE) are in the appendix. Beyond forecasting, we show a practical use case: planning replay ratios and adaptation token budgets that satisfy target and forgetting constraints under compute limits.
☆ DREaM: Drug-Drug Relation Extraction via Transfer Learning Method
Relation extraction between drugs plays a crucial role in identifying drug drug interactions and predicting side effects. The advancement of machine learning methods in relation extraction, along with the development of large medical text databases, has enabled the low cost extraction of such relations compared to other approaches that typically require expert knowledge. However, to the best of our knowledge, there are limited datasets specifically designed for drug drug relation extraction currently available. Therefore, employing transfer learning becomes necessary to apply machine learning methods in this domain. In this study, we propose DREAM, a method that first employs a trained relation extraction model to discover relations between entities and then applies this model to a corpus of medical texts to construct an ontology of drug relationships. The extracted relations are subsequently validated using a large language model. Quantitative results indicate that the LLM agreed with 71 of the relations extracted from a subset of PubMed abstracts. Furthermore, our qualitative analysis indicates that this approach can uncover ambiguities in the medical domain, highlighting the challenges inherent in relation extraction in this field.
☆ SI-Bench: Benchmarking Social Intelligence of Large Language Models in Human-to-Human Conversations
As large language models (LLMs) develop anthropomorphic abilities, they are increasingly being deployed as autonomous agents to interact with humans. However, evaluating their performance in realistic and complex social interactions remains a significant challenge. Most previous research built datasets through simulated agent-to-agent interactions, which fails to capture the authentic linguistic styles and relational dynamics found in real human conversations. To address this gap, we introduce SI-Bench, a novel benchmark designed to evaluate aspects of social intelligence in LLMs. Grounded in broad social science theories, SI-Bench contains 2,221 authentic multi-turn dialogues collected from a social networking application. We further selected a subset of 312 dialogues for manual annotation across 8 major models. The experiments show that SOTA models have surpassed the human expert in process reasoning under complex social situations, yet they still fall behind humans in reply quality. Moreover, introducing Chain-of-Thought (CoT) reasoning may degrade the performance of LLMs in social dialogue tasks. All datasets are openly available at https://github.com/SI-Bench/SI-Bench.git.
comment: 17 pages, 9 figures
☆ MATCH: Task-Driven Code Evaluation through Contrastive Learning
AI-based code generation is increasingly prevalent, with GitHub Copilot estimated to generate 46% of the code on GitHub. Accurately evaluating how well generated code aligns with developer intent remains a critical challenge. Traditional evaluation methods, such as unit tests, are often unscalable and costly. Syntactic similarity metrics (e.g., BLEU, ROUGE) fail to capture code functionality, and metrics like CodeBERTScore require reference code, which is not always available. To address the gap in reference-free evaluation, with few alternatives such as ICE-Score, this paper introduces MATCH, a novel reference-free metric. MATCH uses Contrastive Learning to generate meaningful embeddings for code and natural language task descriptions, enabling similarity scoring that reflects how well generated code implements the task. We show that MATCH achieves stronger correlations with functional correctness and human preference than existing metrics across multiple programming languages.
☆ Beyond Direct Generation: A Decomposed Approach to Well-Crafted Screenwriting with LLMs
The screenplay serves as the foundation for television production, defining narrative structure, character development, and dialogue. While Large Language Models (LLMs) show great potential in creative writing, direct end-to-end generation approaches often fail to produce well-crafted screenplays. We argue this failure stems from forcing a single model to simultaneously master two disparate capabilities: creative narrative construction and rigid format adherence. The resulting outputs may mimic superficial style but lack the deep structural integrity and storytelling substance required for professional use. To enable LLMs to generate high-quality screenplays, we introduce Dual-Stage Refinement (DSR), a decomposed framework that decouples creative narrative generation from format conversion. The first stage transforms a brief outline into rich, novel-style prose. The second stage refines this narrative into a professionally formatted screenplay. This separation enables the model to specialize in one distinct capability at each stage. A key challenge in implementing DSR is the scarcity of paired outline-to-novel training data. We address this through hybrid data synthesis: reverse synthesis deconstructs existing screenplays into structured inputs, while forward synthesis leverages these inputs to generate high-quality narrative texts as training targets. Blind evaluations by professional screenwriters show that DSR achieves a 75% win rate against strong baselines like Gemini-2.5-Pro and reaches 82.7% of human-level performance. Our work demonstrates that decomposed generation architecture with tailored data synthesis effectively specializes LLMs in complex creative domains.
☆ ENTP: Enhancing Low-Quality SFT Data via Neural-Symbolic Text Purge-Mix
Supervised Fine-Tuning (SFT) adapts pre-trained Large Language Models (LLMs) to domain-specific instructions by training on a carefully curated subset of high-quality instruction-response pairs, typically drawn from a larger dataset that often contains many low-quality or noisy samples. However, existing quality-first paradigms often overlook valuable signals in discarded low-quality data and rely on imperfect quality filters. We introduce ENTP (Enhancing low-quality SFT data via Neural-symbolic Text Purge-Mix), a framework that revitalizes low-quality corpora through symbolic purification and neural reconstruction. The symbolic module identifies and prunes noisy samples based on statistical priors, while the neural component synthesizes enriched instruction-response pairs by leveraging latent representations and model knowledge. This neural-symbolic synergy enhances data informativeness and diversity. Experiments show that ENTP-augmented datasets, constructed exclusively from low-quality data, outperform 13 established data-selection baselines across five instruction-following benchmarks, and even surpass fine-tuning on the full original dataset (approximately 300K examples). Our results highlight the untapped potential of low-quality data and underscore the importance of intelligent purification and synthesis for efficient instruction alignment.
☆ Rethinking GSPO: The Perplexity-Entropy Equivalence
We provide a new perspective on GSPO's length-normalized importance ratios by establishing their connection to information-theoretic quantities. We show that GSPO's sequence-level weight $s(\theta) = (\pi_\theta/\pi_{\theta_{\text{old}}})^{1/|y|}$ can be equivalently expressed as the inverse perplexity ratio $\text{PPL}_{\theta_{\text{old}}}/\text{PPL}_\theta$ and as the exponential cross-entropy change $\exp(\Delta H)$. While the perplexity-entropy relationship follows from standard definitions, this observation provides a useful lens for understanding GSPO: the algorithm weights policy gradient updates by perplexity ratios, offering an information-theoretic interpretation of the importance weights. This perspective helps explain GSPO's empirical properties, including log-domain variance reduction through geometric averaging and stability in training mixture-of-experts models. We validate the mathematical equivalences and variance predictions through controlled experiments on mathematical reasoning tasks.
comment: 10 pages, 2 figures
☆ Corpus Frequencies in Morphological Inflection: Do They Matter?
The traditional approach to morphological inflection (the task of modifying a base word (lemma) to express grammatical categories) has been, for decades, to consider lexical entries of lemma-tag-form triples uniformly, lacking any information about their frequency distribution. However, in production deployment, one might expect the user inputs to reflect a real-world distribution of frequencies in natural texts. With future deployment in mind, we explore the incorporation of corpus frequency information into the task of morphological inflection along three key dimensions during system development: (i) for train-dev-test split, we combine a lemma-disjoint approach, which evaluates the model's generalization capabilities, with a frequency-weighted strategy to better reflect the realistic distribution of items across different frequency bands in training and test sets; (ii) for evaluation, we complement the standard type accuracy (often referred to simply as accuracy), which treats all items equally regardless of frequency, with token accuracy, which assigns greater weight to frequent words and better approximates performance on running text; (iii) for training data sampling, we introduce a method novel in the context of inflection, frequency-aware training, which explicitly incorporates word frequency into the sampling process. We show that frequency-aware training outperforms uniform sampling in 26 out of 43 languages.
comment: Published in the proceedings of ITAT 2025.15 pages, 1 figure, 4 tables
☆ Beyond Higher Rank: Token-wise Input-Output Projections for Efficient Low-Rank Adaptation NeurIPS 2025
Low-rank adaptation (LoRA) is a parameter-efficient fine-tuning (PEFT) method widely used in large language models (LLMs). LoRA essentially describes the projection of an input space into a low-dimensional output space, with the dimensionality determined by the LoRA rank. In standard LoRA, all input tokens share the same weights and undergo an identical input-output projection. This limits LoRA's ability to capture token-specific information due to the inherent semantic differences among tokens. To address this limitation, we propose Token-wise Projected Low-Rank Adaptation (TopLoRA), which dynamically adjusts LoRA weights according to the input token, thereby learning token-wise input-output projections in an end-to-end manner. Formally, the weights of TopLoRA can be expressed as $B\Sigma_X A$, where $A$ and $B$ are low-rank matrices (as in standard LoRA), and $\Sigma_X$ is a diagonal matrix generated from each input token $X$. Notably, TopLoRA does not increase the rank of LoRA weights but achieves more granular adaptation by learning token-wise LoRA weights (i.e., token-wise input-output projections). Extensive experiments across multiple models and datasets demonstrate that TopLoRA consistently outperforms LoRA and its variants. The code is available at https://github.com/Leopold1423/toplora-neurips25.
comment: Accepted by NeurIPS 2025
☆ Flexing in 73 Languages: A Single Small Model for Multilingual Inflection
We present a compact, single-model approach to multilingual inflection, the task of generating inflected word forms from base lemmas to express grammatical categories. Our model, trained jointly on data from 73 languages, is lightweight, robust to unseen words, and outperforms monolingual baselines in most languages. This demonstrates the effectiveness of multilingual modeling for inflection and highlights its practical benefits: simplifying deployment by eliminating the need to manage and retrain dozens of separate monolingual models. In addition to the standard SIGMORPHON shared task benchmarks, we evaluate our monolingual and multilingual models on 73 Universal Dependencies (UD) treebanks, extracting lemma-tag-form triples and their frequency counts. To ensure realistic data splits, we introduce a novel frequency-weighted, lemma-disjoint train-dev-test resampling procedure. Our work addresses the lack of an open-source, general-purpose, multilingual morphological inflection system capable of handling unseen words across a wide range of languages, including Czech. All code is publicly released at: https://github.com/tomsouri/multilingual-inflection.
comment: Published in the proceedings of TSD 2025. 12 pages, 1 figure, 4 tables
☆ Leveraging Hierarchical Organization for Medical Multi-document Summarization
Medical multi-document summarization (MDS) is a complex task that requires effectively managing cross-document relationships. This paper investigates whether incorporating hierarchical structures in the inputs of MDS can improve a model's ability to organize and contextualize information across documents compared to traditional flat summarization methods. We investigate two ways of incorporating hierarchical organization across three large language models (LLMs), and conduct comprehensive evaluations of the resulting summaries using automated metrics, model-based metrics, and domain expert evaluation of preference, understandability, clarity, complexity, relevance, coverage, factuality, and coherence. Our results show that human experts prefer model-generated summaries over human-written summaries. Hierarchical approaches generally preserve factuality, coverage, and coherence of information, while also increasing human preference for summaries. Additionally, we examine whether simulated judgments from GPT-4 align with human judgments, finding higher agreement along more objective evaluation facets. Our findings demonstrate that hierarchical structures can improve the clarity of medical summaries generated by models while maintaining content coverage, providing a practical way to improve human preference for generated summaries.
☆ MAP4TS: A Multi-Aspect Prompting Framework for Time-Series Forecasting with Large Language Models
Recent advances have investigated the use of pretrained large language models (LLMs) for time-series forecasting by aligning numerical inputs with LLM embedding spaces. However, existing multimodal approaches often overlook the distinct statistical properties and temporal dependencies that are fundamental to time-series data. To bridge this gap, we propose MAP4TS, a novel Multi-Aspect Prompting Framework that explicitly incorporates classical time-series analysis into the prompt design. Our framework introduces four specialized prompt components: a Global Domain Prompt that conveys dataset-level context, a Local Domain Prompt that encodes recent trends and series-specific behaviors, and a pair of Statistical and Temporal Prompts that embed handcrafted insights derived from autocorrelation (ACF), partial autocorrelation (PACF), and Fourier analysis. Multi-Aspect Prompts are combined with raw time-series embeddings and passed through a cross-modality alignment module to produce unified representations, which are then processed by an LLM and projected for final forecasting. Extensive experiments across eight diverse datasets show that MAP4TS consistently outperforms state-of-the-art LLM-based methods. Our ablation studies further reveal that prompt-aware designs significantly enhance performance stability and that GPT-2 backbones, when paired with structured prompts, outperform larger models like LLaMA in long-term forecasting tasks.
☆ A Survey on LLM Mid-training
Recent advances in foundation models have highlighted the significant benefits of multi-stage training, with a particular emphasis on the emergence of mid-training as a vital stage that bridges pre-training and post-training. Mid-training is distinguished by its use of intermediate data and computational resources, systematically enhancing specified capabilities such as mathematics, coding, reasoning, and long-context extension, while maintaining foundational competencies. This survey provides a formal definition of mid-training for large language models (LLMs) and investigates optimization frameworks that encompass data curation, training strategies, and model architecture optimization. We analyze mainstream model implementations in the context of objective-driven interventions, illustrating how mid-training serves as a distinct and critical stage in the progressive development of LLM capabilities. By clarifying the unique contributions of mid-training, this survey offers a comprehensive taxonomy and actionable insights, supporting future research and innovation in the advancement of LLMs.
☆ Fast-MIA: Efficient and Scalable Membership Inference for LLMs
We propose Fast-MIA (https://github.com/Nikkei/fast-mia), a Python library for efficiently evaluating membership inference attacks (MIA) against Large Language Models (LLMs). MIA against LLMs has emerged as a crucial challenge due to growing concerns over copyright, security, and data privacy, and has attracted increasing research attention. However, the progress of this research is significantly hindered by two main obstacles: (1) the high computational cost of inference in LLMs, and (2) the lack of standardized and maintained implementations of MIA methods, which makes large-scale empirical comparison difficult. To address these challenges, our library provides fast batch inference and includes implementations of representative MIA methods under a unified evaluation framework. This library supports easy implementation of reproducible benchmarks with simple configuration and extensibility. We release Fast-MIA as an open-source (Apache License 2.0) tool to support scalable and transparent research on LLMs.
☆ Quality-Aware Translation Tagging in Multilingual RAG system EMNLP 2025
Multilingual Retrieval-Augmented Generation (mRAG) often retrieves English documents and translates them into the query language for low-resource settings. However, poor translation quality degrades response generation performance. Existing approaches either assume sufficient translation quality or utilize the rewriting method, which introduces factual distortion and hallucinations. To mitigate these problems, we propose Quality-Aware Translation Tagging in mRAG (QTT-RAG), which explicitly evaluates translation quality along three dimensions-semantic equivalence, grammatical accuracy, and naturalness&fluency-and attach these scores as metadata without altering the original content. We evaluate QTT-RAG against CrossRAG and DKM-RAG as baselines in two open-domain QA benchmarks (XORQA, MKQA) using six instruction-tuned LLMs ranging from 2.4B to 14B parameters, covering two low-resource languages (Korean and Finnish) and one high-resource language (Chinese). QTT-RAG outperforms the baselines by preserving factual integrity while enabling generator models to make informed decisions based on translation reliability. This approach allows for effective usage of cross-lingual documents in low-resource settings with limited native language documents, offering a practical and robust solution across multilingual domains.
comment: EMNLP 2025 MRL Workshop
☆ Knocking-Heads Attention
Multi-head attention (MHA) has become the cornerstone of modern large language models, enhancing representational capacity through parallel attention heads. However, increasing the number of heads inherently weakens individual head capacity, and existing attention mechanisms - whether standard MHA or its variants like grouped-query attention (GQA) and grouped-tied attention (GTA) - simply concatenate outputs from isolated heads without strong interaction. To address this limitation, we propose knocking-heads attention (KHA), which enables attention heads to "knock" on each other - facilitating cross-head feature-level interactions before the scaled dot-product attention. This is achieved by applying a shared, diagonally-initialized projection matrix across all heads. The diagonal initialization preserves head-specific specialization at the start of training while allowing the model to progressively learn integrated cross-head representations. KHA adds only minimal parameters and FLOPs and can be seamlessly integrated into MHA, GQA, GTA, and other attention variants. We validate KHA by training a 6.1B parameter MoE model (1.01B activated) on 1T high-quality tokens. Compared to baseline attention mechanisms, KHA brings superior and more stable training dynamics, achieving better performance across downstream tasks.
☆ Incentivizing Agentic Reasoning in LLM Judges via Tool-Integrated Reinforcement Learning
Large Language Models (LLMs) are widely used as judges to evaluate response quality, providing a scalable alternative to human evaluation. However, most LLM judges operate solely on intrinsic text-based reasoning, limiting their ability to verify complex constraints or perform accurate computation. Motivated by the success of tool-integrated reasoning (TIR) in numerous tasks, we propose TIR-Judge, an end-to-end RL framework for training LLM judges that integrates a code executor for precise evaluation. TIR-Judge is built on three principles: (i) diverse training across verifiable and non-verifiable domains, (ii) flexible judgment formats (pointwise, pairwise, listwise), and (iii) iterative RL that bootstraps directly from the initial model without distillation. On seven public benchmarks, TIR-Judge surpasses strong reasoning-based judges by up to 6.4% (pointwise) and 7.7% (pairwise), and achieves listwise performance comparable to Claude-Opus-4 despite having only 8B parameters. Remarkably, TIR-Judge-Zero - trained entirely without distilled judge trajectories, matches the performance of distilled variants, demonstrating that tool-augmented judges can self-evolve through iterative reinforcement learning.
comment: Work in Progress
☆ Towards Stable and Effective Reinforcement Learning for Mixture-of-Experts
Recent advances in reinforcement learning (RL) have substantially improved the training of large-scale language models, leading to significant gains in generation quality and reasoning ability. However, most existing research focuses on dense models, while RL training for Mixture-of-Experts (MoE) architectures remains underexplored. To address the instability commonly observed in MoE training, we propose a novel router-aware approach to optimize importance sampling (IS) weights in off-policy RL. Specifically, we design a rescaling strategy guided by router logits, which effectively reduces gradient variance and mitigates training divergence. Experimental results demonstrate that our method significantly improves both the convergence stability and the final performance of MoE models, highlighting the potential of RL algorithmic innovations tailored to MoE architectures and providing a promising direction for efficient training of large-scale expert models.
☆ UniAIDet: A Unified and Universal Benchmark for AI-Generated Image Content Detection and Localization
With the rapid proliferation of image generative models, the authenticity of digital images has become a significant concern. While existing studies have proposed various methods for detecting AI-generated content, current benchmarks are limited in their coverage of diverse generative models and image categories, often overlooking end-to-end image editing and artistic images. To address these limitations, we introduce UniAIDet, a unified and comprehensive benchmark that includes both photographic and artistic images. UniAIDet covers a wide range of generative models, including text-to-image, image-to-image, image inpainting, image editing, and deepfake models. Using UniAIDet, we conduct a comprehensive evaluation of various detection methods and answer three key research questions regarding generalization capability and the relation between detection and localization. Our benchmark and analysis provide a robust foundation for future research.
☆ M$^{3}$T2IBench: A Large-Scale Multi-Category, Multi-Instance, Multi-Relation Text-to-Image Benchmark
Text-to-image models are known to struggle with generating images that perfectly align with textual prompts. Several previous studies have focused on evaluating image-text alignment in text-to-image generation. However, these evaluations either address overly simple scenarios, especially overlooking the difficulty of prompts with multiple different instances belonging to the same category, or they introduce metrics that do not correlate well with human evaluation. In this study, we introduce M$^3$T2IBench, a large-scale, multi-category, multi-instance, multi-relation along with an object-detection-based evaluation metric, $AlignScore$, which aligns closely with human evaluation. Our findings reveal that current open-source text-to-image models perform poorly on this challenging benchmark. Additionally, we propose the Revise-Then-Enforce approach to enhance image-text alignment. This training-free post-editing method demonstrates improvements in image-text alignment across a broad range of diffusion models. \footnote{Our code and data has been released in supplementary material and will be made publicly available after the paper is accepted.}
☆ LangLingual: A Personalised, Exercise-oriented English Language Learning Tool Leveraging Large Language Models
Language educators strive to create a rich experience for learners, while they may be restricted in the extend of feedback and practice they can provide. We present the design and development of LangLingual, a conversational agent built using the LangChain framework and powered by Large Language Models. The system is specifically designed to provide real-time, grammar-focused feedback, generate context-aware language exercises and track learner proficiency over time. The paper discusses the architecture, implementation and evaluation of LangLingual in detail. The results indicate strong usability, positive learning outcomes and encouraging learner engagement.
comment: 14 pages
☆ Understanding In-Context Learning Beyond Transformers: An Investigation of State Space and Hybrid Architectures
We perform in-depth evaluations of in-context learning (ICL) on state-of-the-art transformer, state-space, and hybrid large language models over two categories of knowledge-based ICL tasks. Using a combination of behavioral probing and intervention-based methods, we have discovered that, while LLMs of different architectures can behave similarly in task performance, their internals could remain different. We discover that function vectors (FVs) responsible for ICL are primarily located in the self-attention and Mamba layers, and speculate that Mamba2 uses a different mechanism from FVs to perform ICL. FVs are more important for ICL involving parametric knowledge retrieval, but not for contextual knowledge understanding. Our work contributes to a more nuanced understanding across architectures and task types. Methodologically, our approach also highlights the importance of combining both behavioural and mechanistic analyses to investigate LLM capabilities.
☆ Can Language Models Compose Skills In-Context?
Composing basic skills from simple tasks to accomplish composite tasks is crucial for modern intelligent systems. We investigate the in-context composition ability of language models to perform composite tasks that combine basic skills demonstrated in in-context examples. This is more challenging than the standard setting, where skills and their composition can be learned in training. We conduct systematic experiments on various representative open-source language models, utilizing linguistic and logical tasks designed to probe composition abilities. The results reveal that simple task examples can have a surprising negative impact on the performance, because the models generally struggle to recognize and assemble the skills correctly, even with Chain-of-Thought examples. Theoretical analysis further shows that it is crucial to align examples with the corresponding steps in the composition. This inspires a method for the probing tasks, whose improved performance provides positive support for our insights.
☆ Measuring Teaching with LLMs
Objective and scalable measurement of teaching quality is a persistent challenge in education. While Large Language Models (LLMs) offer potential, general-purpose models have struggled to reliably apply complex, authentic classroom observation instruments. This paper uses custom LLMs built on sentence-level embeddings, an architecture better suited for the long-form, interpretive nature of classroom transcripts than conventional subword tokenization. We systematically evaluate five different sentence embeddings under a data-efficient training regime designed to prevent overfitting. Our results demonstrate that these specialized models can achieve human-level and even super-human performance with expert human ratings above 0.65 and surpassing the average human-human rater correlation. Further, through analysis of annotation context windows, we find that more advanced models-those better aligned with human judgments-attribute a larger share of score variation to lesson-level features rather than isolated utterances, challenging the sufficiency of single-turn annotation paradigms. Finally, to assess external validity, we find that aggregate model scores align with teacher value-added measures, indicating they are capturing features relevant to student learning. However, this trend does not hold at the individual item level, suggesting that while the models learn useful signals, they have not yet achieved full generalization. This work establishes a viable and powerful new methodology for AI-driven instructional measurement, offering a path toward providing scalable, reliable, and valid feedback for educator development.
☆ MAD-Fact: A Multi-Agent Debate Framework for Long-Form Factuality Evaluation in LLMs
The widespread adoption of Large Language Models (LLMs) raises critical concerns about the factual accuracy of their outputs, especially in high-risk domains such as biomedicine, law, and education. Existing evaluation methods for short texts often fail on long-form content due to complex reasoning chains, intertwined perspectives, and cumulative information. To address this, we propose a systematic approach integrating large-scale long-form datasets, multi-agent verification mechanisms, and weighted evaluation metrics. We construct LongHalluQA, a Chinese long-form factuality dataset; and develop MAD-Fact, a debate-based multi-agent verification system. We introduce a fact importance hierarchy to capture the varying significance of claims in long-form texts. Experiments on two benchmarks show that larger LLMs generally maintain higher factual consistency, while domestic models excel on Chinese content. Our work provides a structured framework for evaluating and enhancing factual reliability in long-form LLM outputs, guiding their safe deployment in sensitive domains.
comment: This article has been accepted by Frontiers of Computer Science (FCS)
☆ Tagging-Augmented Generation: Assisting Language Models in Finding Intricate Knowledge In Long Contexts EMNLP 2025
Recent investigations into effective context lengths of modern flagship large language models (LLMs) have revealed major limitations in effective question answering (QA) and reasoning over long and complex contexts for even the largest and most impressive cadre of models. While approaches like retrieval-augmented generation (RAG) and chunk-based re-ranking attempt to mitigate this issue, they are sensitive to chunking, embedding and retrieval strategies and models, and furthermore, rely on extensive pre-processing, knowledge acquisition and indexing steps. In this paper, we propose Tagging-Augmented Generation (TAG), a lightweight data augmentation strategy that boosts LLM performance in long-context scenarios, without degrading and altering the integrity and composition of retrieved documents. We validate our hypothesis by augmenting two challenging and directly relevant question-answering benchmarks -- NoLima and NovelQA -- and show that tagging the context or even just adding tag definitions into QA prompts leads to consistent performance gains over the baseline -- up to 17% for 32K token contexts, and 2.9% in complex reasoning question-answering for multi-hop queries requiring knowledge across a wide span of text. Additional details are available at https://sites.google.com/view/tag-emnlp.
comment: Paper accepted at EMNLP 2025
☆ Artificial Hivemind: The Open-Ended Homogeneity of Language Models (and Beyond) NeurIPS 2025
Language models (LMs) often struggle to generate diverse, human-like creative content, raising concerns about the long-term homogenization of human thought through repeated exposure to similar outputs. Yet scalable methods for evaluating LM output diversity remain limited, especially beyond narrow tasks such as random number or name generation, or beyond repeated sampling from a single model. We introduce Infinity-Chat, a large-scale dataset of 26K diverse, real-world, open-ended user queries that admit a wide range of plausible answers with no single ground truth. We introduce the first comprehensive taxonomy for characterizing the full spectrum of open-ended prompts posed to LMs, comprising 6 top-level categories (e.g., brainstorm & ideation) that further breaks down to 17 subcategories. Using Infinity-Chat, we present a large-scale study of mode collapse in LMs, revealing a pronounced Artificial Hivemind effect in open-ended generation of LMs, characterized by (1) intra-model repetition, where a single model consistently generates similar responses, and more so (2) inter-model homogeneity, where different models produce strikingly similar outputs. Infinity-Chat also includes 31,250 human annotations, across absolute ratings and pairwise preferences, with 25 independent human annotations per example. This enables studying collective and individual-specific human preferences in response to open-ended queries. Our findings show that LMs, reward models, and LM judges are less well calibrated to human ratings on model generations that elicit differing idiosyncratic annotator preferences, despite maintaining comparable overall quality. Overall, INFINITY-CHAT presents the first large-scale resource for systematically studying real-world open-ended queries to LMs, revealing critical insights to guide future research for mitigating long-term AI safety risks posed by the Artificial Hivemind.
comment: NeurIPS 2025 D&B Paper (Oral); Camera-Ready Version
☆ Language Server CLI Empowers Language Agents with Process Rewards
Large language models routinely hallucinate APIs and mislocalize edits, while language servers compute verified, IDE-grade facts about real code. We present Lanser-CLI, a CLI-first orchestration layer that pins and mediates a Language Server Protocol (LSP) server for coding agents and CI, exposing deterministic, replayable workflows. Our position is that language servers provide not only structural information (definitions, references, types, diagnostics) but also an actionable process reward: machine-checked, step-wise signals that align an agent's planning loop with program reality. In this work, Lanser-CLI contributes: (i) a robust addressing scheme beyond brittle "file:line:col" via a Selector DSL (symbolic, AST-path, and content-anchored selectors) with a principled relocation algorithm; (ii) deterministic Analysis Bundles that normalize Language Server responses and capture environment/capability metadata with stable content hashes; (iii) a safety envelope for mutating operations (rename, code actions) with preview, workspace jails, and Git-aware, transactional apply; and (iv) a process-reward functional derived from Language Server facts (diagnostic deltas, disambiguation confidence, and safe-apply checks) that is computable online and replayable offline. We formalize determinism under frozen snapshots and establish a monotonicity property for the process reward, making it suitable for process supervision and counterfactual analysis. Project Page: https://github.com/yifanzhang-pro/lanser-cli
comment: Project Page: https://github.com/yifanzhang-pro/lanser-cli
☆ Modeling Political Discourse with Sentence-BERT and BERTopic
Social media has reshaped political discourse, offering politicians a platform for direct engagement while reinforcing polarization and ideological divides. This study introduces a novel topic evolution framework that integrates BERTopic-based topic modeling with Moral Foundations Theory (MFT) to analyze the longevity and moral dimensions of political topics in Twitter activity during the 117th U.S. Congress. We propose a methodology for tracking dynamic topic shifts over time and measuring their association with moral values and quantifying topic persistence. Our findings reveal that while overarching themes remain stable, granular topics tend to dissolve rapidly, limiting their long-term influence. Moreover, moral foundations play a critical role in topic longevity, with Care and Loyalty dominating durable topics, while partisan differences manifest in distinct moral framing strategies. This work contributes to the field of social network analysis and computational political discourse by offering a scalable, interpretable approach to understanding moral-driven topic evolution on social media.
comment: 11 pages. Continues previous study by Mendonca M. and Figueira A, 2023: "Analyzing Political Discourse in the 117th U.S. Congress Using Transformer-Based Topic Models", presented at the International Conference on Computational Social Science
☆ Offline Preference Optimization via Maximum Marginal Likelihood Estimation
Aligning Large Language Models (LLMs) with human preferences is crucial, but standard methods like Reinforcement Learning from Human Feedback (RLHF) are often complex and unstable. In this work, we propose a new, simpler approach that recasts alignment through the lens of Maximum Marginal Likelihood (MML) estimation. Our new MML based Preference Optimization (MMPO) maximizes the marginal log-likelihood of a preferred text output, using the preference pair as samples for approximation, and forgoes the need for both an explicit reward model and entropy maximization. We theoretically demonstrate that MMPO implicitly performs preference optimization, producing a weighted gradient that naturally up-weights chosen responses over rejected ones. Across models ranging from 135M to 8B parameters, we empirically show that MMPO: 1) is more stable with respect to the hyperparameter $\beta$ compared to alternative baselines, and 2) achieves competitive or superior preference alignment while better preserving the base model's general language capabilities. Through a series of ablation experiments, we show that this improved performance is indeed attributable to MMPO's implicit preference optimization within the gradient updates.
♻ ☆ Constrained Entropic Unlearning: A Primal-Dual Framework for Large Language Models
Large Language Models (LLMs) deployed in real-world settings increasingly face the need to unlearn sensitive, outdated, or proprietary information. Existing unlearning methods typically formulate forgetting and retention as a regularized trade-off, combining both objectives into a single scalarized loss. This often leads to unstable optimization and degraded performance on retained data, especially under aggressive forgetting. We propose a new formulation of LLM unlearning as a constrained optimization problem: forgetting is enforced via a novel logit-margin flattening loss that explicitly drives the output distribution toward uniformity on a designated forget set, while retention is preserved through a hard constraint on a separate retain set. Compared to entropy-based objectives, our loss is softmax-free, numerically stable, and maintains non-vanishing gradients, enabling more efficient and robust optimization. We solve the constrained problem using a scalable primal-dual algorithm that exposes the trade-off between forgetting and retention through the dynamics of the dual variable, all without any extra computational overhead. Evaluations on the TOFU and MUSE benchmarks across diverse LLM architectures demonstrate that our approach consistently matches or exceeds state-of-the-art baselines, effectively removing targeted information while preserving downstream utility.
comment: The Thirty-Ninth Annual Conference on Neural Information Processing Systems
♻ ☆ LLM4Cell: A Survey of Large Language and Agentic Models for Single-Cell Biology
Large language models (LLMs) and emerging agentic frameworks are beginning to transform single-cell biology by enabling natural-language reasoning, generative annotation, and multimodal data integration. However, progress remains fragmented across data modalities, architectures, and evaluation standards. LLM4Cell presents the first unified survey of 58 foundation and agentic models developed for single-cell research, spanning RNA, ATAC, multi-omic, and spatial modalities. We categorize these methods into five families-foundation, text-bridge, spatial, multimodal, epigenomic, and agentic-and map them to eight key analytical tasks including annotation, trajectory and perturbation modeling, and drug-response prediction. Drawing on over 40 public datasets, we analyze benchmark suitability, data diversity, and ethical or scalability constraints, and evaluate models across 10 domain dimensions covering biological grounding, multi-omics alignment, fairness, privacy, and explainability. By linking datasets, models, and evaluation domains, LLM4Cell provides the first integrated view of language-driven single-cell intelligence and outlines open challenges in interpretability, standardization, and trustworthy model development.
comment: 34 pages, 5 figures, 7 tables
♻ ☆ SafeMERGE: Preserving Safety Alignment in Fine-Tuned Large Language Models via Selective Layer-Wise Model Merging
Fine-tuning large language models (LLMs) is a common practice to adapt generalist models to specialized domains. However, recent studies show that fine-tuning can erode safety alignment, causing LLMs to respond to harmful or unethical prompts. Many methods to realign safety have been proposed, but often introduce custom algorithms that are difficult to implement or compromise task utility. In this work, we propose SafeMERGE, a lightweight, post-fine-tuning framework that preserves safety while maintaining downstream performance. SafeMERGE selectively merges fine-tuned with safety-aligned model layers only when they deviate from safe behavior, measured by a cosine similarity criterion. Across three LLMs and two tasks, SafeMERGE consistently reduces harmful outputs compared to other defenses, with negligible or even positive impact on utility. Our results demonstrate that selective layer-wise merging offers an effective safeguard against the inadvertent loss of safety during fine-tuning, establishing SafeMERGE as a simple post-fine-tuning defense.
♻ ☆ Superficial Self-Improved Reasoners Benefit from Model Merging EMNLP 2025
As scaled language models (LMs) approach human-level reasoning capabilities, self-improvement emerges as a solution to synthesizing high-quality data corpus. While previous research has identified model collapse as a risk in self-improvement, where model outputs become increasingly deterministic, we discover a more fundamental challenge: the superficial self-improved reasoners phenomenon. In particular, our analysis reveals that even when LMs show improved in-domain (ID) reasoning accuracy, they actually compromise their generalized reasoning capabilities on out-of-domain (OOD) tasks due to memorization rather than genuine. Through a systematic investigation of LM architecture, we discover that during self-improvement, LM weight updates are concentrated in less reasoning-critical layers, leading to superficial learning. To address this, we propose Iterative Model Merging (IMM), a method that strategically combines weights from original and self-improved models to preserve generalization while incorporating genuine reasoning improvements. Our approach effectively mitigates both LM collapse and superficial learning, moving towards more stable self-improving systems.
comment: EMNLP 2025
♻ ☆ SafeCOMM: A Study on Safety Degradation in Fine-Tuned Telecom Large Language Models
Fine-tuning large language models (LLMs) on telecom datasets is a common practice to adapt general-purpose models to the telecom domain. However, little attention has been paid to how this process may compromise model safety. Recent research has shown that even benign fine-tuning can degrade the safety alignment of LLMs, causing them to respond to harmful or unethical user queries. In this paper, we investigate this issue by fine-tuning LLMs on three representative telecom datasets and show that safety degrades even for light telecom domain adaptation. To this end, we introduce TeleHarm, the first telecom-specific red-teaming benchmark, which we use alongside established Direct-Harm and HexPhi datasets to systematically assess harmful behavior. We further extend our analysis to publicly available TeleLLMs that were continually pre-trained on large telecom corpora, revealing that safety alignment is severely lacking, primarily due to the omission of safety-focused instruction tuning. To address these issues, we evaluate three realignment defenses: SafeInstruct, SafeLoRA, SafeMERGE. We show that, across all settings, the proposed defenses can effectively restore safety without compromising telecom task performance, leading to Safe teleCOMMunication (SafeCOMM) models. Our work serves as both a diagnostic study and practical guide for safety realignment in telecom-tuned LLMs, underscoring the need for safety-aware instruction and fine-tuning in the telecom domain.
♻ ☆ Fixing It in Post: A Comparative Study of LLM Post-Training Data Quality and Model Performance
Recent work on large language models (LLMs) has increasingly focused on post-training and alignment with datasets curated to enhance instruction following, world knowledge, and specialized skills. However, most post-training datasets used in leading open- and closed-source LLMs remain inaccessible to the public, with limited information about their construction process. This lack of transparency has motivated the recent development of open-source post-training corpora. While training on these open alternatives can yield performance comparable to that of leading models, systematic comparisons remain challenging due to the significant computational cost of conducting them rigorously at scale, and are therefore largely absent. As a result, it remains unclear how specific samples, task types, or curation strategies influence downstream performance when assessing data quality. In this work, we conduct the first comprehensive side-by-side analysis of two prominent open post-training datasets: Tulu-3-SFT-Mix and SmolTalk. Using the Magpie framework, we annotate each sample with detailed quality metrics, including turn structure (single-turn vs. multi-turn), task category, input quality, and response quality, and we derive statistics that reveal structural and qualitative similarities and differences between the two datasets. Based on these insights, we design a principled curation recipe that produces a new data mixture, TuluTalk, which contains 14% fewer samples than either source dataset while matching or exceeding their performance on key benchmarks. Our findings offer actionable insights for constructing more effective post-training datasets that improve model performance within practical resource limits. To support future research, we publicly release both the annotated source datasets and our curated TuluTalk mixture.
♻ ☆ Human-Aligned Faithfulness in Toxicity Explanations of LLMs
The discourse around toxicity and LLMs in NLP largely revolves around detection tasks. This work shifts the focus to evaluating LLMs' reasoning about toxicity -- from their explanations that justify a stance -- to enhance their trustworthiness in downstream tasks. Despite extensive research on explainability, it is not straightforward to adopt existing methods to evaluate free-form toxicity explanation due to their over-reliance on input text perturbations, among other challenges. To account for these, we propose a novel, theoretically-grounded multi-dimensional criterion, Human-Aligned Faithfulness (HAF), that measures the extent to which LLMs' free-form toxicity explanations align with those of a rational human under ideal conditions. We develop six metrics, based on uncertainty quantification, to comprehensively evaluate HAF of LLMs' toxicity explanations with no human involvement, and highlight how "non-ideal" the explanations are. We conduct several experiments on three Llama models (of size up to 70B) and an 8B Ministral model on five diverse toxicity datasets. Our results show that while LLMs generate plausible explanations to simple prompts, their reasoning about toxicity breaks down when prompted about the nuanced relations between the complete set of reasons, the individual reasons, and their toxicity stances, resulting in inconsistent and irrelevant responses. We open-source our code at https://github.com/uofthcdslab/HAF and LLM-generated explanations at https://huggingface.co/collections/uofthcdslab/haf.
comment: 23 pages, 5 figures, 7 tables
♻ ☆ AttentionRAG: Attention-Guided Context Pruning in Retrieval-Augmented Generation
While RAG demonstrates remarkable capabilities in LLM applications, its effectiveness is hindered by the ever-increasing length of retrieved contexts, which introduces information redundancy and substantial computational overhead. Existing context pruning methods, such as LLMLingua, lack contextual awareness and offer limited flexibility in controlling compression rates, often resulting in either insufficient pruning or excessive information loss. In this paper, we propose AttentionRAG, an attention-guided context pruning method for RAG systems. The core idea of AttentionRAG lies in its attention focus mechanism, which reformulates RAG queries into a next-token prediction paradigm. This mechanism isolates the query's semantic focus to a single token, enabling precise and efficient attention calculation between queries and retrieved contexts. Extensive experiments on LongBench and Babilong benchmarks show that AttentionRAG achieves up to 6.3$\times$ context compression while outperforming LLMLingua methods by around 10\% in key metrics.
♻ ☆ Cancer-Myth: Evaluating AI Chatbot on Patient Questions with False Presuppositions
Cancer patients are increasingly turning to large language models (LLMs) for medical information, making it critical to assess how well these models handle complex, personalized questions. However, current medical benchmarks focus on medical exams or consumer-searched questions and do not evaluate LLMs on real patient questions with patient details. In this paper, we first have three hematology-oncology physicians evaluate cancer-related questions drawn from real patients. While LLM responses are generally accurate, the models frequently fail to recognize or address false presuppositions in the questions, posing risks to safe medical decision-making. To study this limitation systematically, we introduce Cancer-Myth, an expert-verified adversarial dataset of 585 cancer-related questions with false presuppositions. On this benchmark, no frontier LLM -- including GPT-5, Gemini-2.5-Pro, and Claude-4-Sonnet -- corrects these false presuppositions more than $43\%$ of the time. To study mitigation strategies, we further construct a 150-question Cancer-Myth-NFP set, in which physicians confirm the absence of false presuppositions. We find typical mitigation strategies, such as adding precautionary prompts with GEPA optimization, can raise accuracy on Cancer-Myth to $80\%$, but at the cost of misidentifying presuppositions in $41\%$ of Cancer-Myth-NFP questions and causing a $10\%$ relative performance drop on other medical benchmarks. These findings highlight a critical gap in the reliability of LLMs, show that prompting alone is not a reliable remedy for false presuppositions, and underscore the need for more robust safeguards in medical AI systems.
♻ ☆ Less is More: Local Intrinsic Dimensions of Contextual Language Models NeurIPS 2025
Understanding the internal mechanisms of large language models (LLMs) remains a challenging and complex endeavor. Even fundamental questions, such as how fine-tuning affects model behavior, often require extensive empirical evaluation. In this paper, we introduce a novel perspective based on the geometric properties of contextual latent embeddings to study the effects of training and fine-tuning. To that end, we measure the local dimensions of a contextual language model's latent space and analyze their shifts during training and fine-tuning. We show that the local dimensions provide insights into the model's training dynamics and generalization ability. Specifically, the mean of the local dimensions predicts when the model's training capabilities are exhausted, as exemplified in a dialogue state tracking task, overfitting, as demonstrated in an emotion recognition task, and grokking, as illustrated with an arithmetic task. Furthermore, our experiments suggest a practical heuristic: reductions in the mean local dimension tend to accompany and predict subsequent performance gains. Through this exploration, we aim to provide practitioners with a deeper understanding of the implications of fine-tuning on embedding spaces, facilitating informed decisions when configuring models for specific applications. The results of this work contribute to the ongoing discourse on the interpretability, adaptability, and generalizability of LLMs by bridging the gap between intrinsic model mechanisms and geometric properties in the respective embeddings.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025; in press). 10 pages, with an additional 17 pages in the appendix. Our code is available at https://github.com/aidos-lab/Topo_LLM_public and https://github.com/aidos-lab/grokking-via-lid
♻ ☆ Computational-Assisted Systematic Review and Meta-Analysis (CASMA): Effect of a Subclass of GnRH-a on Endometriosis Recurrence
Background: Evidence synthesis facilitates evidence-based medicine. This task becomes increasingly difficult to accomplished with applying computational solutions, since the medical literature grows at astonishing rates. Objective: This study evaluates an information retrieval-driven workflow, CASMA, to enhance the efficiency, transparency, and reproducibility of systematic reviews. Endometriosis recurrence serves as the ideal case due to its complex and ambiguous literature. Methods: The hybrid approach integrates PRISMA guidelines with fuzzy matching and regular expression (regex) to facilitate semi-automated deduplication and filtered records before manual screening. The workflow synthesised evidence from randomised controlled trials on the efficacy of a subclass of gonadotropin-releasing hormone agonists (GnRH-a). A modified splitting method addressed unit-of-analysis errors in multi-arm trials. Results: The workflow sharply reduced the screening workload, taking only 11 days to fetch and filter 33,444 records. Seven eligible RCTs were synthesized (841 patients). The pooled random-effects model yielded a Risk Ratio (RR) of $0.64$ ($95\%$ CI $0.48$ to $0.86$), demonstrating a $36\%$ reduction in recurrence, with non-significant heterogeneity ($I^2=0.00\%$, $\tau^2=0.00$). The findings were robust and stable, as they were backed by sensitivity analyses. Conclusion: This study demonstrates an application of an information-retrieval-driven workflow for medical evidence synthesis. The approach yields valuable clinical results and a generalisable framework to scale up the evidence synthesis, bridging the gap between clinical research and computer science.
comment: 15 pages, 12 figures and 4 tables. This work describes an information retrieval-driven workflow for medical evidence synthesis, with an application to endometriosis recurrence. The method can be generalized to other systematic reviews. The preregistered protocol is available: https://doi.org/10.17605/OSF.IO/R2DFA
♻ ☆ How Can We Effectively Expand the Vocabulary of LLMs with 0.01GB of Target Language Text?
Large language models (LLMs) have shown remarkable capabilities in many languages beyond English. Yet, LLMs require more inference steps when generating non-English text due to their reliance on English-centric tokenizers and vocabulary, resulting in higher usage costs to non-English speakers. Vocabulary expansion with target language tokens is a widely used cross-lingual vocabulary adaptation approach to remedy this issue. Despite its effectiveness in inference speedup, previous work on vocabulary expansion has focused on high-resource settings assuming access to a substantial amount of target language data to effectively initialize the embeddings of the new tokens and adapt the LLM to the target language. However, vocabulary expansion in low-resource settings has yet to be explored. In this article, we investigate vocabulary expansion in low-resource settings by considering embedding initialization methods and continual pre-training strategies. Through extensive experiments across typologically diverse languages, tasks and models, we establish a set of strategies to perform vocabulary expansion for faster inference, while striving to maintain competitive downstream performance to baselines. This is achieved with only 30K sentences ($\sim$0.01GB text data) from the target language.
comment: Accepted to Computational Linguistics
♻ ☆ A Data-driven ML Approach for Maximizing Performance in LLM-Adapter Serving
With the rapid adoption of Large Language Models (LLMs), LLM-adapters have become increasingly common, providing lightweight specialization of large-scale models. Serving hundreds or thousands of these adapters on a single GPU allows request aggregation, increasing throughput, but may also cause request starvation if GPU memory limits are exceeded. To address this issue, this study focuses on determining the joint configuration of concurrent and parallel adapters that maximizes GPU throughput without inducing starvation, given heterogeneous adapter and traffic properties. We propose a data-driven ML approach leveraging interpretable models to tackle this caching problem and introduce the first Digital Twin capable of reproducing an LLM-adapter serving system, enabling efficient training data generation. Experiments with the vLLM framework and LoRA adapters show that the Digital Twin reproduces throughput within 5.1% of real results, while the ML approach predicts optimal numbers of concurrent and parallel adapters with an error of at most 7.2% under heterogeneous, real-world workloads.
comment: Accepted in a computer science workshop
♻ ☆ Steering Evaluation-Aware Language Models to Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
♻ ☆ Estimating LLM Consistency: A User Baseline vs Surrogate Metrics EMNLP 2025
Large language models (LLMs) are prone to hallucinations and sensitiveto prompt perturbations, often resulting in inconsistent or unreliablegenerated text. Different methods have been proposed to mitigate suchhallucinations and fragility, one of which is to measure theconsistency of LLM responses -- the model's confidence in the responseor likelihood of generating a similar response when resampled. Inprevious work, measuring LLM response consistency often relied oncalculating the probability of a response appearing within a pool of resampledresponses, analyzing internal states, or evaluating logits of resopnses.However, it was not clear how well theseapproaches approximated users' perceptions of consistency of LLMresponses. To find out, we performed a user study ($n=2,976$)demonstrating that current methods for measuring LLM responseconsistency typically do not align well with humans' perceptions of LLMconsistency. We propose a logit-based ensemble method for estimatingLLM consistency and show that our method matches the performance of thebest-performing existing metric in estimating human ratings of LLMconsistency. Our results suggest that methods for estimating LLMconsistency without human evaluation are sufficiently imperfect towarrant broader use of evaluation with human input; this would avoidmisjudging the adequacy of models because of the imperfections ofautomated consistency metrics.
comment: Published as a main conference paper at EMNLP 2025
♻ ☆ Can Large Language Models Unlock Novel Scientific Research Ideas? EMNLP 2025
The widespread adoption of Large Language Models (LLMs) and publicly available ChatGPT have marked a significant turning point in the integration of Artificial Intelligence (AI) into people's everyday lives. This study examines the ability of Large Language Models (LLMs) to generate future research ideas from scientific papers. Unlike tasks such as summarization or translation, idea generation lacks a clearly defined reference set or structure, making manual evaluation the default standard. However, human evaluation in this setting is extremely challenging ie: it requires substantial domain expertise, contextual understanding of the paper, and awareness of the current research landscape. This makes it time-consuming, costly, and fundamentally non-scalable, particularly as new LLMs are being released at a rapid pace. Currently, there is no automated evaluation metric specifically designed for this task. To address this gap, we propose two automated evaluation metrics: Idea Alignment Score (IAScore) and Idea Distinctness Index. We further conducted human evaluation to assess the novelty, relevance, and feasibility of the generated future research ideas. This investigation offers insights into the evolving role of LLMs in idea generation, highlighting both its capability and limitations. Our work contributes to the ongoing efforts in evaluating and utilizing language models for generating future research ideas. We make our datasets and codes publicly available
comment: EMNLP 2025 (Main)
♻ ☆ ClaimGen-CN: A Large-scale Chinese Dataset for Legal Claim Generation
Legal claims refer to the plaintiff's demands in a case and are essential to guiding judicial reasoning and case resolution. While many works have focused on improving the efficiency of legal professionals, the research on helping non-professionals (e.g., plaintiffs) remains unexplored. This paper explores the problem of legal claim generation based on the given case's facts. First, we construct ClaimGen-CN, the first dataset for Chinese legal claim generation task, from various real-world legal disputes. Additionally, we design an evaluation metric tailored for assessing the generated claims, which encompasses two essential dimensions: factuality and clarity. Building on this, we conduct a comprehensive zero-shot evaluation of state-of-the-art general and legal-domain large language models. Our findings highlight the limitations of the current models in factual precision and expressive clarity, pointing to the need for more targeted development in this domain. To encourage further exploration of this important task, we will make the dataset publicly available.
♻ ☆ Are LLMs Empathetic to All? Investigating the Influence of Multi-Demographic Personas on a Model's Empathy EMNLP 2025
Large Language Models' (LLMs) ability to converse naturally is empowered by their ability to empathetically understand and respond to their users. However, emotional experiences are shaped by demographic and cultural contexts. This raises an important question: Can LLMs demonstrate equitable empathy across diverse user groups? We propose a framework to investigate how LLMs' cognitive and affective empathy vary across user personas defined by intersecting demographic attributes. Our study introduces a novel intersectional analysis spanning 315 unique personas, constructed from combinations of age, culture, and gender, across four LLMs. Results show that attributes profoundly shape a model's empathetic responses. Interestingly, we see that adding multiple attributes at once can attenuate and reverse expected empathy patterns. We show that they broadly reflect real-world empathetic trends, with notable misalignments for certain groups, such as those from Confucian culture. We complement our quantitative findings with qualitative insights to uncover model behaviour patterns across different demographic groups. Our findings highlight the importance of designing empathy-aware LLMs that account for demographic diversity to promote more inclusive and equitable model behaviour.
comment: 9 pages, 4 figures, 4 tables, EMNLP 2025 Findings
♻ ☆ Bootstrapping Referring Multi-Object Tracking
Referring understanding is a fundamental task that bridges natural language and visual content by localizing objects described in free-form expressions. However, existing works are constrained by limited language expressiveness, lacking the capacity to model object dynamics in spatial numbers and temporal states. To address these limitations, we introduce a new and general referring understanding task, termed referring multi-object tracking (RMOT). Its core idea is to employ a language expression as a semantic cue to guide the prediction of multi-object tracking, comprehensively accounting for variations in object quantity and temporal semantics. Along with RMOT, we introduce a RMOT benchmark named Refer-KITTI-V2, featuring scalable and diverse language expressions. To efficiently generate high-quality annotations covering object dynamics with minimal manual effort, we propose a semi-automatic labeling pipeline that formulates a total of 9,758 language prompts. In addition, we propose TempRMOT, an elegant end-to-end Transformer-based framework for RMOT. At its core is a query-driven Temporal Enhancement Module that represents each object as a Transformer query, enabling long-term spatial-temporal interactions with other objects and past frames to efficiently refine these queries. TempRMOT achieves state-of-the-art performance on both Refer-KITTI and Refer-KITTI-V2, demonstrating the effectiveness of our approach. The source code and dataset is available at https://github.com/zyn213/TempRMOT.
♻ ☆ Tiny but Mighty: A Software-Hardware Co-Design Approach for Efficient Multimodal Inference on Battery-Powered Small Devices
Large Multimodal Models (LMMs) are inherently modular, consisting of vision and audio encoders, projectors, and large language models. Yet, they are almost always executed monolithically, which underutilizes the heterogeneous accelerators (NPUs, GPUs, DSPs) in modern SoCs and leads to high end-to-end latency. In this paper, we present NANOMIND, a hardware--software co-design inference framework for Large Multimodal Models (LMMs) that breaks large models into modular ``bricks'' (vision, language, audio, etc.) and maps each to its ideal accelerator. The key insight is that large models can be broken into modular components and scheduled to run on the most appropriate compute units. It performs module-level dynamic offloading across accelerators on unified-memory SoCs. By combining customized hardware design, system-level scheduling, and optimized low-bit computation kernels, we demonstrate our framework with a compact, battery-powered device capable of running LMMs entirely on device. This prototype functions as a self-contained intelligent assistant that requires no network connectivity, while achieving higher throughput and superior power efficiency under strict resource constraints. The design further bypasses CPU bottlenecks and reduces redundant memory usage through token-aware buffer management and module-level coordination. Our system outperforms existing implementations in resource efficiency, cutting energy consumption by 42.3\% and GPU memory usage by 11.2\%. This enables a battery-powered device to run LLaVA-OneVision with a camera for nearly half a day and LLaMA-3-8B for voice interactions up to almost 20.8 hours.
♻ ☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
♻ ☆ MOOSE-Chem: Large Language Models for Rediscovering Unseen Chemistry Scientific Hypotheses ICLR 2025
Scientific discovery plays a pivotal role in advancing human society, and recent progress in large language models (LLMs) suggests their potential to accelerate this process. However, it remains unclear whether LLMs can autonomously generate novel and valid hypotheses in chemistry. In this work, we investigate whether LLMs can discover high-quality chemistry hypotheses given only a research background-comprising a question and/or a survey-without restriction on the domain of the question. We begin with the observation that hypothesis discovery is a seemingly intractable task. To address this, we propose a formal mathematical decomposition grounded in a fundamental assumption: that most chemistry hypotheses can be composed from a research background and a set of inspirations. This decomposition leads to three practical subtasks-retrieving inspirations, composing hypotheses with inspirations, and ranking hypotheses - which together constitute a sufficient set of subtasks for the overall scientific discovery task. We further develop an agentic LLM framework, MOOSE-Chem, that is a direct implementation of this mathematical decomposition. To evaluate this framework, we construct a benchmark of 51 high-impact chemistry papers published and online after January 2024, each manually annotated by PhD chemists with background, inspirations, and hypothesis. The framework is able to rediscover many hypotheses with high similarity to the groundtruth, successfully capturing the core innovations-while ensuring no data contamination since it uses an LLM with knowledge cutoff date prior to 2024. Finally, based on LLM's surprisingly high accuracy on inspiration retrieval, a task with inherently out-of-distribution nature, we propose a bold assumption: that LLMs may already encode latent scientific knowledge associations not yet recognized by humans.
comment: Accepted by ICLR 2025
♻ ☆ Prompting is not Enough: Exploring Knowledge Integration and Controllable Generation
Open-domain question answering (OpenQA) represents a cornerstone in natural language processing (NLP), primarily focused on extracting answers from unstructured textual data. With the rapid advancements in Large Language Models (LLMs), LLM-based OpenQA methods have reaped the benefits of emergent understanding and answering capabilities enabled by massive parameters compared to traditional methods. However, most of these methods encounter two critical challenges: how to integrate knowledge into LLMs effectively and how to adaptively generate results with specific answer formats for various task situations. To address these challenges, we propose a novel framework named GenKI, which aims to improve the OpenQA performance by exploring Knowledge Integration and controllable Generation on LLMs simultaneously. Specifically, we first train a dense passage retrieval model to retrieve associated knowledge from a given knowledge base. Subsequently, we introduce a novel knowledge integration model that incorporates the retrieval knowledge into instructions during fine-tuning to intensify the model. Furthermore, to enable controllable generation in LLMs, we leverage a certain fine-tuned LLM and an ensemble based on text consistency incorporating all coherence, fluency, and answer format assurance. Finally, extensive experiments conducted on the TriviaQA, MSMARCO, and CMRC2018 datasets, featuring diverse answer formats, have demonstrated the effectiveness of GenKI with comparison of state-of-the-art baselines. Moreover, ablation studies have disclosed a linear relationship between the frequency of retrieved knowledge and the model's ability to recall knowledge accurately against the ground truth. Our code of GenKI is available at https://github.com/USTC-StarTeam/GenKI
comment: 13 pages, 5 figures
♻ ☆ TrajAgent: An LLM-Agent Framework for Trajectory Modeling via Large-and-Small Model Collaboration NeurIPS 2025
Trajectory modeling, which includes research on trajectory data pattern mining and future prediction, has widespread applications in areas such as life services, urban transportation, and public administration. Numerous methods have been proposed to address specific problems within trajectory modeling. However, the heterogeneity of data and the diversity of trajectory tasks make effective and reliable trajectory modeling an important yet highly challenging endeavor, even for domain experts. \fix In this paper, we propose \textit{TrajAgent}, a agent framework powered by large language models (LLMs), designed to facilitate robust and efficient trajectory modeling through automation modeling. This framework leverages and optimizes diverse specialized models to address various trajectory modeling tasks across different datasets effectively. \unfix~In \textit{TrajAgent}, we first develop \textit{UniEnv}, an execution environment with a unified data and model interface, to support the execution and training of various models. Building on \textit{UniEnv}, we introduce an agentic workflow designed for automatic trajectory modeling across various trajectory tasks and data. Furthermore, we introduce collaborative learning schema between LLM-based agents and small speciallized models, to enhance the performance of the whole framework effectively. Extensive experiments on four tasks using four real-world datasets demonstrate the effectiveness of \textit{TrajAgent} in automated trajectory modeling, achieving a performance improvement of \fix 2.38\%-69.91\% \unfix over baseline methods. The codes and data can be accessed via https://github.com/tsinghua-fib-lab/TrajAgent.
comment: Accepted by NeurIPS 2025, https://github.com/tsinghua-fib-lab/TrajAgent
♻ ☆ LLMs can hide text in other text of the same length
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages
♻ ☆ MOOSE-Chem2: Exploring LLM Limits in Fine-Grained Scientific Hypothesis Discovery via Hierarchical Search NeurIPS 2025
Large language models (LLMs) have shown promise in automating scientific hypothesis generation, yet existing approaches primarily yield coarse-grained hypotheses lacking critical methodological and experimental details. We introduce and formally define the new task of fine-grained scientific hypothesis discovery, which entails generating detailed, experimentally actionable hypotheses from coarse initial research directions. We frame this as a combinatorial optimization problem and investigate the upper limits of LLMs' capacity to solve it when maximally leveraged. Specifically, we explore four foundational questions: (1) how to best harness an LLM's internal heuristics to formulate the fine-grained hypothesis it itself would judge as the most promising among all the possible hypotheses it might generate, based on its own internal scoring-thus defining a latent reward landscape over the hypothesis space; (2) whether such LLM-judged better hypotheses exhibit stronger alignment with ground-truth hypotheses; (3) whether shaping the reward landscape using an ensemble of diverse LLMs of similar capacity yields better outcomes than defining it with repeated instances of the strongest LLM among them; and (4) whether an ensemble of identical LLMs provides a more reliable reward landscape than a single LLM. To address these questions, we propose a hierarchical search method that incrementally proposes and integrates details into the hypothesis, progressing from general concepts to specific experimental configurations. We show that this hierarchical process smooths the reward landscape and enables more effective optimization. Empirical evaluations on a new benchmark of expert-annotated fine-grained hypotheses from recent literature show that our method consistently outperforms strong baselines.
comment: Accepted by NeurIPS 2025
♻ ☆ The Atlas of In-Context Learning: How Attention Heads Shape In-Context Retrieval Augmentation NeurIPS 2025
Large language models are able to exploit in-context learning to access external knowledge beyond their training data through retrieval-augmentation. While promising, its inner workings remain unclear. In this work, we shed light on the mechanism of in-context retrieval augmentation for question answering by viewing a prompt as a composition of informational components. We propose an attribution-based method to identify specialized attention heads, revealing in-context heads that comprehend instructions and retrieve relevant contextual information, and parametric heads that store entities' relational knowledge. To better understand their roles, we extract function vectors and modify their attention weights to show how they can influence the answer generation process. Finally, we leverage the gained insights to trace the sources of knowledge used during inference, paving the way towards more safe and transparent language models.
comment: Accepted at NeurIPS 2025
♻ ☆ TaoSR1: The Thinking Model for E-commerce Relevance Search
Query-product relevance prediction is a core task in e-commerce search. BERT-based models excel at semantic matching but lack complex reasoning capabilities. While Large Language Models (LLMs) are explored, most still use discriminative fine-tuning or distill to smaller models for deployment. We propose a framework to directly deploy LLMs for this task, addressing key challenges: Chain-of-Thought (CoT) error accumulation, discriminative hallucination, and deployment feasibility. Our framework, TaoSR1, involves three stages: (1) Supervised Fine-Tuning (SFT) with CoT to instill reasoning; (2) Offline sampling with a pass@N strategy and Direct Preference Optimization (DPO) to improve generation quality; and (3) Difficulty-based dynamic sampling with Group Relative Policy Optimization (GRPO) to mitigate discriminative hallucination. Additionally, post-CoT processing and a cumulative probability-based partitioning method enable efficient online deployment. TaoSR1 significantly outperforms baselines on offline datasets and achieves substantial gains in online side-by-side human evaluations, introducing a novel paradigm for applying CoT reasoning to relevance classification.
♻ ☆ Thought Anchors: Which LLM Reasoning Steps Matter?
Current frontier large-language models rely on reasoning to achieve state-of-the-art performance. Many existing interpretability are limited in this area, as standard methods have been designed to study single forward passes of a model rather than the multi-token computational steps that unfold during reasoning. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We introduce a black-box method that measures each sentence's counterfactual importance by repeatedly sampling replacement sentences from the model, filtering for semantically different ones, and continuing the chain of thought from that point onwards to quantify the sentence's impact on the distribution of final answers. We discover that certain sentences can have an outsized impact on the trajectory of the reasoning trace and final answer. We term these sentences \textit{thought anchors}. These are generally planning or uncertainty management sentences, and specialized attention heads consistently attend from subsequent sentences to thought anchors. We further show that examining sentence-sentence causal links within a reasoning trace gives insight into a model's behavior. Such information can be used to predict a problem's difficulty and the extent different question domains involve sequential or diffuse reasoning. As a proof-of-concept, we demonstrate that our techniques together provide a practical toolkit for analyzing reasoning models by conducting a detailed case study of how the model solves a difficult math problem, finding that our techniques yield a consistent picture of the reasoning trace's structure. We provide an open-source tool (thought-anchors.com) for visualizing the outputs of our methods on further problems. The convergence across our methods shows the potential of sentence-level analysis for a deeper understanding of reasoning models.
comment: Paul C. Bogdan and Uzay Macar contributed equally to this work, and their listed order was determined by coinflip. Neel Nanda and Arthur Conmy contributed equally to this work as senior authors, and their listed order was determined by coinflip
♻ ☆ ThinkBrake: Mitigating Overthinking in Tool Reasoning
Small reasoning models (SRMs) often overthink during tool use: they reach a correct tool-argument configuration, then continue reasoning and overwrite it with an incorrect final call. We diagnose overthinking via oracle rollouts that inject at sentence boundaries. On the Berkeley Function Calling Leaderboard (BFCL), this oracle termination lifts average accuracy from 85.8\% to 94.2\% while reducing tokens by 80-94\%, revealing substantial recoverable headroom and potential redundant reasoning. While prior work on concise reasoning has largely targeted mathematics, tool reasoning remains underexplored. We adapt various early-termination baselines to tool use and introduce ThinkBrake, a training-free decoding heuristic. ThinkBrake monitors the log-probability margin between and the current top token at sentence boundaries and triggers termination when this margin becomes small. Across BFCL's single turn, non-live and live splits, ThinkBrake preserves or improves accuracy while reducing tokens up to 25\%, outperforming various baselines.
♻ ☆ OpenS2S: Advancing Fully Open-Source End-to-End Empathetic Large Speech Language Model
Empathetic interaction is a cornerstone of human-machine communication, due to the need for understanding speech enriched with paralinguistic cues and generating emotional and expressive responses. However, the most powerful empathetic LSLMs are increasingly closed off, leaving the crucial details about the architecture, data and development opaque to researchers. Given the critical need for transparent research into the LSLMs and empathetic behavior, we present OpenS2S, a fully open-source, transparent and end-to-end LSLM designed to enable empathetic speech interactions. Based on our empathetic speech-to-text model BLSP-Emo, OpenS2S further employs a streaming interleaved decoding architecture to achieve low-latency speech generation. To facilitate end-to-end training, OpenS2S incorporates an automated data construction pipeline that synthesizes diverse, high-quality empathetic speech dialogues at low cost. By leveraging large language models to generate empathetic content and controllable text-to-speech systems to introduce speaker and emotional variation, we construct a scalable training corpus with rich paralinguistic diversity and minimal human supervision. We release the fully open-source OpenS2S model, including the dataset, model weights, pre-training and fine-tuning codes, to empower the broader research community and accelerate innovation in empathetic speech systems. The project webpage can be accessed at https://casia-lm.github.io/OpenS2S
comment: Technical Report, Update on OpenS2S_v1.5
♻ ☆ When Personalization Meets Reality: A Multi-Faceted Analysis of Personalized Preference Learning
While Reinforcement Learning from Human Feedback (RLHF) is widely used to align Large Language Models (LLMs) with human preferences, it typically assumes homogeneous preferences across users, overlooking diverse human values and minority viewpoints. Although personalized preference learning addresses this by tailoring separate preferences for individual users, the field lacks standardized methods to assess its effectiveness. We present a multi-faceted evaluation framework that measures not only performance but also fairness, unintended effects, and adaptability across varying levels of preference divergence. Through extensive experiments comparing eight personalization methods across three preference datasets, we demonstrate that performance differences between methods could reach 36% when users strongly disagree, and personalization can introduce up to 20% safety misalignment. These findings highlight the critical need for holistic evaluation approaches to advance the development of more effective and inclusive preference learning systems.
♻ ☆ Input Matters: Evaluating Input Structure's Impact on LLM Summaries of Sports Play-by-Play
A major concern when deploying LLMs in accuracy-critical domains such as sports reporting is that the generated text may not faithfully reflect the input data. We quantify how input structure affects hallucinations and other factual errors in LLM-generated summaries of NBA play-by-play data, across three formats: row-structured, JSON and unstructured. We manually annotated 3,312 factual errors across 180 game summaries produced by two models, Llama-3.1-70B and Qwen2.5-72B. Input structure has a strong effect: JSON input reduces error rates by 69% for Llama and 65% for Qwen compared to unstructured input, while row-structured input reduces errors by 54% for Llama and 51% for Qwen. A two-way repeated measures ANOVA shows that input structure accounts for over 80% of the variance in error rates, with Tukey HSD post hoc tests confirming statistically significant differences between all input formats.
comment: Accepted at INLG 2025
♻ ☆ LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora
Retrieval-Augmented Generation (RAG) is widely used to mitigate hallucinations of Large Language Models (LLMs) by leveraging external knowledge. While effective for simple queries, traditional RAG systems struggle with large-scale, unstructured corpora where information is fragmented. Recent advances incorporate knowledge graphs to capture relational structures, enabling more comprehensive retrieval for complex, multi-hop reasoning tasks. However, existing graph-based RAG (GraphRAG) methods rely on unstable and costly relation extraction for graph construction, often producing noisy graphs with incorrect or inconsistent relations that degrade retrieval quality. In this paper, we revisit the pipeline of existing GraphRAG systems and propose LinearRAG (Linear Graph-based Retrieval-Augmented Generation), an efficient framework that enables reliable graph construction and precise passage retrieval. Specifically, LinearRAG constructs a relation-free hierarchical graph, termed Tri-Graph, using only lightweight entity extraction and semantic linking, avoiding unstable relation modeling. This new paradigm of graph construction scales linearly with corpus size and incurs no extra token consumption, providing an economical and reliable indexing of the original passages. For retrieval, LinearRAG adopts a two-stage strategy: (i) relevant entity activation via local semantic bridging, followed by (ii) passage retrieval through global importance aggregation. Extensive experiments on four datasets demonstrate that LinearRAG significantly outperforms baseline models.
♻ ☆ Multi-turn Training with Basic Human Feedback Helps Little on LLM Reasoning
The reasoning capabilities of Large Language Models (LLMs) are typically developed through the single-turn reinforcement learning, whereas real-world applications often involve multi-turn interactions with human feedback, leading to a potential mismatch between training and deployment conditions. In this work, we study whether multi-turn training with human feedback is necessary for reasoning tasks. We compare conventional single-turn training with three multi-turn strategies and reach contrary conclusions to previous research. We find that models trained in a single-turn setting generalize effectively to both single- and multi-turn evaluations, while models trained with multi-turn strategies exhibit a significant degradation in single-turn reasoning performance. These results suggest that for tasks with complete information, robust single-turn training remains more effective and reliable, as multi-turn training with basic feedback provides limited benefits and can even degrade reasoning capabilities.
♻ ☆ StereoDetect: Detecting Stereotypes and Anti-stereotypes the Correct Way Using Social Psychological Underpinnings
Stereotypes are known to have very harmful effects, making their detection critically important. However, current research predominantly focuses on detecting and evaluating stereotypical biases, thereby leaving the study of stereotypes in its early stages. Our study revealed that many works have failed to clearly distinguish between stereotypes and stereotypical biases, which has significantly slowed progress in advancing research in this area. Stereotype and Anti-stereotype detection is a problem that requires social knowledge; hence, it is one of the most difficult areas in Responsible AI. This work investigates this task, where we propose a five-tuple definition and provide precise terminologies disentangling stereotypes, anti-stereotypes, stereotypical bias, and general bias. We provide a conceptual framework grounded in social psychology for reliable detection. We identify key shortcomings in existing benchmarks for this task of stereotype and anti-stereotype detection. To address these gaps, we developed StereoDetect, a well curated, definition-aligned benchmark dataset designed for this task. We show that sub-10B language models and GPT-4o frequently misclassify anti-stereotypes and fail to recognize neutral overgeneralizations. We demonstrate StereoDetect's effectiveness through multiple qualitative and quantitative comparisons with existing benchmarks and models fine-tuned on them. The dataset and code is available at https://github.com/KaustubhShejole/StereoDetect.
♻ ☆ Cohort Discovery: A Survey on LLM-Assisted Clinical Trial Recruitment
Recent advances in LLMs have greatly improved general-domain NLP tasks. Yet, their adoption in critical domains, such as clinical trial recruitment, remains limited. As trials are designed in natural language and patient data is represented as both structured and unstructured text, the task of matching trials and patients benefits from knowledge aggregation and reasoning abilities of LLMs. Classical approaches are trial-specific and LLMs with their ability to consolidate distributed knowledge hold the potential to build a more general solution. Yet recent applications of LLM-assisted methods rely on proprietary models and weak evaluation benchmarks. In this survey, we are the first to analyze the task of trial-patient matching and contextualize emerging LLM-based approaches in clinical trial recruitment. We critically examine existing benchmarks, approaches and evaluation frameworks, the challenges to adopting LLM technologies in clinical research and exciting future directions.
♻ ☆ Can Confidence Estimates Decide When Chain-of-Thought Is Necessary for LLMs?
Chain-of-thought (CoT) prompting has emerged as a common technique for enhancing the reasoning abilities of large language models (LLMs). While extended reasoning can boost accuracy on complex tasks, it is often unnecessary and substantially increases token usage, limiting the practicality of reasoning models in many scenarios. Recent models, such as GPT-OSS and Qwen3, expose controls that enable users to adjust the length of CoT or determine whether it is used at all. Yet, it remains unclear when CoT should be used: on some tasks it improves performance, while on others it provides little benefit or even harms performance. We address this challenge with confidence-gated CoT, where a model invokes reasoning only when confidence in its direct answer is low. To this end, we present the first systematic study of training-free confidence estimation methods for CoT gating. Specifically, we evaluate four training-free confidence estimation methods and compare them to a random baseline and an oracle that always knows when CoT is needed. Through extensive experiments, we show that existing training-free confidence measures can reduce redundant CoT and outperform randomly invoked CoT. However, the utility of individual confidence measures is inconsistent, varying with both the dataset and the model, underscoring the difficulty of deploying confidence-gated CoT in practice. By analysing both strengths and failure modes, our study highlights the potential and limitations of current methods and paves the way toward more reliable adaptive gating of CoT.
comment: Under Review
♻ ☆ First SFT, Second RL, Third UPT: Continual Improving Multi-Modal LLM Reasoning via Unsupervised Post-Training NeurIPS 2025
Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL), which require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. This limitation has motivated a growing interest in unsupervised paradigms as a third stage of post-training after SFT and RL. While recent efforts have explored this direction, their methods are complex and difficult to iterate. To address this, we propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs, enabling continual self-improvement without any external supervision. The training method of MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that such training method effectively improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3\%$\rightarrow$72.9\% on MathVista, 62.9\%$\rightarrow$68.7\% on We-Math), using standard dataset without ground truth labels. To further explore scalability, we extend our framework to a data self-generation setting, designing two strategies that prompt the MLLM to synthesize new training samples on its own. Additional experiments show that combining these synthetic data with the unsupervised training method can also boost performance, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for autonomous enhancement of MLLMs, serving as a critical third step after initial SFT and RL in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.
comment: Accepted by NeurIPS 2025
♻ ☆ DeepOmni: Towards Seamless and Smart Speech Interaction with Adaptive Modality-Specific MoE
Native multimodal large language models (MLLMs) restructure a single large language model (LLM) into a spoken language model (SLM) capable of both speech and text generation. Compared to modular and aligned MLLMs, native MLLMs preserve richer paralinguistic features such as emotion and prosody, and generate speech responses directly within the backbone LLM rather than using a separate speech decoder. This integration also results in lower response latency and smoother interaction. However, native MLLMs suffer from catastrophic forgetting and performance degradation because the available paired speech-text data is insufficient to support the pretraining of MLLMs compared to the vast amount of text data required to pretrain text LLMs. To address this issue, we propose DeepTalk, a framework for adaptive modality expert learning based on a Mixture of Experts (MoE) architecture. DeepTalk first adaptively distinguishes modality experts according to their modality load within the LLM. Each modality expert then undergoes specialized single-modality training, followed by joint multimodal collaborative training. As a result, DeepTalk incurs only a 5.5% performance drop compared to the original LLM, which is significantly lower than the average performance drop of over 20% typically seen in native MLLMs (such as GLM-4-Voice), and is on par with modular MLLMs. Meanwhile, the end-to-end dialogue latency remains within 0.5 seconds, ensuring a seamless and intelligent speech interaction experience. Code and models are released at https://github.com/talkking/DeepTalk.
comment: Under Review
♻ ☆ COUNTDOWN: Contextually Sparse Activation Filtering Out Unnecessary Weights in Down Projection EMNLP 2025
The growing size of large language models has created significant computational inefficiencies. To address this challenge, sparse activation methods selectively deactivates non-essential parameters during inference, reducing computational costs in FFNN layers. While existing methods focus on non-linear gating mechanisms, we hypothesize that the sparsity of the FFNN layer lies globally in the form of a linear combination over its internal down projection matrix. Based on this insight, we propose two methods: M-COUNTDOWN, leveraging indirect coefficients, and D-COUNTDOWN, utilizing direct coefficients of the linear combination. Experimental results demonstrate that D-COUNTDOWN can omit 90% of computations with performance loss as low as 5.5% ideally, while M-COUNTDOWN provides a predictor-free solution with up to 29.4% better performance preservation compared to existing methods. Our specialized kernel implementations effectively realize these theoretical gains into substantial real-world acceleration.
comment: EMNLP 2025 (Main Track)
♻ ☆ GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability
Improving the general capabilities of large language models (LLMs) is an active research topic. As a common data structure in many real-world domains, understanding graph data is a crucial part of advancing general intelligence. To this end, we propose a dynamic benchmark named GraphInstruct in this paper, which comprehensively includes 21 classical graph reasoning tasks, providing diverse graph generation pipelines and detailed intermediate reasoning steps for each sample. Based on GraphInstruct, we develop GraphSolver via efficient instruction-tuning, which demonstrates prominent graph understanding capability compared to other open-sourced LLMs. To further endow LLMs with multi-step graph reasoning capability, we propose a label-mask training strategy and build GraphSolver+, which leverages masked supervision on intermediate reasoning tokens to emphasize crucial node-identification signals. As one of the pioneering efforts to enhance the graph understanding and reasoning abilities of LLMs, extensive experiments have demonstrated the superiority of GraphSolver and GraphSolver+ over other LLMs. We sincerely hope GraphInstruct will facilitate further research on applying LLMs to graph-structured data. Our code and data are released publicly at: https://github.com/CGCL-codes/GraphInstruct.
comment: Accepted by Frontiers of Computer Science
♻ ☆ The Cross-Lingual Cost: Retrieval Biases in RAG over Arabic-English Corpora
Cross-lingual retrieval-augmented generation (RAG) is a critical capability for retrieving and generating answers across languages. Prior work in this context has mostly focused on generation and relied on benchmarks derived from open-domain sources, most notably Wikipedia. In such settings, retrieval challenges often remain hidden due to language imbalances, overlap with pretraining data, and memorized content. To address this gap, we study Arabic-English RAG in a domain-specific setting using benchmarks derived from real-world corporate datasets. Our benchmarks include all combinations of languages for the user query and the supporting document, drawn independently and uniformly at random. This enables a systematic study of multilingual retrieval behavior. Our findings reveal that retrieval is a critical bottleneck in cross-lingual domain-specific scenarios, with substantial performance drops occurring when the user query and supporting document languages differ. A key insight is that these failures stem primarily from the retriever's difficulty in ranking documents across languages. Finally, we propose two simple retrieval strategies that address this source of failure by enforcing equal retrieval from both languages or by translating the query, resulting in substantial improvements in cross-lingual and overall performance. These results highlight meaningful opportunities for improving multilingual retrieval, particularly in practical, real-world RAG applications.
comment: Accepted to ArabicNLP 2025
♻ ☆ ContextAgent: Context-Aware Proactive LLM Agents with Open-World Sensory Perceptions NeurIPS 2025
Recent advances in Large Language Models (LLMs) have propelled intelligent agents from reactive responses to proactive support. While promising, existing proactive agents either rely exclusively on observations from enclosed environments (e.g., desktop UIs) with direct LLM inference or employ rule-based proactive notifications, leading to suboptimal user intent understanding and limited functionality for proactive service. In this paper, we introduce ContextAgent, the first context-aware proactive agent that incorporates extensive sensory contexts surrounding humans to enhance the proactivity of LLM agents. ContextAgent first extracts multi-dimensional contexts from massive sensory perceptions on wearables (e.g., video and audio) to understand user intentions. ContextAgent then leverages the sensory contexts and personas from historical data to predict the necessity for proactive services. When proactive assistance is needed, ContextAgent further automatically calls the necessary tools to assist users unobtrusively. To evaluate this new task, we curate ContextAgentBench, the first benchmark for evaluating context-aware proactive LLM agents, covering 1,000 samples across nine daily scenarios and twenty tools. Experiments on ContextAgentBench show that ContextAgent outperforms baselines by achieving up to 8.5% and 6.0% higher accuracy in proactive predictions and tool calling, respectively. We hope our research can inspire the development of more advanced, human-centric, proactive AI assistants. The code and dataset are publicly available at https://github.com/openaiotlab/ContextAgent.
comment: Accepted by NeurIPS 2025
♻ ☆ ColorEcosystem: Powering Personalized, Standardized, and Trustworthy Agentic Service in massive-agent Ecosystem
With the rapid development of (multimodal) large language model-based agents, the landscape of agentic service management has evolved from single-agent systems to multi-agent systems, and now to massive-agent ecosystems. Current massive-agent ecosystems face growing challenges, including impersonal service experiences, a lack of standardization, and untrustworthy behavior. To address these issues, we propose ColorEcosystem, a novel blueprint designed to enable personalized, standardized, and trustworthy agentic service at scale. Concretely, ColorEcosystem consists of three key components: agent carrier, agent store, and agent audit. The agent carrier provides personalized service experiences by utilizing user-specific data and creating a digital twin, while the agent store serves as a centralized, standardized platform for managing diverse agentic services. The agent audit, based on the supervision of developer and user activities, ensures the integrity and credibility of both service providers and users. Through the analysis of challenges, transitional forms, and practical considerations, the ColorEcosystem is poised to power personalized, standardized, and trustworthy agentic service across massive-agent ecosystems. Meanwhile, we have also implemented part of ColorEcosystem's functionality, and the relevant code is open-sourced at https://github.com/opas-lab/color-ecosystem.
♻ ☆ Computational Analysis of Character Development in Holocaust Testimonies
This work presents a computational approach to analyze character development along the narrative timeline. The analysis characterizes the inner and outer changes the protagonist undergoes within a narrative, and the interplay between them. We consider transcripts of Holocaust survivor testimonies as a test case, each telling the story of an individual in first-person terms. We focus on the survivor's religious trajectory, examining the evolution of their disposition toward religious belief and practice along the testimony. Clustering the resulting trajectories in the dataset, we identify common sequences in the data. Our findings highlight multiple common structures of religiosity across the narratives: in terms of belief, most present a constant disposition, while for practice, most present an oscillating structure, serving as valuable material for historical and sociological research. This work demonstrates the potential of natural language processing techniques for analyzing character evolution through thematic trajectories in narratives.
♻ ☆ FaithLM: Towards Faithful Explanations for Large Language Models
Large language models (LLMs) increasingly produce natural language explanations, yet these explanations often lack faithfulness, and they do not reliably reflect the evidence the model uses to decide. We introduce FaithLM, a model-agnostic framework that evaluates and improves the faithfulness of LLM explanations without token masking or task-specific heuristics. FaithLM formalizes explanation faithfulness as an intervention property: a faithful explanation should yield a prediction shift when its content is contradicted. Theoretical analysis shows that the resulting contrary-hint score is a sound and discriminative estimator of faithfulness. Building on this principle, FaithLM iteratively refines both the elicitation prompt and the explanation to maximize the measured score. Experiments on three multi-domain datasets and multiple LLM backbones demonstrate that FaithLM consistently increases faithfulness and produces explanations more aligned with human rationales than strong self-explanation baselines. These findings highlight that intervention-based evaluation, coupled with iterative optimization, provides a principled route toward faithful and reliable LLM explanations.
♻ ☆ Agent KB: Leveraging Cross-Domain Experience for Agentic Problem Solving
AI agent frameworks operate in isolation, forcing agents to rediscover solutions and repeat mistakes across different systems. Despite valuable problem-solving experiences accumulated by frameworks like smolagents, OpenHands, and OWL, this knowledge remains trapped within individual systems, preventing the emergence of collective intelligence. Current memory systems focus on individual agents or framework-specific demonstrations, failing to enable cross-architecture knowledge transfer. We introduce AGENT KB, a universal memory infrastructure enabling seamless experience sharing across heterogeneous agent frameworks without retraining. AGENT KB aggregates trajectories into a structured knowledge base and serves lightweight APIs. At inference time, hybrid retrieval operates through two stages: planning seeds agents with cross-domain workflows, while feedback applies targeted diagnostic fixes. A disagreement gate ensures retrieved knowledge enhances rather than disrupts reasoning, addressing knowledge interference in cross-framework transfer. We validate AGENT KB across major frameworks on GAIA, Humanity's Last Exam, GPQA, and SWE-bench. Results show substantial improvements across diverse model families: compared to baseline pass@1, smolagents with AGENT KB achieve up to 18.7pp gains at pass@3 (55.2% -> 73.9%), while OpenHands improves 4.0pp on SWE-bench pass@1 (24.3% -> 28.3%). Similar improvements are observed across all base model families. Ablations confirm that hybrid retrieval and feedback stages are essential, with automatically generated experiences matching manual curation. This establishes the foundation for collective agent intelligence through shared memory infrastructures.
♻ ☆ Detecting and Rectifying Noisy Labels: A Similarity-based Approach
Label noise in datasets could significantly damage the performance and robustness of deep neural networks (DNNs) trained on these datasets. As the size of modern DNNs grows, there is a growing demand for automated tools for detecting such errors. In this paper, we propose post-hoc, model-agnostic noise detection and rectification methods utilizing the penultimate feature from a DNN. Our idea is based on the observation that the similarity between the penultimate feature of a mislabeled data point and its true class data points is higher than that for data points from other classes, making the probability of label occurrence within a tight, similar cluster informative for detecting and rectifying errors. Through theoretical and empirical analyses, we demonstrate that our approach achieves high detection performance across diverse, realistic noise scenarios and can automatically rectify these errors to improve dataset quality. Our implementation is available at https://anonymous.4open.science/r/noise-detection-and-rectification-AD8E.
♻ ☆ Unified Sparse Mixture of Experts
Sparse Mixture of Experts (SMoEs) models scale the capacity of models while maintaining constant computational overhead. Early designs typically relied on a fixed value of $k$, where $k$ represents either the number of experts selected per token or the number of tokens assigned per expert. However, these approaches encounter three key limitations: they may fail to route to important experts or tokens, may assign irrelevant ones, and often suffer from representation collapse among experts. This paper reexamines SMoEs through the lens of \textit{Linear Programming}, and proposes a Unified Sparse Mixture of Experts (USMoE) framework that addresses these limitations. Specifically, our approach introduces a unified mechanism that integrates information from both the expert and token dimensions, and a unified scoring function that linearly combines similarity scores between experts and tokens. We provide both theoretical justification and empirical evidence demonstrating USMoE's effectiveness in overcoming the limitations of traditional routing methods. Through comprehensive evaluations on both clean and corrupted settings for large language models and vision tasks, under both training-free and training scenarios, USMoE achieves up to a 10\% performance improvement over standard approaches or reduces inference costs by up to 14\%, while maintaining competitive accuracy.
comment: 26 pages
♻ ☆ Learning to Better Search with Language Models via Guided Reinforced Self-Training NeurIPS 2025
While language models have shown remarkable performance across diverse tasks, they still encounter challenges in complex reasoning scenarios. Recent research suggests that language models trained on linearized search traces toward solutions, rather than solely on the final solutions, exhibit improved generalization, despite the search traces being potentially noisy or suboptimal. However, relying on such imperfect traces can result in inefficient use of test-time compute. To address this, we propose guided reinforced self-training (Guided-ReST), a fine-tuning algorithm designed to improve the model's capability for effective search during inference. The key insight behind Guided-ReST is that optimal solutions can serve as valuable step-by-step landmarks to guide the model's search process. Based on this insight, we introduce a novel data generation method that seamlessly incorporates optimal solutions into the model's search procedure, enabling the generation of high-quality search traces. By fine-tuning the model on these search traces, we effectively distill improved search strategies into the model. Our method significantly enhances the search capabilities of language models on arithmetic reasoning and code self-repair tasks, including Countdown, CodeContests, and CodeForces. We release the source code at https://github.com/snu-mllab/guided-rest.
comment: Accepted at NeurIPS 2025
♻ ☆ Part I: Tricks or Traps? A Deep Dive into RL for LLM Reasoning
Reinforcement learning for LLM reasoning has rapidly emerged as a prominent research area, marked by a significant surge in related studies on both algorithmic innovations and practical applications. Despite this progress, several critical challenges remain, including the absence of standardized guidelines for employing RL techniques and a fragmented understanding of their underlying mechanisms. Additionally, inconsistent experimental settings, variations in training data, and differences in model initialization have led to conflicting conclusions, obscuring the key characteristics of these techniques and creating confusion among practitioners when selecting appropriate techniques. This paper systematically reviews widely adopted RL techniques through rigorous reproductions and isolated evaluations within a unified open-source framework. We analyze the internal mechanisms, applicable scenarios, and core principles of each technique through fine-grained experiments, including datasets of varying difficulty, model sizes, and architectures. Based on these insights, we present clear guidelines for selecting RL techniques tailored to specific setups, and provide a reliable roadmap for practitioners navigating the RL for the LLM domain. Finally, we reveal that a minimalist combination of two techniques can unlock the learning capability of critic-free policies using vanilla PPO loss. The results demonstrate that our simple combination consistently improves performance, surpassing strategies like GRPO and DAPO.
comment: 26 pages, 21 figures
♻ ☆ UNO-Bench: A Unified Benchmark for Exploring the Compositional Law Between Uni-modal and Omni-modal in OmniModels
Multimodal Large Languages models have been progressing from uni-modal understanding toward unifying visual, audio and language modalities, collectively termed omni models. However, the correlation between uni-modal and omni-modal remains unclear, which requires comprehensive evaluation to drive omni model's intelligence evolution. In this work, we propose a novel, high quality and UNified Omni model benchmark, UNO-Bench, which effectively assesses both UNi-modal and Omni-modal capabilities. The benchmark consists of 3730 human curated samples, with 98% cross-modality solvability, across 44 task types, and an innovative multi-step open-ended question type for assessing complex reasoning. Besides, a general scoring model supporting 6 question types is proposed for automated evaluation with 95% accuracy. Experimental result shows the Compositional Law between omni-modal and uni-modal performance and the omni-modal capability manifests as a bottleneck effect on weak models, while exhibiting synergistic promotion on strong models. The code and data are available at https://github.com/meituan-longcat/UNO-Bench
comment: v2: New title and new abstract. Updated evaluation results and analysis. The benchmark name has been updated to UNO-Bench from MMAO-Bench. Work in progress. Code and data are available at https://github.com/meituan-longcat/UNO-Bench
♻ ☆ Unsupervised Classification of English Words Based on Phonological Information: Discovery of Germanic and Latinate Clusters
Cross-linguistically, native words and loanwords follow different phonological rules. In English, for example, words of Germanic and Latinate origin exhibit different stress patterns, and a certain syntactic structure, double-object datives, is predominantly associated with Germanic verbs rather than Latinate verbs. As a cognitive model, however, such etymology-based generalizations face challenges in terms of learnability, since the historical origins of words are presumably inaccessible information for general language learners. In this study, we present computational evidence indicating that the Germanic-Latinate distinction in the English lexicon is learnable from the phonotactic information of individual words. Specifically, we performed an unsupervised clustering on corpus-extracted words, and the resulting word clusters largely aligned with the etymological distinction. The model-discovered clusters also recovered various linguistic generalizations documented in the previous literature regarding the corresponding etymological classes. Moreover, our findings also uncovered previously unrecognized features of the quasi-etymological clusters.
♻ ☆ The Gray Zone of Faithfulness: Taming Ambiguity in Unfaithfulness Detection
Ensuring that Large Language Models (LLMs) generate summaries faithful to a given source document is essential for real-world applications. While prior research has explored LLM faithfulness, existing benchmarks suffer from annotation ambiguity, primarily due to the ill-defined boundary of permissible external knowledge in generated outputs. For instance, common sense is often incorporated into responses and labeled as "faithful", yet the acceptable extent of such knowledge remains unspecified, leading to inconsistent annotations. To address this issue, we propose a novel faithfulness annotation framework, which introduces an intermediate category, Out-Dependent, to classify cases where external knowledge is required for verification. Using this framework, we construct VeriGray (Verification with the Gray Zone) -- a new unfaithfulness detection benchmark in summarization. Statistics reveal that even SOTA LLMs, such as GPT-5, exhibit hallucinations ($\sim 6\%$ of sentences) in summarization tasks. Moreover, a substantial proportion ($\sim 8\%$ on average of models) of generated sentences fall into the Out-Dependent category, underscoring the importance of resolving annotation ambiguity in unfaithfulness detection benchmarks. Experiments demonstrate that our benchmark poses significant challenges to multiple baseline methods, indicating considerable room for future improvement.
comment: Updates: 1. further polishing the writing; 2. adding the motivation of investigating selective prediction for unfaithfulness detectors
♻ ☆ Exploiting Vocabulary Frequency Imbalance in Language Model Pre-training NeurIPS 2025
Large language models are trained with tokenizers, and the resulting token distribution is highly imbalanced: a few words dominate the stream while most occur rarely. Recent practice favors ever-larger vocabularies, but it is unclear where the benefit comes from. To this end, we perform a controlled study that scales the vocabulary of the language model from 24K to 196K while holding data, computation, and optimization unchanged. We begin by quantifying the complexity of tokenized text -- formalized via Kolmogorov complexity -- and show that larger vocabularies reduce this complexity. Above 24K, every common word is already tokenized as a single token, so enlarging vocabulary only deepens the relative token-frequency imbalance. Word-level loss decomposition shows that larger vocabularies reduce cross-entropy loss almost exclusively by lowering uncertainty on the 2,500 most frequent words, even though loss on the rare tail rises. The same frequent words cover roughly 75% of tokens in downstream benchmarks, so this training advantage transfers intact. We further show that enlarging model parameters with a fixed vocabulary yields the same frequent-word benefit. Our results recast "bigger vocabularies help" as "lowering complexity of tokenized text helps," offering a simple, principled knob for tokenizer--model co-design and clarifying the loss dynamics that govern language model scaling in pre-training.
comment: NeurIPS 2025
♻ ☆ Know Me, Respond to Me: Benchmarking LLMs for Dynamic User Profiling and Personalized Responses at Scale
Large Language Models (LLMs) have emerged as personalized assistants for users across a wide range of tasks -- from offering writing support to delivering tailored recommendations or consultations. Over time, the interaction history between a user and an LLM can provide extensive information about an individual's traits and preferences. However, open questions remain on how well LLMs today can effectively leverage such history to (1) internalize the user's inherent traits and preferences, (2) track how the user profiling and preferences evolve over time, and (3) generate personalized responses accordingly in new scenarios. In this work, we introduce the PERSONAMEM benchmark. PERSONAMEM features curated user profiles with over 180 simulated user-LLM interaction histories, each containing up to 60 sessions of multi-turn conversations across 15 real-world tasks that require personalization. Given an in-situ user query, i.e. query issued by the user from the first-person perspective, we evaluate LLM chatbots' ability to identify the most suitable response according to the current state of the user's profile. We observe that current LLMs still struggle to recognize the dynamic evolution in users' profiles over time through direct prompting approaches. As a consequence, LLMs often fail to deliver responses that align with users' current situations and preferences, with frontier models such as GPT-4.1, o4-mini, GPT-4.5, o1, or Gemini-2.0 achieving only around 50% overall accuracy, suggesting room for improvement. We hope that PERSONAMEM, along with the user profile and conversation simulation pipeline, can facilitate future research in the development of truly user-aware chatbots. Code and data are available at github.com/bowen-upenn/PersonaMem.
comment: The 2025 Conference on Language Modeling (COLM)
♻ ☆ LoongRL: Reinforcement Learning for Advanced Reasoning over Long Contexts
Reasoning over long contexts is essential for large language models. While reinforcement learning (RL) enhances short-context reasoning by inducing "Aha" moments in chain-of-thought, the advanced thinking patterns required for long-context reasoning remain largely unexplored, and high-difficulty RL data are scarce. In this paper, we introduce LoongRL, a data-driven RL method for advanced long-context reasoning. Central to LoongRL is KeyChain, a synthesis approach that transforms short multi-hop QA into high-difficulty long-context tasks by inserting UUID chains that hide the true question among large collections of distracting documents. Solving these tasks requires the model to trace the correct chain step-by-step, identify the true question, retrieve relevant facts and reason over them to answer correctly. RL training on KeyChain data induces an emergent plan-retrieve-reason-recheck reasoning pattern that generalizes far beyond training length. Models trained at 16K effectively solve 128K tasks without prohibitive full-length RL rollout costs. On Qwen2.5-7B and 14B, LoongRL substantially improves long-context multi-hop QA accuracy by +23.5% and +21.1% absolute gains. The resulting LoongRL-14B reaches a score of 74.2, rivaling much larger frontier models such as o3-mini (74.5) and DeepSeek-R1 (74.9). It also improves long-context retrieval, passes all 128K needle-in-a-haystack stress tests, and preserves short-context reasoning capabilities.
♻ ☆ Integrated Design and Governance of Agentic AI Systems through Adaptive Information Modulation
Modern engineered systems increasingly involve complex sociotechnical environments where multiple agents, including humans and the emerging paradigm of agentic AI powered by large language models, must navigate social dilemmas that pit individual interests against collective welfare. As engineered systems evolve toward multi-agent architectures with autonomous LLM-based agents, traditional governance approaches using static rules or fixed network structures fail to address the dynamic uncertainties inherent in real-world operations. This paper presents a novel framework that integrates adaptive governance mechanisms directly into the design of sociotechnical systems through a unique separation of agent interaction networks from information flow networks. We introduce a system comprising strategic LLM-based system agents that engage in repeated interactions and a reinforcement learning-based governing agent that dynamically modulates information transparency. Unlike conventional approaches that require direct structural interventions or payoff modifications, our framework preserves agent autonomy while promoting cooperation through adaptive information governance. The governing agent learns to strategically adjust information disclosure at each timestep, determining what contextual or historical information each system agent can access. Experimental results demonstrate that this RL-based governance significantly enhances cooperation compared to static information-sharing baselines.
♻ ☆ ControlText: Unlocking Controllable Fonts in Multilingual Text Rendering without Font Annotations EMNLP
This work demonstrates that diffusion models can achieve font-controllable multilingual text rendering using just raw images without font label annotations.Visual text rendering remains a significant challenge. While recent methods condition diffusion on glyphs, it is impossible to retrieve exact font annotations from large-scale, real-world datasets, which prevents user-specified font control. To address this, we propose a data-driven solution that integrates the conditional diffusion model with a text segmentation model, utilizing segmentation masks to capture and represent fonts in pixel space in a self-supervised manner, thereby eliminating the need for any ground-truth labels and enabling users to customize text rendering with any multilingual font of their choice. The experiment provides a proof of concept of our algorithm in zero-shot text and font editing across diverse fonts and languages, providing valuable insights for the community and industry toward achieving generalized visual text rendering. Code is available at github.com/bowen-upenn/ControlText.
comment: The 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP) Findings
♻ ☆ Dynamic Retriever for In-Context Knowledge Editing via Policy Optimization EMNLP 2025
Large language models (LLMs) excel at factual recall yet still propagate stale or incorrect knowledge. In-context knowledge editing offers a gradient-free remedy suitable for black-box APIs, but current editors rely on static demonstration sets chosen by surface-level similarity, leading to two persistent obstacles: (i) a quantity-quality trade-off, and (ii) lack of adaptivity to task difficulty. We address these issues by dynamically selecting supporting demonstrations according to their utility for the edit. We propose Dynamic Retriever for In-Context Knowledge Editing (DR-IKE), a lightweight framework that (1) trains a BERT retriever with REINFORCE to rank demonstrations by editing reward, and (2) employs a learnable threshold to prune low-value examples, shortening the prompt when the edit is easy and expanding it when the task is hard. DR-IKE performs editing without modifying model weights, relying solely on forward passes for compatibility with black-box LLMs. On the COUNTERFACT benchmark, it improves edit success by up to 17.1%, reduces latency by 41.6%, and preserves accuracy on unrelated queries, demonstrating scalable and adaptive knowledge editing. The code is available at https://github.com/mwnafee/DR-IKE .
comment: Accepted at EMNLP 2025. Copyright 2025 Association for Computational Linguistics (CC BY 4.0). 12 pages, 5 figures
Computer Vision and Pattern Recognition
☆ Concerto: Joint 2D-3D Self-Supervised Learning Emerges Spatial Representations NeurIPS 2025
Humans learn abstract concepts through multisensory synergy, and once formed, such representations can often be recalled from a single modality. Inspired by this principle, we introduce Concerto, a minimalist simulation of human concept learning for spatial cognition, combining 3D intra-modal self-distillation with 2D-3D cross-modal joint embedding. Despite its simplicity, Concerto learns more coherent and informative spatial features, as demonstrated by zero-shot visualizations. It outperforms both standalone SOTA 2D and 3D self-supervised models by 14.2% and 4.8%, respectively, as well as their feature concatenation, in linear probing for 3D scene perception. With full fine-tuning, Concerto sets new SOTA results across multiple scene understanding benchmarks (e.g., 80.7% mIoU on ScanNet). We further present a variant of Concerto tailored for video-lifted point cloud spatial understanding, and a translator that linearly projects Concerto representations into CLIP's language space, enabling open-world perception. These results highlight that Concerto emerges spatial representations with superior fine-grained geometric and semantic consistency.
comment: NeurIPS 2025, produced by Pointcept, project page: https://pointcept.github.io/Concerto
☆ Track, Inpaint, Resplat: Subject-driven 3D and 4D Generation with Progressive Texture Infilling NeurIPS 2025
Current 3D/4D generation methods are usually optimized for photorealism, efficiency, and aesthetics. However, they often fail to preserve the semantic identity of the subject across different viewpoints. Adapting generation methods with one or few images of a specific subject (also known as Personalization or Subject-driven generation) allows generating visual content that align with the identity of the subject. However, personalized 3D/4D generation is still largely underexplored. In this work, we introduce TIRE (Track, Inpaint, REsplat), a novel method for subject-driven 3D/4D generation. It takes an initial 3D asset produced by an existing 3D generative model as input and uses video tracking to identify the regions that need to be modified. Then, we adopt a subject-driven 2D inpainting model for progressively infilling the identified regions. Finally, we resplat the modified 2D multi-view observations back to 3D while still maintaining consistency. Extensive experiments demonstrate that our approach significantly improves identity preservation in 3D/4D generation compared to state-of-the-art methods. Our project website is available at https://zsh2000.github.io/track-inpaint-resplat.github.io/.
comment: NeurIPS 2025, 38 pages, 22 figures
☆ PixelRefer: A Unified Framework for Spatio-Temporal Object Referring with Arbitrary Granularity
Multimodal large language models (MLLMs) have demonstrated strong general-purpose capabilities in open-world visual comprehension. However, most existing MLLMs primarily focus on holistic, scene-level understanding, often overlooking the need for fine-grained, object-centric reasoning. In this paper, we present PixelRefer, a unified region-level MLLM framework that enables advanced fine-grained understanding over user-specified regions across both images and videos. Motivated by the observation that LLM attention predominantly focuses on object-level tokens, we propose a Scale-Adaptive Object Tokenizer (SAOT) to generate compact and semantically rich object representations from free-form regions. Our analysis reveals that global visual tokens contribute mainly in early LLM layers, inspiring the design of PixelRefer-Lite, an efficient variant that employs an Object-Centric Infusion module to pre-fuse global context into object tokens. This yields a lightweight Object-Only Framework that substantially reduces computational cost while maintaining high semantic fidelity. To facilitate fine-grained instruction tuning, we curate PixelRefer-2.2M, a high-quality object-centric instruction dataset. Extensive experiments across a range of benchmarks validate that PixelRefer achieves leading performance with fewer training samples, while PixelRefer-Lite offers competitive accuracy with notable gains in efficiency.
comment: 22 pages, 13 figures
☆ PRISM-Bench: A Benchmark of Puzzle-Based Visual Tasks with CoT Error Detection
We introduce \textbf{PRISM-Bench}, a benchmark of puzzle-based visual challenges designed to evaluate not only whether models can solve problems, but how their reasoning unfolds. Unlike prior evaluations that measure only final-answer accuracy, PRISM-Bench introduces a diagnostic task: given a visual puzzle and a step-by-step chain-of-thought (CoT) containing exactly one error, models must identify the first incorrect step. This setting enables fine-grained assessment of logical consistency, error detection, and visual reasoning. The puzzles in PRISM-Bench require multi-step symbolic, geometric, and analogical reasoning, resisting shortcuts based on superficial pattern matching. Evaluations across state-of-the-art MLLMs reveal a persistent gap between fluent generation and faithful reasoning: models that produce plausible CoTs often fail to locate simple logical faults. By disentangling answer generation from reasoning verification, PRISM-Bench offers a sharper lens on multimodal reasoning competence and underscores the need for diagnostic evaluation protocols in the development of trustworthy MLLMs.
☆ InFlux: A Benchmark for Self-Calibration of Dynamic Intrinsics of Video Cameras NeurIPS 2025
Accurately tracking camera intrinsics is crucial for achieving 3D understanding from 2D video. However, most 3D algorithms assume that camera intrinsics stay constant throughout a video, which is often not true for many real-world in-the-wild videos. A major obstacle in this field is a lack of dynamic camera intrinsics benchmarks--existing benchmarks typically offer limited diversity in scene content and intrinsics variation, and none provide per-frame intrinsic changes for consecutive video frames. In this paper, we present Intrinsics in Flux (InFlux), a real-world benchmark that provides per-frame ground truth intrinsics annotations for videos with dynamic intrinsics. Compared to prior benchmarks, InFlux captures a wider range of intrinsic variations and scene diversity, featuring 143K+ annotated frames from 386 high-resolution indoor and outdoor videos with dynamic camera intrinsics. To ensure accurate per-frame intrinsics, we build a comprehensive lookup table of calibration experiments and extend the Kalibr toolbox to improve its accuracy and robustness. Using our benchmark, we evaluate existing baseline methods for predicting camera intrinsics and find that most struggle to achieve accurate predictions on videos with dynamic intrinsics. For the dataset, code, videos, and submission, please visit https://influx.cs.princeton.edu/.
comment: Accepted at NeurIPS 2025 DB Track, Camera Ready Version. Supplementary material included
☆ FARMER: Flow AutoRegressive Transformer over Pixels
Directly modeling the explicit likelihood of the raw data distribution is key topic in the machine learning area, which achieves the scaling successes in Large Language Models by autoregressive modeling. However, continuous AR modeling over visual pixel data suffer from extremely long sequences and high-dimensional spaces. In this paper, we present FARMER, a novel end-to-end generative framework that unifies Normalizing Flows (NF) and Autoregressive (AR) models for tractable likelihood estimation and high-quality image synthesis directly from raw pixels. FARMER employs an invertible autoregressive flow to transform images into latent sequences, whose distribution is modeled implicitly by an autoregressive model. To address the redundancy and complexity in pixel-level modeling, we propose a self-supervised dimension reduction scheme that partitions NF latent channels into informative and redundant groups, enabling more effective and efficient AR modeling. Furthermore, we design a one-step distillation scheme to significantly accelerate inference speed and introduce a resampling-based classifier-free guidance algorithm to boost image generation quality. Extensive experiments demonstrate that FARMER achieves competitive performance compared to existing pixel-based generative models while providing exact likelihoods and scalable training.
comment: Bytedance Seed Technical Report
☆ Lookahead Anchoring: Preserving Character Identity in Audio-Driven Human Animation
Audio-driven human animation models often suffer from identity drift during temporal autoregressive generation, where characters gradually lose their identity over time. One solution is to generate keyframes as intermediate temporal anchors that prevent degradation, but this requires an additional keyframe generation stage and can restrict natural motion dynamics. To address this, we propose Lookahead Anchoring, which leverages keyframes from future timesteps ahead of the current generation window, rather than within it. This transforms keyframes from fixed boundaries into directional beacons: the model continuously pursues these future anchors while responding to immediate audio cues, maintaining consistent identity through persistent guidance. This also enables self-keyframing, where the reference image serves as the lookahead target, eliminating the need for keyframe generation entirely. We find that the temporal lookahead distance naturally controls the balance between expressivity and consistency: larger distances allow for greater motion freedom, while smaller ones strengthen identity adherence. When applied to three recent human animation models, Lookahead Anchoring achieves superior lip synchronization, identity preservation, and visual quality, demonstrating improved temporal conditioning across several different architectures. Video results are available at the following link: https://lookahead-anchoring.github.io.
comment: Project page: https://lookahead-anchoring.github.io
☆ UrbanVLA: A Vision-Language-Action Model for Urban Micromobility
Urban micromobility applications, such as delivery robots, demand reliable navigation across large-scale urban environments while following long-horizon route instructions. This task is particularly challenging due to the dynamic and unstructured nature of real-world city areas, yet most existing navigation methods remain tailored to short-scale and controllable scenarios. Effective urban micromobility requires two complementary levels of navigation skills: low-level capabilities such as point-goal reaching and obstacle avoidance, and high-level capabilities, such as route-visual alignment. To this end, we propose UrbanVLA, a route-conditioned Vision-Language-Action (VLA) framework designed for scalable urban navigation. Our method explicitly aligns noisy route waypoints with visual observations during execution, and subsequently plans trajectories to drive the robot. To enable UrbanVLA to master both levels of navigation, we employ a two-stage training pipeline. The process begins with Supervised Fine-Tuning (SFT) using simulated environments and trajectories parsed from web videos. This is followed by Reinforcement Fine-Tuning (RFT) on a mixture of simulation and real-world data, which enhances the model's safety and adaptability in real-world settings. Experiments demonstrate that UrbanVLA surpasses strong baselines by more than 55% in the SocialNav task on MetaUrban. Furthermore, UrbanVLA achieves reliable real-world navigation, showcasing both scalability to large-scale urban environments and robustness against real-world uncertainties.
☆ More Than Generation: Unifying Generation and Depth Estimation via Text-to-Image Diffusion Models NeurIPS 2025
Generative depth estimation methods leverage the rich visual priors stored in pre-trained text-to-image diffusion models, demonstrating astonishing zero-shot capability. However, parameter updates during training lead to catastrophic degra- dation in the image generation capability of the pre-trained model. We introduce MERGE, a unified model for image generation and depth estimation, starting from a fixed pre-trained text-to-image model. MERGE demonstrates that the pre-trained text-to-image model can do more than image generation, but also expand to depth estimation effortlessly. Specifically, MERGE introduces a play- and-plug framework that enables seamless switching between image generation and depth estimation modes through simple and pluggable converters. Meanwhile, we propose a Group Reuse Mechanism to encourage parameter reuse and im- prove the utilization of the additional learnable parameters. MERGE unleashes the powerful depth estimation capability of the pre-trained text-to-image model while preserving its original image generation ability. Compared to other unified models for image generation and depth estimation, MERGE achieves state-of- the-art performance across multiple depth estimation benchmarks. The code will be made available at https://github.com/H-EmbodVis/MERGE
comment: Accepted by NeurIPS 2025. The code will be made available at https://github.com/H-EmbodVis/MERGE
☆ RobotArena $\infty$: Scalable Robot Benchmarking via Real-to-Sim Translation
The pursuit of robot generalists - instructable agents capable of performing diverse tasks across diverse environments - demands rigorous and scalable evaluation. Yet real-world testing of robot policies remains fundamentally constrained: it is labor-intensive, slow, unsafe at scale, and difficult to reproduce. Existing simulation benchmarks are similarly limited, as they train and test policies within the same synthetic domains and cannot assess models trained from real-world demonstrations or alternative simulation environments. As policies expand in scope and complexity, these barriers only intensify, since defining "success" in robotics often hinges on nuanced human judgments of execution quality. In this paper, we introduce a new benchmarking framework that overcomes these challenges by shifting VLA evaluation into large-scale simulated environments augmented with online human feedback. Leveraging advances in vision-language models, 2D-to-3D generative modeling, and differentiable rendering, our approach automatically converts video demonstrations from widely used robot datasets into simulated counterparts. Within these digital twins, we assess VLA policies using both automated VLM-guided scoring and scalable human preference judgments collected from crowdworkers, transforming human involvement from tedious scene setup, resetting, and safety supervision into lightweight preference comparisons. To measure robustness, we systematically perturb simulated environments along multiple axes, such as textures and object placements, stress-testing policy generalization under controlled variation. The result is a continuously evolving, reproducible, and scalable benchmark for real-world trained robot manipulation policies, addressing a critical missing capability in today's robotics landscape.
comment: Website: https://robotarenainf.github.io
☆ EgoThinker: Unveiling Egocentric Reasoning with Spatio-Temporal CoT NeurIPS 2025
Egocentric video reasoning centers on an unobservable agent behind the camera who dynamically shapes the environment, requiring inference of hidden intentions and recognition of fine-grained interactions. This core challenge limits current multimodal large language models MLLMs, which excel at visible event reasoning but lack embodied, first-person understanding. To bridge this gap, we introduce EgoThinker, a novel framework that endows MLLMs with robust egocentric reasoning capabilities through spatio-temporal chain-of-thought supervision and a two-stage learning curriculum. First, we introduce EgoRe-5M, a large-scale egocentric QA dataset constructed from 13M diverse egocentric video clips. This dataset features multi-minute segments annotated with detailed CoT rationales and dense hand-object grounding. Second, we employ SFT on EgoRe-5M to instill reasoning skills, followed by reinforcement fine-tuning RFT to further enhance spatio-temporal localization. Experimental results show that EgoThinker outperforms existing methods across multiple egocentric benchmarks, while achieving substantial improvements in fine-grained spatio-temporal localization tasks. Full code and data are released at https://github.com/InternRobotics/EgoThinker.
comment: Accepted at NeurIPS 2025
☆ Revising Second Order Terms in Deep Animation Video Coding
First Order Motion Model is a generative model that animates human heads based on very little motion information derived from keypoints. It is a promising solution for video communication because first it operates at very low bitrate and second its computational complexity is moderate compared to other learning based video codecs. However, it has strong limitations by design. Since it generates facial animations by warping source-images, it fails to recreate videos with strong head movements. This works concentrates on one specific kind of head movements, namely head rotations. We show that replacing the Jacobian transformations in FOMM by a global rotation helps the system to perform better on items with head-rotations while saving 40% to 80% of bitrate on P-frames. Moreover, we apply state-of-the-art normalization techniques to the discriminator to stabilize the adversarial training which is essential for generating visually appealing videos. We evaluate the performance by the learned metics LPIPS and DISTS to show the success our optimizations.
☆ A U-Net and Transformer Pipeline for Multilingual Image Translation
This paper presents an end-to-end multilingual translation pipeline that integrates a custom U-Net for text detection, the Tesseract engine for text recognition, and a from-scratch sequence-to-sequence (Seq2Seq) Transformer for Neural Machine Translation (NMT). Our approach first utilizes a U-Net model, trained on a synthetic dataset , to accurately segment and detect text regions from an image. These detected regions are then processed by Tesseract to extract the source text. This extracted text is fed into a custom Transformer model trained from scratch on a multilingual parallel corpus spanning 5 languages. Unlike systems reliant on monolithic pre-trained models, our architecture emphasizes full customization and adaptability. The system is evaluated on its text detection accuracy, text recognition quality, and translation performance via BLEU scores. The complete pipeline demonstrates promising results, validating the viability of a custom-built system for translating text directly from images.
comment: 6 pages, 3 figures, 5 tables, and 2 algorithms. Prepared in IEEE double-column format
☆ JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence
The scope of neural code intelligence is rapidly expanding beyond text-based source code to encompass the rich visual outputs that programs generate. This visual dimension is critical for advanced applications like flexible content generation and precise, program-driven editing of visualizations. However, progress has been impeded by the scarcity of high-quality multimodal code data, a bottleneck stemming from challenges in synthesis and quality assessment. To address these challenges, we make contributions from both a data and modeling perspective. We first introduce a complete synthesis toolkit that leverages reciprocal synergies between data modalities to efficiently produce a large-scale, high-quality corpus spanning from standard charts to complex interactive web UIs and code-driven animations. Leveraging this toolkit, we construct JanusCode-800K, the largest multimodal code corpus to date. This powers the training of our models, JanusCoder and JanusCoderV, which establish a visual-programmatic interface for generating code from textual instructions, visual inputs, or a combination of both. Our unified model is a departure from existing approaches that build specialized models for isolated tasks. Extensive experiments on both text-centric and vision-centric coding tasks demonstrate the superior performance of the JanusCoder series, with our 7B to 14B scale models approaching or even exceeding the performance of commercial models. Furthermore, extensive analysis provides key insights into harmonizing programmatic logic with its visual expression. Our code and checkpoints will are available at https://github.com/InternLM/JanusCoder.
comment: Work in progress
☆ DPGLA: Bridging the Gap between Synthetic and Real Data for Unsupervised Domain Adaptation in 3D LiDAR Semantic Segmentation IROS
Annotating real-world LiDAR point clouds for use in intelligent autonomous systems is costly. To overcome this limitation, self-training-based Unsupervised Domain Adaptation (UDA) has been widely used to improve point cloud semantic segmentation by leveraging synthetic point cloud data. However, we argue that existing methods do not effectively utilize unlabeled data, as they either rely on predefined or fixed confidence thresholds, resulting in suboptimal performance. In this paper, we propose a Dynamic Pseudo-Label Filtering (DPLF) scheme to enhance real data utilization in point cloud UDA semantic segmentation. Additionally, we design a simple and efficient Prior-Guided Data Augmentation Pipeline (PG-DAP) to mitigate domain shift between synthetic and real-world point clouds. Finally, we utilize data mixing consistency loss to push the model to learn context-free representations. We implement and thoroughly evaluate our approach through extensive comparisons with state-of-the-art methods. Experiments on two challenging synthetic-to-real point cloud semantic segmentation tasks demonstrate that our approach achieves superior performance. Ablation studies confirm the effectiveness of the DPLF and PG-DAP modules. We release the code of our method in this paper.
comment: This paper has been accepted for publication at the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
☆ FreeFuse: Multi-Subject LoRA Fusion via Auto Masking at Test Time
This paper proposes FreeFuse, a novel training-free approach for multi-subject text-to-image generation through automatic fusion of multiple subject LoRAs. In contrast to existing methods that either focus on pre-inference LoRA weight merging or rely on segmentation models and complex techniques like noise blending to isolate LoRA outputs, our key insight is that context-aware dynamic subject masks can be automatically derived from cross-attention layer weights. Mathematical analysis shows that directly applying these masks to LoRA outputs during inference well approximates the case where the subject LoRA is integrated into the diffusion model and used individually for the masked region. FreeFuse demonstrates superior practicality and efficiency as it requires no additional training, no modification to LoRAs, no auxiliary models, and no user-defined prompt templates or region specifications. Alternatively, it only requires users to provide the LoRA activation words for seamless integration into standard workflows. Extensive experiments validate that FreeFuse outperforms existing approaches in both generation quality and usability under the multi-subject generation tasks. The project page is at https://future-item.github.io/FreeFuse/
☆ Localising under the drape: proprioception in the era of distributed surgical robotic system
Despite their mechanical sophistication, surgical robots remain blind to their surroundings. This lack of spatial awareness causes collisions, system recoveries, and workflow disruptions, issues that will intensify with the introduction of distributed robots with independent interacting arms. Existing tracking systems rely on bulky infrared cameras and reflective markers, providing only limited views of the surgical scene and adding hardware burden in crowded operating rooms. We present a marker-free proprioception method that enables precise localisation of surgical robots under their sterile draping despite associated obstruction of visual cues. Our method solely relies on lightweight stereo-RGB cameras and novel transformer-based deep learning models. It builds on the largest multi-centre spatial robotic surgery dataset to date (1.4M self-annotated images from human cadaveric and preclinical in vivo studies). By tracking the entire robot and surgical scene, rather than individual markers, our approach provides a holistic view robust to occlusions, supporting surgical scene understanding and context-aware control. We demonstrate an example of potential clinical benefits during in vivo breathing compensation with access to tissue dynamics, unobservable under state of the art tracking, and accurately locate in multi-robot systems for future intelligent interaction. In addition, and compared with existing systems, our method eliminates markers and improves tracking visibility by 25%. To our knowledge, this is the first demonstration of marker-free proprioception for fully draped surgical robots, reducing setup complexity, enhancing safety, and paving the way toward modular and autonomous robotic surgery.
☆ iPac: Incorporating Intra-image Patch Context into Graph Neural Networks for Medical Image Classification ICONIP 2025
Graph neural networks have emerged as a promising paradigm for image processing, yet their performance in image classification tasks is hindered by a limited consideration of the underlying structure and relationships among visual entities. This work presents iPac, a novel approach to introduce a new graph representation of images to enhance graph neural network image classification by recognizing the importance of underlying structure and relationships in medical image classification. iPac integrates various stages, including patch partitioning, feature extraction, clustering, graph construction, and graph-based learning, into a unified network to advance graph neural network image classification. By capturing relevant features and organising them into clusters, we construct a meaningful graph representation that effectively encapsulates the semantics of the image. Experimental evaluation on diverse medical image datasets demonstrates the efficacy of iPac, exhibiting an average accuracy improvement of up to 5% over baseline methods. Our approach offers a versatile and generic solution for image classification, particularly in the realm of medical images, by leveraging the graph representation and accounting for the inherent structure and relationships among visual entities.
comment: Accepted for publication in the proceedings of ICONIP 2025
☆ VOLD: Reasoning Transfer from LLMs to Vision-Language Models via On-Policy Distillation
Training vision-language models (VLMs) for complex reasoning remains a challenging task, i.a. due to the scarcity of high-quality image-text reasoning data. Conversely, text-based reasoning resources are abundant and scalable, but it is still an open question how to leveraging them for VLM reasoning. To address this problem, we propose VOLD, a framework to transfer reasoning capabilities from text-only teacher models to VLM student models. To this end, VOLD combines reinforcement learning via Group Relative Policy Optimization (GRPO) with on-policy distillation, which allows the student reasoning traces to be guided by the teacher model, resulting in a significant gain over using GRPO alone. We further show that a cold-start alignment is essential for an effective transfer during the online training phase in this scenario and that without sufficient distributional alignment between teacher and student, on-policy distillation fails to provide meaningful guidance. We evaluate VOLD across diverse benchmarks including MMMU-Pro, MathVision, MathVista, and LogicVista, showing that VOLD outperforms the baseline model significantly and improves over the state of the art by a margin. Our ablation shows the importance of a cold-start alignment via SFT for on-policy distillation with a text-only teacher.
comment: www.walidbousselham.com/VOLD/
☆ Yesnt: Are Diffusion Relighting Models Ready for Capture Stage Compositing? A Hybrid Alternative to Bridge the Gap
Volumetric video relighting is essential for bringing captured performances into virtual worlds, but current approaches struggle to deliver temporally stable, production-ready results. Diffusion-based intrinsic decomposition methods show promise for single frames, yet suffer from stochastic noise and instability when extended to sequences, while video diffusion models remain constrained by memory and scale. We propose a hybrid relighting framework that combines diffusion-derived material priors with temporal regularization and physically motivated rendering. Our method aggregates multiple stochastic estimates of per-frame material properties into temporally consistent shading components, using optical-flow-guided regularization. For indirect effects such as shadows and reflections, we extract a mesh proxy from Gaussian Opacity Fields and render it within a standard graphics pipeline. Experiments on real and synthetic captures show that this hybrid strategy achieves substantially more stable relighting across sequences than diffusion-only baselines, while scaling beyond the clip lengths feasible for video diffusion. These results indicate that hybrid approaches, which balance learned priors with physically grounded constraints, are a practical step toward production-ready volumetric video relighting.
☆ T-REGS: Minimum Spanning Tree Regularization for Self-Supervised Learning NeurIPS 2025
Self-supervised learning (SSL) has emerged as a powerful paradigm for learning representations without labeled data, often by enforcing invariance to input transformations such as rotations or blurring. Recent studies have highlighted two pivotal properties for effective representations: (i) avoiding dimensional collapse-where the learned features occupy only a low-dimensional subspace, and (ii) enhancing uniformity of the induced distribution. In this work, we introduce T-REGS, a simple regularization framework for SSL based on the length of the Minimum Spanning Tree (MST) over the learned representation. We provide theoretical analysis demonstrating that T-REGS simultaneously mitigates dimensional collapse and promotes distribution uniformity on arbitrary compact Riemannian manifolds. Several experiments on synthetic data and on classical SSL benchmarks validate the effectiveness of our approach at enhancing representation quality.
comment: NeurIPS 2025
☆ On the Faithfulness of Visual Thinking: Measurement and Enhancement
Recent large vision-language models (LVLMs) can generate vision-text multimodal chain-of-thought (MCoT) traces after reinforcement fine-tuning (RFT). However, we observe that the visual information incorporated in MCoT is often inaccurate, though still yield correct answers, indicating a lack of faithfulness in the MCoT reasoning process. We attribute this unfaithfulness to the RL reward in RFT, which solely incentivizes the format of interleaved vision-text cues, ie, it encourages the model to incorporate visual information into its text reasoning steps without considering the correctness of the visual information. In this paper, we first probe the faithfulness of MCoT by measuring how much the prediction changes when its visual and textual thoughts are intervened. Surprisingly, the model's predictions remain nearly unchanged under visual intervention but change significantly under textual intervention, indicating that the visual evidence is largely ignored. To further analyze visual information, we introduce an automated LVLM-based evaluation metric that quantifies the faithfulness of visual cues from two perspectives: reliability and sufficiency. Our evaluation reveals that the visual information in current MCoT traces is simultaneously unreliable and insufficient. To address this issue, we propose a novel MCoT learning strategy termed Sufficient-Component Cause Model (SCCM) learning. This approach encourages the MCoT to generate sufficient yet minimal visual components that are independently capable of leading to correct answers. We note that the proposed SCCM is annotation-free and compatible with various RFT for MCoT in a plug-and-play manner. Empirical results demonstrate that SCCM consistently improves the visual faithfulness across a suite of fine-grained perception and reasoning benchmarks. Code is available at https://github.com/EugeneLiu01/Faithful_Thinking_with_Image.
☆ MergeMix: A Unified Augmentation Paradigm for Visual and Multi-Modal Understanding
Vision-language alignment in multi-modal large language models (MLLMs) typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL). SFT is stable and efficient but requires large-scale human annotations and cannot capture subtle preferences, while RL brings in a reward signal for training, but suffers from overhead and instability. These limitations highlight a trade-off between scalability, robustness, and alignment quality. To address this, we propose MergeMix, a training-time augmentation paradigm that bridges SFT and RL. It first applies an attention-aware image mixing via token merge with more cluster representation and spatial context, and then presents a preference-driven training paradigm for MLLMs by building preference pairs with mixed images and raw images, and optimizing via SimPO loss. As a mixup augmentation, MergeMix enhances attention consistency and efficiency, surpassing other heuristic-based methods in classification. Extensive experiments demonstrate that MergeMix achieves competitive accuracy with improved efficiency, providing a scalable approach to preference alignment in classification and MLLMs.
comment: Code Link: https://github.com/JinXins/MergeMix
☆ UrbanIng-V2X: A Large-Scale Multi-Vehicle, Multi-Infrastructure Dataset Across Multiple Intersections for Cooperative Perception NeurIPS 2025
Recent cooperative perception datasets have played a crucial role in advancing smart mobility applications by enabling information exchange between intelligent agents, helping to overcome challenges such as occlusions and improving overall scene understanding. While some existing real-world datasets incorporate both vehicle-to-vehicle and vehicle-to-infrastructure interactions, they are typically limited to a single intersection or a single vehicle. A comprehensive perception dataset featuring multiple connected vehicles and infrastructure sensors across several intersections remains unavailable, limiting the benchmarking of algorithms in diverse traffic environments. Consequently, overfitting can occur, and models may demonstrate misleadingly high performance due to similar intersection layouts and traffic participant behavior. To address this gap, we introduce UrbanIng-V2X, the first large-scale, multi-modal dataset supporting cooperative perception involving vehicles and infrastructure sensors deployed across three urban intersections in Ingolstadt, Germany. UrbanIng-V2X consists of 34 temporally aligned and spatially calibrated sensor sequences, each lasting 20 seconds. All sequences contain recordings from one of three intersections, involving two vehicles and up to three infrastructure-mounted sensor poles operating in coordinated scenarios. In total, UrbanIng-V2X provides data from 12 vehicle-mounted RGB cameras, 2 vehicle LiDARs, 17 infrastructure thermal cameras, and 12 infrastructure LiDARs. All sequences are annotated at a frequency of 10 Hz with 3D bounding boxes spanning 13 object classes, resulting in approximately 712k annotated instances across the dataset. We provide comprehensive evaluations using state-of-the-art cooperative perception methods and publicly release the codebase, dataset, HD map, and a digital twin of the complete data collection environment.
comment: Accepted to NeurIPS 2025. Including supplemental material. For code and dataset, see https://github.com/thi-ad/UrbanIng-V2X
☆ Video-Thinker: Sparking "Thinking with Videos" via Reinforcement Learning
Recent advances in image reasoning methods, particularly "Thinking with Images", have demonstrated remarkable success in Multimodal Large Language Models (MLLMs); however, this dynamic reasoning paradigm has not yet been extended to video reasoning tasks. In this paper, we propose Video-Thinker, which empowers MLLMs to think with videos by autonomously leveraging their intrinsic "grounding" and "captioning" capabilities to generate reasoning clues throughout the inference process. To spark this capability, we construct Video-Thinker-10K, a curated dataset featuring autonomous tool usage within chain-of-thought reasoning sequences. Our training strategy begins with Supervised Fine-Tuning (SFT) to learn the reasoning format, followed by Group Relative Policy Optimization (GRPO) to strengthen this reasoning capability. Through this approach, Video-Thinker enables MLLMs to autonomously navigate grounding and captioning tasks for video reasoning, eliminating the need for constructing and calling external tools. Extensive experiments demonstrate that Video-Thinker achieves significant performance gains on both in-domain tasks and challenging out-of-domain video reasoning benchmarks, including Video-Holmes, CG-Bench-Reasoning, and VRBench. Our Video-Thinker-7B substantially outperforms existing baselines such as Video-R1 and establishes state-of-the-art performance among 7B-sized MLLMs.
☆ Omni-Reward: Towards Generalist Omni-Modal Reward Modeling with Free-Form Preferences
Reward models (RMs) play a critical role in aligning AI behaviors with human preferences, yet they face two fundamental challenges: (1) Modality Imbalance, where most RMs are mainly focused on text and image modalities, offering limited support for video, audio, and other modalities; and (2) Preference Rigidity, where training on fixed binary preference pairs fails to capture the complexity and diversity of personalized preferences. To address the above challenges, we propose Omni-Reward, a step toward generalist omni-modal reward modeling with support for free-form preferences, consisting of: (1) Evaluation: We introduce Omni-RewardBench, the first omni-modal RM benchmark with free-form preferences, covering nine tasks across five modalities including text, image, video, audio, and 3D; (2) Data: We construct Omni-RewardData, a multimodal preference dataset comprising 248K general preference pairs and 69K instruction-tuning pairs for training generalist omni-modal RMs; (3) Model: We propose Omni-RewardModel, which includes both discriminative and generative RMs, and achieves strong performance on Omni-RewardBench as well as other widely used reward modeling benchmarks.
comment: 48 pages, 17 figures
☆ FRBNet: Revisiting Low-Light Vision through Frequency-Domain Radial Basis Network
Low-light vision remains a fundamental challenge in computer vision due to severe illumination degradation, which significantly affects the performance of downstream tasks such as detection and segmentation. While recent state-of-the-art methods have improved performance through invariant feature learning modules, they still fall short due to incomplete modeling of low-light conditions. Therefore, we revisit low-light image formation and extend the classical Lambertian model to better characterize low-light conditions. By shifting our analysis to the frequency domain, we theoretically prove that the frequency-domain channel ratio can be leveraged to extract illumination-invariant features via a structured filtering process. We then propose a novel and end-to-end trainable module named \textbf{F}requency-domain \textbf{R}adial \textbf{B}asis \textbf{Net}work (\textbf{FRBNet}), which integrates the frequency-domain channel ratio operation with a learnable frequency domain filter for the overall illumination-invariant feature enhancement. As a plug-and-play module, FRBNet can be integrated into existing networks for low-light downstream tasks without modifying loss functions. Extensive experiments across various downstream tasks demonstrate that FRBNet achieves superior performance, including +2.2 mAP for dark object detection and +2.9 mIoU for nighttime segmentation. Code is available at: https://github.com/Sing-Forevet/FRBNet.
☆ CURVETE: Curriculum Learning and Progressive Self-supervised Training for Medical Image Classification ICONIP 2025
Identifying high-quality and easily accessible annotated samples poses a notable challenge in medical image analysis. Transfer learning techniques, leveraging pre-training data, offer a flexible solution to this issue. However, the impact of fine-tuning diminishes when the dataset exhibits an irregular distribution between classes. This paper introduces a novel deep convolutional neural network, named Curriculum Learning and Progressive Self-supervised Training (CURVETE). CURVETE addresses challenges related to limited samples, enhances model generalisability, and improves overall classification performance. It achieves this by employing a curriculum learning strategy based on the granularity of sample decomposition during the training of generic unlabelled samples. Moreover, CURVETE address the challenge of irregular class distribution by incorporating a class decomposition approach in the downstream task. The proposed method undergoes evaluation on three distinct medical image datasets: brain tumour, digital knee x-ray, and Mini-DDSM datasets. We investigate the classification performance using a generic self-supervised sample decomposition approach with and without the curriculum learning component in training the pretext task. Experimental results demonstrate that the CURVETE model achieves superior performance on test sets with an accuracy of 96.60% on the brain tumour dataset, 75.60% on the digital knee x-ray dataset, and 93.35% on the Mini-DDSM dataset using the baseline ResNet-50. Furthermore, with the baseline DenseNet-121, it achieved accuracies of 95.77%, 80.36%, and 93.22% on the brain tumour, digital knee x-ray, and Mini-DDSM datasets, respectively, outperforming other training strategies.
comment: Accepted for publication in the proceedings of ICONIP 2025
☆ MiCADangelo: Fine-Grained Reconstruction of Constrained CAD Models from 3D Scans NeurIPS 2025
Computer-Aided Design (CAD) plays a foundational role in modern manufacturing and product development, often requiring designers to modify or build upon existing models. Converting 3D scans into parametric CAD representations--a process known as CAD reverse engineering--remains a significant challenge due to the high precision and structural complexity of CAD models. Existing deep learning-based approaches typically fall into two categories: bottom-up, geometry-driven methods, which often fail to produce fully parametric outputs, and top-down strategies, which tend to overlook fine-grained geometric details. Moreover, current methods neglect an essential aspect of CAD modeling: sketch-level constraints. In this work, we introduce a novel approach to CAD reverse engineering inspired by how human designers manually perform the task. Our method leverages multi-plane cross-sections to extract 2D patterns and capture fine parametric details more effectively. It enables the reconstruction of detailed and editable CAD models, outperforming state-of-the-art methods and, for the first time, incorporating sketch constraints directly into the reconstruction process.
comment: Accepted at NeurIPS 2025
☆ Quality-controlled registration of urban MLS point clouds reducing drift effects by adaptive fragmentation
This study presents a novel workflow designed to efficiently and accurately register large-scale mobile laser scanning (MLS) point clouds to a target model point cloud in urban street scenarios. This workflow specifically targets the complexities inherent in urban environments and adeptly addresses the challenges of integrating point clouds that vary in density, noise characteristics, and occlusion scenarios, which are common in bustling city centers. Two methodological advancements are introduced. First, the proposed Semi-sphere Check (SSC) preprocessing technique optimally fragments MLS trajectory data by identifying mutually orthogonal planar surfaces. This step reduces the impact of MLS drift on the accuracy of the entire point cloud registration, while ensuring sufficient geometric features within each fragment to avoid local minima. Second, we propose Planar Voxel-based Generalized Iterative Closest Point (PV-GICP), a fine registration method that selectively utilizes planar surfaces within voxel partitions. This pre-process strategy not only improves registration accuracy but also reduces computation time by more than 50% compared to conventional point-to-plane ICP methods. Experiments on real-world datasets from Munich's inner city demonstrate that our workflow achieves sub-0.01 m average registration accuracy while significantly shortening processing times. The results underscore the potential of the proposed methods to advance automated 3D urban modeling and updating, with direct applications in urban planning, infrastructure management, and dynamic city monitoring.
comment: 10 pages, 7 figures. This manuscript is currently under review at the International Journal of Applied Earth Observation and Geoinformation (Elsevier). A preprint version will also be available on SSRN (Elsevier Preprints) with a DOI once processed. This is the original preprint version submitted for peer review
☆ Towards Generalisable Foundation Models for 3D Brain MRI
Foundation models in artificial intelligence (AI) are transforming medical imaging by enabling general-purpose feature learning from large-scale, unlabeled datasets. In this work, we introduce BrainFound, a self-supervised foundation model for brain MRI, built by extending DINO-v2, a vision transformer originally designed for 2D natural images. BrainFound adapts DINO-v2 to model full 3D brain anatomy by incorporating volumetric information from sequential MRI slices, moving beyond conventional single-slice paradigms. It supports both single- and multimodal inputs, enabling a broad range of downstream tasks, including disease detection and image segmentation, while generalising across varied imaging protocols and clinical scenarios. We show that BrainFound consistently outperforms existing self-supervised pretraining strategies and supervised baselines, particularly in label-scarce and multi-contrast settings. By integrating information from diverse 3D MRI modalities (e.g., T1, T2, FLAIR), it enhances diagnostic accuracy and reduces dependency on extensive expert annotations. This flexibility makes BrainFound a scalable and practical solution for 3D neuroimaging pipelines, with significant potential for clinical deployment and research innovation.
☆ Symmetria: A Synthetic Dataset for Learning in Point Clouds
Unlike image or text domains that benefit from an abundance of large-scale datasets, point cloud learning techniques frequently encounter limitations due to the scarcity of extensive datasets. To overcome this limitation, we present Symmetria, a formula-driven dataset that can be generated at any arbitrary scale. By construction, it ensures the absolute availability of precise ground truth, promotes data-efficient experimentation by requiring fewer samples, enables broad generalization across diverse geometric settings, and offers easy extensibility to new tasks and modalities. Using the concept of symmetry, we create shapes with known structure and high variability, enabling neural networks to learn point cloud features effectively. Our results demonstrate that this dataset is highly effective for point cloud self-supervised pre-training, yielding models with strong performance in downstream tasks such as classification and segmentation, which also show good few-shot learning capabilities. Additionally, our dataset can support fine-tuning models to classify real-world objects, highlighting our approach's practical utility and application. We also introduce a challenging task for symmetry detection and provide a benchmark for baseline comparisons. A significant advantage of our approach is the public availability of the dataset, the accompanying code, and the ability to generate very large collections, promoting further research and innovation in point cloud learning.
comment: 40 pages
☆ Color and Frequency Correction for Image Colorization
The project has carried out the re-optimization of image coloring in accordance with the existing Autocolorization direction model DDColor. For the experiments on the existing weights of DDColor, we found that it has limitations in some frequency bands and the color cast problem caused by insufficient input dimension. We construct two optimization schemes and combine them, which achieves the performance improvement of indicators such as PSNR and SSIM of the images after DDColor.
comment: 7 pages, 5 tables
☆ VideoTG-R1: Boosting Video Temporal Grounding via Curriculum Reinforcement Learning on Reflected Boundary Annotations
Video temporal grounding (VTG) aims to locate precise segments in videos based on language queries, which is a fundamental challenge in video understanding. While recent Multimodal Large Language Models (MLLMs) have shown promise in tackling VTG through reinforcement learning (RL), they overlook the challenges arising from both the quality and difficulty of training samples. (1) Partially annotated samples. Many samples contain relevant segments beyond the annotated interval, introducing ambiguous supervision. (2) Hard-to-ground samples. Samples with poor zero-shot performance produce consistently low and indistinguishable rewards during RL training, exhibiting no clear preference among multiple outputs and thus hindering learning efficiency. To address these challenges, we propose VideoTG-R1, a novel curriculum RL framework with reflected boundary annotations, enabling data-efficient training. Specifically, we propose a Boundary Reflection Agent that utilizes MLLMs to predict query-relevant timestamps outside the annotated intervals, allowing us to identify and filter out partially annotated samples, thereby reducing ambiguity. Furthermore, we introduce a Difficulty Estimation Agent to assess the training difficulty of each sample and design a curriculum RL strategy that dynamically masks the videos of hard-to-ground samples according to the training steps, easing the training difficulty and providing clearer preference. Experiments on the VTG and grounded VideoQA tasks demonstrate the effectiveness of our method. Remarkably, with only 10% of the training samples and 21% of the computational budget, VideoTG-R1 outperforms full-data counterparts under both group relative policy optimization (GRPO) and supervised fine-tuning (SFT). The code is available at https://github.com/ldong1111/VideoTG-R1.
☆ An Efficient Remote Sensing Super Resolution Method Exploring Diffusion Priors and Multi-Modal Constraints for Crop Type Mapping
Super resolution offers a way to harness medium even lowresolution but historically valuable remote sensing image archives. Generative models, especially diffusion models, have recently been applied to remote sensing super resolution (RSSR), yet several challenges exist. First, diffusion models are effective but require expensive training from scratch resources and have slow inference speeds. Second, current methods have limited utilization of auxiliary information as real-world constraints to reconstruct scientifically realistic images. Finally, most current methods lack evaluation on downstream tasks. In this study, we present a efficient LSSR framework for RSSR, supported by a new multimodal dataset of paired 30 m Landsat 8 and 10 m Sentinel 2 imagery. Built on frozen pretrained Stable Diffusion, LSSR integrates crossmodal attention with auxiliary knowledge (Digital Elevation Model, land cover, month) and Synthetic Aperture Radar guidance, enhanced by adapters and a tailored Fourier NDVI loss to balance spatial details and spectral fidelity. Extensive experiments demonstrate that LSSR significantly improves crop boundary delineation and recovery, achieving state-of-the-art performance with Peak Signal-to-Noise Ratio/Structural Similarity Index Measure of 32.63/0.84 (RGB) and 23.99/0.78 (IR), and the lowest NDVI Mean Squared Error (0.042), while maintaining efficient inference (0.39 sec/image). Moreover, LSSR transfers effectively to NASA Harmonized Landsat and Sentinel (HLS) super resolution, yielding more reliable crop classification (F1: 0.86) than Sentinel-2 (F1: 0.85). These results highlight the potential of RSSR to advance precision agriculture.
comment: 41 pages
☆ PlanarTrack: A high-quality and challenging benchmark for large-scale planar object tracking
Planar tracking has drawn increasing interest owing to its key roles in robotics and augmented reality. Despite recent great advancement, further development of planar tracking, particularly in the deep learning era, is largely limited compared to generic tracking due to the lack of large-scale platforms. To mitigate this, we propose PlanarTrack, a large-scale high-quality and challenging benchmark for planar tracking. Specifically, PlanarTrack consists of 1,150 sequences with over 733K frames, including 1,000 short-term and 150 new long-term videos, which enables comprehensive evaluation of short- and long-term tracking performance. All videos in PlanarTrack are recorded in unconstrained conditions from the wild, which makes PlanarTrack challenging but more realistic for real-world applications. To ensure high-quality annotations, each video frame is manually annotated by four corner points with multi-round meticulous inspection and refinement. To enhance target diversity of PlanarTrack, we only capture a unique target in one sequence, which is different from existing benchmarks. To our best knowledge, PlanarTrack is by far the largest and most diverse and challenging dataset dedicated to planar tracking. To understand performance of existing methods on PlanarTrack and to provide a comparison for future research, we evaluate 10 representative planar trackers with extensive comparison and in-depth analysis. Our evaluation reveals that, unsurprisingly, the top planar trackers heavily degrade on the challenging PlanarTrack, which indicates more efforts are required for improving planar tracking. Our data and results will be released at https://github.com/HengLan/PlanarTrack
☆ Interpretable Tile-Based Classification of Paclitaxel Exposure
Medical image analysis is central to drug discovery and preclinical evaluation, where scalable, objective readouts can accelerate decision-making. We address classification of paclitaxel (Taxol) exposure from phase-contrast microscopy of C6 glioma cells -- a task with subtle dose differences that challenges full-image models. We propose a simple tiling-and-aggregation pipeline that operates on local patches and combines tile outputs into an image label, achieving state-of-the-art accuracy on the benchmark dataset and improving over the published baseline by around 20 percentage points, with trends confirmed by cross-validation. To understand why tiling is effective, we further apply Grad-CAM and Score-CAM and attention analyses, which enhance model interpretability and point toward robustness-oriented directions for future medical image research. Code is released to facilitate reproduction and extension.
☆ Multitask Multimodal Self-Supervised Learning for Medical Images
This thesis works to address a pivotal challenge in medical image analysis: the reliance on extensive labeled datasets, which are often limited due to the need for expert annotation and constrained by privacy and legal issues. By focusing on the development of self-supervised learning techniques and domain adaptation methods, this research aims to circumvent these limitations, presenting a novel approach to enhance the utility and efficacy of deep learning in medical imaging. Central to this thesis is the development of the Medformer, an innovative neural network architecture designed for multitask learning and deep domain adaptation. This model is adept at pre-training on diverse medical image datasets, handling varying sizes and modalities, and is equipped with a dynamic input-output adaptation mechanism. This enables efficient processing and integration of a wide range of medical image types, from 2D X-rays to complex 3D MRIs, thus mitigating the dependency on large labeled datasets. Further, the thesis explores the current state of self-supervised learning in medical imaging. It introduces novel pretext tasks that are capable of extracting meaningful information from unlabeled data, significantly advancing the model's interpretative abilities. This approach is validated through rigorous experimentation, including the use of the MedMNIST dataset, demonstrating the model's proficiency in learning generalized features applicable to various downstream tasks. In summary, this thesis contributes to the advancement of medical image analysis by offering a scalable, adaptable framework that reduces reliance on labeled data. It paves the way for more accurate, efficient diagnostic tools in healthcare, signifying a major step forward in the application of deep learning in medical imaging.
☆ ReconViaGen: Towards Accurate Multi-view 3D Object Reconstruction via Generation
Existing multi-view 3D object reconstruction methods heavily rely on sufficient overlap between input views, where occlusions and sparse coverage in practice frequently yield severe reconstruction incompleteness. Recent advancements in diffusion-based 3D generative techniques offer the potential to address these limitations by leveraging learned generative priors to hallucinate invisible parts of objects, thereby generating plausible 3D structures. However, the stochastic nature of the inference process limits the accuracy and reliability of generation results, preventing existing reconstruction frameworks from integrating such 3D generative priors. In this work, we comprehensively analyze the reasons why diffusion-based 3D generative methods fail to achieve high consistency, including (a) the insufficiency in constructing and leveraging cross-view connections when extracting multi-view image features as conditions, and (b) the poor controllability of iterative denoising during local detail generation, which easily leads to plausible but inconsistent fine geometric and texture details with inputs. Accordingly, we propose ReconViaGen to innovatively integrate reconstruction priors into the generative framework and devise several strategies that effectively address these issues. Extensive experiments demonstrate that our ReconViaGen can reconstruct complete and accurate 3D models consistent with input views in both global structure and local details.Project page: https://jiahao620.github.io/reconviagen.
comment: 18 pages, 7 figures
☆ MDReID: Modality-Decoupled Learning for Any-to-Any Multi-Modal Object Re-Identification NeurIPS 2025
Real-world object re-identification (ReID) systems often face modality inconsistencies, where query and gallery images come from different sensors (e.g., RGB, NIR, TIR). However, most existing methods assume modality-matched conditions, which limits their robustness and scalability in practical applications. To address this challenge, we propose MDReID, a flexible any-to-any image-level ReID framework designed to operate under both modality-matched and modality-mismatched scenarios. MDReID builds on the insight that modality information can be decomposed into two components: modality-shared features that are predictable and transferable, and modality-specific features that capture unique, modality-dependent characteristics. To effectively leverage this, MDReID introduces two key components: the Modality Decoupling Learning (MDL) and Modality-aware Metric Learning (MML). Specifically, MDL explicitly decomposes modality features into modality-shared and modality-specific representations, enabling effective retrieval in both modality-aligned and mismatched scenarios. MML, a tailored metric learning strategy, further enforces orthogonality and complementarity between the two components to enhance discriminative power across modalities. Extensive experiments conducted on three challenging multi-modality ReID benchmarks (RGBNT201, RGBNT100, MSVR310) consistently demonstrate the superiority of MDReID. Notably, MDReID achieves significant mAP improvements of 9.8\%, 3.0\%, and 11.5\% in general modality-matched scenarios, and average gains of 3.4\%, 11.8\%, and 10.9\% in modality-mismatched scenarios, respectively. The code is available at: \textcolor{magenta}{https://github.com/stone96123/MDReID}.
comment: Accepted by NeurIPS 2025
☆ MMSD3.0: A Multi-Image Benchmark for Real-World Multimodal Sarcasm Detection
Despite progress in multimodal sarcasm detection, existing datasets and methods predominantly focus on single-image scenarios, overlooking potential semantic and affective relations across multiple images. This leaves a gap in modeling cases where sarcasm is triggered by multi-image cues in real-world settings. To bridge this gap, we introduce MMSD3.0, a new benchmark composed entirely of multi-image samples curated from tweets and Amazon reviews. We further propose the Cross-Image Reasoning Model (CIRM), which performs targeted cross-image sequence modeling to capture latent inter-image connections. In addition, we introduce a relevance-guided, fine-grained cross-modal fusion mechanism based on text-image correspondence to reduce information loss during integration. We establish a comprehensive suite of strong and representative baselines and conduct extensive experiments, showing that MMSD3.0 is an effective and reliable benchmark that better reflects real-world conditions. Moreover, CIRM demonstrates state-of-the-art performance across MMSD, MMSD2.0 and MMSD3.0, validating its effectiveness in both single-image and multi-image scenarios.
☆ Adaptive Stochastic Coefficients for Accelerating Diffusion Sampling NeurIPS 2025
Diffusion-based generative processes, formulated as differential equation solving, frequently balance computational speed with sample quality. Our theoretical investigation of ODE- and SDE-based solvers reveals complementary weaknesses: ODE solvers accumulate irreducible gradient error along deterministic trajectories, while SDE methods suffer from amplified discretization errors when the step budget is limited. Building upon this insight, we introduce AdaSDE, a novel single-step SDE solver that aims to unify the efficiency of ODEs with the error resilience of SDEs. Specifically, we introduce a single per-step learnable coefficient, estimated via lightweight distillation, which dynamically regulates the error correction strength to accelerate diffusion sampling. Notably, our framework can be integrated with existing solvers to enhance their capabilities. Extensive experiments demonstrate state-of-the-art performance: at 5 NFE, AdaSDE achieves FID scores of 4.18 on CIFAR-10, 8.05 on FFHQ and 6.96 on LSUN Bedroom. Codes are available in https://github.com/WLU-wry02/AdaSDE.
comment: To appear in NeurIPS 2025
☆ hYOLO Model: Enhancing Object Classification with Hierarchical Context in YOLOv8
Current convolution neural network (CNN) classification methods are predominantly focused on flat classification which aims solely to identify a specified object within an image. However, real-world objects often possess a natural hierarchical organization that can significantly help classification tasks. Capturing the presence of relations between objects enables better contextual understanding as well as control over the severity of mistakes. Considering these aspects, this paper proposes an end-to-end hierarchical model for image detection and classification built upon the YOLO model family. A novel hierarchical architecture, a modified loss function, and a performance metric tailored to the hierarchical nature of the model are introduced. The proposed model is trained and evaluated on two different hierarchical categorizations of the same dataset: a systematic categorization that disregards visual similarities between objects and a categorization accounting for common visual characteristics across classes. The results illustrate how the suggested methodology addresses the inherent hierarchical structure present in real-world objects, which conventional flat classification algorithms often overlook.
comment: 39 pages, 12 figures, 4 tables, code available at https://github.com/ds2run/hyolo
☆ A Video Is Not Worth a Thousand Words
As we become increasingly dependent on vision language models (VLMs) to answer questions about the world around us, there is a significant amount of research devoted to increasing both the difficulty of video question answering (VQA) datasets, and the context lengths of the models that they evaluate. The reliance on large language models as backbones has lead to concerns about potential text dominance, and the exploration of interactions between modalities is underdeveloped. How do we measure whether we're heading in the right direction, with the complexity that multi-modal models introduce? We propose a joint method of computing both feature attributions and modality scores based on Shapley values, where both the features and modalities are arbitrarily definable. Using these metrics, we compare $6$ VLM models of varying context lengths on $4$ representative datasets, focusing on multiple-choice VQA. In particular, we consider video frames and whole textual elements as equal features in the hierarchy, and the multiple-choice VQA task as an interaction between three modalities: video, question and answer. Our results demonstrate a dependence on text and show that the multiple-choice VQA task devolves into a model's ability to ignore distractors. Code available at https://github.com/sjpollard/a-video-is-not-worth-a-thousand-words.
☆ Progressive Growing of Patch Size: Curriculum Learning for Accelerated and Improved Medical Image Segmentation MICCAI2024
In this work, we introduce Progressive Growing of Patch Size, an automatic curriculum learning approach for 3D medical image segmentation. Our approach progressively increases the patch size during model training, resulting in an improved class balance for smaller patch sizes and accelerated convergence of the training process. We evaluate our curriculum approach in two settings: a resource-efficient mode and a performance mode, both regarding Dice score performance and computational costs across 15 diverse and popular 3D medical image segmentation tasks. The resource-efficient mode matches the Dice score performance of the conventional constant patch size sampling baseline with a notable reduction in training time to only 44%. The performance mode improves upon constant patch size segmentation results, achieving a statistically significant relative mean performance gain of 1.28% in Dice Score. Remarkably, across all 15 tasks, our proposed performance mode manages to surpass the constant patch size baseline in Dice Score performance, while simultaneously reducing training time to only 89%. The benefits are particularly pronounced for highly imbalanced tasks such as lesion segmentation tasks. Rigorous experiments demonstrate that our performance mode not only improves mean segmentation performance but also reduces performance variance, yielding more trustworthy model comparison. Furthermore, our findings reveal that the proposed curriculum sampling is not tied to a specific architecture but represents a broadly applicable strategy that consistently boosts performance across diverse segmentation models, including UNet, UNETR, and SwinUNETR. In summary, we show that this simple yet elegant transformation on input data substantially improves both Dice Score performance and training runtime, while being compatible across diverse segmentation backbones.
comment: Journal Extension of "Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks" (MICCAI2024) submitted to MedIA
☆ Autoregressive Styled Text Image Generation, but Make it Reliable
Generating faithful and readable styled text images (especially for Styled Handwritten Text generation - HTG) is an open problem with several possible applications across graphic design, document understanding, and image editing. A lot of research effort in this task is dedicated to developing strategies that reproduce the stylistic characteristics of a given writer, with promising results in terms of style fidelity and generalization achieved by the recently proposed Autoregressive Transformer paradigm for HTG. However, this method requires additional inputs, lacks a proper stop mechanism, and might end up in repetition loops, generating visual artifacts. In this work, we rethink the autoregressive formulation by framing HTG as a multimodal prompt-conditioned generation task, and tackle the content controllability issues by introducing special textual input tokens for better alignment with the visual ones. Moreover, we devise a Classifier-Free-Guidance-based strategy for our autoregressive model. Through extensive experimental validation, we demonstrate that our approach, dubbed Eruku, compared to previous solutions requires fewer inputs, generalizes better to unseen styles, and follows more faithfully the textual prompt, improving content adherence.
☆ Through the Lens: Benchmarking Deepfake Detectors Against Moiré-Induced Distortions
Deepfake detection remains a pressing challenge, particularly in real-world settings where smartphone-captured media from digital screens often introduces Moir\'e artifacts that can distort detection outcomes. This study systematically evaluates state-of-the-art (SOTA) deepfake detectors on Moir\'e-affected videos, an issue that has received little attention. We collected a dataset of 12,832 videos, spanning 35.64 hours, from the Celeb-DF, DFD, DFDC, UADFV, and FF++ datasets, capturing footage under diverse real-world conditions, including varying screens, smartphones, lighting setups, and camera angles. To further examine the influence of Moir\'e patterns on deepfake detection, we conducted additional experiments using our DeepMoir\'eFake, referred to as (DMF) dataset and two synthetic Moir\'e generation techniques. Across 15 top-performing detectors, our results show that Moir\'e artifacts degrade performance by as much as 25.4%, while synthetically generated Moir\'e patterns lead to a 21.4% drop in accuracy. Surprisingly, demoir\'eing methods, intended as a mitigation approach, instead worsened the problem, reducing accuracy by up to 17.2%. These findings underscore the urgent need for detection models that can robustly handle Moir\'e distortions alongside other realworld challenges, such as compression, sharpening, and blurring. By introducing the DMF dataset, we aim to drive future research toward closing the gap between controlled experiments and practical deepfake detection.
comment: 48 Pages, 29 Figures, 15 Tables
☆ Accurate and Scalable Multimodal Pathology Retrieval via Attentive Vision-Language Alignment
The rapid digitization of histopathology slides has opened up new possibilities for computational tools in clinical and research workflows. Among these, content-based slide retrieval stands out, enabling pathologists to identify morphologically and semantically similar cases, thereby supporting precise diagnoses, enhancing consistency across observers, and assisting example-based education. However, effective retrieval of whole slide images (WSIs) remains challenging due to their gigapixel scale and the difficulty of capturing subtle semantic differences amid abundant irrelevant content. To overcome these challenges, we present PathSearch, a retrieval framework that unifies fine-grained attentive mosaic representations with global-wise slide embeddings aligned through vision-language contrastive learning. Trained on a corpus of 6,926 slide-report pairs, PathSearch captures both fine-grained morphological cues and high-level semantic patterns to enable accurate and flexible retrieval. The framework supports two key functionalities: (1) mosaic-based image-to-image retrieval, ensuring accurate and efficient slide research; and (2) multi-modal retrieval, where text queries can directly retrieve relevant slides. PathSearch was rigorously evaluated on four public pathology datasets and three in-house cohorts, covering tasks including anatomical site retrieval, tumor subtyping, tumor vs. non-tumor discrimination, and grading across diverse organs such as breast, lung, kidney, liver, and stomach. External results show that PathSearch outperforms traditional image-to-image retrieval frameworks. A multi-center reader study further demonstrates that PathSearch improves diagnostic accuracy, boosts confidence, and enhances inter-observer agreement among pathologists in real clinical scenarios. These results establish PathSearch as a scalable and generalizable retrieval solution for digital pathology.
☆ VR-Drive: Viewpoint-Robust End-to-End Driving with Feed-Forward 3D Gaussian Splatting NeurIPS2025
End-to-end autonomous driving (E2E-AD) has emerged as a promising paradigm that unifies perception, prediction, and planning into a holistic, data-driven framework. However, achieving robustness to varying camera viewpoints, a common real-world challenge due to diverse vehicle configurations, remains an open problem. In this work, we propose VR-Drive, a novel E2E-AD framework that addresses viewpoint generalization by jointly learning 3D scene reconstruction as an auxiliary task to enable planning-aware view synthesis. Unlike prior scene-specific synthesis approaches, VR-Drive adopts a feed-forward inference strategy that supports online training-time augmentation from sparse views without additional annotations. To further improve viewpoint consistency, we introduce a viewpoint-mixed memory bank that facilitates temporal interaction across multiple viewpoints and a viewpoint-consistent distillation strategy that transfers knowledge from original to synthesized views. Trained in a fully end-to-end manner, VR-Drive effectively mitigates synthesis-induced noise and improves planning under viewpoint shifts. In addition, we release a new benchmark dataset to evaluate E2E-AD performance under novel camera viewpoints, enabling comprehensive analysis. Our results demonstrate that VR-Drive is a scalable and robust solution for the real-world deployment of end-to-end autonomous driving systems.
comment: Accepted by NeurIPS2025
☆ DecoDINO: 3D Human-Scene Contact Prediction with Semantic Classification
Accurate vertex-level contact prediction between humans and surrounding objects is a prerequisite for high fidelity human object interaction models used in robotics, AR/VR, and behavioral simulation. DECO was the first in the wild estimator for this task but is limited to binary contact maps and struggles with soft surfaces, occlusions, children, and false-positive foot contacts. We address these issues and introduce DecoDINO, a three-branch network based on DECO's framework. It uses two DINOv2 ViT-g/14 encoders, class-balanced loss weighting to reduce bias, and patch-level cross-attention for improved local reasoning. Vertex features are finally passed through a lightweight MLP with a softmax to assign semantic contact labels. We also tested a vision-language model (VLM) to integrate text features, but the simpler architecture performed better and was used instead. On the DAMON benchmark, DecoDINO (i) raises the binary-contact F1 score by 7$\%$, (ii) halves the geodesic error, and (iii) augments predictions with object-level semantic labels. Ablation studies show that LoRA fine-tuning and the dual encoders are key to these improvements. DecoDINO outperformed the challenge baseline in both tasks of the DAMON Challenge. Our code is available at https://github.com/DavidePasero/deco/tree/main.
☆ Evaluation of Vision-LLMs in Surveillance Video NeurIPS 2025
The widespread use of cameras in our society has created an overwhelming amount of video data, far exceeding the capacity for human monitoring. This presents a critical challenge for public safety and security, as the timely detection of anomalous or criminal events is crucial for effective response and prevention. The ability for an embodied agent to recognize unexpected events is fundamentally tied to its capacity for spatial reasoning. This paper investigates the spatial reasoning of vision-language models (VLMs) by framing anomalous action recognition as a zero-shot, language-grounded task, addressing the embodied perception challenge of interpreting dynamic 3D scenes from sparse 2D video. Specifically, we investigate whether small, pre-trained vision--LLMs can act as spatially-grounded, zero-shot anomaly detectors by converting video into text descriptions and scoring labels via textual entailment. We evaluate four open models on UCF-Crime and RWF-2000 under prompting and privacy-preserving conditions. Few-shot exemplars can improve accuracy for some models, but may increase false positives, and privacy filters -- especially full-body GAN transforms -- introduce inconsistencies that degrade accuracy. These results chart where current vision--LLMs succeed (simple, spatially salient events) and where they falter (noisy spatial cues, identity obfuscation). Looking forward, we outline concrete paths to strengthen spatial grounding without task-specific training: structure-aware prompts, lightweight spatial memory across clips, scene-graph or 3D-pose priors during description, and privacy methods that preserve action-relevant geometry. This positions zero-shot, language-grounded pipelines as adaptable building blocks for embodied, real-world video understanding. Our implementation for evaluating VLMs is publicly available at: https://github.com/pascalbenschopTU/VLLM_AnomalyRecognition
comment: Accepted as poster in the NeurIPS 2025 Workshop on Space in Vision, Language, and Embodied AI
☆ Finding 3D Scene Analogies with Multimodal Foundation Models
Connecting current observations with prior experiences helps robots adapt and plan in new, unseen 3D environments. Recently, 3D scene analogies have been proposed to connect two 3D scenes, which are smooth maps that align scene regions with common spatial relationships. These maps enable detailed transfer of trajectories or waypoints, potentially supporting demonstration transfer for imitation learning or task plan transfer across scenes. However, existing methods for the task require additional training and fixed object vocabularies. In this work, we propose to use multimodal foundation models for finding 3D scene analogies in a zero-shot, open-vocabulary setting. Central to our approach is a hybrid neural representation of scenes that consists of a sparse graph based on vision-language model features and a feature field derived from 3D shape foundation models. 3D scene analogies are then found in a coarse-to-fine manner, by first aligning the graph and refining the correspondence with feature fields. Our method can establish accurate correspondences between complex scenes, and we showcase applications in trajectory and waypoint transfer.
comment: Accepted to FM4RoboPlan workshop at RSS 2025
☆ AG-Fusion: adaptive gated multimodal fusion for 3d object detection in complex scenes
Multimodal camera-LiDAR fusion technology has found extensive application in 3D object detection, demonstrating encouraging performance. However, existing methods exhibit significant performance degradation in challenging scenarios characterized by sensor degradation or environmental disturbances. We propose a novel Adaptive Gated Fusion (AG-Fusion) approach that selectively integrates cross-modal knowledge by identifying reliable patterns for robust detection in complex scenes. Specifically, we first project features from each modality into a unified BEV space and enhance them using a window-based attention mechanism. Subsequently, an adaptive gated fusion module based on cross-modal attention is designed to integrate these features into reliable BEV representations robust to challenging environments. Furthermore, we construct a new dataset named Excavator3D (E3D) focusing on challenging excavator operation scenarios to benchmark performance in complex conditions. Our method not only achieves competitive performance on the standard KITTI dataset with 93.92% accuracy, but also significantly outperforms the baseline by 24.88% on the challenging E3D dataset, demonstrating superior robustness to unreliable modal information in complex industrial scenes.
☆ Implicit Modeling for Transferability Estimation of Vision Foundation Models NeurIPS 2025
Transferability estimation identifies the best pre-trained models for downstream tasks without incurring the high computational cost of full fine-tuning. This capability facilitates deployment and advances the pre-training and fine-tuning paradigm. However, existing methods often struggle to accurately assess transferability for emerging pre-trained models with diverse architectures, training strategies, and task alignments. In this work, we propose Implicit Transferability Modeling (ITM), a novel framework that implicitly models each model's intrinsic transferability, coupled with a Divide-and-Conquer Variational Approximation (DVA) strategy to efficiently approximate embedding space evolution. This design enables generalization across a broader range of models and downstream tasks. Extensive experiments on a comprehensive benchmark--spanning extensive training regimes and a wider variety of model types--demonstrate that ITM consistently outperforms existing methods in terms of stability, effectiveness, and efficiency.
comment: Accepted by NeurIPS 2025
☆ DQ3D: Depth-guided Query for Transformer-Based 3D Object Detection in Traffic Scenarios
3D object detection from multi-view images in traffic scenarios has garnered significant attention in recent years. Many existing approaches rely on object queries that are generated from 3D reference points to localize objects. However, a limitation of these methods is that some reference points are often far from the target object, which can lead to false positive detections. In this paper, we propose a depth-guided query generator for 3D object detection (DQ3D) that leverages depth information and 2D detections to ensure that reference points are sampled from the surface or interior of the object. Furthermore, to address partially occluded objects in current frame, we introduce a hybrid attention mechanism that fuses historical detection results with depth-guided queries, thereby forming hybrid queries. Evaluation on the nuScenes dataset demonstrates that our method outperforms the baseline by 6.3\% in terms of mean Average Precision (mAP) and 4.3\% in the NuScenes Detection Score (NDS).
☆ Fast Voxel-Wise Kinetic Modeling in Dynamic PET using a Physics-Informed CycleGAN
Tracer kinetic modeling serves a vital role in diagnosis, treatment planning, tracer development and oncology, but burdens practitioners with complex and invasive arterial input function estimation (AIF). We adopt a physics-informed CycleGAN showing promise in DCE-MRI quantification to dynamic PET quantification. Our experiments demonstrate sound AIF predictions and parameter maps closely resembling the reference.
comment: 5 pages, 1 figure. Pre-review preprint. Submitted to MedEurIPS 2025 (EurIPS workshop)
☆ Note on the Construction of Structure Tensor
This note presents a theoretical discussion of two structure tensor constructions: one proposed by Bigun and Granlund 1987, and the other by Granlund and Knutsson 1995. At first glance, these approaches may appear quite different--the former is implemented by averaging outer products of gradient filter responses, while the latter constructs the tensor from weighted outer products of tune-in frequency vectors of quadrature filters. We argue that when both constructions are viewed through the common lens of Total Least Squares (TLS) line fitting to the power spectrum, they can be reconciled to a large extent, and additional benefits emerge. From this perspective, the correction term introduced in Granlund and Knutsson 1995 becomes unnecessary. Omitting it ensures that the resulting tensor remains positive semi-definite, thereby simplifying the interpretation of its eigenvalues. Furthermore, this interpretation allows fitting more than a single 0rientation to the input by reinterpreting quadrature filter responses without relying on a structure tensor. It also removes the constraint that responses must originate strictly from quadrature filters, allowing the use of alternative filter types and non-angular tessellations. These alternatives include Gabor filters--which, although not strictly quadrature, are still suitable for structure tensor construction--even when they tessellate the spectrum in a Cartesian fashion, provided they are sufficiently concentrated.
☆ DeepSalt: Bridging Laboratory and Satellite Spectra through Domain Adaptation and Knowledge Distillation for Large-Scale Soil Salinity Estimation
Soil salinization poses a significant threat to both ecosystems and agriculture because it limits plants' ability to absorb water and, in doing so, reduces crop productivity. This phenomenon alters the soil's spectral properties, creating a measurable relationship between salinity and light reflectance that enables remote monitoring. While laboratory spectroscopy provides precise measurements, its reliance on in-situ sampling limits scalability to regional or global levels. Conversely, hyperspectral satellite imagery enables wide-area observation but lacks the fine-grained interpretability of laboratory instruments. To bridge this gap, we introduce DeepSalt, a deep-learning-based spectral transfer framework that leverages knowledge distillation and a novel Spectral Adaptation Unit to transfer high-resolution spectral insights from laboratory-based spectroscopy to satellite-based hyperspectral sensing. Our approach eliminates the need for extensive ground sampling while enabling accurate, large-scale salinity estimation, as demonstrated through comprehensive empirical benchmarks. DeepSalt achieves significant performance gains over methods without explicit domain adaptation, underscoring the impact of the proposed Spectral Adaptation Unit and the knowledge distillation strategy. The model also effectively generalized to unseen geographic regions, explaining a substantial portion of the salinity variance.
☆ Task-Agnostic Fusion of Time Series and Imagery for Earth Observation
We propose a task-agnostic framework for multimodal fusion of time series and single timestamp images, enabling cross-modal generation and robust downstream performance. Our approach explores deterministic and learned strategies for time series quantization and then leverages a masked correlation learning objective, aligning discrete image and time series tokens in a unified representation space. Instantiated in the Earth observation domain, the pretrained model generates consistent global temperature profiles from satellite imagery and is validated through counterfactual experiments. Across downstream tasks, our task-agnostic pretraining outperforms task-specific fusion by 6\% in R$^2$ and 2\% in RMSE on average, and exceeds baseline methods by 50\% in R$^2$ and 12\% in RMSE. Finally, we analyze gradient sensitivity across modalities, providing insights into model robustness. Code, data, and weights will be released under a permissive license.
☆ Seeing Structural Failure Before it Happens: An Image-Based Physics-Informed Neural Network (PINN) for Spaghetti Bridge Load Prediction
Physics Informed Neural Networks (PINNs) are gaining attention for their ability to embed physical laws into deep learning models, which is particularly useful in structural engineering tasks with limited data. This paper aims to explore the use of PINNs to predict the weight of small scale spaghetti bridges, a task relevant to understanding load limits and potential failure modes in simplified structural models. Our proposed framework incorporates physics-based constraints to the prediction model for improved performance. In addition to standard PINNs, we introduce a novel architecture named Physics Informed Kolmogorov Arnold Network (PIKAN), which blends universal function approximation theory with physical insights. The structural parameters provided as input to the model are collected either manually or through computer vision methods. Our dataset includes 15 real bridges, augmented to 100 samples, and our best model achieves an $R^2$ score of 0.9603 and a mean absolute error (MAE) of 10.50 units. From applied perspective, we also provide a web based interface for parameter entry and prediction. These results show that PINNs can offer reliable estimates of structural weight, even with limited data, and may help inform early stage failure analysis in lightweight bridge designs. The complete data and code are available at https://github.com/OmerJauhar/PINNS-For-Spaghetti-Bridges.
comment: 12 pages, 17 figures. Preprint
☆ Residual Diffusion Bridge Model for Image Restoration
Diffusion bridge models establish probabilistic paths between arbitrary paired distributions and exhibit great potential for universal image restoration. Most existing methods merely treat them as simple variants of stochastic interpolants, lacking a unified analytical perspective. Besides, they indiscriminately reconstruct images through global noise injection and removal, inevitably distorting undegraded regions due to imperfect reconstruction. To address these challenges, we propose the Residual Diffusion Bridge Model (RDBM). Specifically, we theoretically reformulate the stochastic differential equations of generalized diffusion bridge and derive the analytical formulas of its forward and reverse processes. Crucially, we leverage the residuals from given distributions to modulate the noise injection and removal, enabling adaptive restoration of degraded regions while preserving intact others. Moreover, we unravel the fundamental mathematical essence of existing bridge models, all of which are special cases of RDBM and empirically demonstrate the optimality of our proposed models. Extensive experiments are conducted to demonstrate the state-of-the-art performance of our method both qualitatively and quantitatively across diverse image restoration tasks. Code is publicly available at https://github.com/MiliLab/RDBM.
☆ Revisiting Multimodal Positional Encoding in Vision-Language Models
Multimodal position encoding is essential for vision-language models, yet there has been little systematic investigation into multimodal position encoding. We conduct a comprehensive analysis of multimodal Rotary Positional Embedding (RoPE) by examining its two core components: position design and frequency allocation. Through extensive experiments, we identify three key guidelines: positional coherence, full frequency utilization, and preservation of textual priors-ensuring unambiguous layout, rich representation, and faithful transfer from the pre-trained LLM. Based on these insights, we propose Multi-Head RoPE (MHRoPE) and MRoPE-Interleave (MRoPE-I), two simple and plug-and-play variants that require no architectural changes. Our methods consistently outperform existing approaches across diverse benchmarks, with significant improvements in both general and fine-grained multimodal understanding. Code will be avaliable at https://github.com/JJJYmmm/Multimodal-RoPEs.
comment: 16 pages
☆ EndoWave: Rational-Wavelet 4D Gaussian Splatting for Endoscopic Reconstruction
In robot-assisted minimally invasive surgery, accurate 3D reconstruction from endoscopic video is vital for downstream tasks and improved outcomes. However, endoscopic scenarios present unique challenges, including photometric inconsistencies, non-rigid tissue motion, and view-dependent highlights. Most 3DGS-based methods that rely solely on appearance constraints for optimizing 3DGS are often insufficient in this context, as these dynamic visual artifacts can mislead the optimization process and lead to inaccurate reconstructions. To address these limitations, we present EndoWave, a unified spatio-temporal Gaussian Splatting framework by incorporating an optical flow-based geometric constraint and a multi-resolution rational wavelet supervision. First, we adopt a unified spatio-temporal Gaussian representation that directly optimizes primitives in a 4D domain. Second, we propose a geometric constraint derived from optical flow to enhance temporal coherence and effectively constrain the 3D structure of the scene. Third, we propose a multi-resolution rational orthogonal wavelet as a constraint, which can effectively separate the details of the endoscope and enhance the rendering performance. Extensive evaluations on two real surgical datasets, EndoNeRF and StereoMIS, demonstrate that our method EndoWave achieves state-of-the-art reconstruction quality and visual accuracy compared to the baseline method.
☆ Strategies for Robust Deep Learning Based Deformable Registration
Deep learning based deformable registration methods have become popular in recent years. However, their ability to generalize beyond training data distribution can be poor, significantly hindering their usability. LUMIR brain registration challenge for Learn2Reg 2025 aims to advance the field by evaluating the performance of the registration on contrasts and modalities different from those included in the training set. Here we describe our submission to the challenge, which proposes a very simple idea for significantly improving robustness by transforming the images into MIND feature space before feeding them into the model. In addition, a special ensembling strategy is proposed that shows a small but consistent improvement.
☆ Seq-DeepIPC: Sequential Sensing for End-to-End Control in Legged Robot Navigation
We present Seq-DeepIPC, a sequential end-to-end perception-to-control model for legged robot navigation in realworld environments. Seq-DeepIPC advances intelligent sensing for autonomous legged navigation by tightly integrating multi-modal perception (RGB-D + GNSS) with temporal fusion and control. The model jointly predicts semantic segmentation and depth estimation, giving richer spatial features for planning and control. For efficient deployment on edge devices, we use EfficientNet-B0 as the encoder, reducing computation while maintaining accuracy. Heading estimation is simplified by removing the noisy IMU and instead computing the bearing angle directly from consecutive GNSS positions. We collected a larger and more diverse dataset that includes both road and grass terrains, and validated Seq-DeepIPC on a robot dog. Comparative and ablation studies show that sequential inputs improve perception and control in our models, while other baselines do not benefit. Seq-DeepIPC achieves competitive or better results with reasonable model size; although GNSS-only heading is less reliable near tall buildings, it is robust in open areas. Overall, Seq-DeepIPC extends end-to-end navigation beyond wheeled robots to more versatile and temporally-aware systems. To support future research, we will release the codes to our GitHub repository at https://github.com/oskarnatan/Seq-DeepIPC.
comment: Preprint notice, this manuscript has been submitted to IEEE sensors journal for possible publication
☆ HieraMamba: Video Temporal Grounding via Hierarchical Anchor-Mamba Pooling
Video temporal grounding, the task of localizing the start and end times of a natural language query in untrimmed video, requires capturing both global context and fine-grained temporal detail. This challenge is particularly pronounced in long videos, where existing methods often compromise temporal fidelity by over-downsampling or relying on fixed windows. We present HieraMamba, a hierarchical architecture that preserves temporal structure and semantic richness across scales. At its core are Anchor-MambaPooling (AMP) blocks, which utilize Mamba's selective scanning to produce compact anchor tokens that summarize video content at multiple granularities. Two complementary objectives, anchor-conditioned and segment-pooled contrastive losses, encourage anchors to retain local detail while remaining globally discriminative. HieraMamba sets a new state-of-the-art on Ego4D-NLQ, MAD, and TACoS, demonstrating precise, temporally faithful localization in long, untrimmed videos.
comment: Project Page: https://vision.cs.utexas.edu/projects/hieramamba/
☆ Nested AutoRegressive Models
AutoRegressive (AR) models have demonstrated competitive performance in image generation, achieving results comparable to those of diffusion models. However, their token-by-token image generation mechanism remains computationally intensive and existing solutions such as VAR often lead to limited sample diversity. In this work, we propose a Nested AutoRegressive~(NestAR) model, which proposes nested AutoRegressive architectures in generating images. NestAR designs multi-scale modules in a hierarchical order. These different scaled modules are constructed in an AR architecture, where one larger-scale module is conditioned on outputs from its previous smaller-scale module. Within each module, NestAR uses another AR structure to generate ``patches'' of tokens. The proposed nested AR architecture reduces the overall complexity from $\mathcal{O}(n)$ to $\mathcal{O}(\log n)$ in generating $n$ image tokens, as well as increases image diversities. NestAR further incorporates flow matching loss to use continuous tokens, and develops objectives to coordinate these multi-scale modules in model training. NestAR achieves competitive image generation performance while significantly lowering computational cost.
☆ UniAIDet: A Unified and Universal Benchmark for AI-Generated Image Content Detection and Localization
With the rapid proliferation of image generative models, the authenticity of digital images has become a significant concern. While existing studies have proposed various methods for detecting AI-generated content, current benchmarks are limited in their coverage of diverse generative models and image categories, often overlooking end-to-end image editing and artistic images. To address these limitations, we introduce UniAIDet, a unified and comprehensive benchmark that includes both photographic and artistic images. UniAIDet covers a wide range of generative models, including text-to-image, image-to-image, image inpainting, image editing, and deepfake models. Using UniAIDet, we conduct a comprehensive evaluation of various detection methods and answer three key research questions regarding generalization capability and the relation between detection and localization. Our benchmark and analysis provide a robust foundation for future research.
☆ M$^{3}$T2IBench: A Large-Scale Multi-Category, Multi-Instance, Multi-Relation Text-to-Image Benchmark
Text-to-image models are known to struggle with generating images that perfectly align with textual prompts. Several previous studies have focused on evaluating image-text alignment in text-to-image generation. However, these evaluations either address overly simple scenarios, especially overlooking the difficulty of prompts with multiple different instances belonging to the same category, or they introduce metrics that do not correlate well with human evaluation. In this study, we introduce M$^3$T2IBench, a large-scale, multi-category, multi-instance, multi-relation along with an object-detection-based evaluation metric, $AlignScore$, which aligns closely with human evaluation. Our findings reveal that current open-source text-to-image models perform poorly on this challenging benchmark. Additionally, we propose the Revise-Then-Enforce approach to enhance image-text alignment. This training-free post-editing method demonstrates improvements in image-text alignment across a broad range of diffusion models. \footnote{Our code and data has been released in supplementary material and will be made publicly available after the paper is accepted.}
☆ UGAE: Unified Geometry and Attribute Enhancement for G-PCC Compressed Point Clouds
Lossy compression of point clouds reduces storage and transmission costs; however, it inevitably leads to irreversible distortion in geometry structure and attribute information. To address these issues, we propose a unified geometry and attribute enhancement (UGAE) framework, which consists of three core components: post-geometry enhancement (PoGE), pre-attribute enhancement (PAE), and post-attribute enhancement (PoAE). In PoGE, a Transformer-based sparse convolutional U-Net is used to reconstruct the geometry structure with high precision by predicting voxel occupancy probabilities. Building on the refined geometry structure, PAE introduces an innovative enhanced geometry-guided recoloring strategy, which uses a detail-aware K-Nearest Neighbors (DA-KNN) method to achieve accurate recoloring and effectively preserve high-frequency details before attribute compression. Finally, at the decoder side, PoAE uses an attribute residual prediction network with a weighted mean squared error (W-MSE) loss to enhance the quality of high-frequency regions while maintaining the fidelity of low-frequency regions. UGAE significantly outperformed existing methods on three benchmark datasets: 8iVFB, Owlii, and MVUB. Compared to the latest G-PCC test model (TMC13v29), UGAE achieved an average BD-PSNR gain of 9.98 dB and 90.98% BD-bitrate savings for geometry under the D1 metric, as well as a 3.67 dB BD-PSNR improvement with 56.88% BD-bitrate savings for attributes on the Y component. Additionally, it improved perceptual quality significantly.
☆ CoMo: Compositional Motion Customization for Text-to-Video Generation
While recent text-to-video models excel at generating diverse scenes, they struggle with precise motion control, particularly for complex, multi-subject motions. Although methods for single-motion customization have been developed to address this gap, they fail in compositional scenarios due to two primary challenges: motion-appearance entanglement and ineffective multi-motion blending. This paper introduces CoMo, a novel framework for $\textbf{compositional motion customization}$ in text-to-video generation, enabling the synthesis of multiple, distinct motions within a single video. CoMo addresses these issues through a two-phase approach. First, in the single-motion learning phase, a static-dynamic decoupled tuning paradigm disentangles motion from appearance to learn a motion-specific module. Second, in the multi-motion composition phase, a plug-and-play divide-and-merge strategy composes these learned motions without additional training by spatially isolating their influence during the denoising process. To facilitate research in this new domain, we also introduce a new benchmark and a novel evaluation metric designed to assess multi-motion fidelity and blending. Extensive experiments demonstrate that CoMo achieves state-of-the-art performance, significantly advancing the capabilities of controllable video generation. Our project page is at https://como6.github.io/.
☆ An Intelligent Water-Saving Irrigation System Based on Multi-Sensor Fusion and Visual Servoing Control
This paper introduces an intelligent water-saving irrigation system designed to address critical challenges in precision agriculture, such as inefficient water use and poor terrain adaptability. The system integrates advanced computer vision, robotic control, and real-time stabilization technologies via a multi-sensor fusion approach. A lightweight YOLO model, deployed on an embedded vision processor (K210), enables real-time plant container detection with over 96% accuracy under varying lighting conditions. A simplified hand-eye calibration algorithm-designed for 'handheld camera' robot arm configurations-ensures that the end effector can be precisely positioned, with a success rate exceeding 90%. The active leveling system, driven by the STM32F103ZET6 main control chip and JY901S inertial measurement data, can stabilize the irrigation platform on slopes up to 10 degrees, with a response time of 1.8 seconds. Experimental results across three simulated agricultural environments (standard greenhouse, hilly terrain, complex lighting) demonstrate a 30-50% reduction in water consumption compared to conventional flood irrigation, with water use efficiency exceeding 92% in all test cases.
☆ LoMix: Learnable Weighted Multi-Scale Logits Mixing for Medical Image Segmentation NeurIPS 2025
U-shaped networks output logits at multiple spatial scales, each capturing a different blend of coarse context and fine detail. Yet, training still treats these logits in isolation - either supervising only the final, highest-resolution logits or applying deep supervision with identical loss weights at every scale - without exploring mixed-scale combinations. Consequently, the decoder output misses the complementary cues that arise only when coarse and fine predictions are fused. To address this issue, we introduce LoMix (Logits Mixing), a NAS-inspired, differentiable plug-and-play module that generates new mixed-scale outputs and learns how exactly each of them should guide the training process. More precisely, LoMix mixes the multi-scale decoder logits with four lightweight fusion operators: addition, multiplication, concatenation, and attention-based weighted fusion, yielding a rich set of synthetic mutant maps. Every original or mutant map is given a softplus loss weight that is co-optimized with network parameters, mimicking a one-step architecture search that automatically discovers the most useful scales, mixtures, and operators. Plugging LoMix into recent U-shaped architectures (i.e., PVT-V2-B2 backbone with EMCAD decoder) on Synapse 8-organ dataset improves DICE by +4.2% over single-output supervision, +2.2% over deep supervision, and +1.5% over equally weighted additive fusion, all with zero inference overhead. When training data are scarce (e.g., one or two labeled scans), the advantage grows to +9.23%, underscoring LoMix's data efficiency. Across four benchmarks and diverse U-shaped networks, LoMiX improves DICE by up to +13.5% over single-output supervision, confirming that learnable weighted mixed-scale fusion generalizes broadly while remaining data efficient, fully interpretable, and overhead-free at inference. Our code is available at https://github.com/SLDGroup/LoMix.
comment: 25 pages, 13 figures, NeurIPS 2025 accepted paper
☆ SceneDecorator: Towards Scene-Oriented Story Generation with Scene Planning and Scene Consistency NeurIPS 2025
Recent text-to-image models have revolutionized image generation, but they still struggle with maintaining concept consistency across generated images. While existing works focus on character consistency, they often overlook the crucial role of scenes in storytelling, which restricts their creativity in practice. This paper introduces scene-oriented story generation, addressing two key challenges: (i) scene planning, where current methods fail to ensure scene-level narrative coherence by relying solely on text descriptions, and (ii) scene consistency, which remains largely unexplored in terms of maintaining scene consistency across multiple stories. We propose SceneDecorator, a training-free framework that employs VLM-Guided Scene Planning to ensure narrative coherence across different scenes in a ``global-to-local'' manner, and Long-Term Scene-Sharing Attention to maintain long-term scene consistency and subject diversity across generated stories. Extensive experiments demonstrate the superior performance of SceneDecorator, highlighting its potential to unleash creativity in the fields of arts, films, and games.
comment: Accepted by NeurIPS 2025; Project Page: https://lulupig12138.github.io/SceneDecorator
☆ USF-MAE: Ultrasound Self-Supervised Foundation Model with Masked Autoencoding
Ultrasound imaging is one of the most widely used diagnostic modalities, offering real-time, radiation-free assessment across diverse clinical domains. However, interpretation of ultrasound images remains challenging due to high noise levels, operator dependence, and limited field of view, resulting in substantial inter-observer variability. Current Deep Learning approaches are hindered by the scarcity of large labeled datasets and the domain gap between general and sonographic images, which limits the transferability of models pretrained on non-medical data. To address these challenges, we introduce the Ultrasound Self-Supervised Foundation Model with Masked Autoencoding (USF-MAE), the first large-scale self-supervised MAE framework pretrained exclusively on ultrasound data. The model was pre-trained on 370,000 2D and 3D ultrasound images curated from 46 open-source datasets, collectively termed OpenUS-46, spanning over twenty anatomical regions. This curated dataset has been made publicly available to facilitate further research and reproducibility. Using a Vision Transformer encoder-decoder architecture, USF-MAE reconstructs masked image patches, enabling it to learn rich, modality-specific representations directly from unlabeled data. The pretrained encoder was fine-tuned on three public downstream classification benchmarks: BUS-BRA (breast cancer), MMOTU-2D (ovarian tumors), and GIST514-DB (gastrointestinal stromal tumors). Across all tasks, USF-MAE consistently outperformed conventional CNN and ViT baselines, achieving F1-scores of 81.6%, 79.6%, and 82.4%, respectively. Despite not using labels during pretraining, USF-MAE approached the performance of the supervised foundation model UltraSam on breast cancer classification and surpassed it on the other tasks, demonstrating strong cross-anatomical generalization.
☆ Exploring Semantic-constrained Adversarial Example with Instruction Uncertainty Reduction NeurIPS 2025
Recently, semantically constrained adversarial examples (SemanticAE), which are directly generated from natural language instructions, have become a promising avenue for future research due to their flexible attacking forms. To generate SemanticAEs, current methods fall short of satisfactory attacking ability as the key underlying factors of semantic uncertainty in human instructions, such as referring diversity, descriptive incompleteness, and boundary ambiguity, have not been fully investigated. To tackle the issues, this paper develops a multi-dimensional instruction uncertainty reduction (InSUR) framework to generate more satisfactory SemanticAE, i.e., transferable, adaptive, and effective. Specifically, in the dimension of the sampling method, we propose the residual-driven attacking direction stabilization to alleviate the unstable adversarial optimization caused by the diversity of language references. By coarsely predicting the language-guided sampling process, the optimization process will be stabilized by the designed ResAdv-DDIM sampler, therefore releasing the transferable and robust adversarial capability of multi-step diffusion models. In task modeling, we propose the context-encoded attacking scenario constraint to supplement the missing knowledge from incomplete human instructions. Guidance masking and renderer integration are proposed to regulate the constraints of 2D/3D SemanticAE, activating stronger scenario-adapted attacks. Moreover, in the dimension of generator evaluation, we propose the semantic-abstracted attacking evaluation enhancement by clarifying the evaluation boundary, facilitating the development of more effective SemanticAE generators. Extensive experiments demonstrate the superiority of the transfer attack performance of InSUR. Moreover, we realize the reference-free generation of semantically constrained 3D adversarial examples for the first time.
comment: NeurIPS 2025
☆ VoMP: Predicting Volumetric Mechanical Property Fields
Physical simulation relies on spatially-varying mechanical properties, often laboriously hand-crafted. VoMP is a feed-forward method trained to predict Young's modulus ($E$), Poisson's ratio ($\nu$), and density ($\rho$) throughout the volume of 3D objects, in any representation that can be rendered and voxelized. VoMP aggregates per-voxel multi-view features and passes them to our trained Geometry Transformer to predict per-voxel material latent codes. These latents reside on a manifold of physically plausible materials, which we learn from a real-world dataset, guaranteeing the validity of decoded per-voxel materials. To obtain object-level training data, we propose an annotation pipeline combining knowledge from segmented 3D datasets, material databases, and a vision-language model, along with a new benchmark. Experiments show that VoMP estimates accurate volumetric properties, far outperforming prior art in accuracy and speed.
comment: hi-res paper and other details at: https://research.nvidia.com/labs/sil/projects/vomp
☆ Scaling Up Occupancy-centric Driving Scene Generation: Dataset and Method
Driving scene generation is a critical domain for autonomous driving, enabling downstream applications, including perception and planning evaluation. Occupancy-centric methods have recently achieved state-of-the-art results by offering consistent conditioning across frames and modalities; however, their performance heavily depends on annotated occupancy data, which still remains scarce. To overcome this limitation, we curate Nuplan-Occ, the largest semantic occupancy dataset to date, constructed from the widely used Nuplan benchmark. Its scale and diversity facilitate not only large-scale generative modeling but also autonomous driving downstream applications. Based on this dataset, we develop a unified framework that jointly synthesizes high-quality semantic occupancy, multi-view videos, and LiDAR point clouds. Our approach incorporates a spatio-temporal disentangled architecture to support high-fidelity spatial expansion and temporal forecasting of 4D dynamic occupancy. To bridge modal gaps, we further propose two novel techniques: a Gaussian splatting-based sparse point map rendering strategy that enhances multi-view video generation, and a sensor-aware embedding strategy that explicitly models LiDAR sensor properties for realistic multi-LiDAR simulation. Extensive experiments demonstrate that our method achieves superior generation fidelity and scalability compared to existing approaches, and validates its practical value in downstream tasks. Repo: https://github.com/Arlo0o/UniScene-Unified-Occupancy-centric-Driving-Scene-Generation/tree/v2
comment: https://github.com/Arlo0o/UniScene-Unified-Occupancy-centric-Driving-Scene-Generation/tree/v2
☆ VALA: Learning Latent Anchors for Training-Free and Temporally Consistent
Recent advances in training-free video editing have enabled lightweight and precise cross-frame generation by leveraging pre-trained text-to-image diffusion models. However, existing methods often rely on heuristic frame selection to maintain temporal consistency during DDIM inversion, which introduces manual bias and reduces the scalability of end-to-end inference. In this paper, we propose~\textbf{VALA} (\textbf{V}ariational \textbf{A}lignment for \textbf{L}atent \textbf{A}nchors), a variational alignment module that adaptively selects key frames and compresses their latent features into semantic anchors for consistent video editing. To learn meaningful assignments, VALA propose a variational framework with a contrastive learning objective. Therefore, it can transform cross-frame latent representations into compressed latent anchors that preserve both content and temporal coherence. Our method can be fully integrated into training-free text-to-image based video editing models. Extensive experiments on real-world video editing benchmarks show that VALA achieves state-of-the-art performance in inversion fidelity, editing quality, and temporal consistency, while offering improved efficiency over prior methods.
Survey of Multimodal Geospatial Foundation Models: Techniques, Applications, and Challenges
Foundation models have transformed natural language processing and computer vision, and their impact is now reshaping remote sensing image analysis. With powerful generalization and transfer learning capabilities, they align naturally with the multimodal, multi-resolution, and multi-temporal characteristics of remote sensing data. To address unique challenges in the field, multimodal geospatial foundation models (GFMs) have emerged as a dedicated research frontier. This survey delivers a comprehensive review of multimodal GFMs from a modality-driven perspective, covering five core visual and vision-language modalities. We examine how differences in imaging physics and data representation shape interaction design, and we analyze key techniques for alignment, integration, and knowledge transfer to tackle modality heterogeneity, distribution shifts, and semantic gaps. Advances in training paradigms, architectures, and task-specific adaptation strategies are systematically assessed alongside a wealth of emerging benchmarks. Representative multimodal visual and vision-language GFMs are evaluated across ten downstream tasks, with insights into their architectures, performance, and application scenarios. Real-world case studies, spanning land cover mapping, agricultural monitoring, disaster response, climate studies, and geospatial intelligence, demonstrate the practical potential of GFMs. Finally, we outline pressing challenges in domain generalization, interpretability, efficiency, and privacy, and chart promising avenues for future research.
☆ FAME: Fairness-aware Attention-modulated Video Editing
Training-free video editing (VE) models tend to fall back on gender stereotypes when rendering profession-related prompts. We propose \textbf{FAME} for \textit{Fairness-aware Attention-modulated Video Editing} that mitigates profession-related gender biases while preserving prompt alignment and temporal consistency for coherent VE. We derive fairness embeddings from existing minority representations by softly injecting debiasing tokens into the text encoder. Simultaneously, FAME integrates fairness modulation into both temporal self attention and prompt-to-region cross attention to mitigate the motion corruption and temporal inconsistency caused by directly introducing fairness cues. For temporal self attention, FAME introduces a region constrained attention mask combined with time decay weighting, which enhances intra-region coherence while suppressing irrelevant inter-region interactions. For cross attention, it reweights tokens to region matching scores by incorporating fairness sensitive similarity masks derived from debiasing prompt embeddings. Together, these modulations keep fairness-sensitive semantics tied to the right visual regions and prevent temporal drift across frames. Extensive experiments on new VE fairness-oriented benchmark \textit{FairVE} demonstrate that FAME achieves stronger fairness alignment and semantic fidelity, surpassing existing VE baselines.
☆ LightBagel: A Light-weighted, Double Fusion Framework for Unified Multimodal Understanding and Generation
Unified multimodal models have recently shown remarkable gains in both capability and versatility, yet most leading systems are still trained from scratch and require substantial computational resources. In this paper, we show that competitive performance can be obtained far more efficiently by strategically fusing publicly available models specialized for either generation or understanding. Our key design is to retain the original blocks while additionally interleaving multimodal self-attention blocks throughout the networks. This double fusion mechanism (1) effectively enables rich multi-modal fusion while largely preserving the original strengths of the base models, and (2) catalyzes synergistic fusion of high-level semantic representations from the understanding encoder with low-level spatial signals from the generation encoder. By training with only ~ 35B tokens, this approach achieves strong results across multiple benchmarks: 0.91 on GenEval for compositional text-to-image generation, 82.16 on DPG-Bench for complex text-to-image generation, 6.06 on GEditBench, and 3.77 on ImgEdit-Bench for image editing. By fully releasing the entire suite of code, model weights, and datasets, we hope to support future research on unified multimodal modeling.
comment: Preprint. Project page: https://ucsc-vlaa.github.io/LightBagel/
☆ Switchable Token-Specific Codebook Quantization For Face Image Compression
With the ever-increasing volume of visual data, the efficient and lossless transmission, along with its subsequent interpretation and understanding, has become a critical bottleneck in modern information systems. The emerged codebook-based solution utilize a globally shared codebook to quantize and dequantize each token, controlling the bpp by adjusting the number of tokens or the codebook size. However, for facial images, which are rich in attributes, such global codebook strategies overlook both the category-specific correlations within images and the semantic differences among tokens, resulting in suboptimal performance, especially at low bpp. Motivated by these observations, we propose a Switchable Token-Specific Codebook Quantization for face image compression, which learns distinct codebook groups for different image categories and assigns an independent codebook to each token. By recording the codebook group to which each token belongs with a small number of bits, our method can reduce the loss incurred when decreasing the size of each codebook group. This enables a larger total number of codebooks under a lower overall bpp, thereby enhancing the expressive capability and improving reconstruction performance. Owing to its generalizable design, our method can be integrated into any existing codebook-based representation learning approach and has demonstrated its effectiveness on face recognition datasets, achieving an average accuracy of 93.51% for reconstructed images at 0.05 bpp.
☆ Bi-Encoder Contrastive Learning for Fingerprint and Iris Biometrics
There has been a historic assumption that the biometrics of an individual are statistically uncorrelated. We test this assumption by training Bi-Encoder networks on three verification tasks, including fingerprint-to-fingerprint matching, iris-to-iris matching, and cross-modal fingerprint-to-iris matching using 274 subjects with $\sim$100k fingerprints and 7k iris images. We trained ResNet-50 and Vision Transformer backbones in Bi-Encoder architectures such that the contrastive loss between images sampled from the same individual is minimized. The iris ResNet architecture reaches 91 ROC AUC score for iris-to-iris matching, providing clear evidence that the left and right irises of an individual are correlated. Fingerprint models reproduce the positive intra-subject suggested by prior work in this space. This is the first work attempting to use Vision Transformers for this matching. Cross-modal matching rises only slightly above chance, which suggests that more data and a more sophisticated pipeline is needed to obtain compelling results. These findings continue challenge independence assumptions of biometrics and we plan to extend this work to other biometrics in the future. Code available: https://github.com/MatthewSo/bio_fingerprints_iris.
☆ Positional Preservation Embedding for Multimodal Large Language Models
Multimodal large language models (MLLMs) have achieved strong performance on vision-language tasks, yet often suffer from inefficiencies due to redundant visual tokens. Existing token merging methods reduce sequence length but frequently disrupt spatial layouts and temporal continuity by disregarding positional relationships. In this work, we propose a novel encoding operator dubbed as \textbf{P}ositional \textbf{P}reservation \textbf{E}mbedding (\textbf{PPE}), which has the main hallmark of preservation of spatiotemporal structure during visual token compression. PPE explicitly introduces the disentangled encoding of 3D positions in the token dimension, enabling each compressed token to encapsulate different positions from multiple original tokens. Furthermore, we show that PPE can effectively support cascade clustering -- a progressive token compression strategy that leads to better performance retention. PPE is a parameter-free and generic operator that can be seamlessly integrated into existing token merging methods without any adjustments. Applied to state-of-the-art token merging framework, PPE achieves consistent improvements of $2\%\sim5\%$ across multiple vision-language benchmarks, including MMBench (general vision understanding), TextVQA (layout understanding) and VideoMME (temporal understanding). These results demonstrate that preserving positional cues is critical for efficient and effective MLLM reasoning.
☆ Gen-LangSplat: Generalized Language Gaussian Splatting with Pre-Trained Feature Compression
Modeling open-vocabulary language fields in 3D is essential for intuitive human-AI interaction and querying within physical environments. State-of-the-art approaches, such as LangSplat, leverage 3D Gaussian Splatting to efficiently construct these language fields, encoding features distilled from high-dimensional models like CLIP. However, this efficiency is currently offset by the requirement to train a scene-specific language autoencoder for feature compression, introducing a costly, per-scene optimization bottleneck that hinders deployment scalability. In this work, we introduce Gen-LangSplat, that eliminates this requirement by replacing the scene-wise autoencoder with a generalized autoencoder, pre-trained extensively on the large-scale ScanNet dataset. This architectural shift enables the use of a fixed, compact latent space for language features across any new scene without any scene-specific training. By removing this dependency, our entire language field construction process achieves a efficiency boost while delivering querying performance comparable to, or exceeding, the original LangSplat method. To validate our design choice, we perform a thorough ablation study empirically determining the optimal latent embedding dimension and quantifying representational fidelity using Mean Squared Error and cosine similarity between the original and reprojected 512-dimensional CLIP embeddings. Our results demonstrate that generalized embeddings can efficiently and accurately support open-vocabulary querying in novel 3D scenes, paving the way for scalable, real-time interactive 3D AI applications.
☆ Estimating Pasture Biomass from Top-View Images: A Dataset for Precision Agriculture
Accurate estimation of pasture biomass is important for decision-making in livestock production systems. Estimates of pasture biomass can be used to manage stocking rates to maximise pasture utilisation, while minimising the risk of overgrazing and promoting overall system health. We present a comprehensive dataset of 1,162 annotated top-view images of pastures collected across 19 locations in Australia. The images were taken across multiple seasons and include a range of temperate pasture species. Each image captures a 70cm * 30cm quadrat and is paired with on-ground measurements including biomass sorted by component (green, dead, and legume fraction), vegetation height, and Normalized Difference Vegetation Index (NDVI) from Active Optical Sensors (AOS). The multidimensional nature of the data, which combines visual, spectral, and structural information, opens up new possibilities for advancing the use of precision grazing management. The dataset is released and hosted in a Kaggle competition that challenges the international Machine Learning community with the task of pasture biomass estimation. The dataset is available on the official Kaggle webpage: https://www.kaggle.com/competitions/csiro-biomass
comment: 9 pages, 2 figures, 2 tables, The dataset is available on the official Kaggle webpage: https://www.kaggle.com/competitions/csiro-biomass
♻ ☆ LayerComposer: Interactive Personalized T2I via Spatially-Aware Layered Canvas
Despite their impressive visual fidelity, existing personalized generative models lack interactive control over spatial composition and scale poorly to multiple subjects. To address these limitations, we present LayerComposer, an interactive framework for personalized, multi-subject text-to-image generation. Our approach introduces two main contributions: (1) a layered canvas, a novel representation in which each subject is placed on a distinct layer, enabling occlusion-free composition; and (2) a locking mechanism that preserves selected layers with high fidelity while allowing the remaining layers to adapt flexibly to the surrounding context. Similar to professional image-editing software, the proposed layered canvas allows users to place, resize, or lock input subjects through intuitive layer manipulation. Our versatile locking mechanism requires no architectural changes, relying instead on inherent positional embeddings combined with a new complementary data sampling strategy. Extensive experiments demonstrate that LayerComposer achieves superior spatial control and identity preservation compared to the state-of-the-art methods in multi-subject personalized image generation.
comment: 9 pages, preprint. Project page: https://snap-research.github.io/layercomposer/
♻ ☆ ReXGroundingCT: A 3D Chest CT Dataset for Segmentation of Findings from Free-Text Reports
We introduce ReXGroundingCT, the first publicly available dataset linking free-text findings to pixel-level 3D segmentations in chest CT scans. The dataset includes 3,142 non-contrast chest CT scans paired with standardized radiology reports from CT-RATE. Construction followed a structured three-stage pipeline. First, GPT-4 was used to extract and standardize findings, descriptors, and metadata from reports originally written in Turkish and machine-translated into English. Second, GPT-4o-mini categorized each finding into a hierarchical ontology of lung and pleural abnormalities. Third, 3D annotations were produced for all CT volumes: the training set was quality-assured by board-certified radiologists, and the validation and test sets were fully annotated by board-certified radiologists. Additionally, a complementary chain-of-thought dataset was created to provide step-by-step hierarchical anatomical reasoning for localizing findings within the CT volume, using GPT-4o and localization coordinates derived from organ segmentation models. ReXGroundingCT contains 16,301 annotated entities across 8,028 text-to-3D-segmentation pairs, covering diverse radiological patterns from 3,142 non-contrast CT scans. About 79% of findings are focal abnormalities and 21% are non-focal. The dataset includes a public validation set of 50 cases and a private test set of 100 cases, both annotated by board-certified radiologists. The dataset establishes a foundation for enabling free-text finding segmentation and grounded radiology report generation in CT imaging. Model performance on the private test set is hosted on a public leaderboard at https://rexrank.ai/ReXGroundingCT. The dataset is available at https://huggingface.co/datasets/rajpurkarlab/ReXGroundingCT.
♻ ☆ ESCA: Contextualizing Embodied Agents via Scene-Graph Generation NeurIPS 2025
Multi-modal large language models (MLLMs) are making rapid progress toward general-purpose embodied agents. However, existing MLLMs do not reliably capture fine-grained links between low-level visual features and high-level textual semantics, leading to weak grounding and inaccurate perception. To overcome this challenge, we propose ESCA, a framework that contextualizes embodied agents by grounding their perception in spatial-temporal scene graphs. At its core is SGCLIP, a novel, open-domain, promptable foundation model for generating scene graphs that is based on CLIP. SGCLIP is trained on 87K+ open-domain videos using a neurosymbolic pipeline that aligns automatically generated captions with scene graphs produced by the model itself, eliminating the need for human-labeled annotations. We demonstrate that SGCLIP excels in both prompt-based inference and task-specific fine-tuning, achieving state-of-the-art results on scene graph generation and action localization benchmarks. ESCA with SGCLIP improves perception for embodied agents based on both open-source and commercial MLLMs, achieving state of-the-art performance across two embodied environments. Notably, ESCA significantly reduces agent perception errors and enables open-source models to surpass proprietary baselines. We release the source code for SGCLIP model training at https://github.com/video-fm/LASER and for the embodied agent at https://github.com/video-fm/ESCA.
comment: Accepted as a Spotlight Paper at NeurIPS 2025
♻ ☆ Now you see me! Attribution Distributions Reveal What is Truly Important for a Prediction
Neural networks are regularly employed in high-stakes decision-making, where understanding and transparency is key. Attribution methods have been developed to gain understanding into which input features neural networks use for a specific prediction. Although widely used in computer vision, these methods often result in unspecific saliency maps that fail to identify the relevant information that led to a decision, supported by different benchmarks results. Here, we revisit the common attribution pipeline and identify one cause for the lack of specificity in attributions as the computation of attribution of isolated logits. Instead, we suggest to combine attributions of multiple class logits in analogy to how the softmax combines the information across logits. By computing probability distributions of attributions over classes for each spatial location in the image, we unleash the true capabilities of existing attribution methods, revealing better object- and instance-specificity and uncovering discriminative as well as shared features between classes. On common benchmarks, including the grid-pointing game and randomization-based sanity checks, we show that this reconsideration of how and where we compute attributions across the network improves established attribution methods while staying agnostic to model architectures. We make the code publicly available: https://github.com/nilspwalter/var.
♻ ☆ Noise Diffusion for Enhancing Semantic Faithfulness in Text-to-Image Synthesis
Diffusion models have achieved impressive success in generating photorealistic images, but challenges remain in ensuring precise semantic alignment with input prompts. Optimizing the initial noisy latent offers a more efficient alternative to modifying model architectures or prompt engineering for improving semantic alignment. A latest approach, InitNo, refines the initial noisy latent by leveraging attention maps; however, these maps capture only limited information, and the effectiveness of InitNo is highly dependent on the initial starting point, as it tends to converge on a local optimum near this point. To this end, this paper proposes leveraging the language comprehension capabilities of large vision-language models (LVLMs) to guide the optimization of the initial noisy latent, and introduces the Noise Diffusion process, which updates the noisy latent to generate semantically faithful images while preserving distribution consistency. Furthermore, we provide a theoretical analysis of the condition under which the update improves semantic faithfulness. Experimental results demonstrate the effectiveness and adaptability of our framework, consistently enhancing semantic alignment across various diffusion models. The code is available at https://github.com/Bomingmiao/NoiseDiffusion.
comment: Updated author formatting; no substantive changes
♻ ☆ RWKV-UNet: Improving UNet with Long-Range Cooperation for Effective Medical Image Segmentation
In recent years, significant advancements have been made in deep learning for medical image segmentation, particularly with convolutional neural networks (CNNs) and transformer models. However, CNNs face limitations in capturing long-range dependencies, while transformers suffer from high computational complexity. To address this, we propose RWKV-UNet, a novel model that integrates the RWKV (Receptance Weighted Key Value) structure into the U-Net architecture. This integration enhances the model's ability to capture long-range dependencies and to improve contextual understanding, which is crucial for accurate medical image segmentation. We build a strong encoder with developed Global-Local Spatial Perception (GLSP) blocks combining CNNs and RWKVs. We also propose a Cross-Channel Mix (CCM) module to improve skip connections with multi-scale feature fusion, achieving global channel information integration. Experiments on 11 benchmark datasets show that the RWKV-UNet achieves state-of-the-art performance on various types of medical image segmentation tasks. Additionally, smaller variants, RWKV-UNet-S and RWKV-UNet-T, balance accuracy and computational efficiency, making them suitable for broader clinical applications.
♻ ☆ Smartphone-based iris recognition through high-quality visible-spectrum iris image capture.V2
Smartphone-based iris recognition in the visible spectrum (VIS) remains difficult due to illumination variability, pigmentation differences, and the absence of standardized capture controls. This work presents a compact end-to-end pipeline that enforces ISO/IEC 29794-6 quality compliance at acquisition and demonstrates that accurate VIS iris recognition is feasible on commodity devices. Using a custom Android application performing real-time framing, sharpness evaluation, and feedback, we introduce the CUVIRIS dataset of 752 compliant images from 47 subjects. A lightweight MobileNetV3-based multi-task segmentation network (LightIrisNet) is developed for efficient on-device processing, and a transformer matcher (IrisFormer) is adapted to the VIS domain. Under a standardized protocol and comparative benchmarking against prior CNN baselines, OSIRIS attains a TAR of 97.9% at FAR=0.01 (EER=0.76%), while IrisFormer, trained only on UBIRIS.v2, achieves an EER of 0.057% on CUVIRIS. The acquisition app, trained models, and a public subset of the dataset are released to support reproducibility. These results confirm that standardized capture and VIS-adapted lightweight models enable accurate and practical iris recognition on smartphones.
comment: This submission has been withdrawn because it duplicates significant content from another version of the paper already available on arXiv as arXiv:2412.13063
♻ ☆ Synthesize Privacy-Preserving High-Resolution Images via Private Textual Intermediaries
Generating high fidelity, differentially private (DP) synthetic images offers a promising route to share and analyze sensitive visual data without compromising individual privacy. However, existing DP image synthesis methods struggle to produce high resolution outputs that faithfully capture the structure of the original data. In this paper, we introduce a novel method, referred to as Synthesis via Private Textual Intermediaries (SPTI), that can generate high resolution DP images with easy adoption. The key idea is to shift the challenge of DP image synthesis from the image domain to the text domain by leveraging state of the art DP text generation methods. SPTI first summarizes each private image into a concise textual description using image to text models, then applies a modified Private Evolution algorithm to generate DP text, and finally reconstructs images using text to image models. Notably, SPTI requires no model training, only inference with off the shelf models. Given a private dataset, SPTI produces synthetic images of substantially higher quality than prior DP approaches. On the LSUN Bedroom dataset, SPTI attains an FID equal to 26.71 under epsilon equal to 1.0, improving over Private Evolution FID of 40.36. Similarly, on MM CelebA HQ, SPTI achieves an FID equal to 33.27 at epsilon equal to 1.0, compared to 57.01 from DP fine tuning baselines. Overall, our results demonstrate that Synthesis via Private Textual Intermediaries provides a resource efficient and proprietary model compatible framework for generating high resolution DP synthetic images, greatly expanding access to private visual datasets.
♻ ☆ A Fine-Grained Attention and Geometric Correspondence Model for Musculoskeletal Risk Classification in Athletes Using Multimodal Visual and Skeletal Features
Musculoskeletal disorders pose significant risks to athletes, and assessing risk early is important for prevention. However, most existing methods are designed for controlled settings and fail to reliably assess risk in complex environments due to their reliance on a single type of data. This research introduces ViSK-GAT (Visual-Skeletal Geometric Attention Transformer), a novel multimodal deep learning framework that classifies musculoskeletal risk using both visual and skeletal coordinate-based features. A custom multimodal dataset (MusDis-Sports) was created by combining images and skeletal coordinates, with each sample labeled into eight risk categories based on the Rapid Entire Body Assessment (REBA) system. ViSK-GAT integrates two innovative modules: the Fine-Grained Attention Module (FGAM), which refines inter-modal features via cross-attention between visual and skeletal inputs, and the Multimodal Geometric Correspondence Module (MGCM), which enhances cross-modal alignment between image features and coordinates. The model achieved robust performance, with all key metrics exceeding 93%. Regression results also indicated a low RMSE of 0.1205 and MAE of 0.0156. ViSK-GAT consistently outperformed nine popular transfer learning backbones and showed its potential to advance AI-driven musculoskeletal risk assessment and enable early, impactful interventions in sports.
♻ ☆ Topology Sculptor, Shape Refiner: Discrete Diffusion Model for High-Fidelity 3D Meshes Generation
In this paper, we introduce Topology Sculptor, Shape Refiner (TSSR), a novel method for generating high-quality, artist-style 3D meshes based on Discrete Diffusion Models (DDMs). Our primary motivation for TSSR is to achieve highly accurate token prediction while enabling parallel generation, a significant advantage over sequential autoregressive methods. By allowing TSSR to "see" all mesh tokens concurrently, we unlock a new level of efficiency and control. We leverage this parallel generation capability through three key innovations: 1) Decoupled Training and Hybrid Inference, which distinctly separates the DDM-based generation into a topology sculpting stage and a subsequent shape refinement stage. This strategic decoupling enables TSSR to effectively capture both intricate local topology and overarching global shape. 2) An Improved Hourglass Architecture, featuring bidirectional attention enriched by face-vertex-sequence level Rotational Positional Embeddings (RoPE), thereby capturing richer contextual information across the mesh structure. 3) A novel Connection Loss, which acts as a topological constraint to further enhance the realism and fidelity of the generated meshes. Extensive experiments on complex datasets demonstrate that TSSR generates high-quality 3D artist-style meshes, capable of achieving up to 10,000 faces at a remarkable spatial resolution of $1024^3$. The code will be released at: https://github.com/psky1111/Tencent-TSSR.
♻ ☆ AlignCAT: Visual-Linguistic Alignment of Category and Attribute for Weakly Supervised Visual Grounding
Weakly supervised visual grounding (VG) aims to locate objects in images based on text descriptions. Despite significant progress, existing methods lack strong cross-modal reasoning to distinguish subtle semantic differences in text expressions due to category-based and attribute-based ambiguity. To address these challenges, we introduce AlignCAT, a novel query-based semantic matching framework for weakly supervised VG. To enhance visual-linguistic alignment, we propose a coarse-grained alignment module that utilizes category information and global context, effectively mitigating interference from category-inconsistent objects. Subsequently, a fine-grained alignment module leverages descriptive information and captures word-level text features to achieve attribute consistency. By exploiting linguistic cues to their fullest extent, our proposed AlignCAT progressively filters out misaligned visual queries and enhances contrastive learning efficiency. Extensive experiments on three VG benchmarks, namely RefCOCO, RefCOCO+, and RefCOCOg, verify the superiority of AlignCAT against existing weakly supervised methods on two VG tasks. Our code is available at: https://github.com/I2-Multimedia-Lab/AlignCAT.
♻ ☆ Med-R1: Reinforcement Learning for Generalizable Medical Reasoning in Vision-Language Models
Vision-language models (VLMs) have achieved impressive progress in natural image reasoning, yet their potential in medical imaging remains underexplored. Medical vision-language tasks demand precise understanding and clinically coherent answers, which are difficult to achieve due to the complexity of medical data and the scarcity of high-quality expert annotations. These challenges limit the effectiveness of conventional supervised fine-tuning (SFT) and Chain-of-Thought (CoT) strategies that work well in general domains. To address these challenges, we propose Med-R1, a reinforcement learning (RL)-enhanced vision-language model designed to improve generalization and reliability in medical reasoning. Built on the DeepSeek strategy, Med-R1 adopts Group Relative Policy Optimization (GRPO) to encourage reward-guided learning beyond static annotations. We comprehensively evaluate Med-R1 across eight distinct medical imaging modalities. Med-R1 achieves a 29.94% improvement in average accuracy over its base model Qwen2-VL-2B, and even outperforms Qwen2-VL-72B-a model with 36x more parameters. To assess cross-task generalization, we further evaluate Med-R1 on five question types. Med-R1 outperforms Qwen2-VL-2B by 32.06% in question-type generalization, also surpassing Qwen2-VL-72B. We further explore the thinking process in Med-R1, a crucial component for the success of Deepseek-R1. Our results show that omitting intermediate rationales (No-Thinking-Med-R1) not only improves in-domain and cross-domain generalization with less training, but also challenges the assumption that more reasoning always helps. These findings suggest that in medical VQA, it is not reasoning itself, but its quality and domain alignment, that determine effectiveness. Together, these results highlight that RL improves medical reasoning and generalization, enabling efficient and reliable VLMs for real-world deployment.
♻ ☆ Psi-Sampler: Initial Particle Sampling for SMC-Based Inference-Time Reward Alignment in Score Models NeurIPS 2025
We introduce $\Psi$-Sampler, an SMC-based framework incorporating pCNL-based initial particle sampling for effective inference-time reward alignment with a score-based generative model. Inference-time reward alignment with score-based generative models has recently gained significant traction, following a broader paradigm shift from pre-training to post-training optimization. At the core of this trend is the application of Sequential Monte Carlo (SMC) to the denoising process. However, existing methods typically initialize particles from the Gaussian prior, which inadequately captures reward-relevant regions and results in reduced sampling efficiency. We demonstrate that initializing from the reward-aware posterior significantly improves alignment performance. To enable posterior sampling in high-dimensional latent spaces, we introduce the preconditioned Crank-Nicolson Langevin (pCNL) algorithm, which combines dimension-robust proposals with gradient-informed dynamics. This approach enables efficient and scalable posterior sampling and consistently improves performance across various reward alignment tasks, including layout-to-image generation, quantity-aware generation, and aesthetic-preference generation, as demonstrated in our experiments. Project Webpage: https://psi-sampler.github.io/
comment: NeurIPS 2025, Spotlight Presentation
♻ ☆ Self-supervised Representation Learning with Local Aggregation for Image-based Profiling CVPR 2025
Image-based cell profiling aims to create informative representations of cell images. This technique is critical in drug discovery and has greatly advanced with recent improvements in computer vision. Inspired by recent developments in non-contrastive Self-Supervised Learning (SSL), this paper provides an initial exploration into training a generalizable feature extractor for cell images using such methods. However, there are two major challenges: 1) Unlike typical scenarios where each representation is based on a single image, cell profiling often involves multiple input images, making it difficult to effectively fuse all available information; and 2) There is a large difference between the distributions of cell images and natural images, causing the view-generation process in existing SSL methods to fail. To address these issues, we propose a self-supervised framework with local aggregation to improve cross-site consistency of cell representations. We introduce specialized data augmentation and representation post-processing methods tailored to cell images, which effectively address the issues mentioned above and result in a robust feature extractor. With these improvements, the proposed framework won the Cell Line Transferability challenge at CVPR 2025.
comment: CVPR 2025 Computer Vision for Drug Discovery
♻ ☆ TEn-CATG:Text-Enriched Audio-Visual Video Parsing with Multi-Scale Category-Aware Temporal Graph
Audio-visual video parsing (AVVP) aims to detect event categories and their temporal boundaries in videos, typically under weak supervision. Existing methods mainly focus on (i) improving temporal modeling using attention-based architectures or (ii) generating richer pseudo-labels to address the absence of frame-level annotations. However, attention-based models often overfit noisy pseudo-labels, leading to cumulative training errors, while pseudo-label generation approaches distribute attention uniformly across frames, weakening temporal localization accuracy. To address these challenges, we propose TEn-CATG, a text-enriched AVVP framework that combines semantic calibration with category-aware temporal reasoning. More specifically, we design a bi-directional text fusion (BiT) module by leveraging audio-visual features as semantic anchors to refine text embeddings, which departs from conventional text-to-feature alignment, thereby mitigating noise and enhancing cross-modal consistency. Furthermore, we introduce the category-aware temporal graph (CATG) module to model temporal relationships by selecting multi-scale temporal neighbors and learning category-specific temporal decay factors, enabling effective event-dependent temporal reasoning. Extensive experiments demonstrate that TEn-CATG achieves state-of-the-art results across multiple evaluation metrics on benchmark datasets LLP and UnAV-100, highlighting its robustness and superior ability to capture complex temporal and semantic dependencies in weakly supervised AVVP tasks.
♻ ☆ RotaTouille: Rotation Equivariant Deep Learning for Contours
Contours or closed planar curves are common in many domains. For example, they appear as object boundaries in computer vision, isolines in meteorology, and the orbits of rotating machinery. In many cases when learning from contour data, planar rotations of the input will result in correspondingly rotated outputs. It is therefore desirable that deep learning models be rotationally equivariant. In addition, contours are typically represented as an ordered sequence of edge points, where the choice of starting point is arbitrary. It is therefore also desirable for deep learning methods to be equivariant under cyclic shifts. We present RotaTouille, a deep learning framework for learning from contour data that achieves both rotation and cyclic shift equivariance through complex-valued circular convolution. We further introduce and characterize equivariant non-linearities, coarsening layers, and global pooling layers to obtain invariant representations for downstream tasks. Finally, we demonstrate the effectiveness of RotaTouille through experiments in shape classification, reconstruction, and contour regression.
comment: 19 pages, 6 figures
♻ ☆ Bootstrapping Referring Multi-Object Tracking
Referring understanding is a fundamental task that bridges natural language and visual content by localizing objects described in free-form expressions. However, existing works are constrained by limited language expressiveness, lacking the capacity to model object dynamics in spatial numbers and temporal states. To address these limitations, we introduce a new and general referring understanding task, termed referring multi-object tracking (RMOT). Its core idea is to employ a language expression as a semantic cue to guide the prediction of multi-object tracking, comprehensively accounting for variations in object quantity and temporal semantics. Along with RMOT, we introduce a RMOT benchmark named Refer-KITTI-V2, featuring scalable and diverse language expressions. To efficiently generate high-quality annotations covering object dynamics with minimal manual effort, we propose a semi-automatic labeling pipeline that formulates a total of 9,758 language prompts. In addition, we propose TempRMOT, an elegant end-to-end Transformer-based framework for RMOT. At its core is a query-driven Temporal Enhancement Module that represents each object as a Transformer query, enabling long-term spatial-temporal interactions with other objects and past frames to efficiently refine these queries. TempRMOT achieves state-of-the-art performance on both Refer-KITTI and Refer-KITTI-V2, demonstrating the effectiveness of our approach. The source code and dataset is available at https://github.com/zyn213/TempRMOT.
♻ ☆ Capture, Canonicalize, Splat: Zero-Shot 3D Gaussian Avatars from Unstructured Phone Images ICCV 2025
We present a novel, zero-shot pipeline for creating hyperrealistic, identity-preserving 3D avatars from a few unstructured phone images. Existing methods face several challenges: single-view approaches suffer from geometric inconsistencies and hallucinations, degrading identity preservation, while models trained on synthetic data fail to capture high-frequency details like skin wrinkles and fine hair, limiting realism. Our method introduces two key contributions: (1) a generative canonicalization module that processes multiple unstructured views into a standardized, consistent representation, and (2) a transformer-based model trained on a new, large-scale dataset of high-fidelity Gaussian splatting avatars derived from dome captures of real people. This "Capture, Canonicalize, Splat" pipeline produces static quarter-body avatars with compelling realism and robust identity preservation from unstructured photos.
comment: This work received the Best Paper Honorable Mention at the AMFG Workshop, ICCV 2025
♻ ☆ GRE Suite: Geo-localization Inference via Fine-Tuned Vision-Language Models and Enhanced Reasoning Chains
Recent advances in Visual Language Models (VLMs) have demonstrated exceptional performance in visual reasoning tasks. However, geo-localization presents unique challenges, requiring the extraction of multigranular visual cues from images and their integration with external world knowledge for systematic reasoning. Current approaches to geo-localization tasks often lack robust reasoning mechanisms and explainability, limiting their effectiveness. To address these limitations, we propose the Geo Reason Enhancement (GRE) Suite, a novel framework that augments VLMs with structured reasoning chains for accurate and interpretable location inference. The GRE Suite is systematically developed across three key dimensions: dataset, model, and benchmark. First, we introduce GRE30K, a high-quality geo-localization reasoning dataset designed to facilitate fine-grained visual and contextual analysis. Next, we present the GRE model, which employs a multi-stage reasoning strategy to progressively infer scene attributes, local details, and semantic features, thereby narrowing down potential geographic regions with enhanced precision. Finally, we construct the Geo Reason Evaluation Benchmark (GREval-Bench), a comprehensive evaluation framework that assesses VLMs across diverse urban, natural, and landmark scenes to measure both coarse-grained (e.g., country, continent) and fine-grained (e.g., city, street) localization performance. Experimental results demonstrate that GRE significantly outperforms existing methods across all granularities of geo-localization tasks, underscoring the efficacy of reasoning-augmented VLMs in complex geographic inference. Code and data will be released at https://github.com/Thorin215/GRE.
♻ ☆ Training-Free In-Context Forensic Chain for Image Manipulation Detection and Localization
Advances in image tampering pose serious security threats, underscoring the need for effective image manipulation localization (IML). While supervised IML achieves strong performance, it depends on costly pixel-level annotations. Existing weakly supervised or training-free alternatives often underperform and lack interpretability. We propose the In-Context Forensic Chain (ICFC), a training-free framework that leverages multi-modal large language models (MLLMs) for interpretable IML tasks. ICFC integrates an objectified rule construction with adaptive filtering to build a reliable knowledge base and a multi-step progressive reasoning pipeline that mirrors expert forensic workflows from coarse proposals to fine-grained forensics results. This design enables systematic exploitation of MLLM reasoning for image-level classification, pixel-level localization, and text-level interpretability. Across multiple benchmarks, ICFC not only surpasses state-of-the-art training-free methods but also achieves competitive or superior performance compared to weakly and fully supervised approaches.
♻ ☆ BTL-UI: Blink-Think-Link Reasoning Model for GUI Agent NeurIPS 2025
In the field of AI-driven human-GUI interaction automation, while rapid advances in multimodal large language models and reinforcement fine-tuning techniques have yielded remarkable progress, a fundamental challenge persists: their interaction logic significantly deviates from natural human-GUI communication patterns. To fill this gap, we propose "Blink-Think-Link" (BTL), a brain-inspired framework for human-GUI interaction that mimics the human cognitive process between users and graphical interfaces. The system decomposes interactions into three biologically plausible phases: (1) Blink - rapid detection and attention to relevant screen areas, analogous to saccadic eye movements; (2) Think - higher-level reasoning and decision-making, mirroring cognitive planning; and (3) Link - generation of executable commands for precise motor control, emulating human action selection mechanisms. Additionally, we introduce two key technical innovations for the BTL framework: (1) Blink Data Generation - an automated annotation pipeline specifically optimized for blink data, and (2) BTL Reward -- the first rule-based reward mechanism that enables reinforcement learning driven by both process and outcome. Building upon this framework, we develop a GUI agent model named BTL-UI, which demonstrates competitive performance across both static GUI understanding and dynamic interaction tasks in comprehensive benchmarks. These results provide conclusive empirical validation of the framework's efficacy in developing advanced GUI Agents.
comment: Accepted at NeurIPS 2025
♻ ☆ C-DiffDet+: Fusing Global Scene Context with Generative Denoising for High-Fidelity Car Damage Detection
Fine-grained object detection in challenging visual domains, such as vehicle damage assessment, presents a formidable challenge even for human experts to resolve reliably. While DiffusionDet has advanced the state-of-the-art through conditional denoising diffusion, its performance remains limited by local feature conditioning in context-dependent scenarios. We address this fundamental limitation by introducing Context-Aware Fusion (CAF), which leverages cross-attention mechanisms to integrate global scene context with local proposal features directly. The global context is generated using a separate dedicated encoder that captures comprehensive environmental information, enabling each object proposal to attend to scene-level understanding. Our framework significantly enhances the generative detection paradigm by enabling each object proposal to attend to comprehensive environmental information. Experimental results demonstrate an improvement over state-of-the-art models on the CarDD benchmark, establishing new performance benchmarks for context-aware object detection in fine-grained domains
♻ ☆ Integrating Reinforcement Learning with Visual Generative Models: Foundations and Advances
Generative models have made significant progress in synthesizing visual content, including images, videos, and 3D/4D structures. However, they are typically trained with surrogate objectives such as likelihood or reconstruction loss, which often misalign with perceptual quality, semantic accuracy, or physical realism. Reinforcement learning (RL) offers a principled framework for optimizing non-differentiable, preference-driven, and temporally structured objectives. Recent advances demonstrate its effectiveness in enhancing controllability, consistency, and human alignment across generative tasks. This survey provides a systematic overview of RL-based methods for visual content generation. We review the evolution of RL from classical control to its role as a general-purpose optimization tool, and examine its integration into image, video, and 3D/4D generation. Across these domains, RL serves not only as a fine-tuning mechanism but also as a structural component for aligning generation with complex, high-level goals. We conclude with open challenges and future research directions at the intersection of RL and generative modeling.
comment: Ongoing work
♻ ☆ Generalization Bounds for Robust Contrastive Learning: From Theory to Practice
Contrastive Learning first extracts features from unlabeled data, followed by linear probing with labeled data. Adversarial Contrastive Learning (ACL) integrates Adversarial Training into the first phase to enhance feature robustness against attacks in the probing phase. While ACL has shown strong empirical results, its theoretical understanding remains limited. Furthermore, while a fair amount of theoretical works analyze how the unsupervised loss can support the supervised loss in the probing phase, none has examined its role to the robust supervised loss. To fill this gap, our work develops rigorous theories to identify which components in the unsupervised training can help improve the robust supervised loss. Specifically, besides the adversarial contrastive loss, we reveal that the benign one, along with a global divergence between benign and adversarial examples can also improve robustness. Proper experiments are conducted to justify our findings.
comment: 13 pages, 1 figure, 4 tables
♻ ☆ Flow-GRPO: Training Flow Matching Models via Online RL
We propose Flow-GRPO, the first method to integrate online policy gradient reinforcement learning (RL) into flow matching models. Our approach uses two key strategies: (1) an ODE-to-SDE conversion that transforms a deterministic Ordinary Differential Equation (ODE) into an equivalent Stochastic Differential Equation (SDE) that matches the original model's marginal distribution at all timesteps, enabling statistical sampling for RL exploration; and (2) a Denoising Reduction strategy that reduces training denoising steps while retaining the original number of inference steps, significantly improving sampling efficiency without sacrificing performance. Empirically, Flow-GRPO is effective across multiple text-to-image tasks. For compositional generation, RL-tuned SD3.5-M generates nearly perfect object counts, spatial relations, and fine-grained attributes, increasing GenEval accuracy from $63\%$ to $95\%$. In visual text rendering, accuracy improves from $59\%$ to $92\%$, greatly enhancing text generation. Flow-GRPO also achieves substantial gains in human preference alignment. Notably, very little reward hacking occurred, meaning rewards did not increase at the cost of appreciable image quality or diversity degradation.
comment: Code: https://github.com/yifan123/flow_grpo
♻ ☆ Attention! Your Vision Language Model Could Be Maliciously Manipulated NeurIPS 2025
Large Vision-Language Models (VLMs) have achieved remarkable success in understanding complex real-world scenarios and supporting data-driven decision-making processes. However, VLMs exhibit significant vulnerability against adversarial examples, either text or image, which can lead to various adversarial outcomes, e.g., jailbreaking, hijacking, and hallucination, etc. In this work, we empirically and theoretically demonstrate that VLMs are particularly susceptible to image-based adversarial examples, where imperceptible perturbations can precisely manipulate each output token. To this end, we propose a novel attack called Vision-language model Manipulation Attack (VMA), which integrates first-order and second-order momentum optimization techniques with a differentiable transformation mechanism to effectively optimize the adversarial perturbation. Notably, VMA can be a double-edged sword: it can be leveraged to implement various attacks, such as jailbreaking, hijacking, privacy breaches, Denial-of-Service, and the generation of sponge examples, etc, while simultaneously enabling the injection of watermarks for copyright protection. Extensive empirical evaluations substantiate the efficacy and generalizability of VMA across diverse scenarios and datasets. Code is available at https://github.com/Trustworthy-AI-Group/VMA.
comment: NeurIPS 2025
♻ ☆ THUNDER: Tile-level Histopathology image UNDERstanding benchmark NeurIPS 2025
Progress in a research field can be hard to assess, in particular when many concurrent methods are proposed in a short period of time. This is the case in digital pathology, where many foundation models have been released recently to serve as feature extractors for tile-level images, being used in a variety of downstream tasks, both for tile- and slide-level problems. Benchmarking available methods then becomes paramount to get a clearer view of the research landscape. In particular, in critical domains such as healthcare, a benchmark should not only focus on evaluating downstream performance, but also provide insights about the main differences between methods, and importantly, further consider uncertainty and robustness to ensure a reliable usage of proposed models. For these reasons, we introduce THUNDER, a tile-level benchmark for digital pathology foundation models, allowing for efficient comparison of many models on diverse datasets with a series of downstream tasks, studying their feature spaces and assessing the robustness and uncertainty of predictions informed by their embeddings. THUNDER is a fast, easy-to-use, dynamic benchmark that can already support a large variety of state-of-the-art foundation, as well as local user-defined models for direct tile-based comparison. In this paper, we provide a comprehensive comparison of 23 foundation models on 16 different datasets covering diverse tasks, feature analysis, and robustness. The code for THUNDER is publicly available at https://github.com/MICS-Lab/thunder.
comment: Accepted at NeurIPS 2025 Datasets and Benchmarks Track (Spotlight)
♻ ☆ Can Less Precise Be More Reliable? A Systematic Evaluation of Quantization's Impact on CLIP Beyond Accuracy
The powerful zero-shot generalization capabilities of vision-language models (VLMs) like CLIP have enabled new paradigms for safety-related tasks such as out-of-distribution (OOD) detection. However, additional aspects crucial for the computationally efficient and reliable deployment of CLIP are still overlooked. In particular, the impact of quantization on CLIP's performance beyond accuracy remains underexplored. This work presents a large-scale evaluation of quantization on CLIP models, assessing not only in-distribution accuracy but a comprehensive suite of reliability metrics and revealing counterintuitive results driven by pre-training source. We demonstrate that quantization consistently improves calibration for typically underconfident pre-trained models, while often degrading it for overconfident variants. Intriguingly, this degradation in calibration does not preclude gains in other reliability metrics; we find that OOD detection can still improve for these same poorly calibrated models. Furthermore, we identify specific quantization-aware training (QAT) methods that yield simultaneous gains in zero-shot accuracy, calibration, and OOD robustness, challenging the view of a strict efficiency-performance trade-off. These findings offer critical insights for navigating the multi-objective problem of deploying efficient, reliable, and robust VLMs by utilizing quantization beyond its conventional role.
comment: Preprint, under peer review
♻ ☆ Identity-Preserving Text-to-Video Generation Guided by Simple yet Effective Spatial-Temporal Decoupled Representations
Identity-preserving text-to-video (IPT2V) generation, which aims to create high-fidelity videos with consistent human identity, has become crucial for downstream applications. However, current end-to-end frameworks suffer a critical spatial-temporal trade-off: optimizing for spatially coherent layouts of key elements (e.g., character identity preservation) often compromises instruction-compliant temporal smoothness, while prioritizing dynamic realism risks disrupting the spatial coherence of visual structures. To tackle this issue, we propose a simple yet effective spatial-temporal decoupled framework that decomposes representations into spatial features for layouts and temporal features for motion dynamics. Specifically, our paper proposes a semantic prompt optimization mechanism and stage-wise decoupled generation paradigm. The former module decouples the prompt into spatial and temporal components. Aligned with the subsequent stage-wise decoupled approach, the spatial prompts guide the text-to-image (T2I) stage to generate coherent spatial features, while the temporal prompts direct the sequential image-to-video (I2V) stage to ensure motion consistency. Experimental results validate that our approach achieves excellent spatiotemporal consistency, demonstrating outstanding performance in identity preservation, text relevance, and video quality. By leveraging this simple yet robust mechanism, our algorithm secures the runner-up position in 2025 ACM MultiMedia Challenge. Our code is available at https://github.com/rain152/IPVG.
comment: ACM Multimedia 2025; code URL: https://github.com/rain152/IPVG
♻ ☆ First SFT, Second RL, Third UPT: Continual Improving Multi-Modal LLM Reasoning via Unsupervised Post-Training NeurIPS 2025
Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL), which require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. This limitation has motivated a growing interest in unsupervised paradigms as a third stage of post-training after SFT and RL. While recent efforts have explored this direction, their methods are complex and difficult to iterate. To address this, we propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs, enabling continual self-improvement without any external supervision. The training method of MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that such training method effectively improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3\%$\rightarrow$72.9\% on MathVista, 62.9\%$\rightarrow$68.7\% on We-Math), using standard dataset without ground truth labels. To further explore scalability, we extend our framework to a data self-generation setting, designing two strategies that prompt the MLLM to synthesize new training samples on its own. Additional experiments show that combining these synthetic data with the unsupervised training method can also boost performance, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for autonomous enhancement of MLLMs, serving as a critical third step after initial SFT and RL in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.
comment: Accepted by NeurIPS 2025
♻ ☆ UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning NeurIPS 2025
Recent advances in Large Multi-modal Models (LMMs) have demonstrated their remarkable success as general-purpose multi-modal assistants, with particular focuses on holistic image- and video-language understanding. Conversely, less attention has been given to scaling fine-grained pixel-level understanding capabilities, where the models are expected to realize pixel-level alignment between visual signals and language semantics. Some previous studies have applied LMMs to related tasks such as region-level captioning and referring expression segmentation. However, these models are limited to performing either referring or segmentation tasks independently and fail to integrate these fine-grained perception capabilities into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal model capable of flexibly comprehending visual prompt inputs and generating mask-grounded responses. Our model distinguishes itself by seamlessly integrating pixel-level perception with general visual understanding capabilities. Specifically, UniPixel processes visual prompts and generates relevant masks on demand, and performs subsequent reasoning conditioning on these intermediate pointers during inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness of our approach has been verified on 10 benchmarks across a diverse set of tasks, including pixel-level referring/segmentation and object-centric understanding in images/videos. A novel PixelQA task that jointly requires referring, segmentation, and question answering is also designed to verify the flexibility of our method.
comment: NeurIPS 2025 Camera Ready. Project Page: https://polyu-chenlab.github.io/unipixel/
♻ ☆ Robust Modality-incomplete Anomaly Detection: A Modality-instructive Framework with Benchmark
Multimodal Industrial Anomaly Detection (MIAD), which utilizes 3D point clouds and 2D RGB images to identify abnormal regions in products, plays a crucial role in industrial quality inspection. However, traditional MIAD settings assume that all 2D and 3D modalities are paired, ignoring the fact that multimodal data collected from the real world is often imperfect due to missing modalities. Additionally, models trained on modality-incomplete data are prone to overfitting. Therefore, MIAD models that demonstrate robustness against modality-incomplete data are highly desirable in practice. To address this, we introduce a pioneering study that comprehensively investigates Modality-Incomplete Industrial Anomaly Detection (MIIAD), and under the guidance of experts, we construct the MIIAD Bench with rich modality-missing settings to account for imperfect learning environments with incomplete multimodal information. As expected, we find that most existing MIAD methods perform poorly on the MIIAD Bench, leading to significant performance degradation. To tackle this challenge, we propose a novel two-stage Robust modAlity-aware fusing and Detecting framewoRk, abbreviated as RADAR. Specifically: i) We propose Modality-incomplete Instruction to guide the multimodal Transformer to robustly adapt to various modality-incomplete scenarios, and implement adaptive parameter learning based on HyperNetwork. ii) Then, we construct a Double-Pseudo Hybrid Module to highlight the uniqueness of modality combinations, mitigating overfitting issues and further enhancing the robustness of the MIIAD model. Our experimental results demonstrate that the proposed RADAR significantly outperforms traditional MIAD methods on our newly created MIIAD dataset, proving its practical application value.
♻ ☆ Improving Video Generation with Human Feedback
Video generation has achieved significant advances through rectified flow techniques, but issues like unsmooth motion and misalignment between videos and prompts persist. In this work, we develop a systematic pipeline that harnesses human feedback to mitigate these problems and refine the video generation model. Specifically, we begin by constructing a large-scale human preference dataset focused on modern video generation models, incorporating pairwise annotations across multi-dimensions. We then introduce VideoReward, a multi-dimensional video reward model, and examine how annotations and various design choices impact its rewarding efficacy. From a unified reinforcement learning perspective aimed at maximizing reward with KL regularization, we introduce three alignment algorithms for flow-based models. These include two training-time strategies: direct preference optimization for flow (Flow-DPO) and reward weighted regression for flow (Flow-RWR), and an inference-time technique, Flow-NRG, which applies reward guidance directly to noisy videos. Experimental results indicate that VideoReward significantly outperforms existing reward models, and Flow-DPO demonstrates superior performance compared to both Flow-RWR and supervised fine-tuning methods. Additionally, Flow-NRG lets users assign custom weights to multiple objectives during inference, meeting personalized video quality needs.
comment: https://github.com/KwaiVGI/VideoAlign
♻ ☆ KAN or MLP? Point Cloud Shows the Way Forward
Multi-Layer Perceptrons (MLPs) have become one of the fundamental architectural component in point cloud analysis due to its effective feature learning mechanism. However, when processing complex geometric structures in point clouds, MLPs' fixed activation functions struggle to efficiently capture local geometric features, while suffering from poor parameter efficiency and high model redundancy. In this paper, we propose PointKAN, which applies Kolmogorov-Arnold Networks (KANs) to point cloud analysis tasks to investigate their efficacy in hierarchical feature representation. First, we introduce a Geometric Affine Module (GAM) to transform local features, improving the model's robustness to geometric variations. Next, in the Local Feature Processing (LFP), a parallel structure extracts both group-level features and global context, providing a rich representation of both fine details and overall structure. Finally, these features are combined and processed in the Global Feature Processing (GFP). By repeating these operations, the receptive field gradually expands, enabling the model to capture complete geometric information of the point cloud. To overcome the high parameter counts and computational inefficiency of standard KANs, we develop Efficient-KANs in the PointKAN-elite variant, which significantly reduces parameters while maintaining accuracy. Experimental results demonstrate that PointKAN outperforms PointMLP on benchmark datasets such as ModelNet40, ScanObjectNN, and ShapeNetPart, with particularly strong performance in Few-shot Learning task. Additionally, PointKAN achieves substantial reductions in parameter counts and computational complexity (FLOPs). This work highlights the potential of KANs-based architectures in 3D vision and opens new avenues for research in point cloud understanding.
♻ ☆ T2ICount: Enhancing Cross-modal Understanding for Zero-Shot Counting CVPR2025
Zero-shot object counting aims to count instances of arbitrary object categories specified by text descriptions. Existing methods typically rely on vision-language models like CLIP, but often exhibit limited sensitivity to text prompts. We present T2ICount, a diffusion-based framework that leverages rich prior knowledge and fine-grained visual understanding from pretrained diffusion models. While one-step denoising ensures efficiency, it leads to weakened text sensitivity. To address this challenge, we propose a Hierarchical Semantic Correction Module that progressively refines text-image feature alignment, and a Representational Regional Coherence Loss that provides reliable supervision signals by leveraging the cross-attention maps extracted from the denosing U-Net. Furthermore, we observe that current benchmarks mainly focus on majority objects in images, potentially masking models' text sensitivity. To address this, we contribute a challenging re-annotated subset of FSC147 for better evaluation of text-guided counting ability. Extensive experiments demonstrate that our method achieves superior performance across different benchmarks. Code is available at https://github.com/cha15yq/T2ICount.
comment: Accepted by CVPR2025
♻ ☆ Reconstruction Alignment Improves Unified Multimodal Models
Unified multimodal models (UMMs) unify visual understanding and generation within a single architecture. However, conventional training relies on image-text pairs (or sequences) whose captions are typically sparse and miss fine-grained visual details--even when they use hundreds of words to describe a simple image. We introduce Reconstruction Alignment (RecA), a resource-efficient post-training method that leverages visual understanding encoder embeddings as dense "text prompts," providing rich supervision without captions. Concretely, RecA conditions a UMM on its own visual understanding embeddings and optimizes it to reconstruct the input image with a self-supervised reconstruction loss, thereby realigning understanding and generation. Despite its simplicity, RecA is broadly applicable: across autoregressive, masked-autoregressive, and diffusion-based UMMs, it consistently improves generation and editing fidelity. With only 27 GPU-hours, post-training with RecA substantially improves image generation performance on GenEval (0.73$\rightarrow$0.90) and DPGBench (80.93$\rightarrow$88.15), while also boosting editing benchmarks (ImgEdit 3.38$\rightarrow$3.75, GEdit 6.94$\rightarrow$7.25). Notably, RecA surpasses much larger open-source models and applies broadly across diverse UMM architectures, establishing it as an efficient and general post-training alignment strategy for UMMs
comment: 34 pages, 28 figures and 11 tables; Update ablation study
♻ ☆ HoliSafe: Holistic Safety Benchmarking and Modeling for Vision-Language Model
Despite emerging efforts to enhance the safety of Vision-Language Models (VLMs), current approaches face two main shortcomings. 1) Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content, often overlooking contextually unsafe outcomes from seemingly benign pairs. This narrow coverage leaves VLMs vulnerable to jailbreak attacks in unseen configurations. 2) Prior methods rely primarily on data-centric tuning, with limited architectural innovations to intrinsically strengthen safety. We address these gaps by introducing a holistic safety dataset and benchmark, \textbf{HoliSafe}, that spans all five safe/unsafe image-text combinations, providing a more robust basis for both training and evaluation (HoliSafe-Bench). We further propose a novel modular framework for enhancing VLM safety with a visual guard module (VGM) designed to assess the harmfulness of input images for VLMs. This module endows VLMs with a dual functionality: they not only learn to generate safer responses but can also provide an interpretable harmfulness classification to justify their refusal decisions. A significant advantage of this approach is its modularity; the VGM is designed as a plug-in component, allowing for seamless integration with diverse pre-trained VLMs across various scales. Experiments show that Safe-VLM with VGM, trained on our HoliSafe, achieves state-of-the-art safety performance across multiple VLM benchmarks. Additionally, the HoliSafe-Bench itself reveals critical vulnerabilities in existing VLM models. We hope that HoliSafe and VGM will spur further research into robust and interpretable VLM safety, expanding future avenues for multimodal alignment.
comment: Project page: https://youngwanlee.github.io/holisafe
♻ ☆ A Novel Multi-branch ConvNeXt Architecture for Identifying Subtle Pathological Features in CT Scans
Intelligent analysis of medical imaging plays a crucial role in assisting clinical diagnosis, especially for identifying subtle pathological features. This paper introduces a novel multi-branch ConvNeXt architecture designed specifically for the nuanced challenges of medical image analysis. While applied here to the specific problem of COVID-19 diagnosis, the methodology offers a generalizable framework for classifying a wide range of pathologies from CT scans. The proposed model incorporates a rigorous end-to-end pipeline, from meticulous data preprocessing and augmentation to a disciplined two-phase training strategy that leverages transfer learning effectively. The architecture uniquely integrates features extracted from three parallel branches: Global Average Pooling, Global Max Pooling, and a new Attention-weighted Pooling mechanism. The model was trained and validated on a combined dataset of 2,609 CT slices derived from two distinct datasets. Experimental results demonstrate a superior performance on the validation set, achieving a final ROC-AUC of 0.9937, a validation accuracy of 0.9757, and an F1-score of 0.9825 for COVID-19 cases, outperforming all previously reported models on this dataset. These findings indicate that a modern, multi-branch architecture, coupled with careful data handling, can achieve performance comparable to or exceeding contemporary state-of-the-art models, thereby proving the efficacy of advanced deep learning techniques for robust medical diagnostics.
comment: Source Code : https://github.com/Irash-Perera/MedNeXt-Branch
♻ ☆ 3D-RAD: A Comprehensive 3D Radiology Med-VQA Dataset with Multi-Temporal Analysis and Diverse Diagnostic Tasks NeurIPS 2025
Medical Visual Question Answering (Med-VQA) holds significant potential for clinical decision support, yet existing efforts primarily focus on 2D imaging with limited task diversity. This paper presents 3D-RAD, a large-scale dataset designed to advance 3D Med-VQA using radiology CT scans. The 3D-RAD dataset encompasses six diverse VQA tasks: anomaly detection, image observation, medical computation, existence detection, static temporal diagnosis, and longitudinal temporal diagnosis. It supports both open- and closed-ended questions while introducing complex reasoning challenges, including computational tasks and multi-stage temporal analysis, to enable comprehensive benchmarking. Extensive evaluations demonstrate that existing vision-language models (VLMs), especially medical VLMs exhibit limited generalization, particularly in multi-temporal tasks, underscoring the challenges of real-world 3D diagnostic reasoning. To drive future advancements, we release a high-quality training set 3D-RAD-T of 136,195 expert-aligned samples, showing that fine-tuning on this dataset could significantly enhance model performance. Our dataset and code, aiming to catalyze multimodal medical AI research and establish a robust foundation for 3D medical visual understanding, are publicly available at https://github.com/Tang-xiaoxiao/3D-RAD.
comment: Accepted by NeurIPS 2025
♻ ☆ ORIGEN: Zero-Shot 3D Orientation Grounding in Text-to-Image Generation
We introduce ORIGEN, the first zero-shot method for 3D orientation grounding in text-to-image generation across multiple objects and diverse categories. While previous work on spatial grounding in image generation has mainly focused on 2D positioning, it lacks control over 3D orientation. To address this, we propose a reward-guided sampling approach using a pretrained discriminative model for 3D orientation estimation and a one-step text-to-image generative flow model. While gradient-ascent-based optimization is a natural choice for reward-based guidance, it struggles to maintain image realism. Instead, we adopt a sampling-based approach using Langevin dynamics, which extends gradient ascent by simply injecting random noise--requiring just a single additional line of code. Additionally, we introduce adaptive time rescaling based on the reward function to accelerate convergence. Our experiments show that ORIGEN outperforms both training-based and test-time guidance methods across quantitative metrics and user studies.
comment: Project Page: https://origen2025.github.io
♻ ☆ BCR-Net: Boundary-Category Refinement Network for Weakly Semi-Supervised X-Ray Prohibited Item Detection with Points
Automatic prohibited item detection in X-ray images is crucial for public safety. However, most existing detection methods either rely on expensive box annotations to achieve high performance or use weak annotations but suffer from limited accuracy. To balance annotation cost and detection performance, we study Weakly Semi-Supervised X-ray Prohibited Item Detection with Points (WSSPID-P) and propose a novel \textbf{B}oundary-\textbf{C}ategory \textbf{R}efinement \textbf{Net}work (\textbf{BCR-Net}) that requires only a few box annotations and a large number of point annotations. BCR-Net is built based on Group R-CNN and introduces a new Boundary Refinement (BR) module and a new Category Refinement (CR) module. The BR module develops a dual attention mechanism to focus on both the boundaries and salient features of prohibited items. Meanwhile, the CR module incorporates contrastive branches into the heads of RPN and ROI by introducing a scale- and rotation-aware contrastive loss, enhancing intra-class consistency and inter-class separability in the feature space. Based on the above designs, BCR-Net effectively addresses the closely related problems of imprecise localization and inaccurate classification. Experimental results on public X-ray datasets show the effectiveness of BCR-Net, achieving significant performance improvements to state-of-the-art methods under limited annotations.
comment: The authors withdraw this preprint because an error was found in a mathematical expression and the manuscript lacks evaluation on the COCO dataset. We will correct the error, extend experiments to include COCO, and resubmit a revised version
♻ ☆ UKANFormer: Noise-Robust Semantic Segmentation for Coral Reef Mapping via a Kolmogorov-Arnold Network-Transformer Hybrid
Coral reefs are vital yet fragile ecosystems that require accurate large-scale mapping for effective conservation. Although global products such as the Allen Coral Atlas provide unprecedented coverage of global coral reef distri-bution, their predictions are frequently limited in spatial precision and semantic consistency, especially in regions requiring fine-grained boundary delineation. To address these challenges, we propose UKANFormer, a novel se-mantic segmentation model designed to achieve high-precision mapping under noisy supervision derived from Allen Coral Atlas. Building upon the UKAN architecture, UKANFormer incorporates a Global-Local Transformer (GL-Trans) block in the decoder, enabling the extraction of both global semantic structures and local boundary details. In experiments, UKANFormer achieved a coral-class IoU of 67.00% and pixel accuracy of 83.98%, outperforming conventional baselines under the same noisy labels setting. Remarkably, the model produces predictions that are visually and structurally more accurate than the noisy labels used for training. These results challenge the notion that data quality directly limits model performance, showing that architectural design can mitigate label noise and sup-port scalable mapping under imperfect supervision. UKANFormer provides a foundation for ecological monitoring where reliable labels are scarce.
♻ ☆ CMIE: Combining MLLM Insights with External Evidence for Explainable Out-of-Context Misinformation Detection
Multimodal large language models (MLLMs) have demonstrated impressive capabilities in visual reasoning and text generation. While previous studies have explored the application of MLLM for detecting out-of-context (OOC) misinformation, our empirical analysis reveals two persisting challenges of this paradigm. Evaluating the representative GPT-4o model on direct reasoning and evidence augmented reasoning, results indicate that MLLM struggle to capture the deeper relationships-specifically, cases in which the image and text are not directly connected but are associated through underlying semantic links. Moreover, noise in the evidence further impairs detection accuracy. To address these challenges, we propose CMIE, a novel OOC misinformation detection framework that incorporates a Coexistence Relationship Generation (CRG) strategy and an Association Scoring (AS) mechanism. CMIE identifies the underlying coexistence relationships between images and text, and selectively utilizes relevant evidence to enhance misinformation detection. Experimental results demonstrate that our approach outperforms existing methods.
♻ ☆ Editable Noise Map Inversion: Encoding Target-image into Noise For High-Fidelity Image Manipulation ICML 2025
Text-to-image diffusion models have achieved remarkable success in generating high-quality and diverse images. Building on these advancements, diffusion models have also demonstrated exceptional performance in text-guided image editing. A key strategy for effective image editing involves inverting the source image into editable noise maps associated with the target image. However, previous inversion methods face challenges in adhering closely to the target text prompt. The limitation arises because inverted noise maps, while enabling faithful reconstruction of the source image, restrict the flexibility needed for desired edits. To overcome this issue, we propose Editable Noise Map Inversion (ENM Inversion), a novel inversion technique that searches for optimal noise maps to ensure both content preservation and editability. We analyze the properties of noise maps for enhanced editability. Based on this analysis, our method introduces an editable noise refinement that aligns with the desired edits by minimizing the difference between the reconstructed and edited noise maps. Extensive experiments demonstrate that ENM Inversion outperforms existing approaches across a wide range of image editing tasks in both preservation and edit fidelity with target prompts. Our approach can also be easily applied to video editing, enabling temporal consistency and content manipulation across frames.
comment: ICML 2025
♻ ☆ Neural Stereo Video Compression with Hybrid Disparity Compensation
Disparity compensation represents the primary strategy in stereo video compression (SVC) for exploiting cross-view redundancy. These mechanisms can be broadly categorized into two types: one that employs explicit horizontal shifting, and another that utilizes an implicit cross-attention mechanism to reduce cross-view disparity redundancy. In this work, we propose a hybrid disparity compensation (HDC) strategy that leverages explicit pixel displacement as a robust prior feature to simplify optimization and perform implicit cross-attention mechanisms for subsequent warping operations, thereby capturing a broader range of disparity information. Specifically, HDC first computes a similarity map by fusing the horizontally shifted cross-view features to capture pixel displacement information. This similarity map is then normalized into an "explicit pixel-wise attention score" to perform the cross-attention mechanism, implicitly aligning features from one view to another. Building upon HDC, we introduce a novel end-to-end optimized neural stereo video compression framework, which integrates HDC-based modules into key coding operations, including cross-view feature extraction and reconstruction (HDC-FER) and cross-view entropy modeling (HDC-EM). Extensive experiments on SVC benchmarks, including KITTI 2012, KITTI 2015, and Nagoya, which cover both autonomous driving and general scenes, demonstrate that our framework outperforms both neural and traditional SVC methodologies.
♻ ☆ DOS: Directional Object Separation in Text Embeddings for Multi-Object Image Generation
Recent progress in text-to-image (T2I) generative models has led to significant improvements in generating high-quality images aligned with text prompts. However, these models still struggle with prompts involving multiple objects, often resulting in object neglect or object mixing. Through extensive studies, we identify four problematic scenarios, Similar Shapes, Similar Textures, Dissimilar Background Biases, and Many Objects, where inter-object relationships frequently lead to such failures. Motivated by two key observations about CLIP embeddings, we propose DOS (Directional Object Separation), a method that modifies three types of CLIP text embeddings before passing them into text-to-image models. Experimental results show that DOS consistently improves the success rate of multi-object image generation and reduces object mixing. In human evaluations, DOS significantly outperforms four competing methods, receiving 26.24%-43.04% more votes across four benchmarks. These results highlight DOS as a practical and effective solution for improving multi-object image generation.
♻ ☆ Representational Difference Explanations
We propose a method for discovering and visualizing the differences between two learned representations, enabling more direct and interpretable model comparisons. We validate our method, which we call Representational Differences Explanations (RDX), by using it to compare models with known conceptual differences and demonstrate that it recovers meaningful distinctions where existing explainable AI (XAI) techniques fail. Applied to state-of-the-art models on challenging subsets of the ImageNet and iNaturalist datasets, RDX reveals both insightful representational differences and subtle patterns in the data. Although comparison is a cornerstone of scientific analysis, current tools in machine learning, namely post hoc XAI methods, struggle to support model comparison effectively. Our work addresses this gap by introducing an effective and explainable tool for contrasting model representations.
comment: 9 pages, 6 figures, 21 supplementary pages, 14 supp figs
♻ ☆ S$^2$Q-VDiT: Accurate Quantized Video Diffusion Transformer with Salient Data and Sparse Token Distillation
Diffusion transformers have emerged as the mainstream paradigm for video generation models. However, the use of up to billions of parameters incurs significant computational costs. Quantization offers a promising solution by reducing memory usage and accelerating inference. Nonetheless, we observe that the joint modeling of spatial and temporal information in video diffusion models (V-DMs) leads to extremely long token sequences, which introduces high calibration variance and learning challenges. To address these issues, we propose S$^2$Q-VDiT, a post-training quantization framework for V-DMs that leverages Salient data and Sparse token distillation. During the calibration phase, we identify that quantization performance is highly sensitive to the choice of calibration data. To mitigate this, we introduce \textit{Hessian-aware Salient Data Selection}, which constructs high-quality calibration datasets by considering both diffusion and quantization characteristics unique to V-DMs. To tackle the learning challenges, we further analyze the sparse attention patterns inherent in V-DMs. Based on this observation, we propose \textit{Attention-guided Sparse Token Distillation}, which exploits token-wise attention distributions to emphasize tokens that are more influential to the model's output. Under W4A6 quantization, S$^2$Q-VDiT achieves lossless performance while delivering $3.9\times$ model compression and $1.3\times$ inference acceleration. Code will be available at https://github.com/wlfeng0509/s2q-vdit.
♻ ☆ Image-Plane Geometric Decoding for View-Invariant Indoor Scene Reconstruction
Volume-based indoor scene reconstruction methods offer superior generalization capability and real-time deployment potential. However, existing methods rely on multi-view pixel back-projection ray intersections as weak geometric constraints to determine spatial positions. This dependence results in reconstruction quality being heavily influenced by input view density. Performance degrades in overlapping regions and unobserved areas.To address these limitations, we reduce dependency on inter-view geometric constraints by exploiting spatial information within individual views. We propose an image-plane decoding framework with three core components: Pixel-level Confidence Encoder, Affine Compensation Module, and Image-Plane Spatial Decoder. These modules decode three-dimensional structural information encoded in images through physical imaging processes. The framework effectively preserves spatial geometric features including edges, hollow structures, and complex textures. It significantly enhances view-invariant reconstruction.Experiments on indoor scene reconstruction datasets confirm superior reconstruction stability. Our method maintains nearly identical quality when view count reduces by 40%. It achieves a coefficient of variation of 0.24%, performance retention rate of 99.7%, and maximum performance drop of 0.42%. These results demonstrate that exploiting intra-view spatial information provides a robust solution for view-limited scenarios in practical applications.
♻ ☆ FaceTracer: Unveiling Source Identities from Swapped Face Images and Videos for Fraud Prevention
Face-swapping techniques have advanced rapidly with the evolution of deep learning, leading to widespread use and growing concerns about potential misuse, especially in cases of fraud. While many efforts have focused on detecting swapped face images or videos, these methods are insufficient for tracing the malicious users behind fraudulent activities. Intrusive watermark-based approaches also fail to trace unmarked identities, limiting their practical utility. To address these challenges, we introduce FaceTracer, the first non-intrusive framework specifically designed to trace the identity of the source person from swapped face images or videos. Specifically, FaceTracer leverages a disentanglement module that effectively suppresses identity information related to the target person while isolating the identity features of the source person. This allows us to extract robust identity information that can directly link the swapped face back to the original individual, aiding in uncovering the actors behind fraudulent activities. Extensive experiments demonstrate FaceTracer's effectiveness across various face-swapping techniques, successfully identifying the source person in swapped content and enabling the tracing of malicious actors involved in fraudulent activities. Additionally, FaceTracer shows strong transferability to unseen face-swapping methods including commercial applications and robustness against transmission distortions and adaptive attacks.Our code is available at: https://github.com/zzy224/FaceTracer.
comment: 17 pages, 16 figures, TPAMI version
♻ ☆ CXReasonBench: A Benchmark for Evaluating Structured Diagnostic Reasoning in Chest X-rays NeurIPS 2025
Recent progress in Large Vision-Language Models (LVLMs) has enabled promising applications in medical tasks, such as report generation and visual question answering. However, existing benchmarks focus mainly on the final diagnostic answer, offering limited insight into whether models engage in clinically meaningful reasoning. To address this, we present CheXStruct and CXReasonBench, a structured pipeline and benchmark built on the publicly available MIMIC-CXR-JPG dataset. CheXStruct automatically derives a sequence of intermediate reasoning steps directly from chest X-rays, such as segmenting anatomical regions, deriving anatomical landmarks and diagnostic measurements, computing diagnostic indices, and applying clinical thresholds. CXReasonBench leverages this pipeline to evaluate whether models can perform clinically valid reasoning steps and to what extent they can learn from structured guidance, enabling fine-grained and transparent assessment of diagnostic reasoning. The benchmark comprises 18,988 QA pairs across 12 diagnostic tasks and 1,200 cases, each paired with up to 4 visual inputs, and supports multi-path, multi-stage evaluation including visual grounding via anatomical region selection and diagnostic measurements. Even the strongest of 12 evaluated LVLMs struggle with structured reasoning and generalization, often failing to link abstract knowledge with anatomically grounded visual interpretation. The code is available at https://github.com/ttumyche/CXReasonBench
comment: Accepted at NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ GOOD: Training-Free Guided Diffusion Sampling for Out-of-Distribution Detection
Recent advancements have explored text-to-image diffusion models for synthesizing out-of-distribution (OOD) samples, substantially enhancing the performance of OOD detection. However, existing approaches typically rely on perturbing text-conditioned embeddings, resulting in semantic instability and insufficient shift diversity, which limit generalization to realistic OOD. To address these challenges, we propose GOOD, a novel and flexible framework that directly guides diffusion sampling trajectories towards OOD regions using off-the-shelf in-distribution (ID) classifiers. GOOD incorporates dual-level guidance: (1) Image-level guidance based on the gradient of log partition to reduce input likelihood, drives samples toward low-density regions in pixel space. (2) Feature-level guidance, derived from k-NN distance in the classifier's latent space, promotes sampling in feature-sparse regions. Hence, this dual-guidance design enables more controllable and diverse OOD sample generation. Additionally, we introduce a unified OOD score that adaptively combines image and feature discrepancies, enhancing detection robustness. We perform thorough quantitative and qualitative analyses to evaluate the effectiveness of GOOD, demonstrating that training with samples generated by GOOD can notably enhance OOD detection performance.
comment: 28 pages, 16 figures, conference
♻ ☆ Enhancing Feature Fusion of U-like Networks with Dynamic Skip Connections
U-like networks have become fundamental frameworks in medical image segmentation through skip connections that bridge high-level semantics and low-level spatial details. Despite their success, conventional skip connections exhibit two key limitations: inter-feature constraints and intra-feature constraints. The inter-feature constraint refers to the static nature of feature fusion in traditional skip connections, where information is transmitted along fixed pathways regardless of feature content. The intra-feature constraint arises from the insufficient modeling of multi-scale feature interactions, thereby hindering the effective aggregation of global contextual information. To overcome these limitations, we propose a novel Dynamic Skip Connection (DSC) block that fundamentally enhances cross-layer connectivity through adaptive mechanisms. The DSC block integrates two complementary components. (1) Test-Time Training (TTT) module. This module addresses the inter-feature constraint by enabling dynamic adaptation of hidden representations during inference, facilitating content-aware feature refinement. (2) Dynamic Multi-Scale Kernel (DMSK) module. To mitigate the intra-feature constraint, this module adaptively selects kernel sizes based on global contextual cues, enhancing the network capacity for multi-scale feature integration. The DSC block is architecture-agnostic and can be seamlessly incorporated into existing U-like network structures. Extensive experiments demonstrate the plug-and-play effectiveness of the proposed DSC block across CNN-based, Transformer-based, hybrid CNN-Transformer, and Mamba-based U-like networks.
♻ ☆ TokenCLIP: Token-wise Prompt Learning for Zero-shot Anomaly Detection
Adapting CLIP for anomaly detection on unseen objects has shown strong potential in a zero-shot manner. However, existing methods typically rely on a single textual space to align with visual semantics across diverse objects and domains. The indiscriminate alignment hinders the model from accurately capturing varied anomaly semantics. We propose TokenCLIP, a token-wise adaptation framework that enables dynamic alignment between visual and learnable textual spaces for fine-grained anomaly learning. Rather than mapping all visual tokens to a single, token-agnostic textual space, TokenCLIP aligns each token with a customized textual subspace that represents its visual characteristics. Explicitly assigning a unique learnable textual space to each token is computationally intractable and prone to insufficient optimization. We instead expand the token-agnostic textual space into a set of orthogonal subspaces, and then dynamically assign each token to a subspace combination guided by semantic affinity, which jointly supports customized and efficient token-wise adaptation. To this end, we formulate dynamic alignment as an optimal transport problem, where all visual tokens in an image are transported to textual subspaces based on semantic similarity. The transport constraints of OT ensure sufficient optimization across subspaces and encourage them to focus on different semantics. Solving the problem yields a transport plan that adaptively assigns each token to semantically relevant subspaces. A top-k masking is then applied to sparsify the plan and specialize subspaces for distinct visual regions. Extensive experiments demonstrate the superiority of TokenCLIP.
♻ ☆ A Training-Free Framework for Open-Vocabulary Image Segmentation and Recognition with EfficientNet and CLIP
This paper presents a novel training-free framework for open-vocabulary image segmentation and object recognition (OVSR), which leverages EfficientNetB0, a convolutional neural network, for unsupervised segmentation and CLIP, a vision-language model, for open-vocabulary object recognition. The proposed framework adopts a two stage pipeline: unsupervised image segmentation followed by segment-level recognition via vision-language alignment. In the first stage, pixel-wise features extracted from EfficientNetB0 are decomposed using singular value decomposition to obtain latent representations, which are then clustered using hierarchical clustering to segment semantically meaningful regions. The number of clusters is adaptively determined by the distribution of singular values. In the second stage, the segmented regions are localized and encoded into image embeddings using the Vision Transformer backbone of CLIP. Text embeddings are precomputed using CLIP's text encoder from category-specific prompts, including a generic something else prompt to support open set recognition. The image and text embeddings are concatenated and projected into a shared latent feature space via SVD to enhance cross-modal alignment. Recognition is performed by computing the softmax over the similarities between the projected image and text embeddings. The proposed method is evaluated on standard benchmarks, including COCO, ADE20K, and PASCAL VOC, achieving state-of-the-art performance in terms of Hungarian mIoU, precision, recall, and F1-score. These results demonstrate the effectiveness, flexibility, and generalizability of the proposed framework.
♻ ☆ Refusal as Silence: Gendered Disparities in Vision-Language Model Responses
Refusal behavior by Large Language Models is increasingly visible in content moderation, yet little is known about how refusals vary by the identity of the user making the request. This study investigates refusal as a sociotechnical outcome through a counterfactual persona design that varies gender identity--including male, female, non-binary, and transgender personas--while keeping the classification task and visual input constant. Focusing on a vision-language model (GPT-4V), we examine how identity-based language cues influence refusal in binary gender classification tasks. We find that transgender and non-binary personas experience significantly higher refusal rates, even in non-harmful contexts. Our findings also provide methodological implications for equity audits and content analysis using LLMs. Our findings underscore the importance of modeling identity-driven disparities and caution against uncritical use of AI systems for content coding. This study advances algorithmic fairness by reframing refusal as a communicative act that may unevenly regulate epistemic access and participation.
♻ ☆ Kuramoto Orientation Diffusion Models NeurIPS 2025
Orientation-rich images, such as fingerprints and textures, often exhibit coherent angular directional patterns that are challenging to model using standard generative approaches based on isotropic Euclidean diffusion. Motivated by the role of phase synchronization in biological systems, we propose a score-based generative model built on periodic domains by leveraging stochastic Kuramoto dynamics in the diffusion process. In neural and physical systems, Kuramoto models capture synchronization phenomena across coupled oscillators -- a behavior that we re-purpose here as an inductive bias for structured image generation. In our framework, the forward process performs \textit{synchronization} among phase variables through globally or locally coupled oscillator interactions and attraction to a global reference phase, gradually collapsing the data into a low-entropy von Mises distribution. The reverse process then performs \textit{desynchronization}, generating diverse patterns by reversing the dynamics with a learned score function. This approach enables structured destruction during forward diffusion and a hierarchical generation process that progressively refines global coherence into fine-scale details. We implement wrapped Gaussian transition kernels and periodicity-aware networks to account for the circular geometry. Our method achieves competitive results on general image benchmarks and significantly improves generation quality on orientation-dense datasets like fingerprints and textures. Ultimately, this work demonstrates the promise of biologically inspired synchronization dynamics as structured priors in generative modeling.
comment: NeurIPS 2025
♻ ☆ Gesplat: Robust Pose-Free 3D Reconstruction via Geometry-Guided Gaussian Splatting
Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have advanced 3D reconstruction and novel view synthesis, but remain heavily dependent on accurate camera poses and dense viewpoint coverage. These requirements limit their applicability in sparse-view settings, where pose estimation becomes unreliable and supervision is insufficient. To overcome these challenges, we introduce Gesplat, a 3DGS-based framework that enables robust novel view synthesis and geometrically consistent reconstruction from unposed sparse images. Unlike prior works that rely on COLMAP for sparse point cloud initialization, we leverage the VGGT foundation model to obtain more reliable initial poses and dense point clouds. Our approach integrates several key innovations: 1) a hybrid Gaussian representation with dual position-shape optimization enhanced by inter-view matching consistency; 2) a graph-guided attribute refinement module to enhance scene details; and 3) flow-based depth regularization that improves depth estimation accuracy for more effective supervision. Comprehensive quantitative and qualitative experiments demonstrate that our approach achieves more robust performance on both forward-facing and large-scale complex datasets compared to other pose-free methods.
♻ ☆ Task-Oriented Feature Compression for Multimodal Understanding via Device-Edge Co-Inference
With the rapid development of large multimodal models (LMMs), multimodal understanding applications are emerging. As most LMM inference requests originate from edge devices with limited computational capabilities, the predominant inference pipeline involves directly forwarding the input data to an edge server which handles all computations. However, this approach introduces high transmission latency due to limited uplink bandwidth of edge devices and significant computation latency caused by the prohibitive number of visual tokens, thus hindering delay-sensitive tasks and degrading user experience. To address this challenge, we propose a task-oriented feature compression (TOFC) method for multimodal understanding in a device-edge co-inference framework, where visual features are merged by clustering and encoded by a learnable and selective entropy model before feature projection. Specifically, we employ density peaks clustering based on K nearest neighbors to reduce the number of visual features, thereby minimizing both data transmission and computational complexity. Subsequently, a learnable entropy model with hyperprior is utilized to encode and decode merged features, further reducing transmission overhead. To enhance compression efficiency, multiple entropy models are adaptively selected based on the characteristics of the visual features, enabling a more accurate estimation of the probability distribution. Comprehensive experiments on seven visual question answering benchmarks validate the effectiveness of the proposed TOFC method. Results show that TOFC achieves up to 52% reduction in data transmission overhead and 63% reduction in system latency while maintaining identical task performance, compared with neural compression ELIC.
comment: Accepted by IEEE Transactions on Mobile Computing
♻ ☆ Dynamic Gaussian Splatting from Defocused and Motion-blurred Monocular Videos NeurIPS 2025
This paper presents a unified framework that allows high-quality dynamic Gaussian Splatting from both defocused and motion-blurred monocular videos. Due to the significant difference between the formation processes of defocus blur and motion blur, existing methods are tailored for either one of them, lacking the ability to simultaneously deal with both of them. Although the two can be jointly modeled as blur kernel-based convolution, the inherent difficulty in estimating accurate blur kernels greatly limits the progress in this direction. In this work, we go a step further towards this direction. Particularly, we propose to estimate per-pixel reliable blur kernels using a blur prediction network that exploits blur-related scene and camera information and is subject to a blur-aware sparsity constraint. Besides, we introduce a dynamic Gaussian densification strategy to mitigate the lack of Gaussians for incomplete regions, and boost the performance of novel view synthesis by incorporating unseen view information to constrain scene optimization. Extensive experiments show that our method outperforms the state-of-the-art methods in generating photorealistic novel view synthesis from defocused and motion-blurred monocular videos. Our code is available at \href{https://github.com/hhhddddddd/dydeblur}{\textcolor{cyan}{https://github.com/hhhddddddd/dydeblur}}.
comment: Accepted to NeurIPS 2025
♻ ☆ ControlText: Unlocking Controllable Fonts in Multilingual Text Rendering without Font Annotations EMNLP
This work demonstrates that diffusion models can achieve font-controllable multilingual text rendering using just raw images without font label annotations.Visual text rendering remains a significant challenge. While recent methods condition diffusion on glyphs, it is impossible to retrieve exact font annotations from large-scale, real-world datasets, which prevents user-specified font control. To address this, we propose a data-driven solution that integrates the conditional diffusion model with a text segmentation model, utilizing segmentation masks to capture and represent fonts in pixel space in a self-supervised manner, thereby eliminating the need for any ground-truth labels and enabling users to customize text rendering with any multilingual font of their choice. The experiment provides a proof of concept of our algorithm in zero-shot text and font editing across diverse fonts and languages, providing valuable insights for the community and industry toward achieving generalized visual text rendering. Code is available at github.com/bowen-upenn/ControlText.
comment: The 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP) Findings
♻ ☆ One Stone with Two Birds: A Null-Text-Null Frequency-Aware Diffusion Models for Text-Guided Image Inpainting NeurIPS 2025
Text-guided image inpainting aims at reconstructing the masked regions as per text prompts, where the longstanding challenges lie in the preservation for unmasked regions, while achieving the semantics consistency between unmasked and inpainted masked regions. Previous arts failed to address both of them, always with either of them to be remedied. Such facts, as we observed, stem from the entanglement of the hybrid (e.g., mid-and-low) frequency bands that encode varied image properties, which exhibit different robustness to text prompts during the denoising process. In this paper, we propose a null-text-null frequency-aware diffusion models, dubbed \textbf{NTN-Diff}, for text-guided image inpainting, by decomposing the semantics consistency across masked and unmasked regions into the consistencies as per each frequency band, while preserving the unmasked regions, to circumvent two challenges in a row. Based on the diffusion process, we further divide the denoising process into early (high-level noise) and late (low-level noise) stages, where the mid-and-low frequency bands are disentangled during the denoising process. As observed, the stable mid-frequency band is progressively denoised to be semantically aligned during text-guided denoising process, which, meanwhile, serves as the guidance to the null-text denoising process to denoise low-frequency band for the masked regions, followed by a subsequent text-guided denoising process at late stage, to achieve the semantics consistency for mid-and-low frequency bands across masked and unmasked regions, while preserve the unmasked regions. Extensive experiments validate the superiority of NTN-Diff over the state-of-the-art diffusion models to text-guided diffusion models. Our code can be accessed from https://github.com/htyjers/NTN-Diff.
comment: 27 pages, 11 figures, to appear at NeurIPS 2025
Information Retrieval
☆ LimRank: Less is More for Reasoning-Intensive Information Reranking EMNLP 2025
Existing approaches typically rely on large-scale fine-tuning to adapt LLMs for information reranking tasks, which is computationally expensive. In this work, we demonstrate that modern LLMs can be effectively adapted using only minimal, high-quality supervision. To enable this, we design LIMRANK-SYNTHESIZER, a reusable and open-source pipeline for generating diverse, challenging, and realistic reranking examples. Using this synthetic data, we fine-tune our reranker model, LIMRANK. We evaluate LIMRANK on two challenging benchmarks, i.e., BRIGHT for reasoning-intensive retrieval and FollowIR for instruction-following retrieval. Our experiments demonstrate that LIMRANK achieves competitive performance, while being trained on less than 5% of the data typically used in prior work. Further ablation studies demonstrate the effectiveness of LIMRANK-SYNTHESIZER and the strong generalization capabilities of LIMRANK across downstream tasks, including scientific literature search and retrieval-augmented generation for knowledge-intensive problem solving.
comment: EMNLP 2025 Main (Short)
☆ Accurate and Scalable Multimodal Pathology Retrieval via Attentive Vision-Language Alignment
The rapid digitization of histopathology slides has opened up new possibilities for computational tools in clinical and research workflows. Among these, content-based slide retrieval stands out, enabling pathologists to identify morphologically and semantically similar cases, thereby supporting precise diagnoses, enhancing consistency across observers, and assisting example-based education. However, effective retrieval of whole slide images (WSIs) remains challenging due to their gigapixel scale and the difficulty of capturing subtle semantic differences amid abundant irrelevant content. To overcome these challenges, we present PathSearch, a retrieval framework that unifies fine-grained attentive mosaic representations with global-wise slide embeddings aligned through vision-language contrastive learning. Trained on a corpus of 6,926 slide-report pairs, PathSearch captures both fine-grained morphological cues and high-level semantic patterns to enable accurate and flexible retrieval. The framework supports two key functionalities: (1) mosaic-based image-to-image retrieval, ensuring accurate and efficient slide research; and (2) multi-modal retrieval, where text queries can directly retrieve relevant slides. PathSearch was rigorously evaluated on four public pathology datasets and three in-house cohorts, covering tasks including anatomical site retrieval, tumor subtyping, tumor vs. non-tumor discrimination, and grading across diverse organs such as breast, lung, kidney, liver, and stomach. External results show that PathSearch outperforms traditional image-to-image retrieval frameworks. A multi-center reader study further demonstrates that PathSearch improves diagnostic accuracy, boosts confidence, and enhances inter-observer agreement among pathologists in real clinical scenarios. These results establish PathSearch as a scalable and generalizable retrieval solution for digital pathology.
☆ Leveraging Hierarchical Organization for Medical Multi-document Summarization
Medical multi-document summarization (MDS) is a complex task that requires effectively managing cross-document relationships. This paper investigates whether incorporating hierarchical structures in the inputs of MDS can improve a model's ability to organize and contextualize information across documents compared to traditional flat summarization methods. We investigate two ways of incorporating hierarchical organization across three large language models (LLMs), and conduct comprehensive evaluations of the resulting summaries using automated metrics, model-based metrics, and domain expert evaluation of preference, understandability, clarity, complexity, relevance, coverage, factuality, and coherence. Our results show that human experts prefer model-generated summaries over human-written summaries. Hierarchical approaches generally preserve factuality, coverage, and coherence of information, while also increasing human preference for summaries. Additionally, we examine whether simulated judgments from GPT-4 align with human judgments, finding higher agreement along more objective evaluation facets. Our findings demonstrate that hierarchical structures can improve the clarity of medical summaries generated by models while maintaining content coverage, providing a practical way to improve human preference for generated summaries.
☆ Think before Recommendation: Autonomous Reasoning-enhanced Recommender NeurIPS 2025
The core task of recommender systems is to learn user preferences from historical user-item interactions. With the rapid development of large language models (LLMs), recent research has explored leveraging the reasoning capabilities of LLMs to enhance rating prediction tasks. However, existing distillation-based methods suffer from limitations such as the teacher model's insufficient recommendation capability, costly and static supervision, and superficial transfer of reasoning ability. To address these issues, this paper proposes RecZero, a reinforcement learning (RL)-based recommendation paradigm that abandons the traditional multi-model and multi-stage distillation approach. Instead, RecZero trains a single LLM through pure RL to autonomously develop reasoning capabilities for rating prediction. RecZero consists of two key components: (1) "Think-before-Recommendation" prompt construction, which employs a structured reasoning template to guide the model in step-wise analysis of user interests, item features, and user-item compatibility; and (2) rule-based reward modeling, which adopts group relative policy optimization (GRPO) to compute rewards for reasoning trajectories and optimize the LLM. Additionally, the paper explores a hybrid paradigm, RecOne, which combines supervised fine-tuning with RL, initializing the model with cold-start reasoning samples and further optimizing it with RL. Experimental results demonstrate that RecZero and RecOne significantly outperform existing baseline methods on multiple benchmark datasets, validating the superiority of the RL paradigm in achieving autonomous reasoning-enhanced recommender systems.
comment: NeurIPS 2025 poster
☆ Multi-Stage Field Extraction of Financial Documents with OCR and Compact Vision-Language Models
Financial documents are essential sources of information for regulators, auditors, and financial institutions, particularly for assessing the wealth and compliance of Small and Medium-sized Businesses. However, SMB documents are often difficult to parse. They are rarely born digital and instead are distributed as scanned images that are none machine readable. The scans themselves are low in resolution, affected by skew or rotation, and often contain noisy backgrounds. These documents also tend to be heterogeneous, mixing narratives, tables, figures, and multilingual content within the same report. Such characteristics pose major challenges for automated information extraction, especially when relying on end to end large Vision Language Models, which are computationally expensive, sensitive to noise, and slow when applied to files with hundreds of pages. We propose a multistage pipeline that leverages traditional image processing models and OCR extraction, together with compact VLMs for structured field extraction of large-scale financial documents. Our approach begins with image pre-processing, including segmentation, orientation detection, and size normalization. Multilingual OCR is then applied to recover page-level text. Upon analyzing the text information, pages are retrieved for coherent sections. Finally, compact VLMs are operated within these narrowed-down scopes to extract structured financial indicators. Our approach is evaluated using an internal corpus of multi-lingual, scanned financial documents. The results demonstrate that compact VLMs, together with a multistage pipeline, achieves 8.8 times higher field level accuracy relative to directly feeding the whole document into large VLMs, only at 0.7 percent of the GPU cost and 92.6 percent less end-to-end service latency.
☆ Improving Product Search Relevance with EAR-MP: A Solution for the CIKM 2025 AnalytiCup
Multilingual e-commerce search is challenging due to linguistic diversity and the noise inherent in user-generated queries. This paper documents the solution employed by our team (EAR-MP) for the CIKM 2025 AnalytiCup, which addresses two core tasks: Query-Category (QC) relevance and Query-Item (QI) relevance. Our approach first normalizes the multilingual dataset by translating all text into English, then mitigates noise through extensive data cleaning and normalization. For model training, we build on DeBERTa-v3-large and improve performance with label smoothing, self-distillation, and dropout. In addition, we introduce task-specific upgrades, including hierarchical token injection for QC and a hybrid scoring mechanism for QI. Under constrained compute, our method achieves competitive results, attaining an F1 score of 0.8796 on QC and 0.8744 on QI. These findings underscore the importance of systematic data preprocessing and tailored training strategies for building robust, resource-efficient multilingual relevance systems.
☆ Tagging-Augmented Generation: Assisting Language Models in Finding Intricate Knowledge In Long Contexts EMNLP 2025
Recent investigations into effective context lengths of modern flagship large language models (LLMs) have revealed major limitations in effective question answering (QA) and reasoning over long and complex contexts for even the largest and most impressive cadre of models. While approaches like retrieval-augmented generation (RAG) and chunk-based re-ranking attempt to mitigate this issue, they are sensitive to chunking, embedding and retrieval strategies and models, and furthermore, rely on extensive pre-processing, knowledge acquisition and indexing steps. In this paper, we propose Tagging-Augmented Generation (TAG), a lightweight data augmentation strategy that boosts LLM performance in long-context scenarios, without degrading and altering the integrity and composition of retrieved documents. We validate our hypothesis by augmenting two challenging and directly relevant question-answering benchmarks -- NoLima and NovelQA -- and show that tagging the context or even just adding tag definitions into QA prompts leads to consistent performance gains over the baseline -- up to 17% for 32K token contexts, and 2.9% in complex reasoning question-answering for multi-hop queries requiring knowledge across a wide span of text. Additional details are available at https://sites.google.com/view/tag-emnlp.
comment: Paper accepted at EMNLP 2025
☆ GTR-Mamba: Geometry-to-Tangent Routing for Hyperbolic POI Recommendation ICDE 2026
Next Point-of-Interest (POI) recommendation is a critical task in modern Location-Based Social Networks (LBSNs), aiming to model the complex decision-making process of human mobility to provide personalized recommendations for a user's next check-in location. Existing POI recommendation models, predominantly based on Graph Neural Networks and sequential models, have been extensively studied. However, these models face a fundamental limitation: they struggle to simultaneously capture the inherent hierarchical structure of spatial choices and the dynamics and irregular shifts of user-specific temporal contexts. To overcome this limitation, we propose GTR-Mamba, a novel framework for cross-manifold conditioning and routing. GTR-Mamba leverages the distinct advantages of different mathematical spaces for different tasks: it models the static, tree-like preference hierarchies in hyperbolic geometry, while routing the dynamic sequence updates to a novel Mamba layer in the computationally stable and efficient Euclidean tangent space. This process is coordinated by a cross-manifold channel that fuses spatio-temporal information to explicitly steer the State Space Model (SSM), enabling flexible adaptation to contextual changes. Extensive experiments on three real-world datasets demonstrate that GTR-Mamba consistently outperforms state-of-the-art baseline models in next POI recommendation.
comment: 14 pages, 8 figures, 4 tables, submitted to ICDE 2026
☆ MGFRec: Towards Reinforced Reasoning Recommendation with Multiple Groundings and Feedback
The powerful reasoning and generative capabilities of large language models (LLMs) have inspired researchers to apply them to reasoning-based recommendation tasks, which require in-depth reasoning about user interests and the generation of recommended items. However, previous reasoning-based recommendation methods have typically performed inference within the language space alone, without incorporating the actual item space. This has led to over-interpreting user interests and deviating from real items. Towards this research gap, we propose performing multiple rounds of grounding during inference to help the LLM better understand the actual item space, which could ensure that its reasoning remains aligned with real items. Furthermore, we introduce a user agent that provides feedback during each grounding step, enabling the LLM to better recognize and adapt to user interests. Comprehensive experiments conducted on three Amazon review datasets demonstrate the effectiveness of incorporating multiple groundings and feedback. These findings underscore the critical importance of reasoning within the actual item space, rather than being confined to the language space, for recommendation tasks.
♻ ☆ Computational-Assisted Systematic Review and Meta-Analysis (CASMA): Effect of a Subclass of GnRH-a on Endometriosis Recurrence
Background: Evidence synthesis facilitates evidence-based medicine. This task becomes increasingly difficult to accomplished with applying computational solutions, since the medical literature grows at astonishing rates. Objective: This study evaluates an information retrieval-driven workflow, CASMA, to enhance the efficiency, transparency, and reproducibility of systematic reviews. Endometriosis recurrence serves as the ideal case due to its complex and ambiguous literature. Methods: The hybrid approach integrates PRISMA guidelines with fuzzy matching and regular expression (regex) to facilitate semi-automated deduplication and filtered records before manual screening. The workflow synthesised evidence from randomised controlled trials on the efficacy of a subclass of gonadotropin-releasing hormone agonists (GnRH-a). A modified splitting method addressed unit-of-analysis errors in multi-arm trials. Results: The workflow sharply reduced the screening workload, taking only 11 days to fetch and filter 33,444 records. Seven eligible RCTs were synthesized (841 patients). The pooled random-effects model yielded a Risk Ratio (RR) of $0.64$ ($95\%$ CI $0.48$ to $0.86$), demonstrating a $36\%$ reduction in recurrence, with non-significant heterogeneity ($I^2=0.00\%$, $\tau^2=0.00$). The findings were robust and stable, as they were backed by sensitivity analyses. Conclusion: This study demonstrates an application of an information-retrieval-driven workflow for medical evidence synthesis. The approach yields valuable clinical results and a generalisable framework to scale up the evidence synthesis, bridging the gap between clinical research and computer science.
comment: 15 pages, 12 figures and 4 tables. This work describes an information retrieval-driven workflow for medical evidence synthesis, with an application to endometriosis recurrence. The method can be generalized to other systematic reviews. The preregistered protocol is available: https://doi.org/10.17605/OSF.IO/R2DFA
♻ ☆ An Ecosystem for Ontology Interoperability
Ontology interoperability is one of the complicated issues that restricts the use of ontologies in knowledge graphs (KGs). Different ontologies with conflicting and overlapping concepts make it difficult to design, develop, and deploy an interoperable ontology for downstream tasks. We propose an ecosystem for ontology interoperability. The ecosystem employs three state-of-the-art semantic techniques in different phases of the ontology engineering life cycle: ontology design patterns (ODPs) in the design phase, ontology matching and versioning (OM\&OV) in the develop phase, and ontology-compliant knowledge graphs (OCKGs) in the deploy phase, to achieve better ontology interoperability and data integration in real-world applications. A case study of sensor observation in the building domain validates the usefulness of the proposed ecosystem.
comment: 5 pages, 8 figures
♻ ☆ The Atlas of In-Context Learning: How Attention Heads Shape In-Context Retrieval Augmentation NeurIPS 2025
Large language models are able to exploit in-context learning to access external knowledge beyond their training data through retrieval-augmentation. While promising, its inner workings remain unclear. In this work, we shed light on the mechanism of in-context retrieval augmentation for question answering by viewing a prompt as a composition of informational components. We propose an attribution-based method to identify specialized attention heads, revealing in-context heads that comprehend instructions and retrieve relevant contextual information, and parametric heads that store entities' relational knowledge. To better understand their roles, we extract function vectors and modify their attention weights to show how they can influence the answer generation process. Finally, we leverage the gained insights to trace the sources of knowledge used during inference, paving the way towards more safe and transparent language models.
comment: Accepted at NeurIPS 2025
♻ ☆ TaoSR1: The Thinking Model for E-commerce Relevance Search
Query-product relevance prediction is a core task in e-commerce search. BERT-based models excel at semantic matching but lack complex reasoning capabilities. While Large Language Models (LLMs) are explored, most still use discriminative fine-tuning or distill to smaller models for deployment. We propose a framework to directly deploy LLMs for this task, addressing key challenges: Chain-of-Thought (CoT) error accumulation, discriminative hallucination, and deployment feasibility. Our framework, TaoSR1, involves three stages: (1) Supervised Fine-Tuning (SFT) with CoT to instill reasoning; (2) Offline sampling with a pass@N strategy and Direct Preference Optimization (DPO) to improve generation quality; and (3) Difficulty-based dynamic sampling with Group Relative Policy Optimization (GRPO) to mitigate discriminative hallucination. Additionally, post-CoT processing and a cumulative probability-based partitioning method enable efficient online deployment. TaoSR1 significantly outperforms baselines on offline datasets and achieves substantial gains in online side-by-side human evaluations, introducing a novel paradigm for applying CoT reasoning to relevance classification.
♻ ☆ SBAN: A Framework & Multi-Dimensional Dataset for Large Language Model Pre-Training and Software Code Mining
This paper introduces SBAN (Source code, Binary, Assembly, and Natural Language Description), a large-scale, multi-dimensional dataset designed to advance the pre-training and evaluation of large language models (LLMs) for software code analysis. SBAN comprises more than 3 million samples, including 2.9 million benign and 672,000 malware respectively, each represented across four complementary layers: binary code, assembly instructions, natural language descriptions, and source code. This unique multimodal structure enables research on cross-representation learning, semantic understanding of software, and automated malware detection. Beyond security applications, SBAN supports broader tasks such as code translation, code explanation, and other software mining tasks involving heterogeneous data. It is particularly suited for scalable training of deep models, including transformers and other LLM architectures. By bridging low-level machine representations and high-level human semantics, SBAN provides a robust foundation for building intelligent systems that reason about code. We believe that this dataset opens new opportunities for mining software behavior, improving security analytics, and enhancing LLM capabilities in pre-training and fine-tuning tasks for software code mining.
♻ ☆ Understanding Embedding Scaling in Collaborative Filtering
Scaling recommendation models into large recommendation models has become one of the most widely discussed topics. Recent efforts focus on components beyond the scaling embedding dimension, as it is believed that scaling embedding may lead to performance degradation. Although there have been some initial observations on embedding, the root cause of their non-scalability remains unclear. Moreover, whether performance degradation occurs across different types of models and datasets is still an unexplored area. Regarding the effect of embedding dimensions on performance, we conduct large-scale experiments across 10 datasets with varying sparsity levels and scales, using 4 representative classical architectures. We surprisingly observe two novel phenomena: double-peak and logarithmic. For the former, as the embedding dimension increases, performance first improves, then declines, rises again, and eventually drops. For the latter, it exhibits a perfect logarithmic curve. Our contributions are threefold. First, we discover two novel phenomena when scaling collaborative filtering models. Second, we gain an understanding of the underlying causes of the double-peak phenomenon. Lastly, we theoretically analyze the noise robustness of collaborative filtering models, with results matching empirical observations.
♻ ☆ The Cross-Lingual Cost: Retrieval Biases in RAG over Arabic-English Corpora
Cross-lingual retrieval-augmented generation (RAG) is a critical capability for retrieving and generating answers across languages. Prior work in this context has mostly focused on generation and relied on benchmarks derived from open-domain sources, most notably Wikipedia. In such settings, retrieval challenges often remain hidden due to language imbalances, overlap with pretraining data, and memorized content. To address this gap, we study Arabic-English RAG in a domain-specific setting using benchmarks derived from real-world corporate datasets. Our benchmarks include all combinations of languages for the user query and the supporting document, drawn independently and uniformly at random. This enables a systematic study of multilingual retrieval behavior. Our findings reveal that retrieval is a critical bottleneck in cross-lingual domain-specific scenarios, with substantial performance drops occurring when the user query and supporting document languages differ. A key insight is that these failures stem primarily from the retriever's difficulty in ranking documents across languages. Finally, we propose two simple retrieval strategies that address this source of failure by enforcing equal retrieval from both languages or by translating the query, resulting in substantial improvements in cross-lingual and overall performance. These results highlight meaningful opportunities for improving multilingual retrieval, particularly in practical, real-world RAG applications.
comment: Accepted to ArabicNLP 2025
♻ ☆ CMIE: Combining MLLM Insights with External Evidence for Explainable Out-of-Context Misinformation Detection
Multimodal large language models (MLLMs) have demonstrated impressive capabilities in visual reasoning and text generation. While previous studies have explored the application of MLLM for detecting out-of-context (OOC) misinformation, our empirical analysis reveals two persisting challenges of this paradigm. Evaluating the representative GPT-4o model on direct reasoning and evidence augmented reasoning, results indicate that MLLM struggle to capture the deeper relationships-specifically, cases in which the image and text are not directly connected but are associated through underlying semantic links. Moreover, noise in the evidence further impairs detection accuracy. To address these challenges, we propose CMIE, a novel OOC misinformation detection framework that incorporates a Coexistence Relationship Generation (CRG) strategy and an Association Scoring (AS) mechanism. CMIE identifies the underlying coexistence relationships between images and text, and selectively utilizes relevant evidence to enhance misinformation detection. Experimental results demonstrate that our approach outperforms existing methods.
♻ ☆ Membership Inference Attacks on Recommender System: A Survey
Recommender systems (RecSys) have been widely applied to various applications, including E-commerce, finance, healthcare, social media and have become increasingly influential in shaping user behavior and decision-making, highlighting their growing impact in various domains. However, recent studies have shown that RecSys are vulnerable to membership inference attacks (MIAs), which aim to infer whether user interaction record was used to train a target model or not. MIAs on RecSys models can directly lead to a privacy breach. For example, via identifying the fact that a purchase record that has been used to train a RecSys associated with a specific user, an attacker can infer that user's special quirks. In recent years, MIAs have been shown to be effective on other ML tasks, e.g., classification models and natural language processing. However, traditional MIAs are ill-suited for RecSys due to the unseen posterior probability. Although MIAs on RecSys form a newly emerging and rapidly growing research area, there has been no systematic survey on this topic yet. In this article, we conduct the first comprehensive survey on RecSys MIAs. This survey offers a comprehensive review of the latest advancements in RecSys MIAs, exploring the design principles, challenges, attack and defense associated with this emerging field. We provide a unified taxonomy that categorizes different RecSys MIAs based on their characterizations and discuss their pros and cons. Based on the limitations and gaps identified in this survey, we point out several promising future research directions to inspire the researchers who wish to follow this area. This survey not only serves as a reference for the research community but also provides a clear description for researchers outside this research domain.
comment: under review
♻ ☆ From ID-based to ID-free: Rethinking ID Effectiveness in Multimodal Collaborative Filtering Recommendation
Most existing multimodal collaborative filtering recommendation (MCFRec) methods rely heavily on ID features and multimodal content to enhance recommendation performance. However, this paper reveals that ID features are effective but have limited benefits in multimodal collaborative filtering recommendation. Therefore, this paper systematically deconstruct the pros and cons of ID features: (i) they provide initial embedding but lack semantic richness, (ii) they provide a unique identifier for each user and item but hinder generalization to untrained data, and (iii) they assist in aligning and fusing multimodal features but may lead to representation shift. Based on these insights, this paper proposes IDFREE, an ID-free multimodal collaborative Filtering REcommEndation baseline. IDFREE replaces ID features with multimodal features and positional encodings to generate semantically meaningful ID-free embeddings. For ID-free multimodal collaborative filtering, it further proposes an adaptive similarity graph module to construct dynamic user-user and item-item graphs based on multimodal features. Then, an augmented user-item graph encoder is proposed to construct more effective user and item encoding. Finally, IDFREE achieves inter-multimodal alignment based on the contrastive learning and uses Softmax loss as recommendation loss. Basic experiments on three public datasets demonstrate that IDFREE outperforms existing ID-based MCFRec methods, achieving an average performance gain of 72.24% across standard metrics (Recall@5, 10, 20, 50 and NDCG@5, 10, 20, 50). Exploratory and extended experiments further validate our findings on the limitations of ID features in MCFRec. The code is released at https://github.com/G-H-Li/IDFREE.
comment: We identified that our current approach achieves its reported performance only under specific data conditions, and its robustness is weaker than we initially expected
Machine Learning
☆ Variational Masked Diffusion Models
Masked diffusion models have recently emerged as a flexible framework for discrete generative modeling. However, a key limitation of standard masked diffusion is its inability to effectively capture dependencies among tokens that are predicted concurrently, leading to degraded generation quality when dependencies among tokens are important. To explicitly model dependencies among tokens, we propose Variational Masked Diffusion (VMD), a framework that introduces latent variables into the masked diffusion process. Through controlled experiments on synthetic datasets, we demonstrate that VMD successfully learns dependencies that conventional masked diffusion fails to capture. We further validate the effectiveness of our approach on Sudoku puzzles and text datasets, where learning of dependencies among tokens improves global consistency. Across these domains, VMD enhances both generation quality and dependency awareness, highlighting the value of integrating variational inference into masked diffusion. Our code is available at: https://riccizz.github.io/VMD.
comment: Project Page: https://riccizz.github.io/VMD
☆ Track, Inpaint, Resplat: Subject-driven 3D and 4D Generation with Progressive Texture Infilling NeurIPS 2025
Current 3D/4D generation methods are usually optimized for photorealism, efficiency, and aesthetics. However, they often fail to preserve the semantic identity of the subject across different viewpoints. Adapting generation methods with one or few images of a specific subject (also known as Personalization or Subject-driven generation) allows generating visual content that align with the identity of the subject. However, personalized 3D/4D generation is still largely underexplored. In this work, we introduce TIRE (Track, Inpaint, REsplat), a novel method for subject-driven 3D/4D generation. It takes an initial 3D asset produced by an existing 3D generative model as input and uses video tracking to identify the regions that need to be modified. Then, we adopt a subject-driven 2D inpainting model for progressively infilling the identified regions. Finally, we resplat the modified 2D multi-view observations back to 3D while still maintaining consistency. Extensive experiments demonstrate that our approach significantly improves identity preservation in 3D/4D generation compared to state-of-the-art methods. Our project website is available at https://zsh2000.github.io/track-inpaint-resplat.github.io/.
comment: NeurIPS 2025, 38 pages, 22 figures
☆ Lightweight Robust Direct Preference Optimization
Direct Preference Optimization (DPO) has become a popular method for fine-tuning large language models (LLMs) due to its stability and simplicity. However, it is also known to be sensitive to noise in the data and prone to overfitting. Recent works have proposed using distributionally robust optimization (DRO) to address potential noise and distributional shift in the data. However, these methods often suffer from excessive conservatism and high computational cost. We propose DPO-PRO (DPO with Preference Robustness), a robust fine-tuning algorithm based on DPO which accounts for uncertainty in the preference distribution through a lightweight DRO formulation. Unlike prior DRO-based variants, DPO-PRO focuses solely on uncertainty in preferences, avoiding unnecessary conservatism and incurring negligible computational overhead. We further show that DPO-PRO is equivalent to a regularized DPO objective that penalizes model overconfidence under weak preference signals. We evaluate DPO-PRO on standard alignment benchmarks and a real-world public health task. Experimental results show that our method consistently improves robustness to noisy preference signals compared to existing DPO variants.
☆ Lookahead Anchoring: Preserving Character Identity in Audio-Driven Human Animation
Audio-driven human animation models often suffer from identity drift during temporal autoregressive generation, where characters gradually lose their identity over time. One solution is to generate keyframes as intermediate temporal anchors that prevent degradation, but this requires an additional keyframe generation stage and can restrict natural motion dynamics. To address this, we propose Lookahead Anchoring, which leverages keyframes from future timesteps ahead of the current generation window, rather than within it. This transforms keyframes from fixed boundaries into directional beacons: the model continuously pursues these future anchors while responding to immediate audio cues, maintaining consistent identity through persistent guidance. This also enables self-keyframing, where the reference image serves as the lookahead target, eliminating the need for keyframe generation entirely. We find that the temporal lookahead distance naturally controls the balance between expressivity and consistency: larger distances allow for greater motion freedom, while smaller ones strengthen identity adherence. When applied to three recent human animation models, Lookahead Anchoring achieves superior lip synchronization, identity preservation, and visual quality, demonstrating improved temporal conditioning across several different architectures. Video results are available at the following link: https://lookahead-anchoring.github.io.
comment: Project page: https://lookahead-anchoring.github.io
☆ RobotArena $\infty$: Scalable Robot Benchmarking via Real-to-Sim Translation
The pursuit of robot generalists - instructable agents capable of performing diverse tasks across diverse environments - demands rigorous and scalable evaluation. Yet real-world testing of robot policies remains fundamentally constrained: it is labor-intensive, slow, unsafe at scale, and difficult to reproduce. Existing simulation benchmarks are similarly limited, as they train and test policies within the same synthetic domains and cannot assess models trained from real-world demonstrations or alternative simulation environments. As policies expand in scope and complexity, these barriers only intensify, since defining "success" in robotics often hinges on nuanced human judgments of execution quality. In this paper, we introduce a new benchmarking framework that overcomes these challenges by shifting VLA evaluation into large-scale simulated environments augmented with online human feedback. Leveraging advances in vision-language models, 2D-to-3D generative modeling, and differentiable rendering, our approach automatically converts video demonstrations from widely used robot datasets into simulated counterparts. Within these digital twins, we assess VLA policies using both automated VLM-guided scoring and scalable human preference judgments collected from crowdworkers, transforming human involvement from tedious scene setup, resetting, and safety supervision into lightweight preference comparisons. To measure robustness, we systematically perturb simulated environments along multiple axes, such as textures and object placements, stress-testing policy generalization under controlled variation. The result is a continuously evolving, reproducible, and scalable benchmark for real-world trained robot manipulation policies, addressing a critical missing capability in today's robotics landscape.
comment: Website: https://robotarenainf.github.io
☆ ReCode: Unify Plan and Action for Universal Granularity Control
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.
☆ Minimizing Human Intervention in Online Classification
We introduce and study an online problem arising in question answering systems. In this problem, an agent must sequentially classify user-submitted queries represented by $d$-dimensional embeddings drawn i.i.d. from an unknown distribution. The agent may consult a costly human expert for the correct label, or guess on her own without receiving feedback. The goal is to minimize regret against an oracle with free expert access. When the time horizon $T$ is at least exponential in the embedding dimension $d$, one can learn the geometry of the class regions: in this regime, we propose the Conservative Hull-based Classifier (CHC), which maintains convex hulls of expert-labeled queries and calls the expert as soon as a query lands outside all known hulls. CHC attains $\mathcal{O}(\log^d T)$ regret in $T$ and is minimax optimal for $d=1$. Otherwise, the geometry cannot be reliably learned without additional distributional assumptions. We show that when the queries are drawn from a subgaussian mixture, for $T \le e^d$, a Center-based Classifier (CC) achieves regret proportional to $N\log{N}$ where $N$ is the number of labels. To bridge these regimes, we introduce the Generalized Hull-based Classifier (GHC), a practical extension of CHC that allows for more aggressive guessing via a tunable threshold parameter. Our approach is validated with experiments, notably on real-world question-answering datasets using embeddings derived from state-of-the-art large language models.
comment: 49 pages, 8 figures
☆ A U-Net and Transformer Pipeline for Multilingual Image Translation
This paper presents an end-to-end multilingual translation pipeline that integrates a custom U-Net for text detection, the Tesseract engine for text recognition, and a from-scratch sequence-to-sequence (Seq2Seq) Transformer for Neural Machine Translation (NMT). Our approach first utilizes a U-Net model, trained on a synthetic dataset , to accurately segment and detect text regions from an image. These detected regions are then processed by Tesseract to extract the source text. This extracted text is fed into a custom Transformer model trained from scratch on a multilingual parallel corpus spanning 5 languages. Unlike systems reliant on monolithic pre-trained models, our architecture emphasizes full customization and adaptability. The system is evaluated on its text detection accuracy, text recognition quality, and translation performance via BLEU scores. The complete pipeline demonstrates promising results, validating the viability of a custom-built system for translating text directly from images.
comment: 6 pages, 3 figures, 5 tables, and 2 algorithms. Prepared in IEEE double-column format
☆ Sequential Multi-Agent Dynamic Algorithm Configuration NeurIPS 2025
Dynamic algorithm configuration (DAC) is a recent trend in automated machine learning, which can dynamically adjust the algorithm's configuration during the execution process and relieve users from tedious trial-and-error tuning tasks. Recently, multi-agent reinforcement learning (MARL) approaches have improved the configuration of multiple heterogeneous hyperparameters, making various parameter configurations for complex algorithms possible. However, many complex algorithms have inherent inter-dependencies among multiple parameters (e.g., determining the operator type first and then the operator's parameter), which are, however, not considered in previous approaches, thus leading to sub-optimal results. In this paper, we propose the sequential multi-agent DAC (Seq-MADAC) framework to address this issue by considering the inherent inter-dependencies of multiple parameters. Specifically, we propose a sequential advantage decomposition network, which can leverage action-order information through sequential advantage decomposition. Experiments from synthetic functions to the configuration of multi-objective optimization algorithms demonstrate Seq-MADAC's superior performance over state-of-the-art MARL methods and show strong generalization across problem classes. Seq-MADAC establishes a new paradigm for the widespread dependency-aware automated algorithm configuration. Our code is available at https://github.com/lamda-bbo/seq-madac.
comment: NeurIPS 2025
☆ Direct Debiased Machine Learning via Bregman Divergence Minimization
We develop a direct debiased machine learning framework comprising Neyman targeted estimation and generalized Riesz regression. Our framework unifies Riesz regression for automatic debiased machine learning, covariate balancing, targeted maximum likelihood estimation (TMLE), and density-ratio estimation. In many problems involving causal effects or structural models, the parameters of interest depend on regression functions. Plugging regression functions estimated by machine learning methods into the identifying equations can yield poor performance because of first-stage bias. To reduce such bias, debiased machine learning employs Neyman orthogonal estimating equations. Debiased machine learning typically requires estimation of the Riesz representer and the regression function. For this problem, we develop a direct debiased machine learning framework with an end-to-end algorithm. We formulate estimation of the nuisance parameters, the regression function and the Riesz representer, as minimizing the discrepancy between Neyman orthogonal scores computed with known and unknown nuisance parameters, which we refer to as Neyman targeted estimation. Neyman targeted estimation includes Riesz representer estimation, and we measure discrepancies using the Bregman divergence. The Bregman divergence encompasses various loss functions as special cases, where the squared loss yields Riesz regression and the Kullback-Leibler divergence yields entropy balancing. We refer to this Riesz representer estimation as generalized Riesz regression. Neyman targeted estimation also yields TMLE as a special case for regression function estimation. Furthermore, for specific pairs of models and Riesz representer estimation methods, we can automatically obtain the covariate balancing property without explicitly solving the covariate balancing objective.
☆ When No Paths Lead to Rome: Benchmarking Systematic Neural Relational Reasoning NeurIPS 2025
Designing models that can learn to reason in a systematic way is an important and long-standing challenge. In recent years, a wide range of solutions have been proposed for the specific case of systematic relational reasoning, including Neuro-Symbolic approaches, variants of the Transformer architecture, and specialised Graph Neural Networks. However, existing benchmarks for systematic relational reasoning focus on an overly simplified setting, based on the assumption that reasoning can be reduced to composing relational paths. In fact, this assumption is hard-baked into the architecture of several recent models, leading to approaches that can perform well on existing benchmarks but are difficult to generalise to other settings. To support further progress in the field of systematic relational reasoning with neural networks, we introduce NoRA, a new benchmark which adds several levels of difficulty and requires models to go beyond path-based reasoning.
comment: accepted at NeurIPS 2025 D&B track
☆ Learning Linearity in Audio Consistency Autoencoders via Implicit Regularization
Audio autoencoders learn useful, compressed audio representations, but their non-linear latent spaces prevent intuitive algebraic manipulation such as mixing or scaling. We introduce a simple training methodology to induce linearity in a high-compression Consistency Autoencoder (CAE) by using data augmentation, thereby inducing homogeneity (equivariance to scalar gain) and additivity (the decoder preserves addition) without altering the model's architecture or loss function. When trained with our method, the CAE exhibits linear behavior in both the encoder and decoder while preserving reconstruction fidelity. We test the practical utility of our learned space on music source composition and separation via simple latent arithmetic. This work presents a straightforward technique for constructing structured latent spaces, enabling more intuitive and efficient audio processing.
☆ Toward Carbon-Neutral Human AI: Rethinking Data, Computation, and Learning Paradigms for Sustainable Intelligence
The rapid advancement of Artificial Intelligence (AI) has led to unprecedented computational demands, raising significant environmental and ethical concerns. This paper critiques the prevailing reliance on large-scale, static datasets and monolithic training paradigms, advocating for a shift toward human-inspired, sustainable AI solutions. We introduce a novel framework, Human AI (HAI), which emphasizes incremental learning, carbon-aware optimization, and human-in-the-loop collaboration to enhance adaptability, efficiency, and accountability. By drawing parallels with biological cognition and leveraging dynamic architectures, HAI seeks to balance performance with ecological responsibility. We detail the theoretical foundations, system design, and operational principles that enable AI to learn continuously and contextually while minimizing carbon footprints and human annotation costs. Our approach addresses pressing challenges in active learning, continual adaptation, and energy-efficient model deployment, offering a pathway toward responsible, human-centered artificial intelligence.
comment: 9 pages, 3 figures
☆ A Deep Latent Factor Graph Clustering with Fairness-Utility Trade-off Perspective
Fair graph clustering seeks partitions that respect network structure while maintaining proportional representation across sensitive groups, with applications spanning community detection, team formation, resource allocation, and social network analysis. Many existing approaches enforce rigid constraints or rely on multi-stage pipelines (e.g., spectral embedding followed by $k$-means), limiting trade-off control, interpretability, and scalability. We introduce \emph{DFNMF}, an end-to-end deep nonnegative tri-factorization tailored to graphs that directly optimizes cluster assignments with a soft statistical-parity regularizer. A single parameter $\lambda$ tunes the fairness--utility balance, while nonnegativity yields parts-based factors and transparent soft memberships. The optimization uses sparse-friendly alternating updates and scales near-linearly with the number of edges. Across synthetic and real networks, DFNMF achieves substantially higher group balance at comparable modularity, often dominating state-of-the-art baselines on the Pareto front. The code is available at https://github.com/SiamakGhodsi/DFNMF.git.
comment: Accepted to IEEE Big-Data 2025 main research track. The paper is 10 main pages and 4 pages of Appendix
☆ Bayes-Split-Edge: Bayesian Optimization for Constrained Collaborative Inference in Wireless Edge Systems
Mobile edge devices (e.g., AR/VR headsets) typically need to complete timely inference tasks while operating with limited on-board computing and energy resources. In this paper, we investigate the problem of collaborative inference in wireless edge networks, where energy-constrained edge devices aim to complete inference tasks within given deadlines. These tasks are carried out using neural networks, and the edge device seeks to optimize inference performance under energy and delay constraints. The inference process can be split between the edge device and an edge server, thereby achieving collaborative inference over wireless networks. We formulate an inference utility optimization problem subject to energy and delay constraints, and propose a novel solution called Bayes-Split-Edge, which leverages Bayesian optimization for collaborative split inference over wireless edge networks. Our solution jointly optimizes the transmission power and the neural network split point. The Bayes-Split-Edge framework incorporates a novel hybrid acquisition function that balances inference task utility, sample efficiency, and constraint violation penalties. We evaluate our approach using the VGG19 model on the ImageNet-Mini dataset, and Resnet101 on Tiny-ImageNet, and real-world mMobile wireless channel datasets. Numerical results demonstrate that Bayes-Split-Edge achieves up to 2.4x reduction in evaluation cost compared to standard Bayesian optimization and achieves near-linear convergence. It also outperforms several baselines, including CMA-ES, DIRECT, exhaustive search, and Proximal Policy Optimization (PPO), while matching exhaustive search performance under tight constraints. These results confirm that the proposed framework provides a sample-efficient solution requiring maximum 20 function evaluations and constraint-aware optimization for wireless split inference in edge computing systems.
☆ Towards Deep Physics-Informed Kolmogorov-Arnold Networks
Since their introduction, Kolmogorov-Arnold Networks (KANs) have been successfully applied across several domains, with physics-informed machine learning (PIML) emerging as one of the areas where they have thrived. In the PIML setting, Chebyshev-based physics-informed KANs (cPIKANs) have become the standard due to their computational efficiency. However, like their multilayer perceptron-based counterparts, cPIKANs face significant challenges when scaled to depth, leading to training instabilities that limit their applicability to several PDE problems. To address this, we propose a basis-agnostic, Glorot-like initialization scheme that preserves activation variance and yields substantial improvements in stability and accuracy over the default initialization of cPIKANs. Inspired by the PirateNet architecture, we further introduce Residual-Gated Adaptive KANs (RGA KANs), designed to mitigate divergence in deep cPIKANs where initialization alone is not sufficient. Through empirical tests and information bottleneck analysis, we show that RGA KANs successfully traverse all training phases, unlike baseline cPIKANs, which stagnate in the diffusion phase in specific PDE settings. Evaluations on seven standard forward PDE benchmarks under a fixed training pipeline with adaptive components demonstrate that RGA KANs consistently outperform parameter-matched cPIKANs and PirateNets - often by several orders of magnitude - while remaining stable in settings where the others diverge.
comment: 73 pages, 22 figures
☆ Mixed Precision Training of Neural ODEs
Exploiting low-precision computations has become a standard strategy in deep learning to address the growing computational costs imposed by ever larger models and datasets. However, naively performing all computations in low precision can lead to roundoff errors and instabilities. Therefore, mixed precision training schemes usually store the weights in high precision and use low-precision computations only for whitelisted operations. Despite their success, these principles are currently not reliable for training continuous-time architectures such as neural ordinary differential equations (Neural ODEs). This paper presents a mixed precision training framework for neural ODEs, combining explicit ODE solvers with a custom backpropagation scheme, and demonstrates its effectiveness across a range of learning tasks. Our scheme uses low-precision computations for evaluating the velocity, parameterized by the neural network, and for storing intermediate states, while stability is provided by a custom dynamic adjoint scaling and by accumulating the solution and gradients in higher precision. These contributions address two key challenges in training neural ODE: the computational cost of repeated network evaluations and the growth of memory requirements with the number of time steps or layers. Along with the paper, we publish our extendable, open-source PyTorch package rampde, whose syntax resembles that of leading packages to provide a drop-in replacement in existing codes. We demonstrate the reliability and effectiveness of our scheme using challenging test cases and on neural ODE applications in image classification and generative models, achieving approximately 50% memory reduction and up to 2x speedup while maintaining accuracy comparable to single-precision training.
comment: Code available at https://github.com/EmoryMLIP/rampde; 26 pages, 4 figures
☆ Quantum Phase Classification of Rydberg Atom Systems Using Resource-Efficient Variational Quantum Circuits and Classical Shadows
Quantum phase transitions in Rydberg atom arrays present significant opportunities for studying many-body physics, yet distinguishing between different ordered phases without explicit order parameters remains challenging. We present a resource-efficient quantum machine learning approach combining classical shadow tomography with variational quantum circuits (VQCs) for binary phase classification of Z2 and Z3 ordered phases. Our pipeline processes 500 randomized measurements per 51-atom chain state, reconstructs shadow operators, performs PCA dimensionality reduction (514 features), and encodes features using angle embedding onto a 2-qubit parameterized circuit. The circuit employs RY-RZ angle encoding, strong entanglement via all-to-all CZ gates, and a minimal 2-parameter ansatz achieving depth 7. Training via simultaneous perturbation stochastic approximation (SPSA) with hinge loss converged in 120 iterations. The model achieved 100% test accuracy with perfect precision, recall, and F1 scores, demonstrating that minimal quantum resources suffice for high-accuracy phase classification. This work establishes pathways for quantum-enhanced condensed matter physics on near-term quantum devices.
comment: 7 pages, 2 tables, and 3 figures. for associated code files, see https://github.com/Hemishahuja/FLIQ_Challenge_ClassiqDuQIS
☆ Learning to Reason Efficiently with Discounted Reinforcement Learning
Large reasoning models (LRMs) often consume excessive tokens, inflating computational cost and latency. We challenge the assumption that longer responses improve accuracy. By penalizing reasoning tokens using a discounted reinforcement learning setup (interpretable as a small token cost) and analyzing Blackwell optimality in restricted policy classes, we encourage concise yet accurate reasoning. Experiments confirm our theoretical results that this approach shortens chains of thought while preserving accuracy.
☆ Tighter CMI-Based Generalization Bounds via Stochastic Projection and Quantization NeurIPS 2025
In this paper, we leverage stochastic projection and lossy compression to establish new conditional mutual information (CMI) bounds on the generalization error of statistical learning algorithms. It is shown that these bounds are generally tighter than the existing ones. In particular, we prove that for certain problem instances for which existing MI and CMI bounds were recently shown in Attias et al. [2024] and Livni [2023] to become vacuous or fail to describe the right generalization behavior, our bounds yield suitable generalization guarantees of the order of $\mathcal{O}(1/\sqrt{n})$, where $n$ is the size of the training dataset. Furthermore, we use our bounds to investigate the problem of data "memorization" raised in those works, and which asserts that there are learning problem instances for which any learning algorithm that has good prediction there exist distributions under which the algorithm must "memorize" a big fraction of the training dataset. We show that for every learning algorithm, there exists an auxiliary algorithm that does not memorize and which yields comparable generalization error for any data distribution. In part, this shows that memorization is not necessary for good generalization.
comment: Accepted for oral presentation at NeurIPS 2025
☆ T-REGS: Minimum Spanning Tree Regularization for Self-Supervised Learning NeurIPS 2025
Self-supervised learning (SSL) has emerged as a powerful paradigm for learning representations without labeled data, often by enforcing invariance to input transformations such as rotations or blurring. Recent studies have highlighted two pivotal properties for effective representations: (i) avoiding dimensional collapse-where the learned features occupy only a low-dimensional subspace, and (ii) enhancing uniformity of the induced distribution. In this work, we introduce T-REGS, a simple regularization framework for SSL based on the length of the Minimum Spanning Tree (MST) over the learned representation. We provide theoretical analysis demonstrating that T-REGS simultaneously mitigates dimensional collapse and promotes distribution uniformity on arbitrary compact Riemannian manifolds. Several experiments on synthetic data and on classical SSL benchmarks validate the effectiveness of our approach at enhancing representation quality.
comment: NeurIPS 2025
☆ BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
Chip placement is a vital stage in modern chip design as it has a substantial impact on the subsequent processes and the overall quality of the final chip. The use of black-box optimization (BBO) for chip placement has a history of several decades. However, early efforts were limited by immature problem formulations and inefficient algorithm designs. Recent progress has shown the effectiveness and efficiency of BBO for chip placement, proving its potential to achieve state-of-the-art results. Despite these advancements, the field lacks a unified, BBO-specific benchmark for thoroughly assessing various problem formulations and BBO algorithms. To fill this gap, we propose BBOPlace-Bench, the first benchmark designed specifically for evaluating and developing BBO algorithms for chip placement tasks. It integrates three problem formulations of BBO for chip placement, and offers a modular, decoupled, and flexible framework that enables users to seamlessly implement, test, and compare their own algorithms. BBOPlace-Bench integrates a wide variety of existing BBO algorithms, including simulated annealing (SA), evolutionary algorithms (EAs), and Bayesian optimization (BO). Experimental results show that the problem formulations of mask-guided optimization and hyperparameter optimization exhibit superior performance than the sequence pair problem formulation, while EAs demonstrate better overall performance than SA and BO, especially in high-dimensional search spaces, and also achieve state-of-the-art performance compared to the mainstream chip placement methods. BBOPlace-Bench not only facilitates the development of efficient BBO-driven solutions for chip placement but also broadens the practical application scenarios (which are urgently needed) for the BBO community. The code of BBOPlace-Bench is available at https://github.com/lamda-bbo/BBOPlace-Bench.
☆ Robust Decision Making with Partially Calibrated Forecasts
Calibration has emerged as a foundational goal in ``trustworthy machine learning'', in part because of its strong decision theoretic semantics. Independent of the underlying distribution, and independent of the decision maker's utility function, calibration promises that amongst all policies mapping predictions to actions, the uniformly best policy is the one that ``trusts the predictions'' and acts as if they were correct. But this is true only of \emph{fully calibrated} forecasts, which are tractable to guarantee only for very low dimensional prediction problems. For higher dimensional prediction problems (e.g. when outcomes are multiclass), weaker forms of calibration have been studied that lack these decision theoretic properties. In this paper we study how a conservative decision maker should map predictions endowed with these weaker (``partial'') calibration guarantees to actions, in a way that is robust in a minimax sense: i.e. to maximize their expected utility in the worst case over distributions consistent with the calibration guarantees. We characterize their minimax optimal decision rule via a duality argument, and show that surprisingly, ``trusting the predictions and acting accordingly'' is recovered in this minimax sense by \emph{decision calibration} (and any strictly stronger notion of calibration), a substantially weaker and more tractable condition than full calibration. For calibration guarantees that fall short of decision calibration, the minimax optimal decision rule is still efficiently computable, and we provide an empirical evaluation of a natural one that applies to any regression model solved to optimize squared error.
☆ Adaptive Dual Prompting: Hierarchical Debiasing for Fairness-aware Graph Neural Networks
In recent years, pre-training Graph Neural Networks (GNNs) through self-supervised learning on unlabeled graph data has emerged as a widely adopted paradigm in graph learning. Although the paradigm is effective for pre-training powerful GNN models, the objective gap often exists between pre-training and downstream tasks. To bridge this gap, graph prompting adapts pre-trained GNN models to specific downstream tasks with extra learnable prompts while keeping the pre-trained GNN models frozen. As recent graph prompting methods largely focus on enhancing model utility on downstream tasks, they often overlook fairness concerns when designing prompts for adaptation. In fact, pre-trained GNN models will produce discriminative node representations across demographic subgroups, as downstream graph data inherently contains biases in both node attributes and graph structures. To address this issue, we propose an Adaptive Dual Prompting (ADPrompt) framework that enhances fairness for adapting pre-trained GNN models to downstream tasks. To mitigate attribute bias, we design an Adaptive Feature Rectification module that learns customized attribute prompts to suppress sensitive information at the input layer, reducing bias at the source. Afterward, we propose an Adaptive Message Calibration module that generates structure prompts at each layer, which adjust the message from neighboring nodes to enable dynamic and soft calibration of the information flow. Finally, ADPrompt jointly optimizes the two prompting modules to adapt the pre-trained GNN while enhancing fairness. We conduct extensive experiments on four datasets with four pre-training strategies to evaluate the performance of ADPrompt. The results demonstrate that our proposed ADPrompt outperforms seven baseline methods on node classification tasks.
☆ Differential Privacy as a Perk: Federated Learning over Multiple-Access Fading Channels with a Multi-Antenna Base Station
Federated Learning (FL) is a distributed learning paradigm that preserves privacy by eliminating the need to exchange raw data during training. In its prototypical edge instantiation with underlying wireless transmissions enabled by analog over-the-air computing (AirComp), referred to as \emph{over-the-air FL (AirFL)}, the inherent channel noise plays a unique role of \emph{frenemy} in the sense that it degrades training due to noisy global aggregation while providing a natural source of randomness for privacy-preserving mechanisms, formally quantified by \emph{differential privacy (DP)}. It remains, nevertheless, challenging to effectively harness such channel impairments, as prior arts, under assumptions of either simple channel models or restricted types of loss functions, mostly considering (local) DP enhancement with a single-round or non-convergent bound on privacy loss. In this paper, we study AirFL over multiple-access fading channels with a multi-antenna base station (BS) subject to user-level DP requirements. Despite a recent study, which claimed in similar settings that artificial noise (AN) must be injected to ensure DP in general, we demonstrate, on the contrary, that DP can be gained as a \emph{perk} even \emph{without} employing any AN. Specifically, we derive a novel bound on DP that converges under general bounded-domain assumptions on model parameters, along with a convergence bound with general smooth and non-convex loss functions. Next, we optimize over receive beamforming and power allocations to characterize the optimal convergence-privacy trade-offs, which also reveal explicit conditions in which DP is achievable without compromising training. Finally, our theoretical findings are validated by extensive numerical results.
comment: 15 pages, 5 figures, submitted for possible publication
☆ SGFusion: Stochastic Geographic Gradient Fusion in Federated Learning
This paper proposes Stochastic Geographic Gradient Fusion (SGFusion), a novel training algorithm to leverage the geographic information of mobile users in Federated Learning (FL). SGFusion maps the data collected by mobile devices onto geographical zones and trains one FL model per zone, which adapts well to the data and behaviors of users in that zone. SGFusion models the local data-based correlation among geographical zones as a hierarchical random graph (HRG) optimized by Markov Chain Monte Carlo sampling. At each training step, every zone fuses its local gradient with gradients derived from a small set of other zones sampled from the HRG. This approach enables knowledge fusion and sharing among geographical zones in a probabilistic and stochastic gradient fusion process with self-attention weights, such that "more similar" zones have "higher probabilities" of sharing gradients with "larger attention weights." SGFusion remarkably improves model utility without introducing undue computational cost. Extensive theoretical and empirical results using a heart-rate prediction dataset collected across 6 countries show that models trained with SGFusion converge with upper-bounded expected errors and significantly improve utility in all countries compared to existing approaches without notable cost in system scalability.
☆ Schrodinger Neural Network and Uncertainty Quantification: Quantum Machine
We introduce the Schrodinger Neural Network (SNN), a principled architecture for conditional density estimation and uncertainty quantification inspired by quantum mechanics. The SNN maps each input to a normalized wave function on the output domain and computes predictive probabilities via the Born rule. The SNN departs from standard parametric likelihood heads by learning complex coefficients of a spectral expansion (e . g ., Chebyshev polynomials) whose squared modulus yields the conditional density $p(y|x)=\left| \psi _x(y)\right| {}^2$ with analytic normalization. This representation confers three practical advantages: positivity and exact normalization by construction, native multimodality through interference among basis modes without explicit mixture bookkeeping, and yields closed-form (or efficiently computable) functionals$-$such as moments and several calibration diagnostics$-$as quadratic forms in coefficient space. We develop the statistical and computational foundations of the SNN, including (i) training by exact maximum-likelihood with unit-sphere coefficient parameterization, (ii) physics-inspired quadratic regularizers (kinetic and potential energies) motivated by uncertainty relations between localization and spectral complexity, (iii) scalable low-rank and separable extensions for multivariate outputs, (iv) operator-based extensions that represent observables, constraints, and weak labels as self-adjoint matrices acting on the amplitude space, and (v) a comprehensive framework for evaluating multimodal predictions. The SNN provides a coherent, tractable framework to elevate probabilistic prediction from point estimates to physically inspired amplitude-based distributions.
comment: 29 pages, 16 figures
☆ An Information-Theoretic Analysis of Out-of-Distribution Generalization in Meta-Learning with Applications to Meta-RL
In this work, we study out-of-distribution generalization in meta-learning from an information-theoretic perspective. We focus on two scenarios: (i) when the testing environment mismatches the training environment, and (ii) when the training environment is broader than the testing environment. The first corresponds to the standard distribution mismatch setting, while the second reflects a broad-to-narrow training scenario. We further formalize the generalization problem in meta-reinforcement learning and establish corresponding generalization bounds. Finally, we analyze the generalization performance of a gradient-based meta-reinforcement learning algorithm.
☆ Coresets for Clustering Under Stochastic Noise NeurIPS 2025
We study the problem of constructing coresets for $(k, z)$-clustering when the input dataset is corrupted by stochastic noise drawn from a known distribution. In this setting, evaluating the quality of a coreset is inherently challenging, as the true underlying dataset is unobserved. To address this, we investigate coreset construction using surrogate error metrics that are tractable and provably related to the true clustering cost. We analyze a traditional metric from prior work and introduce a new error metric that more closely aligns with the true cost. Although our metric is defined independently of the noise distribution, it enables approximation guarantees that scale with the noise level. We design a coreset construction algorithm based on this metric and show that, under mild assumptions on the data and noise, enforcing an $\varepsilon$-bound under our metric yields smaller coresets and tighter guarantees on the true clustering cost than those obtained via classical metrics. In particular, we prove that the coreset size can improve by a factor of up to $\mathrm{poly}(k)$, where $n$ is the dataset size. Experiments on real-world datasets support our theoretical findings and demonstrate the practical advantages of our approach.
comment: This paper has been accepted by NeurIPS 2025
☆ Improving Predictions of Molecular Properties with Graph Featurisation and Heterogeneous Ensemble Models
We explore a "best-of-both" approach to modelling molecular properties by combining learned molecular descriptors from a graph neural network (GNN) with general-purpose descriptors and a mixed ensemble of machine learning (ML) models. We introduce a MetaModel framework to aggregate predictions from a diverse set of leading ML models. We present a featurisation scheme for combining task-specific GNN-derived features with conventional molecular descriptors. We demonstrate that our framework outperforms the cutting-edge ChemProp model on all regression datasets tested and 6 of 9 classification datasets. We further show that including the GNN features derived from ChemProp boosts the ensemble model's performance on several datasets where it otherwise would have underperformed. We conclude that to achieve optimal performance across a wide set of problems, it is vital to combine general-purpose descriptors with task-specific learned features and use a diverse set of ML models to make the predictions.
☆ PrivacyGuard: A Modular Framework for Privacy Auditing in Machine Learning
The increasing deployment of Machine Learning (ML) models in sensitive domains motivates the need for robust, practical privacy assessment tools. PrivacyGuard is a comprehensive tool for empirical differential privacy (DP) analysis, designed to evaluate privacy risks in ML models through state-of-the-art inference attacks and advanced privacy measurement techniques. To this end, PrivacyGuard implements a diverse suite of privacy attack-- including membership inference , extraction, and reconstruction attacks -- enabling both off-the-shelf and highly configurable privacy analyses. Its modular architecture allows for the seamless integration of new attacks, and privacy metrics, supporting rapid adaptation to emerging research advances. We make PrivacyGuard available at https://github.com/facebookresearch/PrivacyGuard.
☆ Eigen-Value: Efficient Domain-Robust Data Valuation via Eigenvalue-Based Approach
Data valuation has become central in the era of data-centric AI. It drives efficient training pipelines and enables objective pricing in data markets by assigning a numeric value to each data point. Most existing data valuation methods estimate the effect of removing individual data points by evaluating changes in model validation performance under in-distribution (ID) settings, as opposed to out-of-distribution (OOD) scenarios where data follow different patterns. Since ID and OOD data behave differently, data valuation methods based on ID loss often fail to generalize to OOD settings, particularly when the validation set contains no OOD data. Furthermore, although OOD-aware methods exist, they involve heavy computational costs, which hinder practical deployment. To address these challenges, we introduce \emph{Eigen-Value} (EV), a plug-and-play data valuation framework for OOD robustness that uses only an ID data subset, including during validation. EV provides a new spectral approximation of domain discrepancy, which is the gap of loss between ID and OOD using ratios of eigenvalues of ID data's covariance matrix. EV then estimates the marginal contribution of each data point to this discrepancy via perturbation theory, alleviating the computational burden. Subsequently, EV plugs into ID loss-based methods by adding an EV term without any additional training loop. We demonstrate that EV achieves improved OOD robustness and stable value rankings across real-world datasets, while remaining computationally lightweight. These results indicate that EV is practical for large-scale settings with domain shift, offering an efficient path to OOD-robust data valuation.
☆ AutoStreamPipe: LLM Assisted Automatic Generation of Data Stream Processing Pipelines
Data pipelines are essential in stream processing as they enable the efficient collection, processing, and delivery of real-time data, supporting rapid data analysis. In this paper, we present AutoStreamPipe, a novel framework that employs Large Language Models (LLMs) to automate the design, generation, and deployment of stream processing pipelines. AutoStreamPipe bridges the semantic gap between high-level user intent and platform-specific implementations across distributed stream processing systems for structured multi-agent reasoning by integrating a Hypergraph of Thoughts (HGoT) as an extended version of GoT. AutoStreamPipe combines resilient execution strategies, advanced query analysis, and HGoT to deliver pipelines with good accuracy. Experimental evaluations on diverse pipelines demonstrate that AutoStreamPipe significantly reduces development time (x6.3) and error rates (x5.19), as measured by a novel Error-Free Score (EFS), compared to LLM code-generation methods.
comment: Under review
☆ The Best of N Worlds: Aligning Reinforcement Learning with Best-of-N Sampling via max@k Optimisation
The application of Reinforcement Learning with Verifiable Rewards (RLVR) to mathematical and coding domains has demonstrated significant improvements in the reasoning and problem-solving abilities of Large Language Models. Despite its success in single generation problem solving, the reinforcement learning fine-tuning process may harm the model's exploration ability, as reflected in decreased diversity of generations and a resulting degradation of performance during Best-of-N sampling for large N values. In this work, we focus on optimizing the max@k metric, a continuous generalization of pass@k. We derive an unbiased on-policy gradient estimate for direct optimization of this metric. Furthermore, we extend our derivations to the off-policy updates, a common element in modern RLVR algorithms, that allows better sample efficiency. Empirically, we show that our objective effectively optimizes max@k metric in off-policy scenarios, aligning the model with the Best-of-N inference strategy.
☆ Floating-Point Neural Network Verification at the Software Level
The behaviour of neural network components must be proven correct before deployment in safety-critical systems. Unfortunately, existing neural network verification techniques cannot certify the absence of faults at the software level. In this paper, we show how to specify and verify that neural networks are safe, by explicitly reasoning about their floating-point implementation. In doing so, we construct NeuroCodeBench 2.0, a benchmark comprising 912 neural network verification examples that cover activation functions, common layers, and full neural networks of up to 170K parameters. Our verification suite is written in plain C and is compatible with the format of the International Competition on Software Verification (SV-COMP). Thanks to it, we can conduct the first rigorous evaluation of eight state-of-the-art software verifiers on neural network code. The results show that existing automated verification tools can correctly solve an average of 11% of our benchmark, while producing around 3% incorrect verdicts. At the same time, a historical analysis reveals that the release of our benchmark has already had a significantly positive impact on the latter.
comment: Pre-print before submission to peer review
☆ Opinion Mining Based Entity Ranking using Fuzzy Logic Algorithmic Approach
Opinions are central to almost all human activities and are key influencers of our behaviors. In current times due to growth of social networking website and increase in number of e-commerce site huge amount of opinions are now available on web. Given a set of evaluative statements that contain opinions (or sentiments) about an Entity, opinion mining aims to extract attributes and components of the object that have been commented on in each statement and to determine whether the comments are positive, negative or neutral. While lot of research recently has been done in field of opinion mining and some of it dealing with ranking of entities based on review or opinion set, classifying opinions into finer granularity level and then ranking entities has never been done before. In this paper method for opinion mining from statements at a deeper level of granularity is proposed. This is done by using fuzzy logic reasoning, after which entities are ranked as per this information.
comment: 8 pages, 4 figures, Conference Paper
☆ Symbolic Neural Generation with Applications to Lead Discovery in Drug Design
We investigate a relatively underexplored class of hybrid neurosymbolic models integrating symbolic learning with neural reasoning to construct data generators meeting formal correctness criteria. In \textit{Symbolic Neural Generators} (SNGs), symbolic learners examine logical specifications of feasible data from a small set of instances -- sometimes just one. Each specification in turn constrains the conditional information supplied to a neural-based generator, which rejects any instance violating the symbolic specification. Like other neurosymbolic approaches, SNG exploits the complementary strengths of symbolic and neural methods. The outcome of an SNG is a triple $(H, X, W)$, where $H$ is a symbolic description of feasible instances constructed from data, $X$ a set of generated new instances that satisfy the description, and $W$ an associated weight. We introduce a semantics for such systems, based on the construction of appropriate \textit{base} and \textit{fibre} partially-ordered sets combined into an overall partial order, and outline a probabilistic extension relevant to practical applications. In this extension, SNGs result from searching over a weighted partial ordering. We implement an SNG combining a restricted form of Inductive Logic Programming (ILP) with a large language model (LLM) and evaluate it on early-stage drug design. Our main interest is the description and the set of potential inhibitor molecules generated by the SNG. On benchmark problems -- where drug targets are well understood -- SNG performance is statistically comparable to state-of-the-art methods. On exploratory problems with poorly understood targets, generated molecules exhibit binding affinities on par with leading clinical candidates. Experts further find the symbolic specifications useful as preliminary filters, with several generated molecules identified as viable for synthesis and wet-lab testing.
comment: 37 pages, 15 figures; partial overlap of experimental results with https://doi.org/10.1101/2025.02.14.634875
☆ Towards a Generalizable AI for Materials Discovery: Validation through Immersion Coolant Screening
Artificial intelligence (AI) has emerged as a powerful accelerator of materials discovery, yet most existing models remain problem-specific, requiring additional data collection and retraining for each new property. Here we introduce and validate GATE (Geometrically Aligned Transfer Encoder) -- a generalizable AI framework that jointly learns 34 physicochemical properties spanning thermal, electrical, mechanical, and optical domains. By aligning these properties within a shared geometric space, GATE captures cross-property correlations that reduce disjoint-property bias -- a key factor causing false negatives in multi-criteria screening. To demonstrate its generalizability, GATE -- without any problem-specific reconfiguration -- was directly applied to the discovery of immersion cooling fluids for data centers, a stringent real-world challenge defined by the Open Compute Project (OCP). Screening billions of candidates, GATE identified 92,861 molecules as promising for practical deployment. Four were experimentally or literarily validated, showing strong agreement with wet-lab measurements and performance comparable to or exceeding a commercial coolant. These results establish GATE as a ready-to-use, generalizable AI platform readily applicable across diverse materials discovery tasks.
comment: 16 pages, 4 figures
☆ ZeroFlood: A Geospatial Foundation Model for Data-Efficient Flood Susceptibility Mapping
Flood susceptibility mapping (FSM) is vital for disaster prevention but remains challenging in data-scarce regions where hydrodynamic models require dense geophysical inputs. This work introduces ZeroFlood, a geospatial foundation model framework for data-efficient FSM. The approach fine-tunes Geospatial Foundation Models (GFMs) with Thinking-in-Modality (TiM) reasoning, enabling flood prediction from basic Earth observation data such as Sentinel-1 or Sentinel-2 imagery. Using paired EO and simulated flood maps from data-rich regions, ZeroFlood bridges data availability gaps through cross-modal representation learning. Experiments with TerraMind and Prithvi GFMs show that TiM enhances model robustness, with the TerraMind-Large configuration achieving an F1 score of 67.21. The results demonstrate the feasibility of foundation-model-based FSM as a scalable and data-efficient solution for flood risk management.
comment: Preprint submitted to EUSAR 2026 (under review)
☆ Robust Non-negative Proximal Gradient Algorithm for Inverse Problems
Proximal gradient algorithms (PGA), while foundational for inverse problems like image reconstruction, often yield unstable convergence and suboptimal solutions by violating the critical non-negativity constraint. We identify the gradient descent step as the root cause of this issue, which introduces negative values and induces high sensitivity to hyperparameters. To overcome these limitations, we propose a novel multiplicative update proximal gradient algorithm (SSO-PGA) with convergence guarantees, which is designed for robustness in non-negative inverse problems. Our key innovation lies in superseding the gradient descent step with a learnable sigmoid-based operator, which inherently enforces non-negativity and boundedness by transforming traditional subtractive updates into multiplicative ones. This design, augmented by a sliding parameter for enhanced stability and convergence, not only improves robustness but also boosts expressive capacity and noise immunity. We further formulate a degradation model for multi-modal restoration and derive its SSO-PGA-based optimization algorithm, which is then unfolded into a deep network to marry the interpretability of optimization with the power of deep learning. Extensive numerical and real-world experiments demonstrate that our method significantly surpasses traditional PGA and other state-of-the-art algorithms, ensuring superior performance and stability.
☆ Macroeconomic Forecasting for the G7 countries under Uncertainty Shocks
Accurate macroeconomic forecasting has become harder amid geopolitical disruptions, policy reversals, and volatile financial markets. Conventional vector autoregressions (VARs) overfit in high dimensional settings, while threshold VARs struggle with time varying interdependencies and complex parameter structures. We address these limitations by extending the Sims Zha Bayesian VAR with exogenous variables (SZBVARx) to incorporate domain-informed shrinkage and four newspaper based uncertainty shocks such as economic policy uncertainty, geopolitical risk, US equity market volatility, and US monetary policy uncertainty. The framework improves structural interpretability, mitigates dimensionality, and imposes empirically guided regularization. Using G7 data, we study spillovers from uncertainty shocks to five core variables (unemployment, real broad effective exchange rates, short term rates, oil prices, and CPI inflation), combining wavelet coherence (time frequency dynamics) with nonlinear local projections (state dependent impulse responses). Out-of-sample results at 12 and 24 month horizons show that SZBVARx outperforms 14 benchmarks, including classical VARs and leading machine learning models, as confirmed by Murphy difference diagrams, multivariate Diebold Mariano tests, and Giacomini White predictability tests. Credible Bayesian prediction intervals deliver robust uncertainty quantification for scenario analysis and risk management. The proposed SZBVARx offers G7 policymakers a transparent, well calibrated tool for modern macroeconomic forecasting under pervasive uncertainty.
☆ Block-Diagonal LoRA for Eliminating Communication Overhead in Tensor Parallel LoRA Serving
When serving a single base LLM with several different LoRA adapters simultaneously, the adapters cannot simply be merged with the base model's weights as the adapter swapping would create overhead and requests using different adapters could not be batched. Rather, the LoRA computations have to be separated from the base LLM computations, and in a multi-device setup the LoRA adapters can be sharded in a way that is well aligned with the base model's tensor parallel execution, as proposed in S-LoRA. However, the S-LoRA sharding strategy encounters some communication overhead, which may be small in theory, but can be large in practice. In this paper, we propose to constrain certain LoRA factors to be block-diagonal, which allows for an alternative way of sharding LoRA adapters that does not require any additional communication for the LoRA computations. We demonstrate in extensive experiments that our block-diagonal LoRA approach is similarly parameter efficient as standard LoRA (i.e., for a similar number of parameters it achieves similar downstream performance) and that it leads to significant end-to-end speed-up over S-LoRA. For example, when serving on eight A100 GPUs, we observe up to 1.79x (1.23x) end-to-end speed-up with 0.87x (1.74x) the number of adapter parameters for Llama-3.1-70B, and up to 1.63x (1.3x) end-to-end speed-up with 0.86x (1.73x) the number of adapter parameters for Llama-3.1-8B.
☆ The First Star-by-star $N$-body/Hydrodynamics Simulation of Our Galaxy Coupling with a Surrogate Model SC25
A major goal of computational astrophysics is to simulate the Milky Way Galaxy with sufficient resolution down to individual stars. However, the scaling fails due to some small-scale, short-timescale phenomena, such as supernova explosions. We have developed a novel integration scheme of $N$-body/hydrodynamics simulations working with machine learning. This approach bypasses the short timesteps caused by supernova explosions using a surrogate model, thereby improving scalability. With this method, we reached 300 billion particles using 148,900 nodes, equivalent to 7,147,200 CPU cores, breaking through the billion-particle barrier currently faced by state-of-the-art simulations. This resolution allows us to perform the first star-by-star galaxy simulation, which resolves individual stars in the Milky Way Galaxy. The performance scales over $10^4$ CPU cores, an upper limit in the current state-of-the-art simulations using both A64FX and X86-64 processors and NVIDIA CUDA GPUs.
comment: 12 pages, 7 figures, 7 tables, IEEE/ACM Supercomputing Conference (SC25)
☆ GRAD: Real-Time Gated Recurrent Anomaly Detection in Autonomous Vehicle Sensors Using Reinforced EMA and Multi-Stage Sliding Window Techniques
This paper introduces GRAD, a real-time anomaly detection method for autonomous vehicle sensors that integrates statistical analysis and deep learning to ensure the reliability of sensor data. The proposed approach combines the Reinforced Exponential Moving Average (REMA), which adapts smoothing factors and thresholding for outlier detection, with the Multi-Stage Sliding Window (MS-SW) technique for capturing both short- and long-term patterns. These features are processed using a lightweight Gated Recurrent Unit (GRU) model, which detects and classifies anomalies based on bias types, while a recovery module restores damaged sensor data to ensure continuous system operation. GRAD has a lightweight architecture consisting of two layers of GRU with a limited number of neurons that make it appropriate for real-time applications while maintaining high detection accuracy. The GRAD framework achieved remarkable performance in anomaly detection and classification. The model demonstrated an overall F1-score of 97.6% for abnormal data and 99.4% for normal data, signifying its high accuracy in distinguishing between normal and anomalous sensor data. Regarding the anomaly classification, GRAD successfully categorized different anomaly types with high precision, enabling the recovery module to accurately restore damaged sensor data. Relative to analogous studies, GRAD surpasses current models by attaining a balance between elevated detection accuracy and diminished computational expense. These results demonstrate GRAD's potential as a reliable and efficient solution for real-time anomaly detection in autonomous vehicle systems, guaranteeing safe vehicle operation with minimal computational overhead.
☆ Multitask Multimodal Self-Supervised Learning for Medical Images
This thesis works to address a pivotal challenge in medical image analysis: the reliance on extensive labeled datasets, which are often limited due to the need for expert annotation and constrained by privacy and legal issues. By focusing on the development of self-supervised learning techniques and domain adaptation methods, this research aims to circumvent these limitations, presenting a novel approach to enhance the utility and efficacy of deep learning in medical imaging. Central to this thesis is the development of the Medformer, an innovative neural network architecture designed for multitask learning and deep domain adaptation. This model is adept at pre-training on diverse medical image datasets, handling varying sizes and modalities, and is equipped with a dynamic input-output adaptation mechanism. This enables efficient processing and integration of a wide range of medical image types, from 2D X-rays to complex 3D MRIs, thus mitigating the dependency on large labeled datasets. Further, the thesis explores the current state of self-supervised learning in medical imaging. It introduces novel pretext tasks that are capable of extracting meaningful information from unlabeled data, significantly advancing the model's interpretative abilities. This approach is validated through rigorous experimentation, including the use of the MedMNIST dataset, demonstrating the model's proficiency in learning generalized features applicable to various downstream tasks. In summary, this thesis contributes to the advancement of medical image analysis by offering a scalable, adaptable framework that reduces reliance on labeled data. It paves the way for more accurate, efficient diagnostic tools in healthcare, signifying a major step forward in the application of deep learning in medical imaging.
☆ Arabic Little STT: Arabic Children Speech Recognition Dataset
The performance of Artificial Intelligence (AI) systems fundamentally depends on high-quality training data. However, low-resource languages like Arabic suffer from severe data scarcity. Moreover, the absence of child-specific speech corpora is an essential gap that poses significant challenges. To address this gap, we present our created dataset, Arabic Little STT, a dataset of Levantine Arabic child speech recorded in classrooms, containing 355 utterances from 288 children (ages 6 - 13). We further conduct a systematic assessment of Whisper, a state-of-the-art automatic speech recognition (ASR) model, on this dataset and compare its performance with adult Arabic benchmarks. Our evaluation across eight Whisper variants reveals that even the best-performing model (Large_v3) struggles significantly, achieving a 0.66 word error rate (WER) on child speech, starkly contrasting with its sub 0.20 WER on adult datasets. These results align with other research on English speech. Results highlight the critical need for dedicated child speech benchmarks and inclusive training data in ASR development. Emphasizing that such data must be governed by strict ethical and privacy frameworks to protect sensitive child information. We hope that this study provides an initial step for future work on equitable speech technologies for Arabic-speaking children. We hope that our publicly available dataset enrich the children's demographic representation in ASR datasets.
☆ Predicting symbolic ODEs from multiple trajectories NeurIPS 2025
We introduce MIO, a transformer-based model for inferring symbolic ordinary differential equations (ODEs) from multiple observed trajectories of a dynamical system. By combining multiple instance learning with transformer-based symbolic regression, the model effectively leverages repeated observations of the same system to learn more generalizable representations of the underlying dynamics. We investigate different instance aggregation strategies and show that even simple mean aggregation can substantially boost performance. MIO is evaluated on systems ranging from one to four dimensions and under varying noise levels, consistently outperforming existing baselines.
comment: Published at: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Machine Learning and the Physical Sciences
☆ Learning from Frustration: Torsor CNNs on Graphs
Most equivariant neural networks rely on a single global symmetry, limiting their use in domains where symmetries are instead local. We introduce Torsor CNNs, a framework for learning on graphs with local symmetries encoded as edge potentials-- group-valued transformations between neighboring coordinate frames. We establish that this geometric construction is fundamentally equivalent to the classical group synchronization problem, yielding: (1) a Torsor Convolutional Layer that is provably equivariant to local changes in coordinate frames, and (2) the frustration loss--a standalone geometric regularizer that encourages locally equivariant representations when added to any NN's training objective. The Torsor CNN framework unifies and generalizes several architectures--including classical CNNs and Gauge CNNs on manifolds-- by operating on arbitrary graphs without requiring a global coordinate system or smooth manifold structure. We establish the mathematical foundations of this framework and demonstrate its applicability to multi-view 3D recognition, where relative camera poses naturally define the required edge potentials.
comment: 19 pages (main text + appendices), 1 figure
☆ A Novel Framework for Multi-Modal Protein Representation Learning
Accurate protein function prediction requires integrating heterogeneous intrinsic signals (e.g., sequence and structure) with noisy extrinsic contexts (e.g., protein-protein interactions and GO term annotations). However, two key challenges hinder effective fusion: (i) cross-modal distributional mismatch among embeddings produced by pre-trained intrinsic encoders, and (ii) noisy relational graphs of extrinsic data that degrade GNN-based information aggregation. We propose Diffused and Aligned Multi-modal Protein Embedding (DAMPE), a unified framework that addresses these through two core mechanisms. First, we propose Optimal Transport (OT)-based representation alignment that establishes correspondence between intrinsic embedding spaces of different modalities, effectively mitigating cross-modal heterogeneity. Second, we develop a Conditional Graph Generation (CGG)-based information fusion method, where a condition encoder fuses the aligned intrinsic embeddings to provide informative cues for graph reconstruction. Meanwhile, our theoretical analysis implies that the CGG objective drives this condition encoder to absorb graph-aware knowledge into its produced protein representations. Empirically, DAMPE outperforms or matches state-of-the-art methods such as DPFunc on standard GO benchmarks, achieving AUPR gains of 0.002-0.013 pp and Fmax gains 0.004-0.007 pp. Ablation studies further show that OT-based alignment contributes 0.043-0.064 pp AUPR, while CGG-based fusion adds 0.005-0.111 pp Fmax. Overall, DAMPE offers a scalable and theoretically grounded approach for robust multi-modal protein representation learning, substantially enhancing protein function prediction.
comment: 35 pages, 5 figures, 4 tables
☆ PAHQ: Accelerating Automated Circuit Discovery through Mixed-Precision Inference Optimization
Circuit discovery, which involves identifying sparse and task-relevant subnetworks in pre-trained language models, is a cornerstone of mechanistic interpretability. Automated Circuit Discovery (ACDC) has emerged as a pivotal methodology in circuit discovery, but its application to large language models is severely limited by computational inefficiency and prohibitively high memory requirements. Although several accelerated approaches have been proposed, they primarily rely on linear approximations to ACDC, which significantly compromises analytical faithfulness. Our proposed method for accelerating automated circuit discovery, Per Attention Head Quantization (PAHQ), takes a fundamentally different approach by optimizing the efficiency of each individual patching operation. PAHQ leverages a fundamental alignment between activation patching and mixed-precision quantization (MPQ): interpretability analysis through patching essentially performs targeted ablation studies. Therefore, we can maintain high precision exclusively for investigated components while safely reducing precision elsewhere in the network. PAHQ-accelerated ACDC reduces runtime by up to 80\% and memory consumption by up to 30\% compared to unaccelerated ACDC while maintaining faithfulness. Importantly, our method readily integrates with existing edge-based circuit discovery techniques by modifying the attention computation mechanism. This training-free approach provides a practical and novel pathway for accelerating mechanistic interpretability methods. Our code is available at https://github.com/626619403/PAHQ.
☆ Toward Interpretable Evaluation Measures for Time Series Segmentation
Time series segmentation is a fundamental task in analyzing temporal data across various domains, from human activity recognition to energy monitoring. While numerous state-of-the-art methods have been developed to tackle this problem, the evaluation of their performance remains critically limited. Existing measures predominantly focus on change point accuracy or rely on point-based measures such as Adjusted Rand Index (ARI), which fail to capture the quality of the detected segments, ignore the nature of errors, and offer limited interpretability. In this paper, we address these shortcomings by introducing two novel evaluation measures: WARI (Weighted Adjusted Rand Index), that accounts for the position of segmentation errors, and SMS (State Matching Score), a fine-grained measure that identifies and scores four fundamental types of segmentation errors while allowing error-specific weighting. We empirically validate WARI and SMS on synthetic and real-world benchmarks, showing that they not only provide a more accurate assessment of segmentation quality but also uncover insights, such as error provenance and type, that are inaccessible with traditional measures.
☆ GCAO: Group-driven Clustering via Gravitational Attraction and Optimization
Traditional clustering algorithms often struggle with high-dimensional and non-uniformly distributed data, where low-density boundary samples are easily disturbed by neighboring clusters, leading to unstable and distorted clustering results. To address this issue, we propose a Group-driven Clustering via Gravitational Attraction and Optimization (GCAO) algorithm. GCAO introduces a group-level optimization mechanism that aggregates low-density boundary points into collaboratively moving groups, replacing the traditional point-based contraction process. By combining local density estimation with neighborhood topology, GCAO constructs effective gravitational interactions between groups and their surroundings, enhancing boundary clarity and structural consistency. Using groups as basic motion units, a gravitational contraction strategy ensures globally stable and directionally consistent convergence. Experiments on multiple high-dimensional datasets demonstrate that GCAO outperforms 11 representative clustering methods, achieving average improvements of 37.13%, 52.08%, 44.98%, and 38.81% in NMI, ARI, Homogeneity, and ACC, respectively, while maintaining competitive efficiency and scalability. These results highlight GCAO's superiority in preserving cluster integrity, enhancing boundary separability, and ensuring robust performance on complex data distributions.
☆ Deep Active Inference with Diffusion Policy and Multiple Timescale World Model for Real-World Exploration and Navigation
Autonomous robotic navigation in real-world environments requires exploration to acquire environmental information as well as goal-directed navigation in order to reach specified targets. Active inference (AIF) based on the free-energy principle provides a unified framework for these behaviors by minimizing the expected free energy (EFE), thereby combining epistemic and extrinsic values. To realize this practically, we propose a deep AIF framework that integrates a diffusion policy as the policy model and a multiple timescale recurrent state-space model (MTRSSM) as the world model. The diffusion policy generates diverse candidate actions while the MTRSSM predicts their long-horizon consequences through latent imagination, enabling action selection that minimizes EFE. Real-world navigation experiments demonstrated that our framework achieved higher success rates and fewer collisions compared with the baselines, particularly in exploration-demanding scenarios. These results highlight how AIF based on EFE minimization can unify exploration and goal-directed navigation in real-world robotic settings.
comment: Preprint version
☆ Provable test-time adaptivity and distributional robustness of in-context learning
We study in-context learning problems where a Transformer is pretrained on tasks drawn from a mixture distribution $\pi=\sum_{\alpha\in\mathcal{A}} \lambda_{\alpha} \pi_{\alpha}$, called the pretraining prior, in which each mixture component $\pi_{\alpha}$ is a distribution on tasks of a specific difficulty level indexed by $\alpha$. Our goal is to understand the performance of the pretrained Transformer when evaluated on a different test distribution $\mu$, consisting of tasks of fixed difficulty $\beta\in\mathcal{A}$, and with potential distribution shift relative to $\pi_\beta$, subject to the chi-squared divergence $\chi^2(\mu,\pi_{\beta})$ being at most $\kappa$. In particular, we consider nonparametric regression problems with random smoothness, and multi-index models with random smoothness as well as random effective dimension. We prove that a large Transformer pretrained on sufficient data achieves the optimal rate of convergence corresponding to the difficulty level $\beta$, uniformly over test distributions $\mu$ in the chi-squared divergence ball. Thus, the pretrained Transformer is able to achieve faster rates of convergence on easier tasks and is robust to distribution shift at test time. Finally, we prove that even if an estimator had access to the test distribution $\mu$, the convergence rate of its expected risk over $\mu$ could not be faster than that of our pretrained Transformers, thereby providing a more appropriate optimality guarantee than minimax lower bounds.
comment: 44 pages
☆ Progressive Growing of Patch Size: Curriculum Learning for Accelerated and Improved Medical Image Segmentation MICCAI2024
In this work, we introduce Progressive Growing of Patch Size, an automatic curriculum learning approach for 3D medical image segmentation. Our approach progressively increases the patch size during model training, resulting in an improved class balance for smaller patch sizes and accelerated convergence of the training process. We evaluate our curriculum approach in two settings: a resource-efficient mode and a performance mode, both regarding Dice score performance and computational costs across 15 diverse and popular 3D medical image segmentation tasks. The resource-efficient mode matches the Dice score performance of the conventional constant patch size sampling baseline with a notable reduction in training time to only 44%. The performance mode improves upon constant patch size segmentation results, achieving a statistically significant relative mean performance gain of 1.28% in Dice Score. Remarkably, across all 15 tasks, our proposed performance mode manages to surpass the constant patch size baseline in Dice Score performance, while simultaneously reducing training time to only 89%. The benefits are particularly pronounced for highly imbalanced tasks such as lesion segmentation tasks. Rigorous experiments demonstrate that our performance mode not only improves mean segmentation performance but also reduces performance variance, yielding more trustworthy model comparison. Furthermore, our findings reveal that the proposed curriculum sampling is not tied to a specific architecture but represents a broadly applicable strategy that consistently boosts performance across diverse segmentation models, including UNet, UNETR, and SwinUNETR. In summary, we show that this simple yet elegant transformation on input data substantially improves both Dice Score performance and training runtime, while being compatible across diverse segmentation backbones.
comment: Journal Extension of "Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks" (MICCAI2024) submitted to MedIA
☆ Robust Iterative Learning Hidden Quantum Markov Models
Hidden Quantum Markov Models (HQMMs) extend classical Hidden Markov Models to the quantum domain, offering a powerful probabilistic framework for modeling sequential data with quantum coherence. However, existing HQMM learning algorithms are highly sensitive to data corruption and lack mechanisms to ensure robustness under adversarial perturbations. In this work, we introduce the Adversarially Corrupted HQMM (AC-HQMM), which formalizes robustness analysis by allowing a controlled fraction of observation sequences to be adversarially corrupted. To learn AC-HQMMs, we propose the Robust Iterative Learning Algorithm (RILA), a derivative-free method that integrates a Remove Corrupted Rows by Entropy Filtering (RCR-EF) module with an iterative stochastic resampling procedure for physically valid Kraus operator updates. RILA incorporates L1-penalized likelihood objectives to enhance stability, resist overfitting, and remain effective under non-differentiable conditions. Across multiple HQMM and HMM benchmarks, RILA demonstrates superior convergence stability, corruption resilience, and preservation of physical validity compared to existing algorithms, establishing a principled and efficient approach for robust quantum sequential learning.
comment: Quantum Computing, Bayesian Inference, Spatiotemporal Analysis, Robust Learning
☆ Grassmanian Interpolation of Low-Pass Graph Filters: Theory and Applications
Low-pass graph filters are fundamental for signal processing on graphs and other non-Euclidean domains. However, the computation of such filters for parametric graph families can be prohibitively expensive as computation of the corresponding low-frequency subspaces, requires the repeated solution of an eigenvalue problem. We suggest a novel algorithm of low-pass graph filter interpolation based on Riemannian interpolation in normal coordinates on the Grassmann manifold. We derive an error bound estimate for the subspace interpolation and suggest two possible applications for induced parametric graph families. First, we argue that the temporal evolution of the node features may be translated to the evolving graph topology via a similarity correction to adjust the homophily degree of the network. Second, we suggest a dot product graph family induced by a given static graph which allows to infer improved message passing scheme for node classification facilitated by the filter interpolation.
comment: 13 pages
☆ Human-Like Goalkeeping in a Realistic Football Simulation: a Sample-Efficient Reinforcement Learning Approach
While several high profile video games have served as testbeds for Deep Reinforcement Learning (DRL), this technique has rarely been employed by the game industry for crafting authentic AI behaviors. Previous research focuses on training super-human agents with large models, which is impractical for game studios with limited resources aiming for human-like agents. This paper proposes a sample-efficient DRL method tailored for training and fine-tuning agents in industrial settings such as the video game industry. Our method improves sample efficiency of value-based DRL by leveraging pre-collected data and increasing network plasticity. We evaluate our method training a goalkeeper agent in EA SPORTS FC 25, one of the best-selling football simulations today. Our agent outperforms the game's built-in AI by 10% in ball saving rate. Ablation studies show that our method trains agents 50% faster compared to standard DRL methods. Finally, qualitative evaluation from domain experts indicates that our approach creates more human-like gameplay compared to hand-crafted agents. As a testimony of the impact of the approach, the method is intended to replace the hand-crafted counterpart in next iterations of the series.
☆ Accelerating Eigenvalue Dataset Generation via Chebyshev Subspace Filter
Eigenvalue problems are among the most important topics in many scientific disciplines. With the recent surge and development of machine learning, neural eigenvalue methods have attracted significant attention as a forward pass of inference requires only a tiny fraction of the computation time compared to traditional solvers. However, a key limitation is the requirement for large amounts of labeled data in training, including operators and their eigenvalues. To tackle this limitation, we propose a novel method, named Sorting Chebyshev Subspace Filter (SCSF), which significantly accelerates eigenvalue data generation by leveraging similarities between operators -- a factor overlooked by existing methods. Specifically, SCSF employs truncated fast Fourier transform sorting to group operators with similar eigenvalue distributions and constructs a Chebyshev subspace filter that leverages eigenpairs from previously solved problems to assist in solving subsequent ones, reducing redundant computations. To the best of our knowledge, SCSF is the first method to accelerate eigenvalue data generation. Experimental results show that SCSF achieves up to a $3.5\times$ speedup compared to various numerical solvers.
☆ Increasing LLM Coding Capabilities through Diverse Synthetic Coding Tasks NeurIPS 2025
Large language models (LLMs) have shown impressive promise in code generation, yet their progress remains limited by the shortage of large-scale datasets that are both diverse and well-aligned with human reasoning. Most existing resources pair problems with solutions, but omit the intermediate thought process that guides coding. To close this gap, we present a scalable synthetic data generation pipeline that produces nearly 800k instruction-reasoning-code-test quadruplets. Each sample combines a task, a step-by-step reasoning trace, a working solution, and executable tests, enabling models to learn not just the what but also the how of problem solving. Our pipeline combines four key components: curated contest problems, web-mined content filtered by relevance classifiers, data expansion guided by reasoning patterns, and multi-stage execution-based validation. A genetic mutation algorithm further increases task diversity while maintaining consistency between reasoning traces and code implementations. Our key finding is that fine-tuning LLMs on this dataset yields consistent improvements on coding benchmarks. Beyond raw accuracy, reasoning-aware data can substitute for model scaling, generalize across architectures, and outperform leading open-source alternatives under identical sample budgets. Our work establishes reasoning-centered synthetic data generation as an efficient approach for advancing coding capabilities in LLMs. We publish our dataset and generation pipeline to facilitate further research.
comment: Presented at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: The 4th Deep Learning for Code Workshop (DL4C)
☆ Rate-optimal Design for Anytime Best Arm Identification
We consider the best arm identification problem, where the goal is to identify the arm with the highest mean reward from a set of $K$ arms under a limited sampling budget. This problem models many practical scenarios such as A/B testing. We consider a class of algorithms for this problem, which is provably minimax optimal up to a constant factor. This idea is a generalization of existing works in fixed-budget best arm identification, which are limited to a particular choice of risk measures. Based on the framework, we propose Almost Tracking, a closed-form algorithm that has a provable guarantee on the popular risk measure $H_1$. Unlike existing algorithms, Almost Tracking does not require the total budget in advance nor does it need to discard a significant part of samples, which gives a practical advantage. Through experiments on synthetic and real-world datasets, we show that our algorithm outperforms existing anytime algorithms as well as fixed-budget algorithms.
☆ PTPP-Aware Adaptation Scaling Laws: Predicting Domain-Adaptation Performance at Unseen Pre-Training Budgets
Continual pre-training (CPT) for domain adaptation must balance target-domain gains with stability on the base domain. Existing CPT scaling laws typically assume a fixed pre-training budget, which limits their ability to forecast adaptation outcomes for models trained at different tokens-per-parameter (PTPP). We present \emph{PTPP-aware} adaptation scaling laws that make the pre-training budget an explicit variable, enabling accurate \emph{prediction} of adaptation loss at unseen \ptpp. On a multilingual setup (English/Arabic $\rightarrow$ French), PTPP-aware formulations trained on early stages (\ptpp{}=\{15,31\}) predict target loss at \ptpp{}=279 and outperform a PTPP-agnostic \dcpt{} transfer baseline on metrics (Huber-on-log, MAE$_\mathrm{rel}$, calibration slope); full diagnostics (RMSE, MAPE) are in the appendix. Beyond forecasting, we show a practical use case: planning replay ratios and adaptation token budgets that satisfy target and forgetting constraints under compute limits.
☆ The Benchmarking Epistemology: Construct Validity for Evaluating Machine Learning Models
Predictive benchmarking, the evaluation of machine learning models based on predictive performance and competitive ranking, is a central epistemic practice in machine learning research and an increasingly prominent method for scientific inquiry. Yet, benchmark scores alone provide at best measurements of model performance relative to an evaluation dataset and a concrete learning problem. Drawing substantial scientific inferences from the results, say about theoretical tasks like image classification, requires additional assumptions about the theoretical structure of the learning problems, evaluation functions, and data distributions. We make these assumptions explicit by developing conditions of construct validity inspired by psychological measurement theory. We examine these assumptions in practice through three case studies, each exemplifying a typical intended inference: measuring engineering progress in computer vision with ImageNet; evaluating policy-relevant weather predictions with WeatherBench; and examining limitations of the predictability of life events with the Fragile Families Challenge. Our framework clarifies the conditions under which benchmark scores can support diverse scientific claims, bringing predictive benchmarking into perspective as an epistemological practice and a key site of conceptual and theoretical reasoning in machine learning.
☆ DREaM: Drug-Drug Relation Extraction via Transfer Learning Method
Relation extraction between drugs plays a crucial role in identifying drug drug interactions and predicting side effects. The advancement of machine learning methods in relation extraction, along with the development of large medical text databases, has enabled the low cost extraction of such relations compared to other approaches that typically require expert knowledge. However, to the best of our knowledge, there are limited datasets specifically designed for drug drug relation extraction currently available. Therefore, employing transfer learning becomes necessary to apply machine learning methods in this domain. In this study, we propose DREAM, a method that first employs a trained relation extraction model to discover relations between entities and then applies this model to a corpus of medical texts to construct an ontology of drug relationships. The extracted relations are subsequently validated using a large language model. Quantitative results indicate that the LLM agreed with 71 of the relations extracted from a subset of PubMed abstracts. Furthermore, our qualitative analysis indicates that this approach can uncover ambiguities in the medical domain, highlighting the challenges inherent in relation extraction in this field.
☆ Physics-informed diffusion models for extrapolating crystal structures beyond known motifs
Discovering materials with previously unreported crystal frameworks is key to achieving transformative functionality. Generative artificial intelligence offers a scalable means to propose candidate crystal structures, however existing approaches mainly reproduce decorated variants of established motifs rather than uncover new configurations. Here we develop a physics-informed diffusion method, supported by chemically grounded validation protocol, which embeds descriptors of compactness and local environment diversity to balance physical plausibility with structural novelty. Conditioning on these metrics improves generative performance across architectures, increasing the fraction of structures outside 100 most common prototypes up to 67%. When crystal structure prediction (CSP) is seeded with generative structures, most candidates (97%) are reconstructed by CSP, yielding 145 (66%) low-energy frameworks not matching any known prototypes. These results show that while generative models are not substitutes for CSP, their chemically informed, diversity-guided outputs can enhance CSP efficiency, establishing a practical generative-CSP synergy for discovery-oriented exploration of chemical space.
☆ TARC: Time-Adaptive Robotic Control
Fixed-frequency control in robotics imposes a trade-off between the efficiency of low-frequency control and the robustness of high-frequency control, a limitation not seen in adaptable biological systems. We address this with a reinforcement learning approach in which policies jointly select control actions and their application durations, enabling robots to autonomously modulate their control frequency in response to situational demands. We validate our method with zero-shot sim-to-real experiments on two distinct hardware platforms: a high-speed RC car and a quadrupedal robot. Our method matches or outperforms fixed-frequency baselines in terms of rewards while significantly reducing the control frequency and exhibiting adaptive frequency control under real-world conditions.
☆ Benchmarking VQE Configurations: Architectures, Initializations, and Optimizers for Silicon Ground State Energy
Quantum computing presents a promising path toward precise quantum chemical simulations, particularly for systems that challenge classical methods. This work investigates the performance of the Variational Quantum Eigensolver (VQE) in estimating the ground-state energy of the silicon atom, a relatively heavy element that poses significant computational complexity. Within a hybrid quantum-classical optimization framework, we implement VQE using a range of ansatz, including Double Excitation Gates, ParticleConservingU2, UCCSD, and k-UpCCGSD, combined with various optimizers such as gradient descent, SPSA, and ADAM. The main contribution of this work lies in a systematic methodological exploration of how these configuration choices interact to influence VQE performance, establishing a structured benchmark for selecting optimal settings in quantum chemical simulations. Key findings show that parameter initialization plays a decisive role in the algorithm's stability, and that the combination of a chemically inspired ansatz with adaptive optimization yields superior convergence and precision compared to conventional approaches.
☆ Enabling Vibration-Based Gesture Recognition on Everyday Furniture via Energy-Efficient FPGA Implementation of 1D Convolutional Networks
The growing demand for smart home interfaces has increased interest in non-intrusive sensing methods like vibration-based gesture recognition. While prior studies demonstrated feasibility, they often rely on complex preprocessing and large Neural Networks (NNs) requiring costly high-performance hardware, resulting in high energy usage and limited real-world deployability. This study proposes an energy-efficient solution deploying compact NNs on low-power Field-Programmable Gate Arrays (FPGAs) to enable real-time gesture recognition with competitive accuracy. We adopt a series of optimizations: (1) We replace complex spectral preprocessing with raw waveform input, eliminating complex on-board preprocessing while reducing input size by 21x without sacrificing accuracy. (2) We design two lightweight architectures (1D-CNN and 1D-SepCNN) tailored for embedded FPGAs, reducing parameters from 369 million to as few as 216 while maintaining comparable accuracy. (3) With integer-only quantization and automated RTL generation, we achieve seamless FPGA deployment. A ping-pong buffering mechanism in 1D-SepCNN further improves deployability under tight memory constraints. (4) We extend a hardware-aware search framework to support constraint-driven model configuration selection, considering accuracy, deployability, latency, and energy consumption. Evaluated on two swipe-direction datasets with multiple users and ordinary tables, our approach achieves low-latency, energy-efficient inference on the AMD Spartan-7 XC7S25 FPGA. Under the PS data splitting setting, the selected 6-bit 1D-CNN reaches 0.970 average accuracy across users with 9.22 ms latency. The chosen 8-bit 1D-SepCNN further reduces latency to 6.83 ms (over 53x CPU speedup) with slightly lower accuracy (0.949). Both consume under 1.2 mJ per inference, demonstrating suitability for long-term edge operation.
comment: 9 pages, 5 figures, 5 tables, accepted by 2025 IEEE Annual Congress on Artificial Intelligence of Things (IEEE AIoT)
☆ AG-Fusion: adaptive gated multimodal fusion for 3d object detection in complex scenes
Multimodal camera-LiDAR fusion technology has found extensive application in 3D object detection, demonstrating encouraging performance. However, existing methods exhibit significant performance degradation in challenging scenarios characterized by sensor degradation or environmental disturbances. We propose a novel Adaptive Gated Fusion (AG-Fusion) approach that selectively integrates cross-modal knowledge by identifying reliable patterns for robust detection in complex scenes. Specifically, we first project features from each modality into a unified BEV space and enhance them using a window-based attention mechanism. Subsequently, an adaptive gated fusion module based on cross-modal attention is designed to integrate these features into reliable BEV representations robust to challenging environments. Furthermore, we construct a new dataset named Excavator3D (E3D) focusing on challenging excavator operation scenarios to benchmark performance in complex conditions. Our method not only achieves competitive performance on the standard KITTI dataset with 93.92% accuracy, but also significantly outperforms the baseline by 24.88% on the challenging E3D dataset, demonstrating superior robustness to unreliable modal information in complex industrial scenes.
☆ Complexity Dependent Error Rates for Physics-informed Statistical Learning via the Small-ball Method
Physics-informed statistical learning (PISL) integrates empirical data with physical knowledge to enhance the statistical performance of estimators. While PISL methods are widely used in practice, a comprehensive theoretical understanding of how informed regularization affects statistical properties is still missing. Specifically, two fundamental questions have yet to be fully addressed: (1) what is the trade-off between considering soft penalties versus hard constraints, and (2) what is the statistical gain of incorporating physical knowledge compared to purely data-driven empirical error minimisation. In this paper, we address these questions for PISL in convex classes of functions under physical knowledge expressed as linear equations by developing appropriate complexity dependent error rates based on the small-ball method. We show that, under suitable assumptions, (1) the error rates of physics-informed estimators are comparable to those of hard constrained empirical error minimisers, differing only by constant terms, and that (2) informed penalization can effectively reduce model complexity, akin to dimensionality reduction, thereby improving learning performance. This work establishes a theoretical framework for evaluating the statistical properties of physics-informed estimators in convex classes of functions, contributing to closing the gap between statistical theory and practical PISL, with potential applications to cases not yet explored in the literature.
☆ Adapting Interleaved Encoders with PPO for Language-Guided Reinforcement Learning in BabyAI
Deep reinforcement learning agents often struggle when tasks require understanding both vision and language. Conventional architectures typically isolate perception (for example, CNN-based visual encoders) from decision-making (policy networks). This separation can be inefficient, since the policy's failures do not directly help the perception module learn what is important. To address this, we implement the Perception-Decision Interleaving Transformer (PDiT) architecture introduced by Mao et al. (2023), a model that alternates between perception and decision layers within a single transformer. This interleaving allows feedback from decision-making to refine perceptual features dynamically. In addition, we integrate a contrastive loss inspired by CLIP to align textual mission embeddings with visual scene features. We evaluate the PDiT encoders on the BabyAI GoToLocal environment and find that the approach achieves more stable rewards and stronger alignment compared to a standard PPO baseline. The results suggest that interleaved transformer encoders are a promising direction for developing more integrated autonomous agents.
comment: Undergraduate research project, IIT Palakkad, 2025
☆ Rethinking GSPO: The Perplexity-Entropy Equivalence
We provide a new perspective on GSPO's length-normalized importance ratios by establishing their connection to information-theoretic quantities. We show that GSPO's sequence-level weight $s(\theta) = (\pi_\theta/\pi_{\theta_{\text{old}}})^{1/|y|}$ can be equivalently expressed as the inverse perplexity ratio $\text{PPL}_{\theta_{\text{old}}}/\text{PPL}_\theta$ and as the exponential cross-entropy change $\exp(\Delta H)$. While the perplexity-entropy relationship follows from standard definitions, this observation provides a useful lens for understanding GSPO: the algorithm weights policy gradient updates by perplexity ratios, offering an information-theoretic interpretation of the importance weights. This perspective helps explain GSPO's empirical properties, including log-domain variance reduction through geometric averaging and stability in training mixture-of-experts models. We validate the mathematical equivalences and variance predictions through controlled experiments on mathematical reasoning tasks.
comment: 10 pages, 2 figures
☆ Treble10: A high-quality dataset for far-field speech recognition, dereverberation, and enhancement
Accurate far-field speech datasets are critical for tasks such as automatic speech recognition (ASR), dereverberation, speech enhancement, and source separation. However, current datasets are limited by the trade-off between acoustic realism and scalability. Measured corpora provide faithful physics but are expensive, low-coverage, and rarely include paired clean and reverberant data. In contrast, most simulation-based datasets rely on simplified geometrical acoustics, thus failing to reproduce key physical phenomena like diffraction, scattering, and interference that govern sound propagation in complex environments. We introduce Treble10, a large-scale, physically accurate room-acoustic dataset. Treble10 contains over 3000 broadband room impulse responses (RIRs) simulated in 10 fully furnished real-world rooms, using a hybrid simulation paradigm implemented in the Treble SDK that combines a wave-based and geometrical acoustics solver. The dataset provides six complementary subsets, spanning mono, 8th-order Ambisonics, and 6-channel device RIRs, as well as pre-convolved reverberant speech scenes paired with LibriSpeech utterances. All signals are simulated at 32 kHz, accurately modelling low-frequency wave effects and high-frequency reflections. Treble10 bridges the realism gap between measurement and simulation, enabling reproducible, physically grounded evaluation and large-scale data augmentation for far-field speech tasks. The dataset is openly available via the Hugging Face Hub, and is intended as both a benchmark and a template for next-generation simulation-driven audio research.
☆ A method for outlier detection based on cluster analysis and visual expert criteria
Outlier detection is an important problem occurring in a wide range of areas. Outliers are the outcome of fraudulent behaviour, mechanical faults, human error, or simply natural deviations. Many data mining applications perform outlier detection, often as a preliminary step in order to filter out outliers and build more representative models. In this paper, we propose an outlier detection method based on a clustering process. The aim behind the proposal outlined in this paper is to overcome the specificity of many existing outlier detection techniques that fail to take into account the inherent dispersion of domain objects. The outlier detection method is based on four criteria designed to represent how human beings (experts in each domain) visually identify outliers within a set of objects after analysing the clusters. This has an advantage over other clustering-based outlier detection techniques that are founded on a purely numerical analysis of clusters. Our proposal has been evaluated, with satisfactory results, on data (particularly time series) from two different domains: stabilometry, a branch of medicine studying balance-related functions in human beings and electroencephalography (EEG), a neurological exploration used to diagnose nervous system disorders. To validate the proposed method, we studied method outlier detection and efficiency in terms of runtime. The results of regression analyses confirm that our proposal is useful for detecting outlier data in different domains, with a false positive rate of less than 2% and a reliability greater than 99%.
☆ DeepSalt: Bridging Laboratory and Satellite Spectra through Domain Adaptation and Knowledge Distillation for Large-Scale Soil Salinity Estimation
Soil salinization poses a significant threat to both ecosystems and agriculture because it limits plants' ability to absorb water and, in doing so, reduces crop productivity. This phenomenon alters the soil's spectral properties, creating a measurable relationship between salinity and light reflectance that enables remote monitoring. While laboratory spectroscopy provides precise measurements, its reliance on in-situ sampling limits scalability to regional or global levels. Conversely, hyperspectral satellite imagery enables wide-area observation but lacks the fine-grained interpretability of laboratory instruments. To bridge this gap, we introduce DeepSalt, a deep-learning-based spectral transfer framework that leverages knowledge distillation and a novel Spectral Adaptation Unit to transfer high-resolution spectral insights from laboratory-based spectroscopy to satellite-based hyperspectral sensing. Our approach eliminates the need for extensive ground sampling while enabling accurate, large-scale salinity estimation, as demonstrated through comprehensive empirical benchmarks. DeepSalt achieves significant performance gains over methods without explicit domain adaptation, underscoring the impact of the proposed Spectral Adaptation Unit and the knowledge distillation strategy. The model also effectively generalized to unseen geographic regions, explaining a substantial portion of the salinity variance.
☆ Beyond Higher Rank: Token-wise Input-Output Projections for Efficient Low-Rank Adaptation NeurIPS 2025
Low-rank adaptation (LoRA) is a parameter-efficient fine-tuning (PEFT) method widely used in large language models (LLMs). LoRA essentially describes the projection of an input space into a low-dimensional output space, with the dimensionality determined by the LoRA rank. In standard LoRA, all input tokens share the same weights and undergo an identical input-output projection. This limits LoRA's ability to capture token-specific information due to the inherent semantic differences among tokens. To address this limitation, we propose Token-wise Projected Low-Rank Adaptation (TopLoRA), which dynamically adjusts LoRA weights according to the input token, thereby learning token-wise input-output projections in an end-to-end manner. Formally, the weights of TopLoRA can be expressed as $B\Sigma_X A$, where $A$ and $B$ are low-rank matrices (as in standard LoRA), and $\Sigma_X$ is a diagonal matrix generated from each input token $X$. Notably, TopLoRA does not increase the rank of LoRA weights but achieves more granular adaptation by learning token-wise LoRA weights (i.e., token-wise input-output projections). Extensive experiments across multiple models and datasets demonstrate that TopLoRA consistently outperforms LoRA and its variants. The code is available at https://github.com/Leopold1423/toplora-neurips25.
comment: Accepted by NeurIPS 2025
☆ Seeing Structural Failure Before it Happens: An Image-Based Physics-Informed Neural Network (PINN) for Spaghetti Bridge Load Prediction
Physics Informed Neural Networks (PINNs) are gaining attention for their ability to embed physical laws into deep learning models, which is particularly useful in structural engineering tasks with limited data. This paper aims to explore the use of PINNs to predict the weight of small scale spaghetti bridges, a task relevant to understanding load limits and potential failure modes in simplified structural models. Our proposed framework incorporates physics-based constraints to the prediction model for improved performance. In addition to standard PINNs, we introduce a novel architecture named Physics Informed Kolmogorov Arnold Network (PIKAN), which blends universal function approximation theory with physical insights. The structural parameters provided as input to the model are collected either manually or through computer vision methods. Our dataset includes 15 real bridges, augmented to 100 samples, and our best model achieves an $R^2$ score of 0.9603 and a mean absolute error (MAE) of 10.50 units. From applied perspective, we also provide a web based interface for parameter entry and prediction. These results show that PINNs can offer reliable estimates of structural weight, even with limited data, and may help inform early stage failure analysis in lightweight bridge designs. The complete data and code are available at https://github.com/OmerJauhar/PINNS-For-Spaghetti-Bridges.
comment: 12 pages, 17 figures. Preprint
☆ Neural Emulator Superiority: When Machine Learning for PDEs Surpasses its Training Data NeurIPS 2025
Neural operators or emulators for PDEs trained on data from numerical solvers are conventionally assumed to be limited by their training data's fidelity. We challenge this assumption by identifying "emulator superiority," where neural networks trained purely on low-fidelity solver data can achieve higher accuracy than those solvers when evaluated against a higher-fidelity reference. Our theoretical analysis reveals how the interplay between emulator inductive biases, training objectives, and numerical error characteristics enables superior performance during multi-step rollouts. We empirically validate this finding across different PDEs using standard neural architectures, demonstrating that emulators can implicitly learn dynamics that are more regularized or exhibit more favorable error accumulation properties than their training data, potentially surpassing training data limitations and mitigating numerical artifacts. This work prompts a re-evaluation of emulator benchmarking, suggesting neural emulators might achieve greater physical fidelity than their training source within specific operational regimes. Project Page: https://tum-pbs.github.io/emulator-superiority
comment: Accepted at NeurIPS 2025: https://neurips.cc/virtual/2025/poster/116770
♻ ☆ Constrained Entropic Unlearning: A Primal-Dual Framework for Large Language Models
Large Language Models (LLMs) deployed in real-world settings increasingly face the need to unlearn sensitive, outdated, or proprietary information. Existing unlearning methods typically formulate forgetting and retention as a regularized trade-off, combining both objectives into a single scalarized loss. This often leads to unstable optimization and degraded performance on retained data, especially under aggressive forgetting. We propose a new formulation of LLM unlearning as a constrained optimization problem: forgetting is enforced via a novel logit-margin flattening loss that explicitly drives the output distribution toward uniformity on a designated forget set, while retention is preserved through a hard constraint on a separate retain set. Compared to entropy-based objectives, our loss is softmax-free, numerically stable, and maintains non-vanishing gradients, enabling more efficient and robust optimization. We solve the constrained problem using a scalable primal-dual algorithm that exposes the trade-off between forgetting and retention through the dynamics of the dual variable, all without any extra computational overhead. Evaluations on the TOFU and MUSE benchmarks across diverse LLM architectures demonstrate that our approach consistently matches or exceeds state-of-the-art baselines, effectively removing targeted information while preserving downstream utility.
comment: The Thirty-Ninth Annual Conference on Neural Information Processing Systems
♻ ☆ UNDREAM: Bridging Differentiable Rendering and Photorealistic Simulation for End-to-end Adversarial Attacks
Deep learning models deployed in safety critical applications like autonomous driving use simulations to test their robustness against adversarial attacks in realistic conditions. However, these simulations are non-differentiable, forcing researchers to create attacks that do not integrate simulation environmental factors, reducing attack success. To address this limitation, we introduce UNDREAM, the first software framework that bridges the gap between photorealistic simulators and differentiable renderers to enable end-to-end optimization of adversarial perturbations on any 3D objects. UNDREAM enables manipulation of the environment by offering complete control over weather, lighting, backgrounds, camera angles, trajectories, and realistic human and object movements, thereby allowing the creation of diverse scenes. We showcase a wide array of distinct physically plausible adversarial objects that UNDREAM enables researchers to swiftly explore in different configurable environments. This combination of photorealistic simulation and differentiable optimization opens new avenues for advancing research of physical adversarial attacks.
♻ ☆ ESCA: Contextualizing Embodied Agents via Scene-Graph Generation NeurIPS 2025
Multi-modal large language models (MLLMs) are making rapid progress toward general-purpose embodied agents. However, existing MLLMs do not reliably capture fine-grained links between low-level visual features and high-level textual semantics, leading to weak grounding and inaccurate perception. To overcome this challenge, we propose ESCA, a framework that contextualizes embodied agents by grounding their perception in spatial-temporal scene graphs. At its core is SGCLIP, a novel, open-domain, promptable foundation model for generating scene graphs that is based on CLIP. SGCLIP is trained on 87K+ open-domain videos using a neurosymbolic pipeline that aligns automatically generated captions with scene graphs produced by the model itself, eliminating the need for human-labeled annotations. We demonstrate that SGCLIP excels in both prompt-based inference and task-specific fine-tuning, achieving state-of-the-art results on scene graph generation and action localization benchmarks. ESCA with SGCLIP improves perception for embodied agents based on both open-source and commercial MLLMs, achieving state of-the-art performance across two embodied environments. Notably, ESCA significantly reduces agent perception errors and enables open-source models to surpass proprietary baselines. We release the source code for SGCLIP model training at https://github.com/video-fm/LASER and for the embodied agent at https://github.com/video-fm/ESCA.
comment: Accepted as a Spotlight Paper at NeurIPS 2025
♻ ☆ Now you see me! Attribution Distributions Reveal What is Truly Important for a Prediction
Neural networks are regularly employed in high-stakes decision-making, where understanding and transparency is key. Attribution methods have been developed to gain understanding into which input features neural networks use for a specific prediction. Although widely used in computer vision, these methods often result in unspecific saliency maps that fail to identify the relevant information that led to a decision, supported by different benchmarks results. Here, we revisit the common attribution pipeline and identify one cause for the lack of specificity in attributions as the computation of attribution of isolated logits. Instead, we suggest to combine attributions of multiple class logits in analogy to how the softmax combines the information across logits. By computing probability distributions of attributions over classes for each spatial location in the image, we unleash the true capabilities of existing attribution methods, revealing better object- and instance-specificity and uncovering discriminative as well as shared features between classes. On common benchmarks, including the grid-pointing game and randomization-based sanity checks, we show that this reconsideration of how and where we compute attributions across the network improves established attribution methods while staying agnostic to model architectures. We make the code publicly available: https://github.com/nilspwalter/var.
♻ ☆ SafeCOMM: A Study on Safety Degradation in Fine-Tuned Telecom Large Language Models
Fine-tuning large language models (LLMs) on telecom datasets is a common practice to adapt general-purpose models to the telecom domain. However, little attention has been paid to how this process may compromise model safety. Recent research has shown that even benign fine-tuning can degrade the safety alignment of LLMs, causing them to respond to harmful or unethical user queries. In this paper, we investigate this issue by fine-tuning LLMs on three representative telecom datasets and show that safety degrades even for light telecom domain adaptation. To this end, we introduce TeleHarm, the first telecom-specific red-teaming benchmark, which we use alongside established Direct-Harm and HexPhi datasets to systematically assess harmful behavior. We further extend our analysis to publicly available TeleLLMs that were continually pre-trained on large telecom corpora, revealing that safety alignment is severely lacking, primarily due to the omission of safety-focused instruction tuning. To address these issues, we evaluate three realignment defenses: SafeInstruct, SafeLoRA, SafeMERGE. We show that, across all settings, the proposed defenses can effectively restore safety without compromising telecom task performance, leading to Safe teleCOMMunication (SafeCOMM) models. Our work serves as both a diagnostic study and practical guide for safety realignment in telecom-tuned LLMs, underscoring the need for safety-aware instruction and fine-tuning in the telecom domain.
♻ ☆ Enhancing Graph Neural Networks: A Mutual Learning Approach
Knowledge distillation (KD) techniques have emerged as a powerful tool for transferring expertise from complex teacher models to lightweight student models, particularly beneficial for deploying high-performance models in resource-constrained devices. This approach has been successfully applied to graph neural networks (GNNs), harnessing their expressive capabilities to generate node embeddings that capture structural and feature-related information. In this study, we depart from the conventional KD approach by exploring the potential of collaborative learning among GNNs. In the absence of a pre-trained teacher model, we show that relatively simple and shallow GNN architectures can synergetically learn efficient models capable of performing better during inference, particularly in tackling multiple tasks. We propose a collaborative learning framework where ensembles of student GNNs mutually teach each other throughout the training process. We introduce an adaptive logit weighting unit to facilitate efficient knowledge exchange among models and an entropy enhancement technique to improve mutual learning. These components dynamically empower the models to adapt their learning strategies during training, optimizing their performance for downstream tasks. Extensive experiments conducted on three datasets each for node and graph classification demonstrate the effectiveness of our approach.
♻ ☆ On the Stability of Graph Convolutional Neural Networks: A Probabilistic Perspective
Graph convolutional neural networks (GCNNs) have emerged as powerful tools for analyzing graph-structured data, achieving remarkable success across diverse applications. However, the theoretical understanding of the stability of these models, i.e., their sensitivity to small changes in the graph structure, remains in rather limited settings, hampering the development and deployment of robust and trustworthy models in practice. To fill this gap, we study how perturbations in the graph topology affect GCNN outputs and propose a novel formulation for analyzing model stability. Unlike prior studies that focus only on worst-case perturbations, our distribution-aware formulation characterizes output perturbations across a broad range of input data. This way, our framework enables, for the first time, a probabilistic perspective on the interplay between the statistical properties of the node data and perturbations in the graph topology. We conduct extensive experiments to validate our theoretical findings and demonstrate their benefits over existing baselines, in terms of both representation stability and adversarial attacks on downstream tasks. Our results demonstrate the practical significance of the proposed formulation and highlight the importance of incorporating data distribution into stability analysis.
♻ ☆ ProSpero: Active Learning for Robust Protein Design Beyond Wild-Type Neighborhoods NeurIPS 2025
Designing protein sequences of both high fitness and novelty is a challenging task in data-efficient protein engineering. Exploration beyond wild-type neighborhoods often leads to biologically implausible sequences or relies on surrogate models that lose fidelity in novel regions. Here, we propose ProSpero, an active learning framework in which a frozen pre-trained generative model is guided by a surrogate updated from oracle feedback. By integrating fitness-relevant residue selection with biologically-constrained Sequential Monte Carlo sampling, our approach enables exploration beyond wild-type neighborhoods while preserving biological plausibility. We show that our framework remains effective even when the surrogate is misspecified. ProSpero consistently outperforms or matches existing methods across diverse protein engineering tasks, retrieving sequences of both high fitness and novelty.
comment: NeurIPS 2025
♻ ☆ On the Structure of Stationary Solutions to McKean-Vlasov Equations with Applications to Noisy Transformers
We study stationary solutions of McKean-Vlasov equations on the circle. Our main contributions stem from observing an exact equivalence between solutions of the stationary McKean-Vlasov equation and an infinite-dimensional quadratic system of equations over Fourier coefficients, which allows explicit characterization of the stationary states in a sequence space rather than a function space. This framework provides a transparent description of local bifurcations, characterizing their periodicity, and resonance structures, while accommodating singular potentials. We derive analytic expressions that characterize the emergence, form and shape (supercritical, critical, subcritical or transcritical) of bifurcations involving possibly multiple Fourier modes and connect them with discontinuous phase transitions. We also characterize, under suitable assumptions, the detailed structure of the stationary bifurcating solutions that are accurate upto an arbitrary number of Fourier modes. At the global level, we establish regularity and concavity properties of the free energy landscape, proving existence, compactness, and coexistence of globally minimizing stationary measures, further identifying discontinuous phase transitions with points of non-differentiability of the minimum free energy map. As an application, we specialize the theory to the Noisy Mean-Field Transformer model, where we show how changing the inverse temperature parameter $\beta$ affects the geometry of the infinitely many bifurcations from the uniform measure. We also explain how increasing $\beta$ can lead to a rich class of approximate multi-mode stationary solutions which can be seen as `metastable states'. Further, a sharp transition from continuous to discontinuous (first-order) phase behavior is observed as $\beta$ increases.
comment: 46 pages, 5 figures
♻ ☆ WhaleVAD-BPN: Improving Baleen Whale Call Detection with Boundary Proposal Networks and Post-processing Optimisation
While recent sound event detection (SED) systems can identify baleen whale calls in marine audio, challenges related to false positive and minority-class detection persist. We propose the boundary proposal network (BPN), which extends an existing lightweight SED system. The BPN is inspired by work in image object detection and aims to reduce the number of false positive detections. It achieves this by using intermediate latent representations computed within the backbone classification model to gate the final output. When added to an existing SED system, the BPN achieves a 16.8 % absolute increase in precision, as well as 21.3 % and 9.4 % improvements in the F1-score for minority-class d-calls and bp-calls, respectively. We further consider two approaches to the selection of post-processing hyperparameters: a forward-search and a backward-search. By separately optimising event-level and frame-level hyperparameters, these two approaches lead to considerable performance improvements over parameters selected using empirical methods. The complete WhaleVAD-BPN system achieves a cross-validated development F1-score of 0.475, which is a 9.8 % absolute improvement over the baseline.
♻ ☆ DmC: Nearest Neighbor Guidance Diffusion Model for Offline Cross-domain Reinforcement Learning ECAI 2025
Cross-domain offline reinforcement learning (RL) seeks to enhance sample efficiency in offline RL by utilizing additional offline source datasets. A key challenge is to identify and utilize source samples that are most relevant to the target domain. Existing approaches address this challenge by measuring domain gaps through domain classifiers, target transition dynamics modeling, or mutual information estimation using contrastive loss. However, these methods often require large target datasets, which is impractical in many real-world scenarios. In this work, we address cross-domain offline RL under a limited target data setting, identifying two primary challenges: (1) Dataset imbalance, which is caused by large source and small target datasets and leads to overfitting in neural network-based domain gap estimators, resulting in uninformative measurements; and (2) Partial domain overlap, where only a subset of the source data is closely aligned with the target domain. To overcome these issues, we propose DmC, a novel framework for cross-domain offline RL with limited target samples. Specifically, DmC utilizes $k$-nearest neighbor ($k$-NN) based estimation to measure domain proximity without neural network training, effectively mitigating overfitting. Then, by utilizing this domain proximity, we introduce a nearest-neighbor-guided diffusion model to generate additional source samples that are better aligned with the target domain, thus enhancing policy learning with more effective source samples. Through theoretical analysis and extensive experiments in diverse MuJoCo environments, we demonstrate that DmC significantly outperforms state-of-the-art cross-domain offline RL methods, achieving substantial performance gains.
comment: accepted at ECAI 2025; offline cross-domain reinforcement learning with a guided diffusion model;
♻ ☆ Universal Sequence Preconditioning
We study the problem of preconditioning in sequential prediction. From the theoretical lens of linear dynamical systems, we show that convolving the input sequence corresponds to applying a polynomial to the hidden transition matrix. Building on this insight, we propose a universal preconditioning method that convolves the input with coefficients from orthogonal polynomials such as Chebyshev or Legendre. We prove that this approach reduces regret for two distinct prediction algorithms and yields the first ever sublinear and hidden-dimension independent regret bounds (up to logarithmic factors) that hold for systems with marginally stable and asymmetric transition matrices. Finally, extensive synthetic and real-world experiments show that this simple preconditioning strategy improves the performance of a diverse range of algorithms, including recurrent neural networks, and generalizes to signals beyond linear dynamical systems.
comment: 35 pages, 3 tables, 5 figures
♻ ☆ Deriving Transformer Architectures as Implicit Multinomial Regression
While attention has been empirically shown to improve model performance, it lacks a rigorous mathematical justification. This short paper establishes a novel connection between attention mechanisms and multinomial regression. Specifically, we show that in a fixed multinomial regression setting, optimizing over latent features yields solutions that align with the dynamics induced on features by attention blocks. In other words, the evolution of representations through a transformer can be interpreted as a trajectory that recovers the optimal features for classification.
comment: 4 pages, additional 3 pages of references and supplementary details
♻ ☆ The Marked Edge Walk: A Novel MCMC Algorithm for Sampling of Graph Partitions
Novel Markov Chain Monte Carlo (MCMC) methods have enabled the generation of large ensembles of redistricting plans through graph partitioning. However, existing algorithms such as Reversible Recombination (RevReCom) and Metropolized Forest Recombination (MFR) are constrained to sampling from distributions related to spanning trees. We introduce the marked edge walk (MEW), a novel MCMC algorithm for sampling from the space of graph partitions under a tunable distribution. The walk operates on the space of spanning trees with marked edges, allowing for calculable transition probabilities for use in the Metropolis-Hastings algorithm. Empirical results on real-world dual graphs show convergence under target distributions unrelated to spanning trees. For this reason, MEW represents an advancement in flexible ensemble generation.
♻ ☆ Leveraging Approximate Caching for Faster Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) improves the reliability of large language model (LLM) answers by integrating external knowledge. However, RAG increases the end-to-end inference time since looking for relevant documents from large vector databases is computationally expensive. To address this, we introduce Proximity, an approximate key-value cache that optimizes the RAG workflow by leveraging similarities in user queries. Instead of treating each query independently, Proximity reuses previously retrieved documents when similar queries appear, substantially reducing the reliance on expensive vector database lookups. To efficiently scale, Proximity employs a locality-sensitive hashing (LSH) scheme that enables fast cache lookups while preserving retrieval accuracy. We evaluate Proximity using the MMLU and MedRAG question-answering benchmarks. Our experiments demonstrate that Proximity with our LSH scheme and a realistically-skewed MedRAG workload reduces database calls by 77.2% while maintaining database recall and test accuracy. We experiment with different similarity tolerances and cache capacities, and show that the time spent within the Proximity cache remains low and constant (4.8 microseconds) even as the cache grows substantially in size. Our results demonstrate that approximate caching is a practical and effective strategy for optimizing RAG-based systems.
comment: Accepted at Middleware '25
♻ ☆ Validating LLM-as-a-Judge Systems under Rating Indeterminacy NeurIPS 2025
The LLM-as-a-judge paradigm, in which a judge LLM system replaces human raters in rating the outputs of other generative AI (GenAI) systems, plays a critical role in scaling and standardizing GenAI evaluations. To validate such judge systems, evaluators assess human--judge agreement by first collecting multiple human ratings for each item in a validation corpus, then aggregating the ratings into a single, per-item gold label rating. For many items, however, rating criteria may admit multiple valid interpretations, so a human or LLM rater may deem multiple ratings "reasonable" or "correct." We call this condition rating indeterminacy. Problematically, many rating tasks that contain rating indeterminacy rely on forced-choice elicitation, whereby raters are instructed to select only one rating for each item. In this paper, we introduce a framework for validating LLM-as-a-judge systems under rating indeterminacy. We draw theoretical connections between different measures of judge system performance under different human--judge agreement metrics, and different rating elicitation and aggregation schemes. We demonstrate that differences in how humans and LLMs resolve rating indeterminacy when responding to forced-choice rating instructions can heavily bias LLM-as-a-judge validation. Through extensive experiments involving 11 real-world rating tasks and 9 commercial LLMs, we show that standard validation approaches that rely upon forced-choice ratings select judge systems that are highly suboptimal, performing as much as 31% worse than judge systems selected by our approach that uses multi-label "response set" ratings to account for rating indeterminacy. We conclude with concrete recommendations for more principled approaches to LLM-as-a-judge validation.
comment: NeurIPS 2025
♻ ☆ Less is More: Local Intrinsic Dimensions of Contextual Language Models NeurIPS 2025
Understanding the internal mechanisms of large language models (LLMs) remains a challenging and complex endeavor. Even fundamental questions, such as how fine-tuning affects model behavior, often require extensive empirical evaluation. In this paper, we introduce a novel perspective based on the geometric properties of contextual latent embeddings to study the effects of training and fine-tuning. To that end, we measure the local dimensions of a contextual language model's latent space and analyze their shifts during training and fine-tuning. We show that the local dimensions provide insights into the model's training dynamics and generalization ability. Specifically, the mean of the local dimensions predicts when the model's training capabilities are exhausted, as exemplified in a dialogue state tracking task, overfitting, as demonstrated in an emotion recognition task, and grokking, as illustrated with an arithmetic task. Furthermore, our experiments suggest a practical heuristic: reductions in the mean local dimension tend to accompany and predict subsequent performance gains. Through this exploration, we aim to provide practitioners with a deeper understanding of the implications of fine-tuning on embedding spaces, facilitating informed decisions when configuring models for specific applications. The results of this work contribute to the ongoing discourse on the interpretability, adaptability, and generalizability of LLMs by bridging the gap between intrinsic model mechanisms and geometric properties in the respective embeddings.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025; in press). 10 pages, with an additional 17 pages in the appendix. Our code is available at https://github.com/aidos-lab/Topo_LLM_public and https://github.com/aidos-lab/grokking-via-lid
♻ ☆ Effortless, Simulation-Efficient Bayesian Inference using Tabular Foundation Models
Simulation-based inference (SBI) offers a flexible and general approach to performing Bayesian inference: In SBI, a neural network is trained on synthetic data simulated from a model and used to rapidly infer posterior distributions for observed data. A key goal for SBI is to achieve accurate inference with as few simulations as possible, especially for expensive simulators. In this work, we address this challenge by repurposing recent probabilistic foundation models for tabular data: We show how tabular foundation models -- specifically TabPFN -- can be used as pre-trained autoregressive conditional density estimators for SBI. We propose Neural Posterior Estimation with Prior-data Fitted Networks (NPE-PFN) and show that it is competitive with current SBI approaches in terms of accuracy for both benchmark tasks and two complex scientific inverse problems. Crucially, it often substantially outperforms them in terms of simulation efficiency, sometimes requiring orders of magnitude fewer simulations. NPE-PFN eliminates the need for inference network selection, training, and hyperparameter tuning. We also show that it exhibits superior robustness to model misspecification and can be scaled to simulation budgets that exceed the context size limit of TabPFN. NPE-PFN provides a new direction for SBI, where training-free, general-purpose inference models offer efficient, easy-to-use, and flexible solutions for a wide range of stochastic inverse problems.
♻ ☆ Boosting Revisited: Benchmarking and Advancing LP-Based Ensemble Methods
Despite their theoretical appeal, totally corrective boosting methods based on linear programming have received limited empirical attention. In this paper, we conduct the first large-scale experimental study of six LP-based boosting formulations, including two novel methods, NM-Boost and QRLP-Boost, across 20 diverse datasets. We evaluate the use of both heuristic and optimal base learners within these formulations, and analyze not only accuracy, but also ensemble sparsity, margin distribution, anytime performance, and hyperparameter sensitivity. We show that totally corrective methods can outperform or match state-of-the-art heuristics like XGBoost and LightGBM when using shallow trees, while producing significantly sparser ensembles. We further show that these methods can thin pre-trained ensembles without sacrificing performance, and we highlight both the strengths and limitations of using optimal decision trees in this context.
comment: Published in TMLR, see: https://openreview.net/forum?id=lscC4PZUE4
♻ ☆ Covering Multiple Objectives with a Small Set of Solutions Using Bayesian Optimization
In multi-objective black-box optimization, the goal is typically to find solutions that optimize a set of $T$ black-box objective functions, $f_1, \ldots f_T$, simultaneously. Traditional approaches often seek a single Pareto-optimal set that balances trade-offs among all objectives. In contrast, we consider a problem setting that departs from this paradigm: finding a small set of $K < T$ solutions, that collectively "cover" the $T$ objectives. A set of solutions is defined as "covering" if, for each objective $f_1, \ldots f_T$, there is at least one good solution. A motivating example for this problem setting occurs in drug design. For example, we may have $T$ pathogens and aim to identify a set of $K < T$ antibiotics such that at least one antibiotic can be used to treat each pathogen. This problem, known as coverage optimization, has yet to be tackled with the Bayesian optimization (BO) framework. To fill this void, we develop Multi-Objective Coverage Bayesian Optimization (MOCOBO), a BO algorithm for solving coverage optimization. Our approach is based on a new acquisition function reminiscent of expected improvement in the vanilla BO setup. We demonstrate the performance of our method on high-dimensional black-box optimization tasks, including applications in peptide and molecular design. Results show that the coverage of the $K < T$ solutions found by MOCOBO matches or nearly matches the coverage of $T$ solutions obtained by optimizing each objective individually. Furthermore, in in vitro experiments, the peptides found by MOCOBO exhibited high potency against drug-resistant pathogens, further demonstrating the potential of MOCOBO for drug discovery. All of our code is publicly available at the following link: https://github.com/nataliemaus/mocobo.
♻ ☆ Automatic Discovery of One Parameter Subgroups of $SO(n)$
We introduce a novel framework for the automatic discovery of one-parameter subgroups ($H_{\gamma}$) of $SO(3)$ and, more generally, $SO(n)$. One-parameter subgroups of $SO(n)$ are crucial in a wide range of applications, including robotics, quantum mechanics, and molecular structure analysis. Our method utilizes the standard Jordan form of skew-symmetric matrices, which define the Lie algebra of $SO(n)$, to establish a canonical form for orbits under the action of $H_{\gamma}$. This canonical form is then employed to derive a standardized representation for $H_{\gamma}$-invariant functions. By learning the appropriate parameters, the framework uncovers the underlying one-parameter subgroup $H_{\gamma}$. The effectiveness of the proposed approach is demonstrated through tasks such as double pendulum modeling, moment of inertia prediction, top quark tagging and invariant polynomial regression, where it successfully recovers meaningful subgroup structure and produces interpretable, symmetry-aware representations.
♻ ☆ Onboard Mission Replanning for Adaptive Cooperative Multi-Robot Systems
Cooperative autonomous robotic systems have significant potential for executing complex multi-task missions across space, air, ground, and maritime domains. But they commonly operate in remote, dynamic and hazardous environments, requiring rapid in-mission adaptation without reliance on fragile or slow communication links to centralised compute. Fast, on-board replanning algorithms are therefore needed to enhance resilience. Reinforcement Learning shows strong promise for efficiently solving mission planning tasks when formulated as Travelling Salesperson Problems (TSPs), but existing methods: 1) are unsuitable for replanning, where agents do not start at a single location; 2) do not allow cooperation between agents; 3) are unable to model tasks with variable durations; or 4) lack practical considerations for on-board deployment. Here we define the Cooperative Mission Replanning Problem as a novel variant of multiple TSP with adaptations to overcome these issues, and develop a new encoder/decoder-based model using Graph Attention Networks and Attention Models to solve it effectively and efficiently. Using a simple example of cooperative drones, we show our replanner consistently (90% of the time) maintains performance within 10% of the state-of-the-art LKH3 heuristic solver, whilst running 85-370 times faster on a Raspberry Pi. This work paves the way for increased resilience in autonomous multi-agent systems.
comment: 9 pages, 5 figures, 1 table
♻ ☆ Conformal Prediction for Hierarchical Data
We consider conformal prediction for multivariate data and focus on hierarchical data, where some components are linear combinations of others. Intuitively, the hierarchical structure can be leveraged to reduce the size of prediction regions for the same coverage level. We implement this intuition by including a projection step (also called a reconciliation step) in the split conformal prediction [SCP] procedure, and prove that the resulting prediction regions are indeed globally smaller. We do so both under the classic objective of joint coverage and under a new and challenging task: component-wise coverage, for which efficiency results are more difficult to obtain. The associated strategies and their analyses are based both on the literature of SCP and of forecast reconciliation, which we connect. We also illustrate the theoretical findings, for different scales of hierarchies on simulated data.
comment: 38 pages, 3 figures
♻ ☆ Psi-Sampler: Initial Particle Sampling for SMC-Based Inference-Time Reward Alignment in Score Models NeurIPS 2025
We introduce $\Psi$-Sampler, an SMC-based framework incorporating pCNL-based initial particle sampling for effective inference-time reward alignment with a score-based generative model. Inference-time reward alignment with score-based generative models has recently gained significant traction, following a broader paradigm shift from pre-training to post-training optimization. At the core of this trend is the application of Sequential Monte Carlo (SMC) to the denoising process. However, existing methods typically initialize particles from the Gaussian prior, which inadequately captures reward-relevant regions and results in reduced sampling efficiency. We demonstrate that initializing from the reward-aware posterior significantly improves alignment performance. To enable posterior sampling in high-dimensional latent spaces, we introduce the preconditioned Crank-Nicolson Langevin (pCNL) algorithm, which combines dimension-robust proposals with gradient-informed dynamics. This approach enables efficient and scalable posterior sampling and consistently improves performance across various reward alignment tasks, including layout-to-image generation, quantity-aware generation, and aesthetic-preference generation, as demonstrated in our experiments. Project Webpage: https://psi-sampler.github.io/
comment: NeurIPS 2025, Spotlight Presentation
♻ ☆ DataRater: Meta-Learned Dataset Curation NeurIPS 2025
The quality of foundation models depends heavily on their training data. Consequently, great efforts have been put into dataset curation. Yet most approaches rely on manual tuning of coarse-grained mixtures of large buckets of data, or filtering by hand-crafted heuristics. An approach that is ultimately more scalable (let alone more satisfying) is to \emph{learn} which data is actually valuable for training. This type of meta-learning could allow more sophisticated, fine-grained, and effective curation. Our proposed \emph{DataRater} is an instance of this idea. It estimates the value of training on any particular data point. This is done by meta-learning using `meta-gradients', with the objective of improving training efficiency on held out data. In extensive experiments across a range of model scales and datasets, we find that using our DataRater to filter data is highly effective, resulting in significantly improved compute efficiency.
comment: NeurIPS 2025
♻ ☆ A Principle of Targeted Intervention for Multi-Agent Reinforcement Learning NeurIPS 2025
Steering cooperative multi-agent reinforcement learning (MARL) towards desired outcomes is challenging, particularly when the global guidance from a human on the whole multi-agent system is impractical in a large-scale MARL. On the other hand, designing external mechanisms (e.g., intrinsic rewards and human feedback) to coordinate agents mostly relies on empirical studies, lacking a easy-to-use research tool. In this work, we employ multi-agent influence diagrams (MAIDs) as a graphical framework to address the above issues. First, we introduce the concept of MARL interaction paradigms (orthogonal to MARL learning paradigms), using MAIDs to analyze and visualize both unguided self-organization and global guidance mechanisms in MARL. Then, we design a new MARL interaction paradigm, referred to as the targeted intervention paradigm that is applied to only a single targeted agent, so the problem of global guidance can be mitigated. In implementation, we introduce a causal inference technique, referred to as Pre-Strategy Intervention (PSI), to realize the targeted intervention paradigm. Since MAIDs can be regarded as a special class of causal diagrams, a composite desired outcome that integrates the primary task goal and an additional desired outcome can be achieved by maximizing the corresponding causal effect through the PSI. Moreover, the bundled relevance graph analysis of MAIDs provides a tool to identify whether an MARL learning paradigm is workable under the design of an MARL interaction paradigm. In experiments, we demonstrate the effectiveness of our proposed targeted intervention, and verify the result of relevance graph analysis.
comment: Published in NeurIPS 2025
♻ ☆ Neural variational inference for cutting feedback during uncertainty propagation
In many scientific applications, uncertainty of estimates from an earlier (upstream) analysis needs to be propagated in subsequent (downstream) Bayesian analysis, without feedback. Cutting feedback methods, also termed cut-Bayes, achieve this by constructing a cut-posterior distribution that prevents backward information flow. Cutting feedback like nested MCMC is computationally challenging while variational inference (VI) cut-Bayes methods need two variational approximations and require access to the upstream data and model. In this manuscript we propose, NeVI-Cut, a provably accurate and modular neural network-based variational inference method for cutting feedback. We directly utilize samples from the upstream analysis without requiring access to the upstream data or model. This simultaneously preserves modularity of analysis and reduces approximation errors by avoiding a variational approximation for the upstream model. We then use normalizing flows to specify the conditional variational family for the downstream parameters and estimate the conditional cut-posterior as a variational solution of Monte Carlo average loss over all the upstream samples. We provide theoretical guarantees on the NeVI-Cut estimate to approximate any cut-posterior. Our results are in a fixed-data regime and provide convergence rates of the actual variational solution, quantifying how richness of the neural architecture and the complexity of the target cut-posterior dictate the approximation quality. In the process, we establish new results on uniform Kullback-Leibler approximation rates of conditional normalizing flows. Simulation studies and two real-world analyses illustrate how NeVI-Cut achieves significant computational gains over traditional cutting feedback methods and is considerably more accurate than parametric variational cut approaches.
♻ ☆ Interpretable Neural ODEs for Gene Regulatory Network Discovery under Perturbations
Modern high-throughput biological datasets with thousands of perturbations provide the opportunity for large-scale discovery of causal graphs that represent the regulatory interactions between genes. Differentiable causal graphical models have been proposed to infer a gene regulatory network (GRN) from large scale interventional datasets, capturing the causal gene regulatory relationships from genetic perturbations. However, existing models are limited in their expressivity and scalability while failing to address the dynamic nature of biological processes such as cellular differentiation. We propose PerturbODE, a novel framework that incorporates biologically informative neural ordinary differential equations (neural ODEs) to model cell state trajectories under perturbations and derive the causal GRN from the neural ODE's parameters. We demonstrate PerturbODE's efficacy in trajectory prediction and GRN inference across simulated and real over-expression datasets.
♻ ☆ Controllable Collision Scenario Generation via Collision Pattern Prediction
Evaluating the safety of autonomous vehicles (AVs) requires diverse, safety-critical scenarios, with collisions being especially important yet rare and unsafe to collect in the real world. Therefore, the community has been focusing on generating safety-critical scenarios in simulation. However, controlling attributes such as collision type and time-to-accident (TTA) remains challenging. We introduce a new task called controllable collision scenario generation, where the goal is to produce trajectories that realize a user-specified collision type and TTA, to investigate the feasibility of automatically generating desired collision scenarios. To support this task, we present COLLIDE, a large-scale collision scenario dataset constructed by transforming real-world driving logs into diverse collisions, balanced across five representative collision types and different TTA intervals. We propose a framework that predicts Collision Pattern, a compact and interpretable representation that captures the spatial configuration of the ego and the adversarial vehicles at impact, before rolling out full adversarial trajectories. Experiments show that our approach outperforms strong baselines in both collision rate and controllability. Furthermore, generated scenarios consistently induce higher planner failure rates, revealing limitations of existing planners. We demonstrate that these scenarios fine-tune planners for robustness improvements, contributing to safer AV deployment in different collision scenarios. Project page is available at https://submit-user.github.io/anon2025
comment: 8 pages, 3 figures
♻ ☆ Unveiling m-Sharpness Through the Structure of Stochastic Gradient Noise
Sharpness-aware minimization (SAM) has emerged as a highly effective technique for improving model generalization, but its underlying principles are not fully understood. We investigated the phenomenon known as m-sharpness, where the performance of SAM improves monotonically as the micro-batch size for computing perturbations decreases. In practice, the empirical m-sharpness effect underpins the deployment of SAM in distributed training, yet a rigorous theoretical account has remained lacking. To provide a theoretical explanation for m-sharpness, we leverage an extended Stochastic Differential Equation (SDE) framework and analyze the structure of stochastic gradient noise (SGN) to characterize the dynamics of various SAM variants, including n-SAM and m-SAM. Our findings reveal that the stochastic noise introduced during SAM perturbations inherently induces a variance-based sharpness regularization effect. Motivated by our theoretical insights, we introduce Reweighted SAM (RW-SAM), which employs sharpness-weighted sampling to mimic the generalization benefits of m-SAM while remaining parallelizable. Comprehensive experiments validate the effectiveness of our theoretical analysis and proposed method.
♻ ☆ Estimating LLM Consistency: A User Baseline vs Surrogate Metrics EMNLP 2025
Large language models (LLMs) are prone to hallucinations and sensitiveto prompt perturbations, often resulting in inconsistent or unreliablegenerated text. Different methods have been proposed to mitigate suchhallucinations and fragility, one of which is to measure theconsistency of LLM responses -- the model's confidence in the responseor likelihood of generating a similar response when resampled. Inprevious work, measuring LLM response consistency often relied oncalculating the probability of a response appearing within a pool of resampledresponses, analyzing internal states, or evaluating logits of resopnses.However, it was not clear how well theseapproaches approximated users' perceptions of consistency of LLMresponses. To find out, we performed a user study ($n=2,976$)demonstrating that current methods for measuring LLM responseconsistency typically do not align well with humans' perceptions of LLMconsistency. We propose a logit-based ensemble method for estimatingLLM consistency and show that our method matches the performance of thebest-performing existing metric in estimating human ratings of LLMconsistency. Our results suggest that methods for estimating LLMconsistency without human evaluation are sufficiently imperfect towarrant broader use of evaluation with human input; this would avoidmisjudging the adequacy of models because of the imperfections ofautomated consistency metrics.
comment: Published as a main conference paper at EMNLP 2025
♻ ☆ Can Large Language Models Unlock Novel Scientific Research Ideas? EMNLP 2025
The widespread adoption of Large Language Models (LLMs) and publicly available ChatGPT have marked a significant turning point in the integration of Artificial Intelligence (AI) into people's everyday lives. This study examines the ability of Large Language Models (LLMs) to generate future research ideas from scientific papers. Unlike tasks such as summarization or translation, idea generation lacks a clearly defined reference set or structure, making manual evaluation the default standard. However, human evaluation in this setting is extremely challenging ie: it requires substantial domain expertise, contextual understanding of the paper, and awareness of the current research landscape. This makes it time-consuming, costly, and fundamentally non-scalable, particularly as new LLMs are being released at a rapid pace. Currently, there is no automated evaluation metric specifically designed for this task. To address this gap, we propose two automated evaluation metrics: Idea Alignment Score (IAScore) and Idea Distinctness Index. We further conducted human evaluation to assess the novelty, relevance, and feasibility of the generated future research ideas. This investigation offers insights into the evolving role of LLMs in idea generation, highlighting both its capability and limitations. Our work contributes to the ongoing efforts in evaluating and utilizing language models for generating future research ideas. We make our datasets and codes publicly available
comment: EMNLP 2025 (Main)
♻ ☆ Reasoning as an Adaptive Defense for Safety
Reasoning methods that adaptively allocate test-time compute have advanced LLM performance on easy to verify domains such as math and code. In this work, we study how to utilize this approach to train models that exhibit a degree of robustness to safety vulnerabilities, and show that doing so can provide benefits. We build a recipe called $\textit{TARS}$ (Training Adaptive Reasoners for Safety), a reinforcement learning (RL) approach that trains models to reason about safety using chain-of-thought traces and a reward signal that balances safety with task completion. To build TARS, we identify three critical design choices: (1) a ``lightweight'' warmstart SFT stage, (2) a mix of harmful, harmless, and ambiguous prompts to prevent shortcut behaviors such as too many refusals, and (3) a reward function to prevent degeneration of reasoning capabilities during training. Models trained with TARS exhibit adaptive behaviors by spending more compute on ambiguous queries, leading to better safety-refusal trade-offs. They also internally learn to better distinguish between safe and unsafe prompts and attain greater robustness to both white-box (e.g., GCG) and black-box attacks (e.g., PAIR). Overall, our work provides an effective, open recipe for training LLMs against jailbreaks and harmful requests by reasoning per prompt.
comment: 44 pages, 10 Figures, 7 Tables
♻ ☆ RotaTouille: Rotation Equivariant Deep Learning for Contours
Contours or closed planar curves are common in many domains. For example, they appear as object boundaries in computer vision, isolines in meteorology, and the orbits of rotating machinery. In many cases when learning from contour data, planar rotations of the input will result in correspondingly rotated outputs. It is therefore desirable that deep learning models be rotationally equivariant. In addition, contours are typically represented as an ordered sequence of edge points, where the choice of starting point is arbitrary. It is therefore also desirable for deep learning methods to be equivariant under cyclic shifts. We present RotaTouille, a deep learning framework for learning from contour data that achieves both rotation and cyclic shift equivariance through complex-valued circular convolution. We further introduce and characterize equivariant non-linearities, coarsening layers, and global pooling layers to obtain invariant representations for downstream tasks. Finally, we demonstrate the effectiveness of RotaTouille through experiments in shape classification, reconstruction, and contour regression.
comment: 19 pages, 6 figures
♻ ☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
♻ ☆ HOPSE: Scalable Higher-Order Positional and Structural Encoder for Combinatorial Representations
While Graph Neural Networks (GNNs) have proven highly effective at modeling relational data, pairwise connections cannot fully capture multi-way relationships naturally present in complex real-world systems. In response to this, Topological Deep Learning (TDL) leverages more general combinatorial representations -- such as simplicial or cellular complexes -- to accommodate higher-order interactions. Existing TDL methods often extend GNNs through Higher-Order Message Passing (HOMP), but face critical \emph{scalability challenges} due to \textit{(i)} a combinatorial explosion of message-passing routes, and \textit{(ii)} significant complexity overhead from the propagation mechanism. This work presents HOPSE (Higher-Order Positional and Structural Encoder), an alternative method to solve tasks involving higher-order interactions \emph{without message passing}. Instead, HOPSE breaks \emph{arbitrary higher-order domains} into their neighborhood relationships using a Hasse graph decomposition. This method shows that decoupling the representation learning of neighborhood topology from that of attributes results in lower computational complexity, casting doubt on the need for HOMP. The experiments on molecular graph tasks and topological benchmarks show that HOPSE matches performance on traditional TDL datasets and outperforms HOMP methods on topological tasks, achieving up to $7\times$ speedups over HOMP-based models, opening a new path for scalable TDL.
♻ ☆ MOOSE-Chem: Large Language Models for Rediscovering Unseen Chemistry Scientific Hypotheses ICLR 2025
Scientific discovery plays a pivotal role in advancing human society, and recent progress in large language models (LLMs) suggests their potential to accelerate this process. However, it remains unclear whether LLMs can autonomously generate novel and valid hypotheses in chemistry. In this work, we investigate whether LLMs can discover high-quality chemistry hypotheses given only a research background-comprising a question and/or a survey-without restriction on the domain of the question. We begin with the observation that hypothesis discovery is a seemingly intractable task. To address this, we propose a formal mathematical decomposition grounded in a fundamental assumption: that most chemistry hypotheses can be composed from a research background and a set of inspirations. This decomposition leads to three practical subtasks-retrieving inspirations, composing hypotheses with inspirations, and ranking hypotheses - which together constitute a sufficient set of subtasks for the overall scientific discovery task. We further develop an agentic LLM framework, MOOSE-Chem, that is a direct implementation of this mathematical decomposition. To evaluate this framework, we construct a benchmark of 51 high-impact chemistry papers published and online after January 2024, each manually annotated by PhD chemists with background, inspirations, and hypothesis. The framework is able to rediscover many hypotheses with high similarity to the groundtruth, successfully capturing the core innovations-while ensuring no data contamination since it uses an LLM with knowledge cutoff date prior to 2024. Finally, based on LLM's surprisingly high accuracy on inspiration retrieval, a task with inherently out-of-distribution nature, we propose a bold assumption: that LLMs may already encode latent scientific knowledge associations not yet recognized by humans.
comment: Accepted by ICLR 2025
♻ ☆ Mixing It Up: Exploring Mixer Networks for Irregular Multivariate Time Series Forecasting
Forecasting Irregular Multivariate Time Series (IMTS) has recently emerged as a distinct research field, necessitating specialized models to address its unique challenges. While most forecasting literature assumes regularly spaced observations without missing values, many real-world datasets - particularly in healthcare, climate research, and biomechanics - violate these assumptions. Time Series (TS)-mixer models have achieved remarkable success in regular multivariate time series forecasting. However, they remain unexplored for IMTS due to their requirement for complete and evenly spaced observations. To bridge this gap, we introduce IMTS-Mixer, a novel forecasting architecture designed specifically for IMTS. Our approach retains the core principles of TS mixer models while introducing innovative methods to transform IMTS into fixed-size matrix representations, enabling their seamless integration with mixer modules. We evaluate IMTS-Mixer on a benchmark of four real-world datasets from various domains. Our results demonstrate that IMTS-Mixer establishes a new state-of-the-art in forecasting accuracy while also improving computational efficiency.
♻ ☆ TrajAgent: An LLM-Agent Framework for Trajectory Modeling via Large-and-Small Model Collaboration NeurIPS 2025
Trajectory modeling, which includes research on trajectory data pattern mining and future prediction, has widespread applications in areas such as life services, urban transportation, and public administration. Numerous methods have been proposed to address specific problems within trajectory modeling. However, the heterogeneity of data and the diversity of trajectory tasks make effective and reliable trajectory modeling an important yet highly challenging endeavor, even for domain experts. \fix In this paper, we propose \textit{TrajAgent}, a agent framework powered by large language models (LLMs), designed to facilitate robust and efficient trajectory modeling through automation modeling. This framework leverages and optimizes diverse specialized models to address various trajectory modeling tasks across different datasets effectively. \unfix~In \textit{TrajAgent}, we first develop \textit{UniEnv}, an execution environment with a unified data and model interface, to support the execution and training of various models. Building on \textit{UniEnv}, we introduce an agentic workflow designed for automatic trajectory modeling across various trajectory tasks and data. Furthermore, we introduce collaborative learning schema between LLM-based agents and small speciallized models, to enhance the performance of the whole framework effectively. Extensive experiments on four tasks using four real-world datasets demonstrate the effectiveness of \textit{TrajAgent} in automated trajectory modeling, achieving a performance improvement of \fix 2.38\%-69.91\% \unfix over baseline methods. The codes and data can be accessed via https://github.com/tsinghua-fib-lab/TrajAgent.
comment: Accepted by NeurIPS 2025, https://github.com/tsinghua-fib-lab/TrajAgent
♻ ☆ LLMs can hide text in other text of the same length
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages
♻ ☆ Assessing the Completeness of Traffic Scenario Categories for Automated Highway Driving Functions via Cluster-based Analysis
The ability to operate safely in increasingly complex traffic scenarios is a fundamental requirement for Automated Driving Systems (ADS). Ensuring the safe release of ADS functions necessitates a precise understanding of the occurring traffic scenarios. To support this objective, this work introduces a pipeline for traffic scenario clustering and the analysis of scenario category completeness. The Clustering Vector Quantized - Variational Autoencoder (CVQ-VAE) is employed for the clustering of highway traffic scenarios and utilized to create various catalogs with differing numbers of traffic scenario categories. Subsequently, the impact of the number of categories on the completeness considerations of the traffic scenario categories is analyzed. The results show an outperforming clustering performance compared to previous work. The trade-off between cluster quality and the amount of required data to maintain completeness is discussed based on the publicly available highD dataset.
♻ ☆ Noise-corrected GRPO: From Noisy Rewards to Unbiased Gradients
Reinforcement learning from human feedback (RLHF) or verifiable rewards (RLVR), the standard paradigm for aligning LLMs or building recent SOTA reasoning models, is highly sensitive to noise from inconsistent or erroneous rewards. Yet, the interaction between such noise and widely used group-based policy optimization methods remains underexplored. We introduce a noise-robust Group Relative Policy Optimization (GRPO) and Done Right GRPO (Dr.GRPO) framework that explicitly models reward corruption as Bernoulli noise. Our method applies noise correction after estimating reward flip probabilities to debias the learning signal, yielding provably unbiased gradient estimates. Theoretical analysis shows that group-based methods inherently mitigate individual-level noise, and our correction strategy amplifies this robustness. Empirically, we observe consistent improvements across math and code tasks when applying our noise correction to standard reward model usage, with particular gains of up to 6.7 percentage points in accuracy on math tasks and 1.5 on code tasks under realistic reward model conditions. This work bridges label-noise correction from supervised learning with modern RLHF, offering both theoretical insights and a practical algorithm for noisy real-world deployment.
♻ ☆ The Atlas of In-Context Learning: How Attention Heads Shape In-Context Retrieval Augmentation NeurIPS 2025
Large language models are able to exploit in-context learning to access external knowledge beyond their training data through retrieval-augmentation. While promising, its inner workings remain unclear. In this work, we shed light on the mechanism of in-context retrieval augmentation for question answering by viewing a prompt as a composition of informational components. We propose an attribution-based method to identify specialized attention heads, revealing in-context heads that comprehend instructions and retrieve relevant contextual information, and parametric heads that store entities' relational knowledge. To better understand their roles, we extract function vectors and modify their attention weights to show how they can influence the answer generation process. Finally, we leverage the gained insights to trace the sources of knowledge used during inference, paving the way towards more safe and transparent language models.
comment: Accepted at NeurIPS 2025
♻ ☆ ADPO: Anchored Direct Preference Optimization
Direct Preference Optimization (DPO) is an efficient alternative to reinforcement learning from human feedback (RLHF), yet it typically assumes hard binary labels and pairwise comparisons. Such assumptions can be brittle under noisy or distribution-shifted supervision. We present Anchored Direct Preference Optimization (ADPO), which (i) incorporates soft preference probabilities, (ii) aligns policy updates through reference anchoring that induces an implicit trust region, and (iii) extends to listwise learning via Plackett-Luce modeling. In controlled synthetic setups covering 12 scenarios (4 noise types x 3 severities) and 3 model scales, ADPO exhibits relative improvements ranging from 12% to 79% over a standard DPO baseline (10-seed means; 95% CIs in the Appendix). Hard labels tend to fare better under severe noise, whereas soft labels yield better calibration under distribution shift; listwise variants achieve the highest WinMass (expected probability mass on the ground-truth best item) in 9/12 scenarios. Larger models amplify ADPO's benefits (0.718 vs. 0.416 at hidden=256), suggesting that anchoring acts as an effective trust-region regularizer. We release code and configurations to facilitate reproducibility.
♻ ☆ Thought Anchors: Which LLM Reasoning Steps Matter?
Current frontier large-language models rely on reasoning to achieve state-of-the-art performance. Many existing interpretability are limited in this area, as standard methods have been designed to study single forward passes of a model rather than the multi-token computational steps that unfold during reasoning. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We introduce a black-box method that measures each sentence's counterfactual importance by repeatedly sampling replacement sentences from the model, filtering for semantically different ones, and continuing the chain of thought from that point onwards to quantify the sentence's impact on the distribution of final answers. We discover that certain sentences can have an outsized impact on the trajectory of the reasoning trace and final answer. We term these sentences \textit{thought anchors}. These are generally planning or uncertainty management sentences, and specialized attention heads consistently attend from subsequent sentences to thought anchors. We further show that examining sentence-sentence causal links within a reasoning trace gives insight into a model's behavior. Such information can be used to predict a problem's difficulty and the extent different question domains involve sequential or diffuse reasoning. As a proof-of-concept, we demonstrate that our techniques together provide a practical toolkit for analyzing reasoning models by conducting a detailed case study of how the model solves a difficult math problem, finding that our techniques yield a consistent picture of the reasoning trace's structure. We provide an open-source tool (thought-anchors.com) for visualizing the outputs of our methods on further problems. The convergence across our methods shows the potential of sentence-level analysis for a deeper understanding of reasoning models.
comment: Paul C. Bogdan and Uzay Macar contributed equally to this work, and their listed order was determined by coinflip. Neel Nanda and Arthur Conmy contributed equally to this work as senior authors, and their listed order was determined by coinflip
♻ ☆ Fast Rate Bounds for Multi-Task and Meta-Learning with Different Sample Sizes NeurIPS
We present new fast-rate PAC-Bayesian generalization bounds for multi-task and meta-learning in the unbalanced setting, i.e. when the tasks have training sets of different sizes, as is typically the case in real-world scenarios. Previously, only standard-rate bounds were known for this situation, while fast-rate bounds were limited to the setting where all training sets are of equal size. Our new bounds are numerically computable as well as interpretable, and we demonstrate their flexibility in handling a number of cases where they give stronger guarantees than previous bounds. Besides the bounds themselves, we also make conceptual contributions: we demonstrate that the unbalanced multi-task setting has different statistical properties than the balanced situation, specifically that proofs from the balanced situation do not carry over to the unbalanced setting. Additionally, we shed light on the fact that the unbalanced situation allows two meaningful definitions of multi-task risk, depending on whether all tasks should be considered equally important or if sample-rich tasks should receive more weight than sample-poor ones.
comment: Conference on Neural Information Processing Systems (NeurIPS), 2025
♻ ☆ WikiDBGraph: A Data Management Benchmark Suite for Collaborative Learning over Database Silos
Relational databases are often fragmented across organizations, creating data silos that hinder distributed data management and mining. Collaborative learning (CL) -- techniques that enable multiple parties to train models jointly without sharing raw data -- offers a principled approach to this challenge. However, existing CL frameworks (e.g., federated and split learning) remain limited in real-world deployments. Current CL benchmarks and algorithms primarily target the learning step under assumptions of isolated, aligned, and joinable databases, and they typically neglect the end-to-end data management pipeline, especially preprocessing steps such as table joins and data alignment. In contrast, our analysis of the real-world corpus WikiDBs shows that databases are interconnected, unaligned, and sometimes unjoinable, exposing a significant gap between CL algorithm design and practical deployment. To close this evaluation gap, we build WikiDBGraph, a large-scale dataset constructed from 100{,}000 real-world relational databases linked by 17 million weighted edges. Each node (database) and edge (relationship) is annotated with 13 and 12 properties, respectively, capturing a hybrid of instance- and feature-level overlap across databases. Experiments on WikiDBGraph demonstrate both the effectiveness and limitations of existing CL methods under realistic conditions, highlighting previously overlooked gaps in managing real-world data silos and pointing to concrete directions for practical deployment of collaborative learning systems.
♻ ☆ Local Learning for Covariate Selection in Nonparametric Causal Effect Estimation with Latent Variables
Estimating causal effects from nonexperimental data is a fundamental problem in many fields of science. A key component of this task is selecting an appropriate set of covariates for confounding adjustment to avoid bias. Most existing methods for covariate selection often assume the absence of latent variables and rely on learning the global network structure among variables. However, identifying the global structure can be unnecessary and inefficient, especially when our primary interest lies in estimating the effect of a treatment variable on an outcome variable. To address this limitation, we propose a novel local learning approach for covariate selection in nonparametric causal effect estimation, which accounts for the presence of latent variables. Our approach leverages testable independence and dependence relationships among observed variables to identify a valid adjustment set for a target causal relationship, ensuring both soundness and completeness under standard assumptions. We validate the effectiveness of our algorithm through extensive experiments on both synthetic and real-world data.
♻ ☆ PESTO: Real-Time Pitch Estimation with Self-supervised Transposition-equivariant Objective
In this paper, we introduce PESTO, a self-supervised learning approach for single-pitch estimation using a Siamese architecture. Our model processes individual frames of a Variable-$Q$ Transform (VQT) and predicts pitch distributions. The neural network is designed to be equivariant to translations, notably thanks to a Toeplitz fully-connected layer. In addition, we construct pitch-shifted pairs by translating and cropping the VQT frames and train our model with a novel class-based transposition-equivariant objective, eliminating the need for annotated data. Thanks to this architecture and training objective, our model achieves remarkable performances while being very lightweight ($130$k parameters). Evaluations on music and speech datasets (MIR-1K, MDB-stem-synth, and PTDB) demonstrate that PESTO not only outperforms self-supervised baselines but also competes with supervised methods, exhibiting superior cross-dataset generalization. Finally, we enhance PESTO's practical utility by developing a streamable VQT implementation using cached convolutions. Combined with our model's low latency (less than 10 ms) and minimal parameter count, this makes PESTO particularly suitable for real-time applications.
♻ ☆ Secure and Confidential Certificates of Online Fairness
The black-box service model enables ML service providers to serve clients while keeping their intellectual property and client data confidential. Confidentiality is critical for delivering ML services legally and responsibly, but makes it difficult for outside parties to verify important model properties such as fairness. Existing methods that assess model fairness confidentially lack either (i) reliability because they certify fairness with respect to a static set of data, and therefore fail to guarantee fairness in the presence of distribution shift or service provider malfeasance; and/or (ii) scalability due to the computational overhead of confidentiality-preserving cryptographic primitives. We address these problems by introducing online fairness certificates, which verify that a model is fair with respect to data received by the service provider online during deployment. We then present OATH, a deployably efficient and scalable zero-knowledge proof protocol for confidential online group fairness certification. OATH exploits statistical properties of group fairness via a cut-and-choose style protocol, enabling scalability improvements over baselines.
♻ ☆ Revisiting Agnostic Boosting NeurIPS 2025
Boosting is a key method in statistical learning, allowing for converting weak learners into strong ones. While well studied in the realizable case, the statistical properties of weak-to-strong learning remain less understood in the agnostic setting, where there are no assumptions on the distribution of the labels. In this work, we propose a new agnostic boosting algorithm with substantially improved sample complexity compared to prior works under very general assumptions. Our approach is based on a reduction to the realizable case, followed by a margin-based filtering of high-quality hypotheses. Furthermore, we show a nearly-matching lower bound, settling the sample complexity of agnostic boosting up to logarithmic factors.
comment: Camera-ready version: NeurIPS 2025
♻ ☆ Multi-turn Training with Basic Human Feedback Helps Little on LLM Reasoning
The reasoning capabilities of Large Language Models (LLMs) are typically developed through the single-turn reinforcement learning, whereas real-world applications often involve multi-turn interactions with human feedback, leading to a potential mismatch between training and deployment conditions. In this work, we study whether multi-turn training with human feedback is necessary for reasoning tasks. We compare conventional single-turn training with three multi-turn strategies and reach contrary conclusions to previous research. We find that models trained in a single-turn setting generalize effectively to both single- and multi-turn evaluations, while models trained with multi-turn strategies exhibit a significant degradation in single-turn reasoning performance. These results suggest that for tasks with complete information, robust single-turn training remains more effective and reliable, as multi-turn training with basic feedback provides limited benefits and can even degrade reasoning capabilities.
♻ ☆ A critical assessment of reinforcement learning methods for microswimmer navigation in complex flows
Navigating in a fluid flow while being carried by it, using only information accessible from on-board sensors, is a problem commonly faced by small planktonic organisms. It is also directly relevant to autonomous robots deployed in the oceans. In the last ten years, the fluid mechanics community has widely adopted reinforcement learning, often in the form of its simplest implementations, to address this challenge. But it is unclear how good are the strategies learned by these algorithms. In this paper, we perform a quantitative assessment of reinforcement learning methods applied to navigation in partially observable flows. We first introduce a well-posed problem of directional navigation for which a quasi-optimal policy is known analytically. We then report on the poor performance and robustness of commonly used algorithms (Q-Learning, Advantage Actor Critic) in flows regularly encountered in the literature: Taylor-Green vortices, Arnold-Beltrami-Childress flow, and two-dimensional turbulence. We show that they are vastly surpassed by PPO (Proximal Policy Optimization), a more advanced algorithm that has established dominance across a wide range of benchmarks in the reinforcement learning community. In particular, our custom implementation of PPO matches the theoretical quasi-optimal performance in turbulent flow and does so in a robust manner. Reaching this result required the use of several additional techniques, such as vectorized environments and generalized advantage estimation, as well as hyperparameter optimization. This study demonstrates the importance of algorithm selection, implementation details, and fine-tuning for discovering truly smart autonomous navigation strategies in complex flows.
♻ ☆ Zero-shot protein stability prediction by inverse folding models: a free energy interpretation
Inverse folding models have proven to be highly effective zero-shot predictors of protein stability. Despite this success, the link between the amino acid preferences of an inverse folding model and the free-energy considerations underlying thermodynamic stability remains incompletely understood. A better understanding would be of interest not only from a theoretical perspective, but also potentially provide the basis for stronger zero-shot stability prediction. In this paper, we take steps to clarify the free-energy foundations of inverse folding models. Our derivation reveals the standard practice of likelihood ratios as a simplistic approximation and suggests several paths towards better estimates of the relative stability. We empirically assess these approaches and demonstrate that considerable gains in zero-shot performance can be achieved with fairly simple means.
♻ ☆ Automatic Music Sample Identification with Multi-Track Contrastive Learning
Sampling, the technique of reusing pieces of existing audio tracks to create new music content, is a very common practice in modern music production. In this paper, we tackle the challenging task of automatic sample identification, that is, detecting such sampled content and retrieving the material from which it originates. To do so, we adopt a self-supervised learning approach that leverages a multi-track dataset to create positive pairs of artificial mixes, and design a novel contrastive learning objective. We show that such method significantly outperforms previous state-of-the-art baselines, that is robust to various genres, and that scales well when increasing the number of noise songs in the reference database. In addition, we extensively analyze the contribution of the different components of our training pipeline and highlight, in particular, the need for high-quality separated stems for this task.
♻ ☆ Generalization Bounds for Robust Contrastive Learning: From Theory to Practice
Contrastive Learning first extracts features from unlabeled data, followed by linear probing with labeled data. Adversarial Contrastive Learning (ACL) integrates Adversarial Training into the first phase to enhance feature robustness against attacks in the probing phase. While ACL has shown strong empirical results, its theoretical understanding remains limited. Furthermore, while a fair amount of theoretical works analyze how the unsupervised loss can support the supervised loss in the probing phase, none has examined its role to the robust supervised loss. To fill this gap, our work develops rigorous theories to identify which components in the unsupervised training can help improve the robust supervised loss. Specifically, besides the adversarial contrastive loss, we reveal that the benign one, along with a global divergence between benign and adversarial examples can also improve robustness. Proper experiments are conducted to justify our findings.
comment: 13 pages, 1 figure, 4 tables
♻ ☆ Permutation Equivariant Neural Controlled Differential Equations for Dynamic Graph Representation Learning
Dynamic graphs exhibit complex temporal dynamics due to the interplay between evolving node features and changing network structures. Recently, Graph Neural Controlled Differential Equations (Graph Neural CDEs) successfully adapted Neural CDEs from paths on Euclidean domains to paths on graph domains. Building on this foundation, we introduce Permutation Equivariant Neural Graph CDEs, which project Graph Neural CDEs onto permutation equivariant function spaces. This significantly reduces the model's parameter count without compromising representational power, resulting in more efficient training and improved generalisation. We empirically demonstrate the advantages of our approach through experiments on simulated dynamical systems and real-world tasks, showing improved performance in both interpolation and extrapolation scenarios.
♻ ☆ FlightKooba: A Fast Interpretable FTP Model
Flight trajectory prediction (FTP) and similar time series tasks typically require capturing smooth latent dynamics hidden within noisy signals. However, existing deep learning models face significant challenges of high computational cost and insufficient interpretability due to their complex black-box nature. This paper introduces FlightKooba, a novel modeling approach designed to extract such underlying dynamics analytically. Our framework uniquely integrates HiPPO theory, Koopman operator theory, and control theory. By leveraging Legendre polynomial bases, it constructs Koopman operators analytically, thereby avoiding large-scale parameter training. The method's core strengths lie in its exceptional computational efficiency and inherent interpretability. Experiments on multiple public datasets validate our design philosophy: for signals exhibiting strong periodicity or clear physical laws (e.g., in aviation, meteorology, and traffic flow), FlightKooba delivers competitive prediction accuracy while reducing trainable parameters by several orders of magnitude and achieving the fastest training speed. Furthermore, we analyze the model's theoretical boundaries, clarifying its inherent low-pass filtering characteristics that render it unsuitable for sequences dominated by high-frequency noise. In summary, FlightKooba offers a powerful, efficient, and interpretable new alternative for time series analysis, particularly in resource-constrained environments.
comment: Version 2: Major revision of the manuscript to refine the narrative, clarify the model's theoretical limitations and application scope, and improve overall presentation for journal submission
♻ ☆ GVPO: Group Variance Policy Optimization for Large Language Model Post-Training NeurIPS 2025
Post-training plays a crucial role in refining and aligning large language models to meet specific tasks and human preferences. While recent advancements in post-training techniques, such as Group Relative Policy Optimization (GRPO), leverage increased sampling with relative reward scoring to achieve superior performance, these methods often suffer from training instability that limits their practical adoption. As a next step, we present Group Variance Policy Optimization (GVPO). GVPO incorporates the analytical solution to KL-constrained reward maximization directly into its gradient weights, ensuring alignment with the optimal policy. The method provides intuitive physical interpretations: its gradient mirrors the mean squared error between the central distance of implicit rewards and that of actual rewards. GVPO offers two key advantages: (1) it guarantees a unique optimal solution, exactly the KL-constrained reward maximization objective, (2) it supports flexible sampling distributions that avoids on-policy and importance sampling limitations. By unifying theoretical guarantees with practical adaptability, GVPO establishes a new paradigm for reliable and versatile LLM post-training.
comment: Accepted by NeurIPS 2025
♻ ☆ Echo State Transformer: Attention Over Finite Memories
While Large Language Models and their underlying Transformer architecture are remarkably efficient, they do not reflect how our brain processes and learns a diversity of cognitive tasks such as language and working memory. Furthermore, sequential data processing with Transformers encounters a fundamental barrier: quadratic complexity growth with sequence length. Motivated by these limitations, our ambition is to create more efficient models that are less reliant on intensive computations. We introduce Echo State Transformers (EST), a hybrid architecture that elegantly resolves this challenge while demonstrating exceptional performance in classification and detection tasks. EST integrates the Transformer attention mechanisms with principles from Reservoir Computing to create a fixed-size window distributed memory system. Drawing inspiration from Echo State Networks, the most prominent instance of the Reservoir Computing paradigm, our approach leverages reservoirs (random recurrent networks) as a lightweight and efficient memory. Our architecture integrates a new module called ''Working Memory'' based on several reservoirs working in parallel. These reservoirs work as independent working memory units with distinct internal dynamics. A novelty here is that the classical reservoir hyperparameters, controlling the dynamics, are now trained. Thus, the EST dynamically adapts the reservoir memory/non-linearity trade-off. Thanks to these working memory units, EST achieves constant computational complexity at each processing step, effectively breaking the quadratic scaling problem of standard Transformers. We evaluate ESTs on a recent challenging timeseries benchmark: the Time Series Library, which comprises 69 tasks across five categories. Results show that ESTs ranks first overall in two of five categories, outperforming strong state-of-the-art baselines on classification and anomaly detection tasks, while remaining competitive on short-term forecasting. These results position ESTs as a compelling alternative for time-series classification and anomaly detection, and a practical complement to transformer-style models in applications that prioritize robust representations and sensitive event detection.
♻ ☆ Diffusion Generative Modeling on Lie Group Representations NeurIPS 2025
We introduce a novel class of score-based diffusion processes that operate directly in the representation space of Lie groups. Leveraging the framework of Generalized Score Matching, we derive a class of Langevin dynamics that decomposes as a direct sum of Lie algebra representations, enabling the modeling of any target distribution on any (non-Abelian) Lie group. Standard score-matching emerges as a special case of our framework when the Lie group is the translation group. We prove that our generalized generative processes arise as solutions to a new class of paired stochastic differential equations (SDEs), introduced here for the first time. We validate our approach through experiments on diverse data types, demonstrating its effectiveness in real-world applications such as SO(3)-guided molecular conformer generation and modeling ligand-specific global SE(3) transformations for molecular docking, showing improvement in comparison to Riemannian diffusion on the group itself. We show that an appropriate choice of Lie group enhances learning efficiency by reducing the effective dimensionality of the trajectory space and enables the modeling of transitions between complex data distributions.
comment: 29 pages. Accepted as a spotlight paper at NeurIPS 2025
♻ ☆ Can Less Precise Be More Reliable? A Systematic Evaluation of Quantization's Impact on CLIP Beyond Accuracy
The powerful zero-shot generalization capabilities of vision-language models (VLMs) like CLIP have enabled new paradigms for safety-related tasks such as out-of-distribution (OOD) detection. However, additional aspects crucial for the computationally efficient and reliable deployment of CLIP are still overlooked. In particular, the impact of quantization on CLIP's performance beyond accuracy remains underexplored. This work presents a large-scale evaluation of quantization on CLIP models, assessing not only in-distribution accuracy but a comprehensive suite of reliability metrics and revealing counterintuitive results driven by pre-training source. We demonstrate that quantization consistently improves calibration for typically underconfident pre-trained models, while often degrading it for overconfident variants. Intriguingly, this degradation in calibration does not preclude gains in other reliability metrics; we find that OOD detection can still improve for these same poorly calibrated models. Furthermore, we identify specific quantization-aware training (QAT) methods that yield simultaneous gains in zero-shot accuracy, calibration, and OOD robustness, challenging the view of a strict efficiency-performance trade-off. These findings offer critical insights for navigating the multi-objective problem of deploying efficient, reliable, and robust VLMs by utilizing quantization beyond its conventional role.
comment: Preprint, under peer review
♻ ☆ Enforcing Calibration in Multi-Output Probabilistic Regression with Pre-rank Regularization
Probabilistic models must be well calibrated to support reliable decision-making. While calibration in single-output regression is well studied, defining and achieving multivariate calibration in multi-output regression remains considerably more challenging. The existing literature on multivariate calibration primarily focuses on diagnostic tools based on pre-rank functions, which are projections that reduce multivariate prediction-observation pairs to univariate summaries to detect specific types of miscalibration. In this work, we go beyond diagnostics and introduce a general regularization framework to enforce multivariate calibration during training for arbitrary pre-rank functions. This framework encompasses existing approaches such as highest density region calibration and copula calibration. Our method enforces calibration by penalizing deviations of the projected probability integral transforms (PITs) from the uniform distribution, and can be added as a regularization term to the loss function of any probabilistic predictor. Specifically, we propose a regularization loss that jointly enforces both marginal and multivariate pre-rank calibration. We also introduce a new PCA-based pre-rank that captures calibration along directions of maximal variance in the predictive distribution, while also enabling dimensionality reduction. Across 18 real-world multi-output regression datasets, we show that unregularized models are consistently miscalibrated, and that our methods significantly improve calibration across all pre-rank functions without sacrificing predictive accuracy.
♻ ☆ Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens NeurIPS25
Concept-based Models are neural networks that learn a concept extractor to map inputs to high-level concepts and an inference layer to translate these into predictions. Ensuring these modules produce interpretable concepts and behave reliably in out-of-distribution is crucial, yet the conditions for achieving this remain unclear. We study this problem by establishing a novel connection between Concept-based Models and reasoning shortcuts (RSs), a common issue where models achieve high accuracy by learning low-quality concepts, even when the inference layer is fixed and provided upfront. Specifically, we extend RSs to the more complex setting of Concept-based Models and derive theoretical conditions for identifying both the concepts and the inference layer. Our empirical results highlight the impact of RSs and show that existing methods, even combined with multiple natural mitigation strategies, often fail to meet these conditions in practice.
comment: Accepted at NeurIPS25
♻ ☆ Continental-scale habitat distribution modelling with multimodal earth observation foundation models
Habitats integrate the abiotic conditions, vegetation composition and structure that support biodiversity and sustain nature's contributions to people. Most habitats face mounting pressures from human activities, which requires accurate, high-resolution habitat mapping for effective conservation and restoration. Yet, current habitat maps often fall short in thematic or spatial resolution because they must (1) model several mutually exclusive habitat types that co-occur across landscapes and (2) cope with severe class imbalance that complicates exhaustive multi-class training. Here, we evaluated how high-resolution remote sensing (RS) data and Artificial Intelligence (AI) tools can improve habitat mapping across large geographical extents at fine spatial and thematic resolution. Using vegetation plots from the European Vegetation Archive, we modelled the distribution of Level 3 EUNIS habitat types across Europe and assessed multiple modelling strategies against independent validation datasets. Strategies that exploited the hierarchical nature of habitat classifications resolved classification ambiguities, especially in fragmented habitats. Integrating satellite-borne multispectral and radar imagery, particularly through Earth Observation (EO) Foundation models (EO-FMs), enhanced within-formation discrimination and overall performance. Finally, ensemble machine learning that corrects class imbalance boosted predictive accuracy even further. Our methodological framework is transferable beyond Europe and adaptable to other classification systems. Future research should advance temporal modelling of habitat dynamics, extend to habitat segmentation and quality assessment, and exploit next-generation EO data paired with higher-quality in situ observations.
♻ ☆ First SFT, Second RL, Third UPT: Continual Improving Multi-Modal LLM Reasoning via Unsupervised Post-Training NeurIPS 2025
Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL), which require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. This limitation has motivated a growing interest in unsupervised paradigms as a third stage of post-training after SFT and RL. While recent efforts have explored this direction, their methods are complex and difficult to iterate. To address this, we propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs, enabling continual self-improvement without any external supervision. The training method of MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that such training method effectively improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3\%$\rightarrow$72.9\% on MathVista, 62.9\%$\rightarrow$68.7\% on We-Math), using standard dataset without ground truth labels. To further explore scalability, we extend our framework to a data self-generation setting, designing two strategies that prompt the MLLM to synthesize new training samples on its own. Additional experiments show that combining these synthetic data with the unsupervised training method can also boost performance, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for autonomous enhancement of MLLMs, serving as a critical third step after initial SFT and RL in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.
comment: Accepted by NeurIPS 2025
♻ ☆ Uncovering Singularities in Feynman Integrals via Machine Learning
We introduce a machine-learning framework based on symbolic regression to extract the full symbol alphabet of multi-loop Feynman integrals. By targeting the analytic structure rather than reduction, the method is broadly applicable and interpretable across different families of integrals. It successfully reconstructs complete symbol alphabets in nontrivial examples, demonstrating both robustness and generality. Beyond accelerating computations case by case, it uncovers the analytic structure universally. This framework opens new avenues for multi-loop amplitude analysis and provides a versatile tool for exploring scattering amplitudes.
♻ ☆ Analog Foundation Models NeurIPS
Analog in-memory computing (AIMC) is a promising compute paradigm to improve speed and power efficiency of neural network inference beyond the limits of conventional von Neumann-based architectures. However, AIMC introduces fundamental challenges such as noisy computations and strict constraints on input and output quantization. Because of these constraints and imprecisions, off-the-shelf LLMs are not able to achieve 4-bit-level performance when deployed on AIMC-based hardware. While researchers previously investigated recovering this accuracy gap on small, mostly vision-based models, a generic method applicable to LLMs pre-trained on trillions of tokens does not yet exist. In this work, we introduce a general and scalable method to robustly adapt LLMs for execution on noisy, low-precision analog hardware. Our approach enables state-of-the-art models $\unicode{x2013}$ including Phi-3-mini-4k-instruct and Llama-3.2-1B-Instruct $\unicode{x2013}$ to retain performance comparable to 4-bit weight, 8-bit activation baselines, despite the presence of analog noise and quantization constraints. Additionally, we show that as a byproduct of our training methodology, analog foundation models can be quantized for inference on low-precision digital hardware. Finally, we show that our models also benefit from test-time compute scaling, showing better scaling behavior than models trained with 4-bit weight and 8-bit static input quantization. Our work bridges the gap between high-capacity LLMs and efficient analog hardware, offering a path toward energy-efficient foundation models. Code is available at https://github.com/IBM/analog-foundation-models.
comment: Neural Information Processing Systems (NeurIPS) 2025
♻ ☆ Fairness under Competition NeurIPS 2025
Algorithmic fairness has emerged as a central issue in ML, and it has become standard practice to adjust ML algorithms so that they will satisfy fairness requirements such as Equal Opportunity. In this paper we consider the effects of adopting such fair classifiers on the overall level of ecosystem fairness. Specifically, we introduce the study of fairness with competing firms, and demonstrate the failure of fair classifiers in yielding fair ecosystems. Our results quantify the loss of fairness in systems, under a variety of conditions, based on classifiers' correlation and the level of their data overlap. We show that even if competing classifiers are individually fair, the ecosystem's outcome may be unfair; and that adjusting biased algorithms to improve their individual fairness may lead to an overall decline in ecosystem fairness. In addition to these theoretical results, we also provide supporting experimental evidence. Together, our model and results provide a novel and essential call for action.
comment: Accepted to NeurIPS 2025
♻ ☆ Efficient Resource-Constrained Training of Vision Transformers via Subspace Optimization
As AI increasingly shapes daily life, energy consumption and data privacy have become pressing concerns. On-device learning trains models directly on edge devices, cutting energy consumption and safeguarding data privacy. However, the expanding scale of modern neural networks creates a major obstacle for on-device training. Although prior work has concentrated on compact convolutional architectures, we instead apply subspace-based training to transformer models. Motivated by the idea that a model's essential information lies in a fixed subspace, we introduce Weight-Activation Subspace Iteration (WASI), a method that mitigates the memory bottleneck of backpropagation and boosts inference efficiency in transformer models by restricting training to this subspace. Our results demonstrate that WASI maintains accuracy comparable to vanilla training while reducing memory usage by up to $62\times$ and computational cost (FLOPs) by up to $2\times$. On a Raspberry Pi 5, WASI achieves roughly $1.5\times$ faster training and inference than vanilla training.
♻ ☆ Improving Video Generation with Human Feedback
Video generation has achieved significant advances through rectified flow techniques, but issues like unsmooth motion and misalignment between videos and prompts persist. In this work, we develop a systematic pipeline that harnesses human feedback to mitigate these problems and refine the video generation model. Specifically, we begin by constructing a large-scale human preference dataset focused on modern video generation models, incorporating pairwise annotations across multi-dimensions. We then introduce VideoReward, a multi-dimensional video reward model, and examine how annotations and various design choices impact its rewarding efficacy. From a unified reinforcement learning perspective aimed at maximizing reward with KL regularization, we introduce three alignment algorithms for flow-based models. These include two training-time strategies: direct preference optimization for flow (Flow-DPO) and reward weighted regression for flow (Flow-RWR), and an inference-time technique, Flow-NRG, which applies reward guidance directly to noisy videos. Experimental results indicate that VideoReward significantly outperforms existing reward models, and Flow-DPO demonstrates superior performance compared to both Flow-RWR and supervised fine-tuning methods. Additionally, Flow-NRG lets users assign custom weights to multiple objectives during inference, meeting personalized video quality needs.
comment: https://github.com/KwaiVGI/VideoAlign
♻ ☆ MPX: Mixed Precision Training for JAX
Mixed-precision training has emerged as an indispensable tool for enhancing the efficiency of neural network training in recent years. Concurrently, JAX has grown in popularity as a versatile machine learning toolbox. However, it currently lacks robust support for mixed-precision training. We propose MPX, a mixed-precision training toolbox for JAX that simplifies and accelerates the training of large-scale neural networks while preserving model accuracy. MPX seamlessly integrates with popular toolboxes such as Equinox and Flax, allowing users to convert full-precision pipelines to mixed-precision versions with minimal modifications. By casting both inputs and outputs to half precision, and introducing a dynamic loss-scaling mechanism, MPX alleviates issues like gradient underflow and overflow that commonly arise in half precision computations. Its design inherits critical features from JAX's type-promotion behavior, ensuring that operations take place in the correct precision and allowing for selective enforcement of full precision where needed (e.g., sums, means, or softmax). MPX further provides wrappers for automatic creation and management of mixed-precision gradients and optimizers, enabling straightforward integration into existing JAX training pipelines. MPX's source code, documentation, and usage examples are available at github.com/Data-Science-in-Mechanical-Engineering/mixed_precision_for_JAX .
Multimedia
☆ MMSD3.0: A Multi-Image Benchmark for Real-World Multimodal Sarcasm Detection
Despite progress in multimodal sarcasm detection, existing datasets and methods predominantly focus on single-image scenarios, overlooking potential semantic and affective relations across multiple images. This leaves a gap in modeling cases where sarcasm is triggered by multi-image cues in real-world settings. To bridge this gap, we introduce MMSD3.0, a new benchmark composed entirely of multi-image samples curated from tweets and Amazon reviews. We further propose the Cross-Image Reasoning Model (CIRM), which performs targeted cross-image sequence modeling to capture latent inter-image connections. In addition, we introduce a relevance-guided, fine-grained cross-modal fusion mechanism based on text-image correspondence to reduce information loss during integration. We establish a comprehensive suite of strong and representative baselines and conduct extensive experiments, showing that MMSD3.0 is an effective and reliable benchmark that better reflects real-world conditions. Moreover, CIRM demonstrates state-of-the-art performance across MMSD, MMSD2.0 and MMSD3.0, validating its effectiveness in both single-image and multi-image scenarios.
☆ Enabling American Sign Language Communication Under Low Data Rates
In recent years, video conferencing applications have become increasingly prevalent, relying heavily on high-speed internet connectivity. When such connectivity is lacking, users often default to audio-only communication, a mode that significantly disadvantages American Sign Language (ASL) users, whose communication relies on hand gestures, body movement, and facial expressions. In this work, we introduce VC4ASL, a system designed to enable ASL communication over the audio channel of existing video conferencing applications, even in the absence of reliable video. VC4ASL integrates seamlessly with current platforms without requiring any modifications. Our approach establishes a communication channel through audio by encoding and transmitting human pose information, which is then rendered to reconstruct signed content. We propose novel receive-side error detection and correction mechanisms that exploit the inherent structural constraints of human pose data. To evaluate the system, we simulate network-degraded environments, generate pose-based ASL video sequences, and conduct user studies to assess comprehension among ASL users. Experimental results demonstrate that VC4ASL effectively facilitates intelligible ASL communication over audio in low-bandwidth scenarios where video transmission is impaired.
♻ ☆ TEn-CATG:Text-Enriched Audio-Visual Video Parsing with Multi-Scale Category-Aware Temporal Graph
Audio-visual video parsing (AVVP) aims to detect event categories and their temporal boundaries in videos, typically under weak supervision. Existing methods mainly focus on (i) improving temporal modeling using attention-based architectures or (ii) generating richer pseudo-labels to address the absence of frame-level annotations. However, attention-based models often overfit noisy pseudo-labels, leading to cumulative training errors, while pseudo-label generation approaches distribute attention uniformly across frames, weakening temporal localization accuracy. To address these challenges, we propose TEn-CATG, a text-enriched AVVP framework that combines semantic calibration with category-aware temporal reasoning. More specifically, we design a bi-directional text fusion (BiT) module by leveraging audio-visual features as semantic anchors to refine text embeddings, which departs from conventional text-to-feature alignment, thereby mitigating noise and enhancing cross-modal consistency. Furthermore, we introduce the category-aware temporal graph (CATG) module to model temporal relationships by selecting multi-scale temporal neighbors and learning category-specific temporal decay factors, enabling effective event-dependent temporal reasoning. Extensive experiments demonstrate that TEn-CATG achieves state-of-the-art results across multiple evaluation metrics on benchmark datasets LLP and UnAV-100, highlighting its robustness and superior ability to capture complex temporal and semantic dependencies in weakly supervised AVVP tasks.
♻ ☆ Robust Modality-incomplete Anomaly Detection: A Modality-instructive Framework with Benchmark
Multimodal Industrial Anomaly Detection (MIAD), which utilizes 3D point clouds and 2D RGB images to identify abnormal regions in products, plays a crucial role in industrial quality inspection. However, traditional MIAD settings assume that all 2D and 3D modalities are paired, ignoring the fact that multimodal data collected from the real world is often imperfect due to missing modalities. Additionally, models trained on modality-incomplete data are prone to overfitting. Therefore, MIAD models that demonstrate robustness against modality-incomplete data are highly desirable in practice. To address this, we introduce a pioneering study that comprehensively investigates Modality-Incomplete Industrial Anomaly Detection (MIIAD), and under the guidance of experts, we construct the MIIAD Bench with rich modality-missing settings to account for imperfect learning environments with incomplete multimodal information. As expected, we find that most existing MIAD methods perform poorly on the MIIAD Bench, leading to significant performance degradation. To tackle this challenge, we propose a novel two-stage Robust modAlity-aware fusing and Detecting framewoRk, abbreviated as RADAR. Specifically: i) We propose Modality-incomplete Instruction to guide the multimodal Transformer to robustly adapt to various modality-incomplete scenarios, and implement adaptive parameter learning based on HyperNetwork. ii) Then, we construct a Double-Pseudo Hybrid Module to highlight the uniqueness of modality combinations, mitigating overfitting issues and further enhancing the robustness of the MIIAD model. Our experimental results demonstrate that the proposed RADAR significantly outperforms traditional MIAD methods on our newly created MIIAD dataset, proving its practical application value.
♻ ☆ CMIE: Combining MLLM Insights with External Evidence for Explainable Out-of-Context Misinformation Detection
Multimodal large language models (MLLMs) have demonstrated impressive capabilities in visual reasoning and text generation. While previous studies have explored the application of MLLM for detecting out-of-context (OOC) misinformation, our empirical analysis reveals two persisting challenges of this paradigm. Evaluating the representative GPT-4o model on direct reasoning and evidence augmented reasoning, results indicate that MLLM struggle to capture the deeper relationships-specifically, cases in which the image and text are not directly connected but are associated through underlying semantic links. Moreover, noise in the evidence further impairs detection accuracy. To address these challenges, we propose CMIE, a novel OOC misinformation detection framework that incorporates a Coexistence Relationship Generation (CRG) strategy and an Association Scoring (AS) mechanism. CMIE identifies the underlying coexistence relationships between images and text, and selectively utilizes relevant evidence to enhance misinformation detection. Experimental results demonstrate that our approach outperforms existing methods.
♻ ☆ From ID-based to ID-free: Rethinking ID Effectiveness in Multimodal Collaborative Filtering Recommendation
Most existing multimodal collaborative filtering recommendation (MCFRec) methods rely heavily on ID features and multimodal content to enhance recommendation performance. However, this paper reveals that ID features are effective but have limited benefits in multimodal collaborative filtering recommendation. Therefore, this paper systematically deconstruct the pros and cons of ID features: (i) they provide initial embedding but lack semantic richness, (ii) they provide a unique identifier for each user and item but hinder generalization to untrained data, and (iii) they assist in aligning and fusing multimodal features but may lead to representation shift. Based on these insights, this paper proposes IDFREE, an ID-free multimodal collaborative Filtering REcommEndation baseline. IDFREE replaces ID features with multimodal features and positional encodings to generate semantically meaningful ID-free embeddings. For ID-free multimodal collaborative filtering, it further proposes an adaptive similarity graph module to construct dynamic user-user and item-item graphs based on multimodal features. Then, an augmented user-item graph encoder is proposed to construct more effective user and item encoding. Finally, IDFREE achieves inter-multimodal alignment based on the contrastive learning and uses Softmax loss as recommendation loss. Basic experiments on three public datasets demonstrate that IDFREE outperforms existing ID-based MCFRec methods, achieving an average performance gain of 72.24% across standard metrics (Recall@5, 10, 20, 50 and NDCG@5, 10, 20, 50). Exploratory and extended experiments further validate our findings on the limitations of ID features in MCFRec. The code is released at https://github.com/G-H-Li/IDFREE.
comment: We identified that our current approach achieves its reported performance only under specific data conditions, and its robustness is weaker than we initially expected
♻ ☆ ControlText: Unlocking Controllable Fonts in Multilingual Text Rendering without Font Annotations EMNLP
This work demonstrates that diffusion models can achieve font-controllable multilingual text rendering using just raw images without font label annotations.Visual text rendering remains a significant challenge. While recent methods condition diffusion on glyphs, it is impossible to retrieve exact font annotations from large-scale, real-world datasets, which prevents user-specified font control. To address this, we propose a data-driven solution that integrates the conditional diffusion model with a text segmentation model, utilizing segmentation masks to capture and represent fonts in pixel space in a self-supervised manner, thereby eliminating the need for any ground-truth labels and enabling users to customize text rendering with any multilingual font of their choice. The experiment provides a proof of concept of our algorithm in zero-shot text and font editing across diverse fonts and languages, providing valuable insights for the community and industry toward achieving generalized visual text rendering. Code is available at github.com/bowen-upenn/ControlText.
comment: The 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP) Findings
Computation and Language
☆ Batch Speculative Decoding Done Right
Speculative decoding speeds up LLM inference by using a small draft model to propose multiple tokens that a target model verifies in parallel. Extending this idea to batches is essential for production serving, but it introduces the ragged tensor problem: sequences in the same batch accept different numbers of draft tokens, breaking right-alignment and corrupting position IDs, attention masks, and KV-cache state. We show that several existing batch implementations violate output equivalence-the fundamental requirement that speculative decoding must produce identical token sequences to standard autoregressive generation. These violations occur precisely due to improper handling of the ragged tensor problem. In response, we (1) characterize the synchronization requirements that guarantee correctness, (2) present a correctness-first batch speculative decoding EQSPEC that exposes realignment as consuming 40% of overhead, and (3) introduce EXSPEC, which maintains a sliding pool of sequences and dynamically forms same-length groups, to reduce the realignment overhead while preserving per-sequence speculative speedups. On the SpecBench dataset, across Vicuna-7B/68M, Qwen3-8B/0.6B, and GLM-4-9B/0.6B target/draft pairs, our approach achieves up to 3$\times$ throughput improvement at batch size 8 compared to batch size 1, with efficient scaling through batch size 8, while maintaining 95% output equivalence. Our method requires no custom kernels and integrates cleanly with existing inference stacks. Our code is available at https://github.com/eBay/spec_dec.
☆ A Comprehensive Dataset for Human vs. AI Generated Text Detection AAAI 2025
The rapid advancement of large language models (LLMs) has led to increasingly human-like AI-generated text, raising concerns about content authenticity, misinformation, and trustworthiness. Addressing the challenge of reliably detecting AI-generated text and attributing it to specific models requires large-scale, diverse, and well-annotated datasets. In this work, we present a comprehensive dataset comprising over 58,000 text samples that combine authentic New York Times articles with synthetic versions generated by multiple state-of-the-art LLMs including Gemma-2-9b, Mistral-7B, Qwen-2-72B, LLaMA-8B, Yi-Large, and GPT-4-o. The dataset provides original article abstracts as prompts, full human-authored narratives. We establish baseline results for two key tasks: distinguishing human-written from AI-generated text, achieving an accuracy of 58.35\%, and attributing AI texts to their generating models with an accuracy of 8.92\%. By bridging real-world journalistic content with modern generative models, the dataset aims to catalyze the development of robust detection and attribution methods, fostering trust and transparency in the era of generative AI. Our dataset is available at: https://huggingface.co/datasets/gsingh1-py/train.
comment: Defactify4 @AAAI 2025
☆ Interpreting and Mitigating Unwanted Uncertainty in LLMs
Despite their impressive capabilities, Large Language Models (LLMs) exhibit unwanted uncertainty, a phenomenon where a model changes a previously correct answer into an incorrect one when re-prompted. This behavior undermines trust and poses serious risks in high-stakes domains. In this work, we investigate the mechanisms that drive this phenomenon. We adapt the Needle-in-a-Haystack retrieval framework and integrate a Flip-style re-evaluation prompt to simulate realistic answer-flipping scenarios. We find that retrieval heads are not primarily responsible for avoiding uncertainty. Instead, we identify a small set of non-retrieval attention heads that disproportionately attend to misleading tokens in uncertain contexts. Masking these heads yields significant improvements, reducing flip behavior by up to 15% without introducing incoherence or overcorrection. However, when tested for downstream tasks, we observe trade-offs with flip behavior. Our findings contribute to the growing field of mechanistic interpretability and present a simple yet effective technique for mitigating uncertainty-driven failure modes in LLMs.
☆ Far from the Shallow: Brain-Predictive Reasoning Embedding through Residual Disentanglement NeurIPS 2025
Understanding how the human brain progresses from processing simple linguistic inputs to performing high-level reasoning is a fundamental challenge in neuroscience. While modern large language models (LLMs) are increasingly used to model neural responses to language, their internal representations are highly "entangled," mixing information about lexicon, syntax, meaning, and reasoning. This entanglement biases conventional brain encoding analyses toward linguistically shallow features (e.g., lexicon and syntax), making it difficult to isolate the neural substrates of cognitively deeper processes. Here, we introduce a residual disentanglement method that computationally isolates these components. By first probing an LM to identify feature-specific layers, our method iteratively regresses out lower-level representations to produce four nearly orthogonal embeddings for lexicon, syntax, meaning, and, critically, reasoning. We used these disentangled embeddings to model intracranial (ECoG) brain recordings from neurosurgical patients listening to natural speech. We show that: 1) This isolated reasoning embedding exhibits unique predictive power, accounting for variance in neural activity not explained by other linguistic features and even extending to the recruitment of visual regions beyond classical language areas. 2) The neural signature for reasoning is temporally distinct, peaking later (~350-400ms) than signals related to lexicon, syntax, and meaning, consistent with its position atop a processing hierarchy. 3) Standard, non-disentangled LLM embeddings can be misleading, as their predictive success is primarily attributable to linguistically shallow features, masking the more subtle contributions of deeper cognitive processing.
comment: Accepted at NeurIPS 2025
☆ Once Upon an Input: Reasoning via Per-Instance Program Synthesis NeurIPS 2025
Large language models (LLMs) excel at zero-shot inference but continue to struggle with complex, multi-step reasoning. Recent methods that augment LLMs with intermediate reasoning steps such as Chain of Thought (CoT) and Program of Thought (PoT) improve performance but often produce undesirable solutions, especially in algorithmic domains. We introduce Per-Instance Program Synthesis (PIPS), a method that generates and refines programs at the instance-level using structural feedback without relying on task-specific guidance or explicit test cases. To further improve performance, PIPS incorporates a confidence metric that dynamically chooses between direct inference and program synthesis on a per-instance basis. Experiments across three frontier LLMs and 30 benchmarks including all tasks of Big Bench Extra Hard (BBEH), visual question answering tasks, relational reasoning tasks, and mathematical reasoning tasks show that PIPS improves the absolute harmonic mean accuracy by up to 8.6% and 9.4% compared to PoT and CoT respectively, and reduces undesirable program generations by 65.1% on the algorithmic tasks compared to PoT with Gemini-2.0-Flash.
comment: Accepted at NeurIPS 2025. 34 pages, 7 figures
☆ Leveraging Large Language Models to Identify Conversation Threads in Collaborative Learning
Understanding how ideas develop and flow in small-group conversations is critical for analyzing collaborative learning. A key structural feature of these interactions is threading, the way discourse talk naturally organizes into interwoven topical strands that evolve over time. While threading has been widely studied in asynchronous text settings, detecting threads in synchronous spoken dialogue remains challenging due to overlapping turns and implicit cues. At the same time, large language models (LLMs) show promise for automating discourse analysis but often struggle with long-context tasks that depend on tracing these conversational links. In this paper, we investigate whether explicit thread linkages can improve LLM-based coding of relational moves in group talk. We contribute a systematic guidebook for identifying threads in synchronous multi-party transcripts and benchmark different LLM prompting strategies for automated threading. We then test how threading influences performance on downstream coding of conversational analysis frameworks, that capture core collaborative actions such as agreeing, building, and eliciting. Our results show that providing clear conversational thread information improves LLM coding performance and underscores the heavy reliance of downstream analysis on well-structured dialogue. We also discuss practical trade-offs in time and cost, emphasizing where human-AI hybrid approaches can yield the best value. Together, this work advances methods for combining LLMs and robust conversational thread structures to make sense of complex, real-time group interactions.
comment: In Submission: Journal of Educational Data Mining (jEDM) 2026
☆ Exploration of Summarization by Generative Language Models for Automated Scoring of Long Essays
BERT and its variants are extensively explored for automated scoring. However, a limit of 512 tokens for these encoder-based models showed the deficiency in automated scoring of long essays. Thus, this research explores generative language models for automated scoring of long essays via summarization and prompting. The results revealed great improvement of scoring accuracy with QWK increased from 0.822 to 0.8878 for the Learning Agency Lab Automated Essay Scoring 2.0 dataset.
comment: 19 pages, 5 Tables 7 Figures, Presentation at Artificial Intelligence in Measurement and Education Conference (AIME-Con)
☆ Cross-Lingual Stability and Bias in Instruction-Tuned Language Models for Humanitarian NLP
Humanitarian organizations face a critical choice: invest in costly commercial APIs or rely on free open-weight models for multilingual human rights monitoring. While commercial systems offer reliability, open-weight alternatives lack empirical validation -- especially for low-resource languages common in conflict zones. This paper presents the first systematic comparison of commercial and open-weight large language models (LLMs) for human-rights-violation detection across seven languages, quantifying the cost-reliability trade-off facing resource-constrained organizations. Across 78,000 multilingual inferences, we evaluate six models -- four instruction-aligned (Claude-Sonnet-4, DeepSeek-V3, Gemini-Flash-2.0, GPT-4.1-mini) and two open-weight (LLaMA-3-8B, Mistral-7B) -- using both standard classification metrics and new measures of cross-lingual reliability: Calibration Deviation (CD), Decision Bias (B), Language Robustness Score (LRS), and Language Stability Score (LSS). Results show that alignment, not scale, determines stability: aligned models maintain near-invariant accuracy and balanced calibration across typologically distant and low-resource languages (e.g., Lingala, Burmese), while open-weight models exhibit significant prompt-language sensitivity and calibration drift. These findings demonstrate that multilingual alignment enables language-agnostic reasoning and provide practical guidance for humanitarian organizations balancing budget constraints with reliability in multilingual deployment.
☆ VEHME: A Vision-Language Model For Evaluating Handwritten Mathematics Expressions EMNLP 2025
Automatically assessing handwritten mathematical solutions is an important problem in educational technology with practical applications, but it remains a significant challenge due to the diverse formats, unstructured layouts, and symbolic complexity of student work. To address this challenge, we introduce VEHME-a Vision-Language Model for Evaluating Handwritten Mathematics Expressions-designed to assess open-form handwritten math responses with high accuracy and interpretable reasoning traces. VEHME integrates a two-phase training pipeline: (i) supervised fine-tuning using structured reasoning data, and (ii) reinforcement learning that aligns model outputs with multi-dimensional grading objectives, including correctness, reasoning depth, and error localization. To enhance spatial understanding, we propose an Expression-Aware Visual Prompting Module, trained on our synthesized multi-line math expressions dataset to robustly guide attention in visually heterogeneous inputs. Evaluated on AIHub and FERMAT datasets, VEHME achieves state-of-the-art performance among open-source models and approaches the accuracy of proprietary systems, demonstrating its potential as a scalable and accessible tool for automated math assessment. Our training and experiment code is publicly available at our GitHub repository.
comment: EMNLP 2025. Project Website: https://vehme.github.io/
☆ How Do AI Agents Do Human Work? Comparing AI and Human Workflows Across Diverse Occupations
AI agents are continually optimized for tasks related to human work, such as software engineering and professional writing, signaling a pressing trend with significant impacts on the human workforce. However, these agent developments have often not been grounded in a clear understanding of how humans execute work, to reveal what expertise agents possess and the roles they can play in diverse workflows. In this work, we study how agents do human work by presenting the first direct comparison of human and agent workers across multiple essential work-related skills: data analysis, engineering, computation, writing, and design. To better understand and compare heterogeneous computer-use activities of workers, we introduce a scalable toolkit to induce interpretable, structured workflows from either human or agent computer-use activities. Using such induced workflows, we compare how humans and agents perform the same tasks and find that: (1) While agents exhibit promise in their alignment to human workflows, they take an overwhelmingly programmatic approach across all work domains, even for open-ended, visually dependent tasks like design, creating a contrast with the UI-centric methods typically used by humans. (2) Agents produce work of inferior quality, yet often mask their deficiencies via data fabrication and misuse of advanced tools. (3) Nonetheless, agents deliver results 88.3% faster and cost 90.4-96.2% less than humans, highlighting the potential for enabling efficient collaboration by delegating easily programmable tasks to agents.
☆ Scalable Supervising Software Agents with Patch Reasoner
While large language model agents have advanced software engineering tasks, the unscalable nature of existing test-based supervision is limiting the potential improvement of data scaling. The reason is twofold: (1) building and running test sandbox is rather heavy and fragile, and (2) data with high-coverage tests is naturally rare and threatened by test hacking via edge cases. In this paper, we propose R4P, a patch verifier model to provide scalable rewards for training and testing SWE agents via reasoning. We consider that patch verification is fundamentally a reasoning task, mirroring how human repository maintainers review patches without writing and running new reproduction tests. To obtain sufficient reference and reduce the risk of reward hacking, R4P uses a group-wise objective for RL training, enabling it to verify multiple patches against each other's modification and gain a dense reward for stable training. R4P achieves 72.2% Acc. for verifying patches from SWE-bench-verified, surpassing OpenAI o3. To demonstrate R4P's practicality, we design and train a lite scaffold, Mini-SE, with pure reinforcement learning where all rewards are derived from R4P. As a result, Mini-SE achieves 26.2% Pass@1 on SWE-bench-verified, showing a 10.0% improvement over the original Qwen3-32B. This can be further improved to 32.8% with R4P for test-time scaling. Furthermore, R4P verifies patches within a second, 50x faster than testing on average. The stable scaling curves of rewards and accuracy along with high efficiency reflect R4P's practicality.
☆ MMPersuade: A Dataset and Evaluation Framework for Multimodal Persuasion
As Large Vision-Language Models (LVLMs) are increasingly deployed in domains such as shopping, health, and news, they are exposed to pervasive persuasive content. A critical question is how these models function as persuadees-how and why they can be influenced by persuasive multimodal inputs. Understanding both their susceptibility to persuasion and the effectiveness of different persuasive strategies is crucial, as overly persuadable models may adopt misleading beliefs, override user preferences, or generate unethical or unsafe outputs when exposed to manipulative messages. We introduce MMPersuade, a unified framework for systematically studying multimodal persuasion dynamics in LVLMs. MMPersuade contributes (i) a comprehensive multimodal dataset that pairs images and videos with established persuasion principles across commercial, subjective and behavioral, and adversarial contexts, and (ii) an evaluation framework that quantifies both persuasion effectiveness and model susceptibility via third-party agreement scoring and self-estimated token probabilities on conversation histories. Our study of six leading LVLMs as persuadees yields three key insights: (i) multimodal inputs substantially increase persuasion effectiveness-and model susceptibility-compared to text alone, especially in misinformation scenarios; (ii) stated prior preferences decrease susceptibility, yet multimodal information maintains its persuasive advantage; and (iii) different strategies vary in effectiveness across contexts, with reciprocity being most potent in commercial and subjective contexts, and credibility and logic prevailing in adversarial contexts. By jointly analyzing persuasion effectiveness and susceptibility, MMPersuade provides a principled foundation for developing models that are robust, preference-consistent, and ethically aligned when engaging with persuasive multimodal content.
☆ TELL-TALE: Task Efficient LLMs with Task Aware Layer Elimination
In this paper we introduce Tale, Task-Aware Layer Elimination, an inference-time algorithm that prunes entire transformer layers in an LLM by directly optimizing task-specific validation performance. We evaluate TALE on 9 tasks and 5 models, including LLaMA 3.1 8B, Qwen 2.5 7B, Qwen 2.5 0.5B, Mistral 7B, and Lucie 7B, under both zero-shot and few-shot settings. Unlike prior approaches, TALE requires no retraining and consistently improves accuracy while reducing computational cost across all benchmarks. Furthermore, applying TALE during finetuning leads to additional performance gains. Finally, TALE provides flexible user control over trade-offs between accuracy and efficiency. Mutual information analysis shows that certain layers act as bottlenecks, degrading task-relevant representations. Tale's selective layer removal remedies this problem, producing smaller, faster, and more accurate models that are also faster to fine-tune while offering new insights into transformer interpretability.
☆ Iterative Layer Pruning for Efficient Translation Inference
Large language models (LLMs) have transformed many areas of natural language processing, including machine translation. However, efficient deployment of LLMs remains challenging due to their intensive computational requirements. In this paper, we address this challenge and present our submissions to the Model Compression track at the Conference on Machine Translation (WMT 2025). In our experiments, we investigate iterative layer pruning guided by layer importance analysis. We evaluate this method using the Aya-Expanse-8B model for translation from Czech to German, and from English to Egyptian Arabic. Our approach achieves substantial reductions in model size and inference time, while maintaining the translation quality of the baseline models.
comment: WMT 2025
☆ EchoMind: An Interrelated Multi-level Benchmark for Evaluating Empathetic Speech Language Models
Speech Language Models (SLMs) have made significant progress in spoken language understanding. Yet it remains unclear whether they can fully perceive non lexical vocal cues alongside spoken words, and respond with empathy that aligns with both emotional and contextual factors. Existing benchmarks typically evaluate linguistic, acoustic, reasoning, or dialogue abilities in isolation, overlooking the integration of these skills that is crucial for human-like, emotionally intelligent conversation. We present EchoMind, the first interrelated, multi-level benchmark that simulates the cognitive process of empathetic dialogue through sequential, context-linked tasks: spoken-content understanding, vocal-cue perception, integrated reasoning, and response generation. All tasks share identical and semantically neutral scripts that are free of explicit emotional or contextual cues, and controlled variations in vocal style are used to test the effect of delivery independent of the transcript. EchoMind is grounded in an empathy-oriented framework spanning 3 coarse and 12 fine-grained dimensions, encompassing 39 vocal attributes, and evaluated using both objective and subjective metrics. Testing 12 advanced SLMs reveals that even state-of-the-art models struggle with high-expressive vocal cues, limiting empathetic response quality. Analyses of prompt strength, speech source, and ideal vocal cue recognition reveal persistent weaknesses in instruction-following, resilience to natural speech variability, and effective use of vocal cues for empathy. These results underscore the need for SLMs that integrate linguistic content with diverse vocal cues to achieve truly empathetic conversational ability.
comment: Speech Language Models, Spoken Language Understanding, Vocal Cue Perception, Empathetic Dialogue, Benchmark Evaluation
☆ Beyond Semantics: How Temporal Biases Shape Retrieval in Transformer and State-Space Models
In-context learning is governed by both temporal and semantic relationships, shaping how Large Language Models (LLMs) retrieve contextual information. Analogous to human episodic memory, where the retrieval of specific events is enabled by separating events that happened at different times, this work probes the ability of various pretrained LLMs, including transformer and state-space models, to differentiate and retrieve temporally separated events. Specifically, we prompted models with sequences containing multiple presentations of the same token, which reappears at the sequence end. By fixing the positions of these repeated tokens and permuting all others, we removed semantic confounds and isolated temporal effects on next-token prediction. Across diverse sequences, models consistently placed the highest probabilities on tokens following a repeated token, but with a notable bias for those nearest the beginning or end of the input. An ablation experiment linked this phenomenon in transformers to induction heads. Extending the analysis to unique semantic contexts with partial overlap further demonstrated that memories embedded in the middle of a prompt are retrieved less reliably. Despite architectural differences, state-space and transformer models showed comparable temporal biases. Our findings deepen the understanding of temporal biases in in-context learning and offer an illustration of how these biases can enable temporal separation and episodic retrieval.
☆ Multi-Modal Fact-Verification Framework for Reducing Hallucinations in Large Language Models
While Large Language Models have transformed how we interact with AI systems, they suffer from a critical flaw: they confidently generate false information that sounds entirely plausible. This hallucination problem has become a major barrier to deploying these models in real-world applications where accuracy matters. We developed a fact verification framework that catches and corrects these errors in real-time by cross checking LLM outputs against multiple knowledge sources. Our system combines structured databases, live web searches, and academic literature to verify factual claims as they're generated. When we detect inconsistencies, we automatically correct them while preserving the natural flow of the response. Testing across various domains showed we could reduce hallucinations by 67% without sacrificing response quality. Domain experts in healthcare, finance, and scientific research rated our corrected outputs 89% satisfactory a significant improvement over unverified LLM responses. This work offers a practical solution for making LLMs more trustworthy in applications where getting facts wrong isn't an option.
♻ ☆ The Chameleon Nature of LLMs: Quantifying Multi-Turn Stance Instability in Search-Enabled Language Models NeurIPS 2025
Integration of Large Language Models with search/retrieval engines has become ubiquitous, yet these systems harbor a critical vulnerability that undermines their reliability. We present the first systematic investigation of "chameleon behavior" in LLMs: their alarming tendency to shift stances when presented with contradictory questions in multi-turn conversations (especially in search-enabled LLMs). Through our novel Chameleon Benchmark Dataset, comprising 17,770 carefully crafted question-answer pairs across 1,180 multi-turn conversations spanning 12 controversial domains, we expose fundamental flaws in state-of-the-art systems. We introduce two theoretically grounded metrics: the Chameleon Score (0-1) that quantifies stance instability, and Source Re-use Rate (0-1) that measures knowledge diversity. Our rigorous evaluation of Llama-4-Maverick, GPT-4o-mini, and Gemini-2.5-Flash reveals consistent failures: all models exhibit severe chameleon behavior (scores 0.391-0.511), with GPT-4o-mini showing the worst performance. Crucially, small across-temperature variance (less than 0.004) suggests the effect is not a sampling artifact. Our analysis uncovers the mechanism: strong correlations between source re-use rate and confidence (r=0.627) and stance changes (r=0.429) are statistically significant (p less than 0.05), indicating that limited knowledge diversity makes models pathologically deferential to query framing. These findings highlight the need for comprehensive consistency evaluation before deploying LLMs in healthcare, legal, and financial systems where maintaining coherent positions across interactions is critical for reliable decision support.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MTI-LLM @ NeurIPS 2025
♻ ☆ FaithUn: Toward Faithful Forgetting in Language Models by Investigating the Interconnectedness of Knowledge EMNLP 2025
Various studies have attempted to remove sensitive or private knowledge from a language model to prevent its unauthorized exposure. However, prior studies have overlooked the complex and interconnected nature of knowledge, where related knowledge must be carefully examined. Specifically, they have failed to evaluate whether an unlearning method faithfully erases interconnected knowledge that should be removed, retaining knowledge that appears relevant but exists in a completely different context. To resolve this problem, we first define a new concept called superficial unlearning, which refers to the phenomenon where an unlearning method either fails to erase the interconnected knowledge it should remove or unintentionally erases irrelevant knowledge. Based on the definition, we introduce a new benchmark, FaithUn, to analyze and evaluate the faithfulness of unlearning in real-world knowledge QA settings. Furthermore, we propose a novel unlearning method, KLUE, which updates only knowledge-related neurons to achieve faithful unlearning. KLUE identifies knowledge neurons using an explainability method and updates only those neurons using selected unforgotten samples. Experimental results demonstrate that widely-used unlearning methods fail to ensure faithful unlearning, while our method shows significant effectiveness in real-world QA unlearning.
comment: accepted to EMNLP 2025
♻ ☆ Beyond QA Pairs: Assessing Parameter-Efficient Fine-Tuning for Fact Embedding in LLMs AAAI 2025
This paper presents an extensive examination of Parameter-Efficient Fine-Tuning (PEFT) for embedding domain specific facts into Large Language Models (LLMs), focusing on improving the fine-tuning process by categorizing question-answer (QA) pairs into Factual and Conceptual classes using a BERT-based classifier. Two distinct Llama-2 models are fine-tuned based on these classifications and evaluated using larger models like GPT-3.5 Turbo and Gemini. Our results indicate that models trained on conceptual datasets outperform those trained on factual datasets. Additionally, we compare the efficiency of two synthetic fine-tuning dataset generation techniques, D-RAG and D-Naive, with D-Naive demonstrating superior performance. Although PEFT has shown effectiveness, our research indicates that it may not be the most optimal method for embedding facts into LLMs. However, it has demonstrated exceptional performance in instruction-based tasks. Our findings are reinforced by a 1000-sample dataset in the data center domain, where the fine-tuned Llama-2 7B model significantly outperforms the baseline model in generating product recommendations. Our study highlights the importance of QA pair categorization and synthetic dataset generation techniques in enhancing the performance of LLMs in specific domains.
comment: Presented at the Workshop on Preparing Good Data for Generative AI: Challenges and Approaches (Good-Data) in conjunction with AAAI 2025. The authors retain the copyright
♻ ☆ Improving the Distributional Alignment of LLMs using Supervision
The ability to accurately align LLMs with human population groups on subjective questions would have great value. In this work, we show that use of simple supervision can greatly improve language model alignment with diverse population groups more consistently, as measured over three datasets spanning various topics. Beyond evaluating average alignment, we also report how alignment varies across specific groups. Our broad findings provide insights into the distributional alignment of LLMs with diverse population groups. By conducting evaluation over many LLMs and prompting strategies, along with open-sourcing our work, we provide a benchmark to stimulate future research.
♻ ☆ Fine-Grained Preference Optimization Improves Spatial Reasoning in VLMs
Current Vision-Language Models (VLMs) struggle with fine-grained spatial reasoning, particularly when multi-step logic and precise spatial alignment are required. In this work, we introduce SpatialReasoner-R1, a vision-language reasoning model designed to address these limitations. To construct high-quality supervision for spatial reasoning, we design a Multi-Model Monte Carlo Tree Search (M3CTS) method that generates diverse, logically consistent Long Chain-of-Thought (LongCoT) reasoning trajectories. In addition, we propose fine-grained Direct Preference Optimization (fDPO), which introduces segment-specific preference granularity for descriptive grounding and logical reasoning, guided by a spatial reward mechanism that evaluates candidate responses based on visual consistency, spatial grounding, and logical coherence. Experimental results demonstrate that fDPO achieves an average improvement of 4.1% over standard DPO across spatial quality tasks, and a 9.0% gain in spatial quantity tasks. SpatialReasoner-R1, trained with fDPO, sets a new SoTA on SPATIALRGPT-Bench, outperforming the strongest baseline by 9.8% in average accuracy, while maintaining competitive performance on general vision-language tasks.
♻ ☆ Breaking Language Barriers or Reinforcing Bias? A Study of Gender and Racial Disparities in Multilingual Contrastive Vision Language Models AACL 2025
Multilingual vision-language models (VLMs) promise universal image-text retrieval, yet their social biases remain underexplored. We perform the first systematic audit of four public multilingual CLIP variants: M-CLIP, NLLB-CLIP, CAPIVARA-CLIP, and the debiased SigLIP-2, covering ten languages that differ in resource availability and morphological gender marking. Using balanced subsets of FairFace and the PATA stereotype suite in a zero-shot setting, we quantify race and gender bias and measure stereotype amplification. Contrary to the intuition that multilinguality mitigates bias, every model exhibits stronger gender skew than its English-only baseline. CAPIVARA-CLIP shows its largest biases precisely in the low-resource languages it targets, while the shared encoder of NLLB-CLIP and SigLIP-2 transfers English gender stereotypes into gender-neutral languages; loosely coupled encoders largely avoid this leakage. Although SigLIP-2 reduces agency and communion skews, it inherits -- and in caption-sparse contexts (e.g., Xhosa) amplifies -- the English anchor's crime associations. Highly gendered languages consistently magnify all bias types, yet gender-neutral languages remain vulnerable whenever cross-lingual weight sharing imports foreign stereotypes. Aggregated metrics thus mask language-specific hot spots, underscoring the need for fine-grained, language-aware bias evaluation in future multilingual VLM research.
comment: Accepted at IJCNLP-AACL 2025
♻ ☆ Unsupervised Document and Template Clustering using Multimodal Embeddings
We study unsupervised clustering of documents at both the category and template levels using frozen multimodal encoders and classical clustering algorithms. We systematize a model-agnostic pipeline that (i) projects heterogeneous last-layer states from text-layout-vision encoders into token-type-aware document vectors and (ii) performs clustering with centroid- or density-based methods, including an HDBSCAN + $k$-NN assignment to eliminate unlabeled points. We evaluate eight encoders (text-only, layout-aware, vision-only, and vision-language) with $k$-Means, DBSCAN, HDBSCAN + $k$-NN, and BIRCH on five corpora spanning clean synthetic invoices, their heavily degraded print-and-scan counterparts, scanned receipts, and real identity and certificate documents. The study reveals modality-specific failure modes and a robustness-accuracy trade-off, with vision features nearly solving template discovery on clean pages while text dominates under covariate shift, and fused encoders offering the best balance. We detail a reproducible, oracle-free tuning protocol and the curated evaluation settings to guide future work on unsupervised document organization.
comment: 24 pages, 12 figures
♻ ☆ Reasoning is Periodicity? Improving Large Language Models Through Effective Periodicity Modeling NeurIPS'25
Periodicity, as one of the most important basic characteristics, lays the foundation for facilitating structured knowledge acquisition and systematic cognitive processes within human learning paradigms. However, the potential flaws of periodicity modeling in Transformer affect the learning efficiency and establishment of underlying principles from data for large language models (LLMs) built upon it. In this paper, we demonstrate that integrating effective periodicity modeling can improve the learning efficiency and performance of LLMs. We introduce FANformer, which adapts Fourier Analysis Network (FAN) into attention mechanism to achieve efficient periodicity modeling, by modifying the feature projection process of attention mechanism. Extensive experimental results on language modeling show that FANformer consistently outperforms Transformer when scaling up model size and training tokens, underscoring its superior learning efficiency. Our pretrained FANformer-1B exhibits marked improvements on downstream tasks compared to open-source LLMs with similar model parameters or training tokens. Moreover, we reveal that FANformer exhibits superior ability to learn and apply rules for reasoning compared to Transformer. The results position FANformer as an effective and promising architecture for advancing LLMs.
comment: Accepted to NeurIPS'25
♻ ☆ On the Convergence of Moral Self-Correction in Large Language Models
Large Language Models (LLMs) are able to improve their responses when instructed to do so, a capability known as self-correction. When instructions provide only a general and abstract goal without specific details about potential issues in the response, LLMs must rely on their internal knowledge to improve response quality, a process referred to as intrinsic self-correction. The empirical success of intrinsic self-correction is evident in various applications, but how and why it is effective remains unknown. Focusing on moral self-correction in LLMs, we reveal a key characteristic of intrinsic self-correction: performance convergence through multi-round interactions; and provide a mechanistic analysis of this convergence behavior. Based on our experimental results and analysis, we uncover the underlying mechanism of convergence: consistently injected self-correction instructions activate moral concepts that reduce model uncertainty, leading to converged performance as the activated moral concepts stabilize over successive rounds. This paper demonstrates the strong potential of moral self-correction by showing that it exhibits a desirable property of converged performance.
comment: 17 pages, 7 figures
♻ ☆ Exact Coset Sampling for Quantum Lattice Algorithms
We give a simple replacement for the contested "domain-extension" in Step 9 of a recent windowed-QFT lattice algorithm with complex-Gaussian windows (Chen, 2024). As acknowledged by the author, the reported issue is due to a periodicity/support mismatch when extending only the first coordinate in the presence of offsets, which breaks the intended $\mathbb{Z}_P$-fiber. Our new subroutine replaces domain extension by a pair-shift difference that cancels unknown offsets exactly and synthesizes a uniform cyclic subgroup (a zero-offset coset) of order $P$ inside $(\mathbb{Z}_{M_2})^n$. We adopt a gate-level access model and run a short prepass that measures the designated outcome registers (Chen's Steps 1, 3, and 5), fixing $E=(y',z',h^{\ast})$. We then identify a concrete program point $t^{\star}$ at which an index wire $J \in \mathbb{Z}_P$ is preserved and the coordinate block equals $\mathbf{X}(j)\equiv 2D^2 j\,\mathbf{b}^{\ast}+\mathbf{v}^{\ast}\ (\bmod M_2)$. A compute-copy-uncompute sandwich on the prefix up to $t^{\star}$ yields a reversible evaluator that we call only on basis inputs $j=0,1$ to harvest $V=\mathbf{X}(0)$ and $\Delta=\mathbf{X}(1)-\mathbf{X}(0)\equiv 2D^2\mathbf{b}^{\ast}$ within the same run. We never invert a measurement, and we do not claim the circuit suffix after $t^{\star}$. The default Step $9^{\dagger}$ uses only $\Delta$ (no foreknowledge of $\mathbf{b}^\ast$): set $\mathbf{Z}\leftarrow -\,T\cdot \Delta\ (\bmod M_2)$ for uniform $T\in\mathbb{Z}_P$ and erase $T$ coherently primewise by modular inversion and CRT.
comment: Project Page: https://github.com/yifanzhang-pro/quantum-lattice
♻ ☆ FAN: Fourier Analysis Networks NeurIPS'25
Despite the remarkable successes of general-purpose neural networks, such as MLPs and Transformers, we find that they exhibit notable shortcomings in modeling and reasoning about periodic phenomena, achieving only marginal performance within the training domain and failing to generalize effectively to out-of-domain (OOD) scenarios. Periodicity is ubiquitous throughout nature and science. Therefore, neural networks should be equipped with the essential ability to model and handle periodicity. In this work, we propose FAN, a novel neural network that effectively addresses periodicity modeling challenges while offering broad applicability similar to MLP with fewer parameters and FLOPs. Periodicity is naturally integrated into FAN's structure and computational processes by introducing the Fourier Principle. Unlike existing Fourier-based networks, which possess particular periodicity modeling abilities but face challenges in scaling to deeper networks and are typically designed for specific tasks, our approach overcomes this challenge to enable scaling to large-scale models and maintains general-purpose modeling capability. Through extensive experiments, we demonstrate the superiority of FAN in periodicity modeling tasks and the effectiveness and generalizability of FAN across a range of real-world tasks. Moreover, we reveal that compared to existing Fourier-based networks, FAN accommodates both periodicity modeling and general-purpose modeling well.
comment: Accepted to NeurIPS'25
♻ ☆ EuroSpeech: A Multilingual Speech Corpus NeurIPS 2025
Recent progress in speech processing has highlighted that high-quality performance across languages requires substantial training data for each individual language. While existing multilingual datasets cover many languages, they often contain insufficient data for most languages. Thus, trained models perform poorly on the majority of the supported languages. Our work addresses this challenge by introducing a scalable pipeline for constructing speech datasets from parliamentary recordings. The proposed pipeline includes robust components for media retrieval and a two-stage alignment algorithm designed to handle non-verbatim transcripts and long-form audio. Applying this pipeline to recordings from 22 European parliaments, we extract over 61k hours of aligned speech segments, achieving substantial per-language coverage with 19 languages exceeding 1k hours and 22 languages exceeding 500 hours of high-quality speech data. We obtain an average 41.8\% reduction in word error rates over baselines when finetuning an existing ASR model on our dataset, demonstrating the usefulness of our approach.
comment: Published in the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmark
Computer Vision and Pattern Recognition
☆ Seeing the Unseen: Towards Zero-Shot Inspection for Wind Turbine Blades using Knowledge-Augmented Vision Language Models
Wind turbine blades operate in harsh environments, making timely damage detection essential for preventing failures and optimizing maintenance. Drone-based inspection and deep learning are promising, but typically depend on large, labeled datasets, which limit their ability to detect rare or evolving damage types. To address this, we propose a zero-shot-oriented inspection framework that integrates Retrieval-Augmented Generation (RAG) with Vision-Language Models (VLM). A multimodal knowledge base is constructed, comprising technical documentation, representative reference images, and domain-specific guidelines. A hybrid text-image retriever with keyword-aware reranking assembles the most relevant context to condition the VLM at inference, injecting domain knowledge without task-specific training. We evaluate the framework on 30 labeled blade images covering diverse damage categories. Although the dataset is small due to the difficulty of acquiring verified blade imagery, it covers multiple representative defect types. On this test set, the RAG-grounded VLM correctly classified all samples, whereas the same VLM without retrieval performed worse in both accuracy and precision. We further compare against open-vocabulary baselines and incorporate uncertainty Clopper-Pearson confidence intervals to account for the small-sample setting. Ablation studies indicate that the key advantage of the framework lies in explainability and generalizability: retrieved references ground the reasoning process and enable the detection of previously unseen defects by leveraging domain knowledge rather than relying solely on visual cues. This research contributes a data-efficient solution for industrial inspection that reduces dependence on extensive labeled datasets.
Information Retrieval
☆ Civic Ground Truth in News Recommenders: A Method for Public Value Scoring RecSys 2025
Research in news recommendation systems (NRS) continues to explore the best ways to integrate normative goals such as editorial objectives and public service values into existing systems. Prior efforts have incorporated expert input or audience feedback to quantify these values, laying the groundwork for more civic-minded recommender systems. This paper contributes to that trajectory, introducing a method for embedding civic values into NRS through large-scale, structured audience evaluations. The proposed civic ground truth approach aims to generate value-based labels through a nationally representative survey that are generalisable across a wider news corpus, using automated metadata enrichment.
comment: Presented at NORMalize 2025: The Third Workshop on the Normative Design and Evaluation of Recommender Systems, co-located with the ACM Conference on Recommender Systems 2025 (RecSys 2025), Prague
☆ REVISION:Reflective Intent Mining and Online Reasoning Auxiliary for E-commerce Visual Search System Optimization
In Taobao e-commerce visual search, user behavior analysis reveals a large proportion of no-click requests, suggesting diverse and implicit user intents. These intents are expressed in various forms and are difficult to mine and discover, thereby leading to the limited adaptability and lag in platform strategies. This greatly restricts users' ability to express diverse intents and hinders the scalability of the visual search system. This mismatch between user implicit intent expression and system response defines the User-SearchSys Intent Discrepancy. To alleviate the issue, we propose a novel framework REVISION. This framework integrates offline reasoning mining with online decision-making and execution, enabling adaptive strategies to solve implicit user demands. In the offline stage, we construct a periodic pipeline to mine discrepancies from historical no-click requests. Leveraging large models, we analyze implicit intent factors and infer optimal suggestions by jointly reasoning over query and product metadata. These inferred suggestions serve as actionable insights for refining platform strategies. In the online stage, REVISION-R1-3B, trained on the curated offline data, performs holistic analysis over query images and associated historical products to generate optimization plans and adaptively schedule strategies across the search pipeline. Our framework offers a streamlined paradigm for integrating large models with traditional search systems, enabling end-to-end intelligent optimization across information aggregation and user interaction. Experimental results demonstrate that our approach improves the efficiency of implicit intent mining from large-scale search logs and significantly reduces the no-click rate.
☆ $\text{E}^2\text{Rank}$: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker
Text embedding models serve as a fundamental component in real-world search applications. By mapping queries and documents into a shared embedding space, they deliver competitive retrieval performance with high efficiency. However, their ranking fidelity remains limited compared to dedicated rerankers, especially recent LLM-based listwise rerankers, which capture fine-grained query-document and document-document interactions. In this paper, we propose a simple yet effective unified framework $\text{E}^2\text{Rank}$, means Efficient Embedding-based Ranking (also means Embedding-to-Rank), which extends a single text embedding model to perform both high-quality retrieval and listwise reranking through continued training under a listwise ranking objective, thereby achieving strong effectiveness with remarkable efficiency. By applying cosine similarity between the query and document embeddings as a unified ranking function, the listwise ranking prompt, which is constructed from the original query and its candidate documents, serves as an enhanced query enriched with signals from the top-K documents, akin to pseudo-relevance feedback (PRF) in traditional retrieval models. This design preserves the efficiency and representational quality of the base embedding model while significantly improving its reranking performance. Empirically, $\textrm{E}^2\text{Rank}$ achieves state-of-the-art results on the BEIR reranking benchmark and demonstrates competitive performance on the reasoning-intensive BRIGHT benchmark, with very low reranking latency. We also show that the ranking training process improves embedding performance on the MTEB benchmark. Our findings indicate that a single embedding model can effectively unify retrieval and reranking, offering both computational efficiency and competitive ranking accuracy.
comment: Code and models are avaliable at https://alibaba-nlp.github.io/E2Rank
☆ ATLAS: Actor-Critic Task-Completion with Look-ahead Action Simulation NeurIPS 2025
We observe that current state-of-the-art web-agents are unable to effectively adapt to new environments without neural network fine-tuning, without which they produce inefficient execution plans due to a lack of awareness of the structure and dynamics of the new environment. To address this limitation, we introduce ATLAS (Actor-Critic Task-completion with Look-ahead Action Simulation), a memory-augmented agent that is able to make plans grounded in a model of the environment by simulating the consequences of those actions in cognitive space. Our agent starts by building a "cognitive map" by performing a lightweight curiosity driven exploration of the environment. The planner proposes candidate actions; the simulator predicts their consequences in cognitive space; a critic analyzes the options to select the best roll-out and update the original plan; and a browser executor performs the chosen action. On the WebArena-Lite Benchmark, we achieve a 63% success rate compared to 53.9% success rate for the previously published state-of-the-art. Unlike previous systems, our modular architecture requires no website-specific LLM fine-tuning. Ablations show sizable drops without the world-model, hierarchical planner, and look-ahead-based replanner confirming their complementary roles within the design of our system
comment: 9 pages, NeurIPS 2025 Workshop on Language Agents and World Models
☆ Windsock is Dancing: Adaptive Multimodal Retrieval-Augmented Generation NeurIPS 2025
Multimodal Retrieval-Augmented Generation (MRAG) has emerged as a promising method to generate factual and up-to-date responses of Multimodal Large Language Models (MLLMs) by incorporating non-parametric knowledge from external knowledge bases. However, existing MRAG approaches suffer from static retrieval strategies, inflexible modality selection, and suboptimal utilization of retrieved information, leading to three critical challenges: determining when to retrieve, what modality to incorporate, and how to utilize retrieved information effectively. To address these challenges, we introduce Windsock, a query-dependent module making decisions on retrieval necessity and modality selection, effectively reducing computational overhead and improving response quality. Additionally, we propose Dynamic Noise-Resistance (DANCE) Instruction Tuning, an adaptive training strategy that enhances MLLMs' ability to utilize retrieved information while maintaining robustness against noise. Moreover, we adopt a self-assessment approach leveraging knowledge within MLLMs to convert question-answering datasets to MRAG training datasets. Extensive experiments demonstrate that our proposed method significantly improves the generation quality by 17.07% while reducing 8.95% retrieval times.
comment: Accepted at NeurIPS 2025 UniReps Workshop
☆ Diversification as Risk Minimization WSDM 2026
Users tend to remember failures of a search session more than its many successes. This observation has led to work on search robustness, where systems are penalized if they perform very poorly on some queries. However, this principle of robustness has been overlooked within a single query. An ambiguous or underspecified query (e.g., ``jaguar'') can have several user intents, where popular intents often dominate the ranking, leaving users with minority intents unsatisfied. Although the diversification literature has long recognized this issue, existing metrics only model the average relevance across intents and provide no robustness guarantees. More surprisingly, we show theoretically and empirically that many well-known diversification algorithms are no more robust than a naive, non-diversified algorithm. To address this critical gap, we propose to frame diversification as a risk-minimization problem. We introduce VRisk, which measures the expected risk faced by the least-served fraction of intents in a query. Optimizing VRisk produces a robust ranking, reducing the likelihood of poor user experiences. We then propose VRisker, a fast greedy re-ranker with provable approximation guarantees. Finally, experiments on NTCIR INTENT-2, TREC Web 2012, and MovieLens show the vulnerability of existing methods. VRisker reduces worst-case intent failures by up to 33% with a minimal 2% drop in average performance.
comment: Preprint, accepted at WSDM 2026 (Full Paper). 16 pages, 8 figures
☆ Tools are under-documented: Simple Document Expansion Boosts Tool Retrieval
Large Language Models (LLMs) have recently demonstrated strong capabilities in tool use, yet progress in tool retrieval remains hindered by incomplete and heterogeneous tool documentation. To address this challenge, we introduce Tool-DE, a new benchmark and framework that systematically enriches tool documentation with structured fields to enable more effective tool retrieval, together with two dedicated models, Tool-Embed and Tool-Rank. We design a scalable document expansion pipeline that leverages both open- and closed-source LLMs to generate, validate, and refine enriched tool profiles at low cost, producing large-scale corpora with 50k instances for embedding-based retrievers and 200k for rerankers. On top of this data, we develop two models specifically tailored for tool retrieval: Tool-Embed, a dense retriever, and Tool-Rank, an LLM-based reranker. Extensive experiments on ToolRet and Tool-DE demonstrate that document expansion substantially improves retrieval performance, with Tool-Embed and Tool-Rank achieving new state-of-the-art results on both benchmarks. We further analyze the contribution of individual fields to retrieval effectiveness, as well as the broader impact of document expansion on both training and evaluation. Overall, our findings highlight both the promise and limitations of LLM-driven document expansion, positioning Tool-DE, along with the proposed Tool-Embed and Tool-Rank, as a foundation for future research in tool retrieval.
☆ ATOM: AdapTive and OptiMized dynamic temporal knowledge graph construction using LLMs
In today's rapidly expanding data landscape, knowledge extraction from unstructured text is vital for real-time analytics, temporal inference, and dynamic memory frameworks. However, traditional static knowledge graph (KG) construction often overlooks the dynamic and time-sensitive nature of real-world data, limiting adaptability to continuous changes. Moreover, recent zero- or few-shot approaches that avoid domain-specific fine-tuning or reliance on prebuilt ontologies often suffer from instability across multiple runs, as well as incomplete coverage of key facts. To address these challenges, we introduce ATOM (AdapTive and OptiMized), a few-shot and scalable approach that builds and continuously updates Temporal Knowledge Graphs (TKGs) from unstructured texts. ATOM splits input documents into minimal, self-contained "atomic" facts, improving extraction exhaustivity and stability. Then, it constructs atomic TKGs from these facts while employing a dual-time modeling that distinguishes when information is observed from when it is valid. The resulting atomic TKGs are subsequently merged in parallel. Empirical evaluations demonstrate that ATOM achieves ~18% higher exhaustivity, ~17% better stability, and over 90% latency reduction compared to baseline methods, demonstrating a strong scalability potential for dynamic TKG construction.
☆ Open Multimodal Retrieval-Augmented Factual Image Generation
Large Multimodal Models (LMMs) have achieved remarkable progress in generating photorealistic and prompt-aligned images, but they often produce outputs that contradict verifiable knowledge, especially when prompts involve fine-grained attributes or time-sensitive events. Conventional retrieval-augmented approaches attempt to address this issue by introducing external information, yet they are fundamentally incapable of grounding generation in accurate and evolving knowledge due to their reliance on static sources and shallow evidence integration. To bridge this gap, we introduce ORIG, an agentic open multimodal retrieval-augmented framework for Factual Image Generation (FIG), a new task that requires both visual realism and factual grounding. ORIG iteratively retrieves and filters multimodal evidence from the web and incrementally integrates the refined knowledge into enriched prompts to guide generation. To support systematic evaluation, we build FIG-Eval, a benchmark spanning ten categories across perceptual, compositional, and temporal dimensions. Experiments demonstrate that ORIG substantially improves factual consistency and overall image quality over strong baselines, highlighting the potential of open multimodal retrieval for factual image generation.
comment: Preprint
♻ ☆ Scaling Down, Serving Fast: Compressing and Deploying Efficient LLMs for Recommendation Systems EMNLP 2025
Large language models (LLMs) have demonstrated remarkable performance across a wide range of industrial applications, from search and recommendation systems to generative tasks. Although scaling laws indicate that larger models generally yield better generalization and performance, their substantial computational requirements often render them impractical for many real-world scenarios at scale. In this paper, we present a comprehensive set of insights for training and deploying small language models (SLMs) that deliver high performance for a variety of industry use cases. We focus on two key techniques: (1) knowledge distillation and (2) model compression via structured pruning and quantization. These approaches enable SLMs to retain much of the quality of their larger counterparts while significantly reducing training/serving costs and latency. We detail the impact of these techniques on a variety of use cases in a large professional social network platform and share deployment lessons, including hardware optimization strategies that improve speed and throughput for both predictive and reasoning-based applications in Recommendation Systems.
comment: Accepted to EMNLP 2025 Industry Track - Oral Presentation
♻ ☆ A Simple but Effective Elaborative Query Reformulation Approach for Natural Language Recommendation
Natural Language (NL) recommender systems aim to retrieve relevant items from free-form user queries and item descriptions. Existing systems often rely on dense retrieval (DR), which struggles to interpret challenging queries that express broad (e.g., "cities for youth friendly activities") or indirect (e.g., "cities for a high school graduation trip") user intents. While query reformulation (QR) has been widely adopted to improve such systems, existing QR methods tend to focus only on expanding the range of query subtopics (breadth) or elaborating on the potential meaning of a query (depth), but not both. In this paper, we propose EQR (Elaborative Subtopic Query Reformulation), a large language model-based QR method that combines both breadth and depth by generating potential query subtopics with information-rich elaborations. We also introduce three new natural language recommendation benchmarks in travel, hotel, and restaurant domains to establish evaluation of NL recommendation with challenging queries. Experiments show EQR substantially outperforms state-of-the-art QR methods in various evaluation metrics, highlighting that a simple yet effective QR approach can significantly improve NL recommender systems for queries with broad and indirect user intents.
comment: 11 pages, 5 figures
♻ ☆ Worse than Zero-shot? A Fact-Checking Dataset for Evaluating the Robustness of RAG Against Misleading Retrievals NeurIPS 2025
Retrieval-augmented generation (RAG) has shown impressive capabilities in mitigating hallucinations in large language models (LLMs). However, LLMs struggle to maintain consistent reasoning when exposed to misleading or conflicting evidence, especially in real-world domains such as politics, where information is polarized or selectively framed. Mainstream RAG benchmarks evaluate models under clean retrieval settings, where systems generate answers from gold-standard documents, or under synthetically perturbed settings, where documents are artificially injected with noise. These assumptions fail to reflect real-world conditions, often leading to an overestimation of RAG system performance. To address this gap, we introduce RAGuard, the first benchmark to evaluate the robustness of RAG systems against misleading retrievals. Unlike prior benchmarks that rely on synthetic noise, our fact-checking dataset captures naturally occurring misinformation by constructing its retrieval corpus from Reddit discussions. It categorizes retrieved evidence into three types: supporting, misleading, and unrelated, providing a realistic and challenging testbed for assessing how well RAG systems navigate different types of evidence. Our experiments reveal that, when exposed to potentially misleading retrievals, all tested LLM-powered RAG systems perform worse than their zero-shot baselines (i.e., no retrieval at all), while human annotators consistently perform better, highlighting LLMs' susceptibility to noisy environments. To our knowledge, RAGuard is the first benchmark to systematically assess the robustness of the RAG against misleading evidence. We expect this benchmark to drive future research toward improving RAG systems beyond idealized datasets, making them more reliable for real-world applications. The dataset is available at https://huggingface.co/datasets/UCSC-IRKM/RAGuard.
comment: Advances in Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ CPRet: A Dataset, Benchmark, and Model for Retrieval in Competitive Programming NeurIPS 2025
Competitive programming benchmarks are widely used in scenarios such as programming contests and large language model assessments. However, the growing presence of duplicate or highly similar problems raises concerns not only about competition fairness, but also about the validity of competitive programming as a benchmark for model evaluation. In this paper, we propose a new problem, similar question retrieval, to tackle this issue. Due to the lack of both data and models, solving this problem is challenging. To this end, we introduce CPRet, a retrieval-oriented benchmark suite for competitive programming, covering four retrieval tasks: two code-centric (i.e., Text-to-Code, Code-to-Code) and two newly proposed problem-centric tasks (i.e., Problem-to-Duplicate, Simplified-to-Full) built from a combination of automatically crawled problem-solution data and manually curated annotations. Our contribution includes both high-quality training data and temporally separated test sets for reliable evaluation. Besides, we further develop two task-specialized retrievers based on this dataset: CPRetriever-Code, trained with a novel Group-InfoNCE loss for problem-code alignment, and CPRetriever-Prob, fine-tuned for identifying problem-level similarity. Both models achieve strong results and are open-sourced for local use. Finally, we analyze LiveCodeBench and find that high-similarity problems inflate model pass rates and reduce differentiation, underscoring the need for similarity-aware evaluation in future benchmarks. Github: https://github.com/coldchair/CPRet Online Demo: https://www.cpret.online/
comment: Accepted by NeurIPS 2025 Dataset and Benchmark Track
Multimedia
☆ LLM-based Fusion of Multi-modal Features for Commercial Memorability Prediction
This paper addresses the prediction of commercial (brand) memorability as part of "Subtask 2: Commercial/Ad Memorability" within the "Memorability: Predicting movie and commercial memorability" task at the MediaEval 2025 workshop competition. We propose a multimodal fusion system with a Gemma-3 LLM backbone that integrates pre-computed visual (ViT) and textual (E5) features by multi-modal projections. The model is adapted using Low-Rank Adaptation (LoRA). A heavily-tuned ensemble of gradient boosted trees serves as a baseline. A key contribution is the use of LLM-generated rationale prompts, grounded in expert-derived aspects of memorability, to guide the fusion model. The results demonstrate that the LLM-based system exhibits greater robustness and generalization performance on the final test set, compared to the baseline. The paper's codebase can be found at https://github.com/dsgt-arc/mediaeval-2025-memorability
☆ Region-Adaptive Learned Hierarchical Encoding for 3D Gaussian Splatting Data
We introduce Region-Adaptive Learned Hierarchical Encoding (RALHE) for 3D Gaussian Splatting (3DGS) data. While 3DGS has recently become popular for novel view synthesis, the size of trained models limits its deployment in bandwidth-constrained applications such as volumetric media streaming. To address this, we propose a learned hierarchical latent representation that builds upon the principles of "overfitted" learned image compression (e.g., Cool-Chic and C3) to efficiently encode 3DGS attributes. Unlike images, 3DGS data have irregular spatial distributions of Gaussians (geometry) and consist of multiple attributes (signals) defined on the irregular geometry. Our codec is designed to account for these differences between images and 3DGS. Specifically, we leverage the octree structure of the voxelized 3DGS geometry to obtain a hierarchical multi-resolution representation. Our approach overfits latents to each Gaussian attribute under a global rate constraint. These latents are decoded independently through a lightweight decoder network. To estimate the bitrate during training, we employ an autoregressive probability model that leverages octree-derived contexts from the 3D point structure. The multi-resolution latents, decoder, and autoregressive entropy coding networks are jointly optimized for each Gaussian attribute. Experiments demonstrate that the proposed RALHE compression framework achieves a rendering PSNR gain of up to 2dB at low bitrates (less than 1 MB) compared to the baseline 3DGS compression methods.
comment: 10 Pages, 5 Figures
☆ Understanding What Is Not Said:Referring Remote Sensing Image Segmentation with Scarce Expressions
Referring Remote Sensing Image Segmentation (RRSIS) aims to segment instances in remote sensing images according to referring expressions. Unlike Referring Image Segmentation on general images, acquiring high-quality referring expressions in the remote sensing domain is particularly challenging due to the prevalence of small, densely distributed objects and complex backgrounds. This paper introduces a new learning paradigm, Weakly Referring Expression Learning (WREL) for RRSIS, which leverages abundant class names as weakly referring expressions together with a small set of accurate ones to enable efficient training under limited annotation conditions. Furthermore, we provide a theoretical analysis showing that mixed-referring training yields a provable upper bound on the performance gap relative to training with fully annotated referring expressions, thereby establishing the validity of this new setting. We also propose LRB-WREL, which integrates a Learnable Reference Bank (LRB) to refine weakly referring expressions through sample-specific prompt embeddings that enrich coarse class-name inputs. Combined with a teacher-student optimization framework using dynamically scheduled EMA updates, LRB-WREL stabilizes training and enhances cross-modal generalization under noisy weakly referring supervision. Extensive experiments on our newly constructed benchmark with varying weakly referring data ratios validate both the theoretical insights and the practical effectiveness of WREL and LRB-WREL, demonstrating that they can approach or even surpass models trained with fully annotated referring expressions.
☆ TVMC: Time-Varying Mesh Compression via Multi-Stage Anchor Mesh Generation
Time-varying meshes, characterized by dynamic connectivity and varying vertex counts, hold significant promise for applications such as augmented reality. However, their practical utilization remains challenging due to the substantial data volume required for high-fidelity representation. While various compression methods attempt to leverage temporal redundancy between consecutive mesh frames, most struggle with topological inconsistency and motion-induced artifacts. To address these issues, we propose Time-Varying Mesh Compression (TVMC), a novel framework built on multi-stage coarse-to-fine anchor mesh generation for inter-frame prediction. Specifically, the anchor mesh is progressively constructed in three stages: initial, coarse, and fine. The initial anchor mesh is obtained through fast topology alignment to exploit temporal coherence. A Kalman filter-based motion estimation module then generates a coarse anchor mesh by accurately compensating inter-frame motions. Subsequently, a Quadric Error Metric-based refinement step optimizes vertex positions to form a fine anchor mesh with improved geometric fidelity. Based on the refined anchor mesh, the inter-frame motions relative to the reference base mesh are encoded, while the residual displacements between the subdivided fine anchor mesh and the input mesh are adaptively quantized and compressed. This hierarchical strategy preserves consistent connectivity and high-quality surface approximation, while achieving an efficient and compact representation of dynamic geometry. Extensive experiments on standard MPEG dynamic mesh sequences demonstrate that TVMC achieves state-of-the-art compression performance. Compared to the latest V-DMC standard, it delivers a significant BD-rate gain of 10.2% ~ 16.9%, while preserving high reconstruction quality. The code is available at https://github.com/H-Huang774/TVMC.
☆ DeepfakeBench-MM: A Comprehensive Benchmark for Multimodal Deepfake Detection
The misuse of advanced generative AI models has resulted in the widespread proliferation of falsified data, particularly forged human-centric audiovisual content, which poses substantial societal risks (e.g., financial fraud and social instability). In response to this growing threat, several works have preliminarily explored countermeasures. However, the lack of sufficient and diverse training data, along with the absence of a standardized benchmark, hinder deeper exploration. To address this challenge, we first build Mega-MMDF, a large-scale, diverse, and high-quality dataset for multimodal deepfake detection. Specifically, we employ 21 forgery pipelines through the combination of 10 audio forgery methods, 12 visual forgery methods, and 6 audio-driven face reenactment methods. Mega-MMDF currently contains 0.1 million real samples and 1.1 million forged samples, making it one of the largest and most diverse multimodal deepfake datasets, with plans for continuous expansion. Building on it, we present DeepfakeBench-MM, the first unified benchmark for multimodal deepfake detection. It establishes standardized protocols across the entire detection pipeline and serves as a versatile platform for evaluating existing methods as well as exploring novel approaches. DeepfakeBench-MM currently supports 5 datasets and 11 multimodal deepfake detectors. Furthermore, our comprehensive evaluations and in-depth analyses uncover several key findings from multiple perspectives (e.g., augmentation, stacked forgery). We believe that DeepfakeBench-MM, together with our large-scale Mega-MMDF, will serve as foundational infrastructures for advancing multimodal deepfake detection.
comment: Preprint
☆ STATUS Bench: A Rigorous Benchmark for Evaluating Object State Understanding in Vision-Language Models
Object state recognition aims to identify the specific condition of objects, such as their positional states (e.g., open or closed) and functional states (e.g., on or off). While recent Vision-Language Models (VLMs) are capable of performing a variety of multimodal tasks, it remains unclear how precisely they can identify object states. To alleviate this issue, we introduce the STAte and Transition UnderStanding Benchmark (STATUS Bench), the first benchmark for rigorously evaluating the ability of VLMs to understand subtle variations in object states in diverse situations. Specifically, STATUS Bench introduces a novel evaluation scheme that requires VLMs to perform three tasks simultaneously: object state identification (OSI), image retrieval (IR), and state change identification (SCI). These tasks are defined over our fully hand-crafted dataset involving image pairs, their corresponding object state descriptions and state change descriptions. Furthermore, we introduce a large-scale training dataset, namely STATUS Train, which consists of 13 million semi-automatically created descriptions. This dataset serves as the largest resource to facilitate further research in this area. In our experiments, we demonstrate that STATUS Bench enables rigorous consistency evaluation and reveal that current state-of-the-art VLMs still significantly struggle to capture subtle object state distinctions. Surprisingly, under the proposed rigorous evaluation scheme, most open-weight VLMs exhibited chance-level zero-shot performance. After fine-tuning on STATUS Train, Qwen2.5-VL achieved performance comparable to Gemini 2.0 Flash. These findings underscore the necessity of STATUS Bench and Train for advancing object state recognition in VLM research.
☆ Learning Event-guided Exposure-agnostic Video Frame Interpolation via Adaptive Feature Blending BMVC2025
Exposure-agnostic video frame interpolation (VFI) is a challenging task that aims to recover sharp, high-frame-rate videos from blurry, low-frame-rate inputs captured under unknown and dynamic exposure conditions. Event cameras are sensors with high temporal resolution, making them especially advantageous for this task. However, existing event-guided methods struggle to produce satisfactory results on severely low-frame-rate blurry videos due to the lack of temporal constraints. In this paper, we introduce a novel event-guided framework for exposure-agnostic VFI, addressing this limitation through two key components: a Target-adaptive Event Sampling (TES) and a Target-adaptive Importance Mapping (TIM). Specifically, TES samples events around the target timestamp and the unknown exposure time to better align them with the corresponding blurry frames. TIM then generates an importance map that considers the temporal proximity and spatial relevance of consecutive features to the target. Guided by this map, our framework adaptively blends consecutive features, allowing temporally aligned features to serve as the primary cues while spatially relevant ones offer complementary support. Extensive experiments on both synthetic and real-world datasets demonstrate the effectiveness of our approach in exposure-agnostic VFI scenarios.
comment: Accepted for BMVC2025
♻ ☆ MagicMotion: Controllable Video Generation with Dense-to-Sparse Trajectory Guidance ICCV 2025
Recent advances in video generation have led to remarkable improvements in visual quality and temporal coherence. Upon this, trajectory-controllable video generation has emerged to enable precise object motion control through explicitly defined spatial paths. However, existing methods struggle with complex object movements and multi-object motion control, resulting in imprecise trajectory adherence, poor object consistency, and compromised visual quality. Furthermore, these methods only support trajectory control in a single format, limiting their applicability in diverse scenarios. Additionally, there is no publicly available dataset or benchmark specifically tailored for trajectory-controllable video generation, hindering robust training and systematic evaluation. To address these challenges, we introduce MagicMotion, a novel image-to-video generation framework that enables trajectory control through three levels of conditions from dense to sparse: masks, bounding boxes, and sparse boxes. Given an input image and trajectories, MagicMotion seamlessly animates objects along defined trajectories while maintaining object consistency and visual quality. Furthermore, we present MagicData, a large-scale trajectory-controlled video dataset, along with an automated pipeline for annotation and filtering. We also introduce MagicBench, a comprehensive benchmark that assesses both video quality and trajectory control accuracy across different numbers of objects. Extensive experiments demonstrate that MagicMotion outperforms previous methods across various metrics. Our project page are publicly available at https://quanhaol.github.io/magicmotion-site.
comment: Accepted by ICCV 2025
♻ ☆ Principled Multimodal Representation Learning
Multimodal representation learning seeks to create a unified representation space by integrating diverse data modalities to improve multimodal understanding. Traditional methods often depend on pairwise contrastive learning, which relies on a predefined anchor modality, restricting alignment across all modalities. Recent advances have investigated the simultaneous alignment of multiple modalities, yet several challenges remain, such as limitations imposed by fixed anchor points and instability arising from optimizing the product of singular values. To address the challenges, in this paper, we propose Principled Multimodal Representation Learning (PMRL), a novel framework that achieves simultaneous alignment of multiple modalities without anchor dependency in a more stable manner. Specifically, grounded in the theoretical insight that full alignment corresponds to a rank-1 Gram matrix, PMRL optimizes the dominant singular value of the representation matrix to align modalities along a shared leading direction. We propose a softmax-based loss function that treats singular values as logits to prioritize the largest singular value. Besides, instance-wise contrastive regularization on the leading eigenvectors maintains inter-instance separability and prevents representation collapse. Extensive experiments across diverse tasks demonstrate PMRL's superiority compared to baseline methods. The source code will be publicly available.
comment: Corrected typos and updated experimental results. 32 pages, 9 figures, 10 tables
♻ ☆ NVS-SQA: Exploring Self-Supervised Quality Representation Learning for Neurally Synthesized Scenes without References
Neural View Synthesis (NVS), such as NeRF and 3D Gaussian Splatting, effectively creates photorealistic scenes from sparse viewpoints, typically evaluated by quality assessment methods like PSNR, SSIM, and LPIPS. However, these full-reference methods, which compare synthesized views to reference views, may not fully capture the perceptual quality of neurally synthesized scenes (NSS), particularly due to the limited availability of dense reference views. Furthermore, the challenges in acquiring human perceptual labels hinder the creation of extensive labeled datasets, risking model overfitting and reduced generalizability. To address these issues, we propose NVS-SQA, a NSS quality assessment method to learn no-reference quality representations through self-supervision without reliance on human labels. Traditional self-supervised learning predominantly relies on the "same instance, similar representation" assumption and extensive datasets. However, given that these conditions do not apply in NSS quality assessment, we employ heuristic cues and quality scores as learning objectives, along with a specialized contrastive pair preparation process to improve the effectiveness and efficiency of learning. The results show that NVS-SQA outperforms 17 no-reference methods by a large margin (i.e., on average 109.5% in SRCC, 98.6% in PLCC, and 91.5% in KRCC over the second best) and even exceeds 16 full-reference methods across all evaluation metrics (i.e., 22.9% in SRCC, 19.1% in PLCC, and 18.6% in KRCC over the second best).
comment: Accepted by TPAMI
♻ ☆ GS-ProCams: Gaussian Splatting-based Projector-Camera Systems
We present GS-ProCams, the first Gaussian Splatting-based framework for projector-camera systems (ProCams). GS-ProCams is not only view-agnostic but also significantly enhances the efficiency of projection mapping (PM) that requires establishing geometric and radiometric mappings between the projector and the camera. Previous CNN-based ProCams are constrained to a specific viewpoint, limiting their applicability to novel perspectives. In contrast, NeRF-based ProCams support view-agnostic projection mapping, however, they require an additional co-located light source and demand significant computational and memory resources. To address this issue, we propose GS-ProCams that employs 2D Gaussian for scene representations, and enables efficient view-agnostic ProCams applications. In particular, we explicitly model the complex geometric and photometric mappings of ProCams using projector responses, the projection surface's geometry and materials represented by Gaussians, and the global illumination component. Then, we employ differentiable physically-based rendering to jointly estimate them from captured multi-view projections. Compared to state-of-the-art NeRF-based methods, our GS-ProCams eliminates the need for additional devices, achieving superior ProCams simulation quality. It also uses only 1/10 of the GPU memory for training and is 900 times faster in inference speed. Please refer to our project page for the code and dataset: https://realqingyue.github.io/GS-ProCams/.
Information Retrieval
☆ FAIR-RAG: Faithful Adaptive Iterative Refinement for Retrieval-Augmented Generation
While Retrieval-Augmented Generation (RAG) mitigates hallucination and knowledge staleness in Large Language Models (LLMs), existing frameworks often falter on complex, multi-hop queries that require synthesizing information from disparate sources. Current advanced RAG methods, employing iterative or adaptive strategies, lack a robust mechanism to systematically identify and fill evidence gaps, often propagating noise or failing to gather a comprehensive context. We introduce FAIR-RAG, a novel agentic framework that transforms the standard RAG pipeline into a dynamic, evidence-driven reasoning process. At its core is an Iterative Refinement Cycle governed by a module we term Structured Evidence Assessment (SEA). The SEA acts as an analytical gating mechanism: it deconstructs the initial query into a checklist of required findings and audits the aggregated evidence to identify confirmed facts and, critically, explicit informational gaps. These gaps provide a precise signal to an Adaptive Query Refinement agent, which generates new, targeted sub-queries to retrieve missing information. This cycle repeats until the evidence is verified as sufficient, ensuring a comprehensive context for a final, strictly faithful generation. We conducted experiments on challenging multi-hop QA benchmarks, including HotpotQA, 2WikiMultiHopQA, and MusiQue. In a unified experimental setup, FAIR-RAG significantly outperforms strong baselines. On HotpotQA, it achieves an F1-score of 0.453 -- an absolute improvement of 8.3 points over the strongest iterative baseline -- establishing a new state-of-the-art for this class of methods on these benchmarks. Our work demonstrates that a structured, evidence-driven refinement process with explicit gap analysis is crucial for unlocking reliable and accurate reasoning in advanced RAG systems for complex, knowledge-intensive tasks.
comment: 30 pages, 5 figures, 5 tables. Keywords: Retrieval-Augmented Generation (RAG), Large Language Models (LLMs), Agentic AI, Multi-hop Question Answering, Faithfulness
☆ PatenTEB: A Comprehensive Benchmark and Model Family for Patent Text Embedding
Patent text embeddings enable prior art search, technology landscaping, and patent analysis, yet existing benchmarks inadequately capture patent-specific challenges. We introduce PatenTEB, a comprehensive benchmark comprising 15 tasks across retrieval, classification, paraphrase, and clustering, with 2.06 million examples. PatenTEB employs domain-stratified splits, domain specific hard negative mining, and systematic coverage of asymmetric fragment-to-document matching scenarios absent from general embedding benchmarks. We develop the patembed model family through multi-task training, spanning 67M to 344M parameters with context lengths up to 4096 tokens. External validation shows strong generalization: patembed-base achieves state-of-the-art on MTEB BigPatentClustering.v2 (0.494 V-measure vs. 0.445 previous best), while patembed-large achieves 0.377 NDCG@100 on DAPFAM. Systematic ablations reveal that multi-task training improves external generalization despite minor benchmark costs, and that domain-pretrained initialization provides consistent advantages across task families. All resources will be made available at https://github.com/iliass-y/patenteb. Keywords: patent retrieval, sentence embeddings, multi-task learning, asymmetric retrieval, benchmark evaluation, contrastive learning.
☆ PaperAsk: A Benchmark for Reliability Evaluation of LLMs in Paper Search and Reading
Large Language Models (LLMs) increasingly serve as research assistants, yet their reliability in scholarly tasks remains under-evaluated. In this work, we introduce PaperAsk, a benchmark that systematically evaluates LLMs across four key research tasks: citation retrieval, content extraction, paper discovery, and claim verification. We evaluate GPT-4o, GPT-5, and Gemini-2.5-Flash under realistic usage conditions-via web interfaces where search operations are opaque to the user. Through controlled experiments, we find consistent reliability failures: citation retrieval fails in 48-98% of multi-reference queries, section-specific content extraction fails in 72-91% of cases, and topical paper discovery yields F1 scores below 0.32, missing over 60% of relevant literature. Further human analysis attributes these failures to the uncontrolled expansion of retrieved context and the tendency of LLMs to prioritize semantically relevant text over task instructions. Across basic tasks, the LLMs display distinct failure behaviors: ChatGPT often withholds responses rather than risk errors, whereas Gemini produces fluent but fabricated answers. To address these issues, we develop lightweight reliability classifiers trained on PaperAsk data to identify unreliable outputs. PaperAsk provides a reproducible and diagnostic framework for advancing the reliability evaluation of LLM-based scholarly assistance systems.
☆ Hybrid-Vector Retrieval for Visually Rich Documents: Combining Single-Vector Efficiency and Multi-Vector Accuracy
Retrieval over visually rich documents is essential for tasks such as legal discovery, scientific search, and enterprise knowledge management. Existing approaches fall into two paradigms: single-vector retrieval, which is efficient but coarse, and multi-vector retrieval, which is accurate but computationally expensive. To address this trade-off, we propose HEAVEN, a two-stage hybrid-vector framework. In the first stage, HEAVEN efficiently retrieves candidate pages using a single-vector method over Visually-Summarized Pages (VS-Pages), which assemble representative visual layouts from multiple pages. In the second stage, it reranks candidates with a multi-vector method while filtering query tokens by linguistic importance to reduce redundant computations. To evaluate retrieval systems under realistic conditions, we also introduce ViMDOC, the first benchmark for visually rich, multi-document, and long-document retrieval. Across four benchmarks, HEAVEN attains 99.87% of the Recall@1 performance of multi-vector models on average while reducing per-query computation by 99.82%, achieving efficiency and accuracy. Our code and datasets are available at: https://github.com/juyeonnn/HEAVEN
☆ Scaling Up Efficient Small Language Models Serving and Deployment for Semantic Job Search
Large Language Models (LLMs) have demonstrated impressive quality when applied to predictive tasks such as relevance ranking and semantic search. However, deployment of such LLMs remains prohibitively expensive for industry applications with strict latency and throughput requirements. In this work, we present lessons and efficiency insights from developing a purely text-based decoder-only Small Language Model (SLM) for a semantic search application at LinkedIn. Particularly, we discuss model compression techniques such as pruning that allow us to reduce the model size by up to $40\%$ while maintaining the accuracy. Additionally, we present context compression techniques that allow us to reduce the input context length by up to $10$x with minimal loss of accuracy. Finally, we present practical lessons from optimizing the serving infrastructure for deploying such a system on GPUs at scale, serving millions of requests per second. Taken together, this allows us to increase our system's throughput by $10$x in a real-world deployment, while meeting our quality bar.
♻ ☆ A Survey of Long-Document Retrieval in the PLM and LLM Era
The proliferation of long-form documents presents a fundamental challenge to information retrieval (IR), as their length, dispersed evidence, and complex structures demand specialized methods beyond standard passage-level techniques. This survey provides the first comprehensive treatment of long-document retrieval (LDR), consolidating methods, challenges, and applications across three major eras. We systematize the evolution from classical lexical and early neural models to modern pre-trained (PLM) and large language models (LLMs), covering key paradigms like passage aggregation, hierarchical encoding, efficient attention, and the latest LLM-driven re-ranking and retrieval techniques. Beyond the models, we review domain-specific applications, specialized evaluation resources, and outline critical open challenges such as efficiency trade-offs, multimodal alignment, and faithfulness. This survey aims to provide both a consolidated reference and a forward-looking agenda for advancing long-document retrieval in the era of foundation models.
comment: 32 pages, 6 figures
♻ ☆ Query Expansion in the Age of Pre-trained and Large Language Models: A Comprehensive Survey
Modern information retrieval (IR) must reconcile short, ambiguous queries with increasingly diverse and dynamic corpora. Query expansion (QE) remains central to alleviating vocabulary mismatch, yet the design space has shifted with pre-trained and large language models (PLMs, LLMs). In this survey, we organize recent work along four complementary dimensions: the point of injection (implicit/embedding vs. selection-based explicit), grounding and interaction (from zero-grounding prompts to multi-round retrieve-expand loops), learning and alignment (SFT/PEFT/DPO), and knowledge-graph integration. A model-centric taxonomy is also outlined, spanning encoder-only, encoder-decoder, decoder-only, instruction-tuned, and domain or multilingual variants, with affordances for QE such as contextual disambiguation, controllable generation, and zero-shot or few-shot reasoning. Practice-oriented guidance specifies where neural QE helps most: first-stage retrieval, multi-query fusion, re-ranking, and retrieval-augmented generation (RAG). The survey compares traditional and neural QE across seven aspects and maps applications in web search, biomedicine, e-commerce, open-domain question answering/RAG, conversational and code search, and cross-lingual settings. The survey concludes with an agenda focused on reliable, safe, efficient, and adaptive QE, offering a principled blueprint for deploying and combining techniques under real-world constraints.
comment: 36 pages,3 figures,3 tables
♻ ☆ Unifying Search and Recommendation with Dual-View Representation Learning in a Generative Paradigm
Recommender systems and search engines serve as foundational elements of online platforms, with the former delivering information proactively and the latter enabling users to seek information actively. Unifying both tasks in a shared model is promising since it can enhance user modeling and item understanding. Previous approaches mainly follow a discriminative paradigm, utilizing shared encoders to process input features and task-specific heads to perform each task. However, this paradigm encounters two key challenges: gradient conflict and manual design complexity. From the information theory perspective, these challenges potentially both stem from the same issue -- low mutual information between the input features and task-specific outputs during the optimization process. To tackle these issues, we propose GenSR, a novel generative paradigm for unifying search and recommendation (S&R), which leverages task-specific prompts to partition the model's parameter space into subspaces, thereby enhancing mutual information. To construct effective subspaces for each task, GenSR first prepares informative representations for each subspace and then optimizes both subspaces in one unified model. Specifically, GenSR consists of two main modules: (1) Dual Representation Learning, which independently models collaborative and semantic historical information to derive expressive item representations; and (2) S&R Task Unifying, which utilizes contrastive learning together with instruction tuning to generate task-specific outputs effectively. Extensive experiments on two public datasets show GenSR outperforms state-of-the-art methods across S&R tasks. Our work introduces a new generative paradigm compared with previous discriminative methods and establishes its superiority from the mutual information perspective.
♻ ☆ WildClaims: Information Access Conversations in the Wild(Chat)
The rapid advancement of Large Language Models (LLMs) has transformed conversational systems into practical tools used by millions. However, the nature and necessity of information retrieval in real-world conversations remain largely unexplored, as research has focused predominantly on traditional, explicit information access conversations. The central question is: What do real-world information access conversations look like? To this end, we first conduct an observational study on the WildChat dataset, large-scale user-ChatGPT conversations, finding that users' access to information occurs implicitly as check-worthy factual assertions made by the system, even when the conversation's primary intent is non-informational, such as creative writing. To enable the systematic study of this phenomenon, we release the WildClaims dataset, a novel resource consisting of 121,905 extracted factual claims from 7,587 utterances in 3,000 WildChat conversations, each annotated for check-worthiness. Our preliminary analysis of this resource reveals that conservatively 18% to 51% of conversations contain check-worthy assertions, depending on the methods employed, and less conservatively, as many as 76% may contain such assertions. This high prevalence underscores the importance of moving beyond the traditional understanding of explicit information access, to address the implicit information access that arises in real-world user-system conversations.
♻ ☆ FACE: A Fine-grained Reference Free Evaluator for Conversational Recommender Systems
A systematic, reliable, and low-cost evaluation of Conversational Recommender Systems (CRSs) remains an open challenge. Existing automatic CRS evaluation methods are proven insufficient for evaluating the dynamic nature of recommendation conversations. This work proposes FACE: a Fine-grained, Aspect-based Conversation Evaluation method that provides evaluation scores for diverse turn and dialogue level qualities of recommendation conversations. FACE is reference-free and shows strong correlation with human judgments, achieving system correlation of 0.9 and turn/dialogue-level of 0.5, outperforming state-of-the-art CRS evaluation methods by a large margin. Additionally, unlike existing LLM-based methods that provide single uninterpretable scores, FACE provides insights into the system performance and enables identifying and locating problems within conversations.
♻ ☆ Audio Does Matter: Importance-Aware Multi-Granularity Fusion for Video Moment Retrieval ACM MM 2025
Video Moment Retrieval (VMR) aims to retrieve a specific moment semantically related to the given query. To tackle this task, most existing VMR methods solely focus on the visual and textual modalities while neglecting the complementary but important audio modality. Although a few recent works try to tackle the joint audio-vision-text reasoning, they treat all modalities equally and simply embed them without fine-grained interaction for moment retrieval. These designs are counter-practical as: Not all audios are helpful for video moment retrieval, and the audio of some videos may be complete noise or background sound that is meaningless to the moment determination. To this end, we propose a novel Importance-aware Multi-Granularity fusion model (IMG), which learns to dynamically and selectively aggregate the audio-vision-text contexts for VMR. Specifically, after integrating the textual guidance with vision and audio separately, we first design a pseudo-label-supervised audio importance predictor that predicts the importance score of the audio, and accordingly assigns weights to mitigate the interference caused by noisy audio. Then, we design a multi-granularity audio fusion module that adaptively fuses audio and visual modalities at local-, event-, and global-level, fully capturing their complementary contexts. We further propose a cross-modal knowledge distillation strategy to address the challenge of missing audio modality during inference. To evaluate our method, we further construct a new VMR dataset, i.e., Charades-AudioMatter, where audio-related samples are manually selected and re-organized from the original Charades-STA to validate the model's capability in utilizing audio modality. Extensive experiments validate the effectiveness of our method, achieving state-of-the-art with audio-video fusion in VMR methods. Our code is available at https://github.com/HuiGuanLab/IMG.
comment: Accepted to ACM MM 2025
Multimedia
☆ Frequency-Spatial Interaction Driven Network for Low-Light Image Enhancement
Low-light image enhancement (LLIE) aims at improving the perception or interpretability of an image captured in an environment with poor illumination. With the advent of deep learning, the LLIE technique has achieved significant breakthroughs. However, existing LLIE methods either ignore the important role of frequency domain information or fail to effectively promote the propagation and flow of information, limiting the LLIE performance. In this paper, we develop a novel frequency-spatial interaction-driven network (FSIDNet) for LLIE based on two-stage architecture. To be specific, the first stage is designed to restore the amplitude of low-light images to improve the lightness, and the second stage devotes to restore phase information to refine fine-grained structures. Considering that Frequency domain and spatial domain information are complementary and both favorable for LLIE, we further develop two frequency-spatial interaction blocks which mutually amalgamate the complementary spatial and frequency information to enhance the capability of the model. In addition, we construct the Information Exchange Module (IEM) to associate two stages by adequately incorporating cross-stage and cross-scale features to effectively promote the propagation and flow of information in the two-stage network structure. Finally, we conduct experiments on several widely used benchmark datasets (i.e., LOL-Real, LSRW-Huawei, etc.), which demonstrate that our method achieves the excellent performance in terms of visual results and quantitative metrics while preserving good model efficiency.
♻ ☆ Audio Does Matter: Importance-Aware Multi-Granularity Fusion for Video Moment Retrieval ACM MM 2025
Video Moment Retrieval (VMR) aims to retrieve a specific moment semantically related to the given query. To tackle this task, most existing VMR methods solely focus on the visual and textual modalities while neglecting the complementary but important audio modality. Although a few recent works try to tackle the joint audio-vision-text reasoning, they treat all modalities equally and simply embed them without fine-grained interaction for moment retrieval. These designs are counter-practical as: Not all audios are helpful for video moment retrieval, and the audio of some videos may be complete noise or background sound that is meaningless to the moment determination. To this end, we propose a novel Importance-aware Multi-Granularity fusion model (IMG), which learns to dynamically and selectively aggregate the audio-vision-text contexts for VMR. Specifically, after integrating the textual guidance with vision and audio separately, we first design a pseudo-label-supervised audio importance predictor that predicts the importance score of the audio, and accordingly assigns weights to mitigate the interference caused by noisy audio. Then, we design a multi-granularity audio fusion module that adaptively fuses audio and visual modalities at local-, event-, and global-level, fully capturing their complementary contexts. We further propose a cross-modal knowledge distillation strategy to address the challenge of missing audio modality during inference. To evaluate our method, we further construct a new VMR dataset, i.e., Charades-AudioMatter, where audio-related samples are manually selected and re-organized from the original Charades-STA to validate the model's capability in utilizing audio modality. Extensive experiments validate the effectiveness of our method, achieving state-of-the-art with audio-video fusion in VMR methods. Our code is available at https://github.com/HuiGuanLab/IMG.
comment: Accepted to ACM MM 2025
Information Retrieval
☆ A Benchmark for Open-Domain Numerical Fact-Checking Enhanced by Claim Decomposition
Fact-checking numerical claims is critical as the presence of numbers provide mirage of veracity despite being fake potentially causing catastrophic impacts on society. The prior works in automatic fact verification do not primarily focus on natural numerical claims. A typical human fact-checker first retrieves relevant evidence addressing the different numerical aspects of the claim and then reasons about them to predict the veracity of the claim. Hence, the search process of a human fact-checker is a crucial skill that forms the foundation of the verification process. Emulating a real-world setting is essential to aid in the development of automated methods that encompass such skills. However, existing benchmarks employ heuristic claim decomposition approaches augmented with weakly supervised web search to collect evidences for verifying claims. This sometimes results in less relevant evidences and noisy sources with temporal leakage rendering a less realistic retrieval setting for claim verification. Hence, we introduce QuanTemp++: a dataset consisting of natural numerical claims, an open domain corpus, with the corresponding relevant evidence for each claim. The evidences are collected through a claim decomposition process approximately emulating the approach of human fact-checker and veracity labels ensuring there is no temporal leakage. Given this dataset, we also characterize the retrieval performance of key claim decomposition paradigms. Finally, we observe their effect on the outcome of the verification pipeline and draw insights. The code for data pipeline along with link to data can be found at https://github.com/VenkteshV/QuanTemp_Plus
comment: 16 pages
☆ Massive Memorization with Hundreds of Trillions of Parameters for Sequential Transducer Generative Recommenders
Modern large-scale recommendation systems rely heavily on user interaction history sequences to enhance the model performance. The advent of large language models and sequential modeling techniques, particularly transformer-like architectures, has led to significant advancements recently (e.g., HSTU, SIM, and TWIN models). While scaling to ultra-long user histories (10k to 100k items) generally improves model performance, it also creates significant challenges on latency, queries per second (QPS) and GPU cost in industry-scale recommendation systems. Existing models do not adequately address these industrial scalability issues. In this paper, we propose a novel two-stage modeling framework, namely VIrtual Sequential Target Attention (VISTA), which decomposes traditional target attention from a candidate item to user history items into two distinct stages: (1) user history summarization into a few hundred tokens; followed by (2) candidate item attention to those tokens. These summarization token embeddings are then cached in storage system and then utilized as sequence features for downstream model training and inference. This novel design for scalability enables VISTA to scale to lifelong user histories (up to one million items) while keeping downstream training and inference costs fixed, which is essential in industry. Our approach achieves significant improvements in offline and online metrics and has been successfully deployed on an industry leading recommendation platform serving billions of users.
☆ Multimodal Item Scoring for Natural Language Recommendation via Gaussian Process Regression with LLM Relevance Judgments
Natural Language Recommendation (NLRec) generates item suggestions based on the relevance between user-issued NL requests and NL item description passages. Existing NLRec approaches often use Dense Retrieval (DR) to compute item relevance scores from aggregation of inner products between user request embeddings and relevant passage embeddings. However, DR views the request as the sole relevance label, thus leading to a unimodal scoring function centered on the query embedding that is often a weak proxy for query relevance. To better capture the potential multimodal distribution of the relevance scoring function that may arise from complex NLRec data, we propose GPR-LLM that uses Gaussian Process Regression (GPR) with LLM relevance judgments for a subset of candidate passages. Experiments on four NLRec datasets and two LLM backbones demonstrate that GPR-LLM with an RBF kernel, capable of modeling multimodal relevance scoring functions, consistently outperforms simpler unimodal kernels (dot product, cosine similarity), as well as baseline methods including DR, cross-encoder, and pointwise LLM-based relevance scoring by up to 65%. Overall, GPR-LLM provides an efficient and effective approach to NLRec within a minimal LLM labeling budget.
comment: 16 pages,20 figures
☆ Temporal Graph Theoretic Analysis of Geopolitical Dynamics in the U.S. Entity List
Export controls have become one of America's most prominent tools of economic statecraft. They aim to block rival countries' access to sensitive technologies, safeguard U.S. supply chains, protect national security, and shape geopolitical competition. Among various instruments, the U.S. Entity List has emerged as the most salient, yet its dynamics remain underexplored. This paper introduces a novel temporal graph framework that transforms the Entity List documents from a static registry of foreign entities of concern into a dynamic representation of geopolitical strategy. We construct the first event-based dataset of U.S. government foreign entity designations and model them as a temporal bipartite graph. Building on this representation, we develop a multi-level analytical approach that reveals shifting roles, enforcement strategy, and broader sanction ecosystems. Applied to 25 years of data, the framework uncovers dynamic patterns of escalation, persistence, and coordination that static views cannot capture. More broadly, our study demonstrates how temporal graph analysis offers systematic computational insights into the geopolitical dynamics of export controls.
comment: 13 pages, 9 figures. Under review
☆ A Data-Centric Approach to Multilingual E-Commerce Product Search: Case Study on Query-Category and Query-Item Relevance
Multilingual e-commerce search suffers from severe data imbalance across languages, label noise, and limited supervision for low-resource languages--challenges that impede the cross-lingual generalization of relevance models despite the strong capabilities of large language models (LLMs). In this work, we present a practical, architecture-agnostic, data-centric framework to enhance performance on two core tasks: Query-Category (QC) relevance (matching queries to product categories) and Query-Item (QI) relevance (matching queries to product titles). Rather than altering the model, we redesign the training data through three complementary strategies: (1) translation-based augmentation to synthesize examples for languages absent in training, (2) semantic negative sampling to generate hard negatives and mitigate class imbalance, and (3) self-validation filtering to detect and remove likely mislabeled instances. Evaluated on the CIKM AnalytiCup 2025 dataset, our approach consistently yields substantial F1 score improvements over strong LLM baselines, achieving competitive results in the official competition. Our findings demonstrate that systematic data engineering can be as impactful as--and often more deployable than--complex model modifications, offering actionable guidance for building robust multilingual search systems in the real-world e-commerce settings.
☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
☆ Doc-Researcher: A Unified System for Multimodal Document Parsing and Deep Research
Deep Research systems have revolutionized how LLMs solve complex questions through iterative reasoning and evidence gathering. However, current systems remain fundamentally constrained to textual web data, overlooking the vast knowledge embedded in multimodal documents Processing such documents demands sophisticated parsing to preserve visual semantics (figures, tables, charts, and equations), intelligent chunking to maintain structural coherence, and adaptive retrieval across modalities, which are capabilities absent in existing systems. In response, we present Doc-Researcher, a unified system that bridges this gap through three integrated components: (i) deep multimodal parsing that preserves layout structure and visual semantics while creating multi-granular representations from chunk to document level, (ii) systematic retrieval architecture supporting text-only, vision-only, and hybrid paradigms with dynamic granularity selection, and (iii) iterative multi-agent workflows that decompose complex queries, progressively accumulate evidence, and synthesize comprehensive answers across documents and modalities. To enable rigorous evaluation, we introduce M4DocBench, the first benchmark for Multi-modal, Multi-hop, Multi-document, and Multi-turn deep research. Featuring 158 expert-annotated questions with complete evidence chains across 304 documents, M4DocBench tests capabilities that existing benchmarks cannot assess. Experiments demonstrate that Doc-Researcher achieves 50.6% accuracy, 3.4xbetter than state-of-the-art baselines, validating that effective document research requires not just better retrieval, but fundamentally deep parsing that preserve multimodal integrity and support iterative research. Our work establishes a new paradigm for conducting deep research on multimodal document collections.
comment: preprint
☆ Redefining Retrieval Evaluation in the Era of LLMs
Traditional Information Retrieval (IR) metrics, such as nDCG, MAP, and MRR, assume that human users sequentially examine documents with diminishing attention to lower ranks. This assumption breaks down in Retrieval Augmented Generation (RAG) systems, where search results are consumed by Large Language Models (LLMs), which, unlike humans, process all retrieved documents as a whole rather than sequentially. Additionally, traditional IR metrics do not account for related but irrelevant documents that actively degrade generation quality, rather than merely being ignored. Due to these two major misalignments, namely human vs. machine position discount and human relevance vs. machine utility, classical IR metrics do not accurately predict RAG performance. We introduce a utility-based annotation schema that quantifies both the positive contribution of relevant passages and the negative impact of distracting ones. Building on this foundation, we propose UDCG (Utility and Distraction-aware Cumulative Gain), a metric using an LLM-oriented positional discount to directly optimize the correlation with the end-to-end answer accuracy. Experiments on five datasets and six LLMs demonstrate that UDCG improves correlation by up to 36% compared to traditional metrics. Our work provides a critical step toward aligning IR evaluation with LLM consumers and enables more reliable assessment of RAG components
☆ SciNUP: Natural Language User Interest Profiles for Scientific Literature Recommendation
The use of natural language (NL) user profiles in recommender systems offers greater transparency and user control compared to traditional representations. However, there is scarcity of large-scale, publicly available test collections for evaluating NL profile-based recommendation. To address this gap, we introduce SciNUP, a novel synthetic dataset for scholarly recommendation that leverages authors' publication histories to generate NL profiles and corresponding ground truth items. We use this dataset to conduct a comparison of baseline methods, ranging from sparse and dense retrieval approaches to state-of-the-art LLM-based rerankers. Our results show that while baseline methods achieve comparable performance, they often retrieve different items, indicating complementary behaviors. At the same time, considerable headroom for improvement remains, highlighting the need for effective NL-based recommendation approaches. The SciNUP dataset thus serves as a valuable resource for fostering future research and development in this area.
☆ CausalRec: A CausalBoost Attention Model for Sequential Recommendation
Recent advances in correlation-based sequential recommendation systems have demonstrated substantial success. Specifically, the attention-based model outperforms other RNN-based and Markov chains-based models by capturing both short- and long-term dependencies more effectively. However, solely focusing on item co-occurrences overlooks the underlying motivations behind user behaviors, leading to spurious correlations and potentially inaccurate recommendations. To address this limitation, we present a novel framework that integrates causal attention for sequential recommendation, CausalRec. It incorporates a causal discovery block and a CausalBooster. The causal discovery block learns the causal graph in user behavior sequences, and we provide a theory to guarantee the identifiability of the learned causal graph. The CausalBooster utilizes the discovered causal graph to refine the attention mechanism, prioritizing behaviors with causal significance. Experimental evaluations on real-world datasets indicate that CausalRec outperforms several state-of-the-art methods, with average improvements of 7.21% in Hit Rate (HR) and 8.65% in Normalized Discounted Cumulative Gain (NDCG). To the best of our knowledge, this is the first model to incorporate causality through the attention mechanism in sequential recommendation, demonstrating the value of causality in generating more accurate and reliable recommendations.
comment: 11 pages, 3 figures
☆ Pctx: Tokenizing Personalized Context for Generative Recommendation
Generative recommendation (GR) models tokenize each action into a few discrete tokens (called semantic IDs) and autoregressively generate the next tokens as predictions, showing advantages such as memory efficiency, scalability, and the potential to unify retrieval and ranking. Despite these benefits, existing tokenization methods are static and non-personalized. They typically derive semantic IDs solely from item features, assuming a universal item similarity that overlooks user-specific perspectives. However, under the autoregressive paradigm, semantic IDs with the same prefixes always receive similar probabilities, so a single fixed mapping implicitly enforces a universal item similarity standard across all users. In practice, the same item may be interpreted differently depending on user intentions and preferences. To address this issue, we propose a personalized context-aware tokenizer that incorporates a user's historical interactions when generating semantic IDs. This design allows the same item to be tokenized into different semantic IDs under different user contexts, enabling GR models to capture multiple interpretive standards and produce more personalized predictions. Experiments on three public datasets demonstrate up to 11.44% improvement in NDCG@10 over non-personalized action tokenization baselines. Our code is available at https://github.com/YoungZ365/Pctx.
☆ Bi-Level Optimization for Generative Recommendation: Bridging Tokenization and Generation
Generative recommendation is emerging as a transformative paradigm by directly generating recommended items, rather than relying on matching. Building such a system typically involves two key components: (1) optimizing the tokenizer to derive suitable item identifiers, and (2) training the recommender based on those identifiers. Existing approaches often treat these components separately--either sequentially or in alternation--overlooking their interdependence. This separation can lead to misalignment: the tokenizer is trained without direct guidance from the recommendation objective, potentially yielding suboptimal identifiers that degrade recommendation performance. To address this, we propose BLOGER, a Bi-Level Optimization for GEnerative Recommendation framework, which explicitly models the interdependence between the tokenizer and the recommender in a unified optimization process. The lower level trains the recommender using tokenized sequences, while the upper level optimizes the tokenizer based on both the tokenization loss and recommendation loss. We adopt a meta-learning approach to solve this bi-level optimization efficiently, and introduce gradient surgery to mitigate gradient conflicts in the upper-level updates, thereby ensuring that item identifiers are both informative and recommendation-aligned. Extensive experiments on real-world datasets demonstrate that BLOGER consistently outperforms state-of-the-art generative recommendation methods while maintaining practical efficiency with no significant additional computational overhead, effectively bridging the gap between item tokenization and autoregressive generation.
☆ VOGUE: A Multimodal Dataset for Conversational Recommendation in Fashion
Multimodal conversational recommendation has emerged as a promising paradigm for delivering personalized experiences through natural dialogue enriched by visual and contextual grounding. Yet, current multimodal conversational recommendation datasets remain limited: existing resources either simulate conversations, omit user history, or fail to collect sufficiently detailed feedback, all of which constrain the types of research and evaluation they support. To address these gaps, we introduce VOGUE, a novel dataset of 60 humanhuman dialogues in realistic fashion shopping scenarios. Each dialogue is paired with a shared visual catalogue, item metadata, user fashion profiles and histories, and post-conversation ratings from both Seekers and Assistants. This design enables rigorous evaluation of conversational inference, including not only alignment between predicted and ground-truth preferences, but also calibration against full rating distributions and comparison with explicit and implicit user satisfaction signals. Our initial analyses of VOGUE reveal distinctive dynamics of visually grounded dialogue. For example, recommenders frequently suggest items simultaneously in feature-based groups, which creates distinct conversational phases bridged by Seeker critiques and refinements. Benchmarking multimodal large language models against human recommenders shows that while MLLMs approach human-level alignment in aggregate, they exhibit systematic distribution errors in reproducing human ratings and struggle to generalize preference inference beyond explicitly discussed items. These findings establish VOGUE as both a unique resource for studying multimodal conversational systems and as a challenge dataset beyond the current recommendation capabilities of existing top-tier multimodal foundation models such as GPT-4o-mini, GPT-5-mini, and Gemini-2.5-Flash.
♻ ☆ Engram Memory Encoding and Retrieval: A Neurocomputational Perspective
Despite substantial research into the biological basis of memory, the precise mechanisms by which experiences are encoded, stored, and retrieved in the brain remain incompletely understood. A growing body of evidence supports the engram theory, which posits that sparse populations of neurons undergo lasting physical and biochemical changes to support long-term memory. Yet, a comprehensive computational framework that integrates biological findings with mechanistic models remains elusive. This work synthesizes insights from cellular neuroscience and computational modeling to address key challenges in engram research: how engram neurons are identified and manipulated; how synaptic plasticity mechanisms contribute to stable memory traces; and how sparsity promotes efficient, interference-resistant representations. Relevant computational approaches -- such as sparse regularization, engram gating, and biologically inspired architectures like Sparse Distributed Memory and spiking neural networks -- are also examined. Together, these findings suggest that memory efficiency, capacity, and stability emerge from the interaction of plasticity and sparsity constraints. By integrating neurobiological and computational perspectives, this paper provides a comprehensive theoretical foundation for engram research and proposes a roadmap for future inquiry into the mechanisms underlying memory, with implications for the diagnosis and treatment of memory-related disorders.
comment: 18 pages, 7 figures, 3 tables
♻ ☆ Faster and Memory-Efficient Training of Sequential Recommendation Models for Large Catalogs
Sequential recommendations (SR) with transformer-based architectures are widely adopted in real-world applications, where SR models require frequent retraining to adapt to ever-changing user preferences. However, training transformer-based SR models often encounters a high computational cost associated with scoring extensive item catalogs, often exceeding thousands of items. This occurs mainly due to the use of cross-entropy loss, where peak memory scales proportionally to catalog size, batch size, and sequence length. Recognizing this, practitioners in the field of recommendation systems typically address memory consumption by integrating the cross-entropy (CE) loss with negative sampling, thereby reducing the explicit memory demands of the final layer. However, a small number of negative samples would degrade model performance, and as we demonstrate in our work, increasing the number of negative samples and the batch size further improves the model's performance, but rapidly starts to exceed industrial GPUs' size (~40Gb). In this work, we introduce the CCE- method, which offers a GPU-efficient implementation of the CE loss with negative sampling. Our method accelerates training by up to two times while reducing memory consumption by more than 10 times. Leveraging the memory savings afforded by using CCE- for model training, it becomes feasible to enhance its accuracy on datasets with a large item catalog compared to those trained with original PyTorch-implemented loss functions. Finally, we perform an analysis of key memory-related hyperparameters and highlight the necessity of a delicate balance among these factors. We demonstrate that scaling both the number of negative samples and batch size leads to better results rather than maximizing only one of them. To facilitate further adoption of CCE-, we release a Triton kernel that efficiently implements the proposed method.
♻ ☆ SimLab: A Platform for Simulation-based Evaluation of Conversational Information Access Systems
Progress in conversational information access (CIA) systems has been hindered by the difficulty of evaluating such systems with reproducible experiments. While user simulation offers a promising solution, the lack of infrastructure and tooling to support this evaluation paradigm remains a significant barrier. To address this gap, we introduce SimLab, the first cloud-based platform providing a centralized solution for the community to benchmark both conversational systems and user simulators in a controlled and reproducible setting. We articulate the requirements for such a platform and propose a general infrastructure to meet them. We then present the design and implementation of an initial version of SimLab and showcase its features through an initial simulation-based evaluation task in conversational movie recommendation. Furthermore, we discuss the platform's sustainability and future opportunities for development, inviting the community to drive further progress in the fields of CIA and user simulation.
♻ ☆ AcuRank: Uncertainty-Aware Adaptive Computation for Listwise Reranking NeurIPS 2025
Listwise reranking with large language models (LLMs) enhances top-ranked results in retrieval-based applications. Due to the limit in context size and high inference cost of long context, reranking is typically performed over a fixed size of small subsets, with the final ranking aggregated from these partial results. This fixed computation disregards query difficulty and document distribution, leading to inefficiencies. We propose AcuRank, an adaptive reranking framework that dynamically adjusts both the amount and target of computation based on uncertainty estimates over document relevance. Using a Bayesian TrueSkill model, we iteratively refine relevance estimates until reaching sufficient confidence levels, and our explicit modeling of ranking uncertainty enables principled control over reranking behavior and avoids unnecessary updates to confident predictions. Results on the TREC-DL and BEIR benchmarks show that our method consistently achieves a superior accuracy-efficiency trade-off and scales better with compute than fixed-computation baselines. These results highlight the effectiveness and generalizability of our method across diverse retrieval tasks and LLM-based reranking models.
comment: Accepted at NeurIPS 2025. The first two authors contributed equally. Author order is randomly determined via coin toss
♻ ☆ Towards Context-aware Reasoning-enhanced Generative Searching in E-commerce
Search-based recommendation is one of the most critical application scenarios in e-commerce platforms. Users' complex search contexts--such as spatiotemporal factors, historical interactions, and current query's information--constitute an essential part of their decision-making, reflecting implicit preferences that complement explicit query terms. Modeling such rich contextual signals and their intricate associations with candidate items remains a key challenge. Although numerous efforts have been devoted to building more effective search methods, existing approaches still show limitations in integrating contextual information, which hinders their ability to fully capture user intent. To address these challenges, we propose a context-aware reasoning-enhanced generative search framework for better \textbf{understanding the complicated context}. Specifically, the framework first unifies heterogeneous user and item contexts into textual representations or text-based semantic identifiers and aligns them. To overcome the lack of explicit reasoning trajectories, we introduce a self-evolving post-training paradigm that iteratively combines supervised fine-tuning and reinforcement learning to progressively enhance the model's reasoning capability. In addition, we identify potential biases in existing RL algorithms when applied to search scenarios and present a debiased variant of GRPO to improve ranking performance. Extensive experiments on search log data collected from a real-world e-commerce platform demonstrate that our approach achieves superior performance compared with strong baselines, validating its effectiveness for search-based recommendation.
♻ ☆ Rank-GRPO: Training LLM-based Conversational Recommender Systems with Reinforcement Learning
Large language models (LLMs) are reshaping the recommender system paradigm by enabling users to express preferences and receive recommendations through conversations. Yet, aligning LLMs to the recommendation task remains challenging: pretrained LLMs often generate out-of-catalog items, violate required output formats, and their ranking quality degrades sharply toward the end of the generated list. To this end, we propose ConvRec-R1, a two-stage framework for end-to-end training of LLM-based conversational recommender systems. In Stage 1, we construct a behavioral-cloning dataset with a Remap-Reflect-Adjust pipeline, which produces high-quality, catalog-grounded demonstrations from powerful blackbox LLMs to warm-start the RL training. In Stage 2, we propose Rank-GRPO, a principled extension of group relative policy optimization (GRPO) tailored to tasks with rank-style outputs. Rank-GRPO treats each rank in the recommendation list as the unit instead of token (too fine-grained) or sequence (too coarse), redefining rewards to remove non-causal credit assignment and introducing a rank-level importance ratio based on the geometric mean of rank-wise token probabilities to stabilize policy updates. Experiments on the public Reddit-v2 dataset show that ConvRec-R1 converges faster and achieves higher Recall and NDCG than GRPO-style baselines. Code and datasets are released at https://github.com/yaochenzhu/Rank-GRPO.
Multimedia
♻ ☆ Seeing Sound, Hearing Sight: Uncovering Modality Bias and Conflict of AI models in Sound Localization NeurIPS 2025
Imagine hearing a dog bark and turning toward the sound only to see a parked car, while the real, silent dog sits elsewhere. Such sensory conflicts test perception, yet humans reliably resolve them by prioritizing sound over misleading visuals. Despite advances in multimodal AI integrating vision and audio, little is known about how these systems handle cross-modal conflicts or whether they favor one modality. In this study, we systematically examine modality bias and conflict resolution in AI sound localization. We assess leading multimodal models and benchmark them against human performance in psychophysics experiments across six audiovisual conditions, including congruent, conflicting, and absent cues. Humans consistently outperform AI, demonstrating superior resilience to conflicting or missing visuals by relying on auditory information. In contrast, AI models often default to visual input, degrading performance to near chance levels. To address this, we propose a neuroscience-inspired model, EchoPin, which uses a stereo audio-image dataset generated via 3D simulations. Even with limited training data, EchoPin surpasses existing benchmarks. Notably, it also mirrors human-like horizontal localization bias favoring left-right precision-likely due to the stereo audio structure reflecting human ear placement. These findings underscore how sensory input quality and system architecture shape multimodal representation accuracy.
comment: NeurIPS 2025, Spotlight
♻ ☆ Save It for the "Hot" Day: An LLM-Empowered Visual Analytics System for Heat Risk Management
The escalating frequency and intensity of heat-related climate events, particularly heatwaves, emphasize the pressing need for advanced heat risk management strategies. Current approaches, primarily relying on numerical models, face challenges in spatial-temporal resolution and in capturing the dynamic interplay of environmental, social, and behavioral factors affecting heat risks. This has led to difficulties in translating risk assessments into effective mitigation actions. Recognizing these problems, we introduce a novel approach leveraging the burgeoning capabilities of Large Language Models (LLMs) to extract rich and contextual insights from news reports. We hence propose an LLM-empowered visual analytics system, Havior, that integrates the precise, data-driven insights of numerical models with nuanced news report information. This hybrid approach enables a more comprehensive assessment of heat risks and better identification, assessment, and mitigation of heat-related threats. The system incorporates novel visualization designs, such as "thermoglyph" and news glyph, enhancing intuitive understanding and analysis of heat risks. The integration of LLM-based techniques also enables advanced information retrieval and semantic knowledge extraction that can be guided by experts' analytics needs. Our case studies on two cities that faced significant heatwave events and interviews with five experts have demonstrated the usefulness of our system in providing in-depth and actionable insights for heat risk management.
Information Retrieval
☆ From Questions to Queries: An AI-powered Multi-Agent Framework for Spatial Text-to-SQL
The complexity of Structured Query Language (SQL) and the specialized nature of geospatial functions in tools like PostGIS present significant barriers to non-experts seeking to analyze spatial data. While Large Language Models (LLMs) offer promise for translating natural language into SQL (Text-to-SQL), single-agent approaches often struggle with the semantic and syntactic complexities of spatial queries. To address this, we propose a multi-agent framework designed to accurately translate natural language questions into spatial SQL queries. The framework integrates several innovative components, including a knowledge base with programmatic schema profiling and semantic enrichment, embeddings for context retrieval, and a collaborative multi-agent pipeline as its core. This pipeline comprises specialized agents for entity extraction, metadata retrieval, query logic formulation, SQL generation, and a review agent that performs programmatic and semantic validation of the generated SQL to ensure correctness (self-verification). We evaluate our system using both the non-spatial KaggleDBQA benchmark and a new, comprehensive SpatialQueryQA benchmark that includes diverse geometry types, predicates, and three levels of query complexity. On KaggleDBQA, the system achieved an overall accuracy of 81.2% (221 out of 272 questions) after the review agent's review and corrections. For spatial queries, the system achieved an overall accuracy of 87.7% (79 out of 90 questions), compared with 76.7% without the review agent. Beyond accuracy, results also show that in some instances the system generates queries that are more semantically aligned with user intent than those in the benchmarks. This work makes spatial analysis more accessible, and provides a robust, generalizable foundation for spatial Text-to-SQL systems, advancing the development of autonomous GIS.
☆ Communication Platform for Non-verbal Autistic children in Oman using Android mobile
This paper discusses the issue regarding Non-verbal Autism Spectrum Disorder. It has been observed that this mental disorder is listed in major parts of the world including the US, UK, and India. To mitigate this type of disorder, a wide range of smartphones, computers, and artificial intelligence technologies have been used. This technology has helped the population cope with socialization and communication needs. Many applications have been developed to enhance the communication capabilities of non-verbal autistic children. This thesis project proposes the development of a platform that includes a web panel and an Android mobile application to assist non-verbal autistic children in communication, especially in Oman. Different interventions have been merged to improve the quality of life for people on the autism spectrum. The main problem identified in this case is that fragmented approaches are not suitable for autistic children. The augmented reality framework provides the capability to engage autistic children in creative play and self-reflection through interactive screen-based activities.
☆ Gaussian Mixture Flow Matching with Domain Alignment for Multi-Domain Sequential Recommendation
Users increasingly interact with content across multiple domains, resulting in sequential behaviors marked by frequent and complex transitions. While Cross-Domain Sequential Recommendation (CDSR) models two-domain interactions, Multi-Domain Sequential Recommendation (MDSR) introduces significantly more domain transitions, compounded by challenges such as domain heterogeneity and imbalance. Existing approaches often overlook the intricacies of domain transitions, tend to overfit to dense domains while underfitting sparse ones, and struggle to scale effectively as the number of domains increases. We propose \textit{GMFlowRec}, an efficient generative framework for MDSR that models domain-aware transition trajectories via Gaussian Mixture Flow Matching. GMFlowRec integrates: (1) a unified dual-masked Transformer to disentangle domain-invariant and domain-specific intents, (2) a Gaussian Mixture flow field to capture diverse behavioral patterns, and (3) a domain-aligned prior to support frequent and sparse transitions. Extensive experiments on JD and Amazon datasets demonstrate that GMFlowRec achieves state-of-the-art performance with up to 44\% improvement in NDCG@5, while maintaining high efficiency via a single unified backbone, making it scalable for real-world multi-domain sequential recommendation.
☆ Generative Reasoning Recommendation via LLMs
Despite their remarkable reasoning capabilities across diverse domains, large language models (LLMs) face fundamental challenges in natively functioning as generative reasoning recommendation models (GRRMs), where the intrinsic modeling gap between textual semantics and collaborative filtering signals, combined with the sparsity and stochasticity of user feedback, presents significant obstacles. This work explores how to build GRRMs by adapting pre-trained LLMs, which achieves a unified understanding-reasoning-prediction manner for recommendation tasks. We propose GREAM, an end-to-end framework that integrates three components: (i) Collaborative-Semantic Alignment, which fuses heterogeneous textual evidence to construct semantically consistent, discrete item indices and auxiliary alignment tasks that ground linguistic representations in interaction semantics; (ii) Reasoning Curriculum Activation, which builds a synthetic dataset with explicit Chain-of-Thought supervision and a curriculum that progresses through behavioral evidence extraction, latent preference modeling, intent inference, recommendation formulation, and denoised sequence rewriting; and (iii) Sparse-Regularized Group Policy Optimization (SRPO), which stabilizes post-training via Residual-Sensitive Verifiable Reward and Bonus-Calibrated Group Advantage Estimation, enabling end-to-end optimization under verifiable signals despite sparse successes. GREAM natively supports two complementary inference modes: Direct Sequence Recommendation for high-throughput, low-latency deployment, and Sequential Reasoning Recommendation that first emits an interpretable reasoning chain for causal transparency. Experiments on three datasets demonstrate consistent gains over strong baselines, providing a practical path toward verifiable-RL-driven LLM recommenders.
☆ RAGRank: Using PageRank to Counter Poisoning in CTI LLM Pipelines
Retrieval-Augmented Generation (RAG) has emerged as the dominant architectural pattern to operationalize Large Language Model (LLM) usage in Cyber Threat Intelligence (CTI) systems. However, this design is susceptible to poisoning attacks, and previously proposed defenses can fail for CTI contexts as cyber threat information is often completely new for emerging attacks, and sophisticated threat actors can mimic legitimate formats, terminology, and stylistic conventions. To address this issue, we propose that the robustness of modern RAG defenses can be accelerated by applying source credibility algorithms on corpora, using PageRank as an example. In our experiments, we demonstrate quantitatively that our algorithm applies a lower authority score to malicious documents while promoting trusted content, using the standardized MS MARCO dataset. We also demonstrate proof-of-concept performance of our algorithm on CTI documents and feeds.
☆ Analyticup E-commerce Product Search Competition Technical Report from Team Tredence_AICOE
This study presents the multilingual e-commerce search system developed by the Tredence_AICOE team. The competition features two multilingual relevance tasks: Query-Category (QC) Relevance, which evaluates how well a user's search query aligns with a product category, and Query-Item (QI) Relevance, which measures the match between a multilingual search query and an individual product listing. To ensure full language coverage, we performed data augmentation by translating existing datasets into languages missing from the development set, enabling training across all target languages. We fine-tuned Gemma-3 12B and Qwen-2.5 14B model for both tasks using multiple strategies. The Gemma-3 12B (4-bit) model achieved the best QC performance using original and translated data, and the best QI performance using original, translated, and minority class data creation. These approaches secured 4th place on the final leaderboard, with an average F1-score of 0.8857 on the private test set.
☆ Practical Code RAG at Scale: Task-Aware Retrieval Design Choices under Compute Budgets
We study retrieval design for code-focused generation tasks under realistic compute budgets. Using two complementary tasks from Long Code Arena -- code completion and bug localization -- we systematically compare retrieval configurations across various context window sizes along three axes: (i) chunking strategy, (ii) similarity scoring, and (iii) splitting granularity. (1) For PL-PL, sparse BM25 with word-level splitting is the most effective and practical, significantly outperforming dense alternatives while being an order of magnitude faster. (2) For NL-PL, proprietary dense encoders (Voyager-3 family) consistently beat sparse retrievers, however requiring 100x larger latency. (3) Optimal chunk size scales with available context: 32-64 line chunks work best at small budgets, and whole-file retrieval becomes competitive at 16000 tokens. (4) Simple line-based chunking matches syntax-aware splitting across budgets. (5) Retrieval latency varies by up to 200x across configurations; BPE-based splitting is needlessly slow, and BM25 + word splitting offers the best quality-latency trade-off. Thus, we provide evidence-based recommendations for implementing effective code-oriented RAG systems based on task requirements, model constraints, and computational efficiency.
☆ Rotate Both Ways: Time-and-Order RoPE for Generative Recommendation
Generative recommenders, typically transformer-based autoregressive models, predict the next item or action from a user's interaction history. Their effectiveness depends on how the model represents where an interaction event occurs in the sequence (discrete index) and when it occurred in wall-clock time. Prevailing approaches inject time via learned embeddings or relative attention biases. In this paper, we argue that RoPE-based approaches, if designed properly, can be a stronger alternative for jointly modeling temporal and sequential information in user behavior sequences. While vanilla RoPE in LLMs considers only token order, generative recommendation requires incorporating both event time and token index. To address this, we propose Time-and-Order RoPE (TO-RoPE), a family of rotary position embedding designs that treat index and time as angle sources shaping the query-key geometry directly. We present three instantiations: early fusion, split-by-dim, and split-by-head. Extensive experiments on both publicly available datasets and a proprietary industrial dataset show that TO-RoPE variants consistently improve accuracy over existing methods for encoding time and index. These results position rotary embeddings as a simple, principled, and deployment-friendly foundation for generative recommendation.
☆ A Multi-Stage Hybrid Framework for Automated Interpretation of Multi-View Engineering Drawings Using Vision Language Model
Engineering drawings are fundamental to manufacturing communication, serving as the primary medium for conveying design intent, tolerances, and production details. However, interpreting complex multi-view drawings with dense annotations remains challenging using manual methods, generic optical character recognition (OCR) systems, or traditional deep learning approaches, due to varied layouts, orientations, and mixed symbolic-textual content. To address these challenges, this paper proposes a three-stage hybrid framework for the automated interpretation of 2D multi-view engineering drawings using modern detection and vision language models (VLMs). In the first stage, YOLOv11-det performs layout segmentation to localize key regions such as views, title blocks, and notes. The second stage uses YOLOv11-obb for orientation-aware, fine-grained detection of annotations, including measures, GD&T symbols, and surface roughness indicators. The third stage employs two Donut-based, OCR-free VLMs for semantic content parsing: the Alphabetical VLM extracts textual and categorical information from title blocks and notes, while the Numerical VLM interprets quantitative data such as measures, GD&T frames, and surface roughness. Two specialized datasets were developed to ensure robustness and generalization: 1,000 drawings for layout detection and 1,406 for annotation-level training. The Alphabetical VLM achieved an overall F1 score of 0.672, while the Numerical VLM reached 0.963, demonstrating strong performance in textual and quantitative interpretation, respectively. The unified JSON output enables seamless integration with CAD and manufacturing databases, providing a scalable solution for intelligent engineering drawing analysis.
comment: This draft has been submitted to the 13th International Conference on Industrial Engineering and Applications (ICIEA 2026)
☆ From Generation to Attribution: Music AI Agent Architectures for the Post-Streaming Era NeurIPS 2025
Generative AI is reshaping music creation, but its rapid growth exposes structural gaps in attribution, rights management, and economic models. Unlike past media shifts, from live performance to recordings, downloads, and streaming, AI transforms the entire lifecycle of music, collapsing boundaries between creation, distribution, and monetization. However, existing streaming systems, with opaque and concentrated royalty flows, are ill-equipped to handle the scale and complexity of AI-driven production. We propose a content-based Music AI Agent architecture that embeds attribution directly into the creative workflow through block-level retrieval and agentic orchestration. Designed for iterative, session-based interaction, the system organizes music into granular components (Blocks) stored in BlockDB; each use triggers an Attribution Layer event for transparent provenance and real-time settlement. This framework reframes AI from a generative tool into infrastructure for a Fair AI Media Platform. By enabling fine-grained attribution, equitable compensation, and participatory engagement, it points toward a post-streaming paradigm where music functions not as a static catalog but as a collaborative and adaptive ecosystem.
comment: Accepted to the NeurIPS 2025 AI4Music Workshop
☆ Balancing Fine-tuning and RAG: A Hybrid Strategy for Dynamic LLM Recommendation Updates RecSys 2025
Large Language Models (LLMs) empower recommendation systems through their advanced reasoning and planning capabilities. However, the dynamic nature of user interests and content poses a significant challenge: While initial fine-tuning aligns LLMs with domain knowledge and user preferences, it fails to capture such real-time changes, necessitating robust update mechanisms. This paper investigates strategies for updating LLM-powered recommenders, focusing on the trade-offs between ongoing fine-tuning and Retrieval-Augmented Generation (RAG). Using an LLM-powered user interest exploration system as a case study, we perform a comparative analysis of these methods across dimensions like cost, agility, and knowledge incorporation. We propose a hybrid update strategy that leverages the long-term knowledge adaptation of periodic fine-tuning with the agility of low-cost RAG. We demonstrate through live A/B experiments on a billion-user platform that this hybrid approach yields statistically significant improvements in user satisfaction, offering a practical and cost-effective framework for maintaining high-quality LLM-powered recommender systems.
comment: RecSys 2025 Industry Track
☆ Multimedia-Aware Question Answering: A Review of Retrieval and Cross-Modal Reasoning Architectures
Question Answering (QA) systems have traditionally relied on structured text data, but the rapid growth of multimedia content (images, audio, video, and structured metadata) has introduced new challenges and opportunities for retrieval-augmented QA. In this survey, we review recent advancements in QA systems that integrate multimedia retrieval pipelines, focusing on architectures that align vision, language, and audio modalities with user queries. We categorize approaches based on retrieval methods, fusion techniques, and answer generation strategies, and analyze benchmark datasets, evaluation protocols, and performance tradeoffs. Furthermore, we highlight key challenges such as cross-modal alignment, latency-accuracy tradeoffs, and semantic grounding, and outline open problems and future research directions for building more robust and context-aware QA systems leveraging multimedia data.
comment: In Proceedings of the 2nd ACM Workshop in AI-powered Question and Answering Systems (AIQAM '25), October 27-28, 2025, Dublin, Ireland. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3746274.3760393
♻ ☆ X-Reflect: Cross-Reflection Prompting for Multimodal Recommendation
Large Language Models (LLMs) have been shown to enhance the effectiveness of enriching item descriptions, thereby improving the accuracy of recommendation systems. However, most existing approaches either rely on text-only prompting or employ basic multimodal strategies that do not fully exploit the complementary information available from both textual and visual modalities. This paper introduces a novel framework, Cross-Reflection Prompting, termed X-Reflect, designed to address these limitations by prompting Multimodal Large Language Models (MLLMs) to explicitly identify and reconcile supportive and conflicting information between text and images. By capturing nuanced insights from both modalities, this approach generates more comprehensive and contextually rich item representations. Extensive experiments conducted on two widely used benchmarks demonstrate that our method outperforms existing prompting baselines in downstream recommendation accuracy. Furthermore, we identify a U-shaped relationship between text-image dissimilarity and recommendation performance, suggesting the benefit of applying multimodal prompting selectively. To support efficient real-time inference, we also introduce X-Reflect-keyword, a lightweight variant that summarizes image content using keywords and replaces the base model with a smaller backbone, achieving nearly 50% reduction in input length while maintaining competitive performance. This work underscores the importance of integrating multimodal information and presents an effective solution for improving item understanding in multimodal recommendation systems.
♻ ☆ CoRECT: A Framework for Evaluating Embedding Compression Techniques at Scale
Dense retrieval systems have proven to be effective across various benchmarks, but require substantial memory to store large search indices. Recent advances in embedding compression show that index sizes can be greatly reduced with minimal loss in ranking quality. However, existing studies often overlook the role of corpus complexity -- a critical factor, as recent work shows that both corpus size and document length strongly affect dense retrieval performance. In this paper, we introduce CoRECT (Controlled Retrieval Evaluation of Compression Techniques), a framework for large-scale evaluation of embedding compression methods, supported by a newly curated dataset collection. To demonstrate its utility, we benchmark eight representative types of compression methods. Notably, we show that non-learned compression achieves substantial index size reduction, even on up to 100M passages, with statistically insignificant performance loss. However, selecting the optimal compression method remains challenging, as performance varies across models. Such variability highlights the necessity of CoRECT to enable consistent comparison and informed selection of compression methods. All code, data, and results are available on GitHub and HuggingFace.
♻ ☆ HoMer: Addressing Heterogeneities by Modeling Sequential and Set-wise Contexts for CTR Prediction
Click-through rate (CTR) prediction, which models behavior sequence and non-sequential features (e.g., user/item profiles or cross features) to infer user interest, underpins industrial recommender systems. However, most methods face three forms of heterogeneity that degrade predictive performance: (i) Feature Heterogeneity persists when limited sequence side features provide less granular interest representation compared to extensive non-sequential features, thereby impairing sequence modeling performance; (ii) Context Heterogeneity arises because a user's interest in an item will be influenced by other items, yet point-wise prediction neglects cross-item interaction context from the entire item set; (iii) Architecture Heterogeneity stems from the fragmented integration of specialized network modules, which compounds the model's effectiveness, efficiency and scalability in industrial deployments. To tackle the above limitations, we propose HoMer, a Homogeneous-Oriented TransforMer for modeling sequential and set-wise contexts. First, we align sequence side features with non-sequential features for accurate sequence modeling and fine-grained interest representation. Second, we shift the prediction paradigm from point-wise to set-wise, facilitating cross-item interaction in a highly parallel manner. Third, HoMer's unified encoder-decoder architecture achieves dual optimization through structural simplification and shared computation, ensuring computational efficiency while maintaining scalability with model size. Without arduous modification to the prediction pipeline, HoMer successfully scales up and outperforms our industrial baseline by 0.0099 in the AUC metric, and enhances online business metrics like CTR/RPM by 1.99%/2.46%. Additionally, HoMer saves 27% of GPU resources via preliminary engineering optimization, further validating its superiority and practicality.
comment: 10 pages, 6 figures
♻ ☆ On Function-Correcting Codes in the Lee Metric
Function-correcting codes are a coding framework designed to minimize redundancy while ensuring that specific functions or computations of encoded data can be reliably recovered, even in the presence of errors. The choice of metric is crucial in designing such codes, as it determines which computations must be protected and how errors are measured and corrected. Previous work by Liu and Liu [6] studied function-correcting codes over $\mathbb{Z}_{2^l},\ l\geq 2$ using the homogeneous metric, which coincides with the Lee metric over $\mathbb{Z}_4$. In this paper, we extend the study to codes over $\mathbb{Z}_m,$ for any positive integer $m\geq 2$ under the Lee metric and aim to determine their optimal redundancy. To achieve this, we introduce irregular Lee distance codes and derive upper and lower bounds on the optimal redundancy by characterizing the shortest possible length of such codes. These general bounds are then simplified and applied to specific classes of functions, including Lee-local functions, Lee weight functions, and Lee weight distribution functions. We extend the bounds established by Liu and Liu [6] for codes over $\mathbb{Z}_4$ in the Lee metric to the more general setting of $\mathbb{Z}_m$. Additionally, we explicitly derive a Plotkin-like bound for linear function-correcting codes in the Lee metric. As the Lee metric coincides with the Hamming metric over the binary field, we demonstrate that our bound naturally reduces to a Plotkin-type bound for function-correcting codes under the Hamming metric over $\mathbb{Z}_2$. Furthermore, when the underlying function is bijective, function-correcting codes reduce to classical error-correcting codes. In parallel, our bound correspondingly reduces to the classical Plotkin bound for error-correcting codes, both for the Lee metric over $\mathbb{Z}_m$ and for the Hamming metric over $\mathbb{Z}_2$.
♻ ☆ Rebalancing Contrastive Alignment with Bottlenecked Semantic Increments in Text-Video Retrieval
Recent progress in text-video retrieval has been largely driven by contrastive learning. However, existing methods often overlook the effect of the modality gap, which causes anchor representations to undergo in-place optimization (i.e., optimization tension) that limits their alignment capacity. Moreover, noisy hard negatives further distort the semantics of anchors. To address these issues, we propose GARE, a Gap-Aware Retrieval framework that introduces a learnable, pair-specific increment $\Delta_{ij}$ between text $t_i$ and video $v_j$, redistributing gradients to relieve optimization tension and absorb noise. We derive $\Delta_{ij}$ via a multivariate first-order Taylor expansion of the InfoNCE loss under a trust-region constraint, showing that it guides updates along locally consistent descent directions. A lightweight neural module conditioned on the semantic gap couples increments across batches for structure-aware correction. Furthermore, we regularize $\Delta$ through a variational information bottleneck with relaxed compression, enhancing stability and semantic consistency. Experiments on four benchmarks demonstrate that GARE consistently improves alignment accuracy and robustness, validating the effectiveness of gap-aware tension mitigation. Code is available at https://github.com/musicman217/GARE-text-video-retrieval.
♻ ☆ Learning to Hash for Recommendation: A Survey
With the explosive growth of users and items, Recommender Systems are facing unprecedented challenges in terms of retrieval efficiency and storage overhead. Learning to Hash techniques have emerged as a promising solution to these issues by encoding high-dimensional data into compact hash codes. As a result, hashing-based recommendation methods (HashRec) have garnered growing attention for enabling large-scale and efficient recommendation services. This survey provides a comprehensive overview of state-of-the-art HashRec algorithms. Specifically, we begin by introducing the common two-tower architecture used in the recall stage and by detailing two predominant hash search strategies. Then, we categorize existing works into a three-tier taxonomy based on: (i) learning objectives, (ii) optimization strategies, and (iii) recommendation scenarios. Additionally, we summarize widely adopted evaluation metrics for assessing both the effectiveness and efficiency of HashRec algorithms. Finally, we discuss current limitations in the field and outline promising directions for future research. We index these HashRec methods at the repository \href{https://github.com/Luo-Fangyuan/HashRec}{https://github.com/Luo-Fangyuan/HashRec}.
♻ ☆ Scalable Dynamic Embedding Size Search for Streaming Recommendation CIKM 2024
Recommender systems typically represent users and items by learning their embeddings, which are usually set to uniform dimensions and dominate the model parameters. However, real-world recommender systems often operate in streaming recommendation scenarios, where the number of users and items continues to grow, leading to substantial storage resource consumption for these embeddings. Although a few methods attempt to mitigate this by employing embedding size search strategies to assign different embedding dimensions in streaming recommendations, they assume that the embedding size grows with the frequency of users/items, which eventually still exceeds the predefined memory budget over time. To address this issue, this paper proposes to learn Scalable Lightweight Embeddings for streaming recommendation, called SCALL, which can adaptively adjust the embedding sizes of users/items within a given memory budget over time. Specifically, we propose to sample embedding sizes from a probabilistic distribution, with the guarantee to meet any predefined memory budget. By fixing the memory budget, the proposed embedding size sampling strategy can increase and decrease the embedding sizes in accordance to the frequency of the corresponding users or items. Furthermore, we develop a reinforcement learning-based search paradigm that models each state with mean pooling to keep the length of the state vectors fixed, invariant to the changing number of users and items. As a result, the proposed method can provide embedding sizes to unseen users and items. Comprehensive empirical evaluations on two public datasets affirm the advantageous effectiveness of our proposed method.
comment: accepted to CIKM 2024 Code is available at https://github.com/qykcq/Scalable-Dynamic-Embedding-Size-Search-for-Streaming-Recommendation
♻ ☆ Budgeted Embedding Table For Recommender Systems WSDM 2024
At the heart of contemporary recommender systems (RSs) are latent factor models that provide quality recommendation experience to users. These models use embedding vectors, which are typically of a uniform and fixed size, to represent users and items. As the number of users and items continues to grow, this design becomes inefficient and hard to scale. Recent lightweight embedding methods have enabled different users and items to have diverse embedding sizes, but are commonly subject to two major drawbacks. Firstly, they limit the embedding size search to optimizing a heuristic balancing the recommendation quality and the memory complexity, where the trade-off coefficient needs to be manually tuned for every memory budget requested. The implicitly enforced memory complexity term can even fail to cap the parameter usage, making the resultant embedding table fail to meet the memory budget strictly. Secondly, most solutions, especially reinforcement learning based ones derive and optimize the embedding size for each each user/item on an instance-by-instance basis, which impedes the search efficiency. In this paper, we propose Budgeted Embedding Table (BET), a novel method that generates table-level actions (i.e., embedding sizes for all users and items) that is guaranteed to meet pre-specified memory budgets. Furthermore, by leveraging a set-based action formulation and engaging set representation learning, we present an innovative action search strategy powered by an action fitness predictor that efficiently evaluates each table-level action. Experiments have shown state-of-the-art performance on two real-world datasets when BET is paired with three popular recommender models under different memory budgets.
comment: Accepted to WSDM 2024. Code is available at https://github.com/qykcq/Budgeted-Embedding-Table-For-Recommender-Systems
♻ ☆ Continuous Input Embedding Size Search For Recommender Systems SIGIR'23
Latent factor models are the most popular backbones for today's recommender systems owing to their prominent performance. Latent factor models represent users and items as real-valued embedding vectors for pairwise similarity computation, and all embeddings are traditionally restricted to a uniform size that is relatively large (e.g., 256-dimensional). With the exponentially expanding user base and item catalog in contemporary e-commerce, this design is admittedly becoming memory-inefficient. To facilitate lightweight recommendation, reinforcement learning (RL) has recently opened up opportunities for identifying varying embedding sizes for different users/items. However, challenged by search efficiency and learning an optimal RL policy, existing RL-based methods are restricted to highly discrete, predefined embedding size choices. This leads to a largely overlooked potential of introducing finer granularity into embedding sizes to obtain better recommendation effectiveness under a given memory budget. In this paper, we propose continuous input embedding size search (CIESS), a novel RL-based method that operates on a continuous search space with arbitrary embedding sizes to choose from. In CIESS, we further present an innovative random walk-based exploration strategy to allow the RL policy to efficiently explore more candidate embedding sizes and converge to a better decision. CIESS is also model-agnostic and hence generalizable to a variety of latent factor RSs, whilst experiments on two real-world datasets have shown state-of-the-art performance of CIESS under different memory budgets when paired with three popular recommendation models.
comment: To appear in SIGIR'23. Code is available at https://github.com/qykcq/Continuous-Input-Embedding-Size-Search-For-Recommender-Systems
♻ ☆ Efficient Multimodal Streaming Recommendation via Expandable Side Mixture-of-Experts CIKM 2025
Streaming recommender systems (SRSs) are widely deployed in real-world applications, where user interests shift and new items arrive over time. As a result, effectively capturing users' latest preferences is challenging, as interactions reflecting recent interests are limited and new items often lack sufficient feedback. A common solution is to enrich item representations using multimodal encoders (e.g., BERT or ViT) to extract visual and textual features. However, these encoders are pretrained on general-purpose tasks: they are not tailored to user preference modeling, and they overlook the fact that user tastes toward modality-specific features such as visual styles and textual tones can also drift over time. This presents two key challenges in streaming scenarios: the high cost of fine-tuning large multimodal encoders, and the risk of forgetting long-term user preferences due to continuous model updates. To tackle these challenges, we propose Expandable Side Mixture-of-Experts (XSMoE), a memory-efficient framework for multimodal streaming recommendation. XSMoE attaches lightweight side-tuning modules consisting of expandable expert networks to frozen pretrained encoders and incrementally expands them in response to evolving user feedback. A gating router dynamically combines expert and backbone outputs, while a utilization-based pruning strategy maintains model compactness. By learning new patterns through expandable experts without overwriting previously acquired knowledge, XSMoE effectively captures both cold start and shifting preferences in multimodal features. Experiments on three real-world datasets demonstrate that XSMoE outperforms state-of-the-art baselines in both recommendation quality and computational efficiency.
comment: Accepted to CIKM 2025. Code is available at https://github.com/qykcq/Efficient-Multimodal-Streaming-Recommendation-via-Expandable-Side-Mixture-of-Experts
♻ ☆ Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.
comment: This paper contains fundamental errors and will not be replaced
♻ ☆ Efficiently Constructing Sparse Navigable Graphs
Graph-based nearest neighbor search methods have seen a surge of popularity in recent years, offering state-of-the-art performance across a wide variety of applications. Central to these methods is the task of constructing a sparse navigable search graph for a given dataset endowed with a distance function. Unfortunately, doing so is computationally expensive, so heuristics are universally used in practice. In this work, we initiate the study of fast algorithms with provable guarantees for search graph construction. For a dataset with $n$ data points, the problem of constructing an optimally sparse navigable graph can be framed as $n$ separate but highly correlated minimum set cover instances. This yields a naive $O(n^3)$ time greedy algorithm that returns a navigable graph whose sparsity is at most $O(\log n)$ higher than optimal. We improve significantly on this baseline, taking advantage of correlation between the set cover instances to leverage techniques from streaming and sublinear-time set cover algorithms. By also introducing problem-specific pre-processing techniques, we obtain an $\tilde{O}(n^2)$ time algorithm for constructing an $O(\log n)$-approximate sparsest navigable graph under any distance function. The runtime of our method is optimal up to logarithmic factors under the Strong Exponential Time Hypothesis via a reduction from Monochromatic Closest Pair. Moreover, we prove that, as with general set cover, obtaining better than an $O(\log n)$-approximation is NP-hard, despite the significant additional structure present in the navigable graph problem. Finally, we show that our approach can also beat cubic time for the closely related and practically important problems of constructing $\alpha$-shortcut reachable and $\tau$-monotonic graphs, which are also used for nearest neighbor search. For such graphs, we obtain $\tilde{O}(n^{2.5})$ time or better algorithms.
Multimedia
☆ Can Current Detectors Catch Face-to-Voice Deepfake Attacks? ACSA
The rapid advancement of generative models has enabled the creation of increasingly stealthy synthetic voices, commonly referred to as audio deepfakes. A recent technique, FOICE [USENIX'24], demonstrates a particularly alarming capability: generating a victim's voice from a single facial image, without requiring any voice sample. By exploiting correlations between facial and vocal features, FOICE produces synthetic voices realistic enough to bypass industry-standard authentication systems, including WeChat Voiceprint and Microsoft Azure. This raises serious security concerns, as facial images are far easier for adversaries to obtain than voice samples, dramatically lowering the barrier to large-scale attacks. In this work, we investigate two core research questions: (RQ1) can state-of-the-art audio deepfake detectors reliably detect FOICE-generated speech under clean and noisy conditions, and (RQ2) whether fine-tuning these detectors on FOICE data improves detection without overfitting, thereby preserving robustness to unseen voice generators such as SpeechT5. Our study makes three contributions. First, we present the first systematic evaluation of FOICE detection, showing that leading detectors consistently fail under both standard and noisy conditions. Second, we introduce targeted fine-tuning strategies that capture FOICE-specific artifacts, yielding significant accuracy improvements. Third, we assess generalization after fine-tuning, revealing trade-offs between specialization to FOICE and robustness to unseen synthesis pipelines. These findings expose fundamental weaknesses in today's defenses and motivate new architectures and training protocols for next-generation audio deepfake detection.
comment: 8 pages, Accepted at Workshop on AI for Cyber Threat Intelligence, co-located with ACSAC 2025
☆ Open-o3 Video: Grounded Video Reasoning with Explicit Spatio-Temporal Evidence
Most video reasoning models only generate textual reasoning traces without indicating when and where key evidence appears. Recent models such as OpenAI-o3 have sparked wide interest in evidence-centered reasoning for images, yet extending this ability to videos is more challenging, as it requires joint temporal tracking and spatial localization across dynamic scenes. We introduce Open-o3 Video, a non-agent framework that integrates explicit spatio-temporal evidence into video reasoning, and carefully collect training data and design training strategies to address the aforementioned challenges. The model highlights key timestamps, objects, and bounding boxes alongside its answers, allowing reasoning to be grounded in concrete visual observations. To enable this functionality, we first curate and build two high-quality datasets, STGR-CoT-30k for SFT and STGR-RL-36k for RL, with carefully constructed temporal and spatial annotations, since most existing datasets offer either temporal spans for videos or spatial boxes on images, lacking unified spatio-temporal supervision and reasoning traces. Then, we adopt a cold-start reinforcement learning strategy with multiple specially designed rewards that jointly encourage answer accuracy, temporal alignment, and spatial precision. On V-STAR benchmark, Open-o3 Video achieves state-of-the-art performance, raising mAM by 14.4% and mLGM by 24.2% on the Qwen2.5-VL baseline. Consistent improvements are also observed on a broad range of video understanding benchmarks, including VideoMME, WorldSense, VideoMMMU, and TVGBench. Beyond accuracy, the reasoning traces produced by Open-o3 Video also provide valuable signals for test-time scaling, enabling confidence-aware verification and improving answer reliability.
☆ Mitigating Cross-modal Representation Bias for Multicultural Image-to-Recipe Retrieval
Existing approaches for image-to-recipe retrieval have the implicit assumption that a food image can fully capture the details textually documented in its recipe. However, a food image only reflects the visual outcome of a cooked dish and not the underlying cooking process. Consequently, learning cross-modal representations to bridge the modality gap between images and recipes tends to ignore subtle, recipe-specific details that are not visually apparent but are crucial for recipe retrieval. Specifically, the representations are biased to capture the dominant visual elements, resulting in difficulty in ranking similar recipes with subtle differences in use of ingredients and cooking methods. The bias in representation learning is expected to be more severe when the training data is mixed of images and recipes sourced from different cuisines. This paper proposes a novel causal approach that predicts the culinary elements potentially overlooked in images, while explicitly injecting these elements into cross-modal representation learning to mitigate biases. Experiments are conducted on the standard monolingual Recipe1M dataset and a newly curated multilingual multicultural cuisine dataset. The results indicate that the proposed causal representation learning is capable of uncovering subtle ingredients and cooking actions and achieves impressive retrieval performance on both monolingual and multilingual multicultural datasets.
comment: ACM Multimedia 2025
☆ DMC$^3$: Dual-Modal Counterfactual Contrastive Construction for Egocentric Video Question Answering
Egocentric Video Question Answering (Egocentric VideoQA) plays an important role in egocentric video understanding, which refers to answering questions based on first-person videos. Although existing methods have made progress through the paradigm of pre-training and fine-tuning, they ignore the unique challenges posed by the first-person perspective, such as understanding multiple events and recognizing hand-object interactions. To deal with these challenges, we propose a Dual-Modal Counterfactual Contrastive Construction (DMC$^3$) framework, which contains an egocentric videoqa baseline, a counterfactual sample construction module and a counterfactual sample-involved contrastive optimization. Specifically, We first develop a counterfactual sample construction module to generate positive and negative samples for textual and visual modalities through event description paraphrasing and core interaction mining, respectively. Then, We feed these samples together with the original samples into the baseline. Finally, in the counterfactual sample-involved contrastive optimization module, we apply contrastive loss to minimize the distance between the original sample features and the positive sample features, while maximizing the distance from the negative samples. Experiments show that our method achieve 52.51\% and 46.04\% on the \textit{normal} and \textit{indirect} splits of EgoTaskQA, and 13.2\% on QAEGO4D, both reaching the state-of-the-art performance.
☆ Causal Debiasing for Visual Commonsense Reasoning
Visual Commonsense Reasoning (VCR) refers to answering questions and providing explanations based on images. While existing methods achieve high prediction accuracy, they often overlook bias in datasets and lack debiasing strategies. In this paper, our analysis reveals co-occurrence and statistical biases in both textual and visual data. We introduce the VCR-OOD datasets, comprising VCR-OOD-QA and VCR-OOD-VA subsets, which are designed to evaluate the generalization capabilities of models across two modalities. Furthermore, we analyze the causal graphs and prediction shortcuts in VCR and adopt a backdoor adjustment method to remove bias. Specifically, we create a dictionary based on the set of correct answers to eliminate prediction shortcuts. Experiments demonstrate the effectiveness of our debiasing method across different datasets.
☆ GMFVAD: Using Grained Multi-modal Feature to Improve Video Anomaly Detection
Video anomaly detection (VAD) is a challenging task that detects anomalous frames in continuous surveillance videos. Most previous work utilizes the spatio-temporal correlation of visual features to distinguish whether there are abnormalities in video snippets. Recently, some works attempt to introduce multi-modal information, like text feature, to enhance the results of video anomaly detection. However, these works merely incorporate text features into video snippets in a coarse manner, overlooking the significant amount of redundant information that may exist within the video snippets. Therefore, we propose to leverage the diversity among multi-modal information to further refine the extracted features, reducing the redundancy in visual features, and we propose Grained Multi-modal Feature for Video Anomaly Detection (GMFVAD). Specifically, we generate more grained multi-modal feature based on the video snippet, which summarizes the main content, and text features based on the captions of original video will be introduced to further enhance the visual features of highlighted portions. Experiments show that the proposed GMFVAD achieves state-of-the-art performance on four mainly datasets. Ablation experiments also validate that the improvement of GMFVAD is due to the reduction of redundant information.
☆ Calibrating Multimodal Consensus for Emotion Recognition
In recent years, Multimodal Emotion Recognition (MER) has made substantial progress. Nevertheless, most existing approaches neglect the semantic inconsistencies that may arise across modalities, such as conflicting emotional cues between text and visual inputs. Besides, current methods are often dominated by the text modality due to its strong representational capacity, which can compromise recognition accuracy. To address these challenges, we propose a model termed Calibrated Multimodal Consensus (CMC). CMC introduces a Pseudo Label Generation Module (PLGM) to produce pseudo unimodal labels, enabling unimodal pretraining in a self-supervised fashion. It then employs a Parameter-free Fusion Module (PFM) and a Multimodal Consensus Router (MCR) for multimodal finetuning, thereby mitigating text dominance and guiding the fusion process toward a more reliable consensus. Experimental results demonstrate that CMC achieves performance on par with or superior to state-of-the-art methods across four datasets, CH-SIMS, CH-SIMS v2, CMU-MOSI, and CMU-MOSEI, and exhibits notable advantages in scenarios with semantic inconsistencies on CH-SIMS and CH-SIMS v2. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CMC.
☆ Beyond Text: Multimodal Jailbreaking of Vision-Language and Audio Models through Perceptually Simple Transformations
Multimodal large language models (MLLMs) have achieved remarkable progress, yet remain critically vulnerable to adversarial attacks that exploit weaknesses in cross-modal processing. We present a systematic study of multimodal jailbreaks targeting both vision-language and audio-language models, showing that even simple perceptual transformations can reliably bypass state-of-the-art safety filters. Our evaluation spans 1,900 adversarial prompts across three high-risk safety categories harmful content, CBRN (Chemical, Biological, Radiological, Nuclear), and CSEM (Child Sexual Exploitation Material) tested against seven frontier models. We explore the effectiveness of attack techniques on MLLMs, including FigStep-Pro (visual keyword decomposition), Intelligent Masking (semantic obfuscation), and audio perturbations (Wave-Echo, Wave-Pitch, Wave-Speed). The results reveal severe vulnerabilities: models with almost perfect text-only safety (0\% ASR) suffer >75\% attack success under perceptually modified inputs, with FigStep-Pro achieving up to 89\% ASR in Llama-4 variants. Audio-based attacks further uncover provider-specific weaknesses, with even basic modality transfer yielding 25\% ASR for technical queries. These findings expose a critical gap between text-centric alignment and multimodal threats, demonstrating that current safeguards fail to generalize across cross-modal attacks. The accessibility of these attacks, which require minimal technical expertise, suggests that robust multimodal AI safety will require a paradigm shift toward broader semantic-level reasoning to mitigate possible risks.
♻ ☆ Rebalancing Contrastive Alignment with Bottlenecked Semantic Increments in Text-Video Retrieval
Recent progress in text-video retrieval has been largely driven by contrastive learning. However, existing methods often overlook the effect of the modality gap, which causes anchor representations to undergo in-place optimization (i.e., optimization tension) that limits their alignment capacity. Moreover, noisy hard negatives further distort the semantics of anchors. To address these issues, we propose GARE, a Gap-Aware Retrieval framework that introduces a learnable, pair-specific increment $\Delta_{ij}$ between text $t_i$ and video $v_j$, redistributing gradients to relieve optimization tension and absorb noise. We derive $\Delta_{ij}$ via a multivariate first-order Taylor expansion of the InfoNCE loss under a trust-region constraint, showing that it guides updates along locally consistent descent directions. A lightweight neural module conditioned on the semantic gap couples increments across batches for structure-aware correction. Furthermore, we regularize $\Delta$ through a variational information bottleneck with relaxed compression, enhancing stability and semantic consistency. Experiments on four benchmarks demonstrate that GARE consistently improves alignment accuracy and robustness, validating the effectiveness of gap-aware tension mitigation. Code is available at https://github.com/musicman217/GARE-text-video-retrieval.
♻ ☆ Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.
comment: This paper contains fundamental errors and will not be replaced
Information Retrieval
☆ Automating Iconclass: LLMs and RAG for Large-Scale Classification of Religious Woodcuts
This paper presents a novel methodology for classifying early modern religious images by using Large Language Models (LLMs) and vector databases in combination with Retrieval-Augmented Generation (RAG). The approach leverages the full-page context of book illustrations from the Holy Roman Empire, allowing the LLM to generate detailed descriptions that incorporate both visual and textual elements. These descriptions are then matched to relevant Iconclass codes through a hybrid vector search. This method achieves 87% and 92% precision at five and four levels of classification, significantly outperforming traditional image and keyword-based searches. By employing full-page descriptions and RAG, the system enhances classification accuracy, offering a powerful tool for large-scale analysis of early modern visual archives. This interdisciplinary approach demonstrates the growing potential of LLMs and RAG in advancing research within art history and digital humanities.
comment: 29 pages, 7 figures. First presented at the "Digital Humanities and Artificial Intelligence" conference at the University of Reading on 17 June 2024
☆ ToolDreamer: Instilling LLM Reasoning Into Tool Retrievers
Tool calling has become increasingly popular for Large Language Models (LLMs). However, for large tool sets, the resulting tokens would exceed the LLM's context window limit, making it impossible to include every tool. Hence, an external retriever is used to provide LLMs with the most relevant tools for a query. Existing retrieval models rank tools based on the similarity between a user query and a tool description (TD). This leads to suboptimal retrieval as user requests are often poorly aligned with the language of TD. To remedy the issue, we propose ToolDreamer, a framework to condition retriever models to fetch tools based on hypothetical (synthetic) TD generated using an LLM, i.e., description of tools that the LLM feels will be potentially useful for the query. The framework enables a more natural alignment between queries and tools within the language space of TD's. We apply ToolDreamer on the ToolRet dataset and show that our method improves the performance of sparse and dense retrievers with and without training, thus showcasing its flexibility. Through our proposed framework, our aim is to offload a portion of the reasoning burden to the retriever so that the LLM may effectively handle a large collection of tools without inundating its context window.
☆ Top-P Masking for Cross Language Information Retrieval
Top-K masking schemes have been proposed as a method to promote sparse representations in Information Retrieval (IR) tasks, as a simple alternative to Floating Point Operations per Second (FLOPS) regularization. Algorithms such as Bilingual Lexical and Document Expansion Model (BLADE), adopt this approach as a post-processing stage. We propose using Top-P Dynamic Masking similar to Nucleus Sampling in Large Language Models, and demonstrate better performance than Top-K masking. Specifically, we evaluate our methods in the domain of Cross Language Information Retrieval (CLIR)
comment: Unsubmitted
☆ A Matter of Time: Revealing the Structure of Time in Vision-Language Models
Large-scale vision-language models (VLMs) such as CLIP have gained popularity for their generalizable and expressive multimodal representations. By leveraging large-scale training data with diverse textual metadata, VLMs acquire open-vocabulary capabilities, solving tasks beyond their training scope. This paper investigates the temporal awareness of VLMs, assessing their ability to position visual content in time. We introduce TIME10k, a benchmark dataset of over 10,000 images with temporal ground truth, and evaluate the time-awareness of 37 VLMs by a novel methodology. Our investigation reveals that temporal information is structured along a low-dimensional, non-linear manifold in the VLM embedding space. Based on this insight, we propose methods to derive an explicit ``timeline'' representation from the embedding space. These representations model time and its chronological progression and thereby facilitate temporal reasoning tasks. Our timeline approaches achieve competitive to superior accuracy compared to a prompt-based baseline while being computationally efficient. All code and data are available at https://tekayanidham.github.io/timeline-page/.
☆ The Massive Legal Embedding Benchmark (MLEB)
We present the Massive Legal Embedding Benchmark (MLEB), the largest, most diverse, and most comprehensive open-source benchmark for legal information retrieval to date. MLEB consists of ten expert-annotated datasets spanning multiple jurisdictions (the US, UK, EU, Australia, Ireland, and Singapore), document types (cases, legislation, regulatory guidance, contracts, and literature), and task types (search, zero-shot classification, and question answering). Seven of the datasets in MLEB were newly constructed in order to fill domain and jurisdictional gaps in the open-source legal information retrieval landscape. We document our methodology in building MLEB and creating the new constituent datasets, and release our code, results, and data openly to assist with reproducible evaluations.
comment: 15 pages, 2 figures
☆ Metadata Extraction Leveraging Large Language Models
The advent of Large Language Models has revolutionized tasks across domains, including the automation of legal document analysis, a critical component of modern contract management systems. This paper presents a comprehensive implementation of LLM-enhanced metadata extraction for contract review, focusing on the automatic detection and annotation of salient legal clauses. Leveraging both the publicly available Contract Understanding Atticus Dataset (CUAD) and proprietary contract datasets, our work demonstrates the integration of advanced LLM methodologies with practical applications. We identify three pivotal elements for optimizing metadata extraction: robust text conversion, strategic chunk selection, and advanced LLM-specific techniques, including Chain of Thought (CoT) prompting and structured tool calling. The results from our experiments highlight the substantial improvements in clause identification accuracy and efficiency. Our approach shows promise in reducing the time and cost associated with contract review while maintaining high accuracy in legal clause identification. The results suggest that carefully optimized LLM systems could serve as valuable tools for legal professionals, potentially increasing access to efficient contract review services for organizations of all sizes.
☆ Development of an Automated Web Application for Efficient Web Scraping: Design and Implementation
This paper presents the design and implementation of a user-friendly, automated web application that simplifies and optimizes the web scraping process for non-technical users. The application breaks down the complex task of web scraping into three main stages: fetching, extraction, and execution. In the fetching stage, the application accesses target websites using the HTTP protocol, leveraging the requests library to retrieve HTML content. The extraction stage utilizes powerful parsing libraries like BeautifulSoup and regular expressions to extract relevant data from the HTML. Finally, the execution stage structures the data into accessible formats, such as CSV, ensuring the scraped content is organized for easy use. To provide personalized and secure experiences, the application includes user registration and login functionalities, supported by MongoDB, which stores user data and scraping history. Deployed using the Flask framework, the tool offers a scalable, robust environment for web scraping. Users can easily input website URLs, define data extraction parameters, and download the data in a simplified format, without needing technical expertise. This automated tool not only enhances the efficiency of web scraping but also democratizes access to data extraction by empowering users of all technical levels to gather and manage data tailored to their needs. The methodology detailed in this paper represents a significant advancement in making web scraping tools accessible, efficient, and easy to use for a broader audience.
☆ C2T-ID: Converting Semantic Codebooks to Textual Document Identifiers for Generative Search
Designing document identifiers (docids) that carry rich semantic information while maintaining tractable search spaces is a important challenge in generative retrieval (GR). Popular codebook methods address this by building a hierarchical semantic tree and constraining generation to its child nodes, yet their numeric identifiers cannot leverage the large language model's pretrained natural language understanding. Conversely, using text as docid provides more semantic expressivity but inflates the decoding space, making the system brittle to early-step errors. To resolve this trade-off, we propose C2T-ID: (i) first construct semantic numerical docid via hierarchical clustering; (ii) then extract high-frequency metadata keywords and iteratively replace each numeric label with its cluster's top-K keywords; and (iii) an optional two-level semantic smoothing step further enhances the fluency of C2T-ID. Experiments on Natural Questions and Taobao's product search demonstrate that C2T-ID significantly outperforms atomic, semantic codebook, and pure-text docid baselines, demonstrating its effectiveness in balancing semantic expressiveness with search space constraints.
♻ ☆ OneSearch: A Preliminary Exploration of the Unified End-to-End Generative Framework for E-commerce Search
Traditional e-commerce search systems employ multi-stage cascading architectures (MCA) that progressively filter items through recall, pre-ranking, and ranking stages. While effective at balancing computational efficiency with business conversion, these systems suffer from fragmented computation and optimization objective collisions across stages, which ultimately limit their performance ceiling. To address these, we propose \textbf{OneSearch}, the first industrial-deployed end-to-end generative framework for e-commerce search. This framework introduces three key innovations: (1) a Keyword-enhanced Hierarchical Quantization Encoding (KHQE) module, to preserve both hierarchical semantics and distinctive item attributes while maintaining strong query-item relevance constraints; (2) a multi-view user behavior sequence injection strategy that constructs behavior-driven user IDs and incorporates both explicit short-term and implicit long-term sequences to model user preferences comprehensively; and (3) a Preference-Aware Reward System (PARS) featuring multi-stage supervised fine-tuning and adaptive reward-weighted ranking to capture fine-grained user preferences. Extensive offline evaluations on large-scale industry datasets demonstrate OneSearch's superior performance for high-quality recall and ranking. The rigorous online A/B tests confirm its ability to enhance relevance in the same exposure position, achieving statistically significant improvements: +1.67% item CTR, +2.40% buyer, and +3.22% order volume. Furthermore, OneSearch reduces operational expenditure by 75.40% and improves Model FLOPs Utilization from 3.26% to 27.32%. The system has been successfully deployed across multiple search scenarios in Kuaishou, serving millions of users, generating tens of millions of PVs daily.
♻ ☆ A Generative Framework for Personalized Sticker Retrieval EMNLP2025
Formulating information retrieval as a variant of generative modeling, specifically using autoregressive models to generate relevant identifiers for a given query, has recently attracted considerable attention. However, its application to personalized sticker retrieval remains largely unexplored and presents unique challenges: existing relevance-based generative retrieval methods typically lack personalization, leading to a mismatch between diverse user expectations and the retrieved results. To address this gap, we propose PEARL, a novel generative framework for personalized sticker retrieval, and make two key contributions: (i) To encode user-specific sticker preferences, we design a representation learning model to learn discriminative user representations. It is trained on three prediction tasks that leverage personal information and click history; and (ii) To generate stickers aligned with a user's query intent, we propose a novel intent-aware learning objective that prioritizes stickers associated with higher-ranked intents. Empirical results from both offline evaluations and online tests demonstrate that PEARL significantly outperforms state-of-the-art methods.
comment: Findings of EMNLP2025
♻ ☆ Embedding in Recommender Systems: A Survey
Recommender systems have become an essential component of many online platforms, providing personalized recommendations to users. A crucial aspect is embedding techniques that convert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors, which can enhance the recommendation performance. Embedding techniques have revolutionized the capture of complex entity relationships, generating significant research interest. This survey presents a comprehensive analysis of recent advances in recommender system embedding techniques. We examine centralized embedding approaches across matrix, sequential, and graph structures. In matrix-based scenarios, collaborative filtering generates embeddings that effectively model user-item preferences, particularly in sparse data environments. For sequential data, we explore various approaches including recurrent neural networks and self-supervised methods such as contrastive and generative learning. In graph-structured contexts, we analyze techniques like node2vec that leverage network relationships, along with applicable self-supervised methods. Our survey addresses critical scalability challenges in embedding methods and explores innovative directions in recommender systems. We introduce emerging approaches, including AutoML, hashing techniques, and quantization methods, to enhance performance while reducing computational complexity. Additionally, we examine the promising role of Large Language Models (LLMs) in embedding enhancement. Through detailed discussion of various architectures and methodologies, this survey aims to provide a thorough overview of state-of-the-art embedding techniques in recommender systems, while highlighting key challenges and future research directions.
comment: 47 pages
♻ ☆ On Efficiency-Effectiveness Trade-off of Diffusion-based Recommenders
Diffusion models have emerged as a powerful paradigm for generative sequential recommendation, which typically generate next items to recommend guided by user interaction histories with a multi-step denoising process. However, the multi-step process relies on discrete approximations, introducing discretization error that creates a trade-off between computational efficiency and recommendation effectiveness. To address this trade-off, we propose TA-Rec, a two-stage framework that achieves one-step generation by smoothing the denoising function during pretraining while alleviating trajectory deviation by aligning with user preferences during fine-tuning. Specifically, to improve the efficiency without sacrificing the recommendation performance, TA-Rec pretrains the denoising model with Temporal Consistency Regularization (TCR), enforcing the consistency between the denoising results across adjacent steps. Thus, we can smooth the denoising function to map the noise as oracle items in one step with bounded error. To further enhance effectiveness, TA-Rec introduces Adaptive Preference Alignment (APA) that aligns the denoising process with user preference adaptively based on preference pair similarity and timesteps. Extensive experiments prove that TA-Rec's two-stage objective effectively mitigates the discretization errors-induced trade-off, enhancing both efficiency and effectiveness of diffusion-based recommenders.
♻ ☆ Shilling Recommender Systems by Generating Side-feature-aware Fake User Profiles
Recommender systems (RS) greatly influence users' consumption decisions, making them attractive targets for malicious shilling attacks that inject fake user profiles to manipulate recommendations. Existing shilling methods can generate effective and stealthy fake profiles when training data only contain rating matrix, but they lack comprehensive solutions for scenarios where side features are present and utilized by the recommender. To address this gap, we extend the Leg-UP framework by enhancing the generator architecture to incorporate side features, enabling the generation of side-feature-aware fake user profiles. Experiments on benchmarks show that our method achieves strong attack performance while maintaining stealthiness.
♻ ☆ Stop Playing the Guessing Game! Target-free User Simulation for Evaluating Conversational Recommender Systems EMNLP 2025
Recent approaches in Conversational Recommender Systems (CRSs) have tried to simulate real-world users engaging in conversations with CRSs to create more realistic testing environments that reflect the complexity of human-agent dialogue. Despite the significant advancements, reliably evaluating the capability of CRSs to elicit user preferences still faces a significant challenge. Existing evaluation metrics often rely on target-biased user simulators that assume users have predefined preferences, leading to interactions that devolve into simplistic guessing game. These simulators typically guide the CRS toward specific target items based on fixed attributes, limiting the dynamic exploration of user preferences and struggling to capture the evolving nature of real-user interactions. Additionally, current evaluation metrics are predominantly focused on single-turn recall of target items, neglecting the intermediate processes of preference elicitation. To address this, we introduce PEPPER, a novel CRS evaluation protocol with target-free user simulators constructed from real-user interaction histories and reviews. PEPPER enables realistic user-CRS dialogues without falling into simplistic guessing games, allowing users to gradually discover their preferences through enriched interactions, thereby providing a more accurate and reliable assessment of the CRS's ability to elicit personal preferences. Furthermore, PEPPER presents detailed measures for comprehensively evaluating the preference elicitation capabilities of CRSs, encompassing both quantitative and qualitative measures that capture four distinct aspects of the preference elicitation process. Through extensive experiments, we demonstrate the validity of PEPPER as a simulation environment and conduct a thorough analysis of how effectively existing CRSs perform in preference elicitation and recommendation.
comment: Accepted to EMNLP 2025 Findings
♻ ☆ LLMs as Sparse Retrievers:A Framework for First-Stage Product Search
Product search is a crucial component of modern e-commerce platforms, with billions of user queries every day. In product search systems, first-stage retrieval should achieve high recall while ensuring efficient online deployment. Sparse retrieval is particularly attractive in this context due to its interpretability and storage efficiency. However, sparse retrieval methods suffer from severe vocabulary mismatch issues, leading to suboptimal performance in product search scenarios. With their potential for semantic analysis, large language models (LLMs) offer a promising avenue for mitigating vocabulary mismatch issues and thereby improving retrieval quality. Directly applying LLMs to sparse retrieval in product search exposes two key challenges:(1)Queries and product titles are typically short and highly susceptible to LLM-induced hallucinations, such as generating irrelevant expansion terms or underweighting critical literal terms like brand names and model numbers;(2)The large vocabulary space of LLMs leads to difficulty in initializing training effectively, making it challenging to learn meaningful sparse representations in such ultra-high-dimensional spaces.To address these challenges, we propose PROSPER, a framework for PROduct search leveraging LLMs as SParsE Retrievers. PROSPER incorporates: (1)A literal residual network that alleviates hallucination in lexical expansion by reinforcing underweighted literal terms through a residual compensation mechanism; and (2)A lexical focusing window that facilitates effective training initialization via a coarse-to-fine sparsification strategy.Extensive offline and online experiments show that PROSPER significantly outperforms sparse baselines and achieves recall performance comparable to advanced dense retrievers, while also achieving revenue increments online.
comment: 16 pages
Multimedia
☆ LifeSync-Games: Toward a Video Game Paradigm for Promoting Responsible Gaming and Human Development
Technological advancements have made video games a central part of the digital lives of nearly 3 billion people worldwide. Although games can address various social, physical, and psychological needs, their potential to support human development and well-being remains underutilized. Research highlights both negative effects, such as addiction and isolation, and positive outcomes like cognitive improvements and problem-solving skills. However, public discourse and regulation often focus more on risks than benefits. To address this imbalance, we present LifeSync-Games, a framework leveraging simplified digital twins to connect virtual gameplay with real-life activities. This reciprocal relationship aims to enhance the developmental value of gaming by promoting self-regulation and fostering growth across physical, mental, and social domains. We present the framework's theoretical foundations, technological components, design guidelines, and evaluation approaches. Additionally, we present early applications in both new and bestselling games to demonstrate its versatility and practical relevance.
comment: 8 pages, 4 figures, 1 table, 66 references
☆ A Matter of Time: Revealing the Structure of Time in Vision-Language Models
Large-scale vision-language models (VLMs) such as CLIP have gained popularity for their generalizable and expressive multimodal representations. By leveraging large-scale training data with diverse textual metadata, VLMs acquire open-vocabulary capabilities, solving tasks beyond their training scope. This paper investigates the temporal awareness of VLMs, assessing their ability to position visual content in time. We introduce TIME10k, a benchmark dataset of over 10,000 images with temporal ground truth, and evaluate the time-awareness of 37 VLMs by a novel methodology. Our investigation reveals that temporal information is structured along a low-dimensional, non-linear manifold in the VLM embedding space. Based on this insight, we propose methods to derive an explicit ``timeline'' representation from the embedding space. These representations model time and its chronological progression and thereby facilitate temporal reasoning tasks. Our timeline approaches achieve competitive to superior accuracy compared to a prompt-based baseline while being computationally efficient. All code and data are available at https://tekayanidham.github.io/timeline-page/.
☆ CDI-DTI: A Strong Cross-domain Interpretable Drug-Target Interaction Prediction Framework Based on Multi-Strategy Fusion
Accurate prediction of drug-target interactions (DTI) is pivotal for drug discovery, yet existing methods often fail to address challenges like cross-domain generalization, cold-start prediction, and interpretability. In this work, we propose CDI-DTI, a novel cross-domain interpretable framework for DTI prediction, designed to overcome these limitations. By integrating multi-modal features-textual, structural, and functional-through a multi-strategy fusion approach, CDI-DTI ensures robust performance across different domains and in cold-start scenarios. A multi-source cross-attention mechanism is introduced to align and fuse features early, while a bidirectional cross-attention layer captures fine-grained intra-modal drug-target interactions. To enhance model interpretability, we incorporate Gram Loss for feature alignment and a deep orthogonal fusion module to eliminate redundancy. Experimental results on several benchmark datasets demonstrate that CDI-DTI significantly outperforms existing methods, particularly in cross-domain and cold-start tasks, while maintaining high interpretability for practical applications in drug-target interaction prediction.
☆ Reasoning Like Experts: Leveraging Multimodal Large Language Models for Drawing-based Psychoanalysis
Multimodal Large Language Models (MLLMs) have demonstrated exceptional performance across various objective multimodal perception tasks, yet their application to subjective, emotionally nuanced domains, such as psychological analysis, remains largely unexplored. In this paper, we introduce PICK, a multi-step framework designed for Psychoanalytical Image Comprehension through hierarchical analysis and Knowledge injection with MLLMs, specifically focusing on the House-Tree-Person (HTP) Test, a widely used psychological assessment in clinical practice. First, we decompose drawings containing multiple instances into semantically meaningful sub-drawings, constructing a hierarchical representation that captures spatial structure and content across three levels: single-object level, multi-object level, and whole level. Next, we analyze these sub-drawings at each level with a targeted focus, extracting psychological or emotional insights from their visual cues. We also introduce an HTP knowledge base and design a feature extraction module, trained with reinforcement learning, to generate a psychological profile for single-object level analysis. This profile captures both holistic stylistic features and dynamic object-specific features (such as those of the house, tree, or person), correlating them with psychological states. Finally, we integrate these multi-faceted information to produce a well-informed assessment that aligns with expert-level reasoning. Our approach bridges the gap between MLLMs and specialized expert domains, offering a structured and interpretable framework for understanding human mental states through visual expression. Experimental results demonstrate that the proposed PICK significantly enhances the capability of MLLMs in psychological analysis. It is further validated as a general framework through extensions to emotion understanding tasks.
comment: Accepted by ACM Multimedia 2025
☆ See, Think, Act: Online Shopper Behavior Simulation with VLM Agents
LLMs have recently demonstrated strong potential in simulating online shopper behavior. Prior work has improved action prediction by applying SFT on action traces with LLM-generated rationales, and by leveraging RL to further enhance reasoning capabilities. Despite these advances, current approaches rely on text-based inputs and overlook the essential role of visual perception in shaping human decision-making during web GUI interactions. In this paper, we investigate the integration of visual information, specifically webpage screenshots, into behavior simulation via VLMs, leveraging OPeRA dataset. By grounding agent decision-making in both textual and visual modalities, we aim to narrow the gap between synthetic agents and real-world users, thereby enabling more cognitively aligned simulations of online shopping behavior. Specifically, we employ SFT for joint action prediction and rationale generation, conditioning on the full interaction context, which comprises action history, past HTML observations, and the current webpage screenshot. To further enhance reasoning capabilities, we integrate RL with a hierarchical reward structure, scaled by a difficulty-aware factor that prioritizes challenging decision points. Empirically, our studies show that incorporating visual grounding yields substantial gains: the combination of text and image inputs improves exact match accuracy by more than 6% over text-only inputs. These results indicate that multi-modal grounding not only boosts predictive accuracy but also enhances simulation fidelity in visually complex environments, which captures nuances of human attention and decision-making that text-only agents often miss. Finally, we revisit the design space of behavior simulation frameworks, identify key methodological limitations, and propose future research directions toward building efficient and effective human behavior simulators.
☆ Step-Aware Residual-Guided Diffusion for EEG Spatial Super-Resolution ICLR 2026
For real-world BCI applications, lightweight Electroencephalography (EEG) systems offer the best cost-deployment balance. However, such spatial sparsity of EEG limits spatial fidelity, hurting learning and introducing bias. EEG spatial super-resolution methods aim to recover high-density EEG signals from sparse measurements, yet is often hindered by distribution shift and signal distortion and thus reducing fidelity and usability for EEG analysis and visualization. To overcome these challenges, we introduce SRGDiff, a step-aware residual-guided diffusion model that formulates EEG spatial super-resolution as dynamic conditional generation. Our key idea is to learn a dynamic residual condition from the low-density input that predicts the step-wise temporal and spatial details to add and uses the evolving cue to steer the denoising process toward high-density reconstructions. At each denoising step, the proposed residual condition is additively fused with the previous denoiser feature maps, then a step-dependent affine modulation scales and shifts the activation to produce the current features. This iterative procedure dynamically extracts step-wise temporal rhythms and spatial-topographic cues to steer high-density recovery and maintain a fidelity-consistency balance. We adopt a comprehensive evaluation protocol spanning signal-, feature-, and downstream-level metrics across SEED, SEED-IV, and Localize-MI and multiple upsampling scales. SRGDiff achieves consistent gains of up to 40% over strong baselines, proving its superiority in the task of EEG spatial super-resolution. Moreover, topographic visualizations comparison and substantial EEG-FID gains jointly indicate that our SR EEG mitigates the spatial-spectral shift between low- and high-density recordings.
comment: ICLR 2026 Conference Submission
♻ ☆ Variable Rate Image Compression via N-Gram Context based Swin-transformer
This paper presents an N-gram context-based Swin Transformer for learned image compression. Our method achieves variable-rate compression with a single model. By incorporating N-gram context into the Swin Transformer, we overcome its limitation of neglecting larger regions during high-resolution image reconstruction due to its restricted receptive field. This enhancement expands the regions considered for pixel restoration, thereby improving the quality of high-resolution reconstructions. Our method increases context awareness across neighboring windows, leading to a -5.86\% improvement in BD-Rate over existing variable-rate learned image compression techniques. Additionally, our model improves the quality of regions of interest (ROI) in images, making it particularly beneficial for object-focused applications in fields such as manufacturing and industrial vision systems.
comment: Accepted at ISVC 2025
♻ ☆ ASAP: Advancing Semantic Alignment Promotes Multi-Modal Manipulation Detecting and Grounding
We present ASAP, a new framework for detecting and grounding multi-modal media manipulation (DGM4).Upon thorough examination, we observe that accurate fine-grained cross-modal semantic alignment between the image and text is vital for accurately manipulation detection and grounding. While existing DGM4 methods pay rare attention to the cross-modal alignment, hampering the accuracy of manipulation detecting to step further. To remedy this issue, this work targets to advance the semantic alignment learning to promote this task. Particularly, we utilize the off-the-shelf Multimodal Large-Language Models (MLLMs) and Large Language Models (LLMs) to construct paired image-text pairs, especially for the manipulated instances. Subsequently, a cross-modal alignment learning is performed to enhance the semantic alignment. Besides the explicit auxiliary clues, we further design a Manipulation-Guided Cross Attention (MGCA) to provide implicit guidance for augmenting the manipulation perceiving. With the grounding truth available during training, MGCA encourages the model to concentrate more on manipulated components while downplaying normal ones, enhancing the model's ability to capture manipulations. Extensive experiments are conducted on the DGM4 dataset, the results demonstrate that our model can surpass the comparison method with a clear margin.
comment: 12 pages, 6 figures
♻ ☆ TimeWak: Temporal Chained-Hashing Watermark for Time Series Data
Synthetic time series generated by diffusion models enable sharing privacy-sensitive datasets, such as patients' functional MRI records. Key criteria for synthetic data include high data utility and traceability to verify the data source. Recent watermarking methods embed in homogeneous latent spaces, but state-of-the-art time series generators operate in data space, making latent-based watermarking incompatible. This creates the challenge of watermarking directly in data space while handling feature heterogeneity and temporal dependencies. We propose TimeWak, the first watermarking algorithm for multivariate time series diffusion models. To handle temporal dependence and spatial heterogeneity, TimeWak embeds a temporal chained-hashing watermark directly within the temporal-feature data space. The other unique feature is the $\epsilon$-exact inversion, which addresses the non-uniform reconstruction error distribution across features from inverting the diffusion process to detect watermarks. We derive the error bound of inverting multivariate time series while preserving robust watermark detectability. We extensively evaluate TimeWak on its impact on synthetic data quality, watermark detectability, and robustness under various post-editing attacks, against five datasets and baselines of different temporal lengths. Our results show that TimeWak achieves improvements of 61.96% in context-FID score, and 8.44% in correlational scores against the strongest state-of-the-art baseline, while remaining consistently detectable.
♻ ☆ EgoBlind: Towards Egocentric Visual Assistance for the Blind NeurIPS'25
We present EgoBlind, the first egocentric VideoQA dataset collected from blind individuals to evaluate the assistive capabilities of contemporary multimodal large language models (MLLMs). EgoBlind comprises 1,392 first-person videos from the daily lives of blind and visually impaired individuals. It also features 5,311 questions directly posed or verified by the blind to reflect their in-situation needs for visual assistance. Each question has an average of 3 manually annotated reference answers to reduce subjectiveness. Using EgoBlind, we comprehensively evaluate 16 advanced MLLMs and find that all models struggle. The best performers achieve an accuracy near 60\%, which is far behind human performance of 87.4\%. To guide future advancements, we identify and summarize major limitations of existing MLLMs in egocentric visual assistance for the blind and explore heuristic solutions for improvement. With these efforts, we hope that EgoBlind will serve as a foundation for developing effective AI assistants to enhance the independence of the blind and visually impaired. Data and code are available at https://github.com/doc-doc/EgoBlind.
comment: NeurIPS'25 (D&B Track)
Information Retrieval
☆ 10 Simple Rules for Improving Your Standardized Fields and Terms
Contextual metadata is the unsung hero of research data. When done right, standardized and structured vocabularies make your data findable, shareable, and reusable. When done wrong, they turn a well intended effort into data cleanup and curation nightmares. In this paper we tackle the surprisingly tricky process of vocabulary standardization with a mix of practical advice and grounded examples. Drawing from real-world experience in contextual data harmonization, we highlight common challenges (e.g., semantic noise and concept bombs) and provide actionable strategies to address them. Our rules emphasize alignment with Findability, Accessibility, Interoperability, and Reusability (FAIR) principles while remaining adaptable to evolving user and research needs. Whether you are curating datasets, designing a schema, or contributing to a standards body, these rules aim to help you create metadata that is not only technically sound but also meaningful to users.
comment: 17 pages, 1 figure Author Contributions: Conceptualization by EG and RC. Manuscript writing by RC. Revisions and Editing by RC, EG, DD, and WH. Acknowledgements: Charlotte Barclay
☆ XGen-Q: An Explainable Domain-Adaptive LLM Framework with Retrieval-Augmented Generation for Software Security
Generative AI and large language models (LLMs) have shown strong capabilities in code understanding, but their use in cybersecurity, particularly for malware detection and analysis, remains limited. Existing detection systems often fail to generalize to obfuscated or previously unseen threats, underscoring the need for more adaptable and explainable models. To address this challenge, we introduce XGen-Q, a domain-adapted LLM built on the Qwen-Coder architecture and pretrained on a large-scale corpus of over one million malware samples, spanning both source and assembly code. XGen-Q uses a multi-stage prompt strategy combined with retrieval-augmented generation (RAG) to deliver reliable malware identification and detailed forensic reporting, even in the presence of complex code obfuscation. To further enhance generalization, we design a training pipeline that systematically exposes the model to diverse obfuscation patterns. Experimental results show that XGen-Q achieves significantly lower perplexity than competitive baselines and exhibits strong performance on novel malware samples, demonstrating the promise of LLM-based approaches for interpretable and robust malware analysis.
☆ Unifying Inductive, Cross-Domain, and Multimodal Learning for Robust and Generalizable Recommendation CIKM 2025
Recommender systems have long been built upon the modeling of interactions between users and items, while recent studies have sought to broaden this paradigm by generalizing to new users and items, incorporating diverse information sources, and transferring knowledge across domains. Nevertheless, these efforts have largely focused on individual aspects, hindering their ability to tackle the complex recommendation scenarios that arise in daily consumptions across diverse domains. In this paper, we present MICRec, a unified framework that fuses inductive modeling, multimodal guidance, and cross-domain transfer to capture user contexts and latent preferences in heterogeneous and incomplete real-world data. Moving beyond the inductive backbone of INMO, our model refines expressive representations through modality-based aggregation and alleviates data sparsity by leveraging overlapping users as anchors across domains, thereby enabling robust and generalizable recommendation. Experiments show that MICRec outperforms 12 baselines, with notable gains in domains with limited training data.
comment: 7 pages, 3 figures, and 4 tables. International Workshop on Multimodal Generative Search and Recommendation (MMGenSR) at The 34th ACM International Conference on Information and Knowledge Management (CIKM 2025)
☆ ImageGem: In-the-wild Generative Image Interaction Dataset for Generative Model Personalization
We introduce ImageGem, a dataset for studying generative models that understand fine-grained individual preferences. We posit that a key challenge hindering the development of such a generative model is the lack of in-the-wild and fine-grained user preference annotations. Our dataset features real-world interaction data from 57K users, who collectively have built 242K customized LoRAs, written 3M text prompts, and created 5M generated images. With user preference annotations from our dataset, we were able to train better preference alignment models. In addition, leveraging individual user preference, we investigated the performance of retrieval models and a vision-language model on personalized image retrieval and generative model recommendation. Finally, we propose an end-to-end framework for editing customized diffusion models in a latent weight space to align with individual user preferences. Our results demonstrate that the ImageGem dataset enables, for the first time, a new paradigm for generative model personalization.
☆ Censorship Chokepoints: New Battlegrounds for Regional Surveillance, Censorship and Influence on the Internet
Undoubtedly, the Internet has become one of the most important conduits to information for the general public. Nonetheless, Internet access can be and has been limited systematically or blocked completely during political events in numerous countries and regions by various censorship mechanisms. Depending on where the core filtering component is situated, censorship techniques have been classified as client-based, server-based, or network-based. However, as the Internet evolves rapidly, new and sophisticated censorship techniques have emerged, which involve techniques that cut across locations and involve new forms of hurdles to information access. We argue that modern censorship can be better understood through a new lens that we term chokepoints, which identifies bottlenecks in the content production or delivery cycle where efficient new forms of large-scale client-side surveillance and filtering mechanisms have emerged.
comment: 15 pages, 2 figures
☆ Evaluating LLM-Based Mobile App Recommendations: An Empirical Study
Large Language Models (LLMs) are increasingly used to recommend mobile applications through natural language prompts, offering a flexible alternative to keyword-based app store search. Yet, the reasoning behind these recommendations remains opaque, raising questions about their consistency, explainability, and alignment with traditional App Store Optimization (ASO) metrics. In this paper, we present an empirical analysis of how widely-used general purpose LLMs generate, justify, and rank mobile app recommendations. Our contributions are: (i) a taxonomy of 16 generalizable ranking criteria elicited from LLM outputs; (ii) a systematic evaluation framework to analyse recommendation consistency and responsiveness to explicit ranking instructions; and (iii) a replication package to support reproducibility and future research on AI-based recommendation systems. Our findings reveal that LLMs rely on a broad yet fragmented set of ranking criteria, only partially aligned with standard ASO metrics. While top-ranked apps tend to be consistent across runs, variability increases with ranking depth and search specificity. LLMs exhibit varying sensitivity to explicit ranking instructions - ranging from substantial adaptations to near-identical outputs - highlighting their complex reasoning dynamics in conversational app discovery. Our results aim to support end-users, app developers, and recommender-systems researchers in navigating the emerging landscape of conversational app discovery.
comment: Under review
☆ KrishokBondhu: A Retrieval-Augmented Voice-Based Agricultural Advisory Call Center for Bengali Farmers
In Bangladesh, many farmers continue to face challenges in accessing timely, expert-level agricultural guidance. This paper presents KrishokBondhu, a voice-enabled, call-centre-integrated advisory platform built on a Retrieval-Augmented Generation (RAG) framework, designed specifically for Bengali-speaking farmers. The system aggregates authoritative agricultural handbooks, extension manuals, and NGO publications; applies Optical Character Recognition (OCR) and document-parsing pipelines to digitize and structure the content; and indexes this corpus in a vector database for efficient semantic retrieval. Through a simple phone-based interface, farmers can call the system to receive real-time, context-aware advice: speech-to-text converts the Bengali query, the RAG module retrieves relevant content, a large language model (Gemma 3-4B) generates a context-grounded response, and text-to-speech delivers the answer in natural spoken Bengali. In a pilot evaluation, KrishokBondhu produced high-quality responses for 72.7% of diverse agricultural queries covering crop management, disease control, and cultivation practices. Compared to the KisanQRS benchmark, the system achieved a composite score of 4.53 (vs. 3.13) on a 5-point scale, a 44.7% improvement, with especially large gains in contextual richness (+367%) and completeness (+100.4%), while maintaining comparable relevance and technical specificity. Semantic similarity analysis further revealed a strong correlation between retrieved context and answer quality, emphasizing the importance of grounding generative responses in curated documentation. KrishokBondhu demonstrates the feasibility of integrating call-centre accessibility, multilingual voice interaction, and modern RAG techniques to deliver expert-level agricultural guidance to remote Bangladeshi farmers, paving the way toward a fully AI-driven agricultural advisory ecosystem.
comment: 6 pages, 7 figures, 5 tables, submitted to the 11th IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE 2025)
☆ Enhancing Hotel Recommendations with AI: LLM-Based Review Summarization and Query-Driven Insights
The increasing number of data a booking platform such as Booking.com and AirBnB offers make it challenging for interested parties to browse through the available accommodations and analyze reviews in an efficient way. Efforts have been made from the booking platform providers to utilize recommender systems in an effort to enable the user to filter the results by factors such as stars, amenities, cost but most valuable insights can be provided by the unstructured text-based reviews. Going through these reviews one-by-one requires a substantial amount of time to be devoted while a respectable percentage of the reviews won't provide to the user what they are actually looking for. This research publication explores how Large Language Models (LLMs) can enhance short rental apartments recommendations by summarizing and mining key insights from user reviews. The web application presented in this paper, named "instaGuide", automates the procedure of isolating the text-based user reviews from a property on the Booking.com platform, synthesizing the summary of the reviews, and enabling the user to query specific aspects of the property in an effort to gain feedback on their personal questions/criteria. During the development of the instaGuide tool, numerous LLM models were evaluated based on accuracy, cost, and response quality. The results suggest that the LLM-powered summarization reduces significantly the amount of time the users need to devote on their search for the right short rental apartment, improving the overall decision-making procedure.
☆ DiffGRM: Diffusion-based Generative Recommendation Model
Generative recommendation (GR) is an emerging paradigm that represents each item via a tokenizer as an n-digit semantic ID (SID) and predicts the next item by autoregressively generating its SID conditioned on the user's history. However, two structural properties of SIDs make ARMs ill-suited. First, intra-item consistency: the n digits jointly specify one item, yet the left-to-right causality trains each digit only under its prefix and blocks bidirectional cross-digit evidence, collapsing supervision to a single causal path. Second, inter-digit heterogeneity: digits differ in semantic granularity and predictability, while the uniform next-token objective assigns equal weight to all digits, overtraining easy digits and undertraining hard digits. To address these two issues, we propose DiffGRM, a diffusion-based GR model that replaces the autoregressive decoder with a masked discrete diffusion model (MDM), thereby enabling bidirectional context and any-order parallel generation of SID digits for recommendation. Specifically, we tailor DiffGRM in three aspects: (1) tokenization with Parallel Semantic Encoding (PSE) to decouple digits and balance per-digit information; (2) training with On-policy Coherent Noising (OCN) that prioritizes uncertain digits via coherent masking to concentrate supervision on high-value signals; and (3) inference with Confidence-guided Parallel Denoising (CPD) that fills higher-confidence digits first and generates diverse Top-K candidates. Experiments show consistent gains over strong generative and discriminative recommendation baselines on multiple datasets, improving NDCG@10 by 6.9%-15.5%. Code is available at https://github.com/liuzhao09/DiffGRM.
comment: 13 pages, 5 figures
☆ LIME: Link-based user-item Interaction Modeling with decoupled xor attention for Efficient test time scaling
Scaling large recommendation systems requires advancing three major frontiers: processing longer user histories, expanding candidate sets, and increasing model capacity. While promising, transformers' computational cost scales quadratically with the user sequence length and linearly with the number of candidates. This trade-off makes it prohibitively expensive to expand candidate sets or increase sequence length at inference, despite the significant performance improvements. We introduce \textbf{LIME}, a novel architecture that resolves this trade-off. Through two key innovations, LIME fundamentally reduces computational complexity. First, low-rank ``link embeddings" enable pre-computation of attention weights by decoupling user and candidate interactions, making the inference cost nearly independent of candidate set size. Second, a linear attention mechanism, \textbf{LIME-XOR}, reduces the complexity with respect to user sequence length from quadratic ($O(N^2)$) to linear ($O(N)$). Experiments on public and industrial datasets show LIME achieves near-parity with state-of-the-art transformers but with a 10$\times$ inference speedup on large candidate sets or long sequence lengths. When tested on a major recommendation platform, LIME improved user engagement while maintaining minimal inference costs with respect to candidate set size and user history length, establishing a new paradigm for efficient and expressive recommendation systems.
comment: 16 pages
☆ DuoLens: A Framework for Robust Detection of Machine-Generated Multilingual Text and Code NeurIPS 2025
The prevalence of Large Language Models (LLMs) for generating multilingual text and source code has only increased the imperative for machine-generated content detectors to be accurate and efficient across domains. Current detectors, predominantly utilizing zero-shot methods, such as Fast DetectGPT or GPTZero, either incur high computational cost or lack sufficient accuracy, often with a trade-off between the two, leaving room for further improvement. To address these gaps, we propose the fine-tuning of encoder-only Small Language Models (SLMs), in particular, the pre-trained models of RoBERTA and CodeBERTa using specialized datasets on source code and other natural language to prove that for the task of binary classification, SLMs outperform LLMs by a huge margin whilst using a fraction of compute. Our encoders achieve AUROC $= 0.97$ to $0.99$ and macro-F1 $0.89$ to $0.94$ while reducing latency by $8$-$12\times$ and peak VRAM by $3$-$5\times$ at $512$-token inputs. Under cross-generator shifts and adversarial transformations (paraphrase, back-translation; code formatting/renaming), performance retains $\geq 92%$ of clean AUROC. We release training and evaluation scripts with seeds and configs; a reproducibility checklist is also included.
comment: Accepted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025): 4th Workshop on Deep Learning for Code
♻ ☆ CausalRAG: Integrating Causal Graphs into Retrieval-Augmented Generation ACL 2025
Large language models (LLMs) have revolutionized natural language processing (NLP), particularly through Retrieval-Augmented Generation (RAG), which enhances LLM capabilities by integrating external knowledge. However, traditional RAG systems face critical limitations, including disrupted contextual integrity due to text chunking, and over-reliance on semantic similarity for retrieval. To address these issues, we propose CausalRAG, a novel framework that incorporates causal graphs into the retrieval process. By constructing and tracing causal relationships, CausalRAG preserves contextual continuity and improves retrieval precision, leading to more accurate and interpretable responses. We evaluate CausalRAG against regular RAG and graph-based RAG approaches, demonstrating its superiority across several metrics. Our findings suggest that grounding retrieval in causal reasoning provides a promising approach to knowledge-intensive tasks.
comment: Accepted at Findings of ACL 2025
♻ ☆ Is Implicit Knowledge Enough for LLMs? A RAG Approach for Tree-based Structures
Large Language Models (LLMs) are adept at generating responses based on information within their context. While this ability is useful for interacting with structured data like code files, another popular method, Retrieval-Augmented Generation (RAG), retrieves relevant documents to augment the model's in-context learning. However, it is not well-explored how to best represent this retrieved knowledge for generating responses on structured data, particularly hierarchical structures like trees. In this work, we propose a novel bottom-up method to linearize knowledge from tree-like structures (like a GitHub repository) by generating implicit, aggregated summaries at each hierarchical level. This approach enables the knowledge to be stored in a knowledge base and used directly with RAG. We then compare our method to using RAG on raw, unstructured code, evaluating the accuracy and quality of the generated responses. Our results show that while response quality is comparable across both methods, our approach generates over 68% fewer documents in the retriever, a significant gain in efficiency. This finding suggests that leveraging implicit, linearized knowledge may be a highly effective and scalable strategy for handling complex, hierarchical data structures.
comment: Waiting for Conference Response
♻ ☆ Review of Explainable Graph-Based Recommender Systems
Explainability of recommender systems has become essential to ensure users' trust and satisfaction. Various types of explainable recommender systems have been proposed including explainable graph-based recommender systems. This review paper discusses state-of-the-art approaches of these systems and categorizes them based on three aspects: learning methods, explaining methods, and explanation types. It also explores the commonly used datasets, explainability evaluation methods, and future directions of this research area. Compared with the existing review papers, this paper focuses on explainability based on graphs and covers the topics required for developing novel explainable graph-based recommender systems.
♻ ☆ When Text Embedding Meets Large Language Model: A Comprehensive Survey
Text embedding has become a foundational technology in natural language processing (NLP) during the deep learning era, driving advancements across a wide array of downstream tasks. While many natural language understanding challenges can now be modeled using generative paradigms and leverage the robust generative and comprehension capabilities of large language models (LLMs), numerous practical applications - such as semantic matching, clustering, and information retrieval - continue to rely on text embeddings for their efficiency and effectiveness. Therefore, integrating LLMs with text embeddings has become a major research focus in recent years. In this survey, we categorize the interplay between LLMs and text embeddings into three overarching themes: (1) LLM-augmented text embedding, enhancing traditional embedding methods with LLMs; (2) LLMs as text embedders, adapting their innate capabilities for high-quality embedding; and (3) Text embedding understanding with LLMs, leveraging LLMs to analyze and interpret embeddings. By organizing recent works based on interaction patterns rather than specific downstream applications, we offer a novel and systematic overview of contributions from various research and application domains in the era of LLMs. Furthermore, we highlight the unresolved challenges that persisted in the pre-LLM era with pre-trained language models (PLMs) and explore the emerging obstacles brought forth by LLMs. Building on this analysis, we outline prospective directions for the evolution of text embedding, addressing both theoretical and practical opportunities in the rapidly advancing landscape of NLP.
comment: Version 4: We added the latest works of LLM-based Embedders
♻ ☆ AI4DiTraRe: Building the BFO-Compliant Chemotion Knowledge Graph ISWC 2025
Chemistry is an example of a discipline where the advancements of technology have led to multi-level and often tangled and tricky processes ongoing in the lab. The repeatedly complex workflows are combined with information from chemical structures, which are essential to understand the scientific process. An important tool for many chemists is Chemotion, which consists of an electronic lab notebook and a repository. This paper introduces a semantic pipeline for constructing the BFO-compliant Chemotion Knowledge Graph, providing an integrated, ontology-driven representation of chemical research data. The Chemotion-KG has been developed to adhere to the FAIR (Findable, Accessible, Interoperable, Reusable) principles and to support AI-driven discovery and reasoning in chemistry. Experimental metadata were harvested from the Chemotion API in JSON-LD format, converted into RDF, and subsequently transformed into a Basic Formal Ontology-aligned graph through SPARQL CONSTRUCT queries. The source code and datasets are publicly available via GitHub. The Chemotion Knowledge Graph is hosted by FIZ Karlsruhe Information Service Engineering. Outcomes presented in this work were achieved within the Leibniz Science Campus ``Digital Transformation of Research'' (DiTraRe) and are part of an ongoing interdisciplinary collaboration.
comment: 12 pages, 7 figures. Camera-ready version. Accepted to the 5th International Workshop on Scientific Knowledge: Representation, Discovery, and Assessment; 2 November 2025 - Nara, Japan; co-located with The 24th International Semantic Web Conference, ISWC 2025. Published in CEUR proceedings Vol-4065, pages 45-56
♻ ☆ Don't Retrieve, Generate: Prompting LLMs for Synthetic Training Data in Dense Retrieval
Training effective dense retrieval models typically relies on hard negative (HN) examples mined from large document corpora using methods such as BM25 or cross-encoders (CE), which require full corpus access. We propose a corpus-free alternative: an end-to-end pipeline where a Large Language Model (LLM) first generates a query from a passage and then produces a hard negative example using only the generated query text. Our dataset comprises 7,250 arXiv abstracts spanning diverse domains including mathematics, physics, computer science, and related fields, serving as positive passages for query generation. We evaluate two fine-tuning configurations of DistilBERT for dense retrieval; one using LLM-generated hard negatives conditioned solely on the query, and another using negatives generated with both the query and its positive document as context. Compared to traditional corpus-based mining methods {LLM Query $\rightarrow$ BM25 HN and LLM Query $\rightarrow$ CE HN on multiple BEIR benchmark datasets, our all-LLM pipeline outperforms strong lexical mining baselines and achieves performance comparable to cross-encoder-based methods, demonstrating the potential of corpus-free hard negative generation for retrieval model training.
♻ ☆ Retrieval-in-the-Chain: Bootstrapping Large Language Models for Generative Retrieval
Generative retrieval (GR) is an emerging paradigm that leverages large language models (LLMs) to autoregressively generate document identifiers (docids) relevant to a given query. Prior works have focused on leveraging the generative capabilities of LLMs to improve GR, while overlooking that their reasoning capabilities could likewise help. This raises a key question: Can explicit reasoning benefit GR? To investigate, we first conduct a preliminary study where an LLM is prompted to generate free-form chain-of-thought (CoT) reasoning before performing constrained docid decoding. Although this method outperforms standard GR, the generated reasoning tends to be verbose and poorly aligned with the docid space. These limitations motivate the development of a reasoning mechanism better tailored to GR. Therefore, we propose Reason-for-Retrieval (R4R), a reasoning-augmented framework for GR that converts free-form CoT reasoning into a compact, structured format, and iteratively refines the reasoning during the retrieval process. R4R augments an existing GR method by leveraging a reasoning-capable LLM that has been instruction-tuned for GR. At inference time, R4R first uses the LLM to generate an initial structured reasoning; then the same LLM alternates between (i) constrained decoding with the chosen GR method to produce candidate docids and (ii) updating the reasoning based on retrieval results to improve the next round. R4R does not require additional models or training, and instead a single LLM serves as both the reasoning generator and the retriever. Extensive experiments on Natural Questions, MS MARCO, and a real-world item-search benchmark validate the effectiveness of R4R.
♻ ☆ FinAI Data Assistant: LLM-based Financial Database Query Processing with the OpenAI Function Calling API CIKM 2025
We present FinAI Data Assistant, a practical approach for natural-language querying over financial databases that combines large language models (LLMs) with the OpenAI Function Calling API. Rather than synthesizing complete SQL via text-to-SQL, our system routes user requests to a small library of vetted, parameterized queries, trading generative flexibility for reliability, low latency, and cost efficiency. We empirically study three questions: (RQ1) whether LLMs alone can reliably recall or extrapolate time-dependent financial data without external retrieval; (RQ2) how well LLMs map company names to stock ticker symbols; and (RQ3) whether function calling outperforms text-to-SQL for end-to-end database query processing. Across controlled experiments on prices and fundamentals, LLM-only predictions exhibit non-negligible error and show look-ahead bias primarily for stock prices relative to model knowledge cutoffs. Ticker-mapping accuracy is near-perfect for NASDAQ-100 constituents and high for S\&P~500 firms. Finally, FinAI Data Assistant achieves lower latency and cost and higher reliability than a text-to-SQL baseline on our task suite. We discuss design trade-offs, limitations, and avenues for deployment.
comment: 6 pages, 2 figures, accepted at CIKM 2025 FinAI Workshop
♻ ☆ DrunkAgent: Stealthy Memory Corruption in LLM-Powered Recommender Agents
Large language model (LLM)-powered agents are increasingly used in recommender systems (RSs) to achieve personalized behavior modeling, where the memory mechanism plays a pivotal role in enabling the agents to autonomously explore, learn and self-evolve from real-world interactions. However, this very mechanism, serving as a contextual repository, inherently exposes an attack surface for potential adversarial manipulations. Despite its central role, the robustness of agentic RSs in the face of such threats remains largely underexplored. Previous works suffer from semantic mismatches or rely on static embeddings or pre-defined prompts, all of which are not designed for dynamic systems, especially for dynamic memory states of LLM agents. This challenge is exacerbated by the black-box nature of commercial recommenders. To tackle the above problems, in this paper, we present the first systematic investigation of memory-based vulnerabilities in LLM-powered recommender agents, revealing their security limitations and guiding efforts to strengthen system resilience and trustworthiness. Specifically, we propose a novel black-box attack framework named DrunkAgent. DrunkAgent crafts semantically meaningful adversarial textual triggers for target item promotions and introduces a series of strategies to maximize the trigger effect by corrupting the memory updates during the interactions. The triggers and strategies are optimized on a surrogate model, enabling DrunkAgent transferable and stealthy. Extensive experiments on real-world datasets across diverse agentic RSs, including collaborative filtering, retrieval augmentation and sequential recommendations, demonstrate the generalizability, transferability and stealthiness of DrunkAgent.
♻ ☆ MatPROV: A Provenance Graph Dataset of Material Synthesis Extracted from Scientific Literature
Synthesis procedures play a critical role in materials research, as they directly affect material properties. With data-driven approaches increasingly accelerating materials discovery, there is growing interest in extracting synthesis procedures from scientific literature as structured data. However, existing studies often rely on rigid, domain-specific schemas with predefined fields for structuring synthesis procedures or assume that synthesis procedures are linear sequences of operations, which limits their ability to capture the structural complexity of real-world procedures. To address these limitations, we adopt PROV-DM, an international standard for provenance information, which supports flexible, graph-based modeling of procedures. We present MatPROV, a dataset of PROV-DM-compliant synthesis procedures extracted from scientific literature using large language models. MatPROV captures structural complexities and causal relationships among materials, operations, and conditions through visually intuitive directed graphs. This representation enables machine-interpretable synthesis knowledge, opening opportunities for future research such as automated synthesis planning and optimization.
Multimedia
☆ PIRA: Pan-CDN Intra-video Resource Adaptation for Short Video Streaming
In large scale short video platforms, CDN resource selection plays a critical role in maintaining Quality of Experience (QoE) while controlling escalating traffic costs. To better understand this phenomenon, we conduct in the wild network measurements during video playback in a production short video system. The results reveal that CDNs delivering higher average QoE often come at greater financial cost, yet their connection quality fluctuates even within a single video underscoring a fundamental and dynamic trade off between QoE and cost. However, the problem of sustaining high QoE under cost constraints remains insufficiently investigated in the context of CDN selection for short video streaming. To address this, we propose PIRA, a dynamic resource selection algorithm that optimizes QoE and cost in real time during video playback. PIRA formally integrating QoE and cost by a mathematical model, and introduce a intra video control theoretic CDN resource selection approach which can balance QoE and cost under network dynamics. To reduce the computation overheads, PIRA employs state space pruning and adaptive parameter adjustment to efficiently solve the high dimensional optimization problem. In large scale production experiments involving 450,000 users over two weeks, PIRA outperforms the production baseline, achieving a 2.1% reduction in start up delay, 15.2% shorter rebuffering time, and 10% lower average unit traffic cost, demonstrating its effectiveness in balancing user experience and financial cost at scale.
☆ Foveated Compression for Immersive Telepresence Visualization
Immersive televisualization is important both for telepresence and teleoperation, but resolution and fidelity are often limited by communication bandwidth constraints. We propose a lightweight method for foveated compression of immersive televisualization video streams that can be easily integrated with common video codecs, reducing the required bandwidth if eye tracking data is available. Specifically, we show how to spatially adjust the Quantization Parameter of modern block-based video codecs in a adaptive way based on eye tracking information. The foveal region is transmitted with high fidelity while quality is reduced in the peripheral region, saving bandwidth. We integrate our method with the NimbRo avatar system, which won the ANA Avatar XPRIZE competition. Our experiments show that bandwidth can be reduced to a third without sacrificing immersion. We analyze transmission fidelity with qualitative examples and report quantitative results.
comment: Presented at IEEE TELEPRESENCE 2025, Leiden, Netherlands
☆ Noise-Conditioned Mixture-of-Experts Framework for Robust Speaker Verification
Robust speaker verification under noisy conditions remains an open challenge. Conventional deep learning methods learn a robust unified speaker representation space against diverse background noise and achieve significant improvement. In contrast, this paper presents a noise-conditioned mixture-ofexperts framework that decomposes the feature space into specialized noise-aware subspaces for speaker verification. Specifically, we propose a noise-conditioned expert routing mechanism, a universal model based expert specialization strategy, and an SNR-decaying curriculum learning protocol, collectively improving model robustness and generalization under diverse noise conditions. The proposed method can automatically route inputs to expert networks based on noise information derived from the inputs, where each expert targets distinct noise characteristics while preserving speaker identity information. Comprehensive experiments demonstrate consistent superiority over baselines, confirming that explicit noise-dependent feature modeling significantly enhances robustness without sacrificing verification accuracy.
☆ DeLoad: Demand-Driven Short-Video Preloading with Scalable Watch-Time Estimation
Short video streaming has become a dominant paradigm in digital media, characterized by rapid swiping interactions and diverse media content. A key technical challenge is designing an effective preloading strategy that dynamically selects and prioritizes download tasks from an evolving playlist, balancing Quality of Experience (QoE) and bandwidth efficiency under practical commercial constraints. However, real world analysis reveals critical limitations of existing approaches: (1) insufficient adaptation of download task sizes to dynamic conditions, and (2) watch time prediction models that are difficult to deploy reliably at scale. In this paper, we propose DeLoad, a novel preloading framework that addresses these issues by introducing dynamic task sizing and a practical, multi dimensional watch time estimation method. Additionally, a Deep Reinforcement Learning (DRL) enhanced agent is trained to optimize the download range decisions adaptively. Extensive evaluations conducted on an offline testing platform, leveraging massive real world network data, demonstrate that DeLoad achieves significant improvements in QoE metrics (34.4% to 87.4% gain). Furthermore, after deployment on a large scale commercial short video platform, DeLoad has increased overall user watch time by 0.09% while simultaneously reducing rebuffering events and 3.76% bandwidth consumption.
☆ How2Compress: Scalable and Efficient Edge Video Analytics via Adaptive Granular Video Compression
With the rapid proliferation of the Internet of Things, video analytics has become a cornerstone application in wireless multimedia sensor networks. To support such applications under bandwidth constraints, learning-based adaptive quantization for video compression have demonstrated strong potential in reducing bitrate while maintaining analytical accuracy. However, existing frameworks often fail to fully exploit the fine-grained quality control enabled by modern blockbased video codecs, leaving significant compression efficiency untapped. In this paper, we present How2Compress, a simple yet effective framework designed to enhance video compression efficiency through precise, fine-grained quality control at the macroblock level. How2Compress is a plug-and-play module and can be seamlessly integrated into any existing edge video analytics pipelines. We implement How2Compress on the H.264 codec and evaluate its performance across diverse real-world scenarios. Experimental results show that How2Compress achieves up to $50.4\%$ bitrate savings and outperforms baselines by up to $3.01\times$ without compromising accuracy, demonstrating its practical effectiveness and efficiency. Code is available at https://github.com/wyhallenwu/how2compress and a reproducible docker image at https://hub.docker.com/r/wuyuheng/how2compress.
comment: MM 2025
☆ EVER: Edge-Assisted Auto-Verification for Mobile MR-Aided Operation
Mixed Reality (MR)-aided operation overlays digital objects on the physical world to provide a more immersive and intuitive operation process. A primary challenge is the precise and fast auto-verification of whether the user follows MR guidance by comparing frames before and after each operation. The pre-operation frame includes virtual guiding objects, while the post-operation frame contains physical counterparts. Existing approaches fall short of accounting for the discrepancies between physical and virtual objects due to imperfect 3D modeling or lighting estimation. In this paper, we propose EVER: an edge-assisted auto-verification system for mobile MR-aided operations. Unlike traditional frame-based similarity comparisons, EVER leverages the segmentation model and rendering pipeline adapted to the unique attributes of frames with physical pieces and those with their virtual counterparts; it adopts a threshold-based strategy using Intersection over Union (IoU) metrics for accurate auto-verification. To ensure fast auto-verification and low energy consumption, EVER offloads compute-intensive tasks to an edge server. Through comprehensive evaluations of public datasets and custom datasets with practical implementation, EVER achieves over 90% verification accuracy within 100 milliseconds (significantly faster than average human reaction time of approximately 273 milliseconds), while consuming only minimal additional computational resources and energy compared to a system without auto-verification.
♻ ☆ SongBloom: Coherent Song Generation via Interleaved Autoregressive Sketching and Diffusion Refinement NeurIPS2025
Generating music with coherent structure, harmonious instrumental and vocal elements remains a significant challenge in song generation. Existing language models and diffusion-based methods often struggle to balance global coherence with local fidelity, resulting in outputs that lack musicality or suffer from incoherent progression and mismatched lyrics. This paper introduces $\textbf{SongBloom}$, a novel framework for full-length song generation that leverages an interleaved paradigm of autoregressive sketching and diffusion-based refinement. SongBloom employs an autoregressive diffusion model that combines the high fidelity of diffusion models with the scalability of language models. Specifically, it gradually extends a musical sketch from short to long and refines the details from coarse to fine-grained. The interleaved generation paradigm effectively integrates prior semantic and acoustic context to guide the generation process. Experimental results demonstrate that SongBloom outperforms existing methods across both subjective and objective metrics and achieves performance comparable to the state-of-the-art commercial music generation platforms. Audio samples are available on our demo page: https://cypress-yang.github.io/SongBloom_demo. The code and model weights have been released on https://github.com/Cypress-Yang/SongBloom .
comment: Accepted by NeurIPS2025
♻ ☆ LongInsightBench: A Comprehensive Benchmark for Evaluating Omni-Modal Models on Human-Centric Long-Video Understanding
We introduce \textbf{LongInsightBench}, the first benchmark designed to assess models' ability to understand long videos, with a focus on human language, viewpoints, actions, and other contextual elements, while integrating \textbf{visual, audio, and text} modalities. Our benchmark excels in three key areas: \textbf{a) Long-Duration, Information-Dense Videos:} We carefully select approximately 1,000 videos from open-source datasets FineVideo based on duration limit and the information density of both visual and audio modalities, focusing on content like lectures, interviews, and vlogs, which contain rich language elements. \textbf{b) Diverse and Challenging Task Scenarios:} We have designed six challenging task scenarios, including both Intra-Event and Inter-Event Tasks. \textbf{c) Rigorous and Comprehensive Quality Assurance Pipelines:} We have developed a three-step, semi-automated data quality assurance pipeline to ensure the difficulty and validity of the synthesized questions and answer options. Based on LongInsightBench, we designed a series of experiments. Experimental results shows that Omni-modal models(OLMs) still face challenge in tasks requiring precise temporal localization (T-Loc) and long-range causal inference (CE-Caus). Extended experiments reveal the information loss and processing bias in multi-modal fusion of OLMs. Our dataset and code is available at https://anonymous.4open.science/r/LongInsightBench-910F/.
comment: Submitted to ARR Rolling Review
♻ ☆ M3ST-DTI: A multi-task learning model for drug-target interactions based on multi-modal features and multi-stage alignment
Accurate prediction of drug-target interactions (DTI) is pivotal in drug discovery. However, existing approaches often fail to capture deep intra-modal feature interactions or achieve effective cross-modal alignment, limiting predictive performance and generalization. To address these challenges, we propose M3ST-DTI, a multi-task learning model that enables multi-stage integration and alignment of multi modal features for DTI prediction. M3ST-DTI incorporates three types of features-textual, structural, and functional and enhances intra-modal representations using self-attention mechanisms and a hybrid pooling graph attention module. For early-stage feature alignment and fusion, the model in tegrates MCA with Gram loss as a structural constraint. In the later stage, a BCA module captures fine-grained interactions between drugs and targets within each modality, while a deep orthogonal fusion module mitigates feature redundancy.Extensive evaluations on benchmark datasets demonstrate that M3ST-DTI consistently outperforms state-of-the art methods across diverse metrics
comment: This paper accepted by IEEE BIBM 2025
Computation and Language
☆ Glyph: Scaling Context Windows via Visual-Text Compression
Large language models (LLMs) increasingly rely on long-context modeling for tasks such as document understanding, code analysis, and multi-step reasoning. However, scaling context windows to the million-token level brings prohibitive computational and memory costs, limiting the practicality of long-context LLMs. In this work, we take a different perspective-visual context scaling-to tackle this challenge. Instead of extending token-based sequences, we propose Glyph, a framework that renders long texts into images and processes them with vision-language models (VLMs). This approach substantially compresses textual input while preserving semantic information, and we further design an LLM-driven genetic search to identify optimal visual rendering configurations for balancing accuracy and compression. Through extensive experiments, we demonstrate that our method achieves 3-4x token compression while maintaining accuracy comparable to leading LLMs such as Qwen3-8B on various long-context benchmarks. This compression also leads to around 4x faster prefilling and decoding, and approximately 2x faster SFT training. Furthermore, under extreme compression, a 128K-context VLM could scale to handle 1M-token-level text tasks. In addition, the rendered text data benefits real-world multimodal tasks, such as document understanding. Our code and model are released at https://github.com/thu-coai/Glyph.
☆ Enterprise Deep Research: Steerable Multi-Agent Deep Research for Enterprise Analytics
As information grows exponentially, enterprises face increasing pressure to transform unstructured data into coherent, actionable insights. While autonomous agents show promise, they often struggle with domain-specific nuances, intent alignment, and enterprise integration. We present Enterprise Deep Research (EDR), a multi-agent system that integrates (1) a Master Planning Agent for adaptive query decomposition, (2) four specialized search agents (General, Academic, GitHub, LinkedIn), (3) an extensible MCP-based tool ecosystem supporting NL2SQL, file analysis, and enterprise workflows, (4) a Visualization Agent for data-driven insights, and (5) a reflection mechanism that detects knowledge gaps and updates research direction with optional human-in-the-loop steering guidance. These components enable automated report generation, real-time streaming, and seamless enterprise deployment, as validated on internal datasets. On open-ended benchmarks including DeepResearch Bench and DeepConsult, EDR outperforms state-of-the-art agentic systems without any human steering. We release the EDR framework and benchmark trajectories to advance research on multi-agent reasoning applications. Code at https://github.com/SalesforceAIResearch/enterprise-deep-research and Dataset at https://huggingface.co/datasets/Salesforce/EDR-200
comment: Technical report; 13 pages plus references and appendices
☆ Executable Knowledge Graphs for Replicating AI Research
Replicating AI research is a crucial yet challenging task for large language model (LLM) agents. Existing approaches often struggle to generate executable code, primarily due to insufficient background knowledge and the limitations of retrieval-augmented generation (RAG) methods, which fail to capture latent technical details hidden in referenced papers. Furthermore, previous approaches tend to overlook valuable implementation-level code signals and lack structured knowledge representations that support multi-granular retrieval and reuse. To overcome these challenges, we propose Executable Knowledge Graphs (xKG), a modular and pluggable knowledge base that automatically integrates technical insights, code snippets, and domain-specific knowledge extracted from scientific literature. When integrated into three agent frameworks with two different LLMs, xKG shows substantial performance gains (10.9% with o3-mini) on PaperBench, demonstrating its effectiveness as a general and extensible solution for automated AI research replication. Code will released at https://github.com/zjunlp/xKG.
comment: Work in progress
☆ Foundational Automatic Evaluators: Scaling Multi-Task Generative Evaluator Training for Reasoning-Centric Domains
Finetuning specialized generative evaluators has emerged as a popular paradigm to meet the increasing demand for scalable evaluation during both training and test-time. However, recent work has largely focused on applying new methodology, such as reinforcement learning (RL), to training evaluators, shying away from large-scale, data-driven development. In this work, we focus on data scaling, curating a set of 2.5M samples spanning five unique evaluation tasks (pairwise, step-level, reference-free and reference-based verification, and single rating) and multiple domains focused on reasoning evaluation. With our data, we train Foundational Automatic Reasoning Evaluators (FARE), a family of 8B and 20B (with 3.6B active) parameter evaluators, with a simple iterative rejection-sampling supervised finetuning (SFT) approach. FARE-8B challenges larger specialized RL-trained evaluators and FARE-20B sets the new standard for open-source evaluators, surpassing specialized 70B+ evaluators. Beyond static benchmarks, we evaluate FARE in real-world tasks: As inference-time rerankers, FARE-20B achieves near-oracle performance on MATH. As verifiers in RL training, FARE improves the downstream RL-trained model performance by up to 14.1% vs. string-matching verifiers. When initialized from FARE, a continually-finetuned FARE-Code outperforms gpt-oss-20B by 65% on evaluating test-case quality.
comment: 29 pages, 9 tables, 6 figures
☆ UltraCUA: A Foundation Model for Computer Use Agents with Hybrid Action
Multimodal agents for computer use rely exclusively on primitive actions (click, type, scroll) that require accurate visual grounding and lengthy execution chains, leading to cascading failures and performance bottlenecks. While other agents leverage rich programmatic interfaces (APIs, MCP servers, tools), computer-use agents (CUAs) remain isolated from these capabilities. We present UltraCUA, a foundation model that bridges this gap through hybrid action -- seamlessly integrating GUI primitives with high-level programmatic tool calls. To achieve this, our approach comprises four key components: (1) an automated pipeline that scales programmatic tools from software documentation, open-source repositories, and code generation; (2) a synthetic data engine producing over 17,000 verifiable tasks spanning real-world computer-use scenarios; (3) a large-scale high-quality hybrid action trajectory collection with both low-level GUI actions and high-level programmatic tool calls; and (4) a two-stage training pipeline combining supervised fine-tuning with online reinforcement learning, enabling strategic alternation between low-level and high-level actions. Experiments with our 7B and 32B models demonstrate substantial improvements over state-of-the-art agents. On OSWorld, UltraCUA models achieve an average 22% relative improvement over base models, while being 11% faster in terms of steps. Out-of-domain evaluation on WindowsAgentArena shows our model reaches 21.7% success rate, outperforming baselines trained on Windows data. The hybrid action mechanism proves critical, reducing error propagation while maintaining execution efficiency.
☆ Mapping Post-Training Forgetting in Language Models at Scale
Scaled post-training now drives many of the largest capability gains in language models (LMs), yet its effect on pretrained knowledge remains poorly understood. Not all forgetting is equal: Forgetting one fact (e.g., a U.S. president or an API call) does not "average out" by recalling another. Hence, we propose a sample-wise paradigm to measure what is forgotten and when backward transfer occurs. Our metric counts 1->0 transitions (correct before post-training, incorrect after) to quantify forgetting and 0->1 transitions to quantify backward transfer. Traditional task averages conflate these effects and obscure large changes. For multiple-choice benchmarks, we add chance-adjusted variants that subtract the expected contribution of random guessing from pre- and post-training accuracies. We apply this framework across post-training stages, model sizes, and data scales. Our large-scale analysis shows that: (1) Domain-continual pretraining induces moderate forgetting with low-to-moderate backward transfer; (2) RL/SFT post-training applied to base models and Instruction tuning yields moderate-to-large backward transfer on math and logic with overall low-to-moderate forgetting; (3) Applying RL/SFT to instruction-tuned models is sensitive on data scale: at small scales, both forgetting and backward transfer are small; at larger scales, effects are mixed and warrant further study with better controls; (4) Model merging does not reliably mitigate forgetting. Overall, our framework offers a practical yardstick for mapping how post-training alters pretrained knowledge at scale -- enabling progress towards generally capable AI systems.
comment: 43 pages,15 figures
☆ Evaluating Medical LLMs by Levels of Autonomy: A Survey Moving from Benchmarks to Applications
Medical Large language models achieve strong scores on standard benchmarks; however, the transfer of those results to safe and reliable performance in clinical workflows remains a challenge. This survey reframes evaluation through a levels-of-autonomy lens (L0-L3), spanning informational tools, information transformation and aggregation, decision support, and supervised agents. We align existing benchmarks and metrics with the actions permitted at each level and their associated risks, making the evaluation targets explicit. This motivates a level-conditioned blueprint for selecting metrics, assembling evidence, and reporting claims, alongside directions that link evaluation to oversight. By centering autonomy, the survey moves the field beyond score-based claims toward credible, risk-aware evidence for real clinical use.
☆ VERA-V: Variational Inference Framework for Jailbreaking Vision-Language Models
Vision-Language Models (VLMs) extend large language models with visual reasoning, but their multimodal design also introduces new, underexplored vulnerabilities. Existing multimodal red-teaming methods largely rely on brittle templates, focus on single-attack settings, and expose only a narrow subset of vulnerabilities. To address these limitations, we introduce VERA-V, a variational inference framework that recasts multimodal jailbreak discovery as learning a joint posterior distribution over paired text-image prompts. This probabilistic view enables the generation of stealthy, coupled adversarial inputs that bypass model guardrails. We train a lightweight attacker to approximate the posterior, allowing efficient sampling of diverse jailbreaks and providing distributional insights into vulnerabilities. VERA-V further integrates three complementary strategies: (i) typography-based text prompts that embed harmful cues, (ii) diffusion-based image synthesis that introduces adversarial signals, and (iii) structured distractors to fragment VLM attention. Experiments on HarmBench and HADES benchmarks show that VERA-V consistently outperforms state-of-the-art baselines on both open-source and frontier VLMs, achieving up to 53.75% higher attack success rate (ASR) over the best baseline on GPT-4o.
comment: 18 pages, 7 Figures,
☆ Train for Truth, Keep the Skills: Binary Retrieval-Augmented Reward Mitigates Hallucinations
Language models often generate factually incorrect information unsupported by their training data, a phenomenon known as extrinsic hallucination. Existing mitigation approaches often degrade performance on open-ended generation and downstream tasks, limiting their practical utility. We propose an online reinforcement learning method using a novel binary retrieval-augmented reward (RAR) to address this tradeoff. Unlike continuous reward schemes, our approach assigns a reward of one only when the model's output is entirely factually correct, and zero otherwise. We evaluate our method on Qwen3 reasoning models across diverse tasks. For open-ended generation, binary RAR achieves a 39.3% reduction in hallucination rates, substantially outperforming both supervised training and continuous-reward RL baselines. In short-form question answering, the model learns calibrated abstention, strategically outputting "I don't know" when faced with insufficient parametric knowledge. This yields 44.4% and 21.7% fewer incorrect answers on PopQA and GPQA, respectively. Crucially, these factuality gains come without performance degradation on instruction following, math, or code, whereas continuous-reward RL, despite improving factuality, induces quality regressions.
☆ AcademicEval: Live Long-Context LLM Benchmark
Large Language Models (LLMs) have recently achieved remarkable performance in long-context understanding. However, current long-context LLM benchmarks are limited by rigid context length, labor-intensive annotation, and the pressing challenge of label leakage issues during LLM training. Therefore, we propose \textsc{AcademicEval}, a live benchmark for evaluating LLMs over long-context generation tasks. \textsc{AcademicEval} adopts papers on arXiv to introduce several academic writing tasks with long-context inputs, \textit{i.e.}, \textsc{Title}, \textsc{Abstract}, \textsc{Introduction}, and \textsc{Related Work}, which cover a wide range of abstraction levels and require no manual labeling. Moreover, \textsc{AcademicEval} integrates high-quality and expert-curated few-shot demonstrations from a collected co-author graph to enable flexible context length. Especially, \textsc{AcademicEval} features an efficient live evaluation, ensuring no label leakage. We conduct a holistic evaluation on \textsc{AcademicEval}, and the results illustrate that LLMs perform poorly on tasks with hierarchical abstraction levels and tend to struggle with long few-shot demonstrations, highlighting the challenge of our benchmark. Through experimental analysis, we also reveal some insights for enhancing LLMs' long-context modeling capabilities. Code is available at https://github.com/ulab-uiuc/AcademicEval
comment: Accepted by TMLR. Code is available at https://github.com/ulab-uiuc/AcademicEval
☆ PANER: A Paraphrase-Augmented Framework for Low-Resource Named Entity Recognition
Named Entity Recognition (NER) is a critical task that requires substantial annotated data, making it challenging in low-resource scenarios where label acquisition is expensive. While zero-shot and instruction-tuned approaches have made progress, they often fail to generalize to domain-specific entities and do not effectively utilize limited available data. We present a lightweight few-shot NER framework that addresses these challenges through two key innovations: (1) a new instruction tuning template with a simplified output format that combines principles from prior IT approaches to leverage the large context window of recent state-of-the-art LLMs; (2) introducing a strategic data augmentation technique that preserves entity information while paraphrasing the surrounding context, thereby expanding our training data without compromising semantic relationships. Experiments on benchmark datasets show that our method achieves performance comparable to state-of-the-art models on few-shot and zero-shot tasks, with our few-shot approach attaining an average F1 score of 80.1 on the CrossNER datasets. Models trained with our paraphrasing approach show consistent improvements in F1 scores of up to 17 points over baseline versions, offering a promising solution for groups with limited NER training data and compute power.
☆ QueST: Incentivizing LLMs to Generate Difficult Problems
Large Language Models have achieved strong performance on reasoning tasks, solving competition-level coding and math problems. However, their scalability is limited by human-labeled datasets and the lack of large-scale, challenging coding problem training data. Existing competitive coding datasets contain only thousands to tens of thousands of problems. Previous synthetic data generation methods rely on either augmenting existing instruction datasets or selecting challenging problems from human-labeled data. In this paper, we propose QueST, a novel framework which combines difficulty-aware graph sampling and difficulty-aware rejection fine-tuning that directly optimizes specialized generators to create challenging coding problems. Our trained generators demonstrate superior capability compared to even GPT-4o at creating challenging problems that benefit downstream performance. We leverage QueST to generate large-scale synthetic coding problems, which we then use to distill from strong teacher models with long chain-of-thought or to conduct reinforcement learning for smaller models, proving effective in both scenarios. Our distillation experiments demonstrate significant performance gains. Specifically, after fine-tuning Qwen3-8B-base on 100K difficult problems generated by QueST, we surpass the performance of the original Qwen3-8B on LiveCodeBench. With an additional 112K examples (i.e., 28K human-written problems paired with multiple synthetic solutions), our 8B model matches the performance of the much larger DeepSeek-R1-671B. These findings indicate that generating complex problems via QueST offers an effective and scalable approach to advancing the frontiers of competitive coding and reasoning for large language models.
comment: 20 pages, 7 figures
☆ Contextual Attention Modulation: Towards Efficient Multi-Task Adaptation in Large Language Models CIKM' 25
Large Language Models (LLMs) possess remarkable generalization capabilities but struggle with multi-task adaptation, particularly in balancing knowledge retention with task-specific specialization. Conventional fine-tuning methods suffer from catastrophic forgetting and substantial resource consumption, while existing parameter-efficient methods perform suboptimally in complex multi-task scenarios. To address this, we propose Contextual Attention Modulation (CAM), a novel mechanism that dynamically modulates the representations of self-attention modules in LLMs. CAM enhances task-specific features while preserving general knowledge, thereby facilitating more effective and efficient adaptation. For effective multi-task adaptation, CAM is integrated into our Hybrid Contextual Attention Modulation (HyCAM) framework, which combines a shared, full-parameter CAM module with multiple specialized, lightweight CAM modules, enhanced by a dynamic routing strategy for adaptive knowledge fusion. Extensive experiments on heterogeneous tasks, including question answering, code generation, and logical reasoning, demonstrate that our approach significantly outperforms existing approaches, achieving an average performance improvement of 3.65%. The implemented code and data are available to ease reproducibility at https://github.com/Applied-Machine-Learning-Lab/HyCAM.
comment: Accepted by CIKM' 25
☆ Towards Mining Effective Pedagogical Strategies from Learner-LLM Educational Dialogues
Dialogue plays a crucial role in educational settings, yet existing evaluation methods for educational applications of large language models (LLMs) primarily focus on technical performance or learning outcomes, often neglecting attention to learner-LLM interactions. To narrow this gap, this AIED Doctoral Consortium paper presents an ongoing study employing a dialogue analysis approach to identify effective pedagogical strategies from learner-LLM dialogues. The proposed approach involves dialogue data collection, dialogue act (DA) annotation, DA pattern mining, and predictive model building. Early insights are outlined as an initial step toward future research. The work underscores the need to evaluate LLM-based educational applications by focusing on dialogue dynamics and pedagogical strategies.
☆ LILO: Bayesian Optimization with Interactive Natural Language Feedback
For many real-world applications, feedback is essential in translating complex, nuanced, or subjective goals into quantifiable optimization objectives. We propose a language-in-the-loop framework that uses a large language model (LLM) to convert unstructured feedback in the form of natural language into scalar utilities to conduct BO over a numeric search space. Unlike preferential BO, which only accepts restricted feedback formats and requires customized models for each domain-specific problem, our approach leverages LLMs to turn varied types of textual feedback into consistent utility signals and to easily include flexible user priors without manual kernel design. At the same time, our method maintains the sample efficiency and principled uncertainty quantification of BO. We show that this hybrid method not only provides a more natural interface to the decision maker but also outperforms conventional BO baselines and LLM-only optimizers, particularly in feedback-limited regimes.
☆ DELULU: Discriminative Embedding Learning Using Latent Units for Speaker-Aware Self-Supervised Speech Foundational Model
Self-supervised speech models have achieved remarkable success on content-driven tasks, yet they remain limited in capturing speaker-discriminative features critical for verification, diarization, and profiling applications. We introduce DELULU, a speaker-aware self-supervised foundational model that addresses this limitation by integrating external supervision into the pseudo-label generation process. DELULU leverages frame-level embeddings from ReDimNet, a state-of-the-art speaker verification model, to guide the k-means clustering step during pre-training, introducing a strong speaker-discriminative inductive bias that aligns representation learning with speaker identity. The model is trained using a dual objective that combines masked prediction and denoising, further enhancing robustness and generalization. DELULU significantly outperforms prior self-supervised learning (SSL) models across a range of speaker-centric tasks, achieving up to 62% relative improvement in equal error rate (EER) for speaker verification and consistent gains on zero-shot profiling tasks such as gender, age, accent, and speaker counting. Our findings demonstrate that DELULU is a strong universal encoder for speaker-aware speech processing, enabling superior performance even without task-specific fine-tuning.
☆ Qomhra: A Bilingual Irish-English Large Language Model
This paper introduces Qomhr\'a, a bilingual Irish-English large language model (LLM), developed under low-resource constraints presenting a complete pipeline spanning bilingual continued pre-training, instruction tuning, and alignment from human preferences. Newly accessible Irish corpora and English text are mixed and curated to improve Irish performance while preserving English ability. 6 closed-weight LLMs are judged for their Irish text generation by a native speaker, a learner and other LLMs. Google's Gemini-2.5-Pro is ranked the highest and is subsequently used to synthesise instruction tuning and human preference datasets. Two datasets are contributed leveraging Gemini-2.5-Pro: a 30K Irish-English parallel instruction tuning dataset and a 1K human preference dataset, generating accepted and rejected responses that show near perfect alignment with a native Irish speaker. Qomhr\'a is comprehensively evaluated across benchmarks testing translation, gender understanding, topic identification and world knowledge with gains of up to 29% in Irish and 44% in English. Qomhr\'a also undergoes instruction tuning and demonstrates clear progress in instruction following, crucial for chatbot functionality.
☆ LLM-as-a-Prophet: Understanding Predictive Intelligence with Prophet Arena
Forecasting is not only a fundamental intellectual pursuit but also is of significant importance to societal systems such as finance and economics. With the rapid advances of large language models (LLMs) trained on Internet-scale data, it raises the promise of employing LLMs to forecast real-world future events, an emerging paradigm we call "LLM-as-a-Prophet". This paper systematically investigates such predictive intelligence of LLMs. To this end, we build Prophet Arena, a general evaluation benchmark that continuously collects live forecasting tasks and decomposes each task into distinct pipeline stages, in order to support our controlled and large-scale experimentation. Our comprehensive evaluation reveals that many LLMs already exhibit impressive forecasting capabilities, reflected in, e.g., their small calibration errors, consistent prediction confidence and promising market returns. However, we also uncover key bottlenecks towards achieving superior predictive intelligence via LLM-as-a-Prophet, such as LLMs' inaccurate event recalls, misunderstanding of data sources and slower information aggregation compared to markets when resolution nears.
comment: https://www.prophetarena.co/
☆ Forget to Know, Remember to Use: Context-Aware Unlearning for Large Language Models
Large language models may encode sensitive information or outdated knowledge that needs to be removed, to ensure responsible and compliant model responses. Unlearning has emerged as an efficient alternative to full retraining, aiming to remove specific knowledge while preserving overall model utility. Existing evaluations of unlearning methods focus on (1) the extent of forgetting of the target knowledge (forget set) and (2) maintaining performance on the retain set (i.e., utility). However, these evaluations overlook an important usability aspect: users may still want the model to leverage the removed information if it is re-introduced in the prompt. In a systematic evaluation of six state-of-the-art unlearning methods, we find that they consistently impair such contextual utility. To address this, we augment unlearning objectives with a plug-in term that preserves the model's ability to use forgotten knowledge when it is present in context. Extensive experiments demonstrate that our approach restores contextual utility to near original levels while still maintaining effective forgetting and retain-set utility.
☆ LawChain: Modeling Legal Reasoning Chains for Chinese Tort Case Analysis
Legal reasoning is a fundamental component of legal analysis and decision-making. Existing computational approaches to legal reasoning predominantly rely on generic reasoning frameworks such as syllogism and IRAC, which do not comprehensively examine the nuanced processes that underpin legal reasoning. Moreover, current research has largely focused on criminal cases, with insufficient modeling for civil cases. In this work, we present a novel framework for explicitly modeling legal reasoning in the analysis of Chinese tort-related civil cases. We first operationalize the legal reasoning processes used in tort analysis into the LawChain framework. LawChain is a three-module reasoning framework, with each module consisting of multiple finer-grained sub-steps. Informed by the LawChain framework, we introduce the task of tort legal reasoning and construct an evaluation benchmark, LawChain$_{eval}$, to systematically assess the critical steps within analytical reasoning chains for tort analysis. Leveraging this benchmark, we evaluate state-of-the-art large language models for their legal reasoning ability in civil tort contexts. Our results indicate that current models still fall short in accurately handling crucial elements of tort legal reasoning. Furthermore, we introduce several baseline approaches that explicitly incorporate LawChain-style reasoning through prompting or post-training. We conduct further experiments on additional legal analysis tasks, such as Legal Named-Entity Recognition and Criminal Damages Calculation, to verify the generalizability of these baselines. The proposed baseline approaches achieve significant improvements in tort-related legal reasoning and generalize well to related legal analysis tasks, thus demonstrating the value of explicitly modeling legal reasoning chains to enhance the reasoning capabilities of language models.
☆ Reasoning Distillation and Structural Alignment for Improved Code Generation
Effective code generation with language models hinges on two critical factors: accurately understanding the intent of the prompt and generating code that applies algorithmic reasoning to produce correct solutions capable of passing diverse test cases while adhering to the syntax of the target programming language. Unlike other language tasks, code generation requires more than accurate token prediction; it demands comprehension of solution-level and structural relationships rather than merely generating the most likely tokens. very large language model (VLLM) are capable of generating detailed steps toward the correct solution of complex tasks where reasoning is crucial in solving the problem. Such reasoning capabilities may be absent in smaller language models. Therefore, in this work, we distill the reasoning capabilities of a VLLM into a smaller, more efficient model that is faster and cheaper to deploy. Our approach trains the model to emulate the reasoning and problem-solving abilities of the VLLM by learning to identify correct solution pathways and establishing a structural correspondence between problem definitions and potential solutions through a novel method of structure-aware loss optimization. This enables the model to transcend token-level generation and to deeply grasp the overarching structure of solutions for given problems. Experimental results show that our fine-tuned model, developed through a cheap and simple to implement process, significantly outperforms our baseline model in terms of pass@1, average data flow, and average syntax match metrics across the MBPP, MBPP Plus, and HumanEval benchmarks.
☆ HGAdapter: Hypergraph-based Adapters in Language Models for Code Summarization and Clone Detection EMNLP 2025
Pre-trained language models (PLMs) are increasingly being applied to code-related tasks. Although PLMs have achieved good results, they do not take into account potential high-order data correlations within the code. We propose three types of high-order correlations in code tokens, i.e. abstract syntax tree family correlation, lexical correlation, and line correlation. We design a tokens and hyperedges generator to capture these high-order data correlations. We improve the architecture of hypergraph neural networks and combine it with adapter tuning to propose a novel hypergraph-based adapter (HGAdapter) to fine-tune PLMs. HGAdapter can encode high-order data correlations and is allowed to be inserted into various PLMs to enhance performance. Experiments were conducted on several public datasets, including six languages of code summarization and code clone detection tasks. Our methods improved the performance of PLMs in datasets to varying degrees. Experimental results validate the introduction of high-order data correlations that contribute to improved effectiveness.
comment: Accepted by the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025) as a findings long paper
☆ MIRAGE: Agentic Framework for Multimodal Misinformation Detection with Web-Grounded Reasoning
Misinformation spreads across web platforms through billions of daily multimodal posts that combine text and images, overwhelming manual fact-checking capacity. Supervised detection models require domain-specific training data and fail to generalize across diverse manipulation tactics. We present MIRAGE, an inference-time, model-pluggable agentic framework that decomposes multimodal verification into four sequential modules: visual veracity assessment detects AI-generated images, cross-modal consistency analysis identifies out-of-context repurposing, retrieval-augmented factual checking grounds claims in web evidence through iterative question generation, and a calibrated judgment module integrates all signals. MIRAGE orchestrates vision-language model reasoning with targeted web retrieval, outputs structured and citation-linked rationales. On MMFakeBench validation set (1,000 samples), MIRAGE with GPT-4o-mini achieves 81.65% F1 and 75.1% accuracy, outperforming the strongest zero-shot baseline (GPT-4V with MMD-Agent at 74.0% F1) by 7.65 points while maintaining 34.3% false positive rate versus 97.3% for a judge-only baseline. Test set results (5,000 samples) confirm generalization with 81.44% F1 and 75.08% accuracy. Ablation studies show visual verification contributes 5.18 F1 points and retrieval-augmented reasoning contributes 2.97 points. Our results demonstrate that decomposed agentic reasoning with web retrieval can match supervised detector performance without domain-specific training, enabling misinformation detection across modalities where labeled data remains scarce.
comment: 16 pages, 3 tables, 1 figure
☆ Language Confusion Gate: Language-Aware Decoding Through Model Self-Distillation
Large language models (LLMs) often experience language confusion, which is the unintended mixing of languages during text generation. Current solutions to this problem either necessitate model retraining or cannot differentiate between harmful confusion and acceptable code-switching. This paper introduces the Language Confusion Gate (LCG), a lightweight, plug-in solution that filters tokens during decoding without altering the base LLM. The LCG is trained using norm-adjusted self-distillation to predict appropriate language families and apply masking only when needed. Our method is based on the findings that language confusion is infrequent, correct-language tokens are usually among the top predictions, and output token embedding norms are larger for high-resource languages, which biases sampling. When evaluated across various models, including Qwen3, GPT-OSS, Gemma3, Llama3.1, LCG decreases language confusion significantly, often by an order of magnitude, without negatively impacting task performance. Code is available at https://github.com/collinzrj/language_confusion_gate.
☆ When Annotators Disagree, Topology Explains: Mapper, a Topological Tool for Exploring Text Embedding Geometry and Ambiguity EMNLP 2025
Language models are often evaluated with scalar metrics like accuracy, but such measures fail to capture how models internally represent ambiguity, especially when human annotators disagree. We propose a topological perspective to analyze how fine-tuned models encode ambiguity and more generally instances. Applied to RoBERTa-Large on the MD-Offense dataset, Mapper, a tool from topological data analysis, reveals that fine-tuning restructures embedding space into modular, non-convex regions aligned with model predictions, even for highly ambiguous cases. Over $98\%$ of connected components exhibit $\geq 90\%$ prediction purity, yet alignment with ground-truth labels drops in ambiguous data, surfacing a hidden tension between structural confidence and label uncertainty. Unlike traditional tools such as PCA or UMAP, Mapper captures this geometry directly uncovering decision regions, boundary collapses, and overconfident clusters. Our findings position Mapper as a powerful diagnostic tool for understanding how models resolve ambiguity. Beyond visualization, it also enables topological metrics that may inform proactive modeling strategies in subjective NLP tasks.
comment: Accepted to appear in the Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025, Main Conference)
☆ OncoReason: Structuring Clinical Reasoning in LLMs for Robust and Interpretable Survival Prediction
Predicting cancer treatment outcomes requires models that are both accurate and interpretable, particularly in the presence of heterogeneous clinical data. While large language models (LLMs) have shown strong performance in biomedical NLP, they often lack structured reasoning capabilities critical for high-stakes decision support. We present a unified, multi-task learning framework that aligns autoregressive LLMs with clinical reasoning for outcome prediction on the MSK-CHORD dataset. Our models are trained to jointly perform binary survival classification, continuous survival time regression, and natural language rationale generation. We evaluate three alignment strategies: (1) standard supervised fine-tuning (SFT), (2) SFT with Chain-of-Thought (CoT) prompting to elicit step-by-step reasoning, and (3) Group Relative Policy Optimization (GRPO), a reinforcement learning method that aligns model outputs to expert-derived reasoning trajectories. Experiments with LLaMa3-8B and Med42-8B backbones demonstrate that CoT prompting improves F1 by +6.0 and reduces MAE by 12%, while GRPO achieves state-of-the-art interpretability and predictive performance across BLEU, ROUGE, and BERTScore. We further show that existing biomedical LLMs often fail to produce valid reasoning traces due to architectural constraints. Our findings underscore the importance of reasoning-aware alignment in multi-task clinical modeling and set a new benchmark for interpretable, trustworthy LLMs in precision oncology.
☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
☆ Annotation-Efficient Universal Honesty Alignment
Honesty alignment-the ability of large language models (LLMs) to recognize their knowledge boundaries and express calibrated confidence-is essential for trustworthy deployment. Existing methods either rely on training-free confidence estimation (e.g., token probabilities, self-consistency) or training-based calibration with correctness annotations. While effective, achieving universal honesty alignment with training-based calibration requires costly, large-scale labeling. To support annotation-efficient training, we introduce Elicitation-Then-Calibration (EliCal), a two-stage framework that first elicits internal confidence using inexpensive self-consistency supervision, then calibrates this confidence with a small set of correctness annotations. To support a large-scale study, we release HonestyBench, a benchmark covering ten free-form QA datasets with 560k training and 70k evaluation instances annotated with correctness and self-consistency signals. Experiments show that EliCal achieves near-optimal alignment with only 1k correctness annotations (0.18% of full supervision) and better alignment performance on unseen MMLU tasks than the calibration-only baseline, offering a scalable solution toward universal honesty alignment in LLMs.
☆ Lingua Custodi's participation at the WMT 2025 Terminology shared task
While BERT is an effective method for learning monolingual sentence embeddings for semantic similarity and embedding based transfer learning BERT based cross-lingual sentence embeddings have yet to be explored. We systematically investigate methods for learning multilingual sentence embeddings by combining the best methods for learning monolingual and cross-lingual representations including: masked language modeling (MLM), translation language modeling (TLM), dual encoder translation ranking, and additive margin softmax. We show that introducing a pre-trained multilingual language model dramatically reduces the amount of parallel training data required to achieve good performance by 80%. Composing the best of these methods produces a model that achieves 83.7% bi-text retrieval accuracy over 112 languages on Tatoeba, well above the 65.5 achieved by LASER, while still performing competitively on monolingual transfer learning benchmarks. Parallel data mined from CommonCrawl using our best model is shown to train competitive NMT models for en-zh and en-de. We publicly release our best multilingual sentence embedding model for 109+ languages at https://tfhub.dev/google/LaBSE.
☆ Deep Self-Evolving Reasoning
Long-form chain-of-thought reasoning has become a cornerstone of advanced reasoning in large language models. While recent verification-refinement frameworks have enabled proprietary models to solve Olympiad-level problems, their effectiveness hinges on strong, reliable verification and correction capabilities, which remain fragile in open-weight, smaller-scale models. This work demonstrates that even with weak verification and refinement capabilities on hard tasks, the reasoning limits of such models can be substantially extended through a probabilistic paradigm we call Deep Self-Evolving Reasoning (DSER). We conceptualize iterative reasoning as a Markov chain, where each step represents a stochastic transition in the solution space. The key insight is that convergence to a correct solution is guaranteed as long as the probability of improvement marginally exceeds that of degradation. By running multiple long-horizon, self-evolving processes in parallel, DSER amplifies these small positive tendencies, enabling the model to asymptotically approach correct answers. Empirically, we apply DSER to the DeepSeek-R1-0528-Qwen3-8B model. On the challenging AIME 2024-2025 benchmark, DSER solves 5 out of 9 previously unsolvable problems and boosts overall performance, enabling this compact model to surpass the single-turn accuracy of its 600B-parameter teacher through majority voting. Beyond its immediate utility for test-time scaling, the DSER framework serves to diagnose the fundamental limitations of current open-weight reasoners. By clearly delineating their shortcomings in self-verification, refinement, and stability, our findings establish a clear research agenda for developing next-generation models with powerful, intrinsic self-evolving capabilities.
☆ Empowering Real-World: A Survey on the Technology, Practice, and Evaluation of LLM-driven Industry Agents
With the rise of large language models (LLMs), LLM agents capable of autonomous reasoning, planning, and executing complex tasks have become a frontier in artificial intelligence. However, how to translate the research on general agents into productivity that drives industry transformations remains a significant challenge. To address this, this paper systematically reviews the technologies, applications, and evaluation methods of industry agents based on LLMs. Using an industry agent capability maturity framework, it outlines the evolution of agents in industry applications, from "process execution systems" to "adaptive social systems." First, we examine the three key technological pillars that support the advancement of agent capabilities: Memory, Planning, and Tool Use. We discuss how these technologies evolve from supporting simple tasks in their early forms to enabling complex autonomous systems and collective intelligence in more advanced forms. Then, we provide an overview of the application of industry agents in real-world domains such as digital engineering, scientific discovery, embodied intelligence, collaborative business execution, and complex system simulation. Additionally, this paper reviews the evaluation benchmarks and methods for both fundamental and specialized capabilities, identifying the challenges existing evaluation systems face regarding authenticity, safety, and industry specificity. Finally, we focus on the practical challenges faced by industry agents, exploring their capability boundaries, developmental potential, and governance issues in various scenarios, while providing insights into future directions. By combining technological evolution with industry practices, this review aims to clarify the current state and offer a clear roadmap and theoretical foundation for understanding and building the next generation of industry agents.
☆ DETree: DEtecting Human-AI Collaborative Texts via Tree-Structured Hierarchical Representation Learning NeurIPS 2025
Detecting AI-involved text is essential for combating misinformation, plagiarism, and academic misconduct. However, AI text generation includes diverse collaborative processes (AI-written text edited by humans, human-written text edited by AI, and AI-generated text refined by other AI), where various or even new LLMs could be involved. Texts generated through these varied processes exhibit complex characteristics, presenting significant challenges for detection. Current methods model these processes rather crudely, primarily employing binary classification (purely human vs. AI-involved) or multi-classification (treating human-AI collaboration as a new class). We observe that representations of texts generated through different processes exhibit inherent clustering relationships. Therefore, we propose DETree, a novel approach that models the relationships among different processes as a Hierarchical Affinity Tree structure, and introduces a specialized loss function that aligns text representations with this tree. To facilitate this learning, we developed RealBench, a comprehensive benchmark dataset that automatically incorporates a wide spectrum of hybrid texts produced through various human-AI collaboration processes. Our method improves performance in hybrid text detection tasks and significantly enhances robustness and generalization in out-of-distribution scenarios, particularly in few-shot learning conditions, further demonstrating the promise of training-based approaches in OOD settings. Our code and dataset are available at https://github.com/heyongxin233/DETree.
comment: To appear in NeurIPS 2025
☆ ReXMoE: Reusing Experts with Minimal Overhead in Mixture-of-Experts
Mixture-of-Experts (MoE) architectures have emerged as a promising approach to scale Large Language Models (LLMs). MoE boosts the efficiency by activating a subset of experts per token. Recent works show that fine-grained experts substantially enriches the combinatorial flexibility of active experts and enhances model expressiveness. However, such a design is fundamentally limited by the layer-local routing mechanism: each layer is restricted to its own expert pool. This requires a careful trade-off between expert dimensionality and routing diversity given fixed parameter budgets. We describe ReXMoE, a novel MoE architecture that improves routing beyond the existing layer-local approaches by allowing routers to reuse experts across adjacent layers. ReXMoE decouples expert dimensionality from per-layer budgets, enabling richer expert combinations without sacrificing individual expert capacity or inflating overall parameters. To this end, we propose a new progressive scaling routing (PSR) strategy to gradually increase the candidate expert pool during training. As a result, ReXMoE improves both language modeling and downstream task performance. Extensive experiments on models ranging from 0.5B to 7B parameters across different architectures demonstrate that ReXMoE consistently improves performance under fixed architectural dimensions, confirming ReXMoE as new design paradigm for parameter-efficient and scalable MoE-based LLMs.
☆ Disparities in Multilingual LLM-Based Healthcare Q&A
Equitable access to reliable health information is vital when integrating AI into healthcare. Yet, information quality varies across languages, raising concerns about the reliability and consistency of multilingual Large Language Models (LLMs). We systematically examine cross-lingual disparities in pre-training source and factuality alignment in LLM answers for multilingual healthcare Q&A across English, German, Turkish, Chinese (Mandarin), and Italian. We (i) constructed Multilingual Wiki Health Care (MultiWikiHealthCare), a multilingual dataset from Wikipedia; (ii) analyzed cross-lingual healthcare coverage; (iii) assessed LLM response alignment with these references; and (iv) conducted a case study on factual alignment through the use of contextual information and Retrieval-Augmented Generation (RAG). Our findings reveal substantial cross-lingual disparities in both Wikipedia coverage and LLM factual alignment. Across LLMs, responses align more with English Wikipedia, even when the prompts are non-English. Providing contextual excerpts from non-English Wikipedia at inference time effectively shifts factual alignment toward culturally relevant knowledge. These results highlight practical pathways for building more equitable, multilingual AI systems for healthcare.
comment: Under review
☆ Evaluating Large Language Models on Urdu Idiom Translation
Idiomatic translation remains a significant challenge in machine translation, especially for low resource languages such as Urdu, and has received limited prior attention. To advance research in this area, we introduce the first evaluation datasets for Urdu to English idiomatic translation, covering both Native Urdu and Roman Urdu scripts and annotated with gold-standard English equivalents. We evaluate multiple open-source Large Language Models (LLMs) and Neural Machine Translation (NMT) systems on this task, focusing on their ability to preserve idiomatic and cultural meaning. Automatic metrics including BLEU, BERTScore, COMET, and XCOMET are used to assess translation quality. Our findings indicate that prompt engineering enhances idiomatic translation compared to direct translation, though performance differences among prompt types are relatively minor. Moreover, cross script comparisons reveal that text representation substantially affects translation quality, with Native Urdu inputs producing more accurate idiomatic translations than Roman Urdu.
☆ Multilingual Clinical NER for Diseases and Medications Recognition in Cardiology Texts using BERT Embeddings
The rapidly increasing volume of electronic health record (EHR) data underscores a pressing need to unlock biomedical knowledge from unstructured clinical texts to support advancements in data-driven clinical systems, including patient diagnosis, disease progression monitoring, treatment effects assessment, prediction of future clinical events, etc. While contextualized language models have demonstrated impressive performance improvements for named entity recognition (NER) systems in English corpora, there remains a scarcity of research focused on clinical texts in low-resource languages. To bridge this gap, our study aims to develop multiple deep contextual embedding models to enhance clinical NER in the cardiology domain, as part of the BioASQ MultiCardioNER shared task. We explore the effectiveness of different monolingual and multilingual BERT-based models, trained on general domain text, for extracting disease and medication mentions from clinical case reports written in English, Spanish, and Italian. We achieved an F1-score of 77.88% on Spanish Diseases Recognition (SDR), 92.09% on Spanish Medications Recognition (SMR), 91.74% on English Medications Recognition (EMR), and 88.9% on Italian Medications Recognition (IMR). These results outperform the mean and median F1 scores in the test leaderboard across all subtasks, with the mean/median values being: 69.61%/75.66% for SDR, 81.22%/90.18% for SMR, 89.2%/88.96% for EMR, and 82.8%/87.76% for IMR.
comment: 11 pages, 5 figures, 1 table, published in Working Notes of the Conference and Labs of the Evaluation Forum (CLEF 2024)
☆ Agentic Reinforcement Learning for Search is Unsafe
Agentic reinforcement learning (RL) trains large language models to autonomously call tools during reasoning, with search as the most common application. These models excel at multi-step reasoning tasks, but their safety properties are not well understood. In this study, we show that RL-trained search models inherit refusal from instruction tuning and often deflect harmful requests by turning them into safe queries. However, this safety is fragile. Two simple attacks, one that forces the model to begin response with search (Search attack), another that encourages models to repeatedly search (Multi-search attack), trigger cascades of harmful searches and answers. Across two model families (Qwen, Llama) with both local and web search, these attacks lower refusal rates by up to 60.0%, answer safety by 82.5%, and search-query safety by 82.4%. The attacks succeed by triggering models to generate harmful, request-mirroring search queries before they can generate the inherited refusal tokens. This exposes a core weakness of current RL training: it rewards continued generation of effective queries without accounting for their harmfulness. As a result, RL search models have vulnerabilities that users can easily exploit, making it urgent to develop safety-aware agentic RL pipelines optimising for safe search.
☆ Navigating the Alignment-Calibration Trade-off: A Pareto-Superior Frontier via Model Merging
The "alignment tax" of post-training is typically framed as a drop in task accuracy. We show it also involves a severe loss of calibration, making models overconfident, less reliable, and model outputs less diverse. We show that this trade-off can be navigated effectively via a simple post-hoc intervention: interpolating between a model's weights before and after alignment. Crucially, this is not a strict trade-off. We find that the process consistently reveals Pareto-optimal interpolations - models that improve accuracy beyond both parents while substantially recovering the calibration lost during alignment. Our work demonstrates that simple model merging provides a computationally efficient method for mitigating the full scope of the alignment tax, yielding models that are more capable and more reliable.
☆ BenCao: An Instruction-Tuned Large Language Model for Traditional Chinese Medicine
Traditional Chinese Medicine (TCM), with a history spanning over two millennia, plays a role in global healthcare. However, applying large language models (LLMs) to TCM remains challenging due to its reliance on holistic reasoning, implicit logic, and multimodal diagnostic cues. Existing TCM-domain LLMs have made progress in text-based understanding but lack multimodal integration, interpretability, and clinical applicability. To address these limitations, we developed BenCao, a ChatGPT-based multimodal assistant for TCM, integrating structured knowledge bases, diagnostic data, and expert feedback refinement. BenCao was trained through natural language instruction tuning rather than parameter retraining, aligning with expert-level reasoning and ethical norms specific to TCM. The system incorporates a comprehensive knowledge base of over 1,000 classical and modern texts, a scenario-based instruction framework for diverse interactions, a chain-of-thought simulation mechanism for interpretable reasoning, and a feedback refinement process involving licensed TCM practitioners. BenCao connects to external APIs for tongue-image classification and multimodal database retrieval, enabling dynamic access to diagnostic resources. In evaluations across single-choice question benchmarks and multimodal classification tasks, BenCao achieved superior accuracy to general-domain and TCM-domain models, particularly in diagnostics, herb recognition, and constitution classification. The model was deployed as an interactive application on the OpenAI GPTs Store, accessed by nearly 1,000 users globally as of October 2025. This study demonstrates the feasibility of developing a TCM-domain LLM through natural language-based instruction tuning and multimodal integration, offering a practical framework for aligning generative AI with traditional medical reasoning and a scalable pathway for real-world deployment.
☆ AFRICAPTION: Establishing a New Paradigm for Image Captioning in African Languages
Multimodal AI research has overwhelmingly focused on high-resource languages, hindering the democratization of advancements in the field. To address this, we present AfriCaption, a comprehensive framework for multilingual image captioning in 20 African languages and our contributions are threefold: (i) a curated dataset built on Flickr8k, featuring semantically aligned captions generated via a context-aware selection and translation process; (ii) a dynamic, context-preserving pipeline that ensures ongoing quality through model ensembling and adaptive substitution; and (iii) the AfriCaption model, a 0.5B parameter vision-to-text architecture that integrates SigLIP and NLLB200 for caption generation across under-represented languages. This unified framework ensures ongoing data quality and establishes the first scalable image-captioning resource for under-represented African languages, laying the groundwork for truly inclusive multimodal AI.
☆ Leveraging Group Relative Policy Optimization to Advance Large Language Models in Traditional Chinese Medicine
Traditional Chinese Medicine (TCM) presents a rich and structurally unique knowledge system that challenges conventional applications of large language models (LLMs). Although previous TCM-specific LLMs have shown progress through supervised fine-tuning, they often face limitations in alignment, data quality, and evaluation consistency. In this study, we introduce Ladder-base, the first TCM-focused LLM trained with Group Relative Policy Optimization (GRPO), a reinforcement learning method that improves reasoning and factual consistency by optimizing response selection based on intra-group comparisons. Ladder-base is built upon the Qwen2.5-7B-Instruct foundation model and trained exclusively on the textual subset of the TCM-Ladder benchmark, using 80 percent of the data for training and the remaining 20 percent split evenly between validation and test sets. Through standardized evaluation, Ladder-base demonstrates superior performance across multiple reasoning metrics when compared to both state-of-the-art general-purpose LLMs such as GPT-4, Gemini 2.5, Claude 3, and Qwen3 and domain-specific TCM models including BenTsao, HuatuoGPT2, and Zhongjing. These findings suggest that GRPO provides an effective and efficient strategy for aligning LLMs with expert-level reasoning in traditional medical domains and supports the development of trustworthy and clinically grounded TCM artificial intelligence systems.
☆ EduAdapt: A Question Answer Benchmark Dataset for Evaluating Grade-Level Adaptability in LLMs EMNLP 2025
Large language models (LLMs) are transforming education by answering questions, explaining complex concepts, and generating content across a wide range of subjects. Despite strong performance on academic benchmarks, they often fail to tailor responses to students' grade levels. This is a critical need in K-12 education, where age-appropriate vocabulary and explanation are essential for effective learning. Existing models frequently produce outputs that are too advanced or vague for younger learners, and there are no standardized benchmarks to evaluate their ability to adjust across cognitive and developmental stages. To address this gap, we introduce EduAdapt, a benchmark of nearly 48k grade-labeled QA pairs across nine science subjects, spanning Grades 1-12 and grouped into four grade levels. We evaluate a diverse set of open-source LLMs on EduAdapt and find that while larger models generally perform better, they still struggle with generating suitable responses for early-grade students (Grades 1-5). Our work presents the first dataset and evaluation framework for assessing grade-level adaptability in LLMs, aiming to foster more developmentally aligned educational AI systems through better training and prompting strategies. EduAdapt code and datasets are publicly available at https://github.com/NaumanNaeem/EduAdapt.
comment: 28 pages, 2 figures, 14 tables, 50 listings, EMNLP 2025 Main
☆ The Atomic Instruction Gap: Instruction-Tuned LLMs Struggle with Simple, Self-Contained Directives
Instruction-tuned large language models (IT-LLMs) exhibit strong zero-shot reasoning, yet their ability to execute simple, self-contained instructions remains underexplored, despite this being foundational to complex instruction-following. We evaluate 20 IT-LLMs on modified MMLU and MMLU-Pro benchmarks, by systematically varying the format of option labels (alphabetic, numeric, Roman) while keeping their meaning identical under four paradigms, namely: (1) With explicit instructions, label changes cause large performance shifts (e.g., -30.45\% for Roman vs. numeric), revealing instruction-format bias. (2) Without instructions, performance drops further (up to -10.84\%) and label sensitivity intensifies, underscoring the role of explicit guidance. (3) When option contents are removed, models fail random-choice baselines except with numeric labels, suggesting weak adherence to atomic directives. (4) Three-shot exemplars yield no significant gains in robustness or fidelity, and generation analyses show persistent label errors, especially for non-numeric formats. Across model sizes, larger LLMs achieve higher accuracy but remain inconsistent in instruction adherence. These results expose the insufficiencies of current instruction-tuning paradigms and highlight the need for evaluation methods and training strategies that explicitly target atomic instruction-following.
comment: 11 pages, 1 figure, 8 tables
☆ Towards Mixed-Modal Retrieval for Universal Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) by retrieving relevant documents from an external corpus. However, existing RAG systems primarily focus on unimodal text documents, and often fall short in real-world scenarios where both queries and documents may contain mixed modalities (such as text and images). In this paper, we address the challenge of Universal Retrieval-Augmented Generation (URAG), which involves retrieving and reasoning over mixed-modal information to improve vision-language generation. To this end, we propose Nyx, a unified mixed-modal to mixed-modal retriever tailored for URAG scenarios. To mitigate the scarcity of realistic mixed-modal data, we introduce a four-stage automated pipeline for generation and filtering, leveraging web documents to construct NyxQA, a dataset comprising diverse mixed-modal question-answer pairs that better reflect real-world information needs. Building on this high-quality dataset, we adopt a two-stage training framework for Nyx: we first perform pre-training on NyxQA along with a variety of open-source retrieval datasets, followed by supervised fine-tuning using feedback from downstream vision-language models (VLMs) to align retrieval outputs with generative preferences. Experimental results demonstrate that Nyx not only performs competitively on standard text-only RAG benchmarks, but also excels in the more general and realistic URAG setting, significantly improving generation quality in vision-language tasks.
comment: This work is in progress
☆ Addressing Antisocial Behavior in Multi-Party Dialogs Through Multimodal Representation Learning
Antisocial behavior (ASB) on social media -- including hate speech, harassment, and cyberbullying -- poses growing risks to platform safety and societal well-being. Prior research has focused largely on networks such as X and Reddit, while \textit{multi-party conversational settings} remain underexplored due to limited data. To address this gap, we use \textit{CyberAgressionAdo-Large}, a French open-access dataset simulating ASB in multi-party conversations, and evaluate three tasks: \textit{abuse detection}, \textit{bullying behavior analysis}, and \textit{bullying peer-group identification}. We benchmark six text-based and eight graph-based \textit{representation-learning methods}, analyzing lexical cues, interactional dynamics, and their multimodal fusion. Results show that multimodal models outperform unimodal baselines. The late fusion model \texttt{mBERT + WD-SGCN} achieves the best overall results, with top performance on abuse detection (0.718) and competitive scores on peer-group identification (0.286) and bullying analysis (0.606). Error analysis highlights its effectiveness in handling nuanced ASB phenomena such as implicit aggression, role transitions, and context-dependent hostility.
☆ TaxoAlign: Scholarly Taxonomy Generation Using Language Models EMNLP 2025
Taxonomies play a crucial role in helping researchers structure and navigate knowledge in a hierarchical manner. They also form an important part in the creation of comprehensive literature surveys. The existing approaches to automatic survey generation do not compare the structure of the generated surveys with those written by human experts. To address this gap, we present our own method for automated taxonomy creation that can bridge the gap between human-generated and automatically-created taxonomies. For this purpose, we create the CS-TaxoBench benchmark which consists of 460 taxonomies that have been extracted from human-written survey papers. We also include an additional test set of 80 taxonomies curated from conference survey papers. We propose TaxoAlign, a three-phase topic-based instruction-guided method for scholarly taxonomy generation. Additionally, we propose a stringent automated evaluation framework that measures the structural alignment and semantic coherence of automatically generated taxonomies in comparison to those created by human experts. We evaluate our method and various baselines on CS-TaxoBench, using both automated evaluation metrics and human evaluation studies. The results show that TaxoAlign consistently surpasses the baselines on nearly all metrics. The code and data can be found at https://github.com/AvishekLahiri/TaxoAlign.
comment: This paper has been accepted at the EMNLP 2025 Main Conference
☆ Explainability of Large Language Models: Opportunities and Challenges toward Generating Trustworthy Explanations
Large language models have exhibited impressive performance across a broad range of downstream tasks in natural language processing. However, how a language model predicts the next token and generates content is not generally understandable by humans. Furthermore, these models often make errors in prediction and reasoning, known as hallucinations. These errors underscore the urgent need to better understand and interpret the intricate inner workings of language models and how they generate predictive outputs. Motivated by this gap, this paper investigates local explainability and mechanistic interpretability within Transformer-based large language models to foster trust in such models. In this regard, our paper aims to make three key contributions. First, we present a review of local explainability and mechanistic interpretability approaches and insights from relevant studies in the literature. Furthermore, we describe experimental studies on explainability and reasoning with large language models in two critical domains -- healthcare and autonomous driving -- and analyze the trust implications of such explanations for explanation receivers. Finally, we summarize current unaddressed issues in the evolving landscape of LLM explainability and outline the opportunities, critical challenges, and future directions toward generating human-aligned, trustworthy LLM explanations.
☆ How News Feels: Understanding Affective Bias in Multilingual Headlines for Human-Centered Media Design
News media often shape the public mood not only by what they report but by how they frame it. The same event can appear calm in one outlet and alarming in another, reflecting subtle emotional bias in reporting. Negative or emotionally charged headlines tend to attract more attention and spread faster, which in turn encourages outlets to frame stories in ways that provoke stronger reactions. This research explores that tendency through large-scale emotion analysis of Bengali news. Using zero-shot inference with Gemma-3 4B, we analyzed 300000 Bengali news headlines and their content to identify the dominant emotion and overall tone of each. The findings reveal a clear dominance of negative emotions, particularly anger, fear, and disappointment, and significant variation in how similar stories are emotionally portrayed across outlets. Based on these insights, we propose design ideas for a human-centered news aggregator that visualizes emotional cues and helps readers recognize hidden affective framing in daily news.
comment: 15 pages, 7 figures, 4 tables. Submitted to the International Conference on Data and Applied Analytics (IDAA 2025)
☆ From Preferences to Prejudice: The Role of Alignment Tuning in Shaping Social Bias in Video Diffusion Models
Recent advances in video diffusion models have significantly enhanced text-to-video generation, particularly through alignment tuning using reward models trained on human preferences. While these methods improve visual quality, they can unintentionally encode and amplify social biases. To systematically trace how such biases evolve throughout the alignment pipeline, we introduce VideoBiasEval, a comprehensive diagnostic framework for evaluating social representation in video generation. Grounded in established social bias taxonomies, VideoBiasEval employs an event-based prompting strategy to disentangle semantic content (actions and contexts) from actor attributes (gender and ethnicity). It further introduces multi-granular metrics to evaluate (1) overall ethnicity bias, (2) gender bias conditioned on ethnicity, (3) distributional shifts in social attributes across model variants, and (4) the temporal persistence of bias within videos. Using this framework, we conduct the first end-to-end analysis connecting biases in human preference datasets, their amplification in reward models, and their propagation through alignment-tuned video diffusion models. Our results reveal that alignment tuning not only strengthens representational biases but also makes them temporally stable, producing smoother yet more stereotyped portrayals. These findings highlight the need for bias-aware evaluation and mitigation throughout the alignment process to ensure fair and socially responsible video generation.
☆ StreamingThinker: Large Language Models Can Think While Reading
Large language models (LLMs) have demonstrated remarkable capabilities in chain of thought (CoT) reasoning. However, the current LLM reasoning paradigm initiates thinking only after the entire input is available, which introduces unnecessary latency and weakens attention to earlier information in dynamic scenarios. Inspired by human cognition of thinking while reading, we first design a \textit{\textbf{streaming thinking}} paradigm for LLMs, where reasoning unfolds in the order of input and further adjusts its depth once reading is complete. We instantiate this paradigm with \textit{StreamingThinker}, a framework that enables LLMs to think while reading through the integration of streaming CoT generation, streaming-constraint training, and streaming parallel inference. Specifically, StreamingThinker employs streaming reasoning units with quality control for CoT generation, enforces order-preserving reasoning through streaming attention masks and position encoding, and leverages parallel KV caches that decouple input encoding from reasoning generation, thereby ensuring alignment and enabling true concurrency. We evaluate StreamingThinker on the Qwen3 model family across math reasoning, logical reasoning, and context-based QA reasoning tasks. Experimental results show that the StreamingThinker preserves performance comparable to batch thinking, while yielding an 80\% reduction in token waiting before the onset of reasoning and a more than 60\% reduction in time-level latency for producing the final answer, demonstrating the effectiveness of the streaming paradigm for LLM reasoning. Code will be released at \href{https://github.com/EIT-NLP/StreamingLLM/tree/main/StreamingThinker}{this repository.}
☆ Wisdom is Knowing What not to Say: Hallucination-Free LLMs Unlearning via Attention Shifting
The increase in computing power and the necessity of AI-assisted decision-making boost the growing application of large language models (LLMs). Along with this, the potential retention of sensitive data of LLMs has spurred increasing research into machine unlearning. However, existing unlearning approaches face a critical dilemma: Aggressive unlearning compromises model utility, while conservative strategies preserve utility but risk hallucinated responses. This significantly limits LLMs' reliability in knowledge-intensive applications. To address this, we introduce a novel Attention-Shifting (AS) framework for selective unlearning. AS is driven by two design objectives: (1) context-preserving suppression that attenuates attention to fact-bearing tokens without disrupting LLMs' linguistic structure; and (2) hallucination-resistant response shaping that discourages fabricated completions when queried about unlearning content. AS realizes these objectives through two attention-level interventions, which are importance-aware suppression applied to the unlearning set to reduce reliance on memorized knowledge and attention-guided retention enhancement that reinforces attention toward semantically essential tokens in the retained dataset to mitigate unintended degradation. These two components are jointly optimized via a dual-loss objective, which forms a soft boundary that localizes unlearning while preserving unrelated knowledge under representation superposition. Experimental results show that AS improves performance preservation over the state-of-the-art unlearning methods, achieving up to 15% higher accuracy on the ToFU benchmark and 10% on the TDEC benchmark, while maintaining competitive hallucination-free unlearning effectiveness. Compared to existing methods, AS demonstrates a superior balance between unlearning effectiveness, generalization, and response reliability.
comment: 22 pages, 10 figures
☆ Soft-Masked Diffusion Language Models
Diffusion models have demonstrated strong potential in language modeling, offering various advantages over traditional autoregressive approaches. Their ability to generate and revise entire responses in parallel enables faster generation and built-in self-correction mechanisms. Most modern diffusion-based language models employ masked diffusion, where decoding involves iteratively processing masked tokens based on a binary decision: either retaining the mask or replacing it with the predicted token. However, this binary choice discards valuable predictive information when the mask is retained. To address this limitation, we introduce soft-masking (SM), a novel method that dynamically blends the embedding of the mask token with the embeddings of the top-$k$ predicted tokens from the previous decoding step, for each retained mask. This provides the model with a more informative prior, preserving context from earlier computations and allowing partial information about masked tokens to propagate beyond a single step. We propose a training methodology that adapts a pretrained masked diffusion language model to incorporate SM. We demonstrate that continuing pretraining a 169M parameter model with SM leads to improved perplexity and MAUVE scores. Furthermore, we finetune two state-of-the-art diffusion models, Dream-7B and Dream-Coder-7B, with SM. SM consistently improves performance across multiple coding benchmarks, particularly in high-throughput settings.
☆ $\mathcal{V}isi\mathcal{P}runer$: Decoding Discontinuous Cross-Modal Dynamics for Efficient Multimodal LLMs EMNLP 2025
Multimodal Large Language Models (MLLMs) have achieved strong performance across vision-language tasks, but suffer from significant computational overhead due to the quadratic growth of attention computations with the number of multimodal tokens. Though efforts have been made to prune tokens in MLLMs, \textit{they lack a fundamental understanding of how MLLMs process and fuse multimodal information.} Through systematic analysis, we uncover a \textbf{three-stage} cross-modal interaction process: (1) Shallow layers recognize task intent, with visual tokens acting as passive attention sinks; (2) Cross-modal fusion occurs abruptly in middle layers, driven by a few critical visual tokens; (3) Deep layers discard vision tokens, focusing solely on linguistic refinement. Based on these findings, we propose \emph{VisiPruner}, a training-free pruning framework that reduces up to 99\% of vision-related attention computations and 53.9\% of FLOPs on LLaVA-v1.5 7B. It significantly outperforms existing token pruning methods and generalizes across diverse MLLMs. Beyond pruning, our insights further provide actionable guidelines for training efficient MLLMs by aligning model architecture with its intrinsic layer-wise processing dynamics. Our code is available at: https://github.com/EIT-NLP/VisiPruner.
comment: EMNLP 2025 Main
☆ Understanding and Improving Length Generalization in Hierarchical Sparse Attention Models
Effectively processing long contexts is a critical challenge for language models. While standard Transformers are limited by quadratic complexity and poor length extrapolation, alternative architectures like sliding window attention and state space models sacrifice the ability to effectively utilize the full context due to their fixed-size memory. Chunk-based sparse attention has emerged as a promising paradigm for extreme length generalization, yet the key architectural principles underpinning its success are not yet fully understood. In this work, we present a systematic dissection of these models to identify the core components driving their performance. Through a unified framework and comprehensive ablation studies, we demonstrate that a combination of three design principles is critical: (1) an expressive, non-linear Chunk Encoder with a dedicated CLS token to produce representations for retrieval; (2) a Bypassing Residual Path to stably integrate retrieved global information without it being overridden by the local residual stream; and (3) enforced selection sparsity during pre-training to bridge the train-test distribution gap. We provide a theoretical motivation for intra-chunk information processing and landmark generation. By combining these principles, we establish a new state-of-the-art for training-free length extrapolation, successfully generalizing models trained on a 4K context to 32 million tokens on RULER and BABILong. Our findings provide a clear and empirically-grounded set of design principles for developing future, highly-capable long-context language models.
comment: Preprint. Work in progress
☆ Offline Policy Evaluation of Multi-Turn LLM Health Coaching with Real Users NeurIPS 2025
We study a web-deployed, tool-augmented LLM health coach with real users. In a pilot with seven users (280 rated turns), offline policy evaluation (OPE) over factorized decision heads (Tool/Style) shows that a uniform heavy-tool policy raises average value on logs but harms specific subgroups, most notably low-health-literacy/high-self-efficacy users. A lightweight simulator with hidden archetypes further shows that adding a small early information-gain bonus reliably shortens trait identification and improves goal success and pass@3. Together, these early findings indicate an evaluation-first path to personalization: freeze the generator, learn subgroup-aware decision heads on typed rewards (objective tool outcomes and satisfaction), and always report per-archetype metrics to surface subgroup harms that averages obscure.
comment: Accepted to the NeurIPS 2025 Workshop on Multi-Turn Interactions in Large Language Models
☆ When AI companions become witty: Can human brain recognize AI-generated irony?
As Large Language Models (LLMs) are increasingly deployed as social agents and trained to produce humor and irony, a question emerges: when encountering witty AI remarks, do people interpret these as intentional communication or mere computational output? This study investigates whether people adopt the intentional stance, attributing mental states to explain behavior,toward AI during irony comprehension. Irony provides an ideal paradigm because it requires distinguishing intentional contradictions from unintended errors through effortful semantic reanalysis. We compared behavioral and neural responses to ironic statements from AI versus human sources using established ERP components: P200 reflecting early incongruity detection and P600 indexing cognitive efforts in reinterpreting incongruity as deliberate irony. Results demonstrate that people do not fully adopt the intentional stance toward AI-generated irony. Behaviorally, participants attributed incongruity to deliberate communication for both sources, though significantly less for AI than human, showing greater tendency to interpret AI incongruities as computational errors. Neural data revealed attenuated P200 and P600 effects for AI-generated irony, suggesting reduced effortful detection and reanalysis consistent with diminished attribution of communicative intent. Notably, people who perceived AI as more sincere showed larger P200 and P600 effects for AI-generated irony, suggesting that intentional stance adoption is calibrated by specific mental models of artificial agents. These findings reveal that source attribution shapes neural processing of social-communicative phenomena. Despite current LLMs' linguistic sophistication, achieving genuine social agency requires more than linguistic competence, it necessitates a shift in how humans perceive and attribute intentionality to artificial agents.
☆ Rethinking On-policy Optimization for Query Augmentation
Recent advances in large language models (LLMs) have led to a surge of interest in query augmentation for information retrieval (IR). Two main approaches have emerged. The first prompts LLMs to generate answers or pseudo-documents that serve as new queries, relying purely on the model's parametric knowledge or contextual information. The second applies reinforcement learning (RL) to fine-tune LLMs for query rewriting, directly optimizing retrieval metrics. While having respective advantages and limitations, the two approaches have not been compared under consistent experimental conditions. In this work, we present the first systematic comparison of prompting-based and RL-based query augmentation across diverse benchmarks, including evidence-seeking, ad hoc, and tool retrieval. Our key finding is that simple, training-free query augmentation often performs on par with, or even surpasses, more expensive RL-based counterparts, especially when using powerful LLMs. Motivated by this discovery, we introduce a novel hybrid method, On-policy Pseudo-document Query Expansion (OPQE), which, instead of rewriting a query, the LLM policy learns to generate a pseudo-document that maximizes retrieval performance, thus merging the flexibility and generative structure of prompting with the targeted optimization of RL. We show OPQE outperforms both standalone prompting and RL-based rewriting, demonstrating that a synergistic approach yields the best results. Our implementation is made available to facilitate reproducibility.
☆ Do LLMs Recognize Your Latent Preferences? A Benchmark for Latent Information Discovery in Personalized Interaction
Large Language Models (LLMs) excel at producing broadly relevant text, but this generality becomes a limitation when user-specific preferences are required, such as recommending restaurants or planning travel. In these scenarios, users rarely articulate every preference explicitly; instead, much of what they care about remains latent, waiting to be inferred. This raises a fundamental question: Can LLMs uncover and reason about such latent information through conversation? We address this problem by introducing a unified benchmark for evaluating latent information discovery - the ability of LLMs to reveal and utilize hidden user attributes through multi-turn interaction. The benchmark spans three progressively realistic settings: the classic 20 Questions game, Personalized Question Answering, and Personalized Text Summarization. All tasks share a tri-agent framework (User, Assistant, Judge) enabling turn-level evaluation of elicitation and adaptation. Our results reveal that while LLMs can indeed surface latent information through dialogue, their success varies dramatically with context: from 32% to 98%, depending on task complexity, topic, and number of hidden attributes. This benchmark provides the first systematic framework for studying latent information discovery in personalized interaction, highlighting that effective preference inference remains an open frontier for building truly adaptive AI systems.
☆ DVAGen: Dynamic Vocabulary Augmented Generation
Language models trained with a fixed vocabulary struggle to generalize to novel or out-of-vocabulary words, limiting their flexibility in handling diverse token combinations. Existing dynamic vocabulary approaches attempt to address this limitation but face challenges such as fragmented codebases, lack of support for modern LLMs, and limited inference scalability. To overcome these issues, we introduce DVAGen, a fully open-source, unified framework designed for training, evaluation, and visualization of dynamic vocabulary-augmented language models. Our framework modularizes the pipeline for ease of customization, integrates seamlessly with open-source LLMs, and is the first to provide both CLI and WebUI tools for real-time result inspection. We validate the effectiveness of dynamic vocabulary methods on modern LLMs and demonstrate support for batch inference, significantly improving inference throughput.
☆ Verification-Aware Planning for Multi-Agent Systems
Large language model (LLM) agents are increasingly deployed to tackle complex tasks, often necessitating collaboration among multiple specialized agents. However, multi-agent collaboration introduces new challenges in planning, coordination, and verification. Execution failures frequently arise not from flawed reasoning alone, but from subtle misalignments in task interpretation, output format, or inter-agent handoffs. To address these challenges, we present VeriMAP, a framework for multi-agent collaboration with verification-aware planning. The VeriMAP planner decomposes tasks, models subtask dependencies, and encodes planner-defined passing criteria as subtask verification functions (VFs) in Python and natural language. We evaluate VeriMAP on diverse datasets, demonstrating that it outperforms both single- and multi-agent baselines while enhancing system robustness and interpretability. Our analysis highlights how verification-aware planning enables reliable coordination and iterative refinement in multi-agent systems, without relying on external labels or annotations.
comment: Submission for ARR Oct
☆ Investigating Thinking Behaviours of Reasoning-Based Language Models for Social Bias Mitigation
While reasoning-based large language models excel at complex tasks through an internal, structured thinking process, a concerning phenomenon has emerged that such a thinking process can aggregate social stereotypes, leading to biased outcomes. However, the underlying behaviours of these language models in social bias scenarios remain underexplored. In this work, we systematically investigate mechanisms within the thinking process behind this phenomenon and uncover two failure patterns that drive social bias aggregation: 1) stereotype repetition, where the model relies on social stereotypes as its primary justification, and 2) irrelevant information injection, where it fabricates or introduces new details to support a biased narrative. Building on these insights, we introduce a lightweight prompt-based mitigation approach that queries the model to review its own initial reasoning against these specific failure patterns. Experiments on question answering (BBQ and StereoSet) and open-ended (BOLD) benchmarks show that our approach effectively reduces bias while maintaining or improving accuracy.
♻ ☆ DRIFT: Decompose, Retrieve, Illustrate, then Formalize Theorems
Automating the formalization of mathematical statements for theorem proving remains a major challenge for Large Language Models (LLMs). LLMs struggle to identify and utilize the prerequisite mathematical knowledge and its corresponding formal representation in languages like Lean. Current retrieval-augmented autoformalization methods query external libraries using the informal statement directly, but overlook a fundamental limitation: informal mathematical statements are often complex and offer limited context on the underlying math concepts. To address this, we introduce DRIFT, a novel framework that enables LLMs to decompose informal mathematical statements into smaller, more tractable ''sub-components''. This facilitates targeted retrieval of premises from mathematical libraries such as Mathlib. Additionally, DRIFT retrieves illustrative theorems to help models use premises more effectively in formalization tasks. We evaluate DRIFT across diverse benchmarks (ProofNet, ConNF, and MiniF2F-test) and find that it consistently improves premise retrieval, nearly doubling the F1 score compared to the DPR baseline on ProofNet. Notably, DRIFT demonstrates strong performance on the out-of-distribution ConNF benchmark, with BEq+@10 improvements of 37.14% and 42.25% using GPT-4.1 and DeepSeek-V3.1, respectively. Our analysis shows that retrieval effectiveness in mathematical autoformalization depends heavily on model-specific knowledge boundaries, highlighting the need for adaptive retrieval strategies aligned with each model's capabilities.
♻ ☆ REASONING GYM: Reasoning Environments for Reinforcement Learning with Verifiable Rewards NeurIPS 2025
We introduce Reasoning Gym (RG), a library of reasoning environments for reinforcement learning with verifiable rewards. It provides over 100 data generators and verifiers spanning multiple domains including algebra, arithmetic, computation, cognition, geometry, graph theory, logic, and various common games. Its key innovation is the ability to generate virtually infinite training data with adjustable complexity, unlike most previous reasoning datasets, which are typically fixed. This procedural generation approach allows for continuous evaluation across varying difficulty levels. Our experimental results demonstrate the efficacy of RG in both evaluating and reinforcement learning of reasoning models.
comment: NeurIPS 2025 Spotlight. For code, see https://github.com/open-thought/reasoning-gym
♻ ☆ Auto-Prompt Generation is Not Robust: Prompt Optimization Driven by Pseudo Gradient
While automatic prompt generation methods have recently received significant attention, their robustness remains poorly understood. In this paper, we introduce PertBench, a comprehensive benchmark dataset that includes a wide range of input perturbations, designed to systematically evaluate the robustness of current auto-prompting techniques. Our analysis reveals substantial vulnerabilities in existing prompt generation strategies, where even minor modifications to the prompt can lead to significant differences in model output. To address this issue, we propose PGO, a gradient-free prompt generation framework that leverages perturbation types as pseudo-gradient signals to guide LLMs in producing more robust prompts. In contrast to existing methods that assess prompt quality only on clean, well-structured inputs, our approach explicitly emphasizes robustness under noisy and perturbed conditions. Extensive experiments across diverse tasks and multiple LLMs show PGO consistently outperforms previous methods in maintaining performance under input perturbations.
♻ ☆ HUME: Measuring the Human-Model Performance Gap in Text Embedding Tasks ICLR 2026
Comparing human and model performance offers a valuable perspective for understanding the strengths and limitations of embedding models, highlighting where they succeed and where they fail to capture meaning and nuance. However, such comparisons are rarely made, as human performance on embedding tasks is difficult to measure. To fill this gap, we introduce HUME: Human Evaluation Framework for Text Embeddings. While frameworks like MTEB provide broad model evaluation, they lack reliable estimates of human performance, limiting the interpretability of model scores. We measure human performance across 16 MTEB datasets spanning reranking, classification, clustering, and semantic textual similarity across linguistically diverse high- and low-resource languages. Humans achieve an average performance of 77.6% compared to 80.1% for the best embedding model, although variation is substantial: models reach near-ceiling performance on some datasets while struggling on others, suggesting dataset issues and revealing shortcomings in low-resource languages. We provide human performance baselines, insight into task difficulty patterns, and an extensible evaluation framework that enables a more meaningful interpretation of the model and informs the development of both models and benchmarks. Our code, dataset, and leaderboard are publicly available at https://github.com/embeddings-benchmark/mteb.
comment: Submitted to ICLR 2026
♻ ☆ Evolving LLMs' Self-Refinement Capability via Iterative Preference Optimization
Self-Refinement refers to a model's ability to revise its own responses to produce improved outputs. This capability can also serve as a fundamental mechanism for Self-Improvement, for example, by reconstructing datasets with refined results to enhance intrinsic model performance. However, our comprehensive experiments reveal that large language models (LLMs) show no clear evidence of inherent Self-Refinement and may even experience response quality degradation after Self-Refinement. To address this issue, we propose EVOLVE, a simple and effective framework for eliciting and tracking the evolution of Self-Refinement through iterative training. We first explore optimization methods during training to activate the model's Self-Refinement capability. Then, at inference, we investigate various generation strategies to further enhance and utilize Self-Refinement while supplying the necessary data for training. Through synergistic optimization of training and inference stages, we continually evolve the model's Self-Refinement ability, enabling it to better refine its own responses. Moreover, we demonstrate the potential of leveraging Self-Refinement to achieve broader Self-Improvement of intrinsic model abilities. Experiments show that the evolved Self-Refinement ability enables the Llama-3.1-8B base model to surpass GPT-4o, achieving 62.3% length-controlled and 63.3% raw win rates on AlpacaEval 2, and 50.3% on Arena-Hard. It also generalizes effectively to out-of-domain reasoning tasks, improving performance on mathematical reasoning benchmarks such as GSM8K and MATH.
♻ ☆ The Curious Case of Curiosity across Human Cultures and LLMs
Recent advances in Large Language Models (LLMs) have expanded their role in human interaction, yet curiosity -- a central driver of inquiry -- remains underexplored in these systems, particularly across cultural contexts. In this work, we investigate cultural variation in curiosity using Yahoo! Answers, a real-world multi-country dataset spanning diverse topics. We introduce CUEST (CUriosity Evaluation across SocieTies), an evaluation framework that measures human-model alignment in curiosity through linguistic (style), topic preference (content) analysis and grounding insights in social science constructs. Across open- and closed-source models, we find that LLMs flatten cross-cultural diversity, aligning more closely with how curiosity is expressed in Western countries. We then explore fine-tuning strategies to induce curiosity in LLMs, narrowing the human-model alignment gap by up to 50%. Finally, we demonstrate the practical value of curiosity for LLM adaptability across cultures, showing its importance for future NLP research.
comment: Preprint (Paper under review)
♻ ☆ Limitations of Normalization in Attention Mechanism
This paper investigates the limitations of the normalization in attention mechanisms. We begin with a theoretical framework that enables the identification of the model's selective ability and the geometric separation involved in token selection. Our analysis includes explicit bounds on distances and separation criteria for token vectors under softmax scaling. Through experiments with pre-trained GPT-2 model, we empirically validate our theoretical results and analyze key behaviors of the attention mechanism. Notably, we demonstrate that as the number of selected tokens increases, the model's ability to distinguish informative tokens declines, often converging toward a uniform selection pattern. We also show that gradient sensitivity under softmax normalization presents challenges during training, especially at low temperature settings. These findings advance current understanding of softmax-based attention mechanism and motivate the need for more robust normalization and selection strategies in future attention architectures.
comment: 10 pages, 4 figures
♻ ☆ PsychCounsel-Bench: Evaluating the Psychology Intelligence of Large Language Models
Large Language Models (LLMs) have demonstrated remarkable success across a wide range of industries, primarily due to their impressive generative abilities. Yet, their potential in applications requiring cognitive abilities, such as psychological counseling, remains largely untapped. This paper investigates the key question: \textit{Can LLMs be effectively applied to psychological counseling?} To determine whether an LLM can effectively take on the role of a psychological counselor, the first step is to assess whether it meets the qualifications required for such a role, namely the ability to pass the U.S. National Counselor Certification Exam (NCE). This is because, just as a human counselor must pass a certification exam to practice, an LLM must demonstrate sufficient psychological knowledge to meet the standards required for such a role. To address this, we introduce PsychCounsel-Bench, a benchmark grounded in U.S.national counselor examinations, a licensure test for professional counselors that requires about 70\% accuracy to pass. PsychCounsel-Bench comprises approximately 2,252 carefully curated single-choice questions, crafted to require deep understanding and broad enough to cover various sub-disciplines of psychology. This benchmark provides a comprehensive assessment of an LLM's ability to function as a counselor. Our evaluation shows that advanced models such as GPT-4o, Llama3.3-70B, and Gemma3-27B achieve well above the passing threshold, while smaller open-source models (e.g., Qwen2.5-7B, Mistral-7B) remain far below it. These results suggest that only frontier LLMs are currently capable of meeting counseling exam standards, highlighting both the promise and the challenges of developing psychology-oriented LLMs. We release the proposed dataset for public use: https://github.com/cloversjtu/PsychCounsel-Bench
♻ ☆ VimoRAG: Video-based Retrieval-augmented 3D Motion Generation for Motion Language Models NeurIPS 2025
This paper introduces VimoRAG, a novel video-based retrieval-augmented motion generation framework for motion large language models (LLMs). As motion LLMs face severe out-of-domain/out-of-vocabulary issues due to limited annotated data, VimoRAG leverages large-scale in-the-wild video databases to enhance 3D motion generation by retrieving relevant 2D human motion signals. While video-based motion RAG is nontrivial, we address two key bottlenecks: (1) developing an effective motion-centered video retrieval model that distinguishes human poses and actions, and (2) mitigating the issue of error propagation caused by suboptimal retrieval results. We design the Gemini Motion Video Retriever mechanism and the Motion-centric Dual-alignment DPO Trainer, enabling effective retrieval and generation processes. Experimental results show that VimoRAG significantly boosts the performance of motion LLMs constrained to text-only input. All the resources are available at https://walkermitty.github.io/VimoRAG/
comment: Accepted by NeurIPS 2025; Project Page: https://walkermitty.github.io/VimoRAG
♻ ☆ PsyMem: Fine-grained psychological alignment and Explicit Memory Control for Advanced Role-Playing LLMs ACL
Existing LLM-based role-playing methods often rely on superficial textual descriptions or simplistic metrics, inadequately modeling both intrinsic and extrinsic character dimensions. Additionally, they typically simulate character memory with implicit model knowledge or basic retrieval augment generation without explicit memory alignment, compromising memory consistency. The two issues weaken reliability of role-playing LLMs in several applications, such as trustworthy social simulation. To address these limitations, we propose PsyMem, a novel framework integrating fine-grained psychological attributes and explicit memory control for role-playing. PsyMem supplements textual descriptions with 26 psychological indicators to detailed model character. Additionally, PsyMem implements memory alignment training, explicitly trains the model to align character's response with memory, thereby enabling dynamic memory-controlled responding during inference. By training Qwen2.5-7B-Instruct on our specially designed dataset (including 5,414 characters and 38,962 dialogues extracted from novels), the resulting model, termed as PsyMem-Qwen, outperforms baseline models in role-playing, achieving the best performance in human-likeness and character fidelity.
comment: Pre-MIT Press publication version, has been accepted by TACL
♻ ☆ Does Math Reasoning Improve General LLM Capabilities? Understanding Transferability of LLM Reasoning
Math reasoning has become the poster child of progress in large language models (LLMs), with new models rapidly surpassing human-level performance on benchmarks like MATH and AIME. But as math leaderboards improve week by week, it is worth asking: do these gains reflect broader problem-solving ability or just narrow overfitting? To answer this question, we evaluate over 20 open-weight reasoning-tuned models across a broad suite of tasks, including math, scientific QA, agent planning, coding, and standard instruction-following. We surprisingly find that most models that succeed in math fail to transfer their gains to other domains. To rigorously study this phenomenon, we conduct controlled experiments on Qwen3-14B models using math-only data but different tuning methods. We find that reinforcement learning (RL)-tuned models generalize well across domains, while supervised fine-tuning (SFT)-tuned models often forget general capabilities. Latent-space representation and token-space distribution shift analyses reveal that SFT induces substantial representation and output drift, while RL preserves general-domain structure. Our results suggest a need to rethink standard post-training recipes, particularly the reliance on SFT-distilled data for advancing reasoning models.
♻ ☆ RPG: A Repository Planning Graph for Unified and Scalable Codebase Generation
Large language models excel at generating individual functions or single files of code, yet generating complete repositories from scratch remains a fundamental challenge. This capability is key to building coherent software systems from high-level specifications and realizing the full potential of automated code generation. The process requires planning at two levels: deciding what features and modules to build (proposal stage) and defining their implementation details (implementation stage). Current approaches rely on natural language planning, which often produces unclear specifications, misaligned components, and brittle designs due to its inherent ambiguity and lack of structure. To address these limitations, we introduce the Repository Planning Graph (RPG), a structured representation that encodes capabilities, file structures, data flows, and functions in a unified graph. By replacing free-form natural language with an explicit blueprint, RPG enables consistent long-horizon planning for repository generation. Building on RPG, we develop ZeroRepo, a graph-driven framework that operates in three stages: proposal-level planning, implementation-level construction, and graph-guided code generation with test validation. To evaluate, we construct RepoCraft, a benchmark of six real-world projects with 1,052 tasks. On RepoCraft, ZeroRepo produces nearly 36K Code Lines and 445K Code Tokens, on average 3.9$\times$ larger than the strongest baseline (Claude Code), and 68$\times$ larger than other baselines. It achieves 81.5% coverage and 69.7% test accuracy, improving over Claude Code by 27.3 and 35.8 points. Further analysis shows that RPG models complex dependencies, enables more sophisticated planning through near-linear scaling, and improves agent understanding of repositories, thus accelerating localization.
♻ ☆ Parameter Efficient Fine-tuning via Explained Variance Adaptation NeurIPS 2025
Foundation models (FMs) are pre-trained on large-scale datasets and then fine-tuned for a specific downstream task. The most common fine-tuning method is to update pretrained weights via low-rank adaptation (LoRA). Existing initialization strategies for LoRA often rely on singular value decompositions (SVD) of gradients or weight matrices. However, they do not provably maximize the expected gradient signal, which is critical for fast adaptation. To this end, we introduce Explained Variance Adaptation (EVA), an initialization scheme that uses the directions capturing the most activation variance, provably maximizing the expected gradient signal and accelerating fine-tuning. EVA performs incremental SVD on minibatches of activation vectors and selects the right-singular vectors for initialization once they converged. Further, by selecting the directions that capture the most activation-variance for a given rank budget, EVA accommodates adaptive ranks that reduce the number of trainable parameters. We apply EVA to a variety of fine-tuning tasks as language generation and understanding, image classification, and reinforcement learning. EVA exhibits faster convergence than competitors and achieves the highest average score across a multitude of tasks per domain while reducing the number of trainable parameters through rank redistribution. In summary, EVA establishes a new Pareto frontier compared to existing LoRA initialization schemes in both accuracy and efficiency.
comment: Accepted at NeurIPS 2025, Shared first authorship, Code available at https://github.com/ml-jku/EVA
♻ ☆ Watch the Weights: Unsupervised monitoring and control of fine-tuned LLMs
The releases of powerful open-weight large language models (LLMs) are often not accompanied by access to their full training data. Existing interpretability methods, particularly those based on activations, often require or assume distributionally similar data. This is a significant limitation when detecting and defending against novel potential threats like backdoors, which are by definition out-of-distribution. In this work, we introduce a new method for understanding, monitoring and controlling fine-tuned LLMs that interprets weights, rather than activations, thereby side stepping the need for data that is distributionally similar to the unknown training data. We demonstrate that the top singular vectors of the weight difference between a fine-tuned model and its base model correspond to newly acquired behaviors. By monitoring the cosine similarity of activations along these directions, we can detect salient behaviors introduced during fine-tuning with high precision. For backdoored models that bypasses safety mechanisms when a secret trigger is present, our method stops up to 100% of attacks with a false positive rate below 1.2%. For models that have undergone unlearning, we detect inference on erased topics with accuracy up to 95.42% and can even steer the model to recover "unlearned" information. Besides monitoring, our method also shows potential for pre-deployment model auditing: by analyzing commercial instruction-tuned models (OLMo, Llama, Qwen), we are able to uncover model-specific fine-tuning focus including marketing strategies and Midjourney prompt generation. Our implementation can be found at https://github.com/fjzzq2002/WeightWatch.
♻ ☆ KG-TRACES: Enhancing Large Language Models with Knowledge Graph-constrained Trajectory Reasoning and Attribution Supervision
Large language models (LLMs) have made remarkable strides in various natural language processing tasks, but their performance on complex reasoning problems remains hindered by a lack of explainability and trustworthiness. This issue, often manifesting as hallucinations or unattributable reasoning processes, limits their applicability in complex reasoning scenarios. To address this, we propose Knowledge Graph-constrained Trajectory Reasoning Attribution and Chain Explanation Supervision (KG-TRACES), a novel framework that enhances the reasoning ability of LLMs through explicit supervision over reasoning paths and processes. KG-TRACES jointly supervises the model to: (1) predict symbolic relation paths, (2) predict full triple-level reasoning paths, and (3) generate attribution-aware reasoning processes grounded in the reasoning paths. At inference phase, the model adapts to both KG-available and KG-unavailable scenarios, retrieving reasoning paths from a KG when possible or predicting plausible reasoning paths with only intrinsic knowledge when not. This design enables the model to reason in an explainable and source-attributable pattern. Through extensive experiments on complex reasoning tasks, we demonstrate that KG-TRACES significantly outperforms existing SOTA: it improves Hits@1 by 1.6% and F1 by 4.7% on WebQSP, and achieves improvements of 4.8% in Hits@1 and 2.1% in F1 on CWQ. Moreover, we show its transferability to specialized domains such as medicine. By visualizing the intermediate steps of reasoning processes, we further show that the explicit supervision introduced by KG-TRACES leads to more stable and goal-directed reasoning processes, aligning closely with correct answers. Code is available at https://github.com/Edaizi/KG-TRACES.
comment: 24 pages, 13 figures
♻ ☆ Supervised In-Context Fine-Tuning for Generative Sequence Labeling
Sequence labeling (SL) tasks, where labels are assigned to tokens, are abundant in NLP (e.g., named entity recognition and aspect-based sentiment analysis). Owing to the intuition that they require bidirectional context, SL tasks are commonly tackled with encoder-only models. Recent work also shows that removing the causal mask in fine-tuning enables decoder-based LLMs to become effective token classifiers. Less work, however, focused on (supervised) generative SL, a more natural setting for causal LLMs. Due to their rapid scaling, causal LLMs applied to SL are expected to outperform encoders, whose own development has stagnated. In this work, we propose supervised in-context fine-tuning (SIFT) for generative SL. SIFT casts SL tasks as constrained response generation, natural to LLMs, combining in-context learning (ICL) from demonstrations with supervised fine-tuning. SIFT considerably outperforms both ICL and decoder-as-encoder fine-tuning baselines on a range of standard SL tasks. We further find that although long context hinders the performance of generative SL in both ICL and SIFT, this deficiency can be mitigated by removing the instruction, as instructions are shown to be largely unnecessary for achieving strong SL performance with SIFT. Our findings highlight strengths and limitations of SL with LLMs, underscoring the importance of a response-based generative task formulation for effective SL performance.
♻ ☆ CodeVisionary: An Agent-based Framework for Evaluating Large Language Models in Code Generation
Large language models (LLMs) have demonstrated strong capabilities in code generation, underscoring the critical need for rigorous and comprehensive evaluation. Existing evaluation approaches fall into three categories, including human-centered, metric-based, and LLM-based. Considering that human-centered approaches are labour-intensive and metric-based ones overly rely on reference answers, LLM-based approaches are gaining increasing attention due to their stronger contextual understanding capabilities. However, they generally evaluate the generated code based on static prompts, and tend to fail for complex code scenarios which typically involve multiple requirements and require more contextual information. In addition, these approaches lack fine-grained evaluation for complex code, resulting in limited explainability. To mitigate the limitations, we propose CodeVisionary, the first agent-based evaluation framework for complex code generation. CodeVisionary consists of two stages: (1) Requirement-guided multi-dimensional context distillation stage and (2) Fine-grained scoring and summarization stage. A comprehensive evaluation report is also generated for enhanced explainability. For validation, we construct a new benchmark consisting of 363 samples spanning 37 coding scenarios and 23 programming languages. Extensive experiments demonstrate that CodeVisionary achieves the best performance among three baselines for evaluating complex code generation, outperforming the best baseline with average improvements of 0.217, 0.163, and 0.141 in Pearson, Spearman, and Kendall-Tau coefficients, respectively. The resources of CodeVisionary are available at https://github.com/Eshe0922/CodeVisionary.
♻ ☆ LLM as GNN: Graph Vocabulary Learning for Text-Attributed Graph Foundation Models
Text-Attributed Graphs (TAGs), where each node is associated with text descriptions, are ubiquitous in real-world scenarios. They typically exhibit distinctive structure and domain-specific knowledge, motivating the development of a Graph Foundation Model (GFM) that generalizes across diverse graphs and tasks. Despite large efforts to integrate Large Language Models (LLMs) and Graph Neural Networks (GNNs) for TAGs, existing approaches suffer from decoupled architectures with two-stage alignment, limiting their synergistic potential. Even worse, existing methods assign out-of-vocabulary (OOV) tokens to graph nodes, leading to graph-specific semantics, token explosion, and incompatibility with task-oriented prompt templates, which hinders cross-graph and cross-task transferability. To address these challenges, we propose PromptGFM, a versatile GFM for TAGs grounded in graph vocabulary learning. PromptGFM comprises two key components: (1) Graph Understanding Module, which explicitly prompts LLMs to replicate the finest GNN workflow within the text space, facilitating seamless GNN-LLM integration and elegant graph-text alignment; (2) Graph Inference Module, which establishes a language-based graph vocabulary ensuring expressiveness, transferability, and scalability, enabling readable instructions for LLM fine-tuning. Extensive experiments demonstrate our superiority and transferability across diverse graphs and tasks. The code is available at this: https://github.com/agiresearch/PromptGFM.
♻ ☆ Don't Trust Generative Agents to Mimic Communication on Social Networks Unless You Benchmarked their Empirical Realism
The ability of Large Language Models (LLMs) to mimic human behavior triggered a plethora of computational social science research, assuming that empirical studies of humans can be conducted with AI agents instead. Since there have been conflicting research findings on whether and when this hypothesis holds, there is a need to better understand the differences in their experimental designs. We focus on replicating the behavior of social network users with the use of LLMs for the analysis of communication on social networks. First, we provide a formal framework for the simulation of social networks, before focusing on the sub-task of imitating user communication. We empirically test different approaches to imitate user behavior on X in English and German. Our findings suggest that social simulations should be validated by their empirical realism measured in the setting in which the simulation components were fitted. With this paper, we argue for more rigor when applying generative-agent-based modeling for social simulation.
comment: 11 pages, 1 figure, 3 tables
♻ ☆ CAPO: Towards Enhancing LLM Reasoning through Generative Credit Assignment
Reinforcement Learning with Verifiable Rewards (RLVR) has improved the reasoning abilities of Large Language Models (LLMs) by using rule-based binary feedback. However, current RLVR methods typically assign the same reward to every token. This coarse-grained feedback hampers precise credit assignment, making it hard for models to identify which reasoning steps lead to success or failure, and often results in suboptimal policies. Methods like PPO provide credit assignment by value estimation, but yield inaccurate and unverifiable signals due to limited sampling. On the other hand, methods using Process Reward Models can provide step-wise rewards but suffer from several key limitations: they require high-quality process supervision labels, the feedback is unreliable due to probabilistic reward modeling, and their application in online reinforcement learning (RL) is time-consuming. To overcome these limitations, we introduce a simple but efficient method-Credit Assignment Policy Optimization (CAPO). Instead of training auxiliary models, CAPO directly leverages an off-the-shelf, general-purpose LLM as a Generative Process Reward Model (LLM-as-GenPRM) to generate all step-wise critique by one pass only based on the correctness of the step itself, providing deterministic token-level credits to refine the tokens that were originally assigned identical rule-based rewards. To further enhance the accuracy and robustness, we employ voting mechanisms that scale with the number of generated critiques. Extensive experiments on various backbones like Llama and Qwen models show that CAPO consistently outperforms supervised learning-based and RL-based fine-tuning methods across four challenging mathematical benchmarks and three out-of-domain benchmarks. Further analysis shows that CAPO can help the model to foster the learning of correct reasoning pathways leading to correct answers.
comment: Work in progress
♻ ☆ Infinity Parser: Layout Aware Reinforcement Learning for Scanned Document Parsing
Automated parsing of scanned documents into richly structured, machine-readable formats remains a critical bottleneck in Document AI, as traditional multi-stage pipelines suffer from error propagation and limited adaptability to diverse layouts. We introduce layoutRL, an end-to-end reinforcement learning framework that trains models to be explicitly layout-aware by optimizing a composite reward of normalized edit distance, paragraph count accuracy, and reading order preservation. Leveraging our newly released dataset, Infinity-Doc-55K, which combines 55K high-fidelity synthetic scanned document parsing data with expert-filtered real-world documents, we instantiate layoutRL in a vision-language-model-based parser called Infinity-Parser. Evaluated on English and Chinese benchmarks for OCR, table and formula extraction, and reading order detection, Infinity-Parser achieves new state-of-the-art performance in both accuracy and structural fidelity, outpacing specialist pipelines and general-purpose vision-language models. We will publicly release our code and dataset to accelerate progress in robust document understanding.
comment: 16 pages, 12 figures
♻ ☆ Infinity Parser: Layout Aware Reinforcement Learning for Scanned Document Parsing
Document parsing from scanned images into structured formats remains a significant challenge due to its complexly intertwined elements such as text paragraphs, figures, formulas, and tables. Existing supervised fine-tuning methods often struggle to generalize across diverse document types, leading to poor performance, particularly on out-of-distribution data. This issue is further exacerbated by the limited availability of high-quality training data for layout-aware parsing tasks. To address these challenges, we introduce LayoutRL, a reinforcement learning framework that optimizes layout understanding through composite rewards integrating normalized edit distance, paragraph count accuracy, and reading order preservation. To support this training, we construct the Infinity-Doc-400K dataset, which we use to train Infinity-Parser, a vision-language model demonstrating robust generalization across various domains. Extensive evaluations on benchmarks including OmniDocBench, olmOCR-Bench, PubTabNet, and FinTabNet show that Infinity-Parser consistently achieves state-of-the-art performance across a broad range of document types, languages, and structural complexities, substantially outperforming both specialized document parsing systems and general-purpose vision-language models. We will release our code, dataset, and model to facilitate reproducible research in document parsing.
comment: This submission (arXiv:2510.15349) was mistakenly uploaded as a new article. It was intended to replace our previous work arXiv:2506.03197. All subsequent updates will be made to arXiv:2506.03197
♻ ☆ Consistency is Key: Disentangling Label Variation in Natural Language Processing with Intra-Annotator Agreement
We commonly use agreement measures to assess the utility of judgements made by human annotators in Natural Language Processing (NLP) tasks. While inter-annotator agreement is frequently used as an indication of label reliability by measuring consistency between annotators, we argue for the additional use of intra-annotator agreement to measure label stability (and annotator consistency) over time. However, in a systematic review, we find that the latter is rarely reported in this field. Calculating these measures can act as important quality control and could provide insights into why annotators disagree. We conduct exploratory annotation experiments to investigate the relationships between these measures and perceptions of subjectivity and ambiguity in text items, finding that annotators provide inconsistent responses around 25% of the time across four different NLP tasks.
comment: Accepted for publication in Proceedings of the Fourth Workshop on Perspectivist Approaches to NLP (NLPerspectives)
♻ ☆ Unseen from Seen: Rewriting Observation-Instruction Using Foundation Models for Augmenting Vision-Language Navigation
Data scarcity is a long-standing challenge in the Vision-Language Navigation (VLN) field, which extremely hinders the generalization of agents to unseen environments. Previous works primarily rely on additional simulator data or web-collected images/videos to improve the generalization. However, the simulator environments still face limited diversity, and the web-collected data often requires extensive labor to remove the noise. In this paper, we propose a Rewriting-driven AugMentation (RAM) paradigm for VLN, which directly creates the unseen observation-instruction pairs via rewriting human-annotated training data. Benefiting from our rewriting mechanism, new observation-instruction pairs can be obtained in both simulator-free and labor-saving manners to promote generalization. Specifically, we first introduce Object-Enriched Observation Rewriting, where we combine Vision-Language Models (VLMs) and Large Language Models (LLMs) to derive rewritten object-enriched scene descriptions, enabling observation synthesis with diverse objects and spatial layouts via Text-to-Image Generation Models (T2IMs). Then, we propose Observation-Contrast Instruction Rewriting, which generates observation-aligned rewritten instructions by requiring LLMs to reason the difference between original and new observations. We further develop a mixing-then-focusing training strategy with a random observation cropping scheme, effectively enhancing data distribution diversity while suppressing augmentation data noise during training. Experiments on both the discrete environments (R2R, REVERIE, and R4R datasets) and continuous environments (R2R-CE dataset) show the superior performance and impressive generalization ability of our method. Code is available at https://github.com/SaDil13/VLN-RAM.
comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems
♻ ☆ Semantic Representation Attack against Aligned Large Language Models
Large Language Models (LLMs) increasingly employ alignment techniques to prevent harmful outputs. Despite these safeguards, attackers can circumvent them by crafting prompts that induce LLMs to generate harmful content. Current methods typically target exact affirmative responses, such as ``Sure, here is...'', suffering from limited convergence, unnatural prompts, and high computational costs. We introduce Semantic Representation Attack, a novel paradigm that fundamentally reconceptualizes adversarial objectives against aligned LLMs. Rather than targeting exact textual patterns, our approach exploits the semantic representation space comprising diverse responses with equivalent harmful meanings. This innovation resolves the inherent trade-off between attack efficacy and prompt naturalness that plagues existing methods. The Semantic Representation Heuristic Search algorithm is proposed to efficiently generate semantically coherent and concise adversarial prompts by maintaining interpretability during incremental expansion. We establish rigorous theoretical guarantees for semantic convergence and demonstrate that our method achieves unprecedented attack success rates (89.41\% averaged across 18 LLMs, including 100\% on 11 models) while maintaining stealthiness and efficiency. Comprehensive experimental results confirm the overall superiority of our Semantic Representation Attack. The code will be publicly available.
♻ ☆ Late Fusion and Multi-Level Fission Amplify Cross-Modal Transfer in Text-Speech LMs
Text-Speech Language Models (TSLMs) -- language models trained to jointly process and generate text and speech -- are commonly trained through an early modality fusion/fission approach, in which both modalities are fed and predicted from a shared backbone via linear layers. We hypothesize that this approach limits cross-modal transfer by neglecting feature compositionality -- specifically, the finer-grained nature of speech representations compared to text -- preventing the emergence of a shared feature hierarchy within model layers. In this paper, we argue that this limitation can be addressed through late fusion and fission, with a fission process that accesses both high- and low-level features for speech generation. Our models implementing these principles, SmolTolk, rival or surpass state-of-the-art TSLMs trained with orders of magnitude more compute, and achieve significantly improved cross-modal performance relative to early fusion/fission baselines. Representation analyses further suggest that our method enhances the model's ability to abstract higher-level, more semantic features from speech, and leads to increasingly shared representation spaces across layers.
♻ ☆ DICE: Structured Reasoning in LLMs through SLM-Guided Chain-of-Thought Correction EMNLP 2025
When performing reasoning tasks with user-specific requirements, such as strict output formats, large language models (LLMs) often prioritize reasoning over adherence to detailed instructions. Fine-tuning LLMs on supervised datasets to address this is impractical due to high computational costs and limited parameter access. To tackle this, we propose DICE, a lightweight framework that guides small language models (SLMs) to refine LLMs' outputs through chain-of-thought (CoT) correction. DICE decouples the process by first prompting LLMs to generate natural language responses, then using trained SLMs to analyze and refine these outputs to meet structured output specifications. This framework preserves LLMs' broad knowledge and reasoning capabilities while ensuring the outputs conform to user demands. Specifically, DICE first constructs structured CoT adaptation datasets via a two-stage method and subsequently applies a dual-tuning strategy to fine-tune SLMs for generating structured outputs in an analyze-then-answer pattern. Experiments demonstrate that DICE improves the average format accuracy and content correctness of LLM outputs by 35.4\% and 29.4\%, respectively, achieving state-of-the-art (SOTA) performance over other competitive baselines.
comment: This paper was accepted to the EMNLP 2025 main conference
♻ ☆ Towards Evaluating Proactive Risk Awareness of Multimodal Language Models NeurIPS 2025
Human safety awareness gaps often prevent the timely recognition of everyday risks. In solving this problem, a proactive safety artificial intelligence (AI) system would work better than a reactive one. Instead of just reacting to users' questions, it would actively watch people's behavior and their environment to detect potential dangers in advance. Our Proactive Safety Bench (PaSBench) evaluates this capability through 416 multimodal scenarios (128 image sequences, 288 text logs) spanning 5 safety-critical domains. Evaluation of 36 advanced models reveals fundamental limitations: Top performers like Gemini-2.5-pro achieve 71% image and 64% text accuracy, but miss 45-55% risks in repeated trials. Through failure analysis, we identify unstable proactive reasoning rather than knowledge deficits as the primary limitation. This work establishes (1) a proactive safety benchmark, (2) systematic evidence of model limitations, and (3) critical directions for developing reliable protective AI. We believe our dataset and findings can promote the development of safer AI assistants that actively prevent harm rather than merely respond to requests. Our dataset can be found at https://huggingface.co/datasets/Youliang/PaSBench.
comment: Accepted by NeurIPS 2025 (Track on Datasets and Benchmarks)
♻ ☆ Trainable Dynamic Mask Sparse Attention
The increasing demand for long-context modeling in large language models (LLMs) is bottlenecked by the quadratic complexity of the standard self-attention mechanism. The community has proposed sparse attention to mitigate this issue. However, position-aware sparse attention methods rely on static sparse structures that lack adaptability to diverse query contexts, while content-aware sparse attention methods depend on heuristic key-value selection, hindering full differentiability. We introduce a trainable dynamic mask sparse attention mechanism, a method that merges the advantages of both position-aware and content-aware approaches. Dynamic Mask Attention (DMA) achieves this through three key innovations: First, it leverages value vector representations to generate content-aware dynamic masks, enabling the model to adaptively identify and attend to critical information. Second, it computes position-aware sparse weights in a hardware-friendly manner, efficiently skipping unnecessary computational regions. Finally, we demonstrate that the introduced dynamic mask and sparse weights do not obstruct gradients, supporting end-to-end training. We have validated the performance of DMA through comprehensive experiments. A large body of experimental evidence shows that DMA consistently holds a Pareto advantage over state-of-the-art sparse attention baselines in tasks including scaling laws, multi-query associative recall, standard benchmarks, and needle in a haystack tests, while also delivering up to a 10x overall speedup. These results highlight its ability to effectively balance model efficiency with long-context modeling capabilities. Our computational kernel code is now open-source at https://github.com/SmallDoges/flash-dmattn to encourage further research and application by the community.
comment: 26 pages
♻ ☆ Tracing Partisan Bias to Its Emotional Fingerprints: A Computational Approach to Mitigation
This study introduces a novel framework for analysing and mitigating media bias by tracing partisan stances to their linguistic roots in emotional language. We posit that partisan bias is not merely an abstract stance but materialises as quantifiable 'emotional fingerprints' within news texts. These fingerprints are systematically measured using the Valence-Arousal-Dominance (VAD) framework, allowing us to decode the affective strategies behind partisan framing. Our analysis of the Allsides dataset confirms this hypothesis, revealing distinct and statistically significant emotional fingerprints for left, centre, and right-leaning media. Based on this evidence-driven approach, we then propose a computational approach to mitigation through NeutraSum, a model designed to neutralise these identified emotional patterns. By explicitly targeting the VAD characteristics of biased language, NeutraSum generates summaries that are not only coherent but also demonstrably closer to an emotionally neutral baseline. Experimental results validate our framework: NeutraSum successfully erases the partisan emotional fingerprints from its summaries, achieving a demonstrably lower emotional bias score than other models. This work pioneers a new path for bias mitigation, shifting the focus from treating symptoms (political labels) to addressing the cause: the emotional encoding of partisan bias in language.
♻ ☆ FinResearchBench: A Logic Tree based Agent-as-a-Judge Evaluation Framework for Financial Research Agents
Recently, AI agents are rapidly evolving in intelligence and widely used in professional research applications, such as STEM, software development, and finance. Among these AI agents, deep research agent is a key category as it can perform long-horizon tasks and solve problems of greater complexity. However, there are few evaluation frameworks and benchmarks that systematically and automatically investigate the capabilities of these research agents. In addition, financial research problems have distinct complexity and subtlety. To fill in the gap, we propose FinResearchBench, which is a logic tree-based Agent-as-a-Judge and targets specifically for the financial research agents. It provides a comprehensive and automatic assessment of the research agents across 7 key types of tasks in the financial research domain. The contributions of this work are two-folded: (1) the first and innovative Agent-as-a-Judge system that extracts the logic tree of the research outcome and uses it as the intermediate information to present a comprehensive, reliable, and robust evaluation; (2) finance-oriented that it covers 70 typical financial research questions, spreading across 7 frequently encountered types of task in the domain.
♻ ☆ Grounding Language with Vision: A Conditional Mutual Information Calibrated Decoding Strategy for Reducing Hallucinations in LVLMs
Large Vision-Language Models (LVLMs) are susceptible to hallucinations, where generated responses seem semantically plausible yet exhibit little or no relevance to the input image. Previous studies reveal that this issue primarily stems from LVLMs' over-reliance on language priors while disregarding the visual information during decoding. To alleviate this issue, we introduce a novel Conditional Pointwise Mutual Information (C-PMI) calibrated decoding strategy, which adaptively strengthens the mutual dependency between generated texts and input images to mitigate hallucinations. Unlike existing methods solely focusing on text token sampling, we propose to jointly model the contributions of visual and textual tokens to C-PMI, formulating hallucination mitigation as a bi-level optimization problem aimed at maximizing mutual information. To solve it, we design a token purification mechanism that dynamically regulates the decoding process by sampling text tokens remaining maximally relevant to the given image, while simultaneously refining image tokens most pertinent to the generated response. Extensive experiments across various benchmarks reveal that the proposed method significantly reduces hallucinations in LVLMs while preserving decoding efficiency.
♻ ☆ Flex-Judge: Text-Only Reasoning Unleashes Zero-Shot Multimodal Evaluators NeurIPS 2025
Human-generated reward signals are critical for aligning generative models with human preferences, guiding both training and inference-time evaluations. While large language models (LLMs) employed as proxy evaluators, i.e., LLM-as-a-Judge, significantly reduce the costs associated with manual annotations, they typically require extensive modality-specific training data and fail to generalize well across diverse multimodal tasks. In this paper, we propose Flex-Judge, a reasoning-guided multimodal judge model that leverages minimal textual reasoning data to robustly generalize across multiple modalities and evaluation formats. Our core intuition is that structured textual reasoning explanations inherently encode generalizable decision-making patterns, enabling an effective transfer to multimodal judgments, e.g., with images or videos. Empirical results demonstrate that Flex-Judge, despite being trained on significantly fewer text data, achieves competitive or superior performance compared to state-of-the-art commercial APIs and extensively trained multimodal evaluators. Notably, Flex-Judge presents broad impact in modalities like molecule, where comprehensive evaluation benchmarks are scarce, underscoring its practical value in resource-constrained domains. Our framework highlights reasoning-based text supervision as a powerful, cost-effective alternative to traditional annotation-intensive approaches, substantially advancing scalable multimodal model-as-a-judge.
comment: NeurIPS 2025
♻ ☆ GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation NeurIPS 2025
Retrieval-augmented generation (RAG) has proven effective in integrating knowledge into large language models (LLMs). However, conventional RAGs struggle to capture complex relationships between pieces of knowledge, limiting their performance in intricate reasoning that requires integrating knowledge from multiple sources. Recently, graph-enhanced retrieval augmented generation (GraphRAG) builds graph structure to explicitly model these relationships, enabling more effective and efficient retrievers. Nevertheless, its performance is still hindered by the noise and incompleteness within the graph structure. To address this, we introduce GFM-RAG, a novel graph foundation model (GFM) for retrieval augmented generation. GFM-RAG is powered by an innovative graph neural network that reasons over graph structure to capture complex query-knowledge relationships. The GFM with 8M parameters undergoes a two-stage training process on large-scale datasets, comprising 60 knowledge graphs with over 14M triples and 700k documents. This results in impressive performance and generalizability for GFM-RAG, making it the first graph foundation model applicable to unseen datasets for retrieval without any fine-tuning required. Extensive experiments on three multi-hop QA datasets and seven domain-specific RAG datasets demonstrate that GFM-RAG achieves state-of-the-art performance while maintaining efficiency and alignment with neural scaling laws, highlighting its potential for further improvement.
comment: Accepted by NeurIPS 2025
♻ ☆ Planner and Executor: Collaboration between Discrete Diffusion And Autoregressive Models in Reasoning
Current autoregressive language models (ARMs) achieve high accuracy but require long token sequences, making them costly. Discrete diffusion language models (DDLMs) enable parallel and flexible generation within a fixed number of steps and have recently emerged for their strong performance in complex reasoning and long-term planning tasks. We present a study exploring hybrid architectures that couple DDLMs with ARMs to assess whether their collaboration can yield complementary benefits. We first examine collaboration in text space, where one model plans the reasoning process and another executes the final answer based on that plan. We then extend this setup to latent-space communication, introducing a learned projector that maps DDLM latents into the ARM's embedding space, potentially bypassing some of the text-generation limitations of diffusion models. We find that shifting DDLM --> ARM communication from text space to latent space yields significant accuracy gains, for example increasing from 27.0% to 54.0% on DART-5 and from 0.0% to 14.0% on AIME24. We also find that combining a DDLM planner with an ARM executor can provide substantial computational savings with little to no impact on accuracy. For example, the latent-space pipeline, using 64 tokens for planning and roughly 5 for execution, surpasses Qwen3.1-7B on DART-5 and AIME, despite Qwen using 44 times more tokens. Overall, our study offers new insights into reasoning with DDLMs and highlights their potential in hybrid architectures.
comment: Under Submission
♻ ☆ Ineq-Comp: Benchmarking Human-Intuitive Compositional Reasoning in Automated Theorem Proving on Inequalities NeurIPS 2025
LLM-based formal proof assistants (e.g., in Lean) hold great promise for automating mathematical discovery. But beyond syntactic correctness, do these systems truly understand mathematical structure as humans do? We investigate this question in context of mathematical inequalities -- specifically the prover's ability to recognize that the given problem simplifies by applying a known inequality such as AM/GM. Specifically, we are interested in their ability to do this in a compositional setting where multiple inequalities must be applied as part of a solution. We introduce Ineq-Comp, a benchmark built from elementary inequalities through systematic transformations, including variable duplication, algebraic rewriting, and multi-step composition. Although these problems remain easy for humans, we find that most provers -- including Goedel, STP, and Kimina-7B -- struggle significantly. DeepSeek-Prover-V2-7B shows relative robustness, but still suffers a 20% performance drop (pass@32). Even for DeepSeek-Prover-V2-671B model, the gap between compositional variants and seed problems exists, implying that simply scaling up the model size alone does not fully solve the compositional weakness. Strikingly, performance remains poor for all models even when formal proofs of the constituent parts are provided in context, revealing that the source of weakness is indeed in compositional reasoning. Our results expose a persisting gap between the generalization behavior of current AI provers and human mathematical intuition. All data and evaluation code can be found at https://github.com/haoyuzhao123/LeanIneqComp.
comment: To appear in NeurIPS 2025 Track on Datasets and Benchmarks. 28 pages
♻ ☆ Automated Knowledge Component Generation for Interpretable Knowledge Tracing in Coding Problems
Knowledge components (KCs) mapped to problems help model student learning, tracking their mastery levels on fine-grained skills thereby facilitating personalized learning and feedback in online learning platforms. However, crafting and tagging KCs to problems, traditionally performed by human domain experts, is highly labor intensive. We present an automated, LLM-based pipeline for KC generation and tagging for open-ended programming problems. We also develop an LLM-based knowledge tracing (KT) framework to leverage these LLM-generated KCs, which we refer to as KCGen-KT. We conduct extensive quantitative and qualitative evaluations on two real-world student code submission datasets in different programming languages.We find that KCGen-KT outperforms existing KT methods and human-written KCs on future student response prediction. We investigate the learning curves of generated KCs and show that LLM-generated KCs result in a better fit than human written KCs under a cognitive model. We also conduct a human evaluation with course instructors to show that our pipeline generates reasonably accurate problem-KC mappings.
♻ ☆ ConsintBench: Evaluating Language Models on Real-World Consumer Intent Understanding
Understanding human intent is a complex, high-level task for large language models (LLMs), requiring analytical reasoning, contextual interpretation, dynamic information aggregation, and decision-making under uncertainty. Real-world public discussions, such as consumer product discussions, are rarely linear or involve a single user. Instead, they are characterized by interwoven and often conflicting perspectives, divergent concerns, goals, emotional tendencies, as well as implicit assumptions and background knowledge about usage scenarios. To accurately understand such explicit public intent, an LLM must go beyond parsing individual sentences; it must integrate multi-source signals, reason over inconsistencies, and adapt to evolving discourse, similar to how experts in fields like politics, economics, or finance approach complex, uncertain environments. Despite the importance of this capability, no large-scale benchmark currently exists for evaluating LLMs on real-world human intent understanding, primarily due to the challenges of collecting real-world public discussion data and constructing a robust evaluation pipeline. To bridge this gap, we introduce \bench, the first dynamic, live evaluation benchmark specifically designed for intent understanding, particularly in the consumer domain. \bench is the largest and most diverse benchmark of its kind, supporting real-time updates while preventing data contamination through an automated curation pipeline.
♻ ☆ Consistency of Responses and Continuations Generated by Large Language Models on Social Media AAAI
Large Language Models (LLMs) demonstrate remarkable capabilities in text generation, yet their emotional consistency and semantic coherence in social media contexts remain insufficiently understood. This study investigates how LLMs handle emotional content and maintain semantic relationships through continuation and response tasks using three open-source models: Gemma, Llama3 and Llama3.3 and one commercial Model:Claude. By analyzing climate change discussions from Twitter and Reddit, we examine emotional transitions, intensity patterns, and semantic consistency between human-authored and LLM-generated content. Our findings reveal that while both models maintain high semantic coherence, they exhibit distinct emotional patterns: these models show a strong tendency to moderate negative emotions. When the input text carries negative emotions such as anger, disgust, fear, or sadness, LLM tends to generate content with more neutral emotions, or even convert them into positive emotions such as joy or surprise. At the same time, we compared the LLM-generated content with human-authored content. The four models systematically generated responses with reduced emotional intensity and showed a preference for neutral rational emotions in the response task. In addition, these models all maintained a high semantic similarity with the original text, although their performance in the continuation task and the response task was different. These findings provide deep insights into the emotion and semantic processing capabilities of LLM, which are of great significance for its deployment in social media environments and human-computer interaction design.
comment: This paper has been accepted by the International AAAI Conference on Web and Social Media (ICWSM) 2026 (Los Angeles, California, U.S.)
♻ ☆ MotionGPT3: Human Motion as a Second Modality
With the rapid progress of large language models (LLMs), multimodal frameworks that unify understanding and generation have become promising, yet they face increasing complexity as the number of modalities and tasks grows. We observe that motion quantization introduces approximation errors that cap motion quality, and that unifying discrete text and continuous motion within a single-stream backbone amplifies cross-modal interference. Motivated by recent multi-branch Transformer designs that separate signals from different modalities, we propose MotionGPT3, a bimodal motion-language model for both understanding and generation. MotionGPT3 encodes raw motion into a continuous latent space using a variational autoencoder (VAE), thereby avoiding quantization-induced artifacts, while leveraging the semantic prior of pretrained language models. A dual-stream Transformer with shared attention preserves modality-specific routes while enabling controlled, bidirectional information flow, which reduces interference, stabilizing optimization, and empirically accelerates convergence without degrading fidelity. For multimodal joint training, a generate-then-align three-stage schedule further improves stability and limits cross-task interference. Experiments show that MotionGPT3 achieves 2x faster convergence in training loss and up to 4x faster convergence in validation, while maintaining state-of-the-art performance on standard motion understanding and motion generation benchmarks.
comment: 26 pages, 11 figures
♻ ☆ RHYTHM: Reasoning with Hierarchical Temporal Tokenization for Human Mobility NeurIPS
Predicting human mobility is inherently challenging due to complex long-range dependencies and multi-scale periodic behaviors. To address this, we introduce RHYTHM (Reasoning with Hierarchical Temporal Tokenization for Human Mobility), a unified framework that leverages large language models (LLMs) as general-purpose spatio-temporal predictors and trajectory reasoners. Methodologically, RHYTHM employs temporal tokenization to partition each trajectory into daily segments and encode them as discrete tokens with hierarchical attention that captures both daily and weekly dependencies, thereby quadratically reducing the sequence length while preserving cyclical information. Additionally, we enrich token representations by adding pre-computed prompt embeddings for trajectory segments and prediction targets via a frozen LLM, and feeding these combined embeddings back into the LLM backbone to capture complex interdependencies. Computationally, RHYTHM keeps the pretrained LLM backbone frozen, yielding faster training and lower memory usage. We evaluate our model against state-of-the-art methods using three real-world datasets. Notably, RHYTHM achieves a 2.4% improvement in overall accuracy, a 5.0% increase on weekends, and a 24.6% reduction in training time. Code is publicly available at https://github.com/he-h/rhythm.
comment: Advances in Neural Information Processing Systems 39 (NeurIPS) 2025
♻ ☆ Video-SafetyBench: A Benchmark for Safety Evaluation of Video LVLMs NeurIPS 2025
The increasing deployment of Large Vision-Language Models (LVLMs) raises safety concerns under potential malicious inputs. However, existing multimodal safety evaluations primarily focus on model vulnerabilities exposed by static image inputs, ignoring the temporal dynamics of video that may induce distinct safety risks. To bridge this gap, we introduce Video-SafetyBench, the first comprehensive benchmark designed to evaluate the safety of LVLMs under video-text attacks. It comprises 2,264 video-text pairs spanning 48 fine-grained unsafe categories, each pairing a synthesized video with either a harmful query, which contains explicit malice, or a benign query, which appears harmless but triggers harmful behavior when interpreted alongside the video. To generate semantically accurate videos for safety evaluation, we design a controllable pipeline that decomposes video semantics into subject images (what is shown) and motion text (how it moves), which jointly guide the synthesis of query-relevant videos. To effectively evaluate uncertain or borderline harmful outputs, we propose RJScore, a novel LLM-based metric that incorporates the confidence of judge models and human-aligned decision threshold calibration. Extensive experiments show that benign-query video composition achieves average attack success rates of 67.2%, revealing consistent vulnerabilities to video-induced attacks. We believe Video-SafetyBench will catalyze future research into video-based safety evaluation and defense strategies.
comment: Accepted by NeurIPS 2025 Dataset and Benchmark Track, Project page: https://liuxuannan.github.io/Video-SafetyBench.github.io/
♻ ☆ Leveraging Importance Sampling to Detach Alignment Modules from Large Language Models NeurIPS 2025
The widespread adoption of large language models (LLMs) across industries has increased the demand for high-quality and customizable outputs. However, traditional alignment methods often require retraining large pretrained models, making it difficult to quickly adapt and optimize LLMs for diverse applications. To address this limitation, we propose a novel \textit{Residual Alignment Model} (\textit{RAM}) that formalizes the alignment process as a type of importance sampling. In this framework, the unaligned upstream model serves as the proposal distribution, while the alignment process is framed as secondary sampling based on an autoregressive alignment module that acts as an estimator of the importance weights. This design enables a natural detachment of the alignment module from the target aligned model, improving flexibility and scalability. Based on this model, we derive an efficient sequence-level training strategy for the alignment module, which operates independently of the proposal module. Additionally, we develop a resampling algorithm with iterative token-level decoding to address the common first-token latency issue in comparable methods. Experimental evaluations on two leading open-source LLMs across diverse tasks, including instruction following, domain adaptation, and preference optimization, demonstrate that our approach consistently outperforms baseline models.
comment: Accepted by NeurIPS 2025, 28 pages
♻ ☆ Leveraging Robust Optimization for LLM Alignment under Distribution Shifts NeurIPS 2025
Preference alignment methods are increasingly critical for steering large language models (LLMs) to generate outputs consistent with human values. While recent approaches often rely on synthetic data generated by LLMs for scalability and cost-efficiency reasons, this reliance can introduce distribution shifts that undermine the nuanced representation of human preferences needed for desirable outputs. In this paper, we propose a novel distribution-aware optimization framework that improves preference alignment despite such shifts. Our approach first leverages well-learned classifiers to assign a calibration value to each training sample, quantifying its alignment with the target human-preferred distribution. These values are then incorporated into a robust optimization objective that minimizes the worst-case loss over regions of the data space most relevant to human preferences. By explicitly focusing optimization on the target distribution, our approach mitigates the impact of distributional mismatch and improves the generation of responses that better reflect intended values.
comment: NeurIPS 2025
♻ ☆ Large-scale User Game Lifecycle Representation Learning
The rapid expansion of video game production necessitates the development of effective advertising and recommendation systems for online game platforms. Recommending and advertising games to users hinges on capturing their interest in games. However, existing representation learning methods crafted for handling billions of items in recommendation systems are unsuitable for game advertising and recommendation. This is primarily due to game sparsity, where the mere hundreds of games fall short for large-scale user representation learning, and game imbalance, where user behaviors are overwhelmingly dominated by a handful of popular games. To address the sparsity issue, we introduce the User Game Lifecycle (UGL), designed to enrich user behaviors in games. Additionally, we propose two innovative strategies aimed at manipulating user behaviors to more effectively extract both short and long-term interests. To tackle the game imbalance challenge, we present an Inverse Probability Masking strategy for UGL representation learning. The offline and online experimental results demonstrate that the UGL representations significantly enhance model by achieving a 1.83% AUC offline increase on average and a 21.67% CVR online increase on average for game advertising and a 0.5% AUC offline increase and a 0.82% ARPU online increase for in-game item recommendation.
♻ ☆ LLMTaxo: Leveraging Large Language Models for Constructing Taxonomy of Factual Claims from Social Media
With the rapid expansion of content on social media platforms, analyzing and comprehending online discourse has become increasingly complex. This paper introduces LLMTaxo, a novel framework leveraging large language models for the automated construction of taxonomies of factual claims from social media by generating topics at multiple levels of granularity. The resulting hierarchical structure significantly reduces redundancy and improves information accessibility. We also propose dedicated taxonomy evaluation metrics to enable comprehensive assessment. Evaluations conducted on three diverse datasets demonstrate LLMTaxo's effectiveness in producing clear, coherent, and comprehensive taxonomies. Among the evaluated models, GPT-4o mini consistently outperforms others across most metrics. The framework's flexibility and low reliance on manual intervention underscore its potential for broad applicability.
♻ ☆ AutoGraph-R1: End-to-End Reinforcement Learning for Knowledge Graph Construction
Building effective knowledge graphs (KGs) for Retrieval-Augmented Generation (RAG) is pivotal for advancing question answering (QA) systems. However, its effectiveness is hindered by a fundamental disconnect: the knowledge graph (KG) construction process is decoupled from its downstream application, yielding suboptimal graph structures. To bridge this gap, we introduce AutoGraph-R1, the first framework to directly optimize KG construction for task performance using Reinforcement Learning (RL). AutoGraph-R1 trains an LLM constructor by framing graph generation as a policy learning problem, where the reward is derived from the graph's functional utility in a RAG pipeline. We design two novel, task-aware reward functions, one for graphs as knowledge carriers and another as knowledge indices. Across multiple QA benchmarks, AutoGraph-R1 consistently enables graph RAG methods to achieve significant performance gains over using task-agnostic baseline graphs. Our work shows it is possible to close the loop between construction and application, shifting the paradigm from building intrinsically ``good'' graphs to building demonstrably ``useful'' ones.
♻ ☆ Accelerating Mobile Language Model via Speculative Decoding and NPU-Coordinated Execution
Enhancing on-device large language models (LLMs) with contextual information from local data enables personalized and task-aware generation, powering use cases such as intelligent assistants and UI agents. While recent developments in neural processors have substantially improved the efficiency of prefill on mobile devices, the token-by-token generation process still suffers from high latency and limited hardware utilization due to its inherently memory-bound characteristics. This work presents sd.npu, a mobile inference framework that integrates speculative decoding with dynamic hardware scheduling to accelerate context-aware text generation on mobile devices. The framework introduces three synergistic components: (1) adaptive execution scheduling, which dynamically balances compute graphs between prefill and decoding phases; (2) context-aligned drafting, which improves speculative efficiency through lightweight online calibration to current tasks; and (3) hardware-efficient draft extension, which reuses and expands intermediate sequences to improve processing parallelism and reduce verification cost. Experiments on multiple smartphones and representative workloads show consistent improvements of up to 3.8x in generation speed and 4.7x in energy efficiency compared with existing mobile inference solutions. Component-level analysis further validates the contribution of each optimization.
♻ ☆ Value-Based Large Language Model Agent Simulation for Mutual Evaluation of Trust and Interpersonal Closeness
Large language models (LLMs) have emerged as powerful tools for simulating complex social phenomena using human-like agents with specific traits. In human societies, value similarity is important for building trust and close relationships; however, it remains unexplored whether this principle holds true in artificial societies comprising LLM agents. Therefore, this study investigates the influence of value similarity on relationship-building among LLM agents through two experiments. First, in a preliminary experiment, we evaluated the controllability of values in LLMs to identify the most effective model and prompt design for controlling the values. Subsequently, in the main experiment, we generated pairs of LLM agents imbued with specific values and analyzed their mutual evaluations of trust and interpersonal closeness following a dialogue. The experiments were conducted in English and Japanese to investigate language dependence. The results confirmed that pairs of agents with higher value similarity exhibited greater mutual trust and interpersonal closeness. Our findings demonstrate that the LLM agent simulation serves as a valid testbed for social science theories, contributes to elucidating the mechanisms by which values influence relationship building, and provides a foundation for inspiring new theories and insights into the social sciences.
Computer Vision and Pattern Recognition
☆ ConsistEdit: Highly Consistent and Precise Training-free Visual Editing SIGGRAPH
Recent advances in training-free attention control methods have enabled flexible and efficient text-guided editing capabilities for existing generation models. However, current approaches struggle to simultaneously deliver strong editing strength while preserving consistency with the source. This limitation becomes particularly critical in multi-round and video editing, where visual errors can accumulate over time. Moreover, most existing methods enforce global consistency, which limits their ability to modify individual attributes such as texture while preserving others, thereby hindering fine-grained editing. Recently, the architectural shift from U-Net to MM-DiT has brought significant improvements in generative performance and introduced a novel mechanism for integrating text and vision modalities. These advancements pave the way for overcoming challenges that previous methods failed to resolve. Through an in-depth analysis of MM-DiT, we identify three key insights into its attention mechanisms. Building on these, we propose ConsistEdit, a novel attention control method specifically tailored for MM-DiT. ConsistEdit incorporates vision-only attention control, mask-guided pre-attention fusion, and differentiated manipulation of the query, key, and value tokens to produce consistent, prompt-aligned edits. Extensive experiments demonstrate that ConsistEdit achieves state-of-the-art performance across a wide range of image and video editing tasks, including both structure-consistent and structure-inconsistent scenarios. Unlike prior methods, it is the first approach to perform editing across all inference steps and attention layers without handcraft, significantly enhancing reliability and consistency, which enables robust multi-round and multi-region editing. Furthermore, it supports progressive adjustment of structural consistency, enabling finer control.
comment: SIGGRAPH Asia 2025
☆ Glyph: Scaling Context Windows via Visual-Text Compression
Large language models (LLMs) increasingly rely on long-context modeling for tasks such as document understanding, code analysis, and multi-step reasoning. However, scaling context windows to the million-token level brings prohibitive computational and memory costs, limiting the practicality of long-context LLMs. In this work, we take a different perspective-visual context scaling-to tackle this challenge. Instead of extending token-based sequences, we propose Glyph, a framework that renders long texts into images and processes them with vision-language models (VLMs). This approach substantially compresses textual input while preserving semantic information, and we further design an LLM-driven genetic search to identify optimal visual rendering configurations for balancing accuracy and compression. Through extensive experiments, we demonstrate that our method achieves 3-4x token compression while maintaining accuracy comparable to leading LLMs such as Qwen3-8B on various long-context benchmarks. This compression also leads to around 4x faster prefilling and decoding, and approximately 2x faster SFT training. Furthermore, under extreme compression, a 128K-context VLM could scale to handle 1M-token-level text tasks. In addition, the rendered text data benefits real-world multimodal tasks, such as document understanding. Our code and model are released at https://github.com/thu-coai/Glyph.
☆ UltraCUA: A Foundation Model for Computer Use Agents with Hybrid Action
Multimodal agents for computer use rely exclusively on primitive actions (click, type, scroll) that require accurate visual grounding and lengthy execution chains, leading to cascading failures and performance bottlenecks. While other agents leverage rich programmatic interfaces (APIs, MCP servers, tools), computer-use agents (CUAs) remain isolated from these capabilities. We present UltraCUA, a foundation model that bridges this gap through hybrid action -- seamlessly integrating GUI primitives with high-level programmatic tool calls. To achieve this, our approach comprises four key components: (1) an automated pipeline that scales programmatic tools from software documentation, open-source repositories, and code generation; (2) a synthetic data engine producing over 17,000 verifiable tasks spanning real-world computer-use scenarios; (3) a large-scale high-quality hybrid action trajectory collection with both low-level GUI actions and high-level programmatic tool calls; and (4) a two-stage training pipeline combining supervised fine-tuning with online reinforcement learning, enabling strategic alternation between low-level and high-level actions. Experiments with our 7B and 32B models demonstrate substantial improvements over state-of-the-art agents. On OSWorld, UltraCUA models achieve an average 22% relative improvement over base models, while being 11% faster in terms of steps. Out-of-domain evaluation on WindowsAgentArena shows our model reaches 21.7% success rate, outperforming baselines trained on Windows data. The hybrid action mechanism proves critical, reducing error propagation while maintaining execution efficiency.
☆ Botany-Bot: Digital Twin Monitoring of Occluded and Underleaf Plant Structures with Gaussian Splats IROS 2025
Commercial plant phenotyping systems using fixed cameras cannot perceive many plant details due to leaf occlusion. In this paper, we present Botany-Bot, a system for building detailed "annotated digital twins" of living plants using two stereo cameras, a digital turntable inside a lightbox, an industrial robot arm, and 3D segmentated Gaussian Splat models. We also present robot algorithms for manipulating leaves to take high-resolution indexable images of occluded details such as stem buds and the underside/topside of leaves. Results from experiments suggest that Botany-Bot can segment leaves with 90.8% accuracy, detect leaves with 86.2% accuracy, lift/push leaves with 77.9% accuracy, and take detailed overside/underside images with 77.3% accuracy. Code, videos, and datasets are available at https://berkeleyautomation.github.io/Botany-Bot/.
comment: 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ SparseVILA: Decoupling Visual Sparsity for Efficient VLM Inference
Vision Language Models (VLMs) have rapidly advanced in integrating visual and textual reasoning, powering applications across high-resolution image understanding, long-video analysis, and multi-turn conversation. However, their scalability remains limited by the growing number of visual tokens that dominate inference latency. We present SparseVILA, a new paradigm for efficient VLM inference that decouples visual sparsity across the prefilling and decoding stages. SparseVILA distributes sparsity across stages by pruning redundant visual tokens during prefill and retrieving only query-relevant tokens during decoding. This decoupled design matches leading prefill pruning methods while preserving multi-turn fidelity by retaining most of the visual cache so that query-aware tokens can be retrieved at each conversation round. Built on an AWQ-optimized inference pipeline, SparseVILA achieves up to 4.0 times faster prefilling, 2.5 times faster decoding, and an overall 2.6 times end-to-end speedup on long-context video tasks -- while improving accuracy on document-understanding and reasoning tasks. By decoupling query-agnostic pruning and query-aware retrieval, SparseVILA establishes a new direction for efficient multimodal inference, offering a training-free, architecture-agnostic framework for accelerating large VLMs without sacrificing capability.
☆ Towards Explainable Skin Cancer Classification: A Dual-Network Attention Model with Lesion Segmentation and Clinical Metadata Fusion
Skin cancer is a life-threatening disease where early detection significantly improves patient outcomes. Automated diagnosis from dermoscopic images is challenging due to high intra-class variability and subtle inter-class differences. Many deep learning models operate as "black boxes," limiting clinical trust. In this work, we propose a dual-encoder attention-based framework that leverages both segmented lesions and clinical metadata to enhance skin lesion classification in terms of both accuracy and interpretability. A novel Deep-UNet architecture with Dual Attention Gates (DAG) and Atrous Spatial Pyramid Pooling (ASPP) is first employed to segment lesions. The classification stage uses two DenseNet201 encoders-one on the original image and another on the segmented lesion whose features are fused via multi-head cross-attention. This dual-input design guides the model to focus on salient pathological regions. In addition, a transformer-based module incorporates patient metadata (age, sex, lesion site) into the prediction. We evaluate our approach on the HAM10000 dataset and the ISIC 2018 and 2019 challenges. The proposed method achieves state-of-the-art segmentation performance and significantly improves classification accuracy and average AUC compared to baseline models. To validate our model's reliability, we use Gradient-weighted Class Activation Mapping (Grad-CAM) to generate heatmaps. These visualizations confirm that our model's predictions are based on the lesion area, unlike models that rely on spurious background features. These results demonstrate that integrating precise lesion segmentation and clinical data with attention-based fusion leads to a more accurate and interpretable skin cancer classification model.
comment: 15 pages, 7 Figures, 3 Tables
☆ Seeing but Not Believing: Probing the Disconnect Between Visual Attention and Answer Correctness in VLMs
Vision-Language Models (VLMs) achieve strong results on multimodal tasks such as visual question answering, yet they can still fail even when the correct visual evidence is present. In this work, we systematically investigate whether these failures arise from not perceiving the evidence or from not leveraging it effectively. By examining layer-wise attention dynamics, we find that shallow layers focus primarily on text, while deeper layers sparsely but reliably attend to localized evidence regions. Surprisingly, VLMs often perceive the visual evidence when outputting incorrect answers, a phenomenon we term ``seeing but not believing'' that widely exists in major VLM families. Building on this, we introduce an inference-time intervention that highlights deep-layer evidence regions through selective attention-based masking. It requires no training and consistently improves accuracy across multiple families, including LLaVA, Qwen, Gemma, and InternVL. These results show that VLMs encode reliable evidence internally but under-utilize it, making such signals explicit can bridge the gap between perception and reasoning, advancing the diagnostic understanding and reliability of VLMs.
comment: 21 pages, 10 figures, 6 tables
☆ VERA-V: Variational Inference Framework for Jailbreaking Vision-Language Models
Vision-Language Models (VLMs) extend large language models with visual reasoning, but their multimodal design also introduces new, underexplored vulnerabilities. Existing multimodal red-teaming methods largely rely on brittle templates, focus on single-attack settings, and expose only a narrow subset of vulnerabilities. To address these limitations, we introduce VERA-V, a variational inference framework that recasts multimodal jailbreak discovery as learning a joint posterior distribution over paired text-image prompts. This probabilistic view enables the generation of stealthy, coupled adversarial inputs that bypass model guardrails. We train a lightweight attacker to approximate the posterior, allowing efficient sampling of diverse jailbreaks and providing distributional insights into vulnerabilities. VERA-V further integrates three complementary strategies: (i) typography-based text prompts that embed harmful cues, (ii) diffusion-based image synthesis that introduces adversarial signals, and (iii) structured distractors to fragment VLM attention. Experiments on HarmBench and HADES benchmarks show that VERA-V consistently outperforms state-of-the-art baselines on both open-source and frontier VLMs, achieving up to 53.75% higher attack success rate (ASR) over the best baseline on GPT-4o.
comment: 18 pages, 7 Figures,
☆ Joint Multi-Condition Representation Modelling via Matrix Factorisation for Visual Place Recognition
We address multi-reference visual place recognition (VPR), where reference sets captured under varying conditions are used to improve localisation performance. While deep learning with large-scale training improves robustness, increasing data diversity and model complexity incur extensive computational cost during training and deployment. Descriptor-level fusion via voting or aggregation avoids training, but often targets multi-sensor setups or relies on heuristics with limited gains under appearance and viewpoint change. We propose a training-free, descriptor-agnostic approach that jointly models places using multiple reference descriptors via matrix decomposition into basis representations, enabling projection-based residual matching. We also introduce SotonMV, a structured benchmark for multi-viewpoint VPR. On multi-appearance data, our method improves Recall@1 by up to ~18% over single-reference and outperforms multi-reference baselines across appearance and viewpoint changes, with gains of ~5% on unstructured data, demonstrating strong generalisation while remaining lightweight.
comment: 13 pages
☆ Can Image-To-Video Models Simulate Pedestrian Dynamics? ICML 2025
Recent high-performing image-to-video (I2V) models based on variants of the diffusion transformer (DiT) have displayed remarkable inherent world-modeling capabilities by virtue of training on large scale video datasets. We investigate whether these models can generate realistic pedestrian movement patterns in crowded public scenes. Our framework conditions I2V models on keyframes extracted from pedestrian trajectory benchmarks, then evaluates their trajectory prediction performance using quantitative measures of pedestrian dynamics.
comment: Appeared in the ICML 2025 Workshop on Building Physically Plausible World Models, July 2025, https://physical-world-modeling.github.io/
☆ Signature Forgery Detection: Improving Cross-Dataset Generalization
Automated signature verification is a critical biometric technique used in banking, identity authentication, and legal documentation. Despite the notable progress achieved by deep learning methods, most approaches in offline signature verification still struggle to generalize across datasets, as variations in handwriting styles and acquisition protocols often degrade performance. This study investigates feature learning strategies for signature forgery detection, focusing on improving cross-dataset generalization -- that is, model robustness when trained on one dataset and tested on another. Using three public benchmarks -- CEDAR, ICDAR, and GPDS Synthetic -- two experimental pipelines were developed: one based on raw signature images and another employing a preprocessing method referred to as shell preprocessing. Several behavioral patterns were identified and analyzed; however, no definitive superiority between the two approaches was established. The results show that the raw-image model achieved higher performance across benchmarks, while the shell-based model demonstrated promising potential for future refinement toward robust, cross-domain signature verification.
comment: Undergraduate thesis (preprint)---submitted to Escola Polit\'ecnica, Universidade Federal do Rio de Janeiro (POLI/UFRJ). The final version will include official signatures and defense approval
☆ MT-Video-Bench: A Holistic Video Understanding Benchmark for Evaluating Multimodal LLMs in Multi-Turn Dialogues
The recent development of Multimodal Large Language Models (MLLMs) has significantly advanced AI's ability to understand visual modalities. However, existing evaluation benchmarks remain limited to single-turn question answering, overlooking the complexity of multi-turn dialogues in real-world scenarios. To bridge this gap, we introduce MT-Video-Bench, a holistic video understanding benchmark for evaluating MLLMs in multi-turn dialogues. Specifically, our MT-Video-Bench mainly assesses six core competencies that focus on perceptivity and interactivity, encompassing 987 meticulously curated multi-turn dialogues from diverse domains. These capabilities are rigorously aligned with real-world applications, such as interactive sports analysis and multi-turn video-based intelligent tutoring. With MT-Video-Bench, we extensively evaluate various state-of-the-art open-source and closed-source MLLMs, revealing their significant performance discrepancies and limitations in handling multi-turn video dialogues. The benchmark will be publicly available to foster future research.
comment: Project Website: https://github.com/NJU-LINK/MT-Video-Bench
☆ Raindrop GS: A Benchmark for 3D Gaussian Splatting under Raindrop Conditions
3D Gaussian Splatting (3DGS) under raindrop conditions suffers from severe occlusions and optical distortions caused by raindrop contamination on the camera lens, substantially degrading reconstruction quality. Existing benchmarks typically evaluate 3DGS using synthetic raindrop images with known camera poses (constrained images), assuming ideal conditions. However, in real-world scenarios, raindrops often interfere with accurate camera pose estimation and point cloud initialization. Moreover, a significant domain gap between synthetic and real raindrops further impairs generalization. To tackle these issues, we introduce RaindropGS, a comprehensive benchmark designed to evaluate the full 3DGS pipeline-from unconstrained, raindrop-corrupted images to clear 3DGS reconstructions. Specifically, the whole benchmark pipeline consists of three parts: data preparation, data processing, and raindrop-aware 3DGS evaluation, including types of raindrop interference, camera pose estimation and point cloud initialization, single image rain removal comparison, and 3D Gaussian training comparison. First, we collect a real-world raindrop reconstruction dataset, in which each scene contains three aligned image sets: raindrop-focused, background-focused, and rain-free ground truth, enabling a comprehensive evaluation of reconstruction quality under different focus conditions. Through comprehensive experiments and analyses, we reveal critical insights into the performance limitations of existing 3DGS methods on unconstrained raindrop images and the varying impact of different pipeline components: the impact of camera focus position on 3DGS reconstruction performance, and the interference caused by inaccurate pose and point cloud initialization on reconstruction. These insights establish clear directions for developing more robust 3DGS methods under raindrop conditions.
☆ Automatic Classification of Circulating Blood Cell Clusters based on Multi-channel Flow Cytometry Imaging
Circulating blood cell clusters (CCCs) containing red blood cells (RBCs), white blood cells(WBCs), and platelets are significant biomarkers linked to conditions like thrombosis, infection, and inflammation. Flow cytometry, paired with fluorescence staining, is commonly used to analyze these cell clusters, revealing cell morphology and protein profiles. While computational approaches based on machine learning have advanced the automatic analysis of single-cell flow cytometry images, there is a lack of effort to build tools to automatically analyze images containing CCCs. Unlike single cells, cell clusters often exhibit irregular shapes and sizes. In addition, these cell clusters often consist of heterogeneous cell types, which require multi-channel staining to identify the specific cell types within the clusters. This study introduces a new computational framework for analyzing CCC images and identifying cell types within clusters. Our framework uses a two-step analysis strategy. First, it categorizes images into cell cluster and non-cluster groups by fine-tuning the You Only Look Once(YOLOv11) model, which outperforms traditional convolutional neural networks (CNNs), Vision Transformers (ViT). Then, it identifies cell types by overlaying cluster contours with regions from multi-channel fluorescence stains, enhancing accuracy despite cell debris and staining artifacts. This approach achieved over 95% accuracy in both cluster classification and phenotype identification. In summary, our automated framework effectively analyzes CCC images from flow cytometry, leveraging both bright-field and fluorescence data. Initially tested on blood cells, it holds potential for broader applications, such as analyzing immune and tumor cell clusters, supporting cellular research across various diseases.
☆ Improving Cross-Patient Generalization in Parkinson's Disease Detection through Chunk-Based Analysis of Hand-Drawn Patterns
Parkinson's disease (PD) is a neurodegenerative disease affecting about 1% of people over the age of 60, causing motor impairments that impede hand coordination activities such as writing and drawing. Many approaches have tried to support early detection of Parkinson's disease based on hand-drawn images; however, we identified two major limitations in the related works: (1) the lack of sufficient datasets, (2) the robustness when dealing with unseen patient data. In this paper, we propose a new approach to detect Parkinson's disease that consists of two stages: The first stage classifies based on their drawing type(circle, meander, spiral), and the second stage extracts the required features from the images and detects Parkinson's disease. We overcame the previous two limitations by applying a chunking strategy where we divide each image into 2x2 chunks. Each chunk is processed separately when extracting features and recognizing Parkinson's disease indicators. To make the final classification, an ensemble method is used to merge the decisions made from each chunk. Our evaluation shows that our proposed approach outperforms the top performing state-of-the-art approaches, in particular on unseen patients. On the NewHandPD dataset our approach, it achieved 97.08% accuracy for seen patients and 94.91% for unseen patients, our proposed approach maintained a gap of only 2.17 percentage points, compared to the 4.76-point drop observed in prior work.
comment: 19 pages, 2 figures, 9 tables
☆ Elastic ViTs from Pretrained Models without Retraining NeurIPS 2025
Vision foundation models achieve remarkable performance but are only available in a limited set of pre-determined sizes, forcing sub-optimal deployment choices under real-world constraints. We introduce SnapViT: Single-shot network approximation for pruned Vision Transformers, a new post-pretraining structured pruning method that enables elastic inference across a continuum of compute budgets. Our approach efficiently combines gradient information with cross-network structure correlations, approximated via an evolutionary algorithm, does not require labeled data, generalizes to models without a classification head, and is retraining-free. Experiments on DINO, SigLIPv2, DeIT, and AugReg models demonstrate superior performance over state-of-the-art methods across various sparsities, requiring less than five minutes on a single A100 GPU to generate elastic models that can be adjusted to any computational budget. Our key contributions include an efficient pruning strategy for pretrained Vision Transformers, a novel evolutionary approximation of Hessian off-diagonal structures, and a self-supervised importance scoring mechanism that maintains strong performance without requiring retraining or labels. Code and pruned models are available at: https://elastic.ashita.nl/
comment: Accepted at NeurIPS 2025
☆ GAS: Improving Discretization of Diffusion ODEs via Generalized Adversarial Solver
While diffusion models achieve state-of-the-art generation quality, they still suffer from computationally expensive sampling. Recent works address this issue with gradient-based optimization methods that distill a few-step ODE diffusion solver from the full sampling process, reducing the number of function evaluations from dozens to just a few. However, these approaches often rely on intricate training techniques and do not explicitly focus on preserving fine-grained details. In this paper, we introduce the Generalized Solver: a simple parameterization of the ODE sampler that does not require additional training tricks and improves quality over existing approaches. We further combine the original distillation loss with adversarial training, which mitigates artifacts and enhances detail fidelity. We call the resulting method the Generalized Adversarial Solver and demonstrate its superior performance compared to existing solver training methods under similar resource constraints. Code is available at https://github.com/3145tttt/GAS.
☆ Towards 3D Objectness Learning in an Open World NeurIPS 2025
Recent advancements in 3D object detection and novel category detection have made significant progress, yet research on learning generalized 3D objectness remains insufficient. In this paper, we delve into learning open-world 3D objectness, which focuses on detecting all objects in a 3D scene, including novel objects unseen during training. Traditional closed-set 3D detectors struggle to generalize to open-world scenarios, while directly incorporating 3D open-vocabulary models for open-world ability struggles with vocabulary expansion and semantic overlap. To achieve generalized 3D object discovery, We propose OP3Det, a class-agnostic Open-World Prompt-free 3D Detector to detect any objects within 3D scenes without relying on hand-crafted text prompts. We introduce the strong generalization and zero-shot capabilities of 2D foundation models, utilizing both 2D semantic priors and 3D geometric priors for class-agnostic proposals to broaden 3D object discovery. Then, by integrating complementary information from point cloud and RGB image in the cross-modal mixture of experts, OP3Det dynamically routes uni-modal and multi-modal features to learn generalized 3D objectness. Extensive experiments demonstrate the extraordinary performance of OP3Det, which significantly surpasses existing open-world 3D detectors by up to 16.0% in AR and achieves a 13.5% improvement compared to closed-world 3D detectors.
comment: Accepted by NeurIPS 2025
☆ Multilingual Text-to-Image Person Retrieval via Bidirectional Relation Reasoning and Aligning
Text-to-image person retrieval (TIPR) aims to identify the target person using textual descriptions, facing challenge in modality heterogeneity. Prior works have attempted to address it by developing cross-modal global or local alignment strategies. However, global methods typically overlook fine-grained cross-modal differences, whereas local methods require prior information to explore explicit part alignments. Additionally, current methods are English-centric, restricting their application in multilingual contexts. To alleviate these issues, we pioneer a multilingual TIPR task by developing a multilingual TIPR benchmark, for which we leverage large language models for initial translations and refine them by integrating domain-specific knowledge. Correspondingly, we propose Bi-IRRA: a Bidirectional Implicit Relation Reasoning and Aligning framework to learn alignment across languages and modalities. Within Bi-IRRA, a bidirectional implicit relation reasoning module enables bidirectional prediction of masked image and text, implicitly enhancing the modeling of local relations across languages and modalities, a multi-dimensional global alignment module is integrated to bridge the modality heterogeneity. The proposed method achieves new state-of-the-art results on all multilingual TIPR datasets. Data and code are presented in https://github.com/Flame-Chasers/Bi-IRRA.
comment: Final version published in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). Xplore link: https://ieeexplore.ieee.org/document/11199360
☆ Intelligent Communication Mixture-of-Experts Boosted-Medical Image Segmentation Foundation Model
Foundation models for medical image segmentation have achieved remarkable performance. Adaptive fine-tuning of natural image segmentation foundation models is crucial for medical image segmentation tasks. However, some limitations exist in existing fine-tuning methods: 1) insufficient representation of high-level features and 2) the fine-tuning process disrupts the structural integrity of pretrained weights. Inspired by these critical problems, we propose an intelligent communication mixture-of-experts boosted-medical image segmentation foundation model, named IC-MoE, with twofold ideas: 1) We construct basic experts, semantic experts, and adaptive experts. Moreover, we implement a pixel probability adaptive voting strategy, which enables expert selection and fusion through label consistency and load balancing. This approach preliminarily enhances the representation capability of high-level features while preserving the structural integrity of pretrained weights. 2) We propose a semantic-guided contrastive learning method to address the issue of weak supervision in contrastive learning. This method further enhances the representation capability of high-level features while preserving the structural integrity of pretrained weights. Extensive experiments across three public medical image segmentation datasets demonstrate that the IC-MoE outperforms other SOTA models. Consequently, the proposed IC-MoE effectively supplements foundational medical image segmentation models with high-level features and pretrained structural integrity. We also validate the superior generalizability of the IC-MoE across diverse medical image segmentation scenarios.
☆ PICABench: How Far Are We from Physically Realistic Image Editing?
Image editing has achieved remarkable progress recently. Modern editing models could already follow complex instructions to manipulate the original content. However, beyond completing the editing instructions, the accompanying physical effects are the key to the generation realism. For example, removing an object should also remove its shadow, reflections, and interactions with nearby objects. Unfortunately, existing models and benchmarks mainly focus on instruction completion but overlook these physical effects. So, at this moment, how far are we from physically realistic image editing? To answer this, we introduce PICABench, which systematically evaluates physical realism across eight sub-dimension (spanning optics, mechanics, and state transitions) for most of the common editing operations (add, remove, attribute change, etc). We further propose the PICAEval, a reliable evaluation protocol that uses VLM-as-a-judge with per-case, region-level human annotations and questions. Beyond benchmarking, we also explore effective solutions by learning physics from videos and construct a training dataset PICA-100K. After evaluating most of the mainstream models, we observe that physical realism remains a challenging problem with large rooms to explore. We hope that our benchmark and proposed solutions can serve as a foundation for future work moving from naive content editing toward physically consistent realism.
☆ 4DSegStreamer: Streaming 4D Panoptic Segmentation via Dual Threads
4D panoptic segmentation in a streaming setting is critical for highly dynamic environments, such as evacuating dense crowds and autonomous driving in complex scenarios, where real-time, fine-grained perception within a constrained time budget is essential. In this paper, we introduce 4DSegStreamer, a novel framework that employs a Dual-Thread System to efficiently process streaming frames. The framework is general and can be seamlessly integrated into existing 3D and 4D segmentation methods to enable real-time capability. It also demonstrates superior robustness compared to existing streaming perception approaches, particularly under high FPS conditions. The system consists of a predictive thread and an inference thread. The predictive thread leverages historical motion and geometric information to extract features and forecast future dynamics. The inference thread ensures timely prediction for incoming frames by aligning with the latest memory and compensating for ego-motion and dynamic object movements. We evaluate 4DSegStreamer on the indoor HOI4D dataset and the outdoor SemanticKITTI and nuScenes datasets. Comprehensive experiments demonstrate the effectiveness of our approach, particularly in accurately predicting dynamic objects in complex scenes.
☆ Frugal Federated Learning for Violence Detection: A Comparison of LoRA-Tuned VLMs and Personalized CNNs
We examine frugal federated learning approaches to violence detection by comparing two complementary strategies: (i) zero-shot and federated fine-tuning of vision-language models (VLMs), and (ii) personalized training of a compact 3D convolutional neural network (CNN3D). Using LLaVA-7B and a 65.8M parameter CNN3D as representative cases, we evaluate accuracy, calibration, and energy usage under realistic non-IID settings. Both approaches exceed 90% accuracy. CNN3D slightly outperforms Low-Rank Adaptation(LoRA)-tuned VLMs in ROC AUC and log loss, while using less energy. VLMs remain favorable for contextual reasoning and multimodal inference. We quantify energy and CO$_2$ emissions across training and inference, and analyze sustainability trade-offs for deployment. To our knowledge, this is the first comparative study of LoRA-tuned vision-language models and personalized CNNs for federated violence detection, with an emphasis on energy efficiency and environmental metrics. These findings support a hybrid model: lightweight CNNs for routine classification, with selective VLM activation for complex or descriptive scenarios. The resulting framework offers a reproducible baseline for responsible, resource-aware AI in video surveillance, with extensions toward real-time, multimodal, and lifecycle-aware systems.
comment: 7 pages, 1 figure, FLTA 2025
☆ ZACH-ViT: A Zero-Token Vision Transformer with ShuffleStrides Data Augmentation for Robust Lung Ultrasound Classification
Differentiating cardiogenic pulmonary oedema (CPE) from non-cardiogenic and structurally normal lungs in lung ultrasound (LUS) videos remains challenging due to the high visual variability of non-cardiogenic inflammatory patterns (NCIP/ARDS-like), interstitial lung disease, and healthy lungs. This heterogeneity complicates automated classification as overlapping B-lines and pleural artefacts are common. We introduce ZACH-ViT (Zero-token Adaptive Compact Hierarchical Vision Transformer), a 0.25 M-parameter Vision Transformer variant that removes both positional embeddings and the [CLS] token, making it fully permutation-invariant and suitable for unordered medical image data. To enhance generalization, we propose ShuffleStrides Data Augmentation (SSDA), which permutes probe-view sequences and frame orders while preserving anatomical validity. ZACH-ViT was evaluated on 380 LUS videos from 95 critically ill patients against nine state-of-the-art baselines. Despite the heterogeneity of the non-cardiogenic group, ZACH-ViT achieved the highest validation and test ROC-AUC (0.80 and 0.79) with balanced sensitivity (0.60) and specificity (0.91), while all competing models collapsed to trivial classification. It trains 1.35x faster than Minimal ViT (0.62M parameters) with 2.5x fewer parameters, supporting real-time clinical deployment. These results show that aligning architectural design with data structure can outperform scale in small-data medical imaging.
comment: 14 pages, 6 figures, 2 tables. Primary subject: cs.LG (Machine Learning) Cross-listed to: cs.CV (Computer Vision and Pattern Recognition), eess.IV (Image and Video Processing). Code available at: https://github.com/Bluesman79/ZACH-ViT Installation: pip install zachvit Paper licensed under CC BY-NC-ND 4.0. Code released under Apache 2.0 License
Self-supervised Pre-training for Mapping of Archaeological Stone Wall in Historic Landscapes Using High-Resolution DEM Derivatives
Dry-stone walls hold significant heritage and environmental value. Mapping these structures is essential for ecosystem preservation and wildfire management in Australia. Yet, many walls remain unidentified due to their inaccessibility and the high cost of manual mapping. Deep learning-based segmentation offers a scalable solution, but two major challenges persist: (1) visual occlusion of low-lying walls by dense vegetation, and (2) limited labeled data for supervised training. We propose DINO-CV, a segmentation framework for automatic mapping of low-lying dry-stone walls using high-resolution Airborne LiDAR-derived digital elevation models (DEMs). DEMs overcome visual occlusion by capturing terrain structures hidden beneath vegetation, enabling analysis of structural rather than spectral cues. DINO-CV introduces a self-supervised cross-view pre-training strategy based on knowledge distillation to mitigate data scarcity. It learns invariant visual and geometric representations across multiple DEM derivatives, supporting various vision backbones including ResNet, Wide ResNet, and Vision Transformers. Applied to the UNESCO World Heritage cultural landscape of Budj Bim, Victoria, the method identifies one of Australia's densest collections of colonial dry-stone walls beyond Indigenous heritage contexts. DINO-CV achieves a mean Intersection over Union (mIoU) of 68.6% on test areas and maintains 63.8% mIoU when fine-tuned with only 10% labeled data. These results demonstrate the potential of self-supervised learning on high-resolution DEM derivatives for automated dry-stone wall mapping in vegetated and heritage-rich environments with scarce annotations.
☆ CaMiT: A Time-Aware Car Model Dataset for Classification and Generation NeurIPS 2025
AI systems must adapt to evolving visual environments, especially in domains where object appearances change over time. We introduce Car Models in Time (CaMiT), a fine-grained dataset capturing the temporal evolution of car models, a representative class of technological artifacts. CaMiT includes 787K labeled samples of 190 car models (2007-2023) and 5.1M unlabeled samples (2005-2023), supporting both supervised and self-supervised learning. Static pretraining on in-domain data achieves competitive performance with large-scale generalist models while being more resource-efficient, yet accuracy declines when models are tested across years. To address this, we propose a time-incremental classification setting, a realistic continual learning scenario with emerging, evolving, and disappearing classes. We evaluate two strategies: time-incremental pretraining, which updates the backbone, and time-incremental classifier learning, which updates only the final layer, both improving temporal robustness. Finally, we explore time-aware image generation that leverages temporal metadata during training, yielding more realistic outputs. CaMiT offers a rich benchmark for studying temporal adaptation in fine-grained visual recognition and generation.
comment: To be published in NeurIPS 2025 Track on Datasets and Benchmarks
☆ ImaGGen: Zero-Shot Generation of Co-Speech Semantic Gestures Grounded in Language and Image Input
Human communication combines speech with expressive nonverbal cues such as hand gestures that serve manifold communicative functions. Yet, current generative gesture generation approaches are restricted to simple, repetitive beat gestures that accompany the rhythm of speaking but do not contribute to communicating semantic meaning. This paper tackles a core challenge in co-speech gesture synthesis: generating iconic or deictic gestures that are semantically coherent with a verbal utterance. Such gestures cannot be derived from language input alone, which inherently lacks the visual meaning that is often carried autonomously by gestures. We therefore introduce a zero-shot system that generates gestures from a given language input and additionally is informed by imagistic input, without manual annotation or human intervention. Our method integrates an image analysis pipeline that extracts key object properties such as shape, symmetry, and alignment, together with a semantic matching module that links these visual details to spoken text. An inverse kinematics engine then synthesizes iconic and deictic gestures and combines them with co-generated natural beat gestures for coherent multimodal communication. A comprehensive user study demonstrates the effectiveness of our approach. In scenarios where speech alone was ambiguous, gestures generated by our system significantly improved participants' ability to identify object properties, confirming their interpretability and communicative value. While challenges remain in representing complex shapes, our results highlight the importance of context-aware semantic gestures for creating expressive and collaborative virtual agents or avatars, marking a substantial step forward towards efficient and robust, embodied human-agent interaction. More information and example videos are available here: https://review-anon-io.github.io/ImaGGen.github.io/
☆ One Dinomaly2 Detect Them All: A Unified Framework for Full-Spectrum Unsupervised Anomaly Detection CVPR2025
Unsupervised anomaly detection (UAD) has evolved from building specialized single-class models to unified multi-class models, yet existing multi-class models significantly underperform the most advanced one-for-one counterparts. Moreover, the field has fragmented into specialized methods tailored to specific scenarios (multi-class, 3D, few-shot, etc.), creating deployment barriers and highlighting the need for a unified solution. In this paper, we present Dinomaly2, the first unified framework for full-spectrum image UAD, which bridges the performance gap in multi-class models while seamlessly extending across diverse data modalities and task settings. Guided by the "less is more" philosophy, we demonstrate that the orchestration of five simple element achieves superior performance in a standard reconstruction-based framework. This methodological minimalism enables natural extension across diverse tasks without modification, establishing that simplicity is the foundation of true universality. Extensive experiments on 12 UAD benchmarks demonstrate Dinomaly2's full-spectrum superiority across multiple modalities (2D, multi-view, RGB-3D, RGB-IR), task settings (single-class, multi-class, inference-unified multi-class, few-shot) and application domains (industrial, biological, outdoor). For example, our multi-class model achieves unprecedented 99.9% and 99.3% image-level (I-) AUROC on MVTec-AD and VisA respectively. For multi-view and multi-modal inspection, Dinomaly2 demonstrates state-of-the-art performance with minimum adaptations. Moreover, using only 8 normal examples per class, our method surpasses previous full-shot models, achieving 98.7% and 97.4% I-AUROC on MVTec-AD and VisA. The combination of minimalistic design, computational scalability, and universal applicability positions Dinomaly2 as a unified solution for the full spectrum of real-world anomaly detection applications.
comment: Extended version of CVPR2025
☆ Integrating BIM and UAV-based photogrammetry for Automated 3D Structure Model Segmentation
The advancement of UAV technology has enabled efficient, non-contact structural health monitoring. Combined with photogrammetry, UAVs can capture high-resolution scans and reconstruct detailed 3D models of infrastructure. However, a key challenge remains in segmenting specific structural components from these models-a process traditionally reliant on time-consuming and error-prone manual labeling. To address this issue, we propose a machine learning-based framework for automated segmentation of 3D point clouds. Our approach uses the complementary strengths of real-world UAV-scanned point clouds and synthetic data generated from Building Information Modeling (BIM) to overcome the limitations associated with manual labeling. Validation on a railroad track dataset demonstrated high accuracy in identifying and segmenting major components such as rails and crossties. Moreover, by using smaller-scale datasets supplemented with BIM data, the framework significantly reduced training time while maintaining reasonable segmentation accuracy. This automated approach improves the precision and efficiency of 3D infrastructure model segmentation and advances the integration of UAV and BIM technologies in structural health monitoring and infrastructure management.
☆ ShapeCraft: LLM Agents for Structured, Textured and Interactive 3D Modeling NeurIPS 2025
3D generation from natural language offers significant potential to reduce expert manual modeling efforts and enhance accessibility to 3D assets. However, existing methods often yield unstructured meshes and exhibit poor interactivity, making them impractical for artistic workflows. To address these limitations, we represent 3D assets as shape programs and introduce ShapeCraft, a novel multi-agent framework for text-to-3D generation. At its core, we propose a Graph-based Procedural Shape (GPS) representation that decomposes complex natural language into a structured graph of sub-tasks, thereby facilitating accurate LLM comprehension and interpretation of spatial relationships and semantic shape details. Specifically, LLM agents hierarchically parse user input to initialize GPS, then iteratively refine procedural modeling and painting to produce structured, textured, and interactive 3D assets. Qualitative and quantitative experiments demonstrate ShapeCraft's superior performance in generating geometrically accurate and semantically rich 3D assets compared to existing LLM-based agents. We further show the versatility of ShapeCraft through examples of animated and user-customized editing, highlighting its potential for broader interactive applications.
comment: NeurIPS 2025 Poster
☆ Conveying Meaning through Gestures: An Investigation into Semantic Co-Speech Gesture Generation
This study explores two frameworks for co-speech gesture generation, AQ-GT and its semantically-augmented variant AQ-GT-a, to evaluate their ability to convey meaning through gestures and how humans perceive the resulting movements. Using sentences from the SAGA spatial communication corpus, contextually similar sentences, and novel movement-focused sentences, we conducted a user-centered evaluation of concept recognition and human-likeness. Results revealed a nuanced relationship between semantic annotations and performance. The original AQ-GT framework, lacking explicit semantic input, was surprisingly more effective at conveying concepts within its training domain. Conversely, the AQ-GT-a framework demonstrated better generalization, particularly for representing shape and size in novel contexts. While participants rated gestures from AQ-GT-a as more expressive and helpful, they did not perceive them as more human-like. These findings suggest that explicit semantic enrichment does not guarantee improved gesture generation and that its effectiveness is highly dependent on the context, indicating a potential trade-off between specialization and generalization.
☆ MIRAGE: Agentic Framework for Multimodal Misinformation Detection with Web-Grounded Reasoning
Misinformation spreads across web platforms through billions of daily multimodal posts that combine text and images, overwhelming manual fact-checking capacity. Supervised detection models require domain-specific training data and fail to generalize across diverse manipulation tactics. We present MIRAGE, an inference-time, model-pluggable agentic framework that decomposes multimodal verification into four sequential modules: visual veracity assessment detects AI-generated images, cross-modal consistency analysis identifies out-of-context repurposing, retrieval-augmented factual checking grounds claims in web evidence through iterative question generation, and a calibrated judgment module integrates all signals. MIRAGE orchestrates vision-language model reasoning with targeted web retrieval, outputs structured and citation-linked rationales. On MMFakeBench validation set (1,000 samples), MIRAGE with GPT-4o-mini achieves 81.65% F1 and 75.1% accuracy, outperforming the strongest zero-shot baseline (GPT-4V with MMD-Agent at 74.0% F1) by 7.65 points while maintaining 34.3% false positive rate versus 97.3% for a judge-only baseline. Test set results (5,000 samples) confirm generalization with 81.44% F1 and 75.08% accuracy. Ablation studies show visual verification contributes 5.18 F1 points and retrieval-augmented reasoning contributes 2.97 points. Our results demonstrate that decomposed agentic reasoning with web retrieval can match supervised detector performance without domain-specific training, enabling misinformation detection across modalities where labeled data remains scarce.
comment: 16 pages, 3 tables, 1 figure
☆ Expose Camouflage in the Water: Underwater Camouflaged Instance Segmentation and Dataset
With the development of underwater exploration and marine protection, underwater vision tasks are widespread. Due to the degraded underwater environment, characterized by color distortion, low contrast, and blurring, camouflaged instance segmentation (CIS) faces greater challenges in accurately segmenting objects that blend closely with their surroundings. Traditional camouflaged instance segmentation methods, trained on terrestrial-dominated datasets with limited underwater samples, may exhibit inadequate performance in underwater scenes. To address these issues, we introduce the first underwater camouflaged instance segmentation (UCIS) dataset, abbreviated as UCIS4K, which comprises 3,953 images of camouflaged marine organisms with instance-level annotations. In addition, we propose an Underwater Camouflaged Instance Segmentation network based on Segment Anything Model (UCIS-SAM). Our UCIS-SAM includes three key modules. First, the Channel Balance Optimization Module (CBOM) enhances channel characteristics to improve underwater feature learning, effectively addressing the model's limited understanding of underwater environments. Second, the Frequency Domain True Integration Module (FDTIM) is proposed to emphasize intrinsic object features and reduce interference from camouflage patterns, enhancing the segmentation performance of camouflaged objects blending with their surroundings. Finally, the Multi-scale Feature Frequency Aggregation Module (MFFAM) is designed to strengthen the boundaries of low-contrast camouflaged instances across multiple frequency bands, improving the model's ability to achieve more precise segmentation of camouflaged objects. Extensive experiments on the proposed UCIS4K and public benchmarks show that our UCIS-SAM outperforms state-of-the-art approaches.
☆ PAGE-4D: Disentangled Pose and Geometry Estimation for 4D Perception
Recent 3D feed-forward models, such as the Visual Geometry Grounded Transformer (VGGT), have shown strong capability in inferring 3D attributes of static scenes. However, since they are typically trained on static datasets, these models often struggle in real-world scenarios involving complex dynamic elements, such as moving humans or deformable objects like umbrellas. To address this limitation, we introduce PAGE-4D, a feedforward model that extends VGGT to dynamic scenes, enabling camera pose estimation, depth prediction, and point cloud reconstruction -- all without post-processing. A central challenge in multi-task 4D reconstruction is the inherent conflict between tasks: accurate camera pose estimation requires suppressing dynamic regions, while geometry reconstruction requires modeling them. To resolve this tension, we propose a dynamics-aware aggregator that disentangles static and dynamic information by predicting a dynamics-aware mask -- suppressing motion cues for pose estimation while amplifying them for geometry reconstruction. Extensive experiments show that PAGE-4D consistently outperforms the original VGGT in dynamic scenarios, achieving superior results in camera pose estimation, monocular and video depth estimation, and dense point map reconstruction.
☆ WP-CrackNet: A Collaborative Adversarial Learning Framework for End-to-End Weakly-Supervised Road Crack Detection
Road crack detection is essential for intelligent infrastructure maintenance in smart cities. To reduce reliance on costly pixel-level annotations, we propose WP-CrackNet, an end-to-end weakly-supervised method that trains with only image-level labels for pixel-wise crack detection. WP-CrackNet integrates three components: a classifier generating class activation maps (CAMs), a reconstructor measuring feature inferability, and a detector producing pixel-wise road crack detection results. During training, the classifier and reconstructor alternate in adversarial learning to encourage crack CAMs to cover complete crack regions, while the detector learns from pseudo labels derived from post-processed crack CAMs. This mutual feedback among the three components improves learning stability and detection accuracy. To further boost detection performance, we design a path-aware attention module (PAAM) that fuses high-level semantics from the classifier with low-level structural cues from the reconstructor by modeling spatial and channel-wise dependencies. Additionally, a center-enhanced CAM consistency module (CECCM) is proposed to refine crack CAMs using center Gaussian weighting and consistency constraints, enabling better pseudo-label generation. We create three image-level datasets and extensive experiments show that WP-CrackNet achieves comparable results to supervised methods and outperforms existing weakly-supervised methods, significantly advancing scalable road inspection. The source code package and datasets are available at https://mias.group/WP-CrackNet/.
☆ Detecting streaks in smart telescopes images with Deep Learning
The growing negative impact of the visibility of satellites in the night sky is influencing the practice of astronomy and astrophotograph, both at the amateur and professional levels. The presence of these satellites has the effect of introducing streaks into the images captured during astronomical observation, requiring the application of additional post processing to mitigate the undesirable impact, whether for data loss or cosmetic reasons. In this paper, we show how we test and adapt various Deep Learning approaches to detect streaks in raw astronomical data captured between March 2022 and February 2023 with smart telescopes.
comment: 19 pages, preprint submitted to the Springer CCIS Special Issue on DATA 2024 (currently under editorial processing)
☆ MambaX-Net: Dual-Input Mamba-Enhanced Cross-Attention Network for Longitudinal MRI Segmentation
Active Surveillance (AS) is a treatment option for managing low and intermediate-risk prostate cancer (PCa), aiming to avoid overtreatment while monitoring disease progression through serial MRI and clinical follow-up. Accurate prostate segmentation is an important preliminary step for automating this process, enabling automated detection and diagnosis of PCa. However, existing deep-learning segmentation models are often trained on single-time-point and expertly annotated datasets, making them unsuitable for longitudinal AS analysis, where multiple time points and a scarcity of expert labels hinder their effective fine-tuning. To address these challenges, we propose MambaX-Net, a novel semi-supervised, dual-scan 3D segmentation architecture that computes the segmentation for time point t by leveraging the MRI and the corresponding segmentation mask from the previous time point. We introduce two new components: (i) a Mamba-enhanced Cross-Attention Module, which integrates the Mamba block into cross attention to efficiently capture temporal evolution and long-range spatial dependencies, and (ii) a Shape Extractor Module that encodes the previous segmentation mask into a latent anatomical representation for refined zone delination. Moreover, we introduce a semi-supervised self-training strategy that leverages pseudo-labels generated from a pre-trained nnU-Net, enabling effective learning without expert annotations. MambaX-Net was evaluated on a longitudinal AS dataset, and results showed that it significantly outperforms state-of-the-art U-Net and Transformer-based models, achieving superior prostate zone segmentation even when trained on limited and noisy data.
☆ MUG-V 10B: High-efficiency Training Pipeline for Large Video Generation Models
In recent years, large-scale generative models for visual content (\textit{e.g.,} images, videos, and 3D objects/scenes) have made remarkable progress. However, training large-scale video generation models remains particularly challenging and resource-intensive due to cross-modal text-video alignment, the long sequences involved, and the complex spatiotemporal dependencies. To address these challenges, we present a training framework that optimizes four pillars: (i) data processing, (ii) model architecture, (iii) training strategy, and (iv) infrastructure for large-scale video generation models. These optimizations delivered significant efficiency gains and performance improvements across all stages of data preprocessing, video compression, parameter scaling, curriculum-based pretraining, and alignment-focused post-training. Our resulting model, MUG-V 10B, matches recent state-of-the-art video generators overall and, on e-commerce-oriented video generation tasks, surpasses leading open-source baselines in human evaluations. More importantly, we open-source the complete stack, including model weights, Megatron-Core-based large-scale training code, and inference pipelines for video generation and enhancement. To our knowledge, this is the first public release of large-scale video generation training code that exploits Megatron-Core to achieve high training efficiency and near-linear multi-node scaling, details are available in \href{https://github.com/Shopee-MUG/MUG-V}{our webpage}.
comment: Technical Report; Project Page: \href{https://github.com/Shopee-MUG/MUG-V}
☆ Context-Aware Pseudo-Label Scoring for Zero-Shot Video Summarization
With the rapid proliferation of video content across social media, surveillance, and education platforms, efficiently summarizing long videos into concise yet semantically faithful surrogates has become increasingly vital. Existing supervised methods achieve strong in-domain accuracy by learning from dense annotations but suffer from high labeling costs and limited cross-dataset generalization, while unsupervised approaches, though label-free, often fail to capture high-level human semantics and fine-grained narrative cues. More recently, zero-shot prompting pipelines have leveraged large language models (LLMs) for training-free video summarization, yet remain highly sensitive to handcrafted prompt templates and dataset-specific score normalization. To overcome these limitations, we introduce a rubric-guided, pseudo-labeled prompting framework that transforms a small subset of ground-truth annotations into high-confidence pseudo labels, which are aggregated into structured, dataset-adaptive scoring rubrics guiding interpretable scene evaluation. During inference, first and last segments are scored based solely on their descriptions, whereas intermediate ones incorporate brief contextual summaries of adjacent scenes to assess narrative progression and redundancy. This contextual prompting enables the LLM to balance local salience and global coherence without parameter tuning. On SumMe and TVSum, our method achieves F1 scores of \textbf{57.58} and \textbf{63.05}, surpassing unsupervised and prior zero-shot baselines while approaching supervised performance. The results demonstrate that rubric-guided pseudo labeling effectively stabilizes LLM-based scoring and establishes a general, interpretable zero-shot paradigm for video summarization.
☆ Split-Fuse-Transport: Annotation-Free Saliency via Dual Clustering and Optimal Transport Alignment
Salient object detection (SOD) aims to segment visually prominent regions in images and serves as a foundational task for various computer vision applications. We posit that SOD can now reach near-supervised accuracy without a single pixel-level label, but only when reliable pseudo-masks are available. We revisit the prototype-based line of work and make two key observations. First, boundary pixels and interior pixels obey markedly different geometry; second, the global consistency enforced by optimal transport (OT) is underutilized if prototype quality is weak. To address this, we introduce POTNet, an adaptation of Prototypical Optimal Transport that replaces POT's single k-means step with an entropy-guided dual-clustering head: high-entropy pixels are organized by spectral clustering, low-entropy pixels by k-means, and the two prototype sets are subsequently aligned by OT. This split-fuse-transport design yields sharper, part-aware pseudo-masks in a single forward pass, without handcrafted priors. Those masks supervise a standard MaskFormer-style encoder-decoder, giving rise to AutoSOD, an end-to-end unsupervised SOD pipeline that eliminates SelfMask's offline voting yet improves both accuracy and training efficiency. Extensive experiments on five benchmarks show that AutoSOD outperforms unsupervised methods by up to 26% and weakly supervised methods by up to 36% in F-measure, further narrowing the gap to fully supervised models.
☆ SparseWorld: A Flexible, Adaptive, and Efficient 4D Occupancy World Model Powered by Sparse and Dynamic Queries
Semantic occupancy has emerged as a powerful representation in world models for its ability to capture rich spatial semantics. However, most existing occupancy world models rely on static and fixed embeddings or grids, which inherently limit the flexibility of perception. Moreover, their ``in-place classification" over grids exhibits a potential misalignment with the dynamic and continuous nature of real scenarios.In this paper, we propose SparseWorld, a novel 4D occupancy world model that is flexible, adaptive, and efficient, powered by sparse and dynamic queries. We propose a Range-Adaptive Perception module, in which learnable queries are modulated by the ego vehicle states and enriched with temporal-spatial associations to enable extended-range perception. To effectively capture the dynamics of the scene, we design a State-Conditioned Forecasting module, which replaces classification-based forecasting with regression-guided formulation, precisely aligning the dynamic queries with the continuity of the 4D environment. In addition, We specifically devise a Temporal-Aware Self-Scheduling training strategy to enable smooth and efficient training. Extensive experiments demonstrate that SparseWorld achieves state-of-the-art performance across perception, forecasting, and planning tasks. Comprehensive visualizations and ablation studies further validate the advantages of SparseWorld in terms of flexibility, adaptability, and efficiency. The code is available at https://github.com/MSunDYY/SparseWorld.
comment: Under Review
☆ Initialize to Generalize: A Stronger Initialization Pipeline for Sparse-View 3DGS
Sparse-view 3D Gaussian Splatting (3DGS) often overfits to the training views, leading to artifacts like blurring in novel view rendering. Prior work addresses it either by enhancing the initialization (\emph{i.e.}, the point cloud from Structure-from-Motion (SfM)) or by adding training-time constraints (regularization) to the 3DGS optimization. Yet our controlled ablations reveal that initialization is the decisive factor: it determines the attainable performance band in sparse-view 3DGS, while training-time constraints yield only modest within-band improvements at extra cost. Given initialization's primacy, we focus our design there. Although SfM performs poorly under sparse views due to its reliance on feature matching, it still provides reliable seed points. Thus, building on SfM, our effort aims to supplement the regions it fails to cover as comprehensively as possible. Specifically, we design: (i) frequency-aware SfM that improves low-texture coverage via low-frequency view augmentation and relaxed multi-view correspondences; (ii) 3DGS self-initialization that lifts photometric supervision into additional points, compensating SfM-sparse regions with learned Gaussian centers; and (iii) point-cloud regularization that enforces multi-view consistency and uniform spatial coverage through simple geometric/visibility priors, yielding a clean and reliable point cloud. Our experiments on LLFF and Mip-NeRF360 demonstrate consistent gains in sparse-view settings, establishing our approach as a stronger initialization strategy. Code is available at https://github.com/zss171999645/ItG-GS.
comment: A preprint paper
☆ Rethinking Nighttime Image Deraining via Learnable Color Space Transformation NeurIPS 2025
Compared to daytime image deraining, nighttime image deraining poses significant challenges due to inherent complexities of nighttime scenarios and the lack of high-quality datasets that accurately represent the coupling effect between rain and illumination. In this paper, we rethink the task of nighttime image deraining and contribute a new high-quality benchmark, HQ-NightRain, which offers higher harmony and realism compared to existing datasets. In addition, we develop an effective Color Space Transformation Network (CST-Net) for better removing complex rain from nighttime scenes. Specifically, we propose a learnable color space converter (CSC) to better facilitate rain removal in the Y channel, as nighttime rain is more pronounced in the Y channel compared to the RGB color space. To capture illumination information for guiding nighttime deraining, implicit illumination guidance is introduced enabling the learned features to improve the model's robustness in complex scenarios. Extensive experiments show the value of our dataset and the effectiveness of our method. The source code and datasets are available at https://github.com/guanqiyuan/CST-Net.
comment: Accepted by NeurIPS 2025
☆ From Spatial to Actions: Grounding Vision-Language-Action Model in Spatial Foundation Priors
Existing vision-language-action (VLA) models act in 3D real-world but are typically built on 2D encoders, leaving a spatial reasoning gap that limits generalization and adaptability. Recent 3D integration techniques for VLAs either require specialized sensors and transfer poorly across modalities, or inject weak cues that lack geometry and degrade vision-language alignment. In this work, we introduce FALCON (From Spatial to Action), a novel paradigm that injects rich 3D spatial tokens into the action head. FALCON leverages spatial foundation models to deliver strong geometric priors from RGB alone, and includes an Embodied Spatial Model that can optionally fuse depth, or pose for higher fidelity when available, without retraining or architectural changes. To preserve language reasoning, spatial tokens are consumed by a Spatial-Enhanced Action Head rather than being concatenated into the vision-language backbone. These designs enable FALCON to address limitations in spatial representation, modality transferability, and alignment. In comprehensive evaluations across three simulation benchmarks and eleven real-world tasks, our proposed FALCON achieves state-of-the-art performance, consistently surpasses competitive baselines, and remains robust under clutter, spatial-prompt conditioning, and variations in object scale and height.
comment: Project page: https://falcon-vla.github.io/
☆ Leveraging AV1 motion vectors for Fast and Dense Feature Matching
We repurpose AV1 motion vectors to produce dense sub-pixel correspondences and short tracks filtered by cosine consistency. On short videos, this compressed-domain front end runs comparably to sequential SIFT while using far less CPU, and yields denser matches with competitive pairwise geometry. As a small SfM demo on a 117-frame clip, MV matches register all images and reconstruct 0.46-0.62M points at 0.51-0.53,px reprojection error; BA time grows with match density. These results show compressed-domain correspondences are a practical, resource-efficient front end with clear paths to scaling in full pipelines.
comment: Accepted ICIR 2025, camera-ready version
☆ DeepDetect: Learning All-in-One Dense Keypoints
Keypoint detection is the foundation of many computer vision tasks, including image registration, structure-from motion, 3D reconstruction, visual odometry, and SLAM. Traditional detectors (SIFT, SURF, ORB, BRISK, etc.) and learning based methods (SuperPoint, R2D2, LF-Net, D2-Net, etc.) have shown strong performance yet suffer from key limitations: sensitivity to photometric changes, low keypoint density and repeatability, limited adaptability to challenging scenes, and lack of semantic understanding, often failing to prioritize visually important regions. We present DeepDetect, an intelligent, all-in-one, dense keypoint detector that unifies the strengths of classical detectors using deep learning. Firstly, we create ground-truth masks by fusing outputs of 7 keypoint and 2 edge detectors, extracting diverse visual cues from corners and blobs to prominent edges and textures in the images. Afterwards, a lightweight and efficient model: ESPNet, is trained using these masks as labels, enabling DeepDetect to focus semantically on images while producing highly dense keypoints, that are adaptable to diverse and visually degraded conditions. Evaluations on the Oxford Affine Covariant Regions dataset demonstrate that DeepDetect surpasses other detectors in keypoint density, repeatability, and the number of correct matches, achieving maximum values of 0.5143 (average keypoint density), 0.9582 (average repeatability), and 59,003 (correct matches).
comment: 6 pages, 6 figures, 2 tables, 7 equations
☆ Monitoring Horses in Stalls: From Object to Event Detection
Monitoring the behavior of stalled horses is essential for early detection of health and welfare issues but remains labor-intensive and time-consuming. In this study, we present a prototype vision-based monitoring system that automates the detection and tracking of horses and people inside stables using object detection and multi-object tracking techniques. The system leverages YOLOv11 and BoT-SORT for detection and tracking, while event states are inferred based on object trajectories and spatial relations within the stall. To support development, we constructed a custom dataset annotated with assistance from foundation models CLIP and GroundingDINO. The system distinguishes between five event types and accounts for the camera's blind spots. Qualitative evaluation demonstrated reliable performance for horse-related events, while highlighting limitations in detecting people due to data scarcity. This work provides a foundation for real-time behavioral monitoring in equine facilities, with implications for animal welfare and stable management.
comment: 12 pages, 4 figures, 4 tables
☆ MILES: Modality-Informed Learning Rate Scheduler for Balancing Multimodal Learning IJCNN'25
The aim of multimodal neural networks is to combine diverse data sources, referred to as modalities, to achieve enhanced performance compared to relying on a single modality. However, training of multimodal networks is typically hindered by modality overfitting, where the network relies excessively on one of the available modalities. This often yields sub-optimal performance, hindering the potential of multimodal learning and resulting in marginal improvements relative to unimodal models. In this work, we present the Modality-Informed Learning ratE Scheduler (MILES) for training multimodal joint fusion models in a balanced manner. MILES leverages the differences in modality-wise conditional utilization rates during training to effectively balance multimodal learning. The learning rate is dynamically adjusted during training to balance the speed of learning from each modality by the multimodal model, aiming for enhanced performance in both multimodal and unimodal predictions. We extensively evaluate MILES on four multimodal joint fusion tasks and compare its performance to seven state-of-the-art baselines. Our results show that MILES outperforms all baselines across all tasks and fusion methods considered in our study, effectively balancing modality usage during training. This results in improved multimodal performance and stronger modality encoders, which can be leveraged when dealing with unimodal samples or absent modalities. Overall, our work highlights the impact of balancing multimodal learning on improving model performance.
comment: Accepted and presented at the 2025 International Joint Conference on Neural Networks (IJCNN'25). The paper was awarded an honorable mention (best 4 papers)
☆ Closed-Loop Transfer for Weakly-supervised Affordance Grounding ICCV 2025
Humans can perform previously unexperienced interactions with novel objects simply by observing others engage with them. Weakly-supervised affordance grounding mimics this process by learning to locate object regions that enable actions on egocentric images, using exocentric interaction images with image-level annotations. However, extracting affordance knowledge solely from exocentric images and transferring it one-way to egocentric images limits the applicability of previous works in complex interaction scenarios. Instead, this study introduces LoopTrans, a novel closed-loop framework that not only transfers knowledge from exocentric to egocentric but also transfers back to enhance exocentric knowledge extraction. Within LoopTrans, several innovative mechanisms are introduced, including unified cross-modal localization and denoising knowledge distillation, to bridge domain gaps between object-centered egocentric and interaction-centered exocentric images while enhancing knowledge transfer. Experiments show that LoopTrans achieves consistent improvements across all metrics on image and video benchmarks, even handling challenging scenarios where object interaction regions are fully occluded by the human body.
comment: Accepted at ICCV 2025
☆ Latent Spaces Beyond Synthesis: From GANs to Diffusion Models
This paper examines the evolving nature of internal representations in generative visual models, focusing on the conceptual and technical shift from GANs and VAEs to diffusion-based architectures. Drawing on Beatrice Fazi's account of synthesis as the amalgamation of distributed representations, we propose a distinction between "synthesis in a strict sense", where a compact latent space wholly determines the generative process, and "synthesis in a broad sense," which characterizes models whose representational labor is distributed across layers. Through close readings of model architectures and a targeted experimental setup that intervenes in layerwise representations, we show how diffusion models fragment the burden of representation and thereby challenge assumptions of unified internal space. By situating these findings within media theoretical frameworks and critically engaging with metaphors such as the latent space and the Platonic Representation Hypothesis, we argue for a reorientation of how generative AI is understood: not as a direct synthesis of content, but as an emergent configuration of specialized processes.
comment: Presented and published at Ethics and Aesthetics of Artificial Intelligence Conference (EA-AI'25)
☆ Facial Expression-based Parkinson's Disease Severity Diagnosis via Feature Fusion and Adaptive Class Balancing
Parkinson's disease (PD) severity diagnosis is crucial for early detecting potential patients and adopting tailored interventions. Diagnosing PD based on facial expression is grounded in PD patients' "masked face" symptom and gains growing interest recently for its convenience and affordability. However, current facial expression-based approaches often rely on single type of expression which can lead to misdiagnosis, and ignore the class imbalance across different PD stages which degrades the prediction performance. Moreover, most existing methods focus on binary classification (i.e., PD / non-PD) rather than diagnosing the severity of PD. To address these issues, we propose a new facial expression-based method for PD severity diagnosis which integrates multiple facial expression features through attention-based feature fusion. Moreover, we mitigate the class imbalance problem via an adaptive class balancing strategy which dynamically adjusts the contribution of training samples based on their class distribution and classification difficulty. Experimental results demonstrate the promising performance of the proposed method for PD severity diagnosis, as well as the efficacy of attention-based feature fusion and adaptive class balancing.
comment: 3 pages, 2 figures, accepted by MIND 2025
☆ Beyond Real Faces: Synthetic Datasets Can Achieve Reliable Recognition Performance without Privacy Compromise
The deployment of facial recognition systems has created an ethical dilemma: achieving high accuracy requires massive datasets of real faces collected without consent, leading to dataset retractions and potential legal liabilities under regulations like GDPR. While synthetic facial data presents a promising privacy-preserving alternative, the field lacks comprehensive empirical evidence of its viability. This study addresses this critical gap through extensive evaluation of synthetic facial recognition datasets. We present a systematic literature review identifying 25 synthetic facial recognition datasets (2018-2025), combined with rigorous experimental validation. Our methodology examines seven key requirements for privacy-preserving synthetic data: identity leakage prevention, intra-class variability, identity separability, dataset scale, ethical data sourcing, bias mitigation, and benchmark reliability. Through experiments involving over 10 million synthetic samples, extended by a comparison of results reported on five standard benchmarks, we provide the first comprehensive empirical assessment of synthetic data's capability to replace real datasets. Best-performing synthetic datasets (VariFace, VIGFace) achieve recognition accuracies of 95.67% and 94.91% respectively, surpassing established real datasets including CASIA-WebFace (94.70%). While those images remain private, publicly available alternatives Vec2Face (93.52%) and CemiFace (93.22%) come close behind. Our findings reveal that they ensure proper intra-class variability while maintaining identity separability. Demographic bias analysis shows that, even though synthetic data inherits limited biases, it offers unprecedented control for bias mitigation through generation parameters. These results establish synthetic facial data as a scientifically viable and ethically imperative alternative for facial recognition research.
☆ Recurrent Attention-based Token Selection for Efficient Streaming Video-LLMs NeurIPS 2025
Video Large Language Models (Video-LLMs) excel at understanding videos in-context, provided they have full access to the video when answering queries. However, these models face challenges in streaming scenarios where hour-long videos must be processed online, and questions need timely responses. In this work, we propose a training-free approach compatible with standard Video-LLMs, leveraging three key concepts: 1) LLM-informed selection of visual tokens to identify those that the LLM has attended to and contributed to its understanding of each short clip. Our attention-based selection allows us to discard up to ~95% of unimportant visual tokens with minimal performance loss; 2) Recurrent processing of past selected tokens to generate temporally coherent understanding of each processed clip; 3) Caption-based question answering for lightweight and accurate responses. Our method achieves state-of-the-art performance on streaming video benchmarks, striking a balance between efficiency and effectiveness.
comment: NeurIPS 2025
☆ M2H: Multi-Task Learning with Efficient Window-Based Cross-Task Attention for Monocular Spatial Perception IROS 2025
Deploying real-time spatial perception on edge devices requires efficient multi-task models that leverage complementary task information while minimizing computational overhead. This paper introduces Multi-Mono-Hydra (M2H), a novel multi-task learning framework designed for semantic segmentation and depth, edge, and surface normal estimation from a single monocular image. Unlike conventional approaches that rely on independent single-task models or shared encoder-decoder architectures, M2H introduces a Window-Based Cross-Task Attention Module that enables structured feature exchange while preserving task-specific details, improving prediction consistency across tasks. Built on a lightweight ViT-based DINOv2 backbone, M2H is optimized for real-time deployment and serves as the foundation for monocular spatial perception systems supporting 3D scene graph construction in dynamic environments. Comprehensive evaluations show that M2H outperforms state-of-the-art multi-task models on NYUDv2, surpasses single-task depth and semantic baselines on Hypersim, and achieves superior performance on the Cityscapes dataset, all while maintaining computational efficiency on laptop hardware. Beyond benchmarks, M2H is validated on real-world data, demonstrating its practicality in spatial perception tasks.
comment: Accepted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025). 8 pages, 7 figures
☆ Exploring The Missing Semantics In Event Modality
Event cameras offer distinct advantages such as low latency, high dynamic range, and efficient motion capture. However, event-to-video reconstruction (E2V), a fundamental event-based vision task, remains challenging, particularly for reconstructing and recovering semantic information. This is primarily due to the nature of the event camera, as it only captures intensity changes, ignoring static objects and backgrounds, resulting in a lack of semantic information in captured event modality. Further, semantic information plays a crucial role in video and frame reconstruction, yet is often overlooked by existing E2V approaches. To bridge this gap, we propose Semantic-E2VID, an E2V framework that explores the missing visual semantic knowledge in event modality and leverages it to enhance event-to-video reconstruction. Specifically, Semantic-E2VID introduces a cross-modal feature alignment (CFA) module to transfer the robust visual semantics from a frame-based vision foundation model, the Segment Anything Model (SAM), to the event encoder, while aligning the high-level features from distinct modalities. To better utilize the learned semantic feature, we further propose a semantic-aware feature fusion (SFF) block to integrate learned semantics in frame modality to form event representations with rich semantics that can be decoded by the event decoder. Further, to facilitate the reconstruction of semantic information, we propose a novel Semantic Perceptual E2V Supervision that helps the model to reconstruct semantic details by leveraging SAM-generated categorical labels. Extensive experiments demonstrate that Semantic-E2VID significantly enhances frame quality, outperforming state-of-the-art E2V methods across multiple benchmarks. The sample code is included in the supplementary material.
☆ Nearest-Class Mean and Logits Agreement for Wildlife Open-Set Recognition
Current state-of-the-art Wildlife classification models are trained under the closed world setting. When exposed to unknown classes, they remain overconfident in their predictions. Open-set Recognition (OSR) aims to classify known classes while rejecting unknown samples. Several OSR methods have been proposed to model the closed-set distribution by observing the feature, logit, or softmax probability space. A significant drawback of many existing approaches is the requirement to retrain the pre-trained classification model with the OSR-specific strategy. This study contributes a post-processing OSR method that measures the agreement between the models' features and predicted logits. We propose a probability distribution based on an input's distance to its Nearest Class Mean (NCM). The NCM-based distribution is then compared with the softmax probabilities from the logit space to measure agreement between the NCM and the classification head. Our proposed strategy ranks within the top three on two evaluated datasets, showing consistent performance across the two datasets. In contrast, current state-of-the-art methods excel on a single dataset. We achieve an AUROC of 93.41 and 95.35 for African and Swedish animals. The code can be found https://github.com/Applied-Representation-Learning-Lab/OSR.
☆ iDETEX: Empowering MLLMs for Intelligent DETailed EXplainable IQA ICCV 2025
Image Quality Assessment (IQA) has progressed from scalar quality prediction to more interpretable, human-aligned evaluation paradigms. In this work, we address the emerging challenge of detailed and explainable IQA by proposing iDETEX-a unified multimodal large language model (MLLM) capable of simultaneously performing three key tasks: quality grounding, perception, and description. To facilitate efficient and generalizable training across these heterogeneous subtasks, we design a suite of task-specific offline augmentation modules and a data mixing strategy. These are further complemented by online enhancement strategies to fully exploit multi-sourced supervision. We validate our approach on the large-scale ViDA-UGC benchmark, where iDETEX achieves state-of-the-art performance across all subtasks. Our model ranks first in the ICCV MIPI 2025 Detailed Image Quality Assessment Challenge, demonstrating its effectiveness and robustness in delivering accurate and interpretable quality assessments.
comment: Accepted to ICCV 2025 Workshop
☆ CharDiff: A Diffusion Model with Character-Level Guidance for License Plate Image Restoration
The significance of license plate image restoration goes beyond the preprocessing stage of License Plate Recognition (LPR) systems, as it also serves various purposes, including increasing evidential value, enhancing the clarity of visual interface, and facilitating further utilization of license plate images. We propose a novel diffusion-based framework with character-level guidance, CharDiff, which effectively restores and recognizes severely degraded license plate images captured under realistic conditions. CharDiff leverages fine-grained character-level priors extracted through external segmentation and Optical Character Recognition (OCR) modules tailored for low-quality license plate images. For precise and focused guidance, CharDiff incorporates a novel Character-guided Attention through Region-wise Masking (CHARM) module, which ensures that each character's guidance is restricted to its own region, thereby avoiding interference with other regions. In experiments, CharDiff significantly outperformed the baseline restoration models in both restoration quality and recognition accuracy, achieving a 28% relative reduction in CER on the Roboflow-LP dataset, compared to the best-performing baseline model. These results indicate that the structured character-guided conditioning effectively enhances the robustness of diffusion-based license plate restoration and recognition in practical deployment scenarios.
comment: 11 pages, 6 figures
☆ A Single Set of Adversarial Clothes Breaks Multiple Defense Methods in the Physical World
In recent years, adversarial attacks against deep learning-based object detectors in the physical world have attracted much attention. To defend against these attacks, researchers have proposed various defense methods against adversarial patches, a typical form of physically-realizable attack. However, our experiments showed that simply enlarging the patch size could make these defense methods fail. Motivated by this, we evaluated various defense methods against adversarial clothes which have large coverage over the human body. Adversarial clothes provide a good test case for adversarial defense against patch-based attacks because they not only have large sizes but also look more natural than a large patch on humans. Experiments show that all the defense methods had poor performance against adversarial clothes in both the digital world and the physical world. In addition, we crafted a single set of clothes that broke multiple defense methods on Faster R-CNN. The set achieved an Attack Success Rate (ASR) of 96.06% against the undefended detector and over 64.84% ASRs against nine defended models in the physical world, unveiling the common vulnerability of existing adversarial defense methods against adversarial clothes. Code is available at: https://github.com/weiz0823/adv-clothes-break-multiple-defenses.
comment: 13 pages, 8 figures
☆ CausalMamba: Scalable Conditional State Space Models for Neural Causal Inference
We introduce CausalMamba, a scalable framework that addresses fundamental limitations in fMRI-based causal inference: the ill-posed nature of inferring neural causality from hemodynamically distorted BOLD signals and the computational intractability of existing methods like Dynamic Causal Modeling (DCM). Our approach decomposes this complex inverse problem into two tractable stages: BOLD deconvolution to recover latent neural activity, followed by causal graph inference using a novel Conditional Mamba architecture. On simulated data, CausalMamba achieves 37% higher accuracy than DCM. Critically, when applied to real task fMRI data, our method recovers well-established neural pathways with 88% fidelity, whereas conventional approaches fail to identify these canonical circuits in over 99% of subjects. Furthermore, our network analysis of working memory data reveals that the brain strategically shifts its primary causal hub-recruiting executive or salience networks depending on the stimulus-a sophisticated reconfiguration that remains undetected by traditional methods. This work provides neuroscientists with a practical tool for large-scale causal inference that captures both fundamental circuit motifs and flexible network dynamics underlying cognitive function.
☆ LongInsightBench: A Comprehensive Benchmark for Evaluating Omni-Modal Models on Human-Centric Long-Video Understanding
We introduce \textbf{LongInsightBench}, the first benchmark designed to assess models' ability to understand long videos, with a focus on human language, viewpoints, actions, and other contextual elements, while integrating \textbf{visual, audio, and text} modalities. Our benchmark excels in three key areas: \textbf{a) Long-Duration, Information-Dense Videos:} We carefully select approximately 1,000 videos from open-source datasets FineVideo based on duration limit and the information density of both visual and audio modalities, focusing on content like lectures, interviews, and vlogs, which contain rich language elements. \textbf{b) Diverse and Challenging Task Scenarios:} We have designed six challenging task scenarios, including both Intra-Event and Inter-Event Tasks. \textbf{c) Rigorous and Comprehensive Quality Assurance Pipelines:} We have developed a three-step, semi-automated data quality assurance pipeline to ensure the difficulty and validity of the synthesized questions and answer options. Based on LongInsightBench, we designed a series of experiments. Experimental results shows that Omni-modal models(OLMs) still face challenge in tasks requiring precise temporal localization (T-Loc) and long-range causal inference (CE-Caus). Extended experiments reveal the information loss and processing bias in multi-modal fusion of OLMs. Our dataset and code is available at https://anonymous.4open.science/r/LongInsightBench-910F/.
comment: Submitted to ARR Rolling Review
☆ Exploring Structural Degradation in Dense Representations for Self-supervised Learning NeurIPS 2025
In this work, we observe a counterintuitive phenomenon in self-supervised learning (SSL): longer training may impair the performance of dense prediction tasks (e.g., semantic segmentation). We refer to this phenomenon as Self-supervised Dense Degradation (SDD) and demonstrate its consistent presence across sixteen state-of-the-art SSL methods with various losses, architectures, and datasets. When the model performs suboptimally on dense tasks at the end of training, measuring the performance during training becomes essential. However, evaluating dense performance effectively without annotations remains an open challenge. To tackle this issue, we introduce a Dense representation Structure Estimator (DSE), composed of a class-relevance measure and an effective dimensionality measure. The proposed DSE is both theoretically grounded and empirically validated to be closely correlated with the downstream performance. Based on this metric, we introduce a straightforward yet effective model selection strategy and a DSE-based regularization method. Experiments on sixteen SSL methods across four benchmarks confirm that model selection improves mIoU by $3.0\%$ on average with negligible computational cost. Additionally, DSE regularization consistently mitigates the effects of dense degradation. Code is available at https://github.com/EldercatSAM/SSL-Degradation.
comment: Accepted by NeurIPS 2025
☆ Machine Vision-Based Surgical Lighting System:Design and Implementation
Effortless and ergonomically designed surgical lighting is critical for precision and safety during procedures. However, traditional systems often rely on manual adjustments, leading to surgeon fatigue, neck strain, and inconsistent illumination due to drift and shadowing. To address these challenges, we propose a novel surgical lighting system that leverages the YOLOv11 object detection algorithm to identify a blue marker placed above the target surgical site. A high-power LED light source is then directed to the identified location using two servomotors equipped with tilt-pan brackets. The YOLO model achieves 96.7% mAP@50 on the validation set consisting of annotated images simulating surgical scenes with the blue spherical marker. By automating the lighting process, this machine vision-based solution reduces physical strain on surgeons, improves consistency in illumination, and supports improved surgical outcomes.
☆ SG-CLDFF: A Novel Framework for Automated White Blood Cell Classification and Segmentation
Accurate segmentation and classification of white blood cells (WBCs) in microscopic images are essential for diagnosis and monitoring of many hematological disorders, yet remain challenging due to staining variability, complex backgrounds, and class imbalance. In this paper, we introduce a novel Saliency-Guided Cross-Layer Deep Feature Fusion framework (SG-CLDFF) that tightly integrates saliency-driven preprocessing with multi-scale deep feature aggregation to improve both robustness and interpretability for WBC analysis. SG-CLDFF first computes saliency priors to highlight candidate WBC regions and guide subsequent feature extraction. A lightweight hybrid backbone (EfficientSwin-style) produces multi-resolution representations, which are fused by a ResNeXt-CC-inspired cross-layer fusion module to preserve complementary information from shallow and deep layers. The network is trained in a multi-task setup with concurrent segmentation and cell-type classification heads, using class-aware weighted losses and saliency-alignment regularization to mitigate imbalance and suppress background activation. Interpretability is enforced through Grad-CAM visualizations and saliency consistency checks, allowing model decisions to be inspected at the regional level. We validate the framework on standard public benchmarks (BCCD, LISC, ALL-IDB), reporting consistent gains in IoU, F1, and classification accuracy compared to strong CNN and transformer baselines. An ablation study also demonstrates the individual contributions of saliency preprocessing and cross-layer fusion. SG-CLDFF offers a practical and explainable path toward more reliable automated WBC analysis in clinical workflows.
☆ Enhanced Motion Forecasting with Plug-and-Play Multimodal Large Language Models IROS 2025
Current autonomous driving systems rely on specialized models for perceiving and predicting motion, which demonstrate reliable performance in standard conditions. However, generalizing cost-effectively to diverse real-world scenarios remains a significant challenge. To address this, we propose Plug-and-Forecast (PnF), a plug-and-play approach that augments existing motion forecasting models with multimodal large language models (MLLMs). PnF builds on the insight that natural language provides a more effective way to describe and handle complex scenarios, enabling quick adaptation to targeted behaviors. We design prompts to extract structured scene understanding from MLLMs and distill this information into learnable embeddings to augment existing behavior prediction models. Our method leverages the zero-shot reasoning capabilities of MLLMs to achieve significant improvements in motion prediction performance, while requiring no fine-tuning -- making it practical to adopt. We validate our approach on two state-of-the-art motion forecasting models using the Waymo Open Motion Dataset and the nuScenes Dataset, demonstrating consistent performance improvements across both benchmarks.
comment: In proceedings of IROS 2025
☆ FineVision: Open Data Is All You Need
The advancement of vision-language models (VLMs) is hampered by a fragmented landscape of inconsistent and contaminated public datasets. We introduce FineVision, a meticulously collected, curated, and unified corpus of 24 million samples - the largest open resource of its kind. We unify more than 200 sources into 185 subsets via a semi-automated, human-in-the-loop pipeline: automation performs bulk ingestion and schema mapping, while reviewers audit mappings and spot-check outputs to verify faithful consumption of annotations, appropriate formatting and diversity, and safety; issues trigger targeted fixes and re-runs. The workflow further applies rigorous de-duplication within and across sources and decontamination against 66 public benchmarks. FineVision also encompasses agentic/GUI tasks with a unified action space; reviewers validate schemas and inspect a sample of trajectories to confirm executable fidelity. Models trained on FineVision consistently outperform those trained on existing open mixtures across a broad evaluation suite, underscoring the benefits of scale, data hygiene, and balanced automation with human oversight. We release the corpus and curation tools to accelerate data-centric VLM research.
☆ Fair and Interpretable Deepfake Detection in Videos
Existing deepfake detection methods often exhibit bias, lack transparency, and fail to capture temporal information, leading to biased decisions and unreliable results across different demographic groups. In this paper, we propose a fairness-aware deepfake detection framework that integrates temporal feature learning and demographic-aware data augmentation to enhance fairness and interpretability. Our method leverages sequence-based clustering for temporal modeling of deepfake videos and concept extraction to improve detection reliability while also facilitating interpretable decisions for non-expert users. Additionally, we introduce a demography-aware data augmentation method that balances underrepresented groups and applies frequency-domain transformations to preserve deepfake artifacts, thereby mitigating bias and improving generalization. Extensive experiments on FaceForensics++, DFD, Celeb-DF, and DFDC datasets using state-of-the-art (SoTA) architectures (Xception, ResNet) demonstrate the efficacy of the proposed method in obtaining the best tradeoff between fairness and accuracy when compared to SoTA.
comment: 10 pages (including References)
☆ From Preferences to Prejudice: The Role of Alignment Tuning in Shaping Social Bias in Video Diffusion Models
Recent advances in video diffusion models have significantly enhanced text-to-video generation, particularly through alignment tuning using reward models trained on human preferences. While these methods improve visual quality, they can unintentionally encode and amplify social biases. To systematically trace how such biases evolve throughout the alignment pipeline, we introduce VideoBiasEval, a comprehensive diagnostic framework for evaluating social representation in video generation. Grounded in established social bias taxonomies, VideoBiasEval employs an event-based prompting strategy to disentangle semantic content (actions and contexts) from actor attributes (gender and ethnicity). It further introduces multi-granular metrics to evaluate (1) overall ethnicity bias, (2) gender bias conditioned on ethnicity, (3) distributional shifts in social attributes across model variants, and (4) the temporal persistence of bias within videos. Using this framework, we conduct the first end-to-end analysis connecting biases in human preference datasets, their amplification in reward models, and their propagation through alignment-tuned video diffusion models. Our results reveal that alignment tuning not only strengthens representational biases but also makes them temporally stable, producing smoother yet more stereotyped portrayals. These findings highlight the need for bias-aware evaluation and mitigation throughout the alignment process to ensure fair and socially responsible video generation.
☆ Taming Modality Entanglement in Continual Audio-Visual Segmentation
Recently, significant progress has been made in multi-modal continual learning, aiming to learn new tasks sequentially in multi-modal settings while preserving performance on previously learned ones. However, existing methods mainly focus on coarse-grained tasks, with limitations in addressing modality entanglement in fine-grained continual learning settings. To bridge this gap, we introduce a novel Continual Audio-Visual Segmentation (CAVS) task, aiming to continuously segment new classes guided by audio. Through comprehensive analysis, two critical challenges are identified: 1) multi-modal semantic drift, where a sounding objects is labeled as background in sequential tasks; 2) co-occurrence confusion, where frequent co-occurring classes tend to be confused. In this work, a Collision-based Multi-modal Rehearsal (CMR) framework is designed to address these challenges. Specifically, for multi-modal semantic drift, a Multi-modal Sample Selection (MSS) strategy is proposed to select samples with high modal consistency for rehearsal. Meanwhile, for co-occurence confusion, a Collision-based Sample Rehearsal (CSR) mechanism is designed, allowing for the increase of rehearsal sample frequency of those confusable classes during training process. Moreover, we construct three audio-visual incremental scenarios to verify effectiveness of our method. Comprehensive experiments demonstrate that our method significantly outperforms single-modal continual learning methods.
☆ When One Moment Isn't Enough: Multi-Moment Retrieval with Cross-Moment Interactions NeurIPS 2025
Existing Moment retrieval (MR) methods focus on Single-Moment Retrieval (SMR). However, one query can correspond to multiple relevant moments in real-world applications. This makes the existing datasets and methods insufficient for video temporal grounding. By revisiting the gap between current MR tasks and real-world applications, we introduce a high-quality datasets called QVHighlights Multi-Moment Dataset (QV-M$^2$), along with new evaluation metrics tailored for multi-moment retrieval (MMR). QV-M$^2$ consists of 2,212 annotations covering 6,384 video segments. Building on existing efforts in MMR, we propose a framework called FlashMMR. Specifically, we propose a Multi-moment Post-verification module to refine the moment boundaries. We introduce constrained temporal adjustment and subsequently leverage a verification module to re-evaluate the candidate segments. Through this sophisticated filtering pipeline, low-confidence proposals are pruned, and robust multi-moment alignment is achieved. We retrain and evaluate 6 existing MR methods on QV-M$^2$ and QVHighlights under both SMR and MMR settings. Results show that QV-M$^2$ serves as an effective benchmark for training and evaluating MMR models, while FlashMMR provides a strong baseline. Specifically, on QV-M$^2$, it achieves improvements over prior SOTA method by 3.00% on G-mAP, 2.70% on mAP@3+tgt, and 2.56% on mR@3. The proposed benchmark and method establish a foundation for advancing research in more realistic and challenging video temporal grounding scenarios. Code is released at https://github.com/Zhuo-Cao/QV-M2.
comment: Accepted to NeurIPS 2025
☆ $\mathcal{V}isi\mathcal{P}runer$: Decoding Discontinuous Cross-Modal Dynamics for Efficient Multimodal LLMs EMNLP 2025
Multimodal Large Language Models (MLLMs) have achieved strong performance across vision-language tasks, but suffer from significant computational overhead due to the quadratic growth of attention computations with the number of multimodal tokens. Though efforts have been made to prune tokens in MLLMs, \textit{they lack a fundamental understanding of how MLLMs process and fuse multimodal information.} Through systematic analysis, we uncover a \textbf{three-stage} cross-modal interaction process: (1) Shallow layers recognize task intent, with visual tokens acting as passive attention sinks; (2) Cross-modal fusion occurs abruptly in middle layers, driven by a few critical visual tokens; (3) Deep layers discard vision tokens, focusing solely on linguistic refinement. Based on these findings, we propose \emph{VisiPruner}, a training-free pruning framework that reduces up to 99\% of vision-related attention computations and 53.9\% of FLOPs on LLaVA-v1.5 7B. It significantly outperforms existing token pruning methods and generalizes across diverse MLLMs. Beyond pruning, our insights further provide actionable guidelines for training efficient MLLMs by aligning model architecture with its intrinsic layer-wise processing dynamics. Our code is available at: https://github.com/EIT-NLP/VisiPruner.
comment: EMNLP 2025 Main
☆ Optimizing DINOv2 with Registers for Face Anti-Spoofing ICCV 2025
Face recognition systems are designed to be robust against variations in head pose, illumination, and image blur during capture. However, malicious actors can exploit these systems by presenting a face photo of a registered user, potentially bypassing the authentication process. Such spoofing attacks must be detected prior to face recognition. In this paper, we propose a DINOv2-based spoofing attack detection method to discern minute differences between live and spoofed face images. Specifically, we employ DINOv2 with registers to extract generalizable features and to suppress perturbations in the attention mechanism, which enables focused attention on essential and minute features. We demonstrate the effectiveness of the proposed method through experiments conducted on the dataset provided by ``The 6th Face Anti-Spoofing Workshop: Unified Physical-Digital Attacks Detection@ICCV2025'' and SiW dataset.
comment: ICCV 2025 Workshop FAS
☆ EndoCIL: A Class-Incremental Learning Framework for Endoscopic Image Classification
Class-incremental learning (CIL) for endoscopic image analysis is crucial for real-world clinical applications, where diagnostic models should continuously adapt to evolving clinical data while retaining performance on previously learned ones. However, existing replay-based CIL methods fail to effectively mitigate catastrophic forgetting due to severe domain discrepancies and class imbalance inherent in endoscopic imaging. To tackle these challenges, we propose EndoCIL, a novel and unified CIL framework specifically tailored for endoscopic image diagnosis. EndoCIL incorporates three key components: Maximum Mean Discrepancy Based Replay (MDBR), employing a distribution-aligned greedy strategy to select diverse and representative exemplars, Prior Regularized Class Balanced Loss (PRCBL), designed to alleviate both inter-phase and intra-phase class imbalance by integrating prior class distributions and balance weights into the loss function, and Calibration of Fully-Connected Gradients (CFG), which adjusts the classifier gradients to mitigate bias toward new classes. Extensive experiments conducted on four public endoscopic datasets demonstrate that EndoCIL generally outperforms state-of-the-art CIL methods across varying buffer sizes and evaluation metrics. The proposed framework effectively balances stability and plasticity in lifelong endoscopic diagnosis, showing promising potential for clinical scalability and deployment.
☆ Round Outcome Prediction in VALORANT Using Tactical Features from Video Analysis
Recently, research on predicting match outcomes in esports has been actively conducted, but much of it is based on match log data and statistical information. This research targets the FPS game VALORANT, which requires complex strategies, and aims to build a round outcome prediction model by analyzing minimap information in match footage. Specifically, based on the video recognition model TimeSformer, we attempt to improve prediction accuracy by incorporating detailed tactical features extracted from minimap information, such as character position information and other in-game events. This paper reports preliminary results showing that a model trained on a dataset augmented with such tactical event labels achieved approximately 81% prediction accuracy, especially from the middle phases of a round onward, significantly outperforming a model trained on a dataset with the minimap information itself. This suggests that leveraging tactical features from match footage is highly effective for predicting round outcomes in VALORANT.
comment: Accepted to IEEE 2025 Conference on Games
☆ From Pixels to People: Satellite-Based Mapping and Quantification of Riverbank Erosion and Lost Villages in Bangladesh
The great rivers of Bangladesh, arteries of commerce and sustenance, are also agents of relentless destruction. Each year, they swallow whole villages and vast tracts of farmland, erasing communities from the map and displacing thousands of families. To track this slow-motion catastrophe has, until now, been a Herculean task for human analysts. Here we show how a powerful general-purpose vision model, the Segment Anything Model (SAM), can be adapted to this task with remarkable precision. To do this, we assembled a new dataset - a digital chronicle of loss compiled from historical Google Earth imagery of Bangladesh's most vulnerable regions, including Mokterer Char Union, Kedarpur Union, Balchipara village, and Chowhali Upazila, from 2003 to 2025. Crucially, this dataset is the first to include manually annotated data on the settlements that have vanished beneath the water. Our method first uses a simple color-channel analysis to provide a rough segmentation of land and water, and then fine-tunes SAM's mask decoder to recognize the subtle signatures of riverbank erosion. The resulting model demonstrates a keen eye for this destructive process, achieving a mean Intersection over Union of 86.30% and a Dice score of 92.60% - a performance that significantly surpasses traditional methods and off-the-shelf deep learning models. This work delivers three key contributions: the first annotated dataset of disappeared settlements in Bangladesh due to river erosion; a specialized AI model fine-tuned for this critical task; and a method for quantifying land loss with compelling visual evidence. Together, these tools provide a powerful new lens through which policymakers and disaster management agencies can monitor erosion, anticipate its trajectory, and ultimately protect the vulnerable communities in its path.
comment: Submitted to the International Conference on Data and Applied Analytics (IDAA 2025). 15 pages, 5 figures, 4 tables
☆ ZSPAPrune: Zero-Shot Prompt-Aware Token Pruning for Vision-Language Models
As the capabilities of Vision-Language Models (VLMs) advance, they can process increasingly large inputs, which, unlike in LLMs, generates significant visual token redundancy and leads to prohibitive inference costs. While many methods aim to reduce these costs by pruning visual tokens, existing approaches, whether based on attention or diversity, typically neglect the guidance of the text prompt and thus fail to prioritize task relevance. In this work, we propose a novel, zero-shot method that reframes the problem by introducing a prompt-aware perspective, explicitly modeling visual token pruning as a balance between task relevance and information diversity. Our hierarchical approach first selects a core set of task-relevant visual tokens and then supplements them with diversity tokens to preserve broader context. Experiments across multiple models and benchmarks show that our method achieves performance that matches or surpasses the state-of-the-art with only minimal accuracy loss, even when pruning up to 90\% of the tokens. Furthermore, these gains are accompanied by significant reductions in GPU memory footprint and inference latency.
☆ HIDISC: A Hyperbolic Framework for Domain Generalization with Generalized Category Discovery NeurIPS
Generalized Category Discovery (GCD) aims to classify test-time samples into either seen categories** -- available during training -- or novel ones, without relying on label supervision. Most existing GCD methods assume simultaneous access to labeled and unlabeled data during training and arising from the same domain, limiting applicability in open-world scenarios involving distribution shifts. Domain Generalization with GCD (DG-GCD) lifts this constraint by requiring models to generalize to unseen domains containing novel categories, without accessing targetdomain data during training. The only prior DG-GCD method, DG2CD-Net, relies on episodic training with multiple synthetic domains and task vector aggregation, incurring high computational cost and error accumulation. We propose HIDISC, a hyperbolic representation learning framework that achieves domain and category-level generalization without episodic simulation. To expose the model to minimal but diverse domain variations, we augment the source domain using GPT-guided diffusion, avoiding overfitting while maintaining efficiency. To structure the representation space, we introduce Tangent CutMix, a curvature-aware interpolation that synthesizes pseudo-novel samples in tangent space, preserving manifold consistency. A unified loss -- combining penalized Busemann alignment, hybrid hyperbolic contrastive regularization, and adaptive outlier repulsion -- **facilitates compact, semantically structured embeddings. A learnable curvature parameter further adapts the geometry to dataset complexity. HIDISC achieves state-of-the-art results on PACS , Office-Home , and DomainNet, consistently outperforming the existing Euclidean and hyperbolic (DG)-GCD baselines.
comment: Accpeted at NeurIPS (2025) Main Conference
☆ Capturing Head Avatar with Hand Contacts from a Monocular Video ICCV 2025
Photorealistic 3D head avatars are vital for telepresence, gaming, and VR. However, most methods focus solely on facial regions, ignoring natural hand-face interactions, such as a hand resting on the chin or fingers gently touching the cheek, which convey cognitive states like pondering. In this work, we present a novel framework that jointly learns detailed head avatars and the non-rigid deformations induced by hand-face interactions. There are two principal challenges in this task. First, naively tracking hand and face separately fails to capture their relative poses. To overcome this, we propose to combine depth order loss with contact regularization during pose tracking, ensuring correct spatial relationships between the face and hand. Second, no publicly available priors exist for hand-induced deformations, making them non-trivial to learn from monocular videos. To address this, we learn a PCA basis specific to hand-induced facial deformations from a face-hand interaction dataset. This reduces the problem to estimating a compact set of PCA parameters rather than a full spatial deformation field. Furthermore, inspired by physics-based simulation, we incorporate a contact loss that provides additional supervision, significantly reducing interpenetration artifacts and enhancing the physical plausibility of the results. We evaluate our approach on RGB(D) videos captured by an iPhone. Additionally, to better evaluate the reconstructed geometry, we construct a synthetic dataset of avatars with various types of hand interactions. We show that our method can capture better appearance and more accurate deforming geometry of the face than SOTA surface reconstruction methods.
comment: ICCV 2025
☆ Benchmarking Out-of-Distribution Detection for Plankton Recognition: A Systematic Evaluation of Advanced Methods in Marine Ecological Monitoring
Automated plankton recognition models face significant challenges during real-world deployment due to distribution shifts (Out-of-Distribution, OoD) between training and test data. This stems from plankton's complex morphologies, vast species diversity, and the continuous discovery of novel species, which leads to unpredictable errors during inference. Despite rapid advancements in OoD detection methods in recent years, the field of plankton recognition still lacks a systematic integration of the latest computer vision developments and a unified benchmark for large-scale evaluation. To address this, this paper meticulously designed a series of OoD benchmarks simulating various distribution shift scenarios based on the DYB-PlanktonNet dataset \cite{875n-f104-21}, and systematically evaluated twenty-two OoD detection methods. Extensive experimental results demonstrate that the ViM \cite{wang2022vim} method significantly outperforms other approaches in our constructed benchmarks, particularly excelling in Far-OoD scenarios with substantial improvements in key metrics. This comprehensive evaluation not only provides a reliable reference for algorithm selection in automated plankton recognition but also lays a solid foundation for future research in plankton OoD detection. To our knowledge, this study marks the first large-scale, systematic evaluation and analysis of Out-of-Distribution data detection methods in plankton recognition. Code is available at https://github.com/BlackJack0083/PlanktonOoD.
☆ Generation then Reconstruction: Accelerating Masked Autoregressive Models via Two-Stage Sampling
Masked Autoregressive (MAR) models promise better efficiency in visual generation than autoregressive (AR) models for the ability of parallel generation, yet their acceleration potential remains constrained by the modeling complexity of spatially correlated visual tokens in a single step. To address this limitation, we introduce Generation then Reconstruction (GtR), a training-free hierarchical sampling strategy that decomposes generation into two stages: structure generation establishing global semantic scaffolding, followed by detail reconstruction efficiently completing remaining tokens. Assuming that it is more difficult to create an image from scratch than to complement images based on a basic image framework, GtR is designed to achieve acceleration by computing the reconstruction stage quickly while maintaining the generation quality by computing the generation stage slowly. Moreover, observing that tokens on the details of an image often carry more semantic information than tokens in the salient regions, we further propose Frequency-Weighted Token Selection (FTS) to offer more computation budget to tokens on image details, which are localized based on the energy of high frequency information. Extensive experiments on ImageNet class-conditional and text-to-image generation demonstrate 3.72x speedup on MAR-H while maintaining comparable quality (e.g., FID: 1.59, IS: 304.4 vs. original 1.59, 299.1), substantially outperforming existing acceleration methods across various model scales and generation tasks. Our codes will be released in https://github.com/feihongyan1/GtR.
comment: 12 pages, 6 figures
☆ Investigating Adversarial Robustness against Preprocessing used in Blackbox Face Recognition
Face Recognition (FR) models have been shown to be vulnerable to adversarial examples that subtly alter benign facial images, exposing blind spots in these systems, as well as protecting user privacy. End-to-end FR systems first obtain preprocessed faces from diverse facial imagery prior to computing the similarity of the deep feature embeddings. Whilst face preprocessing is a critical component of FR systems, and hence adversarial attacks against them, we observe that this preprocessing is often overlooked in blackbox settings. Our study seeks to investigate the transferability of several out-of-the-box state-of-the-art adversarial attacks against FR when applied against different preprocessing techniques used in a blackbox setting. We observe that the choice of face detection model can degrade the attack success rate by up to 78%, whereas choice of interpolation method during downsampling has relatively minimal impacts. Furthermore, we find that the requirement for facial preprocessing even degrades attack strength in a whitebox setting, due to the unintended interaction of produced noise vectors against face detection models. Based on these findings, we propose a preprocessing-invariant method using input transformations that improves the transferability of the studied attacks by up to 27%. Our findings highlight the importance of preprocessing in FR systems, and the need for its consideration towards improving the adversarial generalisation of facial adversarial examples.
comment: Accepted for publication in DICTA 2025
☆ GACO-CAD: Geometry-Augmented and Conciseness-Optimized CAD Model Generation from Single Image
Generating editable, parametric CAD models from a single image holds great potential to lower the barriers of industrial concept design. However, current multi-modal large language models (MLLMs) still struggle with accurately inferring 3D geometry from 2D images due to limited spatial reasoning capabilities. We address this limitation by introducing GACO-CAD, a novel two-stage post-training framework. It is designed to achieve a joint objective: simultaneously improving the geometric accuracy of the generated CAD models and encouraging the use of more concise modeling procedures. First, during supervised fine-tuning, we leverage depth and surface normal maps as dense geometric priors, combining them with the RGB image to form a multi-channel input. In the context of single-view reconstruction, these priors provide complementary spatial cues that help the MLLM more reliably recover 3D geometry from 2D observations. Second, during reinforcement learning, we introduce a group length reward that, while preserving high geometric fidelity, promotes the generation of more compact and less redundant parametric modeling sequences. A simple dynamic weighting strategy is adopted to stabilize training. Experiments on the DeepCAD and Fusion360 datasets show that GACO-CAD achieves state-of-the-art performance under the same MLLM backbone, consistently outperforming existing methods in terms of code validity, geometric accuracy, and modeling conciseness.
☆ DiffVLA++: Bridging Cognitive Reasoning and End-to-End Driving through Metric-Guided Alignment
Conventional end-to-end (E2E) driving models are effective at generating physically plausible trajectories, but often fail to generalize to long-tail scenarios due to the lack of essential world knowledge to understand and reason about surrounding environments. In contrast, Vision-Language-Action (VLA) models leverage world knowledge to handle challenging cases, but their limited 3D reasoning capability can lead to physically infeasible actions. In this work we introduce DiffVLA++, an enhanced autonomous driving framework that explicitly bridges cognitive reasoning and E2E planning through metric-guided alignment. First, we build a VLA module directly generating semantically grounded driving trajectories. Second, we design an E2E module with a dense trajectory vocabulary that ensures physical feasibility. Third, and most critically, we introduce a metric-guided trajectory scorer that guides and aligns the outputs of the VLA and E2E modules, thereby integrating their complementary strengths. The experiment on the ICCV 2025 Autonomous Grand Challenge leaderboard shows that DiffVLA++ achieves EPDMS of 49.12.
☆ KineDiff3D: Kinematic-Aware Diffusion for Category-Level Articulated Object Shape Reconstruction and Generation
Articulated objects, such as laptops and drawers, exhibit significant challenges for 3D reconstruction and pose estimation due to their multi-part geometries and variable joint configurations, which introduce structural diversity across different states. To address these challenges, we propose KineDiff3D: Kinematic-Aware Diffusion for Category-Level Articulated Object Shape Reconstruction and Generation, a unified framework for reconstructing diverse articulated instances and pose estimation from single view input. Specifically, we first encode complete geometry (SDFs), joint angles, and part segmentation into a structured latent space via a novel Kinematic-Aware VAE (KA-VAE). In addition, we employ two conditional diffusion models: one for regressing global pose (SE(3)) and joint parameters, and another for generating the kinematic-aware latent code from partial observations. Finally, we produce an iterative optimization module that bidirectionally refines reconstruction accuracy and kinematic parameters via Chamfer-distance minimization while preserving articulation constraints. Experimental results on synthetic, semi-synthetic, and real-world datasets demonstrate the effectiveness of our approach in accurately reconstructing articulated objects and estimating their kinematic properties.
☆ GOOD: Training-Free Guided Diffusion Sampling for Out-of-Distribution Detection
Recent advancements have explored text-to-image diffusion models for synthesizing out-of-distribution (OOD) samples, substantially enhancing the performance of OOD detection. However, existing approaches typically rely on perturbing text-conditioned embeddings, resulting in semantic instability and insufficient shift diversity, which limit generalization to realistic OOD. To address these challenges, we propose GOOD, a novel and flexible framework that directly guides diffusion sampling trajectories towards OOD regions using off-the-shelf in-distribution (ID) classifiers. GOOD incorporates dual-level guidance: (1) Image-level guidance based on the gradient of log partition to reduce input likelihood, drives samples toward low-density regions in pixel space. (2) Feature-level guidance, derived from k-NN distance in the classifier's latent space, promotes sampling in feature-sparse regions. Hence, this dual-guidance design enables more controllable and diverse OOD sample generation. Additionally, we introduce a unified OOD score that adaptively combines image and feature discrepancies, enhancing detection robustness. We perform thorough quantitative and qualitative analyses to evaluate the effectiveness of GOOD, demonstrating that training with samples generated by GOOD can notably enhance OOD detection performance.
comment: 28 pages, 16 figures, conference
☆ Matricial Free Energy as a Gaussianizing Regularizer: Enhancing Autoencoders for Gaussian Code Generation
We introduce a novel regularization scheme for autoencoders based on matricial free energy. Our approach defines a differentiable loss function in terms of the singular values of the code matrix (code dimension x batch size). From the standpoint of free probability an d random matrix theory, this loss achieves its minimum when the singular value distribution of the code matrix coincides with that of an appropriately sculpted random metric with i.i.d. Gaussian entries. Empirical simulations demonstrate that minimizing the negative matricial free energy through standard stochastic gradient-based training yields Gaussian-like codes that generalize across training and test sets. Building on this foundation, we propose a matricidal free energy maximizing autoencoder that reliably produces Gaussian codes and show its application to underdetermined inverse problems.
☆ Towards Imperceptible Watermarking Via Environment Illumination for Consumer Cameras
This paper introduces a method for using LED-based environmental lighting to produce visually imperceptible watermarks for consumer cameras. Our approach optimizes an LED light source's spectral profile to be minimally visible to the human eye while remaining highly detectable by typical consumer cameras. The method jointly considers the human visual system's sensitivity to visible spectra, modern consumer camera sensors' spectral sensitivity, and narrowband LEDs' ability to generate broadband spectra perceived as "white light" (specifically, D65 illumination). To ensure imperceptibility, we employ spectral modulation rather than intensity modulation. Unlike conventional visible light communication, our approach enables watermark extraction at standard low frame rates (30-60 fps). While the information transfer rate is modest-embedding 128 bits within a 10-second video clip-this capacity is sufficient for essential metadata supporting privacy protection and content verification.
♻ ☆ SV-DRR: High-Fidelity Novel View X-Ray Synthesis Using Diffusion Model MICCAI2025
X-ray imaging is a rapid and cost-effective tool for visualizing internal human anatomy. While multi-view X-ray imaging provides complementary information that enhances diagnosis, intervention, and education, acquiring images from multiple angles increases radiation exposure and complicates clinical workflows. To address these challenges, we propose a novel view-conditioned diffusion model for synthesizing multi-view X-ray images from a single view. Unlike prior methods, which are limited in angular range, resolution, and image quality, our approach leverages the Diffusion Transformer to preserve fine details and employs a weak-to-strong training strategy for stable high-resolution image generation. Experimental results demonstrate that our method generates higher-resolution outputs with improved control over viewing angles. This capability has significant implications not only for clinical applications but also for medical education and data extension, enabling the creation of diverse, high-quality datasets for training and analysis. Our code is available at https://github.com/xiechun298/SV-DRR.
comment: Accepted by MICCAI2025
♻ ☆ UniCTokens: Boosting Personalized Understanding and Generation via Unified Concept Tokens
Personalized models have demonstrated remarkable success in understanding and generating concepts provided by users. However, existing methods use separate concept tokens for understanding and generation, treating these tasks in isolation. This may result in limitations for generating images with complex prompts. For example, given the concept $\langle bo\rangle$, generating "$\langle bo\rangle$ wearing its hat" without additional textual descriptions of its hat. We call this kind of generation \textit{\textbf{personalized attribute-reasoning generation}}. To address the limitation, we present UniCTokens, a novel framework that effectively integrates personalized information into a unified vision language model (VLM) for understanding and generation. UniCTokens trains a set of unified concept tokens to leverage complementary semantics, boosting two personalized tasks. Moreover, we propose a progressive training strategy with three stages: understanding warm-up, bootstrapping generation from understanding, and deepening understanding from generation to enhance mutual benefits between both tasks. To quantitatively evaluate the unified VLM personalization, we present UnifyBench, the first benchmark for assessing concept understanding, concept generation, and attribute-reasoning generation. Experimental results on UnifyBench indicate that UniCTokens shows competitive performance compared to leading methods in concept understanding, concept generation, and achieving state-of-the-art results in personalized attribute-reasoning generation. Our research demonstrates that enhanced understanding improves generation, and the generation process can yield valuable insights into understanding. Our code and dataset will be released at: \href{https://github.com/arctanxarc/UniCTokens}{https://github.com/arctanxarc/UniCTokens}.
♻ ☆ A Synthetic Data-Driven Radiology Foundation Model for Pan-tumor Clinical Diagnosis
AI-assisted imaging made substantial advances in tumor diagnosis and management. However, a major barrier to developing robust oncology foundation models is the scarcity of large-scale, high-quality annotated datasets, which are limited by privacy restrictions and the high cost of manual labeling. To address this gap, we present PASTA, a pan-tumor radiology foundation model built on PASTA-Gen, a synthetic data framework that generated 30,000 3D CT scans with pixel-level lesion masks and structured reports of tumors across ten organ systems. Leveraging this resource, PASTA achieves state-of-the-art performance on 45 of 46 oncology tasks, including non-contrast CT tumor screening, lesion segmentation, structured reporting, tumor staging, survival prediction, and MRI-modality transfer. To assess clinical applicability, we developed PASTA-AID, a clinical decision support system, and ran a retrospective simulated clinical trial across two scenarios. For pan-tumor screening on plain CT with fixed reading time, PASTA-AID increased radiologists' throughput by 11.1-25.1% and improved sensitivity by 17.0-31.4% and precision by 10.5-24.9%; additionally, in a diagnosis-aid workflow, it reduced segmentation time by up to 78.2% and reporting time by up to 36.5%. Beyond gains in accuracy and efficiency, PASTA-AID narrowed the expertise gap, enabling less-experienced radiologists to approach expert-level performance. Together, this work establishes an end-to-end, synthetic data-driven pipeline spanning data generation, model development, and clinical validation, thereby demonstrating substantial potential for pan-tumor research and clinical translation.
comment: 63 pages, 7 figures
♻ ☆ Creative synthesis of kinematic mechanisms
In this paper, we formulate the problem of kinematic synthesis for planar linkages as a cross-domain image generation task. We develop a planar linkages dataset using RGB image representations, covering a range of mechanisms: from simple types such as crank-rocker and crank-slider to more complex eight-bar linkages like Jansen's mechanism. A shared-latent variational autoencoder (VAE) is employed to explore the potential of image generative models for synthesizing unseen motion curves and simulating novel kinematics. By encoding the drawing speed of trajectory points as color gradients, the same architecture also supports kinematic synthesis conditioned on both trajectory shape and velocity profiles. We validate our method on three datasets of increasing complexity: a standard four-bar linkage set, a mixed set of four-bar and crank-slider mechanisms, and a complex set including multi-loop mechanisms. Preliminary results demonstrate the effectiveness of image-based representations for generative mechanical design, showing that mechanisms with revolute and prismatic joints, and potentially cams and gears, can be represented and synthesized within a unified image generation framework.
comment: 6pages, 6 figures
♻ ☆ NanoHTNet: Nano Human Topology Network for Efficient 3D Human Pose Estimation
The widespread application of 3D human pose estimation (HPE) is limited by resource-constrained edge devices, requiring more efficient models. A key approach to enhancing efficiency involves designing networks based on the structural characteristics of input data. However, effectively utilizing the structural priors in human skeletal inputs remains challenging. To address this, we leverage both explicit and implicit spatio-temporal priors of the human body through innovative model design and a pre-training proxy task. First, we propose a Nano Human Topology Network (NanoHTNet), a tiny 3D HPE network with stacked Hierarchical Mixers to capture explicit features. Specifically, the spatial Hierarchical Mixer efficiently learns the human physical topology across multiple semantic levels, while the temporal Hierarchical Mixer with discrete cosine transform and low-pass filtering captures local instantaneous movements and global action coherence. Moreover, Efficient Temporal-Spatial Tokenization (ETST) is introduced to enhance spatio-temporal interaction and reduce computational complexity significantly. Second, PoseCLR is proposed as a general pre-training method based on contrastive learning for 3D HPE, aimed at extracting implicit representations of human topology. By aligning 2D poses from diverse viewpoints in the proxy task, PoseCLR aids 3D HPE encoders like NanoHTNet in more effectively capturing the high-dimensional features of the human body, leading to further performance improvements. Extensive experiments verify that NanoHTNet with PoseCLR outperforms other state-of-the-art methods in efficiency, making it ideal for deployment on edge devices like the Jetson Nano. Code and models are available at https://github.com/vefalun/NanoHTNet.
comment: Accepted by TIP 2025, Open Sourced
♻ ☆ Solving Oscillator Ordinary Differential Equations in the Time Domain with High Performance via Soft-constrained Physics-informed Neural Network with Small Data
In many scientific and engineering (e.g., physical, biochemical, medical) practices, data generated through expensive experiments or large-scale simulations, are often sparse and noisy. Physics-informed neural network (PINN) incorporates physical information and knowledge into network topology or computational processes as model priors, with the unique advantage of achieving strong generalization with small data. This study aims to investigate the performance characteristics of the soft-constrained PINN method to solving typical linear and nonlinear ordinary differential equations (ODEs) such as primer, Van der Pol and Duffing oscillators, especially the effectiveness, efficiency, and robustness to noise with minimal data. It is verified that the soft-constrained PINN significantly reduces the need for labeled data. With the aid of appropriate collocation points no need to be labeled, it can predict and also extrapolate with minimal data. First-order and second-order ODEs, no matter linear or nonlinear oscillators, require only one and two training data (containing initial values) respectively, just like classical analytic or Runge-Kutta methods, and with equivalent precision and comparable efficiency (fast training in seconds for scalar ODEs). Furthermore, it can conveniently impose a physical law (e.g., conservation of energy) constraint by adding a regularization term to the total loss function, improving the performance to deal with various complexities such as nonlinearity like Duffing. The DeepXDE-based PINN implementation is light code and can be efficiently trained on both GPU and CPU platforms. The mathematical and computational framework of this alternative and feasible PINN method to ODEs, can be easily extended to PDEs, etc., and is becoming a favorable catalyst for the era of Digital Twins.
comment: 17 pages, 7 figures, 2 tables, etc
♻ ☆ SpectraLift: Physics-Guided Spectral-Inversion Network for Self-Supervised Hyperspectral Image Super-Resolution
High-spatial-resolution hyperspectral images (HSI) are essential for applications such as remote sensing and medical imaging, yet HSI sensors inherently trade spatial detail for spectral richness. Fusing high-spatial-resolution multispectral images (HR-MSI) with low-spatial-resolution hyperspectral images (LR-HSI) is a promising route to recover fine spatial structures without sacrificing spectral fidelity. Most state-of-the-art methods for HSI-MSI fusion demand point spread function (PSF) calibration or ground truth high resolution HSI (HR-HSI), both of which are impractical to obtain in real world settings. We present SpectraLift, a fully self-supervised framework that fuses LR-HSI and HR-MSI inputs using only the MSI's Spectral Response Function (SRF). SpectraLift trains a lightweight per-pixel multi-layer perceptron (MLP) network using ($i$)~a synthetic low-spatial-resolution multispectral image (LR-MSI) obtained by applying the SRF to the LR-HSI as input, ($ii$)~the LR-HSI as the output, and ($iii$)~an $\ell_1$ spectral reconstruction loss between the estimated and true LR-HSI as the optimization objective. At inference, SpectraLift uses the trained network to map the HR-MSI pixel-wise into a HR-HSI estimate. SpectraLift converges in minutes, is agnostic to spatial blur and resolution, and outperforms state-of-the-art methods on PSNR, SAM, SSIM, and RMSE benchmarks.
♻ ☆ Morpheus: Benchmarking Physical Reasoning of Video Generative Models with Real Physical Experiments
Recent advances in image and video generation raise hopes that these models possess world modeling capabilities, the ability to generate realistic, physically plausible videos. This could revolutionize applications in robotics, autonomous driving, and scientific simulation. However, before treating these models as world models, we must ask: Do they adhere to physical conservation laws? To answer this, we introduce Morpheus, a benchmark for evaluating video generation models on physical reasoning. It features 80 real-world videos capturing physical phenomena, guided by conservation laws. Since artificial generations lack ground truth, we assess physical plausibility using physics-informed metrics evaluated with respect to infallible conservation laws known per physical setting, leveraging advances in physics-informed neural networks and vision-language foundation models. Our findings reveal that even with advanced prompting and video conditioning, current models struggle to encode physical principles despite generating aesthetically pleasing videos. All data, leaderboard, and code are open-sourced at our project page.
♻ ☆ DitHub: A Modular Framework for Incremental Open-Vocabulary Object Detection NeurIPS 2025
Open-Vocabulary object detectors can generalize to an unrestricted set of categories through simple textual prompting. However, adapting these models to rare classes or reinforcing their abilities on multiple specialized domains remains essential. While recent methods rely on monolithic adaptation strategies with a single set of weights, we embrace modular deep learning. We introduce DitHub, a framework designed to build and maintain a library of efficient adaptation modules. Inspired by Version Control Systems, DitHub manages expert modules as branches that can be fetched and merged as needed. This modular approach allows us to conduct an in-depth exploration of the compositional properties of adaptation modules, marking the first such study in Object Detection. Our method achieves state-of-the-art performance on the ODinW-13 benchmark and ODinW-O, a newly introduced benchmark designed to assess class reappearance. For more details, visit our project page: https://aimagelab.github.io/DitHub/
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ When Does Supervised Training Pay Off? The Hidden Economics of Object Detection in the Era of Vision-Language Models
Object detection traditionally relies on costly manual annotation. We present the first comprehensive cost-effectiveness analysis comparing supervised YOLO and zero-shot vision-language models (Gemini Flash 2.5 and GPT-4). Evaluated on 5,000 stratified COCO images and 500 diverse product images, combined with Total Cost of Ownership modeling, we derive break-even thresholds for architecture selection. Results show supervised YOLO attains 91.2% accuracy versus 68.5% for Gemini and 71.3% for GPT-4 on standard categories; the annotation expense for a 100-category system is $10,800, and the accuracy advantage only pays off beyond 55 million inferences (151,000 images/day for one year). On diverse product categories Gemini achieves 52.3% and GPT-4 55.1%, while supervised YOLO cannot detect untrained classes. Cost-per-correct-detection favors Gemini ($0.00050) and GPT-4 ($0.00067) over YOLO ($0.143) at 100,000 inferences. We provide decision frameworks showing that optimal architecture choice depends on inference volume, category stability, budget, and accuracy requirements.
comment: 30 pages, 12 figures, 4 tables
♻ ☆ AI-Generated Video Detection via Perceptual Straightening NeurIPS 2025
The rapid advancement of generative AI enables highly realistic synthetic videos, posing significant challenges for content authentication and raising urgent concerns about misuse. Existing detection methods often struggle with generalization and capturing subtle temporal inconsistencies. We propose ReStraV(Representation Straightening Video), a novel approach to distinguish natural from AI-generated videos. Inspired by the "perceptual straightening" hypothesis -- which suggests real-world video trajectories become more straight in neural representation domain -- we analyze deviations from this expected geometric property. Using a pre-trained self-supervised vision transformer (DINOv2), we quantify the temporal curvature and stepwise distance in the model's representation domain. We aggregate statistics of these measures for each video and train a classifier. Our analysis shows that AI-generated videos exhibit significantly different curvature and distance patterns compared to real videos. A lightweight classifier achieves state-of-the-art detection performance (e.g., 97.17% accuracy and 98.63% AUROC on the VidProM benchmark), substantially outperforming existing image- and video-based methods. ReStraV is computationally efficient, it is offering a low-cost and effective detection solution. This work provides new insights into using neural representation geometry for AI-generated video detection.
comment: Advances in Neural Information Processing Systems 38 (NeurIPS 2025)
♻ ☆ Principled Feature Disentanglement for High-Fidelity Unified Brain MRI Synthesis
Multisequence Magnetic Resonance Imaging (MRI) provides a more reliable diagnosis in clinical applications through complementary information across sequences. However, in practice, the absence of certain MR sequences is a common problem that can lead to inconsistent analysis results. In this work, we propose a novel unified framework for synthesizing multisequence MR images, called hybrid-fusion GAN (HF-GAN). The fundamental mechanism of this work is principled feature disentanglement, which aligns the design of the architecture with the complexity of the features. A powerful many-to-one stream is constructed for the extraction of complex complementary features, while utilizing parallel, one-to-one streams to process modality-specific information. These disentangled features are dynamically integrated into a common latent space by a channel attention-based fusion module (CAFF) and then transformed via a modality infuser to generate the target sequence. We validated our framework on public datasets of both healthy and pathological brain MRI. Quantitative and qualitative results show that HF-GAN achieves state-of-the-art performance, with our 2D slice-based framework notably outperforming a leading 3D volumetric model. Furthermore, the utilization of HF-GAN for data imputation substantially improves the performance of the downstream brain tumor segmentation task, demonstrating its clinical relevance.
comment: 14 pages, 9 figures
♻ ☆ Grounded Reinforcement Learning for Visual Reasoning
While reinforcement learning (RL) over chains of thought has significantly advanced language models in tasks such as mathematics and coding, visual reasoning introduces added complexity by requiring models to direct visual attention, interpret perceptual inputs, and ground abstract reasoning in spatial evidence. We introduce ViGoRL (Visually Grounded Reinforcement Learning), a vision-language model trained with RL to explicitly anchor each reasoning step to specific visual coordinates. Inspired by human visual decision-making, ViGoRL learns to produce spatially grounded reasoning traces, guiding visual attention to task-relevant regions at each step. When fine-grained exploration is required, our novel multi-turn RL framework enables the model to dynamically zoom into predicted coordinates as reasoning unfolds. Across a diverse set of visual reasoning benchmarks--including SAT-2 and BLINK for spatial reasoning, V*bench for visual search, and ScreenSpot and VisualWebArena for web-based grounding--ViGoRL consistently outperforms both supervised fine-tuning and conventional RL baselines that lack explicit grounding mechanisms. Incorporating multi-turn RL with zoomed-in visual feedback significantly improves ViGoRL's performance on localizing small GUI elements and visual search, achieving 86.4% on V*Bench. Additionally, we find that grounding amplifies other visual behaviors such as region exploration, grounded subgoal setting, and visual verification. Finally, human evaluations show that the model's visual references are not only spatially accurate but also helpful for understanding model reasoning steps. Our results show that visually grounded RL is a strong paradigm for imbuing models with general-purpose visual reasoning.
comment: Project website: https://visually-grounded-rl.github.io/
♻ ☆ VimoRAG: Video-based Retrieval-augmented 3D Motion Generation for Motion Language Models NeurIPS 2025
This paper introduces VimoRAG, a novel video-based retrieval-augmented motion generation framework for motion large language models (LLMs). As motion LLMs face severe out-of-domain/out-of-vocabulary issues due to limited annotated data, VimoRAG leverages large-scale in-the-wild video databases to enhance 3D motion generation by retrieving relevant 2D human motion signals. While video-based motion RAG is nontrivial, we address two key bottlenecks: (1) developing an effective motion-centered video retrieval model that distinguishes human poses and actions, and (2) mitigating the issue of error propagation caused by suboptimal retrieval results. We design the Gemini Motion Video Retriever mechanism and the Motion-centric Dual-alignment DPO Trainer, enabling effective retrieval and generation processes. Experimental results show that VimoRAG significantly boosts the performance of motion LLMs constrained to text-only input. All the resources are available at https://walkermitty.github.io/VimoRAG/
comment: Accepted by NeurIPS 2025; Project Page: https://walkermitty.github.io/VimoRAG
♻ ☆ When Words Smile: Generating Diverse Emotional Facial Expressions from Text EMNLP 2025
Enabling digital humans to express rich emotions has significant applications in dialogue systems, gaming, and other interactive scenarios. While recent advances in talking head synthesis have achieved impressive results in lip synchronization, they tend to overlook the rich and dynamic nature of facial expressions. To fill this critical gap, we introduce an end-to-end text-to-expression model that explicitly focuses on emotional dynamics. Our model learns expressive facial variations in a continuous latent space and generates expressions that are diverse, fluid, and emotionally coherent. To support this task, we introduce EmoAva, a large-scale and high-quality dataset containing 15,000 text-3D expression pairs. Extensive experiments on both existing datasets and EmoAva demonstrate that our method significantly outperforms baselines across multiple evaluation metrics, marking a significant advancement in the field.
comment: Accepted by EMNLP 2025 (Oral); Project Page: https://walkermitty.github.io/EmoAva
♻ ☆ WaveFormer: A Lightweight Transformer Model for sEMG-based Gesture Recognition
Human-machine interaction, particularly in prosthetic and robotic control, has seen progress with gesture recognition via surface electromyographic (sEMG) signals.However, classifying similar gestures that produce nearly identical muscle signals remains a challenge, often reducing classification accuracy. Traditional deep learning models for sEMG gesture recognition are large and computationally expensive, limiting their deployment on resource-constrained embedded systems. In this work, we propose WaveFormer, a lightweight transformer-based architecture tailored for sEMG gesture recognition. Our model integrates time-domain and frequency-domain features through a novel learnable wavelet transform, enhancing feature extraction. In particular, the WaveletConv module, a multi-level wavelet decomposition layer with depthwise separable convolution, ensures both efficiency and compactness. With just 3.1 million parameters, WaveFormer achieves 95% classification accuracy on the EPN612 dataset, outperforming larger models. Furthermore, when profiled on a laptop equipped with an Intel CPU, INT8 quantization achieves real-time deployment with a 6.75 ms inference latency.
comment: 6 pages, 3 figures, accepted to IEEE EMBS Conference on Neural Engineering (NER) 2025. Code and data are available at https://github.com/ForeverBlue816/WaveFormer
♻ ☆ ScreenCoder: Advancing Visual-to-Code Generation for Front-End Automation via Modular Multimodal Agents
Automating the transformation of user interface (UI) designs into front-end code holds significant promise for accelerating software development and democratizing design workflows. While multimodal large language models (MLLMs) can translate images to code, they often fail on complex UIs, struggling to unify visual perception, layout planning, and code synthesis within a single monolithic model, which leads to frequent perception and planning errors. To address this, we propose ScreenCoder, a modular multi-agent framework that decomposes the task into three interpretable stages: grounding, planning, and generation. By assigning these distinct responsibilities to specialized agents, our framework achieves significantly higher robustness and fidelity than end-to-end approaches. Furthermore, ScreenCoder serves as a scalable data engine, enabling us to generate high-quality image-code pairs. We use this data to fine-tune open-source MLLM via a dual-stage pipeline of supervised fine-tuning and reinforcement learning, demonstrating substantial gains in its UI generation capabilities. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in layout accuracy, structural coherence, and code correctness. Our code is made publicly available at https://github.com/leigest519/ScreenCoder.
comment: ScreenCoder-v2
♻ ☆ Styl3R: Instant 3D Stylized Reconstruction for Arbitrary Scenes and Styles NeurIPS 2025
Stylizing 3D scenes instantly while maintaining multi-view consistency and faithfully resembling a style image remains a significant challenge. Current state-of-the-art 3D stylization methods typically involve computationally intensive test-time optimization to transfer artistic features into a pretrained 3D representation, often requiring dense posed input images. In contrast, leveraging recent advances in feed-forward reconstruction models, we demonstrate a novel approach to achieve direct 3D stylization in less than a second using unposed sparse-view scene images and an arbitrary style image. To address the inherent decoupling between reconstruction and stylization, we introduce a branched architecture that separates structure modeling and appearance shading, effectively preventing stylistic transfer from distorting the underlying 3D scene structure. Furthermore, we adapt an identity loss to facilitate pre-training our stylization model through the novel view synthesis task. This strategy also allows our model to retain its original reconstruction capabilities while being fine-tuned for stylization. Comprehensive evaluations, using both in-domain and out-of-domain datasets, demonstrate that our approach produces high-quality stylized 3D content that achieve a superior blend of style and scene appearance, while also outperforming existing methods in terms of multi-view consistency and efficiency.
comment: NeurIPS 2025, Project page: https://nickisdope.github.io/Styl3R
♻ ☆ Predicting Patient Recovery or Mortality Using Deep Neural Decision Tree and Forest
Objective: Identifying patients at high risk of mortality is crucial for emergency physicians to allocate hospital resources effectively, particularly in regions with limited medical services. This need becomes even more pressing during global health crises that lead to significant morbidity and mortality. This study aimed to present the usability deep neural decision forest and deep neural decision tree to predict mortality among Coronavirus disease 2019 (COVID-19) patients. To this end, We used patient data encompassing Coronavirus disease 2019 diagnosis, demographics, health indicators, and occupational risk factors to analyze disease severity and outcomes. The dataset was partitioned using a stratified sampling method, ensuring that 80% was allocated for training and 20% for testing. Nine machine learning and deep learning methods were employed to build predictive models. The models were evaluated across all stages to determine their effectiveness in predicting patient outcomes. Results: Among the models, the deep neural decision forest consistently outperformed others. Results indicated that using only clinical data yielded an accuracy of 80% by deep neural decision forest, demonstrating it as a reliable predictor of patient mortality. Moreover, the results suggest that clinical data alone may be the most accurate diagnostic tool for predicting mortality.
♻ ☆ NeRF-based Visualization of 3D Cues Supporting Data-Driven Spacecraft Pose Estimation
On-orbit operations require the estimation of the relative 6D pose, i.e., position and orientation, between a chaser spacecraft and its target. While data-driven spacecraft pose estimation methods have been developed, their adoption in real missions is hampered by the lack of understanding of their decision process. This paper presents a method to visualize the 3D visual cues on which a given pose estimator relies. For this purpose, we train a NeRF-based image generator using the gradients back-propagated through the pose estimation network. This enforces the generator to render the main 3D features exploited by the spacecraft pose estimation network. Experiments demonstrate that our method recovers the relevant 3D cues. Furthermore, they offer additional insights on the relationship between the pose estimation network supervision and its implicit representation of the target spacecraft.
comment: Accepted at IEEE ISpaRo 2025 (International Conference on Space Robotics) (8 pages, 2 figures)
♻ ☆ FairGen: Enhancing Fairness in Text-to-Image Diffusion Models via Self-Discovering Latent Directions
While Diffusion Models (DM) exhibit remarkable performance across various image generative tasks, they nonetheless reflect the inherent bias presented in the training set. As DMs are now widely used in real-world applications, these biases could perpetuate a distorted worldview and hinder opportunities for minority groups. Existing methods on debiasing DMs usually requires model retraining with a human-crafted reference dataset or additional classifiers, which suffer from two major limitations: (1) collecting reference datasets causes expensive annotation cost; (2) the debiasing performance is heavily constrained by the quality of the reference dataset or the additional classifier. To address the above limitations, we propose FairGen, a plug-and-play method that learns attribute latent directions in a self-discovering manner, thus eliminating the reliance on such reference dataset. Specifically, FairGen consists of two parts: a set of attribute adapters and a distribution indicator. Each adapter in the set aims to learn an attribute latent direction, and is optimized via noise composition through a self-discovering process. Then, the distribution indicator is multiplied by the set of adapters to guide the generation process towards the prescribed distribution. Our method enables debiasing multiple attributes in DMs simultaneously, while remaining lightweight and easily integrable with other DMs, eliminating the need for retraining. Extensive experiments on debiasing gender, racial, and their intersectional biases show that our method outperforms previous SOTA by a large margin.
♻ ☆ Nexus: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision
This work proposes an industry-level omni-modal large language model (LLM) pipeline that integrates auditory, visual, and linguistic modalities to overcome challenges such as limited tri-modal datasets, high computational costs, and complex feature alignments. Our pipeline consists of three main components: First, a modular framework enabling flexible configuration of various encoder-LLM-decoder architectures. Second, a lightweight training strategy that pre-trains audio-language alignment on the state-of-the-art vision-language model Qwen2.5-VL, thus avoiding the costly pre-training of vision-specific modalities. Third, an audio synthesis pipeline that generates high-quality audio-text data from diverse real-world scenarios, supporting applications such as Automatic Speech Recognition and Speech-to-Speech chat. To this end, we introduce an industry-level omni-modal LLM, Nexus. Extensive experiments validate the efficacy of our pipeline, yielding the following key findings:(1) In the visual understanding task, Nexus exhibits superior performance compared with its backbone model - Qwen2.5-VL-7B, validating the efficiency of our training strategy. (2) Within the English Spoken Question-Answering task, the model achieves better accuracy than the same-period competitor (i.e, MiniCPM-o2.6-7B) in the LLaMA Q. benchmark. (3) In our real-world ASR testset, Nexus achieves outstanding performance, indicating its robustness in real scenarios. (4) In the Speech-to-Text Translation task, our model outperforms Qwen2-Audio-Instruct-7B. (5) In the Text-to-Speech task, based on pretrained vocoder (e.g., Fishspeech1.4 or CosyVoice2.0), Nexus is comparable to its backbone vocoder on Seed-TTS benchmark. (6) An in-depth analysis of tri-modal alignment reveals that incorporating the audio modality enhances representational alignment between vision and language.
comment: Project: https://github.com/HiThink-Research/NEXUS-O
♻ ☆ What is Memory? A Homological Perspective
We introduce the delta-homology model of memory, a unified framework in which recall, learning, and prediction emerge from cycle closure, the completion of topologically constrained trajectories within the brain's latent manifold. A Dirac-like memory trace corresponds to a nontrivial homology generator, representing a sparse, irreducible attractor that reactivates only when inference trajectories close upon themselves. In this view, memory is not a static attractor landscape but a topological process of recurrence, where structure arises through the stabilization of closed loops. Building on this principle, we represent spike-timing dynamics as spatiotemporal complexes, in which temporally consistent transitions among neurons form chain complexes supporting persistent activation cycles. These cycles are organized into cell posets, compact causal representations that encode overlapping and compositional memory traces. Within this construction, learning and recall correspond to cycle closure under contextual modulation: inference trajectories stabilize into nontrivial homology classes when both local synchrony (context) and global recurrence (content) are satisfied. We formalize this mechanism through the Context-Content Uncertainty Principle (CCUP), which states that cognition minimizes joint uncertainty between a high-entropy context variable and a low-entropy content variable. Synchronization acts as a context filter selecting coherent subnetworks, while recurrence acts as a content filter validating nontrivial cycles.
♻ ☆ SSL4Eco: A Global Seasonal Dataset for Geospatial Foundation Models in Ecology CVPR 2025
With the exacerbation of the biodiversity and climate crises, macroecological pursuits such as global biodiversity mapping become more urgent. Remote sensing offers a wealth of Earth observation data for ecological studies, but the scarcity of labeled datasets remains a major challenge. Recently, self-supervised learning has enabled learning representations from unlabeled data, triggering the development of pretrained geospatial models with generalizable features. However, these models are often trained on datasets biased toward areas of high human activity, leaving entire ecological regions underrepresented. Additionally, while some datasets attempt to address seasonality through multi-date imagery, they typically follow calendar seasons rather than local phenological cycles. To better capture vegetation seasonality at a global scale, we propose a simple phenology-informed sampling strategy and introduce corresponding SSL4Eco, a multi-date Sentinel-2 dataset, on which we train an existing model with a season-contrastive objective. We compare representations learned from SSL4Eco against other datasets on diverse ecological downstream tasks and demonstrate that our straightforward sampling method consistently improves representation quality, highlighting the importance of dataset construction. The model pretrained on SSL4Eco reaches state of the art performance on 7 out of 8 downstream tasks spanning (multi-label) classification and regression. We release our code, data, and model weights to support macroecological and computer vision research at https://github.com/PlekhanovaElena/ssl4eco.
comment: CVPR 2025, EarthVision workshop
♻ ☆ Learning to Detect Unknown Jailbreak Attacks in Large Vision-Language Models
Despite extensive alignment efforts, Large Vision-Language Models (LVLMs) remain vulnerable to jailbreak attacks, posing serious safety risks. To address this, existing detection methods either learn attack-specific parameters, which hinders generalization to unseen attacks, or rely on heuristically sound principles, which limit accuracy and efficiency. To overcome these limitations, we propose Learning to Detect (LoD), a general framework that accurately detects unknown jailbreak attacks by shifting the focus from attack-specific learning to task-specific learning. This framework includes a Multi-modal Safety Concept Activation Vector module for safety-oriented representation learning and a Safety Pattern Auto-Encoder module for unsupervised attack classification. Extensive experiments show that our method achieves consistently higher detection AUROC on diverse unknown attacks while improving efficiency. The code is available at https://anonymous.4open.science/r/Learning-to-Detect-51CB.
comment: Withdrawn due to an accidental duplicate submission. This paper (arXiv:2510.15430) was unintentionally submitted as a new entry instead of a new version of our previous work (arXiv:2508.09201)
♻ ☆ Infinity Parser: Layout Aware Reinforcement Learning for Scanned Document Parsing
Automated parsing of scanned documents into richly structured, machine-readable formats remains a critical bottleneck in Document AI, as traditional multi-stage pipelines suffer from error propagation and limited adaptability to diverse layouts. We introduce layoutRL, an end-to-end reinforcement learning framework that trains models to be explicitly layout-aware by optimizing a composite reward of normalized edit distance, paragraph count accuracy, and reading order preservation. Leveraging our newly released dataset, Infinity-Doc-55K, which combines 55K high-fidelity synthetic scanned document parsing data with expert-filtered real-world documents, we instantiate layoutRL in a vision-language-model-based parser called Infinity-Parser. Evaluated on English and Chinese benchmarks for OCR, table and formula extraction, and reading order detection, Infinity-Parser achieves new state-of-the-art performance in both accuracy and structural fidelity, outpacing specialist pipelines and general-purpose vision-language models. We will publicly release our code and dataset to accelerate progress in robust document understanding.
comment: 16 pages, 12 figures
♻ ☆ Leveraging Vision-Language Models for Open-Vocabulary Instance Segmentation and Tracking
Vision-language models (VLMs) excel in visual understanding but often lack reliable grounding capabilities and actionable inference rates. Integrating them with open-vocabulary object detection (OVD), instance segmentation, and tracking leverages their strengths while mitigating these drawbacks. We utilize VLM-generated structured descriptions to identify visible object instances, collect application-relevant attributes, and inform an open-vocabulary detector to extract corresponding bounding boxes that are passed to a video segmentation model providing segmentation masks and tracking. Once initialized, this model directly extracts segmentation masks, processing image streams in real time with minimal computational overhead. Tracks can be updated online as needed by generating new structured descriptions and detections. This combines the descriptive power of VLMs with the grounding capability of OVD and the pixel-level understanding and speed of video segmentation. Our evaluation across datasets and robotics platforms demonstrates the broad applicability of this approach, showcasing its ability to extract task-specific attributes from non-standard objects in dynamic environments. Code, data, videos, and benchmarks are available at https://vlm-gist.github.io
comment: IEEE Robotics and Automation Letters (RA-L), November 2025
♻ ☆ Shaken or Stirred? An Analysis of MetaFormer's Token Mixing for Medical Imaging
The generalization of the Transformer architecture via MetaFormer has reshaped our understanding of its success in computer vision. By replacing self-attention with simpler token mixers, MetaFormer provides strong baselines for vision tasks. However, while extensively studied on natural image datasets, its use in medical imaging remains scarce, and existing works rarely compare different token mixers, potentially overlooking more suitable designs choices. In this work, we present the first comprehensive study of token mixers for medical imaging. We systematically analyze pooling-, convolution-, and attention-based token mixers within the MetaFormer architecture on image classification (global prediction task) and semantic segmentation (dense prediction task). Our evaluation spans eight datasets covering diverse modalities and common challenges in the medical domain. Given the prevalence of pretraining from natural images to mitigate medical data scarcity, we also examine transferring pretrained weights to new token mixers. Our results show that, for classification, low-complexity token mixers (e.g. grouped convolution or pooling) are sufficient, aligning with findings on natural images. Pretrained weights remain useful despite the domain gap introduced by the new token mixer. For segmentation, we find that the local inductive bias of convolutional token mixers is essential. Grouped convolutions emerge as the preferred choice, as they reduce runtime and parameter count compared to standard convolutions, while the MetaFormer's channel-MLPs already provide the necessary cross-channel interactions.
comment: Code and data: https://github.com/multimodallearning/MetaFormerMedImaging/tree/clean_code
♻ ☆ Accurate and Efficient Low-Rank Model Merging in Core Space NeurIPS 2025
In this paper, we address the challenges associated with merging low-rank adaptations of large neural networks. With the rise of parameter-efficient adaptation techniques, such as Low-Rank Adaptation (LoRA), model fine-tuning has become more accessible. While fine-tuning models with LoRA is highly efficient, existing merging methods often sacrifice this efficiency by merging fully-sized weight matrices. We propose the Core Space merging framework, which enables the merging of LoRA-adapted models within a common alignment basis, thereby preserving the efficiency of low-rank adaptation while substantially improving accuracy across tasks. We further provide a formal proof that projection into Core Space ensures no loss of information and provide a complexity analysis showing the efficiency gains. Extensive empirical results demonstrate that Core Space significantly improves existing merging techniques and achieves state-of-the-art results on both vision and language tasks while utilizing a fraction of the computational resources. Codebase is available at https://github.com/apanariello4/core-space-merging.
comment: Accepted at 39th Conference on Neural Information Processing Systems (NeurIPS 2025), San Diego, USA
♻ ☆ Periodontal Bone Loss Analysis via Keypoint Detection With Heuristic Post-Processing
This study proposes a deep learning framework and annotation methodology for the automatic detection of periodontal bone loss landmarks, associated conditions, and staging. 192 periapical radiographs were collected and annotated with a stage agnostic methodology, labelling clinically relevant landmarks regardless of disease presence or extent. We propose a heuristic post-processing module that aligns predicted keypoints to tooth boundaries using an auxiliary instance segmentation model. An evaluation metric, Percentage of Relative Correct Keypoints (PRCK), is proposed to capture keypoint performance in dental imaging domains. Four donor pose estimation models were adapted with fine-tuning for our keypoint problem. Post-processing improved fine-grained localisation, raising average PRCK^{0.05} by +0.028, but reduced coarse performance for PRCK^{0.25} by -0.0523 and PRCK^{0.5} by -0.0345. Orientation estimation shows excellent performance for auxiliary segmentation when filtered with either stage 1 object detection model. Periodontal staging was detected sufficiently, with the best mesial and distal Dice scores of 0.508 and 0.489, while furcation involvement and widened periodontal ligament space tasks remained challenging due to scarce positive samples. Scalability is implied with similar validation and external set performance. The annotation methodology enables stage agnostic training with balanced representation across disease severities for some detection tasks. The PRCK metric provides a domain-specific alternative to generic pose metrics, while the heuristic post-processing module consistently corrected implausible predictions with occasional catastrophic failures. The proposed framework demonstrates the feasibility of clinically interpretable periodontal bone loss assessment, with potential to reduce diagnostic variability and clinician workload.
comment: 18 pages, 7 tables, 9 figures, 1 equation, journal paper submitted to Computers in Biology and Medicine
♻ ☆ Scalable Frame Sampling for Video Classification: A Semi-Optimal Policy Approach with Reduced Search Space
Given a video with $T$ frames, frame sampling is a task to select $N \ll T$ frames, so as to maximize the performance of a fixed video classifier. Not just brute-force search, but most existing methods suffer from its vast search space of $\binom{T}{N}$, especially when $N$ gets large. To address this challenge, we introduce a novel perspective of reducing the search space from $O(T^N)$ to $O(T)$. Instead of exploring the entire $O(T^N)$ space, our proposed semi-optimal policy selects the top $N$ frames based on the independently estimated value of each frame using per-frame confidence, significantly reducing the computational complexity. We verify that our semi-optimal policy can efficiently approximate the optimal policy, particularly under practical settings. Additionally, through extensive experiments on various datasets and model architectures, we demonstrate that learning our semi-optimal policy ensures stable and high performance regardless of the size of $N$ and $T$.
♻ ☆ Unseen from Seen: Rewriting Observation-Instruction Using Foundation Models for Augmenting Vision-Language Navigation
Data scarcity is a long-standing challenge in the Vision-Language Navigation (VLN) field, which extremely hinders the generalization of agents to unseen environments. Previous works primarily rely on additional simulator data or web-collected images/videos to improve the generalization. However, the simulator environments still face limited diversity, and the web-collected data often requires extensive labor to remove the noise. In this paper, we propose a Rewriting-driven AugMentation (RAM) paradigm for VLN, which directly creates the unseen observation-instruction pairs via rewriting human-annotated training data. Benefiting from our rewriting mechanism, new observation-instruction pairs can be obtained in both simulator-free and labor-saving manners to promote generalization. Specifically, we first introduce Object-Enriched Observation Rewriting, where we combine Vision-Language Models (VLMs) and Large Language Models (LLMs) to derive rewritten object-enriched scene descriptions, enabling observation synthesis with diverse objects and spatial layouts via Text-to-Image Generation Models (T2IMs). Then, we propose Observation-Contrast Instruction Rewriting, which generates observation-aligned rewritten instructions by requiring LLMs to reason the difference between original and new observations. We further develop a mixing-then-focusing training strategy with a random observation cropping scheme, effectively enhancing data distribution diversity while suppressing augmentation data noise during training. Experiments on both the discrete environments (R2R, REVERIE, and R4R datasets) and continuous environments (R2R-CE dataset) show the superior performance and impressive generalization ability of our method. Code is available at https://github.com/SaDil13/VLN-RAM.
comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems
♻ ☆ CReFT-CAD: Boosting Orthographic Projection Reasoning for CAD via Reinforcement Fine-Tuning
Computer-Aided Design (CAD) plays a pivotal role in industrial manufacturing. Orthographic projection reasoning underpins the entire CAD workflow, encompassing design, manufacturing, and simulation. However, prevailing deep-learning approaches employ standard 3D reconstruction pipelines as an alternative, which often introduce imprecise dimensions and limit the parametric editability required for CAD workflows. Recently, some researchers adopt vision-language models (VLMs), particularly supervised fine-tuning (SFT), to tackle CAD-related challenges. SFT shows promise but often devolves into pattern memorization, yielding poor out-of-distribution performance on complex reasoning tasks. To address these gaps, we introduce CReFT-CAD, a two-stage fine-tuning paradigm that first employs a curriculum-driven reinforcement learning stage with difficulty-aware rewards to build reasoning ability steadily, and then applies supervised post-tuning to hone instruction following and semantic extraction. Complementing this, we release TriView2CAD, the first large-scale, open-source benchmark for orthographic projection reasoning, comprising 200,000 synthetic and 3,000 real-world orthographic projections with precise dimension annotations and six interoperable data modalities. We benchmark leading VLMs on orthographic projection reasoning and demonstrate that CReFT-CAD substantially improves reasoning accuracy and out-of-distribution generalizability in real-world scenarios, offering valuable insights for advancing CAD reasoning research.
♻ ☆ DynVFX: Augmenting Real Videos with Dynamic Content
We present a method for augmenting real-world videos with newly generated dynamic content. Given an input video and a simple user-provided text instruction describing the desired content, our method synthesizes dynamic objects or complex scene effects that naturally interact with the existing scene over time. The position, appearance, and motion of the new content are seamlessly integrated into the original footage while accounting for camera motion, occlusions, and interactions with other dynamic objects in the scene, resulting in a cohesive and realistic output video. We achieve this via a zero-shot, training-free framework that harnesses a pre-trained text-to-video diffusion transformer to synthesize the new content and a pre-trained vision-language model to envision the augmented scene in detail. Specifically, we introduce a novel inference-based method that manipulates features within the attention mechanism, enabling accurate localization and seamless integration of the new content while preserving the integrity of the original scene. Our method is fully automated, requiring only a simple user instruction. We demonstrate its effectiveness on a wide range of edits applied to real-world videos, encompassing diverse objects and scenarios involving both camera and object motion.
comment: Project page: https://dynvfx.github.io
♻ ☆ MSDM: Generating Task-Specific Pathology Images with a Multimodal Conditioned Diffusion Model for Cell and Nuclei Segmentation
Scarcity of annotated data, particularly for rare or atypical morphologies, present significant challenges for cell and nuclei segmentation in computational pathology. While manual annotation is labor-intensive and costly, synthetic data offers a cost-effective alternative. We introduce a Multimodal Semantic Diffusion Model (MSDM) for generating realistic pixel-precise image-mask pairs for cell and nuclei segmentation. By conditioning the generative process with cellular/nuclear morphologies (using horizontal and vertical maps), RGB color characteristics, and BERT-encoded assay/indication metadata, MSDM generates datasests with desired morphological properties. These heterogeneous modalities are integrated via multi-head cross-attention, enabling fine-grained control over the generated images. Quantitative analysis demonstrates that synthetic images closely match real data, with low Wasserstein distances between embeddings of generated and real images under matching biological conditions. The incorporation of these synthetic samples, exemplified by columnar cells, significantly improves segmentation model accuracy on columnar cells. This strategy systematically enriches data sets, directly targeting model deficiencies. We highlight the effectiveness of multimodal diffusion-based augmentation for advancing the robustness and generalizability of cell and nuclei segmentation models. Thereby, we pave the way for broader application of generative models in computational pathology.
♻ ☆ PartSDF: Part-Based Implicit Neural Representation for Composite 3D Shape Parametrization and Optimization
Accurate 3D shape representation is essential in engineering applications such as design, optimization, and simulation. In practice, engineering workflows require structured, part-based representations, as objects are inherently designed as assemblies of distinct components. However, most existing methods either model shapes holistically or decompose them without predefined part structures, limiting their applicability in real-world design tasks. We propose PartSDF, a supervised implicit representation framework that explicitly models composite shapes with independent, controllable parts while maintaining shape consistency. Thanks to its simple but innovative architecture, PartSDF outperforms both supervised and unsupervised baselines in reconstruction and generation tasks. We further demonstrate its effectiveness as a structured shape prior for engineering applications, enabling precise control over individual components while preserving overall coherence. Code available at https://github.com/cvlab-epfl/PartSDF.
comment: Accepted to TMLR (33 pages, 22 figures)
♻ ☆ DARIL: When Imitation Learning outperforms Reinforcement Learning in Surgical Action Planning MICCAI2025
Surgical action planning requires predicting future instrument-verb-target triplets for real-time assistance. While teleoperated robotic surgery provides natural expert demonstrations for imitation learning (IL), reinforcement learning (RL) could potentially discover superior strategies through self-exploration. We present the first comprehensive comparison of IL versus RL for surgical action planning on CholecT50. Our Dual-task Autoregressive Imitation Learning (DARIL) baseline achieves 34.6% action triplet recognition mAP and 33.6% next frame prediction mAP with smooth planning degradation to 29.2% at 10-second horizons. We evaluated three RL variants: world model-based RL, direct video RL, and inverse RL enhancement. Surprisingly, all RL approaches underperformed DARIL--world model RL dropped to 3.1% mAP at 10s while direct video RL achieved only 15.9%. Our analysis reveals that distribution matching on expert-annotated test sets systematically favors IL over potentially valid RL policies that differ from training demonstrations. This challenges assumptions about RL superiority in sequential decision making and provides crucial insights for surgical AI development.
comment: Paper accepted at the MICCAI2025 workshop proceedings on COLlaborative Intelligence and Autonomy in Image-guided Surgery (COLAS)
♻ ☆ Aesthetics is Cheap, Show me the Text: An Empirical Evaluation of State-of-the-Art Generative Models for OCR
Text image is a unique and crucial information medium that integrates visual aesthetics and linguistic semantics in modern e-society. Due to their subtlety and complexity, the generation of text images represents a challenging and evolving frontier in the image generation field. The recent surge of specialized image generators (\emph{e.g.}, Flux-series) and unified generative models (\emph{e.g.}, GPT-4o), which demonstrate exceptional fidelity, raises a natural question: can they master the intricacies of text image generation and editing? Motivated by this, we assess current state-of-the-art generative models' capabilities in terms of text image generation and editing. We incorporate various typical optical character recognition (OCR) tasks into our evaluation and broaden the concept of text-based generation tasks into OCR generative tasks. We select 33 representative tasks and categorize them into five categories: document, handwritten text, scene text, artistic text, and complex \& layout-rich text. For comprehensive evaluation, we examine six models across both closed-source and open-source domains, using tailored, high-quality image inputs and prompts. Through this evaluation, we draw crucial observations and identify the weaknesses of current generative models for OCR tasks. We argue that photorealistic text image generation and editing should be internalized as foundational skills into general-domain generative models, rather than being delegated to specialized solutions, and we hope this empirical analysis can provide valuable insights for the community to achieve this goal. This evaluation is online and will be continuously updated at our GitHub repository.
♻ ☆ Vision Mamba for Permeability Prediction of Porous Media
Vision Mamba has recently received attention as an alternative to Vision Transformers (ViTs) for image classification. The network size of Vision Mamba scales linearly with input image resolution, whereas ViTs scale quadratically, a feature that improves computational and memory efficiency. Moreover, Vision Mamba requires a significantly smaller number of trainable parameters than traditional convolutional neural networks (CNNs), and thus, they can be more memory efficient. Because of these features, we introduce, for the first time, a neural network that uses Vision Mamba as its backbone for predicting the permeability of three-dimensional porous media. We compare the performance of Vision Mamba with ViT and CNN models across multiple aspects of permeability prediction and perform an ablation study to assess the effects of its components on accuracy. We demonstrate in practice the aforementioned advantages of Vision Mamba over ViTs and CNNs in the permeability prediction of three-dimensional porous media. We make the source code publicly available to facilitate reproducibility and to enable other researchers to build on and extend this work. We believe the proposed framework has the potential to be integrated into large vision models in which Vision Mamba is used instead of ViTs.
♻ ☆ Learning Generalizable Shape Completion with SIM(3) Equivariance NeurIPS 2025
3D shape completion methods typically assume scans are pre-aligned to a canonical frame. This leaks pose and scale cues that networks may exploit to memorize absolute positions rather than inferring intrinsic geometry. When such alignment is absent in real data, performance collapses. We argue that robust generalization demands architectural equivariance to the similarity group, SIM(3), so the model remains agnostic to pose and scale. Following this principle, we introduce the first SIM(3)-equivariant shape completion network, whose modular layers successively canonicalize features, reason over similarity-invariant geometry, and restore the original frame. Under a de-biased evaluation protocol that removes the hidden cues, our model outperforms both equivariant and augmentation baselines on the PCN benchmark. It also sets new cross-domain records on real driving and indoor scans, lowering minimal matching distance on KITTI by 17% and Chamfer distance $\ell1$ on OmniObject3D by 14%. Perhaps surprisingly, ours under the stricter protocol still outperforms competitors under their biased settings. These results establish full SIM(3) equivariance as an effective route to truly generalizable shape completion. Project page: https://sime-completion.github.io.
comment: NeurIPS 2025
♻ ☆ Auto-Connect: Connectivity-Preserving RigFormer with Direct Preference Optimization
We introduce Auto-Connect, a novel approach for automatic rigging that explicitly preserves skeletal connectivity through a connectivity-preserving tokenization scheme. Unlike previous methods that predict bone positions represented as two joints or first predict points before determining connectivity, our method employs special tokens to define endpoints for each joint's children and for each hierarchical layer, effectively automating connectivity relationships. This approach significantly enhances topological accuracy by integrating connectivity information directly into the prediction framework. To further guarantee high-quality topology, we implement a topology-aware reward function that quantifies topological correctness, which is then utilized in a post-training phase through reward-guided Direct Preference Optimization. Additionally, we incorporate implicit geodesic features for latent top-k bone selection, which substantially improves skinning quality. By leveraging geodesic distance information within the model's latent space, our approach intelligently determines the most influential bones for each vertex, effectively mitigating common skinning artifacts. This combination of connectivity-preserving tokenization, reward-guided fine-tuning, and geodesic-aware bone selection enables our model to consistently generate more anatomically plausible skeletal structures with superior deformation properties.
♻ ☆ BokehDiff: Neural Lens Blur with One-Step Diffusion ICCV 2025
We introduce BokehDiff, a novel lens blur rendering method that achieves physically accurate and visually appealing outcomes, with the help of generative diffusion prior. Previous methods are bounded by the accuracy of depth estimation, generating artifacts in depth discontinuities. Our method employs a physics-inspired self-attention module that aligns with the image formation process, incorporating depth-dependent circle of confusion constraint and self-occlusion effects. We adapt the diffusion model to the one-step inference scheme without introducing additional noise, and achieve results of high quality and fidelity. To address the lack of scalable paired data, we propose to synthesize photorealistic foregrounds with transparency with diffusion models, balancing authenticity and scene diversity.
comment: Accepted by ICCV 2025
♻ ☆ Reasoning-Aligned Perception Decoupling for Scalable Multi-modal Reasoning
Recent breakthroughs in reasoning language models have significantly advanced text-based reasoning. On the other hand, Multi-modal Large Language Models (MLLMs) still lag behind, hindered by their outdated internal LLMs. Upgrading these is often prohibitively expensive, as it requires complete vision-language alignment retraining which is costly. To address this issue, we introduce Perception-Reasoning Decoupling, which modularizes the MLLM's reasoning component and makes it easily replaceable. This approach redefines the MLLM's role to convert multi-modal inputs into detailed textual outputs that can be processed by any powerful, external, text-only LLM reasoners. To align the MLLM's perceptual output with the final reasoning task, we propose a novel reinforcement learning algorithm called Visual Perception Optimization (VPO). VPO rewards the MLLM based on the correctness of answers generated by the external reasoner to produce faithful and query-relevant captions. Together, this decoupling pipeline and VPO form our Reasoning-Aligned PerceptIon Decoupling (RAPID) approach. Empirical results show that RAPID achieves significant performance gains on multi-modal reasoning benchmarks. Crucially, RAPID enables a novel inference-time scaling paradigm: Once trained with VPO, the MLLM can be paired with any state-of-the-art LLM reasoner for consistent performance improvement without retraining.
♻ ☆ Hyperspectral Anomaly Detection Fused Unified Nonconvex Tensor Ring Factors Regularization
In recent years, tensor decomposition-based approaches for hyperspectral anomaly detection (HAD) have gained significant attention in the field of remote sensing. However, existing methods often fail to fully leverage both the global correlations and local smoothness of the background components in hyperspectral images (HSIs), which exist in both the spectral and spatial domains. This limitation results in suboptimal detection performance. To mitigate this critical issue, we put forward a novel HAD method named HAD-EUNTRFR, which incorporates an enhanced unified nonconvex tensor ring (TR) factors regularization. In the HAD-EUNTRFR framework, the raw HSIs are first decomposed into background and anomaly components. The TR decomposition is then employed to capture the spatial-spectral correlations within the background component. Additionally, we introduce a unified and efficient nonconvex regularizer, induced by tensor singular value decomposition (TSVD), to simultaneously encode the low-rankness and sparsity of the 3-D gradient TR factors into a unique concise form. The above characterization scheme enables the interpretable gradient TR factors to inherit the low-rankness and smoothness of the original background. To further enhance anomaly detection, we design a generalized nonconvex regularization term to exploit the group sparsity of the anomaly component. To solve the resulting doubly nonconvex model, we develop a highly efficient optimization algorithm based on the alternating direction method of multipliers (ADMM) framework. Experimental results on several benchmark datasets demonstrate that our proposed method outperforms existing state-of-the-art (SOTA) approaches in terms of detection accuracy.
♻ ☆ Knowledge-based Visual Question Answer with Multimodal Processing, Retrieval and Filtering NeurIPS 2025
Knowledge-based visual question answering (KB-VQA) requires visual language models (VLMs) to integrate visual understanding with external knowledge retrieval. Although retrieval-augmented generation (RAG) achieves significant advances in this task by combining knowledge-base querying, it still struggles with the quality of multimodal queries and the relevance of retrieved results. To overcome these challenges, we propose a novel three-stage method, termed Wiki-PRF, including Processing, Retrieval and Filtering stages. The processing stage dynamically invokes visual tools to extract precise multimodal information for retrieval. The retrieval stage integrates visual and text features to achieve multimodal knowledge retrieval. The filtering stage performs relevance filtering and concentration on retrieval results. To this end, we introduce a visual language model trained with answer accuracy and format consistency as reward signals via a reinforcement learning manner. This enhances the model's reasoning, tool invocation for accurate queries, and filtering of irrelevant content. Experiments on benchmark datasets (E-VQA and InfoSeek) show significant improvements~(36.0 and 42.8) in answer quality, achieving state-of-the-art performance. Code is available at https://github.com/cqu-student/Wiki-PRF
comment: Accepted by NeurIPS 2025
♻ ☆ Grounding Language with Vision: A Conditional Mutual Information Calibrated Decoding Strategy for Reducing Hallucinations in LVLMs
Large Vision-Language Models (LVLMs) are susceptible to hallucinations, where generated responses seem semantically plausible yet exhibit little or no relevance to the input image. Previous studies reveal that this issue primarily stems from LVLMs' over-reliance on language priors while disregarding the visual information during decoding. To alleviate this issue, we introduce a novel Conditional Pointwise Mutual Information (C-PMI) calibrated decoding strategy, which adaptively strengthens the mutual dependency between generated texts and input images to mitigate hallucinations. Unlike existing methods solely focusing on text token sampling, we propose to jointly model the contributions of visual and textual tokens to C-PMI, formulating hallucination mitigation as a bi-level optimization problem aimed at maximizing mutual information. To solve it, we design a token purification mechanism that dynamically regulates the decoding process by sampling text tokens remaining maximally relevant to the given image, while simultaneously refining image tokens most pertinent to the generated response. Extensive experiments across various benchmarks reveal that the proposed method significantly reduces hallucinations in LVLMs while preserving decoding efficiency.
♻ ☆ DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey
Reinforcement learning (RL)-based large language models (LLMs), such as ChatGPT, DeepSeek, and Grok-3, have attracted widespread attention for their remarkable capabilities in multimodal data understanding. Meanwhile, the rapid expansion of information services has led to a growing demand for AI-enabled wireless networks. The open-source DeepSeek models are famous for their innovative designs, such as large-scale pure RL and cost-efficient training, which make them well-suited for practical deployment in wireless networks. By integrating DeepSeek-style LLMs with wireless infrastructures, a synergistic opportunity arises: the DeepSeek-style LLMs enhance network optimization with strong reasoning and decision-making abilities, while wireless infrastructure enables the broad deployment of these models. Motivated by this convergence, this survey presents a comprehensive DeepSeek-inspired exploration of RL-based LLMs in the context of wireless networks. We begin by reviewing key techniques behind network optimization to establish a foundation for understanding DeepSeek-style LLM integration. Next, we examine recent advancements in RL-based LLMs, using DeepSeek models as a representative example. Building on this, we explore the synergy between the two domains, highlighting motivations, challenges, and potential solutions. Finally, we highlight emerging directions for integrating LLMs with wireless networks, such as quantum, on-device, and neural-symbolic LLM models, as well as embodied AI agents. Overall, this survey offers a comprehensive examination of the interplay between DeepSeek-style LLMs and wireless networks, demonstrating how these domains can mutually enhance each other to drive innovation.
comment: 45 pages, 12 figures
♻ ☆ Dress Well via Fashion Cognitive Learning
Fashion compatibility models enable online retailers to easily obtain a large number of outfit compositions with good quality. However, effective fashion recommendation demands precise service for each customer with a deeper cognition of fashion. In this paper, we conduct the first study on fashion cognitive learning, which is fashion recommendations conditioned on personal physical information. To this end, we propose a Fashion Cognitive Network (FCN) to learn the relationships among visual-semantic embedding of outfit composition and appearance features of individuals. FCN contains two submodules, namely outfit encoder and Multi-label Graph Neural Network (ML-GCN). The outfit encoder uses a convolutional layer to encode an outfit into an outfit embedding. The latter module learns label classifiers via stacked GCN. We conducted extensive experiments on the newly collected O4U dataset, and the results provide strong qualitative and quantitative evidence that our framework outperforms alternative methods.
♻ ☆ MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease. Multi-modal self-supervised learning has demonstrated remarkable potential in learning pathological representations by integrating diverse data sources. Conventional multi-modal integration methods primarily emphasize modality alignment, while paying insufficient attention to retaining the modality-specific structures. However, unlike conventional scenarios where multi-modal inputs share highly overlapping features, histopathology and transcriptomics exhibit pronounced heterogeneity, offering orthogonal yet complementary insights. Histopathology provides morphological and spatial context, elucidating tissue architecture and cellular topology, whereas transcriptomics delineates molecular signatures through gene expression patterns. This inherent disparity introduces a major challenge in aligning them while maintaining modality-specific fidelity. To address these challenges, we present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention. MIRROR employs dedicated encoders to extract comprehensive features for each modality, which is further complemented by a modality alignment module to achieve seamless integration between phenotype patterns and molecular profiles. Furthermore, a modality retention module safeguards unique attributes from each modality, while a style clustering module mitigates redundancy and enhances disease-relevant information by modeling and aligning consistent pathological signatures within a clustering space. Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance, demonstrating its effectiveness in constructing comprehensive oncological feature representations and benefiting the cancer diagnosis.
comment: 18 pages, 7 figures, 10 tables. Code available at https://github.com/TianyiFranklinWang/MIRROR. Project page: https://tianyifranklinwang.github.io/MIRROR
♻ ☆ NFIG: Multi-Scale Autoregressive Image Generation via Frequency Ordering
Autoregressive models have achieved significant success in image generation. However, unlike the inherent hierarchical structure of image information in the spectral domain, standard autoregressive methods typically generate pixels sequentially in a fixed spatial order. To better leverage this spectral hierarchy, we introduce NextFrequency Image Generation (NFIG). NFIG is a novel framework that decomposes the image generation process into multiple frequency-guided stages. NFIG aligns the generation process with the natural image structure. It does this by first generating low-frequency components, which efficiently capture global structure with significantly fewer tokens, and then progressively adding higher-frequency details. This frequency-aware paradigm offers substantial advantages: it not only improves the quality of generated images but crucially reduces inference cost by efficiently establishing global structure early on. Extensive experiments on the ImageNet-256 benchmark validate NFIG's effectiveness, demonstrating superior performance (FID: 2.81) and a notable 1.25x speedup compared to the strong baseline VAR-d20. The source code is available at https://github.com/Pride-Huang/NFIG.
comment: 10 pages, 7 figures, 2 tables
♻ ☆ FlowDet: Overcoming Perspective and Scale Challenges in Real-Time End-to-End Traffic Detection
End-to-end object detectors offer a promising NMS-free paradigm for real-time applications, yet their high computational cost remains a significant barrier, particularly for complex scenarios like intersection traffic monitoring. To address this challenge, we propose FlowDet, a high-speed detector featuring a decoupled encoder optimization strategy applied to the DETR architecture. Specifically, FlowDet employs a novel Geometric Deformable Unit (GDU) for traffic-aware geometric modeling and a Scale-Aware Attention (SAA) module to maintain high representational power across extreme scale variations. To rigorously evaluate the model's performance in environments with severe occlusion and high object density, we collected the Intersection-Flow-5k dataset, a new challenging scene for this task. Evaluated on Intersection-Flow-5k, FlowDet establishes a new state-of-the-art. Compared to the strong RT-DETR baseline, it improves AP(test) by 1.5% and AP50(test) by 1.6%, while simultaneously reducing GFLOPs by 63.2% and increasing inference speed by 16.2%. Our work demonstrates a new path towards building highly efficient and accurate detectors for demanding, real-world perception systems. The Intersection-Flow-5k dataset is available at https://github.com/AstronZh/Intersection-Flow-5K.
comment: Accepted by PRCV 2025. Project page with code and dataset: https://github.com/AstronZh/Intersection-Flow-5K
♻ ☆ Advancing Complex Wide-Area Scene Understanding with Hierarchical Coresets Selection
Scene understanding is one of the core tasks in computer vision, aiming to extract semantic information from images to identify objects, scene categories, and their interrelationships. Although advancements in Vision-Language Models (VLMs) have driven progress in this field, existing VLMs still face challenges in adaptation to unseen complex wide-area scenes. To address the challenges, this paper proposes a Hierarchical Coresets Selection (HCS) mechanism to advance the adaptation of VLMs in complex wide-area scene understanding. It progressively refines the selected regions based on the proposed theoretically guaranteed importance function, which considers utility, representativeness, robustness, and synergy. Without requiring additional fine-tuning, HCS enables VLMs to achieve rapid understandings of unseen scenes at any scale using minimal interpretable regions while mitigating insufficient feature density. HCS is a plug-and-play method that is compatible with any VLM. Experiments demonstrate that HCS achieves superior performance and universality in various tasks.
comment: Accepted by ACMMM2025
♻ ☆ REACT-KD: Region-Aware Cross-modal Topological Knowledge Distillation for Interpretable Medical Image Classification
Reliable and interpretable tumor classification from clinical imaging remains a core challenge. The main difficulties arise from heterogeneous modality quality, limited annotations, and the absence of structured anatomical guidance. We present REACT-KD, a Region-Aware Cross-modal Topological Knowledge Distillation framework that transfers supervision from high-fidelity multi-modal sources into a lightweight CT-based student model. The framework employs a dual teacher design. One branch captures structure-function relationships through dual-tracer PET/CT, while the other models dose-aware features using synthetically degraded low-dose CT. These branches jointly guide the student model through two complementary objectives. The first achieves semantic alignment through logits distillation, and the second models anatomical topology through region graph distillation. A shared CBAM3D module ensures consistent attention across modalities. To improve reliability in deployment, REACT-KD introduces modality dropout during training, which enables robust inference under partial or noisy inputs. As a case study, we applied REACT-KD to hepatocellular carcinoma staging. The framework achieved an average AUC of 93.5\% on an internal PET/CT cohort and maintained 76.6\% to 81.5\% AUC across varying levels of dose degradation in external CT testing. Decision curve analysis further shows that REACT-KD consistently provides the highest net clinical benefit across all thresholds, confirming its value in real-world diagnostic practice. Code is available at: https://github.com/Kinetics-JOJO/REACT-KD
♻ ☆ Patch of Invisibility: Naturalistic Physical Black-Box Adversarial Attacks on Object Detectors ECML-PKDD 2024
Adversarial attacks on deep learning models have received increased attention in recent years. Work in this area has mostly focused on gradient-based techniques, so-called 'white-box' attacks, where the attacker has access to the targeted model's internal parameters; such an assumption is usually untenable in the real world. Additionally, some attacks use the entire pixel space to fool a given model, which is neither practical nor physical. To accommodate these problems we propose the BBNP algorithm (Black-Box Naturalistic Patch): a direct, black-box, naturalistic, gradient-free method that uses the learned image manifold of a pretrained, generative adversarial network (GAN) to generate naturalistic adversarial patches for object detectors. This method performs model-agnostic black-box naturalistic attacks on object detection models by relying solely on the outputs of the model. Comparing our approach against five models, five black-box and two white-box attacks, we show that our proposed method achieves state-of-the-art results, outperforming all other tested black-box approaches.
comment: Accepted at MLCS @ ECML-PKDD 2024
♻ ☆ Large Language Model-Guided Semantic Alignment for Human Activity Recognition
Human Activity Recognition (HAR) using Inertial Measurement Unit (IMU) sensors is critical for applications in healthcare, safety, and industrial production. However, variations in activity patterns, device types, and sensor placements create distribution gaps across datasets, reducing the performance of HAR models. To address this, we propose LanHAR, a novel system that leverages Large Language Models (LLMs) to generate semantic interpretations of sensor readings and activity labels for cross-dataset HAR. This approach not only mitigates cross-dataset heterogeneity but also enhances the recognition of new activities. LanHAR employs an iterative re-generation method to produce high-quality semantic interpretations with LLMs and a two-stage training framework that bridges the semantic interpretations of sensor readings and activity labels. This ultimately leads to a lightweight sensor encoder suitable for mobile deployment, enabling any sensor reading to be mapped into the semantic interpretation space. Experiments on five public datasets demonstrate that our approach significantly outperforms state-of-the-art methods in both cross-dataset HAR and new activity recognition. The source code is publicly available at https://github.com/DASHLab/LanHAR.
♻ ☆ From Cradle to Cane: A Two-Pass Framework for High-Fidelity Lifespan Face Aging NeurIPS 2025
Face aging has become a crucial task in computer vision, with applications ranging from entertainment to healthcare. However, existing methods struggle with achieving a realistic and seamless transformation across the entire lifespan, especially when handling large age gaps or extreme head poses. The core challenge lies in balancing age accuracy and identity preservation--what we refer to as the Age-ID trade-off. Most prior methods either prioritize age transformation at the expense of identity consistency or vice versa. In this work, we address this issue by proposing a two-pass face aging framework, named Cradle2Cane, based on few-step text-to-image (T2I) diffusion models. The first pass focuses on solving age accuracy by introducing an adaptive noise injection (AdaNI) mechanism. This mechanism is guided by including prompt descriptions of age and gender for the given person as the textual condition. Also, by adjusting the noise level, we can control the strength of aging while allowing more flexibility in transforming the face. However, identity preservation is weakly ensured here to facilitate stronger age transformations. In the second pass, we enhance identity preservation while maintaining age-specific features by conditioning the model on two identity-aware embeddings (IDEmb): SVR-ArcFace and Rotate-CLIP. This pass allows for denoising the transformed image from the first pass, ensuring stronger identity preservation without compromising the aging accuracy. Both passes are jointly trained in an end-to-end way. Extensive experiments on the CelebA-HQ test dataset, evaluated through Face++ and Qwen-VL protocols, show that our Cradle2Cane outperforms existing face aging methods in age accuracy and identity consistency. Code is available at https://github.com/byliutao/Cradle2Cane.
comment: 32 pages, 12 figures, NeurIPS 2025 Poster
♻ ☆ The 1st Solution for 7th LSVOS RVOS Track: SaSaSa2VA ICCV 2025
Referring video object segmentation (RVOS) requires segmenting and tracking objects in videos conditioned on natural-language expressions, demanding fine-grained understanding of both appearance and motion. Building on Sa2VA, which couples a Multi-modal Large Language Model (MLLM) with the video segmentation model SAM2, we identify two key bottlenecks that limit segmentation performance: sparse frame sampling and reliance on a single [SEG] token for an entire video. We propose Segmentation Augmented and Selective Averaged Sa2VA (SaSaSa2VA) to address these issues. On the 7th LSVOS Challenge (RVOS track), SaSaSa2VA achieves a $\mathcal{J\&F}$ of 67.45, ranking first and surpassing the runner-up by 2.80 points. This result and ablation studies demonstrate that efficient segmentation augmentation and test-time ensembling substantially enhance grounded MLLMs for RVOS. The code is released in Sa2VA repository: https://github.com/bytedance/Sa2VA.
comment: The 1st place report of 7th LSVOS challenge RVOS track in ICCV 2025. The code is released in Sa2VA repository: https://github.com/bytedance/Sa2VA
♻ ☆ Adaptive Convolutional Neural Network for Image Super-resolution
Convolutional neural networks can automatically learn features via deep network architectures and given input samples. However, the robustness of obtained models may face challenges in varying scenes. Bigger differences in network architecture are beneficial to extract more diversified structural information to strengthen the robustness of an obtained super-resolution model. In this paper, we proposed a adaptive convolutional neural network for image super-resolution (ADSRNet). To capture more information, ADSRNet is implemented by a heterogeneous parallel network. The upper network can enhance relation of context information, salient information relation of a kernel mapping and relations of shallow and deep layers to improve performance of image super-resolution. That can strengthen adaptability of an obtained super-resolution model for different scenes. The lower network utilizes a symmetric architecture to enhance relations of different layers to mine more structural information, which is complementary with a upper network for image super-resolution. The relevant experimental results show that the proposed ADSRNet is effective to deal with image resolving. Codes are obtained at https://github.com/hellloxiaotian/ADSRNet.
comment: 11pages, 7 figures
♻ ☆ OSCAR: One-Step Diffusion Codec Across Multiple Bit-rates
Pretrained latent diffusion models have shown strong potential for lossy image compression, owing to their powerful generative priors. Most existing diffusion-based methods reconstruct images by iteratively denoising from random noise, guided by compressed latent representations. While these approaches have achieved high reconstruction quality, their multi-step sampling process incurs substantial computational overhead. Moreover, they typically require training separate models for different compression bit-rates, leading to significant training and storage costs. To address these challenges, we propose a one-step diffusion codec across multiple bit-rates. termed OSCAR. Specifically, our method views compressed latents as noisy variants of the original latents, where the level of distortion depends on the bit-rate. This perspective allows them to be modeled as intermediate states along a diffusion trajectory. By establishing a mapping from the compression bit-rate to a pseudo diffusion timestep, we condition a single generative model to support reconstructions at multiple bit-rates. Meanwhile, we argue that the compressed latents retain rich structural information, thereby making one-step denoising feasible. Thus, OSCAR replaces iterative sampling with a single denoising pass, significantly improving inference efficiency. Extensive experiments demonstrate that OSCAR achieves superior performance in both quantitative and visual quality metrics. The code and models are available at https://github.com/jp-guo/OSCAR.
♻ ☆ MotionGPT3: Human Motion as a Second Modality
With the rapid progress of large language models (LLMs), multimodal frameworks that unify understanding and generation have become promising, yet they face increasing complexity as the number of modalities and tasks grows. We observe that motion quantization introduces approximation errors that cap motion quality, and that unifying discrete text and continuous motion within a single-stream backbone amplifies cross-modal interference. Motivated by recent multi-branch Transformer designs that separate signals from different modalities, we propose MotionGPT3, a bimodal motion-language model for both understanding and generation. MotionGPT3 encodes raw motion into a continuous latent space using a variational autoencoder (VAE), thereby avoiding quantization-induced artifacts, while leveraging the semantic prior of pretrained language models. A dual-stream Transformer with shared attention preserves modality-specific routes while enabling controlled, bidirectional information flow, which reduces interference, stabilizing optimization, and empirically accelerates convergence without degrading fidelity. For multimodal joint training, a generate-then-align three-stage schedule further improves stability and limits cross-task interference. Experiments show that MotionGPT3 achieves 2x faster convergence in training loss and up to 4x faster convergence in validation, while maintaining state-of-the-art performance on standard motion understanding and motion generation benchmarks.
comment: 26 pages, 11 figures
♻ ☆ SoPo: Text-to-Motion Generation Using Semi-Online Preference Optimization
Text-to-motion generation is essential for advancing the creative industry but often presents challenges in producing consistent, realistic motions. To address this, we focus on fine-tuning text-to-motion models to consistently favor high-quality, human-preferred motions, a critical yet largely unexplored problem. In this work, we theoretically investigate the DPO under both online and offline settings, and reveal their respective limitation: overfitting in offline DPO, and biased sampling in online DPO. Building on our theoretical insights, we introduce Semi-online Preference Optimization (SoPo), a DPO-based method for training text-to-motion models using "semi-online" data pair, consisting of unpreferred motion from online distribution and preferred motion in offline datasets. This method leverages both online and offline DPO, allowing each to compensate for the other's limitations. Extensive experiments demonstrate that SoPo outperforms other preference alignment methods, with an MM-Dist of 3.25% (vs e.g. 0.76% of MoDiPO) on the MLD model, 2.91% (vs e.g. 0.66% of MoDiPO) on MDM model, respectively. Additionally, the MLD model fine-tuned by our SoPo surpasses the SoTA model in terms of R-precision and MM Dist. Visualization results also show the efficacy of our SoPo in preference alignment. Project page: https://xiaofeng-tan.github.io/projects/SoPo/ .
♻ ☆ Rethinking Multimodal Learning from the Perspective of Mitigating Classification Ability Disproportion
Multimodal learning (MML) is significantly constrained by modality imbalance, leading to suboptimal performance in practice. While existing approaches primarily focus on balancing the learning of different modalities to address this issue, they fundamentally overlook the inherent disproportion in model classification ability, which serves as the primary cause of this phenomenon. In this paper, we propose a novel multimodal learning approach to dynamically balance the classification ability of weak and strong modalities by incorporating the principle of boosting. Concretely, we first propose a sustained boosting algorithm in multimodal learning by simultaneously optimizing the classification and residual errors. Subsequently, we introduce an adaptive classifier assignment strategy to dynamically facilitate the classification performance of the weak modality. Furthermore, we theoretically analyze the convergence property of the cross-modal gap function, ensuring the effectiveness of the proposed boosting scheme. To this end, the classification ability of strong and weak modalities is expected to be balanced, thereby mitigating the imbalance issue. Empirical experiments on widely used datasets reveal the superiority of our method through comparison with various state-of-the-art (SOTA) multimodal learning baselines. The source code is available at https://github.com/njustkmg/NeurIPS25-AUG.
♻ ☆ Tag-Enriched Multi-Attention with Large Language Models for Cross-Domain Sequential Recommendation
Cross-Domain Sequential Recommendation (CDSR) plays a crucial role in modern consumer electronics and e-commerce platforms, where users interact with diverse services such as books, movies, and online retail products. These systems must accurately capture both domain-specific and cross-domain behavioral patterns to provide personalized and seamless consumer experiences. To address this challenge, we propose \textbf{TEMA-LLM} (\textit{Tag-Enriched Multi-Attention with Large Language Models}), a practical and effective framework that integrates \textit{Large Language Models (LLMs)} for semantic tag generation and enrichment. Specifically, TEMA-LLM employs LLMs to assign domain-aware prompts and generate descriptive tags from item titles and descriptions. The resulting tag embeddings are fused with item identifiers as well as textual and visual features to construct enhanced item representations. A \textit{Tag-Enriched Multi-Attention} mechanism is then introduced to jointly model user preferences within and across domains, enabling the system to capture complex and evolving consumer interests. Extensive experiments on four large-scale e-commerce datasets demonstrate that TEMA-LLM consistently outperforms state-of-the-art baselines, underscoring the benefits of LLM-based semantic tagging and multi-attention integration for consumer-facing recommendation systems. The proposed approach highlights the potential of LLMs to advance intelligent, user-centric services in the field of consumer electronics.
comment: Accepted in IEEE Transactions on Consumer Electronics 2025
Information Retrieval
☆ On-the-Fly OVD Adaptation with FLAME: Few-shot Localization via Active Marginal-Samples Exploration
Open-vocabulary object detection (OVD) models offer remarkable flexibility by detecting objects from arbitrary text queries. However, their zero-shot performance in specialized domains like Remote Sensing (RS) is often compromised by the inherent ambiguity of natural language, limiting critical downstream applications. For instance, an OVD model may struggle to distinguish between fine-grained classes such as "fishing boat" and "yacht" since their embeddings are similar and often inseparable. This can hamper specific user goals, such as monitoring illegal fishing, by producing irrelevant detections. To address this, we propose a cascaded approach that couples the broad generalization of a large pre-trained OVD model with a lightweight few-shot classifier. Our method first employs the zero-shot model to generate high-recall object proposals. These proposals are then refined for high precision by a compact classifier trained in real-time on only a handful of user-annotated examples - drastically reducing the high costs of RS imagery annotation.The core of our framework is FLAME, a one-step active learning strategy that selects the most informative samples for training. FLAME identifies, on the fly, uncertain marginal candidates near the decision boundary using density estimation, followed by clustering to ensure sample diversity. This efficient sampling technique achieves high accuracy without costly full-model fine-tuning and enables instant adaptation, within less then a minute, which is significantly faster than state-of-the-art alternatives.Our method consistently surpasses state-of-the-art performance on RS benchmarks, establishing a practical and resource-efficient framework for adapting foundation models to specific user needs.
☆ OG-Rank: Learning to Rank Fast and Slow with Uncertainty and Reward-Trend Guided Adaptive Exploration
Clinicians need ranking systems that work in real time and still justify their choices. Motivated by the need for a low-latency, decoder-based reranker, we present OG-Rank, a single-decoder approach that pairs a pooled first-token scoring signal with an uncertainty-gated explanation step. The model scores all candidates in one pass and generates a brief, structured rationale only when the list is genuinely ambiguous, keeping latency predictable. Trained with a curriculum that concentrates effort on hard cases, OG-Rank delivers strong effectiveness on encounter-scoped order selection (fast path: Recall@1~0.45, nDCG@20~0.625) and improves further when the gate activates (Recall@1~0.56, nDCG@20~0.699 at a 45\% gate rate), while compact backbones show similar gains under the same policy. Encoder baselines trail in both effectiveness and flexibility. The result is a practical recipe: rank fast by default and explain when it helps, a pattern that applies broadly to decision tasks where selective generation buys accuracy at acceptable cost. The single-policy design simplifies deployment and budget planning, and the curriculum principle (spend more on the hard cases, less on the easy ones) readily transfers beyond clinical order selection.
☆ How role-play shapes relevance judgment in zero-shot LLM rankers
Large Language Models (LLMs) have emerged as promising zero-shot rankers, but their performance is highly sensitive to prompt formulation. In particular, role-play prompts, where the model is assigned a functional role or identity, often give more robust and accurate relevance rankings. However, the mechanisms and diversity of role-play effects remain underexplored, limiting both effective use and interpretability. In this work, we systematically examine how role-play variations influence zero-shot LLM rankers. We employ causal intervention techniques from mechanistic interpretability to trace how role-play information shapes relevance judgments in LLMs. Our analysis reveals that (1) careful formulation of role descriptions have a large effect on the ranking quality of the LLM; (2) role-play signals are predominantly encoded in early layers and communicate with task instructions in middle layers, while receiving limited interaction with query or document representations. Specifically, we identify a group of attention heads that encode information critical for role-conditioned relevance. These findings not only shed light on the inner workings of role-play in LLM ranking but also offer guidance for designing more effective prompts in IR and beyond, pointing toward broader opportunities for leveraging role-play in zero-shot applications.
☆ Towards Mixed-Modal Retrieval for Universal Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) by retrieving relevant documents from an external corpus. However, existing RAG systems primarily focus on unimodal text documents, and often fall short in real-world scenarios where both queries and documents may contain mixed modalities (such as text and images). In this paper, we address the challenge of Universal Retrieval-Augmented Generation (URAG), which involves retrieving and reasoning over mixed-modal information to improve vision-language generation. To this end, we propose Nyx, a unified mixed-modal to mixed-modal retriever tailored for URAG scenarios. To mitigate the scarcity of realistic mixed-modal data, we introduce a four-stage automated pipeline for generation and filtering, leveraging web documents to construct NyxQA, a dataset comprising diverse mixed-modal question-answer pairs that better reflect real-world information needs. Building on this high-quality dataset, we adopt a two-stage training framework for Nyx: we first perform pre-training on NyxQA along with a variety of open-source retrieval datasets, followed by supervised fine-tuning using feedback from downstream vision-language models (VLMs) to align retrieval outputs with generative preferences. Experimental results demonstrate that Nyx not only performs competitively on standard text-only RAG benchmarks, but also excels in the more general and realistic URAG setting, significantly improving generation quality in vision-language tasks.
comment: This work is in progress
☆ MemoryBench: A Benchmark for Memory and Continual Learning in LLM Systems
Scaling up data, parameters, and test-time computation has been the mainstream methods to improve LLM systems (LLMsys), but their upper bounds are almost reached due to the gradual depletion of high-quality data and marginal gains obtained from larger computational resource consumption. Inspired by the abilities of human and traditional AI systems in learning from practice, constructing memory and continual learning frameworks for LLMsys has become an important and popular research direction in recent literature. Yet, existing benchmarks for LLM memory often focus on evaluating the system on homogeneous reading comprehension tasks with long-form inputs rather than testing their abilities to learn from accumulated user feedback in service time. Therefore, we propose a user feedback simulation framework and a comprehensive benchmark covering multiple domains, languages, and types of tasks to evaluate the continual learning abilities of LLMsys. Experiments show that the effectiveness and efficiency of state-of-the-art baselines are far from satisfying, and we hope this benchmark could pave the way for future studies on LLM memory and optimization algorithms.
☆ On Efficiency-Effectiveness Trade-off of Diffusion-based Recommenders
Diffusion models have emerged as a powerful paradigm for generative sequential recommendation, which typically generate next items to recommend guided by user interaction histories with a multi-step denoising process. However, the multi-step process relies on discrete approximations, introducing discretization error that creates a trade-off between computational efficiency and recommendation effectiveness. To address this trade-off, we propose TA-Rec, a two-stage framework that achieves one-step generation by smoothing the denoising function during pretraining while alleviating trajectory deviation by aligning with user preferences during fine-tuning. Specifically, to improve the efficiency without sacrificing the recommendation performance, TA-Rec pretrains the denoising model with Temporal Consistency Regularization (TCR), enforcing the consistency between the denoising results across adjacent steps. Thus, we can smooth the denoising function to map the noise as oracle items in one step with bounded error. To further enhance effectiveness, TA-Rec introduces Adaptive Preference Alignment (APA) that aligns the denoising process with user preference adaptively based on preference pair similarity and timesteps. Extensive experiments prove that TA-Rec's two-stage objective effectively mitigates the discretization errors-induced trade-off, enhancing both efficiency and effectiveness of diffusion-based recommenders.
☆ DSEBench: A Test Collection for Explainable Dataset Search with Examples
Dataset search has been an established information retrieval task. Current paradigms either retrieve datasets that are relevant to a keyword query or find datasets that are similar to an input target dataset. To allow for their combined specification of information needs, in this article, we investigate the more generalized task of Dataset Search with Examples (DSE) and further extend it to Explainable DSE that requires identifying the metadata and content fields of a dataset that indicate its relevance to the query and similarity to the target datasets. To facilitate this research, we construct DSEBench, a test collection that provides high-quality dataset- and field-level annotations to enable the evaluation of explainable DSE. We also employ a large language model to generate numerous annotations to be used for training. We establish extensive baselines on DSEBench by adapting and evaluating a variety of sparse, dense, and LLM-based retrieval, reranking, and explanation methods.
comment: 34 pages, 5 figures, submitted to Knowledge-Based Systems
☆ Rethinking On-policy Optimization for Query Augmentation
Recent advances in large language models (LLMs) have led to a surge of interest in query augmentation for information retrieval (IR). Two main approaches have emerged. The first prompts LLMs to generate answers or pseudo-documents that serve as new queries, relying purely on the model's parametric knowledge or contextual information. The second applies reinforcement learning (RL) to fine-tune LLMs for query rewriting, directly optimizing retrieval metrics. While having respective advantages and limitations, the two approaches have not been compared under consistent experimental conditions. In this work, we present the first systematic comparison of prompting-based and RL-based query augmentation across diverse benchmarks, including evidence-seeking, ad hoc, and tool retrieval. Our key finding is that simple, training-free query augmentation often performs on par with, or even surpasses, more expensive RL-based counterparts, especially when using powerful LLMs. Motivated by this discovery, we introduce a novel hybrid method, On-policy Pseudo-document Query Expansion (OPQE), which, instead of rewriting a query, the LLM policy learns to generate a pseudo-document that maximizes retrieval performance, thus merging the flexibility and generative structure of prompting with the targeted optimization of RL. We show OPQE outperforms both standalone prompting and RL-based rewriting, demonstrating that a synergistic approach yields the best results. Our implementation is made available to facilitate reproducibility.
☆ From AutoRecSys to AutoRecLab: A Call to Build, Evaluate, and Govern Autonomous Recommender-Systems Research Labs
Recommender-systems research has accelerated model and evaluation advances, yet largely neglects automating the research process itself. We argue for a shift from narrow AutoRecSys tools -- focused on algorithm selection and hyper-parameter tuning -- to an Autonomous Recommender-Systems Research Lab (AutoRecLab) that integrates end-to-end automation: problem ideation, literature analysis, experimental design and execution, result interpretation, manuscript drafting, and provenance logging. Drawing on recent progress in automated science (e.g., multi-agent AI Scientist and AI Co-Scientist systems), we outline an agenda for the RecSys community: (1) build open AutoRecLab prototypes that combine LLM-driven ideation and reporting with automated experimentation; (2) establish benchmarks and competitions that evaluate agents on producing reproducible RecSys findings with minimal human input; (3) create review venues for transparently AI-generated submissions; (4) define standards for attribution and reproducibility via detailed research logs and metadata; and (5) foster interdisciplinary dialogue on ethics, governance, privacy, and fairness in autonomous research. Advancing this agenda can increase research throughput, surface non-obvious insights, and position RecSys to contribute to emerging Artificial Research Intelligence. We conclude with a call to organise a community retreat to coordinate next steps and co-author guidance for the responsible integration of automated research systems.
♻ ☆ DRIFT: Decompose, Retrieve, Illustrate, then Formalize Theorems
Automating the formalization of mathematical statements for theorem proving remains a major challenge for Large Language Models (LLMs). LLMs struggle to identify and utilize the prerequisite mathematical knowledge and its corresponding formal representation in languages like Lean. Current retrieval-augmented autoformalization methods query external libraries using the informal statement directly, but overlook a fundamental limitation: informal mathematical statements are often complex and offer limited context on the underlying math concepts. To address this, we introduce DRIFT, a novel framework that enables LLMs to decompose informal mathematical statements into smaller, more tractable ''sub-components''. This facilitates targeted retrieval of premises from mathematical libraries such as Mathlib. Additionally, DRIFT retrieves illustrative theorems to help models use premises more effectively in formalization tasks. We evaluate DRIFT across diverse benchmarks (ProofNet, ConNF, and MiniF2F-test) and find that it consistently improves premise retrieval, nearly doubling the F1 score compared to the DPR baseline on ProofNet. Notably, DRIFT demonstrates strong performance on the out-of-distribution ConNF benchmark, with BEq+@10 improvements of 37.14% and 42.25% using GPT-4.1 and DeepSeek-V3.1, respectively. Our analysis shows that retrieval effectiveness in mathematical autoformalization depends heavily on model-specific knowledge boundaries, highlighting the need for adaptive retrieval strategies aligned with each model's capabilities.
♻ ☆ SRA-CL: Semantic Retrieval Augmented Contrastive Learning for Sequential Recommendation NeurIPS 2025
Contrastive learning has shown effectiveness in improving sequential recommendation models. However, existing methods still face challenges in generating high-quality contrastive pairs: they either rely on random perturbations that corrupt user preference patterns or depend on sparse collaborative data that generates unreliable contrastive pairs. Furthermore, existing approaches typically require predefined selection rules that impose strong assumptions, limiting the model's ability to autonomously learn optimal contrastive pairs. To address these limitations, we propose a novel approach named Semantic Retrieval Augmented Contrastive Learning (SRA-CL). SRA-CL leverages the semantic understanding and reasoning capabilities of LLMs to generate expressive embeddings that capture both user preferences and item characteristics. These semantic embeddings enable the construction of candidate pools for inter-user and intra-user contrastive learning through semantic-based retrieval. To further enhance the quality of the contrastive samples, we introduce a learnable sample synthesizer that optimizes the contrastive sample generation process during model training. SRA-CL adopts a plug-and-play design, enabling seamless integration with existing sequential recommendation architectures. Extensive experiments on four public datasets demonstrate the effectiveness and model-agnostic nature of our approach.
comment: Accepted by NeurIPS 2025. Code is available at: https://github.com/ziqiangcui/SRA-CL
♻ ☆ MatPROV: A Provenance Graph Dataset of Material Synthesis Extracted from Scientific Literature
Synthesis procedures play a critical role in materials research, as they directly affect material properties. With data-driven approaches increasingly accelerating materials discovery, there is growing interest in extracting synthesis procedures from scientific literature as structured data. However, existing studies often rely on rigid, domain-specific schemas with predefined fields for structuring synthesis procedures or assume that synthesis procedures are linear sequences of operations, which limits their ability to capture the structural complexity of real-world procedures. To address these limitations, we adopt PROV-DM, an international standard for provenance information, which supports flexible, graph-based modeling of procedures. We present MatPROV, a dataset of PROV-DM-compliant synthesis procedures extracted from scientific literature using large language models. MatPROV captures structural complexities and causal relationships among materials, operations, and conditions through visually intuitive directed graphs. This representation enables machine-interpretable synthesis knowledge, opening opportunities for future research such as automated synthesis planning and optimization.
♻ ☆ GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation NeurIPS 2025
Retrieval-augmented generation (RAG) has proven effective in integrating knowledge into large language models (LLMs). However, conventional RAGs struggle to capture complex relationships between pieces of knowledge, limiting their performance in intricate reasoning that requires integrating knowledge from multiple sources. Recently, graph-enhanced retrieval augmented generation (GraphRAG) builds graph structure to explicitly model these relationships, enabling more effective and efficient retrievers. Nevertheless, its performance is still hindered by the noise and incompleteness within the graph structure. To address this, we introduce GFM-RAG, a novel graph foundation model (GFM) for retrieval augmented generation. GFM-RAG is powered by an innovative graph neural network that reasons over graph structure to capture complex query-knowledge relationships. The GFM with 8M parameters undergoes a two-stage training process on large-scale datasets, comprising 60 knowledge graphs with over 14M triples and 700k documents. This results in impressive performance and generalizability for GFM-RAG, making it the first graph foundation model applicable to unseen datasets for retrieval without any fine-tuning required. Extensive experiments on three multi-hop QA datasets and seven domain-specific RAG datasets demonstrate that GFM-RAG achieves state-of-the-art performance while maintaining efficiency and alignment with neural scaling laws, highlighting its potential for further improvement.
comment: Accepted by NeurIPS 2025
♻ ☆ C-SEO Bench: Does Conversational SEO Work? NeurIPS
Large Language Models (LLMs) are transforming search engines into Conversational Search Engines (CSE). Consequently, Search Engine Optimization (SEO) is being shifted into Conversational Search Engine Optimization (C-SEO). We are beginning to see dedicated C-SEO methods for modifying web documents to increase their visibility in CSE responses. However, they are often tested only for a limited breadth of application domains; we do not know whether certain C-SEO methods would be effective for a broad range of domains. Moreover, existing evaluations consider only a single-actor scenario where only one web document adopts a C-SEO method; in reality, multiple players are likely to competitively adopt the cutting-edge C-SEO techniques, drawing an analogy from the dynamics we have seen in SEO. We present C-SEO Bench, the first benchmark designed to evaluate C-SEO methods across multiple tasks, domains, and number of actors. We consider two search tasks, question answering and product recommendation, with three domains each. We also formalize a new evaluation protocol with varying adoption rates among involved actors. Our experiments reveal that most current C-SEO methods are not only largely ineffective but also frequently have a negative impact on document ranking, which is opposite to what is expected. Instead, traditional SEO strategies, those aiming to improve the ranking of the source in the LLM context, are significantly more effective. We also observe that as we increase the number of C-SEO adopters, the overall gains decrease, depicting a congested and zero-sum nature of the problem. Our code and data are available at https://github.com/parameterlab/c-seo-bench and https://huggingface.co/datasets/parameterlab/c-seo-bench.
comment: Accepted at NeurIPS Datasets & Benchmarks 2025
Machine Learning
☆ Unbiased Gradient Low-Rank Projection
Memory-efficient optimization is critical for training increasingly large language models (LLMs). A popular strategy involves gradient low-rank projection, storing only the projected optimizer states, with GaLore being a representative example. However, a significant drawback of many such methods is their lack of convergence guarantees, as various low-rank projection approaches introduce inherent biases relative to the original optimization algorithms, which contribute to performance gaps compared to full-parameter training. Aiming to tackle this problem, this paper investigates the layerwise sampling technique for debiasing low-rank projection mechanisms. In particular, an instantiation of the paradigm gives rise to a novel and unbiased low-rank optimization method built upon GaLore's mechanism and the Muon algorithm, named GaLore Unbiased with Muon (GUM). We theoretically prove our method matches the convergence guarantees of the base Muon algorithm while preserving the memory efficiency of low-rank techniques. Empirical experiments on LLM fine-tuning and pretraining also demonstrate non-trivial improvements over GaLore and even better performance than full-parameter training. Further investigation shows that the improvement of this technique comes from a more uniform distribution of knowledge inside layers, leading to more efficient utilization of the model parameter space and better memorization.
☆ Glyph: Scaling Context Windows via Visual-Text Compression
Large language models (LLMs) increasingly rely on long-context modeling for tasks such as document understanding, code analysis, and multi-step reasoning. However, scaling context windows to the million-token level brings prohibitive computational and memory costs, limiting the practicality of long-context LLMs. In this work, we take a different perspective-visual context scaling-to tackle this challenge. Instead of extending token-based sequences, we propose Glyph, a framework that renders long texts into images and processes them with vision-language models (VLMs). This approach substantially compresses textual input while preserving semantic information, and we further design an LLM-driven genetic search to identify optimal visual rendering configurations for balancing accuracy and compression. Through extensive experiments, we demonstrate that our method achieves 3-4x token compression while maintaining accuracy comparable to leading LLMs such as Qwen3-8B on various long-context benchmarks. This compression also leads to around 4x faster prefilling and decoding, and approximately 2x faster SFT training. Furthermore, under extreme compression, a 128K-context VLM could scale to handle 1M-token-level text tasks. In addition, the rendered text data benefits real-world multimodal tasks, such as document understanding. Our code and model are released at https://github.com/thu-coai/Glyph.
☆ Executable Knowledge Graphs for Replicating AI Research
Replicating AI research is a crucial yet challenging task for large language model (LLM) agents. Existing approaches often struggle to generate executable code, primarily due to insufficient background knowledge and the limitations of retrieval-augmented generation (RAG) methods, which fail to capture latent technical details hidden in referenced papers. Furthermore, previous approaches tend to overlook valuable implementation-level code signals and lack structured knowledge representations that support multi-granular retrieval and reuse. To overcome these challenges, we propose Executable Knowledge Graphs (xKG), a modular and pluggable knowledge base that automatically integrates technical insights, code snippets, and domain-specific knowledge extracted from scientific literature. When integrated into three agent frameworks with two different LLMs, xKG shows substantial performance gains (10.9% with o3-mini) on PaperBench, demonstrating its effectiveness as a general and extensible solution for automated AI research replication. Code will released at https://github.com/zjunlp/xKG.
comment: Work in progress
☆ Functional Distribution Networks (FDN) ICLR 2026
Modern probabilistic regressors often remain overconfident under distribution shift. We present Functional Distribution Networks (FDN), an input-conditioned distribution over network weights that induces predictive mixtures whose dispersion adapts to the input. FDN is trained with a beta-ELBO and Monte Carlo sampling. We further propose an evaluation protocol that cleanly separates interpolation from extrapolation and stresses OOD sanity checks (e.g., that predictive likelihood degrades under shift while in-distribution accuracy and calibration are maintained). On standard regression tasks, we benchmark against strong Bayesian, ensemble, dropout, and hypernetwork baselines under matched parameter and update budgets, and assess accuracy, calibration, and shift-awareness with standard diagnostics. Together, the framework and protocol aim to make OOD-aware, well-calibrated neural regression practical and modular.
comment: Submitted to ICLR 2026. Code will be released upon acceptance
☆ Foundational Automatic Evaluators: Scaling Multi-Task Generative Evaluator Training for Reasoning-Centric Domains
Finetuning specialized generative evaluators has emerged as a popular paradigm to meet the increasing demand for scalable evaluation during both training and test-time. However, recent work has largely focused on applying new methodology, such as reinforcement learning (RL), to training evaluators, shying away from large-scale, data-driven development. In this work, we focus on data scaling, curating a set of 2.5M samples spanning five unique evaluation tasks (pairwise, step-level, reference-free and reference-based verification, and single rating) and multiple domains focused on reasoning evaluation. With our data, we train Foundational Automatic Reasoning Evaluators (FARE), a family of 8B and 20B (with 3.6B active) parameter evaluators, with a simple iterative rejection-sampling supervised finetuning (SFT) approach. FARE-8B challenges larger specialized RL-trained evaluators and FARE-20B sets the new standard for open-source evaluators, surpassing specialized 70B+ evaluators. Beyond static benchmarks, we evaluate FARE in real-world tasks: As inference-time rerankers, FARE-20B achieves near-oracle performance on MATH. As verifiers in RL training, FARE improves the downstream RL-trained model performance by up to 14.1% vs. string-matching verifiers. When initialized from FARE, a continually-finetuned FARE-Code outperforms gpt-oss-20B by 65% on evaluating test-case quality.
comment: 29 pages, 9 tables, 6 figures
☆ SoftMimic: Learning Compliant Whole-body Control from Examples
We introduce SoftMimic, a framework for learning compliant whole-body control policies for humanoid robots from example motions. Imitating human motions with reinforcement learning allows humanoids to quickly learn new skills, but existing methods incentivize stiff control that aggressively corrects deviations from a reference motion, leading to brittle and unsafe behavior when the robot encounters unexpected contacts. In contrast, SoftMimic enables robots to respond compliantly to external forces while maintaining balance and posture. Our approach leverages an inverse kinematics solver to generate an augmented dataset of feasible compliant motions, which we use to train a reinforcement learning policy. By rewarding the policy for matching compliant responses rather than rigidly tracking the reference motion, SoftMimic learns to absorb disturbances and generalize to varied tasks from a single motion clip. We validate our method through simulations and real-world experiments, demonstrating safe and effective interaction with the environment.
comment: Website: https://gmargo11.github.io/softmimic/
☆ Inference-Time Compute Scaling For Flow Matching
Allocating extra computation at inference time has recently improved sample quality in large language models and diffusion-based image generation. In parallel, Flow Matching (FM) has gained traction in language, vision, and scientific domains, but inference-time scaling methods for it remain under-explored. Concurrently, Kim et al., 2025 approach this problem but replace the linear interpolant with a non-linear variance-preserving (VP) interpolant at inference, sacrificing FM's efficient and straight sampling. Additionally, inference-time compute scaling for flow matching has only been applied to visual tasks, like image generation. We introduce novel inference-time scaling procedures for FM that preserve the linear interpolant during sampling. Evaluations of our method on image generation, and for the first time (to the best of our knowledge), unconditional protein generation, show that I) sample quality consistently improves as inference compute increases, and II) flow matching inference-time scaling can be applied to scientific domains.
☆ Mapping Post-Training Forgetting in Language Models at Scale
Scaled post-training now drives many of the largest capability gains in language models (LMs), yet its effect on pretrained knowledge remains poorly understood. Not all forgetting is equal: Forgetting one fact (e.g., a U.S. president or an API call) does not "average out" by recalling another. Hence, we propose a sample-wise paradigm to measure what is forgotten and when backward transfer occurs. Our metric counts 1->0 transitions (correct before post-training, incorrect after) to quantify forgetting and 0->1 transitions to quantify backward transfer. Traditional task averages conflate these effects and obscure large changes. For multiple-choice benchmarks, we add chance-adjusted variants that subtract the expected contribution of random guessing from pre- and post-training accuracies. We apply this framework across post-training stages, model sizes, and data scales. Our large-scale analysis shows that: (1) Domain-continual pretraining induces moderate forgetting with low-to-moderate backward transfer; (2) RL/SFT post-training applied to base models and Instruction tuning yields moderate-to-large backward transfer on math and logic with overall low-to-moderate forgetting; (3) Applying RL/SFT to instruction-tuned models is sensitive on data scale: at small scales, both forgetting and backward transfer are small; at larger scales, effects are mixed and warrant further study with better controls; (4) Model merging does not reliably mitigate forgetting. Overall, our framework offers a practical yardstick for mapping how post-training alters pretrained knowledge at scale -- enabling progress towards generally capable AI systems.
comment: 43 pages,15 figures
☆ Atlas-based Manifold Representations for Interpretable Riemannian Machine Learning
Despite the popularity of the manifold hypothesis, current manifold-learning methods do not support machine learning directly on the latent $d$-dimensional data manifold, as they primarily aim to perform dimensionality reduction into $\mathbb{R}^D$, losing key manifold features when the embedding dimension $D$ approaches $d$. On the other hand, methods that directly learn the latent manifold as a differentiable atlas have been relatively underexplored. In this paper, we aim to give a proof of concept of the effectiveness and potential of atlas-based methods. To this end, we implement a generic data structure to maintain a differentiable atlas that enables Riemannian optimization over the manifold. We complement this with an unsupervised heuristic that learns a differentiable atlas from point cloud data. We experimentally demonstrate that this approach has advantages in terms of efficiency and accuracy in selected settings. Moreover, in a supervised classification task over the Klein bottle and in RNA velocity analysis of hematopoietic data, we showcase the improved interpretability and robustness of our approach.
☆ VERA-V: Variational Inference Framework for Jailbreaking Vision-Language Models
Vision-Language Models (VLMs) extend large language models with visual reasoning, but their multimodal design also introduces new, underexplored vulnerabilities. Existing multimodal red-teaming methods largely rely on brittle templates, focus on single-attack settings, and expose only a narrow subset of vulnerabilities. To address these limitations, we introduce VERA-V, a variational inference framework that recasts multimodal jailbreak discovery as learning a joint posterior distribution over paired text-image prompts. This probabilistic view enables the generation of stealthy, coupled adversarial inputs that bypass model guardrails. We train a lightweight attacker to approximate the posterior, allowing efficient sampling of diverse jailbreaks and providing distributional insights into vulnerabilities. VERA-V further integrates three complementary strategies: (i) typography-based text prompts that embed harmful cues, (ii) diffusion-based image synthesis that introduces adversarial signals, and (iii) structured distractors to fragment VLM attention. Experiments on HarmBench and HADES benchmarks show that VERA-V consistently outperforms state-of-the-art baselines on both open-source and frontier VLMs, achieving up to 53.75% higher attack success rate (ASR) over the best baseline on GPT-4o.
comment: 18 pages, 7 Figures,
☆ Prediction of Sea Ice Velocity and Concentration in the Arctic Ocean using Physics-informed Neural Network
As an increasing amount of remote sensing data becomes available in the Arctic Ocean, data-driven machine learning (ML) techniques are becoming widely used to predict sea ice velocity (SIV) and sea ice concentration (SIC). However, fully data-driven ML models have limitations in generalizability and physical consistency due to their excessive reliance on the quantity and quality of training data. In particular, as Arctic sea ice entered a new phase with thinner ice and accelerated melting, there is a possibility that an ML model trained with historical sea ice data cannot fully represent the dynamically changing sea ice conditions in the future. In this study, we develop physics-informed neural network (PINN) strategies to integrate physical knowledge of sea ice into the ML model. Based on the Hierarchical Information-sharing U-net (HIS-Unet) architecture, we incorporate the physics loss function and the activation function to produce physically plausible SIV and SIC outputs. Our PINN model outperforms the fully data-driven model in the daily predictions of SIV and SIC, even when trained with a small number of samples. The PINN approach particularly improves SIC predictions in melting and early freezing seasons and near fast-moving ice regions.
comment: 49 pages, 7 figures, submitted to Environmental Modelling & Software
☆ Efficient Tensor Completion Algorithms for Highly Oscillatory Operators
This paper presents low-complexity tensor completion algorithms and their efficient implementation to reconstruct highly oscillatory operators discretized as $n\times n$ matrices. The underlying tensor decomposition is based on the reshaping of the input matrix and its butterfly decomposition into an order $\mathcal{O} (\log n)$ tensor. The reshaping of the input matrix into a tensor allows for representation of the butterfly decomposition as a tensor decomposition with dense tensors. This leads to efficient utilization of the existing software infrastructure for dense and sparse tensor computations. We propose two tensor completion algorithms in the butterfly format, using alternating least squares and gradient-based optimization, as well as a novel strategy that uses low-rank matrix completion to efficiently generate an initial guess for the proposed algorithms. To demonstrate the efficiency and applicability of our proposed algorithms, we perform three numerical experiments using simulated oscillatory operators in seismic applications. In these experiments, we use $\mathcal {O} (n \log n)$ observed entries in the input matrix and demonstrate an $\mathcal{O}(n\log^3 n)$ computational cost of the proposed algorithms, leading to a speedup of orders of magnitudes per iteration for large matrices compared to the low-rank matrix and quantized tensor-train completion. Moreover, the proposed butterfly completion algorithms, equipped with the novel initial guess generation strategy, achieve reconstruction errors that are smaller by an order of magnitude, enabling accurate recovery of the underlying structure compared to the state-of-the-art completion algorithms.
☆ Train for Truth, Keep the Skills: Binary Retrieval-Augmented Reward Mitigates Hallucinations
Language models often generate factually incorrect information unsupported by their training data, a phenomenon known as extrinsic hallucination. Existing mitigation approaches often degrade performance on open-ended generation and downstream tasks, limiting their practical utility. We propose an online reinforcement learning method using a novel binary retrieval-augmented reward (RAR) to address this tradeoff. Unlike continuous reward schemes, our approach assigns a reward of one only when the model's output is entirely factually correct, and zero otherwise. We evaluate our method on Qwen3 reasoning models across diverse tasks. For open-ended generation, binary RAR achieves a 39.3% reduction in hallucination rates, substantially outperforming both supervised training and continuous-reward RL baselines. In short-form question answering, the model learns calibrated abstention, strategically outputting "I don't know" when faced with insufficient parametric knowledge. This yields 44.4% and 21.7% fewer incorrect answers on PopQA and GPQA, respectively. Crucially, these factuality gains come without performance degradation on instruction following, math, or code, whereas continuous-reward RL, despite improving factuality, induces quality regressions.
☆ Enabling Fine-Grained Operating Points for Black-Box LLMs
Black-box Large Language Models (LLMs) provide practical and accessible alternatives to other machine learning methods, as they require minimal labeled data and machine learning expertise to develop solutions for various decision making problems. However, for applications that need operating with constraints on specific metrics (e.g., precision $\geq$ 95%), decision making with black-box LLMs remains unfavorable, due to their low numerical output cardinalities. This results in limited control over their operating points, preventing fine-grained adjustment of their decision making behavior. In this paper, we study using black-box LLMs as classifiers, focusing on efficiently improving their operational granularity without performance loss. Specifically, we first investigate the reasons behind their low-cardinality numerical outputs and show that they are biased towards generating rounded but informative verbalized probabilities. Then, we experiment with standard prompt engineering, uncertainty estimation and confidence elicitation techniques, and observe that they do not effectively improve operational granularity without sacrificing performance or increasing inference cost. Finally, we propose efficient approaches to significantly increase the number and diversity of available operating points. Our proposed approaches provide finer-grained operating points and achieve comparable to or better performance than the benchmark methods across 11 datasets and 3 LLMs.
comment: 35 pages
☆ AcademicEval: Live Long-Context LLM Benchmark
Large Language Models (LLMs) have recently achieved remarkable performance in long-context understanding. However, current long-context LLM benchmarks are limited by rigid context length, labor-intensive annotation, and the pressing challenge of label leakage issues during LLM training. Therefore, we propose \textsc{AcademicEval}, a live benchmark for evaluating LLMs over long-context generation tasks. \textsc{AcademicEval} adopts papers on arXiv to introduce several academic writing tasks with long-context inputs, \textit{i.e.}, \textsc{Title}, \textsc{Abstract}, \textsc{Introduction}, and \textsc{Related Work}, which cover a wide range of abstraction levels and require no manual labeling. Moreover, \textsc{AcademicEval} integrates high-quality and expert-curated few-shot demonstrations from a collected co-author graph to enable flexible context length. Especially, \textsc{AcademicEval} features an efficient live evaluation, ensuring no label leakage. We conduct a holistic evaluation on \textsc{AcademicEval}, and the results illustrate that LLMs perform poorly on tasks with hierarchical abstraction levels and tend to struggle with long few-shot demonstrations, highlighting the challenge of our benchmark. Through experimental analysis, we also reveal some insights for enhancing LLMs' long-context modeling capabilities. Code is available at https://github.com/ulab-uiuc/AcademicEval
comment: Accepted by TMLR. Code is available at https://github.com/ulab-uiuc/AcademicEval
☆ The Marked Edge Walk: A Novel MCMC Algorithm for Sampling of Graph Partitions
Novel Markov Chain Monte Carlo (MCMC) methods have enabled the generation of large ensembles of redistricting plans through graph partitioning. However, existing algorithms such as Reversible Recombination (RevReCom) and Metropolized Forest Recombination (MFR) are constrained to sampling from distributions related to spanning trees. We introduce the marked edge walk (MEW), a novel MCMC algorithm for sampling from the space of graph partitions under a tunable distribution. The walk operates on the space of spanning trees with marked edges, allowing for calculable transition probabilities for use in the Metropolis-Hastings algorithm. Empirical results on real-world dual graphs show convergence under target distributions unrelated to spanning trees. For this reason, MEW represents an advancement in flexible ensemble generation.
☆ Closing the Sim2Real Performance Gap in RL
Sim2Real aims at training policies in high-fidelity simulation environments and effectively transferring them to the real world. Despite the developments of accurate simulators and Sim2Real RL approaches, the policies trained purely in simulation often suffer significant performance drops when deployed in real environments. This drop is referred to as the Sim2Real performance gap. Current Sim2Real RL methods optimize the simulator accuracy and variability as proxies for real-world performance. However, these metrics do not necessarily correlate with the real-world performance of the policy as established theoretically and empirically in the literature. We propose a novel framework to address this issue by directly adapting the simulator parameters based on real-world performance. We frame this problem as a bi-level RL framework: the inner-level RL trains a policy purely in simulation, and the outer-level RL adapts the simulation model and in-sim reward parameters to maximize real-world performance of the in-sim policy. We derive and validate in simple examples the mathematical tools needed to develop bi-level RL algorithms that close the Sim2Real performance gap.
☆ GAS: Improving Discretization of Diffusion ODEs via Generalized Adversarial Solver
While diffusion models achieve state-of-the-art generation quality, they still suffer from computationally expensive sampling. Recent works address this issue with gradient-based optimization methods that distill a few-step ODE diffusion solver from the full sampling process, reducing the number of function evaluations from dozens to just a few. However, these approaches often rely on intricate training techniques and do not explicitly focus on preserving fine-grained details. In this paper, we introduce the Generalized Solver: a simple parameterization of the ODE sampler that does not require additional training tricks and improves quality over existing approaches. We further combine the original distillation loss with adversarial training, which mitigates artifacts and enhances detail fidelity. We call the resulting method the Generalized Adversarial Solver and demonstrate its superior performance compared to existing solver training methods under similar resource constraints. Code is available at https://github.com/3145tttt/GAS.
☆ A Principle of Targeted Intervention for Multi-Agent Reinforcement Learning NeurIPS 2025
Steering cooperative multi-agent reinforcement learning (MARL) towards desired outcomes is challenging, particularly when the global guidance from a human on the whole multi-agent system is impractical in a large-scale MARL. On the other hand, designing mechanisms to coordinate agents most relies on empirical studies, lacking a easy-to-use research tool. In this work, we employ multi-agent influence diagrams (MAIDs) as a graphical framework to address the above issues. First, we introduce interaction paradigms that leverage MAIDs to analyze and visualize existing approaches in MARL. Then, we design a new interaction paradigm based on MAIDs, referred to as targeted intervention that is applied to only a single targeted agent, so the problem of global guidance can be mitigated. In our implementation, we introduce a causal inference technique-referred to as Pre-Strategy Intervention (PSI)-to realize the targeted intervention paradigm. Since MAIDs can be regarded as a special class of causal diagrams, a composite desired outcome that integrates the primary task goal and an additional desired outcome can be achieved by maximizing the corresponding causal effect through the PSI. Moreover, the bundled relevance graph analysis of MAIDs provides a tool to identify whether an MARL learning paradigm is workable under the design of an interaction paradigm. In experiments, we demonstrate the effectiveness of our proposed targeted intervention, and verify the result of relevance graph analysis.
comment: Accepted to NeurIPS 2025
☆ Efficient Algorithms for Mitigating Uncertainty and Risk in Reinforcement Learning
This dissertation makes three main contributions. First, We identify a new connection between policy gradient and dynamic programming in MMDPs and propose the Coordinate Ascent Dynamic Programming (CADP) algorithm to compute a Markov policy that maximizes the discounted return averaged over the uncertain models. CADP adjusts model weights iteratively to guarantee monotone policy improvements to a local maximum. Second, We establish sufficient and necessary conditions for the exponential ERM Bellman operator to be a contraction and prove the existence of stationary deterministic optimal policies for ERM-TRC and EVaR-TRC. We also propose exponential value iteration, policy iteration, and linear programming algorithms for computing optimal stationary policies for ERM-TRC and EVaR-TRC. Third, We propose model-free Q-learning algorithms for computing policies with risk-averse objectives: ERM-TRC and EVaR-TRC. The challenge is that Q-learning ERM Bellman may not be a contraction. Instead, we use the monotonicity of Q-learning ERM Bellman operators to derive a rigorous proof that the ERM-TRC and the EVaR-TRC Q-learning algorithms converge to the optimal risk-averse value functions. The proposed Q-learning algorithms compute the optimal stationary policy for ERM-TRC and EVaR-TRC.
comment: Dissertation
☆ Quantum Synthetic Data Generation for Industrial Bioprocess Monitoring
Data scarcity and sparsity in bio-manufacturing poses challenges for accurate model development, process monitoring, and optimization. We aim to replicate and capture the complex dynamics of industrial bioprocesses by proposing the use of a Quantum Wasserstein Generative Adversarial Network with Gradient Penalty (QWGAN-GP) to generate synthetic time series data for industrially relevant processes. The generator within our GAN is comprised of a Parameterized Quantum Circuit (PQC). This methodology offers potential advantages in process monitoring, modeling, forecasting, and optimization, enabling more efficient bioprocess management by reducing the dependence on scarce experimental data. Our results demonstrate acceptable performance in capturing the temporal dynamics of real bioprocess data. We focus on Optical Density, a key measurement for Dry Biomass estimation. The data generated showed high fidelity to the actual historical experimental data. This intersection of quantum computing and machine learning has opened new frontiers in data analysis and generation, particularly in computationally intensive fields, for use cases such as increasing prediction accuracy for soft sensor design or for use in predictive control.
☆ LILO: Bayesian Optimization with Interactive Natural Language Feedback
For many real-world applications, feedback is essential in translating complex, nuanced, or subjective goals into quantifiable optimization objectives. We propose a language-in-the-loop framework that uses a large language model (LLM) to convert unstructured feedback in the form of natural language into scalar utilities to conduct BO over a numeric search space. Unlike preferential BO, which only accepts restricted feedback formats and requires customized models for each domain-specific problem, our approach leverages LLMs to turn varied types of textual feedback into consistent utility signals and to easily include flexible user priors without manual kernel design. At the same time, our method maintains the sample efficiency and principled uncertainty quantification of BO. We show that this hybrid method not only provides a more natural interface to the decision maker but also outperforms conventional BO baselines and LLM-only optimizers, particularly in feedback-limited regimes.
☆ On-the-Fly OVD Adaptation with FLAME: Few-shot Localization via Active Marginal-Samples Exploration
Open-vocabulary object detection (OVD) models offer remarkable flexibility by detecting objects from arbitrary text queries. However, their zero-shot performance in specialized domains like Remote Sensing (RS) is often compromised by the inherent ambiguity of natural language, limiting critical downstream applications. For instance, an OVD model may struggle to distinguish between fine-grained classes such as "fishing boat" and "yacht" since their embeddings are similar and often inseparable. This can hamper specific user goals, such as monitoring illegal fishing, by producing irrelevant detections. To address this, we propose a cascaded approach that couples the broad generalization of a large pre-trained OVD model with a lightweight few-shot classifier. Our method first employs the zero-shot model to generate high-recall object proposals. These proposals are then refined for high precision by a compact classifier trained in real-time on only a handful of user-annotated examples - drastically reducing the high costs of RS imagery annotation.The core of our framework is FLAME, a one-step active learning strategy that selects the most informative samples for training. FLAME identifies, on the fly, uncertain marginal candidates near the decision boundary using density estimation, followed by clustering to ensure sample diversity. This efficient sampling technique achieves high accuracy without costly full-model fine-tuning and enables instant adaptation, within less then a minute, which is significantly faster than state-of-the-art alternatives.Our method consistently surpasses state-of-the-art performance on RS benchmarks, establishing a practical and resource-efficient framework for adapting foundation models to specific user needs.
☆ Handling Extreme Class Imbalance: Using GANs in Data Augmentation for Suicide Prediction
Suicide prediction is the key for prevention, but real data with sufficient positive samples is rare and causes extreme class imbalance. We utilized machine learning (ML) to build the model and deep learning (DL) techniques, like Generative Adversarial Networks (GAN), to generate synthetic data samples to enhance the dataset. The initial dataset contained 656 samples, with only four positive cases, prompting the need for data augmentation. A variety of machine learning models, ranging from interpretable data models to black box algorithmic models, were used. On real test data, Logistic Regression (LR) achieved a weighted precision of 0.99, a weighted recall of 0.85, and a weighted F1 score of 0.91; Random Forest (RF) showed 0.98, 0.99, and 0.99, respectively; and Support Vector Machine (SVM) achieved 0.99, 0.76, and 0.86. LR and SVM correctly identified one suicide attempt case (sensitivity:1.0) and misclassified LR(20) and SVM (31) non-attempts as attempts (specificity: 0.85 & 0.76, respectively). RF identified 0 suicide attempt cases (sensitivity: 0.0) with 0 false positives (specificity: 1.0). These results highlight the models' effectiveness, with GAN playing a key role in generating synthetic data to support suicide prevention modeling efforts.
☆ Frugal Federated Learning for Violence Detection: A Comparison of LoRA-Tuned VLMs and Personalized CNNs
We examine frugal federated learning approaches to violence detection by comparing two complementary strategies: (i) zero-shot and federated fine-tuning of vision-language models (VLMs), and (ii) personalized training of a compact 3D convolutional neural network (CNN3D). Using LLaVA-7B and a 65.8M parameter CNN3D as representative cases, we evaluate accuracy, calibration, and energy usage under realistic non-IID settings. Both approaches exceed 90% accuracy. CNN3D slightly outperforms Low-Rank Adaptation(LoRA)-tuned VLMs in ROC AUC and log loss, while using less energy. VLMs remain favorable for contextual reasoning and multimodal inference. We quantify energy and CO$_2$ emissions across training and inference, and analyze sustainability trade-offs for deployment. To our knowledge, this is the first comparative study of LoRA-tuned vision-language models and personalized CNNs for federated violence detection, with an emphasis on energy efficiency and environmental metrics. These findings support a hybrid model: lightweight CNNs for routine classification, with selective VLM activation for complex or descriptive scenarios. The resulting framework offers a reproducible baseline for responsible, resource-aware AI in video surveillance, with extensions toward real-time, multimodal, and lifecycle-aware systems.
comment: 7 pages, 1 figure, FLTA 2025
☆ ZACH-ViT: A Zero-Token Vision Transformer with ShuffleStrides Data Augmentation for Robust Lung Ultrasound Classification
Differentiating cardiogenic pulmonary oedema (CPE) from non-cardiogenic and structurally normal lungs in lung ultrasound (LUS) videos remains challenging due to the high visual variability of non-cardiogenic inflammatory patterns (NCIP/ARDS-like), interstitial lung disease, and healthy lungs. This heterogeneity complicates automated classification as overlapping B-lines and pleural artefacts are common. We introduce ZACH-ViT (Zero-token Adaptive Compact Hierarchical Vision Transformer), a 0.25 M-parameter Vision Transformer variant that removes both positional embeddings and the [CLS] token, making it fully permutation-invariant and suitable for unordered medical image data. To enhance generalization, we propose ShuffleStrides Data Augmentation (SSDA), which permutes probe-view sequences and frame orders while preserving anatomical validity. ZACH-ViT was evaluated on 380 LUS videos from 95 critically ill patients against nine state-of-the-art baselines. Despite the heterogeneity of the non-cardiogenic group, ZACH-ViT achieved the highest validation and test ROC-AUC (0.80 and 0.79) with balanced sensitivity (0.60) and specificity (0.91), while all competing models collapsed to trivial classification. It trains 1.35x faster than Minimal ViT (0.62M parameters) with 2.5x fewer parameters, supporting real-time clinical deployment. These results show that aligning architectural design with data structure can outperform scale in small-data medical imaging.
comment: 14 pages, 6 figures, 2 tables. Primary subject: cs.LG (Machine Learning) Cross-listed to: cs.CV (Computer Vision and Pattern Recognition), eess.IV (Image and Video Processing). Code available at: https://github.com/Bluesman79/ZACH-ViT Installation: pip install zachvit Paper licensed under CC BY-NC-ND 4.0. Code released under Apache 2.0 License
☆ Quantum Federated Learning: Architectural Elements and Future Directions
Federated learning (FL) focuses on collaborative model training without the need to move the private data silos to a central server. Despite its several benefits, the classical FL is plagued with several limitations, such as high computational power required for model training(which is critical for low-resource clients), privacy risks, large update traffic, and non-IID heterogeneity. This chapter surveys a hybrid paradigm - Quantum Federated Learning (QFL), which introduces quantum computation, that addresses multiple challenges of classical FL and offers rapid computing capability while keeping the classical orchestration intact. Firstly, we motivate QFL with a concrete presentation on pain points of classical FL, followed by a discussion on a general architecture of QFL frameworks specifying the roles of client and server, communication primitives and the quantum model placement. We classify the existing QFL systems based on four criteria - quantum architecture (pure QFL, hybrid QFL), data processing method (quantum data encoding, quantum feature mapping, and quantum feature selection & dimensionality reduction), network topology (centralized, hierarchial, decentralized), and quantum security mechanisms (quantum key distribution, quantum homomorphic encryption, quantum differential privacy, blind quantum computing). We then describe applications of QFL in healthcare, vehicular networks, wireless networks, and network security, clearly highlighting where QFL improves communication efficiency, security, and performance compared to classical FL. We close with multiple challenges and future works in QFL, including extension of QFL beyond classification tasks, adversarial attacks, realistic hardware deployment, quantum communication protocols deployment, aggregation of different quantum models, and quantum split learning as an alternative to QFL.
comment: 28 PAGES, 11 figures, introductory review article (book chapter), to be published in a book with springer
☆ RESample: A Robust Data Augmentation Framework via Exploratory Sampling for Robotic Manipulation ICRA2026
Vision-Language-Action models (VLAs) have demonstrated remarkable performance on complex robotic manipulation tasks through imitation learning. However, existing imitation learning datasets contain only successful trajectories and lack failure or recovery data, especially for out-of-distribution (OOD) states where the robot deviates from the main policy due to minor perturbations or errors, leading VLA models to struggle with states deviating from the training distribution. To this end, we propose an automated OOD data augmentation framework named RESample through exploratory sampling. Specifically, we first leverage offline reinforcement learning to obtain an action-value network that accurately identifies sub-optimal actions under the current manipulation policy. We further sample potential OOD states from trajectories via rollout, and design an exploratory sampling mechanism that adaptively incorporates these action proxies into the training dataset to ensure efficiency. Subsequently, our framework explicitly encourages the VLAs to recover from OOD states and enhances their robustness against distributional shifts. We conduct extensive experiments on the LIBERO benchmark as well as real-world robotic manipulation tasks, demonstrating that RESample consistently improves the stability and generalization ability of VLA models.
comment: 9 pages,7 figures, submitted to ICRA2026
☆ LLM-as-a-Prophet: Understanding Predictive Intelligence with Prophet Arena
Forecasting is not only a fundamental intellectual pursuit but also is of significant importance to societal systems such as finance and economics. With the rapid advances of large language models (LLMs) trained on Internet-scale data, it raises the promise of employing LLMs to forecast real-world future events, an emerging paradigm we call "LLM-as-a-Prophet". This paper systematically investigates such predictive intelligence of LLMs. To this end, we build Prophet Arena, a general evaluation benchmark that continuously collects live forecasting tasks and decomposes each task into distinct pipeline stages, in order to support our controlled and large-scale experimentation. Our comprehensive evaluation reveals that many LLMs already exhibit impressive forecasting capabilities, reflected in, e.g., their small calibration errors, consistent prediction confidence and promising market returns. However, we also uncover key bottlenecks towards achieving superior predictive intelligence via LLM-as-a-Prophet, such as LLMs' inaccurate event recalls, misunderstanding of data sources and slower information aggregation compared to markets when resolution nears.
comment: https://www.prophetarena.co/
☆ Just-In-Time Piecewise-Linear Semantics for ReLU-type Networks
We present a JIT PL semantics for ReLU-type networks that compiles models into a guarded CPWL transducer with shared guards. The system adds hyperplanes only when operands are affine on the current cell, maintains global lower/upper envelopes, and uses a budgeted branch-and-bound. We obtain anytime soundness, exactness on fully refined cells, monotone progress, guard-linear complexity (avoiding global $\binom{k}{2}$), dominance pruning, and decidability under finite refinement. The shared carrier supports region extraction, decision complexes, Jacobians, exact/certified Lipschitz, LP/SOCP robustness, and maximal causal influence. A minimal prototype returns certificates or counterexamples with cost proportional to visited subdomains.
☆ Non-asymptotic error bounds for probability flow ODEs under weak log-concavity
Score-based generative modeling, implemented through probability flow ODEs, has shown impressive results in numerous practical settings. However, most convergence guarantees rely on restrictive regularity assumptions on the target distribution -- such as strong log-concavity or bounded support. This work establishes non-asymptotic convergence bounds in the 2-Wasserstein distance for a general class of probability flow ODEs under considerably weaker assumptions: weak log-concavity and Lipschitz continuity of the score function. Our framework accommodates non-log-concave distributions, such as Gaussian mixtures, and explicitly accounts for initialization errors, score approximation errors, and effects of discretization via an exponential integrator scheme. Bridging a key theoretical challenge in diffusion-based generative modeling, our results extend convergence theory to more realistic data distributions and practical ODE solvers. We provide concrete guarantees for the efficiency and correctness of the sampling algorithm, complementing the empirical success of diffusion models with rigorous theory. Moreover, from a practical perspective, our explicit rates might be helpful in choosing hyperparameters, such as the step size in the discretization.
☆ Reasoning Distillation and Structural Alignment for Improved Code Generation
Effective code generation with language models hinges on two critical factors: accurately understanding the intent of the prompt and generating code that applies algorithmic reasoning to produce correct solutions capable of passing diverse test cases while adhering to the syntax of the target programming language. Unlike other language tasks, code generation requires more than accurate token prediction; it demands comprehension of solution-level and structural relationships rather than merely generating the most likely tokens. very large language model (VLLM) are capable of generating detailed steps toward the correct solution of complex tasks where reasoning is crucial in solving the problem. Such reasoning capabilities may be absent in smaller language models. Therefore, in this work, we distill the reasoning capabilities of a VLLM into a smaller, more efficient model that is faster and cheaper to deploy. Our approach trains the model to emulate the reasoning and problem-solving abilities of the VLLM by learning to identify correct solution pathways and establishing a structural correspondence between problem definitions and potential solutions through a novel method of structure-aware loss optimization. This enables the model to transcend token-level generation and to deeply grasp the overarching structure of solutions for given problems. Experimental results show that our fine-tuned model, developed through a cheap and simple to implement process, significantly outperforms our baseline model in terms of pass@1, average data flow, and average syntax match metrics across the MBPP, MBPP Plus, and HumanEval benchmarks.
☆ HGAdapter: Hypergraph-based Adapters in Language Models for Code Summarization and Clone Detection EMNLP 2025
Pre-trained language models (PLMs) are increasingly being applied to code-related tasks. Although PLMs have achieved good results, they do not take into account potential high-order data correlations within the code. We propose three types of high-order correlations in code tokens, i.e. abstract syntax tree family correlation, lexical correlation, and line correlation. We design a tokens and hyperedges generator to capture these high-order data correlations. We improve the architecture of hypergraph neural networks and combine it with adapter tuning to propose a novel hypergraph-based adapter (HGAdapter) to fine-tune PLMs. HGAdapter can encode high-order data correlations and is allowed to be inserted into various PLMs to enhance performance. Experiments were conducted on several public datasets, including six languages of code summarization and code clone detection tasks. Our methods improved the performance of PLMs in datasets to varying degrees. Experimental results validate the introduction of high-order data correlations that contribute to improved effectiveness.
comment: Accepted by the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025) as a findings long paper
☆ MIRAGE: Agentic Framework for Multimodal Misinformation Detection with Web-Grounded Reasoning
Misinformation spreads across web platforms through billions of daily multimodal posts that combine text and images, overwhelming manual fact-checking capacity. Supervised detection models require domain-specific training data and fail to generalize across diverse manipulation tactics. We present MIRAGE, an inference-time, model-pluggable agentic framework that decomposes multimodal verification into four sequential modules: visual veracity assessment detects AI-generated images, cross-modal consistency analysis identifies out-of-context repurposing, retrieval-augmented factual checking grounds claims in web evidence through iterative question generation, and a calibrated judgment module integrates all signals. MIRAGE orchestrates vision-language model reasoning with targeted web retrieval, outputs structured and citation-linked rationales. On MMFakeBench validation set (1,000 samples), MIRAGE with GPT-4o-mini achieves 81.65% F1 and 75.1% accuracy, outperforming the strongest zero-shot baseline (GPT-4V with MMD-Agent at 74.0% F1) by 7.65 points while maintaining 34.3% false positive rate versus 97.3% for a judge-only baseline. Test set results (5,000 samples) confirm generalization with 81.44% F1 and 75.08% accuracy. Ablation studies show visual verification contributes 5.18 F1 points and retrieval-augmented reasoning contributes 2.97 points. Our results demonstrate that decomposed agentic reasoning with web retrieval can match supervised detector performance without domain-specific training, enabling misinformation detection across modalities where labeled data remains scarce.
comment: 16 pages, 3 tables, 1 figure
☆ CEPerFed: Communication-Efficient Personalized Federated Learning for Multi-Pulse MRI Classification
Multi-pulse magnetic resonance imaging (MRI) is widely utilized for clinical practice such as Alzheimer's disease diagnosis. To train a robust model for multi-pulse MRI classification, it requires large and diverse data from various medical institutions while protecting privacy by preventing raw data sharing across institutions. Although federated learning (FL) is a feasible solution to address this issue, it poses challenges of model convergence due to the effect of data heterogeneity and substantial communication overhead due to large numbers of parameters transmitted within the model. To address these challenges, we propose CEPerFed, a communication-efficient personalized FL method. It mitigates the effect of data heterogeneity by incorporating client-side historical risk gradients and historical mean gradients to coordinate local and global optimization. The former is used to weight the contributions from other clients, enhancing the reliability of local updates, while the latter enforces consistency between local updates and the global optimization direction to ensure stable convergence across heterogeneous data distributions. To address the high communication overhead, we propose a hierarchical SVD (HSVD) strategy that transmits only the most critical information required for model updates. Experiments on five classification tasks demonstrate the effectiveness of the CEPerFed method. The code will be released upon acceptance at https://github.com/LD0416/CEPerFed.
☆ Semi-supervised Latent Bayesian Optimization for Designing Antimicrobial Peptides
Antimicrobial peptides (AMPs) are a promising class of therapeutics to treat bacterial infections. Discovering and designing such peptides is difficult because of the vast number of possible sequences of amino acids. Deep generative models, such as variational autoencoders, have shown value in peptide design due to their ability to model sequence space with a continuous-valued latent space. Although such models have already been used to great effect in biomolecular design, they still suffer from a lack of interpretability and rigorous quantification of latent space quality as a search space. We investigate (1) whether further compression of the design space via dimensionality reduction may facilitate optimization, (2) the interpretability of the spaces, and (3) how organizing latent spaces with physicochemical properties may improve the efficiency of optimizing antimicrobial activity. We find that further reduction of the latent space via dimensionality reduction can be advantageous when organizing the space with more relevant information at data availability, that using the dimensionality reduction search space can be more interpretable, and that we can organize the latent space with different physicochemical properties even at different percentages of available labels.
comment: 19 pages, 9 figures
☆ An Empirical Study of Lagrangian Methods in Safe Reinforcement Learning
In safety-critical domains such as robotics, navigation and power systems, constrained optimization problems arise where maximizing performance must be carefully balanced with associated constraints. Safe reinforcement learning provides a framework to address these challenges, with Lagrangian methods being a popular choice. However, the effectiveness of Lagrangian methods crucially depends on the choice of the Lagrange multiplier $\lambda$, which governs the trade-off between return and constraint cost. A common approach is to update the multiplier automatically during training. Although this is standard in practice, there remains limited empirical evidence on the robustness of an automated update and its influence on overall performance. Therefore, we analyze (i) optimality and (ii) stability of Lagrange multipliers in safe reinforcement learning across a range of tasks. We provide $\lambda$-profiles that give a complete visualization of the trade-off between return and constraint cost of the optimization problem. These profiles show the highly sensitive nature of $\lambda$ and moreover confirm the lack of general intuition for choosing the optimal value $\lambda^*$. Our findings additionally show that automated multiplier updates are able to recover and sometimes even exceed the optimal performance found at $\lambda^*$ due to the vast difference in their learning trajectories. Furthermore, we show that automated multiplier updates exhibit oscillatory behavior during training, which can be mitigated through PID-controlled updates. However, this method requires careful tuning to achieve consistently better performance across tasks. This highlights the need for further research on stabilizing Lagrangian methods in safe reinforcement learning. The code used to reproduce our results can be found at https://github.com/lindsayspoor/Lagrangian_SafeRL.
☆ Formally Exploring Time-Series Anomaly Detection Evaluation Metrics
Undetected anomalies in time series can trigger catastrophic failures in safety-critical systems, such as chemical plant explosions or power grid outages. Although many detection methods have been proposed, their performance remains unclear because current metrics capture only narrow aspects of the task and often yield misleading results. We address this issue by introducing verifiable properties that formalize essential requirements for evaluating time-series anomaly detection. These properties enable a theoretical framework that supports principled evaluations and reliable comparisons. Analyzing 37 widely used metrics, we show that most satisfy only a few properties, and none satisfy all, explaining persistent inconsistencies in prior results. To close this gap, we propose LARM, a flexible metric that provably satisfies all properties, and extend it to ALARM, an advanced variant meeting stricter requirements.
comment: 73 pages, 13 figures
☆ The Free Transformer
We propose an extension of the decoder Transformer that conditions its generative process on random latent variables which are learned without supervision thanks to a variational procedure. Experimental evaluations show that allowing such a conditioning translates into substantial improvements on downstream tasks.
☆ TrajMamba: An Efficient and Semantic-rich Vehicle Trajectory Pre-training Model NeurIPS2025
Vehicle GPS trajectories record how vehicles move over time, storing valuable travel semantics, including movement patterns and travel purposes. Learning travel semantics effectively and efficiently is crucial for real-world applications of trajectory data, which is hindered by two major challenges. First, travel purposes are tied to the functions of the roads and points-of-interest (POIs) involved in a trip. Such information is encoded in textual addresses and descriptions and introduces heavy computational burden to modeling. Second, real-world trajectories often contain redundant points, which harm both computational efficiency and trajectory embedding quality. To address these challenges, we propose TrajMamba, a novel approach for efficient and semantically rich vehicle trajectory learning. TrajMamba introduces a Traj-Mamba Encoder that captures movement patterns by jointly modeling both GPS and road perspectives of trajectories, enabling robust representations of continuous travel behaviors. It also incorporates a Travel Purpose-aware Pre-training procedure to integrate travel purposes into the learned embeddings without introducing extra overhead to embedding calculation. To reduce redundancy in trajectories, TrajMamba features a Knowledge Distillation Pre-training scheme to identify key trajectory points through a learnable mask generator and obtain effective compressed trajectory embeddings. Extensive experiments on two real-world datasets and three downstream tasks show that TrajMamba outperforms state-of-the-art baselines in both efficiency and accuracy.
comment: Accepted by NeurIPS2025
☆ Reliable Inference in Edge-Cloud Model Cascades via Conformal Alignment
Edge intelligence enables low-latency inference via compact on-device models, but assuring reliability remains challenging. We study edge-cloud cascades that must preserve conditional coverage: whenever the edge returns a prediction set, it should contain the true label with a user-specified probability, as if produced by the cloud model. We formalize conditional coverage with respect to the cloud predictive distribution, and introduce a conformal alignment-based (CAb) cascading mechanism that certifies this property with user control over the risk level. Our method casts escalation from edge to cloud models as a multiple-hypothesis testing (MHT) problem, tailoring conformal alignment (CA) to select which inputs can be safely handled at the edge. The proposed CAb model cascading method yields statistical guarantees on the average fraction of edge decisions that satisfy cloud-level conditional coverage. The procedure applies to arbitrary edge prediction sets, including variants of conformal prediction (CP), and exposes a tunable trade-off among coverage, deferral rate, and set size. Experiments on CIFAR-100 image classification and the TeleQnA question-answering (QA) benchmark show that the proposed CAb cascade maintains the target conditional coverage for edge predictions while substantially reducing offloading to the cloud and incurring modest increases in prediction-set size.
comment: Under Review
☆ OncoReason: Structuring Clinical Reasoning in LLMs for Robust and Interpretable Survival Prediction
Predicting cancer treatment outcomes requires models that are both accurate and interpretable, particularly in the presence of heterogeneous clinical data. While large language models (LLMs) have shown strong performance in biomedical NLP, they often lack structured reasoning capabilities critical for high-stakes decision support. We present a unified, multi-task learning framework that aligns autoregressive LLMs with clinical reasoning for outcome prediction on the MSK-CHORD dataset. Our models are trained to jointly perform binary survival classification, continuous survival time regression, and natural language rationale generation. We evaluate three alignment strategies: (1) standard supervised fine-tuning (SFT), (2) SFT with Chain-of-Thought (CoT) prompting to elicit step-by-step reasoning, and (3) Group Relative Policy Optimization (GRPO), a reinforcement learning method that aligns model outputs to expert-derived reasoning trajectories. Experiments with LLaMa3-8B and Med42-8B backbones demonstrate that CoT prompting improves F1 by +6.0 and reduces MAE by 12%, while GRPO achieves state-of-the-art interpretability and predictive performance across BLEU, ROUGE, and BERTScore. We further show that existing biomedical LLMs often fail to produce valid reasoning traces due to architectural constraints. Our findings underscore the importance of reasoning-aware alignment in multi-task clinical modeling and set a new benchmark for interpretable, trustworthy LLMs in precision oncology.
☆ Plasma Shape Control via Zero-shot Generative Reinforcement Learning
Traditional PID controllers have limited adaptability for plasma shape control, and task-specific reinforcement learning (RL) methods suffer from limited generalization and the need for repetitive retraining. To overcome these challenges, this paper proposes a novel framework for developing a versatile, zero-shot control policy from a large-scale offline dataset of historical PID-controlled discharges. Our approach synergistically combines Generative Adversarial Imitation Learning (GAIL) with Hilbert space representation learning to achieve dual objectives: mimicking the stable operational style of the PID data and constructing a geometrically structured latent space for efficient, goal-directed control. The resulting foundation policy can be deployed for diverse trajectory tracking tasks in a zero-shot manner without any task-specific fine-tuning. Evaluations on the HL-3 tokamak simulator demonstrate that the policy excels at precisely and stably tracking reference trajectories for key shape parameters across a range of plasma scenarios. This work presents a viable pathway toward developing highly flexible and data-efficient intelligent control systems for future fusion reactors.
☆ MambaX-Net: Dual-Input Mamba-Enhanced Cross-Attention Network for Longitudinal MRI Segmentation
Active Surveillance (AS) is a treatment option for managing low and intermediate-risk prostate cancer (PCa), aiming to avoid overtreatment while monitoring disease progression through serial MRI and clinical follow-up. Accurate prostate segmentation is an important preliminary step for automating this process, enabling automated detection and diagnosis of PCa. However, existing deep-learning segmentation models are often trained on single-time-point and expertly annotated datasets, making them unsuitable for longitudinal AS analysis, where multiple time points and a scarcity of expert labels hinder their effective fine-tuning. To address these challenges, we propose MambaX-Net, a novel semi-supervised, dual-scan 3D segmentation architecture that computes the segmentation for time point t by leveraging the MRI and the corresponding segmentation mask from the previous time point. We introduce two new components: (i) a Mamba-enhanced Cross-Attention Module, which integrates the Mamba block into cross attention to efficiently capture temporal evolution and long-range spatial dependencies, and (ii) a Shape Extractor Module that encodes the previous segmentation mask into a latent anatomical representation for refined zone delination. Moreover, we introduce a semi-supervised self-training strategy that leverages pseudo-labels generated from a pre-trained nnU-Net, enabling effective learning without expert annotations. MambaX-Net was evaluated on a longitudinal AS dataset, and results showed that it significantly outperforms state-of-the-art U-Net and Transformer-based models, achieving superior prostate zone segmentation even when trained on limited and noisy data.
☆ How Does Label Noise Gradient Descent Improve Generalization in the Low SNR Regime?
The capacity of deep learning models is often large enough to both learn the underlying statistical signal and overfit to noise in the training set. This noise memorization can be harmful especially for data with a low signal-to-noise ratio (SNR), leading to poor generalization. Inspired by prior observations that label noise provides implicit regularization that improves generalization, in this work, we investigate whether introducing label noise to the gradient updates can enhance the test performance of neural network (NN) in the low SNR regime. Specifically, we consider training a two-layer NN with a simple label noise gradient descent (GD) algorithm, in an idealized signal-noise data setting. We prove that adding label noise during training suppresses noise memorization, preventing it from dominating the learning process; consequently, label noise GD enjoys rapid signal growth while the overfitting remains controlled, thereby achieving good generalization despite the low SNR. In contrast, we also show that NN trained with standard GD tends to overfit to noise in the same low SNR setting and establish a non-vanishing lower bound on its test error, thus demonstrating the benefit of introducing label noise in gradient-based training.
comment: 40 pages
☆ Mitigating Clever Hans Strategies in Image Classifiers through Generating Counterexamples
Deep learning models remain vulnerable to spurious correlations, leading to so-called Clever Hans predictors that undermine robustness even in large-scale foundation and self-supervised models. Group distributional robustness methods, such as Deep Feature Reweighting (DFR) rely on explicit group labels to upweight underrepresented subgroups, but face key limitations: (1) group labels are often unavailable, (2) low within-group sample sizes hinder coverage of the subgroup distribution, and (3) performance degrades sharply when multiple spurious correlations fragment the data into even smaller groups. We propose Counterfactual Knowledge Distillation (CFKD), a framework that sidesteps these issues by generating diverse counterfactuals, enabling a human annotator to efficiently explore and correct the model's decision boundaries through a knowledge distillation step. Unlike DFR, our method not only reweights the undersampled groups, but it also enriches them with new data points. Our method does not require any confounder labels, achieves effective scaling to multiple confounders, and yields balanced generalization across groups. We demonstrate CFKD's efficacy across five datasets, spanning synthetic tasks to an industrial application, with particularly strong gains in low-data regimes with pronounced spurious correlations. Additionally, we provide an ablation study on the effect of the chosen counterfactual explainer and teacher model, highlighting their impact on robustness.
☆ Curiosity Meets Cooperation: A Game-Theoretic Approach to Long-Tail Multi-Label Learning
Long-tail imbalance is endemic to multi-label learning: a few head labels dominate the gradient signal, while the many rare labels that matter in practice are silently ignored. We tackle this problem by casting the task as a cooperative potential game. In our Curiosity-Driven Game-Theoretic Multi-Label Learning (CD-GTMLL) framework, the label space is split among several cooperating players that share a global accuracy payoff yet earn additional curiosity rewards that rise with label rarity and inter-player disagreement. These curiosity bonuses inject gradient on under-represented tags without hand-tuned class weights. We prove that gradient best-response updates ascend a differentiable potential and converge to tail-aware stationary points that tighten a lower bound on the expected Rare-F1. Extensive experiments on conventional benchmarks and three extreme-scale datasets show consistent state-of-the-art gains, delivering up to +4.3% Rare-F1 and +1.6% P@3 over the strongest baselines, while ablations reveal emergent division of labour and faster consensus on rare classes. CD-GTMLL thus offers a principled, scalable route to long-tail robustness in multi-label prediction.
comment: Under review
☆ SAFE-D: A Spatiotemporal Detection Framework for Abnormal Driving Among Parkinson's Disease-like Drivers
A driver's health state serves as a determinant factor in driving behavioral regulation. Subtle deviations from normalcy can lead to operational anomalies, posing risks to public transportation safety. While prior efforts have developed detection mechanisms for functionally-driven temporary anomalies such as drowsiness and distraction, limited research has addressed pathologically-triggered deviations, especially those stemming from chronic medical conditions. To bridge this gap, we investigate the driving behavior of Parkinson's disease patients and propose SAFE-D, a novel framework for detecting Parkinson-related behavioral anomalies to enhance driving safety. Our methodology starts by performing analysis of Parkinson's disease symptomatology, focusing on primary motor impairments, and establishes causal links to degraded driving performance. To represent the subclinical behavioral variations of early-stage Parkinson's disease, our framework integrates data from multiple vehicle control components to build a behavioral profile. We then design an attention-based network that adaptively prioritizes spatiotemporal features, enabling robust anomaly detection under physiological variability. Finally, we validate SAFE-D on the Logitech G29 platform and CARLA simulator, using data from three road maps to emulate real-world driving. Our results show SAFE-D achieves 96.8% average accuracy in distinguishing normal and Parkinson-affected driving patterns.
☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
☆ The Graphon Limit Hypothesis: Understanding Neural Network Pruning via Infinite Width Analysis NeurIPS 2025
Sparse neural networks promise efficiency, yet training them effectively remains a fundamental challenge. Despite advances in pruning methods that create sparse architectures, understanding why some sparse structures are better trainable than others with the same level of sparsity remains poorly understood. Aiming to develop a systematic approach to this fundamental problem, we propose a novel theoretical framework based on the theory of graph limits, particularly graphons, that characterizes sparse neural networks in the infinite-width regime. Our key insight is that connectivity patterns of sparse neural networks induced by pruning methods converge to specific graphons as networks' width tends to infinity, which encodes implicit structural biases of different pruning methods. We postulate the Graphon Limit Hypothesis and provide empirical evidence to support it. Leveraging this graphon representation, we derive a Graphon Neural Tangent Kernel (Graphon NTK) to study the training dynamics of sparse networks in the infinite width limit. Graphon NTK provides a general framework for the theoretical analysis of sparse networks. We empirically show that the spectral analysis of Graphon NTK correlates with observed training dynamics of sparse networks, explaining the varying convergence behaviours of different pruning methods. Our framework provides theoretical insights into the impact of connectivity patterns on the trainability of various sparse network architectures.
comment: NeurIPS 2025 Spotlight
☆ AWARE: Audio Watermarking with Adversarial Resistance to Edits
Prevailing practice in learning-based audio watermarking is to pursue robustness by expanding the set of simulated distortions during training. However, such surrogates are narrow and prone to overfitting. This paper presents AWARE (Audio Watermarking with Adversarial Resistance to Edits), an alternative approach that avoids reliance on attack-simulation stacks and handcrafted differentiable distortions. Embedding is obtained via adversarial optimization in the time-frequency domain under a level-proportional perceptual budget. Detection employs a time-order-agnostic detector with a Bitwise Readout Head (BRH) that aggregates temporal evidence into one score per watermark bit, enabling reliable watermark decoding even under desynchronization and temporal cuts. Empirically, AWARE attains high audio quality and speech intelligibility (PESQ/STOI) and consistently low BER across various audio edits, often surpassing representative state-of-the-art learning-based audio watermarking systems.
☆ Convergence Rates for Gradient Descent on the Edge of Stability in Overparametrised Least Squares NeurIPS2025
Classical optimisation theory guarantees monotonic objective decrease for gradient descent (GD) when employed in a small step size, or ``stable", regime. In contrast, gradient descent on neural networks is frequently performed in a large step size regime called the ``edge of stability", in which the objective decreases non-monotonically with an observed implicit bias towards flat minima. In this paper, we take a step toward quantifying this phenomenon by providing convergence rates for gradient descent with large learning rates in an overparametrised least squares setting. The key insight behind our analysis is that, as a consequence of overparametrisation, the set of global minimisers forms a Riemannian manifold $M$, which enables the decomposition of the GD dynamics into components parallel and orthogonal to $M$. The parallel component corresponds to Riemannian gradient descent on the objective sharpness, while the orthogonal component is a bifurcating dynamical system. This insight allows us to derive convergence rates in three regimes characterised by the learning rate size: (a) the subcritical regime, in which transient instability is overcome in finite time before linear convergence to a suboptimally flat global minimum; (b) the critical regime, in which instability persists for all time with a power-law convergence toward the optimally flat global minimum; and (c) the supercritical regime, in which instability persists for all time with linear convergence to an orbit of period two centred on the optimally flat global minimum.
comment: NeurIPS2025. Code available at https://github.com/lemacdonald/eos-convergence-rates-codimension-1
☆ Stochastic Difference-of-Convex Optimization with Momentum
Stochastic difference-of-convex (DC) optimization is prevalent in numerous machine learning applications, yet its convergence properties under small batch sizes remain poorly understood. Existing methods typically require large batches or strong noise assumptions, which limit their practical use. In this work, we show that momentum enables convergence under standard smoothness and bounded variance assumptions (of the concave part) for any batch size. We prove that without momentum, convergence may fail regardless of stepsize, highlighting its necessity. Our momentum-based algorithm achieves provable convergence and demonstrates strong empirical performance.
☆ I-RAVEN-X: Benchmarking Generalization and Robustness of Analogical and Mathematical Reasoning in Large Language and Reasoning Models NeurIPS 2025
We introduce I-RAVEN-X, a symbolic benchmark designed to evaluate generalization and robustness in analogical and mathematical reasoning for Large Language Models (LLMs) and Large Reasoning Models (LRMs). I-RAVEN-X extends I-RAVEN by increasing operand complexity, attribute range, and introducing perceptual uncertainty. Compared to LLMs, empirical results show that LRMs achieve improved productivity and systematicity on longer reasoning relations and wider attribute ranges, respectively. However, LRMs are still significantly challenged by reasoning under uncertainty and cannot effectively explore multiple probabilistic outcomes.
comment: Accepted at the 5th Workshop on Mathematical Reasoning and AI (MATH-AI), NeurIPS 2025
☆ DETree: DEtecting Human-AI Collaborative Texts via Tree-Structured Hierarchical Representation Learning NeurIPS 2025
Detecting AI-involved text is essential for combating misinformation, plagiarism, and academic misconduct. However, AI text generation includes diverse collaborative processes (AI-written text edited by humans, human-written text edited by AI, and AI-generated text refined by other AI), where various or even new LLMs could be involved. Texts generated through these varied processes exhibit complex characteristics, presenting significant challenges for detection. Current methods model these processes rather crudely, primarily employing binary classification (purely human vs. AI-involved) or multi-classification (treating human-AI collaboration as a new class). We observe that representations of texts generated through different processes exhibit inherent clustering relationships. Therefore, we propose DETree, a novel approach that models the relationships among different processes as a Hierarchical Affinity Tree structure, and introduces a specialized loss function that aligns text representations with this tree. To facilitate this learning, we developed RealBench, a comprehensive benchmark dataset that automatically incorporates a wide spectrum of hybrid texts produced through various human-AI collaboration processes. Our method improves performance in hybrid text detection tasks and significantly enhances robustness and generalization in out-of-distribution scenarios, particularly in few-shot learning conditions, further demonstrating the promise of training-based approaches in OOD settings. Our code and dataset are available at https://github.com/heyongxin233/DETree.
comment: To appear in NeurIPS 2025
☆ Local properties of neural networks through the lens of layer-wise Hessians
We introduce a methodology for analyzing neural networks through the lens of layer-wise Hessian matrices. The local Hessian of each functional block (layer) is defined as the matrix of second derivatives of a scalar function with respect to the parameters of that layer. This concept provides a formal tool for characterizing the local geometry of the parameter space. We show that the spectral properties of local Hessians, such as the distribution of eigenvalues, reveal quantitative patterns associated with overfitting, underparameterization, and expressivity in neural network architectures. We conduct an extensive empirical study involving 111 experiments across 37 datasets. The results demonstrate consistent structural regularities in the evolution of local Hessians during training and highlight correlations between their spectra and generalization performance. These findings establish a foundation for using local geometric analysis to guide the diagnosis and design of deep neural networks. The proposed framework connects optimization geometry with functional behavior and offers practical insight for improving network architectures and training stability.
comment: Comments: 22 pages, 8 figures. Submitted to arXiv:cs.LG
☆ Unified Privacy Guarantees for Decentralized Learning via Matrix Factorization
Decentralized Learning (DL) enables users to collaboratively train models without sharing raw data by iteratively averaging local updates with neighbors in a network graph. This setting is increasingly popular for its scalability and its ability to keep data local under user control. Strong privacy guarantees in DL are typically achieved through Differential Privacy (DP), with results showing that DL can even amplify privacy by disseminating noise across peer-to-peer communications. Yet in practice, the observed privacy-utility trade-off often appears worse than in centralized training, which may be due to limitations in current DP accounting methods for DL. In this paper, we show that recent advances in centralized DP accounting based on Matrix Factorization (MF) for analyzing temporal noise correlations can also be leveraged in DL. By generalizing existing MF results, we show how to cast both standard DL algorithms and common trust models into a unified formulation. This yields tighter privacy accounting for existing DP-DL algorithms and provides a principled way to develop new ones. To demonstrate the approach, we introduce MAFALDA-SGD, a gossip-based DL algorithm with user-level correlated noise that outperforms existing methods on synthetic and real-world graphs.
comment: 21 pages, 5 figures
☆ Towards geological inference with process-based and deep generative modeling, part 2: inversion of fluvial deposits and latent-space disentanglement
High costs and uncertainties make subsurface decision-making challenging, as acquiring new data is rarely scalable. Embedding geological knowledge directly into predictive models offers a valuable alternative. A joint approach enables just that: process-based models that mimic geological processes can help train generative models that make predictions more efficiently. This study explores whether a generative adversarial network (GAN) - a type of deep-learning algorithm for generative modeling - trained to produce fluvial deposits can be inverted to match well and seismic data. Four inversion approaches applied to three test samples with 4, 8, and 20 wells struggled to match these well data, especially as the well number increased or as the test sample diverged from the training data. The key bottleneck lies in the GAN's latent representation: it is entangled, so samples with similar sedimentological features are not necessarily close in the latent space. Label conditioning or latent overparameterization can partially disentangle the latent space during training, although not yet sufficiently for a successful inversion. Fine-tuning the GAN to restructure the latent space locally reduces mismatches to acceptable levels for all test cases, with and without seismic data. But this approach depends on an initial, partially successful inversion step, which influences the quality and diversity of the final samples. Overall, GANs can already handle the tasks required for their integration into geomodeling workflows. We still need to further assess their robustness, and how to best leverage them in support of geological interpretation.
comment: 52 pages, 42 figures
☆ DAMSDAN: Distribution-Aware Multi-Source Domain Adaptation Network for Cross-Domain EEG-based Emotion Recognition
Significant inter-individual variability limits the generalization of EEG-based emotion recognition under cross-domain settings. We address two core challenges in multi-source adaptation: (1) dynamically modeling distributional heterogeneity across sources and quantifying their relevance to a target to reduce negative transfer; and (2) achieving fine-grained semantic consistency to strengthen class discrimination. We propose a distribution-aware multi-source domain adaptation network (DAMSDAN). DAMSDAN integrates prototype-based constraints with adversarial learning to drive the encoder toward discriminative, domain-invariant emotion representations. A domain-aware source weighting strategy based on maximum mean discrepancy (MMD) dynamically estimates inter-domain shifts and reweights source contributions. In addition, a prototype-guided conditional alignment module with dual pseudo-label interaction enhances pseudo-label reliability and enables category-level, fine-grained alignment, mitigating noise propagation and semantic drift. Experiments on SEED and SEED-IV show average accuracies of 94.86\% and 79.78\% for cross-subject, and 95.12\% and 83.15\% for cross-session protocols. On the large-scale FACED dataset, DAMSDAN achieves 82.88\% (cross-subject). Extensive ablations and interpretability analyses corroborate the effectiveness of the proposed framework for cross-domain EEG-based emotion recognition.
comment: 14 pages, 9 figures
☆ Certified Self-Consistency: Statistical Guarantees and Test-Time Training for Reliable Reasoning in LLMs
Recent advances such as self-consistency and test-time reinforcement learning (TTRL) improve the reliability of large language models (LLMs) without additional supervision, yet their underlying mechanisms and statistical guarantees remain poorly understood. We present a unified framework for certifiable inference in LLMs, showing that majority voting provides a statistical certificate of self-consistency: under mild assumptions, the aggregated answer coincides with the mode of the model's terminal distribution with high probability. We derive finite-sample and anytime-valid concentration bounds that quantify this confidence, and introduce the Martingale Majority Certificate (MMC), a sequential stopping rule that adaptively determines when sufficient samples have been drawn. We further prove that label-free post-training methods such as TTRL implicitly sharpen the answer distribution by exponentially tilting it toward its mode, thereby reducing the number of samples required for certification. Building on this insight, we propose new post-training objectives that explicitly optimise this trade-off between sharpness and bias. Together, these results explain and connect two central test-time scaling strategies, self-consistency and TTRL, within a single statistical framework for label-free, certifiable reliability in reasoning LLMs.
☆ Layer Specialization Underlying Compositional Reasoning in Transformers
Transformers exhibit compositional reasoning on sequences not observed during training, a capability often attributed to in-context learning (ICL) and skill composition. We investigate this phenomenon using the Random Hierarchy Model (RHM), a probabilistic context-free grammar that generates sequences through recursive rule application. Models are trained on subsets of sequences and evaluated across four generalization conditions: memorization, in-distribution generalization, out-of-distribution generalization with the same rules, and cross-layer transfer. Behaviorally, performance improves systematically with task complexity and the number of in-context examples, with out-of-distribution tasks requiring substantially more examples than in-distribution scenarios. Mechanistically, we identify a progressive emergence of layer specialization during training that correlates with generalization performance. Principal component analysis and attention pattern clustering reveal that transformers develop structured, hierarchically organized representations in specialized layers. These results demonstrate that transformers develop modular, interpretable mechanisms supporting compositional reasoning, linking internal algorithmic structure to observed behavioral capabilities.
☆ CrossStateECG: Multi-Scale Deep Convolutional Network with Attention for Rest-Exercise ECG Biometrics
Current research in Electrocardiogram (ECG) biometrics mainly emphasizes resting-state conditions, leaving the performance decline in rest-exercise scenarios largely unresolved. This paper introduces CrossStateECG, a robust ECG-based authentication model explicitly tailored for cross-state (rest-exercise) conditions. The proposed model creatively combines multi-scale deep convolutional feature extraction with attention mechanisms to ensure strong identification across different physiological states. Experimental results on the exercise-ECGID dataset validate the effectiveness of CrossStateECG, achieving an identification accuracy of 92.50% in the Rest-to-Exercise scenario (training on resting ECG and testing on post-exercise ECG) and 94.72% in the Exercise-to-Rest scenario (training on post-exercise ECG and testing on resting ECG). Furthermore, CrossStateECG demonstrates exceptional performance across both state combinations, reaching an accuracy of 99.94% in Rest-to-Rest scenarios and 97.85% in Mixed-to-Mixed scenarios. Additional validations on the ECG-ID and MIT-BIH datasets further confirmed the generalization abilities of CrossStateECG, underscoring its potential as a practical solution for post-exercise ECG-based authentication in dynamic real-world settings.
☆ Estimating Orbital Parameters of Direct Imaging Exoplanet Using Neural Network
In this work, we propose a new flow-matching Markov chain Monte Carlo (FM-MCMC) algorithm for estimating the orbital parameters of exoplanetary systems, especially for those only one exoplanet is involved. Compared to traditional methods that rely on random sampling within the Bayesian framework, our approach first leverages flow matching posterior estimation (FMPE) to efficiently constrain the prior range of physical parameters, and then employs MCMC to accurately infer the posterior distribution. For example, in the orbital parameter inference of beta Pictoris b, our model achieved a substantial speed-up while maintaining comparable accuracy-running 77.8 times faster than Parallel Tempered MCMC (PTMCMC) and 365.4 times faster than nested sampling. Moreover, our FM-MCMC method also attained the highest average log-likelihood among all approaches, demonstrating its superior sampling efficiency and accuracy. This highlights the scalability and efficiency of our approach, making it well-suited for processing the massive datasets expected from future exoplanet surveys. Beyond astrophysics, our methodology establishes a versatile paradigm for synergizing deep generative models with traditional sampling, which can be adopted to tackle complex inference problems in other fields, such as cosmology, biomedical imaging, and particle physics.
☆ Explainable AI for microseismic event detection
Deep neural networks like PhaseNet show high accuracy in detecting microseismic events, but their black-box nature is a concern in critical applications. We apply explainable AI (XAI) techniques, such as Gradient-weighted Class Activation Mapping (Grad-CAM) and Shapley Additive Explanations (SHAP), to interpret the PhaseNet model's decisions and improve its reliability. Grad-CAM highlights that the network's attention aligns with P- and S-wave arrivals. SHAP values quantify feature contributions, confirming that vertical-component amplitudes drive P-phase picks while horizontal components dominate S-phase picks, consistent with geophysical principles. Leveraging these insights, we introduce a SHAP-gated inference scheme that combines the model's output with an explanation-based metric to reduce errors. On a test set of 9,000 waveforms, the SHAP-gated model achieved an F1-score of 0.98 (precision 0.99, recall 0.97), outperforming the baseline PhaseNet (F1-score 0.97) and demonstrating enhanced robustness to noise. These results show that XAI can not only interpret deep learning models but also directly enhance their performance, providing a template for building trust in automated seismic detectors.
comment: Submitted to Artificial Intelligence in Geosciences
☆ Deeper with Riemannian Geometry: Overcoming Oversmoothing and Oversquashing for Graph Foundation Models NeurIPS 25
Message Passing Neural Networks (MPNNs) is the building block of graph foundation models, but fundamentally suffer from oversmoothing and oversquashing. There has recently been a surge of interest in fixing both issues. Existing efforts primarily adopt global approaches, which may be beneficial in some regions but detrimental in others, ultimately leading to the suboptimal expressiveness. In this paper, we begin by revisiting oversquashing through a global measure -- spectral gap $\lambda$ -- and prove that the increase of $\lambda$ leads to gradient vanishing with respect to the input features, thereby undermining the effectiveness of message passing. Motivated by such theoretical insights, we propose a \textbf{local} approach that adaptively adjusts message passing based on local structures. To achieve this, we connect local Riemannian geometry with MPNNs, and establish a novel nonhomogeneous boundary condition to address both oversquashing and oversmoothing. Building on the Robin condition, we design a GBN network with local bottleneck adjustment, coupled with theoretical guarantees. Extensive experiments on homophilic and heterophilic graphs show the expressiveness of GBN. Furthermore, GBN does not exhibit performance degradation even when the network depth exceeds $256$ layers.
comment: Accept by NeurIPS 25
☆ The Parameterized Complexity of Computing the VC-Dimension NeurIPS 2025
The VC-dimension is a fundamental and well-studied measure of the complexity of a set system (or hypergraph) that is central to many areas of machine learning. We establish several new results on the complexity of computing the VC-dimension. In particular, given a hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{E})$, we prove that the naive $2^{\mathcal{O}(|\mathcal{V}|)}$-time algorithm is asymptotically tight under the Exponential Time Hypothesis (ETH). We then prove that the problem admits a 1-additive fixed-parameter approximation algorithm when parameterized by the maximum degree of $\mathcal{H}$ and a fixed-parameter algorithm when parameterized by its dimension, and that these are essentially the only such exploitable structural parameters. Lastly, we consider a generalization of the problem, formulated using graphs, which captures the VC-dimension of both set systems and graphs. We show that it is fixed-parameter tractable parameterized by the treewidth of the graph (which, in the case of set systems, applies to the treewidth of its incidence graph). In contrast with closely related problems whose dependency on the treewidth is necessarily double-exponential (assuming the ETH), our algorithm has a relatively low dependency on the treewidth.
comment: To appear in the proceedings of NeurIPS 2025
☆ From Spatial to Actions: Grounding Vision-Language-Action Model in Spatial Foundation Priors
Existing vision-language-action (VLA) models act in 3D real-world but are typically built on 2D encoders, leaving a spatial reasoning gap that limits generalization and adaptability. Recent 3D integration techniques for VLAs either require specialized sensors and transfer poorly across modalities, or inject weak cues that lack geometry and degrade vision-language alignment. In this work, we introduce FALCON (From Spatial to Action), a novel paradigm that injects rich 3D spatial tokens into the action head. FALCON leverages spatial foundation models to deliver strong geometric priors from RGB alone, and includes an Embodied Spatial Model that can optionally fuse depth, or pose for higher fidelity when available, without retraining or architectural changes. To preserve language reasoning, spatial tokens are consumed by a Spatial-Enhanced Action Head rather than being concatenated into the vision-language backbone. These designs enable FALCON to address limitations in spatial representation, modality transferability, and alignment. In comprehensive evaluations across three simulation benchmarks and eleven real-world tasks, our proposed FALCON achieves state-of-the-art performance, consistently surpasses competitive baselines, and remains robust under clutter, spatial-prompt conditioning, and variations in object scale and height.
comment: Project page: https://falcon-vla.github.io/
☆ Navigating the Alignment-Calibration Trade-off: A Pareto-Superior Frontier via Model Merging
The "alignment tax" of post-training is typically framed as a drop in task accuracy. We show it also involves a severe loss of calibration, making models overconfident, less reliable, and model outputs less diverse. We show that this trade-off can be navigated effectively via a simple post-hoc intervention: interpolating between a model's weights before and after alignment. Crucially, this is not a strict trade-off. We find that the process consistently reveals Pareto-optimal interpolations - models that improve accuracy beyond both parents while substantially recovering the calibration lost during alignment. Our work demonstrates that simple model merging provides a computationally efficient method for mitigating the full scope of the alignment tax, yielding models that are more capable and more reliable.
☆ Quantifying Climate Policy Action and Its Links to Development Outcomes: A Cross-National Data-Driven Analysis NeurIPS 2025
Addressing climate change effectively requires more than cataloguing the number of policies in place; it calls for tools that can reveal their thematic priorities and their tangible impacts on development outcomes. Existing assessments often rely on qualitative descriptions or composite indices, which can mask crucial differences between key domains such as mitigation, adaptation, disaster risk management, and loss and damage. To bridge this gap, we develop a quantitative indicator of climate policy orientation by applying a multilingual transformer-based language model to official national policy documents, achieving a classification accuracy of 0.90 (F1-score). Linking these indicators with World Bank development data in panel regressions reveals that mitigation policies are associated with higher GDP and GNI; disaster risk management correlates with greater GNI and debt but reduced foreign direct investment; adaptation and loss and damage show limited measurable effects. This integrated NLP-econometric framework enables comparable, theme-specific analysis of climate governance, offering a scalable method to monitor progress, evaluate trade-offs, and align policy emphasis with development goals.
comment: This paper/proposal has been accepted as a poster in the NeurIPS 2025
☆ Diffusion Models as Dataset Distillation Priors
Dataset distillation aims to synthesize compact yet informative datasets from large ones. A significant challenge in this field is achieving a trifecta of diversity, generalization, and representativeness in a single distilled dataset. Although recent generative dataset distillation methods adopt powerful diffusion models as their foundation models, the inherent representativeness prior in diffusion models is overlooked. Consequently, these approaches often necessitate the integration of external constraints to enhance data quality. To address this, we propose Diffusion As Priors (DAP), which formalizes representativeness by quantifying the similarity between synthetic and real data in feature space using a Mercer kernel. We then introduce this prior as guidance to steer the reverse diffusion process, enhancing the representativeness of distilled samples without any retraining. Extensive experiments on large-scale datasets, such as ImageNet-1K and its subsets, demonstrate that DAP outperforms state-of-the-art methods in generating high-fidelity datasets while achieving superior cross-architecture generalization. Our work not only establishes a theoretical connection between diffusion priors and the objectives of dataset distillation but also provides a practical, training-free framework for improving the quality of the distilled dataset.
☆ A Conditional Diffusion Model for Probabilistic Prediction of Battery Capacity Degradation
Accurate prediction of lithium-ion battery capacity and its associated uncertainty is essential for reliable battery management but remains challenging due to the stochastic nature of aging. This paper presents a novel method, termed the Condition Diffusion U-Net with Attention (CDUA), which integrates feature engineering and deep learning to address this challenge. The proposed approach employs a diffusion-based generative model for time-series forecasting and incorporates attention mechanisms to enhance predictive performance. Battery capacity is first derived from real-world vehicle operation data. The most relevant features are then identified using the Pearson correlation coefficient and the XGBoost algorithm. These features are used to train the CDUA model, which comprises two core components: (1) a contextual U-Net with self-attention to capture complex temporal dependencies, and (2) a denoising network to reconstruct accurate capacity values from noisy observations. Experimental validation on the real-world vehicle data demonstrates that the proposed CDUA model achieves a relative Mean Absolute Error (MAE) of 0.94% and a relative Root Mean Square Error (RMSE) of 1.14%, with a narrow 95% confidence interval of 3.74% in relative width. These results confirm that CDUA provides both accurate capacity estimation and reliable uncertainty quantification. Comparative experiments further verify its robustness and superior performance over existing mainstream approaches.
☆ S4ECG: Exploring the impact of long-range interactions for arrhythmia prediction
The electrocardiogram (ECG) exemplifies biosignal-based time series with continuous, temporally ordered structure reflecting cardiac physiological and pathophysiological dynamics. Detailed analysis of these dynamics has proven challenging, as conventional methods capture either global trends or local waveform features but rarely their simultaneous interplay at high temporal resolution. To bridge global and local signal analysis, we introduce S4ECG, a novel deep learning architecture leveraging structured state space models for multi-epoch arrhythmia classification. Our joint multi-epoch predictions significantly outperform single-epoch approaches by 1.0-11.6% in macro-AUROC, with atrial fibrillation specificity improving from 0.718-0.979 to 0.967-0.998, demonstrating superior performance in-distribution and enhanced out-of-distribution robustness. Systematic investigation reveals optimal temporal dependency windows spanning 10-20 minutes for peak performance. This work contributes to a paradigm shift toward temporally-aware arrhythmia detection algorithms, opening new possibilities for ECG interpretation, in particular for complex arrhythmias like atrial fibrillation and atrial flutter.
☆ Leveraging Group Relative Policy Optimization to Advance Large Language Models in Traditional Chinese Medicine
Traditional Chinese Medicine (TCM) presents a rich and structurally unique knowledge system that challenges conventional applications of large language models (LLMs). Although previous TCM-specific LLMs have shown progress through supervised fine-tuning, they often face limitations in alignment, data quality, and evaluation consistency. In this study, we introduce Ladder-base, the first TCM-focused LLM trained with Group Relative Policy Optimization (GRPO), a reinforcement learning method that improves reasoning and factual consistency by optimizing response selection based on intra-group comparisons. Ladder-base is built upon the Qwen2.5-7B-Instruct foundation model and trained exclusively on the textual subset of the TCM-Ladder benchmark, using 80 percent of the data for training and the remaining 20 percent split evenly between validation and test sets. Through standardized evaluation, Ladder-base demonstrates superior performance across multiple reasoning metrics when compared to both state-of-the-art general-purpose LLMs such as GPT-4, Gemini 2.5, Claude 3, and Qwen3 and domain-specific TCM models including BenTsao, HuatuoGPT2, and Zhongjing. These findings suggest that GRPO provides an effective and efficient strategy for aligning LLMs with expert-level reasoning in traditional medical domains and supports the development of trustworthy and clinically grounded TCM artificial intelligence systems.
☆ RINS-T: Robust Implicit Neural Solvers for Time Series Linear Inverse Problems
Time series data are often affected by various forms of corruption, such as missing values, noise, and outliers, which pose significant challenges for tasks such as forecasting and anomaly detection. To address these issues, inverse problems focus on reconstructing the original signal from corrupted data by leveraging prior knowledge about its underlying structure. While deep learning methods have demonstrated potential in this domain, they often require extensive pretraining and struggle to generalize under distribution shifts. In this work, we propose RINS-T (Robust Implicit Neural Solvers for Time Series Linear Inverse Problems), a novel deep prior framework that achieves high recovery performance without requiring pretraining data. RINS-T leverages neural networks as implicit priors and integrates robust optimization techniques, making it resilient to outliers while relaxing the reliance on Gaussian noise assumptions. To further improve optimization stability and robustness, we introduce three key innovations: guided input initialization, input perturbation, and convex output combination techniques. Each of these contributions strengthens the framework's optimization stability and robustness. These advancements make RINS-T a flexible and effective solution for addressing complex real-world time series challenges. Our code is available at https://github.com/EPFL-IMOS/RINS-T.
comment: Accepted to IEEE Transactions on Instrumentation and Measurement
☆ MILES: Modality-Informed Learning Rate Scheduler for Balancing Multimodal Learning IJCNN'25
The aim of multimodal neural networks is to combine diverse data sources, referred to as modalities, to achieve enhanced performance compared to relying on a single modality. However, training of multimodal networks is typically hindered by modality overfitting, where the network relies excessively on one of the available modalities. This often yields sub-optimal performance, hindering the potential of multimodal learning and resulting in marginal improvements relative to unimodal models. In this work, we present the Modality-Informed Learning ratE Scheduler (MILES) for training multimodal joint fusion models in a balanced manner. MILES leverages the differences in modality-wise conditional utilization rates during training to effectively balance multimodal learning. The learning rate is dynamically adjusted during training to balance the speed of learning from each modality by the multimodal model, aiming for enhanced performance in both multimodal and unimodal predictions. We extensively evaluate MILES on four multimodal joint fusion tasks and compare its performance to seven state-of-the-art baselines. Our results show that MILES outperforms all baselines across all tasks and fusion methods considered in our study, effectively balancing modality usage during training. This results in improved multimodal performance and stronger modality encoders, which can be leveraged when dealing with unimodal samples or absent modalities. Overall, our work highlights the impact of balancing multimodal learning on improving model performance.
comment: Accepted and presented at the 2025 International Joint Conference on Neural Networks (IJCNN'25). The paper was awarded an honorable mention (best 4 papers)
☆ Finite-Time Bounds for Average-Reward Fitted Q-Iteration
Although there is an extensive body of work characterizing the sample complexity of discounted-return offline RL with function approximations, prior work on the average-reward setting has received significantly less attention, and existing approaches rely on restrictive assumptions, such as ergodicity or linearity of the MDP. In this work, we establish the first sample complexity results for average-reward offline RL with function approximation for weakly communicating MDPs, a much milder assumption. To this end, we introduce Anchored Fitted Q-Iteration, which combines the standard Fitted Q-Iteration with an anchor mechanism. We show that the anchor, which can be interpreted as a form of weight decay, is crucial for enabling finite-time analysis in the average-reward setting. We also extend our finite-time analysis to the setup where the dataset is generated from a single-trajectory rather than IID transitions, again leveraging the anchor mechanism.
☆ Exploration via Feature Perturbation in Contextual Bandits NeurIPS 2025
We propose feature perturbation, a simple yet powerful technique that injects randomness directly into feature inputs, instead of randomizing unknown parameters or adding noise to rewards. Remarkably, this algorithm achieves $\tilde{\mathcal{O}}(d\sqrt{T})$ worst-case regret bound for generalized linear bandits, while avoiding the $\tilde{\mathcal{O}}(d^{3/2}\sqrt{T})$ regret typical of existing randomized bandit algorithms. Because our algorithm eschews parameter sampling, it is both computationally efficient and naturally extends to non-parametric or neural network models. We verify these advantages through empirical evaluations, demonstrating that feature perturbation not only surpasses existing methods but also unifies strong practical performance with best-known theoretical guarantees.
comment: Accepted at NeurIPS 2025 (spotlight)
☆ TabR1: Taming GRPO for tabular reasoning LLMs
Tabular prediction has traditionally relied on gradient-boosted decision trees and specialized deep learning models, which excel within tasks but provide limited interpretability and weak transfer across tables. Reasoning large language models (LLMs) promise cross-task adaptability with trans- parent reasoning traces, yet their potential has not been fully realized for tabular data. This paper presents TabR1, the first reasoning LLM for tabular prediction with multi-step reasoning. At its core is Permutation Relative Policy Optimization (PRPO), a simple yet efficient reinforcement learning method that encodes column-permutation invariance as a structural prior. By construct- ing multiple label-preserving permutations per sample and estimating advantages both within and across permutations, PRPO transforms sparse rewards into dense learning signals and improves generalization. With limited supervision, PRPO activates the reasoning ability of LLMs for tabular prediction, enhancing few-shot and zero-shot performance as well as interpretability. Comprehensive experiments demonstrate that TabR1 achieves performance comparable to strong baselines under full-supervision fine-tuning. In the zero-shot setting, TabR1 approaches the performance of strong baselines under the 32-shot setting. Moreover, TabR1 (8B) substantially outperforms much larger LLMs across various tasks, achieving up to 53.17% improvement over DeepSeek-R1 (685B).
☆ Latent Spaces Beyond Synthesis: From GANs to Diffusion Models
This paper examines the evolving nature of internal representations in generative visual models, focusing on the conceptual and technical shift from GANs and VAEs to diffusion-based architectures. Drawing on Beatrice Fazi's account of synthesis as the amalgamation of distributed representations, we propose a distinction between "synthesis in a strict sense", where a compact latent space wholly determines the generative process, and "synthesis in a broad sense," which characterizes models whose representational labor is distributed across layers. Through close readings of model architectures and a targeted experimental setup that intervenes in layerwise representations, we show how diffusion models fragment the burden of representation and thereby challenge assumptions of unified internal space. By situating these findings within media theoretical frameworks and critically engaging with metaphors such as the latent space and the Platonic Representation Hypothesis, we argue for a reorientation of how generative AI is understood: not as a direct synthesis of content, but as an emergent configuration of specialized processes.
comment: Presented and published at Ethics and Aesthetics of Artificial Intelligence Conference (EA-AI'25)
☆ Graph Attention-Guided Search for Dense Multi-Agent Pathfinding
Finding near-optimal solutions for dense multi-agent pathfinding (MAPF) problems in real-time remains challenging even for state-of-the-art planners. To this end, we develop a hybrid framework that integrates a learned heuristic derived from MAGAT, a neural MAPF policy with a graph attention scheme, into a leading search-based algorithm, LaCAM. While prior work has explored learning-guided search in MAPF, such methods have historically underperformed. In contrast, our approach, termed LaGAT, outperforms both purely search-based and purely learning-based methods in dense scenarios. This is achieved through an enhanced MAGAT architecture, a pre-train-then-fine-tune strategy on maps of interest, and a deadlock detection scheme to account for imperfect neural guidance. Our results demonstrate that, when carefully designed, hybrid search offers a powerful solution for tightly coupled, challenging multi-agent coordination problems.
☆ Beyond Binary Out-of-Distribution Detection: Characterizing Distributional Shifts with Multi-Statistic Diffusion Trajectories
Detecting out-of-distribution (OOD) data is critical for machine learning, be it for safety reasons or to enable open-ended learning. However, beyond mere detection, choosing an appropriate course of action typically hinges on the type of OOD data encountered. Unfortunately, the latter is generally not distinguished in practice, as modern OOD detection methods collapse distributional shifts into single scalar outlier scores. This work argues that scalar-based methods are thus insufficient for OOD data to be properly contextualized and prospectively exploited, a limitation we overcome with the introduction of DISC: Diffusion-based Statistical Characterization. DISC leverages the iterative denoising process of diffusion models to extract a rich, multi-dimensional feature vector that captures statistical discrepancies across multiple noise levels. Extensive experiments on image and tabular benchmarks show that DISC matches or surpasses state-of-the-art detectors for OOD detection and, crucially, also classifies OOD type, a capability largely absent from prior work. As such, our work enables a shift from simple binary OOD detection to a more granular detection.
comment: 11 Pages, 6 Figures
☆ Optimizing Energy Management of Smart Grid using Reinforcement Learning aided by Surrogate models built using Physics-informed Neural Networks
Optimizing the energy management within a smart grids scenario presents significant challenges, primarily due to the complexity of real-world systems and the intricate interactions among various components. Reinforcement Learning (RL) is gaining prominence as a solution for addressing the challenges of Optimal Power Flow in smart grids. However, RL needs to iterate compulsively throughout a given environment to obtain the optimal policy. This means obtaining samples from a, most likely, costly simulator, which can lead to a sample efficiency problem. In this work, we address this problem by substituting costly smart grid simulators with surrogate models built using Phisics-informed Neural Networks (PINNs), optimizing the RL policy training process by arriving to convergent results in a fraction of the time employed by the original environment.
☆ Model Metamers Reveal Invariances in Graph Neural Networks
In recent years, deep neural networks have been extensively employed in perceptual systems to learn representations endowed with invariances, aiming to emulate the invariance mechanisms observed in the human brain. However, studies in the visual and auditory domains have confirmed that significant gaps remain between the invariance properties of artificial neural networks and those of humans. To investigate the invariance behavior within graph neural networks (GNNs), we introduce a model ``metamers'' generation technique. By optimizing input graphs such that their internal node activations match those of a reference graph, we obtain graphs that are equivalent in the model's representation space, yet differ significantly in both structure and node features. Our theoretical analysis focuses on two aspects: the local metamer dimension for a single node and the activation-induced volume change of the metamer manifold. Utilizing this approach, we uncover extreme levels of representational invariance across several classic GNN architectures. Although targeted modifications to model architecture and training strategies can partially mitigate this excessive invariance, they fail to fundamentally bridge the gap to human-like invariance. Finally, we quantify the deviation between metamer graphs and their original counterparts, revealing unique failure modes of current GNNs and providing a complementary benchmark for model evaluation.
☆ Bridging Embodiment Gaps: Deploying Vision-Language-Action Models on Soft Robots NeurIPS 2025
Robotic systems are increasingly expected to operate in human-centered, unstructured environments where safety, adaptability, and generalization are essential. Vision-Language-Action (VLA) models have been proposed as a language guided generalized control framework for real robots. However, their deployment has been limited to conventional serial link manipulators. Coupled by their rigidity and unpredictability of learning based control, the ability to safely interact with the environment is missing yet critical. In this work, we present the deployment of a VLA model on a soft continuum manipulator to demonstrate autonomous safe human-robot interaction. We present a structured finetuning and deployment pipeline evaluating two state-of-the-art VLA models (OpenVLA-OFT and $\pi_0$) across representative manipulation tasks, and show while out-of-the-box policies fail due to embodiment mismatch, through targeted finetuning the soft robot performs equally to the rigid counterpart. Our findings highlight the necessity of finetuning for bridging embodiment gaps, and demonstrate that coupling VLA models with soft robots enables safe and flexible embodied AI in human-shared environments.
comment: Accepted by NeurIPS 2025 SpaVLE workshop. 4 pages, 2 figures(in main paper, excluding references and supplements)
☆ Recurrent Attention-based Token Selection for Efficient Streaming Video-LLMs NeurIPS 2025
Video Large Language Models (Video-LLMs) excel at understanding videos in-context, provided they have full access to the video when answering queries. However, these models face challenges in streaming scenarios where hour-long videos must be processed online, and questions need timely responses. In this work, we propose a training-free approach compatible with standard Video-LLMs, leveraging three key concepts: 1) LLM-informed selection of visual tokens to identify those that the LLM has attended to and contributed to its understanding of each short clip. Our attention-based selection allows us to discard up to ~95% of unimportant visual tokens with minimal performance loss; 2) Recurrent processing of past selected tokens to generate temporally coherent understanding of each processed clip; 3) Caption-based question answering for lightweight and accurate responses. Our method achieves state-of-the-art performance on streaming video benchmarks, striking a balance between efficiency and effectiveness.
comment: NeurIPS 2025
☆ M2H: Multi-Task Learning with Efficient Window-Based Cross-Task Attention for Monocular Spatial Perception IROS 2025
Deploying real-time spatial perception on edge devices requires efficient multi-task models that leverage complementary task information while minimizing computational overhead. This paper introduces Multi-Mono-Hydra (M2H), a novel multi-task learning framework designed for semantic segmentation and depth, edge, and surface normal estimation from a single monocular image. Unlike conventional approaches that rely on independent single-task models or shared encoder-decoder architectures, M2H introduces a Window-Based Cross-Task Attention Module that enables structured feature exchange while preserving task-specific details, improving prediction consistency across tasks. Built on a lightweight ViT-based DINOv2 backbone, M2H is optimized for real-time deployment and serves as the foundation for monocular spatial perception systems supporting 3D scene graph construction in dynamic environments. Comprehensive evaluations show that M2H outperforms state-of-the-art multi-task models on NYUDv2, surpasses single-task depth and semantic baselines on Hypersim, and achieves superior performance on the Cityscapes dataset, all while maintaining computational efficiency on laptop hardware. Beyond benchmarks, M2H is validated on real-world data, demonstrating its practicality in spatial perception tasks.
comment: Accepted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025). 8 pages, 7 figures
☆ Localist LLMs with Recruitment Learning
We present a novel framework for training large language models with continuously adjustable internal representations that span the full spectrum from localist (interpretable, rule-based) to distributed (generalizable, efficient) encodings. The key innovations are (1) a locality dial, a tunable parameter that dynamically controls the degree of localization during both training and inference without requiring model retraining, (2) an information-theoretic recruitment mechanism that adaptively allocates semantic blocks as needed, eliminating the requirement for complete domain knowledge at initialization, and (3) a hierarchical recruitment framework that extends capacity allocation to entire specialized LLMs, enabling multi-granularity architectural adaptation. This is achieved through group sparsity penalties on attention mechanisms, information-theoretic anchor design, dynamic rule injection, and principled recruitment criteria based on penalized likelihood with explicit units. We provide rigorous mathematical results establishing explicit threshold conditions under which attention provably concentrates on semantically relevant blocks at stationary points, with exact bounds on attention entropy and pointer fidelity. The hierarchical recruitment mechanism provides convergence guarantees at both the block level (fine-grained, within-LLM) and the LLM level (coarse-grained, cross-domain), ensuring the system discovers semantic partitions that balance model complexity against data encoding efficiency. This framework enables practitioners to continuously interpolate between interpretable and high-performance modes while adapting architectural capacity at multiple granularities, supporting applications in regulated domains requiring both transparency and capability.
☆ Towards Mixed-Modal Retrieval for Universal Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) by retrieving relevant documents from an external corpus. However, existing RAG systems primarily focus on unimodal text documents, and often fall short in real-world scenarios where both queries and documents may contain mixed modalities (such as text and images). In this paper, we address the challenge of Universal Retrieval-Augmented Generation (URAG), which involves retrieving and reasoning over mixed-modal information to improve vision-language generation. To this end, we propose Nyx, a unified mixed-modal to mixed-modal retriever tailored for URAG scenarios. To mitigate the scarcity of realistic mixed-modal data, we introduce a four-stage automated pipeline for generation and filtering, leveraging web documents to construct NyxQA, a dataset comprising diverse mixed-modal question-answer pairs that better reflect real-world information needs. Building on this high-quality dataset, we adopt a two-stage training framework for Nyx: we first perform pre-training on NyxQA along with a variety of open-source retrieval datasets, followed by supervised fine-tuning using feedback from downstream vision-language models (VLMs) to align retrieval outputs with generative preferences. Experimental results demonstrate that Nyx not only performs competitively on standard text-only RAG benchmarks, but also excels in the more general and realistic URAG setting, significantly improving generation quality in vision-language tasks.
comment: This work is in progress
☆ Optimal Best Arm Identification under Differential Privacy
Best Arm Identification (BAI) algorithms are deployed in data-sensitive applications, such as adaptive clinical trials or user studies. Driven by the privacy concerns of these applications, we study the problem of fixed-confidence BAI under global Differential Privacy (DP) for Bernoulli distributions. While numerous asymptotically optimal BAI algorithms exist in the non-private setting, a significant gap remains between the best lower and upper bounds in the global DP setting. This work reduces this gap to a small multiplicative constant, for any privacy budget $\epsilon$. First, we provide a tighter lower bound on the expected sample complexity of any $\delta$-correct and $\epsilon$-global DP strategy. Our lower bound replaces the Kullback-Leibler (KL) divergence in the transportation cost used by the non-private characteristic time with a new information-theoretic quantity that optimally trades off between the KL divergence and the Total Variation distance scaled by $\epsilon$. Second, we introduce a stopping rule based on these transportation costs and a private estimator of the means computed using an arm-dependent geometric batching. En route to proving the correctness of our stopping rule, we derive concentration results of independent interest for the Laplace distribution and for the sum of Bernoulli and Laplace distributions. Third, we propose a Top Two sampling rule based on these transportation costs. For any budget $\epsilon$, we show an asymptotic upper bound on its expected sample complexity that matches our lower bound to a multiplicative constant smaller than $8$. Our algorithm outperforms existing $\delta$-correct and $\epsilon$-global DP BAI algorithms for different values of $\epsilon$.
comment: 92 pages, 2 figures, 2 tables. To be published in the Thirty-Ninth Annual Conference on Neural Information Processing Systems
♻ ☆ Challenges and proposed solutions in modeling multimodal data: A systematic review
Multimodal data modeling has emerged as a powerful approach in clinical research, enabling the integration of diverse data types such as imaging, genomics, wearable sensors, and electronic health records. Despite its potential to improve diagnostic accuracy and support personalized care, modeling such heterogeneous data presents significant technical challenges. This systematic review synthesizes findings from 69 studies to identify common obstacles, including missing modalities, limited sample sizes, dimensionality imbalance, interpretability issues, and finding the optimal fusion techniques. We highlight recent methodological advances, such as transfer learning, generative models, attention mechanisms, and neural architecture search that offer promising solutions. By mapping current trends and innovations, this review provides a comprehensive overview of the field and offers practical insights to guide future research and development in multimodal modeling for medical applications.
♻ ☆ Denoising the Future: Top-p Distributions for Moving Through Time
Inference in dynamic probabilistic models is a complex task involving expensive operations. In particular, for Hidden Markov Models, the whole state space has to be enumerated for advancing in time. Even states with negligible probabilities are considered, resulting in computational inefficiency and increased noise due to the propagation of unlikely probability mass. We propose to denoise the future and speed up inference by using only the top-p states, i.e., the most probable states with accumulated probability p. We show that the error introduced by using only the top-p states is bound by p and the so-called minimal mixing rate of the underlying model. Moreover, in our empirical evaluation, we show that we can expect speedups of at least an order of magnitude, while the error in terms of total variation distance is below 0.09.
comment: Accepted at ECSQARU 2025
♻ ☆ Intrinsic Dimensionality of Fermi-Pasta-Ulam-Tsingou High-Dimensional Trajectories Through Manifold Learning: A Linear Approach
A data-driven approach based on unsupervised machine learning is proposed to infer the intrinsic dimension $m^{\ast}$ of the high-dimensional trajectories of the Fermi-Pasta-Ulam-Tsingou (FPUT) model. Principal component analysis (PCA) is applied to trajectory data consisting of $n_s = 4,000,000$ datapoints, of the FPUT $\beta$ model with $N = 32$ coupled oscillators, revealing a critical relationship between $m^{\ast}$ and the model's nonlinear strength. By estimating the intrinsic dimension $m^{\ast}$ using multiple methods (participation ratio, Kaiser rule, and the Kneedle algorithm), it is found that $m^{\ast}$ increases with the model nonlinearity. Interestingly, in the weakly nonlinear regime, for trajectories initialized by exciting the first mode, the participation ratio estimates $m^{\ast} = 2, 3$, strongly suggesting that quasi-periodic motion on a low-dimensional Riemannian manifold underlies the characteristic energy recurrences observed in the FPUT model.
comment: 14 pages, 15 figures. This version matches the article published in Chaos 35, 103118 (2025)
♻ ☆ Score-based deterministic density sampling
We propose a deterministic sampling framework using Score-Based Transport Modeling for sampling an unnormalized target density $\pi$ given only its score $\nabla \log \pi$. Our method approximates the Wasserstein gradient flow on $\mathrm{KL}(f_t\|\pi)$ by learning the time-varying score $\nabla \log f_t$ on the fly using score matching. While having the same marginal distribution as Langevin dynamics, our method produces smooth deterministic trajectories, resulting in monotone noise-free convergence. We prove that our method dissipates relative entropy at the same rate as the exact gradient flow, provided sufficient training. Numerical experiments validate our theoretical findings: our method converges at the optimal rate, has smooth trajectories, and is often more sample efficient than its stochastic counterpart. Experiments on high-dimensional image data show that our method produces high-quality generations in as few as 15 steps and exhibits natural exploratory behavior. The memory and runtime scale linearly in the sample size.
comment: 13 pages, 2 tables, 11 figures. Key words: Deterministic sampling; score-based transport modeling; Wasserstein gradient flow; relative entropy; Fisher information; annealing; neural network; neural tangent kernel
♻ ☆ Weak-to-Strong Generalization Even in Random Feature Networks, Provably
Weak-to-Strong Generalization (Burns et al., 2024) is the phenomenon whereby a strong student, say GPT-4, learns a task from a weak teacher, say GPT-2, and ends up significantly outperforming the teacher. We show that this phenomenon does not require a strong learner like GPT-4. We consider student and teacher that are random feature models, described by two-layer networks with a random and fixed bottom layer and a trained top layer. A "weak" teacher, with a small number of units (i.e. random features), is trained on the population, and a "strong" student, with a much larger number of units (i.e. random features), is trained only on labels generated by the weak teacher. We demonstrate, prove, and understand how the student can outperform the teacher, even though trained only on data labeled by the teacher. We also explain how such weak-to-strong generalization is enabled by early stopping. Importantly, we also show the quantitative limits of weak-to-strong generalization in this model.
♻ ☆ REASONING GYM: Reasoning Environments for Reinforcement Learning with Verifiable Rewards NeurIPS 2025
We introduce Reasoning Gym (RG), a library of reasoning environments for reinforcement learning with verifiable rewards. It provides over 100 data generators and verifiers spanning multiple domains including algebra, arithmetic, computation, cognition, geometry, graph theory, logic, and various common games. Its key innovation is the ability to generate virtually infinite training data with adjustable complexity, unlike most previous reasoning datasets, which are typically fixed. This procedural generation approach allows for continuous evaluation across varying difficulty levels. Our experimental results demonstrate the efficacy of RG in both evaluating and reinforcement learning of reasoning models.
comment: NeurIPS 2025 Spotlight. For code, see https://github.com/open-thought/reasoning-gym
♻ ☆ Speech Foundation Models Generalize to Time Series Tasks from Wearable Sensor Data
Both speech and sensor time series data encode information in both the time- and frequency- domains, like spectral powers and waveform shapelets. We show that speech foundation models learn representations that generalize beyond the speech domain and achieve state-of-the-art performance on diverse time-series tasks from wearable sensors. Probes trained on features extracted from HuBERT and wav2vec 2.0 outperform those extracted from self-supervised models trained directly on modality-specific datasets for mood classification, arrhythmia detection, and activity classification tasks. We find that the convolutional feature encoders of speech models are particularly relevant for wearable sensor applications. The proposed approach enhances performance on data-scarce time-series tasks using simple probing methods. This work takes a step toward developing generalized time-series models that unify speech and sensor modalities.
comment: Preprint, under review
♻ ☆ Auto-Prompt Generation is Not Robust: Prompt Optimization Driven by Pseudo Gradient
While automatic prompt generation methods have recently received significant attention, their robustness remains poorly understood. In this paper, we introduce PertBench, a comprehensive benchmark dataset that includes a wide range of input perturbations, designed to systematically evaluate the robustness of current auto-prompting techniques. Our analysis reveals substantial vulnerabilities in existing prompt generation strategies, where even minor modifications to the prompt can lead to significant differences in model output. To address this issue, we propose PGO, a gradient-free prompt generation framework that leverages perturbation types as pseudo-gradient signals to guide LLMs in producing more robust prompts. In contrast to existing methods that assess prompt quality only on clean, well-structured inputs, our approach explicitly emphasizes robustness under noisy and perturbed conditions. Extensive experiments across diverse tasks and multiple LLMs show PGO consistently outperforms previous methods in maintaining performance under input perturbations.
♻ ☆ Navigating the Latent Space Dynamics of Neural Models
Neural networks transform high-dimensional data into compact, structured representations, often modeled as elements of a lower dimensional latent space. In this paper, we present an alternative interpretation of neural models as dynamical systems acting on the latent manifold. Specifically, we show that autoencoder models implicitly define a latent vector field on the manifold, derived by iteratively applying the encoding-decoding map, without any additional training. We observe that standard training procedures introduce inductive biases that lead to the emergence of attractor points within this vector field. Drawing on this insight, we propose to leverage the vector field as a representation for the network, providing a novel tool to analyze the properties of the model and the data. This representation enables to: (i) analyze the generalization and memorization regimes of neural models, even throughout training; (ii) extract prior knowledge encoded in the network's parameters from the attractors, without requiring any input data; (iii) identify out-of-distribution samples from their trajectories in the vector field. We further validate our approach on vision foundation models, showcasing the applicability and effectiveness of our method in real-world scenarios.
♻ ☆ LeapFactual: Reliable Visual Counterfactual Explanation Using Conditional Flow Matching NeurIPS 2025
The growing integration of machine learning (ML) and artificial intelligence (AI) models into high-stakes domains such as healthcare and scientific research calls for models that are not only accurate but also interpretable. Among the existing explainable methods, counterfactual explanations offer interpretability by identifying minimal changes to inputs that would alter a model's prediction, thus providing deeper insights. However, current counterfactual generation methods suffer from critical limitations, including gradient vanishing, discontinuous latent spaces, and an overreliance on the alignment between learned and true decision boundaries. To overcome these limitations, we propose LeapFactual, a novel counterfactual explanation algorithm based on conditional flow matching. LeapFactual generates reliable and informative counterfactuals, even when true and learned decision boundaries diverge. Following a model-agnostic approach, LeapFactual is not limited to models with differentiable loss functions. It can even handle human-in-the-loop systems, expanding the scope of counterfactual explanations to domains that require the participation of human annotators, such as citizen science. We provide extensive experiments on benchmark and real-world datasets showing that LeapFactual generates accurate and in-distribution counterfactual explanations that offer actionable insights. We observe, for instance, that our reliable counterfactual samples with labels aligning to ground truth can be beneficially used as new training data to enhance the model. The proposed method is broadly applicable and enhances both scientific knowledge discovery and non-expert interpretability.
comment: Accepted as a poster presentation at NeurIPS 2025. Camera-ready version. 10 pages, 7 figures
♻ ☆ Evolving LLMs' Self-Refinement Capability via Iterative Preference Optimization
Self-Refinement refers to a model's ability to revise its own responses to produce improved outputs. This capability can also serve as a fundamental mechanism for Self-Improvement, for example, by reconstructing datasets with refined results to enhance intrinsic model performance. However, our comprehensive experiments reveal that large language models (LLMs) show no clear evidence of inherent Self-Refinement and may even experience response quality degradation after Self-Refinement. To address this issue, we propose EVOLVE, a simple and effective framework for eliciting and tracking the evolution of Self-Refinement through iterative training. We first explore optimization methods during training to activate the model's Self-Refinement capability. Then, at inference, we investigate various generation strategies to further enhance and utilize Self-Refinement while supplying the necessary data for training. Through synergistic optimization of training and inference stages, we continually evolve the model's Self-Refinement ability, enabling it to better refine its own responses. Moreover, we demonstrate the potential of leveraging Self-Refinement to achieve broader Self-Improvement of intrinsic model abilities. Experiments show that the evolved Self-Refinement ability enables the Llama-3.1-8B base model to surpass GPT-4o, achieving 62.3% length-controlled and 63.3% raw win rates on AlpacaEval 2, and 50.3% on Arena-Hard. It also generalizes effectively to out-of-domain reasoning tasks, improving performance on mathematical reasoning benchmarks such as GSM8K and MATH.
♻ ☆ CLIMB: Class-imbalanced Learning Benchmark on Tabular Data NeurIPS 2025
Class-imbalanced learning (CIL) on tabular data is important in many real-world applications where the minority class holds the critical but rare outcomes. In this paper, we present CLIMB, a comprehensive benchmark for class-imbalanced learning on tabular data. CLIMB includes 73 real-world datasets across diverse domains and imbalance levels, along with unified implementations of 29 representative CIL algorithms. Built on a high-quality open-source Python package with unified API designs, detailed documentation, and rigorous code quality controls, CLIMB supports easy implementation and comparison between different CIL algorithms. Through extensive experiments, we provide practical insights on method accuracy and efficiency, highlighting the limitations of naive rebalancing, the effectiveness of ensembles, and the importance of data quality. Our code, documentation, and examples are available at https://github.com/ZhiningLiu1998/imbalanced-ensemble.
comment: NeurIPS 2025, Dataset and Benchmark Track. 18 pages, 7 figures, 8 tables
♻ ☆ Absolute abstraction: a renormalisation group approach
Abstraction is the process of extracting the essential features from raw data while ignoring irrelevant details. It is well known that abstraction emerges with depth in neural networks, where deep layers capture abstract characteristics of data by combining lower level features encoded in shallow layers (e.g. edges). Yet we argue that depth alone is not enough to develop truly abstract representations. We advocate that the level of abstraction crucially depends on how broad the training set is. We address the issue within a renormalisation group approach where a representation is expanded to encompass a broader set of data. We take the unique fixed point of this transformation -- the Hierarchical Feature Model -- as a candidate for a representation which is absolutely abstract. This theoretical picture is tested in numerical experiments based on Deep Belief Networks and auto-encoders trained on data of different breadth. These show that representations in neural networks approach the Hierarchical Feature Model as the data get broader and as depth increases, in agreement with theoretical predictions.
comment: 36 pages, 7 figures
♻ ☆ Invertible ResNets for Inverse Imaging Problems: Competitive Performance with Provable Regularization Properties
Learning-based methods have demonstrated remarkable performance in solving inverse problems, particularly in image reconstruction tasks. Despite their success, these approaches often lack theoretical guarantees, which are crucial in sensitive applications such as medical imaging. Recent works by Arndt et al addressed this gap by analyzing a data-driven reconstruction method based on invertible residual networks (iResNets). They revealed that, under reasonable assumptions, this approach constitutes a convergent regularization scheme. However, the performance of the reconstruction method was only validated on academic toy problems and small-scale iResNet architectures. In this work, we address this gap by evaluating the performance of iResNets on two real-world imaging tasks: a linear blurring operator and a nonlinear diffusion operator. To do so, we compare the performance of iResNets against state-of-the-art neural networks, revealing their competitiveness at the expense of longer training times. Moreover, we numerically demonstrate the advantages of the iResNet's inherent stability and invertibility by showcasing increased robustness across various scenarios as well as interpretability of the learned operator, thereby reducing the black-box nature of the reconstruction scheme.
♻ ☆ PICT -- A Differentiable, GPU-Accelerated Multi-Block PISO Solver for Simulation-Coupled Learning Tasks in Fluid Dynamics
Despite decades of advancements, the simulation of fluids remains one of the most challenging areas of in scientific computing. Supported by the necessity of gradient information in deep learning, differentiable simulators have emerged as an effective tool for optimization and learning in physics simulations. In this work, we present our fluid simulator PICT, a differentiable pressure-implicit solver coded in PyTorch with Graphics-processing-unit (GPU) support. We first verify the accuracy of both the forward simulation and our derived gradients in various established benchmarks like lid-driven cavities and turbulent channel flows before we show that the gradients provided by our solver can be used to learn complicated turbulence models in 2D and 3D. We apply both supervised and unsupervised training regimes using physical priors to match flow statistics. In particular, we learn a stable sub-grid scale (SGS) model for a 3D turbulent channel flow purely based on reference statistics. The low-resolution corrector trained with our solver runs substantially faster than the highly resolved references, while keeping or even surpassing their accuracy. Finally, we give additional insights into the physical interpretation of different solver gradients, and motivate a physically informed regularization technique. To ensure that the full potential of PICT can be leveraged, it is published as open source: https://github.com/tum-pbs/PICT.
comment: Source code at https://github.com/tum-pbs/PICT
♻ ☆ Learning Counterfactual Distributions via Kernel Nearest Neighbors
Consider a setting with multiple units (e.g., individuals, cohorts, geographic locations) and outcomes (e.g., treatments, times, items), where the goal is to learn a multivariate distribution for each unit-outcome entry, such as the distribution of a user's weekly spend and engagement under a specific mobile app version. A common challenge is the prevalence of missing not at random data, where observations are available only for certain unit-outcome combinations and the observation availability can be correlated with the properties of distributions themselves, i.e., there is unobserved confounding. An additional challenge is that for any observed unit-outcome entry, we only have a finite number of samples from the underlying distribution. We tackle these two challenges by casting the problem into a novel distributional matrix completion framework and introduce a kernel based distributional generalization of nearest neighbors to estimate the underlying distributions. By leveraging maximum mean discrepancies and a suitable factor model on the kernel mean embeddings of the underlying distributions, we establish consistent recovery of the underlying distributions even when data is missing not at random and positivity constraints are violated. Furthermore, we demonstrate that our nearest neighbors approach is robust to heteroscedastic noise, provided we have access to two or more measurements for the observed unit-outcome entries, a robustness not present in prior works on nearest neighbors with single measurements.
comment: 44 pages, 10 figures
♻ ☆ A Generic Framework for Conformal Fairness ICLR 2025
Conformal Prediction (CP) is a popular method for uncertainty quantification with machine learning models. While conformal prediction provides probabilistic guarantees regarding the coverage of the true label, these guarantees are agnostic to the presence of sensitive attributes within the dataset. In this work, we formalize \textit{Conformal Fairness}, a notion of fairness using conformal predictors, and provide a theoretically well-founded algorithm and associated framework to control for the gaps in coverage between different sensitive groups. Our framework leverages the exchangeability assumption (implicit to CP) rather than the typical IID assumption, allowing us to apply the notion of Conformal Fairness to data types and tasks that are not IID, such as graph data. Experiments were conducted on graph and tabular datasets to demonstrate that the algorithm can control fairness-related gaps in addition to coverage aligned with theoretical expectations.
comment: ICLR 2025 Camera Ready Version
♻ ☆ SAFES: Sequential Privacy and Fairness Enhancing Data Synthesis for Responsible AI
As data-driven and AI-based decision making gains widespread adoption across disciplines, it is crucial that both data privacy and decision fairness are appropriately addressed. Although differential privacy (DP) provides a robust framework for guaranteeing privacy and methods are available to improve fairness, most prior work treats the two concerns separately. Even though there are existing approaches that consider privacy and fairness simultaneously, they typically focus on a single specific learning task, limiting their generalizability. In response, we introduce SAFES, a Sequential PrivAcy and Fairness Enhancing data Synthesis procedure that sequentially combines DP data synthesis with a fairness-aware data preprocessing step. SAFES allows users flexibility in navigating the privacy-fairness-utility trade-offs. We illustrate SAFES with different DP synthesizers and fairness-aware data preprocessing methods and run extensive experiments on multiple real datasets to examine the privacy-fairness-utility trade-offs of synthetic data generated by SAFES. Empirical evaluations demonstrate that for reasonable privacy loss, SAFES-generated synthetic data can achieve significantly improved fairness metrics with relatively low utility loss.
♻ ☆ Reflections from Research Roundtables at the Conference on Health, Inference, and Learning (CHIL) 2025
The 6th Annual Conference on Health, Inference, and Learning (CHIL 2025), hosted by the Association for Health Learning and Inference (AHLI), was held in person on June 25-27, 2025, at the University of California, Berkeley, in Berkeley, California, USA. As part of this year's program, we hosted Research Roundtables to catalyze collaborative, small-group dialogue around critical, timely topics at the intersection of machine learning and healthcare. Each roundtable was moderated by a team of senior and junior chairs who fostered open exchange, intellectual curiosity, and inclusive engagement. The sessions emphasized rigorous discussion of key challenges, exploration of emerging opportunities, and collective ideation toward actionable directions in the field. In total, eight roundtables were held by 19 roundtable chairs on topics of "Explainability, Interpretability, and Transparency," "Uncertainty, Bias, and Fairness," "Causality," "Domain Adaptation," "Foundation Models," "Learning from Small Medical Data," "Multimodal Methods," and "Scalable, Translational Healthcare Solutions."
♻ ☆ Time-Varying Bayesian Optimization Without a Metronome
Time-Varying Bayesian Optimization (TVBO) is the go-to framework for optimizing a time-varying, expensive, noisy black-box function $f$. However, most of the asymptotic guarantees offered by TVBO algorithms rely on the assumption that observations are acquired at a constant frequency. As the GP inference complexity scales with the cube of its dataset size, this assumption is unrealistic in the long run. In this paper, we relax this assumption and derive the first upper regret bound that explicitly accounts for changes in the observations sampling frequency. Based on this analysis, we formulate practical recommendations about dataset sizes and stale data policies of TVBO algorithms. We illustrate how an algorithm (BOLT) that follows these recommendations performs better than the state-of-the-art of TVBO through experiments on synthetic and real-world problems.
♻ ☆ Solving Oscillator Ordinary Differential Equations in the Time Domain with High Performance via Soft-constrained Physics-informed Neural Network with Small Data
In many scientific and engineering (e.g., physical, biochemical, medical) practices, data generated through expensive experiments or large-scale simulations, are often sparse and noisy. Physics-informed neural network (PINN) incorporates physical information and knowledge into network topology or computational processes as model priors, with the unique advantage of achieving strong generalization with small data. This study aims to investigate the performance characteristics of the soft-constrained PINN method to solving typical linear and nonlinear ordinary differential equations (ODEs) such as primer, Van der Pol and Duffing oscillators, especially the effectiveness, efficiency, and robustness to noise with minimal data. It is verified that the soft-constrained PINN significantly reduces the need for labeled data. With the aid of appropriate collocation points no need to be labeled, it can predict and also extrapolate with minimal data. First-order and second-order ODEs, no matter linear or nonlinear oscillators, require only one and two training data (containing initial values) respectively, just like classical analytic or Runge-Kutta methods, and with equivalent precision and comparable efficiency (fast training in seconds for scalar ODEs). Furthermore, it can conveniently impose a physical law (e.g., conservation of energy) constraint by adding a regularization term to the total loss function, improving the performance to deal with various complexities such as nonlinearity like Duffing. The DeepXDE-based PINN implementation is light code and can be efficiently trained on both GPU and CPU platforms. The mathematical and computational framework of this alternative and feasible PINN method to ODEs, can be easily extended to PDEs, etc., and is becoming a favorable catalyst for the era of Digital Twins.
comment: 17 pages, 7 figures, 2 tables, etc
♻ ☆ Market-Driven Subset Selection for Budgeted Training
Training large language models on massive datasets is computationally expensive, yet empirical evidence suggests that substantial portions of training examples contribute minimally to final performance. Data subset selection addresses this inefficiency by identifying small, high-utility subsets under resource constraints. However, example utility is inherently multi-faceted, encompassing uncertainty, distributional rarity, and diversity signals that are heterogeneous and typically combined through ad hoc weighted sums lacking theoretical grounding. We propose a market-based framework that treats each training example as a tradeable contract and employs the Logarithmic Market Scoring Rule to aggregate multiple utility signals into coherent prices. Heterogeneous signals act as traders, a single liquidity parameter controls concentration versus smoothing, and topic-wise normalization ensures calibrated aggregation. Token budgets are handled explicitly through a price-per-token decision rule with an interpretable length-bias parameter. We establish theoretical connections to maximum-entropy aggregation and provide utility recovery guarantees under noisy but monotone signals. On GSM8K mathematical reasoning under strict 60k-token budgets, our selector achieves parity with strong single-signal baselines while exhibiting lower variance and incurring less than 0.1 GPU-hour overhead. On AGNews classification at 5-25\% retention rates, the market formulation delivers competitive accuracy with improved stability. Our framework unifies multi-signal data curation under fixed computational budgets for prompt-level reasoning and classification tasks.
comment: Retitled major revision of the same work (formerly "Market-Based Data Subset Selection -- Principled Aggregation of Multi-Criteria Example Utility"). Abstract and exposition revised; ablations added; theory clarified. Core results unchanged. Supersedes v1; please process as a replacement
♻ ☆ Asymptotic Performance of Time-Varying Bayesian Optimization
Time-Varying Bayesian Optimization (TVBO) is the go-to framework for optimizing a time-varying black-box objective function that may be noisy and expensive to evaluate, but its excellent empirical performance remains to be understood theoretically. Is it possible for the instantaneous regret of a TVBO algorithm to vanish asymptotically, and if so, when? We answer this question of great importance by providing upper bounds and algorithm-independent lower bounds for the cumulative regret of TVBO algorithms. In doing so, we provide important insights about the TVBO framework and derive sufficient conditions for a TVBO algorithm to have the no-regret property. To the best of our knowledge, our analysis is the first to cover all major classes of stationary kernel functions used in practice.
♻ ☆ Limitations of Normalization in Attention Mechanism
This paper investigates the limitations of the normalization in attention mechanisms. We begin with a theoretical framework that enables the identification of the model's selective ability and the geometric separation involved in token selection. Our analysis includes explicit bounds on distances and separation criteria for token vectors under softmax scaling. Through experiments with pre-trained GPT-2 model, we empirically validate our theoretical results and analyze key behaviors of the attention mechanism. Notably, we demonstrate that as the number of selected tokens increases, the model's ability to distinguish informative tokens declines, often converging toward a uniform selection pattern. We also show that gradient sensitivity under softmax normalization presents challenges during training, especially at low temperature settings. These findings advance current understanding of softmax-based attention mechanism and motivate the need for more robust normalization and selection strategies in future attention architectures.
comment: 10 pages, 4 figures
♻ ☆ Wavy Transformer NeurIPS 2025
Transformers have achieved remarkable success across natural language processing (NLP) and computer vision (CV). However, deep transformer models often suffer from an over-smoothing issue, in which token representations converge to similar values as they pass through successive transformer blocks. In this paper, we establish an equivalence between the hidden-state dynamics induced by stacked attention layers and graph neural diffusion on a complete graph. From this perspective, over-smoothing can be interpreted as a consequence of the dissipative nature of the underlying diffusion dynamics. Motivated by this physical interpretation, we propose Wavy Transformer, which consists of a novel attention layer based on second-order wavy dynamics. We also introduce a feed-forward network and a normalization layer designed to preserve the physical state-velocity relationship under the chain rule, thereby extending the transformer architecture. We further validate our proposed techniques on various transformer models for NLP and CV tasks. The results consistently demonstrate that Wavy Transformer improves performance with minimal additional parameters and no extra hyperparameter tuning.
comment: Accepted by NeurIPS 2025
♻ ☆ Identifiable Latent Bandits: Leveraging observational data for personalized decision-making
Sequential decision-making algorithms such as multi-armed bandits can find optimal personalized decisions, but are notoriously sample-hungry. In personalized medicine, for example, training a bandit from scratch for every patient is typically infeasible, as the number of trials required is much larger than the number of decision points for a single patient. To combat this, latent bandits offer rapid exploration and personalization beyond what context variables alone can offer, provided that a latent variable model of problem instances can be learned consistently. However, existing works give no guidance as to how such a model can be found. In this work, we propose an identifiable latent bandit framework that leads to optimal decision-making with a shorter exploration time than classical bandits by learning from historical records of decisions and outcomes. Our method is based on nonlinear independent component analysis that provably identifies representations from observational data sufficient to infer optimal actions in new bandit instances. We verify this strategy in simulated and semi-synthetic environments, showing substantial improvement over online and offline learning baselines when identifying conditions are satisfied.
comment: 29 pages, 17 figures
♻ ☆ DitHub: A Modular Framework for Incremental Open-Vocabulary Object Detection NeurIPS 2025
Open-Vocabulary object detectors can generalize to an unrestricted set of categories through simple textual prompting. However, adapting these models to rare classes or reinforcing their abilities on multiple specialized domains remains essential. While recent methods rely on monolithic adaptation strategies with a single set of weights, we embrace modular deep learning. We introduce DitHub, a framework designed to build and maintain a library of efficient adaptation modules. Inspired by Version Control Systems, DitHub manages expert modules as branches that can be fetched and merged as needed. This modular approach allows us to conduct an in-depth exploration of the compositional properties of adaptation modules, marking the first such study in Object Detection. Our method achieves state-of-the-art performance on the ODinW-13 benchmark and ODinW-O, a newly introduced benchmark designed to assess class reappearance. For more details, visit our project page: https://aimagelab.github.io/DitHub/
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ When Does Supervised Training Pay Off? The Hidden Economics of Object Detection in the Era of Vision-Language Models
Object detection traditionally relies on costly manual annotation. We present the first comprehensive cost-effectiveness analysis comparing supervised YOLO and zero-shot vision-language models (Gemini Flash 2.5 and GPT-4). Evaluated on 5,000 stratified COCO images and 500 diverse product images, combined with Total Cost of Ownership modeling, we derive break-even thresholds for architecture selection. Results show supervised YOLO attains 91.2% accuracy versus 68.5% for Gemini and 71.3% for GPT-4 on standard categories; the annotation expense for a 100-category system is $10,800, and the accuracy advantage only pays off beyond 55 million inferences (151,000 images/day for one year). On diverse product categories Gemini achieves 52.3% and GPT-4 55.1%, while supervised YOLO cannot detect untrained classes. Cost-per-correct-detection favors Gemini ($0.00050) and GPT-4 ($0.00067) over YOLO ($0.143) at 100,000 inferences. We provide decision frameworks showing that optimal architecture choice depends on inference volume, category stability, budget, and accuracy requirements.
comment: 30 pages, 12 figures, 4 tables
♻ ☆ AI-Generated Video Detection via Perceptual Straightening NeurIPS 2025
The rapid advancement of generative AI enables highly realistic synthetic videos, posing significant challenges for content authentication and raising urgent concerns about misuse. Existing detection methods often struggle with generalization and capturing subtle temporal inconsistencies. We propose ReStraV(Representation Straightening Video), a novel approach to distinguish natural from AI-generated videos. Inspired by the "perceptual straightening" hypothesis -- which suggests real-world video trajectories become more straight in neural representation domain -- we analyze deviations from this expected geometric property. Using a pre-trained self-supervised vision transformer (DINOv2), we quantify the temporal curvature and stepwise distance in the model's representation domain. We aggregate statistics of these measures for each video and train a classifier. Our analysis shows that AI-generated videos exhibit significantly different curvature and distance patterns compared to real videos. A lightweight classifier achieves state-of-the-art detection performance (e.g., 97.17% accuracy and 98.63% AUROC on the VidProM benchmark), substantially outperforming existing image- and video-based methods. ReStraV is computationally efficient, it is offering a low-cost and effective detection solution. This work provides new insights into using neural representation geometry for AI-generated video detection.
comment: Advances in Neural Information Processing Systems 38 (NeurIPS 2025)
♻ ☆ PhysioWave: A Multi-Scale Wavelet-Transformer for Physiological Signal Representation NeurIPS 2025
Physiological signals are often corrupted by motion artifacts, baseline drift, and other low-SNR disturbances, which pose significant challenges for analysis. Additionally, these signals exhibit strong non-stationarity, with sharp peaks and abrupt changes that evolve continuously, making them difficult to represent using traditional time-domain or filtering methods. To address these issues, a novel wavelet-based approach for physiological signal analysis is presented, aiming to capture multi-scale time-frequency features in various physiological signals. Leveraging this technique, two large-scale pretrained models specific to EMG and ECG are introduced for the first time, achieving superior performance and setting new baselines in downstream tasks. Additionally, a unified multi-modal framework is constructed by integrating pretrained EEG model, where each modality is guided through its dedicated branch and fused via learnable weighted fusion. This design effectively addresses challenges such as low signal-to-noise ratio, high inter-subject variability, and device mismatch, outperforming existing methods on multi-modal tasks. The proposed wavelet-based architecture lays a solid foundation for analysis of diverse physiological signals, while the multi-modal design points to next-generation physiological signal processing with potential impact on wearable health monitoring, clinical diagnostics, and broader biomedical applications. Code and data are available at: github.com/ForeverBlue816/PhysioWave
comment: 43 pages, 17 figures, 17 tables. Accepted by NeurIPS 2025. Code and data are available at: github.com/ForeverBlue816/PhysioWave
♻ ☆ TimeEmb: A Lightweight Static-Dynamic Disentanglement Framework for Time Series Forecasting
Temporal non-stationarity, the phenomenon that time series distributions change over time, poses fundamental challenges to reliable time series forecasting. Intuitively, the complex time series can be decomposed into two factors, \ie time-invariant and time-varying components, which indicate static and dynamic patterns, respectively. Nonetheless, existing methods often conflate the time-varying and time-invariant components, and jointly learn the combined long-term patterns and short-term fluctuations, leading to suboptimal performance facing distribution shifts. To address this issue, we initiatively propose a lightweight static-dynamic decomposition framework, TimeEmb, for time series forecasting. TimeEmb innovatively separates time series into two complementary components: (1) time-invariant component, captured by a novel global embedding module that learns persistent representations across time series, and (2) time-varying component, processed by an efficient frequency-domain filtering mechanism inspired by full-spectrum analysis in signal processing. Experiments on real-world datasets demonstrate that TimeEmb outperforms state-of-the-art baselines and requires fewer computational resources. We conduct comprehensive quantitative and qualitative analyses to verify the efficacy of static-dynamic disentanglement. This lightweight framework can also improve existing time-series forecasting methods with simple integration. To ease reproducibility, the code is available at https://github.com/showmeon/TimeEmb.
♻ ☆ Quantum Reinforcement Learning Trading Agent for Sector Rotation in the Taiwan Stock Market
We propose a hybrid quantum-classical reinforcement learning framework for sector rotation in the Taiwan stock market. Our system employs Proximal Policy Optimization (PPO) as the backbone algorithm and integrates both classical architectures (LSTM, Transformer) and quantum-enhanced models (QNN, QRWKV, QASA) as policy and value networks. An automated feature engineering pipeline extracts financial indicators from capital share data to ensure consistent model input across all configurations. Empirical backtesting reveals a key finding: although quantum-enhanced models consistently achieve higher training rewards, they underperform classical models in real-world investment metrics such as cumulative return and Sharpe ratio. This discrepancy highlights a core challenge in applying reinforcement learning to financial domains -- namely, the mismatch between proxy reward signals and true investment objectives. Our analysis suggests that current reward designs may incentivize overfitting to short-term volatility rather than optimizing risk-adjusted returns. This issue is compounded by the inherent expressiveness and optimization instability of quantum circuits under Noisy Intermediate-Scale Quantum (NISQ) constraints. We discuss the implications of this reward-performance gap and propose directions for future improvement, including reward shaping, model regularization, and validation-based early stopping. Our work offers a reproducible benchmark and critical insights into the practical challenges of deploying quantum reinforcement learning in real-world finance.
♻ ☆ Test-Time Training for Speech Enhancement
This paper introduces a novel application of Test-Time Training (TTT) for Speech Enhancement, addressing the challenges posed by unpredictable noise conditions and domain shifts. This method combines a main speech enhancement task with a self-supervised auxiliary task in a Y-shaped architecture. The model dynamically adapts to new domains during inference time by optimizing the proposed self-supervised tasks like noise-augmented signal reconstruction or masked spectrogram prediction, bypassing the need for labeled data. We further introduce various TTT strategies offering a trade-off between adaptation and efficiency. Evaluations across synthetic and real-world datasets show consistent improvements across speech quality metrics, outperforming the baseline model. This work highlights the effectiveness of TTT in speech enhancement, providing insights for future research in adaptive and robust speech processing.
comment: Published in the Proceedings of Interspeech 2025
♻ ☆ Diffusion Transformers as Open-World Spatiotemporal Foundation Models NeurIPS 2025
The urban environment is characterized by complex spatio-temporal dynamics arising from diverse human activities and interactions. Effectively modeling these dynamics is essential for understanding and optimizing urban systems. In this work, we introduce UrbanDiT, a foundation model for open-world urban spatio-temporal learning that successfully scales up diffusion transformers in this field. UrbanDiT pioneers a unified model that integrates diverse data sources and types while learning universal spatio-temporal patterns across different cities and scenarios. This allows the model to unify both multi-data and multi-task learning, and effectively support a wide range of spatio-temporal applications. Its key innovation lies in the elaborated prompt learning framework, which adaptively generates both data-driven and task-specific prompts, guiding the model to deliver superior performance across various urban applications. UrbanDiT offers three advantages: 1) It unifies diverse data types, such as grid-based and graph-based data, into a sequential format; 2) With task-specific prompts, it supports a wide range of tasks, including bi-directional spatio-temporal prediction, temporal interpolation, spatial extrapolation, and spatio-temporal imputation; and 3) It generalizes effectively to open-world scenarios, with its powerful zero-shot capabilities outperforming nearly all baselines with training data. UrbanDiT sets up a new benchmark for foundation models in the urban spatio-temporal domain. Code and datasets are publicly available at https://github.com/tsinghua-fib-lab/UrbanDiT.
comment: Accepted by NeurIPS 2025
♻ ☆ What should a neuron aim for? Designing local objective functions based on information theory ICLR 2025
In modern deep neural networks, the learning dynamics of the individual neurons is often obscure, as the networks are trained via global optimization. Conversely, biological systems build on self-organized, local learning, achieving robustness and efficiency with limited global information. We here show how self-organization between individual artificial neurons can be achieved by designing abstract bio-inspired local learning goals. These goals are parameterized using a recent extension of information theory, Partial Information Decomposition (PID), which decomposes the information that a set of information sources holds about an outcome into unique, redundant and synergistic contributions. Our framework enables neurons to locally shape the integration of information from various input classes, i.e. feedforward, feedback, and lateral, by selecting which of the three inputs should contribute uniquely, redundantly or synergistically to the output. This selection is expressed as a weighted sum of PID terms, which, for a given problem, can be directly derived from intuitive reasoning or via numerical optimization, offering a window into understanding task-relevant local information processing. Achieving neuron-level interpretability while enabling strong performance using local learning, our work advances a principled information-theoretic foundation for local learning strategies.
comment: Presented as an oral at ICLR 2025. Conference version: https://openreview.net/forum?id=CLE09ESvul, 24 pages, 11 figures
♻ ☆ Predicting Patient Recovery or Mortality Using Deep Neural Decision Tree and Forest
Objective: Identifying patients at high risk of mortality is crucial for emergency physicians to allocate hospital resources effectively, particularly in regions with limited medical services. This need becomes even more pressing during global health crises that lead to significant morbidity and mortality. This study aimed to present the usability deep neural decision forest and deep neural decision tree to predict mortality among Coronavirus disease 2019 (COVID-19) patients. To this end, We used patient data encompassing Coronavirus disease 2019 diagnosis, demographics, health indicators, and occupational risk factors to analyze disease severity and outcomes. The dataset was partitioned using a stratified sampling method, ensuring that 80% was allocated for training and 20% for testing. Nine machine learning and deep learning methods were employed to build predictive models. The models were evaluated across all stages to determine their effectiveness in predicting patient outcomes. Results: Among the models, the deep neural decision forest consistently outperformed others. Results indicated that using only clinical data yielded an accuracy of 80% by deep neural decision forest, demonstrating it as a reliable predictor of patient mortality. Moreover, the results suggest that clinical data alone may be the most accurate diagnostic tool for predicting mortality.
♻ ☆ A Pure Hypothesis Test for Inhomogeneous Random Graph Models Based on a Kernelised Stein Discrepancy
Complex data are often represented as a graph, which in turn can often be viewed as a realisation of a random graph, such as an inhomogeneous random graph model (IRG). For general fast goodness-of-fit tests in high dimensions, kernelised Stein discrepancy (KSD) tests are a powerful tool. Here, we develop a KSD-type test for IRG models that can be carried out with a single observation of the network. The test applies to a network of any size, but is particularly interesting for small networks for which asymptotic tests are not warranted. We also provide theoretical guarantees.
comment: 49 pages, 24 figures
♻ ☆ GIST: Greedy Independent Set Thresholding for Max-Min Diversification with Submodular Utility
This work studies a novel subset selection problem called max-min diversification with monotone submodular utility ($\textsf{MDMS}$), which has a wide range of applications in machine learning, e.g., data sampling and feature selection. Given a set of points in a metric space, the goal of $\textsf{MDMS}$ is to maximize $f(S) = g(S) + \lambda \cdot \texttt{div}(S)$ subject to a cardinality constraint $|S| \le k$, where $g(S)$ is a monotone submodular function and $\texttt{div}(S) = \min_{u,v \in S : u \ne v} \text{dist}(u,v)$ is the max-min diversity objective. We propose the $\texttt{GIST}$ algorithm, which gives a $\frac{1}{2}$-approximation guarantee for $\textsf{MDMS}$ by approximating a series of maximum independent set problems with a bicriteria greedy algorithm. We also prove that it is NP-hard to approximate within a factor of $0.5584$. Finally, we show in our empirical study that $\texttt{GIST}$ outperforms state-of-the-art benchmarks for a single-shot data sampling task on ImageNet.
comment: 21 pages, 3 figures
♻ ☆ Parameter Efficient Fine-tuning via Explained Variance Adaptation NeurIPS 2025
Foundation models (FMs) are pre-trained on large-scale datasets and then fine-tuned for a specific downstream task. The most common fine-tuning method is to update pretrained weights via low-rank adaptation (LoRA). Existing initialization strategies for LoRA often rely on singular value decompositions (SVD) of gradients or weight matrices. However, they do not provably maximize the expected gradient signal, which is critical for fast adaptation. To this end, we introduce Explained Variance Adaptation (EVA), an initialization scheme that uses the directions capturing the most activation variance, provably maximizing the expected gradient signal and accelerating fine-tuning. EVA performs incremental SVD on minibatches of activation vectors and selects the right-singular vectors for initialization once they converged. Further, by selecting the directions that capture the most activation-variance for a given rank budget, EVA accommodates adaptive ranks that reduce the number of trainable parameters. We apply EVA to a variety of fine-tuning tasks as language generation and understanding, image classification, and reinforcement learning. EVA exhibits faster convergence than competitors and achieves the highest average score across a multitude of tasks per domain while reducing the number of trainable parameters through rank redistribution. In summary, EVA establishes a new Pareto frontier compared to existing LoRA initialization schemes in both accuracy and efficiency.
comment: Accepted at NeurIPS 2025, Shared first authorship, Code available at https://github.com/ml-jku/EVA
♻ ☆ FlexQuant: A Flexible and Efficient Dynamic Precision Switching Framework for LLM Quantization
The rapid advancement of large language models (LLMs) has exacerbated the memory bottleneck due to the widening gap between model parameter scaling and hardware capabilities. While post-training quantization techniques effectively reduce memory overhead, existing methods predominantly rely on static quantization strategies, which struggle to adapt to dynamic workloads. To address this, we propose FlexQuant, a dynamic precision-switching framework that optimizes the trade-off between inference speed and accuracy. Leveraging model perplexity entropy and Kullback-Leibler divergence, FlexQuant enables fine-grained, layer-wise mixed-precision quantization and dynamically adjusts bit-widths during each token generation. FlexQuant provides a comprehensive analysis of quantization strategies, introduces a precision requirement model for optimal switching, and implements efficient fine-grained precision management. Evaluations demonstrate that FlexQuant achieves a 1.3x end-to-end speedup across diverse language tasks with negligible accuracy loss introduced. This framework offers a flexible and adaptive solution for efficient LLM deployment. Code is released at https://github.com/ZongwuWang/FlexQuant.git.
comment: 1p pages, 7 figures, 2 tables
♻ ☆ The Syntax and Semantics of einsum
In 2011, einsum was introduced to NumPy as a practical and convenient notation for tensor expressions in machine learning, quantum circuit simulation, and other fields. It has since been implemented in additional Python frameworks such as PyTorch and TensorFlow, as well as in other programming languages such as Julia. Despite its practical success, the einsum notation still lacks a solid theoretical basis, and is not unified across the different frameworks, limiting opportunities for formal reasoning and systematic optimization. In this work, we discuss the terminology of tensor expressions and provide a formal definition of the einsum language. Based on this definition, we formalize and prove important equivalence rules for tensor expressions and highlight their relevance in practical applications.
comment: 21 pages, 1 figure. Includes formal definitions, proofs of algebraic properties, and nesting/denesting rules for the einsum notation
♻ ☆ Watch the Weights: Unsupervised monitoring and control of fine-tuned LLMs
The releases of powerful open-weight large language models (LLMs) are often not accompanied by access to their full training data. Existing interpretability methods, particularly those based on activations, often require or assume distributionally similar data. This is a significant limitation when detecting and defending against novel potential threats like backdoors, which are by definition out-of-distribution. In this work, we introduce a new method for understanding, monitoring and controlling fine-tuned LLMs that interprets weights, rather than activations, thereby side stepping the need for data that is distributionally similar to the unknown training data. We demonstrate that the top singular vectors of the weight difference between a fine-tuned model and its base model correspond to newly acquired behaviors. By monitoring the cosine similarity of activations along these directions, we can detect salient behaviors introduced during fine-tuning with high precision. For backdoored models that bypasses safety mechanisms when a secret trigger is present, our method stops up to 100% of attacks with a false positive rate below 1.2%. For models that have undergone unlearning, we detect inference on erased topics with accuracy up to 95.42% and can even steer the model to recover "unlearned" information. Besides monitoring, our method also shows potential for pre-deployment model auditing: by analyzing commercial instruction-tuned models (OLMo, Llama, Qwen), we are able to uncover model-specific fine-tuning focus including marketing strategies and Midjourney prompt generation. Our implementation can be found at https://github.com/fjzzq2002/WeightWatch.
♻ ☆ Adv-SSL: Adversarial Self-Supervised Representation Learning with Theoretical Guarantees NeurIPS 2025
Learning transferable data representations from abundant unlabeled data remains a central challenge in machine learning. Although numerous self-supervised learning methods have been proposed to address this challenge, a significant class of these approaches aligns the covariance or correlation matrix with the identity matrix. Despite impressive performance across various downstream tasks, these methods often suffer from biased sample risk, leading to substantial optimization shifts in mini-batch settings and complicating theoretical analysis. In this paper, we introduce a novel \underline{\bf Adv}ersarial \underline{\bf S}elf-\underline{\bf S}upervised Representation \underline{\bf L}earning (Adv-SSL) for unbiased transfer learning with no additional cost compared to its biased counterparts. Our approach not only outperforms the existing methods across multiple benchmark datasets but is also supported by comprehensive end-to-end theoretical guarantees. Our analysis reveals that the minimax optimization in Adv-SSL encourages representations to form well-separated clusters in the embedding space, provided there is sufficient upstream unlabeled data. As a result, our method achieves strong classification performance even with limited downstream labels, shedding new light on few-shot learning.
comment: Accepted at the Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ DISCOVER: Automated Curricula for Sparse-Reward Reinforcement Learning NeurIPS 2025
Sparse-reward reinforcement learning (RL) can model a wide range of highly complex tasks. Solving sparse-reward tasks is RL's core premise, requiring efficient exploration coupled with long-horizon credit assignment, and overcoming these challenges is key for building self-improving agents with superhuman ability. Prior work commonly explores with the objective of solving many sparse-reward tasks, making exploration of individual high-dimensional, long-horizon tasks intractable. We argue that solving such challenging tasks requires solving simpler tasks that are relevant to the target task, i.e., whose achieval will teach the agent skills required for solving the target task. We demonstrate that this sense of direction, necessary for effective exploration, can be extracted from existing RL algorithms, without leveraging any prior information. To this end, we propose a method for directed sparse-reward goal-conditioned very long-horizon RL (DISCOVER), which selects exploratory goals in the direction of the target task. We connect DISCOVER to principled exploration in bandits, formally bounding the time until the target task becomes achievable in terms of the agent's initial distance to the target, but independent of the volume of the space of all tasks. We then perform a thorough evaluation in high-dimensional environments. We find that the directed goal selection of DISCOVER solves exploration problems that are beyond the reach of prior state-of-the-art exploration methods in RL.
comment: NeurIPS 2025
♻ ☆ General agents contain world models ICML 2025
Are world models a necessary ingredient for flexible, goal-directed behaviour, or is model-free learning sufficient? We provide a formal answer to this question, showing that any agent capable of generalizing to multi-step goal-directed tasks must have learned a predictive model of its environment. We show that this model can be extracted from the agent's policy, and that increasing the agents performance or the complexity of the goals it can achieve requires learning increasingly accurate world models. This has a number of consequences: from developing safe and general agents, to bounding agent capabilities in complex environments, and providing new algorithms for eliciting world models from agents.
comment: Accepted ICML 2025. Typos corrected
♻ ☆ What is Memory? A Homological Perspective
We introduce the delta-homology model of memory, a unified framework in which recall, learning, and prediction emerge from cycle closure, the completion of topologically constrained trajectories within the brain's latent manifold. A Dirac-like memory trace corresponds to a nontrivial homology generator, representing a sparse, irreducible attractor that reactivates only when inference trajectories close upon themselves. In this view, memory is not a static attractor landscape but a topological process of recurrence, where structure arises through the stabilization of closed loops. Building on this principle, we represent spike-timing dynamics as spatiotemporal complexes, in which temporally consistent transitions among neurons form chain complexes supporting persistent activation cycles. These cycles are organized into cell posets, compact causal representations that encode overlapping and compositional memory traces. Within this construction, learning and recall correspond to cycle closure under contextual modulation: inference trajectories stabilize into nontrivial homology classes when both local synchrony (context) and global recurrence (content) are satisfied. We formalize this mechanism through the Context-Content Uncertainty Principle (CCUP), which states that cognition minimizes joint uncertainty between a high-entropy context variable and a low-entropy content variable. Synchronization acts as a context filter selecting coherent subnetworks, while recurrence acts as a content filter validating nontrivial cycles.
♻ ☆ OCR-APT: Reconstructing APT Stories from Audit Logs using Subgraph Anomaly Detection and LLMs CCS 2025
Advanced Persistent Threats (APTs) are stealthy cyberattacks that often evade detection in system-level audit logs. Provenance graphs model these logs as connected entities and events, revealing relationships that are missed by linear log representations. Existing systems apply anomaly detection to these graphs but often suffer from high false positive rates and coarse-grained alerts. Their reliance on node attributes like file paths or IPs leads to spurious correlations, reducing detection robustness and reliability. To fully understand an attack's progression and impact, security analysts need systems that can generate accurate, human-like narratives of the entire attack. To address these challenges, we introduce OCR-APT, a system for APT detection and reconstruction of human-like attack stories. OCR-APT uses Graph Neural Networks (GNNs) for subgraph anomaly detection, learning behavior patterns around nodes rather than fragile attributes such as file paths or IPs. This approach leads to a more robust anomaly detection. It then iterates over detected subgraphs using Large Language Models (LLMs) to reconstruct multi-stage attack stories. Each stage is validated before proceeding, reducing hallucinations and ensuring an interpretable final report. Our evaluations on the DARPA TC3, OpTC, and NODLINK datasets show that OCR-APT outperforms state-of-the-art systems in both detection accuracy and alert interpretability. Moreover, OCR-APT reconstructs human-like reports that comprehensively capture the attack story.
comment: This is the authors' extended version of the paper accepted for publication at the ACM SIGSAC Conference on Computer and Communications Security (CCS 2025). The final published version is available at https://doi.org/10.1145/3719027.3765219
♻ ☆ CodeVisionary: An Agent-based Framework for Evaluating Large Language Models in Code Generation
Large language models (LLMs) have demonstrated strong capabilities in code generation, underscoring the critical need for rigorous and comprehensive evaluation. Existing evaluation approaches fall into three categories, including human-centered, metric-based, and LLM-based. Considering that human-centered approaches are labour-intensive and metric-based ones overly rely on reference answers, LLM-based approaches are gaining increasing attention due to their stronger contextual understanding capabilities. However, they generally evaluate the generated code based on static prompts, and tend to fail for complex code scenarios which typically involve multiple requirements and require more contextual information. In addition, these approaches lack fine-grained evaluation for complex code, resulting in limited explainability. To mitigate the limitations, we propose CodeVisionary, the first agent-based evaluation framework for complex code generation. CodeVisionary consists of two stages: (1) Requirement-guided multi-dimensional context distillation stage and (2) Fine-grained scoring and summarization stage. A comprehensive evaluation report is also generated for enhanced explainability. For validation, we construct a new benchmark consisting of 363 samples spanning 37 coding scenarios and 23 programming languages. Extensive experiments demonstrate that CodeVisionary achieves the best performance among three baselines for evaluating complex code generation, outperforming the best baseline with average improvements of 0.217, 0.163, and 0.141 in Pearson, Spearman, and Kendall-Tau coefficients, respectively. The resources of CodeVisionary are available at https://github.com/Eshe0922/CodeVisionary.
♻ ☆ LLM as GNN: Graph Vocabulary Learning for Text-Attributed Graph Foundation Models
Text-Attributed Graphs (TAGs), where each node is associated with text descriptions, are ubiquitous in real-world scenarios. They typically exhibit distinctive structure and domain-specific knowledge, motivating the development of a Graph Foundation Model (GFM) that generalizes across diverse graphs and tasks. Despite large efforts to integrate Large Language Models (LLMs) and Graph Neural Networks (GNNs) for TAGs, existing approaches suffer from decoupled architectures with two-stage alignment, limiting their synergistic potential. Even worse, existing methods assign out-of-vocabulary (OOV) tokens to graph nodes, leading to graph-specific semantics, token explosion, and incompatibility with task-oriented prompt templates, which hinders cross-graph and cross-task transferability. To address these challenges, we propose PromptGFM, a versatile GFM for TAGs grounded in graph vocabulary learning. PromptGFM comprises two key components: (1) Graph Understanding Module, which explicitly prompts LLMs to replicate the finest GNN workflow within the text space, facilitating seamless GNN-LLM integration and elegant graph-text alignment; (2) Graph Inference Module, which establishes a language-based graph vocabulary ensuring expressiveness, transferability, and scalability, enabling readable instructions for LLM fine-tuning. Extensive experiments demonstrate our superiority and transferability across diverse graphs and tasks. The code is available at this: https://github.com/agiresearch/PromptGFM.
♻ ☆ Communications to Circulations: Real-Time 3D Wind Field Prediction Using 5G GNSS Signals and Deep Learning
Accurate atmospheric wind field information is crucial for various applications, including weather forecasting, aviation safety, and disaster risk reduction. However, obtaining high spatiotemporal resolution wind data remains challenging due to limitations in traditional in-situ observations and remote sensing techniques, as well as the computational expense and biases of numerical weather prediction (NWP) models. This paper introduces G-WindCast, a novel deep learning framework that leverages signal strength variations from 5G Global Navigation Satellite System (GNSS) signals to forecast three-dimensional (3D) atmospheric wind fields. The framework utilizes Forward Neural Networks (FNN) and Transformer networks to capture complex, nonlinear, and spatiotemporal relationships between GNSS-derived features and wind dynamics. Our preliminary results demonstrate promising accuracy in real-time wind forecasts (up to 30 minutes lead time). The model exhibits robustness across forecast horizons and different pressure levels, and its predictions for wind fields show superior agreement with ground-based radar wind profiler compared to concurrent European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5). Furthermore, we show that the system can maintain excellent performance for localized forecasting even with a significantly reduced number of GNSS stations (e.g., around 100), highlighting its cost-effectiveness and scalability. This interdisciplinary approach underscores the transformative potential of exploiting non-traditional data sources and deep learning for advanced environmental monitoring and real-time atmospheric applications.
comment: 31 pages, 10 figures; Minor text revisions; Updated the questions, some images in the article, the abstract, and the main text content
♻ ☆ CAPO: Towards Enhancing LLM Reasoning through Generative Credit Assignment
Reinforcement Learning with Verifiable Rewards (RLVR) has improved the reasoning abilities of Large Language Models (LLMs) by using rule-based binary feedback. However, current RLVR methods typically assign the same reward to every token. This coarse-grained feedback hampers precise credit assignment, making it hard for models to identify which reasoning steps lead to success or failure, and often results in suboptimal policies. Methods like PPO provide credit assignment by value estimation, but yield inaccurate and unverifiable signals due to limited sampling. On the other hand, methods using Process Reward Models can provide step-wise rewards but suffer from several key limitations: they require high-quality process supervision labels, the feedback is unreliable due to probabilistic reward modeling, and their application in online reinforcement learning (RL) is time-consuming. To overcome these limitations, we introduce a simple but efficient method-Credit Assignment Policy Optimization (CAPO). Instead of training auxiliary models, CAPO directly leverages an off-the-shelf, general-purpose LLM as a Generative Process Reward Model (LLM-as-GenPRM) to generate all step-wise critique by one pass only based on the correctness of the step itself, providing deterministic token-level credits to refine the tokens that were originally assigned identical rule-based rewards. To further enhance the accuracy and robustness, we employ voting mechanisms that scale with the number of generated critiques. Extensive experiments on various backbones like Llama and Qwen models show that CAPO consistently outperforms supervised learning-based and RL-based fine-tuning methods across four challenging mathematical benchmarks and three out-of-domain benchmarks. Further analysis shows that CAPO can help the model to foster the learning of correct reasoning pathways leading to correct answers.
comment: Work in progress
♻ ☆ Application-oriented automatic hyperparameter optimization for spiking neural network prototyping
Hyperparameter optimization (HPO) is of paramount importance in the development of high-performance, specialized artificial intelligence (AI) models, ranging from well-established machine learning (ML) solutions to the deep learning (DL) domain and the field of spiking neural networks (SNNs). The latter introduce further complexity due to the neuronal computational units and their additional hyperparameters, whose inadequate setting can dramatically impact the final model performance. At the cost of possible reduced generalization capabilities, the most suitable strategy to fully disclose the power of SNNs is to adopt an application-oriented approach and perform extensive HPO experiments. To facilitate these operations, automatic pipelines are fundamental, and their configuration is crucial. In this document, the Neural Network Intelligence (NNI) toolkit is used as reference framework to present one such solution, with a use case example providing evidence of the corresponding results. In addition, a summary of published works employing the presented pipeline is reported as a potential source of insights into application-oriented HPO experiments for SNN prototyping.
♻ ☆ Infinity Parser: Layout Aware Reinforcement Learning for Scanned Document Parsing
Automated parsing of scanned documents into richly structured, machine-readable formats remains a critical bottleneck in Document AI, as traditional multi-stage pipelines suffer from error propagation and limited adaptability to diverse layouts. We introduce layoutRL, an end-to-end reinforcement learning framework that trains models to be explicitly layout-aware by optimizing a composite reward of normalized edit distance, paragraph count accuracy, and reading order preservation. Leveraging our newly released dataset, Infinity-Doc-55K, which combines 55K high-fidelity synthetic scanned document parsing data with expert-filtered real-world documents, we instantiate layoutRL in a vision-language-model-based parser called Infinity-Parser. Evaluated on English and Chinese benchmarks for OCR, table and formula extraction, and reading order detection, Infinity-Parser achieves new state-of-the-art performance in both accuracy and structural fidelity, outpacing specialist pipelines and general-purpose vision-language models. We will publicly release our code and dataset to accelerate progress in robust document understanding.
comment: 16 pages, 12 figures
♻ ☆ Going with the Flow: Approximating Banzhaf Values via Graph Neural Networks
Computing the Banzhaf value in network flow games is fundamental for quantifying agent influence in multi-agent systems, with applications ranging from cybersecurity to infrastructure planning. However, exact computation is intractable for systems with more than $\sim20$ agents due to exponential complexity $\mathcal{O}(2^m)$. While Monte Carlo sampling methods provide statistical estimates, they suffer from high sample complexity and cannot transfer knowledge across different network configurations, making them impractical for large-scale or dynamic systems. We present a novel learning-based approach using Graph Neural Networks (GNNs) to approximate Banzhaf values in cardinal network flow games. By framing the problem as a graph-level prediction task, our method learns generalisable patterns of agent influence directly from network topology and control structure. We conduct a comprehensive empirical study comparing three state-of-the-art GNN architectures-Graph Attention Networks (GAT), Graph Isomorphism Networks with Edge features (GINE), and EdgeConv-on a large-scale synthetic dataset of 200,000 graphs per configuration, varying in size (20-100 nodes), agent count (5-20), and edge probability (0.5-1.0). Our results demonstrate that trained GNN models achieve high-fidelity Banzhaf value approximation with order-of-magnitude speedups compared to exact and sampling-based methods. Most significantly, we show strong zero-shot generalisation: models trained on graphs of a specific size and topology accurately predict Banzhaf values for entirely new networks with different structural properties, without requiring retraining. This work establishes GNNs as a practical tool for scalable cooperative game-theoretic analysis of complex networked systems.
comment: 21 pages, 8 figures, 11-page appendix
♻ ☆ A deep solver for backward stochastic Volterra integral equations
We present the first deep-learning solver for backward stochastic Volterra integral equations (BSVIEs) and their fully-coupled forward-backward variants. The method trains a neural network to approximate the two solution fields in a single stage, avoiding the use of nested time-stepping cycles that limit classical algorithms. For the decoupled case we prove a non-asymptotic error bound composed of an a posteriori residual plus the familiar square root dependence on the time step. Numerical experiments are consistent with this rate and reveal two key properties: \emph{scalability}, in the sense that accuracy remains stable from low dimension up to 500 spatial variables while GPU batching keeps wall-clock time nearly constant; and \emph{generality}, since the same method handles coupled systems whose forward dynamics depend on the backward solution. These results open practical access to a family of high-dimensional, time-inconsistent problems in stochastic control and quantitative finance.
comment: 25 pages, 10 figures
♻ ☆ Neural Green's Operators for Parametric Partial Differential Equations
This work introduces a paradigm for constructing parametric neural operators that are derived from finite-dimensional representations of Green's operators, with learnable Green's functions, for linear partial differential equations (PDEs). We refer to such neural operators as Neural Green's Operators (NGOs). Our construction of NGOs preserves the linear action of Green's operators on the inhomogeneity fields, while approximating the nonlinear dependence of the Green's function on the coefficients of the PDE using neural networks that take weighted averages of such coefficients as input. This construction reduces the complexity of the problem from learning the entire solution operator and its dependence on all parameters to only learning the Green's function and its dependence on the PDE coefficients. Moreover, taking weighted averages, rather than point samples, of input functions decouples the network size from the number of sampling points, enabling efficient resolution of multiple scales in the input fields. Furthermore, we show that our explicit representation of Green's functions enables the embedding of desirable mathematical attributes in our NGO architectures, such as symmetry, spectral, and conservation properties. Through numerical benchmarks on canonical PDEs, we demonstrate that NGOs achieve comparable or superior accuracy to deep operator networks, variationally mimetic operator networks, and Fourier neural operators with similar parameter counts, while generalizing significantly better when tested on out-of-distribution data. For time-dependent PDEs, we show that NGOs can produce pointwise-accurate dynamics in an auto-regressive manner when trained on a single time step. Finally, we show that we can leverage the explicit representation of Green's functions returned by NGOs to construct effective matrix preconditioners that accelerate iterative solvers for PDEs.
♻ ☆ Conformal online model aggregation
Conformal prediction equips machine learning models with a reasonable notion of uncertainty quantification without making strong distributional assumptions. It wraps around any prediction model and converts point predictions into set predictions with a predefined marginal coverage guarantee. However, conformal prediction only works if we fix the underlying machine learning model in advance. A relatively unaddressed issue in conformal prediction is that of model selection and/or aggregation: given a set of prediction models, which one should we conformalize? This paper suggests that instead of performing model selection, it can be prudent and practical to perform conformal set aggregation in an online, adaptive fashion. We propose a wrapper that takes in several conformal prediction sets (themselves wrapped around black-box prediction models), and outputs a single adaptively-combined prediction set. Our method, called conformal online model aggregation (COMA), is based on combining the prediction sets from several algorithms by weighted voting, and can be thought of as a sort of online stacking of the underlying conformal sets. As long as the input sets have (distribution-free) coverage guarantees, COMA retains coverage guarantees, under a negative correlation assumption between errors and weights. We verify that the assumption holds empirically in all settings considered. COMA is well-suited for decentralized or distributed settings, where different users may have different models, and are only willing to share their prediction sets for a new test point in a black-box fashion. As we demonstrate, it is also well-suited to settings with distribution drift and shift, where model selection can be imprudent.
♻ ☆ Progressive Tempering Sampler with Diffusion ICML 2025
Recent research has focused on designing neural samplers that amortize the process of sampling from unnormalized densities. However, despite significant advancements, they still fall short of the state-of-the-art MCMC approach, Parallel Tempering (PT), when it comes to the efficiency of target evaluations. On the other hand, unlike a well-trained neural sampler, PT yields only dependent samples and needs to be rerun -- at considerable computational cost -- whenever new samples are required. To address these weaknesses, we propose the Progressive Tempering Sampler with Diffusion (PTSD), which trains diffusion models sequentially across temperatures, leveraging the advantages of PT to improve the training of neural samplers. We also introduce a novel method to combine high-temperature diffusion models to generate approximate lower-temperature samples, which are minimally refined using MCMC and used to train the next diffusion model. PTSD enables efficient reuse of sample information across temperature levels while generating well-mixed, uncorrelated samples. Our method significantly improves target evaluation efficiency, outperforming diffusion-based neural samplers.
comment: Accepted for publication at ICML 2025
♻ ☆ CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention
Electroencephalograph (EEG) is a crucial tool for studying brain activity. Recently, self-supervised learning methods leveraging large unlabeled datasets have emerged as a potential solution to the scarcity of widely available annotated EEG data. However, current methods suffer from at least one of the following limitations: i) sub-optimal EEG signal modeling, ii) model sizes in the hundreds of millions of trainable parameters, and iii) reliance on private datasets and/or inconsistent public benchmarks, hindering reproducibility. To address these challenges, we introduce a Compact Encoder for Representations of Brain Oscillations using alternating attention (CEReBrO), a new small EEG foundation model. Our tokenization scheme represents EEG signals at a per-channel patch granularity. We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention. We present several model sizes ranging from 3.6 million to 85 million parameters. Pre-trained on over 20,000 hours of publicly available scalp EEG recordings with diverse channel configurations, our models set new benchmarks in emotion detection and seizure detection tasks, with competitive performance in anomaly classification and gait prediction. This validates our models' effectiveness and efficiency.
♻ ☆ Robust LLM Training Infrastructure at ByteDance
The training scale of large language models (LLMs) has reached tens of thousands of GPUs and is still continuously expanding, enabling faster learning of larger models. Accompanying the expansion of the resource scale is the prevalence of failures (CUDA error, NaN values, job hang, etc.), which poses significant challenges to training stability. Any large-scale LLM training infrastructure should strive for minimal training interruption, efficient fault diagnosis, and effective failure tolerance to enable highly efficient continuous training. This paper presents ByteRobust, a large-scale GPU infrastructure management system tailored for robust and stable training of LLMs. It exploits the uniqueness of LLM training process and gives top priorities to detecting and recovering failures in a routine manner. Leveraging parallelisms and characteristics of LLM training, ByteRobust enables high-capacity fault tolerance, prompt fault demarcation, and localization with an effective data-driven approach, comprehensively ensuring continuous and efficient training of LLM tasks. ByteRobust is deployed on a production GPU platform and achieves 97% ETTR for a three-month training job on 9,600 GPUs.
♻ ☆ The quest for the GRAph Level autoEncoder (GRALE)
Although graph-based learning has attracted a lot of attention, graph representation learning is still a challenging task whose resolution may impact key application fields such as chemistry or biology. To this end, we introduce GRALE, a novel graph autoencoder that encodes and decodes graphs of varying sizes into a shared embedding space. GRALE is trained using an Optimal Transport-inspired loss that compares the original and reconstructed graphs and leverages a differentiable node matching module, which is trained jointly with the encoder and decoder. The proposed attention-based architecture relies on Evoformer, the core component of AlphaFold, which we extend to support both graph encoding and decoding. We show, in numerical experiments on simulated and molecular data, that GRALE enables a highly general form of pre-training, applicable to a wide range of downstream tasks, from classification and regression to more complex tasks such as graph interpolation, editing, matching, and prediction.
Multimedia
☆ AWARE: Audio Watermarking with Adversarial Resistance to Edits
Prevailing practice in learning-based audio watermarking is to pursue robustness by expanding the set of simulated distortions during training. However, such surrogates are narrow and prone to overfitting. This paper presents AWARE (Audio Watermarking with Adversarial Resistance to Edits), an alternative approach that avoids reliance on attack-simulation stacks and handcrafted differentiable distortions. Embedding is obtained via adversarial optimization in the time-frequency domain under a level-proportional perceptual budget. Detection employs a time-order-agnostic detector with a Bitwise Readout Head (BRH) that aggregates temporal evidence into one score per watermark bit, enabling reliable watermark decoding even under desynchronization and temporal cuts. Empirically, AWARE attains high audio quality and speech intelligibility (PESQ/STOI) and consistently low BER across various audio edits, often surpassing representative state-of-the-art learning-based audio watermarking systems.
☆ AV1 Motion Vector Fidelity and Application for Efficient Optical Flow
This paper presents a comprehensive analysis of motion vectors extracted from AV1-encoded video streams and their application in accelerating optical flow estimation. We demonstrate that motion vectors from AV1 video codec can serve as a high-quality and computationally efficient substitute for traditional optical flow, a critical but often resource-intensive component in many computer vision pipelines. Our primary contributions are twofold. First, we provide a detailed comparison of motion vectors from both AV1 and HEVC against ground-truth optical flow, establishing their fidelity. In particular we show the impact of encoder settings on motion estimation fidelity and make recommendations about the optimal settings. Second, we show that using these extracted AV1 motion vectors as a "warm-start" for a state-of-the-art deep learning-based optical flow method, RAFT, significantly reduces the time to convergence while achieving comparable accuracy. Specifically, we observe a four-fold speedup in computation time with only a minor trade- off in end-point error. These findings underscore the potential of reusing motion vectors from compressed video as a practical and efficient method for a wide range of motion-aware computer vision applications.
comment: Accepted PCS 2025, camera-ready version
☆ BenCao: An Instruction-Tuned Large Language Model for Traditional Chinese Medicine
Traditional Chinese Medicine (TCM), with a history spanning over two millennia, plays a role in global healthcare. However, applying large language models (LLMs) to TCM remains challenging due to its reliance on holistic reasoning, implicit logic, and multimodal diagnostic cues. Existing TCM-domain LLMs have made progress in text-based understanding but lack multimodal integration, interpretability, and clinical applicability. To address these limitations, we developed BenCao, a ChatGPT-based multimodal assistant for TCM, integrating structured knowledge bases, diagnostic data, and expert feedback refinement. BenCao was trained through natural language instruction tuning rather than parameter retraining, aligning with expert-level reasoning and ethical norms specific to TCM. The system incorporates a comprehensive knowledge base of over 1,000 classical and modern texts, a scenario-based instruction framework for diverse interactions, a chain-of-thought simulation mechanism for interpretable reasoning, and a feedback refinement process involving licensed TCM practitioners. BenCao connects to external APIs for tongue-image classification and multimodal database retrieval, enabling dynamic access to diagnostic resources. In evaluations across single-choice question benchmarks and multimodal classification tasks, BenCao achieved superior accuracy to general-domain and TCM-domain models, particularly in diagnostics, herb recognition, and constitution classification. The model was deployed as an interactive application on the OpenAI GPTs Store, accessed by nearly 1,000 users globally as of October 2025. This study demonstrates the feasibility of developing a TCM-domain LLM through natural language-based instruction tuning and multimodal integration, offering a practical framework for aligning generative AI with traditional medical reasoning and a scalable pathway for real-world deployment.
☆ LongInsightBench: A Comprehensive Benchmark for Evaluating Omni-Modal Models on Human-Centric Long-Video Understanding
We introduce \textbf{LongInsightBench}, the first benchmark designed to assess models' ability to understand long videos, with a focus on human language, viewpoints, actions, and other contextual elements, while integrating \textbf{visual, audio, and text} modalities. Our benchmark excels in three key areas: \textbf{a) Long-Duration, Information-Dense Videos:} We carefully select approximately 1,000 videos from open-source datasets FineVideo based on duration limit and the information density of both visual and audio modalities, focusing on content like lectures, interviews, and vlogs, which contain rich language elements. \textbf{b) Diverse and Challenging Task Scenarios:} We have designed six challenging task scenarios, including both Intra-Event and Inter-Event Tasks. \textbf{c) Rigorous and Comprehensive Quality Assurance Pipelines:} We have developed a three-step, semi-automated data quality assurance pipeline to ensure the difficulty and validity of the synthesized questions and answer options. Based on LongInsightBench, we designed a series of experiments. Experimental results shows that Omni-modal models(OLMs) still face challenge in tasks requiring precise temporal localization (T-Loc) and long-range causal inference (CE-Caus). Extended experiments reveal the information loss and processing bias in multi-modal fusion of OLMs. Our dataset and code is available at https://anonymous.4open.science/r/LongInsightBench-910F/.
comment: Submitted to ARR Rolling Review
☆ Taming Modality Entanglement in Continual Audio-Visual Segmentation
Recently, significant progress has been made in multi-modal continual learning, aiming to learn new tasks sequentially in multi-modal settings while preserving performance on previously learned ones. However, existing methods mainly focus on coarse-grained tasks, with limitations in addressing modality entanglement in fine-grained continual learning settings. To bridge this gap, we introduce a novel Continual Audio-Visual Segmentation (CAVS) task, aiming to continuously segment new classes guided by audio. Through comprehensive analysis, two critical challenges are identified: 1) multi-modal semantic drift, where a sounding objects is labeled as background in sequential tasks; 2) co-occurrence confusion, where frequent co-occurring classes tend to be confused. In this work, a Collision-based Multi-modal Rehearsal (CMR) framework is designed to address these challenges. Specifically, for multi-modal semantic drift, a Multi-modal Sample Selection (MSS) strategy is proposed to select samples with high modal consistency for rehearsal. Meanwhile, for co-occurence confusion, a Collision-based Sample Rehearsal (CSR) mechanism is designed, allowing for the increase of rehearsal sample frequency of those confusable classes during training process. Moreover, we construct three audio-visual incremental scenarios to verify effectiveness of our method. Comprehensive experiments demonstrate that our method significantly outperforms single-modal continual learning methods.
☆ ManzaiSet: A Multimodal Dataset of Viewer Responses to Japanese Manzai Comedy ICCV 2025
We present ManzaiSet, the first large scale multimodal dataset of viewer responses to Japanese manzai comedy, capturing facial videos and audio from 241 participants watching up to 10 professional performances in randomized order (94.6 percent watched >= 8; analyses focus on n=228). This addresses the Western centric bias in affective computing. Three key findings emerge: (1) k means clustering identified three distinct viewer types: High and Stable Appreciators (72.8 percent, n=166), Low and Variable Decliners (13.2 percent, n=30), and Variable Improvers (14.0 percent, n=32), with heterogeneity of variance (Brown Forsythe p < 0.001); (2) individual level analysis revealed a positive viewing order effect (mean slope = 0.488, t(227) = 5.42, p < 0.001, permutation p < 0.001), contradicting fatigue hypotheses; (3) automated humor classification (77 instances, 131 labels) plus viewer level response modeling found no type wise differences after FDR correction. The dataset enables culturally aware emotion AI development and personalized entertainment systems tailored to non Western contexts.
comment: ICCV 2025 Workshop on Affective & Behavior Analysis in-the-Wild (ABAW), Honolulu, HI, USA (Oct 19, 2025, HST). 11 pages, 5 figures
♻ ☆ Nexus: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision
This work proposes an industry-level omni-modal large language model (LLM) pipeline that integrates auditory, visual, and linguistic modalities to overcome challenges such as limited tri-modal datasets, high computational costs, and complex feature alignments. Our pipeline consists of three main components: First, a modular framework enabling flexible configuration of various encoder-LLM-decoder architectures. Second, a lightweight training strategy that pre-trains audio-language alignment on the state-of-the-art vision-language model Qwen2.5-VL, thus avoiding the costly pre-training of vision-specific modalities. Third, an audio synthesis pipeline that generates high-quality audio-text data from diverse real-world scenarios, supporting applications such as Automatic Speech Recognition and Speech-to-Speech chat. To this end, we introduce an industry-level omni-modal LLM, Nexus. Extensive experiments validate the efficacy of our pipeline, yielding the following key findings:(1) In the visual understanding task, Nexus exhibits superior performance compared with its backbone model - Qwen2.5-VL-7B, validating the efficiency of our training strategy. (2) Within the English Spoken Question-Answering task, the model achieves better accuracy than the same-period competitor (i.e, MiniCPM-o2.6-7B) in the LLaMA Q. benchmark. (3) In our real-world ASR testset, Nexus achieves outstanding performance, indicating its robustness in real scenarios. (4) In the Speech-to-Text Translation task, our model outperforms Qwen2-Audio-Instruct-7B. (5) In the Text-to-Speech task, based on pretrained vocoder (e.g., Fishspeech1.4 or CosyVoice2.0), Nexus is comparable to its backbone vocoder on Seed-TTS benchmark. (6) An in-depth analysis of tri-modal alignment reveals that incorporating the audio modality enhances representational alignment between vision and language.
comment: Project: https://github.com/HiThink-Research/NEXUS-O
♻ ☆ MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease. Multi-modal self-supervised learning has demonstrated remarkable potential in learning pathological representations by integrating diverse data sources. Conventional multi-modal integration methods primarily emphasize modality alignment, while paying insufficient attention to retaining the modality-specific structures. However, unlike conventional scenarios where multi-modal inputs share highly overlapping features, histopathology and transcriptomics exhibit pronounced heterogeneity, offering orthogonal yet complementary insights. Histopathology provides morphological and spatial context, elucidating tissue architecture and cellular topology, whereas transcriptomics delineates molecular signatures through gene expression patterns. This inherent disparity introduces a major challenge in aligning them while maintaining modality-specific fidelity. To address these challenges, we present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention. MIRROR employs dedicated encoders to extract comprehensive features for each modality, which is further complemented by a modality alignment module to achieve seamless integration between phenotype patterns and molecular profiles. Furthermore, a modality retention module safeguards unique attributes from each modality, while a style clustering module mitigates redundancy and enhances disease-relevant information by modeling and aligning consistent pathological signatures within a clustering space. Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance, demonstrating its effectiveness in constructing comprehensive oncological feature representations and benefiting the cancer diagnosis.
comment: 18 pages, 7 figures, 10 tables. Code available at https://github.com/TianyiFranklinWang/MIRROR. Project page: https://tianyifranklinwang.github.io/MIRROR
♻ ☆ 3D Audio-Visual Segmentation NeurIPS 2024
Recognizing the sounding objects in scenes is a longstanding objective in embodied AI, with diverse applications in robotics and AR/VR/MR. To that end, Audio-Visual Segmentation (AVS), taking as condition an audio signal to identify the masks of the target sounding objects in an input image with synchronous camera and microphone sensors, has been recently advanced. However, this paradigm is still insufficient for real-world operation, as the mapping from 2D images to 3D scenes is missing. To address this fundamental limitation, we introduce a novel research problem, 3D Audio-Visual Segmentation, extending the existing AVS to the 3D output space. This problem poses more challenges due to variations in camera extrinsics, audio scattering, occlusions, and diverse acoustics across sounding object categories. To facilitate this research, we create the very first simulation based benchmark, 3DAVS-S34-O7, providing photorealistic 3D scene environments with grounded spatial audio under single-instance and multi-instance settings, across 34 scenes and 7 object categories. This is made possible by re-purposing the Habitat simulator to generate comprehensive annotations of sounding object locations and corresponding 3D masks. Subsequently, we propose a new approach, EchoSegnet, characterized by integrating the ready-to-use knowledge from pretrained 2D audio-visual foundation models synergistically with 3D visual scene representation through spatial audio-aware mask alignment and refinement. Extensive experiments demonstrate that EchoSegnet can effectively segment sounding objects in 3D space on our new benchmark, representing a significant advancement in the field of embodied AI. Project page: https://x-up-lab.github.io/research/3d-audio-visual-segmentation/
comment: Accepted at the NeurIPS 2024 Workshop on Audio Imagination; this version updates the project page link