MyArxiv
Computation and Language
☆ Generalist Foundation Models Are Not Clinical Enough for Hospital Operations
Hospitals and healthcare systems rely on operational decisions that determine patient flow, cost, and quality of care. Despite strong performance on medical knowledge and conversational benchmarks, foundation models trained on general text may lack the specialized knowledge required for these operational decisions. We introduce Lang1, a family of models (100M-7B parameters) pretrained on a specialized corpus blending 80B clinical tokens from NYU Langone Health's EHRs and 627B tokens from the internet. To rigorously evaluate Lang1 in real-world settings, we developed the REalistic Medical Evaluation (ReMedE), a benchmark derived from 668,331 EHR notes that evaluates five critical tasks: 30-day readmission prediction, 30-day mortality prediction, length of stay, comorbidity coding, and predicting insurance claims denial. In zero-shot settings, both general-purpose and specialized models underperform on four of five tasks (36.6%-71.7% AUROC), with mortality prediction being an exception. After finetuning, Lang1-1B outperforms finetuned generalist models up to 70x larger and zero-shot models up to 671x larger, improving AUROC by 3.64%-6.75% and 1.66%-23.66% respectively. We also observed cross-task scaling with joint finetuning on multiple tasks leading to improvement on other tasks. Lang1-1B effectively transfers to out-of-distribution settings, including other clinical tasks and an external health system. Our findings suggest that predictive capabilities for hospital operations require explicit supervised finetuning, and that this finetuning process is made more efficient by in-domain pretraining on EHR. Our findings support the emerging view that specialized LLMs can compete with generalist models in specialized tasks, and show that effective healthcare systems AI requires the combination of in-domain pretraining, supervised finetuning, and real-world evaluation beyond proxy benchmarks.
☆ Crossing Borders: A Multimodal Challenge for Indian Poetry Translation and Image Generation
Indian poetry, known for its linguistic complexity and deep cultural resonance, has a rich and varied heritage spanning thousands of years. However, its layered meanings, cultural allusions, and sophisticated grammatical constructions often pose challenges for comprehension, especially for non-native speakers or readers unfamiliar with its context and language. Despite its cultural significance, existing works on poetry have largely overlooked Indian language poems. In this paper, we propose the Translation and Image Generation (TAI) framework, leveraging Large Language Models (LLMs) and Latent Diffusion Models through appropriate prompt tuning. Our framework supports the United Nations Sustainable Development Goals of Quality Education (SDG 4) and Reduced Inequalities (SDG 10) by enhancing the accessibility of culturally rich Indian-language poetry to a global audience. It includes (1) a translation module that uses an Odds Ratio Preference Alignment Algorithm to accurately translate morphologically rich poetry into English, and (2) an image generation module that employs a semantic graph to capture tokens, dependencies, and semantic relationships between metaphors and their meanings, to create visually meaningful representations of Indian poems. Our comprehensive experimental evaluation, including both human and quantitative assessments, demonstrates the superiority of TAI Diffusion in poem image generation tasks, outperforming strong baselines. To further address the scarcity of resources for Indian-language poetry, we introduce the Morphologically Rich Indian Language Poems MorphoVerse Dataset, comprising 1,570 poems across 21 low-resource Indian languages. By addressing the gap in poetry translation and visual comprehension, this work aims to broaden accessibility and enrich the reader's experience.
☆ Why is "Chicago" Predictive of Deceptive Reviews? Using LLMs to Discover Language Phenomena from Lexical Cues
Deceptive reviews mislead consumers, harm businesses, and undermine trust in online marketplaces. Machine learning classifiers can learn from large amounts of training examples to effectively distinguish deceptive reviews from genuine ones. However, the distinguishing features learned by these classifiers are often subtle, fragmented, and difficult for humans to interpret. In this work, we explore using large language models (LLMs) to translate machine-learned lexical cues into human-understandable language phenomena that can differentiate deceptive reviews from genuine ones. We show that language phenomena obtained in this manner are empirically grounded in data, generalizable across similar domains, and more predictive than phenomena either in LLMs' prior knowledge or obtained through in-context learning. These language phenomena have the potential to aid people in critically assessing the credibility of online reviews in environments where deception detection classifiers are unavailable.
☆ Live-SWE-agent: Can Software Engineering Agents Self-Evolve on the Fly?
Large Language Models (LLMs) are reshaping almost all industries, including software engineering. In recent years, a number of LLM agents have been proposed to solve real-world software problems. Such software agents are typically equipped with a suite of coding tools and can autonomously decide the next actions to form complete trajectories to solve end-to-end software tasks. While promising, they typically require dedicated design and may still be suboptimal, since it can be extremely challenging and costly to exhaust the entire agent scaffold design space. Recognizing that software agents are inherently software themselves that can be further refined/modified, researchers have proposed a number of self-improving software agents recently, including the Darwin-Gödel Machine (DGM). Meanwhile, such self-improving agents require costly offline training on specific benchmarks and may not generalize well across different LLMs or benchmarks. In this paper, we propose Live-SWE-agent, the first live software agent that can autonomously and continuously evolve itself on-the-fly during runtime when solving real-world software problems. More specifically, Live-SWE-agent starts with the most basic agent scaffold with only access to bash tools (e.g., mini-SWE-agent), and autonomously evolves its own scaffold implementation while solving real-world software problems. Our evaluation on the widely studied SWE-bench Verified benchmark shows that Live-SWE-agent can achieve an impressive solve rate of 75.4% without test-time scaling, outperforming all existing open-source software agents and approaching the performance of the best proprietary solution. Moreover, Live-SWE-agent outperforms state-of-the-art manually crafted software agents on the recent SWE-Bench Pro benchmark, achieving the best-known solve rate of 45.8%.
☆ P1: Mastering Physics Olympiads with Reinforcement Learning
Recent progress in large language models (LLMs) has moved the frontier from puzzle-solving to science-grade reasoning-the kind needed to tackle problems whose answers must stand against nature, not merely fit a rubric. Physics is the sharpest test of this shift, which binds symbols to reality in a fundamental way, serving as the cornerstone of most modern technologies. In this work, we manage to advance physics research by developing large language models with exceptional physics reasoning capabilities, especially excel at solving Olympiad-level physics problems. We introduce P1, a family of open-source physics reasoning models trained entirely through reinforcement learning (RL). Among them, P1-235B-A22B is the first open-source model with Gold-medal performance at the latest International Physics Olympiad (IPhO 2025), and wins 12 gold medals out of 13 international/regional physics competitions in 2024/2025. P1-30B-A3B also surpasses almost all other open-source models on IPhO 2025, getting a silver medal. Further equipped with an agentic framework PhysicsMinions, P1-235B-A22B+PhysicsMinions achieves overall No.1 on IPhO 2025, and obtains the highest average score over the 13 physics competitions. Besides physics, P1 models also present great performance on other reasoning tasks like math and coding, showing the great generalibility of P1 series.
☆ Omni Memory System for Personalized, Long Horizon, Self-Evolving Agents
Recent advancements in LLM-powered agents have demonstrated significant potential in generating human-like responses; however, they continue to face challenges in maintaining long-term interactions within complex environments, primarily due to limitations in contextual consistency and dynamic personalization. Existing memory systems often depend on semantic grouping prior to retrieval, which can overlook semantically irrelevant yet critical user information and introduce retrieval noise. In this report, we propose the initial design of O-Mem, a novel memory framework based on active user profiling that dynamically extracts and updates user characteristics and event records from their proactive interactions with agents. O-Mem supports hierarchical retrieval of persona attributes and topic-related context, enabling more adaptive and coherent personalized responses. O-Mem achieves 51.76% on the public LoCoMo benchmark, a nearly 3% improvement upon LangMem,the previous state-of-the-art, and it achieves 62.99% on PERSONAMEM, a 3.5% improvement upon A-Mem,the previous state-of-the-art. O-Mem also boosts token and interaction response time efficiency compared to previous memory frameworks. Our work opens up promising directions for developing efficient and human-like personalized AI assistants in the future.
☆ Beyond SELECT: A Comprehensive Taxonomy-Guided Benchmark for Real-World Text-to-SQL Translation
Text-to-SQL datasets are essential for training and evaluating text-to-SQL models, but existing datasets often suffer from limited coverage and fail to capture the diversity of real-world applications. To address this, we propose a novel taxonomy for text-to-SQL classification based on dimensions including core intents, statement types, syntax structures, and key actions. Using this taxonomy, we evaluate widely used public text-to-SQL datasets (e.g., Spider and Bird) and reveal limitations in their coverage and diversity. We then introduce a taxonomy-guided dataset synthesis pipeline, yielding a new dataset named SQL-Synth. This approach combines the taxonomy with Large Language Models (LLMs) to ensure the dataset reflects the breadth and complexity of real-world text-to-SQL applications. Extensive analysis and experimental results validate the effectiveness of our taxonomy, as SQL-Synth exhibits greater diversity and coverage compared to existing benchmarks. Moreover, we uncover that existing LLMs typically fall short in adequately capturing the full range of scenarios, resulting in limited performance on SQL-Synth. However, fine-tuning can substantially improve their performance in these scenarios. The proposed taxonomy has significant potential impact, as it not only enables comprehensive analysis of datasets and the performance of different LLMs, but also guides the construction of training data for LLMs.
☆ ForgeDAN: An Evolutionary Framework for Jailbreaking Aligned Large Language Models
The rapid adoption of large language models (LLMs) has brought both transformative applications and new security risks, including jailbreak attacks that bypass alignment safeguards to elicit harmful outputs. Existing automated jailbreak generation approaches e.g. AutoDAN, suffer from limited mutation diversity, shallow fitness evaluation, and fragile keyword-based detection. To address these limitations, we propose ForgeDAN, a novel evolutionary framework for generating semantically coherent and highly effective adversarial prompts against aligned LLMs. First, ForgeDAN introduces multi-strategy textual perturbations across \textit{character, word, and sentence-level} operations to enhance attack diversity; then we employ interpretable semantic fitness evaluation based on a text similarity model to guide the evolutionary process toward semantically relevant and harmful outputs; finally, ForgeDAN integrates dual-dimensional jailbreak judgment, leveraging an LLM-based classifier to jointly assess model compliance and output harmfulness, thereby reducing false positives and improving detection effectiveness. Our evaluation demonstrates ForgeDAN achieves high jailbreaking success rates while maintaining naturalness and stealth, outperforming existing SOTA solutions.
☆ Toward Conversational Hungarian Speech Recognition: Introducing the BEA-Large and BEA-Dialogue Datasets LREC 2026
The advancement of automatic speech recognition (ASR) has been largely enhanced by extensive datasets in high-resource languages, while languages such as Hungarian remain underrepresented due to limited spontaneous and conversational corpora. To address this gap, we introduce two new datasets -- BEA-Large and BEA-Dialogue -- constructed from the previously unprocessed portions of the Hungarian speech corpus named BEA. BEA-Large extends BEA-Base with 255 hours of spontaneous speech from 433 speakers, enriched with detailed segment-level metadata. BEA-Dialogue, comprising 85 hours of spontaneous conversations, is a Hungarian speech corpus featuring natural dialogues partitioned into speaker-independent subsets, supporting research in conversational ASR and speaker diarization. We establish reproducible baselines on these datasets using publicly available ASR models, with the fine-tuned Fast Conformer model achieving word error rates as low as 14.18\% on spontaneous and 4.8\% on repeated speech. Diarization experiments yield diarization error rates between 13.05\% and 18.26\%, providing reference points for future improvements. The results highlight the persistent difficulty of conversational ASR, particularly due to disfluencies, overlaps, and informal speech patterns. By releasing these datasets and baselines, we aim to advance Hungarian speech technology and offer a methodological framework for developing spontaneous and conversational benchmarks in other languages.
comment: Submitted to LREC 2026
☆ Applying Large Language Models to Characterize Public Narratives
Public Narratives (PNs) are key tools for leadership development and civic mobilization, yet their systematic analysis remains challenging due to their subjective interpretation and the high cost of expert annotation. In this work, we propose a novel computational framework that leverages large language models (LLMs) to automate the qualitative annotation of public narratives. Using a codebook we co-developed with subject-matter experts, we evaluate LLM performance against that of expert annotators. Our work reveals that LLMs can achieve near-human-expert performance, achieving an average F1 score of 0.80 across 8 narratives and 14 codes. We then extend our analysis to empirically explore how PN framework elements manifest across a larger dataset of 22 stories. Lastly, we extrapolate our analysis to a set of political speeches, establishing a novel lens in which to analyze political rhetoric in civic spaces. This study demonstrates the potential of LLM-assisted annotation for scalable narrative analysis and highlights key limitations and directions for future research in computational civic storytelling.
☆ Aspect-Level Obfuscated Sentiment in Thai Financial Disclosures and Its Impact on Abnormal Returns
Understanding sentiment in financial documents is crucial for gaining insights into market behavior. These reports often contain obfuscated language designed to present a positive or neutral outlook, even when underlying conditions may be less favorable. This paper presents a novel approach using Aspect-Based Sentiment Analysis (ABSA) to decode obfuscated sentiment in Thai financial annual reports. We develop specific guidelines for annotating obfuscated sentiment in these texts and annotate more than one hundred financial reports. We then benchmark various text classification models on this annotated dataset, demonstrating strong performance in sentiment classification. Additionally, we conduct an event study to evaluate the real-world implications of our sentiment analysis on stock prices. Our results suggest that market reactions are selectively influenced by specific aspects within the reports. Our findings underscore the complexity of sentiment analysis in financial texts and highlight the importance of addressing obfuscated language to accurately assess market sentiment.
☆ Non-Linear Scoring Model for Translation Quality Evaluation
Analytic Translation Quality Evaluation (TQE), based on Multidimensional Quality Metrics (MQM), traditionally uses a linear error-to-penalty scale calibrated to a reference sample of 1000-2000 words. However, linear extrapolation biases judgment on samples of different sizes, over-penalizing short samples and under-penalizing long ones, producing misalignment with expert intuition. Building on the Multi-Range framework, this paper presents a calibrated, non-linear scoring model that better reflects how human content consumers perceive translation quality across samples of varying length. Empirical data from three large-scale enterprise environments shows that acceptable error counts grow logarithmically, not linearly, with sample size. Psychophysical and cognitive evidence, including the Weber-Fechner law and Cognitive Load Theory, supports this premise by explaining why the perceptual impact of additional errors diminishes while the cognitive burden grows with scale. We propose a two-parameter model E(x) = a * ln(1 + b * x), a, b > 0, anchored to a reference tolerance and calibrated from two tolerance points using a one-dimensional root-finding step. The model yields an explicit interval within which the linear approximation stays within +/-20 percent relative error and integrates into existing evaluation workflows with only a dynamic tolerance function added. The approach improves interpretability, fairness, and inter-rater reliability across both human and AI-generated translations. By operationalizing a perceptually valid scoring paradigm, it advances translation quality evaluation toward more accurate and scalable assessment. The model also provides a stronger basis for AI-based document-level evaluation aligned with human judgment. Implementation considerations for CAT/LQA systems and implications for human and AI-generated text evaluation are discussed.
comment: ongoing work, 38 pages
☆ Exploring Multi-Table Retrieval Through Iterative Search
Open-domain question answering over datalakes requires retrieving and composing information from multiple tables, a challenging subtask that demands semantic relevance and structural coherence (e.g., joinability). While exact optimization methods like Mixed-Integer Programming (MIP) can ensure coherence, their computational complexity is often prohibitive. Conversely, simpler greedy heuristics that optimize for query coverage alone often fail to find these coherent, joinable sets. This paper frames multi-table retrieval as an iterative search process, arguing this approach offers advantages in scalability, interpretability, and flexibility. We propose a general framework and a concrete instantiation: a fast, effective Greedy Join-Aware Retrieval algorithm that holistically balances relevance, coverage, and joinability. Experiments across 5 NL2SQL benchmarks demonstrate that our iterative method achieves competitive retrieval performance compared to the MIP-based approach while being 4-400x faster depending on the benchmark and search space settings. This work highlights the potential of iterative heuristics for practical, scalable, and composition-aware retrieval.
comment: Accepted @ the AI for Tabular Data Workshop, EurIPS 2025
☆ Attention Grounded Enhancement for Visual Document Retrieval
Visual document retrieval requires understanding heterogeneous and multi-modal content to satisfy information needs. Recent advances use screenshot-based document encoding with fine-grained late interaction, significantly improving retrieval performance. However, retrievers are still trained with coarse global relevance labels, without revealing which regions support the match. As a result, retrievers tend to rely on surface-level cues and struggle to capture implicit semantic connections, hindering their ability to handle non-extractive queries. To alleviate this problem, we propose a \textbf{A}ttention-\textbf{G}rounded \textbf{RE}triever \textbf{E}nhancement (AGREE) framework. AGREE leverages cross-modal attention from multimodal large language models as proxy local supervision to guide the identification of relevant document regions. During training, AGREE combines local signals with the global signals to jointly optimize the retriever, enabling it to learn not only whether documents match, but also which content drives relevance. Experiments on the challenging ViDoRe V2 benchmark show that AGREE significantly outperforms the global-supervision-only baseline. Quantitative and qualitative analyses further demonstrate that AGREE promotes deeper alignment between query terms and document regions, moving beyond surface-level matching toward more accurate and interpretable retrieval. Our code is available at: https://anonymous.4open.science/r/AGREE-2025.
☆ Mem-PAL: Towards Memory-based Personalized Dialogue Assistants for Long-term User-Agent Interaction AAAI 2026
With the rise of smart personal devices, service-oriented human-agent interactions have become increasingly prevalent. This trend highlights the need for personalized dialogue assistants that can understand user-specific traits to accurately interpret requirements and tailor responses to individual preferences. However, existing approaches often overlook the complexities of long-term interactions and fail to capture users' subjective characteristics. To address these gaps, we present PAL-Bench, a new benchmark designed to evaluate the personalization capabilities of service-oriented assistants in long-term user-agent interactions. In the absence of available real-world data, we develop a multi-step LLM-based synthesis pipeline, which is further verified and refined by human annotators. This process yields PAL-Set, the first Chinese dataset comprising multi-session user logs and dialogue histories, which serves as the foundation for PAL-Bench. Furthermore, to improve personalized service-oriented interactions, we propose H$^2$Memory, a hierarchical and heterogeneous memory framework that incorporates retrieval-augmented generation to improve personalized response generation. Comprehensive experiments on both our PAL-Bench and an external dataset demonstrate the effectiveness of the proposed memory framework.
comment: Accepted by AAAI 2026 (Oral)
☆ Can Large Language Models Function as Qualified Pediatricians? A Systematic Evaluation in Real-World Clinical Contexts
With the rapid rise of large language models (LLMs) in medicine, a key question is whether they can function as competent pediatricians in real-world clinical settings. We developed PEDIASBench, a systematic evaluation framework centered on a knowledge-system framework and tailored to realistic clinical environments. PEDIASBench assesses LLMs across three dimensions: application of basic knowledge, dynamic diagnosis and treatment capability, and pediatric medical safety and medical ethics. We evaluated 12 representative models released over the past two years, including GPT-4o, Qwen3-235B-A22B, and DeepSeek-V3, covering 19 pediatric subspecialties and 211 prototypical diseases. State-of-the-art models performed well on foundational knowledge, with Qwen3-235B-A22B achieving over 90% accuracy on licensing-level questions, but performance declined ~15% as task complexity increased, revealing limitations in complex reasoning. Multiple-choice assessments highlighted weaknesses in integrative reasoning and knowledge recall. In dynamic diagnosis and treatment scenarios, DeepSeek-R1 scored highest in case reasoning (mean 0.58), yet most models struggled to adapt to real-time patient changes. On pediatric medical ethics and safety tasks, Qwen2.5-72B performed best (accuracy 92.05%), though humanistic sensitivity remained limited. These findings indicate that pediatric LLMs are constrained by limited dynamic decision-making and underdeveloped humanistic care. Future development should focus on multimodal integration and a clinical feedback-model iteration loop to enhance safety, interpretability, and human-AI collaboration. While current LLMs cannot independently perform pediatric care, they hold promise for decision support, medical education, and patient communication, laying the groundwork for a safe, trustworthy, and collaborative intelligent pediatric healthcare system.
☆ Donors and Recipients: On Asymmetric Transfer Across Tasks and Languages with Parameter-Efficient Fine-Tuning
Large language models (LLMs) perform strongly across tasks and languages, yet how improvements in one task or language affect other tasks and languages and their combinations remains poorly understood. We conduct a controlled PEFT/LoRA study across multiple open-weight LLM families and sizes, treating task and language as transfer axes while conditioning on model family and size; we fine-tune each model on a single task-language source and measure transfer as the percentage-point change versus its baseline score when evaluated on all other task-language target pairs. We decompose transfer into (i) Matched-Task (Cross-Language), (ii) Matched-Language (Cross-Task), and (iii) Cross-Task (Cross-Language) regimes. We uncover two consistent general patterns. First, a pronounced on-task vs. off-task asymmetry: Matched-Task (Cross-Language) transfer is reliably positive, whereas off-task transfer often incurs collateral degradation. Second, a stable donor-recipient structure across languages and tasks (hub donors vs. brittle recipients). We outline implications for risk-aware fine-tuning and model specialisation.
☆ AHaSIS: Shared Task on Sentiment Analysis for Arabic Dialects
The hospitality industry in the Arab world increasingly relies on customer feedback to shape services, driving the need for advanced Arabic sentiment analysis tools. To address this challenge, the Sentiment Analysis on Arabic Dialects in the Hospitality Domain shared task focuses on Sentiment Detection in Arabic Dialects. This task leverages a multi-dialect, manually curated dataset derived from hotel reviews originally written in Modern Standard Arabic (MSA) and translated into Saudi and Moroccan (Darija) dialects. The dataset consists of 538 sentiment-balanced reviews spanning positive, neutral, and negative categories. Translations were validated by native speakers to ensure dialectal accuracy and sentiment preservation. This resource supports the development of dialect-aware NLP systems for real-world applications in customer experience analysis. More than 40 teams have registered for the shared task, with 12 submitting systems during the evaluation phase. The top-performing system achieved an F1 score of 0.81, demonstrating the feasibility and ongoing challenges of sentiment analysis across Arabic dialects.
☆ AutoMalDesc: Large-Scale Script Analysis for Cyber Threat Research AAAI 2026
Generating thorough natural language explanations for threat detections remains an open problem in cybersecurity research, despite significant advances in automated malware detection systems. In this work, we present AutoMalDesc, an automated static analysis summarization framework that, following initial training on a small set of expert-curated examples, operates independently at scale. This approach leverages an iterative self-paced learning pipeline to progressively enhance output quality through synthetic data generation and validation cycles, eliminating the need for extensive manual data annotation. Evaluation across 3,600 diverse samples in five scripting languages demonstrates statistically significant improvements between iterations, showing consistent gains in both summary quality and classification accuracy. Our comprehensive validation approach combines quantitative metrics based on established malware labels with qualitative assessment from both human experts and LLM-based judges, confirming both technical precision and linguistic coherence of generated summaries. To facilitate reproducibility and advance research in this domain, we publish our complete dataset of more than 100K script samples, including annotated seed (0.9K) and test (3.6K) datasets, along with our methodology and evaluation framework.
comment: Accepted at AAAI 2026 (oral)
☆ RegionMarker: A Region-Triggered Semantic Watermarking Framework for Embedding-as-a-Service Copyright Protection AAAI 2026
Embedding-as-a-Service (EaaS) is an effective and convenient deployment solution for addressing various NLP tasks. Nevertheless, recent research has shown that EaaS is vulnerable to model extraction attacks, which could lead to significant economic losses for model providers. For copyright protection, existing methods inject watermark embeddings into text embeddings and use them to detect copyright infringement. However, current watermarking methods often resist only a subset of attacks and fail to provide \textit{comprehensive} protection. To this end, we present the region-triggered semantic watermarking framework called RegionMarker, which defines trigger regions within a low-dimensional space and injects watermarks into text embeddings associated with these regions. By utilizing a secret dimensionality reduction matrix to project onto this subspace and randomly selecting trigger regions, RegionMarker makes it difficult for watermark removal attacks to evade detection. Furthermore, by embedding watermarks across the entire trigger region and using the text embedding as the watermark, RegionMarker is resilient to both paraphrasing and dimension-perturbation attacks. Extensive experiments on various datasets show that RegionMarker is effective in resisting different attack methods, thereby protecting the copyright of EaaS.
comment: AAAI 2026
☆ Dropouts in Confidence: Moral Uncertainty in Human-LLM Alignment AAAI 2026
Humans display significant uncertainty when confronted with moral dilemmas, yet the extent of such uncertainty in machines and AI agents remains underexplored. Recent studies have confirmed the overly confident tendencies of machine-generated responses, particularly in large language models (LLMs). As these systems are increasingly embedded in ethical decision-making scenarios, it is important to understand their moral reasoning and the inherent uncertainties in building reliable AI systems. This work examines how uncertainty influences moral decisions in the classical trolley problem, analyzing responses from 32 open-source models and 9 distinct moral dimensions. We first find that variance in model confidence is greater across models than within moral dimensions, suggesting that moral uncertainty is predominantly shaped by model architecture and training method. To quantify uncertainty, we measure binary entropy as a linear combination of total entropy, conditional entropy, and mutual information. To examine its effects, we introduce stochasticity into models via "dropout" at inference time. Our findings show that our mechanism increases total entropy, mainly through a rise in mutual information, while conditional entropy remains largely unchanged. Moreover, this mechanism significantly improves human-LLM moral alignment, with correlations in mutual information and alignment score shifts. Our results highlight the potential to better align model-generated decisions and human preferences by deliberately modulating uncertainty and reducing LLMs' confidence in morally complex scenarios.
comment: Accepted to AAAI 2026
☆ Souper-Model: How Simple Arithmetic Unlocks State-of-the-Art LLM Performance
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse domains, but their training remains resource- and time-intensive, requiring massive compute power and careful orchestration of training procedures. Model souping-the practice of averaging weights from multiple models of the same architecture-has emerged as a promising pre- and post-training technique that can enhance performance without expensive retraining. In this paper, we introduce Soup Of Category Experts (SoCE), a principled approach for model souping that utilizes benchmark composition to identify optimal model candidates and applies non-uniform weighted averaging to maximize performance. Contrary to previous uniform-averaging approaches, our method leverages the observation that benchmark categories often exhibit low inter-correlations in model performance. SoCE identifies "expert" models for each weakly-correlated category cluster and combines them using optimized weighted averaging rather than uniform weights. We demonstrate that the proposed method improves performance and robustness across multiple domains, including multilingual capabilities, tool calling, and math and achieves state-of-the-art results on the Berkeley Function Calling Leaderboard.
☆ Computational Measurement of Political Positions: A Review of Text-Based Ideal Point Estimation Algorithms
This article presents the first systematic review of unsupervised and semi-supervised computational text-based ideal point estimation (CT-IPE) algorithms, methods designed to infer latent political positions from textual data. These algorithms are widely used in political science, communication, computational social science, and computer science to estimate ideological preferences from parliamentary speeches, party manifestos, and social media. Over the past two decades, their development has closely followed broader NLP trends -- beginning with word-frequency models and most recently turning to large language models (LLMs). While this trajectory has greatly expanded the methodological toolkit, it has also produced a fragmented field that lacks systematic comparison and clear guidance for applied use. To address this gap, we identified 25 CT-IPE algorithms through a systematic literature review and conducted a manual content analysis of their modeling assumptions and development contexts. To compare them meaningfully, we introduce a conceptual framework that distinguishes how algorithms generate, capture, and aggregate textual variance. On this basis, we identify four methodological families -- word-frequency, topic modeling, word embedding, and LLM-based approaches -- and critically assess their assumptions, interpretability, scalability, and limitations. Our review offers three contributions. First, it provides a structured synthesis of two decades of algorithm development, clarifying how diverse methods relate to one another. Second, it translates these insights into practical guidance for applied researchers, highlighting trade-offs in transparency, technical requirements, and validation strategies that shape algorithm choice. Third, it emphasizes that differences in estimation outcomes across algorithms are themselves informative, underscoring the need for systematic benchmarking.
comment: 46 pages, 8 figures, 2 tables, accepted for publication in Quality & Quantity
☆ Seeing isn't Hearing: Benchmarking Vision Language Models at Interpreting Spectrograms AACL 2025
With the rise of Large Language Models (LLMs) and their vision-enabled counterparts (VLMs), numerous works have investigated their capabilities in tasks that fuse the modalities of vision and language. In this work, we benchmark the extent to which VLMs are able to act as highly-trained phoneticians, interpreting spectrograms and waveforms of speech. To do this, we synthesise a novel dataset containing 4k+ English words spoken in isolation alongside stylistically consistent spectrogram and waveform figures. We test the ability of VLMs to understand these representations of speech through a multiple-choice task whereby models must predict the correct phonemic or graphemic transcription of a spoken word when presented amongst 3 distractor transcriptions that have been selected based on their phonemic edit distance to the ground truth. We observe that both zero-shot and finetuned models rarely perform above chance, demonstrating the requirement for specific parametric knowledge of how to interpret such figures, rather than paired samples alone.
comment: Accepted to IJCNLP-AACL 2025
☆ Evaluating Large Language Models for Diacritic Restoration in Romanian Texts: A Comparative Study
Automatic diacritic restoration is crucial for text processing in languages with rich diacritical marks, such as Romanian. This study evaluates the performance of several large language models (LLMs) in restoring diacritics in Romanian texts. Using a comprehensive corpus, we tested models including OpenAI's GPT-3.5, GPT-4, GPT-4o, Google's Gemini 1.0 Pro, Meta's Llama 2 and Llama 3, MistralAI's Mixtral 8x7B Instruct, airoboros 70B, and OpenLLM-Ro's RoLlama 2 7B, under multiple prompt templates ranging from zero-shot to complex multi-shot instructions. Results show that models such as GPT-4o achieve high diacritic restoration accuracy, consistently surpassing a neutral echo baseline, while others, including Meta's Llama family, exhibit wider variability. These findings highlight the impact of model architecture, training data, and prompt design on diacritic restoration performance and outline promising directions for improving NLP tools for diacritic-rich languages.
☆ Translation Entropy: A Statistical Framework for Evaluating Translation Systems
The translation of written language has been known since the 3rd century BC; however, its necessity has become increasingly common in the information age. Today, many translators exist, based on encoder-decoder deep architectures, nevertheless, no quantitative objective methods are available to assess their performance, likely because the entropy of even a single language remains unknown. This study presents a quantitative method for estimating translation entropy, with the following key finding. Given a translator, several sentences that differ by only one selected token of a given pivot sentence yield identical translations. Analyzing the statistics of this phenomenon across an ensemble of such sentences, consisting each of a pivot selected token, yields the probabilities of replacing this specific token with others while preserving the translation. These probabilities constitute the entropy of the selected token, and the average across all selected pivot tokens provides an estimate of the translator's overall translation entropy, which is enhanced along the decoder blocks. This entropic measure allows for the quantitative ranking of several publicly available translators and reveals whether mutual translation entropy is symmetric. Extending the proposed method to include the replacement of two tokens in a given pivot sentence demonstrates a multiplicative effect, where translation degeneracy is proportional to the product of the degeneracies of the two tokens. These findings establish translation entropy as a measurable property and objective benchmarking of artificial translators. Results are based on MarianMT, T5-Base and NLLB-200 translators.
comment: 23 pages, 6 figures and 8 tables
☆ TCM-5CEval: Extended Deep Evaluation Benchmark for LLM's Comprehensive Clinical Research Competence in Traditional Chinese Medicine
Large language models (LLMs) have demonstrated exceptional capabilities in general domains, yet their application in highly specialized and culturally-rich fields like Traditional Chinese Medicine (TCM) requires rigorous and nuanced evaluation. Building upon prior foundational work such as TCM-3CEval, which highlighted systemic knowledge gaps and the importance of cultural-contextual alignment, we introduce TCM-5CEval, a more granular and comprehensive benchmark. TCM-5CEval is designed to assess LLMs across five critical dimensions: (1) Core Knowledge (TCM-Exam), (2) Classical Literacy (TCM-LitQA), (3) Clinical Decision-making (TCM-MRCD), (4) Chinese Materia Medica (TCM-CMM), and (5) Clinical Non-pharmacological Therapy (TCM-ClinNPT). We conducted a thorough evaluation of fifteen prominent LLMs, revealing significant performance disparities and identifying top-performing models like deepseek\_r1 and gemini\_2\_5\_pro. Our findings show that while models exhibit proficiency in recalling foundational knowledge, they struggle with the interpretative complexities of classical texts. Critically, permutation-based consistency testing reveals widespread fragilities in model inference. All evaluated models, including the highest-scoring ones, displayed a substantial performance degradation when faced with varied question option ordering, indicating a pervasive sensitivity to positional bias and a lack of robust understanding. TCM-5CEval not only provides a more detailed diagnostic tool for LLM capabilities in TCM but aldso exposes fundamental weaknesses in their reasoning stability. To promote further research and standardized comparison, TCM-5CEval has been uploaded to the Medbench platform, joining its predecessor in the "In-depth Challenge for Comprehensive TCM Abilities" special track.
comment: 17 pages, 8 figures
☆ Distinguishing Repetition Disfluency from Morphological Reduplication in Bangla ASR Transcripts: A Novel Corpus and Benchmarking Analysis
Automatic Speech Recognition (ASR) transcripts, especially in low-resource languages like Bangla, contain a critical ambiguity: word-word repetitions can be either Repetition Disfluency (unintentional ASR error/hesitation) or Morphological Reduplication (a deliberate grammatical construct). Standard disfluency correction fails by erroneously deleting valid linguistic information. To solve this, we introduce the first publicly available, 20,000-row Bangla corpus, manually annotated to explicitly distinguish between these two phenomena in noisy ASR transcripts. We benchmark this novel resource using two paradigms: state-of-the-art multilingual Large Language Models (LLMs) and task-specific fine-tuning of encoder models. LLMs achieve competitive performance (up to 82.68\% accuracy) with few-shot prompting. However, fine-tuning proves superior, with the language-specific BanglaBERT model achieving the highest accuracy of 84.78\% and an F1 score of 0.677. This establishes a strong, linguistically-informed baseline and provides essential data for developing sophisticated, semantic-preserving text normalization systems for Bangla.
☆ Zero-Shot Grammar Competency Estimation Using Large Language Model Generated Pseudo Labels AACL
Grammar competency estimation is essential for assessing linguistic proficiency in both written and spoken language; however, the spoken modality presents additional challenges due to its spontaneous, unstructured, and disfluent nature. Developing accurate grammar scoring models further requires extensive expert annotation, making large-scale data creation impractical. To address these limitations, we propose a zero-shot grammar competency estimation framework that leverages unlabeled data and Large Language Models (LLMs) without relying on manual labels. During training, we employ LLM-generated predictions on unlabeled data by using grammar competency rubric-based prompts. These predictions, treated as pseudo labels, are utilized to train a transformer-based model through a novel training framework designed to handle label noise effectively. We show that the choice of LLM for pseudo-label generation critically affects model performance and that the ratio of clean-to-noisy samples during training strongly influences stability and accuracy. Finally, a qualitative analysis of error intensity and score prediction confirms the robustness and interpretability of our approach. Experimental results demonstrate the efficacy of our approach in estimating grammar competency scores with high accuracy, paving the way for scalable, low-resource grammar assessment systems.
comment: Accepted in AACL-IJCNLP 2025
☆ A Comparative Analysis of Recurrent and Attention Architectures for Isolated Sign Language Recognition
This study presents a systematic comparative analysis of recurrent and attention-based neural architectures for isolated sign language recognition. We implement and evaluate two representative models-ConvLSTM and Vanilla Transformer-on the Azerbaijani Sign Language Dataset (AzSLD) and the Word-Level American Sign Language (WLASL) dataset. Our results demonstrate that the attention-based Vanilla Transformer consistently outperforms the recurrent ConvLSTM in both Top-1 and Top-5 accuracy across datasets, achieving up to 76.8% Top-1 accuracy on AzSLD and 88.3% on WLASL. The ConvLSTM, while more computationally efficient, lags in recognition accuracy, particularly on smaller datasets. These findings highlight the complementary strengths of each paradigm: the Transformer excels in overall accuracy and signer independence, whereas the ConvLSTM offers advantages in computational efficiency and temporal modeling. The study provides a nuanced analysis of these trade-offs, offering guidance for architecture selection in sign language recognition systems depending on application requirements and resource constraints.
☆ Extracting Events Like Code: A Multi-Agent Programming Framework for Zero-Shot Event Extraction AAAI 2026
Zero-shot event extraction (ZSEE) remains a significant challenge for large language models (LLMs) due to the need for complex reasoning and domain-specific understanding. Direct prompting often yields incomplete or structurally invalid outputs--such as misclassified triggers, missing arguments, and schema violations. To address these limitations, we present Agent-Event-Coder (AEC), a novel multi-agent framework that treats event extraction like software engineering: as a structured, iterative code-generation process. AEC decomposes ZSEE into specialized subtasks--retrieval, planning, coding, and verification--each handled by a dedicated LLM agent. Event schemas are represented as executable class definitions, enabling deterministic validation and precise feedback via a verification agent. This programming-inspired approach allows for systematic disambiguation and schema enforcement through iterative refinement. By leveraging collaborative agent workflows, AEC enables LLMs to produce precise, complete, and schema-consistent extractions in zero-shot settings. Experiments across five diverse domains and six LLMs demonstrate that AEC consistently outperforms prior zero-shot baselines, showcasing the power of treating event extraction like code generation. The code and data are released on https://github.com/UESTC-GQJ/Agent-Event-Coder.
comment: 11 pages, 5 figures, accepted by AAAI 2026 (Oral)
☆ Evaluating the Ability of Large Language Models to Identify Adherence to CONSORT Reporting Guidelines in Randomized Controlled Trials: A Methodological Evaluation Study
The Consolidated Standards of Reporting Trials statement is the global benchmark for transparent and high-quality reporting of randomized controlled trials. Manual verification of CONSORT adherence is a laborious, time-intensive process that constitutes a significant bottleneck in peer review and evidence synthesis. This study aimed to systematically evaluate the accuracy and reliability of contemporary LLMs in identifying the adherence of published RCTs to the CONSORT 2010 statement under a zero-shot setting. We constructed a golden standard dataset of 150 published RCTs spanning diverse medical specialties. The primary outcome was the macro-averaged F1-score for the three-class classification task, supplemented by item-wise performance metrics and qualitative error analysis. Overall model performance was modest. The top-performing models, Gemini-2.5-Flash and DeepSeek-R1, achieved nearly identical macro F1 scores of 0.634 and Cohen's Kappa coefficients of 0.280 and 0.282, respectively, indicating only fair agreement with expert consensus. A striking performance disparity was observed across classes: while most models could identify compliant items with high accuracy (F1 score > 0.850), they struggled profoundly with identifying non-compliant and not applicable items, where F1 scores rarely exceeded 0.400. Notably, some high-profile models like GPT-4o underperformed, achieving a macro F1-score of only 0.521. LLMs show potential as preliminary screening assistants for CONSORT checks, capably identifying well-reported items. However, their current inability to reliably detect reporting omissions or methodological flaws makes them unsuitable for replacing human expertise in the critical appraisal of trial quality.
☆ BeDiscovER: The Benchmark of Discourse Understanding in the Era of Reasoning Language Models
We introduce BeDiscovER (Benchmark of Discourse Understanding in the Era of Reasoning Language Models), an up-to-date, comprehensive suite for evaluating the discourse-level knowledge of modern LLMs. BeDiscovER compiles 5 publicly available discourse tasks across discourse lexicon, (multi-)sentential, and documental levels, with in total 52 individual datasets. It covers both extensively studied tasks such as discourse parsing and temporal relation extraction, as well as some novel challenges such as discourse particle disambiguation (e.g., ``just''), and also aggregates a shared task on Discourse Relation Parsing and Treebanking for multilingual and multi-framework discourse relation classification. We evaluate open-source LLMs: Qwen3 series, DeepSeek-R1, and frontier model such as GPT-5-mini on BeDiscovER, and find that state-of-the-art models exhibit strong performance in arithmetic aspect of temporal reasoning, but they struggle with full document reasoning and some subtle semantic and discourse phenomena, such as rhetorical relation recognition.
☆ STEP: Success-Rate-Aware Trajectory-Efficient Policy Optimization
Multi-turn interaction remains challenging for online reinforcement learning. A common solution is trajectory-level optimization, which treats each trajectory as a single training sample. However, this approach can be inefficient and yield misleading learning signals: it applies uniform sampling across tasks regardless of difficulty, penalizes correct intermediate actions in failed trajectories, and incurs high sample-collection costs. To address these issues, we propose STEP (Success-rate-aware Trajectory-Efficient Policy optimization), a framework that dynamically allocates sampling based on per-task success rates and performs step-level optimization. STEP maintains a smoothed success-rate record to guide adaptive trajectory resampling, allocating more effort to harder tasks. It then computes success-rate-weighted advantages and decomposes trajectories into step-level samples. Finally, it applies a step-level GRPO augmentation to refine updates for low-success tasks. Experiments on OSWorld and AndroidWorld show that STEP substantially improves sample efficiency and training stability over trajectory-level GRPO, converging faster and generalizing better under the same sampling budget.
☆ Spark-Prover-X1: Formal Theorem Proving Through Diverse Data Training
Large Language Models (LLMs) have shown significant promise in automated theorem proving, yet progress is often constrained by the scarcity of diverse and high-quality formal language data. To address this issue, we introduce Spark-Prover-X1, a 7B parameter model trained via an three-stage framework designed to unlock the reasoning potential of more accessible and moderately-sized LLMs. The first stage infuses deep knowledge through continuous pre-training on a broad mathematical corpus, enhanced by a suite of novel data tasks. Key innovation is a "CoT-augmented state prediction" task to achieve fine-grained reasoning. The second stage employs Supervised Fine-tuning (SFT) within an expert iteration loop to specialize both the Spark-Prover-X1-7B and Spark-Formalizer-X1-7B models. Finally, a targeted round of Group Relative Policy Optimization (GRPO) is applied to sharpen the prover's capabilities on the most challenging problems. To facilitate robust evaluation, particularly on problems from real-world examinations, we also introduce ExamFormal-Bench, a new benchmark dataset of 402 formal problems. Experimental results demonstrate that Spark-Prover-X1-7B achieves state-of-the-art performance among similarly-sized open-source models, attaining a 37.0\% average pass rate (pass@32). It shows exceptional performance on difficult competition benchmarks, notably solving 27 problems on PutnamBench (pass@32) and achieving 24.0\% on CombiBench (pass@32). Our work validates that this diverse training data and progressively refined training pipeline provides an effective path for enhancing the formal reasoning capabilities of lightweight LLMs. Both Spark-Prover-X1-7B and Spark-Formalizer-X1-7B, along with the ExamFormal-Bench dataset, are made publicly available at:https://www.modelscope.cn/organization/iflytek, https://gitcode.com/ifly_opensource.
☆ How Good is BLI as an Alignment Measure: A Study in Word Embedding Paradigm
Sans a dwindling number of monolingual embedding studies originating predominantly from the low-resource domains, it is evident that multilingual embedding has become the de facto choice due to its adaptability to the usage of code-mixed languages, granting the ability to process multilingual documents in a language-agnostic manner, as well as removing the difficult task of aligning monolingual embeddings. But is this victory complete? Are the multilingual models better than aligned monolingual models in every aspect? Can the higher computational cost of multilingual models always be justified? Or is there a compromise between the two extremes? Bilingual Lexicon Induction is one of the most widely used metrics in terms of evaluating the degree of alignment between two embedding spaces. In this study, we explore the strengths and limitations of BLI as a measure to evaluate the degree of alignment of two embedding spaces. Further, we evaluate how well traditional embedding alignment techniques, novel multilingual models, and combined alignment techniques perform BLI tasks in the contexts of both high-resource and low-resource languages. In addition to that, we investigate the impact of the language families to which the pairs of languages belong. We identify that BLI does not measure the true degree of alignment in some cases and we propose solutions for them. We propose a novel stem-based BLI approach to evaluate two aligned embedding spaces that take into account the inflected nature of languages as opposed to the prevalent word-based BLI techniques. Further, we introduce a vocabulary pruning technique that is more informative in showing the degree of the alignment, especially performing BLI on multilingual embedding models. Often, combined embedding alignment techniques perform better while in certain cases multilingual embeddings perform better (mainly low-resource language cases).
comment: 15 pages, 2 figures, 6 tables
☆ AA-Omniscience: Evaluating Cross-Domain Knowledge Reliability in Large Language Models
Existing language model evaluations primarily measure general capabilities, yet reliable use of these models across a range of domains demands factual accuracy and recognition of knowledge gaps. We introduce AA-Omniscience, a benchmark designed to measure both factual recall and knowledge calibration across 6,000 questions. Questions are derived from authoritative academic and industry sources, and cover 42 economically relevant topics within six different domains. The evaluation measures a model's Omniscience Index, a bounded metric (-100 to 100) measuring factual recall that jointly penalizes hallucinations and rewards abstention when uncertain, with 0 equating to a model that answers questions correctly as much as it does incorrectly. Among evaluated models, Claude 4.1 Opus attains the highest score (4.8), making it one of only three models to score above zero. These results reveal persistent factuality and calibration weaknesses across frontier models. Performance also varies by domain, with the models from three different research labs leading across the six domains. This performance variability suggests models should be chosen according to the demands of the use case rather than general performance for tasks where knowledge is important.
☆ PragWorld: A Benchmark Evaluating LLMs' Local World Model under Minimal Linguistic Alterations and Conversational Dynamics AAAI 2026
Real-world conversations are rich with pragmatic elements, such as entity mentions, references, and implicatures. Understanding such nuances is a requirement for successful natural communication, and often requires building a local world model which encodes such elements and captures the dynamics of their evolving states. However, it is not well-understood whether language models (LMs) construct or maintain a robust implicit representation of conversations. In this work, we evaluate the ability of LMs to encode and update their internal world model in dyadic conversations and test their malleability under linguistic alterations. To facilitate this, we apply seven minimal linguistic alterations to conversations sourced from popular datasets and construct two benchmarks comprising yes-no questions. We evaluate a wide range of open and closed source LMs and observe that they struggle to maintain robust accuracy. Our analysis unveils that LMs struggle to memorize crucial details, such as tracking entities under linguistic alterations to conversations. We then propose a dual-perspective interpretability framework which identifies transformer layers that are useful or harmful and highlights linguistic alterations most influenced by harmful layers, typically due to encoding spurious signals or relying on shortcuts. Inspired by these insights, we propose two layer-regularization based fine-tuning strategies that suppress the effect of the harmful layers.
comment: 23 pages, 15 tables, 10 figures; AAAI 2026 Conference Main Track (oral)
☆ WebCoach: Self-Evolving Web Agents with Cross-Session Memory Guidance
Multimodal LLM-powered agents have recently demonstrated impressive capabilities in web navigation, enabling agents to complete complex browsing tasks across diverse domains. However, current agents struggle with repetitive errors and lack the ability to learn from past experiences across sessions, limiting their long-term robustness and sample efficiency. We introduce WebCoach, a model-agnostic self-evolving framework that equips web browsing agents with persistent cross-session memory, enabling improved long-term planning, reflection, and continual learning without retraining. WebCoach consists of three key components: (1) a WebCondenser, which standardizes raw navigation logs into concise summaries; (2) an External Memory Store, which organizes complete trajectories as episodic experiences; and (3) a Coach, which retrieves relevant experiences based on similarity and recency, and decides whether to inject task-specific advice into the agent via runtime hooks. This design empowers web agents to access long-term memory beyond their native context window, improving robustness in complex browsing tasks. Moreover, WebCoach achieves self-evolution by continuously curating episodic memory from new navigation trajectories, enabling agents to improve over time without retraining. Evaluations on the WebVoyager benchmark demonstrate that WebCoach consistently improves the performance of browser-use agents across three different LLM backbones. With a 38B model, it increases task success rates from 47% to 61% while reducing or maintaining the average number of steps. Notably, smaller base models with WebCoach achieve performance comparable to the same web agent using GPT-4o.
comment: 18 pages; work in progress
☆ Fine-Tuned LLMs Know They Don't Know: A Parameter-Efficient Approach to Recovering Honesty AAAI 2026
The honesty of Large Language Models (LLMs) is increasingly important for safe deployment in high-stakes domains. However, this crucial trait is severely undermined by supervised fine-tuning (SFT), a common technique for model specialization. Existing recovery methods rely on data-intensive global parameter adjustments, implicitly assuming that SFT deeply corrupts the models' ability to recognize their knowledge boundaries. However, we observe that fine-tuned LLMs still preserve this ability; what is damaged is their capacity to faithfully express that awareness. Building on this, we propose Honesty-Critical Neurons Restoration (HCNR) to surgically repair this suppressed capacity. HCNR identifies and restores key expression-governing neurons to their pre-trained state while harmonizing them with task-oriented neurons via Hessian-guided compensation. Experiments on four QA tasks and five LLM families demonstrate that HCNR effectively recovers 33.25% of the compromised honesty while achieving at least 2.23x speedup with over 10x less data compared to baseline methods, offering a practical solution for trustworthy LLM deployment.
comment: Accepted by AAAI 2026 Main Track
☆ Visual Room 2.0: Seeing is Not Understanding for MLLMs
Can multi-modal large language models (MLLMs) truly understand what they can see? Extending Searle's Chinese Room into the multi-modal domain, this paper proposes the Visual Room argument: MLLMs may describe every visual detail precisely yet fail to comprehend the underlying emotions and intentions, namely seeing is not understanding. Building on this, we introduce \textit{Visual Room} 2.0, a hierarchical benchmark for evaluating perception-cognition alignment of MLLMs. We model human perceptive and cognitive processes across three levels: low, middle, and high, covering 17 representative tasks. The perception component ranges from attribute recognition to scene understanding, while the cognition component extends from textual entailment to causal and social reasoning. The dataset contains 350 multi-modal samples, each with six progressive questions (2,100 in total) spanning perception to cognition. Evaluating 10 state-of-the-art (SoTA) MLLMs, we highlight three key findings: (1) MLLMs exhibit stronger perceptual competence than cognitive ability (8.0\%$\uparrow$); (2) cognition appears not causally dependent on perception-based reasoning; and (3) cognition scales with model size, but perception does not consistently improve with larger variants. This work operationalizes Seeing $\ne$ Understanding as a testable hypothesis, offering a new paradigm from perceptual processing to cognitive reasoning in MLLMs. Our dataset is available at https://huggingface.co/datasets/LHK2003/PCBench.
☆ Auditing Google's AI Overviews and Featured Snippets: A Case Study on Baby Care and Pregnancy AAAI
Google Search increasingly surfaces AI-generated content through features like AI Overviews (AIO) and Featured Snippets (FS), which users frequently rely on despite having no control over their presentation. Through a systematic algorithm audit of 1,508 real baby care and pregnancy-related queries, we evaluate the quality and consistency of these information displays. Our robust evaluation framework assesses multiple quality dimensions, including answer consistency, relevance, presence of medical safeguards, source categories, and sentiment alignment. Our results reveal concerning gaps in information consistency, with information in AIO and FS displayed on the same search result page being inconsistent with each other in 33% of cases. Despite high relevance scores, both features critically lack medical safeguards (present in just 11% of AIO and 7% of FS responses). While health and wellness websites dominate source categories for both, AIO and FS, FS also often link to commercial sources. These findings have important implications for public health information access and demonstrate the need for stronger quality controls in AI-mediated health information. Our methodology provides a transferable framework for auditing AI systems across high-stakes domains where information quality directly impacts user well-being.
comment: 18 pages, 10 figures; to appear in AAAI ICWSM 2026
☆ Classification of Hope in Textual Data using Transformer-Based Models
This paper presents a transformer-based approach for classifying hope expressions in text. We developed and compared three architectures (BERT, GPT-2, and DeBERTa) for both binary classification (Hope vs. Not Hope) and multiclass categorization (five hope-related categories). Our initial BERT implementation achieved 83.65% binary and 74.87% multiclass accuracy. In the extended comparison, BERT demonstrated superior performance (84.49% binary, 72.03% multiclass accuracy) while requiring significantly fewer computational resources (443s vs. 704s training time) than newer architectures. GPT-2 showed lowest overall accuracy (79.34% binary, 71.29% multiclass), while DeBERTa achieved moderate results (80.70% binary, 71.56% multiclass) but at substantially higher computational cost (947s for multiclass training). Error analysis revealed architecture-specific strengths in detecting nuanced hope expressions, with GPT-2 excelling at sarcasm detection (92.46% recall). This study provides a framework for computational analysis of hope, with applications in mental health and social media analysis, while demonstrating that architectural suitability may outweigh model size for specialized emotion detection tasks.
☆ From Perception to Reasoning: Deep Thinking Empowers Multimodal Large Language Models
With the remarkable success of Multimodal Large Language Models (MLLMs) in perception tasks, enhancing their complex reasoning capabilities has emerged as a critical research focus. Existing models still suffer from challenges such as opaque reasoning paths and insufficient generalization ability. Chain-of-Thought (CoT) reasoning, which has demonstrated significant efficacy in language models by enhancing reasoning transparency and output interpretability, holds promise for improving model reasoning capabilities when extended to the multimodal domain. This paper provides a systematic review centered on "Multimodal Chain-of-Thought" (MCoT). First, it analyzes the background and theoretical motivations for its inception from the perspectives of technical evolution and task demands. Then, it introduces mainstream MCoT methods from three aspects: CoT paradigms, the post-training stage, and the inference stage, while also analyzing their underlying mechanisms. Furthermore, the paper summarizes existing evaluation benchmarks and metrics, and discusses the application scenarios of MCoT. Finally, it analyzes the challenges currently facing MCoT and provides an outlook on its future research directions.
comment: Survey; 7 figures, 3 tables, 44 pages
☆ NeuroLex: A Lightweight Domain Language Model for EEG Report Understanding and Generation
Clinical electroencephalogram (EEG) reports encode domain-specific linguistic conventions that general-purpose language models (LMs) fail to capture. We introduce NeuroLex, a lightweight domain-adaptive language model trained purely on EEG report text from the Harvard Electroencephalography Database. Unlike existing biomedical LMs, NeuroLex is tailored to the linguistic and diagnostic characteristics of EEG reporting, enabling it to serve as both an independent textual model and a decoder backbone for multimodal EEG-language systems. Using span-corruption pretraining and instruction-style fine-tuning on report polishing, paragraph summarization, and terminology question answering, NeuroLex learns the syntax and reasoning patterns characteristic of EEG interpretation. Comprehensive evaluations show that it achieves lower perplexity, higher extraction and summarization accuracy, better label efficiency, and improved robustness to negation and factual hallucination compared with general models of the same scale. With an EEG-aware linguistic backbone, NeuroLex bridges biomedical text modeling and brain-computer interface applications, offering a foundation for interpretable and language-driven neural decoding.
☆ Quantifying consistency and accuracy of Latent Dirichlet Allocation
Topic modelling in Natural Language Processing uncovers hidden topics in large, unlabelled text datasets. It is widely applied in fields such as information retrieval, content summarisation, and trend analysis across various disciplines. However, probabilistic topic models can produce different results when rerun due to their stochastic nature, leading to inconsistencies in latent topics. Factors like corpus shuffling, rare text removal, and document elimination contribute to these variations. This instability affects replicability, reliability, and interpretation, raising concerns about whether topic models capture meaningful topics or just noise. To address these problems, we defined a new stability measure that incorporates accuracy and consistency and uses the generative properties of LDA to generate a new corpus with ground truth. These generated corpora are run through LDA 50 times to determine the variability in the output. We show that LDA can correctly determine the underlying number of topics in the documents. We also find that LDA is more internally consistent, as the multiple reruns return similar topics; however, these topics are not the true topics.
comment: 8 pages, 3 figures, to be submitted
♻ ☆ Read Between the Lines: A Benchmark for Uncovering Political Bias in Bangla News Articles AACL
Detecting media bias is crucial, specifically in the South Asian region. Despite this, annotated datasets and computational studies for Bangla political bias research remain scarce. Crucially because, political stance detection in Bangla news requires understanding of linguistic cues, cultural context, subtle biases, rhetorical strategies, code-switching, implicit sentiment, and socio-political background. To address this, we introduce the first benchmark dataset of 200 politically significant and highly debated Bangla news articles, labeled for government-leaning, government-critique, and neutral stances, alongside diagnostic analyses for evaluating large language models (LLMs). Our comprehensive evaluation of 28 proprietary and open-source LLMs shows strong performance in detecting government-critique content (F1 up to 0.83) but substantial difficulty with neutral articles (F1 as low as 0.00). Models also tend to over-predict government-leaning stances, often misinterpreting ambiguous narratives. This dataset and its associated diagnostics provide a foundation for advancing stance detection in Bangla media research and offer insights for improving LLM performance in low-resource languages.
comment: Accepted to BLP at AACL-IJCNLP 2025
♻ ☆ DataGen: Unified Synthetic Dataset Generation via Large Language Models
Large Language Models (LLMs) such as GPT-4 and Llama3 have significantly impacted various fields by enabling high-quality synthetic data generation and reducing dependence on expensive human-generated datasets. Despite this, challenges remain in the areas of generalization, controllability, diversity, and truthfulness within the existing generative frameworks. To address these challenges, this paper presents DataGen, a comprehensive LLM-powered framework designed to produce diverse, accurate, and highly controllable datasets. DataGen is adaptable, supporting all types of text datasets and enhancing the generative process through innovative mechanisms. To augment data diversity, DataGen incorporates an attribute-guided generation module and a group checking feature. For accuracy, it employs a code-based mathematical assessment for label verification alongside a retrieval-augmented generation technique for factual validation. The framework also allows for user-specified constraints, enabling customization of the data generation process to suit particular requirements. Extensive experiments demonstrate the superior quality of data generated by DataGen, and each module within DataGen plays a critical role in this enhancement. Additionally, DataGen is applied in two practical scenarios: benchmarking LLMs and data augmentation. The results indicate that DataGen effectively supports dynamic and evolving benchmarking and that data augmentation improves LLM capabilities in various domains, including agent-oriented abilities and reasoning skills.
♻ ☆ Glia: A Human-Inspired AI for Automated Systems Design and Optimization
Can an AI autonomously design mechanisms for computer systems on par with the creativity and reasoning of human experts? We present Glia, an AI architecture for networked systems design that uses large language models (LLMs) in a human-inspired, multi-agent workflow. Each agent specializes in reasoning, experimentation, and analysis, collaborating through an evaluation framework that grounds abstract reasoning in empirical feedback. Unlike prior ML-for-systems methods that optimize black-box policies, Glia generates interpretable designs and exposes its reasoning process. When applied to a distributed GPU cluster for LLM inference, it produces new algorithms for request routing, scheduling, and auto-scaling that perform at human-expert levels in significantly less time, while yielding novel insights into workload behavior. Our results suggest that by combining reasoning LLMs with structured experimentation, an AI can produce creative and understandable designs for complex systems problems.
♻ ☆ Bilevel MCTS for Amortized O(1) Node Selection in Classical Planning AAAI-26
We study an efficient implementation of Multi-Armed Bandit (MAB)-based Monte-Carlo Tree Search (MCTS) for classical planning. One weakness of MCTS is that it spends a significant time deciding which node to expand next. While selecting a node from an OPEN list with $N$ nodes has $O(1)$ runtime complexity with traditional array-based priority-queues for dense integer keys, the tree-based OPEN list used by MCTS requires $O(\log N)$, which roughly corresponds to the search depth $d$. In classical planning, $d$ is arbitrarily large (e.g., $2^k-1$ in $k$-disk Tower-of-Hanoi) and the runtime for node selection is significant, unlike in game tree search, where the cost is negligible compared to the node evaluation (rollouts) because $d$ is inherently limited by the game (e.g., $d\leq 361$ in Go). To improve this bottleneck, we propose a bilevel modification to MCTS that runs a best-first search from each selected leaf node with an expansion budget proportional to $d$, which achieves amortized $O(1)$ runtime for node selection, equivalent to the traditional queue-based OPEN list. In addition, we introduce Tree Collapsing, an enhancement that reduces action selection steps and further improves the performance.
comment: Accepted in AAAI-26
♻ ☆ Unintended Misalignment from Agentic Fine-Tuning: Risks and Mitigation AAAI 2026
Beyond simple text generation, Large Language Models (LLMs) have evolved into agentic systems capable of planning and interacting with external tools to solve complex tasks. This evolution involves fine-tuning LLMs on agent-specific tasks to enhance their proficiency. However, safety concerns are frequently overlooked during this fine-tuning process. In this work, we show that aligned LLMs can become unintentionally misaligned, leading to a higher likelihood of executing harmful tasks and a reduced tendency to refuse them when fine-tuned to execute agentic tasks. To address these safety challenges, we propose Prefix INjection Guard (PING), a simple yet effective method that prepends automatically generated natural language prefixes to agent responses, guiding them to refuse harmful requests while preserving performance on benign tasks. Specifically, we introduce an iterative approach that alternates between (1) generating candidate prefixes and (2) selecting those that optimize both task performance and refusal behavior. Experimental results demonstrate that PING significantly enhances the safety of fine-tuned LLM agents without sacrificing their effectiveness. PING consistently outperforms existing prompting approaches across diverse benchmarks in both web navigation and code generation tasks. Our analysis of internal hidden states via linear probes reveals that prefix tokens are crucial for behavior modification, explaining the performance gains. WARNING: This paper contains contents that are unethical or offensive in nature.
comment: Accepted at AAAI 2026 AI Alignment Track, Source code: https://github.com/HahmDY/agentic-ft-safety
♻ ☆ RATTENTION: Towards the Minimal Sliding Window Size in Local-Global Attention Models
Local-global attention models have recently emerged as compelling alternatives to standard Transformers, promising improvements in both training and inference efficiency. However, the crucial choice of window size presents a Pareto tradeoff: larger windows maintain performance akin to full attention but offer minimal efficiency gains in short-context scenarios, while smaller windows can lead to performance degradation. Current models, such as Gemma2 and Mistral, adopt conservative window sizes (e.g., 4096 out of an 8192 pretraining length) to preserve performance. This work investigates strategies to shift this Pareto frontier, enabling local-global models to achieve efficiency gains even in short-context regimes. Our core motivation is to address the intrinsic limitation of local attention -- its complete disregard for tokens outside the defined window. We explore RATTENTION, a variant of local attention integrated with a specialized linear attention mechanism designed to capture information from these out-of-window tokens. Pretraining experiments at the 3B and 12B scales demonstrate that RATTENTION achieves a superior Pareto tradeoff between performance and efficiency. As a sweet spot, RATTENTION with a window size of just 512 consistently matches the performance of full-attention models across diverse settings. Furthermore, the recurrent nature inherent in the linear attention component of RATTENTION contributes to enhanced long-context performance, as validated on the RULER benchmark. Crucially, these improvements do not compromise training efficiency; thanks to a specialized kernel implementation and the reduced window size, RATTENTION maintains training speeds comparable to existing state-of-the-art approaches. We open-sourced our Pallas kernels along with model codes to facilitate further research effort.
comment: 9 pages
♻ ☆ A is for Absorption: Studying Feature Splitting and Absorption in Sparse Autoencoders NeurIPS 2025
Sparse Autoencoders (SAEs) aim to decompose the activation space of large language models (LLMs) into human-interpretable latent directions or features. As we increase the number of features in the SAE, hierarchical features tend to split into finer features ("math" may split into "algebra", "geometry", etc.), a phenomenon referred to as feature splitting. However, we show that sparse decomposition and splitting of hierarchical features is not robust. Specifically, we show that seemingly monosemantic features fail to fire where they should, and instead get "absorbed" into their children features. We coin this phenomenon feature absorption, and show that it is caused by optimizing for sparsity in SAEs whenever the underlying features form a hierarchy. We introduce a metric to detect absorption in SAEs, and validate our findings empirically on hundreds of LLM SAEs. Our investigation suggests that varying SAE sizes or sparsity is insufficient to solve this issue. We discuss the implications of feature absorption in SAEs and some potential approaches to solve the fundamental theoretical issues before SAEs can be used for interpreting LLMs robustly and at scale.
comment: Accepted at NeurIPS 2025 (Oral)
♻ ☆ REIC: RAG-Enhanced Intent Classification at Scale EMNLP 2025
Accurate intent classification is critical for efficient routing in customer service, ensuring customers are connected with the most suitable agents while reducing handling times and operational costs. However, as companies expand their product lines, intent classification faces scalability challenges due to the increasing number of intents and variations in taxonomy across different verticals. In this paper, we introduce REIC, a Retrieval-augmented generation Enhanced Intent Classification approach, which addresses these challenges effectively. REIC leverages retrieval-augmented generation (RAG) to dynamically incorporate relevant knowledge, enabling precise classification without the need for frequent retraining. Through extensive experiments on real-world datasets, we demonstrate that REIC outperforms traditional fine-tuning, zero-shot, and few-shot methods in large-scale customer service settings. Our results highlight its effectiveness in both in-domain and out-of-domain scenarios, demonstrating its potential for real-world deployment in adaptive and large-scale intent classification systems.
comment: Accepted by EMNLP 2025 (Industry Track)
♻ ☆ QuanTaxo: A Quantum Approach to Self-Supervised Taxonomy Expansion
A taxonomy is a hierarchical graph containing knowledge to provide valuable insights for various web applications. However, the manual construction of taxonomies requires significant human effort. As web content continues to expand at an unprecedented pace, existing taxonomies risk becoming outdated, struggling to incorporate new and emerging information effectively. As a consequence, there is a growing need for dynamic taxonomy expansion to keep them relevant and up-to-date. Existing taxonomy expansion methods often rely on classical word embeddings to represent entities. However, these embeddings fall short of capturing hierarchical polysemy, where an entity's meaning can vary based on its position in the hierarchy and its surrounding context. To address this challenge, we introduce QuanTaxo, a quantum-inspired framework for taxonomy expansion that encodes entities in a Hilbert space and models interference effects between them, yielding richer, context-sensitive representations. Comprehensive experiments on five real-world benchmark datasets show that QuanTaxo significantly outperforms classical embedding models, achieving substantial improvements of 12.3% in accuracy, 11.2% in Mean Reciprocal Rank (MRR), and 6.9% in Wu & Palmer (Wu&P) metrics across nine classical embedding-based baselines.
♻ ☆ Building a Macedonian Recipe Dataset: Collection, Parsing, and Comparative Analysis
Computational gastronomy increasingly relies on diverse, high-quality recipe datasets to capture regional culinary traditions. Although there are large-scale collections for major languages, Macedonian recipes remain under-represented in digital research. In this work, we present the first systematic effort to construct a Macedonian recipe dataset through web scraping and structured parsing. We address challenges in processing heterogeneous ingredient descriptions, including unit, quantity, and descriptor normalization. An exploratory analysis of ingredient frequency and co-occurrence patterns, using measures such as Pointwise Mutual Information and Lift score, highlights distinctive ingredient combinations that characterize Macedonian cuisine. The resulting dataset contributes a new resource for studying food culture in underrepresented languages and offers insights into the unique patterns of Macedonian culinary tradition.
♻ ☆ SciAgent: A Unified Multi-Agent System for Generalistic Scientific Reasoning
Recent advances in large language models have enabled AI systems to achieve expert-level performance on domain-specific scientific tasks, yet these systems remain narrow and handcrafted. We introduce SciAgent, a unified multi-agent system designed for generalistic scientific reasoning-the ability to adapt reasoning strategies across disciplines and difficulty levels. SciAgent organizes problem solving as a hierarchical process: a Coordinator Agent interprets each problem's domain and complexity, dynamically orchestrating specialized Worker Systems, each composed of interacting reasoning Sub-agents for symbolic deduction, conceptual modeling, numerical computation, and verification. These agents collaboratively assemble and refine reasoning pipelines tailored to each task. Across mathematics and physics Olympiads (IMO, IMC, IPhO, CPhO), SciAgent consistently attains or surpasses human gold-medalist performance, demonstrating both domain generality and reasoning adaptability. Additionally, SciAgent has been tested on the International Chemistry Olympiad (IChO) and selected problems from the Humanity's Last Exam (HLE) benchmark, further confirming the system's ability to generalize across diverse scientific domains. This work establishes SciAgent as a concrete step toward generalistic scientific intelligence-AI systems capable of coherent, cross-disciplinary reasoning at expert levels.
comment: 1. To ensure result rigor, the model outputs require further evaluation by human experts. 2. The results may affect our conclusions and methods, thus necessitating a more detailed review. 3. We anticipate subsequent revisions may be substantial, potentially involving major adjustments to the methodology. Given the uncertainty surrounding the revision process, we decide to request a withdrawal
♻ ☆ Simultaneous Machine Translation with Large Language Models ALT
Real-world simultaneous machine translation (SimulMT) systems face more challenges than just the quality-latency trade-off. They also need to address issues related to robustness with noisy input, processing long contexts, and flexibility for knowledge injection. These challenges demand models with strong language understanding and generation capabilities which may not often equipped by dedicated MT models. In this paper, we investigate the possibility of applying Large Language Models (LLM) to SimulMT tasks by using existing incremental-decoding methods with a newly proposed RALCP algorithm for latency reduction. We conducted experiments using the \texttt{Llama2-7b-chat} model on nine different languages from the MUST-C dataset. The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics. Further analysis indicates that LLM has advantages in terms of tuning efficiency and robustness. However, it is important to note that the computational cost of LLM remains a significant obstacle to its application in SimulMT.
comment: Accepted to ALTA 2024
♻ ☆ NLP Methods May Actually Be Better Than Professors at Estimating Question Difficulty ECAI 2025
Estimating the difficulty of exam questions is essential for developing good exams, but professors are not always good at this task. We compare various Large Language Model-based methods with three professors in their ability to estimate what percentage of students will give correct answers on True/False exam questions in the areas of Neural Networks and Machine Learning. Our results show that the professors have limited ability to distinguish between easy and difficult questions and that they are outperformed by directly asking Gemini 2.5 to solve this task. Yet, we obtained even better results using uncertainties of the LLMs solving the questions in a supervised learning setting, using only 42 training samples. We conclude that supervised learning using LLM uncertainty can help professors better estimate the difficulty of exam questions, improving the quality of assessment.
comment: 10 pages, 2 figures, presented at ECAI 2025 at the 2nd International Workshop on AI in Society, Education and Educational Research (AISEER)
♻ ☆ Conversational SimulMT: Efficient Simultaneous Translation with Large Language Models
Simultaneous machine translation (SimulMT) presents a challenging trade-off between translation quality and latency. Recent studies have shown that LLMs can achieve good performance in SimulMT tasks. However, this often comes at the expense of high inference cost and latency. In this paper, we propose a conversational SimulMT framework to enhance the inference efficiency of LLM-based SimulMT through multi-turn-dialogue-based decoding. Our experiments with Llama2-7b-chat on two SimulMT benchmarks demonstrate the superiority of LLM in translation quality while achieving comparable computational latency to specialized SimulMT models.
comment: Accepted to IWSLT 2025
♻ ☆ Lookahead Q-Cache: Achieving More Consistent KV Cache Eviction via Pseudo Query EMNLP 2025
Large language models (LLMs) rely on key-value cache (KV cache) to accelerate decoding by reducing redundant computations. However, the KV cache memory usage grows substantially with longer text sequences, posing challenges for efficient deployment. Existing KV cache eviction methods prune tokens using prefilling-stage attention scores, causing inconsistency with actual inference queries, especially under tight memory budgets. In this paper, we propose Lookahead Q-Cache (LAQ), a novel eviction framework that generates low-cost pseudo lookahead queries to better approximate the true decoding-stage queries. By using these lookahead queries as the observation window for importance estimation, LAQ achieves more consistent and accurate KV cache eviction aligned with real inference scenarios. Experimental results on LongBench and Needle-in-a-Haystack benchmarks show that LAQ outperforms existing methods across various budget levels, achieving a 1 $\sim$ 4 point improvement on LongBench under limited cache budget. Moreover, LAQ is complementary to existing approaches and can be flexibly combined to yield further improvements.
comment: Accepted by EMNLP 2025 Main
♻ ☆ The taggedPBC: Annotating a massive parallel corpus for crosslinguistic investigations
Existing datasets available for crosslinguistic investigations have tended to focus on large amounts of data for a small group of languages or a small amount of data for a large number of languages. This means that claims based on these datasets are limited in what they reveal about universal properties of the human language faculty. While this has begun to change through the efforts of projects seeking to develop tagged corpora for a large number of languages, such efforts are still constrained by limits on resources. The current paper reports on a large tagged parallel dataset which has been developed to partially address this issue. The taggedPBC contains POS-tagged parallel text data from more than 1,940 languages, representing 155 language families and 78 isolates, dwarfing previously available resources. The accuracy of particular tags in this dataset is shown to correlate well with both existing SOTA taggers for high-resource languages (SpaCy, Trankit) as well as hand-tagged corpora (Universal Dependencies Treebanks). Additionally, a novel measure derived from this dataset, the N1 ratio, correlates with expert determinations of intransitive word order in three typological databases (WALS, Grambank, Autotyp) such that a Gaussian Naive Bayes classifier trained on this feature can accurately identify basic intransitive word order for languages not in those databases. While much work is still needed to expand and develop this dataset, the taggedPBC is an important step to enable corpus-based crosslinguistic investigations, and is made available for research and collaboration via GitHub.
♻ ☆ Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers NeurIPS 2025
As large language models increasingly gain popularity in real-world applications, processing extremely long contexts, often exceeding the model's pre-trained context limits, has emerged as a critical challenge. While existing approaches to efficient long-context processing show promise, recurrent compression-based methods struggle with information preservation, whereas random access approaches require substantial memory resources. We introduce REFORM, a novel inference framework that efficiently handles long contexts through a two-phase approach. First, it incrementally processes input chunks while maintaining a compressed KV cache, constructs cross-layer context embeddings, and utilizes early exit strategy for improved efficiency. Second, it identifies and gathers essential tokens via similarity matching and selectively recomputes the KV cache. Compared to baselines, REFORM achieves over 52% and 34% performance gains on RULER and BABILong respectively at 1M context length. It also outperforms baselines on Infinite-Bench, RepoEval, and MM-NIAH, demonstrating flexibility across diverse tasks and domains. Additionally, REFORM reduces inference time by 30% and peak memory usage by 5%, achieving both efficiency and superior performance.
comment: NeurIPS 2025
♻ ☆ RAG-R1: Incentivizing the Search and Reasoning Capabilities of LLMs through Multi-query Parallelism
Large Language Models (LLMs), despite their remarkable capabilities, are prone to generating hallucinated or outdated content due to their static internal knowledge. While Retrieval-Augmented Generation (RAG) integrated with Reinforcement Learning (RL) offers a solution, these methods are fundamentally constrained by a single-query mode, leading to prohibitive latency and inherent brittleness. To overcome these limitations, we introduce RAG-R1, a novel two-stage training framework centered around multi-query parallelism. Our framework enables LLMs to adaptively leverage internal and external knowledge during the reasoning process while transitioning from the single-query mode to multi-query parallelism. This architectural shift bolsters reasoning robustness while significantly reducing inference latency. Extensive experiments on seven question-answering benchmarks confirm the superiority of our method, which outperforms the strongest baseline by up to 13.7% and decreases inference time by 11.1%.
♻ ☆ Jailbreaking LLMs via Semantically Relevant Nested Scenarios with Targeted Toxic Knowledge
Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks. However, they remain exposed to jailbreak attacks, eliciting harmful responses. The nested scenario strategy has been increasingly adopted across various methods, demonstrating immense potential. Nevertheless, these methods are easily detectable due to their prominent malicious intentions. In this work, we are the first to find and systematically verify that LLMs' alignment defenses are not sensitive to nested scenarios, where these scenarios are highly semantically relevant to the queries and incorporate targeted toxic knowledge. This is a crucial yet insufficiently explored direction. Based on this, we propose RTS-Attack (Semantically Relevant Nested Scenarios with Targeted Toxic Knowledge), an adaptive and automated framework to examine LLMs' alignment. By building scenarios highly relevant to the queries and integrating targeted toxic knowledge, RTS-Attack bypasses the alignment defenses of LLMs. Moreover, the jailbreak prompts generated by RTS-Attack are free from harmful queries, leading to outstanding concealment. Extensive experiments demonstrate that RTS-Attack exhibits superior performance in both efficiency and universality compared to the baselines across diverse advanced LLMs, including GPT-4o, Llama3-70b, and Gemini-pro. Our complete code is available at https://github.com/nercode/Work. WARNING: THIS PAPER CONTAINS POTENTIALLY HARMFUL CONTENT.
♻ ☆ Accelerated Test-Time Scaling with Model-Free Speculative Sampling EMNLP 2025
Language models have demonstrated remarkable capabilities in reasoning tasks through test-time scaling techniques like best-of-N sampling and tree search. However, these approaches often demand substantial computational resources, creating a critical trade-off between performance and efficiency. We introduce STAND (STochastic Adaptive N-gram Drafting), a novel model-free speculative decoding approach that exploits the inherent redundancy in reasoning trajectories to achieve significant acceleration without compromising accuracy. Our analysis shows that reasoning paths frequently reuse similar reasoning patterns, enabling efficient model-free token prediction without requiring separate draft models. By introducing stochastic drafting and preserving probabilistic information through a memory-efficient logit-based N-gram module, combined with optimized Gumbel-Top-K sampling and data-driven tree construction, STAND significantly improves token acceptance rates. Extensive evaluations across multiple models and reasoning tasks (AIME-2024, GPQA-Diamond, and LiveCodeBench) demonstrate that STAND reduces inference latency by 60-65% compared to standard autoregressive decoding while maintaining accuracy. Furthermore, STAND consistently outperforms state-of-the-art speculative decoding methods across diverse inference patterns, including single-trajectory decoding, batch decoding, and test-time tree search. As a model-free approach, STAND can be applied to any existing language model without additional training, making it a powerful plug-and-play solution for accelerating language model reasoning.
comment: EMNLP 2025 Oral
♻ ☆ Hogwild! Inference: Parallel LLM Generation via Concurrent Attention NeurIPS 2025
Large Language Models (LLMs) have demonstrated the ability to tackle increasingly complex tasks through advanced reasoning, long-form content generation, and tool use. Solving these tasks often involves long inference-time computations. In human problem solving, a common strategy to expedite work is collaboration: by dividing the problem into sub-tasks, exploring different strategies concurrently, etc. Recent research has shown that LLMs can also operate in parallel by implementing explicit cooperation frameworks, such as voting mechanisms or the explicit creation of independent sub-tasks that can be executed in parallel. However, each of these frameworks may not be suitable for all types of tasks, which can hinder their applicability. In this work, we propose a different design approach: we run LLM "workers" in parallel , allowing them to synchronize via a concurrently-updated attention cache and prompt these workers to decide how best to collaborate. Our approach allows the LLM instances to come up with their own collaboration strategy for the problem at hand, all the while "seeing" each other's memory in the concurrent KV cache. We implement this approach via Hogwild! Inference: a parallel LLM inference engine where multiple instances of the same LLM run in parallel with the same attention cache, with "instant" access to each other's memory. Hogwild! Inference takes advantage of Rotary Position Embeddings (RoPE) to avoid recomputation while improving parallel hardware utilization. We find that modern reasoning-capable LLMs can perform inference with shared Key-Value cache out of the box, without additional fine-tuning.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ On the Limitations of Language Targeted Pruning: Investigating the Calibration Language Impact in Multilingual LLM Pruning ACL
Recent advances in large language model (LLM) pruning have shown state-of-the-art (SotA) compression results in post-training and retraining-free settings while maintaining high predictive performance. However, previous research mainly considered calibrating based on English text, despite the multilingual nature of modern LLMs and their frequent use in non-English languages. This analysis paper conducts an in-depth investigation of the performance and internal representation changes associated with pruning multilingual language models for monolingual applications. We present the first comprehensive empirical study, comparing different calibration languages for pruning multilingual models across diverse languages, tasks, models, and SotA pruning techniques. We further analyze the latent subspaces, pruning masks, and individual neurons within pruned models. Our results reveal that while calibration on the target language effectively retains perplexity and yields high signal-to-noise ratios, it does not consistently improve downstream task performance. Further analysis of internal representations at three different levels highlights broader limitations of current pruning approaches: While they effectively preserve dominant information like language-specific features, this is insufficient to counteract the loss of nuanced, language-agnostic features that are crucial for knowledge retention and reasoning.
comment: Accepted for publication in TACL
♻ ☆ SoK: Large Language Model Copyright Auditing via Fingerprinting
The broad capabilities and substantial resources required to train Large Language Models (LLMs) make them valuable intellectual property, yet they remain vulnerable to copyright infringement, such as unauthorized use and model theft. LLM fingerprinting, a non-intrusive technique that compares the distinctive features (i.e., fingerprint) of LLMs to identify whether an LLM is derived from another, offers a promising solution to copyright auditing. However, its reliability remains uncertain due to the prevalence of diverse model modifications and the lack of standardized evaluation. In this SoK, we present the first comprehensive study of the emerging LLM fingerprinting. We introduce a unified framework and taxonomy that structures the field: white-box methods are classified based on their feature source as static, forward-pass, or backward-pass fingerprinting, while black-box methods are distinguished by their query strategy as either untargeted or targeted. Furthermore, we propose LeaFBench, the first systematic benchmark for evaluating LLM fingerprinting under realistic deployment scenarios. Built upon 7 mainstream foundation models and comprising 149 distinct model instances, LeaFBench integrates 13 representative post-development techniques, spanning both parameter-altering methods (e.g., fine-tuning, quantization) and parameter-independent techniques (e.g., system prompts, RAG). Extensive experiments on LeaFBench reveal the strengths and weaknesses of existing methods, thereby outlining future research directions and critical open problems in this emerging field. The code is available at https://github.com/shaoshuo-ss/LeaFBench.
♻ ☆ Aligning Extraction and Generation for Robust Retrieval-Augmented Generation WSDM
Retrieval-augmented generation (RAG) enhances LLMs with external knowledge, yet generation remains vulnerable to retrieval-induced noise and uncertain placement of relevant chunks, often causing hallucinations. We present Ext2Gen, an extract-then-generate framework that strengthens LLMs via joint evidence selection and answer generation, dynamically identifying query-relevant content while suppressing noise, thereby removing the need for any independent pre-generation compression module. Optimized through preference alignment with well-curated pairwise feedback, Ext2Gen produces accurate and faithful answers even under noisy or imprecise retrieval. Experiments demonstrate that it substantially enhances the robustness of the generation backbone and yields greater performance gains than methods relying on independent compression models, e.g., Recomp, CompAct, EXIT). It further benefits from improved retrieval techniques such as query rewriting, underscoring that generation-side enhancements address limitations that retrieval alone cannot overcome.
comment: Accepted at ACM International Conference on Web Search and Data Mining (WSDM) 2026
♻ ☆ Is Our Chatbot Telling Lies? Assessing Correctness of an LLM-based Dutch Support Chatbot
Companies support their customers using live chats and chatbots to gain their loyalty. AFAS is a Dutch company aiming to leverage the opportunity large language models (LLMs) offer to answer customer queries with minimal to no input from its customer support team. Adding to its complexity, it is unclear what makes a response correct, and that too in Dutch. Further, with minimal data available for training, the challenge is to identify whether an answer generated by a large language model is correct and do it on the fly. This study is the first to define the correctness of a response based on how the support team at AFAS makes decisions. It leverages literature on natural language generation and automated answer grading systems to automate the decision-making of the customer support team. We investigated questions requiring a binary response (e.g., Would it be possible to adjust tax rates manually?) or instructions (e.g., How would I adjust tax rate manually?) to test how close our automated approach reaches support rating. Our approach can identify wrong messages in 55\% of the cases. This work demonstrates the potential for automatically assessing when our chatbot may provide incorrect or misleading answers. Specifically, we contribute (1) a definition and metrics for assessing correctness, and (2) suggestions to improve correctness with respect to regional language and question type.
comment: 10 pages + 2 pages references, 4 figures
♻ ☆ Exploiting Synergistic Cognitive Biases to Bypass Safety in LLMs
Large Language Models (LLMs) demonstrate impressive capabilities across a wide range of tasks, yet their safety mechanisms remain susceptible to adversarial attacks that exploit cognitive biases -- systematic deviations from rational judgment. Unlike prior jailbreaking approaches focused on prompt engineering or algorithmic manipulation, this work highlights the overlooked power of multi-bias interactions in undermining LLM safeguards. We propose CognitiveAttack, a novel red-teaming framework that systematically leverages both individual and combined cognitive biases. By integrating supervised fine-tuning and reinforcement learning, CognitiveAttack generates prompts that embed optimized bias combinations, effectively bypassing safety protocols while maintaining high attack success rates. Experimental results reveal significant vulnerabilities across 30 diverse LLMs, particularly in open-source models. CognitiveAttack achieves a substantially higher attack success rate compared to the SOTA black-box method PAP (60.1% vs. 31.6%), exposing critical limitations in current defense mechanisms. These findings highlight multi-bias interactions as a powerful yet underexplored attack vector. This work introduces a novel interdisciplinary perspective by bridging cognitive science and LLM safety, paving the way for more robust and human-aligned AI systems.
♻ ☆ Efficient Reasoning for Large Reasoning Language Models via Certainty-Guided Reflection Suppression AAAI 2026
Recent Large Reasoning Language Models (LRLMs) employ long chain-of-thought reasoning with complex reflection behaviors, typically signaled by specific trigger words (e.g., "Wait" and "Alternatively") to enhance performance. However, these reflection behaviors can lead to the overthinking problem where the generation of redundant reasoning steps that unnecessarily increase token usage, raise inference costs, and reduce practical utility. In this paper, we propose Certainty-Guided Reflection Suppression (CGRS), a novel method that mitigates overthinking in LRLMs while maintaining reasoning accuracy. CGRS operates by dynamically suppressing the model's generation of reflection triggers when it exhibits high confidence in its current response, thereby preventing redundant reflection cycles without compromising output quality. Our approach is model-agnostic, requires no retraining or architectural modifications, and can be integrated seamlessly with existing autoregressive generation pipelines. Extensive experiments across four reasoning benchmarks (i.e., AIME24, AMC23, MATH500, and GPQA-D) demonstrate CGRS's effectiveness: it reduces token usage by an average of 18.5% to 41.9% while preserving accuracy. It also achieves the optimal balance between length reduction and performance compared to state-of-the-art baselines. These results hold consistently across model architectures (e.g., DeepSeek-R1-Distill series, QwQ-32B, and Qwen3 family) and scales (4B to 32B parameters), highlighting CGRS's practical value for efficient reasoning.
comment: Accepted by AAAI 2026
♻ ☆ Unveiling the Influence of Amplifying Language-Specific Neurons AACL 2025
Language-specific neurons in LLMs that strongly correlate with individual languages have been shown to influence model behavior by deactivating them. However, their role in amplification remains underexplored. This work investigates the effect of amplifying language-specific neurons through interventions across 18 languages, including low-resource ones, using three models primarily trained in different languages. We compare amplification factors by their effectiveness in steering to the target language using a proposed Language Steering Shift (LSS) evaluation score, then evaluate it on downstream tasks: commonsense reasoning (XCOPA, XWinograd), knowledge (Include), and translation (FLORES). The optimal amplification factors effectively steer output toward nearly all tested languages. Intervention using this factor on downstream tasks improves self-language performance in some cases but generally degrades cross-language results. These findings highlight the effect of language-specific neurons in multilingual behavior, where amplification can be beneficial especially for low-resource languages, but provides limited advantage for cross-lingual transfer.
comment: Accepted to AACL 2025. Our code and dataset are made available at https://github.com/tauimbz/lang-task-neuron
♻ ☆ Multi-Personality Generation of LLMs at Decoding-time WSDM 2026
Multi-personality generation for LLMs, enabling simultaneous embodiment of multiple personalization attributes, is a fundamental challenge. Existing retraining-based approaches are costly and poorly scalable, while decoding-time methods often rely on external models or heuristics, limiting flexibility and robustness. In this paper, we propose a novel Multi-Personality Generation (MPG) framework under the decoding-time combination paradigm. It flexibly controls multi-personality without relying on scarce multi-dimensional models or extra training, leveraging implicit density ratios in single-dimensional models as a "free lunch" to reformulate the task as sampling from a target strategy aggregating these ratios. To implement MPG efficiently, we design Speculative Chunk-level based Rejection sampling (SCR), which generates responses in chunks and parallelly validates them via estimated thresholds within a sliding window. This significantly reduces computational overhead while maintaining high-quality generation. Experiments on MBTI personality and Role-Playing demonstrate the effectiveness of MPG, showing improvements up to 16%-18%. Code and data are available at https://github.com/Libra117/MPG .
comment: Accepted by WSDM 2026
♻ ☆ Exposing the Cracks: Vulnerabilities of Retrieval-Augmented LLM-based Machine Translation AAAI 2026
\textbf{RE}trieval-\textbf{A}ugmented \textbf{L}LM-based \textbf{M}achine \textbf{T}ranslation (REAL-MT) shows promise for knowledge-intensive tasks like idiomatic translation, but its reliability under noisy retrieval contexts remains poorly understood despite this being a common challenge in real-world deployment. To address this gap, we propose a noise synthesis framework and new metrics to evaluate the robustness of REAL-MT systematically. Using this framework, we instantiate REAL-MT with Qwen-series models, including standard LLMs and large reasoning models (LRMs) with enhanced reasoning, and evaluate their performance on idiomatic translation across high-, medium-, and low-resource language pairs under synthesized noise. Our results show that low-resource language pairs, which rely more heavily on retrieved context, degrade more severely under noise than high-resource ones and often produce nonsensical translations. Although LRMs possess enhanced reasoning capabilities, they show no improvement in error correction and are even more susceptible to noise, tending to rationalize incorrect contexts. We find that this stems from an attention shift away from the source idiom to noisy content, while confidence increases despite declining accuracy, indicating poor calibration. To mitigate these issues, we investigate training-free and fine-tuning strategies, which improve robustness at the cost of performance in clean contexts, revealing a fundamental trade-off. Our findings highlight the limitations of current approaches, underscoring the need for self-verifying integration mechanisms.
comment: Accepted by AAAI 2026
♻ ☆ PathRAG: Pruning Graph-based Retrieval Augmented Generation with Relational Paths
Retrieval-augmented generation (RAG) improves the response quality of large language models (LLMs) by retrieving knowledge from external databases. Typical RAG approaches split the text database into chunks, organizing them in a flat structure for efficient searches. To better capture the inherent dependencies and structured relationships across the text database, researchers propose to organize textual information into an indexing graph, known asgraph-based RAG. However, we argue that the limitation of current graph-based RAG methods lies in the redundancy of the retrieved information, rather than its insufficiency. Moreover, previous methods use a flat structure to organize retrieved information within the prompts, leading to suboptimal performance. To overcome these limitations, we propose PathRAG, which retrieves key relational paths from the indexing graph, and converts these paths into textual form for prompting LLMs. Specifically, PathRAG effectively reduces redundant information with flow-based pruning, while guiding LLMs to generate more logical and coherent responses with path-based prompting. Experimental results show that PathRAG consistently outperforms state-of-the-art baselines across six datasets and five evaluation dimensions. The code is available at the following link: https://github.com/BUPT-GAMMA/PathRAG
♻ ☆ MedFact: Benchmarking the Fact-Checking Capabilities of Large Language Models on Chinese Medical Texts
Deploying Large Language Models (LLMs) in medical applications requires fact-checking capabilities to ensure patient safety and regulatory compliance. We introduce MedFact, a challenging Chinese medical fact-checking benchmark with 2,116 expert-annotated instances from diverse real-world texts, spanning 13 specialties, 8 error types, 4 writing styles, and 5 difficulty levels. Construction uses a hybrid AI-human framework where iterative expert feedback refines AI-driven, multi-criteria filtering to ensure high quality and difficulty. We evaluate 20 leading LLMs on veracity classification and error localization, and results show models often determine if text contains errors but struggle to localize them precisely, with top performers falling short of human performance. Our analysis reveals the "over-criticism" phenomenon, a tendency for models to misidentify correct information as erroneous, which can be exacerbated by advanced reasoning techniques such as multi-agent collaboration and inference-time scaling. MedFact highlights the challenges of deploying medical LLMs and provides resources to develop factually reliable medical AI systems.
♻ ☆ Fact2Fiction: Targeted Poisoning Attack to Agentic Fact-checking System AAAI 2026
State-of-the-art (SOTA) fact-checking systems combat misinformation by employing autonomous LLM-based agents to decompose complex claims into smaller sub-claims, verify each sub-claim individually, and aggregate the partial results to produce verdicts with justifications (explanations for the verdicts). The security of these systems is crucial, as compromised fact-checkers can amplify misinformation, but remains largely underexplored. To bridge this gap, this work introduces a novel threat model against such fact-checking systems and presents \textsc{Fact2Fiction}, the first poisoning attack framework targeting SOTA agentic fact-checking systems. Fact2Fiction employs LLMs to mimic the decomposition strategy and exploit system-generated justifications to craft tailored malicious evidences that compromise sub-claim verification. Extensive experiments demonstrate that Fact2Fiction achieves 8.9\%--21.2\% higher attack success rates than SOTA attacks across various poisoning budgets and exposes security weaknesses in existing fact-checking systems, highlighting the need for defensive countermeasures.
comment: Accepted by AAAI 2026 (Oral). Code available at: https://trustworthycomp.github.io/Fact2Fiction/
♻ ☆ Chain-of-Conceptual-Thought Elicits Daily Conversation in Large Language Models PRICAI 2025
Chain-of-Thought (CoT) is widely applied to enhance the LLM capability in math, coding and reasoning tasks. However, its performance is limited for open-domain tasks, when there are no clearly defined reasoning steps or logical transitions. To mitigate such challenges, we propose a new prompt-based paradigm called Chain of Conceptual Thoughts (CoCT), which suggests the LLM first to produce the tag of concepts, then complete the detailed content following the concept. To encourage this hierarchical way of thinking, we implement the concepts with emotions, strategies and topics. We experiment with this paradigm in daily and emotional support conversations, covering tasks with both in-domain and out-of-domain concept settings. Automatic, human, and LLM-based evaluations reveal that CoCT surpasses several prompt-based baselines such as self-refine, ECoT, SoT and RAG, suggesting a potential solution of LLM prompting paradigm for a wider scope of tasks.
comment: PRICAI 2025
♻ ☆ Self-Correction Distillation for Structured Data Question Answering AAAI 2026
Structured data question answering (QA), including table QA, Knowledge Graph (KG) QA, and temporal KG QA, is a pivotal research area. Advances in large language models (LLMs) have driven significant progress in unified structural QA frameworks like TrustUQA. However, these frameworks face challenges when applied to small-scale LLMs since small-scale LLMs are prone to errors in generating structured queries. To improve the structured data QA ability of small-scale LLMs, we propose a self-correction distillation (SCD) method. In SCD, an error prompt mechanism (EPM) is designed to detect errors and provide customized error messages during inference, and a two-stage distillation strategy is designed to transfer large-scale LLMs' query-generation and error-correction capabilities to small-scale LLM. Experiments across 5 benchmarks with 3 structured data types demonstrate that our SCD achieves the best performance and superior generalization on small-scale LLM (8B) compared to other distillation methods, and closely approaches the performance of GPT4 on some datasets. Furthermore, large-scale LLMs equipped with EPM surpass the state-of-the-art results on most datasets.
comment: Accepted to AAAI 2026
♻ ☆ A Survey on Unlearning in Large Language Models
Large Language Models (LLMs) demonstrate remarkable capabilities, but their training on massive corpora poses significant risks from memorized sensitive information. To mitigate these issues and align with legal standards, unlearning has emerged as a critical technique to selectively erase specific knowledge from LLMs without compromising their overall performance. This survey provides a systematic review of over 180 papers on LLM unlearning published since 2021. First, it introduces a novel taxonomy that categorizes unlearning methods based on the phase in the LLM pipeline of the intervention. This framework further distinguishes between parameter modification and parameter selection strategies, thus enabling deeper insights and more informed comparative analysis. Second, it offers a multidimensional analysis of evaluation paradigms. For datasets, we compare 18 existing benchmarks from the perspectives of task format, content, and experimental paradigms to offer actionable guidance. For metrics, we move beyond mere enumeration by dividing knowledge memorization metrics into 10 categories to analyze their advantages and applicability, while also reviewing metrics for model utility, robustness, and efficiency. By discussing current challenges and future directions, this survey aims to advance the field of LLM unlearning and the development of secure AI systems.
♻ ☆ SafeKey: Amplifying Aha-Moment Insights for Safety Reasoning
Large Reasoning Models (LRMs) introduce a new generation paradigm of explicitly reasoning before answering, leading to remarkable improvements in complex tasks. However, they pose great safety risks against harmful queries and adversarial attacks. While recent mainstream safety efforts on LRMs, supervised fine-tuning (SFT), improve safety performance, we find that SFT-aligned models struggle to generalize to unseen jailbreak prompts. After thorough investigation of LRMs' generation, we identify a safety aha moment that can activate safety reasoning and lead to a safe response. This aha moment typically appears in the `key sentence', which follows models' query understanding process and can indicate whether the model will proceed safely. Based on these insights, we propose SafeKey, including two complementary objectives to better activate the safety aha moment in the key sentence: (1) a Dual-Path Safety Head to enhance the safety signal in the model's internal representations before the key sentence, and (2) a Query-Mask Modeling objective to improve the models' attention on its query understanding, which has important safety hints. Experiments across multiple safety benchmarks demonstrate that our methods significantly improve safety generalization to a wide range of jailbreak attacks and out-of-distribution harmful prompts, lowering the average harmfulness rate by 9.6\%, while maintaining general abilities. Our analysis reveals how SafeKey enhances safety by reshaping internal attention and improving the quality of hidden representations.
♻ ☆ Aligning Machiavellian Agents: Behavior Steering via Test-Time Policy Shaping AAAI 2026
The deployment of decision-making AI agents presents a critical challenge in maintaining alignment with human values or guidelines while operating in complex, dynamic environments. Agents trained solely to achieve their objectives may adopt harmful behavior, exposing a key trade-off between maximizing the reward function and maintaining alignment. For pre-trained agents, ensuring alignment is particularly challenging, as retraining can be a costly and slow process. This is further complicated by the diverse and potentially conflicting attributes representing the ethical values for alignment. To address these challenges, we propose a test-time alignment technique based on model-guided policy shaping. Our method allows precise control over individual behavioral attributes, generalizes across diverse reinforcement learning (RL) environments, and facilitates a principled trade-off between ethical alignment and reward maximization without requiring agent retraining. We evaluate our approach using the MACHIAVELLI benchmark, which comprises 134 text-based game environments and thousands of annotated scenarios involving ethical decisions. The RL agents are first trained to maximize the reward in their respective games. At test time, we apply policy shaping via scenario-action attribute classifiers to ensure decision alignment with ethical attributes. We compare our approach against prior training-time methods and general-purpose agents, as well as study several types of ethical violations and power-seeking behavior. Our results demonstrate that test-time policy shaping provides an effective and scalable solution for mitigating unethical behavior across diverse environments and alignment attributes.
comment: Accepted to AAAI 2026 AI Alignment Track
♻ ☆ VocalBench-zh: Decomposing and Benchmarking the Speech Conversational Abilities in Mandarin Context
The development of multi-modal large language models (LLMs) leads to intelligent approaches capable of speech interactions. As one of the most widely spoken languages globally, Mandarin is supported by most models to enhance their applicability and reach. However, the scarcity of comprehensive speech-to-speech (S2S) benchmarks in Mandarin contexts impedes systematic evaluation for developers and hinders fair model comparison for users. In this work, we propose VocalBench-zh, an ability-level divided evaluation suite adapted to Mandarin context consisting of 10 well-crafted subsets and over 10K high-quality instances, covering 12 user-oriented characters. The evaluation experiment on 14 mainstream models reveals the common challenges for current routes, and highlights the need for new insights into next-generation speech interactive systems. The evaluation codes and datasets will be available at https://github.com/SJTU-OmniAgent/VocalBench-zh.
comment: This article will serve as an extension of the preceding work, "VocalBench: Benchmarking the Vocal Conversational Abilities for Speech Interaction Models" (arXiv:2505.15727). Therefore, we have chosen to withdraw to avoid potential duplicate publication. We will update the previously open-sourced paper of VocalBench in several weeks to include the content of VocalBench-zh
♻ ☆ T^2Agent A Tool-augmented Multimodal Misinformation Detection Agent with Monte Carlo Tree Search AAAI 2026
Real-world multimodal misinformation often arises from mixed forgery sources, requiring dynamic reasoning and adaptive verification. However, existing methods mainly rely on static pipelines and limited tool usage, limiting their ability to handle such complexity and diversity. To address this challenge, we propose \method, a novel misinformation detection agent that incorporates an extensible toolkit with Monte Carlo Tree Search (MCTS). The toolkit consists of modular tools such as web search, forgery detection, and consistency analysis. Each tool is described using standardized templates, enabling seamless integration and future expansion. To avoid inefficiency from using all tools simultaneously, a greedy search-based selector is proposed to identify a task-relevant subset. This subset then serves as the action space for MCTS to dynamically collect evidence and perform multi-source verification. To better align MCTS with the multi-source nature of misinformation detection, \method~ extends traditional MCTS with multi-source verification, which decomposes the task into coordinated subtasks targeting different forgery sources. A dual reward mechanism containing a reasoning trajectory score and a confidence score is further proposed to encourage a balance between exploration across mixed forgery sources and exploitation for more reliable evidence. We conduct ablation studies to confirm the effectiveness of the tree search mechanism and tool usage. Extensive experiments further show that \method~ consistently outperforms existing baselines on challenging mixed-source multimodal misinformation benchmarks, demonstrating its strong potential as a training-free detector.
comment: accepted by AAAI 2026 (Oral)
♻ ☆ Beyond Chains: Bridging Large Language Models and Knowledge Bases in Complex Question Answering AAAI2026
Knowledge Base Question Answering (KBQA) aims to answer natural language questions using structured knowledge from KBs. While LLM-only approaches offer generalization, they suffer from outdated knowledge, hallucinations, and lack of transparency. Chain-based KG-RAG methods address these issues by incorporating external KBs, but are limited to simple chain-structured questions due to the absence of planning and logical structuring. Inspired by semantic parsing methods, we propose PDRR: a four-stage framework consisting of Predict, Decompose, Retrieve, and Reason. Our method first predicts the question type and decomposes the question into structured triples. Then retrieves relevant information from KBs and guides the LLM as an agent to reason over and complete the decomposed triples. Experimental results demonstrate that PDRR consistently outperforms existing methods across various LLM backbones and achieves superior performance on both chain-structured and non-chain complex questions.
comment: AAAI2026 Main Track
♻ ☆ Diagnose, Localize, Align: A Full-Stack Framework for Reliable LLM Multi-Agent Systems under Instruction Conflicts
Large Language Model (LLM)-powered multi-agent systems (MAS) have rapidly advanced collaborative reasoning, tool use, and role-specialized coordination in complex tasks. However, reliability-critical deployment remains hindered by a systemic failure mode: hierarchical compliance under instruction conflicts (system-user, peer-peer), where agents misprioritize system-level rules in the presence of competing demands. Moreover, widely used macro-level metrics (e.g., pass@k) obscure these micro-level violations and offer little actionable guidance for remedy. In this work, we present a full-stack, three-stage framework: (1) Diagnose - Contextualized Role Adherence Score (CRAS), a query-wise, context-aware scoring metric that decomposes role adherence into four measurable dimensions; (2) Localize - attention drift analysis revealing that instruction conflicts are resolved by attention heads that are largely concentrated in middle layers; (3) Align - Surgical Alignment of Instruction Layers (SAIL), which installs LoRA only on the localized focal layers and optimizes a token-weighted DPO-style preference objective that credits tokens by their focal attentional contribution. Across standard benchmarks and MAS frameworks, our surgical approach improves instruction hierarchy compliance (e.g., +5.60% with AutoGen on MedQA) without full-model finetuning.
comment: Upon further review, we realized that the version submitted to arXiv was not the final draft and omits crucial results and discussion. To avoid confusion and ensure the integrity of the record, we request withdrawal and will resubmit once the complete work is ready
♻ ☆ Beyond Magic Words: Sharpness-Aware Prompt Evolving for Robust Large Language Models with TARE
The performance of Large Language Models (LLMs) hinges on carefully engineered prompts. However, prevailing prompt optimization methods, ranging from heuristic edits and reinforcement learning to evolutionary search, primarily target point-wise accuracy. They seldom enforce paraphrase invariance or searching stability, and therefore cannot remedy this brittleness in practice. Automated prompt search remains brittle: small, semantically preserving paraphrases often cause large performance swings. We identify this brittleness as the textual sharpness of the prompt landscape. In this work, we provide the first formal treatment of textual sharpness in the discrete, semantic space of prompts, together with an operational robustness criterion over a semantic neighborhood; the design is black-box or API-only, requiring no gradients to update the model's parameters. Then we introduce TARE (Textual Sharpness-Aware Evolving), a derivative-free framework that alternates between an inner, sampling-based adversarial search that stresses a prompt with hard paraphrases and an outer, robust selection that prefers candidates whose neighborhoods remain strong. We further propose ATARE, which learns anisotropic weights to shape the semantic neighborhood and adapts its radius over time to balance exploration and fidelity. Diverse tasks evaluate our methods, whose design for minimizing textual sharpness gap leads to prompts that preserve accuracy under paraphrasing, outperforming accuracy-only prompt search while remaining computationally practical.
comment: We have identified a critical methodological error in Section 3 of the manuscript, which invalidates the main results; therefore, we request withdrawal for further revision
♻ ☆ KTAE: A Model-Free Algorithm to Key-Tokens Advantage Estimation in Mathematical Reasoning NeurIPS 2025
Recent advances have demonstrated that integrating reinforcement learning with rule-based rewards can significantly enhance the reasoning capabilities of large language models, even without supervised fine-tuning. However, prevalent reinforcement learning algorithms such as GRPO and its variants like DAPO, suffer from a coarse granularity issue when computing the advantage. Specifically, they compute rollout-level advantages that assign identical values to every token within a sequence, failing to capture token-specific contributions and hindering effective learning. To address this limitation, we propose Key-token Advantage Estimation (KTAE) - a novel algorithm that estimates fine-grained, token-level advantages without introducing additional models. KTAE leverages the correctness of sampled rollouts and applies statistical analysis to quantify the importance of individual tokens within a sequence to the final outcome. This quantified token-level importance is then combined with the rollout-level advantage to obtain a more fine-grained token-level advantage estimation. Empirical results show that models trained with GRPO+KTAE and DAPO+KTAE outperform baseline methods across five mathematical reasoning benchmarks. Notably, they achieve higher accuracy with shorter responses and even surpass R1-Distill-Qwen-1.5B using the same base model.
comment: NeurIPS 2025 Poster
♻ ☆ A Human Behavioral Baseline for Collective Governance in Software Projects NeurIPS 2025
We study how open source communities describe participation and control through version controlled governance documents. Using a corpus of 710 projects with paired snapshots, we parse text into actors, rules, actions, and objects, then group them and measure change with entropy for evenness, richness for diversity, and Jensen Shannon divergence for drift. Projects define more roles and more actions over time, and these are distributed more evenly, while the composition of rules remains stable. These findings indicate that governance grows by expanding and balancing categories of participation without major shifts in prescriptive force. The analysis provides a reproducible baseline for evaluating whether future AI mediated workflows concentrate or redistribute authority.
comment: Algorithmic Collective Action Workshop @ NeurIPS 2025. arXiv admin note: text overlap with arXiv:2509.16295
♻ ☆ You Don't Need Pre-built Graphs for RAG: Retrieval Augmented Generation with Adaptive Reasoning Structures AAAI'26
Large language models (LLMs) often suffer from hallucination, generating factually incorrect statements when handling questions beyond their knowledge and perception. Retrieval-augmented generation (RAG) addresses this by retrieving query-relevant contexts from knowledge bases to support LLM reasoning. Recent advances leverage pre-constructed graphs to capture the relational connections among distributed documents, showing remarkable performance in complex tasks. However, existing Graph-based RAG (GraphRAG) methods rely on a costly process to transform the corpus into a graph, introducing overwhelming token cost and update latency. Moreover, real-world queries vary in type and complexity, requiring different logic structures for accurate reasoning. The pre-built graph may not align with these required structures, resulting in ineffective knowledge retrieval. To this end, we propose a $\textbf{Logic}$-aware $\textbf{R}etrieval$-$\textbf{A}$ugmented $\textbf{G}$eneration framework ($\textbf{LogicRAG}$) that dynamically extracts reasoning structures at inference time to guide adaptive retrieval without any pre-built graph. LogicRAG begins by decomposing the input query into a set of subproblems and constructing a directed acyclic graph (DAG) to model the logical dependencies among them. To support coherent multi-step reasoning, LogicRAG then linearizes the graph using topological sort, so that subproblems can be addressed in a logically consistent order. Besides, LogicRAG applies graph pruning to reduce redundant retrieval and uses context pruning to filter irrelevant context, significantly reducing the overall token cost. Extensive experiments demonstrate that LogicRAG achieves both superior performance and efficiency compared to state-of-the-art baselines.
comment: This work has been accepted to AAAI'26
♻ ☆ Magellan: Guided MCTS for Latent Space Exploration and Novelty Generation
Large Language Models (LLMs) often struggle with generating truly innovative ideas, typically defaulting to high-probability, familiar concepts within their training data's "gravity wells." While advanced search-based methods like Tree of Thoughts (ToT) attempt to mitigate this, they are fundamentally limited by their reliance on unprincipled, inconsistent self-evaluation heuristics to guide exploration. To address this gap, we introduce \textbf{Magellan}, a novel framework that reframes creative generation as a principled, guided exploration of an LLM's latent conceptual space. At its core, Magellan employs Monte Carlo Tree Search (MCTS) governed by a hierarchical guidance system. For long-range direction, a "semantic compass" vector, formulated via orthogonal projection, steers the search towards relevant novelty. For local, step-by-step decisions, a landscape-aware value function replaces flawed self-evaluation with an explicit reward structure that balances intrinsic coherence, extrinsic novelty, and narrative progress. Extensive experiments demonstrate that Magellan significantly outperforms strong baselines, including ReAct and ToT, in generating scientific ideas with superior plausibility and innovation. Our work shows that for creative discovery, a principled, guided search is more effective than unconstrained agency, paving the way for LLMs to become more capable partners in innovation.
comment: Accepted to 1st Open Conference on AI Agents for Science (agents4science 2025)
Computer Vision and Pattern Recognition
☆ Back to Basics: Let Denoising Generative Models Denoise
Today's denoising diffusion models do not "denoise" in the classical sense, i.e., they do not directly predict clean images. Rather, the neural networks predict noise or a noised quantity. In this paper, we suggest that predicting clean data and predicting noised quantities are fundamentally different. According to the manifold assumption, natural data should lie on a low-dimensional manifold, whereas noised quantities do not. With this assumption, we advocate for models that directly predict clean data, which allows apparently under-capacity networks to operate effectively in very high-dimensional spaces. We show that simple, large-patch Transformers on pixels can be strong generative models: using no tokenizer, no pre-training, and no extra loss. Our approach is conceptually nothing more than "$\textbf{Just image Transformers}$", or $\textbf{JiT}$, as we call it. We report competitive results using JiT with large patch sizes of 16 and 32 on ImageNet at resolutions of 256 and 512, where predicting high-dimensional noised quantities can fail catastrophically. With our networks mapping back to the basics of the manifold, our research goes back to basics and pursues a self-contained paradigm for Transformer-based diffusion on raw natural data.
comment: Tech report. Code at https://github.com/LTH14/JiT
☆ Scaling Spatial Intelligence with Multimodal Foundation Models
Despite remarkable progress, multimodal foundation models still exhibit surprising deficiencies in spatial intelligence. In this work, we explore scaling up multimodal foundation models to cultivate spatial intelligence within the SenseNova-SI family, built upon established multimodal foundations including visual understanding models (i.e., Qwen3-VL and InternVL3) and unified understanding and generation models (i.e., Bagel). We take a principled approach to constructing high-performing and robust spatial intelligence by systematically curating SenseNova-SI-8M: eight million diverse data samples under a rigorous taxonomy of spatial capabilities. SenseNova-SI demonstrates unprecedented performance across a broad range of spatial intelligence benchmarks: 68.7% on VSI-Bench, 43.3% on MMSI, 85.6% on MindCube, 54.6% on ViewSpatial, and 50.1% on SITE, while maintaining strong general multimodal understanding (e.g., 84.9% on MMBench-En). More importantly, we analyze the impact of data scaling, discuss early signs of emergent generalization capabilities enabled by diverse data training, analyze the risk of overfitting and language shortcuts, present a preliminary study on spatial chain-of-thought reasoning, and validate the potential downstream application. SenseNova-SI is an ongoing project, and this report will be updated continuously. All newly trained multimodal foundation models are publicly released to facilitate further research in this direction.
comment: Model: https://huggingface.co/collections/sensenova/sensenova-si; Code: https://github.com/OpenSenseNova/SenseNova-SI
☆ Segment Anything Across Shots: A Method and Benchmark AAAI 2026
This work focuses on multi-shot semi-supervised video object segmentation (MVOS), which aims at segmenting the target object indicated by an initial mask throughout a video with multiple shots. The existing VOS methods mainly focus on single-shot videos and struggle with shot discontinuities, thereby limiting their real-world applicability. We propose a transition mimicking data augmentation strategy (TMA) which enables cross-shot generalization with single-shot data to alleviate the severe annotated multi-shot data sparsity, and the Segment Anything Across Shots (SAAS) model, which can detect and comprehend shot transitions effectively. To support evaluation and future study in MVOS, we introduce Cut-VOS, a new MVOS benchmark with dense mask annotations, diverse object categories, and high-frequency transitions. Extensive experiments on YouMVOS and Cut-VOS demonstrate that the proposed SAAS achieves state-of-the-art performance by effectively mimicking, understanding, and segmenting across complex transitions. The code and datasets are released at https://henghuiding.com/SAAS/.
comment: AAAI 2026, Project Page: https://henghuiding.com/SAAS/
☆ UnSAMv2: Self-Supervised Learning Enables Segment Anything at Any Granularity
The Segment Anything Model (SAM) family has become a widely adopted vision foundation model, but its ability to control segmentation granularity remains limited. Users often need to refine results manually - by adding more prompts or selecting from pre-generated masks - to achieve the desired level of detail. This process can be ambiguous, as the same prompt may correspond to several plausible masks, and collecting dense annotations across all granularities is prohibitively expensive, making supervised solutions infeasible. To address this limitation, we introduce UnSAMv2, which enables segment anything at any granularity without human annotations. UnSAMv2 extends the divide-and-conquer strategy of UnSAM by discovering abundant mask-granularity pairs and introducing a novel granularity control embedding that enables precise, continuous control over segmentation scale. Remarkably, with only $6$K unlabeled images and $0.02\%$ additional parameters, UnSAMv2 substantially enhances SAM-2, achieving segment anything at any granularity across interactive, whole-image, and video segmentation tasks. Evaluated on over $11$ benchmarks, UnSAMv2 improves $\text{NoC}_{90}$ (5.69 $\rightarrow$ 4.75), 1-IoU (58.0 $\rightarrow$ 73.1), and $\text{AR}_{1000}$ (49.6 $\rightarrow$ 68.3), showing that small amounts of unlabeled data with a granularity-aware self-supervised learning method can unlock the potential of vision foundation models.
☆ Free-Form Scene Editor: Enabling Multi-Round Object Manipulation like in a 3D Engine AAAI 2026
Recent advances in text-to-image (T2I) diffusion models have significantly improved semantic image editing, yet most methods fall short in performing 3D-aware object manipulation. In this work, we present FFSE, a 3D-aware autoregressive framework designed to enable intuitive, physically-consistent object editing directly on real-world images. Unlike previous approaches that either operate in image space or require slow and error-prone 3D reconstruction, FFSE models editing as a sequence of learned 3D transformations, allowing users to perform arbitrary manipulations, such as translation, scaling, and rotation, while preserving realistic background effects (e.g., shadows, reflections) and maintaining global scene consistency across multiple editing rounds. To support learning of multi-round 3D-aware object manipulation, we introduce 3DObjectEditor, a hybrid dataset constructed from simulated editing sequences across diverse objects and scenes, enabling effective training under multi-round and dynamic conditions. Extensive experiments show that the proposed FFSE significantly outperforms existing methods in both single-round and multi-round 3D-aware editing scenarios.
comment: AAAI 2026, Project Page: https://henghuiding.com/FFSE/
☆ TiViBench: Benchmarking Think-in-Video Reasoning for Video Generative Models
The rapid evolution of video generative models has shifted their focus from producing visually plausible outputs to tackling tasks requiring physical plausibility and logical consistency. However, despite recent breakthroughs such as Veo 3's chain-of-frames reasoning, it remains unclear whether these models can exhibit reasoning capabilities similar to large language models (LLMs). Existing benchmarks predominantly evaluate visual fidelity and temporal coherence, failing to capture higher-order reasoning abilities. To bridge this gap, we propose TiViBench, a hierarchical benchmark specifically designed to evaluate the reasoning capabilities of image-to-video (I2V) generation models. TiViBench systematically assesses reasoning across four dimensions: i) Structural Reasoning & Search, ii) Spatial & Visual Pattern Reasoning, iii) Symbolic & Logical Reasoning, and iv) Action Planning & Task Execution, spanning 24 diverse task scenarios across 3 difficulty levels. Through extensive evaluations, we show that commercial models (e.g., Sora 2, Veo 3.1) demonstrate stronger reasoning potential, while open-source models reveal untapped potential that remains hindered by limited training scale and data diversity. To further unlock this potential, we introduce VideoTPO, a simple yet effective test-time strategy inspired by preference optimization. By performing LLM self-analysis on generated candidates to identify strengths and weaknesses, VideoTPO significantly enhances reasoning performance without requiring additional training, data, or reward models. Together, TiViBench and VideoTPO pave the way for evaluating and advancing reasoning in video generation models, setting a foundation for future research in this emerging field.
comment: Project: https://haroldchen19.github.io/TiViBench-Page/
☆ Crossing Borders: A Multimodal Challenge for Indian Poetry Translation and Image Generation
Indian poetry, known for its linguistic complexity and deep cultural resonance, has a rich and varied heritage spanning thousands of years. However, its layered meanings, cultural allusions, and sophisticated grammatical constructions often pose challenges for comprehension, especially for non-native speakers or readers unfamiliar with its context and language. Despite its cultural significance, existing works on poetry have largely overlooked Indian language poems. In this paper, we propose the Translation and Image Generation (TAI) framework, leveraging Large Language Models (LLMs) and Latent Diffusion Models through appropriate prompt tuning. Our framework supports the United Nations Sustainable Development Goals of Quality Education (SDG 4) and Reduced Inequalities (SDG 10) by enhancing the accessibility of culturally rich Indian-language poetry to a global audience. It includes (1) a translation module that uses an Odds Ratio Preference Alignment Algorithm to accurately translate morphologically rich poetry into English, and (2) an image generation module that employs a semantic graph to capture tokens, dependencies, and semantic relationships between metaphors and their meanings, to create visually meaningful representations of Indian poems. Our comprehensive experimental evaluation, including both human and quantitative assessments, demonstrates the superiority of TAI Diffusion in poem image generation tasks, outperforming strong baselines. To further address the scarcity of resources for Indian-language poetry, we introduce the Morphologically Rich Indian Language Poems MorphoVerse Dataset, comprising 1,570 poems across 21 low-resource Indian languages. By addressing the gap in poetry translation and visual comprehension, this work aims to broaden accessibility and enrich the reader's experience.
☆ Training-Free Multi-View Extension of IC-Light for Textual Position-Aware Scene Relighting
We introduce GS-Light, an efficient, textual position-aware pipeline for text-guided relighting of 3D scenes represented via Gaussian Splatting (3DGS). GS-Light implements a training-free extension of a single-input diffusion model to handle multi-view inputs. Given a user prompt that may specify lighting direction, color, intensity, or reference objects, we employ a large vision-language model (LVLM) to parse the prompt into lighting priors. Using off-the-shelf estimators for geometry and semantics (depth, surface normals, and semantic segmentation), we fuse these lighting priors with view-geometry constraints to compute illumination maps and generate initial latent codes for each view. These meticulously derived init latents guide the diffusion model to generate relighting outputs that more accurately reflect user expectations, especially in terms of lighting direction. By feeding multi-view rendered images, along with the init latents, into our multi-view relighting model, we produce high-fidelity, artistically relit images. Finally, we fine-tune the 3DGS scene with the relit appearance to obtain a fully relit 3D scene. We evaluate GS-Light on both indoor and outdoor scenes, comparing it to state-of-the-art baselines including per-view relighting, video relighting, and scene editing methods. Using quantitative metrics (multi-view consistency, imaging quality, aesthetic score, semantic similarity, etc.) and qualitative assessment (user studies), GS-Light demonstrates consistent improvements over baselines. Code and assets will be made available upon publication.
comment: Submitting for Neurocomputing
☆ QUILL: An Algorithm-Architecture Co-Design for Cache-Local Deformable Attention DATE 2026
Deformable transformers deliver state-of-the-art detection but map poorly to hardware due to irregular memory access and low arithmetic intensity. We introduce QUILL, a schedule-aware accelerator that turns deformable attention into cache-friendly, single-pass work. At its core, Distance-based Out-of-Order Querying (DOOQ) orders queries by spatial proximity; the look-ahead drives a region prefetch into an alternate buffer--forming a schedule-aware prefetch loop that overlaps memory and compute. A fused MSDeformAttn engine executes interpolation, Softmax, aggregation, and the final projection (W''m) in one pass without spilling intermediates, while small tensors are kept on-chip and surrounding dense layers run on integrated GEMMs. Implemented as RTL and evaluated end-to-end, QUILL achieves up to 7.29x higher throughput and 47.3x better energy efficiency than an RTX 4090, and exceeds prior accelerators by 3.26-9.82x in throughput and 2.01-6.07x in energy efficiency. With mixed-precision quantization, accuracy tracks FP32 within <=0.9 AP across Deformable and Sparse DETR variants. By converting sparsity into locality--and locality into utilization--QUILL delivers consistent, end-to-end speedups.
comment: Accepted to DATE 2026
☆ OlmoEarth: Stable Latent Image Modeling for Multimodal Earth Observation
Earth observation data presents a unique challenge: it is spatial like images, sequential like video or text, and highly multimodal. We present OlmoEarth: a multimodal, spatio-temporal foundation model that employs a novel self-supervised learning formulation, masking strategy, and loss all designed for the Earth observation domain. OlmoEarth achieves state-of-the-art performance compared to 12 other foundation models across a variety of research benchmarks and real-world tasks from external partners. When evaluating embeddings OlmoEarth achieves the best performance on 15 out of 24 tasks, and with full fine-tuning it is the best on 19 of 29 tasks. We deploy OlmoEarth as the backbone of an end-to-end platform for data collection, labeling, training, and inference of Earth observation models. The OlmoEarth Platform puts frontier foundation models and powerful data management tools into the hands of non-profits and NGOs working to solve the world's biggest problems. OlmoEarth source code, training data, and pre-trained weights are available at $\href{https://github.com/allenai/olmoearth_pretrain}{\text{https://github.com/allenai/olmoearth_pretrain}}$.
☆ Tuning for Two Adversaries: Enhancing the Robustness Against Transfer and Query-Based Attacks using Hyperparameter Tuning AAAI
In this paper, we present the first detailed analysis of how optimization hyperparameters -- such as learning rate, weight decay, momentum, and batch size -- influence robustness against both transfer-based and query-based attacks. Supported by theory and experiments, our study spans a variety of practical deployment settings, including centralized training, ensemble learning, and distributed training. We uncover a striking dichotomy: for transfer-based attacks, decreasing the learning rate significantly enhances robustness by up to $64\%$. In contrast, for query-based attacks, increasing the learning rate consistently leads to improved robustness by up to $28\%$ across various settings and data distributions. Leveraging these findings, we explore -- for the first time -- the optimization hyperparameter design space to jointly enhance robustness against both transfer-based and query-based attacks. Our results reveal that distributed models benefit the most from hyperparameter tuning, achieving a remarkable tradeoff by simultaneously mitigating both attack types more effectively than other training setups.
comment: To appear in the Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) 2026
☆ Distribution Matching Distillation Meets Reinforcement Learning
Distribution Matching Distillation (DMD) distills a pre-trained multi-step diffusion model to a few-step one to improve inference efficiency. However, the performance of the latter is often capped by the former. To circumvent this dilemma, we propose DMDR, a novel framework that combines Reinforcement Learning (RL) techniques into the distillation process. We show that for the RL of the few-step generator, the DMD loss itself is a more effective regularization compared to the traditional ones. In turn, RL can help to guide the mode coverage process in DMD more effectively. These allow us to unlock the capacity of the few-step generator by conducting distillation and RL simultaneously. Meanwhile, we design the dynamic distribution guidance and dynamic renoise sampling training strategies to improve the initial distillation process. The experiments demonstrate that DMDR can achieve leading visual quality, prompt coherence among few-step methods, and even exhibit performance that exceeds the multi-step teacher.
comment: The synergy of reinforcement learning and distribution matching distillation. See more: https://github.com/vvvvvjdy/dmdr
☆ PhysX-Anything: Simulation-Ready Physical 3D Assets from Single Image
3D modeling is shifting from static visual representations toward physical, articulated assets that can be directly used in simulation and interaction. However, most existing 3D generation methods overlook key physical and articulation properties, thereby limiting their utility in embodied AI. To bridge this gap, we introduce PhysX-Anything, the first simulation-ready physical 3D generative framework that, given a single in-the-wild image, produces high-quality sim-ready 3D assets with explicit geometry, articulation, and physical attributes. Specifically, we propose the first VLM-based physical 3D generative model, along with a new 3D representation that efficiently tokenizes geometry. It reduces the number of tokens by 193x, enabling explicit geometry learning within standard VLM token budgets without introducing any special tokens during fine-tuning and significantly improving generative quality. In addition, to overcome the limited diversity of existing physical 3D datasets, we construct a new dataset, PhysX-Mobility, which expands the object categories in prior physical 3D datasets by over 2x and includes more than 2K common real-world objects with rich physical annotations. Extensive experiments on PhysX-Mobility and in-the-wild images demonstrate that PhysX-Anything delivers strong generative performance and robust generalization. Furthermore, simulation-based experiments in a MuJoCo-style environment validate that our sim-ready assets can be directly used for contact-rich robotic policy learning. We believe PhysX-Anything can substantially empower a broad range of downstream applications, especially in embodied AI and physics-based simulation.
comment: Project page: https://physx-anything.github.io/
☆ Part-X-MLLM: Part-aware 3D Multimodal Large Language Model
We introduce Part-X-MLLM, a native 3D multimodal large language model that unifies diverse 3D tasks by formulating them as programs in a structured, executable grammar. Given an RGB point cloud and a natural language prompt, our model autoregressively generates a single, coherent token sequence encoding part-level bounding boxes, semantic descriptions, and edit commands. This structured output serves as a versatile interface to drive downstream geometry-aware modules for part-based generation and editing. By decoupling the symbolic planning from the geometric synthesis, our approach allows any compatible geometry engine to be controlled through a single, language-native frontend. We pre-train a dual-encoder architecture to disentangle structure from semantics and instruction-tune the model on a large-scale, part-centric dataset. Experiments demonstrate that our model excels at producing high-quality, structured plans, enabling state-of-the-art performance in grounded Q\&A, compositional generation, and localized editing through one unified interface. Project page: https://chunshi.wang/Part-X-MLLM/
☆ CacheFlow: Compressive Streaming Memory for Efficient Long-Form Video Understanding
Long-form video question answering (VQA) overwhelms current vision-language models (VLMs) because attention and key-value (KV) caches grow with runtime, forcing either expensive inference or near-sighted sliding windows. We introduce CacheFlow, a training-free pipeline that pairs Dynamic Token Dropping (DTD) with a compressive long-term memory. DTD prunes per-patch tokens online via cosine similarity to the previous frame, and surviving tokens are packed into fixed-size blocks. This online, per-frame processing makes our approach fundamentally suited for live streaming VQA. As blocks are processed, each one's keys are summarized by a tiny recurrent encoder to form a retrieval index, while the block's full KV pairs are offloaded and later rehydrated for generation, preserving answer fidelity. At inference, a consensus-based retrieval mechanism retrieves only the Top-K most relevant blocks and attends over both the retrieved and local context for precise, long-range reasoning. CacheFlow is drop-in, architecture-agnostic, and requires no fine-tuning. Experiments on both offline and streaming VQA benchmarks demonstrate that CacheFlow outperforms current strong baselines, while processing up to 87% less tokens. Our dual approach enables VLMs to be both efficient and context-aware, paving the way for practical long-form video understanding.
☆ Alpha Divergence Losses for Biometric Verification
Performance in face and speaker verification is largely driven by margin based softmax losses like CosFace and ArcFace. Recently introduced $α$-divergence loss functions offer a compelling alternative, particularly for their ability to induce sparse solutions (when $α>1$). However, integrating an angular margin-crucial for verification tasks-is not straightforward. We find this integration can be achieved in at least two distinct ways: via the reference measure (prior probabilities) or via the logits (unnormalized log-likelihoods). In this paper, we explore both pathways, deriving two novel margin-based $α$-divergence losses: Q-Margin (margin in the reference measure) and A3M (margin in the logits). We identify and address a critical training instability in A3M-caused by the interplay of penalized logits and sparsity-with a simple yet effective prototype re-initialization strategy. Our methods achieve significant performance gains on the challenging IJB-B and IJB-C face verification benchmarks. We demonstrate similarly strong performance in speaker verification on VoxCeleb. Crucially, our models significantly outperform strong baselines at low false acceptance rates (FAR). This capability is crucial for practical high-security applications, such as banking authentication, when minimizing false authentications is paramount.
☆ A Real-Time Driver Drowsiness Detection System Using MediaPipe and Eye Aspect Ratio
One of the major causes of road accidents is driver fatigue that causes thousands of fatalities and injuries every year. This study shows development of a Driver Drowsiness Detection System meant to improve the safety of the road by alerting drivers who are showing signs of being drowsy. The system is based on a standard webcam that tracks the facial features of the driver with the main emphasis on the examination of eye movements that can be conducted with the help of the Eye Aspect Ratio (EAR) method. The Face Mesh by MediaPipe is a lightweight framework that can identify facial landmarks with high accuracy and efficiency, which is considered to be important in real time use. The system detects the moments of long eye shutdowns or a very low rate of blinking which are manifestations of drowsiness and alerts the driver through sound to get her attention back. This system achieves a high-performance and low-cost driver monitoring solution with the help of the computational power of OpenCV to process the image and the MediaPipe to identify faces. Test data experimental analyses indicate that the system is very accurate and responds quicker; this confirms that it can be a component of the current Advanced Driving Assistance System (ADAS).
comment: 6 pages, 8 referenced papers
☆ Tissue Aware Nuclei Detection and Classification Model for Histopathology Images
Accurate nuclei detection and classification are fundamental to computational pathology, yet existing approaches are hindered by reliance on detailed expert annotations and insufficient use of tissue context. We present Tissue-Aware Nuclei Detection (TAND), a novel framework achieving joint nuclei detection and classification using point-level supervision enhanced by tissue mask conditioning. TAND couples a ConvNeXt-based encoder-decoder with a frozen Virchow-2 tissue segmentation branch, where semantic tissue probabilities selectively modulate the classification stream through a novel multi-scale Spatial Feature-wise Linear Modulation (Spatial-FiLM). On the PUMA benchmark, TAND achieves state-of-the-art performance, surpassing both tissue-agnostic baselines and mask-supervised methods. Notably, our approach demonstrates remarkable improvements in tissue-dependent cell types such as epithelium, endothelium, and stroma. To the best of our knowledge, this is the first method to condition per-cell classification on learned tissue masks, offering a practical pathway to reduce annotation burden.
comment: 5 pages, 3 figures. Under review
☆ AtlasMorph: Learning conditional deformable templates for brain MRI
Deformable templates, or atlases, are images that represent a prototypical anatomy for a population, and are often enhanced with probabilistic anatomical label maps. They are commonly used in medical image analysis for population studies and computational anatomy tasks such as registration and segmentation. Because developing a template is a computationally expensive process, relatively few templates are available. As a result, analysis is often conducted with sub-optimal templates that are not truly representative of the study population, especially when there are large variations within this population. We propose a machine learning framework that uses convolutional registration neural networks to efficiently learn a function that outputs templates conditioned on subject-specific attributes, such as age and sex. We also leverage segmentations, when available, to produce anatomical segmentation maps for the resulting templates. The learned network can also be used to register subject images to the templates. We demonstrate our method on a compilation of 3D brain MRI datasets, and show that it can learn high-quality templates that are representative of populations. We find that annotated conditional templates enable better registration than their unlabeled unconditional counterparts, and outperform other templates construction methods.
☆ ICLR: Inter-Chrominance and Luminance Interaction for Natural Color Restoration in Low-Light Image Enhancement AAAI-26
Low-Light Image Enhancement (LLIE) task aims at improving contrast while restoring details and textures for images captured in low-light conditions. HVI color space has made significant progress in this task by enabling precise decoupling of chrominance and luminance. However, for the interaction of chrominance and luminance branches, substantial distributional differences between the two branches prevalent in natural images limit complementary feature extraction, and luminance errors are propagated to chrominance channels through the nonlinear parameter. Furthermore, for interaction between different chrominance branches, images with large homogeneous-color regions usually exhibit weak correlation between chrominance branches due to concentrated distributions. Traditional pixel-wise losses exploit strong inter-branch correlations for co-optimization, causing gradient conflicts in weakly correlated regions. Therefore, we propose an Inter-Chrominance and Luminance Interaction (ICLR) framework including a Dual-stream Interaction Enhancement Module (DIEM) and a Covariance Correction Loss (CCL). The DIEM improves the extraction of complementary information from two dimensions, fusion and enhancement, respectively. The CCL utilizes luminance residual statistics to penalize chrominance errors and balances gradient conflicts by constraining chrominance branches covariance. Experimental results on multiple datasets show that the proposed ICLR framework outperforms state-of-the-art methods.
comment: Accepted by AAAI-26
☆ VVS: Accelerating Speculative Decoding for Visual Autoregressive Generation via Partial Verification Skipping
Visual autoregressive (AR) generation models have demonstrated strong potential for image generation, yet their next-token-prediction paradigm introduces considerable inference latency. Although speculative decoding (SD) has been proven effective for accelerating visual AR models, its "draft one step, then verify one step" paradigm prevents a direct reduction of the forward passes, thus restricting acceleration potential. Motivated by the visual token interchangeability, we for the first time to explore verification skipping in the SD process of visual AR model generation to explicitly cut the number of target model forward passes, thereby reducing inference latency. Based on an analysis of the drafting stage's characteristics, we observe that verification redundancy and stale feature reusability are key factors to retain generation quality and speedup for verification-free steps. Inspired by these two observations, we propose a novel SD framework VVS to accelerate visual AR generation via partial verification skipping, which integrates three complementary modules: (1) a verification-free token selector with dynamical truncation, (2) token-level feature caching and reuse, and (3) fine-grained skipped step scheduling. Consequently, VVS reduces the number of target model forward passes by a factor of $2.8\times$ relative to vanilla AR decoding while maintaining competitive generation quality, offering a superior speed-quality trade-off over conventional SD frameworks and revealing strong potential to reshape the SD paradigm.
☆ Adaptive Multi-Scale Integration Unlocks Robust Cell Annotation in Histopathology Images
Identifying cell types and subtypes from routine histopathology images is essential for improving the computational understanding of human disease. Existing tile-based models can capture detailed nuclear morphology but often fail to incorporate the broader tissue context that influences a cell's function and identity. In addition, available human annotations are typically coarse-grained and unevenly distributed across studies, making fine-grained subtype-level supervision difficult to obtain. To address these limitations, we introduce NuClass, a pathologist workflow inspired framework for cell-wise multi-scale integration of nuclear morphology and microenvironmental context. NuClass includes two main components: Path local, which focuses on nuclear morphology from 224-by-224 pixel crops, and Path global, which models the surrounding 1024-by-1024 pixel neighborhood. A learnable gating module adaptively balances local detail and contextual cues. To encourage complementary learning, we incorporate an uncertainty-guided objective that directs the global path to prioritize regions where the local path is uncertain. We also provide calibrated confidence estimates and Grad-CAM visualizations to enhance interpretability. To overcome the lack of high-quality annotations, we construct a marker-guided dataset from Xenium spatial transcriptomics assays, yielding single-cell resolution labels for more than two million cells across eight organs and 16 classes. Evaluated on three fully held-out cohorts, NuClass achieves up to 96 percent F1 for its best-performing class, outperforming strong baselines. Our results show that multi-scale, uncertainty-aware fusion can bridge the gap between slide-level pathological foundation models and reliable, cell-level phenotype prediction.
☆ Hierarchical Prompt Learning for Image- and Text-Based Person Re-Identification AAAI 2026
Person re-identification (ReID) aims to retrieve target pedestrian images given either visual queries (image-to-image, I2I) or textual descriptions (text-to-image, T2I). Although both tasks share a common retrieval objective, they pose distinct challenges: I2I emphasizes discriminative identity learning, while T2I requires accurate cross-modal semantic alignment. Existing methods often treat these tasks separately, which may lead to representation entanglement and suboptimal performance. To address this, we propose a unified framework named Hierarchical Prompt Learning (HPL), which leverages task-aware prompt modeling to jointly optimize both tasks. Specifically, we first introduce a Task-Routed Transformer, which incorporates dual classification tokens into a shared visual encoder to route features for I2I and T2I branches respectively. On top of this, we develop a hierarchical prompt generation scheme that integrates identity-level learnable tokens with instance-level pseudo-text tokens. These pseudo-tokens are derived from image or text features via modality-specific inversion networks, injecting fine-grained, instance-specific semantics into the prompts. Furthermore, we propose a Cross-Modal Prompt Regularization strategy to enforce semantic alignment in the prompt token space, ensuring that pseudo-prompts preserve source-modality characteristics while enhancing cross-modal transferability. Extensive experiments on multiple ReID benchmarks validate the effectiveness of our method, achieving state-of-the-art performance on both I2I and T2I tasks.
comment: 9 pages, 4 figures, accepted by AAAI 2026
☆ Opt3DGS: Optimizing 3D Gaussian Splatting with Adaptive Exploration and Curvature-Aware Exploitation AAAI 2026
3D Gaussian Splatting (3DGS) has emerged as a leading framework for novel view synthesis, yet its core optimization challenges remain underexplored. We identify two key issues in 3DGS optimization: entrapment in suboptimal local optima and insufficient convergence quality. To address these, we propose Opt3DGS, a robust framework that enhances 3DGS through a two-stage optimization process of adaptive exploration and curvature-guided exploitation. In the exploration phase, an Adaptive Weighted Stochastic Gradient Langevin Dynamics (SGLD) method enhances global search to escape local optima. In the exploitation phase, a Local Quasi-Newton Direction-guided Adam optimizer leverages curvature information for precise and efficient convergence. Extensive experiments on diverse benchmark datasets demonstrate that Opt3DGS achieves state-of-the-art rendering quality by refining the 3DGS optimization process without modifying its underlying representation.
comment: Accepted at AAAI 2026 as a Conference Paper
☆ TSE-Net: Semi-supervised Monocular Height Estimation from Single Remote Sensing Images
Monocular height estimation plays a critical role in 3D perception for remote sensing, offering a cost-effective alternative to multi-view or LiDAR-based methods. While deep learning has significantly advanced the capabilities of monocular height estimation, these methods remain fundamentally limited by the availability of labeled data, which are expensive and labor-intensive to obtain at scale. The scarcity of high-quality annotations hinders the generalization and performance of existing models. To overcome this limitation, we propose leveraging large volumes of unlabeled data through a semi-supervised learning framework, enabling the model to extract informative cues from unlabeled samples and improve its predictive performance. In this work, we introduce TSE-Net, a self-training pipeline for semi-supervised monocular height estimation. The pipeline integrates teacher, student, and exam networks. The student network is trained on unlabeled data using pseudo-labels generated by the teacher network, while the exam network functions as a temporal ensemble of the student network to stabilize performance. The teacher network is formulated as a joint regression and classification model: the regression branch predicts height values that serve as pseudo-labels, and the classification branch predicts height value classes along with class probabilities, which are used to filter pseudo-labels. Height value classes are defined using a hierarchical bi-cut strategy to address the inherent long-tailed distribution of heights, and the predicted class probabilities are calibrated with a Plackett-Luce model to reflect the expected accuracy of pseudo-labels. We evaluate the proposed pipeline on three datasets spanning different resolutions and imaging modalities. Codes are available at https://github.com/zhu-xlab/tse-net.
☆ Robust Defense Strategies for Multimodal Contrastive Learning: Efficient Fine-tuning Against Backdoor Attacks
The advent of multimodal deep learning models, such as CLIP, has unlocked new frontiers in a wide range of applications, from image-text understanding to classification tasks. However, these models are not safe for adversarial attacks, particularly backdoor attacks, which can subtly manipulate model behavior. Moreover, existing defense methods typically involve training from scratch or fine-tuning using a large dataset without pinpointing the specific labels that are affected. In this study, we introduce an innovative strategy to enhance the robustness of multimodal contrastive learning models against such attacks. In particular, given a poisoned CLIP model, our approach can identify the backdoor trigger and pinpoint the victim samples and labels in an efficient manner. To that end, an image segmentation ``oracle'' is introduced as the supervisor for the output of the poisoned CLIP. We develop two algorithms to rectify the poisoned model: (1) differentiating between CLIP and Oracle's knowledge to identify potential triggers; (2) pinpointing affected labels and victim samples, and curating a compact fine-tuning dataset. With this knowledge, we are allowed to rectify the poisoned CLIP model to negate backdoor effects. Extensive experiments on visual recognition benchmarks demonstrate our strategy is effective in CLIP-based backdoor defense.
☆ BootOOD: Self-Supervised Out-of-Distribution Detection via Synthetic Sample Exposure under Neural Collapse
Out-of-distribution (OOD) detection is critical for deploying image classifiers in safety-sensitive environments, yet existing detectors often struggle when OOD samples are semantically similar to the in-distribution (ID) classes. We present BootOOD, a fully self-supervised OOD detection framework that bootstraps exclusively from ID data and is explicitly designed to handle semantically challenging OOD samples. BootOOD synthesizes pseudo-OOD features through simple transformations of ID representations and leverages Neural Collapse (NC), where ID features cluster tightly around class means with consistent feature norms. Unlike prior approaches that aim to constrain OOD features into subspaces orthogonal to the collapsed ID means, BootOOD introduces a lightweight auxiliary head that performs radius-based classification on feature norms. This design decouples OOD detection from the primary classifier and imposes a relaxed requirement: OOD samples are learned to have smaller feature norms than ID features, which is easier to satisfy when ID and OOD are semantically close. Experiments on CIFAR-10, CIFAR-100, and ImageNet-200 show that BootOOD outperforms prior post-hoc methods, surpasses training-based methods without outlier exposure, and is competitive with state-of-the-art outlier-exposure approaches while maintaining or improving ID accuracy.
comment: 8 pages
☆ Accuracy is Not Enough: Poisoning Interpretability in Federated Learning via Color Skew
As machine learning models are increasingly deployed in safety-critical domains, visual explanation techniques have become essential tools for supporting transparency. In this work, we reveal a new class of attacks that compromise model interpretability without affecting accuracy. Specifically, we show that small color perturbations applied by adversarial clients in a federated learning setting can shift a model's saliency maps away from semantically meaningful regions while keeping the prediction unchanged. The proposed saliency-aware attack framework, called Chromatic Perturbation Module, systematically crafts adversarial examples by altering the color contrast between foreground and background in a way that disrupts explanation fidelity. These perturbations accumulate across training rounds, poisoning the global model's internal feature attributions in a stealthy and persistent manner. Our findings challenge a common assumption in model auditing that correct predictions imply faithful explanations and demonstrate that interpretability itself can be an attack surface. We evaluate this vulnerability across multiple datasets and show that standard training pipelines are insufficient to detect or mitigate explanation degradation, especially in the federated learning setting, where subtle color perturbations are harder to discern. Our attack reduces peak activation overlap in Grad-CAM explanations by up to 35% while preserving classification accuracy above 96% on all evaluated datasets.
☆ Minimax Multi-Target Conformal Prediction with Applications to Imaging Inverse Problems
In ill-posed imaging inverse problems, uncertainty quantification remains a fundamental challenge, especially in safety-critical applications. Recently, conformal prediction has been used to quantify the uncertainty that the inverse problem contributes to downstream tasks like image classification, image quality assessment, fat mass quantification, etc. While existing works handle only a scalar estimation target, practical applications often involve multiple targets. In response, we propose an asymptotically minimax approach to multi-target conformal prediction that provides tight prediction intervals while ensuring joint marginal coverage. We then outline how our minimax approach can be applied to multi-metric blind image quality assessment, multi-task uncertainty quantification, and multi-round measurement acquisition. Finally, we numerically demonstrate the benefits of our minimax method, relative to existing multi-target conformal prediction methods, using both synthetic and magnetic resonance imaging (MRI) data.
☆ Mapping the Vanishing and Transformation of Urban Villages in China
Urban villages (UVs), informal settlements embedded within China's urban fabric, have undergone widespread demolition and redevelopment in recent decades. However, there remains a lack of systematic evaluation of whether the demolished land has been effectively reused, raising concerns about the efficacy and sustainability of current redevelopment practices. To address the gap, this study proposes a deep learning-based framework to monitor the spatiotemporal changes of UVs in China. Specifically, semantic segmentation of multi-temporal remote sensing imagery is first used to map evolving UV boundaries, and then post-demolition land use is classified into six categories based on the "remained-demolished-redeveloped" phase: incomplete demolition, vacant land, construction sites, buildings, green spaces, and others. Four representative cities from China's four economic regions were selected as the study areas, i.e., Guangzhou (East), Zhengzhou (Central), Xi'an (West), and Harbin (Northeast). The results indicate: 1) UV redevelopment processes were frequently prolonged; 2) redevelopment transitions primarily occurred in peripheral areas, whereas urban cores remained relatively stable; and 3) three spatiotemporal transformation pathways, i.e., synchronized redevelopment, delayed redevelopment, and gradual optimization, were revealed. This study highlights the fragmented, complex and nonlinear nature of UV redevelopment, underscoring the need for tiered and context-sensitive planning strategies. By linking spatial dynamics with the context of redevelopment policies, the findings offer valuable empirical insights that support more inclusive, efficient, and sustainable urban renewal, while also contributing to a broader global understanding of informal settlement transformations.
comment: Appendix A. Supplementary data at https://ars.els-cdn.com/content/image/1-s2.0-S2210670725008418-mmc1.docx
☆ Language-Guided Invariance Probing of Vision-Language Models
Recent vision-language models (VLMs) such as CLIP, OpenCLIP, EVA02-CLIP and SigLIP achieve strong zero-shot performance, but it is unclear how reliably they respond to controlled linguistic perturbations. We introduce Language-Guided Invariance Probing (LGIP), a benchmark that measures (i) invariance to meaning-preserving paraphrases and (ii) sensitivity to meaning-changing semantic flips in image-text matching. Using 40k MS COCO images with five human captions each, we automatically generate paraphrases and rule-based flips that alter object category, color or count, and summarize model behavior with an invariance error, a semantic sensitivity gap and a positive-rate statistic. Across nine VLMs, EVA02-CLIP and large OpenCLIP variants lie on a favorable invariance-sensitivity frontier, combining low paraphrase-induced variance with consistently higher scores for original captions than for their flipped counterparts. In contrast, SigLIP and SigLIP2 show much larger invariance error and often prefer flipped captions to the human descriptions, especially for object and color edits. These failures are largely invisible to standard retrieval metrics, indicating that LGIP provides a model-agnostic diagnostic for the linguistic robustness of VLMs beyond conventional accuracy scores.
☆ InterMoE: Individual-Specific 3D Human Interaction Generation via Dynamic Temporal-Selective MoE AAAI-26
Generating high-quality human interactions holds significant value for applications like virtual reality and robotics. However, existing methods often fail to preserve unique individual characteristics or fully adhere to textual descriptions. To address these challenges, we introduce InterMoE, a novel framework built on a Dynamic Temporal-Selective Mixture of Experts. The core of InterMoE is a routing mechanism that synergistically uses both high-level text semantics and low-level motion context to dispatch temporal motion features to specialized experts. This allows experts to dynamically determine the selection capacity and focus on critical temporal features, thereby preserving specific individual characteristic identities while ensuring high semantic fidelity. Extensive experiments show that InterMoE achieves state-of-the-art performance in individual-specific high-fidelity 3D human interaction generation, reducing FID scores by 9% on the InterHuman dataset and 22% on InterX.
comment: Accepted to AAAI-26. Codes: https://github.com/Lighten001/InterMoE
☆ Semantic Document Derendering: SVG Reconstruction via Vision-Language Modeling
Multimedia documents such as slide presentations and posters are designed to be interactive and easy to modify. Yet, they are often distributed in a static raster format, which limits editing and customization. Restoring their editability requires converting these raster images back into structured vector formats. However, existing geometric raster-vectorization methods, which rely on low-level primitives like curves and polygons, fall short at this task. Specifically, when applied to complex documents like slides, they fail to preserve the high-level structure, resulting in a flat collection of shapes where the semantic distinction between image and text elements is lost. To overcome this limitation, we address the problem of semantic document derendering by introducing SliDer, a novel framework that uses Vision-Language Models (VLMs) to derender slide images as compact and editable Scalable Vector Graphic (SVG) representations. SliDer detects and extracts attributes from individual image and text elements in a raster input and organizes them into a coherent SVG format. Crucially, the model iteratively refines its predictions during inference in a process analogous to human design, generating SVG code that more faithfully reconstructs the original raster upon rendering. Furthermore, we introduce Slide2SVG, a novel dataset comprising raster-SVG pairs of slide documents curated from real-world scientific presentations, to facilitate future research in this domain. Our results demonstrate that SliDer achieves a reconstruction LPIPS of 0.069 and is favored by human evaluators in 82.9% of cases compared to the strongest zero-shot VLM baseline.
☆ Trust in Vision-Language Models: Insights from a Participatory User Workshop
With the growing deployment of Vision-Language Models (VLMs), pre-trained on large image-text and video-text datasets, it is critical to equip users with the tools to discern when to trust these systems. However, examining how user trust in VLMs builds and evolves remains an open problem. This problem is exacerbated by the increasing reliance on AI models as judges for experimental validation, to bypass the cost and implications of running participatory design studies directly with users. Following a user-centred approach, this paper presents preliminary results from a workshop with prospective VLM users. Insights from this pilot workshop inform future studies aimed at contextualising trust metrics and strategies for participants' engagement to fit the case of user-VLM interaction.
☆ Unlocking the Forgery Detection Potential of Vanilla MLLMs: A Novel Training-Free Pipeline
With the rapid advancement of artificial intelligence-generated content (AIGC) technologies, including multimodal large language models (MLLMs) and diffusion models, image generation and manipulation have become remarkably effortless. Existing image forgery detection and localization (IFDL) methods often struggle to generalize across diverse datasets and offer limited interpretability. Nowadays, MLLMs demonstrate strong generalization potential across diverse vision-language tasks, and some studies introduce this capability to IFDL via large-scale training. However, such approaches cost considerable computational resources, while failing to reveal the inherent generalization potential of vanilla MLLMs to address this problem. Inspired by this observation, we propose Foresee, a training-free MLLM-based pipeline tailored for image forgery analysis. It eliminates the need for additional training and enables a lightweight inference process, while surpassing existing MLLM-based methods in both tamper localization accuracy and the richness of textual explanations. Foresee employs a type-prior-driven strategy and utilizes a Flexible Feature Detector (FFD) module to specifically handle copy-move manipulations, thereby effectively unleashing the potential of vanilla MLLMs in the forensic domain. Extensive experiments demonstrate that our approach simultaneously achieves superior localization accuracy and provides more comprehensive textual explanations. Moreover, Foresee exhibits stronger generalization capability, outperforming existing IFDL methods across various tampering types, including copy-move, splicing, removal, local enhancement, deepfake, and AIGC-based editing. The code will be released in the final version.
☆ FUSE: A Flow-based Mapping Between Shapes
We introduce a novel neural representation for maps between 3D shapes based on flow-matching models, which is computationally efficient and supports cross-representation shape matching without large-scale training or data-driven procedures. 3D shapes are represented as the probability distribution induced by a continuous and invertible flow mapping from a fixed anchor distribution. Given a source and a target shape, the composition of the inverse flow (source to anchor) with the forward flow (anchor to target), we continuously map points between the two surfaces. By encoding the shapes with a pointwise task-tailored embedding, this construction provides an invertible and modality-agnostic representation of maps between shapes across point clouds, meshes, signed distance fields (SDFs), and volumetric data. The resulting representation consistently achieves high coverage and accuracy across diverse benchmarks and challenging settings in shape matching. Beyond shape matching, our framework shows promising results in other tasks, including UV mapping and registration of raw point cloud scans of human bodies.
comment: 11 pages, 9 figures
☆ VOPE: Revisiting Hallucination of Vision-Language Models in Voluntary Imagination Task
Most research on hallucinations in Large Vision-Language Models (LVLMs) focuses on factual description tasks that prohibit any output absent from the image. However, little attention has been paid to hallucinations in voluntary imagination tasks, e.g., story writing, where the models are expected to generate novel content beyond the given image. In these tasks, it is inappropriate to simply regard such imagined novel content as hallucinations. To address this limitation, we introduce Voluntary-imagined Object Presence Evaluation (VOPE)-a novel method to assess LVLMs' hallucinations in voluntary imagination tasks via presence evaluation. Specifically, VOPE poses recheck-based questions to evaluate how an LVLM interprets the presence of the imagined objects in its own response. The consistency between the model's interpretation and the object's presence in the image is then used to determine whether the model hallucinates when generating the response. We apply VOPE to several mainstream LVLMs and hallucination mitigation methods, revealing two key findings: (1) most LVLMs hallucinate heavily during voluntary imagination, and their performance in presence evaluation is notably poor on imagined objects; (2) existing hallucination mitigation methods show limited effect in voluntary imagination tasks, making this an important direction for future research.
comment: 8 pages
☆ Delineate Anything Flow: Fast, Country-Level Field Boundary Detection from Any Source
Accurate delineation of agricultural field boundaries from satellite imagery is essential for land management and crop monitoring, yet existing methods often produce incomplete boundaries, merge adjacent fields, and struggle to scale. We present the Delineate Anything Flow (DelAnyFlow) methodology, a resolution-agnostic approach for large-scale field boundary mapping. DelAnyFlow combines the DelAny instance segmentation model, based on a YOLOv11 backbone and trained on the large-scale Field Boundary Instance Segmentation-22M (FBIS 22M) dataset, with a structured post-processing, merging, and vectorization sequence to generate topologically consistent vector boundaries. FBIS 22M, the largest dataset of its kind, contains 672,909 multi-resolution image patches (0.25-10m) and 22.9million validated field instances. The DelAny model delivers state-of-the-art accuracy with over 100% higher mAP and 400x faster inference than SAM2. DelAny demonstrates strong zero-shot generalization and supports national-scale applications: using Sentinel 2 data for 2024, DelAnyFlow generated a complete field boundary layer for Ukraine (603,000km2) in under six hours on a single workstation. DelAnyFlow outputs significantly improve boundary completeness relative to operational products from Sinergise Solutions and NASA Harvest, particularly in smallholder and fragmented systems (0.25-1ha). For Ukraine, DelAnyFlow delineated 3.75M fields at 5m and 5.15M at 2.5m, compared to 2.66M detected by Sinergise Solutions and 1.69M by NASA Harvest. This work delivers a scalable, cost-effective methodology for field delineation in regions lacking digital cadastral data. A project landing page with links to model weights, code, national-scale vector outputs, and dataset is available at https://lavreniuk.github.io/Delineate-Anything/.
☆ Attention Grounded Enhancement for Visual Document Retrieval
Visual document retrieval requires understanding heterogeneous and multi-modal content to satisfy information needs. Recent advances use screenshot-based document encoding with fine-grained late interaction, significantly improving retrieval performance. However, retrievers are still trained with coarse global relevance labels, without revealing which regions support the match. As a result, retrievers tend to rely on surface-level cues and struggle to capture implicit semantic connections, hindering their ability to handle non-extractive queries. To alleviate this problem, we propose a \textbf{A}ttention-\textbf{G}rounded \textbf{RE}triever \textbf{E}nhancement (AGREE) framework. AGREE leverages cross-modal attention from multimodal large language models as proxy local supervision to guide the identification of relevant document regions. During training, AGREE combines local signals with the global signals to jointly optimize the retriever, enabling it to learn not only whether documents match, but also which content drives relevance. Experiments on the challenging ViDoRe V2 benchmark show that AGREE significantly outperforms the global-supervision-only baseline. Quantitative and qualitative analyses further demonstrate that AGREE promotes deeper alignment between query terms and document regions, moving beyond surface-level matching toward more accurate and interpretable retrieval. Our code is available at: https://anonymous.4open.science/r/AGREE-2025.
☆ What Color Is It? A Text-Interference Multimodal Hallucination Benchmark
With the rapid advancement of Large Models, numerous text-and-vision-fused Multimodal Large Models (MLMs) have emerged. However, these MLMs remain susceptible to informational interference in visual perception, particularly in color perception, which introduces an additional risk of hallucination. To validate this hypothesis, we introduce the "What Color Is It" dataset, a novel benchmark constructed using a simple method to trigger single-modality visual hallucination in MLMs. Based on this dataset, we further investigate the underlying causes of hallucination in the visual modality of MLMs and propose potential solutions to enhance their robustness.
☆ TripleFDS: Triple Feature Disentanglement and Synthesis for Scene Text Editing AAAI2026
Scene Text Editing (STE) aims to naturally modify text in images while preserving visual consistency, the decisive factors of which can be divided into three parts, i.e., text style, text content, and background. Previous methods have struggled with incomplete disentanglement of editable attributes, typically addressing only one aspect - such as editing text content - thus limiting controllability and visual consistency. To overcome these limitations, we propose TripleFDS, a novel framework for STE with disentangled modular attributes, and an accompanying dataset called SCB Synthesis. SCB Synthesis provides robust training data for triple feature disentanglement by utilizing the "SCB Group", a novel construct that combines three attributes per image to generate diverse, disentangled training groups. Leveraging this construct as a basic training unit, TripleFDS first disentangles triple features, ensuring semantic accuracy through inter-group contrastive regularization and reducing redundancy through intra-sample multi-feature orthogonality. In the synthesis phase, TripleFDS performs feature remapping to prevent "shortcut" phenomena during reconstruction and mitigate potential feature leakage. Trained on 125,000 SCB Groups, TripleFDS achieves state-of-the-art image fidelity (SSIM of 44.54) and text accuracy (ACC of 93.58%) on the mainstream STE benchmarks. Besides superior performance, the more flexible editing of TripleFDS supports new operations such as style replacement and background transfer. Code: https://github.com/yusenbao01/TripleFDS
comment: Accepted by AAAI2026
☆ Descriptor: Distance-Annotated Traffic Perception Question Answering (DTPQA)
The remarkable progress of Vision-Language Models (VLMs) on a variety of tasks has raised interest in their application to automated driving. However, for these models to be trusted in such a safety-critical domain, they must first possess robust perception capabilities, i.e., they must be capable of understanding a traffic scene, which can often be highly complex, with many things happening simultaneously. Moreover, since critical objects and agents in traffic scenes are often at long distances, we require systems with not only strong perception capabilities at close distances (up to 20 meters), but also at long (30+ meters) range. Therefore, it is important to evaluate the perception capabilities of these models in isolation from other skills like reasoning or advanced world knowledge. Distance-Annotated Traffic Perception Question Answering (DTPQA) is a Visual Question Answering (VQA) benchmark designed specifically for this purpose: it can be used to evaluate the perception systems of VLMs in traffic scenarios using trivial yet crucial questions relevant to driving decisions. It consists of two parts: a synthetic benchmark (DTP-Synthetic) created using a simulator, and a real-world benchmark (DTP-Real) built on top of existing images of real traffic scenes. Additionally, DTPQA includes distance annotations, i.e., how far the object in question is from the camera. More specifically, each DTPQA sample consists of (at least): (a) an image, (b) a question, (c) the ground truth answer, and (d) the distance of the object in question, enabling analysis of how VLM performance degrades with increasing object distance. In this article, we provide the dataset itself along with the Python scripts used to create it, which can be used to generate additional data of the same kind.
☆ Generalized Denoising Diffusion Codebook Models (gDDCM): Tokenizing images using a pre-trained diffusion model
Recently, the Denoising Diffusion Codebook Models (DDCM) was proposed. DDCM leverages the Denoising Diffusion Probabilistic Model (DDPM) and replaces the random noise in the backward process with noise sampled from specific sets according to a predefined rule, thereby enabling image compression. However, DDCM cannot be applied to methods other than DDPM. In this paper, we propose the generalized Denoising Diffusion Compression Model (gDDCM), which extends DDCM to mainstream diffusion models and their variants, including DDPM, Score-Based Models, Consistency Models, and Rectified Flow. We evaluate our method on CIFAR-10 and LSUN Bedroom datasets. Experimental results demonstrate that our approach successfully generalizes DDCM to the aforementioned models and achieves improved performance.
comment: in Chinese language
☆ Semi-Supervised Multi-Task Learning for Interpretable Quality As- sessment of Fundus Images
Retinal image quality assessment (RIQA) supports computer-aided diagnosis of eye diseases. However, most tools classify only overall image quality, without indicating acquisition defects to guide recapture. This gap is mainly due to the high cost of detailed annotations. In this paper, we aim to mitigate this limitation by introducing a hybrid semi-supervised learning approach that combines manual labels for overall quality with pseudo-labels of quality details within a multi-task framework. Our objective is to obtain more interpretable RIQA models without requiring extensive manual labeling. Pseudo-labels are generated by a Teacher model trained on a small dataset and then used to fine-tune a pre-trained model in a multi-task setting. Using a ResNet-18 backbone, we show that these weak annotations improve quality assessment over single-task baselines (F1: 0.875 vs. 0.863 on EyeQ, and 0.778 vs. 0.763 on DeepDRiD), matching or surpassing existing methods. The multi-task model achieved performance statistically comparable to the Teacher for most detail prediction tasks (p > 0.05). In a newly annotated EyeQ subset released with this paper, our model performed similarly to experts, suggesting that pseudo-label noise aligns with expert variability. Our main finding is that the proposed semi-supervised approach not only improves overall quality assessment but also provides interpretable feedback on capture conditions (illumination, clarity, contrast). This enhances interpretability at no extra manual labeling cost and offers clinically actionable outputs to guide image recapture.
☆ YOLO Meets Mixture-of-Experts: Adaptive Expert Routing for Robust Object Detection
This paper presents a novel Mixture-of-Experts framework for object detection, incorporating adaptive routing among multiple YOLOv9-T experts to enable dynamic feature specialization and achieve higher mean Average Precision (mAP) and Average Recall (AR) compared to a single YOLOv9-T model.
comment: 1 figure, 1 table
☆ Computer Vision based group activity detection and action spotting
Group activity detection in multi-person scenes is challenging due to complex human interactions, occlusions, and variations in appearance over time. This work presents a computer vision based framework for group activity recognition and action spotting using a combination of deep learning models and graph based relational reasoning. The system first applies Mask R-CNN to obtain accurate actor localization through bounding boxes and instance masks. Multiple backbone networks, including Inception V3, MobileNet, and VGG16, are used to extract feature maps, and RoIAlign is applied to preserve spatial alignment when generating actor specific features. The mask information is then fused with the feature maps to obtain refined masked feature representations for each actor. To model interactions between individuals, we construct Actor Relation Graphs that encode appearance similarity and positional relations using methods such as normalized cross correlation, sum of absolute differences, and dot product. Graph Convolutional Networks operate on these graphs to reason about relationships and predict both individual actions and group level activities. Experiments on the Collective Activity dataset demonstrate that the combination of mask based feature refinement, robust similarity search, and graph neural network reasoning leads to improved recognition performance across both crowded and non crowded scenarios. This approach highlights the potential of integrating segmentation, feature extraction, and relational graph reasoning for complex video understanding tasks.
☆ DriveLiDAR4D: Sequential and Controllable LiDAR Scene Generation for Autonomous Driving AAAI2026
The generation of realistic LiDAR point clouds plays a crucial role in the development and evaluation of autonomous driving systems. Although recent methods for 3D LiDAR point cloud generation have shown significant improvements, they still face notable limitations, including the lack of sequential generation capabilities and the inability to produce accurately positioned foreground objects and realistic backgrounds. These shortcomings hinder their practical applicability. In this paper, we introduce DriveLiDAR4D, a novel LiDAR generation pipeline consisting of multimodal conditions and a novel sequential noise prediction model LiDAR4DNet, capable of producing temporally consistent LiDAR scenes with highly controllable foreground objects and realistic backgrounds. To the best of our knowledge, this is the first work to address the sequential generation of LiDAR scenes with full scene manipulation capability in an end-to-end manner. We evaluated DriveLiDAR4D on the nuScenes and KITTI datasets, where we achieved an FRD score of 743.13 and an FVD score of 16.96 on the nuScenes dataset, surpassing the current state-of-the-art (SOTA) method, UniScene, with an performance boost of 37.2% in FRD and 24.1% in FVD, respectively.
comment: AAAI2026
☆ DAP: A Discrete-token Autoregressive Planner for Autonomous Driving
Gaining sustainable performance improvement with scaling data and model budget remains a pivotal yet unresolved challenge in autonomous driving. While autoregressive models exhibited promising data-scaling efficiency in planning tasks, predicting ego trajectories alone suffers sparse supervision and weakly constrains how scene evolution should shape ego motion. Therefore, we introduce DAP, a discrete-token autoregressive planner that jointly forecasts BEV semantics and ego trajectories, thereby enforcing comprehensive representation learning and allowing predicted dynamics to directly condition ego motion. In addition, we incorporate a reinforcement-learning-based fine-tuning, which preserves supervised behavior cloning priors while injecting reward-guided improvements. Despite a compact 160M parameter budget, DAP achieves state-of-the-art performance on open-loop metrics and delivers competitive closed-loop results on the NAVSIM benchmark. Overall, the fully discrete-token autoregressive formulation operating on both rasterized BEV and ego actions provides a compact yet scalable planning paradigm for autonomous driving.
☆ CorrectAD: A Self-Correcting Agentic System to Improve End-to-end Planning in Autonomous Driving
End-to-end planning methods are the de facto standard of the current autonomous driving system, while the robustness of the data-driven approaches suffers due to the notorious long-tail problem (i.e., rare but safety-critical failure cases). In this work, we explore whether recent diffusion-based video generation methods (a.k.a. world models), paired with structured 3D layouts, can enable a fully automated pipeline to self-correct such failure cases. We first introduce an agent to simulate the role of product manager, dubbed PM-Agent, which formulates data requirements to collect data similar to the failure cases. Then, we use a generative model that can simulate both data collection and annotation. However, existing generative models struggle to generate high-fidelity data conditioned on 3D layouts. To address this, we propose DriveSora, which can generate spatiotemporally consistent videos aligned with the 3D annotations requested by PM-Agent. We integrate these components into our self-correcting agentic system, CorrectAD. Importantly, our pipeline is an end-to-end model-agnostic and can be applied to improve any end-to-end planner. Evaluated on both nuScenes and a more challenging in-house dataset across multiple end-to-end planners, CorrectAD corrects 62.5% and 49.8% of failure cases, reducing collision rates by 39% and 27%, respectively.
☆ SkyReels-Text: Fine-grained Font-Controllable Text Editing for Poster Design
Artistic design such as poster design often demands rapid yet precise modification of textual content while preserving visual harmony and typographic intent, especially across diverse font styles. Although modern image editing models have grown increasingly powerful, they still fall short in fine-grained, font-aware text manipulation, limiting their utility in professional design workflows such as poster editing. To address this issue, we present SkyReels-Text, a novel font-controllable framework for precise poster text editing. Our method enables simultaneous editing of multiple text regions, each rendered in distinct typographic styles, while preserving the visual appearance of non-edited regions. Notably, our model requires neither font labels nor fine-tuning during inference: users can simply provide cropped glyph patches corresponding to their desired typography, even if the font is not included in any standard library. Extensive experiments on multiple datasets, including handwrittent text benchmarks, SkyReels-Text achieves state-of-the-art performance in both text fidelity and visual realism, offering unprecedented control over font families, and stylistic nuances. This work bridges the gap between general-purpose image editing and professional-grade typographic design.
☆ TabFlash: Efficient Table Understanding with Progressive Question Conditioning and Token Focusing AAAI 2026
Table images present unique challenges for effective and efficient understanding due to the need for question-specific focus and the presence of redundant background regions. Existing Multimodal Large Language Model (MLLM) approaches often overlook these characteristics, resulting in uninformative and redundant visual representations. To address these issues, we aim to generate visual features that are both informative and compact to improve table understanding. We first propose progressive question conditioning, which injects the question into Vision Transformer layers with gradually increasing frequency, considering each layer's capacity to handle additional information, to generate question-aware visual features. To reduce redundancy, we introduce a pruning strategy that discards background tokens, thereby improving efficiency. To mitigate information loss from pruning, we further propose token focusing, a training strategy that encourages the model to concentrate essential information in the retained tokens. By combining these approaches, we present TabFlash, an efficient and effective MLLM for table understanding. TabFlash achieves state-of-the-art performance, outperforming both open-source and proprietary MLLMs, while requiring 27% less FLOPs and 30% less memory usage compared to the second-best MLLM.
comment: AAAI 2026 (Main Technical Track)
☆ Towards Metric-Aware Multi-Person Mesh Recovery by Jointly Optimizing Human Crowd in Camera Space
Multi-person human mesh recovery from a single image is a challenging task, hindered by the scarcity of in-the-wild training data. Prevailing in-the-wild human mesh pseudo-ground-truth (pGT) generation pipelines are single-person-centric, where each human is processed individually without joint optimization. This oversight leads to a lack of scene-level consistency, producing individuals with conflicting depths and scales within the same image. To address this, we introduce Depth-conditioned Translation Optimization (DTO), a novel optimization-based method that jointly refines the camera-space translations of all individuals in a crowd. By leveraging anthropometric priors on human height and depth cues from a monocular depth estimator, DTO solves for a scene-consistent placement of all subjects within a principled Maximum a posteriori (MAP) framework. Applying DTO to the 4D-Humans dataset, we construct DTO-Humans, a new large-scale pGT dataset of 0.56M high-quality, scene-consistent multi-person images, featuring dense crowds with an average of 4.8 persons per image. Furthermore, we propose Metric-Aware HMR, an end-to-end network that directly estimates human mesh and camera parameters in metric scale. This is enabled by a camera branch and a novel relative metric loss that enforces plausible relative scales. Extensive experiments demonstrate that our method achieves state-of-the-art performance on relative depth reasoning and human mesh recovery. Code and data will be released publicly.
☆ SF-Recon: Simplification-Free Lightweight Building Reconstruction via 3D Gaussian Splatting
Lightweight building surface models are crucial for digital city, navigation, and fast geospatial analytics, yet conventional multi-view geometry pipelines remain cumbersome and quality-sensitive due to their reliance on dense reconstruction, meshing, and subsequent simplification. This work presents SF-Recon, a method that directly reconstructs lightweight building surfaces from multi-view images without post-hoc mesh simplification. We first train an initial 3D Gaussian Splatting (3DGS) field to obtain a view-consistent representation. Building structure is then distilled by a normal-gradient-guided Gaussian optimization that selects primitives aligned with roof and wall boundaries, followed by multi-view edge-consistency pruning to enhance structural sharpness and suppress non-structural artifacts without external supervision. Finally, a multi-view depth-constrained Delaunay triangulation converts the structured Gaussian field into a lightweight, structurally faithful building mesh. Based on a proposed SF dataset, the experimental results demonstrate that our SF-Recon can directly reconstruct lightweight building models from multi-view imagery, achieving substantially fewer faces and vertices while maintaining computational efficiency. Website:https://lzh282140127-cell.github.io/SF-Recon-project/
☆ Recognition of Abnormal Events in Surveillance Videos using Weakly Supervised Dual-Encoder Models
We address the challenge of detecting rare and diverse anomalies in surveillance videos using only video-level supervision. Our dual-backbone framework combines convolutional and transformer representations through top-k pooling, achieving 90.7% area under the curve (AUC) on the UCF-Crime dataset.
comment: 1 figure, 1 table
☆ Is your VLM Sky-Ready? A Comprehensive Spatial Intelligence Benchmark for UAV Navigation
Vision-Language Models (VLMs), leveraging their powerful visual perception and reasoning capabilities, have been widely applied in Unmanned Aerial Vehicle (UAV) tasks. However, the spatial intelligence capabilities of existing VLMs in UAV scenarios remain largely unexplored, raising concerns about their effectiveness in navigating and interpreting dynamic environments. To bridge this gap, we introduce SpatialSky-Bench, a comprehensive benchmark specifically designed to evaluate the spatial intelligence capabilities of VLMs in UAV navigation. Our benchmark comprises two categories-Environmental Perception and Scene Understanding-divided into 13 subcategories, including bounding boxes, color, distance, height, and landing safety analysis, among others. Extensive evaluations of various mainstream open-source and closed-source VLMs reveal unsatisfactory performance in complex UAV navigation scenarios, highlighting significant gaps in their spatial capabilities. To address this challenge, we developed the SpatialSky-Dataset, a comprehensive dataset containing 1M samples with diverse annotations across various scenarios. Leveraging this dataset, we introduce Sky-VLM, a specialized VLM designed for UAV spatial reasoning across multiple granularities and contexts. Extensive experimental results demonstrate that Sky-VLM achieves state-of-the-art performance across all benchmark tasks, paving the way for the development of VLMs suitable for UAV scenarios. The source code is available at https://github.com/linglingxiansen/SpatialSKy.
☆ SymGS : Leveraging Local Symmetries for 3D Gaussian Splatting Compression
3D Gaussian Splatting has emerged as a transformative technique in novel view synthesis, primarily due to its high rendering speed and photorealistic fidelity. However, its memory footprint scales rapidly with scene complexity, often reaching several gigabytes. Existing methods address this issue by introducing compression strategies that exploit primitive-level redundancy through similarity detection and quantization. We aim to surpass the compression limits of such methods by incorporating symmetry-aware techniques, specifically targeting mirror symmetries to eliminate redundant primitives. We propose a novel compression framework, \textbf{\textit{SymGS}}, introducing learnable mirrors into the scene, thereby eliminating local and global reflective redundancies for compression. Our framework functions as a plug-and-play enhancement to state-of-the-art compression methods, (e.g. HAC) to achieve further compression. Compared to HAC, we achieve $1.66 \times$ compression across benchmark datasets (upto $3\times$ on large-scale scenes). On an average, SymGS enables $\bf{108\times}$ compression of a 3DGS scene, while preserving rendering quality. The project page and supplementary can be found at \textbf{\color{cyan}{symgs.github.io}}
comment: Project Page: https://symgs.github.io/
☆ Building Egocentric Procedural AI Assistant: Methods, Benchmarks, and Challenges
Driven by recent advances in vision language models (VLMs) and egocentric perception research, we introduce the concept of an egocentric procedural AI assistant (EgoProceAssist) tailored to step-by-step support daily procedural tasks in a first-person view. In this work, we start by identifying three core tasks: egocentric procedural error detection, egocentric procedural learning, and egocentric procedural question answering. These tasks define the essential functions of EgoProceAssist within a new taxonomy. Specifically, our work encompasses a comprehensive review of current techniques, relevant datasets, and evaluation metrics across these three core areas. To clarify the gap between the proposed EgoProceAssist and existing VLM-based AI assistants, we introduce novel experiments and provide a comprehensive evaluation of representative VLM-based methods. Based on these findings and our technical analysis, we discuss the challenges ahead and suggest future research directions. Furthermore, an exhaustive list of this study is publicly available in an active repository that continuously collects the latest work: https://github.com/z1oong/Building-Egocentric-Procedural-AI-Assistant
comment: 26 pages, 8 figures, 8 tables, Under peer-review
☆ GeoX-Bench: Benchmarking Cross-View Geo-Localization and Pose Estimation Capabilities of Large Multimodal Models
Large multimodal models (LMMs) have demonstrated remarkable capabilities across a wide range of tasks, however their knowledge and abilities in the cross-view geo-localization and pose estimation domains remain unexplored, despite potential benefits for navigation, autonomous driving, outdoor robotics, \textit{etc}. To bridge this gap, we introduce \textbf{GeoX-Bench}, a comprehensive \underline{Bench}mark designed to explore and evaluate the capabilities of LMMs in \underline{cross}-view \underline{Geo}-localization and pose estimation. Specifically, GeoX-Bench contains 10,859 panoramic-satellite image pairs spanning 128 cities in 49 countries, along with corresponding 755,976 question-answering (QA) pairs. Among these, 42,900 QA pairs are designated for benchmarking, while the remaining are intended to enhance the capabilities of LMMs. Based on GeoX-Bench, we evaluate the capabilities of 25 state-of-the-art LMMs on cross-view geo-localization and pose estimation tasks, and further explore the empowered capabilities of instruction-tuning. Our benchmark demonstrate that while current LMMs achieve impressive performance in geo-localization tasks, their effectiveness declines significantly on the more complex pose estimation tasks, highlighting a critical area for future improvement, and instruction-tuning LMMs on the training data of GeoX-Bench can significantly improve the cross-view geo-sense abilities. The GeoX-Bench is available at \textcolor{magenta}{https://github.com/IntMeGroup/GeoX-Bench}.
☆ Referring Camouflaged Object Detection With Multi-Context Overlapped Windows Cross-Attention
Referring camouflaged object detection (Ref-COD) aims to identify hidden objects by incorporating reference information such as images and text descriptions. Previous research has transformed reference images with salient objects into one-dimensional prompts, yielding significant results. We explore ways to enhance performance through multi-context fusion of rich salient image features and camouflaged object features. Therefore, we propose RFMNet, which utilizes features from multiple encoding stages of the reference salient images and performs interactive fusion with the camouflage features at the corresponding encoding stages. Given that the features in salient object images contain abundant object-related detail information, performing feature fusion within local areas is more beneficial for detecting camouflaged objects. Therefore, we propose an Overlapped Windows Cross-attention mechanism to enable the model to focus more attention on the local information matching based on reference features. Besides, we propose the Referring Feature Aggregation (RFA) module to decode and segment the camouflaged objects progressively. Extensive experiments on the Ref-COD benchmark demonstrate that our method achieves state-of-the-art performance.
comment: 12 pages, 7figures, This work is supported by National Nature Science Foundation of China (Grant No. 62203291)
☆ Uncovering and Mitigating Transient Blindness in Multimodal Model Editing AAAI'26
Multimodal Model Editing (MMED) aims to correct erroneous knowledge in multimodal models. Existing evaluation methods, adapted from textual model editing, overstate success by relying on low-similarity or random inputs, obscure overfitting. We propose a comprehensive locality evaluation framework, covering three key dimensions: random-image locality, no-image locality, and consistent-image locality, operationalized through seven distinct data types, enabling a detailed and structured analysis of multimodal edits. We introduce De-VQA, a dynamic evaluation for visual question answering, uncovering a phenomenon we term transient blindness, overfitting to edit-similar text while ignoring visuals. Token analysis shows edits disproportionately affect textual tokens. We propose locality-aware adversarial losses to balance cross-modal representations. Empirical results demonstrate that our approach consistently outperforms existing baselines, reducing transient blindness and improving locality by 17% on average.
comment: Accepted at AAAI'26
☆ MMD-Thinker: Adaptive Multi-Dimensional Thinking for Multimodal Misinformation Detection
Multimodal misinformation floods on various social media, and continues to evolve in the era of AI-generated content (AIGC). The emerged misinformation with low creation cost and high deception poses significant threats to society. While recent studies leverage general-purpose multimodal large language models (MLLMs) to achieve remarkable results in detection, they encounter two critical limitations: (1) Insufficient reasoning, where general-purpose MLLMs often follow the uniform reasoning paradigm but generate inaccurate explanations and judgments, due to the lack of the task-specific knowledge of multimodal misinformation detection. (2) Reasoning biases, where a single thinking mode make detectors a suboptimal path for judgment, struggling to keep pace with the fast-growing and intricate multimodal misinformation. In this paper, we propose MMD-Thinker, a two-stage framework for multimodal misinformation detection through adaptive multi-dimensional thinking. First, we develop tailor-designed thinking mode for multimodal misinformation detection. Second, we adopt task-specific instruction tuning to inject the tailored thinking mode into general-purpose MLLMs. Third, we further leverage reinforcement learning strategy with a mixed advantage function, which incentivizes the reasoning capabilities in trajectories. Furthermore, we construct the multimodal misinformation reasoning (MMR) dataset, encompasses more than 8K image-text pairs with both reasoning processes and classification labels, to make progress in the relam of multimodal misinformation detection. Experimental results demonstrate that our proposed MMD-Thinker achieves state-of-the-art performance on both in-domain and out-of-domain benchmark datasets, while maintaining flexible inference and token usage. Code will be publicly available at Github.
☆ MRIQT: Physics-Aware Diffusion Model for Image Quality Transfer in Neonatal Ultra-Low-Field MRI
Portable ultra-low-field MRI (uLF-MRI, 0.064 T) offers accessible neuroimaging for neonatal care but suffers from low signal-to-noise ratio and poor diagnostic quality compared to high-field (HF) MRI. We propose MRIQT, a 3D conditional diffusion framework for image quality transfer (IQT) from uLF to HF MRI. MRIQT combines realistic K-space degradation for physics-consistent uLF simulation, v-prediction with classifier-free guidance for stable image-to-image generation, and an SNR-weighted 3D perceptual loss for anatomical fidelity. The model denoises from a noised uLF input conditioned on the same scan, leveraging volumetric attention-UNet architecture for structure-preserving translation. Trained on a neonatal cohort with diverse pathologies, MRIQT surpasses recent GAN and CNN baselines in PSNR 15.3% with 1.78% over the state of the art, while physicians rated 85% of its outputs as good quality with clear pathology present. MRIQT enables high-fidelity, diffusion-based enhancement of portable ultra-low-field (uLF) MRI for deliable neonatal brain assessment.
comment: 5 pages, 4 figures
☆ Hybrid-Domain Adaptative Representation Learning for Gaze Estimation AAAI2026
Appearance-based gaze estimation, aiming to predict accurate 3D gaze direction from a single facial image, has made promising progress in recent years. However, most methods suffer significant performance degradation in cross-domain evaluation due to interference from gaze-irrelevant factors, such as expressions, wearables, and image quality. To alleviate this problem, we present a novel Hybrid-domain Adaptative Representation Learning (shorted by HARL) framework that exploits multi-source hybrid datasets to learn robust gaze representation. More specifically, we propose to disentangle gaze-relevant representation from low-quality facial images by aligning features extracted from high-quality near-eye images in an unsupervised domain-adaptation manner, which hardly requires any computational or inference costs. Additionally, we analyze the effect of head-pose and design a simple yet efficient sparse graph fusion module to explore the geometric constraint between gaze direction and head-pose, leading to a dense and robust gaze representation. Extensive experiments on EyeDiap, MPIIFaceGaze, and Gaze360 datasets demonstrate that our approach achieves state-of-the-art accuracy of $\textbf{5.02}^{\circ}$ and $\textbf{3.36}^{\circ}$, and $\textbf{9.26}^{\circ}$ respectively, and present competitive performances through cross-dataset evaluation. The code is available at https://github.com/da60266/HARL.
comment: AAAI2026
☆ 3DAlign-DAER: Dynamic Attention Policy and Efficient Retrieval Strategy for Fine-grained 3D-Text Alignment at Scale
Despite recent advancements in 3D-text cross-modal alignment, existing state-of-the-art methods still struggle to align fine-grained textual semantics with detailed geometric structures, and their alignment performance degrades significantly when scaling to large-scale 3D databases. To overcome this limitation, we introduce 3DAlign-DAER, a unified framework designed to align text and 3D geometry via the proposed dynamic attention policy and the efficient retrieval strategy, capturing subtle correspondences for diverse cross-modal retrieval and classification tasks. Specifically, during the training, our proposed dynamic attention policy (DAP) employs the Hierarchical Attention Fusion (HAF) module to represent the alignment as learnable fine-grained token-to-point attentions. To optimize these attentions across different tasks and geometric hierarchies, our DAP further exploits the Monte Carlo tree search to dynamically calibrate HAF attention weights via a hybrid reward signal and further enhances the alignment between textual descriptions and local 3D geometry. During the inference, our 3DAlign-DAER introduces an Efficient Retrieval Strategy (ERS) to leverage efficient hierarchical searching in the large-scale embedding spaces, outperforming traditional methods (e.g., KNN) in accuracy and efficiency. Furthermore, to facilitate text-3D alignment research and train our 3DAlign-DAER, we construct Align3D-2M, a large-scale dataset featuring 2M text-3D pairs, to provide sufficient fine-grained cross-modal annotations. Extensive and comprehensive experiments demonstrate the superior performance of our 3DAlign-DAER on diverse benchmarks. We will release our codes, models, and datasets.
☆ End-to-End Multi-Person Pose Estimation with Pose-Aware Video Transformer
Existing multi-person video pose estimation methods typically adopt a two-stage pipeline: detecting individuals in each frame, followed by temporal modeling for single-person pose estimation. This design relies on heuristic operations such as detection, RoI cropping, and non-maximum suppression (NMS), limiting both accuracy and efficiency. In this paper, we present a fully end-to-end framework for multi-person 2D pose estimation in videos, effectively eliminating heuristic operations. A key challenge is to associate individuals across frames under complex and overlapping temporal trajectories. To address this, we introduce a novel Pose-Aware Video transformEr Network (PAVE-Net), which features a spatial encoder to model intra-frame relations and a spatiotemporal pose decoder to capture global dependencies across frames. To achieve accurate temporal association, we propose a pose-aware attention mechanism that enables each pose query to selectively aggregate features corresponding to the same individual across consecutive frames.Additionally, we explicitly model spatiotemporal dependencies among pose keypoints to improve accuracy. Notably, our approach is the first end-to-end method for multi-frame 2D human pose estimation.Extensive experiments show that PAVE-Net substantially outperforms prior image-based end-to-end methods, achieving a \textbf{6.0} mAP improvement on PoseTrack2017, and delivers accuracy competitive with state-of-the-art two-stage video-based approaches, while offering significant gains in efficiency.Project page: https://github.com/zgspose/PAVENet
☆ PIGEON: VLM-Driven Object Navigation via Points of Interest Selection
Navigating to a specified object in an unknown environment is a fundamental yet challenging capability of embodied intelligence. However, current methods struggle to balance decision frequency with intelligence, resulting in decisions lacking foresight or discontinuous actions. In this work, we propose PIGEON: Point of Interest Guided Exploration for Object Navigation with VLM, maintaining a lightweight and semantically aligned snapshot memory during exploration as semantic input for the exploration strategy. We use a large Visual-Language Model (VLM), named PIGEON-VL, to select Points of Interest (PoI) formed during exploration and then employ a lower-level planner for action output, increasing the decision frequency. Additionally, this PoI-based decision-making enables the generation of Reinforcement Learning with Verifiable Reward (RLVR) data suitable for simulators. Experiments on classic object navigation benchmarks demonstrate that our zero-shot transfer method achieves state-of-the-art performance, while RLVR further enhances the model's semantic guidance capabilities, enabling deep reasoning during real-time navigation.
☆ RefineVAD: Semantic-Guided Feature Recalibration for Weakly Supervised Video Anomaly Detection AAAI 2026
Weakly-Supervised Video Anomaly Detection aims to identify anomalous events using only video-level labels, balancing annotation efficiency with practical applicability. However, existing methods often oversimplify the anomaly space by treating all abnormal events as a single category, overlooking the diverse semantic and temporal characteristics intrinsic to real-world anomalies. Inspired by how humans perceive anomalies, by jointly interpreting temporal motion patterns and semantic structures underlying different anomaly types, we propose RefineVAD, a novel framework that mimics this dual-process reasoning. Our framework integrates two core modules. The first, Motion-aware Temporal Attention and Recalibration (MoTAR), estimates motion salience and dynamically adjusts temporal focus via shift-based attention and global Transformer-based modeling. The second, Category-Oriented Refinement (CORE), injects soft anomaly category priors into the representation space by aligning segment-level features with learnable category prototypes through cross-attention. By jointly leveraging temporal dynamics and semantic structure, explicitly models both "how" motion evolves and "what" semantic category it resembles. Extensive experiments on WVAD benchmark validate the effectiveness of RefineVAD and highlight the importance of integrating semantic context to guide feature refinement toward anomaly-relevant patterns.
comment: Accepted to AAAI 2026
Self-Supervised Ultrasound Screen Detection
Ultrasound (US) machines display images on a built-in monitor, but routine transfer to hospital systems relies on DICOM. We propose a self-supervised pipeline to extract the US image from a photograph of the monitor. This removes the DICOM bottleneck and enables rapid testing and prototyping of new algorithms. In a proof-of-concept study, the rectified images retained enough visual fidelity to classify cardiac views with a balanced accuracy of 0.79 with respect to the native DICOMs.
comment: Submitted to ISBI 2026
☆ Difficulty-Aware Label-Guided Denoising for Monocular 3D Object Detection AAAI 2026
Monocular 3D object detection is a cost-effective solution for applications like autonomous driving and robotics, but remains fundamentally ill-posed due to inherently ambiguous depth cues. Recent DETR-based methods attempt to mitigate this through global attention and auxiliary depth prediction, yet they still struggle with inaccurate depth estimates. Moreover, these methods often overlook instance-level detection difficulty, such as occlusion, distance, and truncation, leading to suboptimal detection performance. We propose MonoDLGD, a novel Difficulty-Aware Label-Guided Denoising framework that adaptively perturbs and reconstructs ground-truth labels based on detection uncertainty. Specifically, MonoDLGD applies stronger perturbations to easier instances and weaker ones into harder cases, and then reconstructs them to effectively provide explicit geometric supervision. By jointly optimizing label reconstruction and 3D object detection, MonoDLGD encourages geometry-aware representation learning and improves robustness to varying levels of object complexity. Extensive experiments on the KITTI benchmark demonstrate that MonoDLGD achieves state-of-the-art performance across all difficulty levels.
comment: AAAI 2026 accepted
☆ Birth of a Painting: Differentiable Brushstroke Reconstruction
Painting embodies a unique form of visual storytelling, where the creation process is as significant as the final artwork. Although recent advances in generative models have enabled visually compelling painting synthesis, most existing methods focus solely on final image generation or patch-based process simulation, lacking explicit stroke structure and failing to produce smooth, realistic shading. In this work, we present a differentiable stroke reconstruction framework that unifies painting, stylized texturing, and smudging to faithfully reproduce the human painting-smudging loop. Given an input image, our framework first optimizes single- and dual-color Bezier strokes through a parallel differentiable paint renderer, followed by a style generation module that synthesizes geometry-conditioned textures across diverse painting styles. We further introduce a differentiable smudge operator to enable natural color blending and shading. Coupled with a coarse-to-fine optimization strategy, our method jointly optimizes stroke geometry, color, and texture under geometric and semantic guidance. Extensive experiments on oil, watercolor, ink, and digital paintings demonstrate that our approach produces realistic and expressive stroke reconstructions, smooth tonal transitions, and richly stylized appearances, offering a unified model for expressive digital painting creation. See our project page for more demos: https://yingjiang96.github.io/DiffPaintWebsite/.
comment: 13 pages
☆ Video Spatial Reasoning with Object-Centric 3D Rollout
Recent advances in Multi-modal Large Language Models (MLLMs) have showcased remarkable capabilities in vision-language understanding. However, enabling robust video spatial reasoning-the ability to comprehend object locations, orientations, and inter-object relationships in dynamic 3D scenes-remains a key unsolved challenge. Existing approaches primarily rely on spatially grounded supervised fine-tuning or reinforcement learning, yet we observe that such models often exhibit query-locked reasoning, focusing narrowly on objects explicitly mentioned in the prompt while ignoring critical contextual cues. To address this limitation, we propose Object-Centric 3D Rollout (OCR), a novel strategy that introduces structured perturbations to the 3D geometry of selected objects during training. By degrading object-specific visual cues and projecting the altered geometry into 2D space, OCR compels the model to reason holistically across the entire scene. We further design a rollout-based training pipeline that jointly leverages vanilla and region-noisy videos to optimize spatial reasoning trajectories. Experiments demonstrate state-of-the-art performance: our 3B-parameter model achieves 47.5% accuracy on VSI-Bench, outperforming several 7B baselines. Ablations confirm OCR's superiority over prior rollout strategies (e.g., T-GRPO, NoisyRollout).
☆ Large Language Models Meet Extreme Multi-label Classification: Scaling and Multi-modal Framework AAAI 2026
Foundation models have revolutionized artificial intelligence across numerous domains, yet their transformative potential remains largely untapped in Extreme Multi-label Classification (XMC). Queries in XMC are associated with relevant labels from extremely large label spaces, where it is critical to strike a balance between efficiency and performance. Therefore, many recent approaches efficiently pose XMC as a maximum inner product search between embeddings learned from small encoder-only transformer architectures. In this paper, we address two important aspects in XMC: how to effectively harness larger decoder-only models, and how to exploit visual information while maintaining computational efficiency. We demonstrate that both play a critical role in XMC separately and can be combined for improved performance. We show that a few billion-size decoder can deliver substantial improvements while keeping computational overhead manageable. Furthermore, our Vision-enhanced eXtreme Multi-label Learning framework (ViXML) efficiently integrates foundation vision models by pooling a single embedding per image. This limits computational growth while unlocking multi-modal capabilities. Remarkably, ViXML with small encoders outperforms text-only decoder in most cases, showing that an image is worth billions of parameters. Finally, we present an extension of existing text-only datasets to exploit visual metadata and make them available for future benchmarking. Comprehensive experiments across four public text-only datasets and their corresponding image enhanced versions validate our proposals' effectiveness, surpassing previous state-of-the-art by up to +8.21\% in P@1 on the largest dataset. ViXML's code is available at https://github.com/DiegoOrtego/vixml.
comment: To appear at AAAI 2026
☆ GenTract: Generative Global Tractography
Tractography is the process of inferring the trajectories of white-matter pathways in the brain from diffusion magnetic resonance imaging (dMRI). Local tractography methods, which construct streamlines by following local fiber orientation estimates stepwise through an image, are prone to error accumulation and high false positive rates, particularly on noisy or low-resolution data. In contrast, global methods, which attempt to optimize a collection of streamlines to maximize compatibility with underlying fiber orientation estimates, are computationally expensive. To address these challenges, we introduce GenTract, the first generative model for global tractography. We frame tractography as a generative task, learning a direct mapping from dMRI to complete, anatomically plausible streamlines. We compare both diffusion-based and flow matching paradigms and evaluate GenTract's performance against state-of-the-art baselines. Notably, GenTract achieves precision 2.1x higher than the next-best method, TractOracle. This advantage becomes even more pronounced in challenging low-resolution and noisy settings, where it outperforms the closest competitor by an order of magnitude. By producing tractograms with high precision on research-grade data while also maintaining reliability on imperfect, lower-resolution data, GenTract represents a promising solution for global tractography.
☆ HDW-SR: High-Frequency Guided Diffusion Model based on Wavelet Decomposition for Image Super-Resolution
Diffusion-based methods have shown great promise in single image super-resolution (SISR); however, existing approaches often produce blurred fine details due to insufficient guidance in the high-frequency domain. To address this issue, we propose a High-Frequency Guided Diffusion Network based on Wavelet Decomposition (HDW-SR), which replaces the conventional U-Net backbone in diffusion frameworks. Specifically, we perform diffusion only on the residual map, allowing the network to focus more effectively on high-frequency information restoration. We then introduce wavelet-based downsampling in place of standard CNN downsampling to achieve multi-scale frequency decomposition, enabling sparse cross-attention between the high-frequency subbands of the pre-super-resolved image and the low-frequency subbands of the diffused image for explicit high-frequency guidance. Moreover, a Dynamic Thresholding Block (DTB) is designed to refine high-frequency selection during the sparse attention process. During upsampling, the invertibility of the wavelet transform ensures low-loss feature reconstruction. Experiments on both synthetic and real-world datasets demonstrate that HDW-SR achieves competitive super-resolution performance, excelling particularly in recovering fine-grained image details. The code will be available after acceptance.
☆ THIR: Topological Histopathological Image Retrieval
According to the World Health Organization, breast cancer claimed the lives of approximately 685,000 women in 2020. Early diagnosis and accurate clinical decision making are critical in reducing this global burden. In this study, we propose THIR, a novel Content-Based Medical Image Retrieval (CBMIR) framework that leverages topological data analysis specifically, Betti numbers derived from persistent homology to characterize and retrieve histopathological images based on their intrinsic structural patterns. Unlike conventional deep learning approaches that rely on extensive training, annotated datasets, and powerful GPU resources, THIR operates entirely without supervision. It extracts topological fingerprints directly from RGB histopathological images using cubical persistence, encoding the evolution of loops as compact, interpretable feature vectors. The similarity retrieval is then performed by computing the distances between these topological descriptors, efficiently returning the top-K most relevant matches. Extensive experiments on the BreaKHis dataset demonstrate that THIR outperforms state of the art supervised and unsupervised methods. It processes the entire dataset in under 20 minutes on a standard CPU, offering a fast, scalable, and training free solution for clinical image retrieval.
☆ SOMA: Feature Gradient Enhanced Affine-Flow Matching for SAR-Optical Registration
Achieving pixel-level registration between SAR and optical images remains a challenging task due to their fundamentally different imaging mechanisms and visual characteristics. Although deep learning has achieved great success in many cross-modal tasks, its performance on SAR-Optical registration tasks is still unsatisfactory. Gradient-based information has traditionally played a crucial role in handcrafted descriptors by highlighting structural differences. However, such gradient cues have not been effectively leveraged in deep learning frameworks for SAR-Optical image matching. To address this gap, we propose SOMA, a dense registration framework that integrates structural gradient priors into deep features and refines alignment through a hybrid matching strategy. Specifically, we introduce the Feature Gradient Enhancer (FGE), which embeds multi-scale, multi-directional gradient filters into the feature space using attention and reconstruction mechanisms to boost feature distinctiveness. Furthermore, we propose the Global-Local Affine-Flow Matcher (GLAM), which combines affine transformation and flow-based refinement within a coarse-to-fine architecture to ensure both structural consistency and local accuracy. Experimental results demonstrate that SOMA significantly improves registration precision, increasing the CMR@1px by 12.29% on the SEN1-2 dataset and 18.50% on the GFGE_SO dataset. In addition, SOMA exhibits strong robustness and generalizes well across diverse scenes and resolutions.
☆ Skeletons Speak Louder than Text: A Motion-Aware Pretraining Paradigm for Video-Based Person Re-Identification
Multimodal pretraining has revolutionized visual understanding, but its impact on video-based person re-identification (ReID) remains underexplored. Existing approaches often rely on video-text pairs, yet suffer from two fundamental limitations: (1) lack of genuine multimodal pretraining, and (2) text poorly captures fine-grained temporal motion-an essential cue for distinguishing identities in video. In this work, we take a bold departure from text-based paradigms by introducing the first skeleton-driven pretraining framework for ReID. To achieve this, we propose Contrastive Skeleton-Image Pretraining for ReID (CSIP-ReID), a novel two-stage method that leverages skeleton sequences as a spatiotemporally informative modality aligned with video frames. In the first stage, we employ contrastive learning to align skeleton and visual features at sequence level. In the second stage, we introduce a dynamic Prototype Fusion Updater (PFU) to refine multimodal identity prototypes, fusing motion and appearance cues. Moreover, we propose a Skeleton Guided Temporal Modeling (SGTM) module that distills temporal cues from skeleton data and integrates them into visual features. Extensive experiments demonstrate that CSIP-ReID achieves new state-of-the-art results on standard video ReID benchmarks (MARS, LS-VID, iLIDS-VID). Moreover, it exhibits strong generalization to skeleton-only ReID tasks (BIWI, IAS), significantly outperforming previous methods. CSIP-ReID pioneers an annotation-free and motion-aware pretraining paradigm for ReID, opening a new frontier in multimodal representation learning.
☆ Automated Road Distress Detection Using Vision Transformersand Generative Adversarial Networks
The American Society of Civil Engineers has graded Americas infrastructure condition as a C, with the road system receiving a dismal D. Roads are vital to regional economic viability, yet their management, maintenance, and repair processes remain inefficient, relying on outdated manual or laser-based inspection methods that are both costly and time-consuming. With the increasing availability of real-time visual data from autonomous vehicles, there is an opportunity to apply computer vision (CV) methods for advanced road monitoring, providing insights to guide infrastructure rehabilitation efforts. This project explores the use of state-of-the-art CV techniques for road distress segmentation. It begins by evaluating synthetic data generated with Generative Adversarial Networks (GANs) to assess its usefulness for model training. The study then applies Convolutional Neural Networks (CNNs) for road distress segmentation and subsequently examines the transformer-based model MaskFormer. Results show that GAN-generated data improves model performance and that MaskFormer outperforms the CNN model in two metrics: mAP50 and IoU.
☆ WinMamba: Multi-Scale Shifted Windows in State Space Model for 3D Object Detection
3D object detection is critical for autonomous driving, yet it remains fundamentally challenging to simultaneously maximize computational efficiency and capture long-range spatial dependencies. We observed that Mamba-based models, with their linear state-space design, capture long-range dependencies at lower cost, offering a promising balance between efficiency and accuracy. However, existing methods rely on axis-aligned scanning within a fixed window, inevitably discarding spatial information. To address this problem, we propose WinMamba, a novel Mamba-based 3D feature-encoding backbone composed of stacked WinMamba blocks. To enhance the backbone with robust multi-scale representation, the WinMamba block incorporates a window-scale-adaptive module that compensates voxel features across varying resolutions during sampling. Meanwhile, to obtain rich contextual cues within the linear state space, we equip the WinMamba layer with a learnable positional encoding and a window-shift strategy. Extensive experiments on the KITTI and Waymo datasets demonstrate that WinMamba significantly outperforms the baseline. Ablation studies further validate the individual contributions of the WSF and AWF modules in improving detection accuracy. The code will be made publicly available.
comment: 9 pages, 3 figures,
☆ MedGEN-Bench: Contextually entangled benchmark for open-ended multimodal medical generation CVPR 2026
As Vision-Language Models (VLMs) increasingly gain traction in medical applications, clinicians are progressively expecting AI systems not only to generate textual diagnoses but also to produce corresponding medical images that integrate seamlessly into authentic clinical workflows. Despite the growing interest, existing medical visual benchmarks present notable limitations. They often rely on ambiguous queries that lack sufficient relevance to image content, oversimplify complex diagnostic reasoning into closed-ended shortcuts, and adopt a text-centric evaluation paradigm that overlooks the importance of image generation capabilities. To address these challenges, we introduce \textsc{MedGEN-Bench}, a comprehensive multimodal benchmark designed to advance medical AI research. MedGEN-Bench comprises 6,422 expert-validated image-text pairs spanning six imaging modalities, 16 clinical tasks, and 28 subtasks. It is structured into three distinct formats: Visual Question Answering, Image Editing, and Contextual Multimodal Generation. What sets MedGEN-Bench apart is its focus on contextually intertwined instructions that necessitate sophisticated cross-modal reasoning and open-ended generative outputs, moving beyond the constraints of multiple-choice formats. To evaluate the performance of existing systems, we employ a novel three-tier assessment framework that integrates pixel-level metrics, semantic text analysis, and expert-guided clinical relevance scoring. Using this framework, we systematically assess 10 compositional frameworks, 3 unified models, and 5 VLMs.
comment: CVPR 2026 Under Review
☆ Shedding Light on VLN Robustness: A Black-box Framework for Indoor Lighting-based Adversarial Attack
Vision-and-Language Navigation (VLN) agents have made remarkable progress, but their robustness remains insufficiently studied. Existing adversarial evaluations often rely on perturbations that manifest as unusual textures rarely encountered in everyday indoor environments. Errors under such contrived conditions have limited practical relevance, as real-world agents are unlikely to encounter such artificial patterns. In this work, we focus on indoor lighting, an intrinsic yet largely overlooked scene attribute that strongly influences navigation. We propose Indoor Lighting-based Adversarial Attack (ILA), a black-box framework that manipulates global illumination to disrupt VLN agents. Motivated by typical household lighting usage, we design two attack modes: Static Indoor Lighting-based Attack (SILA), where the lighting intensity remains constant throughout an episode, and Dynamic Indoor Lighting-based Attack (DILA), where lights are switched on or off at critical moments to induce abrupt illumination changes. We evaluate ILA on two state-of-the-art VLN models across three navigation tasks. Results show that ILA significantly increases failure rates while reducing trajectory efficiency, revealing previously unrecognized vulnerabilities of VLN agents to realistic indoor lighting variations.
☆ MM-Telco: Benchmarks and Multimodal Large Language Models for Telecom Applications
Large Language Models (LLMs) have emerged as powerful tools for automating complex reasoning and decision-making tasks. In telecommunications, they hold the potential to transform network optimization, automate troubleshooting, enhance customer support, and ensure regulatory compliance. However, their deployment in telecom is hindered by domain-specific challenges that demand specialized adaptation. To overcome these challenges and to accelerate the adaptation of LLMs for telecom, we propose MM-Telco, a comprehensive suite of multimodal benchmarks and models tailored for the telecom domain. The benchmark introduces various tasks (both text based and image based) that address various practical real-life use cases such as network operations, network management, improving documentation quality, and retrieval of relevant text and images. Further, we perform baseline experiments with various LLMs and VLMs. The models fine-tuned on our dataset exhibit a significant boost in performance. Our experiments also help analyze the weak areas in the working of current state-of-art multimodal LLMs, thus guiding towards further development and research.
☆ VEIL: Jailbreaking Text-to-Video Models via Visual Exploitation from Implicit Language
Jailbreak attacks can circumvent model safety guardrails and reveal critical blind spots. Prior attacks on text-to-video (T2V) models typically add adversarial perturbations to obviously unsafe prompts, which are often easy to detect and defend. In contrast, we show that benign-looking prompts containing rich, implicit cues can induce T2V models to generate semantically unsafe videos that both violate policy and preserve the original (blocked) intent. To realize this, we propose VEIL, a jailbreak framework that leverages T2V models' cross-modal associative patterns via a modular prompt design. Specifically, our prompts combine three components: neutral scene anchors, which provide the surface-level scene description extracted from the blocked intent to maintain plausibility; latent auditory triggers, textual descriptions of innocuous-sounding audio events (e.g., creaking, muffled noises) that exploit learned audio-visual co-occurrence priors to bias the model toward particular unsafe visual concepts; and stylistic modulators, cinematic directives (e.g., camera framing, atmosphere) that amplify and stabilize the latent trigger's effect. We formalize attack generation as a constrained optimization over the above modular prompt space and solve it with a guided search procedure that balances stealth and effectiveness. Extensive experiments over 7 T2V models demonstrate the efficacy of our attack, achieving a 23 percent improvement in average attack success rate in commercial models.
☆ Region-Point Joint Representation for Effective Trajectory Similarity Learning AAAI2026
Recent learning-based methods have reduced the computational complexity of traditional trajectory similarity computation, but state-of-the-art (SOTA) methods still fail to leverage the comprehensive spectrum of trajectory information for similarity modeling. To tackle this problem, we propose \textbf{RePo}, a novel method that jointly encodes \textbf{Re}gion-wise and \textbf{Po}int-wise features to capture both spatial context and fine-grained moving patterns. For region-wise representation, the GPS trajectories are first mapped to grid sequences, and spatial context are captured by structural features and semantic context enriched by visual features. For point-wise representation, three lightweight expert networks extract local, correlation, and continuous movement patterns from dense GPS sequences. Then, a router network adaptively fuses the learned point-wise features, which are subsequently combined with region-wise features using cross-attention to produce the final trajectory embedding. To train RePo, we adopt a contrastive loss with hard negative samples to provide similarity ranking supervision. Experiment results show that RePo achieves an average accuracy improvement of 22.2\% over SOTA baselines across all evaluation metrics.
comment: This paper is accepted by AAAI2026
☆ CloseUpShot: Close-up Novel View Synthesis from Sparse-views via Point-conditioned Diffusion Model
Reconstructing 3D scenes and synthesizing novel views from sparse input views is a highly challenging task. Recent advances in video diffusion models have demonstrated strong temporal reasoning capabilities, making them a promising tool for enhancing reconstruction quality under sparse-view settings. However, existing approaches are primarily designed for modest viewpoint variations, which struggle in capturing fine-grained details in close-up scenarios since input information is severely limited. In this paper, we present a diffusion-based framework, called CloseUpShot, for close-up novel view synthesis from sparse inputs via point-conditioned video diffusion. Specifically, we observe that pixel-warping conditioning suffers from severe sparsity and background leakage in close-up settings. To address this, we propose hierarchical warping and occlusion-aware noise suppression, enhancing the quality and completeness of the conditioning images for the video diffusion model. Furthermore, we introduce global structure guidance, which leverages a dense fused point cloud to provide consistent geometric context to the diffusion process, to compensate for the lack of globally consistent 3D constraints in sparse conditioning inputs. Extensive experiments on multiple datasets demonstrate that our method outperforms existing approaches, especially in close-up novel view synthesis, clearly validating the effectiveness of our design.
comment: Project Link: https://zyqz97.github.io/CloseUpShot/
☆ A Lightweight 3D Anomaly Detection Method with Rotationally Invariant Features
3D anomaly detection (AD) is a crucial task in computer vision, aiming to identify anomalous points or regions from point cloud data. However, existing methods may encounter challenges when handling point clouds with changes in orientation and position because the resulting features may vary significantly. To address this problem, we propose a novel Rotationally Invariant Features (RIF) framework for 3D AD. Firstly, to remove the adverse effect of variations on point cloud data, we develop a Point Coordinate Mapping (PCM) technique, which maps each point into a rotationally invariant space to maintain consistency of representation. Then, to learn robust and discriminative features, we design a lightweight Convolutional Transform Feature Network (CTF-Net) to extract rotationally invariant features for the memory bank. To improve the ability of the feature extractor, we introduce the idea of transfer learning to pre-train the feature extractor with 3D data augmentation. Experimental results show that the proposed method achieves the advanced performance on the Anomaly-ShapeNet dataset, with an average P-AUROC improvement of 17.7\%, and also gains the best performance on the Real3D-AD dataset, with an average P-AUROC improvement of 1.6\%. The strong generalization ability of RIF has been verified by combining it with traditional feature extraction methods on anomaly detection tasks, demonstrating great potential for industrial applications.
comment: Submitted to Elsevier
☆ Semantics and Content Matter: Towards Multi-Prior Hierarchical Mamba for Image Deraining
Rain significantly degrades the performance of computer vision systems, particularly in applications like autonomous driving and video surveillance. While existing deraining methods have made considerable progress, they often struggle with fidelity of semantic and spatial details. To address these limitations, we propose the Multi-Prior Hierarchical Mamba (MPHM) network for image deraining. This novel architecture synergistically integrates macro-semantic textual priors (CLIP) for task-level semantic guidance and micro-structural visual priors (DINOv2) for scene-aware structural information. To alleviate potential conflicts between heterogeneous priors, we devise a progressive Priors Fusion Injection (PFI) that strategically injects complementary cues at different decoder levels. Meanwhile, we equip the backbone network with an elaborate Hierarchical Mamba Module (HMM) to facilitate robust feature representation, featuring a Fourier-enhanced dual-path design that concurrently addresses global context modeling and local detail recovery. Comprehensive experiments demonstrate MPHM's state-of-the-art performance, achieving a 0.57 dB PSNR gain on the Rain200H dataset while delivering superior generalization on real-world rainy scenarios.
☆ Learning Implicit Neural Degradation Representation for Unpaired Image Dehazing
Image dehazing is an important task in the field of computer vision, aiming at restoring clear and detail-rich visual content from haze-affected images. However, when dealing with complex scenes, existing methods often struggle to strike a balance between fine-grained feature representation of inhomogeneous haze distribution and global consistency modeling. Furthermore, to better learn the common degenerate representation of haze in spatial variations, we propose an unsupervised dehaze method for implicit neural degradation representation. Firstly, inspired by the Kolmogorov-Arnold representation theorem, we propose a mechanism combining the channel-independent and channel-dependent mechanisms, which efficiently enhances the ability to learn from nonlinear dependencies. which in turn achieves good visual perception in complex scenes. Moreover, we design an implicit neural representation to model haze degradation as a continuous function to eliminate redundant information and the dependence on explicit feature extraction and physical models. To further learn the implicit representation of the haze features, we also designed a dense residual enhancement module from it to eliminate redundant information. This achieves high-quality image restoration. Experimental results show that our method achieves competitive dehaze performance on various public and real-world datasets. This project code will be available at https://github.com/Fan-pixel/NeDR-Dehaze.
☆ DGS-Net: Distillation-Guided Gradient Surgery for CLIP Fine-Tuning in AI-Generated Image Detection
The rapid progress of generative models such as GANs and diffusion models has led to the widespread proliferation of AI-generated images, raising concerns about misinformation, privacy violations, and trust erosion in digital media. Although large-scale multimodal models like CLIP offer strong transferable representations for detecting synthetic content, fine-tuning them often induces catastrophic forgetting, which degrades pre-trained priors and limits cross-domain generalization. To address this issue, we propose the Distillation-guided Gradient Surgery Network (DGS-Net), a novel framework that preserves transferable pre-trained priors while suppressing task-irrelevant components. Specifically, we introduce a gradient-space decomposition that separates harmful and beneficial descent directions during optimization. By projecting task gradients onto the orthogonal complement of harmful directions and aligning with beneficial ones distilled from a frozen CLIP encoder, DGS-Net achieves unified optimization of prior preservation and irrelevant suppression. Extensive experiments on 50 generative models demonstrate that our method outperforms state-of-the-art approaches by an average margin of 6.6, achieving superior detection performance and generalization across diverse generation techniques.
☆ Low-Level Dataset Distillation for Medical Image Enhancement
Medical image enhancement is clinically valuable, but existing methods require large-scale datasets to learn complex pixel-level mappings. However, the substantial training and storage costs associated with these datasets hinder their practical deployment. While dataset distillation (DD) can alleviate these burdens, existing methods mainly target high-level tasks, where multiple samples share the same label. This many-to-one mapping allows distilled data to capture shared semantics and achieve information compression. In contrast, low-level tasks involve a many-to-many mapping that requires pixel-level fidelity, making low-level DD an underdetermined problem, as a small distilled dataset cannot fully constrain the dense pixel-level mappings. To address this, we propose the first low-level DD method for medical image enhancement. We first leverage anatomical similarities across patients to construct the shared anatomical prior based on a representative patient, which serves as the initialization for the distilled data of different patients. This prior is then personalized for each patient using a Structure-Preserving Personalized Generation (SPG) module, which integrates patient-specific anatomical information into the distilled dataset while preserving pixel-level fidelity. For different low-level tasks, the distilled data is used to construct task-specific high- and low-quality training pairs. Patient-specific knowledge is injected into the distilled data by aligning the gradients computed from networks trained on the distilled pairs with those from the corresponding patient's raw data. Notably, downstream users cannot access raw patient data. Instead, only a distilled dataset containing abstract training information is shared, which excludes patient-specific details and thus preserves privacy.
☆ PlugTrack: Multi-Perceptive Motion Analysis for Adaptive Fusion in Multi-Object Tracking AAAI 2026
Multi-object tracking (MOT) predominantly follows the tracking-by-detection paradigm, where Kalman filters serve as the standard motion predictor due to computational efficiency but inherently fail on non-linear motion patterns. Conversely, recent data-driven motion predictors capture complex non-linear dynamics but suffer from limited domain generalization and computational overhead. Through extensive analysis, we reveal that even in datasets dominated by non-linear motion, Kalman filter outperforms data-driven predictors in up to 34\% of cases, demonstrating that real-world tracking scenarios inherently involve both linear and non-linear patterns. To leverage this complementarity, we propose PlugTrack, a novel framework that adaptively fuses Kalman filter and data-driven motion predictors through multi-perceptive motion understanding. Our approach employs multi-perceptive motion analysis to generate adaptive blending factors. PlugTrack achieves significant performance gains on MOT17/MOT20 and state-of-the-art on DanceTrack without modifying existing motion predictors. To the best of our knowledge, PlugTrack is the first framework to bridge classical and modern motion prediction paradigms through adaptive fusion in MOT.
comment: AAAI 2026. Code: https://github.com/VisualScienceLab-KHU/PlugTrack
☆ CapeNext: Rethinking and refining dynamic support information for category-agnostic pose estimation
Recent research in Category-Agnostic Pose Estimation (CAPE) has adopted fixed textual keypoint description as semantic prior for two-stage pose matching frameworks. While this paradigm enhances robustness and flexibility by disentangling the dependency of support images, our critical analysis reveals two inherent limitations of static joint embedding: (1) polysemy-induced cross-category ambiguity during the matching process(e.g., the concept "leg" exhibiting divergent visual manifestations across humans and furniture), and (2) insufficient discriminability for fine-grained intra-category variations (e.g., posture and fur discrepancies between a sleeping white cat and a standing black cat). To overcome these challenges, we propose a new framework that innovatively integrates hierarchical cross-modal interaction with dual-stream feature refinement, enhancing the joint embedding with both class-level and instance-specific cues from textual description and specific images. Experiments on the MP-100 dataset demonstrate that, regardless of the network backbone, CapeNext consistently outperforms state-of-the-art CAPE methods by a large margin.
☆ MergeSlide: Continual Model Merging and Task-to-Class Prompt-Aligned Inference for Lifelong Learning on Whole Slide Images WACV2026
Lifelong learning on Whole Slide Images (WSIs) aims to train or fine-tune a unified model sequentially on cancer-related tasks, reducing the resources and effort required for data transfer and processing, especially given the gigabyte-scale size of WSIs. In this paper, we introduce MergeSlide, a simple yet effective framework that treats lifelong learning as a model merging problem by leveraging a vision-language pathology foundation model. When a new task arrives, it is: 1) defined with class-aware prompts, 2) fine-tuned for a few epochs using an MLP-free backbone, and 3) merged into a unified model using an orthogonal continual merging strategy that preserves performance and mitigates catastrophic forgetting. For inference under the class-incremental learning (CLASS-IL) setting, where task identity is unknown, we introduce Task-to-Class Prompt-aligned (TCP) inference. Specifically, TCP first identifies the most relevant task using task-level prompts and then applies the corresponding class-aware prompts to generate predictions. To evaluate MergeSlide, we conduct experiments on a stream of six TCGA datasets. The results show that MergeSlide outperforms both rehearsal-based continual learning and vision-language zero-shot baselines. Code and data are available at https://github.com/caodoanh2001/MergeSlide.
comment: WACV2026 Accepted
☆ MEGA-GUI: Multi-stage Enhanced Grounding Agents for GUI Elements
Graphical User Interface (GUI) grounding - the task of mapping natural language instructions to screen coordinates - is essential for autonomous agents and accessibility technologies. Existing systems rely on monolithic models or one-shot pipelines that lack modularity and fail under visual clutter and ambiguous instructions. We introduce MEGA-GUI, a multi-stage framework that separates grounding into coarse Region-of-Interest (ROI) selection and fine-grained element grounding, orchestrated by specialized vision-language agents. MEGA-GUI features a bidirectional ROI zoom algorithm that mitigates spatial dilution and a context-aware rewriting agent that reduces semantic ambiguity. Our analysis reveals complementary strengths and weaknesses across vision-language models at different visual scales, and we show that leveraging this modular structure achieves consistently higher accuracy than monolithic approaches. On the visually dense ScreenSpot-Pro benchmark, MEGA-GUI attains 73.18% accuracy, and on the semantically complex OSWorld-G benchmark it reaches 68.63%, surpassing previously reported results. Code and the Grounding Benchmark Toolkit (GBT) are available at https://github.com/samsungsds-research-papers/mega-gui.
comment: 26 pages, 7 figures. Code available at https://github.com/samsungsds-research-papers/mega-gui
☆ Real-time prediction of breast cancer sites using deformation-aware graph neural network
Early diagnosis of breast cancer is crucial, enabling the establishment of appropriate treatment plans and markedly enhancing patient prognosis. While direct magnetic resonance imaging-guided biopsy demonstrates promising performance in detecting cancer lesions, its practical application is limited by prolonged procedure times and high costs. To overcome these issues, an indirect MRI-guided biopsy that allows the procedure to be performed outside of the MRI room has been proposed, but it still faces challenges in creating an accurate real-time deformable breast model. In our study, we tackled this issue by developing a graph neural network (GNN)-based model capable of accurately predicting deformed breast cancer sites in real time during biopsy procedures. An individual-specific finite element (FE) model was developed by incorporating magnetic resonance (MR) image-derived structural information of the breast and tumor to simulate deformation behaviors. A GNN model was then employed, designed to process surface displacement and distance-based graph data, enabling accurate prediction of overall tissue displacement, including the deformation of the tumor region. The model was validated using phantom and real patient datasets, achieving an accuracy within 0.2 millimeters (mm) for cancer node displacement (RMSE) and a dice similarity coefficient (DSC) of 0.977 for spatial overlap with actual cancerous regions. Additionally, the model enabled real-time inference and achieved a speed-up of over 4,000 times in computational cost compared to conventional FE simulations. The proposed deformation-aware GNN model offers a promising solution for real-time tumor displacement prediction in breast biopsy, with high accuracy and real-time capability. Its integration with clinical procedures could significantly enhance the precision and efficiency of breast cancer diagnosis.
☆ Rethinking Saliency Maps: A Cognitive Human Aligned Taxonomy and Evaluation Framework for Explanations
Saliency maps are widely used for visual explanations in deep learning, but a fundamental lack of consensus persists regarding their intended purpose and alignment with diverse user queries. This ambiguity hinders the effective evaluation and practical utility of explanation methods.We address this gap by introducing the Reference-Frame $\times$ Granularity (RFxG) taxonomy, a principled conceptual framework that organizes saliency explanations along two essential axes:Reference-Frame: Distinguishing between pointwise ("Why this prediction?") and contrastive ("Why this and not an alternative?") explanations.Granularity: Ranging from fine-grained class-level (e.g., "Why Husky?") to coarse-grained group-level (e.g., "Why Dog?") interpretations.Using the RFxG lens, we demonstrate critical limitations in existing evaluation metrics, which overwhelmingly prioritize pointwise faithfulness while neglecting contrastive reasoning and semantic granularity. To systematically assess explanation quality across both RFxG dimensions, we propose four novel faithfulness metrics. Our comprehensive evaluation framework applies these metrics to ten state-of-the-art saliency methods, four model architectures, and three datasets.By advocating a shift toward user-intent-driven evaluation, our work provides both the conceptual foundation and the practical tools necessary to develop visual explanations that are not only faithful to the underlying model behavior but are also meaningfully aligned with the complexity of human understanding and inquiry.
☆ Decoupling Scene Perception and Ego Status: A Multi-Context Fusion Approach for Enhanced Generalization in End-to-End Autonomous Driving
Modular design of planning-oriented autonomous driving has markedly advanced end-to-end systems. However, existing architectures remain constrained by an over-reliance on ego status, hindering generalization and robust scene understanding. We identify the root cause as an inherent design within these architectures that allows ego status to be easily leveraged as a shortcut. Specifically, the premature fusion of ego status in the upstream BEV encoder allows an information flow from this strong prior to dominate the downstream planning module. To address this challenge, we propose AdaptiveAD, an architectural-level solution based on a multi-context fusion strategy. Its core is a dual-branch structure that explicitly decouples scene perception and ego status. One branch performs scene-driven reasoning based on multi-task learning, but with ego status deliberately omitted from the BEV encoder, while the other conducts ego-driven reasoning based solely on the planning task. A scene-aware fusion module then adaptively integrates the complementary decisions from the two branches to form the final planning trajectory. To ensure this decoupling does not compromise multi-task learning, we introduce a path attention mechanism for ego-BEV interaction and add two targeted auxiliary tasks: BEV unidirectional distillation and autoregressive online mapping. Extensive evaluations on the nuScenes dataset demonstrate that AdaptiveAD achieves state-of-the-art open-loop planning performance. Crucially, it significantly mitigates the over-reliance on ego status and exhibits impressive generalization capabilities across diverse scenarios.
comment: 11 pages, 8 figures
☆ RobustGait: Robustness Analysis for Appearance Based Gait Recognition WACV'26
Appearance-based gait recognition have achieved strong performance on controlled datasets, yet systematic evaluation of its robustness to real-world corruptions and silhouette variability remains lacking. We present RobustGait, a framework for fine-grained robustness evaluation of appearance-based gait recognition systems. RobustGait evaluation spans four dimensions: the type of perturbation (digital, environmental, temporal, occlusion), the silhouette extraction method (segmentation and parsing networks), the architectural capacities of gait recognition models, and various deployment scenarios. The benchmark introduces 15 corruption types at 5 severity levels across CASIA-B, CCPG, and SUSTech1K, with in-the-wild validation on MEVID, and evaluates six state-of-the-art gait systems. We came across several exciting insights. First, applying noise at the RGB level better reflects real-world degradation, and reveal how distortions propagate through silhouette extraction to the downstream gait recognition systems. Second, gait accuracy is highly sensitive to silhouette extractor biases, revealing an overlooked source of benchmark bias. Third, robustness is dependent on both the type of perturbation and the architectural design. Finally, we explore robustness-enhancing strategies, showing that noise-aware training and knowledge distillation improve performance and move toward deployment-ready systems.
comment: IEEE WACV'26 Main Conference
☆ FGNet: Leveraging Feature-Guided Attention to Refine SAM2 for 3D EM Neuron Segmentation
Accurate segmentation of neural structures in Electron Microscopy (EM) images is paramount for neuroscience. However, this task is challenged by intricate morphologies, low signal-to-noise ratios, and scarce annotations, limiting the accuracy and generalization of existing methods. To address these challenges, we seek to leverage the priors learned by visual foundation models on a vast amount of natural images to better tackle this task. Specifically, we propose a novel framework that can effectively transfer knowledge from Segment Anything 2 (SAM2), which is pre-trained on natural images, to the EM domain. We first use SAM2 to extract powerful, general-purpose features. To bridge the domain gap, we introduce a Feature-Guided Attention module that leverages semantic cues from SAM2 to guide a lightweight encoder, the Fine-Grained Encoder (FGE), in focusing on these challenging regions. Finally, a dual-affinity decoder generates both coarse and refined affinity maps. Experimental results demonstrate that our method achieves performance comparable to state-of-the-art (SOTA) approaches with the SAM2 weights frozen. Upon further fine-tuning on EM data, our method significantly outperforms existing SOTA methods. This study validates that transferring representations pre-trained on natural images, when combined with targeted domain-adaptive guidance, can effectively address the specific challenges in neuron segmentation.
☆ Monocular 3D Lane Detection via Structure Uncertainty-Aware Network with Curve-Point Queries
Monocular 3D lane detection is challenged by aleatoric uncertainty arising from inherent observation noise. Existing methods rely on simplified geometric assumptions, such as independent point predictions or global planar modeling, failing to capture structural variations and aleatoric uncertainty in real-world scenarios. In this paper, we propose MonoUnc, a bird's-eye view (BEV)-free 3D lane detector that explicitly models aleatoric uncertainty informed by local lane structures. Specifically, 3D lanes are projected onto the front-view (FV) space and approximated by parametric curves. Guided by curve predictions, curve-point query embeddings are dynamically generated for lane point predictions in 3D space. Each segment formed by two adjacent points is modeled as a 3D Gaussian, parameterized by the local structure and uncertainty estimations. Accordingly, a novel 3D Gaussian matching loss is designed to constrain these parameters jointly. Experiments on the ONCE-3DLanes and OpenLane datasets demonstrate that MonoUnc outperforms previous state-of-the-art (SoTA) methods across all benchmarks under stricter evaluation criteria. Additionally, we propose two comprehensive evaluation metrics for ONCE-3DLanes, calculating the average and maximum bidirectional Chamfer distances to quantify global and local errors. Codes are released at https://github.com/lrx02/MonoUnc.
♻ ☆ LightFusion: A Light-weighted, Double Fusion Framework for Unified Multimodal Understanding and Generation
Unified multimodal models have recently shown remarkable gains in both capability and versatility, yet most leading systems are still trained from scratch and require substantial computational resources. In this paper, we show that competitive performance can be obtained far more efficiently by strategically fusing publicly available models specialized for either generation or understanding. Our key design is to retain the original blocks while additionally interleaving multimodal self-attention blocks throughout the networks. This double fusion mechanism (1) effectively enables rich multi-modal fusion while largely preserving the original strengths of the base models, and (2) catalyzes synergistic fusion of high-level semantic representations from the understanding encoder with low-level spatial signals from the generation encoder. By training with only ~ 35B tokens, this approach achieves strong results across multiple benchmarks: 0.91 on GenEval for compositional text-to-image generation, 82.16 on DPG-Bench for complex text-to-image generation, 6.06 on GEditBench, and 3.77 on ImgEdit-Bench for image editing. By fully releasing the entire suite of code, model weights, and datasets, we hope to support future research on unified multimodal modeling.
comment: Preprint. Work in progress
♻ ☆ iTACO: Interactable Digital Twins of Articulated Objects from Casually Captured RGBD Videos 3DV 2026
Articulated objects are prevalent in daily life. Interactable digital twins of such objects have numerous applications in embodied AI and robotics. Unfortunately, current methods to digitize articulated real-world objects require carefully captured data, preventing practical, scalable, and generalizable acquisition. We focus on motion analysis and part-level segmentation of an articulated object from a casually captured RGBD video shot with a hand-held camera. A casually captured video of an interaction with an articulated object is easy to obtain at scale using smartphones. However, this setting is challenging due to simultaneous object and camera motion and significant occlusions as the person interacts with the object. To tackle these challenges, we introduce iTACO: a coarse-to-fine framework that infers joint parameters and segments movable parts of the object from a dynamic RGBD video. To evaluate our method under this new setting, we build a dataset of 784 videos containing 284 objects across 11 categories that is 20$\times$ larger than available in prior work. We then compare our approach with existing methods that also take video as input. Our experiments show that iTACO outperforms existing articulated object digital twin methods on both synthetic and real casually captured RGBD videos.
comment: 3DV 2026 camera-ready version. Project website can be found at https://3dlg-hcvc.github.io/video2articulation/
♻ ☆ Arcee: Differentiable Recurrent State Chain for Generative Vision Modeling with Mamba SSMs
State-space models (SSMs), Mamba in particular, are increasingly adopted for long-context sequence modeling, providing linear-time aggregation via an input-dependent, causal selective-scan operation. Along this line, recent "Mamba-for-vision" variants largely explore multiple scan orders to relax strict causality for non-sequential signals (e.g., images). Rather than preserving cross-block memory, the conventional formulation of the selective-scan operation in Mamba reinitializes each block's state-space dynamics from zero, discarding the terminal state-space representation (SSR) from the previous block. Arcee, a cross-block recurrent state chain, reuses each block's terminal state-space representation as the initial condition for the next block. Handoff across blocks is constructed as a differentiable boundary map whose Jacobian enables end-to-end gradient flow across terminal boundaries. Key to practicality, Arcee is compatible with all prior "vision-mamba" variants, parameter-free, and incurs constant, negligible cost. As a modeling perspective, we view terminal SSR as a mild directional prior induced by a causal pass over the input, rather than an estimator of the non-sequential signal itself. To quantify the impact, for unconditional generation on CelebA-HQ (256$\times$256) with Flow Matching, Arcee reduces FID$\downarrow$ from $82.81$ to $15.33$ ($5.4\times$ lower) on a single scan-order Zigzag Mamba baseline. Efficient CUDA kernels and training code will be released to support rigorous and reproducible research.
♻ ☆ Fast Equivariant Imaging: Acceleration for Unsupervised Learning via Augmented Lagrangian and Auxiliary PnP Denoisers
In this work, we propose Fast Equivariant Imaging (FEI), a novel unsupervised learning framework to rapidly and efficiently train deep imaging networks without ground-truth data. From the perspective of reformulating the Equivariant Imaging based optimization problem via the method of Lagrange multipliers and utilizing plug-and-play denoisers, this novel unsupervised scheme shows superior efficiency and performance compared to the vanilla Equivariant Imaging paradigm. In particular, our FEI schemes achieve an order-of-magnitude (10x) acceleration over standard EI on training U-Net for X-ray CT reconstruction and image inpainting, with improved generalization performance.
♻ ☆ Toward A Better Understanding of Monocular Depth Evaluation
Monocular depth estimation is an important task with rapid progress, but how to evaluate it is not fully resolved, as evidenced by a lack of standardization in existing literature and a large selection of evaluation metrics whose trade-offs and behaviors are not fully understood. This paper contributes a novel, quantitative analysis of existing metrics in terms of their sensitivity to various types of perturbations of ground truth, emphasizing comparison to human judgment. Our analysis reveals that existing metrics are severely under-sensitive to curvature perturbation such as making smooth surfaces bumpy. To remedy this, we introduce a new metric based on relative surface normals, along with new depth visualization tools and a principled method to create composite metrics with better human alignment. Code and data are available at: https://github.com/princeton-vl/evalmde.
♻ ☆ Physics informed Transformer-VAE for biophysical parameter estimation: PROSAIL model inversion in Sentinel-2 imagery
Accurate retrieval of vegetation biophysical variables from satellite imagery is crucial for ecosystem monitoring and agricultural management. In this work, we propose a physics-informed Transformer-VAE architecture to invert the PROSAIL radiative transfer model for simultaneous estimation of key canopy parameters from Sentinel-2 data. Unlike previous hybrid approaches that require real satellite images for self-supevised training. Our model is trained exclusively on simulated data, yet achieves performance on par with state-of-the-art methods that utilize real imagery. The Transformer-VAE incorporates the PROSAIL model as a differentiable physical decoder, ensuring that inferred latent variables correspond to physically plausible leaf and canopy properties. We demonstrate retrieval of leaf area index (LAI) and canopy chlorophyll content (CCC) on real-world field datasets (FRM4Veg and BelSAR) with accuracy comparable to models trained with real Sentinel-2 data. Our method requires no in-situ labels or calibration on real images, offering a cost-effective and self-supervised solution for global vegetation monitoring. The proposed approach illustrates how integrating physical models with advanced deep networks can improve the inversion of RTMs, opening new prospects for large-scale, physically-constrained remote sensing of vegetation traits.
comment: 10 pages, 6 figures, uses fancyhdr.sty
♻ ☆ Viper-F1: Fast and Fine-Grained Multimodal Understanding with Cross-Modal State-Space Modulation
Recent advances in multimodal large language models (MLLMs) have enabled impressive progress in vision-language understanding, yet their high computational cost limits deployment in resource-constrained scenarios such as robotic manipulation, personal assistants, and smart cameras. Most existing methods rely on Transformer-based cross-attention, whose quadratic complexity hinders efficiency. Moreover, small vision-language models often struggle to precisely capture fine-grained, task-relevant visual regions, leading to degraded performance on fine-grained reasoning tasks that limit their effectiveness in the real world. To address these issues, we introduce Viper-F1, a Hybrid State-Space Vision-Language Model that replaces attention with efficient Liquid State-Space Dynamics. To further enhance visual grounding, we propose a Token-Grid Correlation Module, which computes lightweight correlations between text tokens and image patches and modulates the state-space dynamics via FiLM conditioning. This enables the model to selectively emphasize visual regions relevant to the textual prompt while maintaining linear-time inference. Experimental results across multiple benchmarks demonstrate that Viper-F1 achieves accurate, fine-grained understanding with significantly improved efficiency.
♻ ☆ Enhancing Monocular Height Estimation via Weak Supervision from Imperfect Labels
Monocular height estimation provides an efficient and cost-effective solution for three-dimensional perception in remote sensing. However, training deep neural networks for this task demands abundant annotated data, while high-quality labels are scarce and typically available only in developed regions, which limits model generalization and constrains their applicability at large scales. This work addresses the problem by leveraging imperfect labels from out-of-domain regions to train pixel-wise height estimation networks, which may be incomplete, inexact, or inaccurate compared to high-quality annotations. We introduce an ensemble-based pipeline compatible with any monocular height estimation network, featuring architecture and loss functions specifically designed to leverage information in noisy labels through weak supervision, utilizing balanced soft losses and ordinal constraints. Experiments on two datasets -- DFC23 (0.5--1 m) and GBH (3 m) -- show that our method achieves more consistent cross-domain performance, reducing average RMSE by up to 22.94% on DFC23 and 18.62% on GBH compared with baselines. Ablation studies confirm the contribution of each design component.
♻ ☆ Generalizable 7T T1-map Synthesis from 1.5T and 3T T1 MRI with an Efficient Transformer Model
Purpose: Ultra-high-field 7T MRI offers improved resolution and contrast over standard clinical field strengths (1.5T, 3T). However, 7T scanners are costly, scarce, and introduce additional challenges such as susceptibility artifacts. We propose an efficient transformer-based model (7T-Restormer) to synthesize 7T-quality T1-maps from routine 1.5T or 3T T1-weighted (T1W) images. Methods: Our model was validated on 35 1.5T and 108 3T T1w MRI paired with corresponding 7T T1 maps of patients with confirmed MS. A total of 141 patient cases (32,128 slices) were randomly divided into 105 (25; 80) training cases (19,204 slices), 19 (5; 14) validation cases (3,476 slices), and 17 (5; 14) test cases (3,145 slices) where (X; Y) denotes the patients with 1.5T and 3T T1W scans, respectively. The synthetic 7T T1 maps were compared against the ResViT and ResShift models. Results: The 7T-Restormer model achieved a PSNR of 26.0 +/- 4.6 dB, SSIM of 0.861 +/- 0.072, and NMSE of 0.019 +/- 0.011 for 1.5T inputs, and 25.9 +/- 4.9 dB, and 0.866 +/- 0.077 for 3T inputs, respectively. Using 10.5 M parameters, our model reduced NMSE by 64 % relative to 56.7M parameter ResShift (0.019 vs 0.052, p = <.001 and by 41 % relative to 70.4M parameter ResViT (0.019 vs 0.032, p = <.001) at 1.5T, with similar advantages at 3T (0.021 vs 0.060 and 0.033; p < .001). Training with a mixed 1.5 T + 3 T corpus was superior to single-field strategies. Restricting the model to 1.5T increased the 1.5T NMSE from 0.019 to 0.021 (p = 1.1E-3) while training solely on 3T resulted in lower performance on input 1.5T T1W MRI. Conclusion: We propose a novel method for predicting quantitative 7T MP2RAGE maps from 1.5T and 3T T1W scans with higher quality than existing state-of-the-art methods. Our approach makes the benefits of 7T MRI more accessible to standard clinical workflows.
♻ ☆ Bench2FreeAD: A Benchmark for Vision-based End-to-end Navigation in Unstructured Robotic Environments
Most current end-to-end (E2E) autonomous driving algorithms are built on standard vehicles in structured transportation scenarios, lacking exploration of robot navigation for unstructured scenarios such as auxiliary roads, campus roads, and indoor settings. This paper investigates E2E robot navigation in unstructured road environments. First, we introduce two data collection pipelines - one for real-world robot data and another for synthetic data generated using the Isaac Sim simulator, which together produce an unstructured robotics navigation dataset -- FreeWorld Dataset. Second, we fine-tuned an efficient E2E autonomous driving model -- VAD -- using our datasets to validate the performance and adaptability of E2E autonomous driving models in these environments. Results demonstrate that fine-tuning through our datasets significantly enhances the navigation potential of E2E autonomous driving models in unstructured robotic environments. Thus, this paper presents the first dataset targeting E2E robot navigation tasks in unstructured scenarios, and provides a benchmark based on vision-based E2E autonomous driving algorithms to facilitate the development of E2E navigation technology for logistics and service robots. The project is available on Github.
comment: 7 pages, 9 figures
♻ ☆ S4M: 4-points to Segment Anything
Purpose: The Segment Anything Model (SAM) promises to ease the annotation bottleneck in medical segmentation, but overlapping anatomy and blurred boundaries make its point prompts ambiguous, leading to cycles of manual refinement to achieve precise masks. Better prompting strategies are needed. Methods: We propose a structured prompting strategy using 4 points as a compact instance-level shape description. We study two 4-point variants: extreme points and the proposed major/minor axis endpoints, inspired by ultrasound measurement practice. SAM cannot fully exploit such structured prompts because it treats all points identically and lacks geometry-aware reasoning. To address this, we introduce S4M (4-points to Segment Anything), which augments SAM to interpret 4 points as relational cues rather than isolated clicks. S4M expands the prompt space with role-specific embeddings and adds an auxiliary "Canvas" pretext task that sketches coarse masks directly from prompts, fostering geometry-aware reasoning. Results: Across eight datasets in ultrasound and surgical endoscopy, S4M improves segmentation by +3.42 mIoU over a strong SAM baseline at equal prompt budget. An annotation study with three clinicians further shows that major/minor prompts enable faster annotation. Conclusion: S4M increases performance, reduces annotation effort, and aligns prompting with clinical practice, enabling more scalable dataset development in medical imaging.
♻ ☆ ThinkingViT: Matryoshka Thinking Vision Transformer for Elastic Inference
ViTs deliver SOTA performance, yet their fixed computational budget prevents scalable deployment across heterogeneous hardware. Recent Matryoshka-style Transformer architectures mitigate this by embedding nested subnetworks within a single model to enable scalable inference. However, these models allocate the same amount of compute to all inputs, regardless of their complexity, which leads to inefficiencies. To address this, we introduce ThinkingViT, a nested ViT architecture that employs progressive thinking stages to dynamically adjust inference computation based on input difficulty. ThinkingViT first activates a small subset of the most important attention heads to produce an initial prediction. If the prediction confidence exceeds a predefined threshold, inference terminates early. Otherwise, within the same backbone, it activates a larger subset of attention heads and conducts a new forward pass. This process continues iteratively until the model reaches the predefined confidence level or exhausts its maximum capacity. To boost the performance of subsequent rounds, we introduce a Token Recycling approach that fuses the input embeddings with the embeddings from the previous stage. Experiments show that ThinkingViT surpasses nested baselines by up to 2.0 percentage points (p.p.) in accuracy at the same throughput and by up to 2.9 p.p. at equal GMACs on ImageNet-1K. We show that the backbone-preserving design of ThinkingViT allows it to serve as a plug-in upgrade for ViTs in downstream tasks such as semantic segmentation. We also demonstrate that ThinkingViT transfers effectively to other architectures such as Swin. The source code is available at https://github.com/ds-kiel/ThinkingViT.
♻ ☆ Beyond Patches: Mining Interpretable Part-Prototypes for Explainable AI
As AI systems grow more capable, it becomes increasingly important that their decisions remain understandable and aligned with human expectations. A key challenge is the limited interpretability of deep models. Post-hoc methods like GradCAM offer heatmaps but provide limited conceptual insight, while prototype-based approaches offer example-based explanations but often rely on rigid region selection and lack semantic consistency. To address these limitations, we propose PCMNet, a part-prototypical concept mining network that learns human-comprehensible prototypes from meaningful image regions without additional supervision. By clustering these prototypes into concept groups and extracting concept activation vectors, PCMNet provides structured, concept-level explanations and enhances robustness to occlusion and challenging conditions, which are both critical for building reliable and aligned AI systems. Experiments across multiple image classification benchmarks show that PCMNet outperforms state-of-the-art methods in interpretability, stability, and robustness. This work contributes to AI alignment by enhancing transparency, controllability, and trustworthiness in AI systems. Our code is available at: https://github.com/alehdaghi/PCMNet.
♻ ☆ Vision Transformers with Self-Distilled Registers NeurIPS 2025
Vision Transformers (ViTs) have emerged as the dominant architecture for visual processing tasks, demonstrating excellent scalability with increased training data and model size. However, recent work has identified the emergence of artifact tokens in ViTs that are incongruous with local semantics. These anomalous tokens degrade ViT performance in tasks that require fine-grained localization or structural coherence. An effective mitigation of this issue is the addition of register tokens to ViTs, which implicitly "absorb" the artifact term during training.Given the availability of existing large-scale pre-trained ViTs, in this paper we seek add register tokens to existing models without needing to re-train from scratch, which is infeasible considering their size. Specifically, we propose Post Hoc Registers (PH-Reg), an efficient self-distillation method that integrates registers into an existing ViT without requiring additional labeled data and full retraining. PH-Reg initializes both teacher and student networks from the same pre-trained ViT. The teacher remains frozen and unmodified, while the student is augmented with randomly initialized register tokens. By applying test-time augmentation to the teacher's inputs, we generate denoised dense embeddings free of artifacts, which are then used to optimize only a small subset of unlocked student weights. We show that our approach can effectively reduce the number of artifact tokens, improving the segmentation and depth prediction of the student ViT under zero-shot and linear probing.
comment: NeurIPS 2025 Spotlight. Website: https://github.com/0raiser0/PH-Reg
♻ ☆ Towards Cross-Domain Multi-Targeted Adversarial Attacks
Multi-targeted adversarial attacks aim to mislead classifiers toward specific target classes using a single perturbation generator with a conditional input specifying the desired target class. Existing methods face two key limitations: (1) a single generator supports only a limited number of predefined target classes, and (2) it requires access to the victim model's training data to learn target class semantics. This dependency raises data leakage concerns in practical black-box scenarios where the training data is typically private. To address these limitations, we propose a novel Cross-Domain Multi-Targeted Attack (CD-MTA) that can generate perturbations toward arbitrary target classes, even those that do not exist in the attacker's training data. CD-MTA is trained on a single public dataset but can perform targeted attacks on black-box models trained on different datasets with disjoint and unknown class sets. Our method requires only a single example image that visually represents the desired target class, without relying its label, class distribution or pretrained embeddings. We achieve this through a Feature Injection Module (FIM) and class-agnostic objectives which guide the generator to extract transferable, fine-grained features from the target image without inferring class semantics. Experiments on ImageNet and seven additional datasets show that CD-MTA outperforms existing multi-targeted attack methods on unseen target classes in black-box and cross-domain scenarios. The code is available at https://github.com/tgoncalv/CD-MTA.
comment: Under review
♻ ☆ Point2Primitive: CAD Reconstruction from Point Cloud by Direct Primitive Prediction
Recovering CAD models from point clouds requires reconstructing their topology and sketch-based extrusion primitives. A dominant paradigm for representing sketches involves implicit neural representations such as Signed Distance Fields (SDFs). However, this indirect approach inherently struggles with precision, leading to unintended curved edges and models that are difficult to edit. In this paper, we propose Point2Primitive, a framework that learns to directly predict the explicit, parametric primitives of CAD models. Our method treats sketch reconstruction as a set prediction problem, employing a improved transformer-based decoder with explicit position queries to directly detect and predict the fundamental sketch curves (i.e., type and parameter) from the point cloud. Instead of approximating a continuous field, we formulate curve parameters as explicit position queries, which are optimized autoregressively to achieve high accuracy. The overall topology is rebuilt via extrusion segmentation. Extensive experiments demonstrate that this direct prediction paradigm significantly outperforms implicit methods in both primitive accuracy and overall geometric fidelity.
♻ ☆ HierarchicalPrune: Position-Aware Compression for Large-Scale Diffusion Models AAAI 2026
State-of-the-art text-to-image diffusion models (DMs) achieve remarkable quality, yet their massive parameter scale (8-11B) poses significant challenges for inferences on resource-constrained devices. In this paper, we present HierarchicalPrune, a novel compression framework grounded in a key observation: DM blocks exhibit distinct functional hierarchies, where early blocks establish semantic structures while later blocks handle texture refinements. HierarchicalPrune synergistically combines three techniques: (1) Hierarchical Position Pruning, which identifies and removes less essential later blocks based on position hierarchy; (2) Positional Weight Preservation, which systematically protects early model portions that are essential for semantic structural integrity; and (3) Sensitivity-Guided Distillation, which adjusts knowledge-transfer intensity based on our discovery of block-wise sensitivity variations. As a result, our framework brings billion-scale diffusion models into a range more suitable for on-device inference, while preserving the quality of the output images. Specifically, combined with INT4 weight quantisation, HierarchicalPrune achieves 77.5-80.4% memory footprint reduction (e.g., from 15.8 GB to 3.2 GB) and 27.9-38.0% latency reduction, measured on server and consumer grade GPUs, with the minimum drop of 2.6% in GenEval score and 7% in HPSv2 score compared to the original model. Finally, our comprehensive user study with 85 participants demonstrates that HierarchicalPrune maintains perceptual quality comparable to the original model while significantly outperforming prior works.
comment: Accepted at AAAI 2026 (Main Technical Track)
♻ ☆ ZPressor: Bottleneck-Aware Compression for Scalable Feed-Forward 3DGS NeurIPS 2025
Feed-forward 3D Gaussian Splatting (3DGS) models have recently emerged as a promising solution for novel view synthesis, enabling one-pass inference without the need for per-scene 3DGS optimization. However, their scalability is fundamentally constrained by the limited capacity of their models, leading to degraded performance or excessive memory consumption as the number of input views increases. In this work, we analyze feed-forward 3DGS frameworks through the lens of the Information Bottleneck principle and introduce ZPressor, a lightweight architecture-agnostic module that enables efficient compression of multi-view inputs into a compact latent state $Z$ that retains essential scene information while discarding redundancy. Concretely, ZPressor enables existing feed-forward 3DGS models to scale to over 100 input views at 480P resolution on an 80GB GPU, by partitioning the views into anchor and support sets and using cross attention to compress the information from the support views into anchor views, forming the compressed latent state $Z$. We show that integrating ZPressor into several state-of-the-art feed-forward 3DGS models consistently improves performance under moderate input views and enhances robustness under dense view settings on two large-scale benchmarks DL3DV-10K and RealEstate10K. The video results, code and trained models are available on our project page: https://lhmd.top/zpressor.
comment: NeurIPS 2025, Project Page: https://lhmd.top/zpressor, Code: https://github.com/ziplab/ZPressor
♻ ☆ Backdooring CLIP through Concept Confusion
Backdoor attacks pose a serious threat to deep learning models by allowing adversaries to implant hidden behaviors that remain dormant on clean inputs but are maliciously triggered at inference. Existing backdoor attack methods typically rely on explicit triggers such as image patches or pixel perturbations, which makes them easier to detect and limits their applicability in complex settings. To address this limitation, we take a different perspective by analyzing backdoor attacks through the lens of concept-level reasoning, drawing on insights from interpretable AI. We show that traditional attacks can be viewed as implicitly manipulating the concepts activated within a model's latent space. This motivates a natural question: can backdoors be built by directly manipulating concepts? To answer this, we propose the Concept Confusion Attack (CCA), a novel framework that designates human-understandable concepts as internal triggers, eliminating the need for explicit input modifications. By relabeling images that strongly exhibit a chosen concept and fine-tuning on this mixed dataset, CCA teaches the model to associate the concept itself with the attacker's target label. Consequently, the presence of the concept alone is sufficient to activate the backdoor, making the attack stealthier and more resistant to existing defenses. Using CLIP as a case study, we show that CCA achieves high attack success rates while preserving clean-task accuracy and evading state-of-the-art defenses.
♻ ☆ Tracing and Mitigating Hallucinations in Multimodal LLMs via Dynamic Attention Localization
Multimodal Large Language Models (MLLMs) achieve strong performance on tasks like image captioning and visual question answering, but remain prone to hallucinations, where generated text conflicts with the visual input. Prior work links this partly to insufficient visual attention, but existing attention-based detectors and mitigation typically apply uniform adjustments across layers and heads, obscuring where errors originate. In this paper, we first show these methods fail to accurately localize problematic layers. Then, we introduce two diagnostics: Layer Image Attention Entropy (LIAE) which flags anomalous layers, and Image Attention Focus (IAF) which scores attention heads within those layers. Analysis shows that LIAE pinpoints faulty layers and IAF reliably ranks heads that warrant correction. Guided by these signals, we propose Dynamic Layer-wise Entropy and Attention Fusion (D-LEAF), a task-agnostic, attention-guided method that dynamically localizes and corrects errors during inference with negligible overhead. Furthermore, by establishing a connection between D-LEAF and DPO, we provide theoretical justification for the effectiveness of D-LEAF. Results show our D-LEAF delivers a 53\% relative improvement on standard captioning benchmarks, and on VQA both accuracy and F1-score improve by approximately 4\%, substantially suppressing hallucinations while preserving efficiency.
♻ ☆ CamSAM2: Segment Anything Accurately in Camouflaged Videos
Video camouflaged object segmentation (VCOS), aiming at segmenting camouflaged objects that seamlessly blend into their environment, is a fundamental vision task with various real-world applications. With the release of SAM2, video segmentation has witnessed significant progress. However, SAM2's capability of segmenting camouflaged videos is suboptimal, especially when given simple prompts such as point and box. To address the problem, we propose Camouflaged SAM2 (CamSAM2), which enhances SAM2's ability to handle camouflaged scenes without modifying SAM2's parameters. Specifically, we introduce a decamouflaged token to provide the flexibility of feature adjustment for VCOS. To make full use of fine-grained and high-resolution features from the current frame and previous frames, we propose implicit object-aware fusion (IOF) and explicit object-aware fusion (EOF) modules, respectively. Object prototype generation (OPG) is introduced to abstract and memorize object prototypes with informative details using high-quality features from previous frames. Extensive experiments are conducted to validate the effectiveness of our approach. While CamSAM2 only adds negligible learnable parameters to SAM2, it substantially outperforms SAM2 on three VCOS datasets, especially achieving 12.2 mDice gains with click prompt on MoCA-Mask and 19.6 mDice gains with mask prompt on SUN-SEG-Hard, with Hiera-T as the backbone. The code is available at https://github.com/zhoustan/CamSAM2.
♻ ☆ A comprehensive and easy-to-use multi-domain multi-task medical imaging meta-dataset
While the field of medical image analysis has undergone a transformative shift with the integration of machine learning techniques, the main challenge of these techniques is often the scarcity of large, diverse, and well-annotated datasets. Medical images vary in format, size, and other parameters and therefore require extensive preprocessing and standardization, for usage in machine learning. Addressing these challenges, we introduce the Medical Imaging Meta-Dataset (MedIMeta), a novel multi-domain, multi-task meta-dataset. MedIMeta contains 19 medical imaging datasets spanning 10 different domains and encompassing 54 distinct medical tasks, all of which are standardized to the same format and readily usable in PyTorch or other ML frameworks. We perform a technical validation of MedIMeta, demonstrating its utility through fully supervised and cross-domain few-shot learning baselines.
♻ ☆ LLMC+: Benchmarking Vision-Language Model Compression with a Plug-and-play Toolkit AAAI 2026
Large Vision-Language Models (VLMs) exhibit impressive multi-modal capabilities but suffer from prohibitive computational and memory demands, due to their long visual token sequences and massive parameter sizes. To address these issues, recent works have proposed training-free compression methods. However, existing efforts often suffer from three major limitations: (1) Current approaches do not decompose techniques into comparable modules, hindering fair evaluation across spatial and temporal redundancy. (2) Evaluation confined to simple single-turn tasks, failing to reflect performance in realistic scenarios. (3) Isolated use of individual compression techniques, without exploring their joint potential. To overcome these gaps, we introduce LLMC+, a comprehensive VLM compression benchmark with a versatile, plug-and-play toolkit. LLMC+ supports over 20 algorithms across five representative VLM families and enables systematic study of token-level and model-level compression. Our benchmark reveals that: (1) Spatial and temporal redundancies demand distinct technical strategies. (2) Token reduction methods degrade significantly in multi-turn dialogue and detail-sensitive tasks. (3) Combining token and model compression achieves extreme compression with minimal performance loss. We believe LLMC+ will facilitate fair evaluation and inspire future research in efficient VLM. Our code is available at https://github.com/ModelTC/LightCompress.
comment: Accepted by AAAI 2026
♻ ☆ vGamba: Attentive State Space Bottleneck for efficient Long-range Dependencies in Visual Recognition
Capturing long-range dependencies efficiently is essential for visual recognition tasks, yet existing methods face limitations. Convolutional neural networks (CNNs) struggle with restricted receptive fields, while Vision Transformers (ViTs) achieve global context and long-range modeling at a high computational cost. State-space models (SSMs) offer an alternative, but their application in vision remains underexplored. This work introduces vGamba, a hybrid vision backbone that integrates SSMs with attention mechanisms to enhance efficiency and expressiveness. At its core, the Gamba bottleneck block that includes, Gamba Cell, an adaptation of Mamba for 2D spatial structures, alongside a Multi-Head Self-Attention (MHSA) mechanism and a Gated Fusion Module for effective feature representation. The interplay of these components ensures that vGamba leverages the low computational demands of SSMs while maintaining the accuracy of attention mechanisms for modeling long-range dependencies in vision tasks. Additionally, the Fusion module enables seamless interaction between these components. Extensive experiments on classification, detection, and segmentation tasks demonstrate that vGamba achieves a superior trade-off between accuracy and computational efficiency, outperforming several existing models.
♻ ☆ Emergence of Fixational and Saccadic Movements in a Multi-Level Recurrent Attention Model for Vision
Inspired by foveal vision, hard attention models promise interpretability and parameter economy. However, existing models like the Recurrent Model of Visual Attention (RAM) and Deep Recurrent Attention Model (DRAM) failed to model the hierarchy of human vision system, that compromise on the visual exploration dynamics. As a result, they tend to produce attention that are either overly fixational or excessively saccadic, diverging from human eye movement behavior. In this paper, we propose a Multi-Level Recurrent Attention Model (MRAM), a novel hard attention framework that explicitly models the neural hierarchy of human visual processing. By decoupling the function of glimpse location generation and task execution in two recurrent layers, MRAM emergent a balanced behavior between fixation and saccadic movement. Our results show that MRAM not only achieves more human-like attention dynamics, but also consistently outperforms CNN, RAM and DRAM baselines on standard image classification benchmarks.
♻ ☆ Hierarchical Generalized Category Discovery for Brain Tumor Classification in Digital Pathology
Accurate brain tumor classification is critical for intra-operative decision making in neuro-oncological surgery. However, existing approaches are restricted to a fixed set of predefined classes and are therefore unable to capture patterns of tumor types not available during training. Unsupervised learning can extract general-purpose features, but it lacks the ability to incorporate prior knowledge from labelled data, and semi-supervised methods often assume that all potential classes are represented in the labelled data. Generalized Category Discovery (GCD) aims to bridge this gap by categorizing both known and unknown classes within unlabelled data. To reflect the hierarchical structure of brain tumor taxonomies, in this work, we introduce Hierarchical Generalized Category Discovery for Brain Tumor Classification (HGCD-BT), a novel approach that integrates hierarchical clustering with contrastive learning. Our method extends contrastive learning based GCD by incorporating a novel semi-supervised hierarchical clustering loss. We evaluate HGCD-BT on OpenSRH, a dataset of stimulated Raman histology brain tumor images, achieving a +28% improvement in accuracy over state-of-the-art GCD methods for patch-level classification, particularly in identifying previously unseen tumor categories. Furthermore, we demonstrate the generalizability of HGCD-BT on slide-level classification of hematoxylin and eosin stained whole-slide images from the Digital Brain Tumor Atlas, confirming its utility across imaging modalities.
♻ ☆ Algorithms Trained on Normal Chest X-rays Can Predict Health Insurance Types
Artificial intelligence is revealing what medicine never intended to encode. Deep vision models, trained on chest X-rays, can now detect not only disease but also invisible traces of social inequality. In this study, we show that state-of-the-art architectures (DenseNet121, SwinV2-B, MedMamba) can predict a patient's health insurance type, a strong proxy for socioeconomic status, from normal chest X-rays with significant accuracy (AUC around 0.67 on MIMIC-CXR-JPG, 0.68 on CheXpert). The signal persists even when age, race, and sex are controlled for, and remains detectable when the model is trained exclusively on a single racial group. Patch-based occlusion reveals that the signal is diffuse rather than localized, embedded in the upper and mid-thoracic regions. This suggests that deep networks may be internalizing subtle traces of clinical environments, equipment differences, or care pathways; learning socioeconomic segregation itself. These findings challenge the assumption that medical images are neutral biological data. By uncovering how models perceive and exploit these hidden social signatures, this work reframes fairness in medical AI: the goal is no longer only to balance datasets or adjust thresholds, but to interrogate and disentangle the social fingerprints embedded in clinical data itself.
comment: Submitting to MIDL 2026
♻ ☆ Nearest Neighbor Projection Removal Adversarial Training
Deep neural networks have exhibited impressive performance in image classification tasks but remain vulnerable to adversarial examples. Standard adversarial training enhances robustness but typically fails to explicitly address inter-class feature overlap, a significant contributor to adversarial susceptibility. In this work, we introduce a novel adversarial training framework that actively mitigates inter-class proximity by projecting out inter-class dependencies from adversarial and clean samples in the feature space. Specifically, our approach first identifies the nearest inter-class neighbors for each adversarial sample and subsequently removes projections onto these neighbors to enforce stronger feature separability. Theoretically, we demonstrate that our proposed logits correction reduces the Lipschitz constant of neural networks, thereby lowering the Rademacher complexity, which directly contributes to improved generalization and robustness. Extensive experiments across standard benchmarks including CIFAR-10, CIFAR-100, and SVHN show that our method demonstrates strong performance that is competitive with leading adversarial training techniques, highlighting significant achievements in both robust and clean accuracy. Our findings reveal the importance of addressing inter-class feature proximity explicitly to bolster adversarial robustness in DNNs.
♻ ☆ StrokeFusion: Vector Sketch Generation via Joint Stroke-UDF Encoding and Latent Sequence Diffusion
In the field of sketch generation, raster-format trained models often produce non-stroke artifacts, while vector-format trained models typically lack a holistic understanding of sketches, leading to compromised recognizability. Moreover, existing methods struggle to extract common features from similar elements (e.g., eyes of animals) appearing at varying positions across sketches. To address these challenges, we propose StrokeFusion, a two-stage framework for vector sketch generation. It contains a dual-modal sketch feature learning network that maps strokes into a high-quality latent space. This network decomposes sketches into normalized strokes and jointly encodes stroke sequences with Unsigned Distance Function (UDF) maps, representing sketches as sets of stroke feature vectors. Building upon this representation, our framework exploits a stroke-level latent diffusion model that simultaneously adjusts stroke position, scale, and trajectory during generation. This enables high-fidelity sketch generation while supporting stroke interpolation editing. Extensive experiments on the QuickDraw dataset demonstrate that our framework outperforms state-of-the-art techniques, validating its effectiveness in preserving structural integrity and semantic features. Code and models will be made publicly available upon publication.
♻ ☆ Use as Many Surrogates as You Want: Selective Ensemble Attack to Unleash Transferability without Sacrificing Resource Efficiency
In surrogate ensemble attacks, using more surrogate models yields higher transferability but lower resource efficiency. This practical trade-off between transferability and efficiency has largely limited existing attacks despite many pre-trained models are easily accessible online. In this paper, we argue that such a trade-off is caused by an unnecessary common assumption, i.e., all models should be \textit{identical} across iterations. By lifting this assumption, we can use as many surrogates as we want to unleash transferability without sacrificing efficiency. Concretely, we propose Selective Ensemble Attack (SEA), which dynamically selects diverse models (from easily accessible pre-trained models) across iterations based on our new interpretation of decoupling within-iteration and cross-iteration model diversity. In this way, the number of within-iteration models is fixed for maintaining efficiency, while only cross-iteration model diversity is increased for higher transferability. Experiments on ImageNet demonstrate the superiority of SEA in various scenarios. For example, when dynamically selecting 4 from 20 accessible models, SEA yields 8.5% higher transferability than existing attacks under the same efficiency. The superiority of SEA also generalizes to real-world systems, such as commercial vision APIs and large vision-language models. Overall, SEA opens up the possibility of adaptively balancing transferability and efficiency according to specific resource requirements.
♻ ☆ Deepfake Detection that Generalizes Across Benchmarks
The generalization of deepfake detectors to unseen manipulation techniques remains a challenge for practical deployment. Although many approaches adapt foundation models by introducing significant architectural complexity, this work demonstrates that robust generalization is achievable through a parameter-efficient adaptation of one of the foundational pre-trained vision encoders. The proposed method, GenD, fine-tunes only the Layer Normalization parameters (0.03% of the total) and enhances generalization by enforcing a hyperspherical feature manifold using L2 normalization and metric learning on it. We conducted an extensive evaluation on 14 benchmark datasets spanning from 2019 to 2025. The proposed method achieves state-of-the-art performance, outperforming more complex, recent approaches in average cross-dataset AUROC. Our analysis yields two primary findings for the field: 1) training on paired real-fake data from the same source video is essential for mitigating shortcut learning and improving generalization, and 2) detection difficulty on academic datasets has not strictly increased over time, with models trained on older, diverse datasets showing strong generalization capabilities. This work delivers a computationally efficient and reproducible method, proving that state-of-the-art generalization is attainable by making targeted, minimal changes to a pre-trained foundational image encoder model. The code is at: https://github.com/yermandy/GenD
♻ ☆ JAFAR: Jack up Any Feature at Any Resolution
Foundation Vision Encoders have become essential for a wide range of dense vision tasks. However, their low-resolution spatial feature outputs necessitate feature upsampling to produce the high-resolution modalities required for downstream tasks. In this work, we introduce JAFAR, a lightweight and flexible feature upsampler that enhances the spatial resolution of visual features from any Foundation Vision Encoder to an arbitrary target resolution. JAFAR employs an attention-based module designed to promote semantic alignment between high-resolution queries, derived from low-level image features, and semantically enriched low-resolution keys, using Spatial Feature Transform (SFT) modulation. Notably, despite the absence of high-resolution supervision, we demonstrate that learning at low upsampling ratios and resolutions generalizes remarkably well to significantly higher output scales. Extensive experiments show that JAFAR effectively recovers fine-grained spatial details and consistently outperforms existing feature upsampling methods across a diverse set of downstream tasks. Project page at https://jafar-upsampler.github.io
comment: Code available at https://github.com/PaulCouairon/JAFAR
♻ ☆ TransPrune: Token Transition Pruning for Efficient Large Vision-Language Model
Large Vision-Language Models (LVLMs) have advanced multimodal learning but face high computational costs due to the large number of visual tokens, motivating token pruning to improve inference efficiency. The key challenge lies in identifying which tokens are truly important. Most existing approaches rely on attention-based criteria to estimate token importance. However, they inherently suffer from certain limitations, such as positional bias. In this work, we explore a new perspective on token importance based on token transitions in LVLMs. We observe that the transition of token representations provides a meaningful signal of semantic information. Based on this insight, we propose TransPrune, a training-free and efficient token pruning method. Specifically, TransPrune progressively prunes tokens by assessing their importance through a combination of Token Transition Variation (TTV)-which measures changes in both the magnitude and direction of token representations-and Instruction-Guided Attention (IGA), which measures how strongly the instruction attends to image tokens via attention. Extensive experiments demonstrate that TransPrune achieves comparable multimodal performance to original LVLMs, such as LLaVA-v1.5 and LLaVA-Next, across eight benchmarks, while reducing inference TFLOPs by more than half. Moreover, TTV alone can serve as an effective criterion without relying on attention, achieving performance comparable to attention-based methods. The code will be made publicly available upon acceptance of the paper at https://github.com/liaolea/TransPrune.
♻ ☆ Efficient SAR Vessel Detection for FPGA-Based On-Satellite Sensing
Rapid analysis of satellite imagery within minutes-to-hours of acquisition is increasingly vital for many remote sensing applications, and is an essential component for developing next-generation autonomous and distributed satellite systems. On-satellite machine learning (ML) has the potential for such rapid analysis, by overcoming latency associated with intermittent satellite connectivity to ground stations or relay satellites, but state-of-the-art models are often too large or power-hungry for on-board deployment. Vessel detection using Synthetic Aperture Radar (SAR) is a critical time-sensitive application in maritime security that exemplifies this challenge. SAR vessel detection has previously been demonstrated only by ML models that either are too large for satellite deployment, have not been developed for sufficiently low-power hardware, or have only been tested on small SAR datasets that do not sufficiently represent the difficulty of the real-world task. Here we systematically explore a suite of architectural adaptations to develop a novel YOLOv8 architecture optimized for this task and FPGA-based processing. We deploy our model on a Kria KV260 MPSoC, and show it can analyze a ~700 megapixel SAR image in less than a minute, within common satellite power constraints (<10W). Our model has detection and classification performance only ~2% and 3% lower than values from state-of-the-art GPU-based models on the largest and most diverse open SAR vessel dataset, xView3-SAR, despite being ~50 and ~2500 times more computationally efficient. This work represents a key contribution towards on-satellite ML for time-critical SAR analysis, and more autonomous, scalable satellites.
comment: 17 pages, 7 figures, 6 tables. To be presented in the 10th ACM/IEEE Symposium on Edge Computing (SEC '25)
♻ ☆ Attention Surgery: An Efficient Recipe to Linearize Your Video Diffusion Transformer
Transformer-based video diffusion models (VDMs) deliver state-of-the-art video generation quality but are constrained by the quadratic cost of self-attention, making long sequences and high resolutions computationally expensive. While linear attention offers sub-quadratic complexity, previous approaches have failed to match the expressiveness of softmax attention unless retrained at significant computational cost. We introduce Attention Surgery, an efficient framework that enables linear or hybrid attention in pretrained VDMs, eliminating the need for training from scratch. Inspired by recent advances in language models, our method combines a novel hybrid attention mechanism-mixing softmax and linear tokens-with a lightweight distillation and fine-tuning pipeline requiring only a few GPU-days. Additionally, we incorporate a cost-aware block-rate strategy to balance expressiveness and efficiency across layers. Applied to Wan2.1 1.3B, a state-of-the-art efficient transformer VDM and evaluated on VBench, VBench2.0 and a human preference study, Attention Surgery achieves competitive results. Furthermore, measurements of on-mobile latency, memory usage, and FLOPs demonstrate notable improvements in scaling behavior for longer videos. Project page is available at: https://qualcomm-ai-research.github.io/attention-surgery.
♻ ☆ Decoupling Bias, Aligning Distributions: Synergistic Fairness Optimization for Deepfake Detection
Fairness is a core element in the trustworthy deployment of deepfake detection models, especially in the field of digital identity security. Biases in detection models toward different demographic groups, such as gender and race, may lead to systemic misjudgments, exacerbating the digital divide and social inequities. However, current fairness-enhanced detectors often improve fairness at the cost of detection accuracy. To address this challenge, we propose a dual-mechanism collaborative optimization framework. Our proposed method innovatively integrates structural fairness decoupling and global distribution alignment: decoupling channels sensitive to demographic groups at the model architectural level, and subsequently reducing the distance between the overall sample distribution and the distributions corresponding to each demographic group at the feature level. Experimental results demonstrate that, compared with other methods, our framework improves both inter-group and intra-group fairness while maintaining overall detection accuracy across domains.
♻ ☆ Towards Prospective Medical Image Reconstruction via Knowledge-Informed Dynamic Optimal Transport
Medical image reconstruction from measurement data is a vital but challenging inverse problem. Deep learning approaches have achieved promising results, but often requires paired measurement and high-quality images, which is typically simulated through a forward model, i.e., retrospective reconstruction. However, training on simulated pairs commonly leads to performance degradation on real prospective data due to the retrospective-to-prospective gap caused by incomplete imaging knowledge in simulation. To address this challenge, this paper introduces imaging Knowledge-Informed Dynamic Optimal Transport (KIDOT), a novel dynamic optimal transport framework with optimality in the sense of preserving consistency with imaging physics in transport, that conceptualizes reconstruction as finding a dynamic transport path. KIDOT learns from unpaired data by modeling reconstruction as a continuous evolution path from measurements to images, guided by an imaging knowledge-informed cost function and transport equation. This dynamic and knowledge-aware approach enhances robustness and better leverages unpaired data while respecting acquisition physics. Theoretically, we demonstrate that KIDOT naturally generalizes dynamic optimal transport, ensuring its mathematical rationale and solution existence. Extensive experiments on MRI and CT reconstruction demonstrate KIDOT's superior performance.
♻ ☆ 3D-Aware Vision-Language Models Fine-Tuning with Geometric Distillation
Vision-Language Models (VLMs) have shown remarkable performance on diverse visual and linguistic tasks, yet they remain fundamentally limited in their understanding of 3D spatial structures. We propose Geometric Distillation, a lightweight, annotation-free fine-tuning framework that injects human-inspired geometric cues into pretrained VLMs without modifying their architecture. By distilling (1) sparse correspondences, (2) relative depth relations, and (3) dense cost volumes from off-the-shelf 3D foundation models (e.g., MASt3R, VGGT), our method shapes representations to be geometry-aware while remaining compatible with natural image-text inputs. Through extensive evaluations on 3D vision-language reasoning and 3D perception benchmarks, our method consistently outperforms prior approaches, achieving improved 3D spatial reasoning with significantly lower computational cost. Our work demonstrates a scalable and efficient path to bridge 2D-trained VLMs with 3D understanding, opening up wider use in spatially grounded multimodal tasks.
♻ ☆ Self-NPO: Data-Free Diffusion Model Enhancement via Truncated Diffusion Fine-Tuning AAAI 2026
Diffusion models have demonstrated remarkable success in various visual generation tasks, including image, video, and 3D content generation. Preference optimization (PO) is a prominent and growing area of research that aims to align these models with human preferences. While existing PO methods primarily concentrate on producing favorable outputs, they often overlook the significance of classifier-free guidance (CFG) in mitigating undesirable results. Diffusion-NPO addresses this gap by introducing negative preference optimization (NPO), training models to generate outputs opposite to human preferences and thereby steering them away from unfavorable outcomes through CFG. However, prior NPO approaches rely on costly and fragile procedures for obtaining explicit preference annotations (e.g., manual pairwise labeling or reward model training), limiting their practicality in domains where such data are scarce or difficult to acquire. In this work, we propose Self-NPO, specifically truncated diffusion fine-tuning, a data-free approach of negative preference optimization by directly learning from the model itself, eliminating the need for manual data labeling or reward model training. This data-free approach is highly efficient (less than 1% training cost of Diffusion-NPO) and achieves comparable performance to Diffusion-NPO in a data-free manner. We demonstrate that Self-NPO integrates seamlessly into widely used diffusion models, including SD1.5, SDXL, and CogVideoX, as well as models already optimized for human preferences, consistently enhancing both their generation quality and alignment with human preferences. Code is available at https://github.com/G-U-N/Diffusion-NPO.
comment: accepted by AAAI 2026
♻ ☆ MonoDream: Monocular Vision-Language Navigation with Panoramic Dreaming
Vision-Language Navigation (VLN) tasks often leverage panoramic RGB and depth inputs to provide rich spatial cues for action planning, but these sensors can be costly or less accessible in real-world deployments. Recent approaches based on Vision-Language Action (VLA) models achieve strong results with monocular input, yet they still lag behind methods using panoramic RGB-D information. We present MonoDream, a lightweight VLA framework that enables monocular agents to learn a Unified Navigation Representation (UNR). This shared feature representation jointly aligns navigation-relevant visual semantics (e.g., global layout, depth, and future cues) and language-grounded action intent, enabling more reliable action prediction. MonoDream further introduces Latent Panoramic Dreaming (LPD) tasks to supervise the UNR, which train the model to predict latent features of panoramic RGB and depth observations at both current and future steps based on only monocular input. Experiments on multiple VLN benchmarks show that MonoDream consistently improves monocular navigation performance and significantly narrows the gap with panoramic-based agents.
♻ ☆ SRD: Reinforcement-Learned Semantic Perturbation for Backdoor Defense in VLMs AAAI2026
Visual language models (VLMs) have made significant progress in image captioning tasks, yet recent studies have found they are vulnerable to backdoor attacks. Attackers can inject undetectable perturbations into the data during inference, triggering abnormal behavior and generating malicious captions. These attacks are particularly challenging to detect and defend against due to the stealthiness and cross-modal propagation of the trigger signals. In this paper, we identify two key vulnerabilities by analyzing existing attack patterns: (1) the model exhibits abnormal attention concentration on certain regions of the input image, and (2) backdoor attacks often induce semantic drift and sentence incoherence. Based on these insights, we propose Semantic Reward Defense (SRD), a reinforcement learning framework that mitigates backdoor behavior without requiring any prior knowledge of trigger patterns. SRD learns to apply discrete perturbations to sensitive contextual regions of image inputs via a deep Q-network policy, aiming to confuse attention and disrupt the activation of malicious paths. To guide policy optimization, we design a reward signal named semantic fidelity score, which jointly assesses the semantic consistency and linguistic fluency of the generated captions, encouraging the agent to achieve a robust yet faithful output. SRD offers a trigger-agnostic, policy-interpretable defense paradigm that effectively mitigates local (TrojVLM) and global (Shadowcast) backdoor attacks, reducing ASR to 3.6% and 5.6% respectively, with less than 15% average CIDEr drop on the clean inputs. Our codes can be found at https://github.com/Ciconey/SRD.git.
comment: AAAI2026
♻ ☆ Towards Methane Detection Onboard Satellites
Methane is a potent greenhouse gas and a major driver of climate change, making its timely detection critical for effective mitigation. Machine learning (ML) deployed onboard satellites can enable rapid detection while reducing downlink costs, supporting faster response systems. Conventional methane detection methods often rely on image processing techniques, such as orthorectification to correct geometric distortions and matched filters to enhance plume signals. We introduce a novel approach that bypasses these preprocessing steps by using \textit{unorthorectified} data (UnorthoDOS). We find that ML models trained on this dataset achieve performance comparable to those trained on orthorectified data. Moreover, we also train models on an orthorectified dataset, showing that they can outperform the matched filter baseline (mag1c). We release model checkpoints and two ML-ready datasets comprising orthorectified and unorthorectified hyperspectral images from the Earth Surface Mineral Dust Source Investigation (EMIT) sensor at https://huggingface.co/datasets/SpaceML/UnorthoDOS , along with code at https://github.com/spaceml-org/plume-hunter.
♻ ☆ SparseWorld: A Flexible, Adaptive, and Efficient 4D Occupancy World Model Powered by Sparse and Dynamic Queries AAAI2026
Semantic occupancy has emerged as a powerful representation in world models for its ability to capture rich spatial semantics. However, most existing occupancy world models rely on static and fixed embeddings or grids, which inherently limit the flexibility of perception. Moreover, their ``in-place classification" over grids exhibits a potential misalignment with the dynamic and continuous nature of real scenarios. In this paper, we propose SparseWorld, a novel 4D occupancy world model that is flexible, adaptive, and efficient, powered by sparse and dynamic queries. We propose a Range-Adaptive Perception module, in which learnable queries are modulated by the ego vehicle states and enriched with temporal-spatial associations to enable extended-range perception. To effectively capture the dynamics of the scene, we design a State-Conditioned Forecasting module, which replaces classification-based forecasting with regression-guided formulation, precisely aligning the dynamic queries with the continuity of the 4D environment. In addition, We specifically devise a Temporal-Aware Self-Scheduling training strategy to enable smooth and efficient training. Extensive experiments demonstrate that SparseWorld achieves state-of-the-art performance across perception, forecasting, and planning tasks. Comprehensive visualizations and ablation studies further validate the advantages of SparseWorld in terms of flexibility, adaptability, and efficiency.
comment: Accepted by AAAI2026 Code: https://github.com/MSunDYY/SparseWorld
♻ ☆ Segmentation and Smoothing Affect Explanation Quality More Than the Choice of Perturbation-based XAI Method for Image Explanations IJCNN 2025
Perturbation-based post-hoc image explanation methods are commonly used to explain image prediction models. These methods perturb parts of the input to measure how those parts affect the output. Since the methods only require the input and output, they can be applied to any model, making them a popular choice to explain black-box models. While many different methods exist and have been compared with one another, it remains poorly understood which parameters of the different methods are responsible for their varying performance. This work uses the Randomized Input Sampling for Explanations (RISE) method as a baseline to evaluate many combinations of mask sampling, segmentation techniques, smoothing, attribution calculation, and per-segment or per-pixel attribution, using a proxy metric. The results show that attribution calculation, which is frequently the focus of other works, has little impact on the results. Conversely, segmentation and per-pixel attribution, rarely examined parameters, have a significant impact. The implementation of and data gathered in this work are available online: https://github.com/guspih/post-hoc-image-perturbation and https://bit.ly/smooth-mask-perturbation.
comment: This manuscript have been published in IJCNN 2025
♻ ☆ Virtual Multiplex Staining for Histological Images using a Marker-wise Conditioned Diffusion Model AAAI 2026
Multiplex imaging is revolutionizing pathology by enabling the simultaneous visualization of multiple biomarkers within tissue samples, providing molecular-level insights that traditional hematoxylin and eosin (H&E) staining cannot provide. However, the complexity and cost of multiplex data acquisition have hindered its widespread adoption. Additionally, most existing large repositories of H&E images lack corresponding multiplex images, limiting opportunities for multimodal analysis. To address these challenges, we leverage recent advances in latent diffusion models (LDMs), which excel at modeling complex data distributions by utilizing their powerful priors for fine-tuning to a target domain. In this paper, we introduce a novel framework for virtual multiplex staining that utilizes pretrained LDM parameters to generate multiplex images from H&E images using a conditional diffusion model. Our approach enables marker-by-marker generation by conditioning the diffusion model on each marker, while sharing the same architecture across all markers. To tackle the challenge of varying pixel value distributions across different marker stains and to improve inference speed, we fine-tune the model for single-step sampling, enhancing both color contrast fidelity and inference efficiency through pixel-level loss functions. We validate our framework on two publicly available datasets, notably demonstrating its effectiveness in generating up to 18 different marker types with improved accuracy, a substantial increase over the 2-3 marker types achieved in previous approaches. This validation highlights the potential of our framework, pioneering virtual multiplex staining. Finally, this paper bridges the gap between H&E and multiplex imaging, potentially enabling retrospective studies and large-scale analyses of existing H&E image repositories.
comment: AAAI 2026 accepted
♻ ☆ MMEdge: Accelerating On-device Multimodal Inference via Pipelined Sensing and Encoding
Real-time multimodal inference on resource-constrained edge devices is essential for applications such as autonomous driving, human-computer interaction, and mobile health. However, prior work often overlooks the tight coupling between sensing dynamics and model execution, as well as the complex inter-modality dependencies. In this paper, we propose MMEdge, an new on-device multi-modal inference framework based on pipelined sensing and encoding. Instead of waiting for complete sensor inputs, MMEdge decomposes the entire inference process into a sequence of fine-grained sensing and encoding units, allowing computation to proceed incrementally as data arrive. MMEdge also introduces a lightweight but effective temporal aggregation module that captures rich temporal dynamics across different pipelined units to maintain accuracy performance. Such pipelined design also opens up opportunities for fine-grained cross-modal optimization and early decision-making during inference. To further enhance system performance under resource variability and input data complexity, MMEdge incorporates an adaptive multimodal configuration optimizer that dynamically selects optimal sensing and model configurations for each modality under latency constraints, and a cross-modal speculative skipping mechanism that bypasses future units of slower modalities when early predictions reach sufficient confidence. We evaluate MMEdge using two public multimodal datasets and deploy it on a real-world unmanned aerial vehicle (UAV)-based multimodal testbed. The results show that MMEdge significantly reduces end-to-end latency while maintaining high task accuracy across various system and data dynamics.
comment: Code available at: https://github.com/HKUST-MINSys-Lab/MMEdge. Accepted by SenSys 2026
♻ ☆ Dereflection Any Image with Diffusion Priors and Diversified Data
Reflection removal of a single image remains a highly challenging task due to the complex entanglement between target scenes and unwanted reflections. Despite significant progress, existing methods are hindered by the scarcity of high-quality, diverse data and insufficient restoration priors, resulting in limited generalization across various real-world scenarios. In this paper, we propose Dereflection Any Image, a comprehensive solution with an efficient data preparation pipeline and a generalizable model for robust reflection removal. First, we introduce a dataset named Diverse Reflection Removal (DRR) created by randomly rotating reflective mediums in target scenes, enabling variation of reflection angles and intensities, and setting a new benchmark in scale, quality, and diversity. Second, we propose a diffusion-based framework with one-step diffusion for deterministic outputs and fast inference. To ensure stable learning, we design a three-stage progressive training strategy, including reflection-invariant finetuning to encourage consistent outputs across varying reflection patterns that characterize our dataset. Extensive experiments show that our method achieves SOTA performance on both common benchmarks and challenging in-the-wild images, showing superior generalization across diverse real-world scenes.
♻ ☆ Towards Collective Intelligence: Uncertainty-aware SAM Adaptation for Ambiguous Medical Image Segmentation
Collective intelligence from multiple medical experts consistently surpasses individual expertise in clinical diagnosis, particularly for ambiguous medical image segmentation tasks involving unclear tissue boundaries or pathological variations. The Segment Anything Model (SAM), a powerful vision foundation model originally designed for natural image segmentation, has shown remarkable potential when adapted to medical image segmentation tasks. However, existing SAM adaptation methods follow a single-expert paradigm, developing models based on individual expert annotations to predict deterministic masks. These methods systematically ignore the inherent uncertainty and variability in expert annotations, which fundamentally contradicts clinical practice, where multiple specialists provide different yet equally valid interpretations that collectively enhance diagnostic confidence. We propose an Uncertainty-aware Adapter, the first SAM adaptation framework designed to transition from single expert mindset to collective intelligence representation. Our approach integrates stochastic uncertainty sampling from a Conditional Variational Autoencoder into the adapters, enabling diverse prediction generation that captures expert knowledge distributions rather than individual expert annotations. We employ a novel position-conditioned control mechanism to integrate multi-expert knowledge, ensuring that the output distribution closely aligns with the multi-annotation distribution. Comprehensive evaluations across seven medical segmentation benchmarks have demonstrated that our collective intelligence-based adaptation achieves superior performance while maintaining computational efficiency, establishing a new adaptation framework for reliable clinical implementation.
♻ ☆ Spatially-Aware Mixture of Experts with Log-Logistic Survival Modeling for Whole-Slide Images
Accurate survival prediction from histopathology whole-slide images (WSIs) remains challenging due to their gigapixel resolution, strong spatial heterogeneity, and complex survival distributions. We introduce a comprehensive computational pathology framework that addresses these limitations through four complementary innovations: (1) Quantile-Gated Patch Selection for dynamically identifying prognostically relevant regions, (2) Graph-Guided Clustering to group patches by spatial and morphological similarity, (3) Hierarchical Context Attention to model both local tissue interactions and global slide-level context, and (4) an Expert-Driven Mixture of Log-Logistics module that flexibly models complex survival distributions. Across large TCGA cohorts, our method achieves state-of-the-art performance, yielding time-dependent concordance indices of 0.644 on LUAD, 0.751 on KIRC, and 0.752 on BRCA, consistently outperforming both histology-only and multimodal baselines. The framework further provides improved calibration and interpretability, advancing the use of WSIs for personalized cancer prognosis.
♻ ☆ edgeVLM: Cloud-edge Collaborative Real-time VLM based on Context Transfer
Vision-Language Models (VLMs) are increasingly deployed in real-time applications such as autonomous driving and human-computer interaction, which demand fast and reliable responses based on accurate perception. To meet these requirements, existing systems commonly employ cloud-edge collaborative architectures, such as partitioned Large Vision-Language Models (LVLMs) or task offloading strategies between Large and Small Vision-Language Models (SVLMs). However, these methods fail to accommodate cloud latency fluctuations and overlook the full potential of delayed but accurate LVLM responses. In this work, we propose a novel cloud-edge collaborative paradigm for VLMs, termed Context Transfer, which treats the delayed outputs of LVLMs as historical context to provide real-time guidance for SVLMs inference. Based on this paradigm, we design edgeVLM, which incorporates both context replacement and visual focus modules to refine historical textual input and enhance visual grounding consistency. Extensive experiments on three real-time vision-lanuage reasoning tasks across four datasets demonstrate the effectiveness of the proposed framework. The new paradigm lays the groundwork for more effective and latency-aware collaboration strategies in future VLM systems.
Information Retrieval
☆ Compact Multimodal Language Models as Robust OCR Alternatives for Noisy Textual Clinical Reports
Digitization of medical records often relies on smartphone photographs of printed reports, producing images degraded by blur, shadows, and other noise. Conventional OCR systems, optimized for clean scans, perform poorly under such real-world conditions. This study evaluates compact multimodal language models as privacy-preserving alternatives for transcribing noisy clinical documents. Using obstetric ultrasound reports written in regionally inflected medical English common to Indian healthcare settings, we compare eight systems in terms of transcription accuracy, noise sensitivity, numeric accuracy, and computational efficiency. Compact multimodal models consistently outperform both classical and neural OCR pipelines. Despite higher computational costs, their robustness and linguistic adaptability position them as viable candidates for on-premises healthcare digitization.
☆ PolicyBot - Reliable Question Answering over Policy Documents
All citizens of a country are affected by the laws and policies introduced by their government. These laws and policies serve essential functions for citizens. Such as granting them certain rights or imposing specific obligations. However, these documents are often lengthy, complex, and difficult to navigate, making it challenging for citizens to locate and understand relevant information. This work presents PolicyBot, a retrieval-augmented generation (RAG) system designed to answer user queries over policy documents with a focus on transparency and reproducibility. The system combines domain-specific semantic chunking, multilingual dense embeddings, multi-stage retrieval with reranking, and source-aware generation to provide responses grounded in the original documents. We implemented citation tracing to reduce hallucinations and improve user trust, and evaluated alternative retrieval and generation configurations to identify effective design choices. The end-to-end pipeline is built entirely with open-source tools, enabling easy adaptation to other domains requiring document-grounded question answering. This work highlights design considerations, practical challenges, and lessons learned in deploying trustworthy RAG systems for governance-related contexts.
☆ Exploring Multi-Table Retrieval Through Iterative Search
Open-domain question answering over datalakes requires retrieving and composing information from multiple tables, a challenging subtask that demands semantic relevance and structural coherence (e.g., joinability). While exact optimization methods like Mixed-Integer Programming (MIP) can ensure coherence, their computational complexity is often prohibitive. Conversely, simpler greedy heuristics that optimize for query coverage alone often fail to find these coherent, joinable sets. This paper frames multi-table retrieval as an iterative search process, arguing this approach offers advantages in scalability, interpretability, and flexibility. We propose a general framework and a concrete instantiation: a fast, effective Greedy Join-Aware Retrieval algorithm that holistically balances relevance, coverage, and joinability. Experiments across 5 NL2SQL benchmarks demonstrate that our iterative method achieves competitive retrieval performance compared to the MIP-based approach while being 4-400x faster depending on the benchmark and search space settings. This work highlights the potential of iterative heuristics for practical, scalable, and composition-aware retrieval.
comment: Accepted @ the AI for Tabular Data Workshop, EurIPS 2025
☆ Attention Grounded Enhancement for Visual Document Retrieval
Visual document retrieval requires understanding heterogeneous and multi-modal content to satisfy information needs. Recent advances use screenshot-based document encoding with fine-grained late interaction, significantly improving retrieval performance. However, retrievers are still trained with coarse global relevance labels, without revealing which regions support the match. As a result, retrievers tend to rely on surface-level cues and struggle to capture implicit semantic connections, hindering their ability to handle non-extractive queries. To alleviate this problem, we propose a \textbf{A}ttention-\textbf{G}rounded \textbf{RE}triever \textbf{E}nhancement (AGREE) framework. AGREE leverages cross-modal attention from multimodal large language models as proxy local supervision to guide the identification of relevant document regions. During training, AGREE combines local signals with the global signals to jointly optimize the retriever, enabling it to learn not only whether documents match, but also which content drives relevance. Experiments on the challenging ViDoRe V2 benchmark show that AGREE significantly outperforms the global-supervision-only baseline. Quantitative and qualitative analyses further demonstrate that AGREE promotes deeper alignment between query terms and document regions, moving beyond surface-level matching toward more accurate and interpretable retrieval. Our code is available at: https://anonymous.4open.science/r/AGREE-2025.
☆ Uncovering Causal Drivers of Energy Efficiency for Industrial Process in Foundry via Time-Series Causal Inference
Improving energy efficiency in industrial foundry processes is a critical challenge, as these operations are highly energy-intensive and marked by complex interdependencies among process variables. Correlation-based analyses often fail to distinguish true causal drivers from spurious associations, limiting their usefulness for decision-making. This paper applies a time-series causal inference framework to identify the operational factors that directly affect energy efficiency in induction furnace melting. Using production data from a Danish foundry, the study integrates time-series clustering to segment melting cycles into distinct operational modes with the PCMCI+ algorithm, a state-of-the-art causal discovery method, to uncover cause-effect relationships within each mode. Across clusters, robust causal relations among energy consumption, furnace temperature, and material weight define the core drivers of efficiency, while voltage consistently influences cooling water temperature with a delayed response. Cluster-specific differences further distinguish operational regimes: efficient clusters are characterized by stable causal structures, whereas inefficient ones exhibit reinforcing feedback loops and atypical dependencies. The contributions of this study are twofold. First, it introduces an integrated clustering-causal inference pipeline as a methodological innovation for analyzing energy-intensive processes. Second, it provides actionable insights that enable foundry operators to optimize performance, reduce energy consumption, and lower emissions.
comment: Accepted by the Energy Informatics.Academy Conference 2025 (EI.A 2025)
☆ FLOWER: Flow-Oriented Entity-Relationship Tool
Exploring relationships across data sources is a crucial optimization for entities recognition. Since databases can store big amount of information with synthetic and organic data, serving all quantity of objects correctly is an important task to deal with. However, the decision of how to construct entity relationship model is associated with human factor. In this paper, we present flow-oriented entity-relationship tool. This is first and unique end-to-end solution that eliminates routine and resource-intensive problems of processing, creating and visualizing both of explicit and implicit dependencies for prominent SQL dialects on-the-fly. Once launched, FLOWER automatically detects built-in constraints and starting to create own correct and necessary one using dynamic sampling and robust data analysis techniques. This approach applies to improve entity-relationship model and data storytelling to better understand the foundation of data and get unseen insights from DB sources using SQL or natural language. Evaluated on state-of-the-art STATS benchmark, experiments show that FLOWER is superior to reservoir sampling by 2.4x for distribution representation and 2.6x for constraint learning with 2.15x acceleration. For data storytelling, our tool archives 1.19x for accuracy enhance with 1.86x context decrease compare to LLM. Presented tool is also support 23 languages and compatible with both of CPU and GPU. Those results show that FLOWER can manage with real-world data a way better to ensure with quality, scalability and applicability for different use-cases.
comment: 12 pages, 8 figures
☆ Examining the Usage of Generative AI Models in Student Learning Activities for Software Programming
The rise of Generative AI (GenAI) tools like ChatGPT has created new opportunities and challenges for computing education. Existing research has primarily focused on GenAI's ability to complete educational tasks and its impact on student performance, often overlooking its effects on knowledge gains. In this study, we investigate how GenAI assistance compares to conventional online resources in supporting knowledge gains across different proficiency levels. We conducted a controlled user experiment with 24 undergraduate students of two different levels of programming experience (beginner, intermediate) to examine how students interact with ChatGPT while solving programming tasks. We analyzed task performance, conceptual understanding, and interaction behaviors. Our findings reveal that generating complete solutions with GenAI significantly improves task performance, especially for beginners, but does not consistently result in knowledge gains. Importantly, usage strategies differ by experience: beginners tend to rely heavily on GenAI toward task completion often without knowledge gain in the process, while intermediates adopt more selective approaches. We find that both over-reliance and minimal use result in weaker knowledge gains overall. Based on our results, we call on students and educators to adopt GenAI as a learning rather than a problem solving tool. Our study highlights the urgent need for guidance when integrating GenAI into programming education to foster deeper understanding.
comment: 9 pages, 4 figures, accepted at AIWARE 2025
☆ Cog-RAG: Cognitive-Inspired Dual-Hypergraph with Theme Alignment Retrieval-Augmented Generation AAAI 2026
Retrieval-Augmented Generation (RAG) enhances the response quality and domain-specific performance of large language models (LLMs) by incorporating external knowledge to combat hallucinations. In recent research, graph structures have been integrated into RAG to enhance the capture of semantic relations between entities. However, it primarily focuses on low-order pairwise entity relations, limiting the high-order associations among multiple entities. Hypergraph-enhanced approaches address this limitation by modeling multi-entity interactions via hyperedges, but they are typically constrained to inter-chunk entity-level representations, overlooking the global thematic organization and alignment across chunks. Drawing inspiration from the top-down cognitive process of human reasoning, we propose a theme-aligned dual-hypergraph RAG framework (Cog-RAG) that uses a theme hypergraph to capture inter-chunk thematic structure and an entity hypergraph to model high-order semantic relations. Furthermore, we design a cognitive-inspired two-stage retrieval strategy that first activates query-relevant thematic content from the theme hypergraph, and then guides fine-grained recall and diffusion in the entity hypergraph, achieving semantic alignment and consistent generation from global themes to local details. Our extensive experiments demonstrate that Cog-RAG significantly outperforms existing state-of-the-art baseline approaches.
comment: Accepted by AAAI 2026 main conference
☆ Large Language Models Meet Extreme Multi-label Classification: Scaling and Multi-modal Framework AAAI 2026
Foundation models have revolutionized artificial intelligence across numerous domains, yet their transformative potential remains largely untapped in Extreme Multi-label Classification (XMC). Queries in XMC are associated with relevant labels from extremely large label spaces, where it is critical to strike a balance between efficiency and performance. Therefore, many recent approaches efficiently pose XMC as a maximum inner product search between embeddings learned from small encoder-only transformer architectures. In this paper, we address two important aspects in XMC: how to effectively harness larger decoder-only models, and how to exploit visual information while maintaining computational efficiency. We demonstrate that both play a critical role in XMC separately and can be combined for improved performance. We show that a few billion-size decoder can deliver substantial improvements while keeping computational overhead manageable. Furthermore, our Vision-enhanced eXtreme Multi-label Learning framework (ViXML) efficiently integrates foundation vision models by pooling a single embedding per image. This limits computational growth while unlocking multi-modal capabilities. Remarkably, ViXML with small encoders outperforms text-only decoder in most cases, showing that an image is worth billions of parameters. Finally, we present an extension of existing text-only datasets to exploit visual metadata and make them available for future benchmarking. Comprehensive experiments across four public text-only datasets and their corresponding image enhanced versions validate our proposals' effectiveness, surpassing previous state-of-the-art by up to +8.21\% in P@1 on the largest dataset. ViXML's code is available at https://github.com/DiegoOrtego/vixml.
comment: To appear at AAAI 2026
☆ Local Collaborative Filtering: A Collaborative Filtering Method that Utilizes Local Similarities among Users
To leverage user behavior data from the Internet more effectively in recommender systems, this paper proposes a novel collaborative filtering (CF) method called Local Collaborative Filtering (LCF). LCF utilizes local similarities among users and integrates their data using the law of large numbers (LLN), thereby improving the utilization of user behavior data. Experiments are conducted on the Steam game dataset, and the results of LCF align with real-world needs.
comment: 4 pages, 2 figures
☆ Region-Point Joint Representation for Effective Trajectory Similarity Learning AAAI2026
Recent learning-based methods have reduced the computational complexity of traditional trajectory similarity computation, but state-of-the-art (SOTA) methods still fail to leverage the comprehensive spectrum of trajectory information for similarity modeling. To tackle this problem, we propose \textbf{RePo}, a novel method that jointly encodes \textbf{Re}gion-wise and \textbf{Po}int-wise features to capture both spatial context and fine-grained moving patterns. For region-wise representation, the GPS trajectories are first mapped to grid sequences, and spatial context are captured by structural features and semantic context enriched by visual features. For point-wise representation, three lightweight expert networks extract local, correlation, and continuous movement patterns from dense GPS sequences. Then, a router network adaptively fuses the learned point-wise features, which are subsequently combined with region-wise features using cross-attention to produce the final trajectory embedding. To train RePo, we adopt a contrastive loss with hard negative samples to provide similarity ranking supervision. Experiment results show that RePo achieves an average accuracy improvement of 22.2\% over SOTA baselines across all evaluation metrics.
comment: This paper is accepted by AAAI2026
☆ FGNet: Leveraging Feature-Guided Attention to Refine SAM2 for 3D EM Neuron Segmentation
Accurate segmentation of neural structures in Electron Microscopy (EM) images is paramount for neuroscience. However, this task is challenged by intricate morphologies, low signal-to-noise ratios, and scarce annotations, limiting the accuracy and generalization of existing methods. To address these challenges, we seek to leverage the priors learned by visual foundation models on a vast amount of natural images to better tackle this task. Specifically, we propose a novel framework that can effectively transfer knowledge from Segment Anything 2 (SAM2), which is pre-trained on natural images, to the EM domain. We first use SAM2 to extract powerful, general-purpose features. To bridge the domain gap, we introduce a Feature-Guided Attention module that leverages semantic cues from SAM2 to guide a lightweight encoder, the Fine-Grained Encoder (FGE), in focusing on these challenging regions. Finally, a dual-affinity decoder generates both coarse and refined affinity maps. Experimental results demonstrate that our method achieves performance comparable to state-of-the-art (SOTA) approaches with the SAM2 weights frozen. Upon further fine-tuning on EM data, our method significantly outperforms existing SOTA methods. This study validates that transferring representations pre-trained on natural images, when combined with targeted domain-adaptive guidance, can effectively address the specific challenges in neuron segmentation.
☆ Dimension vs. Precision: A Comparative Analysis of Autoencoders and Quantization for Efficient Vector Retrieval on BEIR SciFact
Dense retrieval models have become a standard for state-of-the-art information retrieval. However, their high-dimensional, high-precision (float32) vector embeddings create significant storage and memory challenges for real-world deployment. To address this, we conduct a rigorous empirical study on the BEIR SciFact benchmark, evaluating the trade-offs between two primary compression strategies: (1) Dimensionality Reduction via deep Autoencoders (AE), reducing original 384-dim vectors to latent spaces from 384 down to 12, and (2) Precision Reduction via Quantization (float16, int8, and binary). We systematically compare each method by measuring the "performance loss" (or gain) relative to a float32 baseline across a full suite of retrieval metrics (NDCG, MAP, MRR, Recall, Precision) at various k cutoffs. Our results show that int8 scalar quantization provides the most effective "sweet spot," achieving a 4x compression with a negligible [~1-2%] drop in nDCG@10. In contrast, Autoencoders show a graceful degradation but suffer a more significant performance loss at equivalent 4x compression ratios (AE-96). binary quantization was found to be unsuitable for this task due to catastrophic performance drops. This work provides a practical guide for deploying efficient, high-performance retrieval systems.
comment: 16 pages, 9 figures, 1 table
☆ Mitigating Recommendation Biases via Group-Alignment and Global-Uniformity in Representation Learning
Collaborative Filtering~(CF) plays a crucial role in modern recommender systems, leveraging historical user-item interactions to provide personalized suggestions. However, CF-based methods often encounter biases due to imbalances in training data. This phenomenon makes CF-based methods tend to prioritize recommending popular items and performing unsatisfactorily on inactive users. Existing works address this issue by rebalancing training samples, reranking recommendation results, or making the modeling process robust to the bias. Despite their effectiveness, these approaches can compromise accuracy or be sensitive to weighting strategies, making them challenging to train. In this paper, we deeply analyze the causes and effects of the biases and propose a framework to alleviate biases in recommendation from the perspective of representation distribution, namely Group-Alignment and Global-Uniformity Enhanced Representation Learning for Debiasing Recommendation (AURL). Specifically, we identify two significant problems in the representation distribution of users and items, namely group-discrepancy and global-collapse. These two problems directly lead to biases in the recommendation results. To this end, we propose two simple but effective regularizers in the representation space, respectively named group-alignment and global-uniformity. The goal of group-alignment is to bring the representation distribution of long-tail entities closer to that of popular entities, while global-uniformity aims to preserve the information of entities as much as possible by evenly distributing representations. Our method directly optimizes both the group-alignment and global-uniformity regularization terms to mitigate recommendation biases. Extensive experiments on three real datasets and various recommendation backbones verify the superiority of our proposed framework.
☆ Personalized Federated Recommendation With Knowledge Guidance
Federated Recommendation (FedRec) has emerged as a key paradigm for building privacy-preserving recommender systems. However, existing FedRec models face a critical dilemma: memory-efficient single-knowledge models suffer from a suboptimal knowledge replacement practice that discards valuable personalization, while high-performance dual-knowledge models are often too memory-intensive for practical on-device deployment. We propose Federated Recommendation with Knowledge Guidance (FedRKG), a model-agnostic framework that resolves this dilemma. The core principle, Knowledge Guidance, avoids full replacement and instead fuses global knowledge into preserved local embeddings, attaining the personalization benefits of dual-knowledge within a single-knowledge memory footprint. Furthermore, we introduce Adaptive Guidance, a fine-grained mechanism that dynamically modulates the intensity of this guidance for each user-item interaction, overcoming the limitations of static fusion methods. Extensive experiments on benchmark datasets demonstrate that FedRKG significantly outperforms state-of-the-art methods, validating the effectiveness of our approach. The code is available at https://github.com/Jaehyung-Lim/fedrkg.
☆ Can We Predict the Next Question? A Collaborative Filtering Approach to Modeling User Behavior
In recent years, large language models (LLMs) have excelled in language understanding and generation, powering advanced dialogue and recommendation systems. However, a significant limitation persists: these systems often model user preferences statically, failing to capture the dynamic and sequential nature of interactive behaviors. The sequence of a user's historical questions provides a rich, implicit signal of evolving interests and cognitive patterns, yet leveraging this temporal data for predictive tasks remains challenging due to the inherent disconnect between language modeling and behavioral sequence modeling. To bridge this gap, we propose a Collaborative Filtering-enhanced Question Prediction (CFQP) framework. CFQP dynamically models evolving user-question interactions by integrating personalized memory modules with graph-based preference propagation. This dual mechanism allows the system to adaptively learn from user-specific histories while refining predictions through collaborative signals from similar users. Experimental results demonstrate that our approach effectively generates agents that mimic real-user questioning patterns, highlighting its potential for building proactive and adaptive dialogue systems.
☆ A Plug-and-Play Spatially-Constrained Representation Enhancement Framework for Local-Life Recommendation
Local-life recommendation have witnessed rapid growth, providing users with convenient access to daily essentials. However, this domain faces two key challenges: (1) spatial constraints, driven by the requirements of the local-life scenario, where items are usually shown only to users within a limited geographic area, indirectly reducing their exposure probability; and (2) long-tail sparsity, where few popular items dominate user interactions, while many high-quality long-tail items are largely overlooked due to imbalanced interaction opportunities. Existing methods typically adopt a user-centric perspective, such as modeling spatial user preferences or enhancing long-tail representations with collaborative filtering signals. However, we argue that an item-centric perspective is more suitable for this domain, focusing on enhancing long-tail items representation that align with the spatially-constrained characteristics of local lifestyle services. To tackle this issue, we propose ReST, a Plug-And-Play Spatially-Constrained Representation Enhancement Framework for Long-Tail Local-Life Recommendation. Specifically, we first introduce a Meta ID Warm-up Network, which initializes fundamental ID representations by injecting their basic attribute-level semantic information. Subsequently, we propose a novel Spatially-Constrained ID Representation Enhancement Network (SIDENet) based on contrastive learning, which incorporates two efficient strategies: a spatially-constrained hard sampling strategy and a dynamic representation alignment strategy. This design adaptively identifies weak ID representations based on their attribute-level information during training. It additionally enhances them by capturing latent item relationships within the spatially-constrained characteristics of local lifestyle services, while preserving compatibility with popular items.
☆ AIF: Asynchronous Inference Framework for Cost-Effective Pre-Ranking
In industrial recommendation systems, pre-ranking models based on deep neural networks (DNNs) commonly adopt a sequential execution framework: feature fetching and model forward computation are triggered only after receiving candidates from the upstream retrieval stage. This design introduces inherent bottlenecks, including redundant computations of identical users/items and increased latency due to strictly sequential operations, which jointly constrain the model's capacity and system efficiency. To address these limitations, we propose the Asynchronous Inference Framework (AIF), a cost-effective computational architecture that decouples interaction-independent components, those operating within a single user or item, from real-time prediction. AIF reorganizes the model inference process by performing user-side computations in parallel with the retrieval stage and conducting item-side computations in a nearline manner. This means that interaction-independent components are calculated just once and completed before the real-time prediction phase of the pre-ranking stage. As a result, AIF enhances computational efficiency and reduces latency, freeing up resources to significantly improve the feature set and model architecture of interaction-independent components. Moreover, we delve into model design within the AIF framework, employing approximated methods for interaction-dependent components in online real-time predictions. By co-designing both the framework and the model, our solution achieves notable performance gains without significantly increasing computational and latency costs. This has enabled the successful deployment of AIF in the Taobao display advertising system.
☆ Tokenize Once, Recommend Anywhere: Unified Item Tokenization for Multi-domain LLM-based Recommendation AAAI
Large language model (LLM)-based recommender systems have achieved high-quality performance by bridging the discrepancy between the item space and the language space through item tokenization. However, existing item tokenization methods typically require training separate models for each item domain, limiting generalization. Moreover, the diverse distributions and semantics across item domains make it difficult to construct a unified tokenization that preserves domain-specific information. To address these challenges, we propose UniTok, a Unified item Tokenization framework that integrates our own mixture-of-experts (MoE) architecture with a series of codebooks to convert items into discrete tokens, enabling scalable tokenization while preserving semantic information across multiple item domains. Specifically, items from different domains are first projected into a unified latent space through a shared encoder. They are then routed to domain-specific experts to capture the unique semantics, while a shared expert, which is always active, encodes common knowledge transferable across domains. Additionally, to mitigate semantic imbalance across domains, we present a mutual information calibration mechanism, which guides the model towards retaining similar levels of semantic information for each domain. Comprehensive experiments on wide-ranging real-world datasets demonstrate that the proposed UniTok framework is (a) highly effective: achieving up to 51.89% improvements over strong benchmarks, (b) theoretically sound: showing the analytical validity of our architectural design and optimization; and (c) highly generalizable: demonstrating robust performance across diverse domains without requiring per-domain retraining, a capability not supported by existing baselines.
comment: 20 pages, 8 figures, 9 tables; Annual AAAI Conference on Artificial Intelligence (AAAI-26) (to appear) (Please cite our conference version.)
☆ Auditing Google's AI Overviews and Featured Snippets: A Case Study on Baby Care and Pregnancy AAAI
Google Search increasingly surfaces AI-generated content through features like AI Overviews (AIO) and Featured Snippets (FS), which users frequently rely on despite having no control over their presentation. Through a systematic algorithm audit of 1,508 real baby care and pregnancy-related queries, we evaluate the quality and consistency of these information displays. Our robust evaluation framework assesses multiple quality dimensions, including answer consistency, relevance, presence of medical safeguards, source categories, and sentiment alignment. Our results reveal concerning gaps in information consistency, with information in AIO and FS displayed on the same search result page being inconsistent with each other in 33% of cases. Despite high relevance scores, both features critically lack medical safeguards (present in just 11% of AIO and 7% of FS responses). While health and wellness websites dominate source categories for both, AIO and FS, FS also often link to commercial sources. These findings have important implications for public health information access and demonstrate the need for stronger quality controls in AI-mediated health information. Our methodology provides a transferable framework for auditing AI systems across high-stakes domains where information quality directly impacts user well-being.
comment: 18 pages, 10 figures; to appear in AAAI ICWSM 2026
☆ Rethinking the filter bubble? Developing a research agenda for the protective filter bubble
Filter bubbles and echo chambers have received global attention from scholars, media organizations, and the general public. Filter bubbles have primarily been regarded as intrinsically negative, and many studies have sought to minimize their influence. The detrimental influence of filter bubbles is well-studied. Filter bubbles may, for example, create information silos, amplify misinformation, and promote hatred and extremism. However, comparatively few studies have considered the other side of the filter bubble; its protective benefits, particularly to marginalized communities and those living in countries with low levels of press freedom. Through a review of the literature on digital safe spaces and protective filter bubbles, this commentary suggests that there may be a need to rethink the filter bubble, and it proposes several areas for future research.
comment: This work has been published in Big Data & Society. Please cite the journal version
♻ ☆ GRIN Transfer: A production-ready tool for libraries to retrieve digital copies from Google Books
Publicly launched in 2004, the Google Books project has scanned tens of millions of items in partnership with libraries around the world. As part of this project, Google created the Google Return Interface (GRIN). Through this platform, libraries can access their scanned collections, the associated metadata, and the ongoing OCR and metadata improvements that become available as Google reprocesses these collections using new technologies. When downloading the Harvard Library Google Books collection from GRIN to develop the Institutional Books dataset, we encountered several challenges related to rate-limiting and atomized metadata within the GRIN platform. To overcome these challenges and help other libraries make more robust use of their Google Books collections, this technical report introduces the initial release of GRIN Transfer. This open-source and production-ready Python pipeline allows partner libraries to efficiently retrieve their Google Books collections from GRIN. This report also introduces an updated version of our Institutional Books 1.0 pipeline, initially used to analyze, augment, and assemble the Institutional Books 1.0 dataset. We have revised this pipeline for compatibility with the output format of GRIN Transfer. A library could pair these two tools to create an end-to-end processing pipeline for their Google Books collection to retrieve, structure, and enhance data available from GRIN. This report gives an overview of how GRIN Transfer was designed to optimize for reliability and usability in different environments, as well as guidance on configuration for various use cases.
♻ ☆ RAG-R1: Incentivizing the Search and Reasoning Capabilities of LLMs through Multi-query Parallelism
Large Language Models (LLMs), despite their remarkable capabilities, are prone to generating hallucinated or outdated content due to their static internal knowledge. While Retrieval-Augmented Generation (RAG) integrated with Reinforcement Learning (RL) offers a solution, these methods are fundamentally constrained by a single-query mode, leading to prohibitive latency and inherent brittleness. To overcome these limitations, we introduce RAG-R1, a novel two-stage training framework centered around multi-query parallelism. Our framework enables LLMs to adaptively leverage internal and external knowledge during the reasoning process while transitioning from the single-query mode to multi-query parallelism. This architectural shift bolsters reasoning robustness while significantly reducing inference latency. Extensive experiments on seven question-answering benchmarks confirm the superiority of our method, which outperforms the strongest baseline by up to 13.7% and decreases inference time by 11.1%.
♻ ☆ LEMUR: Large scale End-to-end MUltimodal Recommendation
Traditional ID-based recommender systems often struggle with cold-start and generalization challenges. Multimodal recommendation systems, which leverage textual and visual data, offer a promising solution to mitigate these issues. However, existing industrial approaches typically adopt a two-stage training paradigm: first pretraining a multimodal model, then applying its frozen representations to train the recommendation model. This decoupled framework suffers from misalignment between multimodal learning and recommendation objectives, as well as an inability to adapt dynamically to new data. To address these limitations, we propose LEMUR, the first large-scale multimodal recommender system trained end-to-end from raw data. By jointly optimizing both the multimodal and recommendation components, LEMUR ensures tighter alignment with downstream objectives while enabling real-time parameter updates. Constructing multimodal sequential representations from user history often entails prohibitively high computational costs. To alleviate this bottleneck, we propose a novel memory bank mechanism that incrementally accumulates historical multimodal representations throughout the training process. After one month of deployment in Douyin Search, LEMUR has led to a 0.843% reduction in query change rate decay and a 0.81% improvement in QAUC. Additionally, LEMUR has shown significant gains across key offline metrics for Douyin Advertisement. Our results validate the superiority of end-to-end multimodal recommendation in real-world industrial scenarios.
♻ ☆ PathRAG: Pruning Graph-based Retrieval Augmented Generation with Relational Paths
Retrieval-augmented generation (RAG) improves the response quality of large language models (LLMs) by retrieving knowledge from external databases. Typical RAG approaches split the text database into chunks, organizing them in a flat structure for efficient searches. To better capture the inherent dependencies and structured relationships across the text database, researchers propose to organize textual information into an indexing graph, known asgraph-based RAG. However, we argue that the limitation of current graph-based RAG methods lies in the redundancy of the retrieved information, rather than its insufficiency. Moreover, previous methods use a flat structure to organize retrieved information within the prompts, leading to suboptimal performance. To overcome these limitations, we propose PathRAG, which retrieves key relational paths from the indexing graph, and converts these paths into textual form for prompting LLMs. Specifically, PathRAG effectively reduces redundant information with flow-based pruning, while guiding LLMs to generate more logical and coherent responses with path-based prompting. Experimental results show that PathRAG consistently outperforms state-of-the-art baselines across six datasets and five evaluation dimensions. The code is available at the following link: https://github.com/BUPT-GAMMA/PathRAG
♻ ☆ Beyond Chains: Bridging Large Language Models and Knowledge Bases in Complex Question Answering AAAI2026
Knowledge Base Question Answering (KBQA) aims to answer natural language questions using structured knowledge from KBs. While LLM-only approaches offer generalization, they suffer from outdated knowledge, hallucinations, and lack of transparency. Chain-based KG-RAG methods address these issues by incorporating external KBs, but are limited to simple chain-structured questions due to the absence of planning and logical structuring. Inspired by semantic parsing methods, we propose PDRR: a four-stage framework consisting of Predict, Decompose, Retrieve, and Reason. Our method first predicts the question type and decomposes the question into structured triples. Then retrieves relevant information from KBs and guides the LLM as an agent to reason over and complete the decomposed triples. Experimental results demonstrate that PDRR consistently outperforms existing methods across various LLM backbones and achieves superior performance on both chain-structured and non-chain complex questions.
comment: AAAI2026 Main Track
Machine Learning
☆ Scaling Spatial Intelligence with Multimodal Foundation Models
Despite remarkable progress, multimodal foundation models still exhibit surprising deficiencies in spatial intelligence. In this work, we explore scaling up multimodal foundation models to cultivate spatial intelligence within the SenseNova-SI family, built upon established multimodal foundations including visual understanding models (i.e., Qwen3-VL and InternVL3) and unified understanding and generation models (i.e., Bagel). We take a principled approach to constructing high-performing and robust spatial intelligence by systematically curating SenseNova-SI-8M: eight million diverse data samples under a rigorous taxonomy of spatial capabilities. SenseNova-SI demonstrates unprecedented performance across a broad range of spatial intelligence benchmarks: 68.7% on VSI-Bench, 43.3% on MMSI, 85.6% on MindCube, 54.6% on ViewSpatial, and 50.1% on SITE, while maintaining strong general multimodal understanding (e.g., 84.9% on MMBench-En). More importantly, we analyze the impact of data scaling, discuss early signs of emergent generalization capabilities enabled by diverse data training, analyze the risk of overfitting and language shortcuts, present a preliminary study on spatial chain-of-thought reasoning, and validate the potential downstream application. SenseNova-SI is an ongoing project, and this report will be updated continuously. All newly trained multimodal foundation models are publicly released to facilitate further research in this direction.
comment: Model: https://huggingface.co/collections/sensenova/sensenova-si; Code: https://github.com/OpenSenseNova/SenseNova-SI
☆ UnSAMv2: Self-Supervised Learning Enables Segment Anything at Any Granularity
The Segment Anything Model (SAM) family has become a widely adopted vision foundation model, but its ability to control segmentation granularity remains limited. Users often need to refine results manually - by adding more prompts or selecting from pre-generated masks - to achieve the desired level of detail. This process can be ambiguous, as the same prompt may correspond to several plausible masks, and collecting dense annotations across all granularities is prohibitively expensive, making supervised solutions infeasible. To address this limitation, we introduce UnSAMv2, which enables segment anything at any granularity without human annotations. UnSAMv2 extends the divide-and-conquer strategy of UnSAM by discovering abundant mask-granularity pairs and introducing a novel granularity control embedding that enables precise, continuous control over segmentation scale. Remarkably, with only $6$K unlabeled images and $0.02\%$ additional parameters, UnSAMv2 substantially enhances SAM-2, achieving segment anything at any granularity across interactive, whole-image, and video segmentation tasks. Evaluated on over $11$ benchmarks, UnSAMv2 improves $\text{NoC}_{90}$ (5.69 $\rightarrow$ 4.75), 1-IoU (58.0 $\rightarrow$ 73.1), and $\text{AR}_{1000}$ (49.6 $\rightarrow$ 68.3), showing that small amounts of unlabeled data with a granularity-aware self-supervised learning method can unlock the potential of vision foundation models.
☆ From Black Box to Insight: Explainable AI for Extreme Event Preparedness
As climate change accelerates the frequency and severity of extreme events such as wildfires, the need for accurate, explainable, and actionable forecasting becomes increasingly urgent. While artificial intelligence (AI) models have shown promise in predicting such events, their adoption in real-world decision-making remains limited due to their black-box nature, which limits trust, explainability, and operational readiness. This paper investigates the role of explainable AI (XAI) in bridging the gap between predictive accuracy and actionable insight for extreme event forecasting. Using wildfire prediction as a case study, we evaluate various AI models and employ SHapley Additive exPlanations (SHAP) to uncover key features, decision pathways, and potential biases in model behavior. Our analysis demonstrates how XAI not only clarifies model reasoning but also supports critical decision-making by domain experts and response teams. In addition, we provide supporting visualizations that enhance the interpretability of XAI outputs by contextualizing feature importance and temporal patterns in seasonality and geospatial characteristics. This approach enhances the usability of AI explanations for practitioners and policymakers. Our findings highlight the need for AI systems that are not only accurate but also interpretable, accessible, and trustworthy, essential for effective use in disaster preparedness, risk mitigation, and climate resilience planning.
☆ From Power to Precision: Learning Fine-grained Dexterity for Multi-fingered Robotic Hands
Human grasps can be roughly categorized into two types: power grasps and precision grasps. Precision grasping enables tool use and is believed to have influenced human evolution. Today's multi-fingered robotic hands are effective in power grasps, but for tasks requiring precision, parallel grippers are still more widely adopted. This contrast highlights a key limitation in current robotic hand design: the difficulty of achieving both stable power grasps and precise, fine-grained manipulation within a single, versatile system. In this work, we bridge this gap by jointly optimizing the control and hardware design of a multi-fingered dexterous hand, enabling both power and precision manipulation. Rather than redesigning the entire hand, we introduce a lightweight fingertip geometry modification, represent it as a contact plane, and jointly optimize its parameters along with the corresponding control. Our control strategy dynamically switches between power and precision manipulation and simplifies precision control into parallel thumb-index motions, which proves robust for sim-to-real transfer. On the design side, we leverage large-scale simulation to optimize the fingertip geometry using a differentiable neural-physics surrogate model. We validate our approach through extensive experiments in both sim-to-real and real-to-real settings. Our method achieves an 82.5% zero-shot success rate on unseen objects in sim-to-real precision grasping, and a 93.3% success rate in challenging real-world tasks involving bread pinching. These results demonstrate that our co-design framework can significantly enhance the fine-grained manipulation ability of multi-fingered hands without reducing their ability for power grasps. Our project page is at https://jianglongye.com/power-to-precision
comment: Project page: https://jianglongye.com/power-to-precision
☆ Rare Genomic Subtype Discovery from RNA-seq via Autoencoder Embeddings and Stability-Aware Clustering
Unsupervised learning on high-dimensional RNA-seq data can reveal molecular subtypes beyond standard labels. We combine an autoencoder-based representation with clustering and stability analysis to search for rare but reproducible genomic subtypes. On the UCI "Gene Expression Cancer RNA-Seq" dataset (801 samples, 20,531 genes; BRCA, COAD, KIRC, LUAD, PRAD), a pan-cancer analysis shows clusters aligning almost perfectly with tissue of origin (Cramer's V = 0.887), serving as a negative control. We therefore reframe the problem within KIRC (n = 146): we select the top 2,000 highly variable genes, standardize them, train a feed-forward autoencoder (128-dimensional latent space), and run k-means for k = 2-10. While global indices favor small k, scanning k with a pre-specified discovery rule (rare < 10 percent and stable with Jaccard >= 0.60 across 20 seeds after Hungarian alignment) yields a simple solution at k = 5 (silhouette = 0.129, DBI = 2.045) with a rare cluster C0 (6.85 percent of patients) that is highly stable (Jaccard = 0.787). Cluster-vs-rest differential expression (Welch's t-test, Benjamini-Hochberg FDR) identifies coherent markers. Overall, pan-cancer clustering is dominated by tissue of origin, whereas a stability-aware within-cancer approach reveals a rare, reproducible KIRC subtype.
comment: 16 pages
☆ Generalist Foundation Models Are Not Clinical Enough for Hospital Operations
Hospitals and healthcare systems rely on operational decisions that determine patient flow, cost, and quality of care. Despite strong performance on medical knowledge and conversational benchmarks, foundation models trained on general text may lack the specialized knowledge required for these operational decisions. We introduce Lang1, a family of models (100M-7B parameters) pretrained on a specialized corpus blending 80B clinical tokens from NYU Langone Health's EHRs and 627B tokens from the internet. To rigorously evaluate Lang1 in real-world settings, we developed the REalistic Medical Evaluation (ReMedE), a benchmark derived from 668,331 EHR notes that evaluates five critical tasks: 30-day readmission prediction, 30-day mortality prediction, length of stay, comorbidity coding, and predicting insurance claims denial. In zero-shot settings, both general-purpose and specialized models underperform on four of five tasks (36.6%-71.7% AUROC), with mortality prediction being an exception. After finetuning, Lang1-1B outperforms finetuned generalist models up to 70x larger and zero-shot models up to 671x larger, improving AUROC by 3.64%-6.75% and 1.66%-23.66% respectively. We also observed cross-task scaling with joint finetuning on multiple tasks leading to improvement on other tasks. Lang1-1B effectively transfers to out-of-distribution settings, including other clinical tasks and an external health system. Our findings suggest that predictive capabilities for hospital operations require explicit supervised finetuning, and that this finetuning process is made more efficient by in-domain pretraining on EHR. Our findings support the emerging view that specialized LLMs can compete with generalist models in specialized tasks, and show that effective healthcare systems AI requires the combination of in-domain pretraining, supervised finetuning, and real-world evaluation beyond proxy benchmarks.
☆ ST-ProC: A Graph-Prototypical Framework for Robust Semi-Supervised Travel Mode Identification
Travel mode identification (TMI) from GPS trajectories is critical for urban intelligence, but is hampered by the high cost of annotation, leading to severe label scarcity. Prevailing semi-supervised learning (SSL) methods are ill-suited for this task, as they suffer from catastrophic confirmation bias and ignore the intrinsic data manifold. We propose ST-ProC, a novel graph-prototypical multi-objective SSL framework to address these limitations. Our framework synergizes a graph-prototypical core with foundational SSL Support. The core exploits the data manifold via graph regularization, prototypical anchoring, and a novel, margin-aware pseudo-labeling strategy to actively reject noise. This core is supported and stabilized by foundational contrastive and teacher-student consistency losses, ensuring high-quality representations and robust optimization. ST-ProC outperforms all baselines by a significant margin, demonstrating its efficacy in real-world sparse-label settings, with a performance boost of 21.5% over state-of-the-art methods like FixMatch.
☆ Learning stochasticity: a nonparametric framework for intrinsic noise estimation
Understanding the principles that govern dynamical systems is a central challenge across many scientific domains, including biology and ecology. Incomplete knowledge of nonlinear interactions and stochastic effects often renders bottom-up modeling approaches ineffective, motivating the development of methods that can discover governing equations directly from data. In such contexts, parametric models often struggle without strong prior knowledge, especially when estimating intrinsic noise. Nonetheless, incorporating stochastic effects is often essential for understanding the dynamic behavior of complex systems such as gene regulatory networks and signaling pathways. To address these challenges, we introduce Trine (Three-phase Regression for INtrinsic noisE), a nonparametric, kernel-based framework that infers state-dependent intrinsic noise from time-series data. Trine features a three-stage algorithm that com- bines analytically solvable subproblems with a structured kernel architecture that captures both abrupt noise-driven fluctuations and smooth, state-dependent changes in variance. We validate Trine on biological and ecological systems, demonstrating its ability to uncover hidden dynamics without relying on predefined parametric assumptions. Across several benchmark problems, Trine achieves performance comparable to that of an oracle. Biologically, this oracle can be viewed as an idealized observer capable of directly tracking the random fluctuations in molecular concentrations or reaction events within a cell. The Trine framework thus opens new avenues for understanding how intrinsic noise affects the behavior of complex systems.
☆ Efficient Calibration for Decision Making
A decision-theoretic characterization of perfect calibration is that an agent seeking to minimize a proper loss in expectation cannot improve their outcome by post-processing a perfectly calibrated predictor. Hu and Wu (FOCS'24) use this to define an approximate calibration measure called calibration decision loss ($\mathsf{CDL}$), which measures the maximal improvement achievable by any post-processing over any proper loss. Unfortunately, $\mathsf{CDL}$ turns out to be intractable to even weakly approximate in the offline setting, given black-box access to the predictions and labels. We suggest circumventing this by restricting attention to structured families of post-processing functions $K$. We define the calibration decision loss relative to $K$, denoted $\mathsf{CDL}_K$ where we consider all proper losses but restrict post-processings to a structured family $K$. We develop a comprehensive theory of when $\mathsf{CDL}_K$ is information-theoretically and computationally tractable, and use it to prove both upper and lower bounds for natural classes $K$. In addition to introducing new definitions and algorithmic techniques to the theory of calibration for decision making, our results give rigorous guarantees for some widely used recalibration procedures in machine learning.
comment: 50 pages, 3 figures
☆ Protein Secondary Structure Prediction Using 3D Graphs and Relation-Aware Message Passing Transformers
In this study, we tackle the challenging task of predicting secondary structures from protein primary sequences, a pivotal initial stride towards predicting tertiary structures, while yielding crucial insights into protein activity, relationships, and functions. Existing methods often utilize extensive sets of unlabeled amino acid sequences. However, these approaches neither explicitly capture nor harness the accessible protein 3D structural data, which is recognized as a decisive factor in dictating protein functions. To address this, we utilize protein residue graphs and introduce various forms of sequential or structural connections to capture enhanced spatial information. We adeptly combine Graph Neural Networks (GNNs) and Language Models (LMs), specifically utilizing a pre-trained transformer-based protein language model to encode amino acid sequences and employing message-passing mechanisms like GCN and R-GCN to capture geometric characteristics of protein structures. Employing convolution within a specific node's nearby region, including relations, we stack multiple convolutional layers to efficiently learn combined insights from the protein's spatial graph, revealing intricate interconnections and dependencies in its structural arrangement. To assess our model's performance, we employed the training dataset provided by NetSurfP-2.0, which outlines secondary structure in 3-and 8-states. Extensive experiments show that our proposed model, SSRGNet surpasses the baseline on f1-scores.
comment: 40 pages
☆ Training-Free Multi-View Extension of IC-Light for Textual Position-Aware Scene Relighting
We introduce GS-Light, an efficient, textual position-aware pipeline for text-guided relighting of 3D scenes represented via Gaussian Splatting (3DGS). GS-Light implements a training-free extension of a single-input diffusion model to handle multi-view inputs. Given a user prompt that may specify lighting direction, color, intensity, or reference objects, we employ a large vision-language model (LVLM) to parse the prompt into lighting priors. Using off-the-shelf estimators for geometry and semantics (depth, surface normals, and semantic segmentation), we fuse these lighting priors with view-geometry constraints to compute illumination maps and generate initial latent codes for each view. These meticulously derived init latents guide the diffusion model to generate relighting outputs that more accurately reflect user expectations, especially in terms of lighting direction. By feeding multi-view rendered images, along with the init latents, into our multi-view relighting model, we produce high-fidelity, artistically relit images. Finally, we fine-tune the 3DGS scene with the relit appearance to obtain a fully relit 3D scene. We evaluate GS-Light on both indoor and outdoor scenes, comparing it to state-of-the-art baselines including per-view relighting, video relighting, and scene editing methods. Using quantitative metrics (multi-view consistency, imaging quality, aesthetic score, semantic similarity, etc.) and qualitative assessment (user studies), GS-Light demonstrates consistent improvements over baselines. Code and assets will be made available upon publication.
comment: Submitting for Neurocomputing
☆ Cross-Learning from Scarce Data via Multi-Task Constrained Optimization
A learning task, understood as the problem of fitting a parametric model from supervised data, fundamentally requires the dataset to be large enough to be representative of the underlying distribution of the source. When data is limited, the learned models fail generalize to cases not seen during training. This paper introduces a multi-task \emph{cross-learning} framework to overcome data scarcity by jointly estimating \emph{deterministic} parameters across multiple, related tasks. We formulate this joint estimation as a constrained optimization problem, where the constraints dictate the resulting similarity between the parameters of the different models, allowing the estimated parameters to differ across tasks while still combining information from multiple data sources. This framework enables knowledge transfer from tasks with abundant data to those with scarce data, leading to more accurate and reliable parameter estimates, providing a solution for scenarios where parameter inference from limited data is critical. We provide theoretical guarantees in a controlled framework with Gaussian data, and show the efficiency of our cross-learning method in applications with real data including image classification and propagation of infectious diseases.
comment: 13 pages, 11 figures
☆ QUILL: An Algorithm-Architecture Co-Design for Cache-Local Deformable Attention DATE 2026
Deformable transformers deliver state-of-the-art detection but map poorly to hardware due to irregular memory access and low arithmetic intensity. We introduce QUILL, a schedule-aware accelerator that turns deformable attention into cache-friendly, single-pass work. At its core, Distance-based Out-of-Order Querying (DOOQ) orders queries by spatial proximity; the look-ahead drives a region prefetch into an alternate buffer--forming a schedule-aware prefetch loop that overlaps memory and compute. A fused MSDeformAttn engine executes interpolation, Softmax, aggregation, and the final projection (W''m) in one pass without spilling intermediates, while small tensors are kept on-chip and surrounding dense layers run on integrated GEMMs. Implemented as RTL and evaluated end-to-end, QUILL achieves up to 7.29x higher throughput and 47.3x better energy efficiency than an RTX 4090, and exceeds prior accelerators by 3.26-9.82x in throughput and 2.01-6.07x in energy efficiency. With mixed-precision quantization, accuracy tracks FP32 within <=0.9 AP across Deformable and Sparse DETR variants. By converting sparsity into locality--and locality into utilization--QUILL delivers consistent, end-to-end speedups.
comment: Accepted to DATE 2026
☆ T-SAR: A Full-Stack Co-design for CPU-Only Ternary LLM Inference via In-Place SIMD ALU Reorganization DATE 2026
Recent advances in LLMs have outpaced the computational and memory capacities of edge platforms that primarily employ CPUs, thereby challenging efficient and scalable deployment. While ternary quantization enables significant resource savings, existing CPU solutions rely heavily on memory-based lookup tables (LUTs) which limit scalability, and FPGA or GPU accelerators remain impractical for edge use. This paper presents T-SAR, the first framework to achieve scalable ternary LLM inference on CPUs by repurposing the SIMD register file for dynamic, in-register LUT generation with minimal hardware modifications. T-SAR eliminates memory bottlenecks and maximizes data-level parallelism, delivering 5.6-24.5x and 1.1-86.2x improvements in GEMM latency and GEMV throughput, respectively, with only 3.2% power and 1.4% area overheads in SIMD units. T-SAR achieves up to 2.5-4.9x the energy efficiency of an NVIDIA Jetson AGX Orin, establishing a practical approach for efficient LLM inference on edge platforms.
comment: Accepted to DATE 2026
☆ Scientific Data Compression and Super-Resolution Sampling
Modern scientific simulations, observations, and large-scale experiments generate data at volumes that often exceed the limits of storage, processing, and analysis. This challenge drives the development of data reduction methods that efficiently manage massive datasets while preserving essential physical features and quantities of interest. In many scientific workflows, it is also crucial to enable data recovery from compressed representations - a task known as super-resolution - with guarantees on the preservation of key physical characteristics. A notable example is checkpointing and restarting, which is essential for long-running simulations to recover from failures, resume after interruptions, or examine intermediate results. In this work, we introduce a novel framework for scientific data compression and super-resolution, grounded in recent advances in learning exponential families. Our method preserves and quantifies uncertainty in physical quantities of interest and supports flexible trade-offs between compression ratio and reconstruction fidelity.
☆ Cost-Driven Synthesis of Sound Abstract Interpreters
Constructing abstract interpreters that provide global soundness guarantees remains a major obstacle in abstract interpretation. We investigate whether modern LLMs can reduce this burden by leveraging them to synthesize sound, non-trivial abstract interpreters across multiple abstract domains in the setting of neural network verification. We formulate synthesis as a constrained optimization problem and introduce a novel mathematically grounded cost function for measuring unsoundness under strict syntactic and semantic constraints. Based on this formulation, we develop a unified framework that unifies LLM-based generation with syntactic and semantic validation and a quantitative cost-guided feedback mechanism. Empirical results demonstrate that our framework not only matches the quality of handcrafted transformers, but more importantly, discovers sound, high-precision transformers for complex nonlinear operators that are absent from existing literature.
comment: 37 pages, 20 figures
☆ Why is "Chicago" Predictive of Deceptive Reviews? Using LLMs to Discover Language Phenomena from Lexical Cues
Deceptive reviews mislead consumers, harm businesses, and undermine trust in online marketplaces. Machine learning classifiers can learn from large amounts of training examples to effectively distinguish deceptive reviews from genuine ones. However, the distinguishing features learned by these classifiers are often subtle, fragmented, and difficult for humans to interpret. In this work, we explore using large language models (LLMs) to translate machine-learned lexical cues into human-understandable language phenomena that can differentiate deceptive reviews from genuine ones. We show that language phenomena obtained in this manner are empirically grounded in data, generalizable across similar domains, and more predictive than phenomena either in LLMs' prior knowledge or obtained through in-context learning. These language phenomena have the potential to aid people in critically assessing the credibility of online reviews in environments where deception detection classifiers are unavailable.
☆ OlmoEarth: Stable Latent Image Modeling for Multimodal Earth Observation
Earth observation data presents a unique challenge: it is spatial like images, sequential like video or text, and highly multimodal. We present OlmoEarth: a multimodal, spatio-temporal foundation model that employs a novel self-supervised learning formulation, masking strategy, and loss all designed for the Earth observation domain. OlmoEarth achieves state-of-the-art performance compared to 12 other foundation models across a variety of research benchmarks and real-world tasks from external partners. When evaluating embeddings OlmoEarth achieves the best performance on 15 out of 24 tasks, and with full fine-tuning it is the best on 19 of 29 tasks. We deploy OlmoEarth as the backbone of an end-to-end platform for data collection, labeling, training, and inference of Earth observation models. The OlmoEarth Platform puts frontier foundation models and powerful data management tools into the hands of non-profits and NGOs working to solve the world's biggest problems. OlmoEarth source code, training data, and pre-trained weights are available at $\href{https://github.com/allenai/olmoearth_pretrain}{\text{https://github.com/allenai/olmoearth_pretrain}}$.
☆ Tuning for Two Adversaries: Enhancing the Robustness Against Transfer and Query-Based Attacks using Hyperparameter Tuning AAAI
In this paper, we present the first detailed analysis of how optimization hyperparameters -- such as learning rate, weight decay, momentum, and batch size -- influence robustness against both transfer-based and query-based attacks. Supported by theory and experiments, our study spans a variety of practical deployment settings, including centralized training, ensemble learning, and distributed training. We uncover a striking dichotomy: for transfer-based attacks, decreasing the learning rate significantly enhances robustness by up to $64\%$. In contrast, for query-based attacks, increasing the learning rate consistently leads to improved robustness by up to $28\%$ across various settings and data distributions. Leveraging these findings, we explore -- for the first time -- the optimization hyperparameter design space to jointly enhance robustness against both transfer-based and query-based attacks. Our results reveal that distributed models benefit the most from hyperparameter tuning, achieving a remarkable tradeoff by simultaneously mitigating both attack types more effectively than other training setups.
comment: To appear in the Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) 2026
☆ Weight-sparse transformers have interpretable circuits
Finding human-understandable circuits in language models is a central goal of the field of mechanistic interpretability. We train models to have more understandable circuits by constraining most of their weights to be zeros, so that each neuron only has a few connections. To recover fine-grained circuits underlying each of several hand-crafted tasks, we prune the models to isolate the part responsible for the task. These circuits often contain neurons and residual channels that correspond to natural concepts, with a small number of straightforwardly interpretable connections between them. We study how these models scale and find that making weights sparser trades off capability for interpretability, and scaling model size improves the capability-interpretability frontier. However, scaling sparse models beyond tens of millions of nonzero parameters while preserving interpretability remains a challenge. In addition to training weight-sparse models de novo, we show preliminary results suggesting our method can also be adapted to explain existing dense models. Our work produces circuits that achieve an unprecedented level of human understandability and validates them with considerable rigor.
☆ Live-SWE-agent: Can Software Engineering Agents Self-Evolve on the Fly?
Large Language Models (LLMs) are reshaping almost all industries, including software engineering. In recent years, a number of LLM agents have been proposed to solve real-world software problems. Such software agents are typically equipped with a suite of coding tools and can autonomously decide the next actions to form complete trajectories to solve end-to-end software tasks. While promising, they typically require dedicated design and may still be suboptimal, since it can be extremely challenging and costly to exhaust the entire agent scaffold design space. Recognizing that software agents are inherently software themselves that can be further refined/modified, researchers have proposed a number of self-improving software agents recently, including the Darwin-Gödel Machine (DGM). Meanwhile, such self-improving agents require costly offline training on specific benchmarks and may not generalize well across different LLMs or benchmarks. In this paper, we propose Live-SWE-agent, the first live software agent that can autonomously and continuously evolve itself on-the-fly during runtime when solving real-world software problems. More specifically, Live-SWE-agent starts with the most basic agent scaffold with only access to bash tools (e.g., mini-SWE-agent), and autonomously evolves its own scaffold implementation while solving real-world software problems. Our evaluation on the widely studied SWE-bench Verified benchmark shows that Live-SWE-agent can achieve an impressive solve rate of 75.4% without test-time scaling, outperforming all existing open-source software agents and approaching the performance of the best proprietary solution. Moreover, Live-SWE-agent outperforms state-of-the-art manually crafted software agents on the recent SWE-Bench Pro benchmark, achieving the best-known solve rate of 45.8%.
☆ FuseSampleAgg: Fused Neighbor Sampling and Aggregation for Mini-batch GNNs
We present FuseSampleAgg, a CUDA operator that fuses neighbor sampling and mean aggregation into a single pass for one and two hop GraphSAGE. By eliminating block materialization and extra kernel launches, FuseSampleAgg reduces memory traffic and overhead while preserving GraphSAGE mean semantics via saved index replay. Across the Reddit, ogbn-arxiv, and ogbn-products benchmarks (batch size 1024, automatic mixed precision enabled), we observe step time speedups up to 51x on ogbn-products, about 4x on Reddit with fanouts 10-10 and 15-10, and about 3.3x on ogbn-arxiv at larger fanouts, with peak GPU memory reductions up to 100x, 36x, and about 3.5x, respectively. The operator is deterministic, integrates with standard PyTorch optimizers, and ships with scripts that reproduce all tables and figures from CSV logs. Code and scripts are available at https://github.com/SV25-22/FuseSampleAgg.
comment: 15 pages. Code and reproducibility scripts: https://github.com/SV25-22/FuseSampleAgg
☆ Data Value in the Age of Scaling: Understanding LLM Scaling Dynamics Under Real-Synthetic Data Mixtures
The rapid progress of large language models (LLMs) is fueled by the growing reliance on datasets that blend real and synthetic data. While synthetic data offers scalability and cost-efficiency, it often introduces systematic distributional discrepancies, particularly underrepresenting long-tail knowledge due to truncation effects from data generation mechanisms like top-p sampling, temperature scaling, and finite sampling. These discrepancies pose fundamental challenges in characterizing and evaluating the utility of mixed real-synthetic datasets. In this paper, we identify a three-phase scaling behavior characterized by two breakpoints that reflect transitions in model behavior across learning head and tail knowledge. We further derive an LLM generalization bound designed for real and synthetic mixtures, revealing several key factors that govern their generalization performance. Building on our theoretical findings, we propose an effective yet efficient data valuation method that scales to large-scale datasets. Comprehensive experiments across four tasks, including image classification, sentiment classification, instruction following, and complex reasoning, demonstrate that our method surpasses state-of-the-art baselines in data valuation with significantly low computational cost.
☆ Towards Multimodal Representation Learning in Paediatric Kidney Disease
Paediatric kidney disease varies widely in its presentation and progression, which calls for continuous monitoring of renal function. Using electronic health records collected between 2019 and 2025 at Great Ormond Street Hospital, a leading UK paediatric hospital, we explored a temporal modelling approach that integrates longitudinal laboratory sequences with demographic information. A recurrent neural model trained on these data was used to predict whether a child would record an abnormal serum creatinine value within the following thirty days. Framed as a pilot study, this work provides an initial demonstration that simple temporal representations can capture useful patterns in routine paediatric data and lays the groundwork for future multimodal extensions using additional clinical signals and more detailed renal outcomes.
comment: 4 pages, 3 figures. EurIPS 2025 Multimodal Representation Learning for Healthcare (MMRL4H) workshop paper
☆ Batch Acquisition Function Evaluations and Decouple Optimizer Updates for Faster Bayesian Optimization AAAI
Bayesian optimization (BO) efficiently finds high-performing parameters by maximizing an acquisition function, which models the promise of parameters. A major computational bottleneck arises in acquisition function optimization, where multi-start optimization (MSO) with quasi-Newton (QN) methods is required due to the non-convexity of the acquisition function. BoTorch, a widely used BO library, currently optimizes the summed acquisition function over multiple points, leading to the speedup of MSO owing to PyTorch batching. Nevertheless, this paper empirically demonstrates the suboptimality of this approach in terms of off-diagonal approximation errors in the inverse Hessian of a QN method, slowing down its convergence. To address this problem, we propose to decouple QN updates using a coroutine while batching the acquisition function calls. Our approach not only yields the theoretically identical convergence to the sequential MSO but also drastically reduces the wall-clock time compared to the previous approaches.
comment: Accepted to 5th Annual AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE)
☆ P1: Mastering Physics Olympiads with Reinforcement Learning
Recent progress in large language models (LLMs) has moved the frontier from puzzle-solving to science-grade reasoning-the kind needed to tackle problems whose answers must stand against nature, not merely fit a rubric. Physics is the sharpest test of this shift, which binds symbols to reality in a fundamental way, serving as the cornerstone of most modern technologies. In this work, we manage to advance physics research by developing large language models with exceptional physics reasoning capabilities, especially excel at solving Olympiad-level physics problems. We introduce P1, a family of open-source physics reasoning models trained entirely through reinforcement learning (RL). Among them, P1-235B-A22B is the first open-source model with Gold-medal performance at the latest International Physics Olympiad (IPhO 2025), and wins 12 gold medals out of 13 international/regional physics competitions in 2024/2025. P1-30B-A3B also surpasses almost all other open-source models on IPhO 2025, getting a silver medal. Further equipped with an agentic framework PhysicsMinions, P1-235B-A22B+PhysicsMinions achieves overall No.1 on IPhO 2025, and obtains the highest average score over the 13 physics competitions. Besides physics, P1 models also present great performance on other reasoning tasks like math and coding, showing the great generalibility of P1 series.
☆ AtlasMorph: Learning conditional deformable templates for brain MRI
Deformable templates, or atlases, are images that represent a prototypical anatomy for a population, and are often enhanced with probabilistic anatomical label maps. They are commonly used in medical image analysis for population studies and computational anatomy tasks such as registration and segmentation. Because developing a template is a computationally expensive process, relatively few templates are available. As a result, analysis is often conducted with sub-optimal templates that are not truly representative of the study population, especially when there are large variations within this population. We propose a machine learning framework that uses convolutional registration neural networks to efficiently learn a function that outputs templates conditioned on subject-specific attributes, such as age and sex. We also leverage segmentations, when available, to produce anatomical segmentation maps for the resulting templates. The learned network can also be used to register subject images to the templates. We demonstrate our method on a compilation of 3D brain MRI datasets, and show that it can learn high-quality templates that are representative of populations. We find that annotated conditional templates enable better registration than their unlabeled unconditional counterparts, and outperform other templates construction methods.
☆ A Gentle Introduction to Conformal Time Series Forecasting
Conformal prediction is a powerful post-hoc framework for uncertainty quantification that provides distribution-free coverage guarantees. However, these guarantees crucially rely on the assumption of exchangeability. This assumption is fundamentally violated in time series data, where temporal dependence and distributional shifts are pervasive. As a result, classical split-conformal methods may yield prediction intervals that fail to maintain nominal validity. This review unifies recent advances in conformal forecasting methods specifically designed to address nonexchangeable data. We first present a theoretical foundation, deriving finite-sample guarantees for split-conformal prediction under mild weak-dependence conditions. We then survey and classify state-of-the-art approaches that mitigate serial dependence by reweighting calibration data, dynamically updating residual distributions, or adaptively tuning target coverage levels in real time. Finally, we present a comprehensive simulation study that compares these techniques in terms of empirical coverage, interval width, and computational cost, highlighting practical trade-offs and open research directions.
☆ Power Homotopy for Zeroth-Order Non-Convex Optimizations
We introduce GS-PowerHP, a novel zeroth-order method for non-convex optimization problems of the form $\max_{x \in \mathbb{R}^d} f(x)$. Our approach leverages two key components: a power-transformed Gaussian-smoothed surrogate $F_{N,σ}(μ) = \mathbb{E}_{x\sim\mathcal{N}(μ,σ^2 I_d)}[e^{N f(x)}]$ whose stationary points cluster near the global maximizer $x^*$ of $f$ for sufficiently large $N$, and an incrementally decaying $σ$ for enhanced data efficiency. Under mild assumptions, we prove convergence in expectation to a small neighborhood of $x^*$ with the iteration complexity of $O(d^2 \varepsilon^{-2})$. Empirical results show our approach consistently ranks among the top three across a suite of competing algorithms. Its robustness is underscored by the final experiment on a substantially high-dimensional problem ($d=150,528$), where it achieved first place on least-likely targeted black-box attacks against images from ImageNet, surpassing all competing methods.
☆ RAC-DMVC: Reliability-Aware Contrastive Deep Multi-View Clustering under Multi-Source Noise
Multi-view clustering (MVC), which aims to separate the multi-view data into distinct clusters in an unsupervised manner, is a fundamental yet challenging task. To enhance its applicability in real-world scenarios, this paper addresses a more challenging task: MVC under multi-source noises, including missing noise and observation noise. To this end, we propose a novel framework, Reliability-Aware Contrastive Deep Multi-View Clustering (RAC-DMVC), which constructs a reliability graph to guide robust representation learning under noisy environments. Specifically, to address observation noise, we introduce a cross-view reconstruction to enhances robustness at the data level, and a reliability-aware noise contrastive learning to mitigates bias in positive and negative pairs selection caused by noisy representations. To handle missing noise, we design a dual-attention imputation to capture shared information across views while preserving view-specific features. In addition, a self-supervised cluster distillation module further refines the learned representations and improves the clustering performance. Extensive experiments on five benchmark datasets demonstrate that RAC-DMVC outperforms SOTA methods on multiple evaluation metrics and maintains excellent performance under varying ratios of noise.
☆ Graph Out-of-Distribution Detection via Test-Time Calibration with Dual Dynamic Dictionaries AAAI 2026
A key challenge in graph out-of-distribution (OOD) detection lies in the absence of ground-truth OOD samples during training. Existing methods are typically optimized to capture features within the in-distribution (ID) data and calculate OOD scores, which often limits pre-trained models from representing distributional boundaries, leading to unreliable OOD detection. Moreover, the latent structure of graph data is often governed by multiple underlying factors, which remains less explored. To address these challenges, we propose a novel test-time graph OOD detection method, termed BaCa, that calibrates OOD scores using dual dynamically updated dictionaries without requiring fine-tuning the pre-trained model. Specifically, BaCa estimates graphons and applies a mix-up strategy solely with test samples to generate diverse boundary-aware discriminative topologies, eliminating the need for exposing auxiliary datasets as outliers. We construct dual dynamic dictionaries via priority queues and attention mechanisms to adaptively capture latent ID and OOD representations, which are then utilized for boundary-aware OOD score calibration. To the best of our knowledge, extensive experiments on real-world datasets show that BaCa significantly outperforms existing state-of-the-art methods in OOD detection.
comment: Accepted by AAAI 2026 (The 40th Annual AAAI Conference on Artificial Intelligence)
☆ Fairness-Aware Graph Representation Learning with Limited Demographic Information
Ensuring fairness in Graph Neural Networks is fundamental to promoting trustworthy and socially responsible machine learning systems. In response, numerous fair graph learning methods have been proposed in recent years. However, most of them assume full access to demographic information, a requirement rarely met in practice due to privacy, legal, or regulatory restrictions. To this end, this paper introduces a novel fair graph learning framework that mitigates bias in graph learning under limited demographic information. Specifically, we propose a mechanism guided by partial demographic data to generate proxies for demographic information and design a strategy that enforces consistent node embeddings across demographic groups. In addition, we develop an adaptive confidence strategy that dynamically adjusts each node's contribution to fairness and utility based on prediction confidence. We further provide theoretical analysis demonstrating that our framework, FairGLite, achieves provable upper bounds on group fairness metrics, offering formal guarantees for bias mitigation. Through extensive experiments on multiple datasets and fair graph learning frameworks, we demonstrate the framework's effectiveness in both mitigating bias and maintaining model utility.
☆ BootOOD: Self-Supervised Out-of-Distribution Detection via Synthetic Sample Exposure under Neural Collapse
Out-of-distribution (OOD) detection is critical for deploying image classifiers in safety-sensitive environments, yet existing detectors often struggle when OOD samples are semantically similar to the in-distribution (ID) classes. We present BootOOD, a fully self-supervised OOD detection framework that bootstraps exclusively from ID data and is explicitly designed to handle semantically challenging OOD samples. BootOOD synthesizes pseudo-OOD features through simple transformations of ID representations and leverages Neural Collapse (NC), where ID features cluster tightly around class means with consistent feature norms. Unlike prior approaches that aim to constrain OOD features into subspaces orthogonal to the collapsed ID means, BootOOD introduces a lightweight auxiliary head that performs radius-based classification on feature norms. This design decouples OOD detection from the primary classifier and imposes a relaxed requirement: OOD samples are learned to have smaller feature norms than ID features, which is easier to satisfy when ID and OOD are semantically close. Experiments on CIFAR-10, CIFAR-100, and ImageNet-200 show that BootOOD outperforms prior post-hoc methods, surpasses training-based methods without outlier exposure, and is competitive with state-of-the-art outlier-exposure approaches while maintaining or improving ID accuracy.
comment: 8 pages
☆ Mitigating Spurious Correlations in Patch-wise Tumor Classification on High-Resolution Multimodal Images
Patch-wise multi-label classification provides an efficient alternative to full pixel-wise segmentation on high-resolution images, particularly when the objective is to determine the presence or absence of target objects within a patch rather than their precise spatial extent. This formulation substantially reduces annotation cost, simplifies training, and allows flexible patch sizing aligned with the desired level of decision granularity. In this work, we focus on a special case, patch-wise binary classification, applied to the detection of a single class of interest (tumor) on high-resolution multimodal nonlinear microscopy images. We show that, although this simplified formulation enables efficient model development, it can introduce spurious correlations between patch composition and labels: tumor patches tend to contain larger tissue regions, whereas non-tumor patches often consist mostly of background with small tissue areas. We further quantify the bias in model predictions caused by this spurious correlation, and propose to use a debiasing strategy to mitigate its effect. Specifically, we apply GERNE, a debiasing method that can be adapted to maximize worst-group accuracy (WGA). Our results show an improvement in WGA by approximately 7% compared to ERM for two different thresholds used to binarize the spurious feature. This enhancement boosts model performance on critical minority cases, such as tumor patches with small tissues and non-tumor patches with large tissues, and underscores the importance of spurious correlation-aware learning in patch-wise classification problems.
comment: Accepted at EurIPS 2025 Workshop: Unifying Perspectives on Learning Biases (UPLB)
☆ AI Fairness Beyond Complete Demographics: Current Achievements and Future Directions ECAI 2025
Fairness in artificial intelligence (AI) has become a growing concern due to discriminatory outcomes in AI-based decision-making systems. While various methods have been proposed to mitigate bias, most rely on complete demographic information, an assumption often impractical due to legal constraints and the risk of reinforcing discrimination. This survey examines fairness in AI when demographics are incomplete, addressing the gap between traditional approaches and real-world challenges. We introduce a novel taxonomy of fairness notions in this setting, clarifying their relationships and distinctions. Additionally, we summarize existing techniques that promote fairness beyond complete demographics and highlight open research questions to encourage further progress in the field.
comment: ECAI 2025
☆ A Quantum Tensor Network-Based Viewpoint for Modeling and Analysis of Time Series Data
Accurate uncertainty quantification is a critical challenge in machine learning. While neural networks are highly versatile and capable of learning complex patterns, they often lack interpretability due to their ``black box'' nature. On the other hand, probabilistic ``white box'' models, though interpretable, often suffer from a significant performance gap when compared to neural networks. To address this, we propose a novel quantum physics-based ``white box'' method that offers both accurate uncertainty quantification and enhanced interpretability. By mapping the kernel mean embedding (KME) of a time series data vector to a reproducing kernel Hilbert space (RKHS), we construct a tensor network-inspired 1D spin chain Hamiltonian, with the KME as one of its eigen-functions or eigen-modes. We then solve the associated Schr{ö}dinger equation and apply perturbation theory to quantify uncertainty, thereby improving the interpretability of tasks performed with the quantum tensor network-based model. We demonstrate the effectiveness of this methodology, compared to state-of-the-art ``white box" models, in change point detection and time series clustering, providing insights into the uncertainties associated with decision-making throughout the process.
comment: IEEE International Conference on Knowledge Graph (ICKG), 378-387, 2024
☆ Naga: Vedic Encoding for Deep State Space Models
This paper presents Naga, a deep State Space Model (SSM) encoding approach inspired by structural concepts from Vedic mathematics. The proposed method introduces a bidirectional representation for time series by jointly processing forward and time-reversed input sequences. These representations are then combined through an element-wise (Hadamard) interaction, resulting in a Vedic-inspired encoding that enhances the model's ability to capture temporal dependencies across distant time steps. We evaluate Naga on multiple long-term time series forecasting (LTSF) benchmarks, including ETTh1, ETTh2, ETTm1, ETTm2, Weather, Traffic, and ILI. The experimental results show that Naga outperforms 28 current state of the art models and demonstrates improved efficiency compared to existing deep SSM-based approaches. The findings suggest that incorporating structured, Vedic-inspired decomposition can provide an interpretable and computationally efficient alternative for long-range sequence modeling.
comment: submitted to JMLR
☆ The Shape of Data: Topology Meets Analytics. A Practical Introduction to Topological Analytics and the Stability Index (TSI) in Business
Modern business and economic datasets often exhibit nonlinear, multi-scale structures that traditional linear tools under-represent. Topological Data Analysis (TDA) offers a geometric lens for uncovering robust patterns, such as connected components, loops and voids, across scales. This paper provides an intuitive, figure-driven introduction to persistent homology and a practical, reproducible TDA pipeline for applied analysts. Through comparative case studies in consumer behavior, equity markets (SAX/eSAX vs.\ TDA) and foreign exchange dynamics, we demonstrate how topological features can reveal segmentation patterns and structural relationships beyond classical statistical methods. We discuss methodological choices regarding distance metrics, complex construction and interpretation, and we introduce the \textit{Topological Stability Index} (TSI), a simple yet interpretable indicator of structural variability derived from persistence lifetimes. We conclude with practical guidelines for TDA implementation, visualization and communication in business and economic analytics.
comment: 36 pages, 22 figures
☆ Quantum Machine Learning via Contrastive Training
Quantum machine learning (QML) has attracted growing interest with the rapid parallel advances in large-scale classical machine learning and quantum technologies. Similar to classical machine learning, QML models also face challenges arising from the scarcity of labeled data, particularly as their scale and complexity increase. Here, we introduce self-supervised pretraining of quantum representations that reduces reliance on labeled data by learning invariances from unlabeled examples. We implement this paradigm on a programmable trapped-ion quantum computer, encoding images as quantum states. In situ contrastive pretraining on hardware yields a representation that, when fine-tuned, classifies image families with higher mean test accuracy and lower run-to-run variability than models trained from random initialization. Performance improvement is especially significant in regimes with limited labeled training data. We show that the learned invariances generalize beyond the pretraining image samples. Unlike prior work, our pipeline derives similarity from measured quantum overlaps and executes all training and classification stages on hardware. These results establish a label-efficient route to quantum representation learning, with direct relevance to quantum-native datasets and a clear path to larger classical inputs.
comment: 7 figures, 20 pages total
☆ Systematic evaluation of time-frequency features for binaural sound source localization ICASSP 2026
This study presents a systematic evaluation of time-frequency feature design for binaural sound source localization (SSL), focusing on how feature selection influences model performance across diverse conditions. We investigate the performance of a convolutional neural network (CNN) model using various combinations of amplitude-based features (magnitude spectrogram, interaural level difference - ILD) and phase-based features (phase spectrogram, interaural phase difference - IPD). Evaluations on in-domain and out-of-domain data with mismatched head-related transfer functions (HRTFs) reveal that carefully chosen feature combinations often outperform increases in model complexity. While two-feature sets such as ILD + IPD are sufficient for in-domain SSL, generalization to diverse content requires richer inputs combining channel spectrograms with both ILD and IPD. Using the optimal feature sets, our low-complexity CNN model achieves competitive performance. Our findings underscore the importance of feature design in binaural SSL and provide practical guidance for both domain-specific and general-purpose localization.
comment: Submitted to ICASSP 2026
☆ Semantic Document Derendering: SVG Reconstruction via Vision-Language Modeling
Multimedia documents such as slide presentations and posters are designed to be interactive and easy to modify. Yet, they are often distributed in a static raster format, which limits editing and customization. Restoring their editability requires converting these raster images back into structured vector formats. However, existing geometric raster-vectorization methods, which rely on low-level primitives like curves and polygons, fall short at this task. Specifically, when applied to complex documents like slides, they fail to preserve the high-level structure, resulting in a flat collection of shapes where the semantic distinction between image and text elements is lost. To overcome this limitation, we address the problem of semantic document derendering by introducing SliDer, a novel framework that uses Vision-Language Models (VLMs) to derender slide images as compact and editable Scalable Vector Graphic (SVG) representations. SliDer detects and extracts attributes from individual image and text elements in a raster input and organizes them into a coherent SVG format. Crucially, the model iteratively refines its predictions during inference in a process analogous to human design, generating SVG code that more faithfully reconstructs the original raster upon rendering. Furthermore, we introduce Slide2SVG, a novel dataset comprising raster-SVG pairs of slide documents curated from real-world scientific presentations, to facilitate future research in this domain. Our results demonstrate that SliDer achieves a reconstruction LPIPS of 0.069 and is favored by human evaluators in 82.9% of cases compared to the strongest zero-shot VLM baseline.
☆ GREAT: Generalizable Representation Enhancement via Auxiliary Transformations for Zero-Shot Environmental Prediction
Environmental modeling faces critical challenges in predicting ecosystem dynamics across unmonitored regions due to limited and geographically imbalanced observation data. This challenge is compounded by spatial heterogeneity, causing models to learn spurious patterns that fit only local data. Unlike conventional domain generalization, environmental modeling must preserve invariant physical relationships and temporal coherence during augmentation. In this paper, we introduce Generalizable Representation Enhancement via Auxiliary Transformations (GREAT), a framework that effectively augments available datasets to improve predictions in completely unseen regions. GREAT guides the augmentation process to ensure that the original governing processes can be recovered from the augmented data, and the inclusion of the augmented data leads to improved model generalization. Specifically, GREAT learns transformation functions at multiple layers of neural networks to augment both raw environmental features and temporal influence. They are refined through a novel bi-level training process that constrains augmented data to preserve key patterns of the original source data. We demonstrate GREAT's effectiveness on stream temperature prediction across six ecologically diverse watersheds in the eastern U.S., each containing multiple stream segments. Experimental results show that GREAT significantly outperforms existing methods in zero-shot scenarios. This work provides a practical solution for environmental applications where comprehensive monitoring is infeasible.
☆ AdamX: An Adam improvement algorithm based on a novel exponential decay mechanism for the second-order moment estimate
Since the 21st century, artificial intelligence has been leading a new round of industrial revolution. Under the training framework, the optimization algorithm aims to stably converge high-dimensional optimization to local and even global minima. Entering the era of large language models, although the scale of model parameters and data has increased, Adam remains the mainstream optimization algorithm. However, compared with stochastic gradient descent (SGD) based optimization algorithms, Adam is more likely to converge to non-flat minima. To address this issue, the AdamX algorithm is proposed. Its core innovation lies in the proposition of a novel type of second-order moment estimation exponential decay rate, which gradually weakens the learning step correction strength as training progresses, and degrades to SGD in the stable training period, thereby improving the stability of training in the stable period and possibly enhancing generalization ability. Experimental results show that our second-order moment estimation exponential decay rate is better than the current second-order moment estimation exponential decay rate, and AdamX can stably outperform Adam and its variants in terms of performance. Our code is open-sourced at https://github.com/mengzhu0308/AdamX.
comment: 25 pages, 6 figures, 12 tables
☆ Multi-task GINN-LP for Multi-target Symbolic Regression
In the area of explainable artificial intelligence, Symbolic Regression (SR) has emerged as a promising approach by discovering interpretable mathematical expressions that fit data. However, SR faces two main challenges: most methods are evaluated on scientific datasets with well-understood relationships, limiting generalization, and SR primarily targets single-output regression, whereas many real-world problems involve multi-target outputs with interdependent variables. To address these issues, we propose multi-task regression GINN-LP (MTRGINN-LP), an interpretable neural network for multi-target symbolic regression. By integrating GINN-LP with a multi-task deep learning, the model combines a shared backbone including multiple power-term approximator blocks with task-specific output layers, capturing inter-target dependencies while preserving interpretability. We validate multi-task GINN-LP on practical multi-target applications, including energy efficiency prediction and sustainable agriculture. Experimental results demonstrate competitive predictive performance alongside high interpretability, effectively extending symbolic regression to broader real-world multi-output tasks.
☆ Artificial Intelligence-Enabled Spirometry for Early Detection of Right Heart Failure
Right heart failure (RHF) is a disease characterized by abnormalities in the structure or function of the right ventricle (RV), which is associated with high morbidity and mortality. Lung disease often causes increased right ventricular load, leading to RHF. Therefore, it is very important to screen out patients with cor pulmonale who develop RHF from people with underlying lung diseases. In this work, we propose a self-supervised representation learning method to early detecting RHF from patients with cor pulmonale, which uses spirogram time series to predict patients with RHF at an early stage. The proposed model is divided into two stages. The first stage is the self-supervised representation learning-based spirogram embedding (SLSE) network training process, where the encoder of the Variational autoencoder (VAE-encoder) learns a robust low-dimensional representation of the spirogram time series from the data-augmented unlabeled data. Second, this low-dimensional representation is fused with demographic information and fed into a CatBoost classifier for the downstream RHF prediction task. Trained and tested on a carefully selected subset of 26,617 individuals from the UK Biobank, our model achieved an AUROC of 0.7501 in detecting RHF, demonstrating strong population-level distinction ability. We further evaluated the model on high-risk clinical subgroups, achieving AUROC values of 0.8194 on a test set of 74 patients with chronic kidney disease (CKD) and 0.8413 on a set of 64 patients with valvular heart disease (VHD). These results highlight the model's potential utility in predicting RHF among clinically elevated-risk populations. In conclusion, this study presents a self-supervised representation learning approach combining spirogram time series and demographic data, demonstrating promising potential for early RHF detection in clinical practice.
comment: 19 pages, 5 figures
☆ Hardware optimization on Android for inference of AI models
The pervasive integration of Artificial Intelligence models into contemporary mobile computing is notable across numerous use cases, from virtual assistants to advanced image processing. Optimizing the mobile user experience involves minimal latency and high responsiveness from deployed AI models with challenges from execution strategies that fully leverage real time constraints to the exploitation of heterogeneous hardware architecture. In this paper, we research and propose the optimal execution configurations for AI models on an Android system, focusing on two critical tasks: object detection (YOLO family) and image classification (ResNet). These configurations evaluate various model quantization schemes and the utilization of on device accelerators, specifically the GPU and NPU. Our core objective is to empirically determine the combination that achieves the best trade-off between minimal accuracy degradation and maximal inference speed-up.
comment: 8 pages
☆ Discovering Operational Patterns Using Image-Based Convolutional Clustering and Composite Evaluation: A Case Study in Foundry Melting Processes
Industrial process monitoring increasingly relies on sensor-generated time-series data, yet the lack of labels, high variability, and operational noise make it difficult to extract meaningful patterns using conventional methods. Existing clustering techniques either rely on fixed distance metrics or deep models designed for static data, limiting their ability to handle dynamic, unstructured industrial sequences. Addressing this gap, this paper proposes a novel framework for unsupervised discovery of operational modes in univariate time-series data using image-based convolutional clustering with composite internal evaluation. The proposed framework improves upon existing approaches in three ways: (1) raw time-series sequences are transformed into grayscale matrix representations via overlapping sliding windows, allowing effective feature extraction using a deep convolutional autoencoder; (2) the framework integrates both soft and hard clustering outputs and refines the selection through a two-stage strategy; and (3) clustering performance is objectively evaluated by a newly developed composite score, S_eva, which combines normalized Silhouette, Calinski-Harabasz, and Davies-Bouldin indices. Applied to over 3900 furnace melting operations from a Nordic foundry, the method identifies seven explainable operational patterns, revealing significant differences in energy consumption, thermal dynamics, and production duration. Compared to classical and deep clustering baselines, the proposed approach achieves superior overall performance, greater robustness, and domain-aligned explainability. The framework addresses key challenges in unsupervised time-series analysis, such as sequence irregularity, overlapping modes, and metric inconsistency, and provides a generalizable solution for data-driven diagnostics and energy optimization in industrial systems.
☆ Larger Datasets Can Be Repeated More: A Theoretical Analysis of Multi-Epoch Scaling in Linear Regression
While data scaling laws of large language models (LLMs) have been widely examined in the one-pass regime with massive corpora, their form under limited data and repeated epochs remains largely unexplored. This paper presents a theoretical analysis of how a common workaround, training for multiple epochs on the same dataset, reshapes the data scaling laws in linear regression. Concretely, we ask: to match the performance of training on a dataset of size $N$ for $K$ epochs, how much larger must a dataset be if the model is trained for only one pass? We quantify this using the \textit{effective reuse rate} of the data, $E(K, N)$, which we define as the multiplicative factor by which the dataset must grow under one-pass training to achieve the same test loss as $K$-epoch training. Our analysis precisely characterizes the scaling behavior of $E(K, N)$ for SGD in linear regression under either strong convexity or Zipf-distributed data: (1) When $K$ is small, we prove that $E(K, N) \approx K$, indicating that every new epoch yields a linear gain; (2) As $K$ increases, $E(K, N)$ plateaus at a problem-dependent value that grows with $N$ ($Θ(\log N)$ for the strongly-convex case), implying that larger datasets can be repeated more times before the marginal benefit vanishes. These theoretical findings point out a neglected factor in a recent empirical study (Muennighoff et al. (2023)), which claimed that training LLMs for up to $4$ epochs results in negligible loss differences compared to using fresh data at each step, \textit{i.e.}, $E(K, N) \approx K$ for $K \le 4$ in our notation. Supported by further empirical validation with LLMs, our results reveal that the maximum $K$ value for which $E(K, N) \approx K$ in fact depends on the data size and distribution, and underscore the need to explicitly model both factors in future studies of scaling laws with data reuse.
☆ MMWSTM-ADRAN+: A Novel Hybrid Deep Learning Architecture for Enhanced Climate Time Series Forecasting and Extreme Event Prediction
Accurate short-range prediction of extreme air temperature events remains a fundamental challenge in operational climate-risk management. We present Multi-Modal Weather State Transition Model with Anomaly-Driven Recurrent Attention Network Plus (MMWSTM-ADRAN+), a dual-stream deep learning architecture that couples a regime-aware dynamics model with an anomaly-focused attention mechanism to forecast daily maximum temperature and its extremes. The first stream, MMWSTM, combines bidirectional Long Short-Term Memory (BiLSTM) units with a learnable Markov state transition matrix to capture synoptic-scale weather regime changes. The second stream, ADRAN, integrates bidirectional Gated Recurrent Units (BiGRUs), multi-head self-attention, and a novel anomaly amplification layer to enhance sensitivity to low-probability signals. A lightweight attentive fusion gate adaptively determines the contribution of each stream to the final prediction. Model optimization employs a custom ExtremeWeatherLoss function that up-weights errors on the upper 5% and lower 5% of the temperature distribution, and a time-series data augmentation suite (jittering, scaling, time/magnitude warping) that effectively quadruples the training data
☆ Exploring Multi-Table Retrieval Through Iterative Search
Open-domain question answering over datalakes requires retrieving and composing information from multiple tables, a challenging subtask that demands semantic relevance and structural coherence (e.g., joinability). While exact optimization methods like Mixed-Integer Programming (MIP) can ensure coherence, their computational complexity is often prohibitive. Conversely, simpler greedy heuristics that optimize for query coverage alone often fail to find these coherent, joinable sets. This paper frames multi-table retrieval as an iterative search process, arguing this approach offers advantages in scalability, interpretability, and flexibility. We propose a general framework and a concrete instantiation: a fast, effective Greedy Join-Aware Retrieval algorithm that holistically balances relevance, coverage, and joinability. Experiments across 5 NL2SQL benchmarks demonstrate that our iterative method achieves competitive retrieval performance compared to the MIP-based approach while being 4-400x faster depending on the benchmark and search space settings. This work highlights the potential of iterative heuristics for practical, scalable, and composition-aware retrieval.
comment: Accepted @ the AI for Tabular Data Workshop, EurIPS 2025
☆ PAST: A Primary-Auxiliary Spatio-Temporal Network for Traffic Time Series Imputation
Traffic time series imputation is crucial for the safety and reliability of intelligent transportation systems, while diverse types of missing data, including random, fiber, and block missing make the imputation task challenging. Existing models often focus on disentangling and separately modeling spatial and temporal patterns based on relationships between data points. However, these approaches struggle to adapt to the random missing positions, and fail to learn long-term and large-scale dependencies, which are essential in extensive missing conditions. In this paper, patterns are categorized into two types to handle various missing data conditions: primary patterns, which originate from internal relationships between data points, and auxiliary patterns, influenced by external factors like timestamps and node attributes. Accordingly, we propose the Primary-Auxiliary Spatio-Temporal network (PAST). It comprises a graph-integrated module (GIM) and a cross-gated module (CGM). GIM captures primary patterns via dynamic graphs with interval-aware dropout and multi-order convolutions, and CGM extracts auxiliary patterns through bidirectional gating on embedded external features. The two modules interact via shared hidden vectors and are trained under an ensemble self-supervised framework. Experiments on three datasets under 27 missing data conditions demonstrate that the imputation accuracy of PAST outperforms seven state-of-the-art baselines by up to 26.2% in RMSE and 31.6% in MAE.
☆ Taming Barren Plateaus in Arbitrary Parameterized Quantum Circuits Without Sacrificing Expressibility
Quantum algorithms based on parameterized quantum circuits (PQCs) have enabled a wide range of applications on near-term quantum devices. However, existing PQC architectures face several challenges, among which the ``barren plateaus" phenomenon is particularly prominent. In such cases, the loss function concentrates exponentially with increasing system size, thereby hindering effective parameter optimization. To address this challenge, we propose a general and hardware-efficient method for eliminating barren plateaus in an arbitrary PQC. Specifically, our approach achieves this by inserting a layer of easily implementable quantum channels into the original PQC, each channel requiring only one ancilla qubit and four additional gates, yielding a modified PQC (MPQC) that is provably at least as expressive as the original PQC and, under mild assumptions, is guaranteed to be free from barren plateaus. Furthermore, by appropriately adjusting the structure of MPQCs, we rigorously prove that any parameter in the original PQC can be made trainable. Importantly, the absence of barren plateaus in MPQCs is robust against realistic noise, making our approach directly applicable to current noisy intermediate-scale quantum (NISQ) hardware. Numerically, we demonstrate the practicality of our method by modifying a commonly used PQC for thermal-state preparation. The results show that {barren plateaus are effectively eliminated} in this class of circuits with up to 100 qubits and 2400 layers, whereas the original ansatz suffers from severe gradient vanishing.
☆ Fast and Robust Simulation-Based Inference With Optimization Monte Carlo
Bayesian parameter inference for complex stochastic simulators is challenging due to intractable likelihood functions. Existing simulation-based inference methods often require large number of simulations and become costly to use in high-dimensional parameter spaces or in problems with partially uninformative outputs. We propose a new method for differentiable simulators that delivers accurate posterior inference with substantially reduced runtimes. Building on the Optimization Monte Carlo framework, our approach reformulates stochastic simulation as deterministic optimization problems. Gradient-based methods are then applied to efficiently navigate toward high-density posterior regions and avoid wasteful simulations in low-probability areas. A JAX-based implementation further enhances the performance through vectorization of key method components. Extensive experiments, including high-dimensional parameter spaces, uninformative outputs, multiple observations and multimodal posteriors show that our method consistently matches, and often exceeds, the accuracy of state-of-the-art approaches, while reducing the runtime by a substantial margin.
☆ Finding Kissing Numbers with Game-theoretic Reinforcement Learning
Since Isaac Newton first studied the Kissing Number Problem in 1694, determining the maximal number of non-overlapping spheres around a central sphere has remained a fundamental challenge. This problem represents the local analogue of Hilbert's 18th problem on sphere packing, bridging geometry, number theory, and information theory. Although significant progress has been made through lattices and codes, the irregularities of high-dimensional geometry and exponentially growing combinatorial complexity beyond 8 dimensions, which exceeds the complexity of Go game, limit the scalability of existing methods. Here we model this problem as a two-player matrix completion game and train the game-theoretic reinforcement learning system, PackingStar, to efficiently explore high-dimensional spaces. The matrix entries represent pairwise cosines of sphere center vectors; one player fills entries while another corrects suboptimal ones, jointly maximizing the matrix size, corresponding to the kissing number. This cooperative dynamics substantially improves sample quality, making the extremely large spaces tractable. PackingStar reproduces previous configurations and surpasses all human-known records from dimensions 25 to 31, with the configuration in 25 dimensions geometrically corresponding to the Leech lattice and suggesting possible optimality. It achieves the first breakthrough beyond rational structures from 1971 in 13 dimensions and discovers over 6000 new structures in 14 and other dimensions. These results demonstrate AI's power to explore high-dimensional spaces beyond human intuition and open new pathways for the Kissing Number Problem and broader geometry problems.
☆ Uncovering Causal Drivers of Energy Efficiency for Industrial Process in Foundry via Time-Series Causal Inference
Improving energy efficiency in industrial foundry processes is a critical challenge, as these operations are highly energy-intensive and marked by complex interdependencies among process variables. Correlation-based analyses often fail to distinguish true causal drivers from spurious associations, limiting their usefulness for decision-making. This paper applies a time-series causal inference framework to identify the operational factors that directly affect energy efficiency in induction furnace melting. Using production data from a Danish foundry, the study integrates time-series clustering to segment melting cycles into distinct operational modes with the PCMCI+ algorithm, a state-of-the-art causal discovery method, to uncover cause-effect relationships within each mode. Across clusters, robust causal relations among energy consumption, furnace temperature, and material weight define the core drivers of efficiency, while voltage consistently influences cooling water temperature with a delayed response. Cluster-specific differences further distinguish operational regimes: efficient clusters are characterized by stable causal structures, whereas inefficient ones exhibit reinforcing feedback loops and atypical dependencies. The contributions of this study are twofold. First, it introduces an integrated clustering-causal inference pipeline as a methodological innovation for analyzing energy-intensive processes. Second, it provides actionable insights that enable foundry operators to optimize performance, reduce energy consumption, and lower emissions.
comment: Accepted by the Energy Informatics.Academy Conference 2025 (EI.A 2025)
☆ Moving Pictures of Thought: Extracting Visual Knowledge in Charles S. Peirce's Manuscripts with Vision-Language Models
Diagrams are crucial yet underexplored tools in many disciplines, demonstrating the close connection between visual representation and scholarly reasoning. However, their iconic form poses obstacles to visual studies, intermedial analysis, and text-based digital workflows. In particular, Charles S. Peirce consistently advocated the use of diagrams as essential for reasoning and explanation. His manuscripts, often combining textual content with complex visual artifacts, provide a challenging case for studying documents involving heterogeneous materials. In this preliminary study, we investigate whether Visual Language Models (VLMs) can effectively help us identify and interpret such hybrid pages in context. First, we propose a workflow that (i) segments manuscript page layouts, (ii) reconnects each segment to IIIF-compliant annotations, and (iii) submits fragments containing diagrams to a VLM. In addition, by adopting Peirce's semiotic framework, we designed prompts to extract key knowledge about diagrams and produce concise captions. Finally, we integrated these captions into knowledge graphs, enabling structured representations of diagrammatic content within composite sources.
☆ A Novel Hierarchical Integration Method for Efficient Model Merging in Medical LLMs
Large Language Models (LLMs) face significant challenges in distributed healthcare, including consolidating specialized domain knowledge across institutions while maintaining privacy, reducing computational overhead, and preventing catastrophic forgetting during model updates.This paper presents a systematic evaluation of six parameter-space merging techniques applied to two architecturally compatible medical LLMs derived from the Mistral-7B base model. We introduce a novel hierarchical method that combines selective Optimal Transport (OT) alignment for attention layers with cosine similarity-weighted interpolation, designed to address permutation variance while minimizing computational overhead for edge deployment scenarios. Our study evaluates Task Arithmetic, Linear Averaging, DARE-TIES, DELLA, Breadcrumbs, and our Hierarchical approach across five medical benchmarks. Results demonstrate that architecturally compatible models benefit significantly from simple averaging methods, with Task Arithmetic achieving 45.80% accuracy on MedQA, outperforming complex pruning-based approaches. These findings offer critical insights for the deployment of distributed medical AI in resource-constrained IoT environments, where computational efficiency and model compatibility are paramount. Our work establishes that for architecturally compatible models, simple averaging provides a robust and computationally efficient baseline for knowledge consolidation, offering a pragmatic path forward for scalable medical AI systems.
☆ Dual-LoRA and Quality-Enhanced Pseudo Replay for Multimodal Continual Food Learning
Food analysis has become increasingly critical for health-related tasks such as personalized nutrition and chronic disease prevention. However, existing large multimodal models (LMMs) in food analysis suffer from catastrophic forgetting when learning new tasks, requiring costly retraining from scratch. To address this, we propose a novel continual learning framework for multimodal food learning, integrating a Dual-LoRA architecture with Quality-Enhanced Pseudo Replay. We introduce two complementary low-rank adapters for each task: a specialized LoRA that learns task-specific knowledge with orthogonal constraints to previous tasks' subspaces, and a cooperative LoRA that consolidates shared knowledge across tasks via pseudo replay. To improve the reliability of replay data, our Quality-Enhanced Pseudo Replay strategy leverages self-consistency and semantic similarity to reduce hallucinations in generated samples. Experiments on the comprehensive Uni-Food dataset show superior performance in mitigating forgetting, representing the first effective continual learning approach for complex food tasks.
☆ Statistically Accurate and Robust Generative Prediction of Rock Discontinuities with A Tabular Foundation Model
Rock discontinuities critically govern the mechanical behavior and stability of rock masses. Their internal distributions remain largely unobservable and are typically inferred from surface-exposed discontinuities using generative prediction approaches. However, surface-exposed observations are inherently sparse, and existing generative prediction approaches either fail to capture the underlying complex distribution patterns or lack robustness under data-sparse conditions. Here, we proposed a simple yet robust approach for statistically accurate generative prediction of rock discontinuities by utilizing a tabular foundation model. By leveraging the powerful sample learning capability of the foundation model specifically designed for small data, our approach can effectively capture the underlying complex distribution patterns within limited measured discontinuities. Comparative experiments on ten datasets with diverse scales and distribution patterns of discontinuities demonstrate superior accuracy and robustness over conventional statistical models and deep generative approaches. This work advances quantitative characterization of rock mass structures, supporting safer and more reliable data-driven geotechnical design.
☆ Tab-PET: Graph-Based Positional Encodings for Tabular Transformers
Supervised learning with tabular data presents unique challenges, including low data sizes, the absence of structural cues, and heterogeneous features spanning both categorical and continuous domains. Unlike vision and language tasks, where models can exploit inductive biases in the data, tabular data lacks inherent positional structure, hindering the effectiveness of self-attention mechanisms. While recent transformer-based models like TabTransformer, SAINT, and FT-Transformer (which we refer to as 3T) have shown promise on tabular data, they typically operate without leveraging structural cues such as positional encodings (PEs), as no prior structural information is usually available. In this work, we find both theoretically and empirically that structural cues, specifically PEs can be a useful tool to improve generalization performance for tabular transformers. We find that PEs impart the ability to reduce the effective rank (a form of intrinsic dimensionality) of the features, effectively simplifying the task by reducing the dimensionality of the problem, yielding improved generalization. To that end, we propose Tab-PET (PEs for Tabular Transformers), a graph-based framework for estimating and inculcating PEs into embeddings. Inspired by approaches that derive PEs from graph topology, we explore two paradigms for graph estimation: association-based and causality-based. We empirically demonstrate that graph-derived PEs significantly improve performance across 50 classification and regression datasets for 3T. Notably, association-based graphs consistently yield more stable and pronounced gains compared to causality-driven ones. Our work highlights an unexpected role of PEs in tabular transformers, revealing how they can be harnessed to improve generalization.
☆ AutoMalDesc: Large-Scale Script Analysis for Cyber Threat Research AAAI 2026
Generating thorough natural language explanations for threat detections remains an open problem in cybersecurity research, despite significant advances in automated malware detection systems. In this work, we present AutoMalDesc, an automated static analysis summarization framework that, following initial training on a small set of expert-curated examples, operates independently at scale. This approach leverages an iterative self-paced learning pipeline to progressively enhance output quality through synthetic data generation and validation cycles, eliminating the need for extensive manual data annotation. Evaluation across 3,600 diverse samples in five scripting languages demonstrates statistically significant improvements between iterations, showing consistent gains in both summary quality and classification accuracy. Our comprehensive validation approach combines quantitative metrics based on established malware labels with qualitative assessment from both human experts and LLM-based judges, confirming both technical precision and linguistic coherence of generated summaries. To facilitate reproducibility and advance research in this domain, we publish our complete dataset of more than 100K script samples, including annotated seed (0.9K) and test (3.6K) datasets, along with our methodology and evaluation framework.
comment: Accepted at AAAI 2026 (oral)
☆ Explainable RL Policies by Distilling to Locally-Specialized Linear Policies with Voronoi State Partitioning
Deep Reinforcement Learning is one of the state-of-the-art methods for producing near-optimal system controllers. However, deep RL algorithms train a deep neural network, that lacks transparency, which poses challenges when the controller has to meet regulations, or foster trust. To alleviate this, one could transfer the learned behaviour into a model that is human-readable by design using knowledge distilla- tion. Often this is done with a single model which mimics the original model on average but could struggle in more dynamic situations. A key challenge is that this simpler model should have the right balance be- tween flexibility and complexity or right balance between balance bias and accuracy. We propose a new model-agnostic method to divide the state space into regions where a simplified, human-understandable model can operate in. In this paper, we use Voronoi partitioning to find regions where linear models can achieve similar performance to the original con- troller. We evaluate our approach on a gridworld environment and a classic control task. We observe that our proposed distillation to locally- specialized linear models produces policies that are explainable and show that the distillation matches or even slightly outperforms the black-box policy they are distilled from.
comment: Accepted for BNAIC/BeNeLearn 2025
☆ EL3DD: Extended Latent 3D Diffusion for Language Conditioned Multitask Manipulation
Acting in human environments is a crucial capability for general-purpose robots, necessitating a robust understanding of natural language and its application to physical tasks. This paper seeks to harness the capabilities of diffusion models within a visuomotor policy framework that merges visual and textual inputs to generate precise robotic trajectories. By employing reference demonstrations during training, the model learns to execute manipulation tasks specified through textual commands within the robot's immediate environment. The proposed research aims to extend an existing model by leveraging improved embeddings, and adapting techniques from diffusion models for image generation. We evaluate our methods on the CALVIN dataset, proving enhanced performance on various manipulation tasks and an increased long-horizon success rate when multiple tasks are executed in sequence. Our approach reinforces the usefulness of diffusion models and contributes towards general multitask manipulation.
comment: 10 pages; 2 figures; 1 table. Prprint submitted to the European Robotics Forum 2026
☆ Causal Inference, Biomarker Discovery, Graph Neural Network, Feature Selection
Biomarker discovery from high-throughput transcriptomic data is crucial for advancing precision medicine. However, existing methods often neglect gene-gene regulatory relationships and lack stability across datasets, leading to conflation of spurious correlations with genuine causal effects. To address these issues, we develop a causal graph neural network (Causal-GNN) method that integrates causal inference with multi-layer graph neural networks (GNNs). The key innovation is the incorporation of causal effect estimation for identifying stable biomarkers, coupled with a GNN-based propensity scoring mechanism that leverages cross-gene regulatory networks. Experimental results demonstrate that our method achieves consistently high predictive accuracy across four distinct datasets and four independent classifiers. Moreover, it enables the identification of more stable biomarkers compared to traditional methods. Our work provides a robust, efficient, and biologically interpretable tool for biomarker discovery, demonstrating strong potential for broad application across medical disciplines.
☆ KForge: Program Synthesis for Diverse AI Hardware Accelerators
GPU kernels are critical for ML performance but difficult to optimize across diverse accelerators. We present KForge, a platform-agnostic framework built on two collaborative LLM-based agents: a generation agent that produces and iteratively refines programs through compilation and correctness feedback, and a performance analysis agent that interprets profiling data to guide optimization. This agent-based architecture requires only a single-shot example to target new platforms. We make three key contributions: (1) introducing an iterative refinement system where the generation agent and performance analysis agent collaborate through functional and optimization passes, interpreting diverse profiling data (from programmatic APIs to GUI-based tools) to generate actionable recommendations that guide program synthesis for arbitrary accelerators; (2) demonstrating that the generation agent effectively leverages cross-platform knowledge transfer, where a reference implementation from one architecture substantially improves generation quality for different hardware targets; and (3) validating the platform-agnostic nature of our approach by demonstrating effective program synthesis across fundamentally different parallel computing platforms: NVIDIA CUDA and Apple Metal.
comment: Under review at MLSys 2026
☆ Case study of a differentiable heterogeneous multiphysics solver for a nuclear fusion application
This work presents a case study of a heterogeneous multiphysics solver from the nuclear fusion domain. At the macroscopic scale, an auto-differentiable ODE solver in JAX computes the evolution of the pulsed power circuit and bulk plasma parameters for a compressing Z Pinch. The ODE solver requires a closure for the impedance of the plasma load obtained via root-finding at every timestep, which we solve efficiently using gradient-based Newton iteration. However, incorporating non-differentiable production-grade plasma solvers like Gkeyll (a C/CUDA plasma simulation suite) into a gradient-based workflow is non-trivial. The ''Tesseract'' software addresses this challenge by providing a multi-physics differentiable abstraction layer made fully compatible with JAX (through the `tesseract_jax` adapter). This architecture ensures end-to-end differentiability while allowing seamless interchange between high-fidelity solvers (Gkeyll), neural surrogates, and analytical approximations for rapid, progressive prototyping.
☆ Edge-aware baselines for ogbn-proteins in PyTorch Geometric: species-wise normalization, post-hoc calibration, and cost-accuracy trade-offs
We present reproducible, edge-aware baselines for ogbn-proteins in PyTorch Geometric (PyG). We study two system choices that dominate practice: (i) how 8-dimensional edge evidence is aggregated into node inputs, and (ii) how edges are used inside message passing. Our strongest baseline is GraphSAGE with sum-based edge-to-node features. We compare LayerNorm (LN), BatchNorm (BN), and a species-aware Conditional LayerNorm (CLN), and report compute cost (time, VRAM, parameters) together with accuracy (ROC-AUC) and decision quality. In our primary experimental setup (hidden size 512, 3 layers, 3 seeds), sum consistently beats mean and max; BN attains the best AUC, while CLN matches the AUC frontier with better thresholded F1. Finally, post-hoc per-label temperature scaling plus per-label thresholds substantially improves micro-F1 and expected calibration error (ECE) with negligible AUC change, and light label-correlation smoothing yields small additional gains. We release standardized artifacts and scripts used for all of the runs presented in the paper.
comment: 8 pages, 3 figures, 5 tables. Code and artifacts: https://github.com/SV25-22/ECHO-Proteins
☆ Seek and You Shall Fold
Accurate protein structures are essential for understanding biological function, yet incorporating experimental data into protein generative models remains a major challenge. Most predictors of experimental observables are non-differentiable, making them incompatible with gradient-based conditional sampling. This is especially limiting in nuclear magnetic resonance, where rich data such as chemical shifts are hard to directly integrate into generative modeling. We introduce a framework for non-differentiable guidance of protein generative models, coupling a continuous diffusion-based generator with any black-box objective via a tailored genetic algorithm. We demonstrate its effectiveness across three modalities: pairwise distance constraints, nuclear Overhauser effect restraints, and for the first time chemical shifts. These results establish chemical shift guided structure generation as feasible, expose key weaknesses in current predictors, and showcase a general strategy for incorporating diverse experimental signals. Our work points toward automated, data-conditioned protein modeling beyond the limits of differentiability.
☆ Uncovering and Mitigating Transient Blindness in Multimodal Model Editing AAAI'26
Multimodal Model Editing (MMED) aims to correct erroneous knowledge in multimodal models. Existing evaluation methods, adapted from textual model editing, overstate success by relying on low-similarity or random inputs, obscure overfitting. We propose a comprehensive locality evaluation framework, covering three key dimensions: random-image locality, no-image locality, and consistent-image locality, operationalized through seven distinct data types, enabling a detailed and structured analysis of multimodal edits. We introduce De-VQA, a dynamic evaluation for visual question answering, uncovering a phenomenon we term transient blindness, overfitting to edit-similar text while ignoring visuals. Token analysis shows edits disproportionately affect textual tokens. We propose locality-aware adversarial losses to balance cross-modal representations. Empirical results demonstrate that our approach consistently outperforms existing baselines, reducing transient blindness and improving locality by 17% on average.
comment: Accepted at AAAI'26
☆ Incoherent Beliefs & Inconsistent Actions in Large Language Models
Real-world tasks and environments exhibit differences from the static datasets that large language models (LLMs) are typically evaluated on. Such tasks can involve sequential interaction, requiring coherent updating of beliefs in light of new evidence, and making appropriate decisions based on those beliefs. Predicting how LLMs will perform in such dynamic environments is important, but can be tricky to determine from measurements in static settings. In this work, we examine two critical components of LLM performance: the ability of LLMs to coherently update their beliefs, and the extent to which the actions they take are consistent with those beliefs. First, we find that LLMs are largely inconsistent in how they update their beliefs; models can exhibit up to a 30% average difference between the directly elicited posterior, and the correct update of their prior. Second, we find that LLMs also often take actions which are inconsistent with the beliefs they hold. On a betting market, for example, LLMs often do not even bet in the same direction as their internally held beliefs over the underlying outcomes. We also find they have moderate self-inconsistency in how they respond to challenges by users to given answers. Finally, we show that the above properties hold even for strong models that obtain high accuracy or that are well-calibrated on the tasks at hand. Our results highlight the difficulties of predicting LLM behavior in complex real-world settings.
☆ Computational Measurement of Political Positions: A Review of Text-Based Ideal Point Estimation Algorithms
This article presents the first systematic review of unsupervised and semi-supervised computational text-based ideal point estimation (CT-IPE) algorithms, methods designed to infer latent political positions from textual data. These algorithms are widely used in political science, communication, computational social science, and computer science to estimate ideological preferences from parliamentary speeches, party manifestos, and social media. Over the past two decades, their development has closely followed broader NLP trends -- beginning with word-frequency models and most recently turning to large language models (LLMs). While this trajectory has greatly expanded the methodological toolkit, it has also produced a fragmented field that lacks systematic comparison and clear guidance for applied use. To address this gap, we identified 25 CT-IPE algorithms through a systematic literature review and conducted a manual content analysis of their modeling assumptions and development contexts. To compare them meaningfully, we introduce a conceptual framework that distinguishes how algorithms generate, capture, and aggregate textual variance. On this basis, we identify four methodological families -- word-frequency, topic modeling, word embedding, and LLM-based approaches -- and critically assess their assumptions, interpretability, scalability, and limitations. Our review offers three contributions. First, it provides a structured synthesis of two decades of algorithm development, clarifying how diverse methods relate to one another. Second, it translates these insights into practical guidance for applied researchers, highlighting trade-offs in transparency, technical requirements, and validation strategies that shape algorithm choice. Third, it emphasizes that differences in estimation outcomes across algorithms are themselves informative, underscoring the need for systematic benchmarking.
comment: 46 pages, 8 figures, 2 tables, accepted for publication in Quality & Quantity
☆ Counterfactual Explainable AI (XAI) Method for Deep Learning-Based Multivariate Time Series Classification AAAI 2026
Recent advances in deep learning have improved multivariate time series (MTS) classification and regression by capturing complex patterns, but their lack of transparency hinders decision-making. Explainable AI (XAI) methods offer partial insights, yet often fall short of conveying the full decision space. Counterfactual Explanations (CE) provide a promising alternative, but current approaches typically prioritize either accuracy, proximity or sparsity -- rarely all -- limiting their practical value. To address this, we propose CONFETTI, a novel multi-objective CE method for MTS. CONFETTI identifies key MTS subsequences, locates a counterfactual target, and optimally modifies the time series to balance prediction confidence, proximity and sparsity. This method provides actionable insights with minimal changes, improving interpretability, and decision support. CONFETTI is evaluated on seven MTS datasets from the UEA archive, demonstrating its effectiveness in various domains. CONFETTI consistently outperforms state-of-the-art CE methods in its optimization objectives, and in six other metrics from the literature, achieving $\geq10\%$ higher confidence while improving sparsity in $\geq40\%$.
comment: Accepted in AAAI 2026 Technical Main Track
☆ MorphBoost: Self-Organizing Universal Gradient Boosting with Adaptive Tree Morphing
Traditional gradient boosting algorithms employ static tree structures with fixed splitting criteria that remain unchanged throughout training, limiting their ability to adapt to evolving gradient distributions and problem-specific characteristics across different learning stages. This work introduces MorphBoost, a new gradient boosting framework featuring self-organizing tree structures that dynamically morph their splitting behavior during training. The algorithm implements adaptive split functions that evolve based on accumulated gradient statistics and iteration-dependent learning pressures, enabling automatic adjustment to problem complexity. Key innovations include: (1) morphing split criterion combining gradient-based scores with information-theoretic metrics weighted by training progress; (2) automatic problem fingerprinting for intelligent parameter configuration across binary/multiclass/regression tasks; (3) vectorized tree prediction achieving significant computational speedups; (4) interaction-aware feature importance detecting multiplicative relationships; and (5) fast-mode optimization balancing speed and accuracy. Comprehensive benchmarking across 10 diverse datasets against competitive models (XGBoost, LightGBM, GradientBoosting, HistGradientBoosting, ensemble methods) demonstrates that MorphBoost achieves state-of-the-art performance, outperforming XGBoost by 0.84% on average. MorphBoost secured the overall winner position with 4/10 dataset wins (40% win rate) and 6/30 top-3 finishes (20%), while maintaining the lowest variance (σ=0.0948) and highest minimum accuracy across all models, revealing superior consistency and robustness. Performance analysis across difficulty levels shows competitive results on easy datasets while achieving notable improvements on advanced problems due to higher adaptation levels.
comment: 8 pages, 5 figures
☆ Laplace Learning in Wasserstein Space
The manifold hypothesis posits that high-dimensional data typically resides on low-dimensional sub spaces. In this paper, we assume manifold hypothesis to investigate graph-based semi-supervised learning methods. In particular, we examine Laplace Learning in the Wasserstein space, extending the classical notion of graph-based semi-supervised learning algorithms from finite-dimensional Euclidean spaces to an infinite-dimensional setting. To achieve this, we prove variational convergence of a discrete graph p- Dirichlet energy to its continuum counterpart. In addition, we characterize the Laplace-Beltrami operator on asubmanifold of the Wasserstein space. Finally, we validate the proposed theoretical framework through numerical experiments conducted on benchmark datasets, demonstrating the consistency of our classification performance in high-dimensional settings.
comment: 46 page, 5 figures
☆ TokenSqueeze: Performance-Preserving Compression for Reasoning LLMs NeurIPS 2025
Emerging reasoning LLMs such as OpenAI-o1 and DeepSeek-R1 have achieved strong performance on complex reasoning tasks by generating long chain-of-thought (CoT) traces. However, these long CoTs result in increased token usage, leading to higher inference latency and memory consumption. As a result, balancing accuracy and reasoning efficiency has become essential for deploying reasoning LLMs in practical applications. Existing long-to-short (Long2Short) methods aim to reduce inference length but often sacrifice accuracy, revealing a need for an approach that maintains performance while lowering token costs. To address this efficiency-accuracy tradeoff, we propose TokenSqueeze, a novel Long2Short method that condenses reasoning paths while preserving performance and relying exclusively on self-generated data. First, to prevent performance degradation caused by excessive compression of reasoning depth, we propose to select self-generated samples whose reasoning depth is adaptively matched to the complexity of the problem. To further optimize the linguistic expression without altering the underlying reasoning paths, we introduce a distribution-aligned linguistic refinement method that enhances the clarity and conciseness of the reasoning path while preserving its logical integrity. Comprehensive experimental results demonstrate the effectiveness of TokenSqueeze in reducing token usage while maintaining accuracy. Notably, DeepSeek-R1-Distill-Qwen-7B fine-tuned using our proposed method achieved a 50\% average token reduction while preserving accuracy on the MATH500 benchmark. TokenSqueeze exclusively utilizes the model's self-generated data, enabling efficient and high-fidelity reasoning without relying on manually curated short-answer datasets across diverse applications. Our code is available at https://github.com/zhangyx1122/TokenSqueeze.
comment: Accepted to NeurIPS 2025
☆ Likelihood-guided Regularization in Attention Based Models
The transformer architecture has demonstrated strong performance in classification tasks involving structured and high-dimensional data. However, its success often hinges on large- scale training data and careful regularization to prevent overfitting. In this paper, we intro- duce a novel likelihood-guided variational Ising-based regularization framework for Vision Transformers (ViTs), which simultaneously enhances model generalization and dynamically prunes redundant parameters. The proposed variational Ising-based regularization approach leverages Bayesian sparsification techniques to impose structured sparsity on model weights, allowing for adaptive architecture search during training. Unlike traditional dropout-based methods, which enforce fixed sparsity patterns, the variational Ising-based regularization method learns task-adaptive regularization, improving both efficiency and interpretability. We evaluate our approach on benchmark vision datasets, including MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100, demonstrating improved generalization under sparse, complex data and allowing for principled uncertainty quantification on both weights and selection parameters. Additionally, we show that the Ising regularizer leads to better-calibrated probability estimates and structured feature selection through uncertainty-aware attention mechanisms. Our results highlight the effectiveness of structured Bayesian sparsification in enhancing transformer-based architectures, offering a principled alternative to standard regularization techniques.
☆ Learning to Solve Resource-Constrained Project Scheduling Problems with Duration Uncertainty using Graph Neural Networks ICTAI 2025
The Resource-Constrained Project Scheduling Problem (RCPSP) is a classical scheduling problem that has received significant attention due to of its numerous applications in industry. However, in practice, task durations are subject to uncertainty that must be considered in order to propose resilient scheduling. In this paper, we address the RCPSP variant with uncertain tasks duration (modeled using known probabilities) and aim to minimize the overall expected project duration. Our objective is to produce a baseline schedule that can be reused multiple times in an industrial setting regardless of the actual duration scenario. We leverage Graph Neural Networks in conjunction with Deep Reinforcement Learning (DRL) to develop an effective policy for task scheduling. This policy operates similarly to a priority dispatch rule and is paired with a Serial Schedule Generation Scheme to produce a schedule. Our empirical evaluation on standard benchmarks demonstrates the approach's superiority in terms of performance and its ability to generalize. The developed framework, Wheatley, is made publicly available online to facilitate further research and reproducibility.
comment: Accepted at ICTAI 2025 Conference
☆ ParaDySe: A Parallel-Strategy Switching Framework for Dynamic Sequence Lengths in Transformer
Dynamic sequences with varying lengths have been widely used in the training of Transformer-based large language models (LLMs). However, current training frameworks adopt a pre-defined static parallel strategy for these sequences, causing neither communication-parallelization cancellation on short sequences nor out-of-memory on long sequences. To mitigate these issues, we propose ParaDySe, a novel adaptive Parallel strategy switching framework for Dynamic Sequences. ParaDySe enables on-the-fly optimal strategy adoption according to the immediate input sequence. It first implements the modular function libraries for parallel strategies with unified tensor layout specifications, and then builds sequence-aware memory and time cost models with hybrid methods. Guided by cost models, ParaDySe selects optimal layer-wise strategies for dynamic sequences via an efficient heuristic algorithm. By integrating these techniques together, ParaDySe achieves seamless hot-switching of optimal strategies through its well-designed function libraries. We compare ParaDySe with baselines on representative LLMs under datasets with sequence lengths up to 624K. Experimental results indicate that ParaDySe addresses OOM and CPC bottlenecks in LLM training by systematically integrating long-sequence optimizations with existing frameworks.
☆ DiffFP: Learning Behaviors from Scratch via Diffusion-based Fictitious Play IJCAI 2025
Self-play reinforcement learning has demonstrated significant success in learning complex strategic and interactive behaviors in competitive multi-agent games. However, achieving such behaviors in continuous decision spaces remains challenging. Ensuring adaptability and generalization in self-play settings is critical for achieving competitive performance in dynamic multi-agent environments. These challenges often cause methods to converge slowly or fail to converge at all to a Nash equilibrium, making agents vulnerable to strategic exploitation by unseen opponents. To address these challenges, we propose DiffFP, a fictitious play (FP) framework that estimates the best response to unseen opponents while learning a robust and multimodal behavioral policy. Specifically, we approximate the best response using a diffusion policy that leverages generative modeling to learn adaptive and diverse strategies. Through empirical evaluation, we demonstrate that the proposed FP framework converges towards $ε$-Nash equilibria in continuous- space zero-sum games. We validate our method on complex multi-agent environments, including racing and multi-particle zero-sum games. Simulation results show that the learned policies are robust against diverse opponents and outperform baseline reinforcement learning policies. Our approach achieves up to 3$\times$ faster convergence and 30$\times$ higher success rates on average against RL-based baselines, demonstrating its robustness to opponent strategies and stability across training iterations
comment: Initial results presented at the IJCAI 2025 Workshop on User-Aligned Assessment of Adaptive AI Systems. Project page: https://aku02.github.io/projects/difffp/
☆ Uncertainty-aware Physics-informed Neural Networks for Robust CARS-to-Raman Signal Reconstruction
Coherent anti-Stokes Raman scattering (CARS) spectroscopy is a powerful and rapid technique widely used in medicine, material science, and chemical analyses. However, its effectiveness is hindered by the presence of a non-resonant background that interferes with and distorts the true Raman signal. Deep learning methods have been employed to reconstruct the true Raman spectrum from measured CARS data using labeled datasets. A more recent development integrates the domain knowledge of Kramers-Kronig relationships and smoothness constraints in the form of physics-informed loss functions. However, these deterministic models lack the ability to quantify uncertainty, an essential feature for reliable deployment in high-stakes scientific and biomedical applications. In this work, we evaluate and compare various uncertainty quantification (UQ) techniques within the context of CARS-to-Raman signal reconstruction. Furthermore, we demonstrate that incorporating physics-informed constraints into these models improves their calibration, offering a promising path toward more trustworthy CARS data analysis.
comment: EurIPS DiffSys workshop 2025
☆ Real-time distortion prediction in metallic additive manufacturing via a physics-informed neural operator approach
With the development of digital twins and smart manufacturing systems, there is an urgent need for real-time distortion field prediction to control defects in metal Additive Manufacturing (AM). However, numerical simulation methods suffer from high computational cost, long run-times that prevent real-time use, while conventional Machine learning (ML) models struggle to extract spatiotemporal features for long-horizon prediction and fail to decouple thermo-mechanical fields. This paper proposes a Physics-informed Neural Operator (PINO) to predict z and y-direction distortion for the future 15 s. Our method, Physics-informed Deep Operator Network-Recurrent Neural Network (PIDeepONet-RNN) employs trunk and branch network to process temperature history and encode distortion fields, respectively, enabling decoupling of thermo-mechanical responses. By incorporating the heat conduction equation as a soft constraint, the model ensures physical consistency and suppresses unphysical artifacts, thereby establishing a more physically consistent mapping between the thermal history and distortion. This is important because such a basis function, grounded in physical laws, provides a robust and interpretable foundation for predictions. The proposed models are trained and tested using datasets generated from experimentally validated Finite Element Method (FEM). Evaluation shows that the model achieves high accuracy, low error accumulation, time efficiency. The max absolute errors in the z and y-directions are as low as 0.9733 mm and 0.2049 mm, respectively. The error distribution shows high errors in the molten pool but low gradient norms in the deposited and key areas. The performance of PINO surrogate model highlights its potential for real-time long-horizon physics field prediction in controlling defects.
☆ Warm-starting active-set solvers using graph neural networks
Quadratic programming (QP) solvers are widely used in real-time control and optimization, but their computational cost often limits applicability in time-critical settings. We propose a learning-to-optimize approach using graph neural networks (GNNs) to predict active sets in the dual active-set solver DAQP. The method exploits the structural properties of QPs by representing them as bipartite graphs and learning to identify the optimal active set for efficiently warm-starting the solver. Across varying problem sizes, the GNN consistently reduces the number of solver iterations compared to cold-starting, while performance is comparable to a multilayer perceptron (MLP) baseline. Furthermore, a GNN trained on varying problem sizes generalizes effectively to unseen dimensions, demonstrating flexibility and scalability. These results highlight the potential of structure-aware learning to accelerate optimization in real-time applications such as model predictive control.
comment: Under review, 15 pages, 8 figures
☆ InteractiveGNNExplainer: A Visual Analytics Framework for Multi-Faceted Understanding and Probing of Graph Neural Network Predictions
Graph Neural Networks (GNNs) excel in graph-based learning tasks, but their complex, non-linear operations often render them as opaque "black boxes". This opacity hinders user trust, complicates debugging, bias detection, and adoption in critical domains requiring explainability. This paper introduces InteractiveGNNExplainer, a visual analytics framework to enhance GNN explainability, focusing on node classification. Our system uniquely integrates coordinated interactive views (dynamic graph layouts, embedding projections, feature inspection, neighborhood analysis) with established post-hoc (GNNExplainer) and intrinsic (GAT attention) explanation techniques. Crucially, it incorporates interactive graph editing, allowing users to perform a "what-if" analysis by perturbing graph structures and observing immediate impacts on GNN predictions and explanations. We detail the system architecture and, through case studies on Cora and CiteSeer datasets, demonstrate how InteractiveGNNExplainer facilitates in-depth misclassification diagnosis, comparative analysis of GCN versus GAT behaviors, and rigorous probing of model sensitivity. These capabilities foster a deeper, multifaceted understanding of GNN predictions, contributing to more transparent, trustworthy, and robust graph analysis.
☆ OTARo: Once Tuning for All Precisions toward Robust On-Device LLMs
Large Language Models (LLMs) fine-tuning techniques not only improve the adaptability to diverse downstream tasks, but also mitigate adverse effects of model quantization. Despite this, conventional quantization suffers from its structural limitation that hinders flexibility during the fine-tuning and deployment stages. Practical on-device tasks demand different quantization precisions (i.e. different bit-widths), e.g., understanding tasks tend to exhibit higher tolerance to reduced precision compared to generation tasks. Conventional quantization, typically relying on scaling factors that are incompatible across bit-widths, fails to support the on-device switching of precisions when confronted with complex real-world scenarios. To overcome the dilemma, we propose OTARo, a novel method that enables on-device LLMs to flexibly switch quantization precisions while maintaining performance robustness through once fine-tuning. OTARo introduces Shared Exponent Floating Point (SEFP), a distinct quantization mechanism, to produce different bit-widths through simple mantissa truncations of a single model. Moreover, to achieve bit-width robustness in downstream applications, OTARo performs a learning process toward losses induced by different bit-widths. The method involves two critical strategies: (1) Exploitation-Exploration Bit-Width Path Search (BPS), which iteratively updates the search path via a designed scoring mechanism; (2) Low-Precision Asynchronous Accumulation (LAA), which performs asynchronous gradient accumulations and delayed updates under low bit-widths. Experiments on popular LLMs, e.g., LLaMA3.2-1B, LLaMA3-8B, demonstrate that OTARo achieves consistently strong and robust performance for all precisions.
☆ Personalized Federated Learning with Bidirectional Communication Compression via One-Bit Random Sketching AAAI 2026
Federated Learning (FL) enables collaborative training across decentralized data, but faces key challenges of bidirectional communication overhead and client-side data heterogeneity. To address communication costs while embracing data heterogeneity, we propose pFed1BS, a novel personalized federated learning framework that achieves extreme communication compression through one-bit random sketching. In personalized FL, the goal shifts from training a single global model to creating tailored models for each client. In our framework, clients transmit highly compressed one-bit sketches, and the server aggregates and broadcasts a global one-bit consensus. To enable effective personalization, we introduce a sign-based regularizer that guides local models to align with the global consensus while preserving local data characteristics. To mitigate the computational burden of random sketching, we employ the Fast Hadamard Transform for efficient projection. Theoretical analysis guarantees that our algorithm converges to a stationary neighborhood of the global potential function. Numerical simulations demonstrate that pFed1BS substantially reduces communication costs while achieving competitive performance compared to advanced communication-efficient FL algorithms.
comment: Accepted in AAAI 2026
☆ Soft Conflict-Resolution Decision Transformer for Offline Multi-Task Reinforcement Learning
Multi-task reinforcement learning (MTRL) seeks to learn a unified policy for diverse tasks, but often suffers from gradient conflicts across tasks. Existing masking-based methods attempt to mitigate such conflicts by assigning task-specific parameter masks. However, our empirical study shows that coarse-grained binary masks have the problem of over-suppressing key conflicting parameters, hindering knowledge sharing across tasks. Moreover, different tasks exhibit varying conflict levels, yet existing methods use a one-size-fits-all fixed sparsity strategy to keep training stability and performance, which proves inadequate. These limitations hinder the model's generalization and learning efficiency. To address these issues, we propose SoCo-DT, a Soft Conflict-resolution method based by parameter importance. By leveraging Fisher information, mask values are dynamically adjusted to retain important parameters while suppressing conflicting ones. In addition, we introduce a dynamic sparsity adjustment strategy based on the Interquartile Range (IQR), which constructs task-specific thresholding schemes using the distribution of conflict and harmony scores during training. To enable adaptive sparsity evolution throughout training, we further incorporate an asymmetric cosine annealing schedule to continuously update the threshold. Experimental results on the Meta-World benchmark show that SoCo-DT outperforms the state-of-the-art method by 7.6% on MT50 and by 10.5% on the suboptimal dataset, demonstrating its effectiveness in mitigating gradient conflicts and improving overall multi-task performance.
♻ ☆ Instruction Tuning Chronologically Consistent Language Models
We introduce a family of chronologically consistent, instruction-tuned large language models to eliminate lookahead bias. Each model is trained only on data available before a clearly defined knowledge-cutoff date, ensuring strict temporal separation from any post-cutoff data. The resulting framework offers (i) a simple, conversational chat interface, (ii) fully open, fixed model weights that guarantee replicability, and (iii) a conservative lower bound on forecast accuracy, isolating the share of predictability that survives once training leakage is removed. Together, these features provide researchers with an easy-to-use generative AI tool useful for a wide range of prediction tasks that is free of lookahead bias.
♻ ☆ Optimizing Urban Service Allocation with Time-Constrained Restless Bandits
Municipal inspections are an important part of maintaining the quality of goods and services. In this paper, we approach the problem of intelligently scheduling service inspections to maximize their impact, using the case of food establishment inspections in Chicago as a case study. The Chicago Department of Public Health (CDPH) inspects thousands of establishments each year, with a substantial fail rate (over 3,000 failed inspection reports in 2023). To balance the objectives of ensuring adherence to guidelines, minimizing disruption to establishments, and minimizing inspection costs, CDPH assigns each establishment an inspection window every year and guarantees that they will be inspected exactly once during that window. Meanwhile, CDPH also promises surprise public health inspections for unexpected food safety emergencies or complaints. These constraints create a challenge for a restless multi-armed bandit (RMAB) approach, for which there are no existing methods. We develop an extension to Whittle index-based systems for RMABs that can guarantee action window constraints and frequencies, and furthermore can be leveraged to optimize action window assignments themselves. Briefly, we combine MDP reformulation and integer programming-based lookahead to maximize the impact of inspections subject to constraints. A neural network-based supervised learning model is developed to model state transitions of real Chicago establishments using public CDPH inspection records, which demonstrates 10% AUC improvements compared with directly predicting establishments' failures. Our experiments not only show up to 24% (in simulation) or 33% (on real data) objective improvements resulting from our approach and robustness to surprise inspections, but also give insight into the impact of scheduling constraints.
♻ ☆ Beyond Statistical Similarity: Rethinking Metrics for Deep Generative Models in Engineering Design
Deep generative models such as Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), Diffusion Models, and Transformers, have shown great promise in a variety of applications, including image and speech synthesis, natural language processing, and drug discovery. However, when applied to engineering design problems, evaluating the performance of these models can be challenging, as traditional statistical metrics based on likelihood may not fully capture the requirements of engineering applications. This paper doubles as a review and practical guide to evaluation metrics for deep generative models (DGMs) in engineering design. We first summarize the well-accepted `classic' evaluation metrics for deep generative models grounded in machine learning theory. Using case studies, we then highlight why these metrics seldom translate well to design problems but see frequent use due to the lack of established alternatives. Next, we curate a set of design-specific metrics which have been proposed across different research communities and can be used for evaluating deep generative models. These metrics focus on unique requirements in design and engineering, such as constraint satisfaction, functional performance, novelty, and conditioning. Throughout our discussion, we apply the metrics to models trained on simple-to-visualize 2-dimensional example problems. Finally, we evaluate four deep generative models on a bicycle frame design problem and structural topology generation problem. In particular, we showcase the use of proposed metrics to quantify performance target achievement, design novelty, and geometric constraints. We publicly release the code for the datasets, models, and metrics used throughout the paper at https://decode.mit.edu/projects/metrics/.
♻ ☆ Variational Inference with Mixtures of Isotropic Gaussians
Variational inference (VI) is a popular approach in Bayesian inference, that looks for the best approximation of the posterior distribution within a parametric family, minimizing a loss that is typically the (reverse) Kullback-Leibler (KL) divergence. In this paper, we focus on the following parametric family: mixtures of isotropic Gaussians (i.e., with diagonal covariance matrices proportional to the identity) and uniform weights. We develop a variational framework and provide efficient algorithms suited for this family. In contrast with mixtures of Gaussian with generic covariance matrices, this choice presents a balance between accurate approximations of multimodal Bayesian posteriors, while being memory and computationally efficient. Our algorithms implement gradient descent on the location of the mixture components (the modes of the Gaussians), and either (an entropic) Mirror or Bures descent on their variance parameters. We illustrate the performance of our algorithms on numerical experiments.
♻ ☆ Physically Interpretable World Models via Weakly Supervised Representation Learning
Learning predictive models from high-dimensional sensory observations is fundamental for cyber-physical systems, yet the latent representations learned by standard world models lack physical interpretability. This limits their reliability, generalizability, and applicability to safety-critical tasks. We introduce Physically Interpretable World Models (PIWM), a framework that aligns latent representations with real-world physical quantities and constrains their evolution through partially known physical dynamics. Physical interpretability in PIWM is defined by two complementary properties: (i) the learned latent state corresponds to meaningful physical variables, and (ii) its temporal evolution follows physically consistent dynamics. To achieve this without requiring ground-truth physical annotations, PIWM employs weak distribution-based supervision that captures state uncertainty naturally arising from real-world sensing pipelines. The architecture integrates a VQ-based visual encoder, a transformer-based physical encoder, and a learnable dynamics model grounded in known physical equations. Across three case studies (Cart Pole, Lunar Lander, and Donkey Car), PIWM achieves accurate long-horizon prediction, recovers true system parameters, and significantly improves physical grounding over purely data-driven models. These results demonstrate the feasibility and advantages of learning physically interpretable world models directly from images under weak supervision.
♻ ☆ The Third Pillar of Causal Analysis? A Measurement Perspective on Causal Representations NeurIPS2025
Causal reasoning and discovery, two fundamental tasks of causal analysis, often face challenges in applications due to the complexity, noisiness, and high-dimensionality of real-world data. Despite recent progress in identifying latent causal structures using causal representation learning (CRL), what makes learned representations useful for causal downstream tasks and how to evaluate them are still not well understood. In this paper, we reinterpret CRL using a measurement model framework, where the learned representations are viewed as proxy measurements of the latent causal variables. Our approach clarifies the conditions under which learned representations support downstream causal reasoning and provides a principled basis for quantitatively assessing the quality of representations using a new Test-based Measurement EXclusivity (T-MEX) score. We validate T-MEX across diverse causal inference scenarios, including numerical simulations and real-world ecological video analysis, demonstrating that the proposed framework and corresponding score effectively assess the identification of learned representations and their usefulness for causal downstream tasks.
comment: Camera-ready version for NeurIPS2025
♻ ☆ Fast Equivariant Imaging: Acceleration for Unsupervised Learning via Augmented Lagrangian and Auxiliary PnP Denoisers
In this work, we propose Fast Equivariant Imaging (FEI), a novel unsupervised learning framework to rapidly and efficiently train deep imaging networks without ground-truth data. From the perspective of reformulating the Equivariant Imaging based optimization problem via the method of Lagrange multipliers and utilizing plug-and-play denoisers, this novel unsupervised scheme shows superior efficiency and performance compared to the vanilla Equivariant Imaging paradigm. In particular, our FEI schemes achieve an order-of-magnitude (10x) acceleration over standard EI on training U-Net for X-ray CT reconstruction and image inpainting, with improved generalization performance.
♻ ☆ Graph Neural Network-Based Reinforcement Learning for Controlling Biological Networks - the GATTACA Framework
Cellular reprogramming, the artificial transformation of one cell type into another, has been attracting increasing research attention due to its therapeutic potential for complex diseases. However, identifying effective reprogramming strategies through classical wet-lab experiments is hindered by lengthy time commitments and high costs. In this study, we explore the use of deep reinforcement learning (DRL) to control Boolean network models of complex biological systems, such as gene regulatory and signalling pathway networks. We formulate a novel control problem for Boolean network models under the asynchronous update mode, specifically in the context of cellular reprogramming. To solve it, we devise GATTACA, a scalable computational framework. To facilitate scalability of our framework, we consider previously introduced concept of a pseudo-attractor and improve the procedure for effective identification of pseudo-attractor states. We then incorporate graph neural networks with graph convolution operations into the artificial neural network approximator of the DRL agent's action-value function. This allows us to leverage the available knowledge on the structure of a biological system and to indirectly, yet effectively, encode the system's modelled dynamics into a latent representation. Experiments on several large-scale, real-world biological networks from the literature demonstrate the scalability and effectiveness of our approach.
♻ ☆ Robust Reinforcement Learning from Human Feedback for Large Language Models Fine-Tuning
Reinforcement learning from human feedback (RLHF) has emerged as a key technique for aligning the output of large language models (LLMs) with human preferences. To learn the reward function, most existing RLHF algorithms use the Bradley-Terry model, which relies on assumptions about human preferences that may not reflect the complexity and variability of real-world judgments. In this paper, we propose a robust algorithm to enhance the performance of existing approaches under such reward model misspecifications. Theoretically, our algorithm reduces the variance of reward and policy estimators, leading to improved regret bounds. Empirical evaluations on LLM benchmark datasets demonstrate that the proposed algorithm consistently outperforms existing methods, with 77-81% of responses being favored over baselines on the Anthropic Helpful and Harmless dataset. The code is available at https:// github.com/ VRPO/ VRPO.
♻ ☆ Physics informed Transformer-VAE for biophysical parameter estimation: PROSAIL model inversion in Sentinel-2 imagery
Accurate retrieval of vegetation biophysical variables from satellite imagery is crucial for ecosystem monitoring and agricultural management. In this work, we propose a physics-informed Transformer-VAE architecture to invert the PROSAIL radiative transfer model for simultaneous estimation of key canopy parameters from Sentinel-2 data. Unlike previous hybrid approaches that require real satellite images for self-supevised training. Our model is trained exclusively on simulated data, yet achieves performance on par with state-of-the-art methods that utilize real imagery. The Transformer-VAE incorporates the PROSAIL model as a differentiable physical decoder, ensuring that inferred latent variables correspond to physically plausible leaf and canopy properties. We demonstrate retrieval of leaf area index (LAI) and canopy chlorophyll content (CCC) on real-world field datasets (FRM4Veg and BelSAR) with accuracy comparable to models trained with real Sentinel-2 data. Our method requires no in-situ labels or calibration on real images, offering a cost-effective and self-supervised solution for global vegetation monitoring. The proposed approach illustrates how integrating physical models with advanced deep networks can improve the inversion of RTMs, opening new prospects for large-scale, physically-constrained remote sensing of vegetation traits.
comment: 10 pages, 6 figures, uses fancyhdr.sty
♻ ☆ Policy Zooming: Adaptive Discretization-based Infinite-Horizon Average-Reward Reinforcement Learning
We study the infinite-horizon average-reward reinforcement learning (RL) for continuous space Lipschitz MDPs in which an agent can play policies from a given set $Φ$. The proposed algorithms efficiently explore the policy space by ''zooming'' into the ''promising regions'' of $Φ$, thereby achieving adaptivity gains in the performance. We upper bound their regret as $\tilde{\mathcal{O}}\big(T^{1 - d_{\text{eff.}}^{-1}}\big)$, where $d_{\text{eff.}} = d^Φ_z+2$ for model-free algoritahm $\textit{PZRL-MF}$ and $d_{\text{eff.}} = 2d_\mathcal{S} + d^Φ_z + 3$ for model-based algorithm $\textit{PZRL-MB}$. Here, $d_\mathcal{S}$ is the dimension of the state space, and $d^Φ_z$ is the zooming dimension given a set of policies $Φ$. $d^Φ_z$ is an alternative measure of the complexity of the problem, and it depends on the underlying MDP as well as on $Φ$. Hence, the proposed algorithms exhibit low regret in case the problem instance is benign and/or the agent competes against a low-complexity $Φ$ (that has a small $d^Φ_z$). When specialized to the case of finite-dimensional policy space, we obtain that $d_{\text{eff.}}$ scales as the dimension of this space under mild technical conditions; and also obtain $d_{\text{eff.}} = 2$, or equivalently $\tilde{\mathcal{O}}(\sqrt{T})$ regret for $\textit{PZRL-MF}$, under a curvature condition on the average reward function that is commonly used in the multi-armed bandit (MAB) literature.
comment: 38 pages, 3 figures
♻ ☆ Infrequent Resolving Algorithm for Online Linear Programming
Online linear programming (OLP) has gained significant attention from both researchers and practitioners due to its extensive applications, such as online auction, network revenue management, order fulfillment and advertising. Existing OLP algorithms fall into two categories: LP-based algorithms and LP-free algorithms. The former one typically guarantees better performance but requires solving a large number of LPs, which could be computationally expensive. In contrast, LP-free algorithm only requires first-order computations but induces a worse performance. In this work, we bridge the gap between these two extremes by proposing a well-performing algorithm, that solves LPs at a few selected time points and conducts first-order computations at other time points. Specifically, for the case where the inputs are drawn from an unknown finite-support distribution, the proposed algorithm achieves a constant regret (even for the hard "degenerate" case) while solving LPs only O(log log T) times over the time horizon T. Moreover, when we are allowed to solve LPs only M times, we design the corresponding schedule such that the proposed algorithm can guarantee a nearly O(T^((1/2)^(M-1)) regret. Our work highlights the value of resolving both at the beginning and the end of the selling horizon, and provides a novel framework to prove the performance guarantee of the proposed policy under different infrequent resolving schedules. Numerical experiments are conducted to demonstrate the efficiency of the proposed algorithms.
comment: With very few resolvings, we can achieve constant regret (even without the non-degeneracy assumption) for OLP and NRM problems
♻ ☆ Neutron Reflectometry by Gradient Descent
Neutron reflectometry (NR) is a powerful technique to probe surfaces and interfaces. NR is inherently an indirect measurement technique, access to the physical quantities of interest (layer thickness, scattering length density, roughness), necessitate the solution of an inverse modelling problem, that is inefficient for large amounts of data or complex multiplayer structures (e.g. lithium batteries / electrodes). Recently, surrogate machine learning models have been proposed as an alternative to existing optimisation routines. Although such approaches have been successful, physical intuition is lost when replacing governing equations with fast neural networks. Instead, we propose a novel and efficient approach; to optimise reflectivity data analysis by performing gradient descent on the forward reflection model itself. Herein, automatic differentiation techniques are used to evaluate exact gradients of the error function with respect to the parameters of interest. Access to these quantities enables users of neutron reflectometry to harness a host of powerful modern optimisation and inference techniques that remain thus far unexploited in the context of neutron reflectometry. This paper presents two benchmark case studies; demonstrating state-of-the-art performance on a thick oxide quartz film, and robust co-fitting performance in the high complexity regime of organic LED multilayer devices. Additionally, we provide an open-source library of differentiable reflectometry kernels in the python programming language so that gradient based approaches can readily be applied to other NR datasets.
♻ ☆ Unintended Misalignment from Agentic Fine-Tuning: Risks and Mitigation AAAI 2026
Beyond simple text generation, Large Language Models (LLMs) have evolved into agentic systems capable of planning and interacting with external tools to solve complex tasks. This evolution involves fine-tuning LLMs on agent-specific tasks to enhance their proficiency. However, safety concerns are frequently overlooked during this fine-tuning process. In this work, we show that aligned LLMs can become unintentionally misaligned, leading to a higher likelihood of executing harmful tasks and a reduced tendency to refuse them when fine-tuned to execute agentic tasks. To address these safety challenges, we propose Prefix INjection Guard (PING), a simple yet effective method that prepends automatically generated natural language prefixes to agent responses, guiding them to refuse harmful requests while preserving performance on benign tasks. Specifically, we introduce an iterative approach that alternates between (1) generating candidate prefixes and (2) selecting those that optimize both task performance and refusal behavior. Experimental results demonstrate that PING significantly enhances the safety of fine-tuned LLM agents without sacrificing their effectiveness. PING consistently outperforms existing prompting approaches across diverse benchmarks in both web navigation and code generation tasks. Our analysis of internal hidden states via linear probes reveals that prefix tokens are crucial for behavior modification, explaining the performance gains. WARNING: This paper contains contents that are unethical or offensive in nature.
comment: Accepted at AAAI 2026 AI Alignment Track, Source code: https://github.com/HahmDY/agentic-ft-safety
♻ ☆ PASS: Probabilistic Agentic Supernet Sampling for Interpretable and Adaptive Chest X-Ray Reasoning
Existing tool-augmented agentic systems are limited in the real world by (i) black-box reasoning steps that undermine trust of decision-making and pose safety risks, (ii) poor multimodal integration, which is inherently critical for healthcare tasks, and (iii) rigid and computationally inefficient agentic pipelines. We introduce PASS (Probabilistic Agentic Supernet Sampling), the first multimodal framework to address these challenges in the context of Chest X-Ray (CXR) reasoning. PASS adaptively samples agentic workflows over a multi-tool graph, yielding decision paths annotated with interpretable probabilities. Given the complex CXR reasoning task with multimodal medical data, PASS leverages its learned task-conditioned distribution over the agentic supernet. Thus, it adaptively selects the most suitable tool at each supernet layer, offering probability-annotated trajectories for post-hoc audits and directly enhancing medical AI safety. PASS also continuously compresses salient findings into an evolving personalized memory, while dynamically deciding whether to deepen its reasoning path or invoke an early exit for efficiency. To optimize a Pareto frontier balancing performance and cost, we design a novel three-stage training procedure, including expert knowledge warm-up, contrastive path-ranking, and cost-aware reinforcement learning. To facilitate rigorous evaluation, we introduce CAB-E, a comprehensive benchmark for multi-step, safety-critical, free-form CXR reasoning. Experiments across various benchmarks validate that PASS significantly outperforms strong baselines in multiple metrics (e.g., accuracy, AUC, LLM-J.) while balancing computational costs, pushing a new paradigm shift towards interpretable, adaptive, and multimodal medical agentic systems.
♻ ☆ Individualised Treatment Effects Estimation with Composite Treatments and Composite Outcomes
Estimating individualised treatment effect (ITE) -- that is the causal effect of a set of variables (also called exposures, treatments, actions, policies, or interventions), referred to as \textit{composite treatments}, on a set of outcome variables of interest, referred to as \textit{composite outcomes}, for a unit from observational data -- remains a fundamental problem in causal inference with applications across disciplines, such as healthcare, economics, education, social science, marketing, and computer science. Previous work in causal machine learning for ITE estimation is limited to simple settings, like single treatments and single outcomes. This hinders their use in complex real-world scenarios; for example, consider studying the effect of different ICU interventions, such as beta-blockers and statins for a patient admitted for heart surgery, on different outcomes of interest such as atrial fibrillation and in-hospital mortality. The limited research into composite treatments and outcomes is primarily due to data scarcity for all treatments and outcomes. To address the above challenges, we propose a novel and innovative hypernetwork-based approach, called \emph{H-Learner}, to solve ITE estimation under composite treatments and composite outcomes, which tackles the data scarcity issue by dynamically sharing information across treatments and outcomes. Our empirical analysis with binary and arbitrary composite treatments and outcomes demonstrates the effectiveness of the proposed approach compared to existing methods.
comment: Accepted to The 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (7 pages (double column), 4 figures)
♻ ☆ Global universal approximation of functional input maps on weighted spaces
We introduce so-called functional input neural networks defined on a possibly infinite dimensional weighted space with values also in a possibly infinite dimensional output space. To this end, we use an additive family to map the input weighted space to the hidden layer, on which a non-linear scalar activation function is applied to each neuron, and finally return the output via some linear readouts. Relying on Stone-Weierstrass theorems on weighted spaces, we can prove a global universal approximation result on weighted spaces for continuous functions going beyond the usual approximation on compact sets. This then applies in particular to approximation of (non-anticipative) path space functionals via functional input neural networks. As a further application of the weighted Stone-Weierstrass theorem we prove a global universal approximation result for linear functions of the signature. We also introduce the viewpoint of Gaussian process regression in this setting and emphasize that the reproducing kernel Hilbert space of the signature kernels are Cameron-Martin spaces of certain Gaussian processes. This paves a way towards uncertainty quantification for signature kernel regression.
comment: 71 pages, 4 figures
♻ ☆ Virtual Width Networks
We introduce Virtual Width Networks (VWN), a framework that delivers the benefits of wider representations without incurring the quadratic cost of increasing the hidden size. VWN decouples representational width from backbone width, expanding the embedding space while keeping backbone compute nearly constant. In our large-scale experiment, an 8-times expansion accelerates optimization by over 2 times for next-token and 3 times for next-2-token prediction. The advantage amplifies over training as both the loss gap grows and the convergence-speedup ratio increases, showing that VWN is not only token-efficient but also increasingly effective with scale. Moreover, we identify an approximately log-linear scaling relation between virtual width and loss reduction, offering an initial empirical basis and motivation for exploring virtual-width scaling as a new dimension of large-model efficiency.
♻ ☆ On the emergence of numerical instabilities in Next Generation Reservoir Computing
Next Generation Reservoir Computing (NGRC) is a low-cost machine learning method for forecasting chaotic time series from data. Computational efficiency is crucial for scalable reservoir computing, requiring better strategies to reduce training cost. In this work, we uncover a connection between the numerical conditioning of the NGRC feature matrix -- formed by polynomial evaluations on time-delay coordinates -- and the long-term NGRC dynamics. We show that NGRC can be trained without regularization, reducing computational time. Our contributions are twofold. First, merging tools from numerical linear algebra and ergodic theory of dynamical systems, we systematically study how the feature matrix conditioning varies across hyperparameters. We demonstrate that the NGRC feature matrix tends to be ill-conditioned for short time lags, high-degree polynomials, and short length of training data. Second, we evaluate the impact of different numerical algorithms (Cholesky, singular value decomposition (SVD), and lower-upper (LU) decomposition) for solving the regularized least-squares problem. Our results reveal that SVD-based training achieves accurate forecasts without regularization, being preferable when compared against the other algorithms.
comment: 23 pages, 14 figures
♻ ☆ Deep deterministic policy gradient with symmetric data augmentation for lateral attitude tracking control of a fixed-wing aircraft
The symmetry of dynamical systems can be exploited for state-transition prediction and to facilitate control policy optimization. This paper leverages system symmetry to develop sample-efficient offline reinforcement learning (RL) approaches. Under the symmetry assumption for a Markov Decision Process (MDP), a symmetric data augmentation method is proposed. The augmented samples are integrated into the dataset of Deep Deterministic Policy Gradient (DDPG) to enhance its coverage rate of the state-action space. Furthermore, sample utilization efficiency is improved by introducing a second critic trained on the augmented samples, resulting in a dual-critic structure. The aircraft's model is verified to be symmetric, and flight control simulations demonstrate accelerated policy convergence when augmented samples are employed.
♻ ☆ Dynamic and Distributed Routing in IoT Networks based on Multi-Objective Q-Learning
IoT networks often face conflicting routing goals such as maximizing packet delivery, minimizing delay, and conserving limited battery energy. These priorities can also change dynamically: for example, an emergency alert requires high reliability, while routine monitoring prioritizes energy efficiency to prolong network lifetime. Existing works, including many deep reinforcement learning approaches, are typically centralized and assume static objectives, making them slow to adapt when preferences shift. We propose a dynamic and fully distributed multi-objective Q-learning routing algorithm that learns multiple per-preference Q-tables in parallel and introduces a novel greedy interpolation policy to act near-optimally for unseen preferences without retraining or central coordination. A theoretical analysis further shows that the optimal value function is Lipschitz-continuous in the preference parameter, ensuring that the proposed greedy interpolation policy yields provably near-optimal behavior. Simulations show that our approach adapts in real time to shifting priorities and achieves up to 80-90\% lower energy consumption and more than 2-5x higher cumulative rewards and packet delivery compared to six baseline protocols. These results demonstrate significant gains in adaptability, delivery, and efficiency for dynamic IoT environments.
♻ ☆ An Improved Privacy and Utility Analysis of Differentially Private SGD with Bounded Domain and Smooth Losses AAAI 2026
Differentially Private Stochastic Gradient Descent (DPSGD) is widely used to protect sensitive data during the training of machine learning models, but its privacy guarantee often comes at a large cost of model performance due to the lack of tight theoretical bounds quantifying privacy loss. While recent efforts have achieved more accurate privacy guarantees, they still impose some assumptions prohibited from practical applications, such as convexity and complex parameter requirements, and rarely investigate in-depth the impact of privacy mechanisms on the model's utility. In this paper, we provide a rigorous privacy characterization for DPSGD with general L-smooth and non-convex loss functions, revealing converged privacy loss with iteration in bounded-domain cases. Specifically, we track the privacy loss over multiple iterations, leveraging the noisy smooth-reduction property, and further establish comprehensive convergence analysis in different scenarios. In particular, we show that for DPSGD with a bounded domain, (i) the privacy loss can still converge without the convexity assumption, (ii) a smaller bounded diameter can improve both privacy and utility simultaneously under certain conditions, and (iii) the attainable big-O order of the privacy utility trade-off for DPSGD with gradient clipping (DPSGD-GC) and for DPSGD-GC with bounded domain (DPSGD-DC) and mu-strongly convex population risk function, respectively. Experiments via membership inference attack (MIA) in a practical setting validate insights gained from the theoretical results.
comment: 19 pages, 5 figures, accepted by AAAI 2026
♻ ☆ Near-Optimal Reinforcement Learning with Shuffle Differential Privacy
Reinforcement learning (RL) is a powerful tool for sequential decision-making, but its application is often hindered by privacy concerns arising from its interaction data. This challenge is particularly acute in advanced networked systems, where learning from operational and user data can expose systems to privacy inference attacks. Existing differential privacy (DP) models for RL are often inadequate: the centralized model requires a fully trusted server, creating a single point of failure risk, while the local model incurs significant performance degradation that is unsuitable for many networked applications. This paper addresses this gap by leveraging the emerging shuffle model of privacy, an intermediate trust model that provides strong privacy guarantees without a centralized trust assumption. We present Shuffle Differentially Private Policy Elimination (SDP-PE), the first generic policy elimination-based algorithm for episodic RL under the shuffle model. Our method introduces a novel exponential batching schedule and a ``forgetting'' mechanism to balance the competing demands of privacy and learning performance. Our analysis shows that SDP-PE achieves a near-optimal regret bound, demonstrating a superior privacy-regret trade-off with utility comparable to the centralized model while significantly outperforming the local model. The numerical experiments also corroborate our theoretical results and demonstrate the effectiveness of SDP-PE. This work establishes the viability of the shuffle model for secure data-driven decision-making in networked systems.
♻ ☆ Early Classification of Time Series: A Survey and Benchmark
In many situations, the measurements of a studied phenomenon are provided sequentially, and the prediction of its class needs to be made as early as possible so as not to incur too high a time penalty, but not too early and risk paying the cost of misclassification. This problem has been particularly studied in the case of time series, and is known as Early Classification of Time Series (ECTS). Although it has been the subject of a growing body of literature, there is still a lack of a systematic, shared evaluation protocol to compare the relative merits of the various existing methods. In this paper, we highlight the two components of an ECTS system: decision and prediction, and focus on the approaches that separate them. This document begins by situating these methods within a principle-based taxonomy. It defines dimensions for organizing their evaluation and then reports the results of a very extensive set of experiments along these dimensions involving nine state-of-the-art ECTS algorithms. In addition, these and other experiments can be carried out using an open-source library in which most of the existing ECTS algorithms have been implemented (see https://github.com/ML-EDM/ml_edm).
♻ ☆ Ken Utilization Layer: Hebbian Replay Within a Student's Ken for Adaptive Exercise Recommendation
Adaptive exercise recommendation (ER) aims to choose the next activity that matches a learner's evolving Zone of Proximal Development (ZPD). We present KUL-Rec, a biologically inspired ER system that couples a fast Hebbian memory with slow replay-based consolidation to enable continual, few-shot personalization from sparse interactions. The model operates in an embedding space, allowing a single architecture to handle both tabular knowledge-tracing logs and open-ended short-answer text. We align evaluation with tutoring needs using bidirectional ranking and rank-sensitive metrics (nDCG, Recall@K). Across ten public datasets, KUL-Rec improves macro nDCG (0.316 vs. 0.265 for the strongest baseline) and Recall@10 (0.305 vs. 0.211), while achieving low inference latency and an $\approx99$\% reduction in peak GPU memory relative to a competitive graph-based model. In a 13-week graduate course, KUL-Rec personalized weekly short-answer quizzes generated by a retrieval-augmented pipeline and the personalized quizzes were associated with lower perceived difficulty and higher helpfulness (p < .05). An embedding robustness audit highlights that encoder choice affects semantic alignment, motivating routine audits when deploying open-response assessment. Together, these results indicate that Hebbian replay with bounded consolidation offers a practical path to real-time, interpretable ER that scales across data modalities and classroom settings.
♻ ☆ Meta-Learning an In-Context Transformer Model of Human Higher Visual Cortex NeurIPS 2025
Understanding functional representations within higher visual cortex is a fundamental question in computational neuroscience. While artificial neural networks pretrained on large-scale datasets exhibit striking representational alignment with human neural responses, learning image-computable models of visual cortex relies on individual-level, large-scale fMRI datasets. The necessity for expensive, time-intensive, and often impractical data acquisition limits the generalizability of encoders to new subjects and stimuli. BraInCoRL uses in-context learning to predict voxelwise neural responses from few-shot examples without any additional finetuning for novel subjects and stimuli. We leverage a transformer architecture that can flexibly condition on a variable number of in-context image stimuli, learning an inductive bias over multiple subjects. During training, we explicitly optimize the model for in-context learning. By jointly conditioning on image features and voxel activations, our model learns to directly generate better performing voxelwise models of higher visual cortex. We demonstrate that BraInCoRL consistently outperforms existing voxelwise encoder designs in a low-data regime when evaluated on entirely novel images, while also exhibiting strong test-time scaling behavior. The model also generalizes to an entirely new visual fMRI dataset, which uses different subjects and fMRI data acquisition parameters. Further, BraInCoRL facilitates better interpretability of neural signals in higher visual cortex by attending to semantically relevant stimuli. Finally, we show that our framework enables interpretable mappings from natural language queries to voxel selectivity.
comment: Accepted to NeurIPS 2025. Website: https://github.com/leomqyu/BraInCoRL
♻ ☆ Learning Operators by Regularized Stochastic Gradient Descent with Operator-valued Kernels
We consider a class of statistical inverse problems involving the estimation of a regression operator from a Polish space to a separable Hilbert space, where the target lies in a vector-valued reproducing kernel Hilbert space induced by an operator-valued kernel. To address the associated ill-posedness, we analyze regularized stochastic gradient descent (SGD) algorithms in both online and finite-horizon settings. The former uses polynomially decaying step sizes and regularization parameters, while the latter adopts fixed values. Under suitable structural and distributional assumptions, we establish dimension-independent bounds for prediction and estimation errors. The resulting convergence rates are near-optimal in expectation, and we also derive high-probability estimates that imply almost sure convergence. Our analysis introduces a general technique for obtaining high-probability guarantees in infinite-dimensional settings. Possible extensions to broader kernel classes and encoder-decoder structures are briefly discussed.
comment: 56 pages, 2 figures
♻ ☆ Convergence of Regret Matching in Potential Games and Constrained Optimization
Regret matching (RM) -- and its modern variants -- is a foundational online algorithm that has been at the heart of many AI breakthrough results in solving benchmark zero-sum games, such as poker. Yet, surprisingly little is known so far in theory about its convergence beyond two-player zero-sum games. For example, whether regret matching converges to Nash equilibria in potential games has been an open problem for two decades. Even beyond games, one could try to use RM variants for general constrained optimization problems. Recent empirical evidence suggests that they -- particularly regret matching$^+$ (RM$^+$) -- attain strong performance on benchmark constrained optimization problems, outperforming traditional gradient descent-type algorithms. We show that RM$^+$ converges to an $ε$-KKT point after $O_ε(1/ε^4)$ iterations, establishing for the first time that it is a sound and fast first-order optimizer. Our argument relates the KKT gap to the accumulated regret, two quantities that are entirely disparate in general but interact in an intriguing way in our setting, so much so that when regrets are bounded, our complexity bound improves all the way to $O_ε(1/ε^2)$. From a technical standpoint, while RM$^+$ does not have the usual one-step improvement property in general, we show that it does in a certain region that the algorithm will quickly reach and remain in thereafter. In sharp contrast, our second main result establishes a lower bound: RM, with or without alternation, can take an exponential number of iterations to reach a crude approximate solution even in two-player potential games. This represents the first worst-case separation between RM and RM$^+$. Our lower bound shows that convergence to coarse correlated equilibria in potential games is exponentially faster than convergence to Nash equilibria.
comment: V2 extends the convergence bounds to simultaneous RM+
♻ ☆ Conditional Information Bottleneck for Multimodal Fusion: Overcoming Shortcut Learning in Sarcasm Detection AAAI 2026
Multimodal sarcasm detection is a complex task that requires distinguishing subtle complementary signals across modalities while filtering out irrelevant information. Many advanced methods rely on learning shortcuts from datasets rather than extracting intended sarcasm-related features. However, our experiments show that shortcut learning impairs the model's generalization in real-world scenarios. Furthermore, we reveal the weaknesses of current modality fusion strategies for multimodal sarcasm detection through systematic experiments, highlighting the necessity of focusing on effective modality fusion for complex emotion recognition. To address these challenges, we construct MUStARD++$^{R}$ by removing shortcut signals from MUStARD++. Then, a Multimodal Conditional Information Bottleneck (MCIB) model is introduced to enable efficient multimodal fusion for sarcasm detection. Experimental results show that the MCIB achieves the best performance without relying on shortcut learning.
comment: Accepted at AAAI 2026 Conference
♻ ☆ NeuralOM: Neural Ocean Model for Subseasonal-to-Seasonal Simulation
Long-term, high-fidelity simulation of slow-changing physical systems, such as the ocean and climate, presents a fundamental challenge in scientific computing. Traditional autoregressive machine learning models often fail in these tasks as minor errors accumulate and lead to rapid forecast degradation. To address this problem, we propose NeuralOM, a general neural operator framework designed for simulating complex, slow-changing dynamics. NeuralOM's core consists of two key innovations: (1) a Progressive Residual Correction Framework that decomposes the forecasting task into a series of fine-grained refinement steps, effectively suppressing long-term error accumulation; and (2) a Physics-Guided Graph Network whose built-in adaptive messaging mechanism explicitly models multi-scale physical interactions, such as gradient-driven flows and multiplicative couplings, thereby enhancing physical consistency while maintaining computational efficiency. We validate NeuralOM on the challenging task of global Subseasonal-to-Seasonal (S2S) ocean simulation. Extensive experiments demonstrate that NeuralOM not only surpasses state-of-the-art models in forecast accuracy and long-term stability, but also excels in simulating extreme events. For instance, at a 60-day lead time, NeuralOM achieves a 13.3% lower RMSE compared to the best-performing baseline, offering a stable, efficient, and physically-aware paradigm for data-driven scientific computing. Code link: https://github.com/YuanGao-YG/NeuralOM.
♻ ☆ Quantum Neural Networks in Practice: A Comparative Study with Classical Models from Standard Data Sets to Industrial Images
We compare the performance of randomized classical and quantum neural networks (NNs) as well as classical and quantum-classical hybrid convolutional neural networks (CNNs) for the task of supervised binary image classification. We keep the employed quantum circuits compatible with near-term quantum devices and use two distinct methodologies: applying randomized NNs on dimensionality-reduced data and applying CNNs to full image data. We evaluate these approaches on three fully-classical data sets of increasing complexity: an artificial hypercube data set, MNIST handwritten digits and industrial images. Our central goal is to shed more light on how quantum and classical models perform for various binary classification tasks and on what defines a good quantum model. Our study involves a correlation analysis between classification accuracy and quantum model hyperparameters, and an analysis on the role of entanglement in quantum models, as well as on the impact of initial training parameters. We find classical and quantum-classical hybrid models achieve statistically-equivalent classification accuracies across most data sets with no approach consistently outperforming the other. Interestingly, we observe that quantum NNs show lower variance with respect to initial training parameters and that the role of entanglement is nuanced. While incorporating entangling gates seems advantageous, we also observe the (optimizable) entangling power not to be correlated with model performance. We also observe an inverse proportionality between the number of entangling gates and the average gate entangling power. Our study provides an industry perspective on quantum machine learning for binary image classification tasks, highlighting both limitations and potential avenues for further research in quantum circuit design, entanglement utilization, and model transferability across varied applications.
comment: 26 pages, 12 figures
♻ ☆ Why Cannot Neural Networks Master Extrapolation? Insights from Physical Laws
Motivated by the remarkable success of Foundation Models (FMs) in language modeling, there has been growing interest in developing FMs for time series prediction, given the transformative power such models hold for science and engineering. This culminated in significant success of FMs in short-range forecasting settings. However, extrapolation or long-range forecasting remains elusive for FMs, which struggle to outperform even simple baselines. This contrasts with physical laws which have strong extrapolation properties, and raises the question of the fundamental difference between the structure of neural networks and physical laws. In this work, we identify and formalize a fundamental property characterizing the ability of statistical learning models to predict more accurately outside of their training domain, hence explaining performance deterioration for deep learning models in extrapolation settings. In addition to a theoretical analysis, we present empirical results showcasing the implications of this property on current deep learning architectures. Our results not only clarify the root causes of the extrapolation gap but also suggest directions for designing next-generation forecasting models capable of mastering extrapolation.
♻ ☆ Learning Quantized Continuous Controllers for Integer Hardware
Deploying continuous-control reinforcement learning policies on embedded hardware requires meeting tight latency and power budgets. Small FPGAs can deliver these, but only if costly floating point pipelines are avoided. We study quantization-aware training (QAT) of policies for integer inference and we present a learning-to-hardware pipeline that automatically selects low-bit policies and synthesizes them to an Artix-7 FPGA. Across five MuJoCo tasks, we obtain policy networks that are competitive with full precision (FP32) policies but require as few as 3 or even only 2 bits per weight, and per internal activation value, as long as input precision is chosen carefully. On the target hardware, the selected policies achieve inference latencies on the order of microseconds and consume microjoules per action, favorably comparing to a quantized reference. Last, we observe that the quantized policies exhibit increased input noise robustness compared to the floating-point baseline.
comment: 17 pages, 6 figures
♻ ☆ A Unified Convergence Analysis for Semi-Decentralized Learning: Sampled-to-Sampled vs. Sampled-to-All Communication AAAI 2026
In semi-decentralized federated learning, devices primarily rely on device-to-device communication but occasionally interact with a central server. Periodically, a sampled subset of devices uploads their local models to the server, which computes an aggregate model. The server can then either (i) share this aggregate model only with the sampled clients (sampled-to-sampled, S2S) or (ii) broadcast it to all clients (sampled-to-all, S2A). Despite their practical significance, a rigorous theoretical and empirical comparison of these two strategies remains absent. We address this gap by analyzing S2S and S2A within a unified convergence framework that accounts for key system parameters: sampling rate, server aggregation frequency, and network connectivity. Our results, both analytical and experimental, reveal distinct regimes where one strategy outperforms the other, depending primarily on the degree of data heterogeneity across devices. These insights lead to concrete design guidelines for practical semi-decentralized FL deployments.
comment: Accepted as a conference paper at AAAI 2026 (oral presentation). This is the extended version including the appendix
♻ ☆ Can Linear Probes Measure LLM Uncertainty?
Effective Uncertainty Quantification (UQ) represents a key aspect for reliable deployment of Large Language Models (LLMs) in automated decision-making and beyond. Yet, for LLM generation with multiple choice structure, the state-of-the-art in UQ is still dominated by the naive baseline given by the maximum softmax score. To address this shortcoming, we demonstrate that taking a principled approach via Bayesian statistics leads to improved performance despite leveraging the simplest possible model, namely linear regression. More precisely, we propose to train multiple Bayesian linear models, each predicting the output of a layer given the output of the previous one. Based on the obtained layer-level posterior distributions, we infer the global uncertainty level of the LLM by identifying a sparse combination of distributional features, leading to an efficient UQ scheme. Numerical experiments on various LLMs show consistent improvement over state-of-the-art baselines.
♻ ☆ A comprehensive and easy-to-use multi-domain multi-task medical imaging meta-dataset
While the field of medical image analysis has undergone a transformative shift with the integration of machine learning techniques, the main challenge of these techniques is often the scarcity of large, diverse, and well-annotated datasets. Medical images vary in format, size, and other parameters and therefore require extensive preprocessing and standardization, for usage in machine learning. Addressing these challenges, we introduce the Medical Imaging Meta-Dataset (MedIMeta), a novel multi-domain, multi-task meta-dataset. MedIMeta contains 19 medical imaging datasets spanning 10 different domains and encompassing 54 distinct medical tasks, all of which are standardized to the same format and readily usable in PyTorch or other ML frameworks. We perform a technical validation of MedIMeta, demonstrating its utility through fully supervised and cross-domain few-shot learning baselines.
♻ ☆ Practical Global and Local Bounds in Gaussian Process Regression via Chaining AAAI2026
Gaussian process regression (GPR) is a popular nonparametric Bayesian method that provides predictive uncertainty estimates and is widely used in safety-critical applications. While prior research has introduced various uncertainty bounds, most existing approaches require access to specific input features, and rely on posterior mean and variance estimates or the tuning of hyperparameters. These limitations hinder robustness and fail to capture the model's global behavior in expectation. To address these limitations, we propose a chaining-based framework for estimating upper and lower bounds on the expected extreme values over unseen data, without requiring access to specific input features. We provide kernel-specific refinements for commonly used kernels such as RBF and Matérn, in which our bounds are tighter than generic constructions. We further improve numerical tightness by avoiding analytical relaxations. In addition to global estimation, we also develop a novel method for local uncertainty quantification at specified inputs. This approach leverages chaining geometry through partition diameters, adapting to local structures without relying on posterior variance scaling. Our experimental results validate the theoretical findings and demonstrate that our method outperforms existing approaches on both synthetic and real-world datasets.
comment: Accepted as a conference paper at AAAI2026
♻ ☆ Appa: Bending Weather Dynamics with Latent Diffusion Models for Global Data Assimilation
Deep learning has advanced weather forecasting, but accurate predictions first require identifying the current state of the atmosphere from observational data. In this work, we introduce Appa, a score-based data assimilation model generating global atmospheric trajectories at 0.25\si{\degree} resolution and 1-hour intervals. Powered by a 565M-parameter latent diffusion model trained on ERA5, Appa can be conditioned on arbitrary observations to infer plausible trajectories, without retraining. Our probabilistic framework handles reanalysis, filtering, and forecasting, within a single model, producing physically consistent reconstructions from various inputs. Results establish latent score-based data assimilation as a promising foundation for future global atmospheric modeling systems.
♻ ☆ Hierarchical Generalized Category Discovery for Brain Tumor Classification in Digital Pathology
Accurate brain tumor classification is critical for intra-operative decision making in neuro-oncological surgery. However, existing approaches are restricted to a fixed set of predefined classes and are therefore unable to capture patterns of tumor types not available during training. Unsupervised learning can extract general-purpose features, but it lacks the ability to incorporate prior knowledge from labelled data, and semi-supervised methods often assume that all potential classes are represented in the labelled data. Generalized Category Discovery (GCD) aims to bridge this gap by categorizing both known and unknown classes within unlabelled data. To reflect the hierarchical structure of brain tumor taxonomies, in this work, we introduce Hierarchical Generalized Category Discovery for Brain Tumor Classification (HGCD-BT), a novel approach that integrates hierarchical clustering with contrastive learning. Our method extends contrastive learning based GCD by incorporating a novel semi-supervised hierarchical clustering loss. We evaluate HGCD-BT on OpenSRH, a dataset of stimulated Raman histology brain tumor images, achieving a +28% improvement in accuracy over state-of-the-art GCD methods for patch-level classification, particularly in identifying previously unseen tumor categories. Furthermore, we demonstrate the generalizability of HGCD-BT on slide-level classification of hematoxylin and eosin stained whole-slide images from the Digital Brain Tumor Atlas, confirming its utility across imaging modalities.
♻ ☆ Trace Regularity PINNs: Enforcing $\mathrm{H}^{\frac{1}{2}}(\partial Ω)$ for Boundary Data
We propose an enhanced physics-informed neural network (PINN), the Trace Regularity Physics-Informed Neural Network (TRPINN), which enforces the boundary loss in the Sobolev-Slobodeckij norm $H^{1/2}(\partial Ω)$, the correct trace space associated with $H^1(Ω)$. We reduce computational cost by computing only the theoretically essential portion of the semi-norm and enhance convergence stability by avoiding denominator evaluations in the discretization. By incorporating the exact $H^{1/2}(\partial Ω)$ norm, we show that the approximation converges to the true solution in the $H^{1}(Ω)$ sense, and, through Neural Tangent Kernel (NTK) analysis, we demonstrate that TRPINN can converge faster than standard PINNs. Numerical experiments on the Laplace equation with highly oscillatory Dirichlet boundary conditions exhibit cases where TRPINN succeeds even when standard PINNs fail, and show performance improvements of one to three decimal digits.
♻ ☆ Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning
Pursuing causality from data is a fundamental problem in scientific discovery, treatment intervention, and transfer learning. This paper introduces a novel algorithmic method for addressing nonparametric invariance and causality learning in regression models across multiple environments, where the joint distribution of response variables and covariates varies, but the conditional expectations of outcome given an unknown set of quasi-causal variables are invariant. The challenge of finding such an unknown set of quasi-causal or invariant variables is compounded by the presence of endogenous variables that have heterogeneous effects across different environments. The proposed Focused Adversarial Invariant Regularization (FAIR) framework utilizes an innovative minimax optimization approach that drives regression models toward prediction-invariant solutions through adversarial testing. Leveraging the representation power of neural networks, FAIR neural networks (FAIR-NN) are introduced for causality pursuit. It is shown that FAIR-NN can find the invariant variables and quasi-causal variables under a minimal identification condition and that the resulting procedure is adaptive to low-dimensional composition structures in a non-asymptotic analysis. Under a structural causal model, variables identified by FAIR-NN represent pragmatic causality and provably align with exact causal mechanisms under conditions of sufficient heterogeneity. Computationally, FAIR-NN employs a novel Gumbel approximation with decreased temperature and a stochastic gradient descent ascent algorithm. The procedures are demonstrated using simulated and real-data examples.
comment: 112 pages, 9 figures with supplemental materials
♻ ☆ Robust-Multi-Task Gradient Boosting
Multi-task learning (MTL) has shown effectiveness in exploiting shared information across tasks to improve generalization. MTL assumes tasks share similarities that can improve performance. In addition, boosting algorithms have demonstrated exceptional performance across diverse learning problems, primarily due to their ability to focus on hard-to-learn instances and iteratively reduce residual errors. This makes them a promising approach for learning multi-task problems. However, real-world MTL scenarios often involve tasks that are not well-aligned (known as outlier or adversarial tasks), which do not share beneficial similarities with others and can, in fact, deteriorate the performance of the overall model. To overcome this challenge, we propose Robust-Multi-Task Gradient Boosting (R-MTGB), a novel boosting framework that explicitly models and adapts to task heterogeneity during training. R-MTGB structures the learning process into three sequential blocks: (1) learning shared patterns, (2) partitioning tasks into outliers and non-outliers with regularized parameters, and (3) fine-tuning task-specific predictors. This architecture enables R-MTGB to automatically detect and penalize outlier tasks while promoting effective knowledge transfer among related tasks. Our method integrates these mechanisms seamlessly within gradient boosting, allowing robust handling of noisy or adversarial tasks without sacrificing accuracy. Extensive experiments on both synthetic benchmarks and real-world datasets demonstrate that our approach successfully isolates outliers, transfers knowledge, and consistently reduces prediction errors for each task individually, and achieves overall performance gains across all tasks. These results highlight robustness, adaptability, and reliable convergence of R-MTGB in challenging MTL environments.
♻ ☆ Certified Coil Geometry Learning for Short-Range Magnetic Actuation and Spacecraft Docking Application
This paper presents a learning-based framework for approximating an exact magnetic-field interaction model, supported by both numerical and experimental validation. High-fidelity magnetic-field interaction modeling is essential for achieving exceptional accuracy and responsiveness across a wide range of fields, including transportation, energy systems, medicine, biomedical robotics, and aerospace robotics. In aerospace engineering, magnetic actuation has been investigated as a fuel-free solution for multi-satellite attitude and formation control. Although the exact magnetic field can be computed from the Biot-Savart law, the associated computational cost is prohibitive, and prior studies have therefore relied on dipole approximations to improve efficiency. However, these approximations lose accuracy during proximity operations, leading to unstable behavior and even collisions. To address this limitation, we develop a learning-based approximation framework that faithfully reproduces the exact field while dramatically reducing computational cost. The proposed method additionally provides a certified error bound, derived from the number of training samples, ensuring reliable prediction accuracy. The learned model can also accommodate interactions between coils of different sizes through appropriate geometric transformations, without retraining. To verify the effectiveness of the proposed framework under challenging conditions, a spacecraft docking scenario is examined through both numerical simulations and experimental validation.
comment: Submitted to IEEE Robotics and Automation Letters
♻ ☆ Nearest Neighbor Projection Removal Adversarial Training
Deep neural networks have exhibited impressive performance in image classification tasks but remain vulnerable to adversarial examples. Standard adversarial training enhances robustness but typically fails to explicitly address inter-class feature overlap, a significant contributor to adversarial susceptibility. In this work, we introduce a novel adversarial training framework that actively mitigates inter-class proximity by projecting out inter-class dependencies from adversarial and clean samples in the feature space. Specifically, our approach first identifies the nearest inter-class neighbors for each adversarial sample and subsequently removes projections onto these neighbors to enforce stronger feature separability. Theoretically, we demonstrate that our proposed logits correction reduces the Lipschitz constant of neural networks, thereby lowering the Rademacher complexity, which directly contributes to improved generalization and robustness. Extensive experiments across standard benchmarks including CIFAR-10, CIFAR-100, and SVHN show that our method demonstrates strong performance that is competitive with leading adversarial training techniques, highlighting significant achievements in both robust and clean accuracy. Our findings reveal the importance of addressing inter-class feature proximity explicitly to bolster adversarial robustness in DNNs.
♻ ☆ Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers NeurIPS 2025
As large language models increasingly gain popularity in real-world applications, processing extremely long contexts, often exceeding the model's pre-trained context limits, has emerged as a critical challenge. While existing approaches to efficient long-context processing show promise, recurrent compression-based methods struggle with information preservation, whereas random access approaches require substantial memory resources. We introduce REFORM, a novel inference framework that efficiently handles long contexts through a two-phase approach. First, it incrementally processes input chunks while maintaining a compressed KV cache, constructs cross-layer context embeddings, and utilizes early exit strategy for improved efficiency. Second, it identifies and gathers essential tokens via similarity matching and selectively recomputes the KV cache. Compared to baselines, REFORM achieves over 52% and 34% performance gains on RULER and BABILong respectively at 1M context length. It also outperforms baselines on Infinite-Bench, RepoEval, and MM-NIAH, demonstrating flexibility across diverse tasks and domains. Additionally, REFORM reduces inference time by 30% and peak memory usage by 5%, achieving both efficiency and superior performance.
comment: NeurIPS 2025
♻ ☆ Time-Series-Informed Closed-loop Learning for Sequential Decision Making and Control
Closed-loop performance of sequential decision making algorithms, such as model predictive control, depends strongly on the choice of controller parameters. Bayesian optimization allows learning of parameters from closed-loop experiments, but standard Bayesian optimization treats this as a black-box problem and ignores the temporal structure of closed-loop trajectories, leading to slow convergence and inefficient use of experimental resources. We propose a time-series-informed multi-fidelity Bayesian optimization framework that aligns the fidelity dimension with closed-loop time, enabling intermediate performance evaluations within a closed-loop experiment to be incorporated as lower-fidelity observations. Additionally, we derive probabilistic early stopping criteria to terminate unpromising closed-loop experiments based on the surrogate model's posterior belief, avoiding full episodes for poor parameterizations and thereby reducing resource usage. Simulation results on a nonlinear control benchmark demonstrate that, compared to standard black-box Bayesian optimization approaches, the proposed method achieves comparable closed-loop performance with roughly half the experimental resources, and yields better final performance when using the same resource budget, highlighting the value of exploiting temporal structure for sample-efficient closed-loop controller tuning.
comment: 7 pages, 3 figures
♻ ☆ CAMAR: Continuous Actions Multi-Agent Routing
Multi-agent reinforcement learning (MARL) is a powerful paradigm for solving cooperative and competitive decision-making problems. While many MARL benchmarks have been proposed, few combine continuous state and action spaces with challenging coordination and planning tasks. We introduce CAMAR, a new MARL benchmark designed explicitly for multi-agent pathfinding in environments with continuous actions. CAMAR supports cooperative and competitive interactions between agents and runs efficiently at up to 100,000 environment steps per second. We also propose a three-tier evaluation protocol to better track algorithmic progress and enable deeper analysis of performance. In addition, CAMAR allows the integration of classical planning methods such as RRT and RRT* into MARL pipelines. We use them as standalone baselines and combine RRT* with popular MARL algorithms to create hybrid approaches. We provide a suite of test scenarios and benchmarking tools to ensure reproducibility and fair comparison. Experiments show that CAMAR presents a challenging and realistic testbed for the MARL community.
♻ ☆ Toward Explainable Offline RL: Analyzing Representations in Intrinsically Motivated Decision Transformers NeurIPS 2025
Elastic Decision Transformers (EDTs) have proved to be particularly successful in offline reinforcement learning, offering a flexible framework that unifies sequence modeling with decision-making under uncertainty. Recent research has shown that incorporating intrinsic motivation mechanisms into EDTs improves performance across exploration tasks, yet the representational mechanisms underlying these improvements remain unexplored. In this paper, we introduce a systematic post-hoc explainability framework to analyze how intrinsic motivation shapes learned embeddings in EDTs. Through statistical analysis of embedding properties (including covariance structure, vector magnitudes, and orthogonality), we reveal that different intrinsic motivation variants create fundamentally different representational structures. Our analysis demonstrates environment-specific correlation patterns between embedding metrics and performance that explain why intrinsic motivation improves policy learning. These findings show that intrinsic motivation operates beyond simple exploration bonuses, acting as a representational prior that shapes embedding geometry in biologically plausible ways, creating environment-specific organizational structures that facilitate better decision-making.
comment: Accepted for poster presentation at the NeurIPS 2025 workshop "CogInterp: Interpreting Cognition in Deep Learning Models", San Diego, CA, USA
♻ ☆ EXAGREE: Mitigating Explanation Disagreement with Stakeholder-Aligned Models
Conflicting explanations, arising from different attribution methods or model internals, limit the adoption of machine learning models in safety-critical domains. We turn this disagreement into an advantage and introduce EXplanation AGREEment (EXAGREE), a two-stage framework that selects a Stakeholder-Aligned Explanation Model (SAEM) from a set of similar-performing models. The selection maximizes Stakeholder-Machine Agreement (SMA), a single metric that unifies faithfulness and plausibility. EXAGREE couples a differentiable mask-based attribution network (DMAN) with monotone differentiable sorting, enabling gradient-based search inside the constrained model space. Experiments on six real-world datasets demonstrate simultaneous gains of faithfulness, plausibility, and fairness over baselines, while preserving task accuracy. Extensive ablation studies, significance tests, and case studies confirm the robustness and feasibility of the method in practice.
♻ ☆ Hogwild! Inference: Parallel LLM Generation via Concurrent Attention NeurIPS 2025
Large Language Models (LLMs) have demonstrated the ability to tackle increasingly complex tasks through advanced reasoning, long-form content generation, and tool use. Solving these tasks often involves long inference-time computations. In human problem solving, a common strategy to expedite work is collaboration: by dividing the problem into sub-tasks, exploring different strategies concurrently, etc. Recent research has shown that LLMs can also operate in parallel by implementing explicit cooperation frameworks, such as voting mechanisms or the explicit creation of independent sub-tasks that can be executed in parallel. However, each of these frameworks may not be suitable for all types of tasks, which can hinder their applicability. In this work, we propose a different design approach: we run LLM "workers" in parallel , allowing them to synchronize via a concurrently-updated attention cache and prompt these workers to decide how best to collaborate. Our approach allows the LLM instances to come up with their own collaboration strategy for the problem at hand, all the while "seeing" each other's memory in the concurrent KV cache. We implement this approach via Hogwild! Inference: a parallel LLM inference engine where multiple instances of the same LLM run in parallel with the same attention cache, with "instant" access to each other's memory. Hogwild! Inference takes advantage of Rotary Position Embeddings (RoPE) to avoid recomputation while improving parallel hardware utilization. We find that modern reasoning-capable LLMs can perform inference with shared Key-Value cache out of the box, without additional fine-tuning.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ On the Limitations of Language Targeted Pruning: Investigating the Calibration Language Impact in Multilingual LLM Pruning ACL
Recent advances in large language model (LLM) pruning have shown state-of-the-art (SotA) compression results in post-training and retraining-free settings while maintaining high predictive performance. However, previous research mainly considered calibrating based on English text, despite the multilingual nature of modern LLMs and their frequent use in non-English languages. This analysis paper conducts an in-depth investigation of the performance and internal representation changes associated with pruning multilingual language models for monolingual applications. We present the first comprehensive empirical study, comparing different calibration languages for pruning multilingual models across diverse languages, tasks, models, and SotA pruning techniques. We further analyze the latent subspaces, pruning masks, and individual neurons within pruned models. Our results reveal that while calibration on the target language effectively retains perplexity and yields high signal-to-noise ratios, it does not consistently improve downstream task performance. Further analysis of internal representations at three different levels highlights broader limitations of current pruning approaches: While they effectively preserve dominant information like language-specific features, this is insufficient to counteract the loss of nuanced, language-agnostic features that are crucial for knowledge retention and reasoning.
comment: Accepted for publication in TACL
♻ ☆ Efficient Reinforcement Learning for Zero-Shot Coordination in Evolving Games
Zero-shot coordination(ZSC) has become a hot topic in reinforcement learning research recently. It focuses on the generalization ability of agents, requiring them to coordinate well with collaborators that are not seen before without any fine-tuning. Population-based training has been proven to provide good zero-shot coordination performance; nevertheless, existing methods are limited by computational resources, mainly focusing on optimizing diversity in small populations while neglecting the potential performance gains from scaling population size. To address this issue, this paper proposes the Scalable Population Training (ScaPT), an efficient training framework comprising two key components: a meta-agent that efficiently realizes a population by selectively sharing parameters across agents, and a mutual information regularizer that guarantees population diversity. To empirically validate the effectiveness of ScaPT, this paper evaluates it along with representational frameworks in Hanabi and confirms its superiority.
♻ ☆ Argumentative Debates for Transparent Bias Detection [Technical Report] AAAI 2026
As the use of AI in society grows, addressing emerging biases is essential to prevent systematic discrimination. Several bias detection methods have been proposed, but, with few exceptions, these tend to ignore transparency. Instead, interpretability and explainability are core requirements for algorithmic fairness, even more so than for other algorithmic solutions, given the human-oriented nature of fairness. We present ABIDE (Argumentative BIas detection by DEbate), a novel framework that structures bias detection transparently as debate, guided by an underlying argument graph as understood in (formal and computational) argumentation. The arguments are about the success chances of groups in local neighbourhoods and the significance of these neighbourhoods. We evaluate ABIDE experimentally and demonstrate its strengths in performance against an argumentative baseline.
comment: Accepted at AAAI 2026 main track
♻ ☆ DeToNATION: Decoupled Torch Network-Aware Training on Interlinked Online Nodes AAAI 2026
Training large neural network models requires extensive computational resources, often distributed across several nodes and accelerators. Recent findings suggest that it may be sufficient to only exchange the fast moving components of the gradients, while accumulating momentum locally (Decoupled Momentum, or DeMo). However, DeMo assumes that models fit on a single accelerator. We relax this assumption and introduce FlexDeMo, whereby nodes fully shard model parameters locally between different accelerators, while inter-node communication is reduced by synchronizing only fast-moving components instead of the full gradients -- resulting in a hybrid sharded data parallel training strategy. We further introduce a framework, denoted as DeToNATION, that generalizes DeMo, FlexDeMo, and other popular distributed training schemes such as DiLoCo -- introducing new variations of replication schemes and challenging choices made in DeMo. Our results across language and vision domains show that FlexDeMo attains similar validation loss as hybrid sharded data parallel training employing AdamW and full gradient synchronization, while being substantially faster. FlexDeMo is thus a promising distributed training scheme for the largest machine learning models.
comment: Accepted as a paper at AAAI 2026 Main Track
♻ ☆ What You See Is Not Always What You Get: Evaluating GPT's Comprehension of Source Code
Recent studies have demonstrated outstanding capabilities of large language models (LLMs) in software engineering tasks, including code generation and comprehension. While LLMs have shown significant potential in assisting with coding, LLMs are vulnerable to adversarial attacks. In this paper, we investigate the vulnerability of LLMs to imperceptible attacks. This class of attacks manipulate source code at the character level, which renders the changes invisible to human reviewers yet effective in misleading LLMs' behaviour. We devise these attacks into four distinct categories and analyse their impacts on code analysis and comprehension tasks. These four types of imperceptible character attacks include coding reordering, invisible coding characters, code deletions, and code homoglyphs. To assess the robustness of state-of-the-art LLMs, we present a systematic evaluation across multiple models using both perturbed and clean code snippets. Two evaluation metrics, model confidence using log probabilities of response and response correctness, are introduced. The results reveal that LLMs are susceptible to imperceptible coding perturbations, with varying degrees of degradation highlighted across different LLMs. Furthermore, we observe a consistent negative correlation between perturbation magnitude and model performance. These results highlight the urgent need for robust LLMs capable of manoeuvring behaviours under imperceptible adversarial conditions.
comment: This work has been accepted at APSEC 2025
♻ ☆ Upper Bounds for Learning in Reproducing Kernel Hilbert Spaces for Non IID Samples
In this paper, we study a Markov chain-based stochastic gradient algorithm in general Hilbert spaces, aiming to approximate the optimal solution of a quadratic loss function. We establish probabilistic upper bounds on its convergence. We further extend these results to an online regularized learning algorithm in reproducing kernel Hilbert spaces, where the samples are drawn along a Markov chain trajectory hence the samples are of the non i.i.d. type.
♻ ☆ Deep Clustering via Gradual Community Detection
Deep clustering is an essential task in modern artificial intelligence, aiming to partition a set of data samples into a given number of homogeneous groups (i.e., clusters). Recent studies have proposed increasingly advanced deep neural networks and training strategies for deep clustering, effectively improving performance. However, deep clustering generally remains challenging due to the inadequacy of supervision signals. Building upon the existing representation learning backbones, this paper proposes a novel clustering strategy of gradual community detection. It initializes clustering by partitioning samples into many pseudo-communities and then gradually expands clusters by community merging. Compared with the existing clustering strategies, community detection factors in the new perspective of cluster network analysis in the clustering process. The new perspective can effectively leverage global structural characteristics to enhance cluster pseudo-label purity, which is critical to the performance of self-supervision. We have implemented the proposed approach based on the popular backbones and evaluated its efficacy on benchmark image datasets. Our extensive experiments have shown that the proposed clustering strategy can effectively improve the SOTA performance. Our ablation study also demonstrates that the new network perspective can effectively improve community pseudo-label purity, resulting in improved self-supervision.
comment: 12 pages, 2 figures
♻ ☆ GLANCE: Global Actions in a Nutshell for Counterfactual Explainability
The widespread deployment of machine learning systems in critical real-world decision-making applications has highlighted the urgent need for counterfactual explainability methods that operate effectively. Global counterfactual explanations, expressed as actions to offer recourse, aim to provide succinct explanations and insights applicable to large population subgroups. High effectiveness, measured by the fraction of the population that is provided recourse, ensures that the actions benefit as many individuals as possible. Keeping the cost of actions low ensures the proposed recourse actions remain practical and actionable. Limiting the number of actions that provide global counterfactuals is essential to maximizing interpretability. The primary challenge, therefore, is to balance these trade-offs--maximizing effectiveness, minimizing cost, while maintaining a small number of actions. We introduce $\texttt{GLANCE}$, a versatile and adaptive algorithm that employs a novel agglomerative approach, jointly considering both the feature space and the space of counterfactual actions, thereby accounting for the distribution of points in a way that aligns with the model's structure. This design enables the careful balancing of the trade-offs among the three key objectives, with the size objective functioning as a tunable parameter to keep the actions few and easy to interpret. Our extensive experimental evaluation demonstrates that $\texttt{GLANCE}$ consistently shows greater robustness and performance compared to existing methods across various datasets and models.
♻ ☆ Deep Joint Distribution Optimal Transport for Universal Domain Adaptation on Time Series
Universal Domain Adaptation (UniDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain, even when their classes are not fully shared. Few dedicated UniDA methods exist for Time Series (TS), which remains a challenging case. In general, UniDA approaches align common class samples and detect unknown target samples from emerging classes. Such detection often results from thresholding a discriminability metric. The threshold value is typically either a fine-tuned hyperparameter or a fixed value, which limits the ability of the model to adapt to new data. Furthermore, discriminability metrics exhibit overconfidence for unknown samples, leading to misclassifications. This paper introduces UniJDOT, an optimal-transport-based method that accounts for the unknown target samples in the transport cost. Our method also proposes a joint decision space to improve the discriminability of the detection module. In addition, we use an auto-thresholding algorithm to reduce the dependence on fixed or fine-tuned thresholds. Finally, we rely on a Fourier transform-based layer inspired by the Fourier Neural Operator for better TS representation. Experiments on TS benchmarks demonstrate the discriminability, robustness, and state-of-the-art performance of UniJDOT.
♻ ☆ CG-FedLLM: How to Compress Gradients in Federated Fune-tuning for Large Language Models
The success of current Large-Language Models (LLMs) hinges on extensive training data that is collected and stored centrally, called Centralized Learning (CL). However, such a collection manner poses a privacy threat, and one potential solution is Federated Learning (FL), which transfers gradients, not raw data, among clients. Unlike traditional networks, FL for LLMs incurs significant communication costs due to their tremendous parameters. This study introduces an innovative approach to compress gradients to improve communication efficiency during LLM FL, formulating the new FL pipeline named CG-FedLLM. This approach integrates an encoder on the client side to acquire the compressed gradient features and a decoder on the server side to reconstruct the gradients. We also developed a novel training strategy that comprises Temporal-ensemble Gradient-Aware Pre-training (TGAP) to identify characteristic gradients of the target model and Federated AutoEncoder-Involved Fine-tuning (FAF) to compress gradients adaptively. Extensive experiments confirm that our approach reduces communication costs and improves performance (e.g., average 3 points increment compared with traditional CL- and FL-based fine-tuning with LlaMA on a well-recognized benchmark, C-Eval). This improvement is because our encoder-decoder, trained via TGAP and FAF, can filter gradients while selectively preserving critical features. Furthermore, we present a series of experimental analyses focusing on the signal-to-noise ratio, compression rate, and robustness within this privacy-centric framework, providing insight into developing more efficient and secure LLMs.
♻ ☆ CDFlow: Building Invertible Layers with Circulant and Diagonal Matrices NeurIPS 2025
Normalizing flows are deep generative models that enable efficient likelihood estimation and sampling through invertible transformations. A key challenge is to design linear layers that enhance expressiveness while maintaining efficient computation of the Jacobian determinant and inverse. We introduce a novel invertible linear layer based on the product of circulant and diagonal matrices. This decomposition reduces parameter complexity from $\mathcal{O}(n^2)$ to $\mathcal{O}(mn)$ using $m$ diagonal matrices and $m-1$ circulant matrices while still approximating general linear transformations. By leveraging the Fast Fourier Transform, our approach reduces the time complexity of matrix inversion from $\mathcal{O}(n^3)$ to $\mathcal{O}(mn\log n)$ and that of computing the log-determinant from $\mathcal{O}(n^3)$ to $\mathcal{O}(mn)$, where $n$ is the input dimension. We build upon this layer to develop Circulant-Diagonal Flow (CDFlow), which achieves strong density estimation on natural image datasets and effectively models data with inherent periodic structure. Furthermore, CDFlow significantly accelerates key operations in normalizing flows, providing practical benefits for scalable generative modeling.
comment: Accepted at NeurIPS 2025. 10 pages, 12 figures, 2 tables
♻ ☆ Exploiting Synergistic Cognitive Biases to Bypass Safety in LLMs
Large Language Models (LLMs) demonstrate impressive capabilities across a wide range of tasks, yet their safety mechanisms remain susceptible to adversarial attacks that exploit cognitive biases -- systematic deviations from rational judgment. Unlike prior jailbreaking approaches focused on prompt engineering or algorithmic manipulation, this work highlights the overlooked power of multi-bias interactions in undermining LLM safeguards. We propose CognitiveAttack, a novel red-teaming framework that systematically leverages both individual and combined cognitive biases. By integrating supervised fine-tuning and reinforcement learning, CognitiveAttack generates prompts that embed optimized bias combinations, effectively bypassing safety protocols while maintaining high attack success rates. Experimental results reveal significant vulnerabilities across 30 diverse LLMs, particularly in open-source models. CognitiveAttack achieves a substantially higher attack success rate compared to the SOTA black-box method PAP (60.1% vs. 31.6%), exposing critical limitations in current defense mechanisms. These findings highlight multi-bias interactions as a powerful yet underexplored attack vector. This work introduces a novel interdisciplinary perspective by bridging cognitive science and LLM safety, paving the way for more robust and human-aligned AI systems.
♻ ☆ Efficient Reasoning for Large Reasoning Language Models via Certainty-Guided Reflection Suppression AAAI 2026
Recent Large Reasoning Language Models (LRLMs) employ long chain-of-thought reasoning with complex reflection behaviors, typically signaled by specific trigger words (e.g., "Wait" and "Alternatively") to enhance performance. However, these reflection behaviors can lead to the overthinking problem where the generation of redundant reasoning steps that unnecessarily increase token usage, raise inference costs, and reduce practical utility. In this paper, we propose Certainty-Guided Reflection Suppression (CGRS), a novel method that mitigates overthinking in LRLMs while maintaining reasoning accuracy. CGRS operates by dynamically suppressing the model's generation of reflection triggers when it exhibits high confidence in its current response, thereby preventing redundant reflection cycles without compromising output quality. Our approach is model-agnostic, requires no retraining or architectural modifications, and can be integrated seamlessly with existing autoregressive generation pipelines. Extensive experiments across four reasoning benchmarks (i.e., AIME24, AMC23, MATH500, and GPQA-D) demonstrate CGRS's effectiveness: it reduces token usage by an average of 18.5% to 41.9% while preserving accuracy. It also achieves the optimal balance between length reduction and performance compared to state-of-the-art baselines. These results hold consistently across model architectures (e.g., DeepSeek-R1-Distill series, QwQ-32B, and Qwen3 family) and scales (4B to 32B parameters), highlighting CGRS's practical value for efficient reasoning.
comment: Accepted by AAAI 2026
♻ ☆ Self-Supervised Learning of Graph Representations for Network Intrusion Detection NeurIPS 2025
Detecting intrusions in network traffic is a challenging task, particularly under limited supervision and constantly evolving attack patterns. While recent works have leveraged graph neural networks for network intrusion detection, they often decouple representation learning from anomaly detection, limiting the utility of the embeddings for identifying attacks. We propose GraphIDS, a self-supervised intrusion detection model that unifies these two stages by learning local graph representations of normal communication patterns through a masked autoencoder. An inductive graph neural network embeds each flow with its local topological context to capture typical network behavior, while a Transformer-based encoder-decoder reconstructs these embeddings, implicitly learning global co-occurrence patterns via self-attention without requiring explicit positional information. During inference, flows with unusually high reconstruction errors are flagged as potential intrusions. This end-to-end framework ensures that embeddings are directly optimized for the downstream task, facilitating the recognition of malicious traffic. On diverse NetFlow benchmarks, GraphIDS achieves up to 99.98% PR-AUC and 99.61% macro F1-score, outperforming baselines by 5-25 percentage points.
comment: Accepted at NeurIPS 2025
Multimedia
☆ Scaling Spatial Intelligence with Multimodal Foundation Models
Despite remarkable progress, multimodal foundation models still exhibit surprising deficiencies in spatial intelligence. In this work, we explore scaling up multimodal foundation models to cultivate spatial intelligence within the SenseNova-SI family, built upon established multimodal foundations including visual understanding models (i.e., Qwen3-VL and InternVL3) and unified understanding and generation models (i.e., Bagel). We take a principled approach to constructing high-performing and robust spatial intelligence by systematically curating SenseNova-SI-8M: eight million diverse data samples under a rigorous taxonomy of spatial capabilities. SenseNova-SI demonstrates unprecedented performance across a broad range of spatial intelligence benchmarks: 68.7% on VSI-Bench, 43.3% on MMSI, 85.6% on MindCube, 54.6% on ViewSpatial, and 50.1% on SITE, while maintaining strong general multimodal understanding (e.g., 84.9% on MMBench-En). More importantly, we analyze the impact of data scaling, discuss early signs of emergent generalization capabilities enabled by diverse data training, analyze the risk of overfitting and language shortcuts, present a preliminary study on spatial chain-of-thought reasoning, and validate the potential downstream application. SenseNova-SI is an ongoing project, and this report will be updated continuously. All newly trained multimodal foundation models are publicly released to facilitate further research in this direction.
comment: Model: https://huggingface.co/collections/sensenova/sensenova-si; Code: https://github.com/OpenSenseNova/SenseNova-SI
☆ Moving Pictures of Thought: Extracting Visual Knowledge in Charles S. Peirce's Manuscripts with Vision-Language Models
Diagrams are crucial yet underexplored tools in many disciplines, demonstrating the close connection between visual representation and scholarly reasoning. However, their iconic form poses obstacles to visual studies, intermedial analysis, and text-based digital workflows. In particular, Charles S. Peirce consistently advocated the use of diagrams as essential for reasoning and explanation. His manuscripts, often combining textual content with complex visual artifacts, provide a challenging case for studying documents involving heterogeneous materials. In this preliminary study, we investigate whether Visual Language Models (VLMs) can effectively help us identify and interpret such hybrid pages in context. First, we propose a workflow that (i) segments manuscript page layouts, (ii) reconnects each segment to IIIF-compliant annotations, and (iii) submits fragments containing diagrams to a VLM. In addition, by adopting Peirce's semiotic framework, we designed prompts to extract key knowledge about diagrams and produce concise captions. Finally, we integrated these captions into knowledge graphs, enabling structured representations of diagrammatic content within composite sources.
☆ Towards Practical Real-Time Low-Latency Music Source Separation
In recent years, significant progress has been made in the field of deep learning for music demixing. However, there has been limited attention on real-time, low-latency music demixing, which holds potential for various applications, such as hearing aids, audio stream remixing, and live performances. Additionally, a notable tendency has emerged towards the development of larger models, limiting their applicability in certain scenarios. In this paper, we introduce a lightweight real-time low-latency model called Real-Time Single-Path TFC-TDF UNET (RT-STT), which is based on the Dual-Path TFC-TDF UNET (DTTNet). In RT-STT, we propose a feature fusion technique based on channel expansion. We also demonstrate the superiority of single-path modeling over dual-path modeling in real-time models. Moreover, we investigate the method of quantization to further reduce inference time. RT-STT exhibits superior performance with significantly fewer parameters and shorter inference times compared to state-of-the-art models.
♻ ☆ Fine-grained Image Quality Assessment for Perceptual Image Restoration AAAI2026
Recent years have witnessed remarkable achievements in perceptual image restoration (IR), creating an urgent demand for accurate image quality assessment (IQA), which is essential for both performance comparison and algorithm optimization. Unfortunately, the existing IQA metrics exhibit inherent weakness for IR task, particularly when distinguishing fine-grained quality differences among restored images. To address this dilemma, we contribute the first-of-its-kind fine-grained image quality assessment dataset for image restoration, termed FGRestore, comprising 18,408 restored images across six common IR tasks. Beyond conventional scalar quality scores, FGRestore was also annotated with 30,886 fine-grained pairwise preferences. Based on FGRestore, a comprehensive benchmark was conducted on the existing IQA metrics, which reveal significant inconsistencies between score-based IQA evaluations and the fine-grained restoration quality. Motivated by these findings, we further propose FGResQ, a new IQA model specifically designed for image restoration, which features both coarse-grained score regression and fine-grained quality ranking. Extensive experiments and comparisons demonstrate that FGResQ significantly outperforms state-of-the-art IQA metrics. Codes and model weights have been released in https://sxfly99.github.io/FGResQ-Homepage.
comment: Accepted by AAAI2026
Computation and Language
☆ From Passive to Persuasive: Steering Emotional Nuance in Human-AI Negotiation
Large Language Models (LLMs) demonstrate increasing conversational fluency, yet instilling them with nuanced, human-like emotional expression remains a significant challenge. Current alignment techniques often address surface-level output or require extensive fine-tuning. This paper demonstrates that targeted activation engineering can steer LLaMA 3.1-8B to exhibit more human-like emotional nuances. We first employ attribution patching to identify causally influential components, to find a key intervention locus by observing activation patterns during diagnostic conversational tasks. We then derive emotional expression vectors from the difference in the activations generated by contrastive text pairs (positive vs. negative examples of target emotions). Applying these vectors to new conversational prompts significantly enhances emotional characteristics: steered responses show increased positive sentiment (e.g., joy, trust) and more frequent first-person pronoun usage, indicative of greater personal engagement. Our findings offer a precise and interpretable framework and new directions for the study of conversational AI.
☆ BioMedJImpact: A Comprehensive Dataset and LLM Pipeline for AI Engagement and Scientific Impact Analysis of Biomedical Journals
Assessing journal impact is central to scholarly communication, yet existing open resources rarely capture how collaboration structures and artificial intelligence (AI) research jointly shape venue prestige in biomedicine. We present BioMedJImpact, a large-scale, biomedical-oriented dataset designed to advance journal-level analysis of scientific impact and AI engagement. Built from 1.74 million PubMed Central articles across 2,744 journals, BioMedJImpact integrates bibliometric indicators, collaboration features, and LLM-derived semantic indicators for AI engagement. Specifically, the AI engagement feature is extracted through a reproducible three-stage LLM pipeline that we propose. Using this dataset, we analyze how collaboration intensity and AI engagement jointly influence scientific impact across pre- and post-pandemic periods (2016-2019, 2020-2023). Two consistent trends emerge: journals with higher collaboration intensity, particularly those with larger and more diverse author teams, tend to achieve greater citation impact, and AI engagement has become an increasingly strong correlate of journal prestige, especially in quartile rankings. To further validate the three-stage LLM pipeline we proposed for deriving the AI engagement feature, we conduct human evaluation, confirming substantial agreement in AI relevance detection and consistent subfield classification. Together, these contributions demonstrate that BioMedJImpact serves as both a comprehensive dataset capturing the intersection of biomedicine and AI, and a validated methodological framework enabling scalable, content-aware scientometric analysis of scientific impact and innovation dynamics. Code is available at https://github.com/JonathanWry/BioMedJImpact.
☆ Evaluating Autoformalization Robustness via Semantically Similar Paraphrasing
Large Language Models (LLMs) have recently emerged as powerful tools for autoformalization. Despite their impressive performance, these models can still struggle to produce grounded and verifiable formalizations. Recent work in text-to-SQL, has revealed that LLMs can be sensitive to paraphrased natural language (NL) inputs, even when high degrees of semantic fidelity are preserved (Safarzadeh, Oroojlooyjadid, and Roth 2025). In this paper, we investigate this claim in the autoformalization domain. Specifically, we evaluate the robustness of LLMs generating formal proofs with semantically similar paraphrased NL statements by measuring semantic and compilation validity. Using the formal benchmarks MiniF2F (Zheng, Han, and Polu 2021) and Lean 4 version of ProofNet (Xin et al. 2024), and two modern LLMs, we generate paraphrased natural language statements and cross-evaluate these statements across both models. The results of this paper reveal performance variability across paraphrased inputs, demonstrating that minor shifts in NL statements can significantly impact model outputs.
☆ LLM Reinforcement in Context
Current Large Language Model alignment research mostly focuses on improving model robustness against adversarial attacks and misbehavior by training on examples and prompting. Research has shown that LLM jailbreak probability increases with the size of the user input or conversation length. There is a lack of appropriate research into means of strengthening alignment which also scale with user input length. We propose interruptions as a possible solution to this problem. Interruptions are control sentences added to the user input approximately every x tokens for some arbitrary x. We suggest that this can be generalized to the Chain-of-Thought process to prevent scheming.
comment: 4 pages
☆ Evidence of Phase Transitions in Small Transformer-Based Language Models
Phase transitions have been proposed as the origin of emergent abilities in large language models (LLMs), where new capabilities appear abruptly once models surpass critical thresholds of scale. Prior work, such as that of Wei et al., demonstrated these phenomena under model and data scaling, with transitions revealed after applying a log scale to training compute. In this work, we ask three complementary questions: (1) Are phase transitions unique to large models, or can they also be observed in small transformer-based language models? (2) Can such transitions be detected directly in linear training space, rather than only after log rescaling? and (3) Can these transitions emerge at early stages of training? To investigate, we train a small GPT-style transformer on a character-level corpus and analyze the evolution of vocabulary usage throughout training. We track the average word length, the number of correct versus incorrect words, and shifts in vocabulary diversity. Building on these measures, we apply Poisson and sub-Poisson statistics to quantify how words connect and reorganize. This combined analysis reveals a distinct transition point during training. Notably, these transitions are not apparent in standard loss or validation curves, but become visible through our vocabulary- and statistics-based probes. Our findings suggest that phase-transition reorganizations are a general feature of language model training, observable even in modest models, detectable directly in linear training space, and occurring surprisingly early as coherence emerges. This perspective provides new insight into the nonlinear dynamics of language model training and underscores the importance of tailored metrics for uncovering phase transition behaviors
☆ On the Brittleness of LLMs: A Journey around Set Membership
Large language models (LLMs) achieve superhuman performance on complex reasoning tasks, yet often fail on much simpler problems, raising concerns about their reliability and interpretability. We investigate this paradox through a focused study with two key design features: simplicity, to expose basic failure modes, and scale, to enable comprehensive controlled experiments. We focus on set membership queries -- among the most fundamental forms of reasoning -- using tasks like ``Is apple an element of the set \{pear, plum, apple, raspberry\}?''. We conduct a systematic empirical evaluation across prompt phrasing, semantic structure, element ordering, and model choice. Our large-scale analysis reveals that LLM performance on this elementary task is consistently brittle, and unpredictable across all dimensions, suggesting that the models' ``understanding'' of the set concept is fragmented and convoluted at best. Our work demonstrates that the large-scale experiments enabled by the simplicity of the problem allow us to map and analyze the failure modes comprehensively, making this approach a valuable methodology for LLM evaluation in general.
☆ Adaptive Focus Memory for Language Models
Large language models (LLMs) are increasingly deployed in multi-turn dialogue settings, but their behavior is still bottlenecked by fixed context windows and naive memory strategies. Replaying the full conversation at every turn is simple but expensive, while static summarization or recency-only heuristics often erase safety-critical user details. We present Adaptive Focus Memory (AFM), a dynamic context manager that assigns each past message one of three fidelity levels -- FULL, COMPRESSED, or PLACEHOLDER -- based on semantic similarity to the current query, half-life recency weighting, and importance classification. AFM packs messages chronologically under a strict token budget, preferring high fidelity for the most relevant turns while aiming to preserve a cheap trace of the dialogue. In a safety-oriented benchmark involving a user with a severe peanut allergy planning a trip to Thailand, AFM retains the allergy across both short and medium-length conversations, matches the safety performance of naive replay, and cuts average token usage by 66% relative to a replay baseline. We release a modular Python implementation of AFM designed for OpenAI-compatible APIs and offline operation, enabling practitioners to reduce inference cost without sacrificing safety or factual continuity in the evaluated scenario.
☆ Evolve the Method, Not the Prompts: Evolutionary Synthesis of Jailbreak Attacks on LLMs
Automated red teaming frameworks for Large Language Models (LLMs) have become increasingly sophisticated, yet they share a fundamental limitation: their jailbreak logic is confined to selecting, combining, or refining pre-existing attack strategies. This binds their creativity and leaves them unable to autonomously invent entirely new attack mechanisms. To overcome this gap, we introduce \textbf{EvoSynth}, an autonomous framework that shifts the paradigm from attack planning to the evolutionary synthesis of jailbreak methods. Instead of refining prompts, EvoSynth employs a multi-agent system to autonomously engineer, evolve, and execute novel, code-based attack algorithms. Crucially, it features a code-level self-correction loop, allowing it to iteratively rewrite its own attack logic in response to failure. Through extensive experiments, we demonstrate that EvoSynth not only establishes a new state-of-the-art by achieving an 85.5\% Attack Success Rate (ASR) against highly robust models like Claude-Sonnet-4.5, but also generates attacks that are significantly more diverse than those from existing methods. We release our framework to facilitate future research in this new direction of evolutionary synthesis of jailbreak methods. Code is available at: https://github.com/dongdongunique/EvoSynth.
☆ Improving Direct Persian-English Speech-to-Speech Translation with Discrete Units and Synthetic Parallel Data
Direct speech-to-speech translation (S2ST), in which all components are trained jointly, is an attractive alternative to cascaded systems because it offers a simpler pipeline and lower inference latency. However, direct S2ST models require large amounts of parallel speech data in the source and target languages, which are rarely available for low-resource languages such as Persian. This paper presents a direct S2ST system for translating Persian speech into English speech, as well as a pipeline for synthetic parallel Persian-English speech generation. The model comprises three components: (1) a conformer-based encoder, initialized from self-supervised pre-training, maps source speech to high-level acoustic representations; (2) a causal transformer decoder with relative position multi-head attention translates these representations into discrete target speech units; (3) a unit-based neural vocoder generates waveforms from the predicted discrete units. To mitigate the data scarcity problem, we construct a new Persian-English parallel speech corpus by translating Persian speech transcriptions into English using a large language model and then synthesizing the corresponding English speech with a state-of-the-art zero-shot text-to-speech system. The resulting corpus increases the amount of available parallel speech by roughly a factor of six. On the Persian-English portion of the CVSS corpus, the proposed model achieves improvement of 4.6 ASR BLEU with the synthetic data over direct baselines. These results indicate that combining self-supervised pre-training, discrete speech units, and synthetic parallel data is effective for improving direct S2ST in low-resource language pairs such as Persian-English
☆ Reason-KE++: Aligning the Process, Not Just the Outcome, for Faithful LLM Knowledge Editing
Aligning Large Language Models (LLMs) to be faithful to new knowledge in complex, multi-hop reasoning tasks is a critical, yet unsolved, challenge. We find that SFT-based methods, e.g., Reason-KE, while state-of-the-art, suffer from a "faithfulness gap": they optimize for format mimicry rather than sound reasoning. This gap enables the LLM's powerful parametric priors to override new contextual facts, resulting in critical factual hallucinations (e.g., incorrectly reasoning "Houston" from "NASA" despite an explicit edit). To solve this core LLM alignment problem, we propose Reason-KE++, an SFT+RL framework that instills process-level faithfulness. Its core is a Stage-aware Reward mechanism that provides dense supervision for intermediate reasoning steps (e.g., Decomposition, Sub-answer Correctness). Crucially, we identify that naive outcome-only RL is a deceptive trap for LLM alignment: it collapses reasoning integrity (e.g., 19.00% Hop acc) while superficially boosting final accuracy. Our process-aware framework sets a new SOTA of 95.48% on MQUAKE-CF-3k (+5.28%), demonstrating that for complex tasks, aligning the reasoning process is essential for building trustworthy LLMs.
☆ Knots: A Large-Scale Multi-Agent Enhanced Expert-Annotated Dataset and LLM Prompt Optimization for NOTAM Semantic Parsing
Notice to Air Missions (NOTAMs) serve as a critical channel for disseminating key flight safety information, yet their complex linguistic structures and implicit reasoning pose significant challenges for automated parsing. Existing research mainly focuses on surface-level tasks such as classification and named entity recognition, lacking deep semantic understanding. To address this gap, we propose NOTAM semantic parsing, a task emphasizing semantic inference and the integration of aviation domain knowledge to produce structured, inference-rich outputs. To support this task, we construct Knots (Knowledge and NOTAM Semantics), a high-quality dataset of 12,347 expert-annotated NOTAMs covering 194 Flight Information Regions, enhanced through a multi-agent collaborative framework for comprehensive field discovery. We systematically evaluate a wide range of prompt-engineering strategies and model-adaptation techniques, achieving substantial improvements in aviation text understanding and processing. Our experimental results demonstrate the effectiveness of the proposed approach and offer valuable insights for automated NOTAM analysis systems. Our code is available at: https://github.com/Estrellajer/Knots.
comment: Accepted to Advanced Engineering Informatics
☆ Uni-MoE-2.0-Omni: Scaling Language-Centric Omnimodal Large Model with Advanced MoE, Training and Data
We present Uni-MoE 2.0 from the Lychee family. As a fully open-source omnimodal large model (OLM), it substantially advances Lychee's Uni-MoE series in language-centric multimodal understanding, reasoning, and generating. Based on the Qwen2.5-7B dense architecture, we build Uni-MoE-2.0-Omni from scratch through three core contributions: dynamic-capacity Mixture-of-Experts (MoE) design, a progressive training strategy enhanced with an iterative reinforcement strategy, and a carefully curated multimodal data matching technique. It is capable of omnimodal understanding, as well as generating images, text, and speech. Architecturally, our new MoE framework balances computational efficiency and capability for 10 cross-modal inputs using shared, routed, and null experts, while our Omni-Modality 3D RoPE ensures spatio-temporal cross-modality alignment in the self-attention layer. For training, following cross-modal pretraining, we use a progressive supervised fine-tuning strategy that activates modality-specific experts and is enhanced by balanced data composition and an iterative GSPO-DPO method to stabilise RL training and improve reasoning. Data-wise, the base model, trained on approximately 75B tokens of open-source multimodal data, is equipped with special speech and image generation tokens, allowing it to learn these generative tasks by conditioning its outputs on linguistic cues. Extensive evaluation across 85 benchmarks demonstrates that our model achieves SOTA or highly competitive performance against leading OLMs, surpassing Qwen2.5-Omni (trained with 1.2T tokens) on over 50 of 76 benchmarks. Key strengths include video understanding (+7% avg. of 8), omnimodallity understanding (+7% avg. of 4), and audiovisual reasoning (+4%). It also advances long-form speech processing (reducing WER by 4.2%) and leads in low-level image processing and controllable generation across 5 metrics.
comment: 47 pages,10 Figures, Project Website: https://idealistxy.github.io/Uni-MoE-v2.github.io/; Codes: https://github.com/HITsz-TMG/Uni-MoE
☆ Group-Aware Reinforcement Learning for Output Diversity in Large Language Models EMNLP
Large Language Models (LLMs) often suffer from mode collapse, repeatedly generating the same few completions even when many valid answers exist, limiting their diversity across a wide range of tasks. We introduce Group-Aware Policy Optimization (GAPO), a simple extension of the recent and popular Group Relative Policy Optimization (GRPO) that computes rewards over the group as a whole. GAPO enables learning from the group-level properties such as diversity and coverage. We demonstrate GAPO using a frequency-aware reward function that encourages uniform sampling over valid LLM completions, and show that GAPO-trained models produce valid and more diverse model responses. Beyond this setup, GAPO generalizes to open-ended prompts and improves response diversity without compromising accuracy on standard LLM benchmarks (GSM8K, MATH, HumanEval, MMLU-Pro). Our code will be made publicly available.
comment: EMNLP Main 2025
☆ MMWOZ: Building Multimodal Agent for Task-oriented Dialogue
Task-oriented dialogue systems have garnered significant attention due to their conversational ability to accomplish goals, such as booking airline tickets for users. Traditionally, task-oriented dialogue systems are conceptualized as intelligent agents that interact with users using natural language and have access to customized back-end APIs. However, in real-world scenarios, the widespread presence of front-end Graphical User Interfaces (GUIs) and the absence of customized back-end APIs create a significant gap for traditional task-oriented dialogue systems in practical applications. In this paper, to bridge the gap, we collect MMWOZ, a new multimodal dialogue dataset that is extended from MultiWOZ 2.3 dataset. Specifically, we begin by developing a web-style GUI to serve as the front-end. Next, we devise an automated script to convert the dialogue states and system actions from the original dataset into operation instructions for the GUI. Lastly, we collect snapshots of the web pages along with their corresponding operation instructions. In addition, we propose a novel multimodal model called MATE (Multimodal Agent for Task-oriEnted dialogue) as the baseline model for the MMWOZ dataset. Furthermore, we conduct comprehensive experimental analysis using MATE to investigate the construction of a practical multimodal agent for task-oriented dialogue.
☆ Mitigating Length Bias in RLHF through a Causal Lens
Reinforcement learning from human feedback (RLHF) is widely used to align large language models (LLMs) with human preferences. However, RLHF-trained reward models often exhibit length bias -- a systematic tendency to favor longer responses by conflating verbosity with quality. We propose a causal framework for analyzing and mitigating length bias in RLHF reward modeling. Central to our approach is a counterfactual data augmentation method that generates response pairs designed to isolate content quality from verbosity. These counterfactual examples are then used to train the reward model, enabling it to assess responses based on content quality independently of verbosity. Specifically, we construct (1) length-divergent pairs with similar content and (2) content-divergent pairs of similar length. Empirical evaluations show that our method reduces length bias in reward assignment and leads to more concise, content-focused outputs from the policy model. These findings demonstrate that the proposed approach effectively reduces length bias and improves the robustness and content sensitivity of reward modeling in RLHF pipelines.
☆ A Content-Preserving Secure Linguistic Steganography AAAI 2026
Existing linguistic steganography methods primarily rely on content transformations to conceal secret messages. However, they often cause subtle yet looking-innocent deviations between normal and stego texts, posing potential security risks in real-world applications. To address this challenge, we propose a content-preserving linguistic steganography paradigm for perfectly secure covert communication without modifying the cover text. Based on this paradigm, we introduce CLstega (\textit{C}ontent-preserving \textit{L}inguistic \textit{stega}nography), a novel method that embeds secret messages through controllable distribution transformation. CLstega first applies an augmented masking strategy to locate and mask embedding positions, where MLM(masked language model)-predicted probability distributions are easily adjustable for transformation. Subsequently, a dynamic distribution steganographic coding strategy is designed to encode secret messages by deriving target distributions from the original probability distributions. To achieve this transformation, CLstega elaborately selects target words for embedding positions as labels to construct a masked sentence dataset, which is used to fine-tune the original MLM, producing a target MLM capable of directly extracting secret messages from the cover text. This approach ensures perfect security of secret messages while fully preserving the integrity of the original cover text. Experimental results show that CLstega can achieve a 100\% extraction success rate, and outperforms existing methods in security, effectively balancing embedding capacity and security.
comment: This is the extended version of the paper accepted to AAAI 2026
☆ Accepted with Minor Revisions: Value of AI-Assisted Scientific Writing
Large Language Models have seen expanding application across domains, yet their effectiveness as assistive tools for scientific writing -- an endeavor requiring precision, multimodal synthesis, and domain expertise -- remains insufficiently understood. We examine the potential of LLMs to support domain experts in scientific writing, with a focus on abstract composition. We design an incentivized randomized controlled trial with a hypothetical conference setup where participants with relevant expertise are split into an author and reviewer pool. Inspired by methods in behavioral science, our novel incentive structure encourages authors to edit the provided abstracts to an acceptable quality for a peer-reviewed submission. Our 2x2 between-subject design expands into two dimensions: the implicit source of the provided abstract and the disclosure of it. We find authors make most edits when editing human-written abstracts compared to AI-generated abstracts without source attribution, often guided by higher perceived readability in AI generation. Upon disclosure of source information, the volume of edits converges in both source treatments. Reviewer decisions remain unaffected by the source of the abstract, but bear a significant correlation with the number of edits made. Careful stylistic edits, especially in the case of AI-generated abstracts, in the presence of source information, improve the chance of acceptance. We find that AI-generated abstracts hold potential to reach comparable levels of acceptability to human-written ones with minimal revision, and that perceptions of AI authorship, rather than objective quality, drive much of the observed editing behavior. Our findings reverberate the significance of source disclosure in collaborative scientific writing.
☆ TAdaRAG: Task Adaptive Retrieval-Augmented Generation via On-the-Fly Knowledge Graph Construction AAAI 2026
Retrieval-Augmented Generation (RAG) improves large language models by retrieving external knowledge, often truncated into smaller chunks due to the input context window, which leads to information loss, resulting in response hallucinations and broken reasoning chains. Moreover, traditional RAG retrieves unstructured knowledge, introducing irrelevant details that hinder accurate reasoning. To address these issues, we propose TAdaRAG, a novel RAG framework for on-the-fly task-adaptive knowledge graph construction from external sources. Specifically, we design an intent-driven routing mechanism to a domain-specific extraction template, followed by supervised fine-tuning and a reinforcement learning-based implicit extraction mechanism, ensuring concise, coherent, and non-redundant knowledge integration. Evaluations on six public benchmarks and a real-world business benchmark (NowNewsQA) across three backbone models demonstrate that TAdaRAG outperforms existing methods across diverse domains and long-text tasks, highlighting its strong generalization and practical effectiveness.
comment: Accepted by AAAI 2026
☆ QA-Noun: Representing Nominal Semantics via Natural Language Question-Answer Pairs
Decomposing sentences into fine-grained meaning units is increasingly used to model semantic alignment. While QA-based semantic approaches have shown effectiveness for representing predicate-argument relations, they have so far left noun-centered semantics largely unaddressed. We introduce QA-Noun, a QA-based framework for capturing noun-centered semantic relations. QA-Noun defines nine question templates that cover both explicit syntactical and implicit contextual roles for nouns, producing interpretable QA pairs that complement verbal QA-SRL. We release detailed guidelines, a dataset of over 2,000 annotated noun mentions, and a trained model integrated with QA-SRL to yield a unified decomposition of sentence meaning into individual, highly fine-grained, facts. Evaluation shows that QA-Noun achieves near-complete coverage of AMR's noun arguments while surfacing additional contextually implied relations, and that combining QA-Noun with QA-SRL yields over 130\% higher granularity than recent fact-based decomposition methods such as FactScore and DecompScore. QA-Noun thus complements the broader QA-based semantic framework, forming a comprehensive and scalable approach to fine-grained semantic decomposition for cross-text alignment.
☆ SGuard-v1: Safety Guardrail for Large Language Models
We present SGuard-v1, a lightweight safety guardrail for Large Language Models (LLMs), which comprises two specialized models to detect harmful content and screen adversarial prompts in human-AI conversational settings. The first component, ContentFilter, is trained to identify safety risks in LLM prompts and responses in accordance with the MLCommons hazard taxonomy, a comprehensive framework for trust and safety assessment of AI. The second component, JailbreakFilter, is trained with a carefully designed curriculum over integrated datasets and findings from prior work on adversarial prompting, covering 60 major attack types while mitigating false-unsafe classification. SGuard-v1 is built on the 2B-parameter Granite-3.3-2B-Instruct model that supports 12 languages. We curate approximately 1.4 million training instances from both collected and synthesized data and perform instruction tuning on the base model, distributing the curated data across the two component according to their designated functions. Through extensive evaluation on public and proprietary safety benchmarks, SGuard-v1 achieves state-of-the-art safety performance while remaining lightweight, thereby reducing deployment overhead. SGuard-v1 also improves interpretability for downstream use by providing multi-class safety predictions and their binary confidence scores. We release the SGuard-v1 under the Apache-2.0 License to enable further research and practical deployment in AI safety.
comment: Technical Report
☆ Evolving Prompts for Toxicity Search in Large Language Models
Large Language Models remain vulnerable to adversarial prompts that elicit toxic content even after safety alignment. We present ToxSearch, a black-box evolutionary framework that tests model safety by evolving prompts in a synchronous steady-state loop. The system employs a diverse set of operators, including lexical substitutions, negation, back-translation, paraphrasing, and two semantic crossover operators, while a moderation oracle provides fitness guidance. Operator-level analysis shows heterogeneous behavior: lexical substitutions offer the best yield-variance trade-off, semantic-similarity crossover acts as a precise low-throughput inserter, and global rewrites exhibit high variance with elevated refusal costs. Using elite prompts evolved on LLaMA 3.1 8B, we observe practically meaningful but attenuated cross-model transfer, with toxicity roughly halving on most targets, smaller LLaMA 3.2 variants showing the strongest resistance, and some cross-architecture models retaining higher toxicity. These results suggest that small, controllable perturbations are effective vehicles for systematic red-teaming and that defenses should anticipate cross-model reuse of adversarial prompts rather than focusing only on single-model hardening.
comment: pre-print
☆ Co-Layout: LLM-driven Co-optimization for Interior Layout
We present a novel framework for automated interior design that combines large language models (LLMs) with grid-based integer programming to jointly optimize room layout and furniture placement. Given a textual prompt, the LLM-driven agent workflow extracts structured design constraints related to room configurations and furniture arrangements. These constraints are encoded into a unified grid-based representation inspired by ``Modulor". Our formulation accounts for key design requirements, including corridor connectivity, room accessibility, spatial exclusivity, and user-specified preferences. To improve computational efficiency, we adopt a coarse-to-fine optimization strategy that begins with a low-resolution grid to solve a simplified problem and guides the solution at the full resolution. Experimental results across diverse scenarios demonstrate that our joint optimization approach significantly outperforms existing two-stage design pipelines in solution quality, and achieves notable computational efficiency through the coarse-to-fine strategy.
☆ Assessing LLMs for Serendipity Discovery in Knowledge Graphs: A Case for Drug Repurposing AAAI
Large Language Models (LLMs) have greatly advanced knowledge graph question answering (KGQA), yet existing systems are typically optimized for returning highly relevant but predictable answers. A missing yet desired capacity is to exploit LLMs to suggest surprise and novel ("serendipitious") answers. In this paper, we formally define the serendipity-aware KGQA task and propose the SerenQA framework to evaluate LLMs' ability to uncover unexpected insights in scientific KGQA tasks. SerenQA includes a rigorous serendipity metric based on relevance, novelty, and surprise, along with an expert-annotated benchmark derived from the Clinical Knowledge Graph, focused on drug repurposing. Additionally, it features a structured evaluation pipeline encompassing three subtasks: knowledge retrieval, subgraph reasoning, and serendipity exploration. Our experiments reveal that while state-of-the-art LLMs perform well on retrieval, they still struggle to identify genuinely surprising and valuable discoveries, underscoring a significant room for future improvements. Our curated resources and extended version are released at: https://cwru-db-group.github.io/serenQA.
comment: The 40th AAAI Conference on Artificial Intelligence (AAAI-26)
☆ Probing Preference Representations: A Multi-Dimensional Evaluation and Analysis Method for Reward Models AAAI 2026
Previous methods evaluate reward models by testing them on a fixed pairwise ranking test set, but they typically do not provide performance information on each preference dimension. In this work, we address the evaluation challenge of reward models by probing preference representations. To confirm the effectiveness of this evaluation method, we construct a Multi-dimensional Reward Model Benchmark (MRMBench), a collection of six probing tasks for different preference dimensions. We design it to favor and encourage reward models that better capture preferences across different dimensions. Furthermore, we introduce an analysis method, inference-time probing, which identifies the dimensions used during the reward prediction and enhances its interpretability. Through extensive experiments, we find that MRMBench strongly correlates with the alignment performance of large language models (LLMs), making it a reliable reference for developing advanced reward models. Our analysis of MRMBench evaluation results reveals that reward models often struggle to capture preferences across multiple dimensions, highlighting the potential of multi-objective optimization in reward modeling. Additionally, our findings show that the proposed inference-time probing method offers a reliable metric for assessing the confidence of reward predictions, which ultimately improves the alignment of LLMs.
comment: Accepted by AAAI 2026
☆ DenseAnnotate: Enabling Scalable Dense Caption Collection for Images and 3D Scenes via Spoken Descriptions
With the rapid adoption of multimodal large language models (MLLMs) across diverse applications, there is a pressing need for task-centered, high-quality training data. A key limitation of current training datasets is their reliance on sparse annotations mined from the Internet or entered via manual typing that capture only a fraction of an image's visual content. Dense annotations are more valuable but remain scarce. Traditional text-based annotation pipelines are poorly suited for creating dense annotations: typing limits expressiveness, slows annotation speed, and underrepresents nuanced visual features, especially in specialized areas such as multicultural imagery and 3D asset annotation. In this paper, we present DenseAnnotate, an audio-driven online annotation platform that enables efficient creation of dense, fine-grained annotations for images and 3D assets. Annotators narrate observations aloud while synchronously linking spoken phrases to image regions or 3D scene parts. Our platform incorporates speech-to-text transcription and region-of-attention marking. To demonstrate the effectiveness of DenseAnnotate, we conducted case studies involving over 1,000 annotators across two domains: culturally diverse images and 3D scenes. We curate a human-annotated multi-modal dataset of 3,531 images, 898 3D scenes, and 7,460 3D objects, with audio-aligned dense annotations in 20 languages, including 8,746 image captions, 2,000 scene captions, and 19,000 object captions. Models trained on this dataset exhibit improvements of 5% in multilingual, 47% in cultural alignment, and 54% in 3D spatial capabilities. Our results show that our platform offers a feasible approach for future vision-language research and can be applied to various tasks and diverse types of data.
♻ ☆ DiagnoLLM: A Hybrid Bayesian Neural Language Framework for Interpretable Disease Diagnosis
Building trustworthy clinical AI systems requires not only accurate predictions but also transparent, biologically grounded explanations. We present \texttt{DiagnoLLM}, a hybrid framework that integrates Bayesian deconvolution, eQTL-guided deep learning, and LLM-based narrative generation for interpretable disease diagnosis. DiagnoLLM begins with GP-unmix, a Gaussian Process-based hierarchical model that infers cell-type-specific gene expression profiles from bulk and single-cell RNA-seq data while modeling biological uncertainty. These features, combined with regulatory priors from eQTL analysis, power a neural classifier that achieves high predictive performance in Alzheimer's Disease (AD) detection (88.0\% accuracy). To support human understanding and trust, we introduce an LLM-based reasoning module that translates model outputs into audience-specific diagnostic reports, grounded in clinical features, attribution signals, and domain knowledge. Human evaluations confirm that these reports are accurate, actionable, and appropriately tailored for both physicians and patients. Our findings show that LLMs, when deployed as post-hoc reasoners rather than end-to-end predictors, can serve as effective communicators within hybrid diagnostic pipelines.
♻ ☆ Interpreting the Effects of Quantization on LLMs AACL 2025
Quantization offers a practical solution to deploy LLMs in resource-constraint environments. However, its impact on internal representations remains understudied, raising questions about the reliability of quantized models. In this study, we employ a range of interpretability techniques to investigate how quantization affects model and neuron behavior. We analyze multiple LLMs under 4-bit and 8-bit quantization. Our findings reveal that the impact of quantization on model calibration is generally minor. Analysis of neuron activations indicates that the number of dead neurons, i.e., those with activation values close to 0 across the dataset, remains consistent regardless of quantization. In terms of neuron contribution to predictions, we observe that smaller full precision models exhibit fewer salient neurons, whereas larger models tend to have more, with the exception of Llama-2-7B. The effect of quantization on neuron redundancy varies across models. Overall, our findings suggest that effect of quantization may vary by model and tasks, however, we did not observe any drastic change which may discourage the use of quantization as a reliable model compression technique.
comment: Accepted to AACL 2025 Main
♻ ☆ InfiMed-ORBIT: Aligning LLMs on Open-Ended Complex Tasks via Rubric-Based Incremental Training
Reinforcement learning has powered many of the recent breakthroughs in large language models, especially for tasks where rewards can be computed automatically, such as code generation. However, these methods deteriorate in open-ended domains like medical consultation, where feedback is inherently ambiguous, highly context-dependent, and cannot be reduced to a reliable scalar signal. In such settings, RL must either rely on supervision-intensive reward models that often fail to generalize, or it falls into pathological behaviors such as reward hacking - an especially troubling risk for high-stakes medical dialogue. To address these limitations, we introduce ORBIT, an open-ended rubric-based incremental training framework for high-stakes medical dialogue. ORBIT integrates synthetic dialogue generation with dynamically constructed rubrics that serve as adaptive guides for incremental RL. Instead of relying on external medical knowledge bases or handcrafted rule sets, ORBIT uses rubric-driven feedback to steer the learning process. Its judge component can be instantiated with general-purpose instruction-following LLMs, removing the need for any task-specific fine-tuning. Applied to the Qwen3-4B-Instruct model, ORBIT raises the HealthBench-Hard score from 7.0 to 27.5 using only 2k training samples, achieving SOTA performance for models at this scale. With larger rubric datasets, ORBIT-trained models further compete with the strongest open-source baselines on HealthBench-Hard. Our analysis shows that rubric-guided RL consistently improves consultation quality across diverse medical scenarios. We also apply such rubric generation and training pipeline to InfoBench, where ORBIT enhances instruction-following performance, highlighting the generality of rubric-based feedback.
♻ ☆ Scaling Laws for Conditional Emergence of Multilingual Image Captioning via Generalization from Translation
Cross-lingual, cross-task transfer is challenged by task-specific data scarcity, which becomes more severe as language support grows and is further amplified in vision-language models (VLMs). We investigate multilingual generalization in encoder-decoder transformer VLMs to enable zero-shot image captioning in languages encountered only in the translation task. In this setting, the encoder must learn to generate generalizable, task-aware latent vision representations to instruct the decoder via inserted cross-attention layers. To analyze scaling behavior, we train Florence-2 based and Gemma-2 based models (0.4B to 11.2B parameters) on a synthetic dataset using varying compute budgets. While all languages in the dataset have image-aligned translations, only a subset of them include image captions. Notably, we show that captioning can emerge using a language prefix, even when this language only appears in the translation task. We find that indirect learning of unseen task-language pairs adheres to scaling laws that are governed by the multilinguality of the model, model size, and seen training samples. Finally, we demonstrate that the scaling laws extend to downstream tasks, achieving competitive performance through fine-tuning in multimodal machine translation (Multi30K, CoMMuTE), lexical disambiguation (CoMMuTE), and image captioning (Multi30K, XM3600, COCO Karpathy).
♻ ☆ OptiHive: Ensemble Selection for LLM-Based Optimization via Statistical Modeling
LLM-based solvers have emerged as a promising means of automating problem modeling and solving. However, they remain unreliable and often depend on iterative repair loops that result in significant latency. We introduce OptiHive, a framework that enhances any solver-generation pipeline to produce higher-quality solvers from natural-language descriptions of optimization problems. OptiHive uses a single batched generation to produce diverse components (solvers, problem instances, and validation tests) and filters out erroneous components to ensure fully interpretable outputs. Accounting for the imperfection of the generated components, we employ a statistical model to infer their true performance, enabling principled uncertainty quantification and solver selection. On tasks ranging from traditional optimization problems to challenging variants of the Multi-Depot Vehicle Routing Problem, OptiHive significantly outperforms baselines, increasing the optimality rate from 5% to 92% on the most complex problems.
♻ ☆ Silenced Biases: The Dark Side LLMs Learned to Refuse AAAI
Safety-aligned large language models (LLMs) are becoming increasingly widespread, especially in sensitive applications where fairness is essential and biased outputs can cause significant harm. However, evaluating the fairness of models is a complex challenge, and approaches that do so typically utilize standard question-answer (QA) styled schemes. Such methods often overlook deeper issues by interpreting the model's refusal responses as positive fairness measurements, which creates a false sense of fairness. In this work, we introduce the concept of silenced biases, which are unfair preferences encoded within models' latent space and are effectively concealed by safety-alignment. Previous approaches that considered similar indirect biases often relied on prompt manipulation or handcrafted implicit queries, which present limited scalability and risk contaminating the evaluation process with additional biases. We propose the Silenced Bias Benchmark (SBB), which aims to uncover these biases by employing activation steering to reduce model refusals during QA. SBB supports easy expansion to new demographic groups and subjects, presenting a fairness evaluation framework that encourages the future development of fair models and tools beyond the masking effects of alignment training. We demonstrate our approach over multiple LLMs, where our findings expose an alarming distinction between models' direct responses and their underlying fairness issues.
comment: Accepted to The 40th Annual AAAI Conference on Artificial Intelligence - AI Alignment Track (Oral)
♻ ☆ Trainable Dynamic Mask Sparse Attention
The increasing demand for long-context modeling in large language models (LLMs) is bottlenecked by the quadratic complexity of the standard self-attention mechanism. The community has proposed sparse attention to mitigate this issue. However, position-aware sparse attention methods rely on static sparse structures that lack adaptability to diverse query contexts, while content-aware sparse attention methods depend on heuristic key-value selection, hindering full differentiability. We introduce a trainable dynamic mask sparse attention mechanism, a method that merges the advantages of both position-aware and content-aware approaches. Dynamic Mask Attention (DMA) achieves this through three key innovations: First, it leverages value vector representations to generate content-aware dynamic masks, enabling the model to adaptively identify and attend to critical information. Second, it computes position-aware sparse weights in a hardware-friendly manner, efficiently skipping unnecessary computational regions. Finally, we demonstrate that the introduced dynamic mask and sparse weights do not obstruct gradients, supporting end-to-end training. We have validated the performance of DMA through comprehensive experiments. A large body of experimental evidence shows that DMA consistently holds a Pareto advantage over state-of-the-art sparse attention baselines in tasks including scaling laws, multi-query associative recall, standard benchmarks, and needle in a haystack tests, while also delivering up to a 10x overall speedup. These results highlight its ability to effectively balance model efficiency with long-context modeling capabilities. Our computational kernel code is now open-source at https://github.com/SmallDoges/flash-dmattn to encourage further research and application by the community.
comment: 26 pages
♻ ☆ Historical/temporal necessities/possibilities, and a logical theory of them in branching time
In this paper, we do three kinds of work. First, we recognize four notions of necessity and two notions of possibility related to time flow, namely strong/weak historical/temporal necessities, as well as historical/temporal possibilities, which are motivated more from a linguistic perspective than from a philosophical one. Strong/weak historical necessities and historical possibility typically concern the possible futures of the present world, and strong/weak temporal necessities and temporal possibility concern possible timelines of alternatives of the present world. Second, we provide our approach to the six notions and present a logical theory of them in branching time. Our approach to the six notions is as follows. The agent has a system of ontic rules that determine expected timelines. She treats some ontic rules as undefeatable, determining accepted timelines. The domains of strong/weak historical necessities, respectively, consist of accepted and expected timelines passing through the present moment, and historical possibility is the dual of strong historical necessity. The domains of strong/weak temporal necessities, respectively, consist of accepted and expected timelines, and temporal possibility is the dual of strong temporal necessity. The logical theory has six operators: a last-moment operator, a next-moment operator, and four operators for the four notions of necessity. Formulas' evaluation contexts consist of a tree-like model representing a time flow, a context representing the agent's system of ontic rules, a timeline, and an instant. Third, we offer an axiomatic system for the logical theory and show its soundness and completeness.
♻ ☆ C$^3$TG: Conflict-aware, Composite, and Collaborative Controlled Text Generation AAAI-2026
Recent advancements in large language models (LLMs) have demonstrated remarkable text generation capabilities. However, controlling specific attributes of generated text remains challenging without architectural modifications or extensive fine-tuning. Current methods typically toggle a single, basic attribute but struggle with precise multi-attribute control. In scenarios where attribute requirements conflict, existing methods lack coordination mechanisms, causing interference between desired attributes. Furthermore, these methods fail to incorporate iterative optimization processes in the controlled generation pipeline. To address these limitations, we propose Conflict-aware, Composite, and Collaborative Controlled Text Generation (C$^3$TG), a two-phase framework for fine-grained, multi-dimensional text attribute control. During generation, C$^3$TG selectively pairs the LLM with the required attribute classifiers from the 17 available dimensions and employs weighted KL-divergence to adjust token probabilities. The optimization phase then leverages an energy function combining classifier scores and penalty terms to resolve attribute conflicts through iterative feedback, enabling precise control over multiple dimensions simultaneously while preserving natural text flow. Experiments show that C$^3$TG significantly outperforms baselines across multiple metrics including attribute accuracy, linguistic fluency, and output diversity, while simultaneously reducing toxicity. These results establish C$^3$TG as an effective and flexible solution for multi-dimensional text attribute control that requires no costly model modifications.
comment: This paper has been accepted as a poster presentation at AAAI-2026
♻ ☆ Understanding and Mitigating Political Stance Cross-topic Generalization in Large Language Models
Fine-tuning Large Language Models on a political topic will significantly manipulate their political stance on various issues and unintentionally affect their stance on unrelated topics. While previous studies have proposed this issue, there is still a lack of understanding regarding the internal representations of these stances and the mechanisms that lead to unintended cross-topic generalization. In this paper, we systematically explore the internal mechanisms underlying this phenomenon from a neuron-level perspective and how to mitigate the cross-topic generalization of political fine-tuning. Firstly, we propose Political Neuron Localization through Activation Contrasting (PNLAC) to identify two distinct types of political neurons: general political neurons, which govern stance across multiple political topics, and topic-specific neurons} that affect the model's political stance on individual topics. We find the existence of these political neuron types across four models and datasets through activation patching experiments. Leveraging these insights, we introduce InhibitFT, an inhibition-based fine-tuning method, effectively mitigating the cross-topic stance generalization. Experimental results demonstrate the robustness of identified neuron types across various models and datasets, and show that InhibitFT significantly reduces the cross-topic stance generalization by 20% on average, while preserving topic-specific performance. Moreover, we demonstrate that selectively inhibiting only 5% of neurons is sufficient to effectively mitigate the cross-topic stance generalization.
♻ ☆ Explain with Visual Keypoints Like a Real Mentor! A Benchmark for Multimodal Solution Explanation
With the rapid advancement of mathematical reasoning capabilities in Large Language Models (LLMs), AI systems are increasingly being adopted in educational settings to support students' comprehension of problem-solving processes. However, a critical component remains underexplored in current LLM-generated explanations: multimodal explanation. In real-world instructional contexts, human tutors routinely employ visual aids, such as diagrams, markings, and highlights, to enhance conceptual clarity. To bridge this gap, we introduce the multimodal solution explanation task, designed to evaluate whether models can identify visual keypoints, such as auxiliary lines, points, angles, and generate explanations that incorporate these key elements essential for understanding. To evaluate model performance on this task, we propose ME2, a multimodal benchmark consisting of 1,000 math problems annotated with visual keypoints and corresponding explanatory text that references those elements. Our empirical results show that current models struggle to identify visual keypoints. In the task of generating keypoint-based explanations, open-source models also face notable difficulties. This highlights a significant gap in current LLMs' ability to perform mathematical visual grounding, engage in visually grounded reasoning, and provide explanations in educational contexts. We expect that the multimodal solution explanation task and the ME2 dataset will catalyze further research on LLMs in education and promote their use as effective, explanation-oriented AI tutors.
comment: 14 pages, 9 figures
♻ ☆ FRAME: Feedback-Refined Agent Methodology for Enhancing Medical Research Insights
The automation of scientific research through large language models (LLMs) presents significant opportunities but faces critical challenges in knowledge synthesis and quality assurance. We introduce Feedback-Refined Agent Methodology (FRAME), a novel framework that enhances medical paper generation through iterative refinement and structured feedback. Our approach comprises three key innovations: (1) A structured dataset construction method that decomposes 4,287 medical papers into essential research components through iterative refinement; (2) A tripartite architecture integrating Generator, Evaluator, and Reflector agents that progressively improve content quality through metric-driven feedback; and (3) A comprehensive evaluation framework that combines statistical metrics with human-grounded benchmarks. Experimental results demonstrate FRAME's effectiveness, achieving significant improvements over conventional approaches across multiple models (9.91% average gain with DeepSeek V3, comparable improvements with GPT-4o Mini) and evaluation dimensions. Human evaluation confirms that FRAME-generated papers achieve quality comparable to human-authored works, with particular strength in synthesizing future research directions. The results demonstrated our work could efficiently assist medical research by building a robust foundation for automated medical research paper generation while maintaining rigorous academic standards.
comment: 12 pages, 4 figures, 5 table
♻ ☆ BhashaKritika: Building Synthetic Pretraining Data at Scale for Indic Languages
In the context of pretraining of Large Language Models (LLMs), synthetic data has emerged as an alternative for generating high-quality pretraining data at scale. This is particularly beneficial in low-resource language settings where the benefits of recent LLMs have been unevenly distributed across languages. In this work, we present a systematic study on the generation and evaluation of synthetic multilingual pretraining data for Indic languages, where we construct a large-scale synthetic dataset BhashaKritika, comprising 540B tokens using 5 different techniques for 10 languages. We explore the impact of grounding generation in documents, personas, and topics. We analyze how language choice, both in the prompt instructions and document grounding, affects data quality, and we compare translations of English content with native generation in Indic languages. To support scalable and language-sensitive evaluation, we introduce a modular quality evaluation pipeline that integrates script and language detection, metadata consistency checks, n-gram repetition analysis, and perplexity-based filtering using KenLM models. Our framework enables robust quality control across diverse scripts and linguistic contexts. Empirical results through model runs reveal key trade-offs in generation strategies and highlight best practices for constructing effective multilingual corpora.
♻ ☆ DeceptionBench: A Comprehensive Benchmark for AI Deception Behaviors in Real-world Scenarios
Despite the remarkable advances of Large Language Models (LLMs) across diverse cognitive tasks, the rapid enhancement of these capabilities also introduces emergent deceptive behaviors that may induce severe risks in high-stakes deployments. More critically, the characterization of deception across realistic real-world scenarios remains underexplored. To bridge this gap, we establish DeceptionBench, the first benchmark that systematically evaluates how deceptive tendencies manifest across different societal domains, what their intrinsic behavioral patterns are, and how extrinsic factors affect them. Specifically, on the static count, the benchmark encompasses 150 meticulously designed scenarios in five domains, i.e., Economy, Healthcare, Education, Social Interaction, and Entertainment, with over 1,000 samples, providing sufficient empirical foundations for deception analysis. On the intrinsic dimension, we explore whether models exhibit self-interested egoistic tendencies or sycophantic behaviors that prioritize user appeasement. On the extrinsic dimension, we investigate how contextual factors modulate deceptive outputs under neutral conditions, reward-based incentivization, and coercive pressures. Moreover, we incorporate sustained multi-turn interaction loops to construct a more realistic simulation of real-world feedback dynamics. Extensive experiments across LLMs and Large Reasoning Models (LRMs) reveal critical vulnerabilities, particularly amplified deception under reinforcement dynamics, demonstrating that current models lack robust resistance to manipulative contextual cues and the urgent need for advanced safeguards against various deception behaviors. Code and resources are publicly available at https://github.com/Aries-iai/DeceptionBench.
comment: 28 pages, 17 figures, accepted by NeruIPS 2025
♻ ☆ Mitigating Overthinking in Large Reasoning Models via Manifold Steering
Recent advances in Large Reasoning Models (LRMs) have demonstrated remarkable capabilities in solving complex tasks such as mathematics and coding. However, these models frequently exhibit a phenomenon known as overthinking during inference, characterized by excessive validation loops and redundant deliberation, leading to substantial computational overheads. In this paper, we aim to mitigate overthinking by investigating the underlying mechanisms from the perspective of mechanistic interpretability. We first showcase that the tendency of overthinking can be effectively captured by a single direction in the model's activation space and the issue can be eased by intervening the activations along this direction. However, this efficacy soon reaches a plateau and even deteriorates as the intervention strength increases. We therefore systematically explore the activation space and find that the overthinking phenomenon is actually tied to a low-dimensional manifold, which indicates that the limited effect stems from the noises introduced by the high-dimensional steering direction. Based on this insight, we propose Manifold Steering, a novel approach that elegantly projects the steering direction onto the low-dimensional activation manifold given the theoretical approximation of the interference noise. Extensive experiments on DeepSeek-R1 distilled models validate that our method reduces output tokens by up to 71% while maintaining and even improving the accuracy on several mathematical benchmarks. Our method also exhibits robust cross-domain transferability, delivering consistent token reduction performance in code generation and knowledge-based QA tasks. Code is available at: https://github.com/Aries-iai/Manifold_Steering.
comment: 19 pages, 7 figures
♻ ☆ From Euler to AI: Unifying Formulas for Mathematical Constants NeurIPS2025
The constant $π$ has fascinated scholars throughout the centuries, inspiring numerous formulas for its evaluation, such as infinite sums and continued fractions. Despite their individual significance, many of the underlying connections among formulas remain unknown, missing unifying theories that could unveil deeper understanding. The absence of a unifying theory reflects a broader challenge across math and science: knowledge is typically accumulated through isolated discoveries, while deeper connections often remain hidden. In this work, we present an automated framework for the unification of mathematical formulas. Our system combines Large Language Models (LLMs) for systematic formula harvesting, an LLM-code feedback loop for validation, and a novel symbolic algorithm for clustering and eventual unification. We demonstrate this methodology on the hallmark case of $π$, an ideal testing ground for symbolic unification. Applying this approach to 455,050 arXiv papers, we validate 385 distinct formulas for $π$ and prove relations between 360 (94%) of them, of which 166 (43%) can be derived from a single mathematical object - linking canonical formulas by Euler, Gauss, Brouncker, and newer ones from algorithmic discoveries by the Ramanujan Machine. Our method generalizes to other constants, including $e$, $ζ(3)$, and Catalan's constant, demonstrating the potential of AI-assisted mathematics to uncover hidden structures and unify knowledge across domains.
comment: Final version for NeurIPS2025
♻ ☆ Is deeper always better? Replacing linear mappings with deep learning networks in the Discriminative Lexicon Model
Recently, deep learning models have increasingly been used in cognitive modelling of language. This study asks whether deep learning can help us to better understand the learning problem that needs to be solved by speakers, above and beyond linear methods. We utilise the Discriminative Lexicon Model introduced by Baayen and colleagues, which models comprehension and production with mappings between numeric form and meaning vectors. While so far, these mappings have been linear (Linear Discriminative Learning, LDL), in the present study we replace them with deep dense neural networks (Deep Discriminative Learning, DDL). We find that DDL affords more accurate mappings for large and diverse datasets from English and Dutch, but not necessarily for Estonian and Taiwan Mandarin. DDL outperforms LDL in particular for words with pseudo-morphological structure such as chol+er. Applied to average reaction times, we find that DDL is outperformed by frequency-informed linear mappings (FIL). However, DDL trained in a frequency-informed way ('frequency-informed' deep learning, FIDDL) substantially outperforms FIL. Finally, while linear mappings can very effectively be updated from trial-to-trial to model incremental lexical learning, deep mappings cannot do so as effectively. At present, both linear and deep mappings are informative for understanding language.
comment: 19 pages, 6 figures; includes a few numeric changes to results due to a fixed bug, published version
♻ ☆ Neurocognitive Modeling for Text Generation: Deep Learning Architecture for EEG Data
Text generating capabilities have undergone a substantial transformation with the introduction of large language models (LLMs). Electroencephalography (EEG)-based text production is still difficult, though, because it requires a lot of data and processing power. This paper introduces a new method that combines the use of the Gemma 2B LLM with a classifier-LLM architecture to incorporate a Recurrent Neural Network (RNN) encoder. Our approach drastically lowers the amount of data and compute power needed while achieving performance close to that of cutting-edge methods. Notably, compared to current methodologies, our methodology delivers an overall performance improvement of 10%. The suggested architecture demonstrates the possibility of effective transfer learning for EEG-based text production, remaining strong and functional even in the face of data limits. This work highlights the potential of integrating LLMs with EEG decoding to improve assistive technologies and improve independence and communication for those with severe motor limitations. Our method pushes the limits of present capabilities and opens new paths for research and application in brain-computer interfaces by efficiently using the strengths of pre-trained language models. This makes EEG-based text production more accessible and efficient.
comment: 15 pages, 10 figures, 5 tables
♻ ☆ PIP: Perturbation-based Iterative Pruning for Large Language Models EMNLP 2025
The rapid increase in the parameter counts of Large Language Models (LLMs), which often reach into the billions or even trillions, presents significant challenges for their practical deployment, particularly in resource-constrained environments. To address this issue, we propose PIP (Perturbation-based Iterative Pruning), a novel double-view structured pruning method to optimize LLMs, which combines information from two different views: the unperturbed view and the perturbed view. With the calculation of gradient differences, PIP iteratively prunes those that struggle to distinguish between these two views. Our experiments show that PIP reduces the parameter count by approximately 20% while retaining over 85% of the original model's accuracy across varied benchmarks. In some cases, the performance of the pruned model is within 5% of the unpruned version, demonstrating PIP's ability to preserve key aspects of model effectiveness. Moreover, PIP consistently outperforms existing state-of-the-art (SOTA) structured pruning methods, establishing it as a leading technique for optimizing LLMs in constrained environments.
comment: EMNLP 2025 Findings, 17 pages, 5 figures, 15 tables
♻ ☆ Multimodal DeepResearcher: Generating Text-Chart Interleaved Reports From Scratch with Agentic Framework AAAI 2026
Visualizations play a crucial part in effective communication of concepts and information. Recent advances in reasoning and retrieval augmented generation have enabled Large Language Models (LLMs) to perform deep research and generate comprehensive reports. Despite its progress, existing deep research frameworks primarily focus on generating text-only content, leaving the automated generation of interleaved texts and visualizations underexplored. This novel task poses key challenges in designing informative visualizations and effectively integrating them with text reports. To address these challenges, we propose Formal Description of Visualization (FDV), a structured textual representation of charts that enables LLMs to learn from and generate diverse, high-quality visualizations. Building on this representation, we introduce Multimodal DeepResearcher, an agentic framework that decomposes the task into four stages: (1) researching, (2) exemplar report textualization, (3) planning, and (4) multimodal report generation. For the evaluation of generated multimodal reports, we develop MultimodalReportBench, which contains 100 diverse topics served as inputs along with 5 dedicated metrics. Extensive experiments across models and evaluation methods demonstrate the effectiveness of Multimodal DeepResearcher. Notably, utilizing the same Claude 3.7 Sonnet model, Multimodal DeepResearcher achieves an 82\% overall win rate over the baseline method.
comment: AAAI 2026 Oral
♻ ☆ Leveraging Online Data to Enhance Medical Knowledge in a Small Persian Language Model
The rapid advancement of language models has demonstrated the potential of artificial intelligence in the healthcare industry. However, small language models struggle with specialized domains in low-resource languages like Persian. While numerous medical-domain websites exist in Persian, no curated dataset or corpus has been available making ours the first of its kind. This study introduces a newly curated dataset comprising 20k doctor-patient Q\&A pairs and 60\% of a 90-million-token crawled corpus from medical magazines. Using a parameter-efficient fine-tuning approach, we enhanced the medical knowledge of the baseline model, aya-expanse-8b. Benchmark evaluations demonstrate that the fine-tuned model achieves improved accuracy in medical question answering and successfully passed the Iranian Basic Medical Science Entrance Exam (IBSEE) in September 2023, which the baseline model did not. Additionally, the fine-tuned model improved Persian-translated MMLU accuracy by an average of 2.67\%. This work highlights the potential of leveraging open-access online data to enrich small language models in medical fields, providing a novel solution for Persian medical AI applications suitable for resource-constrained environments. Future research could explore multimodal input to further enhance performance.
comment: 8 pages, 7 figures
♻ ☆ GRAM-R$^2$: Self-Training Generative Foundation Reward Models for Reward Reasoning AAAI 2026
Significant progress in reward modeling over recent years has been driven by a paradigm shift from task-specific designs towards generalist reward models. Despite this trend, developing effective reward models remains a fundamental challenge: the heavy reliance on large-scale labeled preference data. Pre-training on abundant unlabeled data offers a promising direction, but existing approaches fall short of instilling explicit reasoning into reward models. To bridge this gap, we propose a self-training approach that leverages unlabeled data to elicit reward reasoning in reward models. Based on this approach, we develop GRAM-R$^2$, a generative reward model trained to produce not only preference labels but also accompanying reward rationales. GRAM-R$^2$ can serve as a foundation model for reward reasoning and can be applied to a wide range of tasks with minimal or no additional fine-tuning. It can support downstream applications such as response ranking and task-specific reward tuning. Experiments on response ranking, task adaptation, and reinforcement learning from human feedback demonstrate that GRAM-R$^2$ consistently delivers strong performance, outperforming several strong discriminative and generative baselines.
comment: Accepted by AAAI 2026
♻ ☆ SelecTKD: Selective Token-Weighted Knowledge Distillation for LLMs
Knowledge distillation (KD) is a standard route to compress Large Language Models (LLMs) into compact students, yet most pipelines uniformly apply token-wise loss regardless of teacher confidence. This indiscriminate supervision amplifies noisy, high-entropy signals and is especially harmful under large teacher-student capacity gaps. We introduce SelecTKD, a plug-and-play Selective Token-Weighted distillation framework that shifts the focus from "how to measure divergence" to "where to apply learning". At each step, the student proposes tokens that are verified by the teacher through a robust propose-and-verify procedure with two variants: greedy Top-k and non-greedy Spec-k. Accepted tokens receive full loss, while rejected tokens are masked or down-weighted. This objective-agnostic design works with on- and off-policy data, induces an implicit curriculum quantified by Token Acceptance Rate (TAR), and stabilizes optimization. Across instruction following, mathematical reasoning, code generation, and a VLM setting, SelecTKD consistently improves strong baselines and achieves state-of-the-art results for small models without architectural changes or extra reference models.
♻ ☆ Do Language Models Associate Sound with Meaning? A Multimodal Study of Sound Symbolism
Sound symbolism is a linguistic concept that refers to non-arbitrary associations between phonetic forms and their meanings. We suggest that this can be a compelling probe into how Multimodal Large Language Models (MLLMs) interpret auditory information in human languages. We investigate MLLMs' performance on phonetic iconicity across textual (orthographic and IPA) and auditory forms of inputs with up to 25 semantic dimensions (e.g., sharp vs. round), observing models' layer-wise information processing by measuring phoneme-level attention fraction scores. To this end, we present LEX-ICON, an extensive mimetic word dataset consisting of 8,052 words from four natural languages (English, French, Japanese, and Korean) and 2,930 systematically constructed pseudo-words, annotated with semantic features applied across both text and audio modalities. Our key findings demonstrate (1) MLLMs' phonetic intuitions that align with existing linguistic research across multiple semantic dimensions and (2) phonosemantic attention patterns that highlight models' focus on iconic phonemes. These results bridge domains of artificial intelligence and cognitive linguistics, providing the first large-scale, quantitative analyses of phonetic iconicity in terms of MLLMs' interpretability.
comment: 33 pages, 27 tables, 10 figures
♻ ☆ Contextual Integrity in LLMs via Reasoning and Reinforcement Learning NeurIPS 2025
As the era of autonomous agents making decisions on behalf of users unfolds, ensuring contextual integrity (CI) -- what is the appropriate information to share while carrying out a certain task -- becomes a central question to the field. We posit that CI demands a form of reasoning where the agent needs to reason about the context in which it is operating. To test this, we first prompt LLMs to reason explicitly about CI when deciding what information to disclose. We then extend this approach by developing a reinforcement learning (RL) framework that further instills in models the reasoning necessary to achieve CI. Using a synthetic, automatically created, dataset of only $\sim700$ examples but with diverse contexts and information disclosure norms, we show that our method substantially reduces inappropriate information disclosure while maintaining task performance across multiple model sizes and families. Importantly, improvements transfer from this synthetic dataset to established CI benchmarks such as PrivacyLens that has human annotations and evaluates privacy leakage of AI assistants in actions and tool calls.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Accommodate Knowledge Conflicts in Retrieval-augmented LLMs: Towards Robust Response Generation in the Wild
The proliferation of large language models (LLMs) has significantly advanced intelligent systems. Unfortunately, LLMs often face knowledge conflicts between internal memory and retrieved external information, arising from misinformation, biases, or outdated knowledge. These conflicts undermine response reliability and introduce uncertainty in decision-making. In this work, we analyze how LLMs navigate knowledge conflicts from an information-theoretic perspective and reveal that when conflicting and supplementary information exhibit significant differences, LLMs confidently resolve their preferences and alleviate the uncertainty during their response generation. When this difference is ambiguous, LLMs experience considerable uncertainty about their generation. Based on this insight, we propose Swin-VIB, a novel framework that integrates a pipeline of variational information bottleneck models to adapt the retrieved information difference, facilitating robust response generation of LLMs even in conflicting contexts. Extensive experiments confirm our theoretical analysis and demonstrate the performance of Swin-VIB. Notably, Swin-VIB outperforms all competitive baselines in terms of the accuracy of the multiple-choice task, while improving the EM values in the open-ended QA task by at least 11.14%.
♻ ☆ MAPLE: Multi-Agent Adaptive Planning with Long-Term Memory for Table Reasoning ALT
Table-based question answering requires complex reasoning capabilities that current LLMs struggle to achieve with single-pass inference. Existing approaches, such as Chain-of-Thought reasoning and question decomposition, lack error detection mechanisms and discard problem-solving experiences, contrasting sharply with how humans tackle such problems. In this paper, we propose MAPLE (Multi-agent Adaptive Planning with Long-term mEmory), a novel framework that mimics human problem-solving through specialized cognitive agents working in a feedback-driven loop. MAPLE integrates 4 key components: (1) a Solver using the ReAct paradigm for reasoning, (2) a Checker for answer verification, (3) a Reflector for error diagnosis and strategy correction, and (4) an Archiver managing long-term memory for experience reuse and evolution. Experiments on WiKiTQ and TabFact demonstrate significant improvements over existing methods, achieving state-of-the-art performance across multiple LLM backbones.
comment: 27 pages, 11 figures, ALTA 2025
Information Retrieval
☆ MindRec: Mind-inspired Coarse-to-fine Decoding for Generative Recommendation
Recent advancements in large language model-based recommendation systems often represent items as text or semantic IDs and generate recommendations in an auto-regressive manner. However, due to the left-to-right greedy decoding strategy and the unidirectional logical flow, such methods often fail to produce globally optimal recommendations. In contrast, human reasoning does not follow a rigid left-to-right sequence. Instead, it often begins with keywords or intuitive insights, which are then refined and expanded. Inspired by this fact, we propose Mind-inspired Recommender (MindRec), a novel generative framework that emulates human thought processes. Particularly, our method first generates key tokens that reflect user preferences, and then expands them into the complete item, enabling flexible and human-like generation. To further emulate the structured nature of human decision-making, we organize items into a hierarchical category tree. This structure guides the model to first produce the coarse-grained category and then progressively refine its selection through finer-grained subcategories before generating the specific item. To mitigate the local optimum problem inherent in greedy decoding, we design a novel beam search algorithm, Diffusion Beam Search, tailored for our mind-inspired generation paradigm. Experimental results demonstrate that MindRec yields a 9.5\% average improvement in top-1 recommendation performance over state-of-the-art methods, highlighting its potential to enhance recommendation accuracy. The implementation is available via https://github.com/Mr-Peach0301/MindRec.
☆ DualGR: Generative Retrieval with Long and Short-Term Interests Modeling
In large-scale industrial recommendation systems, retrieval must produce high-quality candidates from massive corpora under strict latency. Recently, Generative Retrieval (GR) has emerged as a viable alternative to Embedding-Based Retrieval (EBR), which quantizes items into a finite token space and decodes candidates autoregressively, providing a scalable path that explicitly models target-history interactions via cross-attention. However, three challenges persist: 1) how to balance users' long-term and short-term interests , 2) noise interference when generating hierarchical semantic IDs (SIDs), 3) the absence of explicit modeling for negative feedback such as exposed items without clicks. To address these challenges, we propose DualGR, a generative retrieval framework that explicitly models dual horizons of user interests with selective activation. Specifically, DualGR utilizes Dual-Branch Long/Short-Term Router (DBR) to cover both stable preferences and transient intents by explicitly modeling users' long- and short-term behaviors. Meanwhile, Search-based SID Decoding (S2D) is presented to control context-induced noise and enhance computational efficiency by constraining candidate interactions to the current coarse (level-1) bucket during fine-grained (level-2/3) SID prediction. % also reinforcing intra-class consistency. Finally, we propose an Exposure-aware Next-Token Prediction Loss (ENTP-Loss) that treats "exposed-but-unclicked" items as hard negatives at level-1, enabling timely interest fade-out. On the large-scale Kuaishou short-video recommendation system, DualGR has achieved outstanding performance. Online A/B testing shows +0.527% video views and +0.432% watch time lifts, validating DualGR as a practical and effective paradigm for industrial generative retrieval.
☆ Task-Aware Retrieval Augmentation for Dynamic Recommendation AAAI 2026
Dynamic recommendation systems aim to provide personalized suggestions by modeling temporal user-item interactions across time-series behavioral data. Recent studies have leveraged pre-trained dynamic graph neural networks (GNNs) to learn user-item representations over temporal snapshot graphs. However, fine-tuning GNNs on these graphs often results in generalization issues due to temporal discrepancies between pre-training and fine-tuning stages, limiting the model's ability to capture evolving user preferences. To address this, we propose TarDGR, a task-aware retrieval-augmented framework designed to enhance generalization capability by incorporating task-aware model and retrieval-augmentation. Specifically, TarDGR introduces a Task-Aware Evaluation Mechanism to identify semantically relevant historical subgraphs, enabling the construction of task-specific datasets without manual labeling. It also presents a Graph Transformer-based Task-Aware Model that integrates semantic and structural encodings to assess subgraph relevance. During inference, TarDGR retrieves and fuses task-aware subgraphs with the query subgraph, enriching its representation and mitigating temporal generalization issues. Experiments on multiple large-scale dynamic graph datasets demonstrate that TarDGR consistently outperforms state-of-the-art methods, with extensive empirical evidence underscoring its superior accuracy and generalization capabilities.
comment: AAAI 2026
☆ MOON2.0: Dynamic Modality-balanced Multimodal Representation Learning for E-commerce Product Understanding
The rapid growth of e-commerce calls for multimodal models that comprehend rich visual and textual product information. Although recent multimodal large language models (MLLMs) for product understanding exhibit strong capability in representation learning for e-commerce, they still face three challenges: (i) the modality imbalance induced by modality mixed training; (ii) underutilization of the intrinsic alignment relationships among visual and textual information within a product; and (iii) limited handling of noise in e-commerce multimodal data. To address these, we propose MOON2.0, a dynamic modality-balanced multimodal representation learning framework for e-commerce product understanding. MOON2.0 comprises: (1) a Modality-driven Mixture-of-Experts (MoE) module that adaptively processes input samples by their modality composition, enabling Multimodal Joint Learning to mitigate the modality imbalance; (2) a Dual-level Alignment method to better leverage semantic alignment properties inside individual products; and (3) an MLLM-based Image-text Co-augmentation strategy that integrates textual enrichment with visual expansion, coupled with Dynamic Sample Filtering to improve training data quality. We further introduce MBE2.0, a co-augmented multimodal representation benchmark for e-commerce representation learning and evaluation. Experiments show that MOON2.0 delivers state-of-the-art zero-shot performance on MBE2.0 and multiple public datasets. Furthermore, attention-based heatmap visualization provides qualitative evidence of improved multimodal alignment of MOON2.0.
comment: 11 pages, 7 figures
♻ ☆ Don't Waste It: Guiding Generative Recommenders with Structured Human Priors via Multi-head Decoding
Optimizing recommender systems for objectives beyond accuracy, such as diversity, novelty, and personalization, is crucial for long-term user satisfaction. To this end, industrial practitioners have accumulated vast amounts of structured domain knowledge, which we term human priors (e.g., item taxonomies, temporal patterns). This knowledge is typically applied through post-hoc adjustments during ranking or post-ranking. However, this approach remains decoupled from the core model learning, which is particularly undesirable as the industry shifts to end-to-end generative recommendation foundation models. On the other hand, many methods targeting these beyond-accuracy objectives often require architecture-specific modifications and discard these valuable human priors by learning user intent in a fully unsupervised manner. Instead of discarding the human priors accumulated over years of practice, we introduce a backbone-agnostic framework that seamlessly integrates these human priors directly into the end-to-end training of generative recommenders. With lightweight, prior-conditioned adapter heads inspired by efficient LLM decoding strategies, our approach guides the model to disentangle user intent along human-understandable axes (e.g., interaction types, long- vs. short-term interests). We also introduce a hierarchical composition strategy for modeling complex interactions across different prior types. Extensive experiments on three large-scale datasets demonstrate that our method significantly enhances both accuracy and beyond-accuracy objectives. We also show that human priors allow the backbone model to more effectively leverage longer context lengths and larger model sizes.
♻ ☆ TFRank: Think-Free Reasoning Enables Practical Pointwise LLM Ranking
Reasoning-intensive ranking models built on Large Language Models (LLMs) have made notable progress. However, existing approaches often rely on large-scale LLMs and explicit Chain-of-Thought (CoT) reasoning, resulting in high computational cost and latency that limit real-world use. To address this, we propose \textbf{TFRank}, an efficient pointwise reasoning ranker based on small-scale LLMs. To improve ranking performance, TFRank effectively integrates CoT data, fine-grained score supervision, and multi-task training. Furthermore, it achieves an efficient ``\textbf{T}hink-\textbf{F}ree" reasoning capability by employing a ``think-mode switch'' and pointwise format constraints. Specifically, this allows the model to leverage explicit reasoning during training while delivering precise relevance scores for complex queries at inference without generating any reasoning chains. Experiments show that TFRank achieves performance comparable to models with four times more parameters on the BRIGHT benchmark and demonstrates strong competitiveness on the BEIR benchmark. Further analysis shows that TFRank achieves an effective balance between performance and efficiency, providing a practical solution for integrating advanced reasoning into real-world systems. Our code and data are released in the repository: https://github.com/JOHNNY-fans/TFRank.
♻ ☆ Function-based Labels for Complementary Recommendation: Definition, Annotation, and LLM-as-a-Judge
Complementary recommendations enhance the user experience by suggesting items that are frequently purchased together while serving different functions from the query item. Inferring or evaluating whether two items have a complementary relationship requires complementary relationship labels; however, defining these labels is challenging because of the inherent ambiguity of such relationships. Complementary labels based on user historical behavior logs attempt to capture these relationships, but often produce inconsistent and unreliable results. Recent efforts have introduced large language models (LLMs) to infer these relationships. However, these approaches provide a binary classification without a nuanced understanding of complementary relationships. In this study, we address these challenges by introducing Function-Based Labels (FBLs), a novel definition of complementary relationships independent of user purchase logs and the opaque decision processes of LLMs. We constructed a human-annotated FBLs dataset comprising 2,759 item pairs and demonstrated that it covered possible item relationships and minimized ambiguity. We then evaluated whether some machine learning (ML) methods using annotated FBLs could accurately infer labels for unseen item pairs, and whether LLM-generated complementary labels align with human perception. Our results demonstrate that even with limited data, ML models, such as logistic regression and SVM achieve high macro-F1 scores (approximately 0.82). Furthermore, LLMs, such as gpt-4o-mini, demonstrated high consistency (0.989) and classification accuracy (0.849) under the detailed definition of FBLs, indicating their potential as effective annotators that mimic human judgment. Overall, our study presents FBLs as a clear definition of complementary relationships, enabling more accurate inferences and automated labeling of complementary recommendations.
♻ ☆ From IDs to Semantics: A Generative Framework for Cross-Domain Recommendation with Adaptive Semantic Tokenization AAAI 2026
Cross-domain recommendation (CDR) is crucial for improving recommendation accuracy and generalization, yet traditional methods are often hindered by the reliance on shared user/item IDs, which are unavailable in most real-world scenarios. Consequently, many efforts have focused on learning disentangled representations through multi-domain joint training to bridge the domain gaps. Recent Large Language Model (LLM)-based approaches show promise, they still face critical challenges, including: (1) the \textbf{item ID tokenization dilemma}, which leads to vocabulary explosion and fails to capture high-order collaborative knowledge; and (2) \textbf{insufficient domain-specific modeling} for the complex evolution of user interests and item semantics. To address these limitations, we propose \textbf{GenCDR}, a novel \textbf{Gen}erative \textbf{C}ross-\textbf{D}omain \textbf{R}ecommendation framework. GenCDR first employs a \textbf{Domain-adaptive Tokenization} module, which generates disentangled semantic IDs for items by dynamically routing between a universal encoder and domain-specific adapters. Symmetrically, a \textbf{Cross-domain Autoregressive Recommendation} module models user preferences by fusing universal and domain-specific interests. Finally, a \textbf{Domain-aware Prefix-tree} enables efficient and accurate generation. Extensive experiments on multiple real-world datasets demonstrate that GenCDR significantly outperforms state-of-the-art baselines. Our code is available in the supplementary materials.
comment: Accepted by AAAI 2026
♻ ☆ DiffuGR: Generative Document Retrieval with Diffusion Language Models
Generative retrieval (GR) re-frames document retrieval as a sequence-based document identifier (DocID) generation task, memorizing documents with model parameters and enabling end-to-end retrieval without explicit indexing. Existing GR methods are based on auto-regressive generative models, i.e., the token generation is performed from left to right. However, such auto-regressive methods suffer from: (1) mismatch between DocID generation and natural language generation, e.g., an incorrect DocID token generated in early left steps would lead to totally erroneous retrieval; and (2) failure to balance the trade-off between retrieval efficiency and accuracy dynamically, which is crucial for practical applications. To address these limitations, we propose generative document retrieval with diffusion language models, dubbed DiffuGR. It models DocID generation as a discrete diffusion process: during training, DocIDs are corrupted through a stochastic masking process, and a diffusion language model is learned to recover them under a retrieval-aware objective. For inference, DiffuGR attempts to generate DocID tokens in parallel and refines them through a controllable number of denoising steps. In contrast to conventional left-to-right auto-regressive decoding, DiffuGR provides a novel mechanism to first generate more confident DocID tokens and refine the generation through diffusion-based denoising. Moreover, DiffuGR also offers explicit runtime control over the qualitylatency tradeoff. Extensive experiments on benchmark retrieval datasets show that DiffuGR is competitive with strong auto-regressive generative retrievers, while offering flexible speed and accuracy tradeoffs through variable denoising budgets. Overall, our results indicate that non-autoregressive diffusion models are a practical and effective alternative for generative document retrieval.
comment: This paper is under review
Multimedia
☆ SynthGuard: An Open Platform for Detecting AI-Generated Multimedia with Multimodal LLMs
Artificial Intelligence (AI) has made it possible for anyone to create images, audio, and video with unprecedented ease, enriching education, communication, and creative expression. At the same time, the rapid rise of AI-generated media has introduced serious risks, including misinformation, identity misuse, and the erosion of public trust as synthetic content becomes increasingly indistinguishable from real media. Although deepfake detection has advanced, many existing tools remain closed-source, limited in modality, or lacking transparency and educational value, making it difficult for users to understand how detection decisions are made. To address these gaps, we introduce SynthGuard, an open, user-friendly platform for detecting and analyzing AI-generated multimedia using both traditional detectors and multimodal large language models (MLLMs). SynthGuard provides explainable inference, unified image and audio support, and an interactive interface designed to make forensic analysis accessible to researchers, educators, and the public. The SynthGuard platform is available at: https://in-engr-nova.it.purdue.edu/
♻ ☆ Failures to Surface Harmful Contents in Video Large Language Models AAAI 2026
Video Large Language Models (VideoLLMs) are increasingly deployed on numerous critical applications, where users rely on auto-generated summaries while casually skimming the video stream. We show that this interaction hides a critical safety gap: if harmful content is embedded in a video, either as full-frame inserts or as small corner patches, state-of-the-art VideoLLMs rarely mention the harmful content in the output, despite its clear visibility to human viewers. A root-cause analysis reveals three compounding design flaws: (1) insufficient temporal coverage resulting from the sparse, uniformly spaced frame sampling used by most leading VideoLLMs, (2) spatial information loss introduced by aggressive token downsampling within sampled frames, and (3) encoder-decoder disconnection, whereby visual cues are only weakly utilized during text generation. Leveraging these insights, we craft three zero-query black-box attacks, aligning with these flaws in the processing pipeline. Our large-scale evaluation across five leading VideoLLMs shows that the harmfulness omission rate exceeds 90% in most cases. Even when harmful content is clearly present in all frames, these models consistently fail to identify it. These results underscore a fundamental vulnerability in current VideoLLMs' designs and highlight the urgent need for sampling strategies, token compression, and decoding mechanisms that guarantee semantic coverage rather than speed alone.
comment: 12 pages, 8 figures. Accepted to AAAI 2026
Computation and Language
☆ From Phonemes to Meaning: Evaluating Large Language Models on Tamil
Large Language Models (LLMs) have shown strong generalization across tasks in high-resource languages; however, their linguistic competence in low-resource and morphologically rich languages such as Tamil remains largely unexplored. Existing multilingual benchmarks often rely on translated English datasets, failing to capture the linguistic and cultural nuances of the target language. To address this gap, we introduce ILAKKANAM, the first Tamil-specific linguistic evaluation benchmark manually curated using 820 questions from Sri Lankan school-level Tamil subject examination papers. Each question is annotated by trained linguists under five linguistic categories and a factual knowledge category, spanning Grades 1--13 to ensure broad linguistic coverage. We evaluate both closed-source and open-source LLMs using a standardized evaluation framework. Our results show that Gemini 2.5 achieves the highest overall performance, while open-source models lag behind, highlighting the gap in linguistic grounding. Category- and grade-wise analyses reveal that all models perform well on lower-grade questions but show a clear decline as linguistic complexity increases. Further, no strong correlation is observed between a model's overall performance and its ability to identify linguistic categories, suggesting that performance may be driven by exposure rather than genuine understanding.
comment: 11 pages
☆ Don't Think of the White Bear: Ironic Negation in Transformer Models Under Cognitive Load
Negation instructions such as 'do not mention $X$' can paradoxically increase the accessibility of $X$ in human thought, a phenomenon known as ironic rebound. Large language models (LLMs) face the same challenge: suppressing a concept requires internally activating it, which may prime rebound instead of avoidance. We investigated this tension with two experiments. \textbf{(1) Load \& content}: after a negation instruction, we vary distractor text (semantic, syntactic, repetition) and measure rebound strength. \textbf{(2) Polarity separation}: We test whether models distinguish neutral from negative framings of the same concept and whether this separation predicts rebound persistence. Results show that rebound consistently arises immediately after negation and intensifies with longer or semantic distractors, while repetition supports suppression. Stronger polarity separation correlates with more persistent rebound. Together, these findings, complemented by a circuit tracing analysis that identifies sparse middle-layer attention heads amplifying forbidden tokens while early layers suppress, link cognitive predictions of ironic rebound with mechanistic insights into long-context interference. To support future work, we release ReboundBench, a dataset of $5,000$ systematically varied negation prompts designed to probe rebound in LLMs.
♻ ☆ Evaluating LLMs' Reasoning Over Ordered Procedural Steps AACL 2025
Reasoning over procedural sequences, where the order of steps directly impacts outcomes, is a critical capability for large language models (LLMs). In this work, we study the task of reconstructing globally ordered sequences from shuffled procedural steps, using a curated dataset of food recipes, a domain where correct sequencing is essential for task success. We evaluate several LLMs under zero-shot and few-shot settings and present a comprehensive evaluation framework that adapts established metrics from ranking and sequence alignment. These include Kendall's Tau, Normalized Longest Common Subsequence (NLCS), and Normalized Edit Distance (NED), which capture complementary aspects of ordering quality. Our analysis shows that model performance declines with increasing sequence length, reflecting the added complexity of longer procedures. We also find that greater step displacement in the input, corresponding to more severe shuffling, leads to further degradation. These findings highlight the limitations of current LLMs in procedural reasoning, especially with longer and more disordered inputs.
comment: Accepted to IJCNLP-AACL 2025 Findings
♻ ☆ ReviewGraph: A Knowledge Graph Embedding Based Framework for Review Rating Prediction with Sentiment Features
In the hospitality industry, understanding the factors that drive customer review ratings is critical for improving guest satisfaction and business performance. This work proposes ReviewGraph for Review Rating Prediction (RRP), a novel framework that transforms textual customer reviews into knowledge graphs by extracting (subject, predicate, object) triples and associating sentiment scores. Using graph embeddings (Node2Vec) and sentiment features, the framework predicts review rating scores through machine learning classifiers. We compare ReviewGraph performance with traditional NLP baselines (such as Bag of Words, TF-IDF, and Word2Vec) and large language models (LLMs), evaluating them in the HotelRec dataset. In comparison to the state of the art literature, our proposed model performs similar to their best performing model but with lower computational cost (without ensemble). While ReviewGraph achieves comparable predictive performance to LLMs and outperforms baselines on agreement-based metrics such as Cohen's Kappa, it offers additional advantages in interpretability, visual exploration, and potential integration into Retrieval-Augmented Generation (RAG) systems. This work highlights the potential of graph-based representations for enhancing review analytics and lays the groundwork for future research integrating advanced graph neural networks and fine-tuned LLM-based extraction methods. We will share ReviewGraph output and platform open-sourced on our GitHub page https://github.com/aaronlifenghan/ReviewGraph
comment: Peer-reviewed and published version is in ICKG-2025 (The 16th IEEE International Conference on Knowledge Graphs, November 13-14, 2025, Limassol, Cyprus)
♻ ☆ SCRum-9: Multilingual Stance Classification over Rumours on Social Media
We introduce SCRum-9, the largest multilingual Stance Classification dataset for Rumour analysis in 9 languages, containing 7,516 tweets from X. SCRum-9 goes beyond existing stance classification datasets by covering more languages, linking examples to more fact-checked claims (2.1k), and including confidence-related annotations from multiple annotators to account for intra- and inter-annotator variability. Annotations were made by at least two native speakers per language, totalling more than 405 hours of annotation and 8,150 dollars in compensation. Further, SCRum-9 is used to benchmark five large language models (LLMs) and two multilingual masked language models (MLMs) in In-Context Learning (ICL) and fine-tuning setups. This paper also innovates by exploring the use of multilingual synthetic data for rumour stance classification, showing that even LLMs with weak ICL performance can produce valuable synthetic data for fine-tuning small MLMs, enabling them to achieve higher performance than zero-shot ICL in LLMs. Finally, we examine the relationship between model predictions and human uncertainty on ambiguous cases finding that model predictions often match the second-choice labels assigned by annotators, rather than diverging entirely from human judgments. SCRum-9 is publicly released to the research community with potential to foster further research on multilingual analysis of misleading narratives on social media.
comment: Accepted by ICWSM 2026
Information Retrieval
☆ Mobile-Agent-RAG: Driving Smart Multi-Agent Coordination with Contextual Knowledge Empowerment for Long-Horizon Mobile Automation
Mobile agents show immense potential, yet current state-of-the-art (SoTA) agents exhibit inadequate success rates on real-world, long-horizon, cross-application tasks. We attribute this bottleneck to the agents' excessive reliance on static, internal knowledge within MLLMs, which leads to two critical failure points: 1) strategic hallucinations in high-level planning and 2) operational errors during low-level execution on user interfaces (UI). The core insight of this paper is that high-level planning and low-level UI operations require fundamentally distinct types of knowledge. Planning demands high-level, strategy-oriented experiences, whereas operations necessitate low-level, precise instructions closely tied to specific app UIs. Motivated by these insights, we propose Mobile-Agent-RAG, a novel hierarchical multi-agent framework that innovatively integrates dual-level retrieval augmentation. At the planning stage, we introduce Manager-RAG to reduce strategic hallucinations by retrieving human-validated comprehensive task plans that provide high-level guidance. At the execution stage, we develop Operator-RAG to improve execution accuracy by retrieving the most precise low-level guidance for accurate atomic actions, aligned with the current app and subtask. To accurately deliver these knowledge types, we construct two specialized retrieval-oriented knowledge bases. Furthermore, we introduce Mobile-Eval-RAG, a challenging benchmark for evaluating such agents on realistic multi-app, long-horizon tasks. Extensive experiments demonstrate that Mobile-Agent-RAG significantly outperforms SoTA baselines, improving task completion rate by 11.0% and step efficiency by 10.2%, establishing a robust paradigm for context-aware, reliable multi-agent mobile automation.
☆ Continuous-time Discrete-space Diffusion Model for Recommendation WSDM 2026
In the era of information explosion, Recommender Systems (RS) are essential for alleviating information overload and providing personalized user experiences. Recent advances in diffusion-based generative recommenders have shown promise in capturing the dynamic nature of user preferences. These approaches explore a broader range of user interests by progressively perturbing the distribution of user-item interactions and recovering potential preferences from noise, enabling nuanced behavioral understanding. However, existing diffusion-based approaches predominantly operate in continuous space through encoded graph-based historical interactions, which may compromise potential information loss and suffer from computational inefficiency. As such, we propose CDRec, a novel Continuous-time Discrete-space Diffusion Recommendation framework, which models user behavior patterns through discrete diffusion on historical interactions over continuous time. The discrete diffusion algorithm operates via discrete element operations (e.g., masking) while incorporating domain knowledge through transition matrices, producing more meaningful diffusion trajectories. Furthermore, the continuous-time formulation enables flexible adaptive sampling. To better adapt discrete diffusion models to recommendations, CDRec introduces: (1) a novel popularity-aware noise schedule that generates semantically meaningful diffusion trajectories, and (2) an efficient training framework combining consistency parameterization for fast sampling and a contrastive learning objective guided by multi-hop collaborative signals for personalized recommendation. Extensive experiments on real-world datasets demonstrate CDRec's superior performance in both recommendation accuracy and computational efficiency.
comment: Accepted by WSDM 2026
☆ From Scaling to Structured Expressivity: Rethinking Transformers for CTR Prediction
Despite massive investments in scale, deep models for click-through rate (CTR) prediction often exhibit rapidly diminishing returns - a stark contrast to the smooth, predictable gains seen in large language models. We identify the root cause as a structural misalignment: Transformers assume sequential compositionality, while CTR data demand combinatorial reasoning over high-cardinality semantic fields. Unstructured attention spreads capacity indiscriminately, amplifying noise under extreme sparsity and breaking scalable learning. To restore alignment, we introduce the Field-Aware Transformer (FAT), which embeds field-based interaction priors into attention through decomposed content alignment and cross-field modulation. This design ensures model complexity scales with the number of fields F, not the total vocabulary size n >> F, leading to tighter generalization and, critically, observed power-law scaling in AUC as model width increases. We present the first formal scaling law for CTR models, grounded in Rademacher complexity, that explains and predicts this behavior. On large-scale benchmarks, FAT improves AUC by up to +0.51% over state-of-the-art methods. Deployed online, it delivers +2.33% CTR and +0.66% RPM. Our work establishes that effective scaling in recommendation arises not from size, but from structured expressivity-architectural coherence with data semantics.
☆ ComLQ: Benchmarking Complex Logical Queries in Information Retrieval AAAI 2026
Information retrieval (IR) systems play a critical role in navigating information overload across various applications. Existing IR benchmarks primarily focus on simple queries that are semantically analogous to single- and multi-hop relations, overlooking \emph{complex logical queries} involving first-order logic operations such as conjunction ($\land$), disjunction ($\lor$), and negation ($\lnot$). Thus, these benchmarks can not be used to sufficiently evaluate the performance of IR models on complex queries in real-world scenarios. To address this problem, we propose a novel method leveraging large language models (LLMs) to construct a new IR dataset \textbf{ComLQ} for \textbf{Com}plex \textbf{L}ogical \textbf{Q}ueries, which comprises 2,909 queries and 11,251 candidate passages. A key challenge in constructing the dataset lies in capturing the underlying logical structures within unstructured text. Therefore, by designing the subgraph-guided prompt with the subgraph indicator, an LLM (such as GPT-4o) is guided to generate queries with specific logical structures based on selected passages. All query-passage pairs in ComLQ are ensured \emph{structure conformity} and \emph{evidence distribution} through expert annotation. To better evaluate whether retrievers can handle queries with negation, we further propose a new evaluation metric, \textbf{Log-Scaled Negation Consistency} (\textbf{LSNC@$K$}). As a supplement to standard relevance-based metrics (such as nDCG and mAP), LSNC@$K$ measures whether top-$K$ retrieved passages violate negation conditions in queries. Our experimental results under zero-shot settings demonstrate existing retrieval models' limited performance on complex logical queries, especially on queries with negation, exposing their inferior capabilities of modeling exclusion.
comment: Accepted by AAAI 2026
♻ ☆ NyayaRAG: Realistic Legal Judgment Prediction with RAG under the Indian Common Law System AACL
Legal Judgment Prediction (LJP) has emerged as a key area in AI for law, aiming to automate judicial outcome forecasting and enhance interpretability in legal reasoning. While previous approaches in the Indian context have relied on internal case content such as facts, issues, and reasoning, they often overlook a core element of common law systems, which is reliance on statutory provisions and judicial precedents. In this work, we propose NyayaRAG, a Retrieval-Augmented Generation (RAG) framework that simulates realistic courtroom scenarios by providing models with factual case descriptions, relevant legal statutes, and semantically retrieved prior cases. NyayaRAG evaluates the effectiveness of these combined inputs in predicting court decisions and generating legal explanations using a domain-specific pipeline tailored to the Indian legal system. We assess performance across various input configurations using both standard lexical and semantic metrics as well as LLM-based evaluators such as G-Eval. Our results show that augmenting factual inputs with structured legal knowledge significantly improves both predictive accuracy and explanation quality.
comment: Paper accepted in the AACL-IJCNLP 2025 conference
♻ ☆ TathyaNyaya and FactLegalLlama: Advancing Factual Judgment Prediction and Explanation in the Indian Legal Context AACL
In the landscape of Fact-based Judgment Prediction and Explanation (FJPE), reliance on factual data is essential for developing robust and realistic AI-driven decision-making tools. This paper introduces TathyaNyaya, the largest annotated dataset for FJPE tailored to the Indian legal context, encompassing judgments from the Supreme Court of India and various High Courts. Derived from the Hindi terms "Tathya" (fact) and "Nyaya" (justice), the TathyaNyaya dataset is uniquely designed to focus on factual statements rather than complete legal texts, reflecting real-world judicial processes where factual data drives outcomes. Complementing this dataset, we present FactLegalLlama, an instruction-tuned variant of the LLaMa-3-8B Large Language Model (LLM), optimized for generating high-quality explanations in FJPE tasks. Finetuned on the factual data in TathyaNyaya, FactLegalLlama integrates predictive accuracy with coherent, contextually relevant explanations, addressing the critical need for transparency and interpretability in AI-assisted legal systems. Our methodology combines transformers for binary judgment prediction with FactLegalLlama for explanation generation, creating a robust framework for advancing FJPE in the Indian legal domain. TathyaNyaya not only surpasses existing datasets in scale and diversity but also establishes a benchmark for building explainable AI systems in legal analysis. The findings underscore the importance of factual precision and domain-specific tuning in enhancing predictive performance and interpretability, positioning TathyaNyaya and FactLegalLlama as foundational resources for AI-assisted legal decision-making.
comment: Paper accepted in the AACL-IJCNLP 2025 conference
♻ ☆ LLM-CoT Enhanced Graph Neural Recommendation with Harmonized Group Policy Optimization
Graph neural networks (GNNs) have advanced recommender systems by modeling interaction relationships. However, existing graph-based recommenders rely on sparse ID features and do not fully exploit textual information, resulting in low information density within representations. Furthermore, graph contrastive learning faces challenges. Random negative sampling can introduce false negative samples, while fixed temperature coefficients cannot adapt to the heterogeneity of different nodes. In addition, current efforts to enhance recommendations with large language models (LLMs) have not fully utilized their Chain-of-Thought (CoT) reasoning capabilities to guide representation learning. To address these limitations, we introduces LGHRec (LLM-CoT Enhanced Graph Neural Recommendation with Harmonized Group Policy Optimization). This framework leverages the CoT reasoning ability of LLMs to generate semantic IDs, enriching reasoning processes and improving information density and semantic quality of representations. Moreover, we design a reinforcement learning algorithm, Harmonized Group Policy Optimization (HGPO), to optimize negative sampling strategies and temperature coefficients in contrastive learning. This approach enhances long-tail recommendation performance and ensures optimization consistency across different groups. Experimental results on three datasets demonstrate that LGHRec improves representation quality through semantic IDs generated by LLM's CoT reasoning and effectively boosts contrastive learning with HGPO. Our method outperforms several baseline models. The code is available at: https://anonymous.4open.science/r/LLM-Rec.
♻ ☆ MARC: Multimodal and Multi-Task Agentic Retrieval-Augmented Generation for Cold-Start Recommender System CIKM 2025
Recommender systems (RS) are currently being studied to mitigate limitations during cold-start conditions by leveraging modality information or introducing Agent concepts based on the exceptional reasoning capabilities of Large Language Models (LLMs). Meanwhile, food and beverage recommender systems have traditionally used knowledge graph and ontology concepts due to the domain's unique data attributes and relationship characteristics. On this background, we propose MARC, a multimodal and multi-task cocktail recommender system based on Agentic Retrieval-Augmented Generation (RAG) utilizing graph database under cold-start conditions. The proposed system generates high-quality, contextually appropriate answers through two core processes: a task recognition router and a reflection process. The graph database was constructed by processing cocktail data from Kaggle, and its effectiveness was evaluated using 200 manually crafted questions. The evaluation used both LLM-as-a-judge and human evaluation to demonstrate that answers generated via the graph database outperformed those from a simple vector database in terms of quality. The code is available at https://github.com/diddbwls/cocktail_rec_agentrag
comment: 13 pages, 2 figures, Accepted at RDGENAI at CIKM 2025 workshop
Multimedia
☆ To Align or Not to Align: Strategic Multimodal Representation Alignment for Optimal Performance
Multimodal learning often relies on aligning representations across modalities to enable effective information integration, an approach traditionally assumed to be universally beneficial. However, prior research has primarily taken an observational approach, examining naturally occurring alignment in multimodal data and exploring its correlation with model performance, without systematically studying the direct effects of explicitly enforced alignment between representations of different modalities. In this work, we investigate how explicit alignment influences both model performance and representation alignment under different modality-specific information structures. Specifically, we introduce a controllable contrastive learning module that enables precise manipulation of alignment strength during training, allowing us to explore when explicit alignment improves or hinders performance. Our results on synthetic and real datasets under different data characteristics show that the impact of explicit alignment on the performance of unimodal models is related to the characteristics of the data: the optimal level of alignment depends on the amount of redundancy between the different modalities. We identify an optimal alignment strength that balances modality-specific signals and shared redundancy in the mixed information distributions. This work provides practical guidance on when and how explicit alignment should be applied to achieve optimal unimodal encoder performance.
☆ ProAV-DiT: A Projected Latent Diffusion Transformer for Efficient Synchronized Audio-Video Generation
Sounding Video Generation (SVG) remains a challenging task due to the inherent structural misalignment between audio and video, as well as the high computational cost of multimodal data processing. In this paper, we introduce ProAV-DiT, a Projected Latent Diffusion Transformer designed for efficient and synchronized audio-video generation. To address structural inconsistencies, we preprocess raw audio into video-like representations, aligning both the temporal and spatial dimensions between audio and video. At its core, ProAV-DiT adopts a Multi-scale Dual-stream Spatio-Temporal Autoencoder (MDSA), which projects both modalities into a unified latent space using orthogonal decomposition, enabling fine-grained spatiotemporal modeling and semantic alignment. To further enhance temporal coherence and modality-specific fusion, we introduce a multi-scale attention mechanism, which consists of multi-scale temporal self-attention and group cross-modal attention. Furthermore, we stack the 2D latents from MDSA into a unified 3D latent space, which is processed by a spatio-temporal diffusion Transformer. This design efficiently models spatiotemporal dependencies, enabling the generation of high-fidelity synchronized audio-video content while reducing computational overhead. Extensive experiments conducted on standard benchmarks demonstrate that ProAV-DiT outperforms existing methods in both generation quality and computational efficiency.
☆ Calibrated Multimodal Representation Learning with Missing Modalities
Multimodal representation learning harmonizes distinct modalities by aligning them into a unified latent space. Recent research generalizes traditional cross-modal alignment to produce enhanced multimodal synergy but requires all modalities to be present for a common instance, making it challenging to utilize prevalent datasets with missing modalities. We provide theoretical insights into this issue from an anchor shift perspective. Observed modalities are aligned with a local anchor that deviates from the optimal one when all modalities are present, resulting in an inevitable shift. To address this, we propose CalMRL for multimodal representation learning to calibrate incomplete alignments caused by missing modalities. Specifically, CalMRL leverages the priors and the inherent connections among modalities to model the imputation for the missing ones at the representation level. To resolve the optimization dilemma, we employ a bi-step learning method with the closed-form solution of the posterior distribution of shared latents. We validate its mitigation of anchor shift and convergence with theoretical guidance. By equipping the calibrated alignment with the existing advanced method, we offer new flexibility to absorb data with missing modalities, which is originally unattainable. Extensive experiments and comprehensive analyses demonstrate the superiority of CalMRL. Our code, model checkpoints, and evaluation raw data will be publicly available.
♻ ☆ MusRec: Zero-Shot Text-to-Music Editing via Rectified Flow and Diffusion Transformers
Music editing has emerged as an important and practical area of artificial intelligence, with applications ranging from video game and film music production to personalizing existing tracks according to user preferences. However, existing models face significant limitations, such as being restricted to editing synthesized music generated by their own models, requiring highly precise prompts, or necessitating task-specific retraining, thus lacking true zero-shot capability. leveraging recent advances in rectified flow and diffusion transformers, we introduce MusRec, a zero-shot text-to-music editing model capable of performing diverse editing tasks on real-world music efficiently and effectively. Experimental results demonstrate that our approach outperforms existing methods in preserving musical content, structural consistency, and editing fidelity, establishing a strong foundation for controllable music editing in real-world scenarios.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Hierarchical Knowledge Graphs for Story Understanding in Visual Narratives
We present a hierarchical knowledge graph framework for the structured semantic understanding of visual narratives, using comics as a representative domain for multimodal storytelling. The framework organizes narrative content across three levels-panel, event, and macro-event, by integrating symbolic graphs that encode semantic, spatial, and temporal relationships. At the panel level, it models visual elements such as characters, objects, and actions alongside textual components including dialogue and narration. These are systematically connected to higher-level graphs that capture narrative sequences and abstract story structures. Applied to a manually annotated subset of the Manga109 dataset, the framework supports interpretable symbolic reasoning across four representative tasks: action retrieval, dialogue tracing, character appearance mapping, and timeline reconstruction. Rather than prioritizing predictive performance, the system emphasizes transparency in narrative modeling and enables structured inference aligned with cognitive theories of event segmentation and visual storytelling. This work contributes to explainable narrative analysis and offers a foundation for authoring tools, narrative comprehension systems, and interactive media applications.
comment: Updated with the ICIDS 2025 camera-ready version. This revision includes the final title, updated abstract, improved explanations of the narrative coherence framework, and minor editorial changes. Figures and examples have been refined for clarity. No new experiments were added
♻ ☆ MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease. Multi-modal self-supervised learning has demonstrated remarkable potential in learning pathological representations by integrating diverse data sources. Conventional multi-modal integration methods primarily emphasize modality alignment, while paying insufficient attention to retaining the modality-specific structures. However, unlike conventional scenarios where multi-modal inputs share highly overlapping features, histopathology and transcriptomics exhibit pronounced heterogeneity, offering orthogonal yet complementary insights. Histopathology provides morphological and spatial context, elucidating tissue architecture and cellular topology, whereas transcriptomics delineates molecular signatures through gene expression patterns. This inherent disparity introduces a major challenge in aligning them while maintaining modality-specific fidelity. To address these challenges, we present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention. MIRROR employs dedicated encoders to extract comprehensive features for each modality, which is further complemented by a modality alignment module to achieve seamless integration between phenotype patterns and molecular profiles. Furthermore, a modality retention module safeguards unique attributes from each modality, while a style clustering module mitigates redundancy and enhances disease-relevant information by modeling and aligning consistent pathological signatures within a clustering space. Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance, demonstrating its effectiveness in constructing comprehensive oncological feature representations and benefiting the cancer diagnosis.
comment: Accepted by IEEE Transactions on Medical Imaging (TMI). Code available at https://github.com/TianyiFranklinWang/MIRROR. Project page: https://tianyifranklinwang.github.io/MIRROR
Information Retrieval
☆ A Multimodal Manufacturing Safety Chatbot: Knowledge Base Design, Benchmark Development, and Evaluation of Multiple RAG Approaches
Ensuring worker safety remains a critical challenge in modern manufacturing environments. Industry 5.0 reorients the prevailing manufacturing paradigm toward more human-centric operations. Using a design science research methodology, we identify three essential requirements for next-generation safety training systems: high accuracy, low latency, and low cost. We introduce a multimodal chatbot powered by large language models that meets these design requirements. The chatbot uses retrieval-augmented generation to ground its responses in curated regulatory and technical documentation. To evaluate our solution, we developed a domain-specific benchmark of expert-validated question and answer pairs for three representative machines: a Bridgeport manual mill, a Haas TL-1 CNC lathe, and a Universal Robots UR5e collaborative robot. We tested 24 RAG configurations using a full-factorial design and assessed them with automated evaluations of correctness, latency, and cost. Our top 2 configurations were then evaluated by ten industry experts and academic researchers. Our results show that retrieval strategy and model configuration have a significant impact on performance. The top configuration (selected for chatbot deployment) achieved an accuracy of 86.66%, an average latency of 10.04 seconds, and an average cost of $0.005 per query. Overall, our work provides three contributions: an open-source, domain-grounded safety training chatbot; a validated benchmark for evaluating AI-assisted safety instruction; and a systematic methodology for designing and assessing AI-enabled instructional and immersive safety training systems for Industry 5.0 environments.
comment: 25 pages, 5 figures
☆ Unlocking Advanced Graph Machine Learning Insights through Knowledge Completion on Neo4j Graph Database SC
Graph Machine Learning (GML) with Graph Databases (GDBs) has gained significant relevance in recent years, due to its ability to handle complex interconnected data and apply ML techniques using Graph Data Science (GDS). However, a critical gap exists in the current way GDB-GML applications analyze data, especially in terms of Knowledge Completion (KC) in Knowledge Graphs (KGs). In particular, current architectures ignore KC, working on datasets that appear incomplete or fragmented, despite they actually contain valuable hidden knowledge. This limitation may cause wrong interpretations when these data are used as input for GML models. This paper proposes an innovative architecture that integrates a KC phase into GDB-GML applications, demonstrating how revealing hidden knowledge can heavily impact datasets' behavior and metrics. For this purpose, we introduce scalable transitive relationships, which are links that propagate information over the network and modelled by a decay function, allowing a deterministic knowledge flows across multiple nodes. Experimental results demonstrate that our intuition radically reshapes both topology and overall dataset dynamics, underscoring the need for this new GDB-GML architecture to produce better models and unlock the full potential of graph-based data analysis.
comment: Accepted at the 30th IEEE Symposium on Computers and Communications (ISCC) 2025
☆ SRLF: An Agent-Driven Set-Wise Reflective Learning Framework for Sequential Recommendation
LLM-based agents are emerging as a promising paradigm for simulating user behavior to enhance recommender systems. However, their effectiveness is often limited by existing studies that focus on modeling user ratings for individual items. This point-wise approach leads to prevalent issues such as inaccurate user preference comprehension and rigid item-semantic representations. To address these limitations, we propose the novel Set-wise Reflective Learning Framework (SRLF). Our framework operationalizes a closed-loop "assess-validate-reflect" cycle that harnesses the powerful in-context learning capabilities of LLMs. SRLF departs from conventional point-wise assessment by formulating a holistic judgment on an entire set of items. It accomplishes this by comprehensively analyzing both the intricate interrelationships among items within the set and their collective alignment with the user's preference profile. This method of set-level contextual understanding allows our model to capture complex relational patterns essential to user behavior, making it significantly more adept for sequential recommendation. Extensive experiments validate our approach, confirming that this set-wise perspective is crucial for achieving state-of-the-art performance in sequential recommendation tasks.
☆ MOON Embedding: Multimodal Representation Learning for E-commerce Search Advertising
We introduce MOON, our comprehensive set of sustainable iterative practices for multimodal representation learning for e-commerce applications. MOON has already been fully deployed across all stages of Taobao search advertising system, including retrieval, relevance, ranking, and so on. The performance gains are particularly significant on click-through rate (CTR) prediction task, which achieves an overall +20.00% online CTR improvement. Over the past three years, this project has delivered the largest improvement on CTR prediction task and undergone five full-scale iterations. Throughout the exploration and iteration of our MOON, we have accumulated valuable insights and practical experience that we believe will benefit the research community. MOON contains a three-stage training paradigm of "Pretraining, Post-training, and Application", allowing effective integration of multimodal representations with downstream tasks. Notably, to bridge the misalignment between the objectives of multimodal representation learning and downstream training, we define the exchange rate to quantify how effectively improvements in an intermediate metric can translate into downstream gains. Through this analysis, we identify the image-based search recall as a critical intermediate metric guiding the optimization of multimodal models. Over three years and five iterations, MOON has evolved along four critical dimensions: data processing, training strategy, model architecture, and downstream application. The lessons and insights gained through the iterative improvements will also be shared. As part of our exploration into scaling effects in the e-commerce field, we further conduct a systematic study of the scaling laws governing multimodal representation learning, examining multiple factors such as the number of training tokens, negative samples, and the length of user behavior sequences.
comment: 31 pages, 12 figures
☆ SQuaD: The Software Quality Dataset
Software quality research increasingly relies on large-scale datasets that measure both the product and process aspects of software systems. However, existing resources often focus on limited dimensions, such as code smells, technical debt, or refactoring activity, thereby restricting comprehensive analyses across time and quality dimensions. To address this gap, we present the Software Quality Dataset (SQuaD), a multi-dimensional, time-aware collection of software quality metrics extracted from 450 mature open-source projects across diverse ecosystems, including Apache, Mozilla, FFmpeg, and the Linux kernel. By integrating nine state-of-the-art static analysis tools, i.e., SonarQube, CodeScene, PMD, Understand, CK, JaSoMe, RefactoringMiner, RefactoringMiner++, and PyRef, our dataset unifies over 700 unique metrics at method, class, file, and project levels. Covering a total of 63,586 analyzed project releases, SQuaD also provides version control and issue-tracking histories, software vulnerability data (CVE/CWE), and process metrics proven to enhance Just-In-Time (JIT) defect prediction. The SQuaD enables empirical research on maintainability, technical debt, software evolution, and quality assessment at unprecedented scale. We also outline emerging research directions, including automated dataset updates and cross-project quality modeling to support the continuous evolution of software analytics. The dataset is publicly available on ZENODO (DOI: 10.5281/zenodo.17566690).
☆ Align$^3$GR: Unified Multi-Level Alignment for LLM-based Generative Recommendation AAAI 2026
Large Language Models (LLMs) demonstrate significant advantages in leveraging structured world knowledge and multi-step reasoning capabilities. However, fundamental challenges arise when transforming LLMs into real-world recommender systems due to semantic and behavioral misalignment. To bridge this gap, we propose Align$^3$GR, a novel framework that unifies token-level, behavior modeling-level, and preference-level alignment. Our approach introduces: Dual tokenization fusing user-item semantic and collaborative signals. Enhanced behavior modeling with bidirectional semantic alignment. Progressive DPO strategy combining self-play (SP-DPO) and real-world feedback (RF-DPO) for dynamic preference adaptation. Experiments show Align$^3$GR outperforms the SOTA baseline by +17.8% in Recall@10 and +20.2% in NDCG@10 on the public dataset, with significant gains in online A/B tests and full-scale deployment on an industrial large-scale recommendation platform.
comment: Accepted by AAAI 2026 (Oral)
☆ Enhancing Group Recommendation using Soft Impute Singular Value Decomposition
The growing popularity of group activities increased the need to develop methods for providing recommendations to a group of users based on the collective preferences of the group members. Several group recommender systems have been proposed, but these methods often struggle due to sparsity and high-dimensionality of the available data, common in many real-world applications. In this paper, we propose a group recommender system called Group Soft-Impute SVD, which leverages soft-impute singular value decomposition to enhance group recommendations. This approach addresses the challenge of sparse high-dimensional data using low-rank matrix completion. We compared the performance of Group Soft-Impute SVD with Group MF based approaches and found that our method outperforms the baselines in recall for small user groups while achieving comparable results across all group sizes when tasked on Goodbooks, Movielens, and Synthetic datasets. Furthermore, our method recovers lower matrix ranks than the baselines, demonstrating its effectiveness in handling high-dimensional data.
comment: ((1) African University of Science and Technology (Abuja, Nigeria), (2) Baze University (Abuja, Nigeria), (3) Babes-Bolyai University (Cluj-Napoca, Romania))
☆ GovScape: A Public Multimodal Search System for 70 Million Pages of Government PDFs
Efforts over the past three decades have produced web archives containing billions of webpage snapshots and petabytes of data. The End of Term Web Archive alone contains, among other file types, millions of PDFs produced by the federal government. While preservation with web archives has been successful, significant challenges for access and discoverability remain. For example, current affordances for browsing the End of Term PDFs are limited to downloading and browsing individual PDFs, as well as performing basic keyword search across them. In this paper, we introduce GovScape, a public search system that supports multimodal searches across 10,015,993 federal government PDFs from the 2020 End of Term crawl (70,958,487 total PDF pages) - to our knowledge, all renderable PDFs in the 2020 crawl that are 50 pages or under. GovScape supports four primary forms of search over these 10 million PDFs: in addition to providing (1) filter conditions over metadata facets including domain and crawl date and (2) exact text search against the PDF text, we provide (3) semantic text search and (4) visual search against the PDFs across individual pages, enabling users to structure queries such as "redacted documents" or "pie charts." We detail the constituent components of GovScape, including the search affordances, embedding pipeline, system architecture, and open source codebase. Significantly, the total estimated compute cost for GovScape's pre-processing pipeline for 10 million PDFs was approximately $1,500, equivalent to 47,000 PDF pages per dollar spent on compute, demonstrating the potential for immediate scalability. Accordingly, we outline steps that we have already begun pursuing toward multimodal search at the 100+ million PDF scale. GovScape can be found at https://www.govscape.net.
comment: 10 pages, 5 figures, 2 tables
♻ ☆ Modeling the Diachronic Evolution of Legal Norms: An LRMoo-Based, Component-Level, Event-Centric Approach to Legal Knowledge Graphs
Representing the temporal evolution of legal norms is a critical challenge for automated processing. While foundational frameworks exist, they lack a formal pattern for granular, component-level versioning, hindering the deterministic point-in-time reconstruction of legal texts required by reliable AI applications. This paper proposes a structured, temporal modeling pattern grounded in the LRMoo ontology. Our approach models a norm's evolution as a diachronic chain of versioned F1 Works, distinguishing between language-agnostic Temporal Versions (TV)-each being a distinct Work-and their monolingual Language Versions (LV), modeled as F2 Expressions. The legislative amendment process is formalized through event-centric modeling, allowing changes to be traced precisely. Using the Brazilian Constitution as a case study, we demonstrate that our architecture enables the exact reconstruction of any part of a legal text as it existed on a specific date. This provides a verifiable semantic backbone for legal knowledge graphs, offering a deterministic foundation for trustworthy legal AI.
comment: Model Refinement: Defining Temporal Versions as F1 Works
♻ ☆ Navigating Through Paper Flood: Advancing LLM-based Paper Evaluation through Domain-Aware Retrieval and Latent Reasoning AAAI'26
With the rapid and continuous increase in academic publications, identifying high-quality research has become an increasingly pressing challenge. While recent methods leveraging Large Language Models (LLMs) for automated paper evaluation have shown great promise, they are often constrained by outdated domain knowledge and limited reasoning capabilities. In this work, we present PaperEval, a novel LLM-based framework for automated paper evaluation that addresses these limitations through two key components: 1) a domain-aware paper retrieval module that retrieves relevant concurrent work to support contextualized assessments of novelty and contributions, and 2) a latent reasoning mechanism that enables deep understanding of complex motivations and methodologies, along with comprehensive comparison against concurrently related work, to support more accurate and reliable evaluation. To guide the reasoning process, we introduce a progressive ranking optimization strategy that encourages the LLM to iteratively refine its predictions with an emphasis on relative comparison. Experiments on two datasets demonstrate that PaperEval consistently outperforms existing methods in both academic impact and paper quality evaluation. In addition, we deploy PaperEval in a real-world paper recommendation system for filtering high-quality papers, which has gained strong engagement on social media -- amassing over 8,000 subscribers and attracting over 10,000 views for many filtered high-quality papers -- demonstrating the practical effectiveness of PaperEval.
comment: Accepted for publication in AAAI'26
♻ ☆ Exploiting Inter-Session Information with Frequency-enhanced Dual-Path Networks for Sequential Recommendation AAAI 2026
Sequential recommendation (SR) aims to predict a user's next item preference by modeling historical interaction sequences. Recent advances often integrate frequency-domain modules to compensate for self-attention's low-pass nature by restoring the high-frequency signals critical for personalized recommendations. Nevertheless, existing frequency-aware solutions process each session in isolation and optimize exclusively with time-domain objectives. Consequently, they overlook cross-session spectral dependencies and fail to enforce alignment between predicted and actual spectral signatures, leaving valuable frequency information under-exploited. To this end, we propose FreqRec, a Frequency-Enhanced Dual-Path Network for sequential Recommendation that jointly captures inter-session and intra-session behaviors via a learnable Frequency-domain Multi-layer Perceptrons. Moreover, FreqRec is optimized under a composite objective that combines cross entropy with a frequency-domain consistency loss, explicitly aligning predicted and true spectral signatures. Extensive experiments on three benchmarks show that FreqRec surpasses strong baselines and remains robust under data sparsity and noisy-log conditions.
comment: AAAI 2026 (Oral)
Multimedia
☆ Multi-agent Undercover Gaming: Hallucination Removal via Counterfactual Test for Multimodal Reasoning AAAI 2026
Hallucination continues to pose a major obstacle in the reasoning capabilities of large language models (LLMs). Although the Multi-Agent Debate (MAD) paradigm offers a promising solution by promoting consensus among multiple agents to enhance reliability, it relies on the unrealistic assumption that all debaters are rational and reflective, which is a condition that may not hold when agents themselves are prone to hallucinations. To address this gap, we introduce the Multi-agent Undercover Gaming (MUG) protocol, inspired by social deduction games like "Who is Undercover?". MUG reframes MAD as a process of detecting "undercover" agents (those suffering from hallucinations) by employing multimodal counterfactual tests. Specifically, we modify reference images to introduce counterfactual evidence and observe whether agents can accurately identify these changes, providing ground-truth for identifying hallucinating agents and enabling robust, crowd-powered multimodal reasoning. MUG advances MAD protocols along three key dimensions: (1) enabling factual verification beyond statistical consensus through counterfactual testing; (2) introducing cross-evidence reasoning via dynamically modified evidence sources instead of relying on static inputs; and (3) fostering active reasoning, where agents engage in probing discussions rather than passively answering questions. Collectively, these innovations offer a more reliable and effective framework for multimodal reasoning in LLMs. The source code can be accessed at https://github.com/YongLD/MUG.git.
comment: Accepted by AAAI 2026
☆ AV-Dialog: Spoken Dialogue Models with Audio-Visual Input
Dialogue models falter in noisy, multi-speaker environments, often producing irrelevant responses and awkward turn-taking. We present AV-Dialog, the first multimodal dialog framework that uses both audio and visual cues to track the target speaker, predict turn-taking, and generate coherent responses. By combining acoustic tokenization with multi-task, multi-stage training on monadic, synthetic, and real audio-visual dialogue datasets, AV-Dialog achieves robust streaming transcription, semantically grounded turn-boundary detection and accurate responses, resulting in a natural conversational flow. Experiments show that AV-Dialog outperforms audio-only models under interference, reducing transcription errors, improving turn-taking prediction, and enhancing human-rated dialogue quality. These results highlight the power of seeing as well as hearing for speaker-aware interaction, paving the way for {spoken} dialogue agents that perform {robustly} in real-world, noisy environments.
☆ AccKV: Towards Efficient Audio-Video LLMs Inference via Adaptive-Focusing and Cross-Calibration KV Cache Optimization
Recent advancements in Audio-Video Large Language Models (AV-LLMs) have enhanced their capabilities in tasks like audio-visual question answering and multimodal dialog systems. Video and audio introduce an extended temporal dimension, resulting in a larger key-value (KV) cache compared to static image embedding. A naive optimization strategy is to selectively focus on and retain KV caches of audio or video based on task. However, in the experiment, we observed that the attention of AV-LLMs to various modalities in the high layers is not strictly dependent on the task. In higher layers, the attention of AV-LLMs shifts more towards the video modality. In addition, we also found that directly integrating temporal KV of audio and spatial-temporal KV of video may lead to information confusion and significant performance degradation of AV-LLMs. If audio and video are processed indiscriminately, it may also lead to excessive compression or reservation of a certain modality, thereby disrupting the alignment between modalities. To address these challenges, we propose AccKV, an Adaptive-Focusing and Cross-Calibration KV cache optimization framework designed specifically for efficient AV-LLMs inference. Our method is based on layer adaptive focusing technology, selectively focusing on key modalities according to the characteristics of different layers, and enhances the recognition of heavy hitter tokens through attention redistribution. In addition, we propose a Cross-Calibration technique that first integrates inefficient KV caches within the audio and video modalities, and then aligns low-priority modalities with high-priority modalities to selectively evict KV cache of low-priority modalities. The experimental results show that AccKV can significantly improve the computational efficiency of AV-LLMs while maintaining accuracy.
☆ Boosting Neural Video Representation via Online Structural Reparameterization
Neural Video Representation~(NVR) is a promising paradigm for video compression, showing great potential in improving video storage and transmission efficiency. While recent advances have made efforts in architectural refinements to improve representational capability, these methods typically involve complex designs, which may incur increased computational overhead and lack the flexibility to integrate into other frameworks. Moreover, the inherent limitation in model capacity restricts the expressiveness of NVR networks, resulting in a performance bottleneck. To overcome these limitations, we propose Online-RepNeRV, a NVR framework based on online structural reparameterization. Specifically, we propose a universal reparameterization block named ERB, which incorporates multiple parallel convolutional paths to enhance the model capacity. To mitigate the overhead, an online reparameterization strategy is adopted to dynamically fuse the parameters during training, and the multi-branch structure is equivalently converted into a single-branch structure after training. As a result, the additional computational and parameter complexity is confined to the encoding stage, without affecting the decoding efficiency. Extensive experiments on mainstream video datasets demonstrate that our method achieves an average PSNR gain of 0.37-2.7 dB over baseline methods, while maintaining comparable training time and decoding speed.
comment: 15 pages, 7 figures
☆ Accelerating Controllable Generation via Hybrid-grained Cache
Controllable generative models have been widely used to improve the realism of synthetic visual content. However, such models must handle control conditions and content generation computational requirements, resulting in generally low generation efficiency. To address this issue, we propose a Hybrid-Grained Cache (HGC) approach that reduces computational overhead by adopting cache strategies with different granularities at different computational stages. Specifically, (1) we use a coarse-grained cache (block-level) based on feature reuse to dynamically bypass redundant computations in encoder-decoder blocks between each step of model reasoning. (2) We design a fine-grained cache (prompt-level) that acts within a module, where the fine-grained cache reuses cross-attention maps within consecutive reasoning steps and extends them to the corresponding module computations of adjacent steps. These caches of different granularities can be seamlessly integrated into each computational link of the controllable generation process. We verify the effectiveness of HGC on four benchmark datasets, especially its advantages in balancing generation efficiency and visual quality. For example, on the COCO-Stuff segmentation benchmark, our HGC significantly reduces the computational cost (MACs) by 63% (from 18.22T to 6.70T), while keeping the loss of semantic fidelity (quantized performance degradation) within 1.5%.
☆ Weyl-Heisenberg Transform Capabilities in JPEG Compression Standard
This paper is devoted to the development and research of a new compression technology based on Weyl-Heisenberg bases (WH-technology) for modifying the JPEG compression standard and improving its characteristics. For this purpose, the paper analyzes the main stages of the JPEG compression algorithm, notes its key features and problems that limit further enhancement of its efficiency. To overcome these limitations, it is proposed to use the real version of the two-dimensional discrete orthogonal Weyl-Heisenberg transform (DWHT) instead of the discrete cosine transform (DCT) at the stage of transformation coding. This transformation, unlike DCT, initially has a block structure and is built on the basis of the Weyl-Heisenberg optimal signal basis, the functions of which are orthogonal and well localized both in the frequency and time domains. This feature of DWHT allows for more efficient decorrelation and compression of element values in each block of the image after transformation coding. As a result, it is possible to obtain more efficient selection and screening of insignificant elements at the subsequent stages of quantization and information coding. Based on DWHT, a new version of the JPEG compression algorithm was developed, and convenient criteria for evaluating the compression efficiency and metrics of quality losses were proposed. The results of an experimental study are presented, confirming the higher compression efficiency of the proposed algorithm in comparison with the JPEG compression standard.
☆ Synthetic Voices, Real Threats: Evaluating Large Text-to-Speech Models in Generating Harmful Audio
Modern text-to-speech (TTS) systems, particularly those built on Large Audio-Language Models (LALMs), generate high-fidelity speech that faithfully reproduces input text and mimics specified speaker identities. While prior misuse studies have focused on speaker impersonation, this work explores a distinct content-centric threat: exploiting TTS systems to produce speech containing harmful content. Realizing such threats poses two core challenges: (1) LALM safety alignment frequently rejects harmful prompts, yet existing jailbreak attacks are ill-suited for TTS because these systems are designed to faithfully vocalize any input text, and (2) real-world deployment pipelines often employ input/output filters that block harmful text and audio. We present HARMGEN, a suite of five attacks organized into two families that address these challenges. The first family employs semantic obfuscation techniques (Concat, Shuffle) that conceal harmful content within text. The second leverages audio-modality exploits (Read, Spell, Phoneme) that inject harmful content through auxiliary audio channels while maintaining benign textual prompts. Through evaluation across five commercial LALMs-based TTS systems and three datasets spanning two languages, we demonstrate that our attacks substantially reduce refusal rates and increase the toxicity of generated speech. We further assess both reactive countermeasures deployed by audio-streaming platforms and proactive defenses implemented by TTS providers. Our analysis reveals critical vulnerabilities: deepfake detectors underperform on high-fidelity audio; reactive moderation can be circumvented by adversarial perturbations; while proactive moderation detects 57-93% of attacks. Our work highlights a previously underexplored content-centric misuse vector for TTS and underscore the need for robust cross-modal safeguards throughout training and deployment.
♻ ☆ DRAGON: Distributional Rewards Optimize Diffusion Generative Models
We present Distributional RewArds for Generative OptimizatioN (DRAGON), a versatile framework for fine-tuning media generation models towards a desired outcome. Compared with traditional reinforcement learning with human feedback (RLHF) or pairwise preference approaches such as direct preference optimization (DPO), DRAGON is more flexible. It can optimize reward functions that evaluate either individual examples or distributions of them, making it compatible with a broad spectrum of instance-wise, instance-to-distribution, and distribution-to-distribution rewards. Leveraging this versatility, we construct novel reward functions by selecting an encoder and a set of reference examples to create an exemplar distribution. When cross-modal encoders such as CLAP are used, the reference may be of a different modality (text versus audio). Then, DRAGON gathers online and on-policy generations, scores them with the reward function to construct a positive demonstration set and a negative set, and leverages the contrast between the two finite sets to approximate distributional reward optimization. For evaluation, we fine-tune an audio-domain text-to-music diffusion model with 20 reward functions, including a custom music aesthetics model, CLAP score, Vendi diversity, and Frechet audio distance (FAD). We further compare instance-wise (per-song) and full-dataset FAD settings while ablating multiple FAD encoders and reference sets. Over all 20 target rewards, DRAGON achieves an 81.45% average win rate. Moreover, reward functions based on exemplar sets enhance generations and are comparable to model-based rewards. With an appropriate exemplar set, DRAGON achieves a 60.95% human-voted music quality win rate without training on human preference annotations. DRAGON is a new approach to designing and optimizing reward functions for improving human-perceived quality. Demos at https://ml-dragon.github.io/web
comment: Accepted to TMLR
♻ ☆ HI-TransPA: Hearing Impairments Translation Personal Assistant
Hearing-impaired individuals often face significant barriers in daily communication due to the inherent challenges of producing clear speech. To address this, we introduce the Omni-Model paradigm into assistive technology and present HI-TransPA, an instruction-driven audio-visual personal assistant. The model fuses indistinct speech with lip dynamics, enabling both translation and dialogue within a single multimodal framework. To address the distinctive pronunciation patterns of hearing-impaired speech and the limited adaptability of existing models, we develop a multimodal preprocessing and curation pipeline that detects facial landmarks, stabilizes the lip region, and quantitatively evaluates sample quality. These quality scores guide a curriculum learning strategy that first trains on clean, high-confidence samples and progressively incorporates harder cases to strengthen model robustness. Architecturally, we employs a novel unified 3D-Resampler to efficiently encode the lip dynamics, which is critical for accurate interpretation. Experiments on purpose-built HI-Dialogue dataset show that HI-TransPA achieves state-of-the-art performance in both literal accuracy and semantic fidelity. Our work establishes a foundation for applying Omni-Models to assistive communication technology, providing an end-to-end modeling framework and essential processing tools for future research.
♻ ☆ Contribution-Guided Asymmetric Learning for Robust Multimodal Fusion under Imbalance and Noise
Multimodal learning faces two major challenges: modality imbalance and data noise, which significantly affect the robustness and generalization ability of models. Existing methods achieve modality balance by suppressing dominant modalities, but they neglect the inherent differences in the information value between modalities, potentially leading to convergence to suboptimal solutions. This paper proposes an innovative modality compression paradigm, Contribution-Guided Asymmetric Learning (CAL), which aims to enhance the contribution of high-contribution modalities while compressing weak modalities to increase their contribution, allowing both to improve the performance of multimodal information fusion. CAL is based on a modality contribution metric W^m combining the information quantity I(m) and confidence D(m), and it designs an asymmetric gradient acceleration mechanism and a contribution-aware Asymmetric Information Bottleneck (AIB) compression mechanism. The former accelerates the gradient update of modalities, while the latter dynamically compresses the noise of low-contribution modalities. On five benchmark datasets, including emotion recognition, scene recognition, and event localization tasks, CAL has shown outstanding performance in imbalanced fusion tasks and noise robustness tests. On CREMA-D, KS, and AVE, CAL achieves 79.30%, 74.82%, and 74.21% accuracy, significantly outperforming the existing state-of-the-art model ARL. In high-noise robustness tests, CAL also achieved leading performance under various attack strategies on the MVSA-Single and NYUD2 datasets. These results validate the significant advantages of CAL in modality imbalance and noise interference. CAL, as a flexible and efficient framework, is easy to transfer to other tasks and has broad adaptability and potential application prospects.
♻ ☆ Video Echoed in Music: Semantic, Temporal, and Rhythmic Alignment for Video-to-Music Generation
Video-to-Music generation seeks to generate musically appropriate background music that enhances audiovisual immersion for videos. However, current approaches suffer from two critical limitations: 1) incomplete representation of video details, leading to weak alignment, and 2) inadequate temporal and rhythmic correspondence, particularly in achieving precise beat synchronization. To address the challenges, we propose Video Echoed in Music (VeM), a latent music diffusion that generates high-quality soundtracks with semantic, temporal, and rhythmic alignment for input videos. To capture video details comprehensively, VeM employs a hierarchical video parsing that acts as a music conductor, orchestrating multi-level information across modalities. Modality-specific encoders, coupled with a storyboard-guided cross-attention mechanism (SG-CAtt), integrate semantic cues while maintaining temporal coherence through position and duration encoding. For rhythmic precision, the frame-level transition-beat aligner and adapter (TB-As) dynamically synchronize visual scene transitions with music beats. We further contribute a novel video-music paired dataset sourced from e-commerce advertisements and video-sharing platforms, which imposes stricter transition-beat synchronization requirements. Meanwhile, we introduce novel metrics tailored to the task. Experimental results demonstrate superiority, particularly in semantic relevance and rhythmic precision.
Information Retrieval
☆ Fixed-Persona SLMs with Modular Memory: Scalable NPC Dialogue on Consumer Hardware
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating human-like text, yet their applicability to dialogue systems in computer games remains limited. This limitation arises from their substantial hardware requirements, latency constraints, and the necessity to maintain clearly defined knowledge boundaries within a game setting. In this paper, we propose a modular NPC dialogue system that leverages Small Language Models (SLMs), fine-tuned to encode specific NPC personas and integrated with runtime-swappable memory modules. These memory modules preserve character-specific conversational context and world knowledge, enabling expressive interactions and long-term memory without retraining or model reloading during gameplay. We comprehensively evaluate our system using three open-source SLMs: DistilGPT-2, TinyLlama-1.1B-Chat, and Mistral-7B-Instruct, trained on synthetic persona-aligned data and benchmarked on consumer-grade hardware. While our approach is motivated by applications in gaming, its modular design and persona-driven memory architecture hold significant potential for broader adoption in domains requiring expressive, scalable, and memory-rich conversational agents, such as virtual assistants, customer support bots, or interactive educational systems.
☆ GPR: Towards a Generative Pre-trained One-Model Paradigm for Large-Scale Advertising Recommendation
As an intelligent infrastructure connecting users with commercial content, advertising recommendation systems play a central role in information flow and value creation within the digital economy. However, existing multi-stage advertising recommendation systems suffer from objective misalignment and error propagation, making it difficult to achieve global optimality, while unified generative recommendation models still struggle to meet the demands of practical industrial applications. To address these issues, we propose GPR (Generative Pre-trained Recommender), the first one-model framework that redefines advertising recommendation as an end-to-end generative task, replacing the traditional cascading paradigm with a unified generative approach. To realize GPR, we introduce three key innovations spanning unified representation, network architecture, and training strategy. First, we design a unified input schema and tokenization method tailored to advertising scenarios, mapping both ads and organic content into a shared multi-level semantic ID space, thereby enhancing semantic alignment and modeling consistency across heterogeneous data. Second, we develop the Heterogeneous Hierarchical Decoder (HHD), a dual-decoder architecture that decouples user intent modeling from ad generation, achieving a balance between training efficiency and inference flexibility while maintaining strong modeling capacity. Finally, we propose a multi-stage joint training strategy that integrates Multi-Token Prediction (MTP), Value-Aware Fine-Tuning and the Hierarchy Enhanced Policy Optimization (HEPO) algorithm, forming a complete generative recommendation pipeline that unifies interest modeling, value alignment, and policy optimization. GPR has been fully deployed in the Tencent Weixin Channels advertising system, delivering significant improvements in key business metrics including GMV and CTCVR.
comment: 12 pages, 5 figures
♻ ☆ BroadGen: A Framework for Generating Effective and Efficient Advertiser Broad Match Keyphrase Recommendations
In the domain of sponsored search advertising, the focus of Keyphrase recommendation has largely been on exact match types, which pose issues such as high management expenses, limited targeting scope, and evolving search query patterns. Alternatives like Broad match types can alleviate certain drawbacks of exact matches but present challenges like poor targeting accuracy and minimal supervisory signals owing to limited advertiser usage. This research defines the criteria for an ideal broad match, emphasizing on both efficiency and effectiveness, ensuring that a significant portion of matched queries are relevant. We propose BroadGen, an innovative framework that recommends efficient and effective broad match keyphrases by utilizing historical search query data. Additionally, we demonstrate that BroadGen, through token correspondence modeling, maintains better query stability over time. BroadGen's capabilities allow it to serve daily, millions of sellers at eBay with over 2.5 billion items.
♻ ☆ Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations NeurIPS 2025
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.
comment: 12 pages, 7 figures, AI4NextG @ NeurIPS 2025
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study AAAI 2026
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.
comment: AAAI 2026 (oral)
♻ ☆ LoVR: A Benchmark for Long Video Retrieval in Multimodal Contexts
Long videos contain a vast amount of information, making video-text retrieval an essential and challenging task in multimodal learning. However, existing benchmarks suffer from limited video duration, low-quality captions, and coarse annotation granularity, which hinder the evaluation of advanced video-text retrieval methods. To address these limitations, we introduce LoVR, a benchmark specifically designed for long video-text retrieval. LoVR contains 467 long videos and over 40,804 fine-grained clips with high-quality captions. To overcome the issue of poor machine-generated annotations, we propose an efficient caption generation framework that integrates VLM automatic generation, caption quality scoring, and dynamic refinement. This pipeline improves annotation accuracy while maintaining scalability. Furthermore, we introduce a semantic fusion method to generate coherent full-video captions without losing important contextual information. Our benchmark introduces longer videos, more detailed captions, and a larger-scale dataset, presenting new challenges for video understanding and retrieval. Extensive experiments on various advanced embedding models demonstrate that LoVR is a challenging benchmark, revealing the limitations of current approaches and providing valuable insights for future research. We release the code and dataset link at https://github.com/TechNomad-ds/LoVR-benchmark
♻ ☆ DatAasee -- A Metadata-Lake as Metadata Catalog for a Virtual Data-Lake
Metadata management for distributed data sources is a long-standing but ever-growing problem. To counter this challenge in a research-data and library-oriented setting, this work constructs a data architecture, derived from the data-lake: the metadata-lake. A proof-of-concept implementation of this proposed metadata aggregator is presented, too, and also evaluated.
♻ ☆ MMTEB: Massive Multilingual Text Embedding Benchmark ICLR
Text embeddings are typically evaluated on a limited set of tasks, which are constrained by language, domain, and task diversity. To address these limitations and provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) - a large-scale, community-driven expansion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+ languages. MMTEB includes a diverse set of challenging, novel tasks such as instruction following, long-document retrieval, and code retrieval, representing the largest multilingual collection of evaluation tasks for embedding models to date. Using this collection, we develop several highly multilingual benchmarks, which we use to evaluate a representative set of models. We find that while large language models (LLMs) with billions of parameters can achieve state-of-the-art performance on certain language subsets and task categories, the best-performing publicly available model is multilingual-e5-large-instruct with only 560 million parameters. To facilitate accessibility and reduce computational cost, we introduce a novel downsampling method based on inter-task correlation, ensuring a diverse selection while preserving relative model rankings. Furthermore, we optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks that drastically reduce computational demands. For instance, our newly introduced zero-shot English benchmark maintains a ranking order similar to the full-scale version but at a fraction of the computational cost.
comment: Accepted for ICLR: https://openreview.net/forum?id=zl3pfz4VCV
♻ ☆ Thinking Forward and Backward: Multi-Objective Reinforcement Learning for Retrieval-Augmented Reasoning
Retrieval-augmented generation (RAG) has proven to be effective in mitigating hallucinations in large language models, yet its effectiveness remains limited in complex, multi-step reasoning scenarios. Recent efforts have incorporated search-based interactions into RAG, enabling iterative reasoning with real-time retrieval. Most approaches rely on outcome-based supervision, offering no explicit guidance for intermediate steps. This often leads to reward hacking and degraded response quality. We propose Bi-RAR, a novel retrieval-augmented reasoning framework that evaluates each intermediate step jointly in both forward and backward directions. To assess the information completeness of each step, we introduce a bidirectional information distance grounded in Kolmogorov complexity, approximated via language model generation probabilities. This quantification measures both how far the current reasoning is from the answer and how well it addresses the question. To optimize reasoning under these bidirectional signals, we adopt a multi-objective reinforcement learning framework with a cascading reward structure that emphasizes early trajectory alignment. Empirical results on seven question answering benchmarks demonstrate that Bi-RAR surpasses previous methods and enables efficient interaction and reasoning with the search engine during training and inference.
♻ ☆ Planning Agents on an Ego-Trip: Leveraging Hybrid Ego-Graph Ensembles for Improved Tool Retrieval in Enterprise Task Planning
Effective tool pre-selection via retrieval is essential for AI agents to select from a vast array of tools when identifying and planning actions in the context of complex user queries. Despite its central role in planning, this aspect remains underexplored in the literature. Traditional approaches rely primarily on similarities between user queries and tool descriptions, which significantly limits retrieval accuracy, specifically when handling multi-step user requests. To address these limitations, we propose a Knowledge Graph (KG)-based tool retrieval framework that captures the semantic relationships between tools and their functional dependencies. Our retrieval algorithm leverages ensembles of 1-hop ego tool graphs to model direct and indirect connections between tools, enabling more comprehensive and contextual tool selection for multi-step tasks. We evaluate our approach on a synthetically generated internal dataset across six defined user classes, extending previous work on coherent dialogue synthesis and tool retrieval benchmarks. Results demonstrate that our tool graph-based method achieves 91.85% tool coverage on the micro-average CompleteRecall metric, compared to 89.26% for re-ranked semantic-lexical hybrid retrieval, the strongest non-KG baseline in our experiments. These findings support our hypothesis that the structural information modeled in the graph provides complementary signals to pure similarity matching, particularly for queries requiring sequential tool composition.
Multimedia
☆ Proceedings of The third international workshop on eXplainable AI for the Arts (XAIxArts)
This third international workshop on explainable AI for the Arts (XAIxArts) brought together a community of researchers in HCI, Interaction Design, AI, explainable AI (XAI), and digital arts to explore the role of XAI for the Arts. Workshop held at the 17th ACM Conference on Creativity and Cognition (C&C 2025), online.
comment: Proceedings of The second international workshop on eXplainable AI for the Arts (XAIxArts)
☆ TMDC: A Two-Stage Modality Denoising and Complementation Framework for Multimodal Sentiment Analysis with Missing and Noisy Modalities AAAI 2026
Multimodal Sentiment Analysis (MSA) aims to infer human sentiment by integrating information from multiple modalities such as text, audio, and video. In real-world scenarios, however, the presence of missing modalities and noisy signals significantly hinders the robustness and accuracy of existing models. While prior works have made progress on these issues, they are typically addressed in isolation, limiting overall effectiveness in practical settings. To jointly mitigate the challenges posed by missing and noisy modalities, we propose a framework called Two-stage Modality Denoising and Complementation (TMDC). TMDC comprises two sequential training stages. In the Intra-Modality Denoising Stage, denoised modality-specific and modality-shared representations are extracted from complete data using dedicated denoising modules, reducing the impact of noise and enhancing representational robustness. In the Inter-Modality Complementation Stage, these representations are leveraged to compensate for missing modalities, thereby enriching the available information and further improving robustness. Extensive evaluations on MOSI, MOSEI, and IEMOCAP demonstrate that TMDC consistently achieves superior performance compared to existing methods, establishing new state-of-the-art results.
comment: Accepted by AAAI 2026
☆ Robustness and Imperceptibility Analysis of Hybrid Spatial-Frequency Domain Image Watermarking
The proliferation of digital media necessitates robust methods for copyright protection and content authentication. This paper presents a comprehensive comparative study of digital image watermarking techniques implemented using the spatial domain (Least Significant Bit - LSB), the frequency domain (Discrete Fourier Transform - DFT), and a novel hybrid (LSB+DFT) approach. The core objective is to evaluate the trade-offs between imperceptibility (measured by Peak Signal-to-Noise Ratio - PSNR) and robustness (measured by Normalized Correlation - NC and Bit Error Rate - BER). We implemented these three techniques within a unified MATLAB-based experimental framework. The watermarked images were subjected to a battery of common image processing attacks, including JPEG compression, Gaussian noise, and salt-and-pepper noise, at varying intensities. Experimental results generated from standard image datasets (USC-SIPI) demonstrate that while LSB provides superior imperceptibility, it is extremely fragile. The DFT method offers significant robustness at the cost of visual quality. The proposed hybrid LSB+DFT technique, which leverages redundant embedding and a fallback extraction mechanism, is shown to provide the optimal balance, maintaining high visual fidelity while exhibiting superior resilience to all tested attacks.
☆ AI-Integrated Decision Support System for Real-Time Market Growth Forecasting and Multi-Source Content Diffusion Analytics
The rapid proliferation of AI-generated content (AIGC) has reshaped the dynamics of digital marketing and online consumer behavior. However, predicting the diffusion trajectory and market impact of such content remains challenging due to data heterogeneity, non linear propagation mechanisms, and evolving consumer interactions. This study proposes an AI driven Decision Support System (DSS) that integrates multi source data including social media streams, marketing expenditure records, consumer engagement logs, and sentiment dynamics using a hybrid Graph Neural Network (GNN) and Temporal Transformer framework. The model jointly learns the content diffusion structure and temporal influence evolution through a dual channel architecture, while causal inference modules disentangle the effects of marketing stimuli on return on investment (ROI) and market visibility. Experiments on large scale real-world datasets collected from multiple online platforms such as Twitter, TikTok, and YouTube advertising show that our system outperforms existing baselines in all six metrics. The proposed DSS enhances marketing decisions by providing interpretable real-time insights into AIGC driven content dissemination and market growth patterns.
♻ ☆ Generating Attribute-Aware Human Motions from Textual Prompt AAAI 2026
Text-driven human motion generation has recently attracted considerable attention, allowing models to generate human motions based on textual descriptions. However, current methods neglect the influence of human attributes-such as age, gender, weight, and height-which are key factors shaping human motion patterns. This work represents a pilot exploration for bridging this gap. We conceptualize each motion as comprising both attribute information and action semantics, where textual descriptions align exclusively with action semantics. To achieve this, a new framework inspired by Structural Causal Models is proposed to decouple action semantics from human attributes, enabling text-to-semantics prediction and attribute-controlled generation. The resulting model is capable of generating attribute-aware motion aligned with the user's text and attribute inputs. For evaluation, we introduce a comprehensive dataset containing attribute annotations for text-motion pairs, setting the first benchmark for attribute-aware motion generation. Extensive experiments validate our model's effectiveness.
comment: Accepted by AAAI 2026
♻ ☆ Agent Journey Beyond RGB: Hierarchical Semantic-Spatial Representation Enrichment for Vision-and-Language Navigation AAAI2026
Navigating unseen environments from natural language instructions remains challenging for egocentric agents in Vision-and-Language Navigation (VLN). Humans naturally ground concrete semantic knowledge within spatial layouts during indoor navigation. Although prior work has introduced diverse environment representations to improve reasoning, auxiliary modalities are often naively concatenated with RGB features, which underutilizes each modality's distinct contribution. We propose a hierarchical Semantic Understanding and Spatial Awareness (SUSA) architecture to enable agents to perceive and ground environments at multiple scales. Specifically, the Textual Semantic Understanding (TSU) module supports local action prediction by generating view-level descriptions, capturing fine-grained semantics and narrowing the modality gap between instructions and environments. Complementarily, the Depth Enhanced Spatial Perception (DSP) module incrementally builds a trajectory-level depth exploration map, providing a coarse-grained representation of global spatial layout. Extensive experiments show that the hierarchical representation enrichment of SUSA significantly improves navigation performance over the baseline on discrete VLN benchmarks (REVERIE, R2R, and SOON) and generalizes better to the continuous R2R-CE benchmark.
comment: AAAI2026, I14 pages, 12 figures, 11 tables
♻ ☆ Can Current Detectors Catch Face-to-Voice Deepfake Attacks? ACSA
The rapid advancement of generative models has enabled the creation of increasingly stealthy synthetic voices, commonly referred to as audio deepfakes. A recent technique, FOICE [USENIX'24], demonstrates a particularly alarming capability: generating a victim's voice from a single facial image, without requiring any voice sample. By exploiting correlations between facial and vocal features, FOICE produces synthetic voices realistic enough to bypass industry-standard authentication systems, including WeChat Voiceprint and Microsoft Azure. This raises serious security concerns, as facial images are far easier for adversaries to obtain than voice samples, dramatically lowering the barrier to large-scale attacks. In this work, we investigate two core research questions: (RQ1) can state-of-the-art audio deepfake detectors reliably detect FOICE-generated speech under clean and noisy conditions, and (RQ2) whether fine-tuning these detectors on FOICE data improves detection without overfitting, thereby preserving robustness to unseen voice generators such as SpeechT5. Our study makes three contributions. First, we present the first systematic evaluation of FOICE detection, showing that leading detectors consistently fail under both standard and noisy conditions. Second, we introduce targeted fine-tuning strategies that capture FOICE-specific artifacts, yielding significant accuracy improvements. Third, we assess generalization after fine-tuning, revealing trade-offs between specialization to FOICE and robustness to unseen synthesis pipelines. These findings expose fundamental weaknesses in today's defenses and motivate new architectures and training protocols for next-generation audio deepfake detection.
comment: 8 pages, Accepted at Workshop on AI for Cyber Threat Intelligence, co-located with ACSAC 2025
Information Retrieval
☆ Practical RAG Evaluation: A Rarity-Aware Set-Based Metric and Cost-Latency-Quality Trade-offs
This paper addresses the guessing game in building production RAG. Classical rank-centric IR metrics (nDCG/MAP/MRR) are a poor fit for RAG, where LLMs consume a set of passages rather than a browsed list; position discounts and prevalence-blind aggregation miss what matters: whether the prompt at cutoff K contains the decisive evidence. Second, there is no standardized, reproducible way to build and audit golden sets. Third, leaderboards exist but lack end-to-end, on-corpus benchmarking that reflects production trade-offs. Fourth, how state-of-the-art embedding models handle proper-name identity signals and conversational noise remains opaque. To address these, we contribute: (1) RA-nWG@K, a rarity-aware, per-query-normalized set score, and operational ceilings via the pool-restricted oracle ceiling (PROC) and the percentage of PROC (%PROC) to separate retrieval from ordering headroom within a Cost-Latency-Quality (CLQ) lens; (2) rag-gs (MIT), a lean golden-set pipeline with Plackett-Luce listwise refinement whose iterative updates outperform single-shot LLM ranking; (3) a comprehensive benchmark on a production RAG (scientific-papers corpus) spanning dense retrieval, hybrid dense+BM25, embedding models and dimensions, cross-encoder rerankers, ANN (HNSW), and quantization; and (4) targeted diagnostics that quantify proper-name identity signal and conversational-noise sensitivity via identity-destroying and formatting ablations. Together, these components provide practitioner Pareto guidance and auditable guardrails to support reproducible, budget/SLA-aware decisions.
☆ Sim4IA-Bench: A User Simulation Benchmark Suite for Next Query and Utterance Prediction
Validating user simulation is a difficult task due to the lack of established measures and benchmarks, which makes it challenging to assess whether a simulator accurately reflects real user behavior. As part of the Sim4IA Micro-Shared Task at the Sim4IA Workshop, SIGIR 2025, we present Sim4IA-Bench, a simulation benchmark suit for the prediction of the next queries and utterances, the first of its kind in the IR community. Our dataset as part of the suite comprises 160 real-world search sessions from the CORE search engine. For 70 of these sessions, up to 62 simulator runs are available, divided into Task A and Task B, in which different approaches predicted users next search queries or utterances. Sim4IA-Bench provides a basis for evaluating and comparing user simulation approaches and for developing new measures of simulator validity. Although modest in size, the suite represents the first publicly available benchmark that links real search sessions with simulated next-query predictions. In addition to serving as a testbed for next query prediction, it also enables exploratory studies on query reformulation behavior, intent drift, and interaction-aware retrieval evaluation. We also introduce a new measure for evaluating next-query predictions in this task. By making the suite publicly available, we aim to promote reproducible research and stimulate further work on realistic and explainable user simulation for information access: https://github.com/irgroup/Sim4IA-Bench.
☆ NeuroCLIP: Brain-Inspired Prompt Tuning for EEG-to-Image Multimodal Contrastive Learning
Recent advances in brain-inspired artificial intelligence have sought to align neural signals with visual semantics using multimodal models such as CLIP. However, existing methods often treat CLIP as a static feature extractor, overlooking its adaptability to neural representations and the inherent physiological-symbolic gap in EEG-image alignment. To address these challenges, we present NeuroCLIP, a prompt tuning framework tailored for EEG-to-image contrastive learning. Our approach introduces three core innovations: (1) We design a dual-stream visual embedding pipeline that combines dynamic filtering and token-level fusion to generate instance-level adaptive prompts, which guide the adjustment of patch embedding tokens based on image content, thereby enabling fine-grained modulation of visual representations under neural constraints; (2) We are the first to introduce visual prompt tokens into EEG-image alignment, acting as global, modality-level prompts that work in conjunction with instance-level adjustments. These visual prompt tokens are inserted into the Transformer architecture to facilitate neural-aware adaptation and parameter optimization at a global level; (3) Inspired by neuroscientific principles of human visual encoding, we propose a refined contrastive loss that better model the semantic ambiguity and cross-modal noise present in EEG signals. On the THINGS-EEG2 dataset, NeuroCLIP achieves a Top-1 accuracy of 63.2% in zero-shot image retrieval, surpassing the previous best method by +12.3%, and demonstrates strong generalization under inter-subject conditions (+4.6% Top-1), highlighting the potential of physiology-aware prompt tuning for bridging brain signals and visual semantics.
☆ Efficient Model-Agnostic Continual Learning for Next POI Recommendation ICDE2026
Next point-of-interest (POI) recommendation improves personalized location-based services by predicting users' next destinations based on their historical check-ins. However, most existing methods rely on static datasets and fixed models, limiting their ability to adapt to changes in user behavior over time. To address this limitation, we explore a novel task termed continual next POI recommendation, where models dynamically adapt to evolving user interests through continual updates. This task is particularly challenging, as it requires capturing shifting user behaviors while retaining previously learned knowledge. Moreover, it is essential to ensure efficiency in update time and memory usage for real-world deployment. To this end, we propose GIRAM (Generative Key-based Interest Retrieval and Adaptive Modeling), an efficient, model-agnostic framework that integrates context-aware sustained interests with recent interests. GIRAM comprises four components: (1) an interest memory to preserve historical preferences; (2) a context-aware key encoding module for unified interest key representation; (3) a generative key-based retrieval module to identify diverse and relevant sustained interests; and (4) an adaptive interest update and fusion module to update the interest memory and balance sustained and recent interests. In particular, GIRAM can be seamlessly integrated with existing next POI recommendation models. Experiments on three real-world datasets demonstrate that GIRAM consistently outperforms state-of-the-art methods while maintaining high efficiency in both update time and memory consumption.
comment: This paper was accepted by ICDE2026
♻ ☆ Search Is Not Retrieval: Decoupling Semantic Matching from Contextual Assembly in RAG
Retrieval systems are essential to contemporary AI pipelines, although most confuse two separate processes: finding relevant information and giving enough context for reasoning. We introduce the Search-Is-Not-Retrieve (SINR) framework, a dual-layer architecture that distinguishes between fine-grained search representations and coarse-grained retrieval contexts. SINR enhances the composability, scalability, and context fidelity of retrieval systems by directly connecting small, semantically accurate search chunks to larger, contextually complete retrieve chunks, all without incurring extra processing costs. This design changes retrieval from a passive step to an active one, making the system architecture more like how people process information. We discuss the SINR framework's conceptual foundation, formal structure, implementation issues, and qualitative outcomes. This provides a practical foundation for the next generation of AI systems that use retrieval.
comment: 22 pages, 2 figures, technical framework paper
♻ ☆ Captions Speak Louder than Images: Generalizing Foundation Models for E-commerce from High-quality Multimodal Instruction Data AACL 2025
Leveraging multimodal data to drive breakthroughs in e-commerce applications through Multimodal Foundation Models (MFMs) is gaining increasing attention from the research community. However, there are significant challenges that hinder the optimal use of multimodal e-commerce data by foundation models: (1) the scarcity of large-scale, high-quality multimodal benchmark datasets; and (2) the lack of effective multimodal information integration methods. To address these challenges, in this paper, we introduce MMECInstruct, the first-ever, large-scale, and high-quality multimodal instruction dataset for e-commerce. We also develop CASLIE, a simple, lightweight, yet effective framework for integrating multimodal information for e-commerce. Leveraging MMECInstruct, we fine-tune a series of e-commerce MFMs within CASLIE, denoted as CASLIE models. Our comprehensive evaluation demonstrates that CASLIE models substantially outperform 5 categories of advanced baseline models in the in-domain evaluation. Moreover, CASLIE models show strong generalizability to out-of-domain settings. MMECInstruct and CASLIE models are publicly accessible through https://ninglab.github.io/CASLIE/.
comment: IJCNLP-AACL 2025
♻ ☆ GraphRAFT: Retrieval Augmented Fine-Tuning for Knowledge Graphs on Graph Databases
Large language models have shown remarkable language processing and reasoning ability but are prone to hallucinate when asked about private data. Retrieval-augmented generation (RAG) retrieves relevant data that fit into an LLM's context window and prompts the LLM for an answer. GraphRAG extends this approach to structured Knowledge Graphs (KGs) and questions regarding entities multiple hops away. The majority of recent GraphRAG methods either overlook the retrieval step or have ad hoc retrieval processes that are abstract or inefficient. This prevents them from being adopted when the KGs are stored in graph databases supporting graph query languages. In this work, we present GraphRAFT, a retrieve-and-reason framework that finetunes LLMs to generate provably correct Cypher queries to retrieve high-quality subgraph contexts and produce accurate answers. Our method is the first such solution that can be taken off-the-shelf and used on KGs stored in native graph DBs. Benchmarks suggest that our method is sample-efficient and scales with the availability of training data. Our method achieves significantly better results than all state-of-the-art models across all four standard metrics on two challenging Q&As on large text-attributed KGs.
♻ ☆ ConvMix: A Mixed-Criteria Data Augmentation Framework for Conversational Dense Retrieval AAAI 2026
Conversational search aims to satisfy users' complex information needs via multiple-turn interactions. The key challenge lies in revealing real users' search intent from the context-dependent queries. Previous studies achieve conversational search by fine-tuning a conversational dense retriever with relevance judgments between pairs of context-dependent queries and documents. However, this training paradigm encounters data scarcity issues. To this end, we propose ConvMix, a mixed-criteria framework to augment conversational dense retrieval, which covers more aspects than existing data augmentation frameworks. We design a two-sided relevance judgment augmentation schema in a scalable manner via the aid of large language models. Besides, we integrate the framework with quality control mechanisms to obtain semantically diverse samples and near-distribution supervisions to combine various annotated data. Experimental results on five widely used benchmarks show that the conversational dense retriever trained by our ConvMix framework outperforms previous baseline methods, which demonstrates our superior effectiveness.
comment: Accepted by AAAI 2026
♻ ☆ Machine-Readable Ads: Accessibility and Trust Patterns for AI Web Agents interacting with Online Advertisements
Autonomous multimodal language models are rapidly evolving into web agents that can browse, click, and purchase items on behalf of users, posing a threat to display advertising designed for human eyes. Yet little is known about how these agents interact with ads or which design principles ensure reliable engagement. To address this, we ran a controlled experiment using a faithful clone of the news site TT.com, seeded with diverse ads: static banners, GIFs, carousels, videos, cookie dialogues, and paywalls. We ran 300 initial trials plus follow-ups using the Document Object Model (DOM)-centric Browser Use framework with GPT-4o, Claude 3.7 Sonnet, Gemini 2.0 Flash, and the pixel-based OpenAI Operator, across 10 realistic user tasks. Our results show these agents display severe satisficing: they never scroll beyond two viewports and ignore purely visual calls to action, clicking banners only when semantic button overlays or off-screen text labels are present. Critically, when sweepstake participation required a purchase, GPT-4o and Claude 3.7 Sonnet subscribed in 100% of trials, and Gemini 2.0 Flash in 70%, revealing gaps in cost-benefit analysis. We identified five actionable design principles-semantic overlays, hidden labels, top-left placement, static frames, and dialogue replacement, that make human-centric creatives machine-detectable without harming user experience. We also evaluated agent trustworthiness through "behavior patterns" such as cookie consent handling and subscription choices, highlighting model-specific risk boundaries and the urgent need for robust trust evaluation frameworks in real-world advertising.
♻ ☆ Multimodal Adversarial Defense for Vision-Language Models by Leveraging One-To-Many Relationships WACV 2026
Pre-trained vision-language (VL) models are highly vulnerable to adversarial attacks. However, existing defense methods primarily focus on image classification, overlooking two key aspects of VL tasks: multimodal attacks, where both image and text can be perturbed, and the one-to-many relationship of images and texts, where a single image can correspond to multiple textual descriptions and vice versa (1:N and N:1). This work is the first to explore defense strategies against multimodal attacks in VL tasks, whereas prior VL defense methods focus on vision robustness. We propose multimodal adversarial training (MAT), which incorporates adversarial perturbations in both image and text modalities during training, significantly outperforming existing unimodal defenses. Furthermore, we discover that MAT is limited by deterministic one-to-one (1:1) image-text pairs in VL training data. To address this, we conduct a comprehensive study on leveraging one-to-many relationships to enhance robustness, investigating diverse augmentation techniques. Our analysis shows that, for a more effective defense, augmented image-text pairs should be well-aligned, diverse, yet avoid distribution shift -- conditions overlooked by prior research. This work pioneers defense strategies against multimodal attacks, providing insights for building robust VLMs from both optimization and data perspectives.
comment: WACV 2026 Accepted
♻ ☆ M^2VAE: Multi-Modal Multi-View Variational Autoencoder for Cold-start Item Recommendation
Cold-start item recommendation is a significant challenge in recommendation systems, particularly when new items are introduced without any historical interaction data. While existing methods leverage multi-modal content to alleviate the cold-start issue, they often neglect the inherent multi-view structure of modalities, the distinction between shared and modality-specific features. In this paper, we propose Multi-Modal Multi-View Variational AutoEncoder (M^2VAE), a generative model that addresses the challenges of modeling common and unique views in attribute and multi-modal features, as well as user preferences over single-typed item features. Specifically, we generate type-specific latent variables for item IDs, categorical attributes, and image features, and use Product-of-Experts (PoE) to derive a common representation. A disentangled contrastive loss decouples the common view from unique views while preserving feature informativeness. To model user inclinations, we employ a preference-guided Mixture-of-Experts (MoE) to adaptively fuse representations. We further incorporate co-occurrence signals via contrastive learning, eliminating the need for pretraining. Extensive experiments on real-world datasets validate the effectiveness of our approach.
♻ ☆ ReFineG: Synergizing Small Supervised Models and LLMs for Low-Resource Grounded Multimodal NER
Grounded Multimodal Named Entity Recognition (GMNER) extends traditional NER by jointly detecting textual mentions and grounding them to visual regions. While existing supervised methods achieve strong performance, they rely on costly multimodal annotations and often underperform in low-resource domains. Multimodal Large Language Models (MLLMs) show strong generalization but suffer from Domain Knowledge Conflict, producing redundant or incorrect mentions for domain-specific entities. To address these challenges, we propose ReFineG, a three-stage collaborative framework that integrates small supervised models with frozen MLLMs for low-resource GMNER. In the Training Stage, a domain-aware NER data synthesis strategy transfers LLM knowledge to small models with supervised training while avoiding domain knowledge conflicts. In the Refinement Stage, an uncertainty-based mechanism retains confident predictions from supervised models and delegates uncertain ones to the MLLM. In the Grounding Stage, a multimodal context selection algorithm enhances visual grounding through analogical reasoning. In the CCKS2025 GMNER Shared Task, ReFineG ranked second with an F1 score of 0.6461 on the online leaderboard, demonstrating its effectiveness with limited annotations.
comment: CCKS 2025 Shared Task Paper
♻ ☆ TaoSR-AGRL: Adaptive Guided Reinforcement Learning Framework for E-commerce Search Relevance
Query-product relevance prediction is fundamental to e-commerce search and has become even more critical in the era of AI-powered shopping, where semantic understanding and complex reasoning directly shape the user experience and business conversion. Large Language Models (LLMs) enable generative, reasoning-based approaches, typically aligned via supervised fine-tuning (SFT) or preference optimization methods like Direct Preference Optimization (DPO). However, the increasing complexity of business rules and user queries exposes the inability of existing methods to endow models with robust reasoning capacity for long-tail and challenging cases. Efforts to address this via reinforcement learning strategies like Group Relative Policy Optimization (GRPO) often suffer from sparse terminal rewards, offering insufficient guidance for multi-step reasoning and slowing convergence. To address these challenges, we propose TaoSR-AGRL, an Adaptive Guided Reinforcement Learning framework for LLM-based relevance prediction in Taobao Search Relevance. TaoSR-AGRL introduces two key innovations: (1) Rule-aware Reward Shaping, which decomposes the final relevance judgment into dense, structured rewards aligned with domain-specific relevance criteria; and (2) Adaptive Guided Replay, which identifies low-accuracy rollouts during training and injects targeted ground-truth guidance to steer the policy away from stagnant, rule-violating reasoning patterns toward compliant trajectories. TaoSR-AGRL was evaluated on large-scale real-world datasets and through online side-by-side human evaluations on Taobao Search. It consistently outperforms DPO and standard GRPO baselines in offline experiments, improving relevance accuracy, rule adherence, and training stability. The model trained with TaoSR-AGRL has been successfully deployed in the main search scenario on Taobao, serving hundreds of millions of users.
♻ ☆ Read the Docs Before Rewriting: Equip Rewriter with Domain Knowledge via Continual Pre-training
A Retrieval-Augmented Generation (RAG)-based question-answering (QA) system enhances a large language model's knowledge by retrieving relevant documents based on user queries. Discrepancies between user queries and document phrasings often necessitate query rewriting. However, in specialized domains, the rewriter model may struggle due to limited domain-specific knowledge. To resolve this, we propose the R\&R (Read the doc before Rewriting) rewriter, which involves continual pre-training on professional documents, akin to how students prepare for open-book exams by reviewing textbooks. Additionally, it can be combined with supervised fine-tuning for improved results. Experiments on multiple datasets demonstrate that R\&R excels in professional QA across multiple domains, effectively bridging the query-document gap, while maintaining good performance in general scenarios, thus advancing the application of RAG-based QA systems in specialized fields.
comment: The paper is about to undergo significant revisions
♻ ☆ Positional Bias in Long-Document Ranking: Impact, Assessment, and Mitigation AACL 2025
We tested over 20 Transformer models for ranking long documents (including recent LongP models trained with FlashAttention and RankGPT models "powered" by OpenAI and Anthropic cloud APIs). We compared them with the simple FirstP baseline, which applied the same model to truncated input (up to 512 tokens). On MS MARCO, TREC DL, and Robust04 no long-document model outperformed FirstP by more than 5% (on average). We hypothesized that this lack of improvement is not due to inherent model limitations, but due to benchmark positional bias (most relevant passages tend to occur early in documents), which is known to exist in MS MARCO. To confirm this, we analyzed positional relevance distributions across four long-document corpora (with six query sets) and observed the same early-position bias. Surprisingly, we also found bias in six BEIR collections, which are typically categorized as short-document datasets. We then introduced a new diagnostic dataset, MS MARCO FarRelevant, where relevant spans were deliberately placed beyond the first 512 tokens. On this dataset, many long-context models (including RankGPT) performed at random-baseline level, suggesting overfitting to positional bias. We also experimented with debiasing training data, but with limited success. Our findings (1) highlight the need for careful benchmark design in evaluating long-context models for document ranking, (2) identify model types that are more robust to positional bias, and (3) motivate further work on approaches to debias training data. We release our code and data to support further research.
comment: Accepted at IJCNLP-AACL 2025 Main
Multimedia
☆ Intelligent Carrier Allocation: A Cross-Modal Reasoning Framework for Adaptive Multimodal Steganography
In today's digital world, which has many different types of media, steganography, the art of secret communication, has a lot of problems to deal with. Traditional methods are often fixed and only work with one type of carrier media. This means they don't work well with all the different types of media that are out there. This system doesn't send data to "weak" or easily detectable carriers because it can't adapt. This makes the system less safe and less secret in general. This paper proposes a novel Intelligent Carrier Allocation framework founded on a Cross-Modal Reasoning (CMR) Engine. This engine looks at a wide range of carriers, such as images, audio, and text, to see if they are good for steganography. It uses important measurements like entropy, signal complexity, and vocabulary richness to come up with a single reliability score for each modality. The framework uses these scores to fairly and intelligently share the secret bitstream, giving more data to carriers that are thought to be stronger and more complex. This adaptive allocation strategy makes the system as hard to find as possible and as strong as possible against steganalysis. We demonstrate that this reasoning-based approach is more secure and superior in data protection compared to static, non-adaptive multimodal techniques. This makes it possible to build stronger and smarter secret communication systems.
comment: 8 pages, 10 figures
☆ MCAD: Multimodal Context-Aware Audio Description Generation For Soccer
Audio Descriptions (AD) are essential for making visual content accessible to individuals with visual impairments. Recent works have shown a promising step towards automating AD, but they have been limited to describing high-quality movie content using human-annotated ground truth AD in the process. In this work, we present an end-to-end pipeline, MCAD, that extends AD generation beyond movies to the domain of sports, with a focus on soccer games, without relying on ground truth AD. To address the absence of domain-specific AD datasets, we fine-tune a Video Large Language Model on publicly available movie AD datasets so that it learns the narrative structure and conventions of AD. During inference, MCAD incorporates multimodal contextual cues such as player identities, soccer events and actions, and commentary from the game. These cues, combined with input prompts to the fine-tuned VideoLLM, allow the system to produce complete AD text for each video segment. We further introduce a new evaluation metric, ARGE-AD, designed to accurately assess the quality of generated AD. ARGE-AD evaluates the generated AD for the presence of five characteristics: (i) usage of people's names, (ii) mention of actions and events, (iii) appropriate length of AD, (iv) absence of pronouns, and (v) overlap from commentary or subtitles. We present an in-depth analysis of our approach on both movie and soccer datasets. We also validate the use of this metric to quantitatively comment on the quality of generated AD using our metric across domains. Additionally, we contribute audio descriptions for 100 soccer game clips annotated by two AD experts.
☆ SciCom Wiki: A Digital Library to Support the Science Communication Knowledge Infrastructure for Videos and Podcasts
Videos and Podcasts have established themselves as the medium of choice for civic dissemination, but also as carriers of misinformation. The emerging Science Communication Knowledge Infrastructure (SciCom KI), which curates these increasingly non-textual media, remains fragmented and inadequately equipped to scale against the content flood. Our work sets out to support the SciCom KI with a central, collaborative platform, the SciCom Wiki, to facilitate FAIR (findable, accessible, interoperable, reusable) media representation, particularly for videos and podcasts. We survey requirements from 53 stakeholders and individually refine these insights in 11 interviews. We then design and implement an open-source service system centered on Wikibase and evaluate our prototype with another 14 participants. Overall, our findings identified several needs to support the SciCom KI systematically. Our SciCom Wiki approach was found suitable to address the raised requirements. Further, we identified that the SciCom KI is severely underdeveloped regarding FAIR knowledge and related systems facilitating its collaborative creation and curation. Our system can provide a central knowledge node similar to Wikidata, yet a collaborative effort is required to scale the necessary features against the imminent (mis-)information flood.
comment: 10 pages, 10 figures, accepted at JCDL 2025
☆ Spatio-Temporal Data Enhanced Vision-Language Model for Traffic Scene Understanding
Nowadays, navigation and ride-sharing apps have collected numerous images with spatio-temporal data. A core technology for analyzing such images, associated with spatiotemporal information, is Traffic Scene Understanding (TSU), which aims to provide a comprehensive description of the traffic scene. Unlike traditional spatio-temporal data analysis tasks, the dependence on both spatio-temporal and visual-textual data introduces distinct challenges to TSU task. However, recent research often treats TSU as a common image understanding task, ignoring the spatio-temporal information and overlooking the interrelations between different aspects of the traffic scene. To address these issues, we propose a novel SpatioTemporal Enhanced Model based on CILP (ST-CLIP) for TSU. Our model uses the classic vision-language model, CLIP, as the backbone, and designs a Spatio-temporal Context Aware Multiaspect Prompt (SCAMP) learning method to incorporate spatiotemporal information into TSU. The prompt learning method consists of two components: A dynamic spatio-temporal context representation module that extracts representation vectors of spatio-temporal data for each traffic scene image, and a bi-level ST-aware multi-aspect prompt learning module that integrates the ST-context representation vectors into word embeddings of prompts for the CLIP model. The second module also extracts low-level visual features and image-wise high-level semantic features to exploit interactive relations among different aspects of traffic scenes. To the best of our knowledge, this is the first attempt to integrate spatio-temporal information into visionlanguage models to facilitate TSU task. Experiments on two realworld datasets demonstrate superior performance in the complex scene understanding scenarios with a few-shot learning strategy.
☆ Plug-and-Play Clarifier: A Zero-Shot Multimodal Framework for Egocentric Intent Disambiguation AAAI 2026
The performance of egocentric AI agents is fundamentally limited by multimodal intent ambiguity. This challenge arises from a combination of underspecified language, imperfect visual data, and deictic gestures, which frequently leads to task failure. Existing monolithic Vision-Language Models (VLMs) struggle to resolve these multimodal ambiguous inputs, often failing silently or hallucinating responses. To address these ambiguities, we introduce the Plug-and-Play Clarifier, a zero-shot and modular framework that decomposes the problem into discrete, solvable sub-tasks. Specifically, our framework consists of three synergistic modules: (1) a text clarifier that uses dialogue-driven reasoning to interactively disambiguate linguistic intent, (2) a vision clarifier that delivers real-time guidance feedback, instructing users to adjust their positioning for improved capture quality, and (3) a cross-modal clarifier with grounding mechanism that robustly interprets 3D pointing gestures and identifies the specific objects users are pointing to. Extensive experiments demonstrate that our framework improves the intent clarification performance of small language models (4--8B) by approximately 30%, making them competitive with significantly larger counterparts. We also observe consistent gains when applying our framework to these larger models. Furthermore, our vision clarifier increases corrective guidance accuracy by over 20%, and our cross-modal clarifier improves semantic answer accuracy for referential grounding by 5%. Overall, our method provides a plug-and-play framework that effectively resolves multimodal ambiguity and significantly enhances user experience in egocentric interaction.
comment: 16 pages, 9 figures, AAAI 2026
☆ ROI-based Deep Image Compression with Implicit Bit Allocation
Region of Interest (ROI)-based image compression has rapidly developed due to its ability to maintain high fidelity in important regions while reducing data redundancy. However, existing compression methods primarily apply masks to suppress background information before quantization. This explicit bit allocation strategy, which uses hard gating, significantly impacts the statistical distribution of the entropy model, thereby limiting the coding performance of the compression model. In response, this work proposes an efficient ROI-based deep image compression model with implicit bit allocation. To better utilize ROI masks for implicit bit allocation, this paper proposes a novel Mask-Guided Feature Enhancement (MGFE) module, comprising a Region-Adaptive Attention (RAA) block and a Frequency-Spatial Collaborative Attention (FSCA) block. This module allows for flexible bit allocation across different regions while enhancing global and local features through frequencyspatial domain collaboration. Additionally, we use dual decoders to separately reconstruct foreground and background images, enabling the coding network to optimally balance foreground enhancement and background quality preservation in a datadriven manner. To the best of our knowledge, this is the first work to utilize implicit bit allocation for high-quality regionadaptive coding. Experiments on the COCO2017 dataset show that our implicit-based image compression method significantly outperforms explicit bit allocation approaches in rate-distortion performance, achieving optimal results while maintaining satisfactory visual quality in the reconstructed background regions.
comment: 10 pages, 10 figures, journal
♻ ☆ RFNNS: Robust Fixed Neural Network Steganography with Universal Text-to-Image Models
With the rapid development of generative AI, image steganography has garnered widespread attention due to its unique concealment. Recent studies have demonstrated the practical advantages of Fixed Neural Network Steganography (FNNS), notably its ability to achieve stable information embedding and extraction without any additional network training. However, the stego images generated by FNNS still exhibit noticeable distortion and limited robustness. These drawbacks compromise the security of the embedded information and restrict the practical applicability of the method. To address these limitations, we propose Robust Fixed Neural Network Steganography (RFNNS). Specifically, a texture-aware localization technique selectively embeds perturbations carrying secret information into regions of complex textures, effectively preserving visual quality. Additionally, a robust steganographic perturbation generation (RSPG) strategy is designed to enhance the decoding accuracy, even under common and unknown attacks. These robust perturbations are combined with AI-generated cover images to produce stego images. Experimental results demonstrate that RFNNS significantly improves robustness compared to state-of-the-art FNNS methods, achieving an average increase in SSIM of 23\% for recovered secret images under common attacks. Furthermore, the LPIPS value of recovered secrets images against previously unknown attacks achieved by RFNNS was reduced to 39\% of the SOTA method, underscoring its practical value for covert communication.
♻ ☆ Crafting Dynamic Virtual Activities with Advanced Multimodal Models
In this paper, we investigate the use of multimodal large language models (MLLMs) for generating virtual activities, leveraging the integration of vision-language modalities to enable the interpretation of virtual environments. Our approach recognizes and abstracts key scene elements including scene layouts, semantic contexts, and object identities with MLLMs' multimodal reasoning capabilities. By correlating these abstractions with massive knowledge about human activities, MLLMs are capable of generating adaptive and contextually relevant virtual activities. We propose a structured framework to articulate abstract activity descriptions, emphasizing detailed multi-character interactions within virtual spaces. Utilizing the derived high-level contexts, our approach accurately positions virtual characters and ensures that their interactions and behaviors are realistically and contextually appropriate through strategic optimization. Experiment results demonstrate the effectiveness of our approach, providing a novel direction for enhancing the realism and context-awareness in simulated virtual environments.
♻ ☆ Prompt-OT: An Optimal Transport Regularization Paradigm for Knowledge Preservation in Vision-Language Model Adaptation WACV 2026
Vision-language models (VLMs) such as CLIP demonstrate strong performance but struggle when adapted to downstream tasks. Prompt learning has emerged as an efficient and effective strategy to adapt VLMs while preserving their pre-trained knowledge. However, existing methods still lead to overfitting and degrade zero-shot generalization. To address this challenge, we propose an optimal transport (OT)-guided prompt learning framework that mitigates forgetting by preserving the structural consistency of feature distributions between pre-trained and fine-tuned models. Unlike conventional point-wise constraints, OT naturally captures cross-instance relationships and expands the feasible parameter space for prompt tuning, allowing a better trade-off between adaptation and generalization. Our approach enforces joint constraints on both vision and text representations, ensuring a holistic feature alignment. Extensive experiments on benchmark datasets demonstrate that our simple yet effective method can outperform existing prompt learning strategies in base-to-novel generalization, cross-dataset evaluation, and domain generalization without additional augmentation or ensemble techniques. The code is available at https://github.com/ChongQingNoSubway/Prompt-OT
comment: Accepted to WACV 2026
♻ ☆ SteerMusic: Enhanced Musical Consistency for Zero-shot Text-Guided and Personalized Music Editing AAAI2026
Music editing is an important step in music production, which has broad applications, including game development and film production. Most existing zero-shot text-guided editing methods rely on pretrained diffusion models by involving forward-backward diffusion processes. However, these methods often struggle to preserve the musical content. Additionally, text instructions alone usually fail to accurately describe the desired music. In this paper, we propose two music editing methods that improve the consistency between the original and edited music by leveraging score distillation. The first method, SteerMusic, is a coarse-grained zero-shot editing approach using delta denoising score. The second method, SteerMusic+, enables fine-grained personalized music editing by manipulating a concept token that represents a user-defined musical style. SteerMusic+ allows for the editing of music into user-defined musical styles that cannot be achieved by the text instructions alone. Experimental results show that our methods outperform existing approaches in preserving both music content consistency and editing fidelity. User studies further validate that our methods achieve superior music editing quality.
comment: Accepted by AAAI2026
Information Retrieval
☆ Compression then Matching: An Efficient Pre-training Paradigm for Multimodal Embedding
Vision-language models advance multimodal representation learning by acquiring transferable semantic embeddings, thereby substantially enhancing performance across a range of vision-language tasks, including cross-modal retrieval, clustering, and classification. An effective embedding is expected to comprehensively preserve the semantic content of the input while simultaneously emphasizing features that are discriminative for downstream tasks. Recent approaches demonstrate that VLMs can be adapted into competitive embedding models via large-scale contrastive learning, enabling the simultaneous optimization of two complementary objectives. We argue that the two aforementioned objectives can be decoupled: a comprehensive understanding of the input facilitates the embedding model in achieving superior performance in downstream tasks via contrastive learning. In this paper, we propose CoMa, a compressed pre-training phase, which serves as a warm-up stage for contrastive learning. Experiments demonstrate that with only a small amount of pre-training data, we can transform a VLM into a competitive embedding model. CoMa achieves new state-of-the-art results among VLMs of comparable size on the MMEB, realizing optimization in both efficiency and effectiveness.
comment: Multimodal Embedding
☆ Advancing Scientific Knowledge Retrieval and Reuse with a Novel Digital Library for Machine-Readable Knowledge
Digital libraries for research, such as the ACM Digital Library or Semantic Scholar, do not enable the machine-supported, efficient reuse of scientific knowledge (e.g., in synthesis research). This is because these libraries are based on document-centric models with narrative text knowledge expressions that require manual or semi-automated knowledge extraction, structuring, and organization. We present ORKG reborn, an emerging digital library that supports finding, accessing, and reusing accurate, fine-grained, and reproducible machine-readable expressions of scientific knowledge that relate scientific statements and their supporting evidence in terms of data and code. The rich expressions of scientific knowledge are published as reborn (born-reusable) articles and provide novel possibilities for scientific knowledge retrieval, for instance by statistical methods, software packages, variables, or data matching specific constraints. We describe the proposed system and demonstrate its practical viability and potential for information retrieval in contrast to state-of-the-art digital libraries and document-centric scholarly communication using several published articles in research fields ranging from computer science to soil science. Our work underscores the enormous potential of scientific knowledge databases and a viable approach to their construction.
☆ Bid Farewell to Seesaw: Towards Accurate Long-tail Session-based Recommendation via Dual Constraints of Hybrid Intents
Session-based recommendation (SBR) aims to predict anonymous users' next interaction based on their interaction sessions. In the practical recommendation scenario, low-exposure items constitute the majority of interactions, creating a long-tail distribution that severely compromises recommendation diversity. Existing approaches attempt to address this issue by promoting tail items but incur accuracy degradation, exhibiting a "see-saw" effect between long-tail and accuracy performance. We attribute such conflict to session-irrelevant noise within the tail items, which existing long-tail approaches fail to identify and constrain effectively. To resolve this fundamental conflict, we propose \textbf{HID} (\textbf{H}ybrid \textbf{I}ntent-based \textbf{D}ual Constraint Framework), a plug-and-play framework that transforms the conventional "see-saw" into "win-win" through introducing the hybrid intent-based dual constraints for both long-tail and accuracy. Two key innovations are incorporated in this framework: (i) \textit{Hybrid Intent Learning}, where we reformulate the intent extraction strategies by employing attribute-aware spectral clustering to reconstruct the item-to-intent mapping. Furthermore, discrimination of session-irrelevant noise is achieved through the assignment of the target and noise intents to each session. (ii) \textit{Intent Constraint Loss}, which incorporates two novel constraint paradigms regarding the \textit{diversity} and \textit{accuracy} to regulate the representation learning process of both items and sessions. These two objectives are unified into a single training loss through rigorous theoretical derivation. Extensive experiments across multiple SBR models and datasets demonstrate that HID can enhance both long-tail performance and recommendation accuracy, establishing new state-of-the-art performance in long-tail recommender systems.
☆ TurkEmbed: Turkish Embedding Model on NLI & STS Tasks
This paper introduces TurkEmbed, a novel Turkish language embedding model designed to outperform existing models, particularly in Natural Language Inference (NLI) and Semantic Textual Similarity (STS) tasks. Current Turkish embedding models often rely on machine-translated datasets, potentially limiting their accuracy and semantic understanding. TurkEmbed utilizes a combination of diverse datasets and advanced training techniques, including matryoshka representation learning, to achieve more robust and accurate embeddings. This approach enables the model to adapt to various resource-constrained environments, offering faster encoding capabilities. Our evaluation on the Turkish STS-b-TR dataset, using Pearson and Spearman correlation metrics, demonstrates significant improvements in semantic similarity tasks. Furthermore, TurkEmbed surpasses the current state-of-the-art model, Emrecan, on All-NLI-TR and STS-b-TR benchmarks, achieving a 1-4\% improvement. TurkEmbed promises to enhance the Turkish NLP ecosystem by providing a more nuanced understanding of language and facilitating advancements in downstream applications.
comment: 9 pages, 1 Figure, 4 Tables, ASYU Conference. 2025 IEEE 11th International Conference on Advances in Software, hardware and Systems Engineering (ASYU)
☆ AgentPRM: Process Reward Models for LLM Agents via Step-Wise Promise and Progress
Despite rapid development, large language models (LLMs) still encounter challenges in multi-turn decision-making tasks (i.e., agent tasks) like web shopping and browser navigation, which require making a sequence of intelligent decisions based on environmental feedback. Previous work for LLM agents typically relies on elaborate prompt engineering or fine-tuning with expert trajectories to improve performance. In this work, we take a different perspective: we explore constructing process reward models (PRMs) to evaluate each decision and guide the agent's decision-making process. Unlike LLM reasoning, where each step is scored based on correctness, actions in agent tasks do not have a clear-cut correctness. Instead, they should be evaluated based on their proximity to the goal and the progress they have made. Building on this insight, we propose a re-defined PRM for agent tasks, named AgentPRM, to capture both the interdependence between sequential decisions and their contribution to the final goal. This enables better progress tracking and exploration-exploitation balance. To scalably obtain labeled data for training AgentPRM, we employ a Temporal Difference-based (TD-based) estimation method combined with Generalized Advantage Estimation (GAE), which proves more sample-efficient than prior methods. Extensive experiments across different agentic tasks show that AgentPRM is over $8\times$ more compute-efficient than baselines, and it demonstrates robust improvement when scaling up test-time compute. Moreover, we perform detailed analyses to show how our method works and offer more insights, e.g., applying AgentPRM to the reinforcement learning of LLM agents.
comment: Preprint
☆ BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives AAAI 2026
Hard negatives are essential for training effective retrieval models. Hard-negative mining typically relies on ranking documents using cross-encoders or static embedding models based on similarity metrics such as cosine distance. Hard negative mining becomes challenging for biomedical and scientific domains due to the difficulty in distinguishing between source and hard negative documents. However, referenced documents naturally share contextual relevance with the source document but are not duplicates, making them well-suited as hard negatives. In this work, we propose BiCA: Biomedical Dense Retrieval with Citation-Aware Hard Negatives, an approach for hard-negative mining by utilizing citation links in 20,000 PubMed articles for improving a domain-specific small dense retriever. We fine-tune the GTE_small and GTE_Base models using these citation-informed negatives and observe consistent improvements in zero-shot dense retrieval using nDCG@10 for both in-domain and out-of-domain tasks on BEIR and outperform baselines on long-tailed topics in LoTTE using Success@5. Our findings highlight the potential of leveraging document link structure to generate highly informative negatives, enabling state-of-the-art performance with minimal fine-tuning and demonstrating a path towards highly data-efficient domain adaptation.
comment: Accepted for oral presentation at AAAI 2026
♻ ☆ From Questions to Queries: An AI-powered Multi-Agent Framework for Spatial Text-to-SQL
The complexity of Structured Query Language (SQL) and the specialized nature of geospatial functions in tools like PostGIS present significant barriers to non-experts seeking to analyze spatial data. While Large Language Models (LLMs) offer promise for translating natural language into SQL (Text-to-SQL), single-agent approaches often struggle with the semantic and syntactic complexities of spatial queries. To address this, we propose a multi-agent framework designed to accurately translate natural language questions into spatial SQL queries. The framework integrates several innovative components, including a knowledge base with programmatic schema profiling and semantic enrichment, embeddings for context retrieval, and a collaborative multi-agent pipeline as its core. This pipeline comprises specialized agents for entity extraction, metadata retrieval, query logic formulation, SQL generation, and a review agent that performs programmatic and semantic validation of the generated SQL to ensure correctness (self-verification). We evaluate our system using both the non-spatial KaggleDBQA benchmark and a new, comprehensive SpatialQueryQA benchmark that includes diverse geometry types, predicates, and three levels of query complexity. On KaggleDBQA, the system achieved an overall accuracy of 81.2% (221 out of 272 questions) after the review agent's review and corrections. For spatial queries, the system achieved an overall accuracy of 87.7% (79 out of 90 questions), compared with 76.7% without the review agent. Beyond accuracy, results also show that in some instances the system generates queries that are more semantically aligned with user intent than those in the benchmarks. This work makes spatial analysis more accessible, and provides a robust, generalizable foundation for spatial Text-to-SQL systems, advancing the development of autonomous GIS.
♻ ☆ FS-DAG: Few Shot Domain Adapting Graph Networks for Visually Rich Document Understanding COLING 2025
In this work, we propose Few Shot Domain Adapting Graph (FS-DAG), a scalable and efficient model architecture for visually rich document understanding (VRDU) in few-shot settings. FS-DAG leverages domain-specific and language/vision specific backbones within a modular framework to adapt to diverse document types with minimal data. The model is robust to practical challenges such as handling OCR errors, misspellings, and domain shifts, which are critical in real-world deployments. FS-DAG is highly performant with less than 90M parameters, making it well-suited for complex real-world applications for Information Extraction (IE) tasks where computational resources are limited. We demonstrate FS-DAG's capability through extensive experiments for information extraction task, showing significant improvements in convergence speed and performance compared to state-of-the-art methods. Additionally, this work highlights the ongoing progress in developing smaller, more efficient models that do not compromise on performance. Code : https://github.com/oracle-samples/fs-dag
comment: Proceedings of the 31st International Conference on Computational Linguistics (COLING 2025), Industry Track, pages 100-114
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description; v5 changelog: Updated metadata
♻ ☆ OPERA: A Reinforcement Learning--Enhanced Orchestrated Planner-Executor Architecture for Reasoning-Oriented Multi-Hop Retrieval AAAI 2026
Recent advances in large language models (LLMs) and dense retrievers have driven significant progress in retrieval-augmented generation (RAG). However, existing approaches face significant challenges in complex reasoning-oriented multi-hop retrieval tasks: 1) Ineffective reasoning-oriented planning: Prior methods struggle to generate robust multi-step plans for complex queries, as rule-based decomposers perform poorly on out-of-template questions. 2) Suboptimal reasoning-driven retrieval: Related methods employ limited query reformulation, leading to iterative retrieval loops that often fail to locate golden documents. 3) Insufficient reasoning-guided filtering: Prevailing methods lack the fine-grained reasoning to effectively filter salient information from noisy results, hindering utilization of retrieved knowledge. Fundamentally, these limitations all stem from the weak coupling between retrieval and reasoning in current RAG architectures. We introduce the Orchestrated Planner-Executor Reasoning Architecture (OPERA), a novel reasoning-driven retrieval framework. OPERA's Goal Planning Module (GPM) decomposes questions into sub-goals, which are executed by a Reason-Execute Module (REM) with specialized components for precise reasoning and effective retrieval. To train OPERA, we propose Multi-Agents Progressive Group Relative Policy Optimization (MAPGRPO), a novel variant of GRPO. Experiments on complex multi-hop benchmarks show OPERA's superior performance, validating both the MAPGRPO method and OPERA's design.
comment: Accepted by AAAI 2026
♻ ☆ Hard vs. Noise: Resolving Hard-Noisy Sample Confusion in Recommender Systems via Large Language Models AAAI 2026
Implicit feedback, employed in training recommender systems, unavoidably confronts noise due to factors such as misclicks and position bias. Previous studies have attempted to identify noisy samples through their diverged data patterns, such as higher loss values, and mitigate their influence through sample dropping or reweighting. However, we observed that noisy samples and hard samples display similar patterns, leading to hard-noisy confusion issue. Such confusion is problematic as hard samples are vital for modeling user preferences. To solve this problem, we propose LLMHNI framework, leveraging two auxiliary user-item relevance signals generated by Large Language Models (LLMs) to differentiate hard and noisy samples. LLMHNI obtains user-item semantic relevance from LLM-encoded embeddings, which is used in negative sampling to select hard negatives while filtering out noisy false negatives. An objective alignment strategy is proposed to project LLM-encoded embeddings, originally for general language tasks, into a representation space optimized for user-item relevance modeling. LLMHNI also exploits LLM-inferred logical relevance within user-item interactions to identify hard and noisy samples. These LLM-inferred interactions are integrated into the interaction graph and guide denoising with cross-graph contrastive alignment. To eliminate the impact of unreliable interactions induced by LLM hallucination, we propose a graph contrastive learning strategy that aligns representations from randomly edge-dropped views to suppress unreliable edges. Empirical results demonstrate that LLMHNI significantly improves denoising and recommendation performance.
comment: Accepted by AAAI 2026
♻ ☆ Question-to-Knowledge (Q2K): Multi-Agent Generation of Inspectable Facts for Product Mapping
Identifying whether two product listings refer to the same Stock Keeping Unit (SKU) is a persistent challenge in ecommerce, especially when explicit identifiers are missing and product names vary widely across platforms. Rule based heuristics and keyword similarity often misclassify products by overlooking subtle distinctions in brand, specification, or bundle configuration. To overcome these limitations, we propose Question to Knowledge (Q2K), a multi agent framework that leverages Large Language Models (LLMs) for reliable SKU mapping. Q2K integrates: (1) a Reasoning Agent that generates targeted disambiguation questions, (2) a Knowledge Agent that resolves them via focused web searches, and (3) a Deduplication Agent that reuses validated reasoning traces to reduce redundancy and ensure consistency. A human in the loop mechanism further refines uncertain cases. Experiments on real world consumer goods datasets show that Q2K surpasses strong baselines, achieving higher accuracy and robustness in difficult scenarios such as bundle identification and brand origin disambiguation. By reusing retrieved reasoning instead of issuing repeated searches, Q2K balances accuracy with efficiency, offering a scalable and interpretable solution for product integration.
comment: Accepted by IEEE BigData 2025 Industry Track
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages
♻ ☆ ReCode: Updating Code API Knowledge with Reinforcement Learning AAAI 2026
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: AAAI 2026
♻ ☆ Compass: General Filtered Search across Vector and Structured Data
The increasing prevalence of hybrid vector and relational data necessitates efficient, general support for queries that combine high-dimensional vector search with complex relational filtering. However, existing filtered search solutions are fundamentally limited by specialized indices, which restrict arbitrary filtering and hinder integration with general-purpose DBMSs. This work introduces \textsc{Compass}, a unified framework that enables general filtered search across vector and structured data without relying on new index designs. Compass leverages established index structures -- such as HNSW and IVF for vector attributes, and B+-trees for relational attributes -- implementing a principled cooperative query execution strategy that coordinates candidate generation and predicate evaluation across modalities. Uniquely, Compass maintains generality by allowing arbitrary conjunctions, disjunctions, and range predicates, while ensuring robustness even with highly-selective or multi-attribute filters. Comprehensive empirical evaluations demonstrate that Compass consistently outperforms NaviX, the only existing performant general framework, across diverse hybrid query workloads. It also matches the query throughput of specialized single-attribute indices in their favorite settings with only a single attribute involved, all while maintaining full generality and DBMS compatibility. Overall, Compass offers a practical and robust solution for achieving truly general filtered search in vector database systems.
♻ ☆ A Remarkably Efficient Paradigm to Multimodal Large Language Models for Sequential Recommendation
Sequential recommendations (SR) predict users' future interactions based on their historical behavior. The rise of Large Language Models (LLMs) has brought powerful generative and reasoning capabilities, significantly enhancing SR performance, while Multimodal LLMs (MLLMs) further extend this by introducing data like images and interactive relationships. However, critical issues remain, i.e., (a) Suboptimal item representations caused by lengthy and redundant descriptions, leading to inefficiencies in both training and inference; (b) Modality-related cognitive bias, as LLMs are predominantly pretrained on textual data, limiting their ability to effectively integrate and utilize non-textual modalities; (c) Weakening sequential perception in long interaction sequences, where attention mechanisms struggle to capture earlier interactions, hindering the modeling of long-range dependencies. To address these issues, we propose Speeder, an efficient MLLM-based paradigm for SR featuring three key innovations: 1) Multimodal Representation Compression (MRC), which condenses item attributes into concise yet informative tokens, reducing redundancy and computational cost; 2) Modality-aware Progressive Optimization (MPO), enabling gradual learning of multimodal representations; 3) Sequential Position Awareness Enhancement (SPAE), improving the LLM's capability to capture both relative and absolute sequential dependencies in long interaction sequences. Extensive experiments on real-world datasets demonstrate the effectiveness and efficiency of Speeder. Speeder increases training speed to 250% of the original while reducing inference time to 25% on the Amazon dataset.
♻ ☆ OneRec-Think: In-Text Reasoning for Generative Recommendation
The powerful generative capacity of Large Language Models (LLMs) has instigated a paradigm shift in recommendation. However, existing generative models (e.g., OneRec) operate as implicit predictors, critically lacking the capacity for explicit and controllable reasoning-a key advantage of LLMs. To bridge this gap, we propose OneRec-Think, a unified framework that seamlessly integrates dialogue, reasoning, and personalized recommendation. OneRec-Think incorporates: (1) Itemic Alignment: cross-modal Item-Textual Alignment for semantic grounding; (2) Reasoning Activation: Reasoning Scaffolding to activate LLM reasoning within the recommendation context; and (3) Reasoning Enhancement, where we design a recommendation-specific reward function that accounts for the multi-validity nature of user preferences. Experiments across public benchmarks show state-of-the-art performance. Moreover, our proposed "Think-Ahead" architecture enables effective industrial deployment on Kuaishou, achieving a 0.159\% gain in APP Stay Time and validating the practical efficacy of the model's explicit reasoning capability.
♻ ☆ Does Generative Retrieval Overcome the Limitations of Dense Retrieval?
Generative retrieval (GR) has emerged as a new paradigm in neural information retrieval, offering an alternative to dense retrieval (DR) by directly generating identifiers of relevant documents. In this paper, we theoretically and empirically investigate how GR fundamentally diverges from DR in both learning objectives and representational capacity. GR performs globally normalized maximum-likelihood optimization and encodes corpus and relevance information directly in the model parameters, whereas DR adopts locally normalized objectives and represents the corpus with external embeddings before computing similarity via a bilinear interaction. Our analysis suggests that, under scaling, GR can overcome the inherent limitations of DR, yielding two major benefits. First, with larger corpora, GR avoids the sharp performance degradation caused by the optimization drift induced by DR's local normalization. Second, with larger models, GR's representational capacity scales with parameter size, unconstrained by the global low-rank structure that limits DR. We validate these theoretical insights through controlled experiments on the Natural Questions and MS MARCO datasets, across varying negative sampling strategies, embedding dimensions, and model scales. But despite its theoretical advantages, GR does not universally outperform DR in practice. We outline directions to bridge the gap between GR's theoretical potential and practical performance, providing guidance for future research in scalable and robust generative retrieval.
♻ ☆ The Value of Personalized Recommendations: Evidence from Netflix
Personalized recommendation systems shape much of user choice online, yet their targeted nature makes separating out the value of recommendation and the underlying goods challenging. We build a discrete choice model that embeds recommendation-induced utility, low-rank heterogeneity, and flexible state dependence and apply the model to viewership data at Netflix. We exploit idiosyncratic variation introduced by the recommendation algorithm to identify and separately value these components as well as to recover model-free diversion ratios that we can use to validate our structural model. We use the model to evaluate counterfactuals that quantify the incremental engagement generated by personalized recommendations. First, we show that replacing the current recommender system with a matrix factorization or popularity-based algorithm would lead to 4% and 12% reduction in engagement, respectively, and decreased consumption diversity. Second, most of the consumption increase from recommendations comes from effective targeting, not mechanical exposure, with the largest gains for mid-popularity goods (as opposed to broadly appealing or very niche goods).
♻ ☆ LLM-based Relevance Assessment for Web-Scale Search Evaluation at Pinterest RecSys 2025
Relevance evaluation plays a crucial role in personalized search systems to ensure that search results align with a user's queries and intent. While human annotation is the traditional method for relevance evaluation, its high cost and long turnaround time limit its scalability. In this work, we present our approach at Pinterest Search to automate relevance evaluation for online experiments using fine-tuned LLMs. We rigorously validate the alignment between LLM-generated judgments and human annotations, demonstrating that LLMs can provide reliable relevance measurement for experiments while greatly improving the evaluation efficiency. Leveraging LLM-based labeling further unlocks the opportunities to expand the query set, optimize sampling design, and efficiently assess a wider range of search experiences at scale. This approach leads to higher-quality relevance metrics and significantly reduces the Minimum Detectable Effect (MDE) in online experiment measurements.
comment: RecSys 2025 EARL Workshop
♻ ☆ Enhancing Speech-to-Speech Dialogue Modeling with End-to-End Retrieval-Augmented Generation EMNLP 2025
End-to-end speech-to-speech (S2S) dialogue systems have recently garnered increasing research attention for their lower latency and more natural integration of nonverbal cues such as emotion and speaker identity. However, these systems face key challenges, particularly in incorporating external knowledge, a capability commonly addressed by Retrieval-Augmented Generation (RAG) in text-based large language models (LLMs). The core difficulty lies in the modality gap between input speech and retrieved textual knowledge, which hinders effective integration of information. To address this issue, we propose a novel end-to-end RAG framework that directly retrieves relevant textual knowledge from speech queries. Experimental results demonstrate that our method significantly improves the performance of end-to-end S2S dialogue systems while achieving higher retrieval efficiency. Although the overall performance still lags behind the SOTA cascaded models, our framework offers a promising direction for enhancing knowledge integration in end-to-end S2S systems. Our code and dataset are released.
comment: Accepted to EMNLP 2025 Findings
♻ ☆ Evaluating and Addressing Fairness Across User Groups in Negative Sampling for Recommender Systems CIKM 2025
Recommender systems trained on implicit feedback data rely on negative sampling to distinguish positive items from negative items for each user. Since the majority of positive interactions come from a small group of active users, negative samplers are often impacted by data imbalance, leading them to choose more informative negatives for prominent users while providing less useful ones for users who are not so active. This leads to inactive users being further marginalised in the training process, thus receiving inferior recommendations. In this paper, we conduct a comprehensive empirical study demonstrating that state-of-the-art negative sampling strategies provide more accurate recommendations for active users than for inactive users. We also find that increasing the number of negative samples for each positive item improves the average performance, but the benefit is distributed unequally across user groups, with active users experiencing performance gain while inactive users suffering performance degradation. To address this, we propose a group-specific negative sampling strategy that assigns smaller negative ratios to inactive user groups and larger ratios to active groups. Experiments on eight negative samplers show that our approach improves user-side fairness and performance when compared to a uniform global ratio.
comment: Accepted to CIKM 2025
Multimedia
☆ Generative AI Meets 6G and Beyond: Diffusion Models for Semantic Communications
Semantic communications mark a paradigm shift from bit-accurate transmission toward meaning-centric communication, essential as wireless systems approach theoretical capacity limits. The emergence of generative AI has catalyzed generative semantic communications, where receivers reconstruct content from minimal semantic cues by leveraging learned priors. Among generative approaches, diffusion models stand out for their superior generation quality, stable training dynamics, and rigorous theoretical foundations. However, the field currently lacks systematic guidance connecting diffusion techniques to communication system design, forcing researchers to navigate disparate literatures. This article provides the first comprehensive tutorial on diffusion models for generative semantic communications. We present score-based diffusion foundations and systematically review three technical pillars: conditional diffusion for controllable generation, efficient diffusion for accelerated inference, and generalized diffusion for cross-domain adaptation. In addition, we introduce an inverse problem perspective that reformulates semantic decoding as posterior inference, bridging semantic communications with computational imaging. Through analysis of human-centric, machine-centric, and agent-centric scenarios, we illustrate how diffusion models enable extreme compression while maintaining semantic fidelity and robustness. By bridging generative AI innovations with communication system design, this article aims to establish diffusion models as foundational components of next-generation wireless networks and beyond.
comment: Under review, GitHub repository: https://github.com/qin-jingyun/Awesome-DiffComm
☆ Private Chat in a Public Space of Metaverse Systems
With the proliferation of Virtual Reality (VR) technologies and the emergence of the Metaverse, social VR applications have become increasingly prevalent and accessible to the general user base. Serving as a novel form of social media, these platforms give users a unique opportunity to engage in social activities. However, there remains a significant limitation: the inability to engage in private conversations within public social VR environments. Current interactions are predominantly public, making it challenging for users to have confidential side discussions or whispers without disrupting ongoing conversations. To address this gap, we developed Hushhub, a private chat system integrated into the popular social VR platform VRChat. Our system enables users within a shared VR space to initiate private audio conversations selectively, allowing them to maintain awareness and engagement with the broader group discussions. To evaluate the system, we conducted user studies to gather insight and feedback on the efficacy and user experience of the implemented system. The results demonstrate the value and necessity of enabling private conversations within immersive social VR environments, paving the way for richer, more nuanced social interactions.
comment: 7 pages, 5 figures
☆ Cross Modal Fine-grained Alignment via Granularity-aware and Region-uncertain Modeling AAAI 2026
Fine-grained image-text alignment is a pivotal challenge in multimodal learning, underpinning key applications such as visual question answering, image captioning, and vision-language navigation. Unlike global alignment, fine-grained alignment requires precise correspondence between localized visual regions and textual tokens, often hindered by noisy attention mechanisms and oversimplified modeling of cross-modal relationships. In this work, we identify two fundamental limitations of existing approaches: the lack of robust intra-modal mechanisms to assess the significance of visual and textual tokens, leading to poor generalization in complex scenes; and the absence of fine-grained uncertainty modeling, which fails to capture the one-to-many and many-to-one nature of region-word correspondences. To address these issues, we propose a unified approach that incorporates significance-aware and granularity-aware modeling and region-level uncertainty modeling. Our method leverages modality-specific biases to identify salient features without relying on brittle cross-modal attention, and represents region features as a mixture of Gaussian distributions to capture fine-grained uncertainty. Extensive experiments on Flickr30K and MS-COCO demonstrate that our approach achieves state-of-the-art performance across various backbone architectures, significantly enhancing the robustness and interpretability of fine-grained image-text alignment.
comment: 10 pages, 6 figures, accepted by AAAI 2026
♻ ☆ T-GVC: Trajectory-Guided Generative Video Coding at Ultra-Low Bitrates
Recent advances in video generation techniques have given rise to an emerging paradigm of generative video coding for Ultra-Low Bitrate (ULB) scenarios by leveraging powerful generative priors. However, most existing methods are limited by domain specificity (e.g., facial or human videos) or excessive dependence on high-level text guidance, which tend to inadequately capture fine-grained motion details, leading to unrealistic or incoherent reconstructions. To address these challenges, we propose Trajectory-Guided Generative Video Coding (dubbed T-GVC), a novel framework that bridges low-level motion tracking with high-level semantic understanding. T-GVC features a semantic-aware sparse motion sampling pipeline that extracts pixel-wise motion as sparse trajectory points based on their semantic importance, significantly reducing the bitrate while preserving critical temporal semantic information. In addition, by integrating trajectory-aligned loss constraints into diffusion processes, we introduce a training-free guidance mechanism in latent space to ensure physically plausible motion patterns without sacrificing the inherent capabilities of generative models. Experimental results demonstrate that T-GVC outperforms both traditional and neural video codecs under ULB conditions. Furthermore, additional experiments confirm that our framework achieves more precise motion control than existing text-guided methods, paving the way for a novel direction of generative video coding guided by geometric motion modeling.
♻ ☆ Enabling American Sign Language Communication Under Low Data Rates
In recent years, video conferencing applications have become increasingly prevalent, relying heavily on high-speed internet connectivity. When such connectivity is lacking, users often default to audio-only communication, a mode that significantly disadvantages American Sign Language (ASL) users, whose communication relies on hand gestures, body movement, and facial expressions. In this work, we introduce VC4ASL, a system designed to enable ASL communication over the audio channel of existing video conferencing applications, even in the absence of reliable video. VC4ASL integrates seamlessly with current platforms without requiring any modifications. Our approach establishes a communication channel through audio by encoding and transmitting human pose information, which is then rendered to reconstruct signed content. We propose novel receive-side error detection and correction mechanisms that exploit the inherent structural constraints of human pose data. To evaluate the system, we simulate network-degraded environments, generate pose-based ASL video sequences, and conduct user studies to assess comprehension among ASL users. Experimental results demonstrate that VC4ASL effectively facilitates intelligible ASL communication over audio in low-bandwidth scenarios where video transmission is impaired.
♻ ☆ LaF-GRPO: In-Situ Navigation Instruction Generation for the Visually Impaired via GRPO with LLM-as-Follower Reward AAAI-26
Navigation instruction generation for visually impaired (VI) individuals (NIG-VI) is critical yet relatively underexplored. This study focuses on generating precise, in-situ, step-by-step navigation instructions that are practically usable for VI users. Specifically, we propose LaF-GRPO (LLM-as-Follower GRPO), where an LLM simulates VI user responses to navigation instructions, thereby providing feedback rewards to guide the post-training of a Vision-Language Model (VLM). This enhances instruction accuracy and usability while reducing costly real-world data collection needs. To address the scarcity of dedicated benchmarks in this field, we introduce NIG4VI, a 27k-sample open-source dataset to facilitate training and evaluation. It comprises diverse navigation scenarios with accurate spatial coordinates, supporting detailed and open-ended in-situ instruction generation. Experiments on NIG4VI demonstrate the effectiveness of LaF-GRPO through quantitative metrics (e.g., Zero-(LaF-GRPO) boosts BLEU 14\%; SFT+(LaF-GRPO) METEOR 0.542 vs. GPT-4o 0.323), and qualitative analysis further confirms that our method yields more intuitive and safer instructions.
comment: Accepted at AAAI-26
♻ ☆ py360tool: Um framework para manipulação de vídeo 360$^\circ$ com ladrilhos
The streaming of 360$^\circ$ videos is one of the most bandwidth-demanding virtual reality (VR) applications, as the video must be encoded in ultra-high resolution to ensure an immersive experience. To optimize its transmission, current approaches partition the spherical video into tiles, which are encoded at different bitrates and selectively delivered, based on the viewing direction of the user (viewport). The complexity of this architecture, which involves viewport prediction, tile selection, bit rate adaptation, and handling of parallel streaming, requires new tools to evaluate quality of experience (QoE) and quality of service (QoS), especially due to its interactive nature and low reproducibility. This work introduces py360tools, a Python library to handle tile-based 360$^\circ$ video streaming. The library automates key client-side tasks, such as spherical projection reconstruction, viewport extraction, and tile selection, facilitating the playback and simulation of streaming sessions. Furthermore, py360tools offers a flexible architecture, enabling efficient analysis of different projections and tiling strategies.
comment: in Portuguese language, Submetido ao WFA, Workshop de Ferramentas e Aplicações de 2025, evento satélite do 31$^\circ$ Simpósio Brasileiro de Sistemas Multimídia e Web
Computation and Language
☆ Language Generation with Infinite Contamination
We study language generation in the limit, where an algorithm observes an adversarial enumeration of strings from an unknown target language $K$ and must eventually generate new, unseen strings from $K$. Kleinberg and Mullainathan [KM24] proved that generation is achievable in surprisingly general settings. But their generator suffers from ``mode collapse,'' producing from an ever-smaller subset of the target. To address this, Kleinberg and Wei [KW25] require the generator's output to be ``dense'' in the target language. They showed that generation with density, surprisingly, remains achievable at the same generality. Both results assume perfect data: no noisy insertions and no omissions. This raises a central question: how much contamination can generation tolerate? Recent works made partial progress on this question by studying (non-dense) generation with either finite amounts of noise (but no omissions) or omissions (but no noise). We characterize robustness under contaminated enumerations: 1. Generation under Contamination: Language generation in the limit is achievable for all countable collections iff the fraction of contaminated examples converges to zero. When this fails, we characterize which collections are generable. 2. Dense Generation under Contamination: Dense generation is strictly less robust to contamination than generation. As a byproduct, we resolve an open question of Raman and Raman [ICML25] by showing that generation is possible with only membership oracle access under finitely many contaminated examples. Finally, we introduce a beyond-worst-case model inspired by curriculum learning and prove that dense generation is achievable even with infinite contamination provided the fraction of contaminated examples converges to zero. This suggests curriculum learning may be crucial for learning from noisy web data.
☆ DigiData: Training and Evaluating General-Purpose Mobile Control Agents
AI agents capable of controlling user interfaces have the potential to transform human interaction with digital devices. To accelerate this transformation, two fundamental building blocks are essential: high-quality datasets that enable agents to achieve complex and human-relevant goals, and robust evaluation methods that allow researchers and practitioners to rapidly enhance agent performance. In this paper, we introduce DigiData, a large-scale, high-quality, diverse, multi-modal dataset designed for training mobile control agents. Unlike existing datasets, which derive goals from unstructured interactions, DigiData is meticulously constructed through comprehensive exploration of app features, resulting in greater diversity and higher goal complexity. Additionally, we present DigiData-Bench, a benchmark for evaluating mobile control agents on real-world complex tasks. We demonstrate that the commonly used step-accuracy metric falls short in reliably assessing mobile control agents and, to address this, we propose dynamic evaluation protocols and AI-powered evaluations as rigorous alternatives for agent assessment. Our contributions aim to significantly advance the development of mobile control agents, paving the way for more intuitive and effective human-device interactions.
comment: Website: https://facebookresearch.github.io/DigiData
☆ SPOT: An Annotated French Corpus and Benchmark for Detecting Critical Interventions in Online Conversations
We introduce SPOT (Stopping Points in Online Threads), the first annotated corpus translating the sociological concept of stopping point into a reproducible NLP task. Stopping points are ordinary critical interventions that pause or redirect online discussions through a range of forms (irony, subtle doubt or fragmentary arguments) that frameworks like counterspeech or social correction often overlook. We operationalize this concept as a binary classification task and provide reliable annotation guidelines. The corpus contains 43,305 manually annotated French Facebook comments linked to URLs flagged as false information by social media users, enriched with contextual metadata (article, post, parent comment, page or group, and source). We benchmark fine-tuned encoder models (CamemBERT) and instruction-tuned LLMs under various prompting strategies. Results show that fine-tuned encoders outperform prompted LLMs in F1 score by more than 10 percentage points, confirming the importance of supervised learning for emerging non-English social media tasks. Incorporating contextual metadata further improves encoder models F1 scores from 0.75 to 0.78. We release the anonymized dataset, along with the annotation guidelines and code in our code repository, to foster transparency and reproducible research.
☆ SpatialThinker: Reinforcing 3D Reasoning in Multimodal LLMs via Spatial Rewards NeurIPS 2025
Multimodal large language models (MLLMs) have achieved remarkable progress in vision-language tasks, but they continue to struggle with spatial understanding. Existing spatial MLLMs often rely on explicit 3D inputs or architecture-specific modifications, and remain constrained by large-scale datasets or sparse supervision. To address these limitations, we introduce SpatialThinker, a 3D-aware MLLM trained with RL to integrate structured spatial grounding with multi-step reasoning. The model simulates human-like spatial perception by constructing a scene graph of task-relevant objects and spatial relations, and reasoning towards an answer via dense spatial rewards. SpatialThinker consists of two key contributions: (1) a data synthesis pipeline that generates STVQA-7K, a high-quality spatial VQA dataset, and (2) online RL with a multi-objective dense spatial reward enforcing spatial grounding. SpatialThinker-7B outperforms supervised fine-tuning and the sparse RL baseline on spatial understanding and real-world VQA benchmarks, nearly doubling the base-model gain compared to sparse RL, and surpassing GPT-4o. These results showcase the effectiveness of combining spatial supervision with reward-aligned reasoning in enabling robust 3D spatial understanding with limited data and advancing MLLMs towards human-level visual reasoning.
comment: Preprint. Accepted at NeurIPS 2025 Workshops on SPACE in Vision, Language, and Embodied AI (SpaVLE), Embodied World Models for Decision Making (EWM), Aligning Reinforcement Learning Experimentalists and Theorists (ARLET), and Scaling Environments for Agents (SEA)
☆ ConvFill: Model Collaboration for Responsive Conversational Voice Agents
Deploying conversational voice agents with large language models faces a critical challenge: cloud-based foundation models provide deep reasoning and domain knowledge but introduce latency that disrupts natural conversation, while on-device models respond immediately but lack sophistication. We propose conversational infill, a task where a lightweight on-device model generates contextually appropriate dialogue while seamlessly incorporating streaming knowledge from a powerful backend model. This approach decouples response latency from model capability, enabling systems that feel responsive while accessing the full power of large-scale models. We present ConvFill, a 360M parameter model trained on synthetic multi-domain conversations. Evaluation across multiple backend models shows that conversational infill can be successfully learned, with ConvFill achieving accuracy improvements of 36-42% over standalone small models of the same size while consistently retaining sub-200ms response latencies. Our results demonstrate the promise of this approach for building on-device conversational agents that are both immediately responsive and knowledgeable.
☆ Surgical Agent Orchestration Platform for Voice-directed Patient Data Interaction
In da Vinci robotic surgery, surgeons' hands and eyes are fully engaged in the procedure, making it difficult to access and manipulate multimodal patient data without interruption. We propose a voice-directed Surgical Agent Orchestrator Platform (SAOP) built on a hierarchical multi-agent framework, consisting of an orchestration agent and three task-specific agents driven by Large Language Models (LLMs). These LLM-based agents autonomously plan, refine, validate, and reason to map voice commands into specific tasks such as retrieving clinical information, manipulating CT scans, or navigating 3D anatomical models on the surgical video. We also introduce a Multi-level Orchestration Evaluation Metric (MOEM) to comprehensively assess the performance and robustness from command-level and category-level perspectives. The SAOP achieves high accuracy and success rates across 240 voice commands, while LLM-based agents improve robustness against speech recognition errors and diverse or ambiguous free-form commands, demonstrating strong potential to support minimally invasive da Vinci robotic surgery.
comment: 22 pages, 12 figures, 1 table, Supplementary Information, Supplementary Data 1
☆ Teaching Pretrained Language Models to Think Deeper with Retrofitted Recurrence
Recent advances in depth-recurrent language models show that recurrence can decouple train-time compute and parameter count from test-time compute. In this work, we study how to convert existing pretrained non-recurrent language models into depth-recurrent models. We find that using a curriculum of recurrences to increase the effective depth of the model over the course of training preserves performance while reducing total computational cost. In our experiments, on mathematics, we observe that converting pretrained models to recurrent ones results in better performance at a given compute budget than simply post-training the original non-recurrent language model.
comment: code: https://github.com/mcleish7/retrofitting-recurrence, models: https://huggingface.co/collections/tomg-group-umd/retrofitting-recurrence
☆ Retriv at BLP-2025 Task 2: Test-Driven Feedback-Guided Framework for Bangla-to-Python Code Generation
Large Language Models (LLMs) have advanced the automated generation of code from natural language prompts. However, low-resource languages (LRLs) like Bangla remain underrepresented due to the limited availability of instruction-to-code datasets and evaluation benchmarks. To address this, the BLP Workshop at IJCNLP-AACL 2025 introduced a shared task on "Code Generation in Bangla". In this work, we propose a method that combines instruction prompting with a test-driven, feedback-guided iterative refinement process using a fine-tuned Qwen2.5-14B model. The model generates code from Bangla instructions, tests it against unit tests, and iteratively refines any failing outputs through three evaluation passes, using test feedback to guide each step. This approach helped our team "Retriv" to secure 2nd place in the shared task with a Pass@1 score of 0.934. The analysis highlights challenges in Bangla instruction understanding and Python code generation, emphasizing the need for targeted methods in LRLs. We made experimental scripts publicly available for the community.
comment: 8 pages, 1 figure, experimental scripts publicly available at https://github.com/NafiAsib/Retriv-BLP25-Task-2
☆ Selecting Auxiliary Data via Neural Tangent Kernels for Low-Resource Domains
Large language models (LLMs) have achieved remarkable success across widespread tasks, yet their application in low-resource domains remains a significant challenge due to data scarcity and the high risk of overfitting. While in-domain data is limited, there exist vast amounts of similar general-domain data, and our initial findings reveal that they could potentially serve as auxiliary supervision for domain enhancement. This observation leads us to our central research question: \textbf{\textit{how to effectively select the most valuable auxiliary data to maximize domain-specific performance}}, particularly when traditional methods are inapplicable due to a lack of large in-domain data pools or validation sets. To address this, we propose \textbf{NTK-Selector}, a principled and efficient framework for selecting general-domain auxiliary data to enhance domain-specific performance via neural tangent kernels (NTK). Our method tackles two challenges of directly applying NTK to LLMs, theoretical assumptions and prohibitive computational cost, by empirically demonstrating a stable NTK-like behavior in LLMs during LoRA fine-tuning and proposing a Jacobian-free approximation method. Extensive experiments across four low-resource domains (medical, financial, legal, and psychological) demonstrate that NTK-Selector consistently improves downstream performance. Specifically, fine-tuning on 1,000 in-domain samples alone only yielded +0.8 points for Llama3-8B-Instruct and +0.9 points for Qwen3-8B. In contrast, enriching with 9,000 auxiliary samples selected by NTK-Selector led to substantial \textbf{gains of +8.7 and +5.1 points}, which corresponds to a \textbf{10.9x and 5.7x improvement} over the domain-only setting.
comment: 27 pages
♻ ☆ Mixed Signals: Understanding Model Disagreement in Multimodal Empathy Detection
Multimodal models play a key role in empathy detection, but their performance can suffer when modalities provide conflicting cues. To understand these failures, we examine cases where unimodal and multimodal predictions diverge. Using fine-tuned models for text, audio, and video, along with a gated fusion model, we find that such disagreements often reflect underlying ambiguity, as evidenced by annotator uncertainty. Our analysis shows that dominant signals in one modality can mislead fusion when unsupported by others. We also observe that humans, like models, do not consistently benefit from multimodal input. These insights position disagreement as a useful diagnostic signal for identifying challenging examples and improving empathy system robustness.
Computer Vision and Pattern Recognition
☆ Lightning Grasp: High Performance Procedural Grasp Synthesis with Contact Fields
Despite years of research, real-time diverse grasp synthesis for dexterous hands remains an unsolved core challenge in robotics and computer graphics. We present Lightning Grasp, a novel high-performance procedural grasp synthesis algorithm that achieves orders-of-magnitude speedups over state-of-the-art approaches, while enabling unsupervised grasp generation for irregular, tool-like objects. The method avoids many limitations of prior approaches, such as the need for carefully tuned energy functions and sensitive initialization. This breakthrough is driven by a key insight: decoupling complex geometric computation from the search process via a simple, efficient data structure - the Contact Field. This abstraction collapses the problem complexity, enabling a procedural search at unprecedented speeds. We open-source our system to propel further innovation in robotic manipulation.
comment: Code: https://github.com/zhaohengyin/lightning-grasp
☆ Robot Learning from a Physical World Model
We introduce PhysWorld, a framework that enables robot learning from video generation through physical world modeling. Recent video generation models can synthesize photorealistic visual demonstrations from language commands and images, offering a powerful yet underexplored source of training signals for robotics. However, directly retargeting pixel motions from generated videos to robots neglects physics, often resulting in inaccurate manipulations. PhysWorld addresses this limitation by coupling video generation with physical world reconstruction. Given a single image and a task command, our method generates task-conditioned videos and reconstructs the underlying physical world from the videos, and the generated video motions are grounded into physically accurate actions through object-centric residual reinforcement learning with the physical world model. This synergy transforms implicit visual guidance into physically executable robotic trajectories, eliminating the need for real robot data collection and enabling zero-shot generalizable robotic manipulation. Experiments on diverse real-world tasks demonstrate that PhysWorld substantially improves manipulation accuracy compared to previous approaches. Visit \href{https://pointscoder.github.io/PhysWorld_Web/}{the project webpage} for details.
comment: Project page: https://pointscoder.github.io/PhysWorld_Web/
☆ TwinOR: Photorealistic Digital Twins of Dynamic Operating Rooms for Embodied AI Research
Developing embodied AI for intelligent surgical systems requires safe, controllable environments for continual learning and evaluation. However, safety regulations and operational constraints in operating rooms (ORs) limit embodied agents from freely perceiving and interacting in realistic settings. Digital twins provide high-fidelity, risk-free environments for exploration and training. How we may create photorealistic and dynamic digital representations of ORs that capture relevant spatial, visual, and behavioral complexity remains unclear. We introduce TwinOR, a framework for constructing photorealistic, dynamic digital twins of ORs for embodied AI research. The system reconstructs static geometry from pre-scan videos and continuously models human and equipment motion through multi-view perception of OR activities. The static and dynamic components are fused into an immersive 3D environment that supports controllable simulation and embodied exploration. The proposed framework reconstructs complete OR geometry with centimeter level accuracy while preserving dynamic interaction across surgical workflows, enabling realistic renderings and a virtual playground for embodied AI systems. In our experiments, TwinOR simulates stereo and monocular sensor streams for geometry understanding and visual localization tasks. Models such as FoundationStereo and ORB-SLAM3 on TwinOR-synthesized data achieve performance within their reported accuracy on real indoor datasets, demonstrating that TwinOR provides sensor-level realism sufficient for perception and localization challenges. By establishing a real-to-sim pipeline for constructing dynamic, photorealistic digital twins of OR environments, TwinOR enables the safe, scalable, and data-efficient development and benchmarking of embodied AI, ultimately accelerating the deployment of embodied AI from sim-to-real.
☆ DIMO: Diverse 3D Motion Generation for Arbitrary Objects ICCV 2025
We present DIMO, a generative approach capable of generating diverse 3D motions for arbitrary objects from a single image. The core idea of our work is to leverage the rich priors in well-trained video models to extract the common motion patterns and then embed them into a shared low-dimensional latent space. Specifically, we first generate multiple videos of the same object with diverse motions. We then embed each motion into a latent vector and train a shared motion decoder to learn the distribution of motions represented by a structured and compact motion representation, i.e., neural key point trajectories. The canonical 3D Gaussians are then driven by these key points and fused to model the geometry and appearance. During inference time with learned latent space, we can instantly sample diverse 3D motions in a single-forward pass and support several interesting applications including 3D motion interpolation and language-guided motion generation. Our project page is available at https://linzhanm.github.io/dimo.
comment: Published in ICCV 2025, project page https://linzhanm.github.io/dimo
☆ SpatialThinker: Reinforcing 3D Reasoning in Multimodal LLMs via Spatial Rewards NeurIPS 2025
Multimodal large language models (MLLMs) have achieved remarkable progress in vision-language tasks, but they continue to struggle with spatial understanding. Existing spatial MLLMs often rely on explicit 3D inputs or architecture-specific modifications, and remain constrained by large-scale datasets or sparse supervision. To address these limitations, we introduce SpatialThinker, a 3D-aware MLLM trained with RL to integrate structured spatial grounding with multi-step reasoning. The model simulates human-like spatial perception by constructing a scene graph of task-relevant objects and spatial relations, and reasoning towards an answer via dense spatial rewards. SpatialThinker consists of two key contributions: (1) a data synthesis pipeline that generates STVQA-7K, a high-quality spatial VQA dataset, and (2) online RL with a multi-objective dense spatial reward enforcing spatial grounding. SpatialThinker-7B outperforms supervised fine-tuning and the sparse RL baseline on spatial understanding and real-world VQA benchmarks, nearly doubling the base-model gain compared to sparse RL, and surpassing GPT-4o. These results showcase the effectiveness of combining spatial supervision with reward-aligned reasoning in enabling robust 3D spatial understanding with limited data and advancing MLLMs towards human-level visual reasoning.
comment: Preprint. Accepted at NeurIPS 2025 Workshops on SPACE in Vision, Language, and Embodied AI (SpaVLE), Embodied World Models for Decision Making (EWM), Aligning Reinforcement Learning Experimentalists and Theorists (ARLET), and Scaling Environments for Agents (SEA)
☆ StreamDiffusionV2: A Streaming System for Dynamic and Interactive Video Generation
Generative models are reshaping the live-streaming industry by redefining how content is created, styled, and delivered. Previous image-based streaming diffusion models have powered efficient and creative live streaming products but have hit limits on temporal consistency due to the foundation of image-based designs. Recent advances in video diffusion have markedly improved temporal consistency and sampling efficiency for offline generation. However, offline generation systems primarily optimize throughput by batching large workloads. In contrast, live online streaming operates under strict service-level objectives (SLOs): time-to-first-frame must be minimal, and every frame must meet a per-frame deadline with low jitter. Besides, scalable multi-GPU serving for real-time streams remains largely unresolved so far. To address this, we present StreamDiffusionV2, a training-free pipeline for interactive live streaming with video diffusion models. StreamDiffusionV2 integrates an SLO-aware batching scheduler and a block scheduler, together with a sink-token--guided rolling KV cache, a motion-aware noise controller, and other system-level optimizations. Moreover, we introduce a scalable pipeline orchestration that parallelizes the diffusion process across denoising steps and network layers, achieving near-linear FPS scaling without violating latency guarantees. The system scales seamlessly across heterogeneous GPU environments and supports flexible denoising steps (e.g., 1--4), enabling both ultra-low-latency and higher-quality modes. Without TensorRT or quantization, StreamDiffusionV2 renders the first frame within 0.5s and attains 58.28 FPS with a 14B-parameter model and 64.52 FPS with a 1.3B-parameter model on four H100 GPUs, making state-of-the-art generative live streaming practical and accessible--from individual creators to enterprise-scale platforms.
comment: Project Page: http://streamdiffusionv2.github.io
☆ Real-Time LiDAR Super-Resolution via Frequency-Aware Multi-Scale Fusion
LiDAR super-resolution addresses the challenge of achieving high-quality 3D perception from cost-effective, low-resolution sensors. While recent transformer-based approaches like TULIP show promise, they remain limited to spatial-domain processing with restricted receptive fields. We introduce FLASH (Frequency-aware LiDAR Adaptive Super-resolution with Hierarchical fusion), a novel framework that overcomes these limitations through dual-domain processing. FLASH integrates two key innovations: (i) Frequency-Aware Window Attention that combines local spatial attention with global frequency-domain analysis via FFT, capturing both fine-grained geometry and periodic scanning patterns at log-linear complexity. (ii) Adaptive Multi-Scale Fusion that replaces conventional skip connections with learned position-specific feature aggregation, enhanced by CBAM attention for dynamic feature selection. Extensive experiments on KITTI demonstrate that FLASH achieves state-of-the-art performance across all evaluation metrics, surpassing even uncertainty-enhanced baselines that require multiple forward passes. Notably, FLASH outperforms TULIP with Monte Carlo Dropout while maintaining single-pass efficiency, which enables real-time deployment. The consistent superiority across all distance ranges validates that our dual-domain approach effectively handles uncertainty through architectural design rather than computationally expensive stochastic inference, making it practical for autonomous systems.
☆ Inference-Time Scaling of Diffusion Models for Infrared Data Generation
Infrared imagery enables temperature-based scene understanding using passive sensors, particularly under conditions of low visibility where traditional RGB imaging fails. Yet, developing downstream vision models for infrared applications is hindered by the scarcity of high-quality annotated data, due to the specialized expertise required for infrared annotation. While synthetic infrared image generation has the potential to accelerate model development by providing large-scale, diverse training data, training foundation-level generative diffusion models in the infrared domain has remained elusive due to limited datasets. In light of such data constraints, we explore an inference-time scaling approach using a domain-adapted CLIP-based verifier for enhanced infrared image generation quality. We adapt FLUX.1-dev, a state-of-the-art text-to-image diffusion model, to the infrared domain by finetuning it on a small sample of infrared images using parameter-efficient techniques. The trained verifier is then employed during inference to guide the diffusion sampling process toward higher quality infrared generations that better align with input text prompts. Empirically, we find that our approach leads to consistent improvements in generation quality, reducing FID scores on the KAIST Multispectral Pedestrian Detection Benchmark dataset by 10% compared to unguided baseline samples. Our results suggest that inference-time guidance offers a promising direction for bridging the domain gap in low-data infrared settings.
comment: Peer-reviewed workshop paper
☆ Preparation of Fractal-Inspired Computational Architectures for Advanced Large Language Model Analysis
It introduces FractalNet, a fractal-inspired computational architectures for advanced large language model analysis that mainly challenges model diversity on a large scale in an efficient manner. The new set-up involves a template-driven generator, runner, and evaluation framework that, through systematic permutations of convolutional, normalization, activation, and dropout layers, can create more than 1,200 variants of neural networks. Fractal templates allow for structural recursion and multi-column pathways, thus, models become deeper and wider in a balanced way. Training utilizes PyTorch, Automatic Mixed Precision (AMP), and gradient checkpointing and is carried out on the CIFAR-10 dataset for five epochs. The outcomes show that fractal-based architectures are capable of strong performance and are computationally efficient. The paper positions fractal design as a feasible and resource-efficient method of automated architecture exploration.
☆ Garbage Vulnerable Point Monitoring using IoT and Computer Vision
This paper proposes a smart way to manage municipal solid waste by using the Internet of Things (IoT) and computer vision (CV) to monitor illegal waste dumping at garbage vulnerable points (GVPs) in urban areas. The system can quickly detect and monitor dumped waste using a street-level camera and object detection algorithm. Data was collected from the Sangareddy district in Telangana, India. A series of comprehensive experiments was carried out using the proposed dataset to assess the accuracy and overall performance of various object detection models. Specifically, we performed an in-depth evaluation of YOLOv8, YOLOv10, YOLO11m, and RT-DETR on our dataset. Among these models, YOLO11m achieved the highest accuracy of 92.39\% in waste detection, demonstrating its effectiveness in detecting waste. Additionally, it attains an mAP@50 of 0.91, highlighting its high precision. These findings confirm that the object detection model is well-suited for monitoring and tracking waste dumping events at GVP locations. Furthermore, the system effectively captures waste disposal patterns, including hourly, daily, and weekly dumping trends, ensuring comprehensive daily and nightly monitoring.
☆ YoNoSplat: You Only Need One Model for Feedforward 3D Gaussian Splatting
Fast and flexible 3D scene reconstruction from unstructured image collections remains a significant challenge. We present YoNoSplat, a feedforward model that reconstructs high-quality 3D Gaussian Splatting representations from an arbitrary number of images. Our model is highly versatile, operating effectively with both posed and unposed, calibrated and uncalibrated inputs. YoNoSplat predicts local Gaussians and camera poses for each view, which are aggregated into a global representation using either predicted or provided poses. To overcome the inherent difficulty of jointly learning 3D Gaussians and camera parameters, we introduce a novel mixing training strategy. This approach mitigates the entanglement between the two tasks by initially using ground-truth poses to aggregate local Gaussians and gradually transitioning to a mix of predicted and ground-truth poses, which prevents both training instability and exposure bias. We further resolve the scale ambiguity problem by a novel pairwise camera-distance normalization scheme and by embedding camera intrinsics into the network. Moreover, YoNoSplat also predicts intrinsic parameters, making it feasible for uncalibrated inputs. YoNoSplat demonstrates exceptional efficiency, reconstructing a scene from 100 views (at 280x518 resolution) in just 2.69 seconds on an NVIDIA GH200 GPU. It achieves state-of-the-art performance on standard benchmarks in both pose-free and pose-dependent settings. Our project page is at https://botaoye.github.io/yonosplat/.
☆ Beyond Boundaries: Leveraging Vision Foundation Models for Source-Free Object Detection AAAI 2026
Source-Free Object Detection (SFOD) aims to adapt a source-pretrained object detector to a target domain without access to source data. However, existing SFOD methods predominantly rely on internal knowledge from the source model, which limits their capacity to generalize across domains and often results in biased pseudo-labels, thereby hindering both transferability and discriminability. In contrast, Vision Foundation Models (VFMs), pretrained on massive and diverse data, exhibit strong perception capabilities and broad generalization, yet their potential remains largely untapped in the SFOD setting. In this paper, we propose a novel SFOD framework that leverages VFMs as external knowledge sources to jointly enhance feature alignment and label quality. Specifically, we design three VFM-based modules: (1) Patch-weighted Global Feature Alignment (PGFA) distills global features from VFMs using patch-similarity-based weighting to enhance global feature transferability; (2) Prototype-based Instance Feature Alignment (PIFA) performs instance-level contrastive learning guided by momentum-updated VFM prototypes; and (3) Dual-source Enhanced Pseudo-label Fusion (DEPF) fuses predictions from detection VFMs and teacher models via an entropy-aware strategy to yield more reliable supervision. Extensive experiments on six benchmarks demonstrate that our method achieves state-of-the-art SFOD performance, validating the effectiveness of integrating VFMs to simultaneously improve transferability and discriminability.
comment: Accepted to AAAI 2026. Extended version with full Appendix
☆ LMM-IQA: Image Quality Assessment for Low-Dose CT Imaging
Low-dose computed tomography (CT) represents a significant improvement in patient safety through lower radiation doses, but increased noise, blur, and contrast loss can diminish diagnostic quality. Therefore, consistency and robustness in image quality assessment become essential for clinical applications. In this study, we propose an LLM-based quality assessment system that generates both numerical scores and textual descriptions of degradations such as noise, blur, and contrast loss. Furthermore, various inference strategies - from the zero-shot approach to metadata integration and error feedback - are systematically examined, demonstrating the progressive contribution of each method to overall performance. The resultant assessments yield not only highly correlated scores but also interpretable output, thereby adding value to clinical workflows. The source codes of our study are available at https://github.com/itu-biai/lmms_ldct_iqa.
☆ VADER: Towards Causal Video Anomaly Understanding with Relation-Aware Large Language Models
Video anomaly understanding (VAU) aims to provide detailed interpretation and semantic comprehension of anomalous events within videos, addressing limitations of traditional methods that focus solely on detecting and localizing anomalies. However, existing approaches often neglect the deeper causal relationships and interactions between objects, which are critical for understanding anomalous behaviors. In this paper, we propose VADER, an LLM-driven framework for Video Anomaly unDErstanding, which integrates keyframe object Relation features with visual cues to enhance anomaly comprehension from video. Specifically, VADER first applies an Anomaly Scorer to assign per-frame anomaly scores, followed by a Context-AwarE Sampling (CAES) strategy to capture the causal context of each anomalous event. A Relation Feature Extractor and a COntrastive Relation Encoder (CORE) jointly model dynamic object interactions, producing compact relational representations for downstream reasoning. These visual and relational cues are integrated with LLMs to generate detailed, causally grounded descriptions and support robust anomaly-related question answering. Experiments on multiple real-world VAU benchmarks demonstrate that VADER achieves strong results across anomaly description, explanation, and causal reasoning tasks, advancing the frontier of explainable video anomaly analysis.
☆ Verifying rich robustness properties for neural networks
Robustness is a important problem in AI alignment and safety, with models such as neural networks being increasingly used in safety-critical systems. In the last decade, a large body of work has emerged on local robustness, i.e., checking if the decision of a neural network remains unchanged when the input is slightly perturbed. However, many of these approaches require specialized encoding and often ignore the confidence of a neural network on its output. In this paper, our goal is to build a generalized framework to specify and verify variants of robustness in neural network verification. We propose a specification framework using a simple grammar, which is flexible enough to capture most existing variants. This allows us to introduce new variants of robustness that take into account the confidence of the neural network in its outputs. Next, we develop a novel and powerful unified technique to verify all such variants in a homogeneous way, viz., by adding a few additional layers to the neural network. This enables us to use any state-of-the-art neural network verification tool, without having to tinker with the encoding within, while incurring an approximation error that we show is bounded. We perform an extensive experimental evaluation over a large suite of 8870 benchmarks having 138M parameters in a largest network, and show that we are able to capture a wide set of robustness variants and outperform direct encoding approaches by a significant margin.
☆ PlanT 2.0: Exposing Biases and Structural Flaws in Closed-Loop Driving
Most recent work in autonomous driving has prioritized benchmark performance and methodological innovation over in-depth analysis of model failures, biases, and shortcut learning. This has led to incremental improvements without a deep understanding of the current failures. While it is straightforward to look at situations where the model fails, it is hard to understand the underlying reason. This motivates us to conduct a systematic study, where inputs to the model are perturbed and the predictions observed. We introduce PlanT 2.0, a lightweight, object-centric planning transformer designed for autonomous driving research in CARLA. The object-level representation enables controlled analysis, as the input can be easily perturbed (e.g., by changing the location or adding or removing certain objects), in contrast to sensor-based models. To tackle the scenarios newly introduced by the challenging CARLA Leaderboard 2.0, we introduce multiple upgrades to PlanT, achieving state-of-the-art performance on Longest6 v2, Bench2Drive, and the CARLA validation routes. Our analysis exposes insightful failures, such as a lack of scene understanding caused by low obstacle diversity, rigid expert behaviors leading to exploitable shortcuts, and overfitting to a fixed set of expert trajectories. Based on these findings, we argue for a shift toward data-centric development, with a focus on richer, more robust, and less biased datasets. We open-source our code and model at https://github.com/autonomousvision/plant2.
☆ CAMP-VQA: Caption-Embedded Multimodal Perception for No-Reference Quality Assessment of Compressed Video
The prevalence of user-generated content (UGC) on platforms such as YouTube and TikTok has rendered no-reference (NR) perceptual video quality assessment (VQA) vital for optimizing video delivery. Nonetheless, the characteristics of non-professional acquisition and the subsequent transcoding of UGC video on sharing platforms present significant challenges for NR-VQA. Although NR-VQA models attempt to infer mean opinion scores (MOS), their modeling of subjective scores for compressed content remains limited due to the absence of fine-grained perceptual annotations of artifact types. To address these challenges, we propose CAMP-VQA, a novel NR-VQA framework that exploits the semantic understanding capabilities of large vision-language models. Our approach introduces a quality-aware prompting mechanism that integrates video metadata (e.g., resolution, frame rate, bitrate) with key fragments extracted from inter-frame variations to guide the BLIP-2 pretraining approach in generating fine-grained quality captions. A unified architecture has been designed to model perceptual quality across three dimensions: semantic alignment, temporal characteristics, and spatial characteristics. These multimodal features are extracted and fused, then regressed to video quality scores. Extensive experiments on a wide variety of UGC datasets demonstrate that our model consistently outperforms existing NR-VQA methods, achieving improved accuracy without the need for costly manual fine-grained annotations. Our method achieves the best performance in terms of average rank and linear correlation (SRCC: 0.928, PLCC: 0.938) compared to state-of-the-art methods. The source code and trained models, along with a user-friendly demo, are available at: https://github.com/xinyiW915/CAMP-VQA.
comment: 14 pages, 6 figures
☆ Glioma C6: A Novel Dataset for Training and Benchmarking Cell Segmentation
We present Glioma C6, a new open dataset for instance segmentation of glioma C6 cells, designed as both a benchmark and a training resource for deep learning models. The dataset comprises 75 high-resolution phase-contrast microscopy images with over 12,000 annotated cells, providing a realistic testbed for biomedical image analysis. It includes soma annotations and morphological cell categorization provided by biologists. Additional categorization of cells, based on morphology, aims to enhance the utilization of image data for cancer cell research. Glioma C6 consists of two parts: the first is curated with controlled parameters for benchmarking, while the second supports generalization testing under varying conditions. We evaluate the performance of several generalist segmentation models, highlighting their limitations on our dataset. Our experiments demonstrate that training on Glioma C6 significantly enhances segmentation performance, reinforcing its value for developing robust and generalizable models. The dataset is publicly available for researchers.
☆ Segmentation of Ischemic Stroke Lesions using Transfer Learning on Multi-sequence MRI
The accurate understanding of ischemic stroke lesions is critical for efficient therapy and prognosis of stroke patients. Magnetic resonance imaging (MRI) is sensitive to acute ischemic stroke and is a common diagnostic method for stroke. However, manual lesion segmentation performed by experts is tedious, time-consuming, and prone to observer inconsistency. Automatic medical image analysis methods have been proposed to overcome this challenge. However, previous approaches have relied on hand-crafted features that may not capture the irregular and physiologically complex shapes of ischemic stroke lesions. In this study, we present a novel framework for quickly and automatically segmenting ischemic stroke lesions on various MRI sequences, including T1-weighted, T2-weighted, DWI, and FLAIR. The proposed methodology is validated on the ISLES 2015 Brain Stroke sequence dataset, where we trained our model using the Res-Unet architecture twice: first, with pre-existing weights, and then without, to explore the benefits of transfer learning. Evaluation metrics, including the Dice score and sensitivity, were computed across 3D volumes. Finally, a Majority Voting Classifier was integrated to amalgamate the outcomes from each axis, resulting in a comprehensive segmentation method. Our efforts culminated in achieving a Dice score of 80.5\% and an accuracy of 74.03\%, showcasing the efficacy of our segmentation approach.
comment: Ischemic Stroke, Segmentation, Transfer Learning, Magnetic Resonance Imaging, Deep Learning, Res-UNet
☆ StreamKV: Streaming Video Question-Answering with Segment-based KV Cache Retrieval and Compression
Video Large Language Models (Video-LLMs) have demonstrated significant potential in the areas of video captioning, search, and summarization. However, current Video-LLMs still face challenges with long real-world videos. Recent methods have introduced a retrieval mechanism that retrieves query-relevant KV caches for question answering, enhancing the efficiency and accuracy of long real-world videos. However, the compression and retrieval of KV caches are still not fully explored. In this paper, we propose \textbf{StreamKV}, a training-free framework that seamlessly equips Video-LLMs with advanced KV cache retrieval and compression. Compared to previous methods that used uniform partitioning, StreamKV dynamically partitions video streams into semantic segments, which better preserves semantic information. For KV cache retrieval, StreamKV calculates a summary vector for each segment to retain segment-level information essential for retrieval. For KV cache compression, StreamKV introduces a guidance prompt designed to capture the key semantic elements within each segment, ensuring only the most informative KV caches are retained for answering questions. Moreover, StreamKV unifies KV cache retrieval and compression within a single module, performing both in a layer-adaptive manner, thereby further improving the effectiveness of streaming video question answering. Extensive experiments on public StreamingVQA benchmarks demonstrate that StreamKV significantly outperforms existing Online Video-LLMs, achieving superior accuracy while substantially improving both memory efficiency and computational latency. The code has been released at https://github.com/sou1p0wer/StreamKV.
☆ Omni-AVSR: Towards Unified Multimodal Speech Recognition with Large Language Models
Large language models (LLMs) have recently achieved impressive results in speech recognition across multiple modalities, including Auditory Speech Recognition (ASR), Visual Speech Recognition (VSR), and Audio-Visual Speech Recognition (AVSR). Despite this progress, current LLM-based approaches typically address each task independently, training separate models that raise computational and deployment resource use while missing potential cross-task synergies. They also rely on fixed-rate token compression, which restricts flexibility in balancing accuracy with efficiency. These limitations highlight the need for a unified framework that can support ASR, VSR, and AVSR while enabling elastic inference. To this end, we present Omni-AVSR, a unified audio-visual LLM that combines efficient multi-granularity training with parameter-efficient adaptation. Specifically, we adapt the matryoshka representation learning paradigm to efficiently train across multiple audio and visual granularities, reducing its inherent training resource use. Furthermore, we explore three LoRA-based strategies for adapting the backbone LLM, balancing shared and task-specific specialization. Experiments on LRS2 and LRS3 show that Omni-AVSR achieves comparable or superior accuracy to state-of-the-art baselines while training a single model at substantially lower training and deployment resource use. The model also remains robust under acoustic noise, and we analyze its scaling behavior as LLM size increases, providing insights into the trade-off between performance and efficiency.
comment: Project website: https://umbertocappellazzo.github.io/Omni-AVSR/
☆ MVU-Eval: Towards Multi-Video Understanding Evaluation for Multimodal LLMs
The advent of Multimodal Large Language Models (MLLMs) has expanded AI capabilities to visual modalities, yet existing evaluation benchmarks remain limited to single-video understanding, overlooking the critical need for multi-video understanding in real-world scenarios (e.g., sports analytics and autonomous driving). To address this significant gap, we introduce MVU-Eval, the first comprehensive benchmark for evaluating Multi-Video Understanding for MLLMs. Specifically, our MVU-Eval mainly assesses eight core competencies through 1,824 meticulously curated question-answer pairs spanning 4,959 videos from diverse domains, addressing both fundamental perception tasks and high-order reasoning tasks. These capabilities are rigorously aligned with real-world applications such as multi-sensor synthesis in autonomous systems and cross-angle sports analytics. Through extensive evaluation of state-of-the-art open-source and closed-source models, we reveal significant performance discrepancies and limitations in current MLLMs' ability to perform understanding across multiple videos. The benchmark will be made publicly available to foster future research.
☆ 4DSTR: Advancing Generative 4D Gaussians with Spatial-Temporal Rectification for High-Quality and Consistent 4D Generation AAAI 2026
Remarkable advances in recent 2D image and 3D shape generation have induced a significant focus on dynamic 4D content generation. However, previous 4D generation methods commonly struggle to maintain spatial-temporal consistency and adapt poorly to rapid temporal variations, due to the lack of effective spatial-temporal modeling. To address these problems, we propose a novel 4D generation network called 4DSTR, which modulates generative 4D Gaussian Splatting with spatial-temporal rectification. Specifically, temporal correlation across generated 4D sequences is designed to rectify deformable scales and rotations and guarantee temporal consistency. Furthermore, an adaptive spatial densification and pruning strategy is proposed to address significant temporal variations by dynamically adding or deleting Gaussian points with the awareness of their pre-frame movements. Extensive experiments demonstrate that our 4DSTR achieves state-of-the-art performance in video-to-4D generation, excelling in reconstruction quality, spatial-temporal consistency, and adaptation to rapid temporal movements.
comment: Accepted by AAAI 2026.The first two authors contributed equally
☆ Leveraging Text-Driven Semantic Variation for Robust OOD Segmentation IROS
In autonomous driving and robotics, ensuring road safety and reliable decision-making critically depends on out-of-distribution (OOD) segmentation. While numerous methods have been proposed to detect anomalous objects on the road, leveraging the vision-language space-which provides rich linguistic knowledge-remains an underexplored field. We hypothesize that incorporating these linguistic cues can be especially beneficial in the complex contexts found in real-world autonomous driving scenarios. To this end, we present a novel approach that trains a Text-Driven OOD Segmentation model to learn a semantically diverse set of objects in the vision-language space. Concretely, our approach combines a vision-language model's encoder with a transformer decoder, employs Distance-Based OOD prompts located at varying semantic distances from in-distribution (ID) classes, and utilizes OOD Semantic Augmentation for OOD representations. By aligning visual and textual information, our approach effectively generalizes to unseen objects and provides robust OOD segmentation in diverse driving environments. We conduct extensive experiments on publicly available OOD segmentation datasets such as Fishyscapes, Segment-Me-If-You-Can, and Road Anomaly datasets, demonstrating that our approach achieves state-of-the-art performance across both pixel-level and object-level evaluations. This result underscores the potential of vision-language-based OOD segmentation to bolster the safety and reliability of future autonomous driving systems.
comment: 8 pages, 5 figure references, 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) submission
☆ Noise & pattern: identity-anchored Tikhonov regularization for robust structural anomaly detection
Anomaly detection plays a pivotal role in automated industrial inspection, aiming to identify subtle or rare defects in otherwise uniform visual patterns. As collecting representative examples of all possible anomalies is infeasible, we tackle structural anomaly detection using a self-supervised autoencoder that learns to repair corrupted inputs. To this end, we introduce a corruption model that injects artificial disruptions into training images to mimic structural defects. While reminiscent of denoising autoencoders, our approach differs in two key aspects. First, instead of unstructured i.i.d.\ noise, we apply structured, spatially coherent perturbations that make the task a hybrid of segmentation and inpainting. Second, and counterintuitively, we add and preserve Gaussian noise on top of the occlusions, which acts as a Tikhonov regularizer anchoring the Jacobian of the reconstruction function toward identity. This identity-anchored regularization stabilizes reconstruction and further improves both detection and segmentation accuracy. On the MVTec AD benchmark, our method achieves state-of-the-art results (I/P-AUROC: 99.9/99.4), supporting our theoretical framework and demonstrating its practical relevance for automatic inspection.
☆ Mapping Reduced Accessibility to WASH Facilities in Rohingya Refugee Camps with Sub-Meter Imagery
Access to Water, Sanitation, and Hygiene (WASH) services remains a major public health concern in refugee camps. This study introduces a remote sensing-driven framework to quantify WASH accessibility-specifically to water pumps, latrines, and bathing cubicles-in the Rohingya camps of Cox's Bazar, one of the world's most densely populated displacement settings. Detecting refugee shelters in such emergent camps presents substantial challenges, primarily due to their dense spatial configuration and irregular geometric patterns. Using sub-meter satellite images, we develop a semi-supervised segmentation framework that achieves an F1-score of 76.4% in detecting individual refugee shelters. Applying the framework across multi-year data reveals declining WASH accessibility, driven by rapid refugee population growth and reduced facility availability, rising from 25 people per facility in 2022 to 29.4 in 2025. Gender-disaggregated analysis further shows that women and girls experience reduced accessibility, in scenarios with inadequate safety-related segregation in WASH facilities. These findings suggest the importance of demand-responsive allocation strategies that can identify areas with under-served populations-such as women and girls-and ensure that limited infrastructure serves the greatest number of people in settings with fixed or shrinking budgets. We also discuss the value of high-resolution remote sensing and machine learning to detect inequality and inform equitable resource planning in complex humanitarian environments.
comment: 23 pages, 13 figures, 2 tables
☆ Omni-View: Unlocking How Generation Facilitates Understanding in Unified 3D Model based on Multiview images
This paper presents Omni-View, which extends the unified multimodal understanding and generation to 3D scenes based on multiview images, exploring the principle that "generation facilitates understanding". Consisting of understanding model, texture module, and geometry module, Omni-View jointly models scene understanding, novel view synthesis, and geometry estimation, enabling synergistic interaction between 3D scene understanding and generation tasks. By design, it leverages the spatiotemporal modeling capabilities of its texture module responsible for appearance synthesis, alongside the explicit geometric constraints provided by its dedicated geometry module, thereby enriching the model's holistic understanding of 3D scenes. Trained with a two-stage strategy, Omni-View achieves a state-of-the-art score of 55.4 on the VSI-Bench benchmark, outperforming existing specialized 3D understanding models, while simultaneously delivering strong performance in both novel view synthesis and 3D scene generation.
comment: Under review
☆ Breaking the Stealth-Potency Trade-off in Clean-Image Backdoors with Generative Trigger Optimization AAAI '26
Clean-image backdoor attacks, which use only label manipulation in training datasets to compromise deep neural networks, pose a significant threat to security-critical applications. A critical flaw in existing methods is that the poison rate required for a successful attack induces a proportional, and thus noticeable, drop in Clean Accuracy (CA), undermining their stealthiness. This paper presents a new paradigm for clean-image attacks that minimizes this accuracy degradation by optimizing the trigger itself. We introduce Generative Clean-Image Backdoors (GCB), a framework that uses a conditional InfoGAN to identify naturally occurring image features that can serve as potent and stealthy triggers. By ensuring these triggers are easily separable from benign task-related features, GCB enables a victim model to learn the backdoor from an extremely small set of poisoned examples, resulting in a CA drop of less than 1%. Our experiments demonstrate GCB's remarkable versatility, successfully adapting to six datasets, five architectures, and four tasks, including the first demonstration of clean-image backdoors in regression and segmentation. GCB also exhibits resilience against most of the existing backdoor defenses.
comment: 19 pages, 22 figures, 15 tables. To appear in AAAI '26 (Oral). This paper extends the AAAI-2026 version by including the Appendix
☆ Geometric implicit neural representations for signed distance functions
\textit{Implicit neural representations} (INRs) have emerged as a promising framework for representing signals in low-dimensional spaces. This survey reviews the existing literature on the specialized INR problem of approximating \textit{signed distance functions} (SDFs) for surface scenes, using either oriented point clouds or a set of posed images. We refer to neural SDFs that incorporate differential geometry tools, such as normals and curvatures, in their loss functions as \textit{geometric} INRs. The key idea behind this 3D reconstruction approach is to include additional \textit{regularization} terms in the loss function, ensuring that the INR satisfies certain global properties that the function should hold -- such as having unit gradient in the case of SDFs. We explore key methodological components, including the definition of INR, the construction of geometric loss functions, and sampling schemes from a differential geometry perspective. Our review highlights the significant advancements enabled by geometric INRs in surface reconstruction from oriented point clouds and posed images.
☆ Automated Estimation of Anatomical Risk Metrics for Endoscopic Sinus Surgery Using Deep Learning SP
Endoscopic sinus surgery requires careful preoperative assessment of the skull base anatomy to minimize risks such as cerebrospinal fluid leakage. Anatomical risk scores like the Keros, Gera and Thailand-Malaysia-Singapore score offer a standardized approach but require time-consuming manual measurements on coronal CT or CBCT scans. We propose an automated deep learning pipeline that estimates these risk scores by localizing key anatomical landmarks via heatmap regression. We compare a direct approach to a specialized global-to-local learning strategy and find mean absolute errors on the relevant anatomical measurements of 0.506mm for the Keros, 4.516{\deg} for the Gera and 0.802mm / 0.777mm for the TMS classification.
comment: Accepted to SPIE Medical Imaging conference 2026
☆ LiteUpdate: A Lightweight Framework for Updating AI-Generated Image Detectors
The rapid progress of generative AI has led to the emergence of new generative models, while existing detection methods struggle to keep pace, resulting in significant degradation in the detection performance. This highlights the urgent need for continuously updating AI-generated image detectors to adapt to new generators. To overcome low efficiency and catastrophic forgetting in detector updates, we propose LiteUpdate, a lightweight framework for updating AI-generated image detectors. LiteUpdate employs a representative sample selection module that leverages image confidence and gradient-based discriminative features to precisely select boundary samples. This approach improves learning and detection accuracy on new distributions with limited generated images, significantly enhancing detector update efficiency. Additionally, LiteUpdate incorporates a model merging module that fuses weights from multiple fine-tuning trajectories, including pre-trained, representative, and random updates. This balances the adaptability to new generators and mitigates the catastrophic forgetting of prior knowledge. Experiments demonstrate that LiteUpdate substantially boosts detection performance in various detectors. Specifically, on AIDE, the average detection accuracy on Midjourney improved from 87.63% to 93.03%, a 6.16% relative increase.
☆ Federated Learning for Video Violence Detection: Complementary Roles of Lightweight CNNs and Vision-Language Models for Energy-Efficient Use ICTAI 2025
Deep learning-based video surveillance increasingly demands privacy-preserving architectures with low computational and environmental overhead. Federated learning preserves privacy but deploying large vision-language models (VLMs) introduces major energy and sustainability challenges. We compare three strategies for federated violence detection under realistic non-IID splits on the RWF-2000 and RLVS datasets: zero-shot inference with pretrained VLMs, LoRA-based fine-tuning of LLaVA-NeXT-Video-7B, and personalized federated learning of a 65.8M-parameter 3D CNN. All methods exceed 90% accuracy in binary violence detection. The 3D CNN achieves superior calibration (ROC AUC 92.59%) at roughly half the energy cost (240 Wh vs. 570 Wh) of federated LoRA, while VLMs provide richer multimodal reasoning. Hierarchical category grouping (based on semantic similarity and class exclusion) boosts VLM multiclass accuracy from 65.31% to 81% on the UCF-Crime dataset. To our knowledge, this is the first comparative simulation study of LoRA-tuned VLMs and personalized CNNs for federated violence detection, with explicit energy and CO2e quantification. Our results inform hybrid deployment strategies that default to efficient CNNs for routine inference and selectively engage VLMs for complex contextual reasoning.
comment: 5 pages, 3 figures, ICTAI 2025
☆ ProcGen3D: Learning Neural Procedural Graph Representations for Image-to-3D Reconstruction
We introduce ProcGen3D, a new approach for 3D content creation by generating procedural graph abstractions of 3D objects, which can then be decoded into rich, complex 3D assets. Inspired by the prevalent use of procedural generators in production 3D applications, we propose a sequentialized, graph-based procedural graph representation for 3D assets. We use this to learn to approximate the landscape of a procedural generator for image-based 3D reconstruction. We employ edge-based tokenization to encode the procedural graphs, and train a transformer prior to predict the next token conditioned on an input RGB image. Crucially, to enable better alignment of our generated outputs to an input image, we incorporate Monte Carlo Tree Search (MCTS) guided sampling into our generation process, steering output procedural graphs towards more image-faithful reconstructions. Our approach is applicable across a variety of objects that can be synthesized with procedural generators. Extensive experiments on cacti, trees, and bridges show that our neural procedural graph generation outperforms both state-of-the-art generative 3D methods and domain-specific modeling techniques. Furthermore, this enables improved generalization on real-world input images, despite training only on synthetic data.
comment: Project Page: https://xzhang-t.github.io/project/ProcGen3D/
☆ MPJudge: Towards Perceptual Assessment of Music-Induced Paintings
Music induced painting is a unique artistic practice, where visual artworks are created under the influence of music. Evaluating whether a painting faithfully reflects the music that inspired it poses a challenging perceptual assessment task. Existing methods primarily rely on emotion recognition models to assess the similarity between music and painting, but such models introduce considerable noise and overlook broader perceptual cues beyond emotion. To address these limitations, we propose a novel framework for music induced painting assessment that directly models perceptual coherence between music and visual art. We introduce MPD, the first large scale dataset of music painting pairs annotated by domain experts based on perceptual coherence. To better handle ambiguous cases, we further collect pairwise preference annotations. Building on this dataset, we present MPJudge, a model that integrates music features into a visual encoder via a modulation based fusion mechanism. To effectively learn from ambiguous cases, we adopt Direct Preference Optimization for training. Extensive experiments demonstrate that our method outperforms existing approaches. Qualitative results further show that our model more accurately identifies music relevant regions in paintings.
☆ Sparse4DGS: 4D Gaussian Splatting for Sparse-Frame Dynamic Scene Reconstruction AAAI 2026
Dynamic Gaussian Splatting approaches have achieved remarkable performance for 4D scene reconstruction. However, these approaches rely on dense-frame video sequences for photorealistic reconstruction. In real-world scenarios, due to equipment constraints, sometimes only sparse frames are accessible. In this paper, we propose Sparse4DGS, the first method for sparse-frame dynamic scene reconstruction. We observe that dynamic reconstruction methods fail in both canonical and deformed spaces under sparse-frame settings, especially in areas with high texture richness. Sparse4DGS tackles this challenge by focusing on texture-rich areas. For the deformation network, we propose Texture-Aware Deformation Regularization, which introduces a texture-based depth alignment loss to regulate Gaussian deformation. For the canonical Gaussian field, we introduce Texture-Aware Canonical Optimization, which incorporates texture-based noise into the gradient descent process of canonical Gaussians. Extensive experiments show that when taking sparse frames as inputs, our method outperforms existing dynamic or few-shot techniques on NeRF-Synthetic, HyperNeRF, NeRF-DS, and our iPhone-4D datasets.
comment: AAAI 2026
☆ HENet++: Hybrid Encoding and Multi-task Learning for 3D Perception and End-to-end Autonomous Driving
Three-dimensional feature extraction is a critical component of autonomous driving systems, where perception tasks such as 3D object detection, bird's-eye-view (BEV) semantic segmentation, and occupancy prediction serve as important constraints on 3D features. While large image encoders, high-resolution images, and long-term temporal inputs can significantly enhance feature quality and deliver remarkable performance gains, these techniques are often incompatible in both training and inference due to computational resource constraints. Moreover, different tasks favor distinct feature representations, making it difficult for a single model to perform end-to-end inference across multiple tasks while maintaining accuracy comparable to that of single-task models. To alleviate these issues, we present the HENet and HENet++ framework for multi-task 3D perception and end-to-end autonomous driving. Specifically, we propose a hybrid image encoding network that uses a large image encoder for short-term frames and a small one for long-term frames. Furthermore, our framework simultaneously extracts both dense and sparse features, providing more suitable representations for different tasks, reducing cumulative errors, and delivering more comprehensive information to the planning module. The proposed architecture maintains compatibility with various existing 3D feature extraction methods and supports multimodal inputs. HENet++ achieves state-of-the-art end-to-end multi-task 3D perception results on the nuScenes benchmark, while also attaining the lowest collision rate on the nuScenes end-to-end autonomous driving benchmark.
comment: Preliminary version, 19 pages
☆ GEWDiff: Geometric Enhanced Wavelet-based Diffusion Model for Hyperspectral Image Super-resolution AAAI 2026
Improving the quality of hyperspectral images (HSIs), such as through super-resolution, is a crucial research area. However, generative modeling for HSIs presents several challenges. Due to their high spectral dimensionality, HSIs are too memory-intensive for direct input into conventional diffusion models. Furthermore, general generative models lack an understanding of the topological and geometric structures of ground objects in remote sensing imagery. In addition, most diffusion models optimize loss functions at the noise level, leading to a non-intuitive convergence behavior and suboptimal generation quality for complex data. To address these challenges, we propose a Geometric Enhanced Wavelet-based Diffusion Model (GEWDiff), a novel framework for reconstructing hyperspectral images at 4-times super-resolution. A wavelet-based encoder-decoder is introduced that efficiently compresses HSIs into a latent space while preserving spectral-spatial information. To avoid distortion during generation, we incorporate a geometry-enhanced diffusion process that preserves the geometric features. Furthermore, a multi-level loss function was designed to guide the diffusion process, promoting stable convergence and improved reconstruction fidelity. Our model demonstrated state-of-the-art results across multiple dimensions, including fidelity, spectral accuracy, visual realism, and clarity.
comment: This manuscript has been accepted for publication in AAAI 2026
☆ Task-Adaptive Low-Dose CT Reconstruction
Deep learning-based low-dose computed tomography reconstruction methods already achieve high performance on standard image quality metrics like peak signal-to-noise ratio and structural similarity index measure. Yet, they frequently fail to preserve the critical anatomical details needed for diagnostic tasks. This fundamental limitation hinders their clinical applicability despite their high metric scores. We propose a novel task-adaptive reconstruction framework that addresses this gap by incorporating a frozen pre-trained task network as a regularization term in the reconstruction loss function. Unlike existing joint-training approaches that simultaneously optimize both reconstruction and task networks, and risk diverging from satisfactory reconstructions, our method leverages a pre-trained task model to guide reconstruction training while still maintaining diagnostic quality. We validate our framework on a liver and liver tumor segmentation task. Our task-adaptive models achieve Dice scores up to 0.707, approaching the performance of full-dose scans (0.874), and substantially outperforming joint-training approaches (0.331) and traditional reconstruction methods (0.626). Critically, our framework can be integrated into any existing deep learning-based reconstruction model through simple loss function modification, enabling widespread adoption for task-adaptive optimization in clinical practice. Our codes are available at: https://github.com/itu-biai/task_adaptive_ct
☆ How Bias Binds: Measuring Hidden Associations for Bias Control in Text-to-Image Compositions AAAI
Text-to-image generative models often exhibit bias related to sensitive attributes. However, current research tends to focus narrowly on single-object prompts with limited contextual diversity. In reality, each object or attribute within a prompt can contribute to bias. For example, the prompt "an assistant wearing a pink hat" may reflect female-inclined biases associated with a pink hat. The neglected joint effects of the semantic binding in the prompts cause significant failures in current debiasing approaches. This work initiates a preliminary investigation on how bias manifests under semantic binding, where contextual associations between objects and attributes influence generative outcomes. We demonstrate that the underlying bias distribution can be amplified based on these associations. Therefore, we introduce a bias adherence score that quantifies how specific object-attribute bindings activate bias. To delve deeper, we develop a training-free context-bias control framework to explore how token decoupling can facilitate the debiasing of semantic bindings. This framework achieves over 10% debiasing improvement in compositional generation tasks. Our analysis of bias scores across various attribute-object bindings and token decorrelation highlights a fundamental challenge: reducing bias without disrupting essential semantic relationships. These findings expose critical limitations in current debiasing approaches when applied to semantically bound contexts, underscoring the need to reassess prevailing bias mitigation strategies.
comment: Accepted for publication at the Alignment Track of The 40th Annual AAAI Conference on Artificial Intelligence (AAAI 2026)
☆ Achieving Effective Virtual Reality Interactions via Acoustic Gesture Recognition based on Large Language Models ICASSP 2026
Natural and efficient interaction remains a critical challenge for virtual reality and augmented reality (VR/AR) systems. Vision-based gesture recognition suffers from high computational cost, sensitivity to lighting conditions, and privacy leakage concerns. Acoustic sensing provides an attractive alternative: by emitting inaudible high-frequency signals and capturing their reflections, channel impulse response (CIR) encodes how gestures perturb the acoustic field in a low-cost and user-transparent manner. However, existing CIR-based gesture recognition methods often rely on extensive training of models on large labeled datasets, making them unsuitable for few-shot VR scenarios. In this work, we propose the first framework that leverages large language models (LLMs) for CIR-based gesture recognition in VR/AR systems. Despite LLMs' strengths, it is non-trivial to achieve few-shot and zero-shot learning of CIR gestures due to their inconspicuous features. To tackle this challenge, we collect differential CIR rather than original CIR data. Moreover, we construct a real-world dataset collected from 10 participants performing 15 gestures across three categories (digits, letters, and shapes), with 10 repetitions each. We then conduct extensive experiments on this dataset using an LLM-adopted classifier. Results show that our LLM-based framework achieves accuracy comparable to classical machine learning baselines, while requiring no domain-specific retraining.
comment: 5 pages, 4 figures, 1 table, under review at ICASSP 2026
☆ Pandar128 dataset for lane line detection
We present Pandar128, the largest public dataset for lane line detection using a 128-beam LiDAR. It contains over 52,000 camera frames and 34,000 LiDAR scans, captured in diverse real-world conditions in Germany. The dataset includes full sensor calibration (intrinsics, extrinsics) and synchronized odometry, supporting tasks such as projection, fusion, and temporal modeling. To complement the dataset, we also introduce SimpleLidarLane, a light-weight baseline method for lane line reconstruction that combines BEV segmentation, clustering, and polyline fitting. Despite its simplicity, our method achieves strong performance under challenging various conditions (e.g., rain, sparse returns), showing that modular pipelines paired with high-quality data and principled evaluation can compete with more complex approaches. Furthermore, to address the lack of standardized evaluation, we propose a novel polyline-based metric - Interpolation-Aware Matching F1 (IAM-F1) - that employs interpolation-aware lateral matching in BEV space. All data and code are publicly released to support reproducibility in LiDAR-based lane detection.
☆ LeCoT: revisiting network architecture for two-view correspondence pruning SC
Two-view correspondence pruning aims to accurately remove incorrect correspondences (outliers) from initial ones and is widely applied to various computer vision tasks. Current popular strategies adopt multilayer perceptron (MLP) as the backbone, supplemented by additional modules to enhance the network ability to handle context information, which is a known limitation of MLPs. In contrast, we introduce a novel perspective for capturing correspondence context information without extra design modules. To this end, we design a two-view correspondence pruning network called LeCoT, which can naturally leverage global context information at different stages. Specifically, the core design of LeCoT is the Spatial-Channel Fusion Transformer block, a newly proposed component that efficiently utilizes both spatial and channel global context information among sparse correspondences. In addition, we integrate the proposed prediction block that utilizes correspondence features from intermediate stages to generate a probability set, which acts as guiding information for subsequent learning phases, allowing the network to more effectively capture robust global context information. Notably, this prediction block progressively refines the probability set, thereby mitigating the issue of information loss that is common in the traditional one. Extensive experiments prove that the proposed LeCoT outperforms state-of-the-art methods in correspondence pruning, relative pose estimation, homography estimation, visual localization, and $3$D~reconstruction tasks. The code is provided in https://github.com/Dailuanyuan2024/LeCoT-Revisiting-Network-Architecture-for-Two-View-Correspondence-Pruning.
comment: Just accepted at SCIENCE CHINA Information Sciences
☆ ClusterMine: Robust Label-Free Visual Out-Of-Distribution Detection via Concept Mining from Text Corpora WACV 2026
Large-scale visual out-of-distribution (OOD) detection has witnessed remarkable progress by leveraging vision-language models such as CLIP. However, a significant limitation of current methods is their reliance on a pre-defined set of in-distribution (ID) ground-truth label names (positives). These fixed label names can be unavailable, unreliable at scale, or become less relevant due to in-distribution shifts after deployment. Towards truly unsupervised OOD detection, we utilize widely available text corpora for positive label mining, bypassing the need for positives. In this paper, we utilize widely available text corpora for positive label mining under a general concept mining paradigm. Within this framework, we propose ClusterMine, a novel positive label mining method. ClusterMine is the first method to achieve state-of-the-art OOD detection performance without access to positive labels. It extracts positive concepts from a large text corpus by combining visual-only sample consistency (via clustering) and zero-shot image-text consistency. Our experimental study reveals that ClusterMine is scalable across a plethora of CLIP models and achieves state-of-the-art robustness to covariate in-distribution shifts. The code is available at https://github.com/HHU-MMBS/clustermine_wacv_official.
comment: Accepted in WACV 2026. Code in https://github.com/HHU-MMBS/clustermine_wacv_official 9 Tables, 11 Figures
☆ RaLD: Generating High-Resolution 3D Radar Point Clouds with Latent Diffusion
Millimeter-wave radar offers a promising sensing modality for autonomous systems thanks to its robustness in adverse conditions and low cost. However, its utility is significantly limited by the sparsity and low resolution of radar point clouds, which poses challenges for tasks requiring dense and accurate 3D perception. Despite that recent efforts have shown great potential by exploring generative approaches to address this issue, they often rely on dense voxel representations that are inefficient and struggle to preserve structural detail. To fill this gap, we make the key observation that latent diffusion models (LDMs), though successful in other modalities, have not been effectively leveraged for radar-based 3D generation due to a lack of compatible representations and conditioning strategies. We introduce RaLD, a framework that bridges this gap by integrating scene-level frustum-based LiDAR autoencoding, order-invariant latent representations, and direct radar spectrum conditioning. These insights lead to a more compact and expressive generation process. Experiments show that RaLD produces dense and accurate 3D point clouds from raw radar spectrums, offering a promising solution for robust perception in challenging environments.
☆ TauFlow: Dynamic Causal Constraint for Complexity-Adaptive Lightweight Segmentation
Deploying lightweight medical image segmentation models on edge devices presents two major challenges: 1) efficiently handling the stark contrast between lesion boundaries and background regions, and 2) the sharp drop in accuracy that occurs when pursuing extremely lightweight designs (e.g., <0.5M parameters). To address these problems, this paper proposes TauFlow, a novel lightweight segmentation model. The core of TauFlow is a dynamic feature response strategy inspired by brain-like mechanisms. This is achieved through two key innovations: the Convolutional Long-Time Constant Cell (ConvLTC), which dynamically regulates the feature update rate to "slowly" process low-frequency backgrounds and "quickly" respond to high-frequency boundaries; and the STDP Self-Organizing Module, which significantly mitigates feature conflicts between the encoder and decoder, reducing the conflict rate from approximately 35%-40% to 8%-10%.
comment: 42 pages and 9 figures
☆ Improving Deepfake Detection with Reinforcement Learning-Based Adaptive Data Augmentation
The generalization capability of deepfake detectors is critical for real-world use. Data augmentation via synthetic fake face generation effectively enhances generalization, yet current SoTA methods rely on fixed strategies-raising a key question: Is a single static augmentation sufficient, or does the diversity of forgery features demand dynamic approaches? We argue existing methods overlook the evolving complexity of real-world forgeries (e.g., facial warping, expression manipulation), which fixed policies cannot fully simulate. To address this, we propose CRDA (Curriculum Reinforcement-Learning Data Augmentation), a novel framework guiding detectors to progressively master multi-domain forgery features from simple to complex. CRDA synthesizes augmented samples via a configurable pool of forgery operations and dynamically generates adversarial samples tailored to the detector's current learning state. Central to our approach is integrating reinforcement learning (RL) and causal inference. An RL agent dynamically selects augmentation actions based on detector performance to efficiently explore the vast augmentation space, adapting to increasingly challenging forgeries. Simultaneously, the agent introduces action space variations to generate heterogeneous forgery patterns, guided by causal inference to mitigate spurious correlations-suppressing task-irrelevant biases and focusing on causally invariant features. This integration ensures robust generalization by decoupling synthetic augmentation patterns from the model's learned representations. Extensive experiments show our method significantly improves detector generalizability, outperforming SOTA methods across multiple cross-domain datasets.
☆ From Pretrain to Pain: Adversarial Vulnerability of Video Foundation Models Without Task Knowledge AAAI 2026
Large-scale Video Foundation Models (VFMs) has significantly advanced various video-related tasks, either through task-specific models or Multi-modal Large Language Models (MLLMs). However, the open accessibility of VFMs also introduces critical security risks, as adversaries can exploit full knowledge of the VFMs to launch potent attacks. This paper investigates a novel and practical adversarial threat scenario: attacking downstream models or MLLMs fine-tuned from open-source VFMs, without requiring access to the victim task, training data, model query, and architecture. In contrast to conventional transfer-based attacks that rely on task-aligned surrogate models, we demonstrate that adversarial vulnerabilities can be exploited directly from the VFMs. To this end, we propose the Transferable Video Attack (TVA), a temporal-aware adversarial attack method that leverages the temporal representation dynamics of VFMs to craft effective perturbations. TVA integrates a bidirectional contrastive learning mechanism to maximize the discrepancy between the clean and adversarial features, and introduces a temporal consistency loss that exploits motion cues to enhance the sequential impact of perturbations. TVA avoids the need to train expensive surrogate models or access to domain-specific data, thereby offering a more practical and efficient attack strategy. Extensive experiments across 24 video-related tasks demonstrate the efficacy of TVA against downstream models and MLLMs, revealing a previously underexplored security vulnerability in the deployment of video models.
comment: AAAI 2026 (Oral presentation)
☆ 3D-ANC: Adaptive Neural Collapse for Robust 3D Point Cloud Recognition AAAI 2026
Deep neural networks have recently achieved notable progress in 3D point cloud recognition, yet their vulnerability to adversarial perturbations poses critical security challenges in practical deployments. Conventional defense mechanisms struggle to address the evolving landscape of multifaceted attack patterns. Through systematic analysis of existing defenses, we identify that their unsatisfactory performance primarily originates from an entangled feature space, where adversarial attacks can be performed easily. To this end, we present 3D-ANC, a novel approach that capitalizes on the Neural Collapse (NC) mechanism to orchestrate discriminative feature learning. In particular, NC depicts where last-layer features and classifier weights jointly evolve into a simplex equiangular tight frame (ETF) arrangement, establishing maximally separable class prototypes. However, leveraging this advantage in 3D recognition confronts two substantial challenges: (1) prevalent class imbalance in point cloud datasets, and (2) complex geometric similarities between object categories. To tackle these obstacles, our solution combines an ETF-aligned classification module with an adaptive training framework consisting of representation-balanced learning (RBL) and dynamic feature direction loss (FDL). 3D-ANC seamlessly empowers existing models to develop disentangled feature spaces despite the complexity in 3D data distribution. Comprehensive evaluations state that 3D-ANC significantly improves the robustness of models with various structures on two datasets. For instance, DGCNN's classification accuracy is elevated from 27.2% to 80.9% on ModelNet40 -- a 53.7% absolute gain that surpasses leading baselines by 34.0%.
comment: AAAI 2026
☆ Certified L2-Norm Robustness of 3D Point Cloud Recognition in the Frequency Domain AAAI26
3D point cloud classification is a fundamental task in safety-critical applications such as autonomous driving, robotics, and augmented reality. However, recent studies reveal that point cloud classifiers are vulnerable to structured adversarial perturbations and geometric corruptions, posing risks to their deployment in safety-critical scenarios. Existing certified defenses limit point-wise perturbations but overlook subtle geometric distortions that preserve individual points yet alter the overall structure, potentially leading to misclassification. In this work, we propose FreqCert, a novel certification framework that departs from conventional spatial domain defenses by shifting robustness analysis to the frequency domain, enabling structured certification against global L2-bounded perturbations. FreqCert first transforms the input point cloud via the graph Fourier transform (GFT), then applies structured frequency-aware subsampling to generate multiple sub-point clouds. Each sub-cloud is independently classified by a standard model, and the final prediction is obtained through majority voting, where sub-clouds are constructed based on spectral similarity rather than spatial proximity, making the partitioning more stable under L2 perturbations and better aligned with the object's intrinsic structure. We derive a closed-form lower bound on the certified L2 robustness radius and prove its tightness under minimal and interpretable assumptions, establishing a theoretical foundation for frequency domain certification. Extensive experiments on the ModelNet40 and ScanObjectNN datasets demonstrate that FreqCert consistently achieves higher certified accuracy and empirical accuracy under strong perturbations. Our results suggest that spectral representations provide an effective pathway toward certifiable robustness in 3D point cloud recognition.
comment: Accepted by AAAI26
☆ A Picture is Worth a Thousand (Correct) Captions: A Vision-Guided Judge-Corrector System for Multimodal Machine Translation AACL 2025
In this paper, we describe our system under the team name BLEU Monday for the English-to-Indic Multimodal Translation Task at WAT 2025. We participate in the text-only translation tasks for English-Hindi, English-Bengali, English-Malayalam, and English-Odia language pairs. We present a two-stage approach that addresses quality issues in the training data through automated error detection and correction, followed by parameter-efficient model fine-tuning. Our methodology introduces a vision-augmented judge-corrector pipeline that leverages multimodal language models to systematically identify and correct translation errors in the training data. The judge component classifies translations into three categories: correct, visually ambiguous (requiring image context), or mistranslated (poor translation quality). Identified errors are routed to specialized correctors: GPT-4o-mini regenerates captions requiring visual disambiguation, while IndicTrans2 retranslates cases with pure translation quality issues. This automated pipeline processes 28,928 training examples across four languages, correcting an average of 17.1% of captions per language. We then apply Low-Rank Adaptation (LoRA) to fine-tune the IndicTrans2 en-indic 200M distilled model on both original and corrected datasets. Training on corrected data yields consistent improvements, with BLEU score gains of +1.30 for English-Bengali on the evaluation set (42.00 -> 43.30) and +0.70 on the challenge set (44.90 -> 45.60), +0.60 for English-Odia on the evaluation set (41.00 -> 41.60), and +0.10 for English-Hindi on the challenge set (53.90 -> 54.00).
comment: Accepted at The 12th Workshop on Asian Translation, co-located with IJCLNLP-AACL 2025
☆ Performance Decay in Deepfake Detection: The Limitations of Training on Outdated Data
The continually advancing quality of deepfake technology exacerbates the threats of disinformation, fraud, and harassment by making maliciously-generated synthetic content increasingly difficult to distinguish from reality. We introduce a simple yet effective two-stage detection method that achieves an AUROC of over 99.8% on contemporary deepfakes. However, this high performance is short-lived. We show that models trained on this data suffer a recall drop of over 30% when evaluated on deepfakes created with generation techniques from just six months later, demonstrating significant decay as threats evolve. Our analysis reveals two key insights for robust detection. Firstly, continued performance requires the ongoing curation of large, diverse datasets. Second, predictive power comes primarily from static, frame-level artifacts, not temporal inconsistencies. The future of effective deepfake detection therefore depends on rapid data collection and the development of advanced frame-level feature detectors.
☆ TrueCity: Real and Simulated Urban Data for Cross-Domain 3D Scene Understanding 3DV 2026
3D semantic scene understanding remains a long-standing challenge in the 3D computer vision community. One of the key issues pertains to limited real-world annotated data to facilitate generalizable models. The common practice to tackle this issue is to simulate new data. Although synthetic datasets offer scalability and perfect labels, their designer-crafted scenes fail to capture real-world complexity and sensor noise, resulting in a synthetic-to-real domain gap. Moreover, no benchmark provides synchronized real and simulated point clouds for segmentation-oriented domain shift analysis. We introduce TrueCity, the first urban semantic segmentation benchmark with cm-accurate annotated real-world point clouds, semantic 3D city models, and annotated simulated point clouds representing the same city. TrueCity proposes segmentation classes aligned with international 3D city modeling standards, enabling consistent evaluation of synthetic-to-real gap. Our extensive experiments on common baselines quantify domain shift and highlight strategies for exploiting synthetic data to enhance real-world 3D scene understanding. We are convinced that the TrueCity dataset will foster further development of sim-to-real gap quantification and enable generalizable data-driven models. The data, code, and 3D models are available online: https://tum-gis.github.io/TrueCity/
comment: The paper accepted for 3DV 2026 (International Conference on 3D Vision 2026)
☆ Exploring the "Great Unseen" in Medieval Manuscripts: Instance-Level Labeling of Legacy Image Collections with Zero-Shot Models
We aim to theorize the medieval manuscript page and its contents more holistically, using state-of-the-art techniques to segment and describe the entire manuscript folio, for the purpose of creating richer training data for computer vision techniques, namely instance segmentation, and multimodal models for medieval-specific visual content.
☆ Oh That Looks Familiar: A Novel Similarity Measure for Spreadsheet Template Discovery
Traditional methods for identifying structurally similar spreadsheets fail to capture the spatial layouts and type patterns defining templates. To quantify spreadsheet similarity, we introduce a hybrid distance metric that combines semantic embeddings, data type information, and spatial positioning. In order to calculate spreadsheet similarity, our method converts spreadsheets into cell-level embeddings and then uses aggregation techniques like Chamfer and Hausdorff distances. Experiments across template families demonstrate superior unsupervised clustering performance compared to the graph-based Mondrian baseline, achieving perfect template reconstruction (Adjusted Rand Index of 1.00 versus 0.90) on the FUSTE dataset. Our approach facilitates large-scale automated template discovery, which in turn enables downstream applications such as retrieval-augmented generation over tabular collections, model training, and bulk data cleaning.
comment: 5 pages, 2 figures, Accepted for EuroIPS: AI for Tabular Data Workshop (2025)
☆ Learning from the Right Patches: A Two-Stage Wavelet-Driven Masked Autoencoder for Histopathology Representation Learning
Whole-slide images are central to digital pathology, yet their extreme size and scarce annotations make self-supervised learning essential. Masked Autoencoders (MAEs) with Vision Transformer backbones have recently shown strong potential for histopathology representation learning. However, conventional random patch sampling during MAE pretraining often includes irrelevant or noisy regions, limiting the model's ability to capture meaningful tissue patterns. In this paper, we present a lightweight and domain-adapted framework that brings structure and biological relevance into MAE-based learning through a wavelet-informed patch selection strategy. WISE-MAE applies a two-step coarse-to-fine process: wavelet-based screening at low magnification to locate structurally rich regions, followed by high-resolution extraction for detailed modeling. This approach mirrors the diagnostic workflow of pathologists and improves the quality of learned representations. Evaluations across multiple cancer datasets, including lung, renal, and colorectal tissues, show that WISE-MAE achieves competitive representation quality and downstream classification performance while maintaining efficiency under weak supervision.
☆ GFix: Perceptually Enhanced Gaussian Splatting Video Compression
3D Gaussian Splatting (3DGS) enhances 3D scene reconstruction through explicit representation and fast rendering, demonstrating potential benefits for various low-level vision tasks, including video compression. However, existing 3DGS-based video codecs generally exhibit more noticeable visual artifacts and relatively low compression ratios. In this paper, we specifically target the perceptual enhancement of 3DGS-based video compression, based on the assumption that artifacts from 3DGS rendering and quantization resemble noisy latents sampled during diffusion training. Building on this premise, we propose a content-adaptive framework, GFix, comprising a streamlined, single-step diffusion model that serves as an off-the-shelf neural enhancer. Moreover, to increase compression efficiency, We propose a modulated LoRA scheme that freezes the low-rank decompositions and modulates the intermediate hidden states, thereby achieving efficient adaptation of the diffusion backbone with highly compressible updates. Experimental results show that GFix delivers strong perceptual quality enhancement, outperforming GSVC with up to 72.1% BD-rate savings in LPIPS and 21.4% in FID.
☆ PADM: A Physics-aware Diffusion Model for Attenuation Correction WACV
Attenuation artifacts remain a significant challenge in cardiac Myocardial Perfusion Imaging (MPI) using Single-Photon Emission Computed Tomography (SPECT), often compromising diagnostic accuracy and reducing clinical interpretability. While hybrid SPECT/CT systems mitigate these artifacts through CT-derived attenuation maps, their high cost, limited accessibility, and added radiation exposure hinder widespread clinical adoption. In this study, we propose a novel CT-free solution to attenuation correction in cardiac SPECT. Specifically, we introduce Physics-aware Attenuation Correction Diffusion Model (PADM), a diffusion-based generative method that incorporates explicit physics priors via a teacher--student distillation mechanism. This approach enables attenuation artifact correction using only Non-Attenuation-Corrected (NAC) input, while still benefiting from physics-informed supervision during training. To support this work, we also introduce CardiAC, a comprehensive dataset comprising 424 patient studies with paired NAC and Attenuation-Corrected (AC) reconstructions, alongside high-resolution CT-based attenuation maps. Extensive experiments demonstrate that PADM outperforms state-of-the-art generative models, delivering superior reconstruction fidelity across both quantitative metrics and visual assessment.
comment: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
☆ FoCLIP: A Feature-Space Misalignment Framework for CLIP-Based Image Manipulation and Detection
The well-aligned attribute of CLIP-based models enables its effective application like CLIPscore as a widely adopted image quality assessment metric. However, such a CLIP-based metric is vulnerable for its delicate multimodal alignment. In this work, we propose \textbf{FoCLIP}, a feature-space misalignment framework for fooling CLIP-based image quality metric. Based on the stochastic gradient descent technique, FoCLIP integrates three key components to construct fooling examples: feature alignment as the core module to reduce image-text modality gaps, the score distribution balance module and pixel-guard regularization, which collectively optimize multimodal output equilibrium between CLIPscore performance and image quality. Such a design can be engineered to maximize the CLIPscore predictions across diverse input prompts, despite exhibiting either visual unrecognizability or semantic incongruence with the corresponding adversarial prompts from human perceptual perspectives. Experiments on ten artistic masterpiece prompts and ImageNet subsets demonstrate that optimized images can achieve significant improvement in CLIPscore while preserving high visual fidelity. In addition, we found that grayscale conversion induces significant feature degradation in fooling images, exhibiting noticeable CLIPscore reduction while preserving statistical consistency with original images. Inspired by this phenomenon, we propose a color channel sensitivity-driven tampering detection mechanism that achieves 91% accuracy on standard benchmarks. In conclusion, this work establishes a practical pathway for feature misalignment in CLIP-based multimodal systems and the corresponding defense method.
comment: 15 page, 9 figures, published to PRCV
☆ From Attribution to Action: Jointly ALIGNing Predictions and Explanations AAAI 2026
Explanation-guided learning (EGL) has shown promise in aligning model predictions with interpretable reasoning, particularly in computer vision tasks. However, most approaches rely on external annotations or heuristic-based segmentation to supervise model explanations, which can be noisy, imprecise and difficult to scale. In this work, we provide both empirical and theoretical evidence that low-quality supervision signals can degrade model performance rather than improve it. In response, we propose ALIGN, a novel framework that jointly trains a classifier and a masker in an iterative manner. The masker learns to produce soft, task-relevant masks that highlight informative regions, while the classifier is optimized for both prediction accuracy and alignment between its saliency maps and the learned masks. By leveraging high-quality masks as guidance, ALIGN improves both interpretability and generalizability, showing its superiority across various settings. Experiments on the two domain generalization benchmarks, VLCS and Terra Incognita, show that ALIGN consistently outperforms six strong baselines in both in-distribution and out-of-distribution settings. Besides, ALIGN also yields superior explanation quality concerning sufficiency and comprehensiveness, highlighting its effectiveness in producing accurate and interpretable models.
comment: Accepted in AAAI 2026
☆ PlantTraitNet: An Uncertainty-Aware Multimodal Framework for Global-Scale Plant Trait Inference from Citizen Science Data AAAI
Global plant maps of plant traits, such as leaf nitrogen or plant height, are essential for understanding ecosystem processes, including the carbon and energy cycles of the Earth system. However, existing trait maps remain limited by the high cost and sparse geographic coverage of field-based measurements. Citizen science initiatives offer a largely untapped resource to overcome these limitations, with over 50 million geotagged plant photographs worldwide capturing valuable visual information on plant morphology and physiology. In this study, we introduce PlantTraitNet, a multi-modal, multi-task uncertainty-aware deep learning framework that predictsfour key plant traits (plant height, leaf area, specific leaf area, and nitrogen content) from citizen science photos using weak supervision. By aggregating individual trait predictions across space, we generate global maps of trait distributions. We validate these maps against independent vegetation survey data (sPlotOpen) and benchmark them against leading global trait products. Our results show that PlantTraitNet consistently outperforms existing trait maps across all evaluated traits, demonstrating that citizen science imagery, when integrated with computer vision and geospatial AI, enables not only scalable but also more accurate global trait mapping. This approach offers a powerful new pathway for ecological research and Earth system modeling.
comment: Preprint version of the paper accepted at the 40th AAAI Conference on Artificial Intelligence (AAAI-26), organized by the Association for the Advancement of Artificial Intelligence
☆ DTTNet: Improving Video Shadow Detection via Dark-Aware Guidance and Tokenized Temporal Modeling
Video shadow detection confronts two entwined difficulties: distinguishing shadows from complex backgrounds and modeling dynamic shadow deformations under varying illumination. To address shadow-background ambiguity, we leverage linguistic priors through the proposed Vision-language Match Module (VMM) and a Dark-aware Semantic Block (DSB), extracting text-guided features to explicitly differentiate shadows from dark objects. Furthermore, we introduce adaptive mask reweighting to downweight penumbra regions during training and apply edge masks at the final decoder stage for better supervision. For temporal modeling of variable shadow shapes, we propose a Tokenized Temporal Block (TTB) that decouples spatiotemporal learning. TTB summarizes cross-frame shadow semantics into learnable temporal tokens, enabling efficient sequence encoding with minimal computation overhead. Comprehensive Experiments on multiple benchmark datasets demonstrate state-of-the-art accuracy and real-time inference efficiency. Codes are available at https://github.com/city-cheng/DTTNet.
☆ Mono3DVG-EnSD: Enhanced Spatial-aware and Dimension-decoupled Text Encoding for Monocular 3D Visual Grounding
Monocular 3D Visual Grounding (Mono3DVG) is an emerging task that locates 3D objects in RGB images using text descriptions with geometric cues. However, existing methods face two key limitations. Firstly, they often over-rely on high-certainty keywords that explicitly identify the target object while neglecting critical spatial descriptions. Secondly, generalized textual features contain both 2D and 3D descriptive information, thereby capturing an additional dimension of details compared to singular 2D or 3D visual features. This characteristic leads to cross-dimensional interference when refining visual features under text guidance. To overcome these challenges, we propose Mono3DVG-EnSD, a novel framework that integrates two key components: the CLIP-Guided Lexical Certainty Adapter (CLIP-LCA) and the Dimension-Decoupled Module (D2M). The CLIP-LCA dynamically masks high-certainty keywords while retaining low-certainty implicit spatial descriptions, thereby forcing the model to develop a deeper understanding of spatial relationships in captions for object localization. Meanwhile, the D2M decouples dimension-specific (2D/3D) textual features from generalized textual features to guide corresponding visual features at same dimension, which mitigates cross-dimensional interference by ensuring dimensionally-consistent cross-modal interactions. Through comprehensive comparisons and ablation studies on the Mono3DRefer dataset, our method achieves state-of-the-art (SOTA) performance across all metrics. Notably, it improves the challenging Far(Acc@0.5) scenario by a significant +13.54%.
comment: 10 pages
☆ Classification of Microplastic Particles in Water using Polarized Light Scattering and Machine Learning Methods
Facing the critical need for continuous, large-scale microplastic monitoring, which is hindered by the limitations of gold-standard methods in aquatic environments, this paper introduces and validates a novel, reflection-based approach for the in-situ classification and identification of microplastics directly in water bodies, which is based on polarized light scattering. In this experiment, we classify colorless microplastic particles (50-300 $\mu$m) by illuminating them with linearly polarized laser light and capturing their reflected signals using a polarization-sensitive camera. This reflection-based technique successfully circumvents the transmission-based interference issues that plague many conventional methods when applied in water. Using a deep convolutional neural network (CNN) for image-based classification, we successfully identified three common polymer types, high-density polyethylene, low-density polyethylene, and polypropylene, achieving a peak mean classification accuracy of 80% on the test dataset. A subsequent feature hierarchy analysis demonstrated that the CNN's decision-making process relies mainly on the microstructural integrity and internal texture (polarization patterns) of the particle rather than its macroshape. Critically, we found that the Angle of Linear Polarization (AOLP) signal is significantly more robust against contextual noise than the Degree of Linear Polarization (DOLP) signal. While the AOLP-based classification achieved superior overall performance, its strength lies in distinguishing between the two polyethylene plastics, showing a lower confusion rate between high-density and low-density polyethylene. Conversely, the DOLP signal demonstrated slightly worse overall classification results but excels at accurately identifying the polypropylene class, which it isolated with greater success than AOLP.
comment: 20 pages, 6 figures
☆ Adaptive Morph-Patch Transformer for Arotic Vessel Segmentation AAAI 2026
Accurate segmentation of aortic vascular structures is critical for diagnosing and treating cardiovascular diseases.Traditional Transformer-based models have shown promise in this domain by capturing long-range dependencies between vascular features. However, their reliance on fixed-size rectangular patches often influences the integrity of complex vascular structures, leading to suboptimal segmentation accuracy. To address this challenge, we propose the adaptive Morph Patch Transformer (MPT), a novel architecture specifically designed for aortic vascular segmentation. Specifically, MPT introduces an adaptive patch partitioning strategy that dynamically generates morphology-aware patches aligned with complex vascular structures. This strategy can preserve semantic integrity of complex vascular structures within individual patches. Moreover, a Semantic Clustering Attention (SCA) method is proposed to dynamically aggregate features from various patches with similar semantic characteristics. This method enhances the model's capability to segment vessels of varying sizes, preserving the integrity of vascular structures. Extensive experiments on three open-source dataset(AVT, AortaSeg24 and TBAD) demonstrate that MPT achieves state-of-the-art performance, with improvements in segmenting intricate vascular structures.
comment: This is the preprint version of a paper accepted by AAAI 2026. The final version will appear in the AAAI Proceedings
☆ A Two-Stage System for Layout-Controlled Image Generation using Large Language Models and Diffusion Models
Text-to-image diffusion models exhibit remarkable generative capabilities, but lack precise control over object counts and spatial arrangements. This work introduces a two-stage system to address these compositional limitations. The first stage employs a Large Language Model (LLM) to generate a structured layout from a list of objects. The second stage uses a layout-conditioned diffusion model to synthesize a photorealistic image adhering to this layout. We find that task decomposition is critical for LLM-based spatial planning; by simplifying the initial generation to core objects and completing the layout with rule-based insertion, we improve object recall from 57.2% to 99.9% for complex scenes. For image synthesis, we compare two leading conditioning methods: ControlNet and GLIGEN. After domain-specific finetuning on table-setting datasets, we identify a key trade-off: ControlNet preserves text-based stylistic control but suffers from object hallucination, while GLIGEN provides superior layout fidelity at the cost of reduced prompt-based controllability. Our end-to-end system successfully generates images with specified object counts and plausible spatial arrangements, demonstrating the viability of a decoupled approach for compositionally controlled synthesis.
comment: 12 pages, 5 figures
☆ Generating an Image From 1,000 Words: Enhancing Text-to-Image With Structured Captions
Text-to-image models have rapidly evolved from casual creative tools to professional-grade systems, achieving unprecedented levels of image quality and realism. Yet, most models are trained to map short prompts into detailed images, creating a gap between sparse textual input and rich visual outputs. This mismatch reduces controllability, as models often fill in missing details arbitrarily, biasing toward average user preferences and limiting precision for professional use. We address this limitation by training the first open-source text-to-image model on long structured captions, where every training sample is annotated with the same set of fine-grained attributes. This design maximizes expressive coverage and enables disentangled control over visual factors. To process long captions efficiently, we propose DimFusion, a fusion mechanism that integrates intermediate tokens from a lightweight LLM without increasing token length. We also introduce the Text-as-a-Bottleneck Reconstruction (TaBR) evaluation protocol. By assessing how well real images can be reconstructed through a captioning-generation loop, TaBR directly measures controllability and expressiveness, even for very long captions where existing evaluation methods fail. Finally, we demonstrate our contributions by training the large-scale model FIBO, achieving state-of-the-art prompt alignment among open-source models. Model weights are publicly available at https://huggingface.co/briaai/FIBO
☆ VAEVQ: Enhancing Discrete Visual Tokenization through Variational Modeling
Vector quantization (VQ) transforms continuous image features into discrete representations, providing compressed, tokenized inputs for generative models. However, VQ-based frameworks suffer from several issues, such as non-smooth latent spaces, weak alignment between representations before and after quantization, and poor coherence between the continuous and discrete domains. These issues lead to unstable codeword learning and underutilized codebooks, ultimately degrading the performance of both reconstruction and downstream generation tasks. To this end, we propose VAEVQ, which comprises three key components: (1) Variational Latent Quantization (VLQ), replacing the AE with a VAE for quantization to leverage its structured and smooth latent space, thereby facilitating more effective codeword activation; (2) Representation Coherence Strategy (RCS), adaptively modulating the alignment strength between pre- and post-quantization features to enhance consistency and prevent overfitting to noise; and (3) Distribution Consistency Regularization (DCR), aligning the entire codebook distribution with the continuous latent distribution to improve utilization. Extensive experiments on two benchmark datasets demonstrate that VAEVQ outperforms state-of-the-art methods.
☆ Ambiguity-aware Truncated Flow Matching for Ambiguous Medical Image Segmentation AAAI-26
A simultaneous enhancement of accuracy and diversity of predictions remains a challenge in ambiguous medical image segmentation (AMIS) due to the inherent trade-offs. While truncated diffusion probabilistic models (TDPMs) hold strong potential with a paradigm optimization, existing TDPMs suffer from entangled accuracy and diversity of predictions with insufficient fidelity and plausibility. To address the aforementioned challenges, we propose Ambiguity-aware Truncated Flow Matching (ATFM), which introduces a novel inference paradigm and dedicated model components. Firstly, we propose Data-Hierarchical Inference, a redefinition of AMIS-specific inference paradigm, which enhances accuracy and diversity at data-distribution and data-sample level, respectively, for an effective disentanglement. Secondly, Gaussian Truncation Representation (GTR) is introduced to enhance both fidelity of predictions and reliability of truncation distribution, by explicitly modeling it as a Gaussian distribution at $T_{\text{trunc}}$ instead of using sampling-based approximations.Thirdly, Segmentation Flow Matching (SFM) is proposed to enhance the plausibility of diverse predictions by extending semantic-aware flow transformation in Flow Matching (FM). Comprehensive evaluations on LIDC and ISIC3 datasets demonstrate that ATFM outperforms SOTA methods and simultaneously achieves a more efficient inference. ATFM improves GED and HM-IoU by up to $12\%$ and $7.3\%$ compared to advanced methods.
comment: 13 pages, 10 figures, extended version of AAAI-26 paper
☆ Distillation Dynamics: Towards Understanding Feature-Based Distillation in Vision Transformers AAAI 2026
While feature-based knowledge distillation has proven highly effective for compressing CNNs, these techniques unexpectedly fail when applied to Vision Transformers (ViTs), often performing worse than simple logit-based distillation. We provide the first comprehensive analysis of this phenomenon through a novel analytical framework termed as ``distillation dynamics", combining frequency spectrum analysis, information entropy metrics, and activation magnitude tracking. Our investigation reveals that ViTs exhibit a distinctive U-shaped information processing pattern: initial compression followed by expansion. We identify the root cause of negative transfer in feature distillation: a fundamental representational paradigm mismatch between teacher and student models. Through frequency-domain analysis, we show that teacher models employ distributed, high-dimensional encoding strategies in later layers that smaller student models cannot replicate due to limited channel capacity. This mismatch causes late-layer feature alignment to actively harm student performance. Our findings reveal that successful knowledge transfer in ViTs requires moving beyond naive feature mimicry to methods that respect these fundamental representational constraints, providing essential theoretical guidance for designing effective ViTs compression strategies. All source code and experimental logs are provided in the supplementary material.
comment: Accepted to AAAI 2026. Submitted version
☆ Gaussian-Augmented Physics Simulation and System Identification with Complex Colliders NeurIPS 2025
System identification involving the geometry, appearance, and physical properties from video observations is a challenging task with applications in robotics and graphics. Recent approaches have relied on fully differentiable Material Point Method (MPM) and rendering for simultaneous optimization of these properties. However, they are limited to simplified object-environment interactions with planar colliders and fail in more challenging scenarios where objects collide with non-planar surfaces. We propose AS-DiffMPM, a differentiable MPM framework that enables physical property estimation with arbitrarily shaped colliders. Our approach extends existing methods by incorporating a differentiable collision handling mechanism, allowing the target object to interact with complex rigid bodies while maintaining end-to-end optimization. We show AS-DiffMPM can be easily interfaced with various novel view synthesis methods as a framework for system identification from visual observations.
comment: Accepted to NeurIPS 2025. Project website: https://as-diffmpm.github.io/
☆ Aerial Image Stitching Using IMU Data from a UAV
Unmanned Aerial Vehicles (UAVs) are widely used for aerial photography and remote sensing applications. One of the main challenges is to stitch together multiple images into a single high-resolution image that covers a large area. Featurebased image stitching algorithms are commonly used but can suffer from errors and ambiguities in feature detection and matching. To address this, several approaches have been proposed, including using bundle adjustment techniques or direct image alignment. In this paper, we present a novel method that uses a combination of IMU data and computer vision techniques for stitching images captured by a UAV. Our method involves several steps such as estimating the displacement and rotation of the UAV between consecutive images, correcting for perspective distortion, and computing a homography matrix. We then use a standard image stitching algorithm to align and blend the images together. Our proposed method leverages the additional information provided by the IMU data, corrects for various sources of distortion, and can be easily integrated into existing UAV workflows. Our experiments demonstrate the effectiveness and robustness of our method, outperforming some of the existing feature-based image stitching algorithms in terms of accuracy and reliability, particularly in challenging scenarios such as large displacements, rotations, and variations in camera pose.
☆ PanoNav: Mapless Zero-Shot Object Navigation with Panoramic Scene Parsing and Dynamic Memory AAAI 2026
Zero-shot object navigation (ZSON) in unseen environments remains a challenging problem for household robots, requiring strong perceptual understanding and decision-making capabilities. While recent methods leverage metric maps and Large Language Models (LLMs), they often depend on depth sensors or prebuilt maps, limiting the spatial reasoning ability of Multimodal Large Language Models (MLLMs). Mapless ZSON approaches have emerged to address this, but they typically make short-sighted decisions, leading to local deadlocks due to a lack of historical context. We propose PanoNav, a fully RGB-only, mapless ZSON framework that integrates a Panoramic Scene Parsing module to unlock the spatial parsing potential of MLLMs from panoramic RGB inputs, and a Memory-guided Decision-Making mechanism enhanced by a Dynamic Bounded Memory Queue to incorporate exploration history and avoid local deadlocks. Experiments on the public navigation benchmark show that PanoNav significantly outperforms representative baselines in both SR and SPL metrics.
comment: Accepted as a poster in AAAI 2026
☆ Vision-Based System Identification of a Quadrotor
This paper explores the application of vision-based system identification techniques in quadrotor modeling and control. Through experiments and analysis, we address the complexities and limitations of quadrotor modeling, particularly in relation to thrust and drag coefficients. Grey-box modeling is employed to mitigate uncertainties, and the effectiveness of an onboard vision system is evaluated. An LQR controller is designed based on a system identification model using data from the onboard vision system. The results demonstrate consistent performance between the models, validating the efficacy of vision based system identification. This study highlights the potential of vision-based techniques in enhancing quadrotor modeling and control, contributing to improved performance and operational capabilities. Our findings provide insights into the usability and consistency of these techniques, paving the way for future research in quadrotor performance enhancement, fault detection, and decision-making processes.
☆ NeuroBridge: Bio-Inspired Self-Supervised EEG-to-Image Decoding via Cognitive Priors and Bidirectional Semantic Alignment AAAI 2026
Visual neural decoding seeks to reconstruct or infer perceived visual stimuli from brain activity patterns, providing critical insights into human cognition and enabling transformative applications in brain-computer interfaces and artificial intelligence. Current approaches, however, remain constrained by the scarcity of high-quality stimulus-brain response pairs and the inherent semantic mismatch between neural representations and visual content. Inspired by perceptual variability and co-adaptive strategy of the biological systems, we propose a novel self-supervised architecture, named NeuroBridge, which integrates Cognitive Prior Augmentation (CPA) with Shared Semantic Projector (SSP) to promote effective cross-modality alignment. Specifically, CPA simulates perceptual variability by applying asymmetric, modality-specific transformations to both EEG signals and images, enhancing semantic diversity. Unlike previous approaches, SSP establishes a bidirectional alignment process through a co-adaptive strategy, which mutually aligns features from two modalities into a shared semantic space for effective cross-modal learning. NeuroBridge surpasses previous state-of-the-art methods under both intra-subject and inter-subject settings. In the intra-subject scenario, it achieves the improvements of 12.3% in top-1 accuracy and 10.2% in top-5 accuracy, reaching 63.2% and 89.9% respectively on a 200-way zero-shot retrieval task. Extensive experiments demonstrate the effectiveness, robustness, and scalability of the proposed framework for neural visual decoding.
comment: AAAI 2026
☆ ConsistTalk: Intensity Controllable Temporally Consistent Talking Head Generation with Diffusion Noise Search AAAI26
Recent advancements in video diffusion models have significantly enhanced audio-driven portrait animation. However, current methods still suffer from flickering, identity drift, and poor audio-visual synchronization. These issues primarily stem from entangled appearance-motion representations and unstable inference strategies. In this paper, we introduce \textbf{ConsistTalk}, a novel intensity-controllable and temporally consistent talking head generation framework with diffusion noise search inference. First, we propose \textbf{an optical flow-guided temporal module (OFT)} that decouples motion features from static appearance by leveraging facial optical flow, thereby reducing visual flicker and improving temporal consistency. Second, we present an \textbf{Audio-to-Intensity (A2I) model} obtained through multimodal teacher-student knowledge distillation. By transforming audio and facial velocity features into a frame-wise intensity sequence, the A2I model enables joint modeling of audio and visual motion, resulting in more natural dynamics. This further enables fine-grained, frame-wise control of motion dynamics while maintaining tight audio-visual synchronization. Third, we introduce a \textbf{diffusion noise initialization strategy (IC-Init)}. By enforcing explicit constraints on background coherence and motion continuity during inference-time noise search, we achieve better identity preservation and refine motion dynamics compared to the current autoregressive strategy. Extensive experiments demonstrate that ConsistTalk significantly outperforms prior methods in reducing flicker, preserving identity, and delivering temporally stable, high-fidelity talking head videos.
comment: AAAI26 poster
☆ MUGSQA: Novel Multi-Uncertainty-Based Gaussian Splatting Quality Assessment Method, Dataset, and Benchmarks
Gaussian Splatting (GS) has recently emerged as a promising technique for 3D object reconstruction, delivering high-quality rendering results with significantly improved reconstruction speed. As variants continue to appear, assessing the perceptual quality of 3D objects reconstructed with different GS-based methods remains an open challenge. To address this issue, we first propose a unified multi-distance subjective quality assessment method that closely mimics human viewing behavior for objects reconstructed with GS-based methods in actual applications, thereby better collecting perceptual experiences. Based on it, we also construct a novel GS quality assessment dataset named MUGSQA, which is constructed considering multiple uncertainties of the input data. These uncertainties include the quantity and resolution of input views, the view distance, and the accuracy of the initial point cloud. Moreover, we construct two benchmarks: one to evaluate the robustness of various GS-based reconstruction methods under multiple uncertainties, and the other to evaluate the performance of existing quality assessment metrics. Our dataset and benchmark code will be released soon.
☆ Integrating Reweighted Least Squares with Plug-and-Play Diffusion Priors for Noisy Image Restoration
Existing plug-and-play image restoration methods typically employ off-the-shelf Gaussian denoisers as proximal operators within classical optimization frameworks based on variable splitting. Recently, denoisers induced by generative priors have been successfully integrated into regularized optimization methods for image restoration under Gaussian noise. However, their application to non-Gaussian noise--such as impulse noise--remains largely unexplored. In this paper, we propose a plug-and-play image restoration framework based on generative diffusion priors for robust removal of general noise types, including impulse noise. Within the maximum a posteriori (MAP) estimation framework, the data fidelity term is adapted to the specific noise model. Departing from the conventional least-squares loss used for Gaussian noise, we introduce a generalized Gaussian scale mixture-based loss, which approximates a wide range of noise distributions and leads to an $\ell_q$-norm ($0
comment: 12 pages
☆ TiS-TSL: Image-Label Supervised Surgical Video Stereo Matching via Time-Switchable Teacher-Student Learning
Stereo matching in minimally invasive surgery (MIS) is essential for next-generation navigation and augmented reality. Yet, dense disparity supervision is nearly impossible due to anatomical constraints, typically limiting annotations to only a few image-level labels acquired before the endoscope enters deep body cavities. Teacher-Student Learning (TSL) offers a promising solution by leveraging a teacher trained on sparse labels to generate pseudo labels and associated confidence maps from abundant unlabeled surgical videos. However, existing TSL methods are confined to image-level supervision, providing only spatial confidence and lacking temporal consistency estimation. This absence of spatio-temporal reliability results in unstable disparity predictions and severe flickering artifacts across video frames. To overcome these challenges, we propose TiS-TSL, a novel time-switchable teacher-student learning framework for video stereo matching under minimal supervision. At its core is a unified model that operates in three distinct modes: Image-Prediction (IP), Forward Video-Prediction (FVP), and Backward Video-Prediction (BVP), enabling flexible temporal modeling within a single architecture. Enabled by this unified model, TiS-TSL adopts a two-stage learning strategy. The Image-to-Video (I2V) stage transfers sparse image-level knowledge to initialize temporal modeling. The subsequent Video-to-Video (V2V) stage refines temporal disparity predictions by comparing forward and backward predictions to calculate bidirectional spatio-temporal consistency. This consistency identifies unreliable regions across frames, filters noisy video-level pseudo labels, and enforces temporal coherence. Experimental results on two public datasets demonstrate that TiS-TSL exceeds other image-based state-of-the-arts by improving TEPE and EPE by at least 2.11% and 4.54%, respectively..
comment: 8 pages, 4 figures, accepted by BiBM2025
☆ ConeGS: Error-Guided Densification Using Pixel Cones for Improved Reconstruction with Fewer Primitives
3D Gaussian Splatting (3DGS) achieves state-of-the-art image quality and real-time performance in novel view synthesis but often suffers from a suboptimal spatial distribution of primitives. This issue stems from cloning-based densification, which propagates Gaussians along existing geometry, limiting exploration and requiring many primitives to adequately cover the scene. We present ConeGS, an image-space-informed densification framework that is independent of existing scene geometry state. ConeGS first creates a fast Instant Neural Graphics Primitives (iNGP) reconstruction as a geometric proxy to estimate per-pixel depth. During the subsequent 3DGS optimization, it identifies high-error pixels and inserts new Gaussians along the corresponding viewing cones at the predicted depth values, initializing their size according to the cone diameter. A pre-activation opacity penalty rapidly removes redundant Gaussians, while a primitive budgeting strategy controls the total number of primitives, either by a fixed budget or by adapting to scene complexity, ensuring high reconstruction quality. Experiments show that ConeGS consistently enhances reconstruction quality and rendering performance across Gaussian budgets, with especially strong gains under tight primitive constraints where efficient placement is crucial.
☆ RRTS Dataset: A Benchmark Colonoscopy Dataset from Resource-Limited Settings for Computer-Aided Diagnosis Research
Background and Objective: Colorectal cancer prevention relies on early detection of polyps during colonoscopy. Existing public datasets, such as CVC-ClinicDB and Kvasir-SEG, provide valuable benchmarks but are limited by small sample sizes, curated image selection, or lack of real-world artifacts. There remains a need for datasets that capture the complexity of clinical practice, particularly in resource-constrained settings. Methods: We introduce a dataset, BUET Polyp Dataset (BPD), of colonoscopy images collected using Olympus 170 and Pen- tax i-Scan series endoscopes under routine clinical conditions. The dataset contains images with corresponding expert-annotated binary masks, reflecting diverse challenges such as motion blur, specular highlights, stool artifacts, blood, and low-light frames. Annotations were manually reviewed by clinical experts to ensure quality. To demonstrate baseline performance, we provide bench- mark results for classification using VGG16, ResNet50, and InceptionV3, and for segmentation using UNet variants with VGG16, ResNet34, and InceptionV4 backbones. Results: The dataset comprises 1,288 images with polyps from 164 patients with corresponding ground-truth masks and 1,657 polyp-free images from 31 patients. Benchmarking experiments achieved up to 90.8% accuracy for binary classification (VGG16) and a maximum Dice score of 0.64 with InceptionV4-UNet for segmentation. Performance was lower compared to curated datasets, reflecting the real-world difficulty of images with artifacts and variable quality.
☆ Robust and High-Fidelity 3D Gaussian Splatting: Fusing Pose Priors and Geometry Constraints for Texture-Deficient Outdoor Scenes IROS 2025
3D Gaussian Splatting (3DGS) has emerged as a key rendering pipeline for digital asset creation due to its balance between efficiency and visual quality. To address the issues of unstable pose estimation and scene representation distortion caused by geometric texture inconsistency in large outdoor scenes with weak or repetitive textures, we approach the problem from two aspects: pose estimation and scene representation. For pose estimation, we leverage LiDAR-IMU Odometry to provide prior poses for cameras in large-scale environments. These prior pose constraints are incorporated into COLMAP's triangulation process, with pose optimization performed via bundle adjustment. Ensuring consistency between pixel data association and prior poses helps maintain both robustness and accuracy. For scene representation, we introduce normal vector constraints and effective rank regularization to enforce consistency in the direction and shape of Gaussian primitives. These constraints are jointly optimized with the existing photometric loss to enhance the map quality. We evaluate our approach using both public and self-collected datasets. In terms of pose optimization, our method requires only one-third of the time while maintaining accuracy and robustness across both datasets. In terms of scene representation, the results show that our method significantly outperforms conventional 3DGS pipelines. Notably, on self-collected datasets characterized by weak or repetitive textures, our approach demonstrates enhanced visualization capabilities and achieves superior overall performance. Codes and data will be publicly available at https://github.com/justinyeah/normal_shape.git.
comment: 7 pages, 3 figures. Accepted by IROS 2025
☆ CAST-LUT: Tokenizer-Guided HSV Look-Up Tables for Purple Flare Removal
Purple flare, a diffuse chromatic aberration artifact commonly found around highlight areas, severely degrades the tone transition and color of the image. Existing traditional methods are based on hand-crafted features, which lack flexibility and rely entirely on fixed priors, while the scarcity of paired training data critically hampers deep learning. To address this issue, we propose a novel network built upon decoupled HSV Look-Up Tables (LUTs). The method aims to simplify color correction by adjusting the Hue (H), Saturation (S), and Value (V) components independently. This approach resolves the inherent color coupling problems in traditional methods. Our model adopts a two-stage architecture: First, a Chroma-Aware Spectral Tokenizer (CAST) converts the input image from RGB space to HSV space and independently encodes the Hue (H) and Value (V) channels into a set of semantic tokens describing the Purple flare status; second, the HSV-LUT module takes these tokens as input and dynamically generates independent correction curves (1D-LUTs) for the three channels H, S, and V. To effectively train and validate our model, we built the first large-scale purple flare dataset with diverse scenes. We also proposed new metrics and a loss function specifically designed for this task. Extensive experiments demonstrate that our model not only significantly outperforms existing methods in visual effects but also achieves state-of-the-art performance on all quantitative metrics.
☆ SlotVLA: Towards Modeling of Object-Relation Representations in Robotic Manipulation
Inspired by how humans reason over discrete objects and their relationships, we explore whether compact object-centric and object-relation representations can form a foundation for multitask robotic manipulation. Most existing robotic multitask models rely on dense embeddings that entangle both object and background cues, raising concerns about both efficiency and interpretability. In contrast, we study object-relation-centric representations as a pathway to more structured, efficient, and explainable visuomotor control. Our contributions are two-fold. First, we introduce LIBERO+, a fine-grained benchmark dataset designed to enable and evaluate object-relation reasoning in robotic manipulation. Unlike prior datasets, LIBERO+ provides object-centric annotations that enrich demonstrations with box- and mask-level labels as well as instance-level temporal tracking, supporting compact and interpretable visuomotor representations. Second, we propose SlotVLA, a slot-attention-based framework that captures both objects and their relations for action decoding. It uses a slot-based visual tokenizer to maintain consistent temporal object representations, a relation-centric decoder to produce task-relevant embeddings, and an LLM-driven module that translates these embeddings into executable actions. Experiments on LIBERO+ demonstrate that object-centric slot and object-relation slot representations drastically reduce the number of required visual tokens, while providing competitive generalization. Together, LIBERO+ and SlotVLA provide a compact, interpretable, and effective foundation for advancing object-relation-centric robotic manipulation.
comment: under review
☆ Med-SORA: Symptom to Organ Reasoning in Abdomen CT Images
Understanding symptom-image associations is crucial for clinical reasoning. However, existing medical multimodal models often rely on simple one-to-one hard labeling, oversimplifying clinical reality where symptoms relate to multiple organs. In addition, they mainly use single-slice 2D features without incorporating 3D information, limiting their ability to capture full anatomical context. In this study, we propose Med-SORA, a framework for symptom-to-organ reasoning in abdominal CT images. Med-SORA introduces RAG-based dataset construction, soft labeling with learnable organ anchors to capture one-to-many symptom-organ relationships, and a 2D-3D cross-attention architecture to fuse local and global image features. To our knowledge, this is the first work to address symptom-to-organ reasoning in medical multimodal learning. Experimental results show that Med-SORA outperforms existing medical multimodal models and enables accurate 3D clinical reasoning.
comment: 9 pages
☆ Hierarchical Spatial-Frequency Aggregation for Spectral Deconvolution Imaging
Computational spectral imaging (CSI) achieves real-time hyperspectral imaging through co-designed optics and algorithms, but typical CSI methods suffer from a bulky footprint and limited fidelity. Therefore, Spectral Deconvolution imaging (SDI) methods based on PSF engineering have been proposed to achieve high-fidelity compact CSI design recently. However, the composite convolution-integration operations of SDI render the normal-equation coefficient matrix scene-dependent, which hampers the efficient exploitation of imaging priors and poses challenges for accurate reconstruction. To tackle the inherent data-dependent operators in SDI, we introduce a Hierarchical Spatial-Spectral Aggregation Unfolding Framework (HSFAUF). By decomposing subproblems and projecting them into the frequency domain, HSFAUF transforms nonlinear processes into linear mappings, thereby enabling efficient solutions. Furthermore, to integrate spatial-spectral priors during iterative refinement, we propose a Spatial-Frequency Aggregation Transformer (SFAT), which explicitly aggregates information across spatial and frequency domains. By integrating SFAT into HSFAUF, we develop a Transformer-based deep unfolding method, \textbf{H}ierarchical \textbf{S}patial-\textbf{F}requency \textbf{A}ggregation \textbf{U}nfolding \textbf{T}ransformer (HSFAUT), to solve the inverse problem of SDI. Systematic simulated and real experiments show that HSFAUT surpasses SOTA methods with cheaper memory and computational costs, while exhibiting optimal performance on different SDI systems.
comment: Under Review at TPAMI
☆ Semi-distributed Cross-modal Air-Ground Relative Localization IROS 2025
Efficient, accurate, and flexible relative localization is crucial in air-ground collaborative tasks. However, current approaches for robot relative localization are primarily realized in the form of distributed multi-robot SLAM systems with the same sensor configuration, which are tightly coupled with the state estimation of all robots, limiting both flexibility and accuracy. To this end, we fully leverage the high capacity of Unmanned Ground Vehicle (UGV) to integrate multiple sensors, enabling a semi-distributed cross-modal air-ground relative localization framework. In this work, both the UGV and the Unmanned Aerial Vehicle (UAV) independently perform SLAM while extracting deep learning-based keypoints and global descriptors, which decouples the relative localization from the state estimation of all agents. The UGV employs a local Bundle Adjustment (BA) with LiDAR, camera, and an IMU to rapidly obtain accurate relative pose estimates. The BA process adopts sparse keypoint optimization and is divided into two stages: First, optimizing camera poses interpolated from LiDAR-Inertial Odometry (LIO), followed by estimating the relative camera poses between the UGV and UAV. Additionally, we implement an incremental loop closure detection algorithm using deep learning-based descriptors to maintain and retrieve keyframes efficiently. Experimental results demonstrate that our method achieves outstanding performance in both accuracy and efficiency. Unlike traditional multi-robot SLAM approaches that transmit images or point clouds, our method only transmits keypoint pixels and their descriptors, effectively constraining the communication bandwidth under 0.3 Mbps. Codes and data will be publicly available on https://github.com/Ascbpiac/cross-model-relative-localization.git.
comment: 7 pages, 3 figures. Accepted by IROS 2025
☆ Image Restoration via Primal Dual Hybrid Gradient and Flow Generative Model AAAI26
Regularized optimization has been a classical approach to solving imaging inverse problems, where the regularization term enforces desirable properties of the unknown image. Recently, the integration of flow matching generative models into image restoration has garnered significant attention, owing to their powerful prior modeling capabilities. In this work, we incorporate such generative priors into a Plug-and-Play (PnP) framework based on proximal splitting, where the proximal operator associated with the regularizer is replaced by a time-dependent denoiser derived from the generative model. While existing PnP methods have achieved notable success in inverse problems with smooth squared $\ell_2$ data fidelity--typically associated with Gaussian noise--their applicability to more general data fidelity terms remains underexplored. To address this, we propose a general and efficient PnP algorithm inspired by the primal-dual hybrid gradient (PDHG) method. Our approach is computationally efficient, memory-friendly, and accommodates a wide range of fidelity terms. In particular, it supports both $\ell_1$ and $\ell_2$ norm-based losses, enabling robustness to non-Gaussian noise types such as Poisson and impulse noise. We validate our method on several image restoration tasks, including denoising, super-resolution, deblurring, and inpainting, and demonstrate that $\ell_1$ and $\ell_2$ fidelity terms outperform the conventional squared $\ell_2$ loss in the presence of non-Gaussian noise.
comment: 13 pages; AAAI26 version with appendix
☆ PointCubeNet: 3D Part-level Reasoning with 3x3x3 Point Cloud Blocks
In this paper, we propose PointCubeNet, a novel multi-modal 3D understanding framework that achieves part-level reasoning without requiring any part annotations. PointCubeNet comprises global and local branches. The proposed local branch, structured into 3x3x3 local blocks, enables part-level analysis of point cloud sub-regions with the corresponding local text labels. Leveraging the proposed pseudo-labeling method and local loss function, PointCubeNet is effectively trained in an unsupervised manner. The experimental results demonstrate that understanding 3D object parts enhances the understanding of the overall 3D object. In addition, this is the first attempt to perform unsupervised 3D part-level reasoning and achieves reliable and meaningful results.
☆ Otter: Mitigating Background Distractions of Wide-Angle Few-Shot Action Recognition with Enhanced RWKV AAAI 2026
Wide-angle videos in few-shot action recognition (FSAR) effectively express actions within specific scenarios. However, without a global understanding of both subjects and background, recognizing actions in such samples remains challenging because of the background distractions. Receptance Weighted Key Value (RWKV), which learns interaction between various dimensions, shows promise for global modeling. While directly applying RWKV to wide-angle FSAR may fail to highlight subjects due to excessive background information. Additionally, temporal relation degraded by frames with similar backgrounds is difficult to reconstruct, further impacting performance. Therefore, we design the CompOund SegmenTation and Temporal REconstructing RWKV (Otter). Specifically, the Compound Segmentation Module~(CSM) is devised to segment and emphasize key patches in each frame, effectively highlighting subjects against background information. The Temporal Reconstruction Module (TRM) is incorporated into the temporal-enhanced prototype construction to enable bidirectional scanning, allowing better reconstruct temporal relation. Furthermore, a regular prototype is combined with the temporal-enhanced prototype to simultaneously enhance subject emphasis and temporal modeling, improving wide-angle FSAR performance. Extensive experiments on benchmarks such as SSv2, Kinetics, UCF101, and HMDB51 demonstrate that Otter achieves state-of-the-art performance. Extra evaluation on the VideoBadminton dataset further validates the superiority of Otter in wide-angle FSAR.
comment: Accepted by AAAI 2026 Oral
☆ SinSEMI: A One-Shot Image Generation Model and Data-Efficient Evaluation Framework for Semiconductor Inspection Equipment
In the early stages of semiconductor equipment development, obtaining large quantities of raw optical images poses a significant challenge. This data scarcity hinder the advancement of AI-powered solutions in semiconductor manufacturing. To address this challenge, we introduce SinSEMI, a novel one-shot learning approach that generates diverse and highly realistic images from single optical image. SinSEMI employs a multi-scale flow-based model enhanced with LPIPS (Learned Perceptual Image Patch Similarity) energy guidance during sampling, ensuring both perceptual realism and output variety. We also introduce a comprehensive evaluation framework tailored for this application, which enables a thorough assessment using just two reference images. Through the evaluation against multiple one-shot generation techniques, we demonstrate SinSEMI's superior performance in visual quality, quantitative measures, and downstream tasks. Our experimental results demonstrate that SinSEMI-generated images achieve both high fidelity and meaningful diversity, making them suitable as training data for semiconductor AI applications.
☆ Rethinking Rainy 3D Scene Reconstruction via Perspective Transforming and Brightness Tuning AAAI 2026
Rain degrades the visual quality of multi-view images, which are essential for 3D scene reconstruction, resulting in inaccurate and incomplete reconstruction results. Existing datasets often overlook two critical characteristics of real rainy 3D scenes: the viewpoint-dependent variation in the appearance of rain streaks caused by their projection onto 2D images, and the reduction in ambient brightness resulting from cloud coverage during rainfall. To improve data realism, we construct a new dataset named OmniRain3D that incorporates perspective heterogeneity and brightness dynamicity, enabling more faithful simulation of rain degradation in 3D scenes. Based on this dataset, we propose an end-to-end reconstruction framework named REVR-GSNet (Rain Elimination and Visibility Recovery for 3D Gaussian Splatting). Specifically, REVR-GSNet integrates recursive brightness enhancement, Gaussian primitive optimization, and GS-guided rain elimination into a unified architecture through joint alternating optimization, achieving high-fidelity reconstruction of clean 3D scenes from rain-degraded inputs. Extensive experiments show the effectiveness of our dataset and method. Our dataset and method provide a foundation for future research on multi-view image deraining and rainy 3D scene reconstruction.
comment: Accepted by AAAI 2026 (Oral)
☆ Argus: Quality-Aware High-Throughput Text-to-Image Inference Serving System
Text-to-image (T2I) models have gained significant popularity. Most of these are diffusion models with unique computational characteristics, distinct from both traditional small-scale ML models and large language models. They are highly compute-bound and use an iterative denoising process to generate images, leading to very high inference time. This creates significant challenges in designing a high-throughput system. We discovered that a large fraction of prompts can be served using faster, approximated models. However, the approximation setting must be carefully calibrated for each prompt to avoid quality degradation. Designing a high-throughput system that assigns each prompt to the appropriate model and compatible approximation setting remains a challenging problem. We present Argus, a high-throughput T2I inference system that selects the right level of approximation for each prompt to maintain quality while meeting throughput targets on a fixed-size cluster. Argus intelligently switches between different approximation strategies to satisfy both throughput and quality requirements. Overall, Argus achieves 10x fewer latency service-level objective (SLO) violations, 10% higher average quality, and 40% higher throughput compared to baselines on two real-world workload traces.
comment: Accepted at Middleware 2025
☆ Revisiting the Data Sampling in Multimodal Post-training from a Difficulty-Distinguish View AAAI 2026
Recent advances in Multimodal Large Language Models (MLLMs) have spurred significant progress in Chain-of-Thought (CoT) reasoning. Building on the success of Deepseek-R1, researchers extended multimodal reasoning to post-training paradigms based on reinforcement learning (RL), focusing predominantly on mathematical datasets. However, existing post-training paradigms tend to neglect two critical aspects: (1) The lack of quantifiable difficulty metrics capable of strategically screening samples for post-training optimization. (2) Suboptimal post-training paradigms that fail to jointly optimize perception and reasoning capabilities. To address this gap, we propose two novel difficulty-aware sampling strategies: Progressive Image Semantic Masking (PISM) quantifies sample hardness through systematic image degradation, while Cross-Modality Attention Balance (CMAB) assesses cross-modal interaction complexity via attention distribution analysis. Leveraging these metrics, we design a hierarchical training framework that incorporates both GRPO-only and SFT+GRPO hybrid training paradigms, and evaluate them across six benchmark datasets. Experiments demonstrate consistent superiority of GRPO applied to difficulty-stratified samples compared to conventional SFT+GRPO pipelines, indicating that strategic data sampling can obviate the need for supervised fine-tuning while improving model accuracy. Our code will be released at https://github.com/qijianyu277/DifficultySampling.
comment: Accpeted by AAAI 2026
☆ AvatarTex: High-Fidelity Facial Texture Reconstruction from Single-Image Stylized Avatars 3DV 2026
We present AvatarTex, a high-fidelity facial texture reconstruction framework capable of generating both stylized and photorealistic textures from a single image. Existing methods struggle with stylized avatars due to the lack of diverse multi-style datasets and challenges in maintaining geometric consistency in non-standard textures. To address these limitations, AvatarTex introduces a novel three-stage diffusion-to-GAN pipeline. Our key insight is that while diffusion models excel at generating diversified textures, they lack explicit UV constraints, whereas GANs provide a well-structured latent space that ensures style and topology consistency. By integrating these strengths, AvatarTex achieves high-quality topology-aligned texture synthesis with both artistic and geometric coherence. Specifically, our three-stage pipeline first completes missing texture regions via diffusion-based inpainting, refines style and structure consistency using GAN-based latent optimization, and enhances fine details through diffusion-based repainting. To address the need for a stylized texture dataset, we introduce TexHub, a high-resolution collection of 20,000 multi-style UV textures with precise UV-aligned layouts. By leveraging TexHub and our structured diffusion-to-GAN pipeline, AvatarTex establishes a new state-of-the-art in multi-style facial texture reconstruction. TexHub will be released upon publication to facilitate future research in this field.
comment: 3DV 2026 Accepted
☆ Relative Energy Learning for LiDAR Out-of-Distribution Detection
Out-of-distribution (OOD) detection is a critical requirement for reliable autonomous driving, where safety depends on recognizing road obstacles and unexpected objects beyond the training distribution. Despite extensive research on OOD detection in 2D images, direct transfer to 3D LiDAR point clouds has been proven ineffective. Current LiDAR OOD methods struggle to distinguish rare anomalies from common classes, leading to high false-positive rates and overconfident errors in safety-critical settings. We propose Relative Energy Learning (REL), a simple yet effective framework for OOD detection in LiDAR point clouds. REL leverages the energy gap between positive (in-distribution) and negative logits as a relative scoring function, mitigating calibration issues in raw energy values and improving robustness across various scenes. To address the absence of OOD samples during training, we propose a lightweight data synthesis strategy called Point Raise, which perturbs existing point clouds to generate auxiliary anomalies without altering the inlier semantics. Evaluated on SemanticKITTI and the Spotting the Unexpected (STU) benchmark, REL consistently outperforms existing methods by a large margin. Our results highlight that modeling relative energy, combined with simple synthetic outliers, provides a principled and scalable solution for reliable OOD detection in open-world autonomous driving.
☆ MRT: Learning Compact Representations with Mixed RWKV-Transformer for Extreme Image Compression
Recent advances in extreme image compression have revealed that mapping pixel data into highly compact latent representations can significantly improve coding efficiency. However, most existing methods compress images into 2-D latent spaces via convolutional neural networks (CNNs) or Swin Transformers, which tend to retain substantial spatial redundancy, thereby limiting overall compression performance. In this paper, we propose a novel Mixed RWKV-Transformer (MRT) architecture that encodes images into more compact 1-D latent representations by synergistically integrating the complementary strengths of linear-attention-based RWKV and self-attention-based Transformer models. Specifically, MRT partitions each image into fixed-size windows, utilizing RWKV modules to capture global dependencies across windows and Transformer blocks to model local redundancies within each window. The hierarchical attention mechanism enables more efficient and compact representation learning in the 1-D domain. To further enhance compression efficiency, we introduce a dedicated RWKV Compression Model (RCM) tailored to the structure characteristics of the intermediate 1-D latent features in MRT. Extensive experiments on standard image compression benchmarks validate the effectiveness of our approach. The proposed MRT framework consistently achieves superior reconstruction quality at bitrates below 0.02 bits per pixel (bpp). Quantitative results based on the DISTS metric show that MRT significantly outperforms the state-of-the-art 2-D architecture GLC, achieving bitrate savings of 43.75%, 30.59% on the Kodak and CLIC2020 test datasets, respectively.
☆ MirrorMamba: Towards Scalable and Robust Mirror Detection in Videos
Video mirror detection has received significant research attention, yet existing methods suffer from limited performance and robustness. These approaches often over-rely on single, unreliable dynamic features, and are typically built on CNNs with limited receptive fields or Transformers with quadratic computational complexity. To address these limitations, we propose a new effective and scalable video mirror detection method, called MirrorMamba. Our approach leverages multiple cues to adapt to diverse conditions, incorporating perceived depth, correspondence and optical. We also introduce an innovative Mamba-based Multidirection Correspondence Extractor, which benefits from the global receptive field and linear complexity of the emerging Mamba spatial state model to effectively capture correspondence properties. Additionally, we design a Mamba-based layer-wise boundary enforcement decoder to resolve the unclear boundary caused by the blurred depth map. Notably, this work marks the first successful application of the Mamba-based architecture in the field of mirror detection. Extensive experiments demonstrate that our method outperforms existing state-of-the-art approaches for video mirror detection on the benchmark datasets. Furthermore, on the most challenging and representative image-based mirror detection dataset, our approach achieves state-of-the-art performance, proving its robustness and generalizability.
☆ K-Stain: Keypoint-Driven Correspondence for H&E-to-IHC Virtual Staining
Virtual staining offers a promising method for converting Hematoxylin and Eosin (H&E) images into Immunohistochemical (IHC) images, eliminating the need for costly chemical processes. However, existing methods often struggle to utilize spatial information effectively due to misalignment in tissue slices. To overcome this challenge, we leverage keypoints as robust indicators of spatial correspondence, enabling more precise alignment and integration of structural details in synthesized IHC images. We introduce K-Stain, a novel framework that employs keypoint-based spatial and semantic relationships to enhance synthesized IHC image fidelity. K-Stain comprises three main components: (1) a Hierarchical Spatial Keypoint Detector (HSKD) for identifying keypoints in stain images, (2) a Keypoint-aware Enhancement Generator (KEG) that integrates these keypoints during image generation, and (3) a Keypoint Guided Discriminator (KGD) that improves the discriminator's sensitivity to spatial details. Our approach leverages contextual information from adjacent slices, resulting in more accurate and visually consistent IHC images. Extensive experiments show that K-Stain outperforms state-of-the-art methods in quantitative metrics and visual quality.
☆ SPAN: Spatial-Projection Alignment for Monocular 3D Object Detection
Existing monocular 3D detectors typically tame the pronounced nonlinear regression of 3D bounding box through decoupled prediction paradigm, which employs multiple branches to estimate geometric center, depth, dimensions, and rotation angle separately. Although this decoupling strategy simplifies the learning process, it inherently ignores the geometric collaborative constraints between different attributes, resulting in the lack of geometric consistency prior, thereby leading to suboptimal performance. To address this issue, we propose novel Spatial-Projection Alignment (SPAN) with two pivotal components: (i). Spatial Point Alignment enforces an explicit global spatial constraint between the predicted and ground-truth 3D bounding boxes, thereby rectifying spatial drift caused by decoupled attribute regression. (ii). 3D-2D Projection Alignment ensures that the projected 3D box is aligned tightly within its corresponding 2D detection bounding box on the image plane, mitigating projection misalignment overlooked in previous works. To ensure training stability, we further introduce a Hierarchical Task Learning strategy that progressively incorporates spatial-projection alignment as 3D attribute predictions refine, preventing early stage error propagation across attributes. Extensive experiments demonstrate that the proposed method can be easily integrated into any established monocular 3D detector and delivers significant performance improvements.
☆ AnoStyler: Text-Driven Localized Anomaly Generation via Lightweight Style Transfer AAAI 2026
Anomaly generation has been widely explored to address the scarcity of anomaly images in real-world data. However, existing methods typically suffer from at least one of the following limitations, hindering their practical deployment: (1) lack of visual realism in generated anomalies; (2) dependence on large amounts of real images; and (3) use of memory-intensive, heavyweight model architectures. To overcome these limitations, we propose AnoStyler, a lightweight yet effective method that frames zero-shot anomaly generation as text-guided style transfer. Given a single normal image along with its category label and expected defect type, an anomaly mask indicating the localized anomaly regions and two-class text prompts representing the normal and anomaly states are generated using generalizable category-agnostic procedures. A lightweight U-Net model trained with CLIP-based loss functions is used to stylize the normal image into a visually realistic anomaly image, where anomalies are localized by the anomaly mask and semantically aligned with the text prompts. Extensive experiments on the MVTec-AD and VisA datasets show that AnoStyler outperforms existing anomaly generation methods in generating high-quality and diverse anomaly images. Furthermore, using these generated anomalies helps enhance anomaly detection performance.
comment: Accepted to AAAI 2026
☆ Flexible Concept Bottleneck Model AAAI 2026
Concept bottleneck models (CBMs) improve neural network interpretability by introducing an intermediate layer that maps human-understandable concepts to predictions. Recent work has explored the use of vision-language models (VLMs) to automate concept selection and annotation. However, existing VLM-based CBMs typically require full model retraining when new concepts are involved, which limits their adaptability and flexibility in real-world scenarios, especially considering the rapid evolution of vision-language foundation models. To address these issues, we propose Flexible Concept Bottleneck Model (FCBM), which supports dynamic concept adaptation, including complete replacement of the original concept set. Specifically, we design a hypernetwork that generates prediction weights based on concept embeddings, allowing seamless integration of new concepts without retraining the entire model. In addition, we introduce a modified sparsemax module with a learnable temperature parameter that dynamically selects the most relevant concepts, enabling the model to focus on the most informative features. Extensive experiments on five public benchmarks demonstrate that our method achieves accuracy comparable to state-of-the-art baselines with a similar number of effective concepts. Moreover, the model generalizes well to unseen concepts with just a single epoch of fine-tuning, demonstrating its strong adaptability and flexibility.
comment: To appear in AAAI 2026
☆ REOcc: Camera-Radar Fusion with Radar Feature Enrichment for 3D Occupancy Prediction IROS 2025
Vision-based 3D occupancy prediction has made significant advancements, but its reliance on cameras alone struggles in challenging environments. This limitation has driven the adoption of sensor fusion, among which camera-radar fusion stands out as a promising solution due to their complementary strengths. However, the sparsity and noise of the radar data limits its effectiveness, leading to suboptimal fusion performance. In this paper, we propose REOcc, a novel camera-radar fusion network designed to enrich radar feature representations for 3D occupancy prediction. Our approach introduces two main components, a Radar Densifier and a Radar Amplifier, which refine radar features by integrating spatial and contextual information, effectively enhancing spatial density and quality. Extensive experiments on the Occ3D-nuScenes benchmark demonstrate that REOcc achieves significant performance gains over the camera-only baseline model, particularly in dynamic object classes. These results underscore REOcc's capability to mitigate the sparsity and noise of the radar data. Consequently, radar complements camera data more effectively, unlocking the full potential of camera-radar fusion for robust and reliable 3D occupancy prediction.
comment: IROS 2025
☆ Sim4Seg: Boosting Multimodal Multi-disease Medical Diagnosis Segmentation with Region-Aware Vision-Language Similarity Masks AAAI 2026
Despite significant progress in pixel-level medical image analysis, existing medical image segmentation models rarely explore medical segmentation and diagnosis tasks jointly. However, it is crucial for patients that models can provide explainable diagnoses along with medical segmentation results. In this paper, we introduce a medical vision-language task named Medical Diagnosis Segmentation (MDS), which aims to understand clinical queries for medical images and generate the corresponding segmentation masks as well as diagnostic results. To facilitate this task, we first present the Multimodal Multi-disease Medical Diagnosis Segmentation (M3DS) dataset, containing diverse multimodal multi-disease medical images paired with their corresponding segmentation masks and diagnosis chain-of-thought, created via an automated diagnosis chain-of-thought generation pipeline. Moreover, we propose Sim4Seg, a novel framework that improves the performance of diagnosis segmentation by taking advantage of the Region-Aware Vision-Language Similarity to Mask (RVLS2M) module. To improve overall performance, we investigate a test-time scaling strategy for MDS tasks. Experimental results demonstrate that our method outperforms the baselines in both segmentation and diagnosis.
comment: AAAI 2026
♻ ☆ Capturing Gaze Shifts for Guidance: Cross-Modal Fusion Enhancement for VLM Hallucination Mitigation
Vision language models (VLMs) often generate hallucination, i.e., content that cannot be substantiated by either textual or visual inputs. Prior work primarily attributes this to over-reliance on linguistic prior knowledge rather than visual inputs. Some methods attempt to mitigate hallucination by amplifying visual token attention proportionally to their attention scores. However, these methods overlook the visual attention sink problem, where attention is frequently misallocated to task-irrelevant visual regions, and neglect cross-modal fusion balance by enhancing only visual attention without adjusting attention to the user query. This can result in amplifying incorrect areas while failing to properly interpret the user query. To address these challenges, we propose a simple yet effective method called Gaze Shift-Guided Cross-modal Fusion Enhancement (GIFT). GIFT pre-computes a holistic visual saliency map by tracking positive changes in visual attention, or "gaze shifts", during user query comprehension, and leverages this map to amplify attention to both salient visual information and the user query at each decoding step. This reduces the impact of visual attention sink, as irrelevant tokens exhibit minimal shifts, while ensuring balanced cross-modal fusion for well-integrated representation. Extensive experiments show that GIFT effectively mitigates hallucination in VLMs across both generative and classification tasks, achieving up to 20.7% improvement over greedy decoding, while maintaining general vision-language performance with low computational overhead.
♻ ☆ Real-to-Sim Robot Policy Evaluation with Gaussian Splatting Simulation of Soft-Body Interactions
Robotic manipulation policies are advancing rapidly, but their direct evaluation in the real world remains costly, time-consuming, and difficult to reproduce, particularly for tasks involving deformable objects. Simulation provides a scalable and systematic alternative, yet existing simulators often fail to capture the coupled visual and physical complexity of soft-body interactions. We present a real-to-sim policy evaluation framework that constructs soft-body digital twins from real-world videos and renders robots, objects, and environments with photorealistic fidelity using 3D Gaussian Splatting. We validate our approach on representative deformable manipulation tasks, including plush toy packing, rope routing, and T-block pushing, demonstrating that simulated rollouts correlate strongly with real-world execution performance and reveal key behavioral patterns of learned policies. Our results suggest that combining physics-informed reconstruction with high-quality rendering enables reproducible, scalable, and accurate evaluation of robotic manipulation policies. Website: https://real2sim-eval.github.io/
comment: The first two authors contributed equally. Website: https://real2sim-eval.github.io/
♻ ☆ Bridging Weakly-Supervised Learning and VLM Distillation: Noisy Partial Label Learning for Efficient Downstream Adaptation
In the context of noisy partial label learning (NPLL), each training sample is associated with a set of candidate labels annotated by multiple noisy annotators. With the emergence of high-performance pre-trained vision-language models (VLMs) such as CLIP, LLaVA and GPT-4V, the direction of using these models to replace time-consuming manual annotation workflows and achieve ``manual-annotation-free" training for downstream tasks has become a highly promising research avenue. This paper focuses on learning from noisy partial labels annotated by pre-trained VLMs and proposes an innovative collaborative consistency regularization (Co-Reg) method. Unlike the symmetric noise primarily addressed in traditional noisy label learning, the noise generated by pre-trained models is instance-dependent, embodying the underlying patterns of the pre-trained models themselves, which significantly increases the learning difficulty for the model. To address this, we simultaneously train two neural networks that implement collaborative purification of training labels through a ``Co-Pseudo-Labeling" mechanism, while enforcing consistency regularization constraints in both the label space and feature representation space. Specifically, we construct multiple anti-overfitting mechanisms that efficiently mine latent information from noisy partially labeled samples including alternating optimization of contrastive feature representations and pseudo-labels, as well as maintaining prototypical class vectors in the shared feature space.
♻ ☆ Onboard Hyperspectral Super-Resolution with Deep Pushbroom Neural Network
Hyperspectral imagers on satellites obtain the fine spectral signatures essential for distinguishing one material from another at the expense of limited spatial resolution. Enhancing the latter is thus a desirable preprocessing step in order to further improve the detection capabilities offered by hyperspectral images on downstream tasks. At the same time, there is a growing interest towards deploying inference methods directly onboard of satellites, which calls for lightweight image super-resolution methods that can be run on the payload in real time. In this paper, we present a novel neural network design, called Deep Pushbroom Super-Resolution (DPSR) that matches the pushbroom acquisition of hyperspectral sensors by processing an image line by line in the along-track direction with a causal memory mechanism to exploit previously acquired lines. This design greatly limits memory requirements and computational complexity, achieving onboard real-time performance, i.e., the ability to super-resolve a line in the time it takes to acquire the next one, on low-power hardware. Experiments show that the quality of the super-resolved images is competitive or even outperforms state-of-the-art methods that are significantly more complex.
♻ ☆ GauSSmart: Enhanced 3D Reconstruction through 2D Foundation Models and Geometric Filtering
Scene reconstruction has emerged as a central challenge in computer vision, with approaches such as Neural Radiance Fields (NeRF) and Gaussian Splatting achieving remarkable progress. While Gaussian Splatting demonstrates strong performance on large-scale datasets, it often struggles to capture fine details or maintain realism in regions with sparse coverage, largely due to the inherent limitations of sparse 3D training data. In this work, we propose GauSSmart, a hybrid method that effectively bridges 2D foundational models and 3D Gaussian Splatting reconstruction. Our approach integrates established 2D computer vision techniques, including convex filtering and semantic feature supervision from foundational models such as DINO, to enhance Gaussian-based scene reconstruction. By leveraging 2D segmentation priors and high-dimensional feature embeddings, our method guides the densification and refinement of Gaussian splats, improving coverage in underrepresented areas and preserving intricate structural details. We validate our approach across three datasets, where GauSSmart consistently outperforms existing Gaussian Splatting in the majority of evaluated scenes. Our results demonstrate the significant potential of hybrid 2D-3D approaches, highlighting how the thoughtful combination of 2D foundational models with 3D reconstruction pipelines can overcome the limitations inherent in either approach alone.
♻ ☆ LangBridge: Interpreting Image as a Combination of Language Embeddings
Recent years have witnessed remarkable advances in Large Vision-Language Models (LVLMs), which have achieved human-level performance across various complex vision-language tasks. Following LLaVA's paradigm, mainstream LVLMs typically employ a shallow MLP for visual-language alignment through a two-stage training process: pretraining for cross-modal alignment followed by instruction tuning. While this approach has proven effective, the underlying mechanisms of how MLPs bridge the modality gap remain poorly understood. Although some research has explored how LLMs process transformed visual tokens, few studies have investigated the fundamental alignment mechanism. Furthermore, the MLP adapter requires retraining whenever switching LLM backbones. To address these limitations, we first investigate the working principles of MLP adapters and discover that they learn to project visual embeddings into subspaces spanned by corresponding text embeddings progressively. Based on this insight, we propose LangBridge, a novel adapter that explicitly maps visual tokens to linear combinations of LLM vocabulary embeddings. This innovative design enables pretraining-free adapter transfer across different LLMs while maintaining performance. Our experimental results demonstrate that a LangBridge adapter pre-trained on Qwen2-0.5B can be directly applied to larger models such as LLaMA3-8B or Qwen2.5-14B while maintaining competitive performance. Overall, LangBridge enables interpretable vision-language alignment by grounding visual representations in LLM vocab embedding, while its plug-and-play design ensures efficient reuse across multiple LLMs with nearly no performance degradation. See our project page at https://curryx-001.github.io/LangBridge.github.io/
comment: The code and weights are open-sourced. Project page: https://curryx-001.github.io/LangBridge.github.io/
♻ ☆ Consistent Story Generation: Unlocking the Potential of Zigzag Sampling
Text-to-image generation models have made significant progress in producing high-quality images from textual descriptions, yet they continue to struggle with maintaining subject consistency across multiple images, a fundamental requirement for visual storytelling. Existing methods attempt to address this by either fine-tuning models on large-scale story visualization datasets, which is resource-intensive, or by using training-free techniques that share information across generations, which still yield limited success. In this paper, we introduce a novel training-free sampling strategy called Zigzag Sampling with Asymmetric Prompts and Visual Sharing to enhance subject consistency in visual story generation. Our approach proposes a zigzag sampling mechanism that alternates between asymmetric prompting to retain subject characteristics, while a visual sharing module transfers visual cues across generated images to %further enforce consistency. Experimental results, based on both quantitative metrics and qualitative evaluations, demonstrate that our method significantly outperforms previous approaches in generating coherent and consistent visual stories. The code is available at https://github.com/Mingxiao-Li/Asymmetry-Zigzag-StoryDiffusion.
comment: 20 pages, 10 figures
♻ ☆ DeepEyesV2: Toward Agentic Multimodal Model
Agentic multimodal models should not only comprehend text and images, but also actively invoke external tools, such as code execution environments and web search, and integrate these operations into reasoning. In this work, we introduce DeepEyesV2 and explore how to build an agentic multimodal model from the perspectives of data construction, training methods, and model evaluation. We observe that direct reinforcement learning alone fails to induce robust tool-use behavior. This phenomenon motivates a two-stage training pipeline: a cold-start stage to establish tool-use patterns, and reinforcement learning stage to further refine tool invocation. We curate a diverse, moderately challenging training dataset, specifically including examples where tool use is beneficial. We further introduce RealX-Bench, a comprehensive benchmark designed to evaluate real-world multimodal reasoning, which inherently requires the integration of multiple capabilities, including perception, search, and reasoning. We evaluate DeepEyesV2 on RealX-Bench and other representative benchmarks, demonstrating its effectiveness across real-world understanding, mathematical reasoning, and search-intensive tasks. Moreover, DeepEyesV2 exhibits task-adaptive tool invocation, tending to use image operations for perception tasks and numerical computations for reasoning tasks. Reinforcement learning further enables complex tool combinations and allows model to selectively invoke tools based on context. We hope our study can provide guidance for community in developing agentic multimodal models.
comment: Homepage: https://visual-agent.github.io/
♻ ☆ Distilling Diversity and Control in Diffusion Models
Distilled diffusion models generate images in far fewer timesteps but suffer from reduced sample diversity when generating multiple outputs from the same prompt. To understand this phenomenon, we first investigate whether distillation damages concept representations by examining if the required diversity is properly learned. Surprisingly, distilled models retain the base model's representational structure: control mechanisms like Concept Sliders and LoRAs transfer seamlessly without retraining, and SliderSpace analysis reveals distilled models possess variational directions needed for diversity yet fail to activate them. This redirects our investigation to understanding how the generation dynamics differ between base and distilled models. Using $\hat{\mathbf{x}}_{0}$ trajectory visualization, we discover distilled models commit to their final image structure almost immediately at the first timestep, while base models distribute structural decisions across many steps. To test whether this first-step commitment causes the diversity loss, we introduce diversity distillation, a hybrid approach using the base model for only the first critical timestep before switching to the distilled model. This single intervention restores sample diversity while maintaining computational efficiency. We provide both causal validation and theoretical support showing why the very first timestep concentrates the diversity bottleneck in distilled models. Our code and data are available at https://distillation.baulab.info/
comment: Project Page: https://distillation.baulab.info/
♻ ☆ Mitigating Sexual Content Generation via Embedding Distortion in Text-conditioned Diffusion Models NeurIPS 2025
Diffusion models show remarkable image generation performance following text prompts, but risk generating sexual contents. Existing approaches, such as prompt filtering, concept removal, and even sexual contents mitigation methods, struggle to defend against adversarial attacks while maintaining benign image quality. In this paper, we propose a novel approach called Distorting Embedding Space (DES), a text encoder-based defense mechanism that effectively tackles these issues through innovative embedding space control. DES transforms unsafe embeddings, extracted from a text encoder using unsafe prompts, toward carefully calculated safe embedding regions to prevent unsafe contents generation, while reproducing the original safe embeddings. DES also neutralizes the ``nudity'' embedding, by aligning it with neutral embedding to enhance robustness against adversarial attacks. As a result, extensive experiments on explicit content mitigation and adaptive attack defense show that DES achieves state-of-the-art (SOTA) defense, with attack success rate (ASR) of 9.47% on FLUX.1, a recent popular model, and 0.52% on the widely adopted Stable Diffusion v1.5. These correspond to ASR reductions of 76.5% and 63.9% compared to previous SOTA methods, EraseAnything and AdvUnlearn, respectively. Furthermore, DES maintains benign image quality, achieving Frechet Inception Distance and CLIP score comparable to those of the original FLUX.1 and Stable Diffusion v1.5.
comment: NeurIPS 2025 accepted. Official code: https://github.com/amoeba04/des
♻ ☆ Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, and iteratively conducts experiments until improvements are realized, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. Through our experiments, the Jr. AI Scientist successfully generated new research papers that build upon real NeurIPS, IJCV, and ICLR works by proposing and implementing novel methods. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We believe this study clarifies the current role and limitations of AI Scientist systems, offering insights into the areas that still require human expertise and the risks that may emerge as these systems evolve.
comment: Issues, comments, and questions are all welcome in https://github.com/Agent4Science-UTokyo/Jr.AI-Scientist
♻ ☆ UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning NeurIPS 2025
Recent advances in Large Multi-modal Models (LMMs) have demonstrated their remarkable success as general-purpose multi-modal assistants, with particular focuses on holistic image- and video-language understanding. Conversely, less attention has been given to scaling fine-grained pixel-level understanding capabilities, where the models are expected to realize pixel-level alignment between visual signals and language semantics. Some previous studies have applied LMMs to related tasks such as region-level captioning and referring expression segmentation. However, these models are limited to performing either referring or segmentation tasks independently and fail to integrate these fine-grained perception capabilities into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal model capable of flexibly comprehending visual prompt inputs and generating mask-grounded responses. Our model distinguishes itself by seamlessly integrating pixel-level perception with general visual understanding capabilities. Specifically, UniPixel processes visual prompts and generates relevant masks on demand, and performs subsequent reasoning conditioning on these intermediate pointers during inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness of our approach has been verified on 10 benchmarks across a diverse set of tasks, including pixel-level referring/segmentation and object-centric understanding in images/videos. A novel PixelQA task that jointly requires referring, segmentation, and question answering is also designed to verify the flexibility of our method.
comment: NeurIPS 2025 Camera Ready. Project Page: https://polyu-chenlab.github.io/unipixel/
♻ ☆ ChestGPT: Integrating Large Language Models and Vision Transformers for Disease Detection and Localization in Chest X-Rays
The global demand for radiologists is increasing rapidly due to a growing reliance on medical imaging services, while the supply of radiologists is not keeping pace. Advances in computer vision and image processing technologies present significant potential to address this gap by enhancing radiologists' capabilities and improving diagnostic accuracy. Large language models (LLMs), particularly generative pre-trained transformers (GPTs), have become the primary approach for understanding and generating textual data. In parallel, vision transformers (ViTs) have proven effective at converting visual data into a format that LLMs can process efficiently. In this paper, we present ChestGPT, a deep-learning framework that integrates the EVA ViT with the Llama 2 LLM to classify diseases and localize regions of interest in chest X-ray images. The ViT converts X-ray images into tokens, which are then fed, together with engineered prompts, into the LLM, enabling joint classification and localization of diseases. This approach incorporates transfer learning techniques to enhance both explainability and performance. The proposed method achieved strong global disease classification performance on the VinDr-CXR dataset, with an F1 score of 0.76, and successfully localized pathologies by generating bounding boxes around the regions of interest. We also outline several task-specific prompts, in addition to general-purpose prompts, for scenarios radiologists might encounter. Overall, this framework offers an assistive tool that can lighten radiologists' workload by providing preliminary findings and regions of interest to facilitate their diagnostic process.
comment: 8 pages, 5 figures, 4 tables
♻ ☆ AGO: Adaptive Grounding for Open World 3D Occupancy Prediction
Open-world 3D semantic occupancy prediction aims to generate a voxelized 3D representation from sensor inputs while recognizing both known and unknown objects. Transferring open-vocabulary knowledge from vision-language models (VLMs) offers a promising direction but remains challenging. However, methods based on VLM-derived 2D pseudo-labels with traditional supervision are limited by a predefined label space and lack general prediction capabilities. Direct alignment with pretrained image embeddings, on the other hand, often fails to achieve reliable performance because of inconsistent image and text representations in VLMs. To address these challenges, we propose AGO, a novel 3D occupancy prediction framework with adaptive grounding to handle diverse open-world scenarios. AGO first encodes surrounding images and class prompts into 3D and text embeddings, respectively, leveraging similarity-based grounding training with 3D pseudo-labels. Additionally, a modality adapter maps 3D embeddings into a space aligned with VLM-derived image embeddings, reducing modality gaps. Experiments on Occ3D-nuScenes show that AGO improves unknown object prediction in zero-shot and few-shot transfer while achieving state-of-the-art closed-world self-supervised performance, surpassing prior methods by 4.09 mIoU. Code is available at: https://github.com/EdwardLeeLPZ/AGO.
♻ ☆ Diffusion Implicit Policy for Unpaired Scene-aware Motion Synthesis
Scene-aware motion synthesis has been widely researched recently due to its numerous applications. Prevailing methods rely heavily on paired motion-scene data, while it is difficult to generalize to diverse scenes when trained only on a few specific ones. Thus, we propose a unified framework, termed Diffusion Implicit Policy (DIP), for scene-aware motion synthesis, where paired motion-scene data are no longer necessary. In this paper, we disentangle human-scene interaction from motion synthesis during training, and then introduce an interaction-based implicit policy into motion diffusion during inference. Synthesized motion can be derived through iterative diffusion denoising and implicit policy optimization, thus motion naturalness and interaction plausibility can be maintained simultaneously. For long-term motion synthesis, we introduce motion blending in joint rotation power space. The proposed method is evaluated on synthesized scenes with ShapeNet furniture, and real scenes from PROX and Replica. Results show that our framework presents better motion naturalness and interaction plausibility than cutting-edge methods. This also indicates the feasibility of utilizing the DIP for motion synthesis in more general tasks and versatile scenes. Code will be publicly available at https://github.com/jingyugong/DIP.
♻ ☆ Distilling 3D distinctive local descriptors for 6D pose estimation
Three-dimensional local descriptors are crucial for encoding geometric surface properties, making them essential for various point cloud understanding tasks. Among these descriptors, GeDi has demonstrated strong zero-shot 6D pose estimation capabilities but remains computationally impractical for real-world applications due to its expensive inference process. Can we retain GeDi's effectiveness while significantly improving its efficiency? In this paper, we explore this question by introducing a knowledge distillation framework that trains an efficient student model to regress local descriptors from a GeDi teacher. Our key contributions include: an efficient large-scale training procedure that ensures robustness to occlusions and partial observations while operating under compute and storage constraints, and a novel loss formulation that handles weak supervision from non-distinctive teacher descriptors. We validate our approach on five BOP Benchmark datasets and demonstrate a significant reduction in inference time while maintaining competitive performance with existing methods, bringing zero-shot 6D pose estimation closer to real-time feasibility. Project Website: https://tev-fbk.github.io/dGeDi/
comment: Project Website: https://tev-fbk.github.io/dGeDi/
♻ ☆ Bidirectional Image-Event Guided Fusion Framework for Low-Light Image Enhancement
Under extreme low-light conditions, frame-based cameras suffer from severe detail loss due to limited dynamic range. Recent studies have introduced event cameras for event-guided low-light image enhancement. However, existing approaches often overlook the flickering artifacts and structural discontinuities caused by dynamic illumination changes and event sparsity. To address these challenges, we propose BiLIE, a Bidirectional image-event guided fusion framework for Low-Light Image Enhancement, which achieves mutual guidance and complementary enhancement between the two modalities. First, to highlight edge details, we develop a Dynamic Adaptive Filtering Enhancement (DAFE) module that performs adaptive high-pass filtering on event representations to suppress flickering artifacts and preserve high-frequency information under varying illumination. Subsequently, we design a Bidirectional Guided Awareness Fusion (BGAF) mechanism, which achieves breakpoint-aware restoration from images to events and structure-aware enhancement from events to images through a two-stage attention mechanism, establishing cross-modal consistency, thereby producing a clear, smooth, and structurally intact fused representation. Moreover, recognizing that existing datasets exhibit insufficient ground-truth fidelity and color accuracy, we construct a high-quality low-light image-event dataset (RELIE) via a reliable ground truth refinement scheme. Extensive experiments demonstrate that our method outperforms existing approaches on both the RELIE and LIE datasets. Notably, on RELIE, BiLIE exceeds the state-of-the-art by 0.81dB in PSNR and shows significant advantages in edge restoration, color fidelity, and noise suppression.
♻ ☆ MAROON: A Dataset for the Joint Characterization of Near-Field High-Resolution Radio-Frequency and Optical Depth Imaging Techniques
Utilizing the complementary strengths of wavelength-specific range or depth sensors is crucial for robust computer-assisted tasks such as autonomous driving. Despite this, there is still little research done at the intersection of optical depth sensors and radars operating close range, where the target is decimeters away from the sensors. Together with a growing interest in high-resolution imaging radars operating in the near field, the question arises how these sensors behave in comparison to their traditional optical counterparts. In this work, we take on the unique challenge of jointly characterizing depth imagers from both, the optical and radio-frequency domain using a multimodal spatial calibration. We collect data from four depth imagers, with three optical sensors of varying operation principle and an imaging radar. We provide a comprehensive evaluation of their depth measurements with respect to distinct object materials, geometries, and object-to-sensor distances. Specifically, we reveal scattering effects of partially transmissive materials and investigate the response of radio-frequency signals. All object measurements will be made public in form of a multimodal dataset, called MAROON.
♻ ☆ MM-UNet: Morph Mamba U-shaped Convolutional Networks for Retinal Vessel Segmentation
Accurate detection of retinal vessels plays a critical role in reflecting a wide range of health status indicators in the clinical diagnosis of ocular diseases. Recently, advances in deep learning have led to a surge in retinal vessel segmentation methods, which have significantly contributed to the quantitative analysis of vascular morphology. However, retinal vasculature differs significantly from conventional segmentation targets in that it consists of extremely thin and branching structures, whose global morphology varies greatly across images. These characteristics continue to pose challenges to segmentation precision and robustness. To address these issues, we propose MM-UNet, a novel architecture tailored for efficient retinal vessel segmentation. The model incorporates Morph Mamba Convolution layers, which replace pointwise convolutions to enhance branching topological perception through morph, state-aware feature sampling. Additionally, Reverse Selective State Guidance modules integrate reverse guidance theory with state-space modeling to improve geometric boundary awareness and decoding efficiency. Extensive experiments conducted on two public retinal vessel segmentation datasets demonstrate the superior performance of the proposed method in segmentation accuracy. Compared to the existing approaches, MM-UNet achieves F1-score gains of 1.64 % on DRIVE and 1.25 % on STARE, demonstrating its effectiveness and advancement. The project code is public via https://github.com/liujiawen-jpg/MM-UNet.
comment: This paper was accepted by IEEE BIBM 2025 conference
♻ ☆ Improving Generalization in Deepfake Detection with Face Foundation Models and Metric Learning
The increasing realism and accessibility of deepfakes have raised critical concerns about media authenticity and information integrity. Despite recent advances, deepfake detection models often struggle to generalize beyond their training distributions, particularly when applied to media content found in the wild. In this work, we present a robust video deepfake detection framework with strong generalization that takes advantage of the rich facial representations learned by face foundation models. Our method is built on top of FSFM, a self-supervised model trained on real face data, and is further fine-tuned using an ensemble of deepfake datasets spanning both face-swapping and face-reenactment manipulations. To enhance discriminative power, we incorporate triplet loss variants during training, guiding the model to produce more separable embeddings between real and fake samples. Additionally, we explore attribution-based supervision schemes, where deepfakes are categorized by manipulation type or source dataset, to assess their impact on generalization. Extensive experiments across diverse evaluation benchmarks demonstrate the effectiveness of our approach, especially in challenging real-world scenarios.
comment: The authors did not manage to secure approval by the funder of this research on time
♻ ☆ Not Only Consistency: Enhance Test-Time Adaptation with Spatio-temporal Inconsistency for Remote Physiological Measurement
Remote physiological measurement (RPM) has emerged as a promising non-invasive method for monitoring physiological signals using the non-contact device. Although various domain adaptation and generalization methods were proposed to promote the adaptability of deep-based RPM models in unseen deployment environments, considerations in aspects such as privacy concerns and real-time adaptation restrict their application in real-world deployment. Thus, we aim to propose a novel fully Test-Time Adaptation (TTA) strategy tailored for RPM tasks in this work. Specifically, based on prior knowledge in physiology and our observations, we noticed not only there is spatio-temporal consistency in the frequency domain of BVP signals, but also that inconsistency in the time domain was significant. Given this, by leveraging both consistency and inconsistency priors, we introduce an innovative expert knowledge-based self-supervised \textbf{C}onsistency-\textbf{i}n\textbf{C}onsistency-\textbf{i}ntegration (\textbf{CiCi}) framework to enhances model adaptation during inference. Besides, our approach further incorporates a gradient dynamic control mechanism to mitigate potential conflicts between priors, ensuring stable adaptation across instances. Through extensive experiments on five diverse datasets under the TTA protocol, our method consistently outperforms existing techniques, presenting state-of-the-art performance in real-time self-supervised adaptation without accessing source data. The code will be released later.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ FedHUG: Federated Heterogeneous Unsupervised Generalization for Remote Physiological Measurements
Remote physiological measurement gained wide attention, while it requires collecting users' privacy-sensitive information, and existing contactless measurements still rely on labeled client data. This presents challenges when we want to further update real-world deployed models with numerous user data lacking labels. To resolve these challenges, we instantiate a new protocol called Federated Unsupervised Domain Generalization (FUDG) in this work. Subsequently, the \textbf{Fed}erated \textbf{H}eterogeneous \textbf{U}nsupervised \textbf{G}eneralization (\textbf{FedHUG}) framework is proposed and consists of: (1) Minimal Bias Aggregation module dynamically adjusts aggregation weights based on prior-driven bias evaluation to cope with heterogeneous non-IID features from multiple domains. (2) The Global Distribution-aware Learning Controller parameterizes the label distribution and dynamically manipulates client-specific training strategies, thereby mitigating the server-client label distribution skew and long-tail issue. The proposal shows superior performance across state-of-the-art techniques in estimation with either RGB video or mmWave radar. The code will be released.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ LegalEval-Q: A New Benchmark for The Quality Evaluation of LLM-Generated Legal Text
As large language models (LLMs) are increasingly used in legal applications, current evaluation benchmarks tend to focus mainly on factual accuracy while largely neglecting important linguistic quality aspects such as clarity, coherence, and terminology. To address this gap, we propose three steps: First, we develop a regression model to evaluate the quality of legal texts based on clarity, coherence, and terminology. Second, we create a specialized set of legal questions. Third, we analyze 49 LLMs using this evaluation framework. Our analysis identifies three key findings: First, model quality levels off at 14 billion parameters, with only a marginal improvement of $2.7\%$ noted at 72 billion parameters. Second, engineering choices such as quantization and context length have a negligible impact, as indicated by statistical significance thresholds above 0.016. Third, reasoning models consistently outperform base architectures. A significant outcome of our research is the release of a ranking list and Pareto analysis, which highlight the Qwen3 series as the optimal choice for cost-performance tradeoffs. This work not only establishes standardized evaluation protocols for legal LLMs but also uncovers fundamental limitations in current training data refinement approaches. Code and models are available at: https://github.com/lyxx3rd/LegalEval-Q.
comment: 10 pages, 11 figures
♻ ☆ Enhanced Partially Relevant Video Retrieval through Inter- and Intra-Sample Analysis with Coherence Prediction
Partially Relevant Video Retrieval (PRVR) aims to retrieve the target video that is partially relevant to the text query. The primary challenge in PRVR arises from the semantic asymmetry between textual and visual modalities, as videos often contain substantial content irrelevant to the query. Existing methods coarsely align paired videos and text queries to construct the semantic space, neglecting the critical cross-modal dual nature inherent in this task: inter-sample correlation and intra-sample redundancy. To this end, we propose a novel PRVR framework to systematically exploit these two characteristics. Our framework consists of three core modules. First, the Inter Correlation Enhancement (ICE) module captures inter-sample correlation by identifying semantically similar yet unpaired text queries and video moments, combining them to form pseudo-positive pairs for more robust semantic space construction. Second, the Intra Redundancy Mining (IRM) module mitigates intra-sample redundancy by mining redundant moment features and distinguishing them from query-relevant moments, encouraging the model to learn more discriminative representations. Finally, to reinforce these modules, we introduce the Temporal Coherence Prediction (TCP) module, which enhances temporal structure learning by training the model to predict the original temporal order of randomly shuffled video frames and moments. Extensive experiments demonstrate the superiority of our approach compared to prior methods, achieving state-of-the-art results.
comment: Upon further consideration, we have concluded that the current version requires revision and may not yet be ready for publication. We plan to conduct additional experiments and make necessary improvements to ensure the paper meets the standards for future submission
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs NeurIPS 2025
Despite progress in Large Vision-Language Models (LVLMs), their capacity for visual reasoning is often limited by the binding problem: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current LVLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces Visual Input Structure for Enhanced Reasoning (VISER), a simple, effective method that augments visual inputs with low-level spatial structures and pairs them with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks, using only a single-query inference. Specifically, VISER improves GPT-4o performance on visual search, counting, and spatial relationship tasks by 25.0%, 26.8%, and 9.5%, respectively, and reduces edit distance error in scene description by 0.32 on 2D datasets. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. VISER underscores the importance of visual input design over purely linguistically based reasoning strategies and suggests that visual structuring is a powerful and general approach for enhancing compositional and spatial reasoning in LVLMs.
comment: Accepted to NeurIPS 2025 (Thirty-ninth Conference on Neural Information Processing Systems)
♻ ☆ The Evolving Nature of Latent Spaces: From GANs to Diffusion
This paper examines the evolving nature of internal representations in generative visual models, focusing on the conceptual and technical shift from GANs and VAEs to diffusion-based architectures. Drawing on Beatrice Fazi's account of synthesis as the amalgamation of distributed representations, we propose a distinction between "synthesis in a strict sense", where a compact latent space wholly determines the generative process, and "synthesis in a broad sense," which characterizes models whose representational labor is distributed across layers. Through close readings of model architectures and a targeted experimental setup that intervenes in layerwise representations, we show how diffusion models fragment the burden of representation and thereby challenge assumptions of unified internal space. By situating these findings within media theoretical frameworks and critically engaging with metaphors such as the latent space and the Platonic Representation Hypothesis, we argue for a reorientation of how generative AI is understood: not as a direct synthesis of content, but as an emergent configuration of specialized processes.
comment: Presented and published at Ethics and Aesthetics of Artificial Intelligence Conference (EA-AI'25)
♻ ☆ Free-T2M: Robust Text-to-Motion Generation for Humanoid Robots via Frequency-Domain
Enabling humanoid robots to synthesize complex, physically coherent motions from natural language commands is a cornerstone of autonomous robotics and human-robot interaction. While diffusion models have shown promise in this text-to-motion (T2M) task, they often generate semantically flawed or unstable motions, limiting their applicability to real-world robots. This paper reframes the T2M problem from a frequency-domain perspective, revealing that the generative process mirrors a hierarchical control paradigm. We identify two critical phases: a semantic planning stage, where low-frequency components establish the global motion trajectory, and a fine-grained execution stage, where high-frequency details refine the movement. To address the distinct challenges of each phase, we introduce Frequency enhanced text-to-motion (Free-T2M), a framework incorporating stage-specific frequency-domain consistency alignment. We design a frequency-domain temporal-adaptive module to modulate the alignment effects of different frequency bands. These designs enforce robustness in the foundational semantic plan and enhance the accuracy of detailed execution. Extensive experiments show our method dramatically improves motion quality and semantic correctness. Notably, when applied to the StableMoFusion baseline, Free-T2M reduces the FID from 0.152 to 0.060, establishing a new state-of-the-art within diffusion architectures. These findings underscore the critical role of frequency-domain insights for generating robust and reliable motions, paving the way for more intuitive natural language control of robots.
♻ ☆ Rethinking Metrics and Diffusion Architecture for 3D Point Cloud Generation 3DV
As 3D point clouds become a cornerstone of modern technology, the need for sophisticated generative models and reliable evaluation metrics has grown exponentially. In this work, we first expose that some commonly used metrics for evaluating generated point clouds, particularly those based on Chamfer Distance (CD), lack robustness against defects and fail to capture geometric fidelity and local shape consistency when used as quality indicators. We further show that introducing samples alignment prior to distance calculation and replacing CD with Density-Aware Chamfer Distance (DCD) are simple yet essential steps to ensure the consistency and robustness of point cloud generative model evaluation metrics. While existing metrics primarily focus on directly comparing 3D Euclidean coordinates, we present a novel metric, named Surface Normal Concordance (SNC), which approximates surface similarity by comparing estimated point normals. This new metric, when combined with traditional ones, provides a more comprehensive evaluation of the quality of generated samples. Finally, leveraging recent advancements in transformer-based models for point cloud analysis, such as serialized patch attention , we propose a new architecture for generating high-fidelity 3D structures, the Diffusion Point Transformer. We perform extensive experiments and comparisons on the ShapeNet dataset, showing that our model outperforms previous solutions, particularly in terms of quality of generated point clouds, achieving new state-of-the-art. Code available at https://github.com/matteo-bastico/DiffusionPointTransformer.
comment: This paper has been accepted at International Conference on 3D Vision (3DV) 2026
♻ ☆ OccLE: Label-Efficient 3D Semantic Occupancy Prediction
3D semantic occupancy prediction offers an intuitive and efficient scene understanding and has attracted significant interest in autonomous driving perception. Existing approaches either rely on full supervision, which demands costly voxel-level annotations, or on self-supervision, which provides limited guidance and yields suboptimal performance. To address these challenges, we propose OccLE, a Label-Efficient 3D Semantic Occupancy Prediction that takes images and LiDAR as inputs and maintains high performance with limited voxel annotations. Our intuition is to decouple the semantic and geometric learning tasks and then fuse the learned feature grids from both tasks for the final semantic occupancy prediction. Therefore, the semantic branch distills 2D foundation model to provide aligned pseudo labels for 2D and 3D semantic learning. The geometric branch integrates image and LiDAR inputs in cross-plane synergy based on their inherency, employing semi-supervision to enhance geometry learning. We fuse semantic-geometric feature grids through Dual Mamba and incorporate a scatter-accumulated projection to supervise unannotated prediction with aligned pseudo labels. Experiments show that OccLE achieves competitive performance with only 10\% of voxel annotations on the SemanticKITTI and Occ3D-nuScenes datasets. The code will be publicly released on https://github.com/NerdFNY/OccLE
♻ ☆ DeNAS-ViT: Data Efficient NAS-Optimized Vision Transformer for Ultrasound Image Segmentation AAAI-26
Accurate segmentation of ultrasound images is essential for reliable medical diagnoses but is challenged by poor image quality and scarce labeled data. Prior approaches have relied on manually designed, complex network architectures to improve multi-scale feature extraction. However, such handcrafted models offer limited gains when prior knowledge is inadequate and are prone to overfitting on small datasets. In this paper, we introduce DeNAS-ViT, a data-efficient NAS-optimized Vision Transformer, the first method to leverage neural architecture search (NAS) for ultrasound image segmentation by automatically optimizing model architecture through token-level search. Specifically, we propose an efficient NAS module that performs multi-scale token search prior to the ViT's attention mechanism, effectively capturing both contextual and local features while minimizing computational costs. Given ultrasound's data scarcity and NAS's inherent data demands, we further develop a NAS-guided semi-supervised learning (SSL) framework. This approach integrates network independence and contrastive learning within a stage-wise optimization strategy, significantly enhancing model robustness under limited-data conditions. Extensive experiments on public datasets demonstrate that DeNAS-ViT achieves state-of-the-art performance, maintaining robustness with minimal labeled data. Moreover, we highlight DeNAS-ViT's generalization potential beyond ultrasound imaging, underscoring its broader applicability.
comment: Accepted by AAAI-26 Main Technical Track
♻ ☆ DOS: Directional Object Separation in Text Embeddings for Multi-Object Image Generation AAAI 2026
Recent progress in text-to-image (T2I) generative models has led to significant improvements in generating high-quality images aligned with text prompts. However, these models still struggle with prompts involving multiple objects, often resulting in object neglect or object mixing. Through extensive studies, we identify four problematic scenarios, Similar Shapes, Similar Textures, Dissimilar Background Biases, and Many Objects, where inter-object relationships frequently lead to such failures. Motivated by two key observations about CLIP embeddings, we propose DOS (Directional Object Separation), a method that modifies three types of CLIP text embeddings before passing them into text-to-image models. Experimental results show that DOS consistently improves the success rate of multi-object image generation and reduces object mixing. In human evaluations, DOS significantly outperforms four competing methods, receiving 26.24%-43.04% more votes across four benchmarks. These results highlight DOS as a practical and effective solution for improving multi-object image generation.
comment: Accepted to AAAI 2026
♻ ☆ Seg2Any: Open-set Segmentation-Mask-to-Image Generation with Precise Shape and Semantic Control
Despite recent advances in diffusion models, top-tier text-to-image (T2I) models still struggle to achieve precise spatial layout control, i.e. accurately generating entities with specified attributes and locations. Segmentation-mask-to-image (S2I) generation has emerged as a promising solution by incorporating pixel-level spatial guidance and regional text prompts. However, existing S2I methods fail to simultaneously ensure semantic consistency and shape consistency. To address these challenges, we propose Seg2Any, a novel S2I framework built upon advanced multimodal diffusion transformers (e.g. FLUX). First, to achieve both semantic and shape consistency, we decouple segmentation mask conditions into regional semantic and high-frequency shape components. The regional semantic condition is introduced by a Semantic Alignment Attention Mask, ensuring that generated entities adhere to their assigned text prompts. The high-frequency shape condition, representing entity boundaries, is encoded as an Entity Contour Map and then introduced as an additional modality via multi-modal attention to guide image spatial structure. Second, to prevent attribute leakage across entities in multi-entity scenarios, we introduce an Attribute Isolation Attention Mask mechanism, which constrains each entity's image tokens to attend exclusively to themselves during image self-attention. To support open-set S2I generation, we construct SACap-1M, a large-scale dataset containing 1 million images with 5.9 million segmented entities and detailed regional captions, along with a SACap-Eval benchmark for comprehensive S2I evaluation. Extensive experiments demonstrate that Seg2Any achieves state-of-the-art performance on both open-set and closed-set S2I benchmarks, particularly in fine-grained spatial and attribute control of entities.
♻ ☆ A Lightweight Complex-Valued Deformable CNN for High-Quality Computer-Generated Holography
Holographic displays have significant potential in virtual reality and augmented reality owing to their ability to provide all the depth cues. Deep learning-based methods play an important role in computer-generated holography (CGH). During the diffraction process, each pixel exerts an influence on the reconstructed image. However, previous works face challenges in capturing sufficient information to accurately model this process, primarily due to the inadequacy of their effective receptive field (ERF). Here, we designed complex-valued deformable convolution for integration into network, enabling dynamic adjustment of the convolution kernel's shape to increase flexibility of ERF for better feature extraction. This approach allows us to utilize a single model while achieving state-of-the-art performance in both simulated and optical experiment reconstructions, surpassing existing open-source models. Specifically, our method has a peak signal-to-noise ratio that is 2.04 dB, 5.31 dB, and 9.71 dB higher than that of CCNN-CGH, HoloNet, and Holo-encoder, respectively, when the resolution is 1920$\times$1072. The number of parameters of our model is only about one-eighth of that of CCNN-CGH.
comment: 13 pages, 9 figures
♻ ☆ High-Frequency Semantics and Geometric Priors for End-to-End Detection Transformers in Challenging UAV Imagery
Object detection in Unmanned Aerial Vehicle (UAV) imagery is fundamentally challenged by a prevalence of small, densely packed, and occluded objects within cluttered backgrounds. Conventional detectors struggle with this domain, as they rely on hand-crafted components like pre-defined anchors and heuristic-based Non-Maximum Suppression (NMS), creating a well-known performance bottleneck in dense scenes. Even recent end-to-end frameworks have not been purpose-built to overcome these specific aerial challenges, resulting in a persistent performance gap. To bridge this gap, we introduce HEDS-DETR, a holistically enhanced real-time Detection Transformer tailored for aerial scenes. Our framework features three key innovations. First, we propose a novel High-Frequency Enhanced Semantics Network (HFESNet) backbone, which yields highly discriminative features by preserving critical high-frequency details alongside robust semantic context. Second, our Efficient Small Object Pyramid (ESOP) counteracts information loss by efficiently fusing high-resolution features, significantly boosting small object detection. Finally, we enhance decoder stability and localization precision with two synergistic components: Selective Query Recollection (SQR) and Geometry-Aware Positional Encoding (GAPE), which stabilize optimization and provide explicit spatial priors for dense object arrangements. On the VisDrone dataset, HEDS-DETR achieves a +3.8% AP and +5.1% AP50 gain over its baseline while reducing parameters by 4M and maintaining real-time speeds. This demonstrates a highly competitive accuracy-efficiency balance, especially for detecting dense and small objects in aerial scenes.
comment: 12 pages, 9 figures
♻ ☆ Holistic Unlearning Benchmark: A Multi-Faceted Evaluation for Text-to-Image Diffusion Model Unlearning ICCV 2025
As text-to-image diffusion models gain widespread commercial applications, there are increasing concerns about unethical or harmful use, including the unauthorized generation of copyrighted or sensitive content. Concept unlearning has emerged as a promising solution to these challenges by removing undesired and harmful information from the pre-trained model. However, the previous evaluations primarily focus on whether target concepts are removed while preserving image quality, neglecting the broader impacts such as unintended side effects. In this work, we propose Holistic Unlearning Benchmark (HUB), a comprehensive framework for evaluating unlearning methods across six key dimensions: faithfulness, alignment, pinpoint-ness, multilingual robustness, attack robustness, and efficiency. Our benchmark covers 33 target concepts, including 16,000 prompts per concept, spanning four categories: Celebrity, Style, Intellectual Property, and NSFW. Our investigation reveals that no single method excels across all evaluation criteria. By releasing our evaluation code and dataset, we hope to inspire further research in this area, leading to more reliable and effective unlearning methods.
comment: ICCV 2025
♻ ☆ Learning Temporal 3D Semantic Scene Completion via Optical Flow Guidance NeurIPS 2025
3D Semantic Scene Completion (SSC) provides comprehensive scene geometry and semantics for autonomous driving perception, which is crucial for enabling accurate and reliable decision-making. However, existing SSC methods are limited to capturing sparse information from the current frame or naively stacking multi-frame temporal features, thereby failing to acquire effective scene context. These approaches ignore critical motion dynamics and struggle to achieve temporal consistency. To address the above challenges, we propose a novel temporal SSC method FlowScene: Learning Temporal 3D Semantic Scene Completion via Optical Flow Guidance. By leveraging optical flow, FlowScene can integrate motion, different viewpoints, occlusions, and other contextual cues, thereby significantly improving the accuracy of 3D scene completion. Specifically, our framework introduces two key components: (1) a Flow-Guided Temporal Aggregation module that aligns and aggregates temporal features using optical flow, capturing motion-aware context and deformable structures; and (2) an Occlusion-Guided Voxel Refinement module that injects occlusion masks and temporally aggregated features into 3D voxel space, adaptively refining voxel representations for explicit geometric modeling. Experimental results demonstrate that FlowScene achieves state-of-the-art performance on the SemanticKITTI and SSCBench-KITTI-360 benchmarks.
comment: Accepted by NeurIPS 2025
♻ ☆ Fine-grained Image Retrieval via Dual-Vision Adaptation AAAI2026
Fine-Grained Image Retrieval~(FGIR) faces challenges in learning discriminative visual representations to retrieve images with similar fine-grained features. Current leading FGIR solutions typically follow two regimes: enforce pairwise similarity constraints in the semantic embedding space, or incorporate a localization sub-network to fine-tune the entire model. However, such two regimes tend to overfit the training data while forgetting the knowledge gained from large-scale pre-training, thus reducing their generalization ability. In this paper, we propose a Dual-Vision Adaptation (DVA) approach for FGIR, which guides the frozen pre-trained model to perform FGIR through collaborative sample and feature adaptation. Specifically, we design Object-Perceptual Adaptation, which modifies input samples to help the pre-trained model perceive critical objects and elements within objects that are helpful for category prediction. Meanwhile, we propose In-Context Adaptation, which introduces a small set of parameters for feature adaptation without modifying the pre-trained parameters. This makes the FGIR task using these adjusted features closer to the task solved during the pre-training. Additionally, to balance retrieval efficiency and performance, we propose Discrimination Perception Transfer to transfer the discriminative knowledge in the object-perceptual adaptation to the image encoder using the knowledge distillation mechanism. Extensive experiments show that DVA has fewer learnable parameters and performs well on three in-distribution and three out-of-distribution fine-grained datasets.
comment: Accepted by AAAI2026
♻ ☆ SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection AAAI 2026
With the rapid advancement of remote sensing technology, high-resolution multi-modal imagery is now more widely accessible. Conventional Object detection models are trained on a single dataset, often restricted to a specific imaging modality and annotation format. However, such an approach overlooks the valuable shared knowledge across multi-modalities and limits the model's applicability in more versatile scenarios. This paper introduces a new task called Multi-Modal Datasets and Multi-Task Object Detection (M2Det) for remote sensing, designed to accurately detect horizontal or oriented objects from any sensor modality. This task poses challenges due to 1) the trade-offs involved in managing multi-modal modelling and 2) the complexities of multi-task optimization. To address these, we establish a benchmark dataset and propose a unified model, SM3Det (Single Model for Multi-Modal datasets and Multi-Task object Detection). SM3Det leverages a grid-level sparse MoE backbone to enable joint knowledge learning while preserving distinct feature representations for different modalities. Furthermore, it integrates a consistency and synchronization optimization strategy using dynamic learning rate adjustment, allowing it to effectively handle varying levels of learning difficulty across modalities and tasks. Extensive experiments demonstrate SM3Det's effectiveness and generalizability, consistently outperforming specialized models on individual datasets. The code is available at https://github.com/zcablii/SM3Det.
comment: Accepted as Oral in AAAI 2026
♻ ☆ Towards Visual Grounding: A Survey
Visual Grounding, also known as Referring Expression Comprehension and Phrase Grounding, aims to ground the specific region(s) within the image(s) based on the given expression text. This task simulates the common referential relationships between visual and linguistic modalities, enabling machines to develop human-like multimodal comprehension capabilities. Consequently, it has extensive applications in various domains. However, since 2021, visual grounding has witnessed significant advancements, with emerging new concepts such as grounded pre-training, grounding multimodal LLMs, generalized visual grounding, and giga-pixel grounding, which have brought numerous new challenges. In this survey, we first examine the developmental history of visual grounding and provide an overview of essential background knowledge. We systematically track and summarize the advancements, and then meticulously define and organize the various settings to standardize future research and ensure a fair comparison. Additionally, we delve into numerous related datasets and applications, and highlight several advanced topics. Finally, we outline the challenges confronting visual grounding and propose valuable directions for future research, which may serve as inspiration for subsequent researchers. By extracting common technical details, this survey encompasses the representative work in each subtopic over the past decade. To the best of our knowledge, this paper represents the most comprehensive overview currently available in the field of visual grounding. This survey is designed to be suitable for both beginners and experienced researchers, serving as an invaluable resource for understanding key concepts and tracking the latest research developments. We keep tracing related work at https://github.com/linhuixiao/Awesome-Visual-Grounding.
comment: Accepted by TPAMI 2025.We keep tracing related works at https://github.com/linhuixiao/Awesome-Visual-Grounding
♻ ☆ Multispectral-NeRF:a multispectral modeling approach based on neural radiance fields
3D reconstruction technology generates three-dimensional representations of real-world objects, scenes, or environments using sensor data such as 2D images, with extensive applications in robotics, autonomous vehicles, and virtual reality systems. Traditional 3D reconstruction techniques based on 2D images typically relies on RGB spectral information. With advances in sensor technology, additional spectral bands beyond RGB have been increasingly incorporated into 3D reconstruction workflows. Existing methods that integrate these expanded spectral data often suffer from expensive scheme prices, low accuracy and poor geometric features. Three - dimensional reconstruction based on NeRF can effectively address the various issues in current multispectral 3D reconstruction methods, producing high - precision and high - quality reconstruction results. However, currently, NeRF and some improved models such as NeRFacto are trained on three - band data and cannot take into account the multi - band information. To address this problem, we propose Multispectral-NeRF, an enhanced neural architecture derived from NeRF that can effectively integrates multispectral information. Our technical contributions comprise threefold modifications: Expanding hidden layer dimensionality to accommodate 6-band spectral inputs; Redesigning residual functions to optimize spectral discrepancy calculations between reconstructed and reference images; Adapting data compression modules to address the increased bit-depth requirements of multispectral imagery. Experimental results confirm that Multispectral-NeRF successfully processes multi-band spectral features while accurately preserving the original scenes' spectral characteristics.
♻ ☆ Descriptive Image-Text Matching with Graded Contextual Similarity
Image-text matching aims to build correspondences between visual and textual data by learning their pairwise similarities. Most existing approaches have adopted sparse binary supervision, indicating whether a pair of images and sentences matches or not. However, such sparse supervision covers a limited subset of image-text relationships, neglecting their inherent many-to-many correspondences; an image can be described in numerous texts at different descriptive levels. Moreover, existing approaches overlook the implicit connections from general to specific descriptions, which form the underlying rationale for the many-to-many relationships between vision and language. In this work, we propose descriptive image-text matching, called DITM, to learn the graded contextual similarity between image and text by exploring the descriptive flexibility of language. We formulate the descriptiveness score of each sentence with cumulative term frequency-inverse document frequency (TF-IDF) to balance the pairwise similarity according to the keywords in the sentence. Our method leverages sentence descriptiveness to learn robust image-text matching in two key ways: (1) to refine the false negative labeling, dynamically relaxing the connectivity between positive and negative pairs, and (2) to build more precise matching, aligning a set of relevant sentences in a generic-to-specific order. By moving beyond rigid binary supervision, DITM enhances the discovery of both optimal matches and potential positive pairs. Extensive experiments on MS-COCO, Flickr30K, and CxC datasets demonstrate the effectiveness of our method in representing complex image-text relationships compared to state-of-the-art approaches. In addition, DITM enhances the hierarchical reasoning ability of the model, supported by the extensive analysis on HierarCaps benchmark.
comment: This version is incomplete and requires substantial revisions and extensions. We withdraw the paper and plan to submit a thoroughly revised version as a new submission
♻ ☆ Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling NeurIPS 2025
Diffusion models, though originally designed for generative tasks, have demonstrated impressive self-supervised representation learning capabilities. A particularly intriguing phenomenon in these models is the emergence of unimodal representation dynamics, where the quality of learned features peaks at an intermediate noise level. In this work, we conduct a comprehensive theoretical and empirical investigation of this phenomenon. Leveraging the inherent low-dimensionality structure of image data, we theoretically demonstrate that the unimodal dynamic emerges when the diffusion model successfully captures the underlying data distribution. The unimodality arises from an interplay between denoising strength and class confidence across noise scales. Empirically, we further show that, in classification tasks, the presence of unimodal dynamics reliably reflects the generalization of the diffusion model: it emerges when the model generates novel images and gradually transitions to a monotonically decreasing curve as the model begins to memorize the training data.
comment: First two authors contributed equally. Accepted at NeurIPS 2025
♻ ☆ Improving Contactless Fingerprint Recognition with Robust 3D Feature Extraction and Graph Embedding
Contactless fingerprint has gained lots of attention in recent fingerprint studies. However, most existing contactless fingerprint algorithms treat contactless fingerprints as 2D plain fingerprints, and still utilize traditional contact-based 2D fingerprints recognition methods. This recognition approach lacks consideration of the modality difference between contactless and contact fingerprints, especially the intrinsic 3D features in contactless fingerprints. This paper proposes a novel contactless fingerprint recognition algorithm that captures the revealed 3D feature of contactless fingerprints rather than the plain 2D feature. The proposed method first recovers 3D features from the input contactless fingerprint, including the 3D shape model and 3D fingerprint feature (minutiae, orientation, etc.). Then, a novel 3D graph matching method is proposed according to the extracted 3D feature. Additionally, the proposed method is able to perform robust 3D feature extractions on various contactless fingerprints across multiple finger poses. The results of the experiments on contactless fingerprint databases show that the proposed method successfully improves the matching accuracy of contactless fingerprints. Exceptionally, our method performs stably across multiple poses of contactless fingerprints due to 3D embeddings, which is a great advantage compared to 2D-based previous contactless fingerprint recognition algorithms.
comment: Oral presentation accepted at the 2025 IEEE International Joint Conference on Biometrics (IJCB) 2025, Osaka, Japan (9/8-9/11/2025)
♻ ☆ Self Forcing: Bridging the Train-Test Gap in Autoregressive Video Diffusion NeurIPS 2025
We introduce Self Forcing, a novel training paradigm for autoregressive video diffusion models. It addresses the longstanding issue of exposure bias, where models trained on ground-truth context must generate sequences conditioned on their own imperfect outputs during inference. Unlike prior methods that denoise future frames based on ground-truth context frames, Self Forcing conditions each frame's generation on previously self-generated outputs by performing autoregressive rollout with key-value (KV) caching during training. This strategy enables supervision through a holistic loss at the video level that directly evaluates the quality of the entire generated sequence, rather than relying solely on traditional frame-wise objectives. To ensure training efficiency, we employ a few-step diffusion model along with a stochastic gradient truncation strategy, effectively balancing computational cost and performance. We further introduce a rolling KV cache mechanism that enables efficient autoregressive video extrapolation. Extensive experiments demonstrate that our approach achieves real-time streaming video generation with sub-second latency on a single GPU, while matching or even surpassing the generation quality of significantly slower and non-causal diffusion models. Project website: http://self-forcing.github.io/
comment: NeurIPS 2025 spotlight. Project website: http://self-forcing.github.io/
♻ ☆ A Step Toward World Models: A Survey on Robotic Manipulation
Autonomous agents are increasingly expected to operate in complex, dynamic, and uncertain environments, performing tasks such as manipulation, navigation, and decision-making. Achieving these capabilities requires agents to understand the underlying mechanisms and dynamics of the world, moving beyond reactive control or simple replication of observed states. This motivates the development of world models as internal representations that encode environmental states, capture dynamics, and support prediction, planning, and reasoning. Despite growing interest, the definition, scope, architectures, and essential capabilities of world models remain ambiguous. In this survey, we go beyond prescribing a fixed definition and limiting our scope to methods explicitly labeled as world models. Instead, we examine approaches that exhibit the core capabilities of world models through a review of methods in robotic manipulation. We analyze their roles across perception, prediction, and control, identify key challenges and solutions, and distill the core components, capabilities, and functions that a fully realized world model should possess. Building on this analysis, we aim to motivate further development toward generalizable and practical world models for robotics.
comment: 24 pages, 5 figures
♻ ☆ F2RVLM: Boosting Fine-grained Fragment Retrieval for Multi-Modal Long-form Dialogue with Vision Language Model
Traditional dialogue retrieval aims to select the most appropriate utterance or image from recent dialogue history. However, they often fail to meet users' actual needs for revisiting semantically coherent content scattered across long-form conversations. To fill this gap, we define the Fine-grained Fragment Retrieval (FFR) task, requiring models to locate query-relevant fragments, comprising both utterances and images, from multimodal long-form dialogues. As a foundation for FFR, we construct MLDR, the longest-turn multimodal dialogue retrieval dataset to date, averaging 25.45 turns per dialogue, with each naturally spanning three distinct topics. To evaluate generalization in real-world scenarios, we curate and annotate a WeChat-based test set comprising real-world multimodal dialogues with an average of 75.38 turns. Building on these resources, we explore existing generation-based Vision-Language Models (VLMs) on FFR and observe that they often retrieve incoherent utterance-image fragments. While optimized for generating responses from visual-textual inputs, these models lack explicit supervision to ensure semantic coherence within retrieved fragments. To this end, we propose F2RVLM, a generative retrieval model trained in a two-stage paradigm: (1) supervised fine-tuning to inject fragment-level retrieval knowledge, and (2) GRPO-based reinforcement learning with multi-objective rewards promoting semantic precision, relevance, and contextual coherence. To handle varying intra-fragment complexity, from locally dense to sparsely distributed, we introduce difficulty-aware curriculum sampling that ranks training instances by model-predicted difficulty and gradually exposes the model to harder samples. This boosts reasoning ability in long, multi-turn contexts. F2RVLM outperforms popular VLMs in both in-domain and real-domain settings, demonstrating superior retrieval performance.
♻ ☆ Scalable Offline Metrics for Autonomous Driving IROS 2025
Real-world evaluation of perception-based planning models for robotic systems, such as autonomous vehicles, can be safely and inexpensively conducted offline, i.e. by computing model prediction error over a pre-collected validation dataset with ground-truth annotations. However, extrapolating from offline model performance to online settings remains a challenge. In these settings, seemingly minor errors can compound and result in test-time infractions or collisions. This relationship is understudied, particularly across diverse closed-loop metrics and complex urban maneuvers. In this work, we revisit this undervalued question in policy evaluation through an extensive set of experiments across diverse conditions and metrics. Based on analysis in simulation, we find an even worse correlation between offline and online settings than reported by prior studies, casting doubts on the validity of current evaluation practices and metrics for driving policies. Next, we bridge the gap between offline and online evaluation. We investigate an offline metric based on epistemic uncertainty, which aims to capture events that are likely to cause errors in closed-loop settings. The resulting metric achieves over 13% improvement in correlation compared to previous offline metrics. We further validate the generalization of our findings beyond the simulation environment in real-world settings, where even greater gains are observed.
comment: Accepted at IROS 2025 (IEEE/RSJ International Conference on Intelligent Robots and Systems); typos corrected
Information Retrieval
☆ Q-RAG: Long Context Multi-step Retrieval via Value-based Embedder Training
Retrieval-Augmented Generation (RAG) methods enhance LLM performance by efficiently filtering relevant context for LLMs, reducing hallucinations and inference cost. However, most existing RAG methods focus on single-step retrieval, which is often insufficient for answering complex questions that require multi-step search. Recently, multi-step retrieval approaches have emerged, typically involving the fine-tuning of small LLMs to perform multi-step retrieval. This type of fine-tuning is highly resource-intensive and does not enable the use of larger LLMs. In this work, we propose Q-RAG, a novel approach that fine-tunes the Embedder model for multi-step retrieval using reinforcement learning (RL). Q-RAG offers a competitive, resource-efficient alternative to existing multi-step retrieval methods for open-domain question answering and achieves state-of-the-art results on the popular long-context benchmarks Babilong and RULER for contexts up to 10M tokens.
comment: 16 pages, 3 figures, 2 tables
☆ Hard vs. Noise: Resolving Hard-Noisy Sample Confusion in Recommender Systems via Large Language Models AAAI2026
Implicit feedback, employed in training recommender systems, unavoidably confronts noise due to factors such as misclicks and position bias. Previous studies have attempted to identify noisy samples through their diverged data patterns, such as higher loss values, and mitigate their influence through sample dropping or reweighting. However, we observed that noisy samples and hard samples display similar patterns, leading to hard-noisy confusion issue. Such confusion is problematic as hard samples are vital for modeling user preferences. To solve this problem, we propose LLMHNI framework, leveraging two auxiliary user-item relevance signals generated by Large Language Models (LLMs) to differentiate hard and noisy samples. LLMHNI obtains user-item semantic relevance from LLM-encoded embeddings, which is used in negative sampling to select hard negatives while filtering out noisy false negatives. An objective alignment strategy is proposed to project LLM-encoded embeddings, originally for general language tasks, into a representation space optimized for user-item relevance modeling. LLMHNI also exploits LLM-inferred logical relevance within user-item interactions to identify hard and noisy samples. These LLM-inferred interactions are integrated into the interaction graph and guide denoising with cross-graph contrastive alignment. To eliminate the impact of unreliable interactions induced by LLM hallucination, we propose a graph contrastive learning strategy that aligns representations from randomly edge-dropped views to suppress unreliable edges. Empirical results demonstrate that LLMHNI significantly improves denoising and recommendation performance.
comment: Accepted by AAAI2026
☆ The Value of Personalized Recommendations: Evidence from Netflix
Personalized recommendation systems shape much of user choice online, yet their targeted nature makes separating out the value of recommendation and the underlying goods challenging. We build a discrete choice model that embeds recommendation-induced utility, low-rank heterogeneity, and flexible state dependence and apply the model to viewership data at Netflix. We exploit idiosyncratic variation introduced by the recommendation algorithm to identify and separately value these components as well as to recover model-free diversion ratios that we can use to validate our structural model. We use the model to evaluate counterfactuals that quantify the incremental engagement generated by personalized recommendations. First, we show that replacing the current recommender system with a matrix factorization or popularity-based algorithm would lead to 4% and 12% reduction in engagement, respectively, and decreased consumption diversity. Second, most of the consumption increase from recommendations comes from effective targeting, not mechanical exposure, with the largest gains for mid-popularity goods (as opposed to broadly appealing or very niche goods).
☆ When Sufficient is not Enough: Utilizing the Rashomon Effect for Complete Evidence Extraction
Feature attribution methods typically provide minimal sufficient evidence justifying a model decision. However, in many applications this is inadequate. For compliance and cataloging, the full set of contributing features must be identified - complete evidence. We perform a case study on a medical dataset which contains human-annotated complete evidence. We show that individual models typically recover only subsets of complete evidence and that aggregating evidence from several models improves evidence recall from $\sim$0.60 (single best model) to $\sim$0.86 (ensemble). We analyze the recall-precision trade-off, the role of training with evidence, dynamic ensembles with certainty thresholds, and discuss implications.
☆ Wavelet Enhanced Adaptive Frequency Filter for Sequential Recommendation
Sequential recommendation has garnered significant attention for its ability to capture dynamic preferences by mining users' historical interaction data. Given that users' complex and intertwined periodic preferences are difficult to disentangle in the time domain, recent research is exploring frequency domain analysis to identify these hidden patterns. However, current frequency-domain-based methods suffer from two key limitations: (i) They primarily employ static filters with fixed characteristics, overlooking the personalized nature of behavioral patterns; (ii) While the global discrete Fourier transform excels at modeling long-range dependencies, it can blur non-stationary signals and short-term fluctuations. To overcome these limitations, we propose a novel method called Wavelet Enhanced Adaptive Frequency Filter for Sequential Recommendation. Specifically, it consists of two vital modules: dynamic frequency-domain filtering and wavelet feature enhancement. The former is used to dynamically adjust filtering operations based on behavioral sequences to extract personalized global information, and the latter integrates wavelet transform to reconstruct sequences, enhancing blurred non-stationary signals and short-term fluctuations. Finally, these two modules work to achieve comprehensive performance and efficiency optimization in long sequential recommendation scenarios. Extensive experiments on four widely-used benchmark datasets demonstrate the superiority of our work.
☆ Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks
We introduce llama-embed-nemotron-8b, an open-weights text embedding model that achieves state-of-the-art performance on the Multilingual Massive Text Embedding Benchmark (MMTEB) leaderboard as of October 21, 2025. While recent models show strong performance, their training data or methodologies are often not fully disclosed. We aim to address this by developing a fully open-source model, publicly releasing its weights and detailed ablation studies, and planning to share the curated training datasets. Our model demonstrates superior performance across all major embedding tasks -- including retrieval, classification and semantic textual similarity (STS) -- and excels in challenging multilingual scenarios, such as low-resource languages and cross-lingual setups. This state-of-the-art performance is driven by a novel data mix of 16.1 million query-document pairs, split between 7.7 million samples from public datasets and 8.4 million synthetically generated examples from various open-weight LLMs. One of our key contributions is a detailed ablation study analyzing core design choices, including a comparison of contrastive loss implementations, an evaluation of synthetic data generation (SDG) strategies, and the impact of model merging. The llama-embed-nemotron-8b is an instruction-aware model, supporting user-defined instructions to enhance performance for specific use-cases. This combination of top-tier performance, broad applicability, and user-driven flexibility enables it to serve as a universal text embedding solution.
☆ CGLE: Class-label Graph Link Estimator for Link Prediction ICDM 2025
Link prediction is a pivotal task in graph mining with wide-ranging applications in social networks, recommendation systems, and knowledge graph completion. However, many leading Graph Neural Network (GNN) models often neglect the valuable semantic information aggregated at the class level. To address this limitation, this paper introduces CGLE (Class-label Graph Link Estimator), a novel framework designed to augment GNN-based link prediction models. CGLE operates by constructing a class-conditioned link probability matrix, where each entry represents the probability of a link forming between two node classes. This matrix is derived from either available ground-truth labels or from pseudo-labels obtained through clustering. The resulting class-based prior is then concatenated with the structural link embedding from a backbone GNN, and the combined representation is processed by a Multi-Layer Perceptron (MLP) for the final prediction. Crucially, CGLE's logic is encapsulated in an efficient preprocessing stage, leaving the computational complexity of the underlying GNN model unaffected. We validate our approach through extensive experiments on a broad suite of benchmark datasets, covering both homophilous and sparse heterophilous graphs. The results show that CGLE yields substantial performance gains over strong baselines such as NCN and NCNC, with improvements in HR@100 of over 10 percentage points on homophilous datasets like Pubmed and DBLP. On sparse heterophilous graphs, CGLE delivers an MRR improvement of over 4% on the Chameleon dataset. Our work underscores the efficacy of integrating global, data-driven semantic priors, presenting a compelling alternative to the pursuit of increasingly complex model architectures. Code to reproduce our findings is available at: https://github.com/data-iitd/cgle-icdm2025.
comment: Paper accepted at the IEEE International Conference on Data Mining (ICDM 2025)
☆ Fine-Tuning Diffusion-Based Recommender Systems via Reinforcement Learning with Reward Function Optimization
Diffusion models recently emerged as a powerful paradigm for recommender systems, offering state-of-the-art performance by modeling the generative process of user-item interactions. However, training such models from scratch is both computationally expensive and yields diminishing returns once convergence is reached. To remedy these challenges, we propose ReFiT, a new framework that integrates Reinforcement learning (RL)-based Fine-Tuning into diffusion-based recommender systems. In contrast to prior RL approaches for diffusion models depending on external reward models, ReFiT adopts a task-aligned design: it formulates the denoising trajectory as a Markov decision process (MDP) and incorporates a collaborative signal-aware reward function that directly reflects recommendation quality. By tightly coupling the MDP structure with this reward signal, ReFiT empowers the RL agent to exploit high-order connectivity for fine-grained optimization, while avoiding the noisy or uninformative feedback common in naive reward designs. Leveraging policy gradient optimization, ReFiT maximizes exact log-likelihood of observed interactions, thereby enabling effective post hoc fine-tuning of diffusion recommenders. Comprehensive experiments on wide-ranging real-world datasets demonstrate that the proposed ReFiT framework (a) exhibits substantial performance gains over strong competitors (up to 36.3% on sequential recommendation), (b) demonstrates strong efficiency with linear complexity in the number of users or items, and (c) generalizes well across multiple diffusion-based recommendation scenarios. The source code and datasets are publicly available at https://anonymous.4open.science/r/ReFiT-4C60.
comment: 14 pages, 12 figures, 9 tables
☆ Have We Really Understood Collaborative Information? An Empirical Investigation WSDM 2026
Collaborative information serves as the cornerstone of recommender systems which typically focus on capturing it from user-item interactions to deliver personalized services. However, current understanding of this crucial resource remains limited. Specifically, a quantitative definition of collaborative information is missing, its manifestation within user-item interactions remains unclear, and its impact on recommendation performance is largely unknown. To bridge this gap, this work conducts a systematic investigation of collaborative information. We begin by clarifying collaborative information in terms of item co-occurrence patterns, identifying its main characteristics, and presenting a quantitative definition. We then estimate the distribution of collaborative information from several aspects, shedding light on how collaborative information is structured in practice. Furthermore, we evaluate the impact of collaborative information on the performance of various recommendation algorithms. Finally, we highlight challenges in effectively capturing collaborative information and outlook promising directions for future research. By establishing an empirical framework, we uncover many insightful observations that advance our understanding of collaborative information and offer valuable guidelines for developing more effective recommender systems.
comment: This work has been accepted by WSDM 2026
☆ Learning to Fast Unrank in Collaborative Filtering Recommendation
Modern data-driven recommendation systems risk memorizing sensitive user behavioral patterns, raising privacy concerns. Existing recommendation unlearning methods, while capable of removing target data influence, suffer from inefficient unlearning speed and degraded performance, failing to meet real-time unlearning demands. Considering the ranking-oriented nature of recommendation systems, we present unranking, the process of reducing the ranking positions of target items while ensuring the formal guarantees of recommendation unlearning. To achieve efficient unranking, we propose Learning to Fast Unrank in Collaborative Filtering Recommendation (L2UnRank), which operates through three key stages: (a) identifying the influenced scope via interaction-based p-hop propagation, (b) computing structural and semantic influences for entities within this scope, and (c) performing efficient, ranking-aware parameter updates guided by influence information. Extensive experiments across multiple datasets and backbone models demonstrate L2UnRank's model-agnostic nature, achieving state-of-the-art unranking effectiveness and maintaining recommendation quality comparable to retraining, while also delivering a 50x speedup over existing methods. Codes are available at https://github.com/Juniper42/L2UnRank.
☆ Accessibility Gaps in U.S. Government Dashboards for Blind and Low-Vision Residents
Public dashboards are now a common way for US government agencies to share high stakes information with residents. We audited six live systems at federal, state, and city levels: CDC respiratory illness, HUD homelessness PIT and HIC, California HCD Annual Progress Report, New York City Mayor's Management Report, Houston Permitting, and Chicago public health and budget dashboards. Using a rubric based on screen reader needs and WCAG, we checked five items: (1) discoverability of key metrics by assistive tech, (2) keyboard access without mouse hover, (3) clear semantic labels for axes, series, and categories, (4) short plain language status and trend notes, and (5) machine readable tables or CSVs that mirror what sighted users see. Findings are mixed. Many charts fail basic discoverability or depend on hover, which blocks keyboard and screen reader use. Plain language summaries are common in CDC and Chicago, but rare in HUD and Houston. Machine readable data is strong for NYC, California, and HUD; it is weaker or unclear for Houston. Several sites promise service for the public or for customers yet do not name accessibility in their descriptions. Across systems we also observe urgency inversion: faster, operational dashboards tend to provide fewer accessible affordances than slower accountability dashboards. These patterns matter for equal participation and for ADA Title II compliance that references WCAG 2.1 AA. We propose three steps for any public dashboard: add a brief status and trend text at the same update cadence, publish a matching table or CSV of the visual metrics, and state an explicit accessibility commitment.
comment: Preprint. Accessibility audit of six U.S. public dashboard ecosystems; 1 figure, 2 tables
☆ When Evidence Contradicts: Toward Safer Retrieval-Augmented Generation in Healthcare
In high-stakes information domains such as healthcare, where large language models (LLMs) can produce hallucinations or misinformation, retrieval-augmented generation (RAG) has been proposed as a mitigation strategy, grounding model outputs in external, domain-specific documents. Yet, this approach can introduce errors when source documents contain outdated or contradictory information. This work investigates the performance of five LLMs in generating RAG-based responses to medicine-related queries. Our contributions are three-fold: i) the creation of a benchmark dataset using consumer medicine information documents from the Australian Therapeutic Goods Administration (TGA), where headings are repurposed as natural language questions, ii) the retrieval of PubMed abstracts using TGA headings, stratified across multiple publication years, to enable controlled temporal evaluation of outdated evidence, and iii) a comparative analysis of the frequency and impact of outdated or contradictory content on model-generated responses, assessing how LLMs integrate and reconcile temporally inconsistent information. Our findings show that contradictions between highly similar abstracts do, in fact, degrade performance, leading to inconsistencies and reduced factual accuracy in model answers. These results highlight that retrieval similarity alone is insufficient for reliable medical RAG and underscore the need for contradiction-aware filtering strategies to ensure trustworthy responses in high-stakes domains.
☆ Can LLM Annotations Replace User Clicks for Learning to Rank?
Large-scale supervised data is essential for training modern ranking models, but obtaining high-quality human annotations is costly. Click data has been widely used as a low-cost alternative, and with recent advances in large language models (LLMs), LLM-based relevance annotation has emerged as another promising annotation. This paper investigates whether LLM annotations can replace click data for learning to rank (LTR) by conducting a comprehensive comparison across multiple dimensions. Experiments on both a public dataset, TianGong-ST, and an industrial dataset, Baidu-Click, show that click-supervised models perform better on high-frequency queries, while LLM annotation-supervised models are more effective on medium- and low-frequency queries. Further analysis shows that click-supervised models are better at capturing document-level signals such as authority or quality, while LLM annotation-supervised models are more effective at modeling semantic matching between queries and documents and at distinguishing relevant from non-relevant documents. Motivated by these observations, we explore two training strategies -- data scheduling and frequency-aware multi-objective learning -- that integrate both supervision signals. Both approaches enhance ranking performance across queries at all frequency levels, with the latter being more effective. Our code is available at https://github.com/Trustworthy-Information-Access/LLMAnn_Click.
comment: 12 pages, 7 figures
☆ TabRAG: Tabular Document Retrieval via Structured Language Representations NeurIPS 2025
Ingesting data for Retrieval-Augmented Generation (RAG) involves either fine-tuning the embedding model directly on the target corpus or parsing documents for embedding model encoding. The former, while accurate, incurs high computational hardware requirements, while the latter suffers from suboptimal performance when extracting tabular data. In this work, we address the latter by presenting TabRAG, a parsing-based RAG pipeline designed to tackle table-heavy documents via structured language representations. TabRAG outperforms existing popular parsing-based methods for generation and retrieval. Code is available at https://github.com/jacobyhsi/TabRAG.
comment: NeurIPS 2025 AI4Tab
☆ TurkEmbed4Retrieval: Turkish Embedding Model for Retrieval Task
In this work, we introduce TurkEmbed4Retrieval, a retrieval specialized variant of the TurkEmbed model originally designed for Natural Language Inference (NLI) and Semantic Textual Similarity (STS) tasks. By fine-tuning the base model on the MS MARCO TR dataset using advanced training techniques, including Matryoshka representation learning and a tailored multiple negatives ranking loss, we achieve SOTA performance for Turkish retrieval tasks. Extensive experiments demonstrate that our model outperforms Turkish colBERT by 19,26% on key retrieval metrics for the Scifact TR dataset, thereby establishing a new benchmark for Turkish information retrieval.
comment: 4 pages, in Turkish language, 1 figure, conference
☆ Think Before You Retrieve: Learning Test-Time Adaptive Search with Small Language Models
Effective information retrieval requires reasoning over partial evidence and refining strategies as information emerges. Yet current approaches fall short: neural retrievers lack reasoning capabilities, large language models (LLMs) provide semantic depth but at prohibitive cost, and query rewriting or decomposition limits improvement to static transformations. As a result, existing methods fail to capture the iterative dynamics of exploration, feedback, and revision that complex user queries demand. We introduce Orion, a training framework that enables compact models (350M-1.2B parameters) to perform iterative retrieval through learned search strategies. Orion combines: (1) synthetic trajectory generation and supervised fine-tuning to encourage diverse exploration patterns in models, (2) reinforcement learning (RL) that rewards effective query refinement and backtracking behaviors, and (3) inference-time beam search algorithms that exploit the self-reflection capabilities learned during RL. Despite using only 3% of the training data available, our 1.2B model achieves 77.6% success on SciFact (vs. 72.6% for prior retrievers), 25.2% on BRIGHT (vs. 22.1%), 63.2% on NFCorpus (vs. 57.8%), and remains competitive on FEVER, HotpotQA, and MSMarco. It outperforms retrievers up to 200-400x larger on five of six benchmarks. These findings suggest that retrieval performance can emerge from learned strategies, not just model scale, when models are trained to search, reflect, and revise.
comment: 37 images, 7 figures, and 15 tables
☆ A Decentralized Retrieval Augmented Generation System with Source Reliabilities Secured on Blockchain
Existing retrieval-augmented generation (RAG) systems typically use a centralized architecture, causing a high cost of data collection, integration, and management, as well as privacy concerns. There is a great need for a decentralized RAG system that enables foundation models to utilize information directly from data owners who maintain full control over their sources. However, decentralization brings a challenge: the numerous independent data sources vary significantly in reliability, which can diminish retrieval accuracy and response quality. To address this, our decentralized RAG system has a novel reliability scoring mechanism that dynamically evaluates each source based on the quality of responses it contributes to generate and prioritizes high-quality sources during retrieval. To ensure transparency and trust, the scoring process is securely managed through blockchain-based smart contracts, creating verifiable and tamper-proof reliability records without relying on a central authority. We evaluate our decentralized system with two Llama models (3B and 8B) in two simulated environments where six data sources have different levels of reliability. Our system achieves a +10.7\% performance improvement over its centralized counterpart in the real world-like unreliable data environments. Notably, it approaches the upper-bound performance of centralized systems under ideally reliable data environments. The decentralized infrastructure enables secure and trustworthy scoring management, achieving approximately 56\% marginal cost savings through batched update operations. Our code and system are open-sourced at github.com/yining610/Reliable-dRAG.
☆ A Hybrid Multimodal Deep Learning Framework for Intelligent Fashion Recommendation
The rapid expansion of online fashion platforms has created an increasing demand for intelligent recommender systems capable of understanding both visual and textual cues. This paper proposes a hybrid multimodal deep learning framework for fashion recommendation that jointly addresses two key tasks: outfit compatibility prediction and complementary item retrieval. The model leverages the visual and textual encoders of the CLIP architecture to obtain joint latent representations of fashion items, which are then integrated into a unified feature vector and processed by a transformer encoder. For compatibility prediction, an "outfit token" is introduced to model the holistic relationships among items, achieving an AUC of 0.95 on the Polyvore dataset. For complementary item retrieval, a "target item token" representing the desired item description is used to retrieve compatible items, reaching an accuracy of 69.24% under the Fill-in-the-Blank (FITB) metric. The proposed approach demonstrates strong performance across both tasks, highlighting the effectiveness of multimodal learning for fashion recommendation.
comment: 8 pages, 1 figure
☆ Q-RAG: Long Context Multi-step Retrieval via Value-based Embedder Training
Retrieval-Augmented Generation (RAG) methods enhance LLM performance by efficiently filtering relevant context for LLMs, reducing hallucinations and inference cost. However, most existing RAG methods focus on single-step retrieval, which is often insufficient for answering complex questions that require multi-step search. Recently, multi-step retrieval approaches have emerged, typically involving the fine-tuning of small LLMs to perform multi-step retrieval. This type of fine-tuning is highly resource-intensive and does not enable the use of larger LLMs. In this work, we propose Q-RAG, a novel approach that fine-tunes the Embedder model for multi-step retrieval using reinforcement learning (RL). Q-RAG offers a competitive, resource-efficient alternative to existing multi-step retrieval methods for open-domain question answering and achieves state-of-the-art results on the popular long-context benchmarks Babilong and RULER for contexts up to 10M tokens.
comment: 16 pages, 3 figures, 2 tables
☆ GroupRank: A Groupwise Reranking Paradigm Driven by Reinforcement Learning
Large Language Models have shown strong potential as rerankers to enhance the overall performance of RAG systems. However, existing reranking paradigms are constrained by a core theoretical and practical dilemma: Pointwise methods, while simple and highly flexible, evaluate documents independently, making them prone to the Ranking Myopia Trap, overlooking the relative importance between documents. In contrast, Listwise methods can perceive the global ranking context, but suffer from inherent List Rigidity, leading to severe scalability and flexibility issues when handling large candidate sets. To address these challenges, we propose Groupwise, a novel reranking paradigm. In this approach, the query and a group of candidate documents are jointly fed into the model, which performs within-group comparisons to assign individual relevance scores to each document. This design retains the flexibility of Pointwise methods while enabling the comparative capability of Listwise methods. We further adopt GRPO for model training, equipped with a heterogeneous reward function that integrates ranking metrics with a distributional reward aimed at aligning score distributions across groups. To overcome the bottleneck caused by the scarcity of high quality labeled data, we further propose an innovative pipeline for synthesizing high quality retrieval and ranking data. The resulting data can be leveraged not only for training the reranker but also for training the retriever. Extensive experiments validate the effectiveness of our approach. On two reasoning intensive retrieval benchmarks, BRIGHT and R2MED.
☆ The Environmental Impact of Ensemble Techniques in Recommender Systems
Ensemble techniques in recommender systems have demonstrated accuracy improvements of 10-30%, yet their environmental impact remains unmeasured. While deep learning recommendation algorithms can generate up to 3,297 kg CO2 per paper, ensemble methods have not been sufficiently evaluated for energy consumption. This thesis investigates how ensemble techniques influence environmental impact compared to single optimized models. We conducted 93 experiments across two frameworks (Surprise for rating prediction, LensKit for ranking) on four datasets spanning 100,000 to 7.8 million interactions. We evaluated four ensemble strategies (Average, Weighted, Stacking/Rank Fusion, Top Performers) against simple baselines and optimized single models, measuring energy consumption with a smart plug. Results revealed a non-linear accuracy-energy relationship. Ensemble methods achieved 0.3-5.7% accuracy improvements while consuming 19-2,549% more energy depending on dataset size and strategy. The Top Performers ensemble showed best efficiency: 0.96% RMSE improvement with 18.8% energy overhead on MovieLens-1M, and 5.7% NDCG improvement with 103% overhead on MovieLens-100K. Exhaustive averaging strategies consumed 88-270% more energy for comparable gains. On the largest dataset (Anime, 7.8M interactions), the Surprise ensemble consumed 2,005% more energy (0.21 Wh vs. 0.01 Wh) for 1.2% accuracy improvement, producing 53.8 mg CO2 versus 2.6 mg CO2 for the single model. This research provides one of the first systematic measurements of energy and carbon footprint for ensemble recommender systems, demonstrates that selective strategies offer superior efficiency over exhaustive averaging, and identifies scalability limitations at industrial scale. These findings enable informed decisions about sustainable algorithm selection in recommender systems.
comment: Bachelor Thesis, University of Siegen
☆ When Sufficient is not Enough: Utilizing the Rashomon Effect for Complete Evidence Extraction
Feature attribution methods typically provide minimal sufficient evidence justifying a model decision. However, in many applications this is inadequate. For compliance and cataloging, the full set of contributing features must be identified - complete evidence. We perform a case study on a medical dataset which contains human-annotated complete evidence. We show that individual models typically recover only subsets of complete evidence and that aggregating evidence from several models improves evidence recall from $\sim$0.60 (single best model) to $\sim$0.86 (ensemble). We analyze the recall-precision trade-off, the role of training with evidence, dynamic ensembles with certainty thresholds, and discuss implications.
☆ Wavelet Enhanced Adaptive Frequency Filter for Sequential Recommendation
Sequential recommendation has garnered significant attention for its ability to capture dynamic preferences by mining users' historical interaction data. Given that users' complex and intertwined periodic preferences are difficult to disentangle in the time domain, recent research is exploring frequency domain analysis to identify these hidden patterns. However, current frequency-domain-based methods suffer from two key limitations: (i) They primarily employ static filters with fixed characteristics, overlooking the personalized nature of behavioral patterns; (ii) While the global discrete Fourier transform excels at modeling long-range dependencies, it can blur non-stationary signals and short-term fluctuations. To overcome these limitations, we propose a novel method called Wavelet Enhanced Adaptive Frequency Filter for Sequential Recommendation. Specifically, it consists of two vital modules: dynamic frequency-domain filtering and wavelet feature enhancement. The former is used to dynamically adjust filtering operations based on behavioral sequences to extract personalized global information, and the latter integrates wavelet transform to reconstruct sequences, enhancing blurred non-stationary signals and short-term fluctuations. Finally, these two modules work to achieve comprehensive performance and efficiency optimization in long sequential recommendation scenarios. Extensive experiments on four widely-used benchmark datasets demonstrate the superiority of our work.
☆ Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks
We introduce llama-embed-nemotron-8b, an open-weights text embedding model that achieves state-of-the-art performance on the Multilingual Massive Text Embedding Benchmark (MMTEB) leaderboard as of October 21, 2025. While recent models show strong performance, their training data or methodologies are often not fully disclosed. We aim to address this by developing a fully open-source model, publicly releasing its weights and detailed ablation studies, and planning to share the curated training datasets. Our model demonstrates superior performance across all major embedding tasks -- including retrieval, classification and semantic textual similarity (STS) -- and excels in challenging multilingual scenarios, such as low-resource languages and cross-lingual setups. This state-of-the-art performance is driven by a novel data mix of 16.1 million query-document pairs, split between 7.7 million samples from public datasets and 8.4 million synthetically generated examples from various open-weight LLMs. One of our key contributions is a detailed ablation study analyzing core design choices, including a comparison of contrastive loss implementations, an evaluation of synthetic data generation (SDG) strategies, and the impact of model merging. The llama-embed-nemotron-8b is an instruction-aware model, supporting user-defined instructions to enhance performance for specific use-cases. This combination of top-tier performance, broad applicability, and user-driven flexibility enables it to serve as a universal text embedding solution.
☆ CGLE: Class-label Graph Link Estimator for Link Prediction ICDM 2025
Link prediction is a pivotal task in graph mining with wide-ranging applications in social networks, recommendation systems, and knowledge graph completion. However, many leading Graph Neural Network (GNN) models often neglect the valuable semantic information aggregated at the class level. To address this limitation, this paper introduces CGLE (Class-label Graph Link Estimator), a novel framework designed to augment GNN-based link prediction models. CGLE operates by constructing a class-conditioned link probability matrix, where each entry represents the probability of a link forming between two node classes. This matrix is derived from either available ground-truth labels or from pseudo-labels obtained through clustering. The resulting class-based prior is then concatenated with the structural link embedding from a backbone GNN, and the combined representation is processed by a Multi-Layer Perceptron (MLP) for the final prediction. Crucially, CGLE's logic is encapsulated in an efficient preprocessing stage, leaving the computational complexity of the underlying GNN model unaffected. We validate our approach through extensive experiments on a broad suite of benchmark datasets, covering both homophilous and sparse heterophilous graphs. The results show that CGLE yields substantial performance gains over strong baselines such as NCN and NCNC, with improvements in HR@100 of over 10 percentage points on homophilous datasets like Pubmed and DBLP. On sparse heterophilous graphs, CGLE delivers an MRR improvement of over 4% on the Chameleon dataset. Our work underscores the efficacy of integrating global, data-driven semantic priors, presenting a compelling alternative to the pursuit of increasingly complex model architectures. Code to reproduce our findings is available at: https://github.com/data-iitd/cgle-icdm2025.
comment: Paper accepted at the IEEE International Conference on Data Mining (ICDM 2025)
☆ Fine-Tuning Diffusion-Based Recommender Systems via Reinforcement Learning with Reward Function Optimization
Diffusion models recently emerged as a powerful paradigm for recommender systems, offering state-of-the-art performance by modeling the generative process of user-item interactions. However, training such models from scratch is both computationally expensive and yields diminishing returns once convergence is reached. To remedy these challenges, we propose ReFiT, a new framework that integrates Reinforcement learning (RL)-based Fine-Tuning into diffusion-based recommender systems. In contrast to prior RL approaches for diffusion models depending on external reward models, ReFiT adopts a task-aligned design: it formulates the denoising trajectory as a Markov decision process (MDP) and incorporates a collaborative signal-aware reward function that directly reflects recommendation quality. By tightly coupling the MDP structure with this reward signal, ReFiT empowers the RL agent to exploit high-order connectivity for fine-grained optimization, while avoiding the noisy or uninformative feedback common in naive reward designs. Leveraging policy gradient optimization, ReFiT maximizes exact log-likelihood of observed interactions, thereby enabling effective post hoc fine-tuning of diffusion recommenders. Comprehensive experiments on wide-ranging real-world datasets demonstrate that the proposed ReFiT framework (a) exhibits substantial performance gains over strong competitors (up to 36.3% on sequential recommendation), (b) demonstrates strong efficiency with linear complexity in the number of users or items, and (c) generalizes well across multiple diffusion-based recommendation scenarios. The source code and datasets are publicly available at https://anonymous.4open.science/r/ReFiT-4C60.
comment: 14 pages, 12 figures, 9 tables
☆ Have We Really Understood Collaborative Information? An Empirical Investigation WSDM 2026
Collaborative information serves as the cornerstone of recommender systems which typically focus on capturing it from user-item interactions to deliver personalized services. However, current understanding of this crucial resource remains limited. Specifically, a quantitative definition of collaborative information is missing, its manifestation within user-item interactions remains unclear, and its impact on recommendation performance is largely unknown. To bridge this gap, this work conducts a systematic investigation of collaborative information. We begin by clarifying collaborative information in terms of item co-occurrence patterns, identifying its main characteristics, and presenting a quantitative definition. We then estimate the distribution of collaborative information from several aspects, shedding light on how collaborative information is structured in practice. Furthermore, we evaluate the impact of collaborative information on the performance of various recommendation algorithms. Finally, we highlight challenges in effectively capturing collaborative information and outlook promising directions for future research. By establishing an empirical framework, we uncover many insightful observations that advance our understanding of collaborative information and offer valuable guidelines for developing more effective recommender systems.
comment: This work has been accepted by WSDM 2026
☆ A Deep Learning Model to Predicting Changes in Consumer Attributes for New Line-extended Products
Product line extension is a marketing strategy that enhances a company's sphere of influence. Because excessive line extensions disrupt brand image, only appropriate line extensions based on consumer needs are desirable. Marketers should know the key consumer attributes of the primary customers for new line-extended products before companies enter the market. This paper describes a method for predicting changes in consumer attributes for new line-extended products using a novel deep learning model. The proposed model, Conditional Tabular Variational Auto-Encoder (CTVAE), generates synthetic data from large-scale tabular data of consumers and products. It can provide various implications about effective product line marketing for marketers. The experimental results demonstrate that the CTVAE offers superior prediction performance than existing models. We indicate implications for new products that change containers or flavors for effective product line marketing. The proposed approach has the potential to contribute to avoiding cannibalization and to designing product images and marketing strategies.
comment: 23 pages
☆ Learn to Select: Exploring Label Distribution Divergence for In-Context Demonstration Selection in Text Classification
In-context learning (ICL) for text classification, which uses a few input-label demonstrations to describe a task, has demonstrated impressive performance on large language models (LLMs). However, the selection of in-context demonstrations plays a crucial role and can significantly affect LLMs' performance. Most existing demonstration selection methods primarily focus on semantic similarity between test inputs and demonstrations, often overlooking the importance of label distribution alignment. To address this limitation, we propose a two-stage demonstration selection method, TopK + Label Distribution Divergence (L2D), which leverages a fine-tuned BERT-like small language model (SLM) to generate label distributions and calculate their divergence for both test inputs and candidate demonstrations. This enables the selection of demonstrations that are not only semantically similar but also aligned in label distribution with the test input. Extensive experiments across seven text classification benchmarks show that our method consistently outperforms previous demonstration selection strategies. Further analysis reveals a positive correlation between the performance of LLMs and the accuracy of the underlying SLMs used for label distribution estimation.
☆ Learning to Fast Unrank in Collaborative Filtering Recommendation
Modern data-driven recommendation systems risk memorizing sensitive user behavioral patterns, raising privacy concerns. Existing recommendation unlearning methods, while capable of removing target data influence, suffer from inefficient unlearning speed and degraded performance, failing to meet real-time unlearning demands. Considering the ranking-oriented nature of recommendation systems, we present unranking, the process of reducing the ranking positions of target items while ensuring the formal guarantees of recommendation unlearning. To achieve efficient unranking, we propose Learning to Fast Unrank in Collaborative Filtering Recommendation (L2UnRank), which operates through three key stages: (a) identifying the influenced scope via interaction-based p-hop propagation, (b) computing structural and semantic influences for entities within this scope, and (c) performing efficient, ranking-aware parameter updates guided by influence information. Extensive experiments across multiple datasets and backbone models demonstrate L2UnRank's model-agnostic nature, achieving state-of-the-art unranking effectiveness and maintaining recommendation quality comparable to retraining, while also delivering a 50x speedup over existing methods. Codes are available at https://github.com/Juniper42/L2UnRank.
☆ Accessibility Gaps in U.S. Government Dashboards for Blind and Low-Vision Residents
Public dashboards are now a common way for US government agencies to share high stakes information with residents. We audited six live systems at federal, state, and city levels: CDC respiratory illness, HUD homelessness PIT and HIC, California HCD Annual Progress Report, New York City Mayor's Management Report, Houston Permitting, and Chicago public health and budget dashboards. Using a rubric based on screen reader needs and WCAG, we checked five items: (1) discoverability of key metrics by assistive tech, (2) keyboard access without mouse hover, (3) clear semantic labels for axes, series, and categories, (4) short plain language status and trend notes, and (5) machine readable tables or CSVs that mirror what sighted users see. Findings are mixed. Many charts fail basic discoverability or depend on hover, which blocks keyboard and screen reader use. Plain language summaries are common in CDC and Chicago, but rare in HUD and Houston. Machine readable data is strong for NYC, California, and HUD; it is weaker or unclear for Houston. Several sites promise service for the public or for customers yet do not name accessibility in their descriptions. Across systems we also observe urgency inversion: faster, operational dashboards tend to provide fewer accessible affordances than slower accountability dashboards. These patterns matter for equal participation and for ADA Title II compliance that references WCAG 2.1 AA. We propose three steps for any public dashboard: add a brief status and trend text at the same update cadence, publish a matching table or CSV of the visual metrics, and state an explicit accessibility commitment.
comment: Preprint. Accessibility audit of six U.S. public dashboard ecosystems; 1 figure, 2 tables
☆ When Evidence Contradicts: Toward Safer Retrieval-Augmented Generation in Healthcare
In high-stakes information domains such as healthcare, where large language models (LLMs) can produce hallucinations or misinformation, retrieval-augmented generation (RAG) has been proposed as a mitigation strategy, grounding model outputs in external, domain-specific documents. Yet, this approach can introduce errors when source documents contain outdated or contradictory information. This work investigates the performance of five LLMs in generating RAG-based responses to medicine-related queries. Our contributions are three-fold: i) the creation of a benchmark dataset using consumer medicine information documents from the Australian Therapeutic Goods Administration (TGA), where headings are repurposed as natural language questions, ii) the retrieval of PubMed abstracts using TGA headings, stratified across multiple publication years, to enable controlled temporal evaluation of outdated evidence, and iii) a comparative analysis of the frequency and impact of outdated or contradictory content on model-generated responses, assessing how LLMs integrate and reconcile temporally inconsistent information. Our findings show that contradictions between highly similar abstracts do, in fact, degrade performance, leading to inconsistencies and reduced factual accuracy in model answers. These results highlight that retrieval similarity alone is insufficient for reliable medical RAG and underscore the need for contradiction-aware filtering strategies to ensure trustworthy responses in high-stakes domains.
☆ Can LLM Annotations Replace User Clicks for Learning to Rank?
Large-scale supervised data is essential for training modern ranking models, but obtaining high-quality human annotations is costly. Click data has been widely used as a low-cost alternative, and with recent advances in large language models (LLMs), LLM-based relevance annotation has emerged as another promising annotation. This paper investigates whether LLM annotations can replace click data for learning to rank (LTR) by conducting a comprehensive comparison across multiple dimensions. Experiments on both a public dataset, TianGong-ST, and an industrial dataset, Baidu-Click, show that click-supervised models perform better on high-frequency queries, while LLM annotation-supervised models are more effective on medium- and low-frequency queries. Further analysis shows that click-supervised models are better at capturing document-level signals such as authority or quality, while LLM annotation-supervised models are more effective at modeling semantic matching between queries and documents and at distinguishing relevant from non-relevant documents. Motivated by these observations, we explore two training strategies -- data scheduling and frequency-aware multi-objective learning -- that integrate both supervision signals. Both approaches enhance ranking performance across queries at all frequency levels, with the latter being more effective. Our code is available at https://github.com/Trustworthy-Information-Access/LLMAnn_Click.
comment: 12 pages, 7 figures
☆ TabRAG: Tabular Document Retrieval via Structured Language Representations NeurIPS 2025
Ingesting data for Retrieval-Augmented Generation (RAG) involves either fine-tuning the embedding model directly on the target corpus or parsing documents for embedding model encoding. The former, while accurate, incurs high computational hardware requirements, while the latter suffers from suboptimal performance when extracting tabular data. In this work, we address the latter by presenting TabRAG, a parsing-based RAG pipeline designed to tackle table-heavy documents via structured language representations. TabRAG outperforms existing popular parsing-based methods for generation and retrieval. Code is available at https://github.com/jacobyhsi/TabRAG.
comment: NeurIPS 2025 AI4Tab
♻ ☆ ReCode: Updating Code API Knowledge with Reinforcement Learning AAAI 2026
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: AAAI 2026
♻ ☆ Text-to-Pipeline: Bridging Natural Language and Data Preparation Pipelines
Data preparation (DP) transforms raw data into a form suitable for downstream applications, typically by composing operations into executable pipelines. Building such pipelines is time-consuming and requires sophisticated programming skills, posing a significant barrier for non-experts. To lower this barrier, we introduce Text-to-Pipeline, a new task that translates NL data preparation instructions into DP pipelines, and PARROT, a large-scale benchmark to support systematic evaluation. To ensure realistic DP scenarios, PARROT is built by mining transformation patterns from production pipelines and instantiating them on 23,009 real-world tables, resulting in ~18,000 tasks spanning 16 core operators. Our empirical evaluation on PARROT reveals a critical failure mode in cutting-edge LLMs: they struggle not only with multi-step compositional logic but also with semantic parameter grounding. We thus establish a strong baseline with Pipeline-Agent, an execution-aware agent that iteratively reflects on intermediate states. While it achieves state-of-the-art performance, a significant gap remains, underscoring the deep, unsolved challenges for PARROT. It provides the essential, large-scale testbed for developing and evaluating the next generation of autonomous data preparation agentic systems.
♻ ☆ Deep Pareto Reinforcement Learning for Multi-Objective Recommender Systems
Optimizing multiple objectives simultaneously is an important task for recommendation platforms to improve their performance. However, this task is particularly challenging since the relationships between different objectives are heterogeneous across different consumers and dynamically fluctuating according to different contexts. Especially in those cases when objectives become conflicting with each other, the result of recommendations will form a pareto-frontier, where the improvements of any objective comes at the cost of a performance decrease of another objective. Existing multi-objective recommender systems do not systematically consider such dynamic relationships; instead, they balance between these objectives in a static and uniform manner, resulting in only suboptimal multi-objective recommendation performance. In this paper, we propose a Deep Pareto Reinforcement Learning (DeepPRL) approach, where we (1) comprehensively model the complex relationships between multiple objectives in recommendations; (2) effectively capture personalized and contextual consumer preference for each objective to provide better recommendations; (3) optimize both the short-term and the long-term performance of multi-objective recommendations. As a result, our method achieves significant pareto-dominance over the state-of-the-art baselines in the offline experiments. Furthermore, we conducted a controlled experiment at the video streaming platform of Alibaba, where our method simultaneously improved three conflicting business objectives over the latest production system significantly, demonstrating its tangible economic impact in practice.
♻ ☆ CoSQA+: Pioneering the Multi-Choice Code Search Benchmark with Test-Driven Agents
Semantic code search, retrieving code that matches a given natural language query, is an important task to improve productivity in software engineering. Existing code search datasets face limitations: they rely on human annotators who assess code primarily through semantic understanding rather than functional verification, leading to potential inaccuracies and scalability issues. Additionally, current evaluation metrics often overlook the multi-choice nature of code search. This paper introduces CoSQA+, pairing high-quality queries from CoSQA with multiple suitable codes. We develop an automated pipeline featuring multiple model-based candidate selections and the novel test-driven agent annotation system. Among a single Large Language Model (LLM) annotator and Python expert annotators (without test-based verification), agents leverage test-based verification and achieve the highest accuracy of 93.9%. Through extensive experiments, CoSQA+ has demonstrated superior quality over CoSQA. Models trained on CoSQA+ exhibit improved performance. We publicly release both CoSQA+_all, which contains 412,080 agent-annotated pairs, and CoSQA+_verified, which contains 1,000 human-verified pairs, at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus.
comment: Accepted to TSE 2025. We provide the code and data at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus
♻ ☆ Enhancing Multimodal Recommendations with Vision-Language Models and Information-Aware Fusion
Recent advances in multimodal recommendation (MMR) highlight the potential of integrating visual and textual content to enrich item representations. However, existing methods often rely on coarse visual features and naive fusion strategies, resulting in redundant or misaligned representations. From an information-theoretic perspective, effective fusion should balance unique, shared, and redundant modality information to preserve complementary cues. To this end, we propose VIRAL, a novel Vision-Language and Information-aware Recommendation framework that enhances multimodal fusion through two components: (i) a VLM-based visual enrichment module that generates fine-grained, title-guided descriptions for semantically aligned image representations, and (ii) an information-aware fusion module inspired by Partial Information Decomposition (PID) to disentangle and integrate complementary signals. Experiments on three Amazon datasets show that VIRAL consistently outperforms strong multimodal baselines and substantially improves the contribution of visual features.
♻ ☆ Secure Retrieval-Augmented Generation against Poisoning Attacks
Large language models (LLMs) have transformed natural language processing (NLP), enabling applications from content generation to decision support. Retrieval-Augmented Generation (RAG) improves LLMs by incorporating external knowledge but also introduces security risks, particularly from data poisoning, where the attacker injects poisoned texts into the knowledge database to manipulate system outputs. While various defenses have been proposed, they often struggle against advanced attacks. To address this, we introduce RAGuard, a detection framework designed to identify poisoned texts. RAGuard first expands the retrieval scope to increase the proportion of clean texts, reducing the likelihood of retrieving poisoned content. It then applies chunk-wise perplexity filtering to detect abnormal variations and text similarity filtering to flag highly similar texts. This non-parametric approach enhances RAG security, and experiments on large-scale datasets demonstrate its effectiveness in detecting and mitigating poisoning attacks, including strong adaptive attacks.
comment: To appear in IEEE BigData 2025
♻ ☆ Quality Over Quantity? LLM-Based Curation for a Data-Efficient Audio-Video Foundation Model
Integrating audio and visual data for training multimodal foundational models remains a challenge. The Audio-Video Vector Alignment (AVVA) framework addresses this by considering AV scene alignment beyond mere temporal synchronization, and leveraging Large Language Models (LLMs) for data curation. AVVA implements a scoring mechanism for selecting aligned training data segments. It integrates Whisper, a speech-based foundation model, for audio and DINOv2 for video analysis in a dual-encoder structure with contrastive learning on AV pairs. Evaluations on AudioCaps, VALOR, and VGGSound demonstrate the effectiveness of the proposed model architecture and data curation approach. AVVA achieves a significant improvement in top-k accuracies for video-to-audio retrieval on all datasets compared to DenseAV, while using only 192 hrs of curated training data. Furthermore, an ablation study indicates that the data curation process effectively trades data quality for data quantity, yielding increases in top-k retrieval accuracies on AudioCaps, VALOR, and VGGSound, compared to training on the full spectrum of uncurated data.
comment: Accepted at EUSIPCO 2025 - 5 pages, 5 figures, 2 tables
♻ ☆ Text-to-Pipeline: Bridging Natural Language and Data Preparation Pipelines
Data preparation (DP) transforms raw data into a form suitable for downstream applications, typically by composing operations into executable pipelines. Building such pipelines is time-consuming and requires sophisticated programming skills, posing a significant barrier for non-experts. To lower this barrier, we introduce Text-to-Pipeline, a new task that translates NL data preparation instructions into DP pipelines, and PARROT, a large-scale benchmark to support systematic evaluation. To ensure realistic DP scenarios, PARROT is built by mining transformation patterns from production pipelines and instantiating them on 23,009 real-world tables, resulting in ~18,000 tasks spanning 16 core operators. Our empirical evaluation on PARROT reveals a critical failure mode in cutting-edge LLMs: they struggle not only with multi-step compositional logic but also with semantic parameter grounding. We thus establish a strong baseline with Pipeline-Agent, an execution-aware agent that iteratively reflects on intermediate states. While it achieves state-of-the-art performance, a significant gap remains, underscoring the deep, unsolved challenges for PARROT. It provides the essential, large-scale testbed for developing and evaluating the next generation of autonomous data preparation agentic systems.
♻ ☆ Deep Pareto Reinforcement Learning for Multi-Objective Recommender Systems
Optimizing multiple objectives simultaneously is an important task for recommendation platforms to improve their performance. However, this task is particularly challenging since the relationships between different objectives are heterogeneous across different consumers and dynamically fluctuating according to different contexts. Especially in those cases when objectives become conflicting with each other, the result of recommendations will form a pareto-frontier, where the improvements of any objective comes at the cost of a performance decrease of another objective. Existing multi-objective recommender systems do not systematically consider such dynamic relationships; instead, they balance between these objectives in a static and uniform manner, resulting in only suboptimal multi-objective recommendation performance. In this paper, we propose a Deep Pareto Reinforcement Learning (DeepPRL) approach, where we (1) comprehensively model the complex relationships between multiple objectives in recommendations; (2) effectively capture personalized and contextual consumer preference for each objective to provide better recommendations; (3) optimize both the short-term and the long-term performance of multi-objective recommendations. As a result, our method achieves significant pareto-dominance over the state-of-the-art baselines in the offline experiments. Furthermore, we conducted a controlled experiment at the video streaming platform of Alibaba, where our method simultaneously improved three conflicting business objectives over the latest production system significantly, demonstrating its tangible economic impact in practice.
♻ ☆ CoSQA+: Pioneering the Multi-Choice Code Search Benchmark with Test-Driven Agents
Semantic code search, retrieving code that matches a given natural language query, is an important task to improve productivity in software engineering. Existing code search datasets face limitations: they rely on human annotators who assess code primarily through semantic understanding rather than functional verification, leading to potential inaccuracies and scalability issues. Additionally, current evaluation metrics often overlook the multi-choice nature of code search. This paper introduces CoSQA+, pairing high-quality queries from CoSQA with multiple suitable codes. We develop an automated pipeline featuring multiple model-based candidate selections and the novel test-driven agent annotation system. Among a single Large Language Model (LLM) annotator and Python expert annotators (without test-based verification), agents leverage test-based verification and achieve the highest accuracy of 93.9%. Through extensive experiments, CoSQA+ has demonstrated superior quality over CoSQA. Models trained on CoSQA+ exhibit improved performance. We publicly release both CoSQA+_all, which contains 412,080 agent-annotated pairs, and CoSQA+_verified, which contains 1,000 human-verified pairs, at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus.
comment: Accepted to TSE 2025. We provide the code and data at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus
♻ ☆ Enhancing Multimodal Recommendations with Vision-Language Models and Information-Aware Fusion
Recent advances in multimodal recommendation (MMR) highlight the potential of integrating visual and textual content to enrich item representations. However, existing methods often rely on coarse visual features and naive fusion strategies, resulting in redundant or misaligned representations. From an information-theoretic perspective, effective fusion should balance unique, shared, and redundant modality information to preserve complementary cues. To this end, we propose VIRAL, a novel Vision-Language and Information-aware Recommendation framework that enhances multimodal fusion through two components: (i) a VLM-based visual enrichment module that generates fine-grained, title-guided descriptions for semantically aligned image representations, and (ii) an information-aware fusion module inspired by Partial Information Decomposition (PID) to disentangle and integrate complementary signals. Experiments on three Amazon datasets show that VIRAL consistently outperforms strong multimodal baselines and substantially improves the contribution of visual features.
♻ ☆ Secure Retrieval-Augmented Generation against Poisoning Attacks
Large language models (LLMs) have transformed natural language processing (NLP), enabling applications from content generation to decision support. Retrieval-Augmented Generation (RAG) improves LLMs by incorporating external knowledge but also introduces security risks, particularly from data poisoning, where the attacker injects poisoned texts into the knowledge database to manipulate system outputs. While various defenses have been proposed, they often struggle against advanced attacks. To address this, we introduce RAGuard, a detection framework designed to identify poisoned texts. RAGuard first expands the retrieval scope to increase the proportion of clean texts, reducing the likelihood of retrieving poisoned content. It then applies chunk-wise perplexity filtering to detect abnormal variations and text similarity filtering to flag highly similar texts. This non-parametric approach enhances RAG security, and experiments on large-scale datasets demonstrate its effectiveness in detecting and mitigating poisoning attacks, including strong adaptive attacks.
comment: To appear in IEEE BigData 2025
Machine Learning
☆ Routing Manifold Alignment Improves Generalization of Mixture-of-Experts LLMs
Sparse Mixture-of-Experts (MoE) have been widely adopted in recent large language models since it can efficiently scale up the model capability without increasing the inference cost. However, evaluations on broad downstream tasks reveal a consistent suboptimality of the routers in existing MoE LLMs, which results in a severe performance gap (e.g., 10-20% in accuracy) to the optimal routing. In this paper, we show that aligning the manifold of routing weights with that of task embedding can effectively reduce the gap and improve MoE LLMs' generalization performance. Our method, "Routing Manifold Alignment (RoMA)", introduces an additional manifold regularization term in the post-training objective and only requires lightweight finetuning of routers (with other parameters frozen). Specifically, the regularization encourages the routing weights of each sample to be close to those of its successful neighbors (whose routing weights lead to correct answers) in a task embedding space. Consequently, samples targeting similar tasks will share similar expert choices across layers. Building such bindings between tasks and experts over different samples is essential to achieve better generalization. Moreover, RoMA demonstrates the advantage of unifying the task understanding (by embedding models) with solution generation (by MoE LLMs). In experiments, we finetune routers in OLMoE, DeepSeekMoE, and Qwen3-MoE using RoMA. Evaluations on diverse benchmarks and extensive comparisons with baselines show the substantial improvement brought by RoMA.
☆ Language Generation with Infinite Contamination
We study language generation in the limit, where an algorithm observes an adversarial enumeration of strings from an unknown target language $K$ and must eventually generate new, unseen strings from $K$. Kleinberg and Mullainathan [KM24] proved that generation is achievable in surprisingly general settings. But their generator suffers from ``mode collapse,'' producing from an ever-smaller subset of the target. To address this, Kleinberg and Wei [KW25] require the generator's output to be ``dense'' in the target language. They showed that generation with density, surprisingly, remains achievable at the same generality. Both results assume perfect data: no noisy insertions and no omissions. This raises a central question: how much contamination can generation tolerate? Recent works made partial progress on this question by studying (non-dense) generation with either finite amounts of noise (but no omissions) or omissions (but no noise). We characterize robustness under contaminated enumerations: 1. Generation under Contamination: Language generation in the limit is achievable for all countable collections iff the fraction of contaminated examples converges to zero. When this fails, we characterize which collections are generable. 2. Dense Generation under Contamination: Dense generation is strictly less robust to contamination than generation. As a byproduct, we resolve an open question of Raman and Raman [ICML25] by showing that generation is possible with only membership oracle access under finitely many contaminated examples. Finally, we introduce a beyond-worst-case model inspired by curriculum learning and prove that dense generation is achievable even with infinite contamination provided the fraction of contaminated examples converges to zero. This suggests curriculum learning may be crucial for learning from noisy web data.
☆ DigiData: Training and Evaluating General-Purpose Mobile Control Agents
AI agents capable of controlling user interfaces have the potential to transform human interaction with digital devices. To accelerate this transformation, two fundamental building blocks are essential: high-quality datasets that enable agents to achieve complex and human-relevant goals, and robust evaluation methods that allow researchers and practitioners to rapidly enhance agent performance. In this paper, we introduce DigiData, a large-scale, high-quality, diverse, multi-modal dataset designed for training mobile control agents. Unlike existing datasets, which derive goals from unstructured interactions, DigiData is meticulously constructed through comprehensive exploration of app features, resulting in greater diversity and higher goal complexity. Additionally, we present DigiData-Bench, a benchmark for evaluating mobile control agents on real-world complex tasks. We demonstrate that the commonly used step-accuracy metric falls short in reliably assessing mobile control agents and, to address this, we propose dynamic evaluation protocols and AI-powered evaluations as rigorous alternatives for agent assessment. Our contributions aim to significantly advance the development of mobile control agents, paving the way for more intuitive and effective human-device interactions.
comment: Website: https://facebookresearch.github.io/DigiData
☆ Entangled Schrödinger Bridge Matching
Simulating trajectories of multi-particle systems on complex energy landscapes is a central task in molecular dynamics (MD) and drug discovery, but remains challenging at scale due to computationally expensive and long simulations. Previous approaches leverage techniques such as flow or Schr\"odinger bridge matching to implicitly learn joint trajectories through data snapshots. However, many systems, including biomolecular systems and heterogeneous cell populations, undergo dynamic interactions that evolve over their trajectory and cannot be captured through static snapshots. To close this gap, we introduce Entangled Schr\"odinger Bridge Matching (EntangledSBM), a framework that learns the first- and second-order stochastic dynamics of interacting, multi-particle systems where the direction and magnitude of each particle's path depend dynamically on the paths of the other particles. We define the Entangled Schr\"odinger Bridge (EntangledSB) problem as solving a coupled system of bias forces that entangle particle velocities. We show that our framework accurately simulates heterogeneous cell populations under perturbations and rare transitions in high-dimensional biomolecular systems.
☆ SpatialThinker: Reinforcing 3D Reasoning in Multimodal LLMs via Spatial Rewards NeurIPS 2025
Multimodal large language models (MLLMs) have achieved remarkable progress in vision-language tasks, but they continue to struggle with spatial understanding. Existing spatial MLLMs often rely on explicit 3D inputs or architecture-specific modifications, and remain constrained by large-scale datasets or sparse supervision. To address these limitations, we introduce SpatialThinker, a 3D-aware MLLM trained with RL to integrate structured spatial grounding with multi-step reasoning. The model simulates human-like spatial perception by constructing a scene graph of task-relevant objects and spatial relations, and reasoning towards an answer via dense spatial rewards. SpatialThinker consists of two key contributions: (1) a data synthesis pipeline that generates STVQA-7K, a high-quality spatial VQA dataset, and (2) online RL with a multi-objective dense spatial reward enforcing spatial grounding. SpatialThinker-7B outperforms supervised fine-tuning and the sparse RL baseline on spatial understanding and real-world VQA benchmarks, nearly doubling the base-model gain compared to sparse RL, and surpassing GPT-4o. These results showcase the effectiveness of combining spatial supervision with reward-aligned reasoning in enabling robust 3D spatial understanding with limited data and advancing MLLMs towards human-level visual reasoning.
comment: Preprint. Accepted at NeurIPS 2025 Workshops on SPACE in Vision, Language, and Embodied AI (SpaVLE), Embodied World Models for Decision Making (EWM), Aligning Reinforcement Learning Experimentalists and Theorists (ARLET), and Scaling Environments for Agents (SEA)
☆ StreamDiffusionV2: A Streaming System for Dynamic and Interactive Video Generation
Generative models are reshaping the live-streaming industry by redefining how content is created, styled, and delivered. Previous image-based streaming diffusion models have powered efficient and creative live streaming products but have hit limits on temporal consistency due to the foundation of image-based designs. Recent advances in video diffusion have markedly improved temporal consistency and sampling efficiency for offline generation. However, offline generation systems primarily optimize throughput by batching large workloads. In contrast, live online streaming operates under strict service-level objectives (SLOs): time-to-first-frame must be minimal, and every frame must meet a per-frame deadline with low jitter. Besides, scalable multi-GPU serving for real-time streams remains largely unresolved so far. To address this, we present StreamDiffusionV2, a training-free pipeline for interactive live streaming with video diffusion models. StreamDiffusionV2 integrates an SLO-aware batching scheduler and a block scheduler, together with a sink-token--guided rolling KV cache, a motion-aware noise controller, and other system-level optimizations. Moreover, we introduce a scalable pipeline orchestration that parallelizes the diffusion process across denoising steps and network layers, achieving near-linear FPS scaling without violating latency guarantees. The system scales seamlessly across heterogeneous GPU environments and supports flexible denoising steps (e.g., 1--4), enabling both ultra-low-latency and higher-quality modes. Without TensorRT or quantization, StreamDiffusionV2 renders the first frame within 0.5s and attains 58.28 FPS with a 14B-parameter model and 64.52 FPS with a 1.3B-parameter model on four H100 GPUs, making state-of-the-art generative live streaming practical and accessible--from individual creators to enterprise-scale platforms.
comment: Project Page: http://streamdiffusionv2.github.io
☆ Solving bilevel optimization via sequential minimax optimization
In this paper we propose a sequential minimax optimization (SMO) method for solving a class of constrained bilevel optimization problems in which the lower-level part is a possibly nonsmooth convex optimization problem, while the upper-level part is a possibly nonconvex optimization problem. Specifically, SMO applies a first-order method to solve a sequence of minimax subproblems, which are obtained by employing a hybrid of modified augmented Lagrangian and penalty schemes on the bilevel optimization problems. Under suitable assumptions, we establish an operation complexity of $O(\varepsilon^{-7}\log\varepsilon^{-1})$ and $O(\varepsilon^{-6}\log\varepsilon^{-1})$, measured in terms of fundamental operations, for SMO in finding an $\varepsilon$-KKT solution of the bilevel optimization problems with merely convex and strongly convex lower-level objective functions, respectively. The latter result improves the previous best-known operation complexity by a factor of $\varepsilon^{-1}$. Preliminary numerical results demonstrate significantly superior computational performance compared to the recently developed first-order penalty method.
comment: Accepted by Mathematics of Operations Research
☆ C3PO: Optimized Large Language Model Cascades with Probabilistic Cost Constraints for Reasoning
Large language models (LLMs) have achieved impressive results on complex reasoning tasks, but their high inference cost remains a major barrier to real-world deployment. A promising solution is to use cascaded inference, where small, cheap models handle easy queries, and only the hardest examples are escalated to more powerful models. However, existing cascade methods typically rely on supervised training with labeled data, offer no theoretical generalization guarantees, and provide limited control over test-time computational cost. We introduce C3PO (Cost Controlled Cascaded Prediction Optimization), a self-supervised framework for optimizing LLM cascades under probabilistic cost constraints. By focusing on minimizing regret with respect to the most powerful model (MPM), C3PO avoids the need for labeled data by constructing a cascade using only unlabeled model outputs. It leverages conformal prediction to bound the probability that inference cost exceeds a user-specified budget. We provide theoretical guarantees on both cost control and generalization error, and show that our optimization procedure is effective even with small calibration sets. Empirically, C3PO achieves state-of-the-art performance across a diverse set of reasoning benchmarks including GSM8K, MATH-500, BigBench-Hard and AIME, outperforming strong LLM cascading baselines in both accuracy and cost-efficiency. Our results demonstrate that principled, label-free cascade optimization can enable scalable LLM deployment.
☆ A Diffusion Model to Shrink Proteins While Maintaining Their Function SC
Many proteins useful in modern medicine or bioengineering are challenging to make in the lab, fuse with other proteins in cells, or deliver to tissues in the body, because their sequences are too long. Shortening these sequences typically involves costly, time-consuming experimental campaigns. Ideally, we could instead use modern models of massive databases of sequences from nature to learn how to propose shrunken proteins that resemble sequences found in nature. Unfortunately, these models struggle to efficiently search the combinatorial space of all deletions, and are not trained with inductive biases to learn how to delete. To address this gap, we propose SCISOR, a novel discrete diffusion model that deletes letters from sequences to generate protein samples that resemble those found in nature. To do so, SCISOR trains a de-noiser to reverse a forward noising process that adds random insertions to natural sequences. As a generative model, SCISOR fits evolutionary sequence data competitively with previous large models. In evaluation, SCISOR achieves state-of-the-art predictions of the functional effects of deletions on ProteinGym. Finally, we use the SCISOR de-noiser to shrink long protein sequences, and show that its suggested deletions result in significantly more realistic proteins and more often preserve functional motifs than previous models of evolutionary sequences.
comment: Code available at https://github.com/baronet2/SCISOR
☆ Teaching Pretrained Language Models to Think Deeper with Retrofitted Recurrence
Recent advances in depth-recurrent language models show that recurrence can decouple train-time compute and parameter count from test-time compute. In this work, we study how to convert existing pretrained non-recurrent language models into depth-recurrent models. We find that using a curriculum of recurrences to increase the effective depth of the model over the course of training preserves performance while reducing total computational cost. In our experiments, on mathematics, we observe that converting pretrained models to recurrent ones results in better performance at a given compute budget than simply post-training the original non-recurrent language model.
comment: code: https://github.com/mcleish7/retrofitting-recurrence, models: https://huggingface.co/collections/tomg-group-umd/retrofitting-recurrence
☆ LoReTTA: A Low Resource Framework To Poison Continuous Time Dynamic Graphs AAAI 2026
Temporal Graph Neural Networks (TGNNs) are increasingly used in high-stakes domains, such as financial forecasting, recommendation systems, and fraud detection. However, their susceptibility to poisoning attacks poses a critical security risk. We introduce LoReTTA (Low Resource Two-phase Temporal Attack), a novel adversarial framework on Continuous-Time Dynamic Graphs, which degrades TGNN performance by an average of 29.47% across 4 widely benchmark datasets and 4 State-of-the-Art (SotA) models. LoReTTA operates through a two-stage approach: (1) sparsify the graph by removing high-impact edges using any of the 16 tested temporal importance metrics, (2) strategically replace removed edges with adversarial negatives via LoReTTA's novel degree-preserving negative sampling algorithm. Our plug-and-play design eliminates the need for expensive surrogate models while adhering to realistic unnoticeability constraints. LoReTTA degrades performance by upto 42.0% on MOOC, 31.5% on Wikipedia, 28.8% on UCI, and 15.6% on Enron. LoReTTA outperforms 11 attack baselines, remains undetectable to 4 leading anomaly detection systems, and is robust to 4 SotA adversarial defense training methods, establishing its effectiveness, unnoticeability, and robustness.
comment: Accepted at AAAI 2026
Transformers Provably Learn Chain-of-Thought Reasoning with Length Generalization NeurIPS 2025
The ability to reason lies at the core of artificial intelligence (AI), and challenging problems usually call for deeper and longer reasoning to tackle. A crucial question about AI reasoning is whether models can extrapolate learned reasoning patterns to solve harder tasks with longer chain-of-thought (CoT). In this work, we present a theoretical analysis of transformers learning on synthetic state-tracking tasks with gradient descent. We mathematically prove how the algebraic structure of state-tracking problems governs the degree of extrapolation of the learned CoT. Specifically, our theory characterizes the length generalization of transformers through the mechanism of attention concentration, linking the retrieval robustness of the attention layer to the state-tracking task structure of long-context reasoning. Moreover, for transformers with limited reasoning length, we prove that a recursive self-training scheme can progressively extend the range of solvable problem lengths. To our knowledge, we provide the first optimization guarantee that constant-depth transformers provably learn $\mathsf{NC}^1$-complete problems with CoT, significantly going beyond prior art confined in $\mathsf{TC}^0$, unless the widely held conjecture $\mathsf{TC}^0 \neq \mathsf{NC}^1$ fails. Finally, we present a broad set of experiments supporting our theoretical results, confirming the length generalization behaviors and the mechanism of attention concentration.
comment: This is the full version of a paper published at NeurIPS 2025
☆ Provable Benefit of Curriculum in Transformer Tree-Reasoning Post-Training
Recent curriculum techniques in the post-training stage of LLMs have been widely observed to outperform non-curriculum approaches in enhancing reasoning performance, yet a principled understanding of why and to what extent they work remains elusive. To address this gap, we develop a theoretical framework grounded in the intuition that progressively learning through manageable steps is more efficient than directly tackling a hard reasoning task, provided each stage stays within the model's effective competence. Under mild complexity conditions linking consecutive curriculum stages, we show that curriculum post-training avoids the exponential complexity bottleneck. To substantiate this result, drawing insights from the Chain-of-Thoughts (CoTs) solving mathematical problems such as Countdown and parity, we model CoT generation as a states-conditioned autoregressive reasoning tree, define a uniform-branching base model to capture pretrained behavior, and formalize curriculum stages as either depth-increasing (longer reasoning chains) or hint-decreasing (shorter prefixes) subtasks. Our analysis shows that, under outcome-only reward signals, reinforcement learning finetuning achieves high accuracy with polynomial sample complexity, whereas direct learning suffers from an exponential bottleneck. We further establish analogous guarantees for test-time scaling, where curriculum-aware querying reduces both reward oracle calls and sampling cost from exponential to polynomial order.
☆ Consistency Is Not Always Correct: Towards Understanding the Role of Exploration in Post-Training Reasoning
Foundation models exhibit broad knowledge but limited task-specific reasoning, motivating post-training strategies such as RLVR and inference scaling with outcome or process reward models (ORM/PRM). While recent work highlights the role of exploration and entropy stability in improving pass@K, empirical evidence points to a paradox: RLVR and ORM/PRM typically reinforce existing tree-like reasoning paths rather than expanding the reasoning scope, raising the question of why exploration helps at all if no new patterns emerge. To reconcile this paradox, we adopt the perspective of Kim et al. (2025), viewing easy (e.g., simplifying a fraction) versus hard (e.g., discovering a symmetry) reasoning steps as low- versus high-probability Markov transitions, and formalize post-training dynamics through Multi-task Tree-structured Markov Chains (TMC). In this tractable model, pretraining corresponds to tree expansion, while post-training corresponds to chain-of-thought reweighting. We show that several phenomena recently observed in empirical studies arise naturally in this setting: (1) RLVR induces a squeezing effect, reducing reasoning entropy and forgetting some correct paths; (2) population rewards of ORM/PRM encourage consistency rather than accuracy, thereby favoring common patterns; and (3) certain rare, high-uncertainty reasoning paths by the base model are responsible for solving hard problem instances. Together, these explain why exploration -- even when confined to the base model's reasoning scope -- remains essential: it preserves access to rare but crucial reasoning traces needed for difficult cases, which are squeezed out by RLVR or unfavored by inference scaling. Building on this, we further show that exploration strategies such as rejecting easy instances and KL regularization help preserve rare reasoning traces. Empirical simulations corroborate our theoretical results.
☆ UAV-Assisted Resilience in 6G and Beyond Network Energy Saving: A Multi-Agent DRL Approach
This paper investigates the unmanned aerial vehicle (UAV)-assisted resilience perspective in the 6G network energy saving (NES) scenario. More specifically, we consider multiple ground base stations (GBSs) and each GBS has three different sectors/cells in the terrestrial networks, and multiple cells are turned off due to NES or incidents, e.g., disasters, hardware failures, or outages. To address this, we propose a Multi-Agent Deep Deterministic Policy Gradient (MADDPG) framework to enable UAV-assisted communication by jointly optimizing UAV trajectories, transmission power, and user-UAV association under a sleeping ground base station (GBS) strategy. This framework aims to ensure the resilience of active users in the network and the long-term operability of UAVs. Specifically, it maximizes service coverage for users during power outages or NES zones, while minimizing the energy consumption of UAVs. Simulation results demonstrate that the proposed MADDPG policy consistently achieves high coverage ratio across different testing episodes, outperforming other baselines. Moreover, the MADDPG framework attains the lowest total energy consumption, with a reduction of approximately 24\% compared to the conventional all GBS ON configuration, while maintaining a comparable user service rate. These results confirm the effectiveness of the proposed approach in achieving a superior trade-off between energy efficiency and service performance, supporting the development of sustainable and resilient UAV-assisted cellular networks.
comment: 6 pages, 5 figures, 1 table
☆ Private Sketches for Linear Regression
Linear regression is frequently applied in a variety of domains. In order to improve the efficiency of these methods, various methods have been developed that compute summaries or \emph{sketches} of the datasets. Certain domains, however, contain sensitive data which necessitates that the application of these statistical methods does not reveal private information. Differentially private (DP) linear regression methods have been developed for mitigating this problem. These techniques typically involve estimating a noisy version of the parameter vector. Instead, we propose releasing private sketches of the datasets. We present differentially private sketches for the problems of least squares regression, as well as least absolute deviations regression. The availability of these private sketches facilitates the application of commonly available solvers for regression, without the risk of privacy leakage.
comment: 13 pages
☆ Self-Evaluating LLMs for Multi-Step Tasks: Stepwise Confidence Estimation for Failure Detection NeurIPS 2025
Reliability and failure detection of large language models (LLMs) is critical for their deployment in high-stakes, multi-step reasoning tasks. Prior work explores confidence estimation for self-evaluating LLM-scorer systems, with confidence scorers estimating the likelihood of errors in LLM responses. However, most methods focus on single-step outputs and overlook the challenges of multi-step reasoning. In this work, we extend self-evaluation techniques to multi-step tasks, testing two intuitive approaches: holistic scoring and step-by-step scoring. Using two multi-step benchmark datasets, we show that stepwise evaluation generally outperforms holistic scoring in detecting potential errors, with up to 15% relative increase in AUC-ROC. Our findings demonstrate that self-evaluating LLM systems provide meaningful confidence estimates in complex reasoning, improving their trustworthiness and providing a practical framework for failure detection.
comment: Accepted at NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
☆ Inference-Time Scaling of Diffusion Models for Infrared Data Generation
Infrared imagery enables temperature-based scene understanding using passive sensors, particularly under conditions of low visibility where traditional RGB imaging fails. Yet, developing downstream vision models for infrared applications is hindered by the scarcity of high-quality annotated data, due to the specialized expertise required for infrared annotation. While synthetic infrared image generation has the potential to accelerate model development by providing large-scale, diverse training data, training foundation-level generative diffusion models in the infrared domain has remained elusive due to limited datasets. In light of such data constraints, we explore an inference-time scaling approach using a domain-adapted CLIP-based verifier for enhanced infrared image generation quality. We adapt FLUX.1-dev, a state-of-the-art text-to-image diffusion model, to the infrared domain by finetuning it on a small sample of infrared images using parameter-efficient techniques. The trained verifier is then employed during inference to guide the diffusion sampling process toward higher quality infrared generations that better align with input text prompts. Empirically, we find that our approach leads to consistent improvements in generation quality, reducing FID scores on the KAIST Multispectral Pedestrian Detection Benchmark dataset by 10% compared to unguided baseline samples. Our results suggest that inference-time guidance offers a promising direction for bridging the domain gap in low-data infrared settings.
comment: Peer-reviewed workshop paper
☆ Walsh-Hadamard Neural Operators for Solving PDEs with Discontinuous Coefficients
Neural operators have emerged as powerful tools for learning solution operators of partial differential equations (PDEs). However, standard spectral methods based on Fourier transforms struggle with problems involving discontinuous coefficients due to the Gibbs phenomenon and poor representation of sharp interfaces. We introduce the Walsh-Hadamard Neural Operator (WHNO), which leverages Walsh-Hadamard transforms-a spectral basis of rectangular wave functions naturally suited for piecewise constant fields-combined with learnable spectral weights that transform low-sequency Walsh coefficients to capture global dependencies efficiently. We validate WHNO on three problems: steady-state Darcy flow (preliminary validation), heat conduction with discontinuous thermal conductivity, and the 2D Burgers equation with discontinuous initial conditions. In controlled comparisons with Fourier Neural Operators (FNO) under identical conditions, WHNO demonstrates superior accuracy with better preservation of sharp solution features at material interfaces. Critically, we discover that weighted ensemble combinations of WHNO and FNO achieve substantial improvements over either model alone: for both heat conduction and Burgers equation, optimal ensembles reduce mean squared error by 35-40 percent and maximum error by up to 25 percent compared to individual models. This demonstrates that Walsh-Hadamard and Fourier representations capture complementary aspects of discontinuous PDE solutions, with WHNO excelling at sharp interfaces while FNO captures smooth features effectively.
☆ TNT: Improving Chunkwise Training for Test-Time Memorization
Recurrent neural networks (RNNs) with deep test-time memorization modules, such as Titans and TTT, represent a promising, linearly-scaling paradigm distinct from Transformers. While these expressive models do not yet match the peak performance of state-of-the-art Transformers, their potential has been largely untapped due to prohibitively slow training and low hardware utilization. Existing parallelization methods force a fundamental conflict governed by the chunksize hyperparameter: large chunks boost speed but degrade performance, necessitating a fixed, suboptimal compromise. To solve this challenge, we introduce TNT, a novel training paradigm that decouples training efficiency from inference performance through a two-stage process. Stage one is an efficiency-focused pre-training phase utilizing a hierarchical memory. A global module processes large, hardware-friendly chunks for long-range context, while multiple parallel local modules handle fine-grained details. Crucially, by periodically resetting local memory states, we break sequential dependencies to enable massive context parallelization. Stage two is a brief fine-tuning phase where only the local memory modules are adapted to a smaller, high-resolution chunksize, maximizing accuracy with minimal overhead. Evaluated on Titans and TTT models, TNT achieves a substantial acceleration in training speed-up to 17 times faster than the most accurate baseline configuration - while simultaneously improving model accuracy. This improvement removes a critical scalability barrier, establishing a practical foundation for developing expressive RNNs and facilitating future work to close the performance gap with Transformers.
☆ DeepPersona: A Generative Engine for Scaling Deep Synthetic Personas NeurIPS 2025
Simulating human profiles by instilling personas into large language models (LLMs) is rapidly transforming research in agentic behavioral simulation, LLM personalization, and human-AI alignment. However, most existing synthetic personas remain shallow and simplistic, capturing minimal attributes and failing to reflect the rich complexity and diversity of real human identities. We introduce DEEPPERSONA, a scalable generative engine for synthesizing narrative-complete synthetic personas through a two-stage, taxonomy-guided method. First, we algorithmically construct the largest-ever human-attribute taxonomy, comprising over hundreds of hierarchically organized attributes, by mining thousands of real user-ChatGPT conversations. Second, we progressively sample attributes from this taxonomy, conditionally generating coherent and realistic personas that average hundreds of structured attributes and roughly 1 MB of narrative text, two orders of magnitude deeper than prior works. Intrinsic evaluations confirm significant improvements in attribute diversity (32 percent higher coverage) and profile uniqueness (44 percent greater) compared to state-of-the-art baselines. Extrinsically, our personas enhance GPT-4.1-mini's personalized question answering accuracy by 11.6 percent on average across ten metrics and substantially narrow (by 31.7 percent) the gap between simulated LLM citizens and authentic human responses in social surveys. Our generated national citizens reduced the performance gap on the Big Five personality test by 17 percent relative to LLM-simulated citizens. DEEPPERSONA thus provides a rigorous, scalable, and privacy-free platform for high-fidelity human simulation and personalized AI research.
comment: 12 pages, 5 figures, accepted at LAW 2025 Workshop (NeurIPS 2025)
☆ Grounding Computer Use Agents on Human Demonstrations
Building reliable computer-use agents requires grounding: accurately connecting natural language instructions to the correct on-screen elements. While large datasets exist for web and mobile interactions, high-quality resources for desktop environments are limited. To address this gap, we introduce GroundCUA, a large-scale desktop grounding dataset built from expert human demonstrations. It covers 87 applications across 12 categories and includes 56K screenshots, with every on-screen element carefully annotated for a total of over 3.56M human-verified annotations. From these demonstrations, we generate diverse instructions that capture a wide range of real-world tasks, providing high-quality data for model training. Using GroundCUA, we develop the GroundNext family of models that map instructions to their target UI elements. At both 3B and 7B scales, GroundNext achieves state-of-the-art results across five benchmarks using supervised fine-tuning, while requiring less than one-tenth the training data of prior work. Reinforcement learning post-training further improves performance, and when evaluated in an agentic setting on the OSWorld benchmark using o3 as planner, GroundNext attains comparable or superior results to models trained with substantially more data,. These results demonstrate the critical role of high-quality, expert-driven datasets in advancing general-purpose computer-use agents.
☆ Preparation of Fractal-Inspired Computational Architectures for Advanced Large Language Model Analysis
It introduces FractalNet, a fractal-inspired computational architectures for advanced large language model analysis that mainly challenges model diversity on a large scale in an efficient manner. The new set-up involves a template-driven generator, runner, and evaluation framework that, through systematic permutations of convolutional, normalization, activation, and dropout layers, can create more than 1,200 variants of neural networks. Fractal templates allow for structural recursion and multi-column pathways, thus, models become deeper and wider in a balanced way. Training utilizes PyTorch, Automatic Mixed Precision (AMP), and gradient checkpointing and is carried out on the CIFAR-10 dataset for five epochs. The outcomes show that fractal-based architectures are capable of strong performance and are computationally efficient. The paper positions fractal design as a feasible and resource-efficient method of automated architecture exploration.
☆ Q-RAG: Long Context Multi-step Retrieval via Value-based Embedder Training
Retrieval-Augmented Generation (RAG) methods enhance LLM performance by efficiently filtering relevant context for LLMs, reducing hallucinations and inference cost. However, most existing RAG methods focus on single-step retrieval, which is often insufficient for answering complex questions that require multi-step search. Recently, multi-step retrieval approaches have emerged, typically involving the fine-tuning of small LLMs to perform multi-step retrieval. This type of fine-tuning is highly resource-intensive and does not enable the use of larger LLMs. In this work, we propose Q-RAG, a novel approach that fine-tunes the Embedder model for multi-step retrieval using reinforcement learning (RL). Q-RAG offers a competitive, resource-efficient alternative to existing multi-step retrieval methods for open-domain question answering and achieves state-of-the-art results on the popular long-context benchmarks Babilong and RULER for contexts up to 10M tokens.
comment: 16 pages, 3 figures, 2 tables
☆ Garbage Vulnerable Point Monitoring using IoT and Computer Vision
This paper proposes a smart way to manage municipal solid waste by using the Internet of Things (IoT) and computer vision (CV) to monitor illegal waste dumping at garbage vulnerable points (GVPs) in urban areas. The system can quickly detect and monitor dumped waste using a street-level camera and object detection algorithm. Data was collected from the Sangareddy district in Telangana, India. A series of comprehensive experiments was carried out using the proposed dataset to assess the accuracy and overall performance of various object detection models. Specifically, we performed an in-depth evaluation of YOLOv8, YOLOv10, YOLO11m, and RT-DETR on our dataset. Among these models, YOLO11m achieved the highest accuracy of 92.39\% in waste detection, demonstrating its effectiveness in detecting waste. Additionally, it attains an mAP@50 of 0.91, highlighting its high precision. These findings confirm that the object detection model is well-suited for monitoring and tracking waste dumping events at GVP locations. Furthermore, the system effectively captures waste disposal patterns, including hourly, daily, and weekly dumping trends, ensuring comprehensive daily and nightly monitoring.
☆ When Bias Pretends to Be Truth: How Spurious Correlations Undermine Hallucination Detection in LLMs
Despite substantial advances, large language models (LLMs) continue to exhibit hallucinations, generating plausible yet incorrect responses. In this paper, we highlight a critical yet previously underexplored class of hallucinations driven by spurious correlations -- superficial but statistically prominent associations between features (e.g., surnames) and attributes (e.g., nationality) present in the training data. We demonstrate that these spurious correlations induce hallucinations that are confidently generated, immune to model scaling, evade current detection methods, and persist even after refusal fine-tuning. Through systematically controlled synthetic experiments and empirical evaluations on state-of-the-art open-source and proprietary LLMs (including GPT-5), we show that existing hallucination detection methods, such as confidence-based filtering and inner-state probing, fundamentally fail in the presence of spurious correlations. Our theoretical analysis further elucidates why these statistical biases intrinsically undermine confidence-based detection techniques. Our findings thus emphasize the urgent need for new approaches explicitly designed to address hallucinations caused by spurious correlations.
☆ RLVE: Scaling Up Reinforcement Learning for Language Models with Adaptive Verifiable Environments
We introduce Reinforcement Learning (RL) with Adaptive Verifiable Environments (RLVE), an approach using verifiable environments that procedurally generate problems and provide algorithmically verifiable rewards, to scale up RL for language models (LMs). RLVE enables each verifiable environment to dynamically adapt its problem difficulty distribution to the policy model's capabilities as training progresses. In contrast, static data distributions often lead to vanishing learning signals when problems are either too easy or too hard for the policy. To implement RLVE, we create RLVE-Gym, a large-scale suite of 400 verifiable environments carefully developed through manual environment engineering. Using RLVE-Gym, we show that environment scaling, i.e., expanding the collection of training environments, consistently improves generalizable reasoning capabilities. RLVE with joint training across all 400 environments in RLVE-Gym yields a 3.37% absolute average improvement across six reasoning benchmarks, starting from one of the strongest 1.5B reasoning LMs. By comparison, continuing this LM's original RL training yields only a 0.49% average absolute gain despite using over 3x more compute. We release our code publicly.
☆ De-Individualizing fMRI Signals via Mahalanobis Whitening and Bures Geometry
Functional connectivity has been widely investigated to understand brain disease in clinical studies and imaging-based neuroscience, and analyzing changes in functional connectivity has proven to be valuable for understanding and computationally evaluating the effects on brain function caused by diseases or experimental stimuli. By using Mahalanobis data whitening prior to the use of dimensionality reduction algorithms, we are able to distill meaningful information from fMRI signals about subjects and the experimental stimuli used to prompt them. Furthermore, we offer an interpretation of Mahalanobis whitening as a two-stage de-individualization of data which is motivated by similarity as captured by the Bures distance, which is connected to quantum mechanics. These methods have potential to aid discoveries about the mechanisms that link brain function with cognition and behavior and may improve the accuracy and consistency of Alzheimer's diagnosis, especially in the preclinical stage of disease progression.
comment: 34 pages, 7 figures
☆ Superhuman AI for Stratego Using Self-Play Reinforcement Learning and Test-Time Search
Few classical games have been regarded as such significant benchmarks of artificial intelligence as to have justified training costs in the millions of dollars. Among these, Stratego -- a board wargame exemplifying the challenge of strategic decision making under massive amounts of hidden information -- stands apart as a case where such efforts failed to produce performance at the level of top humans. This work establishes a step change in both performance and cost for Stratego, showing that it is now possible not only to reach the level of top humans, but to achieve vastly superhuman level -- and that doing so requires not an industrial budget, but merely a few thousand dollars. We achieved this result by developing general approaches for self-play reinforcement learning and test-time search under imperfect information.
☆ Can Training Dynamics of Scale-Invariant Neural Networks Be Explained by the Thermodynamics of an Ideal Gas?
Understanding the training dynamics of deep neural networks remains a major open problem, with physics-inspired approaches offering promising insights. Building on this perspective, we develop a thermodynamic framework to describe the stationary distributions of stochastic gradient descent (SGD) with weight decay for scale-invariant neural networks, a setting that both reflects practical architectures with normalization layers and permits theoretical analysis. We establish analogies between training hyperparameters (e.g., learning rate, weight decay) and thermodynamic variables such as temperature, pressure, and volume. Starting with a simplified isotropic noise model, we uncover a close correspondence between SGD dynamics and ideal gas behavior, validated through theory and simulation. Extending to training of neural networks, we show that key predictions of the framework, including the behavior of stationary entropy, align closely with experimental observations. This framework provides a principled foundation for interpreting training dynamics and may guide future work on hyperparameter tuning and the design of learning rate schedulers.
☆ Enabling Off-Policy Imitation Learning with Deep Actor Critic Stabilization
Learning complex policies with Reinforcement Learning (RL) is often hindered by instability and slow convergence, a problem exacerbated by the difficulty of reward engineering. Imitation Learning (IL) from expert demonstrations bypasses this reliance on rewards. However, state-of-the-art IL methods, exemplified by Generative Adversarial Imitation Learning (GAIL)Ho et. al, suffer from severe sample inefficiency. This is a direct consequence of their foundational on-policy algorithms, such as TRPO Schulman et.al. In this work, we introduce an adversarial imitation learning algorithm that incorporates off-policy learning to improve sample efficiency. By combining an off-policy framework with auxiliary techniques specifically, double Q network based stabilization and value learning without reward function inference we demonstrate a reduction in the samples required to robustly match expert behavior.
comment: 14 pages and 4 images
☆ MG-HGNN: A Heterogeneous GNN Framework for Indoor Wi-Fi Fingerprint-Based Localization
Received signal strength indicator (RSSI) is the primary representation of Wi-Fi fingerprints and serves as a crucial tool for indoor localization. However, existing RSSI-based positioning methods often suffer from reduced accuracy due to environmental complexity and challenges in processing multi-source information. To address these issues, we propose a novel multi-graph heterogeneous GNN framework (MG-HGNN) to enhance spatial awareness and improve positioning performance. In this framework, two graph construction branches perform node and edge embedding, respectively, to generate informative graphs. Subsequently, a heterogeneous graph neural network is employed for graph representation learning, enabling accurate positioning. The MG-HGNN framework introduces the following key innovations: 1) multi-type task-directed graph construction that combines label estimation and feature encoding for richer graph information; 2) a heterogeneous GNN structure that enhances the performance of conventional GNN models. Evaluations on the UJIIndoorLoc and UTSIndoorLoc public datasets demonstrate that MG-HGNN not only achieves superior performance compared to several state-of-the-art methods, but also provides a novel perspective for enhancing GNN-based localization methods. Ablation studies further confirm the rationality and effectiveness of the proposed framework.
comment: 16 pages, 11 figures, 11 tables
☆ The Value of Personalized Recommendations: Evidence from Netflix
Personalized recommendation systems shape much of user choice online, yet their targeted nature makes separating out the value of recommendation and the underlying goods challenging. We build a discrete choice model that embeds recommendation-induced utility, low-rank heterogeneity, and flexible state dependence and apply the model to viewership data at Netflix. We exploit idiosyncratic variation introduced by the recommendation algorithm to identify and separately value these components as well as to recover model-free diversion ratios that we can use to validate our structural model. We use the model to evaluate counterfactuals that quantify the incremental engagement generated by personalized recommendations. First, we show that replacing the current recommender system with a matrix factorization or popularity-based algorithm would lead to 4% and 12% reduction in engagement, respectively, and decreased consumption diversity. Second, most of the consumption increase from recommendations comes from effective targeting, not mechanical exposure, with the largest gains for mid-popularity goods (as opposed to broadly appealing or very niche goods).
☆ RobustA: Robust Anomaly Detection in Multimodal Data
In recent years, multimodal anomaly detection methods have demonstrated remarkable performance improvements over video-only models. However, real-world multimodal data is often corrupted due to unforeseen environmental distortions. In this paper, we present the first-of-its-kind work that comprehensively investigates the adverse effects of corrupted modalities on multimodal anomaly detection task. To streamline this work, we propose RobustA, a carefully curated evaluation dataset to systematically observe the impacts of audio and visual corruptions on the overall effectiveness of anomaly detection systems. Furthermore, we propose a multimodal anomaly detection method, which shows notable resilience against corrupted modalities. The proposed method learns a shared representation space for different modalities and employs a dynamic weighting scheme during inference based on the estimated level of corruption. Our work represents a significant step forward in enabling the real-world application of multimodal anomaly detection, addressing situations where the likely events of modality corruptions occur. The proposed evaluation dataset with corrupted modalities and respective extracted features will be made publicly available.
comment: Submitted to IEEE Transactions on Image Processing
☆ Multi-modal Dynamic Proxy Learning for Personalized Multiple Clustering AAAI 2026
Multiple clustering aims to discover diverse latent structures from different perspectives, yet existing methods generate exhaustive clusterings without discerning user interest, necessitating laborious manual screening. Current multi-modal solutions suffer from static semantic rigidity: predefined candidate words fail to adapt to dataset-specific concepts, and fixed fusion strategies ignore evolving feature interactions. To overcome these limitations, we propose Multi-DProxy, a novel multi-modal dynamic proxy learning framework that leverages cross-modal alignment through learnable textual proxies. Multi-DProxy introduces 1) gated cross-modal fusion that synthesizes discriminative joint representations by adaptively modeling feature interactions. 2) dual-constraint proxy optimization where user interest constraints enforce semantic consistency with domain concepts while concept constraints employ hard example mining to enhance cluster discrimination. 3) dynamic candidate management that refines textual proxies through iterative clustering feedback. Therefore, Multi-DProxy not only effectively captures a user's interest through proxies but also enables the identification of relevant clusterings with greater precision. Extensive experiments demonstrate state-of-the-art performance with significant improvements over existing methods across a broad set of multi-clustering benchmarks.
comment: Accepted by AAAI 2026
☆ Understanding the role of depth in the neural tangent kernel for overparameterized neural networks
Overparameterized fully-connected neural networks have been shown to behave like kernel models when trained with gradient descent, under mild conditions on the width, the learning rate, and the parameter initialization. In the limit of infinitely large widths and small learning rate, the kernel that is obtained allows to represent the output of the learned model with a closed-form solution. This closed-form solution hinges on the invertibility of the limiting kernel, a property that often holds on real-world datasets. In this work, we analyze the sensitivity of large ReLU networks to increasing depths by characterizing the corresponding limiting kernel. Our theoretical results demonstrate that the normalized limiting kernel approaches the matrix of ones. In contrast, they show the corresponding closed-form solution approaches a fixed limit on the sphere. We empirically evaluate the order of magnitude in network depth required to observe this convergent behavior, and we describe the essential properties that enable the generalization of our results to other kernels.
☆ High-Dimensional Asymptotics of Differentially Private PCA
In differential privacy, statistics of a sensitive dataset are privatized by introducing random noise. Most privacy analyses provide privacy bounds specifying a noise level sufficient to achieve a target privacy guarantee. Sometimes, these bounds are pessimistic and suggest adding excessive noise, which overwhelms the meaningful signal. It remains unclear if such high noise levels are truly necessary or a limitation of the proof techniques. This paper explores whether we can obtain sharp privacy characterizations that identify the smallest noise level required to achieve a target privacy level for a given mechanism. We study this problem in the context of differentially private principal component analysis, where the goal is to privatize the leading principal components (PCs) of a dataset with n samples and p features. We analyze the exponential mechanism for this problem in a model-free setting and provide sharp utility and privacy characterizations in the high-dimensional limit ($p\rightarrow\infty$). Our privacy result shows that, in high dimensions, detecting the presence of a target individual in the dataset using the privatized PCs is exactly as hard as distinguishing two Gaussians with slightly different means, where the mean difference depends on certain spectral properties of the dataset. Our privacy analysis combines the hypothesis-testing formulation of privacy guarantees proposed by Dong, Roth, and Su (2022) with classical contiguity arguments due to Le Cam to obtain sharp high-dimensional privacy characterizations.
☆ AgenticSciML: Collaborative Multi-Agent Systems for Emergent Discovery in Scientific Machine Learning
Scientific Machine Learning (SciML) integrates data-driven inference with physical modeling to solve complex problems in science and engineering. However, the design of SciML architectures, loss formulations, and training strategies remains an expert-driven research process, requiring extensive experimentation and problem-specific insights. Here we introduce AgenticSciML, a collaborative multi-agent system in which over 10 specialized AI agents collaborate to propose, critique, and refine SciML solutions through structured reasoning and iterative evolution. The framework integrates structured debate, retrieval-augmented method memory, and ensemble-guided evolutionary search, enabling the agents to generate and assess new hypotheses about architectures and optimization procedures. Across physics-informed learning and operator learning tasks, the framework discovers solution methods that outperform single-agent and human-designed baselines by up to four orders of magnitude in error reduction. The agents produce novel strategies -- including adaptive mixture-of-expert architectures, decomposition-based PINNs, and physics-informed operator learning models -- that do not appear explicitly in the curated knowledge base. These results show that collaborative reasoning among AI agents can yield emergent methodological innovation, suggesting a path toward scalable, transparent, and autonomous discovery in scientific computing.
☆ PADiff: Predictive and Adaptive Diffusion Policies for Ad Hoc Teamwork AAAI
Ad hoc teamwork (AHT) requires agents to collaborate with previously unseen teammates, which is crucial for many real-world applications. The core challenge of AHT is to develop an ego agent that can predict and adapt to unknown teammates on the fly. Conventional RL-based approaches optimize a single expected return, which often causes policies to collapse into a single dominant behavior, thus failing to capture the multimodal cooperation patterns inherent in AHT. In this work, we introduce PADiff, a diffusion-based approach that captures agent's multimodal behaviors, unlocking its diverse cooperation modes with teammates. However, standard diffusion models lack the ability to predict and adapt in highly non-stationary AHT scenarios. To address this limitation, we propose a novel diffusion-based policy that integrates critical predictive information about teammates into the denoising process. Extensive experiments across three cooperation environments demonstrate that PADiff outperforms existing AHT methods significantly.
comment: Accepted by the 40th AAAI conference on Artificial Intelligence (AAAI 2026)
☆ A Fully Polynomial-Time Algorithm for Robustly Learning Halfspaces over the Hypercube
We give the first fully polynomial-time algorithm for learning halfspaces with respect to the uniform distribution on the hypercube in the presence of contamination, where an adversary may corrupt some fraction of examples and labels arbitrarily. We achieve an error guarantee of $\eta^{O(1)}+\epsilon$ where $\eta$ is the noise rate. Such a result was not known even in the agnostic setting, where only labels can be adversarially corrupted. All prior work over the last two decades has a superpolynomial dependence in $1/\epsilon$ or succeeds only with respect to continuous marginals (such as log-concave densities). Previous analyses rely heavily on various structural properties of continuous distributions such as anti-concentration. Our approach avoids these requirements and makes use of a new algorithm for learning Generalized Linear Models (GLMs) with only a polylogarithmic dependence on the activation function's Lipschitz constant. More generally, our framework shows that supervised learning with respect to discrete distributions is not as difficult as previously thought.
comment: 52 pages, 1 figure
☆ The Few Govern the Many:Unveiling Few-Layer Dominance for Time Series Models
Large-scale models are at the forefront of time series (TS) forecasting, dominated by two paradigms: fine-tuning text-based Large Language Models (LLM4TS) and training Time Series Foundation Models (TSFMs) from scratch. Both approaches share a foundational assumption that scaling up model capacity and data volume leads to improved performance. However, we observe a \textit{\textbf{scaling paradox}} in TS models, revealing a puzzling phenomenon that larger models do \emph{NOT} achieve better performance. Through extensive experiments on two model families across four scales (100M to 1.7B parameters) and diverse data (up to 6B observations), we rigorously confirm that the scaling paradox is a pervasive issue. We then diagnose its root cause by analyzing internal representations, identifying a phenomenon we call \textit{few-layer dominance}: only a small subset of layers are functionally important, while the majority are redundant, under-utilized, and can even distract training. Based on this discovery, we propose a practical method to automatically identify and retain only these dominant layers. In our models, retaining only 21\% of the parameters achieves up to a 12\% accuracy improvement and a 2.7$\times$ inference speedup. We validate the universality of our method on 8 prominent SOTA models (LLM4TS and TSFMs, 90M to 6B), showing that retaining less than 30\% of layers achieves comparable or superior accuracy in over 95\% of tasks.
☆ Does TabPFN Understand Causal Structures?
Causal discovery is fundamental for multiple scientific domains, yet extracting causal information from real world data remains a significant challenge. Given the recent success on real data, we investigate whether TabPFN, a transformer-based tabular foundation model pre-trained on synthetic datasets generated from structural causal models, encodes causal information in its internal representations. We develop an adapter framework using a learnable decoder and causal tokens that extract causal signals from TabPFN's frozen embeddings and decode them into adjacency matrices for causal discovery. Our evaluations demonstrate that TabPFN's embeddings contain causal information, outperforming several traditional causal discovery algorithms, with such causal information being concentrated in mid-range layers. These findings establish a new direction for interpretable and adaptable foundation models and demonstrate the potential for leveraging pre-trained tabular models for causal discovery.
☆ Deep Neural Operator Learning for Probabilistic Models
We propose a deep neural-operator framework for a general class of probability models. Under global Lipschitz conditions on the operator over the entire Euclidean space-and for a broad class of probabilistic models-we establish a universal approximation theorem with explicit network-size bounds for the proposed architecture. The underlying stochastic processes are required only to satisfy integrability and general tail-probability conditions. We verify these assumptions for both European and American option-pricing problems within the forward-backward SDE (FBSDE) framework, which in turn covers a broad class of operators arising from parabolic PDEs, with or without free boundaries. Finally, we present a numerical example for a basket of American options, demonstrating that the learned model produces optimal stopping boundaries for new strike prices without retraining.
comment: 36 pages, 1 figure
☆ Noise & pattern: identity-anchored Tikhonov regularization for robust structural anomaly detection
Anomaly detection plays a pivotal role in automated industrial inspection, aiming to identify subtle or rare defects in otherwise uniform visual patterns. As collecting representative examples of all possible anomalies is infeasible, we tackle structural anomaly detection using a self-supervised autoencoder that learns to repair corrupted inputs. To this end, we introduce a corruption model that injects artificial disruptions into training images to mimic structural defects. While reminiscent of denoising autoencoders, our approach differs in two key aspects. First, instead of unstructured i.i.d.\ noise, we apply structured, spatially coherent perturbations that make the task a hybrid of segmentation and inpainting. Second, and counterintuitively, we add and preserve Gaussian noise on top of the occlusions, which acts as a Tikhonov regularizer anchoring the Jacobian of the reconstruction function toward identity. This identity-anchored regularization stabilizes reconstruction and further improves both detection and segmentation accuracy. On the MVTec AD benchmark, our method achieves state-of-the-art results (I/P-AUROC: 99.9/99.4), supporting our theoretical framework and demonstrating its practical relevance for automatic inspection.
☆ DETECT: Data-Driven Evaluation of Treatments Enabled by Classification Transformers ICDM 2025
Chronic pain is a global health challenge affecting millions of individuals, making it essential for physicians to have reliable and objective methods to measure the functional impact of clinical treatments. Traditionally used methods, like the numeric rating scale, while personalized and easy to use, are subjective due to their self-reported nature. Thus, this paper proposes DETECT (Data-Driven Evaluation of Treatments Enabled by Classification Transformers), a data-driven framework that assesses treatment success by comparing patient activities of daily life before and after treatment. We use DETECT on public benchmark datasets and simulated patient data from smartphone sensors. Our results demonstrate that DETECT is objective yet lightweight, making it a significant and novel contribution to clinical decision-making. By using DETECT, independently or together with other self-reported metrics, physicians can improve their understanding of their treatment impacts, ultimately leading to more personalized and responsive patient care.
comment: 5 pages, 4 figures, 2 tables, accepted for presentation by IEEE ICDM 2025 UGHS Symposium and publication with proceedings forthcoming
☆ Breaking the Stealth-Potency Trade-off in Clean-Image Backdoors with Generative Trigger Optimization AAAI '26
Clean-image backdoor attacks, which use only label manipulation in training datasets to compromise deep neural networks, pose a significant threat to security-critical applications. A critical flaw in existing methods is that the poison rate required for a successful attack induces a proportional, and thus noticeable, drop in Clean Accuracy (CA), undermining their stealthiness. This paper presents a new paradigm for clean-image attacks that minimizes this accuracy degradation by optimizing the trigger itself. We introduce Generative Clean-Image Backdoors (GCB), a framework that uses a conditional InfoGAN to identify naturally occurring image features that can serve as potent and stealthy triggers. By ensuring these triggers are easily separable from benign task-related features, GCB enables a victim model to learn the backdoor from an extremely small set of poisoned examples, resulting in a CA drop of less than 1%. Our experiments demonstrate GCB's remarkable versatility, successfully adapting to six datasets, five architectures, and four tasks, including the first demonstration of clean-image backdoors in regression and segmentation. GCB also exhibits resilience against most of the existing backdoor defenses.
comment: 19 pages, 22 figures, 15 tables. To appear in AAAI '26 (Oral). This paper extends the AAAI-2026 version by including the Appendix
☆ SMiLE: Provably Enforcing Global Relational Properties in Neural Networks
Artificial Intelligence systems are increasingly deployed in settings where ensuring robustness, fairness, or domain-specific properties is essential for regulation compliance and alignment with human values. However, especially on Neural Networks, property enforcement is very challenging, and existing methods are limited to specific constraints or local properties (defined around datapoints), or fail to provide full guarantees. We tackle these limitations by extending SMiLE, a recently proposed enforcement framework for NNs, to support global relational properties (defined over the entire input space). The proposed approach scales well with model complexity, accommodates general properties and backbones, and provides full satisfaction guarantees. We evaluate SMiLE on monotonicity, global robustness, and individual fairness, on synthetic and real data, for regression and classification tasks. Our approach is competitive with property-specific baselines in terms of accuracy and runtime, and strictly superior in terms of generality and level of guarantees. Overall, our results emphasize the potential of the SMiLE framework as a platform for future research and applications.
☆ Synergy over Discrepancy: A Partition-Based Approach to Multi-Domain LLM Fine-Tuning NeurIPS 2025
Large language models (LLMs) demonstrate impressive generalization abilities, yet adapting them effectively across multiple heterogeneous domains remains challenging due to inter-domain interference. To overcome this challenge, we propose a partition-based multi-stage fine-tuning framework designed to exploit inter-domain synergies while minimizing negative transfer. Our approach strategically partitions domains into subsets (stages) by balancing domain discrepancy, synergy, and model capacity constraints. We theoretically analyze the proposed framework and derive novel generalization bounds that justify our partitioning strategy. Extensive empirical evaluations on various language understanding tasks show that our method consistently outperforms state-of-the-art baselines.
comment: 20 pages, 5 figures, 21 tables. Accepted at NeurIPS 2025. Corresponding author: Xuan Zhang (xuanzhang2199@gmail.com)
☆ Simulation-based Methods for Optimal Sampling Design in Systems Biology
In many areas of systems biology, including virology, pharmacokinetics, and population biology, dynamical systems are commonly used to describe biological processes. These systems can be characterized by estimating their parameters from sampled data. The key problem is how to optimally select sampling points to achieve accurate parameter estimation. Classical approaches often rely on Fisher information matrix-based criteria such as A-, D-, and E-optimality, which require an initial parameter estimate and may yield suboptimal results when the estimate is inaccurate. This study proposes two simulation-based methods for optimal sampling design that do not depend on initial parameter estimates. The first method, E-optimal-ranking (EOR), employs the E-optimal criterion, while the second utilizes a Long Short-Term Memory (LSTM) neural network. Simulation studies based on the Lotka-Volterra and three-compartment models demonstrate that the proposed methods outperform both random selection and classical E-optimal design.
☆ Federated Learning for Video Violence Detection: Complementary Roles of Lightweight CNNs and Vision-Language Models for Energy-Efficient Use ICTAI 2025
Deep learning-based video surveillance increasingly demands privacy-preserving architectures with low computational and environmental overhead. Federated learning preserves privacy but deploying large vision-language models (VLMs) introduces major energy and sustainability challenges. We compare three strategies for federated violence detection under realistic non-IID splits on the RWF-2000 and RLVS datasets: zero-shot inference with pretrained VLMs, LoRA-based fine-tuning of LLaVA-NeXT-Video-7B, and personalized federated learning of a 65.8M-parameter 3D CNN. All methods exceed 90% accuracy in binary violence detection. The 3D CNN achieves superior calibration (ROC AUC 92.59%) at roughly half the energy cost (240 Wh vs. 570 Wh) of federated LoRA, while VLMs provide richer multimodal reasoning. Hierarchical category grouping (based on semantic similarity and class exclusion) boosts VLM multiclass accuracy from 65.31% to 81% on the UCF-Crime dataset. To our knowledge, this is the first comparative simulation study of LoRA-tuned VLMs and personalized CNNs for federated violence detection, with explicit energy and CO2e quantification. Our results inform hybrid deployment strategies that default to efficient CNNs for routine inference and selectively engage VLMs for complex contextual reasoning.
comment: 5 pages, 3 figures, ICTAI 2025
☆ On Stealing Graph Neural Network Models
Current graph neural network (GNN) model-stealing methods rely heavily on queries to the victim model, assuming no hard query limits. However, in reality, the number of allowed queries can be severely limited. In this paper, we demonstrate how an adversary can extract the GNN with very limited interactions with the model. Our approach first enables the adversary to obtain the model backbone without making direct queries to the victim model and then to strategically utilize a fixed query limit to extract the most informative data. The experiments on eight real-world datasets demonstrate the effectiveness of the attack, even under a very restricted query limit and under defense against model extraction in place. Our findings underscore the need for robust defenses against GNN model extraction threats.
☆ Fuzzy Label: From Concept to Its Application in Label Learning
Label learning is a fundamental task in machine learning that aims to construct intelligent models using labeled data, encompassing traditional single-label and multi-label classification models. Traditional methods typically rely on logical labels, such as binary indicators (e.g., "yes/no") that specify whether an instance belongs to a given category. However, in practical applications, label annotations often involve significant uncertainty due to factors such as data noise, inherent ambiguity in the observed entities, and the subjectivity of human annotators. Therefore, representing labels using simplistic binary logic can obscure valuable information and limit the expressiveness of label learning models. To overcome this limitation, this paper introduces the concept of fuzzy labels, grounded in fuzzy set theory, to better capture and represent label uncertainty. We further propose an efficient fuzzy labeling method that mines and generates fuzzy labels from the original data, thereby enriching the label space with more informative and nuanced representations. Based on this foundation, we present fuzzy-label-enhanced algorithms for both single-label and multi-label learning, using the classical K-Nearest Neighbors (KNN) and multi-label KNN algorithms as illustrative examples. Experimental results indicate that fuzzy labels can more effectively characterize the real-world labeling information and significantly enhance the performance of label learning models.
☆ Combining digital data streams and epidemic networks for real time outbreak detection
Responding to disease outbreaks requires close surveillance of their trajectories, but outbreak detection is hindered by the high noise in epidemic time series. Aggregating information across data sources has shown great denoising ability in other fields, but remains underexplored in epidemiology. Here, we present LRTrend, an interpretable machine learning framework to identify outbreaks in real time. LRTrend effectively aggregates diverse health and behavioral data streams within one region and learns disease-specific epidemic networks to aggregate information across regions. We reveal diverse epidemic clusters and connections across the United States that are not well explained by commonly used human mobility networks and may be informative for future public health coordination. We apply LRTrend to 2 years of COVID-19 data in 305 hospital referral regions and frequently detect regional Delta and Omicron waves within 2 weeks of the outbreak's start, when case counts are a small fraction of the wave's resulting peak.
☆ LLMscape NeurIPS 2025
LLMscape is an interactive installation that investigates how humans and AI construct meaning under shared conditions of uncertainty. Within a mutable, projection-mapped landscape, human participants reshape the world and engage with multiple AI agents, each developing incomplete and provisional accounts of their environment. Exhibited in Shanghai and continually evolving, the work positions AI not as deterministic tools but as embodied co-witnesses to an unstable world, examining the parallels between human and artificial meaning-making and inviting reflection on our shared epistemic limits.
comment: Accepted to NeurIPS 2025, Creative AI Track
☆ Guiding Generative Models to Uncover Diverse and Novel Crystals via Reinforcement Learning
Discovering functional crystalline materials entails navigating an immense combinatorial design space. While recent advances in generative artificial intelligence have enabled the sampling of chemically plausible compositions and structures, a fundamental challenge remains: the objective misalignment between likelihood-based sampling in generative modelling and targeted focus on underexplored regions where novel compounds reside. Here, we introduce a reinforcement learning framework that guides latent denoising diffusion models toward diverse and novel, yet thermodynamically viable crystalline compounds. Our approach integrates group relative policy optimisation with verifiable, multi-objective rewards that jointly balance creativity, stability, and diversity. Beyond de novo generation, we demonstrate enhanced property-guided design that preserves chemical validity, while targeting desired functional properties. This approach establishes a modular foundation for controllable AI-driven inverse design that addresses the novelty-validity trade-off across scientific discovery applications of generative models.
☆ Conditional Diffusion as Latent Constraints for Controllable Symbolic Music Generation
Recent advances in latent diffusion models have demonstrated state-of-the-art performance in high-dimensional time-series data synthesis while providing flexible control through conditioning and guidance. However, existing methodologies primarily rely on musical context or natural language as the main modality of interacting with the generative process, which may not be ideal for expert users who seek precise fader-like control over specific musical attributes. In this work, we explore the application of denoising diffusion processes as plug-and-play latent constraints for unconditional symbolic music generation models. We focus on a framework that leverages a library of small conditional diffusion models operating as implicit probabilistic priors on the latents of a frozen unconditional backbone. While previous studies have explored domain-specific use cases, this work, to the best of our knowledge, is the first to demonstrate the versatility of such an approach across a diverse array of musical attributes, such as note density, pitch range, contour, and rhythm complexity. Our experiments show that diffusion-driven constraints outperform traditional attribute regularization and other latent constraints architectures, achieving significantly stronger correlations between target and generated attributes while maintaining high perceptual quality and diversity.
☆ Dynamics-Decoupled Trajectory Alignment for Sim-to-Real Transfer in Reinforcement Learning for Autonomous Driving
Reinforcement learning (RL) has shown promise in robotics, but deploying RL on real vehicles remains challenging due to the complexity of vehicle dynamics and the mismatch between simulation and reality. Factors such as tire characteristics, road surface conditions, aerodynamic disturbances, and vehicle load make it infeasible to model real-world dynamics accurately, which hinders direct transfer of RL agents trained in simulation. In this paper, we present a framework that decouples motion planning from vehicle control through a spatial and temporal alignment strategy between a virtual vehicle and the real system. An RL agent is first trained in simulation using a kinematic bicycle model to output continuous control actions. Its behavior is then distilled into a trajectory-predicting agent that generates finite-horizon ego-vehicle trajectories, enabling synchronization between virtual and real vehicles. At deployment, a Stanley controller governs lateral dynamics, while longitudinal alignment is maintained through adaptive update mechanisms that compensate for deviations between virtual and real trajectories. We validate our approach on a real vehicle and demonstrate that the proposed alignment strategy enables robust zero-shot transfer of RL-based motion planning from simulation to reality, successfully decoupling high-level trajectory generation from low-level vehicle control.
☆ Trading Vector Data in Vector Databases ICDE 2026
Vector data trading is essential for cross-domain learning with vector databases, yet it remains largely unexplored. We study this problem under online learning, where sellers face uncertain retrieval costs and buyers provide stochastic feedback to posted prices. Three main challenges arise: (1) heterogeneous and partial feedback in configuration learning, (2) variable and complex feedback in pricing learning, and (3) inherent coupling between configuration and pricing decisions. We propose a hierarchical bandit framework that jointly optimizes retrieval configurations and pricing. Stage I employs contextual clustering with confidence-based exploration to learn effective configurations with logarithmic regret. Stage II adopts interval-based price selection with local Taylor approximation to estimate buyer responses and achieve sublinear regret. We establish theoretical guarantees with polynomial time complexity and validate the framework on four real-world datasets, demonstrating consistent improvements in cumulative reward and regret reduction compared with existing methods.
comment: Accepted by ICDE 2026
☆ LoRA on the Go: Instance-level Dynamic LoRA Selection and Merging
Low-Rank Adaptation (LoRA) has emerged as a parameter-efficient approach for fine-tuning large language models.However, conventional LoRA adapters are typically trained for a single task, limiting their applicability in real-world settings where inputs may span diverse and unpredictable domains. At inference time, existing approaches combine multiple LoRAs for improving performance on diverse tasks, while usually requiring labeled data or additional task-specific training, which is expensive at scale. In this work, we introduce LoRA on the Go (LoGo), a training-free framework that dynamically selects and merges adapters at the instance level without any additional requirements. LoGo leverages signals extracted from a single forward pass through LoRA adapters, to identify the most relevant adapters and determine their contributions on-the-fly. Across 5 NLP benchmarks, 27 datasets, and 3 model families, LoGo outperforms training-based baselines on some tasks upto a margin of 3.6% while remaining competitive on other tasks and maintaining inference throughput, highlighting its effectiveness and practicality.
☆ REACT-LLM: A Benchmark for Evaluating LLM Integration with Causal Features in Clinical Prognostic Tasks
Large Language Models (LLMs) and causal learning each hold strong potential for clinical decision making (CDM). However, their synergy remains poorly understood, largely due to the lack of systematic benchmarks evaluating their integration in clinical risk prediction. In real-world healthcare, identifying features with causal influence on outcomes is crucial for actionable and trustworthy predictions. While recent work highlights LLMs' emerging causal reasoning abilities, there lacks comprehensive benchmarks to assess their causal learning and performance informed by causal features in clinical risk prediction. To address this, we introduce REACT-LLM, a benchmark designed to evaluate whether combining LLMs with causal features can enhance clinical prognostic performance and potentially outperform traditional machine learning (ML) methods. Unlike existing LLM-clinical benchmarks that often focus on a limited set of outcomes, REACT-LLM evaluates 7 clinical outcomes across 2 real-world datasets, comparing 15 prominent LLMs, 6 traditional ML models, and 3 causal discovery (CD) algorithms. Our findings indicate that while LLMs perform reasonably in clinical prognostics, they have not yet outperformed traditional ML models. Integrating causal features derived from CD algorithms into LLMs offers limited performance gains, primarily due to the strict assumptions of many CD methods, which are often violated in complex clinical data. While the direct integration yields limited improvement, our benchmark reveals a more promising synergy.
☆ Think Consistently, Reason Efficiently: Energy-Based Calibration for Implicit Chain-of-Thought
Large Language Models (LLMs) have demonstrated strong reasoning capabilities through \emph{Chain-of-Thought} (CoT) prompting, which enables step-by-step intermediate reasoning. However, explicit CoT methods rely on discrete token-level reasoning processes that are prone to error propagation and limited by vocabulary expressiveness, often resulting in rigid and inconsistent reasoning trajectories. Recent research has explored implicit or continuous reasoning in latent spaces, allowing models to perform internal reasoning before generating explicit output. Although such approaches alleviate some limitations of discrete CoT, they generally lack explicit mechanisms to enforce consistency among reasoning steps, leading to divergent reasoning paths and unstable outcomes. To address this issue, we propose EBM-CoT, an Energy-Based Chain-of-Thought Calibration framework that refines latent thought representations through an energy-based model (EBM). Our method dynamically adjusts latent reasoning trajectories toward lower-energy, high-consistency regions in the embedding space, improving both reasoning accuracy and consistency without modifying the base language model. Extensive experiments across mathematical, commonsense, and symbolic reasoning benchmarks demonstrate that the proposed framework significantly enhances the consistency and efficiency of multi-step reasoning in LLMs.
☆ On the Joint Minimization of Regularization Loss Functions in Deep Variational Bayesian Methods for Attribute-Controlled Symbolic Music Generation
Explicit latent variable models provide a flexible yet powerful framework for data synthesis, enabling controlled manipulation of generative factors. With latent variables drawn from a tractable probability density function that can be further constrained, these models enable continuous and semantically rich exploration of the output space by navigating their latent spaces. Structured latent representations are typically obtained through the joint minimization of regularization loss functions. In variational information bottleneck models, reconstruction loss and Kullback-Leibler Divergence (KLD) are often linearly combined with an auxiliary Attribute-Regularization (AR) loss. However, balancing KLD and AR turns out to be a very delicate matter. When KLD dominates over AR, generative models tend to lack controllability; when AR dominates over KLD, the stochastic encoder is encouraged to violate the standard normal prior. We explore this trade-off in the context of symbolic music generation with explicit control over continuous musical attributes. We show that existing approaches struggle to jointly minimize both regularization objectives, whereas suitable attribute transformations can help achieve both controllability and regularization of the target latent dimensions.
comment: IEEE Catalog No.: CFP2540S-ART ISBN: 978-9-46-459362-4
☆ A Provably-Correct and Robust Convex Model for Smooth Separable NMF
Nonnegative matrix factorization (NMF) is a linear dimensionality reduction technique for nonnegative data, with applications such as hyperspectral unmixing and topic modeling. NMF is a difficult problem in general (NP-hard), and its solutions are typically not unique. To address these two issues, additional constraints or assumptions are often used. In particular, separability assumes that the basis vectors in the NMF are equal to some columns of the input matrix. In that case, the problem is referred to as separable NMF (SNMF) and can be solved in polynomial-time with robustness guarantees, while identifying a unique solution. However, in real-world scenarios, due to noise or variability, multiple data points may lie near the basis vectors, which SNMF does not leverage. In this work, we rely on the smooth separability assumption, which assumes that each basis vector is close to multiple data points. We explore the properties of the corresponding problem, referred to as smooth SNMF (SSNMF), and examine how it relates to SNMF and orthogonal NMF. We then propose a convex model for SSNMF and show that it provably recovers the sought-after factors, even in the presence of noise. We finally adapt an existing fast gradient method to solve this convex model for SSNMF, and show that it compares favorably with state-of-the-art methods on both synthetic and hyperspectral datasets.
comment: 30 pages, 10 figures, code available from https://github.com/vleplat/ConvexSmoothSeparableNMF.git
☆ E2E-VGuard: Adversarial Prevention for Production LLM-based End-To-End Speech Synthesis NeurIPS 2025
Recent advancements in speech synthesis technology have enriched our daily lives, with high-quality and human-like audio widely adopted across real-world applications. However, malicious exploitation like voice-cloning fraud poses severe security risks. Existing defense techniques struggle to address the production large language model (LLM)-based speech synthesis. While previous studies have considered the protection for fine-tuning synthesizers, they assume manually annotated transcripts. Given the labor intensity of manual annotation, end-to-end (E2E) systems leveraging automatic speech recognition (ASR) to generate transcripts are becoming increasingly prevalent, e.g., voice cloning via commercial APIs. Therefore, this E2E speech synthesis also requires new security mechanisms. To tackle these challenges, we propose E2E-VGuard, a proactive defense framework for two emerging threats: (1) production LLM-based speech synthesis, and (2) the novel attack arising from ASR-driven E2E scenarios. Specifically, we employ the encoder ensemble with a feature extractor to protect timbre, while ASR-targeted adversarial examples disrupt pronunciation. Moreover, we incorporate the psychoacoustic model to ensure perturbative imperceptibility. For a comprehensive evaluation, we test 16 open-source synthesizers and 3 commercial APIs across Chinese and English datasets, confirming E2E-VGuard's effectiveness in timbre and pronunciation protection. Real-world deployment validation is also conducted. Our code and demo page are available at https://wxzyd123.github.io/e2e-vguard/.
comment: Accepted to NeurIPS 2025
☆ Sample-efficient quantum error mitigation via classical learning surrogates
The pursuit of practical quantum utility on near-term quantum processors is critically challenged by their inherent noise. Quantum error mitigation (QEM) techniques are leading solutions to improve computation fidelity with relatively low qubit-overhead, while full-scale quantum error correction remains a distant goal. However, QEM techniques incur substantial measurement overheads, especially when applied to families of quantum circuits parameterized by classical inputs. Focusing on zero-noise extrapolation (ZNE), a widely adopted QEM technique, here we devise the surrogate-enabled ZNE (S-ZNE), which leverages classical learning surrogates to perform ZNE entirely on the classical side. Unlike conventional ZNE, whose measurement cost scales linearly with the number of circuits, S-ZNE requires only constant measurement overhead for an entire family of quantum circuits, offering superior scalability. Theoretical analysis indicates that S-ZNE achieves accuracy comparable to conventional ZNE in many practical scenarios, and numerical experiments on up to 100-qubit ground-state energy and quantum metrology tasks confirm its effectiveness. Our approach provides a template that can be effectively extended to other quantum error mitigation protocols, opening a promising path toward scalable error mitigation.
comment: 26 pages, 8 figures
☆ Direct Molecular Polarizability Prediction with SO(3) Equivariant Local Frame GNNs
We introduce a novel equivariant graph neural network (GNN) architecture designed to predict the tensorial response properties of molecules. Unlike traditional frameworks that focus on regressing scalar quantities and derive tensorial properties from their derivatives, our approach maintains $SO(3)$-equivariance through the use of local coordinate frames. Our GNN effectively captures geometric information by integrating scalar, vector, and tensor channels within a local message-passing framework. To assess the accuracy of our model, we apply it to predict the polarizabilities of molecules in the QM7-X dataset and show that tensorial message passing outperforms scalar message passing models. This work marks an advancement towards developing structured, geometry-aware neural models for molecular property prediction.
☆ Breaking Privacy in Federated Clustering: Perfect Input Reconstruction via Temporal Correlations
Federated clustering allows multiple parties to discover patterns in distributed data without sharing raw samples. To reduce overhead, many protocols disclose intermediate centroids during training. While often treated as harmless for efficiency, whether such disclosure compromises privacy remains an open question. Prior analyses modeled the problem as a so-called Hidden Subset Sum Problem (HSSP) and argued that centroid release may be safe, since classical HSSP attacks fail to recover inputs. We revisit this question and uncover a new leakage mechanism: temporal regularities in $k$-means iterations create exploitable structure that enables perfect input reconstruction. Building on this insight, we propose Trajectory-Aware Reconstruction (TAR), an attack that combines temporal assignment information with algebraic analysis to recover exact original inputs. Our findings provide the first rigorous evidence, supported by a practical attack, that centroid disclosure in federated clustering significantly compromises privacy, exposing a fundamental tension between privacy and efficiency.
☆ RedOne 2.0: Rethinking Domain-specific LLM Post-Training in Social Networking Services
As a key medium for human interaction and information exchange, social networking services (SNS) pose unique challenges for large language models (LLMs): heterogeneous workloads, fast-shifting norms and slang, and multilingual, culturally diverse corpora that induce sharp distribution shift. Supervised fine-tuning (SFT) can specialize models but often triggers a ``seesaw'' between in-distribution gains and out-of-distribution robustness, especially for smaller models. To address these challenges, we introduce RedOne 2.0, an SNS-oriented LLM trained with a progressive, RL-prioritized post-training paradigm designed for rapid and stable adaptation. The pipeline consist in three stages: (1) Exploratory Learning on curated SNS corpora to establish initial alignment and identify systematic weaknesses; (2) Targeted Fine-Tuning that selectively applies SFT to the diagnosed gaps while mixing a small fraction of general data to mitigate forgetting; and (3) Refinement Learning that re-applies RL with SNS-centric signals to consolidate improvements and harmonize trade-offs across tasks. Across various tasks spanning three categories, our 4B scale model delivers an average improvements about 2.41 over the 7B sub-optimal baseline. Additionally, RedOne 2.0 achieves average performance lift about 8.74 from the base model with less than half the data required by SFT-centric method RedOne, evidencing superior data efficiency and stability at compact scales. Overall, RedOne 2.0 establishes a competitive, cost-effective baseline for domain-specific LLMs in SNS scenario, advancing capability without sacrificing robustness.
☆ ClusterMine: Robust Label-Free Visual Out-Of-Distribution Detection via Concept Mining from Text Corpora WACV 2026
Large-scale visual out-of-distribution (OOD) detection has witnessed remarkable progress by leveraging vision-language models such as CLIP. However, a significant limitation of current methods is their reliance on a pre-defined set of in-distribution (ID) ground-truth label names (positives). These fixed label names can be unavailable, unreliable at scale, or become less relevant due to in-distribution shifts after deployment. Towards truly unsupervised OOD detection, we utilize widely available text corpora for positive label mining, bypassing the need for positives. In this paper, we utilize widely available text corpora for positive label mining under a general concept mining paradigm. Within this framework, we propose ClusterMine, a novel positive label mining method. ClusterMine is the first method to achieve state-of-the-art OOD detection performance without access to positive labels. It extracts positive concepts from a large text corpus by combining visual-only sample consistency (via clustering) and zero-shot image-text consistency. Our experimental study reveals that ClusterMine is scalable across a plethora of CLIP models and achieves state-of-the-art robustness to covariate in-distribution shifts. The code is available at https://github.com/HHU-MMBS/clustermine_wacv_official.
comment: Accepted in WACV 2026. Code in https://github.com/HHU-MMBS/clustermine_wacv_official 9 Tables, 11 Figures
☆ Aligning Attention with Human Rationales for Self-Explaining Hate Speech Detection AAAI
The opaque nature of deep learning models presents significant challenges for the ethical deployment of hate speech detection systems. To address this limitation, we introduce Supervised Rational Attention (SRA), a framework that explicitly aligns model attention with human rationales, improving both interpretability and fairness in hate speech classification. SRA integrates a supervised attention mechanism into transformer-based classifiers, optimizing a joint objective that combines standard classification loss with an alignment loss term that minimizes the discrepancy between attention weights and human-annotated rationales. We evaluated SRA on hate speech benchmarks in English (HateXplain) and Portuguese (HateBRXplain) with rationale annotations. Empirically, SRA achieves 2.4x better explainability compared to current baselines, and produces token-level explanations that are more faithful and human-aligned. In terms of fairness, SRA achieves competitive fairness across all measures, with second-best performance in detecting toxic posts targeting identity groups, while maintaining comparable results on other metrics. These findings demonstrate that incorporating human rationales into attention mechanisms can enhance interpretability and faithfulness without compromising fairness.
comment: Accepted at the Annual AAAI Conference on Artificial Intelligence (AAAI26)
☆ When Sufficient is not Enough: Utilizing the Rashomon Effect for Complete Evidence Extraction
Feature attribution methods typically provide minimal sufficient evidence justifying a model decision. However, in many applications this is inadequate. For compliance and cataloging, the full set of contributing features must be identified - complete evidence. We perform a case study on a medical dataset which contains human-annotated complete evidence. We show that individual models typically recover only subsets of complete evidence and that aggregating evidence from several models improves evidence recall from $\sim$0.60 (single best model) to $\sim$0.86 (ensemble). We analyze the recall-precision trade-off, the role of training with evidence, dynamic ensembles with certainty thresholds, and discuss implications.
☆ Anatomy-Aware Lymphoma Lesion Detection in Whole-Body PET/CT
Early cancer detection is crucial for improving patient outcomes, and 18F FDG PET/CT imaging plays a vital role by combining metabolic and anatomical information. Accurate lesion detection remains challenging due to the need to identify multiple lesions of varying sizes. In this study, we investigate the effect of adding anatomy prior information to deep learning-based lesion detection models. In particular, we add organ segmentation masks from the TotalSegmentator tool as auxiliary inputs to provide anatomical context to nnDetection, which is the state-of-the-art for lesion detection, and Swin Transformer. The latter is trained in two stages that combine self-supervised pre-training and supervised fine-tuning. The method is tested in the AutoPET and Karolinska lymphoma datasets. The results indicate that the inclusion of anatomical priors substantially improves the detection performance within the nnDetection framework, while it has almost no impact on the performance of the vision transformer. Moreover, we observe that Swin Transformer does not offer clear advantages over conventional convolutional neural network (CNN) encoders used in nnDetection. These findings highlight the critical role of the anatomical context in cancer lesion detection, especially in CNN-based models.
☆ Learning Quantized Continuous Controllers for Integer Hardware
Deploying continuous-control reinforcement learning policies on embedded hardware requires meeting tight latency and power budgets. Small FPGAs can deliver these, but only if costly floating point pipelines are avoided. We study quantization-aware training (QAT) of policies for integer inference and we present a learning-to-hardware pipeline that automatically selects low-bit policies and synthesizes them to an Artix-7 FPGA. Across five MuJoCo tasks, we obtain policy networks that are competitive with full precision (FP32) policies but require as few as 3 or even only 2 bits per weight, and per internal activation value, as long as input precision is chosen carefully. On the target hardware, the selected policies achieve inference latencies on the order of microseconds and consume microjoules per action, favorably comparing to a quantized reference. Last, we observe that the quantized policies exhibit increased input noise robustness compared to the floating-point baseline.
comment: 17 pages, 6 figures
☆ Fair Bayesian Data Selection via Generalized Discrepancy Measures
Fairness concerns are increasingly critical as machine learning models are deployed in high-stakes applications. While existing fairness-aware methods typically intervene at the model level, they often suffer from high computational costs, limited scalability, and poor generalization. To address these challenges, we propose a Bayesian data selection framework that ensures fairness by aligning group-specific posterior distributions of model parameters and sample weights with a shared central distribution. Our framework supports flexible alignment via various distributional discrepancy measures, including Wasserstein distance, maximum mean discrepancy, and $f$-divergence, allowing geometry-aware control without imposing explicit fairness constraints. This data-centric approach mitigates group-specific biases in training data and improves fairness in downstream tasks, with theoretical guarantees. Experiments on benchmark datasets show that our method consistently outperforms existing data selection and model-based fairness methods in both fairness and accuracy.
☆ Correcting False Alarms from Unseen: Adapting Graph Anomaly Detectors at Test Time AAAI 2026
Graph anomaly detection (GAD), which aims to detect outliers in graph-structured data, has received increasing research attention recently. However, existing GAD methods assume identical training and testing distributions, which is rarely valid in practice. In real-world scenarios, unseen but normal samples may emerge during deployment, leading to a normality shift that degrades the performance of GAD models trained on the original data. Through empirical analysis, we reveal that the degradation arises from (1) semantic confusion, where unseen normal samples are misinterpreted as anomalies due to their novel patterns, and (2) aggregation contamination, where the representations of seen normal nodes are distorted by unseen normals through message aggregation. While retraining or fine-tuning GAD models could be a potential solution to the above challenges, the high cost of model retraining and the difficulty of obtaining labeled data often render this approach impractical in real-world applications. To bridge the gap, we proposed a lightweight and plug-and-play Test-time adaptation framework for correcting Unseen Normal pattErns (TUNE) in GAD. To address semantic confusion, a graph aligner is employed to align the shifted data to the original one at the graph attribute level. Moreover, we utilize the minimization of representation-level shift as a supervision signal to train the aligner, which leverages the estimated aggregation contamination as a key indicator of normality shift. Extensive experiments on 10 real-world datasets demonstrate that TUNE significantly enhances the generalizability of pre-trained GAD models to both synthetic and real unseen normal patterns.
comment: 9 pages, 5 figures, accepted by AAAI 2026
☆ Multilingual Lexical Feature Analysis of Spoken Language for Predicting Major Depression Symptom Severity
Background: Captured between clinical appointments using mobile devices, spoken language has potential for objective, more regular assessment of symptom severity and earlier detection of relapse in major depressive disorder. However, research to date has largely been in non-clinical cross-sectional samples of written language using complex machine learning (ML) approaches with limited interpretability. Methods: We describe an initial exploratory analysis of longitudinal speech data and PHQ-8 assessments from 5,836 recordings of 586 participants in the UK, Netherlands, and Spain, collected in the RADAR-MDD study. We sought to identify interpretable lexical features associated with MDD symptom severity with linear mixed-effects modelling. Interpretable features and high-dimensional vector embeddings were also used to test the prediction performance of four regressor ML models. Results: In English data, MDD symptom severity was associated with 7 features including lexical diversity measures and absolutist language. In Dutch, associations were observed with words per sentence and positive word frequency; no associations were observed in recordings collected in Spain. The predictive power of lexical features and vector embeddings was near chance level across all languages. Limitations: Smaller samples in non-English speech and methodological choices, such as the elicitation prompt, may have also limited the effect sizes observable. A lack of NLP tools in languages other than English restricted our feature choice. Conclusion: To understand the value of lexical markers in clinical research and practice, further research is needed in larger samples across several languages using improved protocols, and ML models that account for within- and between-individual variations in language.
☆ TrueCity: Real and Simulated Urban Data for Cross-Domain 3D Scene Understanding 3DV 2026
3D semantic scene understanding remains a long-standing challenge in the 3D computer vision community. One of the key issues pertains to limited real-world annotated data to facilitate generalizable models. The common practice to tackle this issue is to simulate new data. Although synthetic datasets offer scalability and perfect labels, their designer-crafted scenes fail to capture real-world complexity and sensor noise, resulting in a synthetic-to-real domain gap. Moreover, no benchmark provides synchronized real and simulated point clouds for segmentation-oriented domain shift analysis. We introduce TrueCity, the first urban semantic segmentation benchmark with cm-accurate annotated real-world point clouds, semantic 3D city models, and annotated simulated point clouds representing the same city. TrueCity proposes segmentation classes aligned with international 3D city modeling standards, enabling consistent evaluation of synthetic-to-real gap. Our extensive experiments on common baselines quantify domain shift and highlight strategies for exploiting synthetic data to enhance real-world 3D scene understanding. We are convinced that the TrueCity dataset will foster further development of sim-to-real gap quantification and enable generalizable data-driven models. The data, code, and 3D models are available online: https://tum-gis.github.io/TrueCity/
comment: The paper accepted for 3DV 2026 (International Conference on 3D Vision 2026)
☆ S$^2$Drug: Bridging Protein Sequence and 3D Structure in Contrastive Representation Learning for Virtual Screening AAAI 2026
Virtual screening (VS) is an essential task in drug discovery, focusing on the identification of small-molecule ligands that bind to specific protein pockets. Existing deep learning methods, from early regression models to recent contrastive learning approaches, primarily rely on structural data while overlooking protein sequences, which are more accessible and can enhance generalizability. However, directly integrating protein sequences poses challenges due to the redundancy and noise in large-scale protein-ligand datasets. To address these limitations, we propose \textbf{S$^2$Drug}, a two-stage framework that explicitly incorporates protein \textbf{S}equence information and 3D \textbf{S}tructure context in protein-ligand contrastive representation learning. In the first stage, we perform protein sequence pretraining on ChemBL using an ESM2-based backbone, combined with a tailored data sampling strategy to reduce redundancy and noise on both protein and ligand sides. In the second stage, we fine-tune on PDBBind by fusing sequence and structure information through a residue-level gating module, while introducing an auxiliary binding site prediction task. This auxiliary task guides the model to accurately localize binding residues within the protein sequence and capture their 3D spatial arrangement, thereby refining protein-ligand matching. Across multiple benchmarks, S$^2$Drug consistently improves virtual screening performance and achieves strong results on binding site prediction, demonstrating the value of bridging sequence and structure in contrastive learning.
comment: Accepted by AAAI 2026 Main Technical Track
☆ CoLM: Collaborative Large Models via A Client-Server Paradigm
Large models have achieved remarkable performance across a range of reasoning and understanding tasks. Prior work often utilizes model ensembles or multi-agent systems to collaboratively generate responses, effectively operating in a server-to-server paradigm. However, such approaches do not align well with practical deployment settings, where a limited number of server-side models are shared by many clients under modern internet architectures. In this paper, we introduce \textbf{CoLM} (\textbf{Co}llaboration in \textbf{L}arge-\textbf{M}odels), a novel framework for collaborative reasoning that redefines cooperation among large models from a client-server perspective. Unlike traditional ensemble methods that rely on simultaneous inference from multiple models to produce a single output, CoLM allows the outputs of multiple models to be aggregated or shared, enabling each client model to independently refine and update its own generation based on these high-quality outputs. This design enables collaborative benefits by fully leveraging both client-side and shared server-side models. We further extend CoLM to vision-language models (VLMs), demonstrating its applicability beyond language tasks. Experimental results across multiple benchmarks show that CoLM consistently improves model performance on previously failed queries, highlighting the effectiveness of collaborative guidance in enhancing single-model capabilities.
☆ HCFSLN: Adaptive Hyperbolic Few-Shot Learning for Multimodal Anxiety Detection
Anxiety disorders impact millions globally, yet traditional diagnosis relies on clinical interviews, while machine learning models struggle with overfitting due to limited data. Large-scale data collection remains costly and time-consuming, restricting accessibility. To address this, we introduce the Hyperbolic Curvature Few-Shot Learning Network (HCFSLN), a novel Few-Shot Learning (FSL) framework for multimodal anxiety detection, integrating speech, physiological signals, and video data. HCFSLN enhances feature separability through hyperbolic embeddings, cross-modal attention, and an adaptive gating network, enabling robust classification with minimal data. We collected a multimodal anxiety dataset from 108 participants and benchmarked HCFSLN against six FSL baselines, achieving 88% accuracy, outperforming the best baseline by 14%. These results highlight the effectiveness of hyperbolic space for modeling anxiety-related speech patterns and demonstrate FSL's potential for anxiety classification.
☆ Breaking the Gradient Barrier: Unveiling Large Language Models for Strategic Classification NeurIPS 2025
Strategic classification~(SC) explores how individuals or entities modify their features strategically to achieve favorable classification outcomes. However, existing SC methods, which are largely based on linear models or shallow neural networks, face significant limitations in terms of scalability and capacity when applied to real-world datasets with significantly increasing scale, especially in financial services and the internet sector. In this paper, we investigate how to leverage large language models to design a more scalable and efficient SC framework, especially in the case of growing individuals engaged with decision-making processes. Specifically, we introduce GLIM, a gradient-free SC method grounded in in-context learning. During the feed-forward process of self-attention, GLIM implicitly simulates the typical bi-level optimization process of SC, including both the feature manipulation and decision rule optimization. Without fine-tuning the LLMs, our proposed GLIM enjoys the advantage of cost-effective adaptation in dynamic strategic environments. Theoretically, we prove GLIM can support pre-trained LLMs to adapt to a broad range of strategic manipulations. We validate our approach through experiments with a collection of pre-trained LLMs on real-world and synthetic datasets in financial and internet domains, demonstrating that our GLIM exhibits both robustness and efficiency, and offering an effective solution for large-scale SC tasks.
comment: Accepted by NeurIPS 2025
☆ Fast Bayesian Updates via Harmonic Representations
Bayesian inference, while foundational to probabilistic reasoning, is often hampered by the computational intractability of posterior distributions, particularly through the challenging evidence integral. Conventional approaches like Markov Chain Monte Carlo (MCMC) and Variational Inference (VI) face significant scalability and efficiency limitations. This paper introduces a novel, unifying framework for fast Bayesian updates by leveraging harmonic analysis. We demonstrate that representing the prior and likelihood in a suitable orthogonal basis transforms the Bayesian update rule into a spectral convolution. Specifically, the Fourier coefficients of the posterior are shown to be the normalized convolution of the prior and likelihood coefficients. To achieve computational feasibility, we introduce a spectral truncation scheme, which, for smooth functions, yields an exceptionally accurate finite-dimensional approximation and reduces the update to a circular convolution. This formulation allows us to exploit the Fast Fourier Transform (FFT), resulting in a deterministic algorithm with O(N log N) complexity -- a substantial improvement over the O(N^2) cost of naive methods. We establish rigorous mathematical criteria for the applicability of our method, linking its efficiency to the smoothness and spectral decay of the involved distributions. The presented work offers a paradigm shift, connecting Bayesian computation to signal processing and opening avenues for real-time, sequential inference in a wide class of problems.
comment: 13 pages
☆ Rethinking Crystal Symmetry Prediction: A Decoupled Perspective
Efficiently and accurately determining the symmetry is a crucial step in the structural analysis of crystalline materials. Existing methods usually mindlessly apply deep learning models while ignoring the underlying chemical rules. More importantly, experiments show that they face a serious sub-property confusion SPC problem. To address the above challenges, from a decoupled perspective, we introduce the XRDecoupler framework, a problem-solving arsenal specifically designed to tackle the SPC problem. Imitating the thinking process of chemists, we innovatively incorporate multidimensional crystal symmetry information as superclass guidance to ensure that the model's prediction process aligns with chemical intuition. We further design a hierarchical PXRD pattern learning model and a multi-objective optimization approach to achieve high-quality representation and balanced optimization. Comprehensive evaluations on three mainstream databases (e.g., CCDC, CoREMOF, and InorganicData) demonstrate that XRDecoupler excels in performance, interpretability, and generalization.
☆ Oh That Looks Familiar: A Novel Similarity Measure for Spreadsheet Template Discovery
Traditional methods for identifying structurally similar spreadsheets fail to capture the spatial layouts and type patterns defining templates. To quantify spreadsheet similarity, we introduce a hybrid distance metric that combines semantic embeddings, data type information, and spatial positioning. In order to calculate spreadsheet similarity, our method converts spreadsheets into cell-level embeddings and then uses aggregation techniques like Chamfer and Hausdorff distances. Experiments across template families demonstrate superior unsupervised clustering performance compared to the graph-based Mondrian baseline, achieving perfect template reconstruction (Adjusted Rand Index of 1.00 versus 0.90) on the FUSTE dataset. Our approach facilitates large-scale automated template discovery, which in turn enables downstream applications such as retrieval-augmented generation over tabular collections, model training, and bulk data cleaning.
comment: 5 pages, 2 figures, Accepted for EuroIPS: AI for Tabular Data Workshop (2025)
☆ Hybrid Autoencoders for Tabular Data: Leveraging Model-Based Augmentation in Low-Label Settings
Deep neural networks often under-perform on tabular data due to their sensitivity to irrelevant features and a spectral bias toward smooth, low-frequency functions. These limitations hinder their ability to capture the sharp, high-frequency signals that often define tabular structure, especially under limited labeled samples. While self-supervised learning (SSL) offers promise in such settings, it remains challenging in tabular domains due to the lack of effective data augmentations. We propose a hybrid autoencoder that combines a neural encoder with an oblivious soft decision tree (OSDT) encoder, each guided by its own stochastic gating network that performs sample-specific feature selection. Together, these structurally different encoders and model-specific gating networks implement model-based augmentation, producing complementary input views tailored to each architecture. The two encoders, trained with a shared decoder and cross-reconstruction loss, learn distinct yet aligned representations that reflect their respective inductive biases. During training, the OSDT encoder (robust to noise and effective at modeling localized, high-frequency structure) guides the neural encoder toward representations more aligned with tabular data. At inference, only the neural encoder is used, preserving flexibility and SSL compatibility. Spectral analysis highlights the distinct inductive biases of each encoder. Our method achieves consistent gains in low-label classification and regression across diverse tabular datasets, outperforming deep and tree-based supervised baselines.
comment: accepted to neurips 2025, main text is 10 pages
☆ Learning to Focus: Prioritizing Informative Histories with Structured Attention Mechanisms in Partially Observable Reinforcement Learning NeurIPS 2025
Transformers have shown strong ability to model long-term dependencies and are increasingly adopted as world models in model-based reinforcement learning (RL) under partial observability. However, unlike natural language corpora, RL trajectories are sparse and reward-driven, making standard self-attention inefficient because it distributes weight uniformly across all past tokens rather than emphasizing the few transitions critical for control. To address this, we introduce structured inductive priors into the self-attention mechanism of the dynamics head: (i) per-head memory-length priors that constrain attention to task-specific windows, and (ii) distributional priors that learn smooth Gaussian weightings over past state-action pairs. We integrate these mechanisms into UniZero, a model-based RL agent with a Transformer-based world model that supports planning under partial observability. Experiments on the Atari 100k benchmark show that most efficiency gains arise from the Gaussian prior, which smoothly allocates attention to informative transitions, while memory-length priors often truncate useful signals with overly restrictive cut-offs. In particular, Gaussian Attention achieves a 77% relative improvement in mean human-normalized scores over UniZero. These findings suggest that in partially observable RL domains with non-stationary temporal dependencies, discrete memory windows are difficult to learn reliably, whereas smooth distributional priors flexibly adapt across horizons and yield more robust data efficiency. Overall, our results demonstrate that encoding structured temporal priors directly into self-attention improves the prioritization of informative histories for dynamics modeling under partial observability.
comment: Accepted to Embodied World Models for Decision Making (EWM) Workshop at NeurIPS 2025
☆ Fine-Tuning Diffusion-Based Recommender Systems via Reinforcement Learning with Reward Function Optimization
Diffusion models recently emerged as a powerful paradigm for recommender systems, offering state-of-the-art performance by modeling the generative process of user-item interactions. However, training such models from scratch is both computationally expensive and yields diminishing returns once convergence is reached. To remedy these challenges, we propose ReFiT, a new framework that integrates Reinforcement learning (RL)-based Fine-Tuning into diffusion-based recommender systems. In contrast to prior RL approaches for diffusion models depending on external reward models, ReFiT adopts a task-aligned design: it formulates the denoising trajectory as a Markov decision process (MDP) and incorporates a collaborative signal-aware reward function that directly reflects recommendation quality. By tightly coupling the MDP structure with this reward signal, ReFiT empowers the RL agent to exploit high-order connectivity for fine-grained optimization, while avoiding the noisy or uninformative feedback common in naive reward designs. Leveraging policy gradient optimization, ReFiT maximizes exact log-likelihood of observed interactions, thereby enabling effective post hoc fine-tuning of diffusion recommenders. Comprehensive experiments on wide-ranging real-world datasets demonstrate that the proposed ReFiT framework (a) exhibits substantial performance gains over strong competitors (up to 36.3% on sequential recommendation), (b) demonstrates strong efficiency with linear complexity in the number of users or items, and (c) generalizes well across multiple diffusion-based recommendation scenarios. The source code and datasets are publicly available at https://anonymous.4open.science/r/ReFiT-4C60.
comment: 14 pages, 12 figures, 9 tables
♻ ☆ Lagrangian neural ODEs: Measuring the existence of a Lagrangian with Helmholtz metrics NeurIPS 2025
Neural ODEs are a widely used, powerful machine learning technique in particular for physics. However, not every solution is physical in that it is an Euler-Lagrange equation. We present Helmholtz metrics to quantify this resemblance for a given ODE and demonstrate their capabilities on several fundamental systems with noise. We combine them with a second order neural ODE to form a Lagrangian neural ODE, which allows to learn Euler-Lagrange equations in a direct fashion and with zero additional inference cost. We demonstrate that, using only positional data, they can distinguish Lagrangian and non-Lagrangian systems and improve the neural ODE solutions.
comment: Accepted for the NeurIPS 2025 Machine Learning and the Physical Sciences workshop. 6 pages, 3 figures
♻ ☆ Embedding-Aware Quantum-Classical SVMs for Scalable Quantum Machine Learning ECAI 2025
Quantum Support Vector Machines face scalability challenges due to high-dimensional quantum states and hardware limitations. We propose an embedding-aware quantum-classical pipeline combining class-balanced k-means distillation with pretrained Vision Transformer embeddings. Our key finding: ViT embeddings uniquely enable quantum advantage, achieving up to 8.02% accuracy improvements over classical SVMs on Fashion-MNIST and 4.42% on MNIST, while CNN features show performance degradation. Using 16-qubit tensor network simulation via cuTensorNet, we provide the first systematic evidence that quantum kernel advantage depends critically on embedding choice, revealing fundamental synergy between transformer attention and quantum feature spaces. This provides a practical pathway for scalable quantum machine learning that leverages modern neural architectures.
comment: Accepted for Poster, Presentation and Proceedings at: 3rd International Workshop on AI for Quantum and Quantum for AI (AIQxQIA 2025), co-located with ECAI 2025, Bologna, Italy, 25-30 October 2025
♻ ☆ Sensitivity Analysis for Climate Science with Generative Flow Models
Sensitivity analysis is a cornerstone of climate science, essential for understanding phenomena ranging from storm intensity to long-term climate feedbacks. However, computing these sensitivities using traditional physical models is often prohibitively expensive in terms of both computation and development time. While modern AI-based generative models are orders of magnitude faster to evaluate, computing sensitivities with them remains a significant bottleneck. This work addresses this challenge by applying the adjoint state method for calculating gradients in generative flow models. We apply this method to the cBottle generative model, trained on ERA5 and ICON data, to perform sensitivity analysis of any atmospheric variable with respect to sea surface temperatures. We quantitatively validate the computed sensitivities against the model's own outputs. Our results provide initial evidence that this approach can produce reliable gradients, reducing the computational cost of sensitivity analysis from weeks on a supercomputer with a physical model to hours on a GPU, thereby simplifying a critical workflow in climate science. The code can be found at https://github.com/Kwartzl8/cbottle_adjoint_sensitivity.
♻ ☆ Graph-Conditional Flow Matching for Relational Data Generation AAAI26
Data synthesis is gaining momentum as a privacy-enhancing technology. While single-table tabular data generation has seen considerable progress, current methods for multi-table data often lack the flexibility and expressiveness needed to capture complex relational structures. In particular, they struggle with long-range dependencies and complex foreign-key relationships, such as tables with multiple parent tables or multiple types of links between the same pair of tables. We propose a generative model for relational data that generates the content of a relational dataset given the graph formed by the foreign-key relationships. We do this by learning a deep generative model of the content of the whole relational database by flow matching, where the neural network trained to denoise records leverages a graph neural network to obtain information from connected records. Our method is flexible, as it can support relational datasets with complex structures, and expressive, as the generation of each record can be influenced by any other record within the same connected component. We evaluate our method on several benchmark datasets and show that it achieves state-of-the-art performance in terms of synthetic data fidelity.
comment: 9 pages of main content, accepted to AAAI26 conference
♻ ☆ NOWS: Neural Operator Warm Starts for Accelerating Iterative Solvers
Partial differential equations (PDEs) underpin quantitative descriptions across the physical sciences and engineering, yet high-fidelity simulation remains a major computational bottleneck for many-query, real-time, and design tasks. Data-driven surrogates can be strikingly fast but are often unreliable when applied outside their training distribution. Here we introduce Neural Operator Warm Starts (NOWS), a hybrid strategy that harnesses learned solution operators to accelerate classical iterative solvers by producing high-quality initial guesses for Krylov methods such as conjugate gradient and GMRES. NOWS leaves existing discretizations and solver infrastructures intact, integrating seamlessly with finite-difference, finite-element, isogeometric analysis, finite volume method, etc. Across our benchmarks, the learned initialization consistently reduces iteration counts and end-to-end runtime, resulting in a reduction of the computational time of up to 90 %, while preserving the stability and convergence guarantees of the underlying numerical algorithms. By combining the rapid inference of neural operators with the rigor of traditional solvers, NOWS provides a practical and trustworthy approach to accelerate high-fidelity PDE simulations.
♻ ☆ Estimation of aboveground biomass in a tropical dry forest: An intercomparison of airborne, unmanned, and space laser scanning
According to the Paris Climate Change Agreement, all nations are required to submit reports on their greenhouse gas emissions and absorption every two years by 2024. Consequently, forests play a crucial role in reducing carbon emissions, which is essential for meeting these obligations. Recognizing the significance of forest conservation in the global battle against climate change, Article 5 of the Paris Agreement emphasizes the need for high-quality forest data. This study focuses on enhancing methods for mapping aboveground biomass in tropical dry forests. Tropical dry forests are considered one of the least understood tropical forest environments; therefore, there is a need for accurate approaches to estimate carbon pools. We employ a comparative analysis of AGB estimates, utilizing different discrete and full-waveform laser scanning datasets in conjunction with Ordinary Least Squares and Bayesian approaches SVM. Airborne Laser Scanning, Unmanned Laser Scanning, and Space Laser Scanning were used as independent variables for extracting forest metrics. Variable selection, SVM regression tuning, and cross-validation via a machine-learning approach were applied to account for overfitting and underfitting. The results indicate that six key variables primarily related to tree height: Elev\.minimum, Elev\.L3, lev\.MAD\.mode, Elev\.mode, Elev\.MAD\.median, and Elev\.skewness, are important for AGB estimation using ALSD and ULSD, while Leaf Area Index, canopy coverage and height, terrain elevation, and full-waveform signal energy emerged as the most vital variables. AGB values estimated from ten permanent tropical dry forest plots in Costa Rica Guanacaste province ranged from 26.02 Mg/ha to 175.43 Mg/ha. The SVM regressions demonstrated a 17.89 error across all laser scanning systems, with SLSF W exhibiting the lowest error 17.07 in estimating total biomass per plot.
comment: 32 pages, 17 figures, research paper
♻ ☆ CAGE: Curvature-Aware Gradient Estimation For Accurate Quantization-Aware Training
Despite significant work on low-bit quantization-aware training (QAT), there is still an accuracy gap between such techniques and native training. To address this, we introduce CAGE (Curvature-Aware Gradient Estimation), a new QAT method that augments the straight-through estimator (STE) gradient with a curvature-aware correction designed to counteract the loss increase induced by quantization. CAGE is derived from a multi-objective view of QAT that balances loss minimization with the quantization constraints, yielding a principled correction term that depends on local curvature information. On the theoretical side, we introduce the notion of Pareto-optimal solutions for quantized optimization, and establish that CAGE yields strong convergence guarantees in the smooth non-convex setting. In terms of implementation, our approach is optimizer-agnostic, but we provide a highly-efficient implementation that leverages Adam statistics. CAGE significantly improves upon the prior state-of-the-art methods in terms of accuracy, for similar computational cost: for QAT fine-tuning, it halves the compression accuracy loss relative to the prior best method, while for QAT pre-training of Llama models, its accuracy for 3-bit weights-and-activations (W3A3) matches the accuracy achieved at 4-bits (W4A4) with the prior best method. The official implementation can be found over https://github.com/IST-DASLab/CAGE .
♻ ☆ Adaptive Group Robust Ensemble Knowledge Distillation
Neural networks can learn spurious correlations in the data, often leading to performance degradation for underrepresented subgroups. Studies have demonstrated that the disparity is amplified when knowledge is distilled from a complex teacher model to a relatively ``simple'' student model. Prior work has shown that ensemble deep learning methods can improve the performance of the worst-case subgroups; however, it is unclear if this advantage carries over when distilling knowledge from an ensemble of teachers, especially when the teacher models are debiased. This study demonstrates that traditional ensemble knowledge distillation can significantly drop the performance of the worst-case subgroups in the distilled student model even when the teacher models are debiased. To overcome this, we propose Adaptive Group Robust Ensemble Knowledge Distillation (AGRE-KD), a simple ensembling strategy to ensure that the student model receives knowledge beneficial for unknown underrepresented subgroups. Leveraging an additional biased model, our method selectively chooses teachers whose knowledge would better improve the worst-performing subgroups by upweighting the teachers with gradient directions deviating from the biased model. Our experiments on several datasets demonstrate the superiority of the proposed ensemble distillation technique and show that it can even outperform classic model ensembles based on majority voting. Our source code is available at https://github.com/patrikken/AGRE-KD
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Which Similarity-Sensitive Entropy?
A canonical step in quantifying a system is to measure its entropy. Shannon entropy and other traditional entropy measures capture only the information encoded in the frequencies of a system's elements. Recently, Leinster, Cobbold, and Reeve (LCR) introduced a method that also captures the rich information encoded in the similarities and differences among elements, yielding similarity-sensitive entropy. More recently, the Vendi score (VS) was introduced as an alternative, raising the question of how LCR and VS compare, and which is preferable. Here we address these questions conceptually, analytically, and experimentally, using 53 machine-learning datasets. We show that LCR and VS can differ by orders of magnitude and can capture complementary information about a system, except in limiting cases. We demonstrate that both LCR and VS depend on how similarities are scaled and introduce the concept of ``half distance'' to parameterize this dependence. We prove that VS provides an upper bound on LCR for several values of the R\'enyi-Hill order parameter and conjecture that this bound holds for all values. We conclude that VS is preferable only when interpreting elements as linear combinations of a more fundamental set of ``ur-elements'' or when the system or dataset possesses a quantum-mechanical character. In the broader circumstance where one seeks simply to capture the rich information encoded by similarity, LCR is favored; nevertheless, for certain half-distances the two methods can complement each other.
comment: 21 pages, 8 figures
♻ ☆ Real-to-Sim Robot Policy Evaluation with Gaussian Splatting Simulation of Soft-Body Interactions
Robotic manipulation policies are advancing rapidly, but their direct evaluation in the real world remains costly, time-consuming, and difficult to reproduce, particularly for tasks involving deformable objects. Simulation provides a scalable and systematic alternative, yet existing simulators often fail to capture the coupled visual and physical complexity of soft-body interactions. We present a real-to-sim policy evaluation framework that constructs soft-body digital twins from real-world videos and renders robots, objects, and environments with photorealistic fidelity using 3D Gaussian Splatting. We validate our approach on representative deformable manipulation tasks, including plush toy packing, rope routing, and T-block pushing, demonstrating that simulated rollouts correlate strongly with real-world execution performance and reveal key behavioral patterns of learned policies. Our results suggest that combining physics-informed reconstruction with high-quality rendering enables reproducible, scalable, and accurate evaluation of robotic manipulation policies. Website: https://real2sim-eval.github.io/
comment: The first two authors contributed equally. Website: https://real2sim-eval.github.io/
♻ ☆ Revisiting Stochastic Approximation and Stochastic Gradient Descent
In this paper, we introduce a new approach to proving the convergence of the Stochastic Approximation (SA) and the Stochastic Gradient Descent (SGD) algorithms. The new approach is based on a concept called GSLLN (Generalized Strong Law of Large Numbers), which extends the traditional SLLN. Using this concept, we provide sufficient conditions for convergence, which effectively decouple the properties of the function whose zero we are trying to find, from the properties of the measurement errors (noise sequence). The new approach provides an alternative to the two widely used approaches, namely the ODE approach and the martingale approach, and also permits a wider class of noise signals than either of the two known approaches. In particular, the ``noise'' or measurement error \textit{need not} have a finite second moment, and under suitable conditions, not even a finite mean. By adapting this method of proof, we also derive sufficient conditions for the convergence of zero-order SGD, wherein the stochastic gradient is computed using $2d$ function evaluations, but no gradient computations. The sufficient conditions derived here are the weakest to date, thus leading to a considerable expansion of the applicability of SA and SGD theory.
comment: 31 pages
♻ ☆ When Bias Helps Learning: Bridging Initial Prejudice and Trainability
Understanding the statistical properties of deep neural networks (DNNs) at initialization is crucial for elucidating both their trainability and the intrinsic architectural biases they encode prior to data exposure. Mean-field (MF) analyses have demonstrated that the parameter distribution in randomly initialized networks dictates whether gradients vanish or explode. Recent work has shown that untrained DNNs exhibit an initial-guessing bias (IGB), in which large regions of the input space are assigned to a single class. In this work, we provide a theoretical proof linking IGB to MF analyses, establishing that a network predisposition toward specific classes is intrinsically tied to the conditions for efficient learning. This connection leads to a counterintuitive conclusion: the initialization that optimizes trainability is systematically biased rather than neutral. We validate our theory through experiments across multiple architectures and datasets.
♻ ☆ Multiple Streams of Knowledge Retrieval: Enriching and Recalling in Transformers
When an LLM learns a new fact during finetuning (e.g., new movie releases, newly elected pope, etc.), where does this information go? Are entities enriched with relation information, or do models recall information just-in-time before a prediction? Or, are ``all of the above'' true with LLMs implementing multiple redundant heuristics? Existing localization approaches (e.g., activation patching) are ill-suited for this analysis because they usually \textit{replace} parts of the residual stream, thus overriding previous information. To fill this gap, we propose \emph{dynamic weight grafting}, a technique that selectively grafts weights from a finetuned model onto a pretrained model. Using this technique, we show two separate pathways for retrieving finetuned relation information: 1) ``enriching" the residual stream with relation information while processing the tokens that correspond to an entity (e.g., ``Zendaya'' in ``Zendaya co-starred with John David Washington'') and 2) ``recalling" this information at the final token position before generating a target fact. In some cases, models need information from both of these pathways to correctly generate finetuned facts while, in other cases, either the ``enrichment" or ``recall" pathway alone is sufficient. We localize the ``recall'' pathway to model components -- finding that ``recall" occurs via both task-specific attention mechanisms and an entity-specific extraction step in the feedforward networks of the final layers before the target prediction. By targeting model components and parameters, as opposed to just activations, we are able to understand the \textit{mechanisms} by which finetuned knowledge is retrieved during generation.
♻ ☆ From Invariant Representations to Invariant Data: Provable Robustness to Spurious Correlations via Noisy Counterfactual Matching
Models that learn spurious correlations from training data often fail when deployed in new environments. While many methods aim to learn invariant representations to address this, they often underperform standard empirical risk minimization (ERM). We propose a data-centric alternative that shifts the focus from learning invariant representations to leveraging invariant data pairs -- pairs of samples that should have the same prediction. We prove that certain counterfactuals naturally satisfy this invariance property. Based on this, we introduce Noisy Counterfactual Matching (NCM), a simple constraint-based method that improves robustness by leveraging even a small number of \emph{noisy} counterfactual pairs -- improving upon prior works that do not explicitly consider noise. For linear causal models, we prove that NCM's test-domain error is bounded by its in-domain error plus a term dependent on the counterfactuals' quality and diversity. Experiments on synthetic data validate our theory, and we demonstrate NCM's effectiveness on real-world datasets.
♻ ☆ VeriLLM: A Lightweight Framework for Publicly Verifiable Decentralized Inference
Decentralized inference provides a scalable and resilient paradigm for serving large language models (LLMs), enabling distributed resource utilization and reducing reliance on centralized providers. However, in a permissionless environment without trusted nodes, ensuring the correctness of model outputs remains a core challenge. We introduce VeriLLM, a publicly verifiable protocol for decentralized LLM inference that achieves security under a one-honest-verifier assumption while maintaining practical efficiency. VeriLLM combines lightweight empirical rerunning with cryptographic commitments, allowing verifiers to validate results at approximately 1% of the underlying inference cost. To prevent verification bottlenecks, we design an isomorphic inference-verification architecture that multiplexes both inference and verification roles across the same GPU workers. This design (i) improves GPU utilization and overall throughput, (ii) enlarges the effective validator set, enhancing robustness and liveness, and (iii) enforces task indistinguishability to prevent node-specific optimizations or selective behavior. Through theoretical analysis and system-level evaluation, we show that VeriLLM achieves reliable public verifiability with minimal overhead, offering a practical foundation for trustworthy and scalable decentralized LLM inference.
comment: 20 pages, 4 figures, 6 tables
♻ ☆ Universal Spectral Tokenization via Self-Supervised Panchromatic Representation Learning NeurIPS 2025
Sequential scientific data span many resolutions and domains, and unifying them into a common representation is a key step toward developing foundation models for the sciences. Astronomical spectra exemplify this challenge: massive surveys have collected millions of spectra across a wide range of wavelengths and resolutions, yet analyses remain fragmented across spectral domains (e.g., optical vs. infrared) and object types (e.g., stars vs. galaxies), limiting the ability to pool information across datasets. We present a deep learning model that jointly learns from heterogeneous spectra in a self-supervised manner. Our universal spectral tokenizer processes spectra from a variety of object types and resolutions directly on their native wavelength grids, producing intrinsically aligned, homogeneous, and physically meaningful representations that can be efficiently adapted to achieve competitive performance across a range of downstream tasks. For the first time, we demonstrate that a single model can unify spectral data across resolutions and domains, suggesting that our model can serve as a powerful building block for foundation models in astronomy -- and potentially extend to other scientific domains with heterogeneous sequential data, such as climate and healthcare.
comment: Accepted at NeurIPS 2025 Machine Learning and the Physical Sciences Workshop; v2: added collaboration
♻ ☆ HyperSHAP: Shapley Values and Interactions for Explaining Hyperparameter Optimization AAAI-26
Hyperparameter optimization (HPO) is a crucial step in achieving strong predictive performance. Yet, the impact of individual hyperparameters on model generalization is highly context-dependent, prohibiting a one-size-fits-all solution and requiring opaque HPO methods to find optimal configurations. However, the black-box nature of most HPO methods undermines user trust and discourages adoption. To address this, we propose a game-theoretic explainability framework for HPO based on Shapley values and interactions. Our approach provides an additive decomposition of a performance measure across hyperparameters, enabling local and global explanations of hyperparameters' contributions and their interactions. The framework, named HyperSHAP, offers insights into ablation studies, the tunability of learning algorithms, and optimizer behavior across different hyperparameter spaces. We demonstrate HyperSHAP's capabilities on various HPO benchmarks to analyze the interaction structure of the corresponding HPO problems, demonstrating its broad applicability and actionable insights for improving HPO.
comment: Accepted at AAAI-26 (oral)
♻ ☆ FedAdamW: A Communication-Efficient Optimizer with Convergence and Generalization Guarantees for Federated Large Models
AdamW has become one of the most effective optimizers for training large-scale models. We have also observed its effectiveness in the context of federated learning (FL). However, directly applying AdamW in federated learning settings poses significant challenges: (1) due to data heterogeneity, AdamW often yields high variance in the second-moment estimate $\boldsymbol{v}$; (2) the local overfitting of AdamW may cause client drift; and (3) Reinitializing moment estimates ($\boldsymbol{v}$, $\boldsymbol{m}$) at each round slows down convergence. To address these challenges, we propose the first \underline{Fed}erated \underline{AdamW} algorithm, called \texttt{FedAdamW}, for training and fine-tuning various large models. \texttt{FedAdamW} aligns local updates with the global update using both a \textbf{local correction mechanism} and decoupled weight decay to mitigate local overfitting. \texttt{FedAdamW} efficiently aggregates the \texttt{mean} of the second-moment estimates to reduce their variance and reinitialize them. Theoretically, we prove that \texttt{FedAdamW} achieves a linear speedup convergence rate of $\mathcal{O}(\sqrt{(L \Delta \sigma_l^2)/(S K R \epsilon^2)}+(L \Delta)/R)$ without \textbf{heterogeneity assumption}, where $S$ is the number of participating clients per round, $K$ is the number of local iterations, and $R$ is the total number of communication rounds. We also employ PAC-Bayesian generalization analysis to explain the effectiveness of decoupled weight decay in local training. Empirically, we validate the effectiveness of \texttt{FedAdamW} on language and vision Transformer models. Compared to several baselines, \texttt{FedAdamW} significantly reduces communication rounds and improves test accuracy. The code is available in https://github.com/junkangLiu0/FedAdamW.
♻ ☆ Tool Zero: Training Tool-Augmented LLMs via Pure RL from Scratch EMNLP 2025
Training tool-augmented LLMs has emerged as a promising approach to enhancing language models' capabilities for complex tasks. The current supervised fine-tuning paradigm relies on constructing extensive domain-specific datasets to train models. However, this approach often struggles to generalize effectively to unfamiliar or intricate tool-use scenarios. Recently, reinforcement learning (RL) paradigm can endow LLMs with superior reasoning and generalization abilities. In this work, we address a key question: Can the pure RL be used to effectively elicit a model's intrinsic reasoning capabilities and enhance the tool-agnostic generalization? We propose a dynamic generalization-guided reward design for rule-based RL, which progressively shifts rewards from exploratory to exploitative tool-use patterns. Based on this design, we introduce the Tool-Zero series models. These models are trained to enable LLMs to autonomously utilize general tools by directly scaling up RL from Zero models (i.e., base models without post-training). Experimental results demonstrate that our models achieve over 7% performance improvement compared to both SFT and RL-with-SFT models under the same experimental settings. These gains are consistently replicated across cross-dataset and intra-dataset evaluations, validating the effectiveness and robustness of our methods.
comment: EMNLP 2025 finding
♻ ☆ HumorReject: Decoupling LLM Safety from Refusal Prefix via A Little Humor
Large Language Models (LLMs) commonly rely on explicit refusal prefixes for safety, making them vulnerable to prefix injection attacks. We introduce HumorReject, a novel data-driven approach that reimagines LLM safety by decoupling it from refusal prefixes through humor as an indirect refusal strategy. Rather than explicitly rejecting harmful instructions, HumorReject responds with contextually appropriate humor that naturally defuses potentially dangerous requests. Our approach effectively addresses common "over-defense" issues while demonstrating superior robustness against various attack vectors. Our findings suggest that improvements in training data design can be as important as the alignment algorithm itself in achieving effective LLM safety. The code and dataset are available at https://github.com/wooozihui/HumorReject.
♻ ☆ ChemBOMAS: Accelerated BO in Chemistry with LLM-Enhanced Multi-Agent System
Bayesian optimization (BO) is a powerful tool for scientific discovery in chemistry, yet its efficiency is often hampered by the sparse experimental data and vast search space. Here, we introduce ChemBOMAS: a large language model (LLM)-enhanced multi-agent system that accelerates BO through synergistic data- and knowledge-driven strategies. Firstly, the data-driven strategy involves an 8B-scale LLM regressor fine-tuned on a mere 1% labeled samples for pseudo-data generation, robustly initializing the optimization process. Secondly, the knowledge-driven strategy employs a hybrid Retrieval-Augmented Generation approach to guide LLM in dividing the search space while mitigating LLM hallucinations. An Upper Confidence Bound algorithm then identifies high-potential subspaces within this established partition. Across the LLM-refined subspaces and supported by LLM-generated data, BO achieves the improvement of effectiveness and efficiency. Comprehensive evaluations across multiple scientific benchmarks demonstrate that ChemBOMAS set a new state-of-the-art, accelerating optimization efficiency by up to 5-fold compared to baseline methods.
♻ ☆ Causal Discovery in Dynamic Fading Wireless Networks
Dynamic causal discovery in wireless networks is essential due to evolving interference, fading, and mobility, which complicate traditional static causal models. This paper addresses causal inference challenges in dynamic fading wireless environments by proposing a sequential regression-based algorithm with a novel application of the NOTEARS acyclicity constraint, enabling efficient online updates. We derive theoretical lower and upper bounds on the detection delay required to identify structural changes, explicitly quantifying their dependence on network size, noise variance, and fading severity. Monte Carlo simulations validate these theoretical results, demonstrating linear increases in detection delay with network size, quadratic growth with noise variance, and inverse-square dependence on the magnitude of structural changes. Our findings provide rigorous theoretical insights and practical guidelines for designing robust online causal inference mechanisms to maintain network reliability under nonstationary wireless conditions.
comment: Inaccurate contextual grounding of the methodology explored in the paper. This inaccuracy could lead to false results if other researchers read and use the method in their projects. To prevent such scenario from happening, it is appropriate if this paper is withdrawn. Thank you
♻ ☆ FedMAC: Tackling Partial-Modality Missing in Federated Learning with Cross-Modal Aggregation and Contrastive Regularization
Federated Learning (FL) is a method for training machine learning models using distributed data sources. It ensures privacy by allowing clients to collaboratively learn a shared global model while storing their data locally. However, a significant challenge arises when dealing with missing modalities in clients' datasets, where certain features or modalities are unavailable or incomplete, leading to heterogeneous data distribution. While previous studies have addressed the issue of complete-modality missing, they fail to tackle partial-modality missing on account of severe heterogeneity among clients at an instance level, where the pattern of missing data can vary significantly from one sample to another. To tackle this challenge, this study proposes a novel framework named FedMAC, designed to address multi-modality missing under conditions of partial-modality missing in FL. Additionally, to avoid trivial aggregation of multi-modal features, we introduce contrastive-based regularization to impose additional constraints on the latent representation space. The experimental results demonstrate the effectiveness of FedMAC across various client configurations with statistical heterogeneity, outperforming baseline methods by up to 26% in severe missing scenarios, highlighting its potential as a solution for the challenge of partially missing modalities in federated systems. Our source code is provided at https://github.com/nmduonggg/PEPSY
comment: The 22nd International Symposium on Network Computing and Applications (NCA 2024)
♻ ☆ Exploring the Early Universe with Deep Learning
Hydrogen is the most abundant element in our Universe. The first generation of stars and galaxies produced photons that ionized hydrogen gas, driving a cosmological event known as the Epoch of Reionization (EoR). The upcoming Square Kilometre Array Observatory (SKAO) will map the distribution of neutral hydrogen during this era, aiding in the study of the properties of these first-generation objects. Extracting astrophysical information will be challenging, as SKAO will produce a tremendous amount of data where the hydrogen signal will be contaminated with undesired foreground contamination and instrumental systematics. To address this, we develop the latest deep learning techniques to extract information from the 2D power spectra of the hydrogen signal expected from SKAO. We apply a series of neural network models to these measurements and quantify their ability to predict the history of cosmic hydrogen reionization, which is connected to the increasing number and efficiency of early photon sources. We show that the study of the early Universe benefits from modern deep learning technology. In particular, we demonstrate that dedicated machine learning algorithms can achieve more than a $0.95$ $R^2$ score on average in recovering the reionization history. This enables accurate and precise cosmological and astrophysical inference of structure formation in the early Universe.
comment: EPIA 2025 preprint version, 12 pages, 3 figures
♻ ☆ GPT, But Backwards: Exactly Inverting Language Model Outputs ICML 2025
The task of reconstructing unknown textual inputs to language models is a fundamental auditing primitive that allows us to assess the model's vulnerability to a range of security issues, including stealing hidden system prompts, detecting backdoors, and leaking private data. Existing inversion works assume access to differing levels of information (e.g. requiring input-output examples, the model parameters, intermediate activations or output logits) but oftentimes fail to fully reconstruct the desired input. In this paper, we present the Sparse One-hot Discrete Adam (SODA) algorithm, a search-based inversion method that can accurately reconstruct the input text, given white-box access to the language model and its output. Our experiments demonstrate for the first time that exact language model inversion is possible on both natural language and random inputs. Indeed, SODA achieves respectively 98% and 79% reconstruction rates on inputs with lengths up to 10 tokens. Furthermore, we show that input length and vocabulary size have a far greater impact on the probability of a successful reconstruction than the size of the language model itself, thus allowing us to scale to models from 33M to 3B parameters.
comment: 7 pages, ICML 2025 Workshop on Reliable and Responsible Foundation Models
♻ ☆ ANO : Faster is Better in Noisy Landscape ICLR 2026
Stochastic optimizers are central to deep learning, yet widely used methods such as Adam and Adan can degrade in non-stationary or noisy environments, partly due to their reliance on momentum-based magnitude estimates. We introduce Ano, a novel optimizer that decouples direction and magnitude: momentum is used for directional smoothing, while instantaneous gradient magnitudes determine step size. This design improves robustness to gradient noise while retaining the simplicity and efficiency of first-order methods. We further propose Anolog, which removes sensitivity to the momentum coefficient by expanding its window over time via a logarithmic schedule. We establish non-convex convergence guarantees with a convergence rate similar to other sign-based methods, and empirically show that Ano provides substantial gains in noisy and non-stationary regimes such as reinforcement learning, while remaining competitive on low-noise tasks.
comment: Under Review for ICLR 2026, 25 pages total with appendix, 7 figures, 12 tables
♻ ☆ Mitigating Sexual Content Generation via Embedding Distortion in Text-conditioned Diffusion Models NeurIPS 2025
Diffusion models show remarkable image generation performance following text prompts, but risk generating sexual contents. Existing approaches, such as prompt filtering, concept removal, and even sexual contents mitigation methods, struggle to defend against adversarial attacks while maintaining benign image quality. In this paper, we propose a novel approach called Distorting Embedding Space (DES), a text encoder-based defense mechanism that effectively tackles these issues through innovative embedding space control. DES transforms unsafe embeddings, extracted from a text encoder using unsafe prompts, toward carefully calculated safe embedding regions to prevent unsafe contents generation, while reproducing the original safe embeddings. DES also neutralizes the ``nudity'' embedding, by aligning it with neutral embedding to enhance robustness against adversarial attacks. As a result, extensive experiments on explicit content mitigation and adaptive attack defense show that DES achieves state-of-the-art (SOTA) defense, with attack success rate (ASR) of 9.47% on FLUX.1, a recent popular model, and 0.52% on the widely adopted Stable Diffusion v1.5. These correspond to ASR reductions of 76.5% and 63.9% compared to previous SOTA methods, EraseAnything and AdvUnlearn, respectively. Furthermore, DES maintains benign image quality, achieving Frechet Inception Distance and CLIP score comparable to those of the original FLUX.1 and Stable Diffusion v1.5.
comment: NeurIPS 2025 accepted. Official code: https://github.com/amoeba04/des
♻ ☆ PyLO: Towards Accessible Learned Optimizers in PyTorch ICML
Learned optimizers have been an active research topic over the past decade, with increasing progress toward practical, general-purpose optimizers that can serve as drop-in replacements for widely used methods like Adam. However, recent advances -- such as VeLO, which was meta-trained for 4000 TPU-months -- remain largely inaccessible to the broader community, in part due to their reliance on JAX and the absence of user-friendly packages for applying the optimizers after meta-training. To address this gap, we introduce PyLO, a PyTorch-based library that brings learned optimizers to the broader machine learning community through familiar, widely adopted workflows. Unlike prior work focused on synthetic or convex tasks, our emphasis is on applying learned optimization to real-world large-scale pre-training tasks. Our release includes a CUDA-accelerated version of the small_fc_lopt learned optimizer architecture from (Metz et al., 2022a), delivering substantial speedups -- from 39.36 to 205.59 samples/sec throughput for training ViT B/16 with batch size 32. PyLO also allows us to easily combine learned optimizers with existing optimization tools such as learning rate schedules and weight decay. When doing so, we find that learned optimizers can substantially benefit. Our code is available at https://github.com/Belilovsky-Lab/pylo
comment: Accepted at ICML CODEML Workshop 2025
♻ ☆ REINFORCE++: Stabilizing Critic-Free Policy Optimization with Global Advantage Normalization
Reinforcement Learning from Human Feedback~(RLHF) plays a crucial role in aligning Large Language Models~(LLMs). The dominant algorithm, Proximal Policy Optimization~(PPO), employs a critic network to estimate advantages, which introduces significant computational and memory overhead. To address this, a family of critic-free algorithms (e.g., GRPO, RLOO) has emerged. However, these methods typically rely on \textit{prompt-level (local)} advantage normalization, which suffers from inaccurate advantage estimation, a tendency to overfit, and, as we show, is a theoretically biased estimator. To solve these challenges, we introduce REINFORCE++, a critic-free framework centered on \textbf{Global Advantage Normalization}. By normalizing advantages across the entire global batch rather than small, prompt-specific groups, our method provides a more stable and theoretically sound, \textit{effectively unbiased} estimate (whose bias vanishes as batch size increases). We introduce two variants: REINFORCE++, a highly efficient and general algorithm ($k \ge 1$) for general-domain RLHF, and REINFORCE++ /w baseline, a robust group-sampling variant ($k > 1$) for complex reasoning tasks. Our empirical evaluation demonstrates that each variant shows superior stability and performance in its respective domain, outperforming existing methods and even PPO in complex agentic settings.
comment: refactor
♻ ☆ Robust Hallucination Detection in LLMs via Adaptive Token Selection NeurIPS 2025
Hallucinations in large language models (LLMs) pose significant safety concerns that impede their broader deployment. Recent research in hallucination detection has demonstrated that LLMs' internal representations contain truthfulness hints, which can be harnessed for detector training. However, the performance of these detectors is heavily dependent on the internal representations of predetermined tokens, fluctuating considerably when working on free-form generations with varying lengths and sparse distributions of hallucinated entities. To address this, we propose HaMI, a novel approach that enables robust detection of hallucinations through adaptive selection and learning of critical tokens that are most indicative of hallucinations. We achieve this robustness by an innovative formulation of the Hallucination detection task as Multiple Instance (HaMI) learning over token-level representations within a sequence, thereby facilitating a joint optimisation of token selection and hallucination detection on generation sequences of diverse forms. Comprehensive experimental results on four hallucination benchmarks show that HaMI significantly outperforms existing state-of-the-art approaches.
comment: Accepted by NeurIPS 2025
♻ ☆ Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, and iteratively conducts experiments until improvements are realized, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. Through our experiments, the Jr. AI Scientist successfully generated new research papers that build upon real NeurIPS, IJCV, and ICLR works by proposing and implementing novel methods. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We believe this study clarifies the current role and limitations of AI Scientist systems, offering insights into the areas that still require human expertise and the risks that may emerge as these systems evolve.
comment: Issues, comments, and questions are all welcome in https://github.com/Agent4Science-UTokyo/Jr.AI-Scientist
♻ ☆ ReCode: Updating Code API Knowledge with Reinforcement Learning AAAI 2026
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: AAAI 2026
♻ ☆ How do Machine Learning Models Change?
The proliferation of Machine Learning (ML) models and their open-source implementations has transformed Artificial Intelligence research and applications. Platforms like Hugging Face (HF) enable this evolving ecosystem, yet a large-scale longitudinal study of how these models change is lacking. This study addresses this gap by analyzing over 680,000 commits from 100,000 models and 2,251 releases from 202 of these models on HF using repository mining and longitudinal methods. We apply an extended ML change taxonomy to classify commits and use Bayesian networks to model temporal patterns in commit and release activities. Our findings show that commit activities align with established data science methodologies, such as the Cross-Industry Standard Process for Data Mining (CRISP-DM), emphasizing iterative refinement. Release patterns tend to consolidate significant updates, particularly in model outputs, sharing, and documentation, distinguishing them from granular commits. Furthermore, projects with higher popularity exhibit distinct evolutionary paths, often starting from a more mature baseline with fewer foundational commits in their public history. In contrast, those with intensive collaboration show unique documentation and technical evolution patterns. These insights enhance the understanding of model changes on community platforms and provide valuable guidance for best practices in model maintenance.
comment: This paper has been accepted for publication in ACM Transactions on Software Engineering and Methodology (TOSEM)
♻ ☆ Privacy-Preserving Personalization in Education: A Federated Recommender System for Student Performance Prediction
The increasing digitalization of education presents unprecedented opportunities for data-driven personalization, but it also introduces significant challenges to student data privacy. Conventional recommender systems rely on centralized data, a paradigm often incompatible with modern data protection regulations. A novel privacy-preserving recommender system is proposed and evaluated to address this critical issue using Federated Learning (FL). The approach utilizes a Deep Neural Network (DNN) with rich, engineered features from the large-scale ASSISTments educational dataset. A rigorous comparative analysis of federated aggregation strategies was conducted, identifying FedProx as a significantly more stable and effective method for handling heterogeneous student data than the standard FedAvg baseline. The optimized federated model achieves a high-performance F1-Score of 76.28%, corresponding to 92% of the performance of a powerful, centralized XGBoost model. These findings validate that a federated approach can provide highly effective content recommendations without centralizing sensitive student data. Consequently, our work presents a viable and robust solution to the personalization-privacy dilemma in modern educational platforms.
♻ ☆ Mirror Descent Policy Optimisation for Robust Constrained Markov Decision Processes
Safety is an essential requirement for reinforcement learning systems. The newly emerging framework of robust constrained Markov decision processes allows learning policies that satisfy long-term constraints while providing guarantees under epistemic uncertainty. This paper presents mirror descent policy optimisation for robust constrained Markov decision processes, making use of policy gradient techniques to optimise both the policy (as a maximiser) and the transition kernel (as an adversarial minimiser) on the Lagrangian representing a constrained Markov decision process. Our proposed algorithm obtains an $\tilde{\mathcal{O}}\left(1/T^{1/3}\right)$ convergence rate in the sample-based robust constrained Markov decision process setting. The paper also contributes an algorithm for approximate gradient descent in the space of transition kernels, which is of independent interest for designing adversarial environments in general Markov decision processes. Experiments confirm the benefits of mirror descent policy optimisation in constrained and unconstrained optimisation, and significant improvements are observed in robustness tests when compared to baseline policy optimisation algorithms.
♻ ☆ DPCformer: An Interpretable Deep Learning Model for Genomic Prediction in Crops
Genomic Selection (GS) uses whole-genome information to predict crop phenotypes and accelerate breeding. Traditional GS methods, however, struggle with prediction accuracy for complex traits and large datasets. We propose DPCformer, a deep learning model integrating convolutional neural networks with a self-attention mechanism to model complex genotype-phenotype relationships. We applied DPCformer to 13 traits across five crops (maize, cotton, tomato, rice, chickpea). Our approach uses an 8-dimensional one-hot encoding for SNP data, ordered by chromosome, and employs the PMF algorithm for feature selection. Evaluations show DPCformer outperforms existing methods. In maize datasets, accuracy for traits like days to tasseling and plant height improved by up to 2.92%. For cotton, accuracy gains for fiber traits reached 8.37%. On small-sample tomato data, the Pearson Correlation Coefficient for a key trait increased by up to 57.35%. In chickpea, the yield correlation was boosted by 16.62%. DPCformer demonstrates superior accuracy, robustness in small-sample scenarios, and enhanced interpretability, providing a powerful tool for precision breeding and addressing global food security challenges.
comment: This work has been accepted by BIBM 2025
♻ ☆ Tight Bounds for Schrödinger Potential Estimation in Unpaired Data Translation
Modern methods of generative modelling and unpaired data translation based on Schr\"odinger bridges and stochastic optimal control theory aim to transform an initial density to a target one in an optimal way. In the present paper, we assume that we only have access to i.i.d. samples from initial and final distributions. This makes our setup suitable for both generative modelling and unpaired data translation. Relying on the stochastic optimal control approach, we choose an Ornstein-Uhlenbeck process as the reference one and estimate the corresponding Schr\"odinger potential. Introducing a risk function as the Kullback-Leibler divergence between couplings, we derive tight bounds on generalization ability of an empirical risk minimizer in a class of Schr\"odinger potentials including Gaussian mixtures. Thanks to the mixing properties of the Ornstein-Uhlenbeck process, we almost achieve fast rates of convergence up to some logarithmic factors in favourable scenarios. We also illustrate performance of the suggested approach with numerical experiments.
comment: 54 pages, 4 figures
♻ ☆ CodeEvolve: An open source evolutionary coding agent for algorithm discovery and optimization
In this work, we introduce CodeEvolve, an open-source evolutionary coding agent that unites Large Language Models (LLMs) with genetic algorithms to solve complex computational problems. Our framework adapts powerful evolutionary concepts to the LLM domain, building upon recent methods for generalized scientific discovery. CodeEvolve employs an island-based genetic algorithm to maintain population diversity and increase throughput, introduces a novel inspiration-based crossover mechanism that leverages the LLMs context window to combine features from successful solutions, and implements meta-prompting strategies for dynamic exploration of the solution space. We conduct a rigorous evaluation of CodeEvolve on a subset of the mathematical benchmarks used to evaluate Google DeepMind's closed-source AlphaEvolve. Our findings show that our method surpasses AlphaEvolve's performance on several challenging problems. To foster collaboration and accelerate progress, we release our complete framework as an open-source repository.
comment: 11 pages, 9 figures, 2 tables
♻ ☆ Addressing Polarization and Unfairness in Performative Prediction
In many real-world applications of machine learning such as recommendations, hiring, and lending, deployed models influence the data they are trained on, leading to feedback loops between predictions and data distribution. The performative prediction (PP) framework captures this phenomenon by modeling the data distribution as a function of the deployed model. While prior work has focused on finding performative stable (PS) solutions for robustness, their societal impacts, particularly regarding fairness, remain underexplored. We show that PS solutions can lead to severe polarization and prediction performance disparities, and that conventional fairness interventions in previous works often fail under model-dependent distribution shifts due to failing the PS criteria. To address these challenges in PP, we introduce novel fairness mechanisms that provably ensure both stability and fairness, validated by theoretical analysis and empirical results.
♻ ☆ Data-assimilated model-informed reinforcement learning
The control of spatio-temporally chaos is challenging because of high dimensionality and unpredictability. Model-free reinforcement learning (RL) discovers optimal control policies by interacting with the system, typically requiring observations of the full physical state. In practice, sensors often provide only partial and noisy measurements (observations) of the system. The objective of this paper is to develop a framework that enables the control of chaotic systems with partial and noisy observability. The proposed method, data-assimilated model-informed reinforcement learning (DA-MIRL), integrates (i) low-order models to approximate high-dimensional dynamics; (ii) sequential data assimilation to correct the model prediction when observations become available; and (iii) an off-policy actor-critic RL algorithm to adaptively learn an optimal control strategy based on the corrected state estimates. We test DA-MIRL on the spatiotemporally chaotic solutions of the Kuramoto-Sivashinsky equation. We estimate the full state of the environment with (i) a physics-based model, here, a coarse-grained model; and (ii) a data-driven model, here, the control-aware echo state network, which is proposed in this paper. We show that DA-MIRL successfully estimates and suppresses the chaotic dynamics of the environment in real time from partial observations and approximate models. This work opens opportunities for the control of partially observable chaotic systems.
♻ ☆ Nowcast3D: Reliable precipitation nowcasting via gray-box learning
Extreme precipitation nowcasting demands high spatiotemporal fidelity and extended lead times, yet existing approaches remain limited. Numerical Weather Prediction (NWP) and its deep-learning emulations are too slow and coarse for rapidly evolving convection, while extrapolation and purely data-driven models suffer from error accumulation and excessive smoothing. Hybrid 2D radar-based methods discard crucial vertical information, preventing accurate reconstruction of height-dependent dynamics. We introduce a gray-box, fully three-dimensional nowcasting framework that directly processes volumetric radar reflectivity and couples physically constrained neural operators with datadriven learning. The model learns vertically varying 3D advection fields under a conservative advection operator, parameterizes spatially varying diffusion, and introduces a Brownian-motion--inspired stochastic term to represent unresolved motions. A residual branch captures small-scale convective initiation and microphysical variability, while a diffusion-based stochastic module estimates uncertainty. The framework achieves more accurate forecasts up to three-hour lead time across precipitation regimes and ranked first in 57\% of cases in a blind evaluation by 160 meteorologists. By restoring full 3D dynamics with physical consistency, it offers a scalable and robust pathway for skillful and reliable nowcasting of extreme precipitation.
♻ ☆ Disturbance-based Discretization, Differentiable IDS Channel, and an IDS-Correcting Code for DNA-based Storage
With recent advancements in next-generation data storage, especially in biological molecule-based storage, insertion, deletion, and substitution (IDS) error-correcting codes have garnered increased attention. However, a universal method for designing tailored IDS-correcting codes across varying channel settings remains underexplored. We present an autoencoder-based approach, THEA-code, aimed at efficiently generating IDS-correcting codes for complex IDS channels. In the work, a disturbance-based discretization is proposed to discretize the features of the autoencoder, and a simulated differentiable IDS channel is developed as a differentiable alternative for IDS operations. These innovations facilitate the successful convergence of the autoencoder, producing channel-customized IDS-correcting codes that demonstrate commendable performance across complex IDS channels, particularly in realistic DNA-based storage channels.
♻ ☆ Variational Diffusion Unlearning: A Variational Inference Framework for Unlearning in Diffusion Models under Data Constraints
For a responsible and safe deployment of diffusion models in various domains, regulating the generated outputs from these models is desirable because such models could generate undesired, violent, and obscene outputs. To tackle this problem, recent works use machine unlearning methodology to forget training data points containing these undesired features from pre-trained generative models. However, these methods proved to be ineffective in data-constrained settings where the whole training dataset is inaccessible. Thus, the principal objective of this work is to propose a machine unlearning methodology that can prevent the generation of outputs containing undesired features from a pre-trained diffusion model in such a data-constrained setting. Our proposed method, termed as Variational Diffusion Unlearning (VDU), is a computationally efficient method that only requires access to a subset of training data containing undesired features. Our approach is inspired by the variational inference framework with the objective of minimizing a loss function consisting of two terms: plasticity inducer and stability regularizer. Plasticity inducer reduces the log-likelihood of the undesired training data points, while the stability regularizer, essential for preventing loss of image generation quality, regularizes the model in parameter space. We validate the effectiveness of our method through comprehensive experiments for both class unlearning and feature unlearning. For class unlearning, we unlearn some user-identified classes from MNIST, CIFAR-10, and tinyImageNet datasets from a pre-trained unconditional denoising diffusion probabilistic model (DDPM). Similarly, for feature unlearning, we unlearn the generation of certain high-level features from a pre-trained Stable Diffusion model
♻ ☆ Disciplined Biconvex Programming
We introduce disciplined biconvex programming (DBCP), a modeling framework for specifying and solving biconvex optimization problems. Biconvex optimization problems arise in various applications, including machine learning, signal processing, computational science, and control. Solving a biconvex optimization problem in practice usually resolves to heuristic methods based on alternate convex search (ACS), which iteratively optimizes over one block of variables while keeping the other fixed, so that the resulting subproblems are convex and can be efficiently solved. However, designing and implementing an ACS solver for a specific biconvex optimization problem usually requires significant effort from the user, which can be tedious and error-prone. DBCP extends the principles of disciplined convex programming to biconvex problems, allowing users to specify biconvex optimization problems in a natural way based on a small number of syntax rules. The resulting problem can then be automatically split and transformed into convex subproblems, for which a customized ACS solver is then generated and applied. DBCP allows users to quickly experiment with different biconvex problem formulations, without expertise in convex optimization. We implement DBCP into the open source Python package dbcp, as an extension to the famous domain specific language CVXPY for convex optimization.
♻ ☆ TimeMosaic: Temporal Heterogeneity Guided Time Series Forecasting via Adaptive Granularity Patch and Segment-wise Decoding AAAI
Multivariate time series forecasting is essential in domains such as finance, transportation, climate, and energy. However, existing patch-based methods typically adopt fixed-length segmentation, overlooking the heterogeneity of local temporal dynamics and the decoding heterogeneity of forecasting. Such designs lose details in information-dense regions, introduce redundancy in stable segments, and fail to capture the distinct complexities of short-term and long-term horizons. We propose TimeMosaic, a forecasting framework that aims to address temporal heterogeneity. TimeMosaic employs adaptive patch embedding to dynamically adjust granularity according to local information density, balancing motif reuse with structural clarity while preserving temporal continuity. In addition, it introduces segment-wise decoding that treats each prediction horizon as a related subtask and adapts to horizon-specific difficulty and information requirements, rather than applying a single uniform decoder. Extensive evaluations on benchmark datasets demonstrate that TimeMosaic delivers consistent improvements over existing methods, and our model trained on the large-scale corpus with 321 billion observations achieves performance competitive with state-of-the-art TSFMs.
comment: This paper has been accepted by AAAI
♻ ☆ Environment-Aware Indoor LoRaWAN Ranging Using Path Loss Model Inversion and Adaptive RSSI Filtering
Achieving sub-10 m indoor ranging with LoRaWAN is difficult because multipath, human blockage, and micro-climate dynamics induce non-stationary attenuation in received signal strength indicator (RSSI) measurements. We present a lightweight, interpretable pipeline that couples an environment-aware multi-wall path loss model with a forward-only, innovation-driven Kalman prefilter for RSSI. The model augments distance and wall terms with frequency, signal-to-noise ratio (SNR), and co-located environmental covariates (temperature, relative humidity, carbon dioxide, particulate matter, and barometric pressure), and is inverted deterministically for distance estimation. On a one-year single-gateway office dataset comprising over 2 million uplinks, the approach attains a mean absolute error (MAE) of 4.74 m and a root mean square error (RMSE) of 6.76 m in distance estimation, improving over a COST-231 multi-wall baseline (12.07 m MAE) and its environment-augmented variant (7.76 m MAE. Filtering reduces RSSI volatility from 10.33 to 5.43 dB and halves path loss error to 5.35 dB while raising R-squared from 0.82 to 0.89. The result is a single-anchor LoRaWAN ranging method with constant per-packet cost that is accurate, robust, and interpretable, providing a strong building block for multi-gateway localization.
♻ ☆ Employing Sentence Space Embedding for Classification of Data Stream from Fake News Domain
Tabular data is considered the last unconquered castle of deep learning, yet the task of data stream classification is stated to be an equally important and demanding research area. Due to the temporal constraints, it is assumed that deep learning methods are not the optimal solution for application in this field. However, excluding the entire -- and prevalent -- group of methods seems rather rash given the progress that has been made in recent years in its development. For this reason, the following paper is the first to present an approach to natural language data stream classification using the sentence space method, which allows for encoding text into the form of a discrete digital signal. This allows the use of convolutional deep networks dedicated to image classification to solve the task of recognizing fake news based on text data. Based on the real-life Fakeddit dataset, the proposed approach was compared with state-of-the-art algorithms for data stream classification based on generalization ability and time complexity.
comment: 16 pages, 7 figures
♻ ☆ DynaSpec: Context-aware Dynamic Speculative Sampling for Large-Vocabulary Language Models
Speculative decoding has become a standard way to accelerate LLM inference: a small drafter proposes multiple tokens and a large target model verifies them once per speculation length. Recently, scaling of the LLM vocabulary has pushed the number of tokens to grow substantially. While verification over the full vocabulary leaves the target model largely unaffected, the O(|V|d) parameters in the drafter's output head become a latency bottleneck, slowing the entire pipeline. Contemporary methods (e.g., FR-Spec, VocabTrim) restrict the drafter's vocabulary to a fixed top frequent subset of the target model's vocabulary. Although this reduces draft-time compute, it is brittle, since: (i) frequency lists are corpus-dependent and require retuning to generalize, and (ii) static shortlists suppress rare or domain-specific tokens, lowering the expected number of tokens per verification step. We propose DynaSpec, a context-dependent dynamic shortlisting mechanism that is robust, speeds up drafting, and generalizes across diverse tasks. Concretely, we introduce lightweight, coarse-grained meta-classifiers that route contexts to a small number of token clusters; the union of the top-k selected clusters forms the drafter's shortlist, while verification retains the full vocabulary and exactness. The meta-classifier finishes its computation earlier than the drafter's hidden state generation by exploiting parallel execution of draft encoding and meta shortlisting on separate streams. Across standard speculative decoding benchmarks, DynaSpec delivers consistent improvements in mean accepted length, for Llama-3-8B, reaching upto 98.2% of full-vocabulary performance, while fixed-shortlist baselines attain only 84.4%. By leveraging context-dependent selection, DynaSpec achieves up to a 2.18 times increase in generated tokens compared to 1.91 times for fixed-vocabulary approaches.
♻ ☆ Dissecting Long-Chain-of-Thought Reasoning Models: An Empirical Study
Despite recent progress in training long-chain-of-thought reasoning models via scaling reinforcement learning (RL), its underlying training dynamics remain poorly understood, and several counterintuitive behaviors persist. This work focuses on three key aspects: (1) We systematically analyze the roles of positive and negative samples in scaling RL, revealing that positive samples mainly facilitate precise fitting to the training data, whereas negative samples significantly enhance generalization and robustness. Interestingly, while positive samples are essential for convergence in the zero-RL setting, training on negative samples alone suffices to attain strong reasoning performance and even better generalization in cold-start scenarios. (2) We identify substantial data inefficiency in group relative policy optimization, where over half of the samples yield zero advantage. To address this, we explore two strategies, including relative length rewards and offline sample injection, to leverage these data better and enhance reasoning efficiency and capability. (3) We investigate unstable performance across various reasoning models and benchmarks, attributing instability to uncertain problems with ambiguous outcomes, and demonstrate that greedy decoding can distort evaluation by flipping the correctness of responses. Our code is available at: https://github.com/takagi97/Dissect-Long-Reason-Models.
comment: Working in process
♻ ☆ Model Inversion Attacks Meet Cryptographic Fuzzy Extractors
Model inversion attacks pose an open challenge to privacy-sensitive applications that use machine learning (ML) models. For example, face authentication systems use modern ML models to compute embedding vectors from face images of the enrolled users and store them. If leaked, inversion attacks can accurately reconstruct user faces from the leaked vectors. There is no systematic characterization of properties needed in an ideal defense against model inversion, even for the canonical example application of a face authentication system susceptible to data breaches, despite a decade of best-effort solutions. In this paper, we formalize the desired properties of a provably strong defense against model inversion and connect it, for the first time, to the cryptographic concept of fuzzy extractors. We further show that existing fuzzy extractors are insecure for use in ML-based face authentication. We do so through a new model inversion attack called PIPE, which achieves a success rate of over 89% in most cases against prior schemes. We then propose L2FE-Hash, the first candidate fuzzy extractor which supports standard Euclidean distance comparators as needed in many ML-based applications, including face authentication. We formally characterize its computational security guarantees, even in the extreme threat model of full breach of stored secrets, and empirically show its usable accuracy in face authentication for practical face distributions. It offers attack-agnostic security without requiring any re-training of the ML model it protects. Empirically, it nullifies both prior state-of-the-art inversion attacks as well as our new PIPE attack.
♻ ☆ Rectifying Regression in Reinforcement Learning
This paper investigates the impact of the loss function in value-based methods for reinforcement learning through an analysis of underlying prediction objectives. We theoretically show that mean absolute error is a better prediction objective than the traditional mean squared error for controlling the learned policy's suboptimality gap. Furthermore, we present results that different loss functions are better aligned with these different regression objectives: binary and categorical cross-entropy losses with the mean absolute error and squared loss with the mean squared error. We then provide empirical evidence that algorithms minimizing these cross-entropy losses can outperform those based on the squared loss in linear reinforcement learning.
♻ ☆ Time-Prompt: Integrated Heterogeneous Prompts for Unlocking LLMs in Time Series Forecasting
Time series forecasting aims to model temporal dependencies among variables for future state inference, holding significant importance and widespread applications in real-world scenarios. Although deep learning-based methods have achieved remarkable progress, they still exhibit suboptimal performance in long-term forecasting. Recent research demonstrates that large language models (LLMs) achieve promising performance in time series forecasting, but this progress is still met with skepticism about whether LLMs are truly useful for this task. To address this, we propose Time-Prompt, a framework for activating LLMs for time series forecasting. Specifically, we first construct a unified prompt paradigm with learnable soft prompts to guide the LLM's behavior and textualized hard prompts to enhance the time series representations. Second, to enhance LLM' comprehensive understanding of the forecasting task, we design a semantic space embedding and cross-modal alignment module to achieve fusion of temporal and textual data. Finally, we efficiently fine-tune the LLM's parameters using time series data. Furthermore, we focus on carbon emissions, aiming to provide a modest contribution to global carbon neutrality. Comprehensive evaluations on 6 public datasets and 3 carbon emission datasets demonstrate that Time-Prompt is a powerful framework for time series forecasting.
♻ ☆ Bayesian Network Structural Consensus via Greedy Min-Cut Analysis AAAI-26
This paper presents the Min-Cut Bayesian Network Consensus (MCBNC) algorithm, a greedy method for structural consensus of Bayesian Networks (BNs), with applications in federated learning and model aggregation. MCBNC prunes weak edges from an initial unrestricted fusion using a structural score based on min-cut analysis, integrated into a modified Backward Equivalence Search (BES) phase of the Greedy Equivalence Search (GES) algorithm. The score quantifies edge support across input networks and is computed using max-flow. Unlike methods with fixed treewidth bounds, MCBNC introduces a pruning threshold $\theta$ that can be selected post hoc using only structural information. Experiments on real-world BNs show that MCBNC yields sparser, more accurate consensus structures than both canonical fusion and the input networks. The method is scalable, data-agnostic, and well-suited for distributed or federated scenarios.
comment: Camera-ready version accepted at AAAI-26. The official proceedings version will appear in the Proceedings of the 40th AAAI Conference on Artificial Intelligence (AAAI-26)
♻ ☆ Stacking Variational Bayesian Monte Carlo
Approximate Bayesian inference for models with computationally expensive, black-box likelihoods poses a significant challenge, especially when the posterior distribution is complex. Many inference methods struggle to explore the parameter space efficiently under a limited budget of likelihood evaluations. Variational Bayesian Monte Carlo (VBMC) is a sample-efficient method that addresses this by building a local surrogate model of the log-posterior. However, its conservative exploration strategy, while promoting stability, can cause it to miss important regions of the posterior, such as distinct modes or long tails. In this work, we introduce Stacking Variational Bayesian Monte Carlo (S-VBMC), a method that overcomes this limitation by constructing a robust, global posterior approximation from multiple independent VBMC runs. Our approach merges these local approximations through a principled and inexpensive post-processing step that leverages VBMC's mixture posterior representation and per-component evidence estimates. Crucially, S-VBMC requires no additional likelihood evaluations and is naturally parallelisable, fitting seamlessly into existing inference workflows. We demonstrate its effectiveness on two synthetic problems designed to challenge VBMC's exploration and two real-world applications from computational neuroscience, showing substantial improvements in posterior approximation quality across all cases. Our code is available as a Python package at https://github.com/acerbilab/svbmc.
comment: Published in Transactions on Machine Learning Research (November 2025), https://openreview.net/forum?id=M2ilYAJdPe. 38 pages, 13 figures
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs NeurIPS 2025
Despite progress in Large Vision-Language Models (LVLMs), their capacity for visual reasoning is often limited by the binding problem: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current LVLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces Visual Input Structure for Enhanced Reasoning (VISER), a simple, effective method that augments visual inputs with low-level spatial structures and pairs them with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks, using only a single-query inference. Specifically, VISER improves GPT-4o performance on visual search, counting, and spatial relationship tasks by 25.0%, 26.8%, and 9.5%, respectively, and reduces edit distance error in scene description by 0.32 on 2D datasets. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. VISER underscores the importance of visual input design over purely linguistically based reasoning strategies and suggests that visual structuring is a powerful and general approach for enhancing compositional and spatial reasoning in LVLMs.
comment: Accepted to NeurIPS 2025 (Thirty-ninth Conference on Neural Information Processing Systems)
♻ ☆ Zeroth-Order Adaptive Neuron Alignment Based Pruning without Re-Training
Network pruning focuses on algorithms that aim to reduce a given model's computational cost by removing a subset of its parameters while having minimal impact on performance. Throughout the last decade, the most widely used pruning paradigm has been pruning and re-training, which nowadays is inconvenient due to the vast amount of pre-trained models, which are, in any case, too expensive to re-train. In this paper, we exploit functional information from dense pre-trained models, i.e., their input activations, to obtain sparse models that maximize the activations' alignment with respect to their corresponding dense models. Hence, we propose \textbf{NeuroAl}, a \emph{top-up} algorithm that can be used on top of any given pruning algorithm for LLMs, which modifies the block-wise and row-wise sparsity, exploiting information from both the dense model and its sparse version to maximize the \emph{neuron alignment} among activations. Different from existing methods, our approach adaptively selects the best hyperparameters for the block-wise and row-wise sparsity ratios w.r.t. the model and the desired sparsity, and requires \emph{no re-training}. We test our method over $\sim$300 test cases with four LLM families, three sparsity ratios, and ten language tasks (three language modeling and seven zero-shot datasets), showing how it consistently outperforms the latest state-of-the-art methods in terms of performance-runtime trade-off. The code is available at \href{https://github.com/eliacunegatti/NeuroAL}{https://github.com/eliacunegatti/NeuroAL}.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Preference-Guided Reinforcement Learning for Efficient Exploration
In this paper, we investigate preference-based reinforcement learning (PbRL), which enables reinforcement learning (RL) agents to learn from human feedback. This is particularly valuable when defining a fine-grain reward function is not feasible. However, this approach is inefficient and impractical for promoting deep exploration in hard-exploration tasks with long horizons and sparse rewards. To tackle this issue, we introduce LOPE: \textbf{L}earning \textbf{O}nline with trajectory \textbf{P}reference guidanc\textbf{E}, an end-to-end preference-guided RL framework that enhances exploration efficiency in hard-exploration tasks. Our intuition is that LOPE directly adjusts the focus of online exploration by considering human feedback as guidance, thereby avoiding the need to learn a separate reward model from preferences. Specifically, LOPE includes a two-step sequential policy optimization technique consisting of trust-region-based policy improvement and preference guidance steps. We reformulate preference guidance as a trajectory-wise state marginal matching problem that minimizes the maximum mean discrepancy distance between the preferred trajectories and the learned policy. Furthermore, we provide a theoretical analysis to characterize the performance improvement bound and evaluate the effectiveness of the LOPE. When assessed in various challenging hard-exploration environments, LOPE outperforms several state-of-the-art methods in terms of convergence rate and overall performance.The code used in this study is available at https://github.com/buaawgj/LOPE.
comment: 13 pages, 15 figures
♻ ☆ On the Relation between Rectified Flows and Optimal Transport NeurIPS 2025
This paper investigates the connections between rectified flows, flow matching, and optimal transport. Flow matching is a recent approach to learning generative models by estimating velocity fields that guide transformations from a source to a target distribution. Rectified flow matching aims to straighten the learned transport paths, yielding more direct flows between distributions. Our first contribution is a set of invariance properties of rectified flows and explicit velocity fields. In addition, we also provide explicit constructions and analysis in the Gaussian (not necessarily independent) and Gaussian mixture settings and study the relation to optimal transport. Our second contribution addresses recent claims suggesting that rectified flows, when constrained such that the learned velocity field is a gradient, can yield (asymptotically) solutions to optimal transport problems. We study the existence of solutions for this problem and demonstrate that they only relate to optimal transport under assumptions that are significantly stronger than those previously acknowledged. In particular, we present several counterexamples that invalidate earlier equivalence results in the literature, and we argue that enforcing a gradient constraint on rectified flows is, in general, not a reliable method for computing optimal transport maps.
comment: Accepted for NeurIPS 2025
♻ ☆ ComoRAG: A Cognitive-Inspired Memory-Organized RAG for Stateful Long Narrative Reasoning AAAI 2026
Narrative comprehension on long stories and novels has been a challenging domain attributed to their intricate plotlines and entangled, often evolving relations among characters and entities. Given the LLM's diminished reasoning over extended context and its high computational cost, retrieval-based approaches remain a pivotal role in practice. However, traditional RAG methods could fall short due to their stateless, single-step retrieval process, which often overlooks the dynamic nature of capturing interconnected relations within long-range context. In this work, we propose ComoRAG, holding the principle that narrative reasoning is not a one-shot process, but a dynamic, evolving interplay between new evidence acquisition and past knowledge consolidation, analogous to human cognition on reasoning with memory-related signals in the brain. Specifically, when encountering a reasoning impasse, ComoRAG undergoes iterative reasoning cycles while interacting with a dynamic memory workspace. In each cycle, it generates probing queries to devise new exploratory paths, then integrates the retrieved evidence of new aspects into a global memory pool, thereby supporting the emergence of a coherent context for the query resolution. Across four challenging long-context narrative benchmarks (200K+ tokens), ComoRAG outperforms strong RAG baselines with consistent relative gains up to 11% compared to the strongest baseline. Further analysis reveals that ComoRAG is particularly advantageous for complex queries requiring global context comprehension, offering a principled, cognitively motivated paradigm towards retrieval-based stateful reasoning. Our framework is made publicly available at https://github.com/EternityJune25/ComoRAG.
comment: Accepted by AAAI 2026
♻ ☆ Data Leakage and Deceptive Performance: A Critical Examination of Credit Card Fraud Detection Methodologies
This study critically examines the methodological rigor in credit card fraud detection research, revealing how fundamental evaluation flaws can overshadow algorithmic sophistication. Through deliberate experimentation with improper evaluation protocols, we demonstrate that even simple models can achieve deceptively impressive results when basic methodological principles are violated. Our analysis identifies four critical issues plaguing current approaches: (1) pervasive data leakage from improper preprocessing sequences, (2) intentional vagueness in methodological reporting, (3) inadequate temporal validation for transaction data, and (4) metric manipulation through recall optimization at precision's expense. We present a case study showing how a minimal neural network architecture with data leakage outperforms many sophisticated methods reported in literature, achieving 99.9\% recall despite fundamental evaluation flaws. These findings underscore that proper evaluation methodology matters more than model complexity in fraud detection research. The study serves as a cautionary example of how methodological rigor must precede architectural sophistication, with implications for improving research practices across machine learning applications.
♻ ☆ The Evolving Nature of Latent Spaces: From GANs to Diffusion
This paper examines the evolving nature of internal representations in generative visual models, focusing on the conceptual and technical shift from GANs and VAEs to diffusion-based architectures. Drawing on Beatrice Fazi's account of synthesis as the amalgamation of distributed representations, we propose a distinction between "synthesis in a strict sense", where a compact latent space wholly determines the generative process, and "synthesis in a broad sense," which characterizes models whose representational labor is distributed across layers. Through close readings of model architectures and a targeted experimental setup that intervenes in layerwise representations, we show how diffusion models fragment the burden of representation and thereby challenge assumptions of unified internal space. By situating these findings within media theoretical frameworks and critically engaging with metaphors such as the latent space and the Platonic Representation Hypothesis, we argue for a reorientation of how generative AI is understood: not as a direct synthesis of content, but as an emergent configuration of specialized processes.
comment: Presented and published at Ethics and Aesthetics of Artificial Intelligence Conference (EA-AI'25)
♻ ☆ Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Accurately estimating treatment effects over time is crucial in fields such as precision medicine, epidemiology, economics, and marketing. Many current methods for estimating treatment effects over time assume that all confounders are observed or attempt to infer unobserved ones. In contrast, our approach focuses on unobserved adjustment variables, which specifically have a causal effect on the outcome sequence. Under the assumption of unconfoundedness, we address estimating Conditional Average Treatment Effects (CATEs) while accounting for unobserved heterogeneity in response to treatment due to these unobserved adjustment variables. Our proposed Causal Dynamic Variational Autoencoder (CDVAE) is grounded in theoretical guarantees concerning the validity of latent adjustment variables and generalization bounds on CATE estimation error. Extensive evaluations on synthetic and real-world datasets show that CDVAE outperforms existing baselines. Moreover, we demonstrate that state-of-the-art models significantly improve their CATE estimates when augmented with the latent substitutes learned by CDVAE, approaching oracle-level performance without direct access to the true adjustment variables.
comment: Published at TMLR
♻ ☆ How Does a Deep Neural Network Look at Lexical Stress?
Despite their success in speech processing, neural networks often operate as black boxes, prompting the question: what informs their decisions, and how can we interpret them? This work examines this issue in the context of lexical stress. A dataset of English disyllabic words was automatically constructed from read and spontaneous speech. Several Convolutional Neural Network (CNN) architectures were trained to predict stress position from a spectrographic representation of disyllabic words lacking minimal stress pairs (e.g., initial stress WAllet, final stress exTEND), achieving up to 92% accuracy on held-out test data. Layerwise Relevance Propagation (LRP), a technique for CNN interpretability analysis, revealed that predictions for held-out minimal pairs (PROtest vs. proTEST ) were most strongly influenced by information in stressed versus unstressed syllables, particularly the spectral properties of stressed vowels. However, the classifiers also attended to information throughout the word. A feature-specific relevance analysis is proposed, and its results suggest that our best-performing classifier is strongly influenced by the stressed vowel's first and second formants, with some evidence that its pitch and third formant also contribute. These results reveal deep learning's ability to acquire distributed cues to stress from naturally occurring data, extending traditional phonetic work based around highly controlled stimuli.
comment: 11 pages, 5 figures, submitted to the Journal of the Acoustical Society of America (JASA)
Multimedia
☆ CAMP-VQA: Caption-Embedded Multimodal Perception for No-Reference Quality Assessment of Compressed Video
The prevalence of user-generated content (UGC) on platforms such as YouTube and TikTok has rendered no-reference (NR) perceptual video quality assessment (VQA) vital for optimizing video delivery. Nonetheless, the characteristics of non-professional acquisition and the subsequent transcoding of UGC video on sharing platforms present significant challenges for NR-VQA. Although NR-VQA models attempt to infer mean opinion scores (MOS), their modeling of subjective scores for compressed content remains limited due to the absence of fine-grained perceptual annotations of artifact types. To address these challenges, we propose CAMP-VQA, a novel NR-VQA framework that exploits the semantic understanding capabilities of large vision-language models. Our approach introduces a quality-aware prompting mechanism that integrates video metadata (e.g., resolution, frame rate, bitrate) with key fragments extracted from inter-frame variations to guide the BLIP-2 pretraining approach in generating fine-grained quality captions. A unified architecture has been designed to model perceptual quality across three dimensions: semantic alignment, temporal characteristics, and spatial characteristics. These multimodal features are extracted and fused, then regressed to video quality scores. Extensive experiments on a wide variety of UGC datasets demonstrate that our model consistently outperforms existing NR-VQA methods, achieving improved accuracy without the need for costly manual fine-grained annotations. Our method achieves the best performance in terms of average rank and linear correlation (SRCC: 0.928, PLCC: 0.938) compared to state-of-the-art methods. The source code and trained models, along with a user-friendly demo, are available at: https://github.com/xinyiW915/CAMP-VQA.
comment: 14 pages, 6 figures
☆ Improving Remote Patient Monitoring Systems Using a Fog-based IoT Platform with Speech Recognition
Due to the recent shortage of resources in the healthcare industry, Remote Patient Monitoring (RPM) systems arose to establish a convenient alternative for accessing healthcare services remotely. However, as the usage of this system grows with the increase of patients and sensing devices, data and network management becomes an issue. As a result, wireless architecture challenges in patient privacy, data flow, and service interactability surface that need addressing. We propose a fog-based Internet of Things (IoT) platform to address these issues and reinforce the existing RPM system. The introduced platform can allocate resources to alleviate server overloading and provide an interactive means of monitoring patients through speech recognition. We designed a testbed to simulate and test the platform in terms of accuracy, latency, and throughput. The results show the platform's potential as a viable RPM system for sound-based healthcare services.
☆ Mono3DVG-EnSD: Enhanced Spatial-aware and Dimension-decoupled Text Encoding for Monocular 3D Visual Grounding
Monocular 3D Visual Grounding (Mono3DVG) is an emerging task that locates 3D objects in RGB images using text descriptions with geometric cues. However, existing methods face two key limitations. Firstly, they often over-rely on high-certainty keywords that explicitly identify the target object while neglecting critical spatial descriptions. Secondly, generalized textual features contain both 2D and 3D descriptive information, thereby capturing an additional dimension of details compared to singular 2D or 3D visual features. This characteristic leads to cross-dimensional interference when refining visual features under text guidance. To overcome these challenges, we propose Mono3DVG-EnSD, a novel framework that integrates two key components: the CLIP-Guided Lexical Certainty Adapter (CLIP-LCA) and the Dimension-Decoupled Module (D2M). The CLIP-LCA dynamically masks high-certainty keywords while retaining low-certainty implicit spatial descriptions, thereby forcing the model to develop a deeper understanding of spatial relationships in captions for object localization. Meanwhile, the D2M decouples dimension-specific (2D/3D) textual features from generalized textual features to guide corresponding visual features at same dimension, which mitigates cross-dimensional interference by ensuring dimensionally-consistent cross-modal interactions. Through comprehensive comparisons and ablation studies on the Mono3DRefer dataset, our method achieves state-of-the-art (SOTA) performance across all metrics. Notably, it improves the challenging Far(Acc@0.5) scenario by a significant +13.54%.
comment: 10 pages
☆ Pedagogical Reflections on the Holistic Cognitive Development (HCD) Framework and AI-Augmented Learning in Creative Computing
This paper presents an expanded account of the Holistic Cognitive Development (HCD) framework for reflective and creative learning in computing education. The HCD framework integrates design thinking, experiential learning, and reflective practice into a unified constructivist pedagogy emphasizing autonomy, ownership, and scaffolding. It is applied across courses in game design (CS3247, CS4350), virtual reality (CS4240), and extended reality systems, where students engage in iterative cycles of thinking, creating, criticizing, and reflecting. The paper also examines how AI-augmented systems such as iReflect, ReflexAI, and Knowledge Graph-enhanced LLM feedback tools operationalize the HCD framework through scalable, personalized feedback. Empirical findings demonstrate improved reflective depth, feedback quality, and learner autonomy. The work advocates a balance of supportive autonomy in supervision, where students practice self-directed inquiry while guided through structured reflection and feedback.
comment: Short Abstract
☆ CAMP-VQA: Caption-Embedded Multimodal Perception for No-Reference Quality Assessment of Compressed Video
The prevalence of user-generated content (UGC) on platforms such as YouTube and TikTok has rendered no-reference (NR) perceptual video quality assessment (VQA) vital for optimizing video delivery. Nonetheless, the characteristics of non-professional acquisition and the subsequent transcoding of UGC video on sharing platforms present significant challenges for NR-VQA. Although NR-VQA models attempt to infer mean opinion scores (MOS), their modeling of subjective scores for compressed content remains limited due to the absence of fine-grained perceptual annotations of artifact types. To address these challenges, we propose CAMP-VQA, a novel NR-VQA framework that exploits the semantic understanding capabilities of large vision-language models. Our approach introduces a quality-aware prompting mechanism that integrates video metadata (e.g., resolution, frame rate, bitrate) with key fragments extracted from inter-frame variations to guide the BLIP-2 pretraining approach in generating fine-grained quality captions. A unified architecture has been designed to model perceptual quality across three dimensions: semantic alignment, temporal characteristics, and spatial characteristics. These multimodal features are extracted and fused, then regressed to video quality scores. Extensive experiments on a wide variety of UGC datasets demonstrate that our model consistently outperforms existing NR-VQA methods, achieving improved accuracy without the need for costly manual fine-grained annotations. Our method achieves the best performance in terms of average rank and linear correlation (SRCC: 0.928, PLCC: 0.938) compared to state-of-the-art methods. The source code and trained models, along with a user-friendly demo, are available at: https://github.com/xinyiW915/CAMP-VQA.
comment: 14 pages, 6 figures
☆ Improving Remote Patient Monitoring Systems Using a Fog-based IoT Platform with Speech Recognition
Due to the recent shortage of resources in the healthcare industry, Remote Patient Monitoring (RPM) systems arose to establish a convenient alternative for accessing healthcare services remotely. However, as the usage of this system grows with the increase of patients and sensing devices, data and network management becomes an issue. As a result, wireless architecture challenges in patient privacy, data flow, and service interactability surface that need addressing. We propose a fog-based Internet of Things (IoT) platform to address these issues and reinforce the existing RPM system. The introduced platform can allocate resources to alleviate server overloading and provide an interactive means of monitoring patients through speech recognition. We designed a testbed to simulate and test the platform in terms of accuracy, latency, and throughput. The results show the platform's potential as a viable RPM system for sound-based healthcare services.
☆ Robust Multi-modal Task-oriented Communications with Redundancy-aware Representations
Semantic communications for multi-modal data can transmit task-relevant information efficiently over noisy and bandwidth-limited channels. However, a key challenge is to simultaneously compress inter-modal redundancy and improve semantic reliability under channel distortion. To address the challenge, we propose a robust and efficient multi-modal task-oriented communication framework that integrates a two-stage variational information bottleneck (VIB) with mutual information (MI) redundancy minimization. In the first stage, we apply uni-modal VIB to compress each modality separately, i.e., text, audio, and video, while preserving task-specific features. To enhance efficiency, an MI minimization module with adversarial training is then used to suppress cross-modal dependencies and to promote complementarity rather than redundancy. In the second stage, a multi-modal VIB is further used to compress the fused representation and to enhance robustness against channel distortion. Experimental results on multi-modal emotion recognition tasks demonstrate that the proposed framework significantly outperforms existing baselines in accuracy and reliability, particularly under low signal-to-noise ratio regimes. Our work provides a principled framework that jointly optimizes modality-specific compression, inter-modal redundancy, and communication reliability.
☆ Mono3DVG-EnSD: Enhanced Spatial-aware and Dimension-decoupled Text Encoding for Monocular 3D Visual Grounding
Monocular 3D Visual Grounding (Mono3DVG) is an emerging task that locates 3D objects in RGB images using text descriptions with geometric cues. However, existing methods face two key limitations. Firstly, they often over-rely on high-certainty keywords that explicitly identify the target object while neglecting critical spatial descriptions. Secondly, generalized textual features contain both 2D and 3D descriptive information, thereby capturing an additional dimension of details compared to singular 2D or 3D visual features. This characteristic leads to cross-dimensional interference when refining visual features under text guidance. To overcome these challenges, we propose Mono3DVG-EnSD, a novel framework that integrates two key components: the CLIP-Guided Lexical Certainty Adapter (CLIP-LCA) and the Dimension-Decoupled Module (D2M). The CLIP-LCA dynamically masks high-certainty keywords while retaining low-certainty implicit spatial descriptions, thereby forcing the model to develop a deeper understanding of spatial relationships in captions for object localization. Meanwhile, the D2M decouples dimension-specific (2D/3D) textual features from generalized textual features to guide corresponding visual features at same dimension, which mitigates cross-dimensional interference by ensuring dimensionally-consistent cross-modal interactions. Through comprehensive comparisons and ablation studies on the Mono3DRefer dataset, our method achieves state-of-the-art (SOTA) performance across all metrics. Notably, it improves the challenging Far(Acc@0.5) scenario by a significant +13.54%.
comment: 10 pages
☆ Pedagogical Reflections on the Holistic Cognitive Development (HCD) Framework and AI-Augmented Learning in Creative Computing
This paper presents an expanded account of the Holistic Cognitive Development (HCD) framework for reflective and creative learning in computing education. The HCD framework integrates design thinking, experiential learning, and reflective practice into a unified constructivist pedagogy emphasizing autonomy, ownership, and scaffolding. It is applied across courses in game design (CS3247, CS4350), virtual reality (CS4240), and extended reality systems, where students engage in iterative cycles of thinking, creating, criticizing, and reflecting. The paper also examines how AI-augmented systems such as iReflect, ReflexAI, and Knowledge Graph-enhanced LLM feedback tools operationalize the HCD framework through scalable, personalized feedback. Empirical findings demonstrate improved reflective depth, feedback quality, and learner autonomy. The work advocates a balance of supportive autonomy in supervision, where students practice self-directed inquiry while guided through structured reflection and feedback.
comment: Short Abstract
♻ ☆ FedMAC: Tackling Partial-Modality Missing in Federated Learning with Cross-Modal Aggregation and Contrastive Regularization
Federated Learning (FL) is a method for training machine learning models using distributed data sources. It ensures privacy by allowing clients to collaboratively learn a shared global model while storing their data locally. However, a significant challenge arises when dealing with missing modalities in clients' datasets, where certain features or modalities are unavailable or incomplete, leading to heterogeneous data distribution. While previous studies have addressed the issue of complete-modality missing, they fail to tackle partial-modality missing on account of severe heterogeneity among clients at an instance level, where the pattern of missing data can vary significantly from one sample to another. To tackle this challenge, this study proposes a novel framework named FedMAC, designed to address multi-modality missing under conditions of partial-modality missing in FL. Additionally, to avoid trivial aggregation of multi-modal features, we introduce contrastive-based regularization to impose additional constraints on the latent representation space. The experimental results demonstrate the effectiveness of FedMAC across various client configurations with statistical heterogeneity, outperforming baseline methods by up to 26% in severe missing scenarios, highlighting its potential as a solution for the challenge of partially missing modalities in federated systems. Our source code is provided at https://github.com/nmduonggg/PEPSY
comment: The 22nd International Symposium on Network Computing and Applications (NCA 2024)
♻ ☆ Fine-grained Image Retrieval via Dual-Vision Adaptation AAAI2026
Fine-Grained Image Retrieval~(FGIR) faces challenges in learning discriminative visual representations to retrieve images with similar fine-grained features. Current leading FGIR solutions typically follow two regimes: enforce pairwise similarity constraints in the semantic embedding space, or incorporate a localization sub-network to fine-tune the entire model. However, such two regimes tend to overfit the training data while forgetting the knowledge gained from large-scale pre-training, thus reducing their generalization ability. In this paper, we propose a Dual-Vision Adaptation (DVA) approach for FGIR, which guides the frozen pre-trained model to perform FGIR through collaborative sample and feature adaptation. Specifically, we design Object-Perceptual Adaptation, which modifies input samples to help the pre-trained model perceive critical objects and elements within objects that are helpful for category prediction. Meanwhile, we propose In-Context Adaptation, which introduces a small set of parameters for feature adaptation without modifying the pre-trained parameters. This makes the FGIR task using these adjusted features closer to the task solved during the pre-training. Additionally, to balance retrieval efficiency and performance, we propose Discrimination Perception Transfer to transfer the discriminative knowledge in the object-perceptual adaptation to the image encoder using the knowledge distillation mechanism. Extensive experiments show that DVA has fewer learnable parameters and performs well on three in-distribution and three out-of-distribution fine-grained datasets.
comment: Accepted by AAAI2026
♻ ☆ SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection AAAI 2026
With the rapid advancement of remote sensing technology, high-resolution multi-modal imagery is now more widely accessible. Conventional Object detection models are trained on a single dataset, often restricted to a specific imaging modality and annotation format. However, such an approach overlooks the valuable shared knowledge across multi-modalities and limits the model's applicability in more versatile scenarios. This paper introduces a new task called Multi-Modal Datasets and Multi-Task Object Detection (M2Det) for remote sensing, designed to accurately detect horizontal or oriented objects from any sensor modality. This task poses challenges due to 1) the trade-offs involved in managing multi-modal modelling and 2) the complexities of multi-task optimization. To address these, we establish a benchmark dataset and propose a unified model, SM3Det (Single Model for Multi-Modal datasets and Multi-Task object Detection). SM3Det leverages a grid-level sparse MoE backbone to enable joint knowledge learning while preserving distinct feature representations for different modalities. Furthermore, it integrates a consistency and synchronization optimization strategy using dynamic learning rate adjustment, allowing it to effectively handle varying levels of learning difficulty across modalities and tasks. Extensive experiments demonstrate SM3Det's effectiveness and generalizability, consistently outperforming specialized models on individual datasets. The code is available at https://github.com/zcablii/SM3Det.
comment: Accepted as Oral in AAAI 2026
♻ ☆ Temporal Inconsistency Guidance for Super-resolution Video Quality Assessment AAAI
As super-resolution (SR) techniques introduce unique distortions that fundamentally differ from those caused by traditional degradation processes (e.g., compression), there is an increasing demand for specialized video quality assessment (VQA) methods tailored to SR-generated content. One critical factor affecting perceived quality is temporal inconsistency, which refers to irregularities between consecutive frames. However, existing VQA approaches rarely quantify this phenomenon or explicitly investigate its relationship with human perception. Moreover, SR videos exhibit amplified inconsistency levels as a result of enhancement processes. In this paper, we propose \textit{Temporal Inconsistency Guidance for Super-resolution Video Quality Assessment (TIG-SVQA)} that underscores the critical role of temporal inconsistency in guiding the quality assessment of SR videos. We first design a perception-oriented approach to quantify frame-wise temporal inconsistency. Based on this, we introduce the Inconsistency Highlighted Spatial Module, which localizes inconsistent regions at both coarse and fine scales. Inspired by the human visual system, we further develop an Inconsistency Guided Temporal Module that performs progressive temporal feature aggregation: (1) a consistency-aware fusion stage in which a visual memory capacity block adaptively determines the information load of each temporal segment based on inconsistency levels, and (2) an informative filtering stage for emphasizing quality-related features. Extensive experiments on both single-frame and multi-frame SR video scenarios demonstrate that our method significantly outperforms state-of-the-art VQA approaches. The code is publicly available at https://github.com/Lighting-YXLI/TIG-SVQA-main.
comment: 15 pages, 10 figures, AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE(AAAI-26)
♻ ☆ Quality Over Quantity? LLM-Based Curation for a Data-Efficient Audio-Video Foundation Model
Integrating audio and visual data for training multimodal foundational models remains a challenge. The Audio-Video Vector Alignment (AVVA) framework addresses this by considering AV scene alignment beyond mere temporal synchronization, and leveraging Large Language Models (LLMs) for data curation. AVVA implements a scoring mechanism for selecting aligned training data segments. It integrates Whisper, a speech-based foundation model, for audio and DINOv2 for video analysis in a dual-encoder structure with contrastive learning on AV pairs. Evaluations on AudioCaps, VALOR, and VGGSound demonstrate the effectiveness of the proposed model architecture and data curation approach. AVVA achieves a significant improvement in top-k accuracies for video-to-audio retrieval on all datasets compared to DenseAV, while using only 192 hrs of curated training data. Furthermore, an ablation study indicates that the data curation process effectively trades data quality for data quantity, yielding increases in top-k retrieval accuracies on AudioCaps, VALOR, and VGGSound, compared to training on the full spectrum of uncurated data.
comment: Accepted at EUSIPCO 2025 - 5 pages, 5 figures, 2 tables
♻ ☆ FedMAC: Tackling Partial-Modality Missing in Federated Learning with Cross-Modal Aggregation and Contrastive Regularization
Federated Learning (FL) is a method for training machine learning models using distributed data sources. It ensures privacy by allowing clients to collaboratively learn a shared global model while storing their data locally. However, a significant challenge arises when dealing with missing modalities in clients' datasets, where certain features or modalities are unavailable or incomplete, leading to heterogeneous data distribution. While previous studies have addressed the issue of complete-modality missing, they fail to tackle partial-modality missing on account of severe heterogeneity among clients at an instance level, where the pattern of missing data can vary significantly from one sample to another. To tackle this challenge, this study proposes a novel framework named FedMAC, designed to address multi-modality missing under conditions of partial-modality missing in FL. Additionally, to avoid trivial aggregation of multi-modal features, we introduce contrastive-based regularization to impose additional constraints on the latent representation space. The experimental results demonstrate the effectiveness of FedMAC across various client configurations with statistical heterogeneity, outperforming baseline methods by up to 26% in severe missing scenarios, highlighting its potential as a solution for the challenge of partially missing modalities in federated systems. Our source code is provided at https://github.com/nmduonggg/PEPSY
comment: The 22nd International Symposium on Network Computing and Applications (NCA 2024)
♻ ☆ Fine-grained Image Retrieval via Dual-Vision Adaptation AAAI2026
Fine-Grained Image Retrieval~(FGIR) faces challenges in learning discriminative visual representations to retrieve images with similar fine-grained features. Current leading FGIR solutions typically follow two regimes: enforce pairwise similarity constraints in the semantic embedding space, or incorporate a localization sub-network to fine-tune the entire model. However, such two regimes tend to overfit the training data while forgetting the knowledge gained from large-scale pre-training, thus reducing their generalization ability. In this paper, we propose a Dual-Vision Adaptation (DVA) approach for FGIR, which guides the frozen pre-trained model to perform FGIR through collaborative sample and feature adaptation. Specifically, we design Object-Perceptual Adaptation, which modifies input samples to help the pre-trained model perceive critical objects and elements within objects that are helpful for category prediction. Meanwhile, we propose In-Context Adaptation, which introduces a small set of parameters for feature adaptation without modifying the pre-trained parameters. This makes the FGIR task using these adjusted features closer to the task solved during the pre-training. Additionally, to balance retrieval efficiency and performance, we propose Discrimination Perception Transfer to transfer the discriminative knowledge in the object-perceptual adaptation to the image encoder using the knowledge distillation mechanism. Extensive experiments show that DVA has fewer learnable parameters and performs well on three in-distribution and three out-of-distribution fine-grained datasets.
comment: Accepted by AAAI2026
♻ ☆ SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection AAAI 2026
With the rapid advancement of remote sensing technology, high-resolution multi-modal imagery is now more widely accessible. Conventional Object detection models are trained on a single dataset, often restricted to a specific imaging modality and annotation format. However, such an approach overlooks the valuable shared knowledge across multi-modalities and limits the model's applicability in more versatile scenarios. This paper introduces a new task called Multi-Modal Datasets and Multi-Task Object Detection (M2Det) for remote sensing, designed to accurately detect horizontal or oriented objects from any sensor modality. This task poses challenges due to 1) the trade-offs involved in managing multi-modal modelling and 2) the complexities of multi-task optimization. To address these, we establish a benchmark dataset and propose a unified model, SM3Det (Single Model for Multi-Modal datasets and Multi-Task object Detection). SM3Det leverages a grid-level sparse MoE backbone to enable joint knowledge learning while preserving distinct feature representations for different modalities. Furthermore, it integrates a consistency and synchronization optimization strategy using dynamic learning rate adjustment, allowing it to effectively handle varying levels of learning difficulty across modalities and tasks. Extensive experiments demonstrate SM3Det's effectiveness and generalizability, consistently outperforming specialized models on individual datasets. The code is available at https://github.com/zcablii/SM3Det.
comment: Accepted as Oral in AAAI 2026
♻ ☆ Temporal Inconsistency Guidance for Super-resolution Video Quality Assessment AAAI
As super-resolution (SR) techniques introduce unique distortions that fundamentally differ from those caused by traditional degradation processes (e.g., compression), there is an increasing demand for specialized video quality assessment (VQA) methods tailored to SR-generated content. One critical factor affecting perceived quality is temporal inconsistency, which refers to irregularities between consecutive frames. However, existing VQA approaches rarely quantify this phenomenon or explicitly investigate its relationship with human perception. Moreover, SR videos exhibit amplified inconsistency levels as a result of enhancement processes. In this paper, we propose \textit{Temporal Inconsistency Guidance for Super-resolution Video Quality Assessment (TIG-SVQA)} that underscores the critical role of temporal inconsistency in guiding the quality assessment of SR videos. We first design a perception-oriented approach to quantify frame-wise temporal inconsistency. Based on this, we introduce the Inconsistency Highlighted Spatial Module, which localizes inconsistent regions at both coarse and fine scales. Inspired by the human visual system, we further develop an Inconsistency Guided Temporal Module that performs progressive temporal feature aggregation: (1) a consistency-aware fusion stage in which a visual memory capacity block adaptively determines the information load of each temporal segment based on inconsistency levels, and (2) an informative filtering stage for emphasizing quality-related features. Extensive experiments on both single-frame and multi-frame SR video scenarios demonstrate that our method significantly outperforms state-of-the-art VQA approaches. The code is publicly available at https://github.com/Lighting-YXLI/TIG-SVQA-main.
comment: 15 pages, 10 figures, AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE(AAAI-26)