MyArxiv
Computation and Language
☆ Are Large Reasoning Models Interruptible?
Large Reasoning Models (LRMs) excel at complex reasoning but are traditionally evaluated in static, "frozen world" settings: model responses are assumed to be instantaneous, and the context of a request is presumed to be immutable over the duration of the response. While generally true for short-term tasks, the "frozen world" assumption breaks down in modern reasoning tasks such as assistive programming, where models may take hours to think through problems and code may change dramatically from the time the model starts thinking to the model's final output. In this work, we challenge the frozen world assumption and evaluate LRM robustness under two realistic dynamic scenarios: interruptions, which test the quality of the model's partial outputs on a limited budget, and dynamic context, which tests model adaptation to in-flight changes. Across mathematics and programming benchmarks that require long-form reasoning, static evaluations consistently overestimate robustness: even state-of-the-art LRMs, which achieve high accuracy in static settings, can fail unpredictably when interrupted or exposed to changing context, with performance dropping by up to 60% when updates are introduced late in the reasoning process. Our analysis further reveals several novel failure modes, including reasoning leakage, where models fold the reasoning into their final answer when interrupted; panic, where under time pressure models abandon reasoning entirely and return incorrect answers; and self-doubt, where performance degrades while incorporating updated information.
comment: Project Page: https://dynamic-lm.github.io/
☆ Demystifying Reinforcement Learning in Agentic Reasoning
Recently, the emergence of agentic RL has showcased that RL could also effectively improve the agentic reasoning ability of LLMs, yet the key design principles and optimal practices remain unclear. In this work, we conduct a comprehensive and systematic investigation to demystify reinforcement learning in agentic reasoning from three key perspectives: data, algorithm, and reasoning mode. We highlight our key insights: (i) Replacing stitched synthetic trajectories with real end-to-end tool-use trajectories yields a far stronger SFT initialization; high-diversity, model-aware datasets sustain exploration and markedly improve RL performance. (ii) Exploration-friendly techniques are crucial for agentic RL, such as clip higher, overlong reward shaping, and maintaining adequate policy entropy could improve the training efficiency. (iii) A deliberative strategy with fewer tool calls outperforms frequent tool calls or verbose self-reasoning, improving tool efficiency and final accuracy. Together, these simple practices consistently enhance agentic reasoning and training efficiency, achieving strong results on challenging benchmarks with smaller models, and establishing a practical baseline for future agentic RL research. Beyond these empirical insights, we further contribute a high-quality, real end-to-end agentic SFT dataset along with a high-quality RL dataset, and demonstrate the effectiveness of our insights in boosting the agentic reasoning ability of LLMs across four challenging benchmarks, including AIME2024/AIME2025, GPQA-Diamond, and LiveCodeBench-v6. With our recipes, 4B-sized models could also achieve superior agentic reasoning performance compared to 32B-sized models. Code and models: https://github.com/Gen-Verse/Open-AgentRL
comment: Code and models: https://github.com/Gen-Verse/Open-AgentRL
☆ QeRL: Beyond Efficiency -- Quantization-enhanced Reinforcement Learning for LLMs
We propose QeRL, a Quantization-enhanced Reinforcement Learning framework for large language models (LLMs). While RL is essential for LLMs' reasoning capabilities, it is resource-intensive, requiring substantial GPU memory and long rollout durations. QeRL addresses these issues by combining NVFP4 quantization with Low-Rank Adaptation (LoRA), accelerating rollout phase of RL while reducing memory overhead. Beyond efficiency, our findings show that quantization noise increases policy entropy, enhancing exploration, and enabling the discovery of better strategies during RL. To further optimize exploration, QeRL introduces an Adaptive Quantization Noise (AQN) mechanism, which dynamically adjusts noise during training. Experiments demonstrate that QeRL delivers over 1.5 times speedup in the rollout phase. Moreover, this is the first framework to enable RL training of a 32B LLM on a single H100 80GB GPU, while delivering overall speedups for RL training. It also achieves faster reward growth and higher final accuracy than 16-bit LoRA and QLoRA, while matching the performance of full-parameter fine-tuning on mathematical benchmarks such as GSM8K (90.8%) and MATH 500 (77.4%) in the 7B model. These results establish QeRL as an efficient and effective framework for RL training in LLMs.
comment: Code is available at https://github.com/NVlabs/QeRL
☆ When Agents Trade: Live Multi-Market Trading Benchmark for LLM Agents
Although Large Language Model (LLM)-based agents are increasingly used in financial trading, it remains unclear whether they can reason and adapt in live markets, as most studies test models instead of agents, cover limited periods and assets, and rely on unverified data. To address these gaps, we introduce Agent Market Arena (AMA), the first lifelong, real-time benchmark for evaluating LLM-based trading agents across multiple markets. AMA integrates verified trading data, expert-checked news, and diverse agent architectures within a unified trading framework, enabling fair and continuous comparison under real conditions. It implements four agents, including InvestorAgent as a single-agent baseline, TradeAgent and HedgeFundAgent with different risk styles, and DeepFundAgent with memory-based reasoning, and evaluates them across GPT-4o, GPT-4.1, Claude-3.5-haiku, Claude-sonnet-4, and Gemini-2.0-flash. Live experiments on both cryptocurrency and stock markets demonstrate that agent frameworks display markedly distinct behavioral patterns, spanning from aggressive risk-taking to conservative decision-making, whereas model backbones contribute less to outcome variation. AMA thus establishes a foundation for rigorous, reproducible, and continuously evolving evaluation of financial reasoning and trading intelligence in LLM-based agents.
☆ Scaling Language-Centric Omnimodal Representation Learning NeurIPS 2025
Recent multimodal embedding approaches leveraging multimodal large language models (MLLMs) fine-tuned with contrastive learning (CL) have shown promising results, yet the underlying reasons behind their superiority remain underexplored. This work argues that a crucial advantage of MLLM-based approaches stems from implicit cross-modal alignment achieved during generative pretraining, where the language decoder learns to exploit multimodal signals within a shared representation space for generating unimodal outputs. Through analysis of anisotropy and kernel similarity structure, we empirically confirm that latent alignment emerges within MLLM representations, allowing CL to serve as a lightweight refinement stage. Leveraging this insight, we propose a Language-Centric Omnimodal Embedding framework, termed LCO-Emb. Extensive experiments across diverse backbones and benchmarks demonstrate its effectiveness, achieving state-of-the-art performance across modalities. Furthermore, we identify a Generation-Representation Scaling Law (GRSL), showing that the representational capabilities gained through contrastive refinement scales positively with the MLLM's generative capabilities. This suggests that improving generative abilities evolves as an effective paradigm for enhancing representation quality. We provide a theoretical explanation of GRSL, which formally links the MLLM's generative quality to the upper bound on its representation performance, and validate it on a challenging, low-resource visual-document retrieval task, showing that continual generative pretraining before CL can further enhance the potential of a model's embedding capabilities. Codes, models, and resources are available at https://github.com/LCO-Embedding/LCO-Embedding.
comment: NeurIPS 2025
☆ Boundary-Guided Policy Optimization for Memory-efficient RL of Diffusion Large Language Models
A key challenge in applying reinforcement learning (RL) to diffusion large language models (dLLMs) lies in the intractability of their likelihood functions, which are essential for the RL objective, necessitating corresponding approximation in each training step. While existing methods approximate the log-likelihoods by their evidence lower bounds (ELBOs) via customized Monte Carlo (MC) sampling, the forward computational graphs of all MC samples need to be retained for the gradient computation of non-linear terms in the RL objective, resulting in significant memory overhead. This constraint restricts feasible sample sizes, leading to imprecise likelihood approximations and ultimately distorting the RL objective. To overcome this limitation, we propose \emph{Boundary-Guided Policy Optimization} (BGPO), a memory-efficient RL algorithm that maximizes a specially constructed lower bound of the ELBO-based objective. This lower bound is carefully designed to satisfy two key properties: (1) Linearity: it is formulated in a linear sum where each term depends only on a single MC sample, thereby enabling gradient accumulation across samples and ensuring constant memory usage; (2) Equivalence: Both the value and gradient of this lower bound are equal to those of the ELBO-based objective in on-policy training, making it also an effective approximation for the original RL objective. These properties allow BGPO to adopt a large MC sample size, resulting in more accurate likelihood approximations and improved RL objective estimation, which in turn leads to enhanced performance. Experiments show that BGPO significantly outperforms previous RL algorithms for dLLMs in math problem solving, code generation, and planning tasks.
☆ FinVet: A Collaborative Framework of RAG and External Fact-Checking Agents for Financial Misinformation Detection
Financial markets face growing threats from misinformation that can trigger billions in losses in minutes. Most existing approaches lack transparency in their decision-making and provide limited attribution to credible sources. We introduce FinVet, a novel multi-agent framework that integrates two Retrieval-Augmented Generation (RAG) pipelines with external fact-checking through a confidence-weighted voting mechanism. FinVet employs adaptive three-tier processing that dynamically adjusts verification strategies based on retrieval confidence, from direct metadata extraction to hybrid reasoning to full model-based analysis. Unlike existing methods, FinVet provides evidence-backed verdicts, source attribution, confidence scores, and explicit uncertainty flags when evidence is insufficient. Experimental evaluation on the FinFact dataset shows that FinVet achieves an F1 score of 0.85, which is a 10.4% improvement over the best individual pipeline (fact-check pipeline) and 37% improvement over standalone RAG approaches.
☆ ACADREASON: Exploring the Limits of Reasoning Models with Academic Research Problems
In recent years, the research focus of large language models (LLMs) and agents has shifted increasingly from demonstrating novel capabilities to complex reasoning and tackling challenging tasks. However, existing evaluations focus mainly on math/code contests or general tasks, while existing multi-domain academic benchmarks lack sufficient reasoning depth, leaving the field without a rigorous benchmark for high-level reasoning. To fill this gap, we introduce the Acadreason benchmark, designed to evaluate the ability of LLMs and agents to acquire and reason over academic knowledge. It consists of 50 expert-annotated academic problems across five high-reasoning domains, including computer science, economics, law, mathematics, and philosophy. All questions are sourced from top-tier publications in recent years and undergo rigorous annotation and quality control to ensure they are both challenging and answerable. We conduct systematic evaluations of over 10 mainstream LLMs and agents. The results show that most LLMs scored below 20 points, with even the cutting-edge GPT-5 achieving only 16 points. While agents achieved higher scores, none exceeded 40 points. This demonstrates the current capability gap between LLMs and agents in super-intelligent academic research tasks and highlights the challenges of Acadreason.
☆ Enhancing Long Chain-of-Thought Reasoning through Multi-Path Plan Aggregation
Inference-time scaling enhances the reasoning ability of a language model (LM) by extending its chain-of-thought (CoT). However, existing approaches typically generate the entire reasoning chain in a single forward pass, which often leads to CoT derailment, i.e., the reasoning trajectory drifting off course due to compounding errors. This problem is particularly severe for smaller LMs with long CoTs due to their limited capacity. To address this, we analyze raw long CoTs and uncover a reasoning hierarchy consisting of planning and execution steps. Our analysis reveals that most reasoning errors stem from incorrect planning. Motivated by this observation, we propose Multi-Path Plan Aggregation (MPPA), a framework that augments single-pass reasoning with plan exploration and aggregation. Following a variable interval schedule based on the token position, MPPA generates multiple candidate plans and aggregates them into a refined planning step. To maintain efficiency, we adopt a minimal design in which the base LM serves as the primary policy, while a lightweight LoRA module implements the plan aggregation policy. We further observe that outcome-reward RL is inefficient for long trajectories (e.g., exceeding 4K tokens). To overcome this, we introduce online Step-DPO, a process-level preference optimization scheme that leverages Twisted Sequential Monte Carlo (TSMC) to provide scalable stepwise supervision using small LMs. This yields more efficient training, improved stability, and higher accuracy. Extensive experiments on challenging math, science, and logical reasoning benchmarks demonstrate that, with only 10% SFT data and 5% of preference pairs, our method outperforms both the DeepSeek-R1 distillation baseline and the outcome-reward RL baseline across multiple base models and tasks.
☆ StoryBox: Collaborative Multi-Agent Simulation for Hybrid Bottom-Up Long-Form Story Generation Using Large Language Models
Human writers often begin their stories with an overarching mental scene, where they envision the interactions between characters and their environment. Inspired by this creative process, we propose a novel approach to long-form story generation, termed hybrid bottom-up long-form story generation, using multi-agent simulations. In our method, agents interact within a dynamic sandbox environment, where their behaviors and interactions with one another and the environment generate emergent events. These events form the foundation for the story, enabling organic character development and plot progression. Unlike traditional top-down approaches that impose rigid structures, our hybrid bottom-up approach allows for the natural unfolding of events, fostering more spontaneous and engaging storytelling. The system is capable of generating stories exceeding 10,000 words while maintaining coherence and consistency, addressing some of the key challenges faced by current story generation models. We achieve state-of-the-art performance across several metrics. This approach offers a scalable and innovative solution for creating dynamic, immersive long-form stories that evolve organically from agent-driven interactions.
comment: Project: https://storyboxproject.github.io
☆ LLM-Oriented Token-Adaptive Knowledge Distillation
Knowledge distillation (KD) is a key technique for compressing large-scale language models (LLMs), yet prevailing logit-based methods typically employ static strategies that are misaligned with the dynamic learning process of student models. These methods typically treat all tokens indiscriminately and apply a single, fixed temperature, resulting in suboptimal knowledge transfer. To address these limitations, we propose LLM-Oriented Token-Adaptive Knowledge Distillation (AdaKD), a novel framework that adapts the distillation process to the real-time learning state of each token. AdaKD consists of two synergistic modules driven by a unified token difficulty metric. First, our Loss-Driven Adaptive Token Focusing (LATF) module dynamically adjusts the distillation focus by monitoring the student's learning stability, concentrating computational resources on the most valuable tokens at each training phase. Second, we introduce Inverse Difficulty Temperature Scaling (IDTS), a counterintuitive yet effective token-level temperature strategy. It employs low temperatures for difficult tokens for targeted error correction, and high temperatures for easy tokens to encourage students to learn from the teacher's complete and smooth output distribution, thereby enhancing generalization. As a plug-and-play framework, AdaKD can consistently improve the performance of various distillation methods on multiple model architectures and benchmarks.
comment: 15 pages, 4 figures
☆ Deconstructing Attention: Investigating Design Principles for Effective Language Modeling
The success of Transformer language models is widely credited to their dot-product attention mechanism, which interweaves a set of key design principles: mixing information across positions (enabling multi-token interactions), sequence-dependent activations (where attention weights adapt to each input), a specific mathematical form (dot-product similarities plus softmax weighting), and coupling of queries and keys to evolving hidden states (grounding attention in the current layer). However, the necessity of each of these principles remains largely untested. In this work, we systematically deconstruct attention by designing controlled variants that selectively relax these principles, applied both uniformly across all layers and in hybrid architectures where only some layers retain standard attention. Our empirical analysis reveals that mechanisms for mixing tokens are indispensable, as their absence collapses models to near-random behavior, while the exact mathematical form and sequence dependency can be substantially relaxed, especially when preserved in just a subset of layers. Surprisingly, even variants that fail in isolation can achieve robust performance when interleaved with standard attention, highlighting a cooperative effect. These findings deepen our understanding of what truly underpins attention's effectiveness and open new avenues for simplifying language models without sacrificing performance.
☆ SemCSE-Multi: Multifaceted and Decodable Embeddings for Aspect-Specific and Interpretable Scientific Domain Mapping
We propose SemCSE-Multi, a novel unsupervised framework for generating multifaceted embeddings of scientific abstracts, evaluated in the domains of invasion biology and medicine. These embeddings capture distinct, individually specifiable aspects in isolation, thus enabling fine-grained and controllable similarity assessments as well as adaptive, user-driven visualizations of scientific domains. Our approach relies on an unsupervised procedure that produces aspect-specific summarizing sentences and trains embedding models to map semantically related summaries to nearby positions in the embedding space. We then distill these aspect-specific embedding capabilities into a unified embedding model that directly predicts multiple aspect embeddings from a scientific abstract in a single, efficient forward pass. In addition, we introduce an embedding decoding pipeline that decodes embeddings back into natural language descriptions of their associated aspects. Notably, we show that this decoding remains effective even for unoccupied regions in low-dimensional visualizations, thus offering vastly improved interpretability in user-centric settings.
☆ MeTA-LoRA: Data-Efficient Multi-Task Fine-Tuning for Large Language Models
Low-Rank Adaptation (LoRA) has emerged as one of the most widely used parameter-efficient fine-tuning (PEFT) methods for adapting large language models (LLMs) to downstream tasks. While highly effective in single-task settings, it struggles to efficiently leverage inter-task knowledge in complex multi-task learning scenarios, often requiring substantial task-specific data to achieve optimal performance. To address this limitation, we introduce MeTA-LoRA, a two-stage optimization framework that significantly improves data efficiency in multi-task adaptation. In the first stage, task-specific LoRA adapters are learned using only a few samples from each involved dataset, enabling rapid adaptation without large-scale supervision. In the second stage, the shared LoRA adapter is updated by aggregating gradients from multiple tasks to promote knowledge transfer across tasks, further reducing data usage by leveraging common patterns. In both multi-task learning and multilingual learning scenarios, our method matches or surpasses the performance of traditional full-data LoRA fine-tuning approaches, while using significantly less task-specific data.
☆ REGENT: Relevance-Guided Attention for Entity-Aware Multi-Vector Neural Re-Ranking SIGIR
Current neural re-rankers often struggle with complex information needs and long, content-rich documents. The fundamental issue is not computational--it is intelligent content selection: identifying what matters in lengthy, multi-faceted texts. While humans naturally anchor their understanding around key entities and concepts, neural models process text within rigid token windows, treating all interactions as equally important and missing critical semantic signals. We introduce REGENT, a neural re-ranking model that mimics human-like understanding by using entities as a "semantic skeleton" to guide attention. REGENT integrates relevance guidance directly into the attention mechanism, combining fine-grained lexical matching with high-level semantic reasoning. This relevance-guided attention enables the model to focus on conceptually important content while maintaining sensitivity to precise term matches. REGENT achieves new state-of-the-art performance in three challenging datasets, providing up to 108% improvement over BM25 and consistently outperforming strong baselines including ColBERT and RankVicuna. To our knowledge, this is the first work to successfully integrate entity semantics directly into neural attention, establishing a new paradigm for entity-aware information retrieval.
comment: To be published in: Proceedings of the 2025 Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region (SIGIR-AP 2025)
☆ QDER: Query-Specific Document and Entity Representations for Multi-Vector Document Re-Ranking SIGIR
Neural IR has advanced through two distinct paths: entity-oriented approaches leveraging knowledge graphs and multi-vector models capturing fine-grained semantics. We introduce QDER, a neural re-ranking model that unifies these approaches by integrating knowledge graph semantics into a multi-vector model. QDER's key innovation lies in its modeling of query-document relationships: rather than computing similarity scores on aggregated embeddings, we maintain individual token and entity representations throughout the ranking process, performing aggregation only at the final scoring stage - an approach we call "late aggregation." We first transform these fine-grained representations through learned attention patterns, then apply carefully chosen mathematical operations for precise matches. Experiments across five standard benchmarks show that QDER achieves significant performance gains, with improvements of 36% in nDCG@20 over the strongest baseline on TREC Robust 2004 and similar improvements on other datasets. QDER particularly excels on difficult queries, achieving an nDCG@20 of 0.70 where traditional approaches fail completely (nDCG@20 = 0.0), setting a foundation for future work in entity-aware retrieval.
comment: Published in: Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2025)
Survey Response Generation: Generating Closed-Ended Survey Responses In-Silico with Large Language Models
Many in-silico simulations of human survey responses with large language models (LLMs) focus on generating closed-ended survey responses, whereas LLMs are typically trained to generate open-ended text instead. Previous research has used a diverse range of methods for generating closed-ended survey responses with LLMs, and a standard practice remains to be identified. In this paper, we systematically investigate the impact that various Survey Response Generation Methods have on predicted survey responses. We present the results of 32 mio. simulated survey responses across 8 Survey Response Generation Methods, 4 political attitude surveys, and 10 open-weight language models. We find significant differences between the Survey Response Generation Methods in both individual-level and subpopulation-level alignment. Our results show that Restricted Generation Methods perform best overall, and that reasoning output does not consistently improve alignment. Our work underlines the significant impact that Survey Response Generation Methods have on simulated survey responses, and we develop practical recommendations on the application of Survey Response Generation Methods.
☆ LLMAtKGE: Large Language Models as Explainable Attackers against Knowledge Graph Embeddings
Adversarial attacks on knowledge graph embeddings (KGE) aim to disrupt the model's ability of link prediction by removing or inserting triples. A recent black-box method has attempted to incorporate textual and structural information to enhance attack performance. However, it is unable to generate human-readable explanations, and exhibits poor generalizability. In the past few years, large language models (LLMs) have demonstrated powerful capabilities in text comprehension, generation, and reasoning. In this paper, we propose LLMAtKGE, a novel LLM-based framework that selects attack targets and generates human-readable explanations. To provide the LLM with sufficient factual context under limited input constraints, we design a structured prompting scheme that explicitly formulates the attack as multiple-choice questions while incorporating KG factual evidence. To address the context-window limitation and hesitation issues, we introduce semantics-based and centrality-based filters, which compress the candidate set while preserving high recall of attack-relevant information. Furthermore, to efficiently integrate both semantic and structural information into the filter, we precompute high-order adjacency and fine-tune the LLM with a triple classification task to enhance filtering performance. Experiments on two widely used knowledge graph datasets demonstrate that our attack outperforms the strongest black-box baselines and provides explanations via reasoning, and showing competitive performance compared with white-box methods. Comprehensive ablation and case studies further validate its capability to generate explanations.
comment: 13 pages
☆ Bag of Tricks for Subverting Reasoning-based Safety Guardrails
Recent reasoning-based safety guardrails for Large Reasoning Models (LRMs), such as deliberative alignment, have shown strong defense against jailbreak attacks. By leveraging LRMs' reasoning ability, these guardrails help the models to assess the safety of user inputs before generating final responses. The powerful reasoning ability can analyze the intention of the input query and will refuse to assist once it detects the harmful intent hidden by the jailbreak methods. Such guardrails have shown a significant boost in defense, such as the near-perfect refusal rates on the open-source gpt-oss series. Unfortunately, we find that these powerful reasoning-based guardrails can be extremely vulnerable to subtle manipulation of the input prompts, and once hijacked, can lead to even more harmful results. Specifically, we first uncover a surprisingly fragile aspect of these guardrails: simply adding a few template tokens to the input prompt can successfully bypass the seemingly powerful guardrails and lead to explicit and harmful responses. To explore further, we introduce a bag of jailbreak methods that subvert the reasoning-based guardrails. Our attacks span white-, gray-, and black-box settings and range from effortless template manipulations to fully automated optimization. Along with the potential for scalable implementation, these methods also achieve alarmingly high attack success rates (e.g., exceeding 90% across 5 different benchmarks on gpt-oss series on both local host models and online API services). Evaluations across various leading open-source LRMs confirm that these vulnerabilities are systemic, underscoring the urgent need for stronger alignment techniques for open-sourced LRMs to prevent malicious misuse. Code is open-sourced at https://chenxshuo.github.io/bag-of-tricks.
comment: OpenAI Red-teaming Challenge Winner and Oral Presentation
☆ Culturally-Aware Conversations: A Framework & Benchmark for LLMs EMNLP
Existing benchmarks that measure cultural adaptation in LLMs are misaligned with the actual challenges these models face when interacting with users from diverse cultural backgrounds. In this work, we introduce the first framework and benchmark designed to evaluate LLMs in realistic, multicultural conversational settings. Grounded in sociocultural theory, our framework formalizes how linguistic style - a key element of cultural communication - is shaped by situational, relational, and cultural context. We construct a benchmark dataset based on this framework, annotated by culturally diverse raters, and propose a new set of desiderata for cross-cultural evaluation in NLP: conversational framing, stylistic sensitivity, and subjective correctness. We evaluate today's top LLMs on our benchmark and show that these models struggle with cultural adaptation in a conversational setting.
comment: To appear at the 4th HCI + NLP Workshop @ EMNLP
☆ Invisible Languages of the LLM Universe
Large Language Models are trained on massive multilingual corpora, yet this abundance masks a profound crisis: of the world's 7,613 living languages, approximately 2,000 languages with millions of speakers remain effectively invisible in digital ecosystems. We propose a critical framework connecting empirical measurements of language vitality (real world demographic strength) and digitality (online presence) with postcolonial theory and epistemic injustice to explain why linguistic inequality in AI systems is not incidental but structural. Analyzing data across all documented human languages, we identify four categories: Strongholds (33%, high vitality and digitality), Digital Echoes (6%, high digitality despite declining vitality), Fading Voices (36%, low on both dimensions), and critically, Invisible Giants (27%, high vitality but near-zero digitality) - languages spoken by millions yet absent from the LLM universe. We demonstrate that these patterns reflect continuities from colonial-era linguistic hierarchies to contemporary AI development, constituting what we term digital epistemic injustice. Our analysis reveals that English dominance in AI is not a technical necessity but an artifact of power structures that systematically exclude marginalized linguistic knowledge. We conclude with implications for decolonizing language technology and democratizing access to AI benefits.
☆ Information-Preserving Reformulation of Reasoning Traces for Antidistillation
Recent advances in Large Language Models (LLMs) show that extending the length of reasoning chains significantly improves performance on complex tasks. While revealing these reasoning traces helps users better follow, verify, and learn from the model's problem-solving process, it also makes them highly vulnerable to unauthorized distillation. To mitigate this risk, proprietary model providers often adopt aggressive protection strategies, such as replacing detailed reasoning with brief summaries, which deprive users of valuable intermediate information. To address this trade-off, we propose PART, an information-preserving antidistillation reformulation of reasoning traces. Motivated by the difference between how humans understand reasoning traces and how LLMs exploit them for supervised fine-tuning, we design a simple but effective two-step reformulation: removing self-talk behaviors and reordering sub-conclusions. A small auxiliary model is trained to perform this reformulation, incurring minimal computational overhead. Extensive experiments demonstrate that PART consistently disrupts distillation across student models of different sizes and types on various reasoning benchmarks. For instance, when training on reformulated traces, even the performance of a large 32B student model decreases from 54.17 to 46.88 on AIME 2024, corresponding to a 13.5% degradation.
☆ An Encoder-Integrated PhoBERT with Graph Attention for Vietnamese Token-Level Classification SP 2025
We propose a novel neural architecture named TextGraphFuseGAT, which integrates a pretrained transformer encoder (PhoBERT) with Graph Attention Networks for token-level classification tasks. The proposed model constructs a fully connected graph over the token embeddings produced by PhoBERT, enabling the GAT layer to capture rich inter-token dependencies beyond those modeled by sequential context alone. To further enhance contextualization, a Transformer-style self-attention layer is applied on top of the graph-enhanced embeddings. The final token representations are passed through a classification head to perform sequence labeling. We evaluate our approach on three Vietnamese benchmark datasets: PhoNER-COVID19 for named entity recognition in the COVID-19 domain, PhoDisfluency for speech disfluency detection, and VietMed-NER for medical-domain NER. VietMed-NER is the first Vietnamese medical spoken NER dataset, featuring 18 entity types collected from real-world medical speech transcripts and annotated with the BIO tagging scheme. Its specialized vocabulary and domain-specific expressions make it a challenging benchmark for token-level classification models. Experimental results show that our method consistently outperforms strong baselines, including transformer-only and hybrid neural models such as BiLSTM + CNN + CRF, confirming the effectiveness of combining pretrained semantic features with graph-based relational modeling for improved token classification across multiple domains.
comment: 11 pages, 1 figure. Submitted to VLSP 2025 and reviewed
☆ Hallucination Detection via Internal States and Structured Reasoning Consistency in Large Language Models
The detection of sophisticated hallucinations in Large Language Models (LLMs) is hampered by a ``Detection Dilemma'': methods probing internal states (Internal State Probing) excel at identifying factual inconsistencies but fail on logical fallacies, while those verifying externalized reasoning (Chain-of-Thought Verification) show the opposite behavior. This schism creates a task-dependent blind spot: Chain-of-Thought Verification fails on fact-intensive tasks like open-domain QA where reasoning is ungrounded, while Internal State Probing is ineffective on logic-intensive tasks like mathematical reasoning where models are confidently wrong. We resolve this with a unified framework that bridges this critical gap. However, unification is hindered by two fundamental challenges: the Signal Scarcity Barrier, as coarse symbolic reasoning chains lack signals directly comparable to fine-grained internal states, and the Representational Alignment Barrier, a deep-seated mismatch between their underlying semantic spaces. To overcome these, we introduce a multi-path reasoning mechanism to obtain more comparable, fine-grained signals, and a segment-aware temporalized cross-attention module to adaptively fuse these now-aligned representations, pinpointing subtle dissonances. Extensive experiments on three diverse benchmarks and two leading LLMs demonstrate that our framework consistently and significantly outperforms strong baselines. Our code is available: https://github.com/peach918/HalluDet.
☆ ReLook: Vision-Grounded RL with a Multimodal LLM Critic for Agentic Web Coding
While Large Language Models (LLMs) excel at algorithmic code generation, they struggle with front-end development, where correctness is judged on rendered pixels and interaction. We present ReLook, an agentic, vision-grounded reinforcement learning framework that empowers an agent to close a robust generate--diagnose--refine loop by invoking a multimodal LLM (MLLM) as a tool. During training, the agent uses the MLLM-in-the-loop both as a visual critic--scoring code with screenshots--and as a source of actionable, vision-grounded feedback; a strict zero-reward rule for invalid renders anchors renderability and prevents reward hacking. To prevent behavioral collapse, we introduce Forced Optimization, a strict acceptance rule that admits only improving revisions, yielding monotonically better trajectories. At inference, we decouple the critic and run a lightweight, critic-free self-edit cycle, keeping latency comparable to base decoding while retaining most of the gains. Across three widely used benchmarks, ReLook consistently outperforms strong baselines in vision-grounded front-end code generation, highlighting the benefits of agentic perception, visual rewards, and training-inference decoupling.
☆ Investigating Large Language Models' Linguistic Abilities for Text Preprocessing
Text preprocessing is a fundamental component of Natural Language Processing, involving techniques such as stopword removal, stemming, and lemmatization to prepare text as input for further processing and analysis. Despite the context-dependent nature of the above techniques, traditional methods usually ignore contextual information. In this paper, we investigate the idea of using Large Language Models (LLMs) to perform various preprocessing tasks, due to their ability to take context into account without requiring extensive language-specific annotated resources. Through a comprehensive evaluation on web-sourced data, we compare LLM-based preprocessing (specifically stopword removal, lemmatization and stemming) to traditional algorithms across multiple text classification tasks in six European languages. Our analysis indicates that LLMs are capable of replicating traditional stopword removal, lemmatization, and stemming methods with accuracies reaching 97%, 82%, and 74%, respectively. Additionally, we show that ML algorithms trained on texts preprocessed by LLMs achieve an improvement of up to 6% with respect to the $F_1$ measure compared to traditional techniques. Our code, prompts, and results are publicly available at https://github.com/GianCarloMilanese/llm_pipeline_wi-iat.
comment: Accepted in WI-IAT 2025. Pre-camera-ready version
☆ GenCNER: A Generative Framework for Continual Named Entity Recognition IJCNN 2025
Traditional named entity recognition (NER) aims to identify text mentions into pre-defined entity types. Continual Named Entity Recognition (CNER) is introduced since entity categories are continuously increasing in various real-world scenarios. However, existing continual learning (CL) methods for NER face challenges of catastrophic forgetting and semantic shift of non-entity type. In this paper, we propose GenCNER, a simple but effective Generative framework for CNER to mitigate the above drawbacks. Specifically, we skillfully convert the CNER task into sustained entity triplet sequence generation problem and utilize a powerful pre-trained seq2seq model to solve it. Additionally, we design a type-specific confidence-based pseudo labeling strategy along with knowledge distillation (KD) to preserve learned knowledge and alleviate the impact of label noise at the triplet level. Experimental results on two benchmark datasets show that our framework outperforms previous state-of-the-art methods in multiple CNER settings, and achieves the smallest gap compared with non-CL results.
comment: Accepted by IJCNN 2025
☆ Who are you, ChatGPT? Personality and Demographic Style in LLM-Generated Content ECAI2025
Generative large language models (LLMs) have become central to everyday life, producing human-like text across diverse domains. A growing body of research investigates whether these models also exhibit personality- and demographic-like characteristics in their language. In this work, we introduce a novel, data-driven methodology for assessing LLM personality without relying on self-report questionnaires, applying instead automatic personality and gender classifiers to model replies on open-ended questions collected from Reddit. Comparing six widely used models to human-authored responses, we find that LLMs systematically express higher Agreeableness and lower Neuroticism, reflecting cooperative and stable conversational tendencies. Gendered language patterns in model text broadly resemble those of human writers, though with reduced variation, echoing prior findings on automated agents. We contribute a new dataset of human and model responses, along with large-scale comparative analyses, shedding new light on the topic of personality and demographic patterns of generative AI.
comment: ECAI2025 (Identity-Aware AI workshop)
☆ Beyond the Crowd: LLM-Augmented Community Notes for Governing Health Misinformation
Community Notes, the crowd-sourced misinformation governance system on X (formerly Twitter), enables users to flag misleading posts, attach contextual notes, and vote on their helpfulness. However, our analysis of 30.8K health-related notes reveals significant latency, with a median delay of 17.6 hours before the first note receives a helpfulness status. To improve responsiveness during real-world misinformation surges, we propose CrowdNotes+, a unified framework that leverages large language models (LLMs) to augment Community Notes for faster and more reliable health misinformation governance. CrowdNotes+ integrates two complementary modes: (1) evidence-grounded note augmentation and (2) utility-guided note automation, along with a hierarchical three-step evaluation that progressively assesses relevance, correctness, and helpfulness. We instantiate the framework through HealthNotes, a benchmark of 1.2K helpfulness-annotated health notes paired with a fine-tuned helpfulness judge. Experiments on fifteen LLMs reveal an overlooked loophole in current helpfulness evaluation, where stylistic fluency is mistaken for factual accuracy, and demonstrate that our hierarchical evaluation and LLM-augmented generation jointly enhance factual precision and evidence utility. These results point toward a hybrid human-AI governance model that improves both the rigor and timeliness of crowd-sourced fact-checking.
☆ Valid Survey Simulations with Limited Human Data: The Roles of Prompting, Fine-Tuning, and Rectification
Surveys provide valuable insights into public opinion and behavior, but their execution is costly and slow. Large language models (LLMs) have been proposed as a scalable, low-cost substitute for human respondents, but their outputs are often biased and yield invalid estimates. We study the interplay between synthesis methods that use LLMs to generate survey responses and rectification methods that debias population estimates, and explore how human responses are best allocated between them. Using two panel surveys with questions on nutrition, politics, and economics, we find that synthesis alone introduces substantial bias (24-86%), whereas combining it with rectification reduces bias below 5% and increases effective sample size by up to 14%. Overall, we challenge the common practice of using all human responses for fine-tuning, showing that under a fixed budget, allocating most to rectification results in far more effective estimation.
comment: 19 pages, 4 figures, 9 tables
☆ KnowRL: Teaching Language Models to Know What They Know
Truly reliable AI requires more than simply scaling up knowledge; it demands the ability to know what it knows and when it does not. Yet recent research shows that even the best LLMs misjudge their own competence in more than one in five cases, making any response born of such internal uncertainty impossible to fully trust. Inspired by self-improvement reinforcement learning techniques that require minimal data, we present a simple but powerful framework KnowRL that strengthens a model's internal understanding of its own feasibility boundaries, enabling safer and more responsible behaviour. Our framework combines two components: (i) introspection, where the model generates and classifies tasks it judges feasible or infeasible, and (ii) consensus-based rewarding, where stability of self-knowledge assessment is reinforced through internal agreement. By using internally generated data, this design strengthens consistency in self-knowledge and entirely avoids costly external supervision. In experiments on LLaMA-3.1-8B and Qwen-2.5-7B, KnowRL steadily improved self-knowledge, validated by both intrinsic self-consistency and extrinsic benchmarking. With nothing more than a small seed set and no external supervision, our method drove gains as high as 28% in accuracy and 12% in F1, outperforming baselines in just a few iterations. Our framework essentially unlocks the untapped capacity of LLMs to self-improve their knowledge awareness, opening the door to reliable, more accountable AI and safer deployment in critical applications. Owing to its simplicity and independence from external effort, we encourage applying this reliability-enhancing process to all future models.
comment: 14 pages, 7 figures
☆ DocReward: A Document Reward Model for Structuring and Stylizing
Recent advances in agentic workflows have enabled the automation of tasks such as professional document generation. However, they primarily focus on textual quality, neglecting visual structure and style, which are crucial for readability and engagement. This gap arises mainly from the absence of suitable reward models to guide agentic workflows toward producing documents with stronger structural and stylistic quality. To address this, we propose DocReward, a document reward model that evaluates documents based on their structure and style. We construct a multi-domain dataset DocPair of 117K paired documents, covering 32 domains and 267 document types, each including a high- and low-professionalism document with identical content but different structure and style. This enables the model to evaluate professionalism comprehensively, and in a textual-quality-agnostic way. DocReward is trained using the Bradley-Terry loss to score documents, penalizing predictions that contradict the annotated ranking. To assess the performance of reward models, we create a test dataset containing document bundles ranked by well-educated human evaluators. Notably, DocReward outperforms GPT-4o and GPT-5 in accuracy by 30.6 and 19.4 percentage points, respectively, demonstrating its superiority over baselines. In an extrinsic evaluation of document generation, DocReward achieves a significantly higher win rate of 60.8%, compared to GPT-5's 37.7% win rate, demonstrating its utility in guiding generation agents toward producing human-preferred documents.
☆ Beyond Survival: Evaluating LLMs in Social Deduction Games with Human-Aligned Strategies
Social deduction games like Werewolf combine language, reasoning, and strategy, providing a testbed for studying natural language and social intelligence. However, most studies reduce the game to LLM-based self-play, yielding templated utterances and anecdotal cases that overlook the richness of social gameplay. Evaluation further relies on coarse metrics such as survival time or subjective scoring due to the lack of quality reference data. To address these gaps, we curate a high-quality, human-verified multimodal Werewolf dataset containing over 100 hours of video, 32.4M utterance tokens, and 15 rule variants. Based on this dataset, we propose a novel strategy-alignment evaluation that leverages the winning faction's strategies as ground truth in two stages: 1) Speech evaluation, formulated as multiple-choice-style tasks that assess whether the model can adopt appropriate stances across five dimensions of social ability; and 2) Decision evaluation, which assesses the model's voting choices and opponent-role inferences. This framework enables a fine-grained evaluation of models' linguistic and reasoning capabilities, while capturing their ability to generate strategically coherent gameplay. Our experiments show that state-of-the-art LLMs show diverse performance, with roughly half remain below 0.50, revealing clear gaps in deception and counterfactual reasoning. We hope our dataset further inspires research on language, reasoning, and strategy in multi-agent interaction.
comment: 34 pages, 32figures
☆ Early Detection and Reduction of Memorisation for Domain Adaptation and Instruction Tuning ACL
Although large language models excel across many tasks, they can memorise training data and thereby expose private or copyrighted text. Most defences target the pre-training stage, leaving memorisation during fine-tuning, especially for domain adaptation and instruction tuning, poorly understood. We fine-tune Pythia, Llama3, and Mistral models spanning 1.4B-70B parameters on common evaluation datasets and track verbatim memorisation throughout training. We find that memorisation increases dramatically in the first few epochs, often significantly before either validation perplexity or evaluation performance is optimised. We use a simple but effective n-gram memorisation score which reliably precedes verbatim memorisation; using it as an early-stopping criterion mitigates memorisation with minimal performance loss. Further, we introduce an n-gram-aware loss regulariser and show that it reduces memorisation across all model families tested by up to 40% while minimising evaluation performance trade-offs when compared to an existing memorisation mitigation strategy. These results yield practical, scalable insights into memorisation dynamics during language model fine-tuning.
comment: Accepted to Transactions of the ACL (TACL), 2025. 15 pages, 6 figures, 3 tables
☆ Stabilizing MoE Reinforcement Learning by Aligning Training and Inference Routers
Reinforcement learning (RL) has emerged as a crucial approach for enhancing the capabilities of large language models. However, in Mixture-of-Experts (MoE) models, the routing mechanism often introduces instability, even leading to catastrophic RL training collapse. We analyze the training-inference consistency of MoE models and identify a notable discrepancy in routing behaviors between the two phases. Moreover, even under identical conditions, the routing framework can yield divergent expert selections across repeated forward passes. To address this foundational inconsistency, we propose Rollout Routing Replay (R3), a method that records routing distributions from the inference engine and replays them during training. R3 significantly reduces training-inference policy KL divergence and mitigates extreme discrepancies without compromising training speed. Extensive experiments on various settings confirm that R3 succeeds in stabilizing RL training, preventing collapse and outperforming methods such as GSPO and TIS. We believe this work can offer a new solution for stabilizing RL in MoE models.
☆ LLM-Specific Utility: A New Perspective for Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge. While traditional retrieval focuses on relevance, RAG's effectiveness depends on the utility of retrieved passages, i.e., the usefulness in facilitating the generation of an accurate and comprehensive answer. Existing studies often treat utility as a generic attribute, ignoring the fact that different LLMs may benefit differently from the same passage due to variations in internal knowledge and comprehension ability. In this work, we introduce and systematically investigate the notion of LLM-specific utility. Through large-scale experiments across multiple datasets and LLMs, we demonstrate that human-annotated passages are not optimal for LLMs and that ground-truth utilitarian passages are not transferable across different LLMs. These findings highlight the necessity of adopting the LLM-specific utility in RAG research. Our findings indicate that some human-annotated passages are not ground-truth utilitarian passages for specific LLMs, partially due to the varying readability of queries and passages for LLMs, a tendency for which perplexity is a key metric. Based on these findings, we propose a benchmarking procedure for LLM-specific utility judgments. We evaluate existing utility judgment methods on six datasets and find that while verbalized methods using pseudo-answers perform robustly, LLMs struggle to assess utility effectively-failing to reject all passages for known queries and to select truly useful ones for unknown queries.
comment: 13 pages, 9 figures
☆ Diffusion-Link: Diffusion Probabilistic Model for Bridging the Audio-Text Modality Gap ICASSP 2026
Contrastive audio-language pretraining yields powerful joint representations, yet a persistent audio-text modality gap limits the benefits of coupling multimodal encoders with large language models (LLMs). We present Diffusion-Link, a diffusion-based modality-bridging module that generatively maps audio embeddings into the text-embedding distribution. The module is trained at the output embedding from the frozen multimodal encoder and implemented as a lightweight network with three residual MLP blocks. To assess the effect of Diffusion-Link on multimodal encoder-LLM coupling, we evaluate on Automatic Audio Captioning (AAC); to our knowledge, this is the first application of diffusion-based modality bridging to AAC. We report two results. (1) Modality-gap analysis: on similarity and geometric criteria, Diffusion-Link reduces the modality gap the most among prior diffusion-based methods and shows a collective migration of audio embeddings toward the text distribution. (2) Downstream AAC: attaching Diffusion-Link to the same multimodal LLM baseline achieves state-of-the-art on AudioCaps in both zero-shot and fully supervised captioning without external knowledge, with relative gains up to 52.5% and 7.5%, respectively. These findings show that closing the modality gap is pivotal for effective coupling between multimodal encoders and LLMs, and diffusion-based modality bridging offers a promising direction beyond knowledge-retrieval-centric designs. Code will be released upon acceptance https://github.com/DevKiHyun/Diffusion-Link
comment: 5 pages. Submitted to IEEE ICASSP 2026
☆ Do LLMs "Feel"? Emotion Circuits Discovery and Control
As the demand for emotional intelligence in large language models (LLMs) grows, a key challenge lies in understanding the internal mechanisms that give rise to emotional expression and in controlling emotions in generated text. This study addresses three core questions: (1) Do LLMs contain context-agnostic mechanisms shaping emotional expression? (2) What form do these mechanisms take? (3) Can they be harnessed for universal emotion control? We first construct a controlled dataset, SEV (Scenario-Event with Valence), to elicit comparable internal states across emotions. Subsequently, we extract context-agnostic emotion directions that reveal consistent, cross-context encoding of emotion (Q1). We identify neurons and attention heads that locally implement emotional computation through analytical decomposition and causal analysis, and validate their causal roles via ablation and enhancement interventions. Next, we quantify each sublayer's causal influence on the model's final emotion representation and integrate the identified local components into coherent global emotion circuits that drive emotional expression (Q2). Directly modulating these circuits achieves 99.65% emotion-expression accuracy on the test set, surpassing prompting- and steering-based methods (Q3). To our knowledge, this is the first systematic study to uncover and validate emotion circuits in LLMs, offering new insights into interpretability and controllable emotional intelligence.
comment: 19 pages, 8 figures, 8 tables. Code and dataset available at https://github.com/Aurora-cx/EmotionCircuits-LLM
☆ Template-Based Text-to-Image Alignment for Language Accessibility: A Study on Visualizing Text Simplifications
Individuals with intellectual disabilities often have difficulties in comprehending complex texts. While many text-to-image models prioritize aesthetics over accessibility, it is not clear how visual illustrations relate to text simplifications (TS) generated from them. This paper presents a structured vision-language model (VLM) prompting framework for generating accessible images from simplified texts. We designed five prompt templates, i.e., Basic Object Focus, Contextual Scene, Educational Layout, Multi-Level Detail, and Grid Layout, each following distinct spatial arrangements while adhering to accessibility constraints such as object count limits, spatial separation, and content restrictions. Using 400 sentence-level simplifications from four established TS datasets (OneStopEnglish, SimPA, Wikipedia, and ASSET), we conducted a two-phase evaluation: Phase 1 assessed prompt template effectiveness with CLIPScores, and Phase 2 involved human annotation of generated images across ten visual styles by four accessibility experts. Results show that the Basic Object Focus prompt template achieved the highest semantic alignment, indicating that visual minimalism enhances language accessibility. Expert evaluation further identified Retro style as the most accessible and Wikipedia as the most effective data source. Inter-annotator agreement varied across dimensions, with Text Simplicity showing strong reliability and Image Quality proving more subjective. Overall, our framework offers practical guidelines for accessible content generation and underscores the importance of structured prompting in AI-generated visual accessibility tools.
☆ FOSSIL: Harnessing Feedback on Suboptimal Samples for Data-Efficient Generalisation with Imitation Learning for Embodied Vision-and-Language Tasks EMNLP 2025
Current approaches to embodied AI tend to learn policies from expert demonstrations. However, without a mechanism to evaluate the quality of demonstrated actions, they are limited to learning from optimal behaviour, or they risk replicating errors and inefficiencies. While reinforcement learning offers one alternative, the associated exploration typically results in sacrificing data efficiency. This work explores how agents trained with imitation learning can learn robust representations from both optimal and suboptimal demonstrations when given access to constructive language feedback as a means to contextualise different modes of behaviour. We directly provide language feedback embeddings as part of the input sequence into a Transformer-based policy, and optionally complement the traditional next action prediction objective with auxiliary self-supervised learning objectives for feedback prediction. We test our approach on a range of embodied Vision-and-Language tasks in our custom BabyAI-XGen environment and show significant improvements in agents' compositional generalisation abilities and robustness, suggesting that our data-efficient method allows models to successfully convert suboptimal behaviour into learning opportunities. Overall, our results suggest that language feedback is a competitive and intuitive alternative to intermediate scalar rewards for language-specified embodied tasks.
comment: EMNLP 2025 Findings
☆ Are Large Language Models Effective Knowledge Graph Constructors?
Knowledge graphs (KGs) are vital for knowledge-intensive tasks and have shown promise in reducing hallucinations in large language models (LLMs). However, constructing high-quality KGs remains difficult, requiring accurate information extraction and structured representations that support interpretability and downstream utility. Existing LLM-based approaches often focus narrowly on entity and relation extraction, limiting coverage to sentence-level contexts or relying on predefined schemas. We propose a hierarchical extraction framework that organizes information at multiple levels, enabling the creation of semantically rich and well-structured KGs. Using state-of-the-art LLMs, we extract and construct knowledge graphs and evaluate them comprehensively from both structural and semantic perspectives. Our results highlight the strengths and shortcomings of current LLMs in KG construction and identify key challenges for future work. To advance research in this area, we also release a curated dataset of LLM-generated KGs derived from research papers on children's mental well-being. This resource aims to foster more transparent, reliable, and impactful applications in high-stakes domains such as healthcare.
☆ Emergent Misalignment via In-Context Learning: Narrow in-context examples can produce broadly misaligned LLMs
Recent work has shown that narrow finetuning can produce broadly misaligned LLMs, a phenomenon termed emergent misalignment (EM). While concerning, these findings were limited to finetuning and activation steering, leaving out in-context learning (ICL). We therefore ask: does EM emerge in ICL? We find that it does: across three datasets, three frontier models produce broadly misaligned responses at rates between 2% and 17% given 64 narrow in-context examples, and up to 58% with 256 examples. We also examine mechanisms of EM by eliciting step-by-step reasoning (while leaving in-context examples unchanged). Manual analysis of the resulting chain-of-thought shows that 67.5% of misaligned traces explicitly rationalize harmful outputs by adopting a reckless or dangerous ''persona'', echoing prior results on finetuning-induced EM.
☆ ENIGMA: The Geometry of Reasoning and Alignment in Large-Language Models
We present Entropic Mutual-Information Geometry Large-Language Model Alignment (ENIGMA), a novel approach to Large-Language Model (LLM) training that jointly improves reasoning, alignment and robustness by treating an organisation's policies/principles as directions to move on a model's information manifold. Our single-loop trainer combines Group-Relative Policy Optimisation (GRPO), an on-policy, critic-free RL method with Chain-of-Thought (CoT)-format only rewards; a Self-Supervised Alignment with Mutual Information (SAMI)-style symmetric InfoNCE auxiliary; and an entropic Sinkhorn optimal-transport regulariser on hidden-state distributions to bound geometry drift. We also introduce infoNCE metrics that specialise to a standard MI lower bound under matched negatives to measure how strongly a model's CoT encodes these policies. These metrics include a Sufficiency Index (SI) that enables the selection and creation of principles that maximise downstream performance prior to training. In our experiments using small (1B) LLMs, high-SI principles predict steadier training dynamics and improved benchmark performance over GRPO ablations. Our information-geometry analysis of trained models validates desirable structural change in the manifold. These results support our hypothesis that reasoning, alignment, and robustness are projections of a single informationgeometric objective, and that models trained using ENIGMA demonstrate principled reasoning without the use of a reward model, offering a path to trusted capability
comment: 52 pages, 10 figures
☆ Towards Real-Time Fake News Detection under Evidence Scarcity
Fake news detection becomes particularly challenging in real-time scenarios, where emerging events often lack sufficient supporting evidence. Existing approaches often rely heavily on external evidence and therefore struggle to generalize under evidence scarcity. To address this issue, we propose Evaluation-Aware Selection of Experts (EASE), a novel framework for real-time fake news detection that dynamically adapts its decision-making process according to the assessed sufficiency of available evidence. EASE introduces a sequential evaluation mechanism comprising three independent perspectives: (1) Evidence-based evaluation, which assesses evidence and incorporates it into decision-making only when the evidence is sufficiently supportive; (2) Reasoning-based evaluation, which leverages the world knowledge of large language models (LLMs) and applies them only when their reliability is adequately established; and (3) Sentiment-based fallback, which integrates sentiment cues when neither evidence nor reasoning is reliable. To enhance the accuracy of evaluation processes, EASE employs instruction tuning with pseudo labels to guide each evaluator in justifying its perspective-specific knowledge through interpretable reasoning. Furthermore, the expert modules integrate the evaluators' justified assessments with the news content to enable evaluation-aware decision-making, thereby enhancing overall detection accuracy. Moreover, we introduce RealTimeNews-25, a new benchmark comprising recent news for evaluating model generalization on emerging news with limited evidence. Extensive experiments demonstrate that EASE not only achieves state-of-the-art performance across multiple benchmarks, but also significantly improves generalization to real-time news. The code and dataset are available: https://github.com/wgyhhhh/EASE.
☆ Do Psychometric Tests Work for Large Language Models? Evaluation of Tests on Sexism, Racism, and Morality
Psychometric tests are increasingly used to assess psychological constructs in large language models (LLMs). However, it remains unclear whether these tests -- originally developed for humans -- yield meaningful results when applied to LLMs. In this study, we systematically evaluate the reliability and validity of human psychometric tests for three constructs: sexism, racism, and morality. We find moderate reliability across multiple item and prompt variations. Validity is evaluated through both convergent (i.e., testing theory-based inter-test correlations) and ecological approaches (i.e., testing the alignment between tests scores and behavior in real-world downstream tasks). Crucially, we find that psychometric test scores do not align, and in some cases even negatively correlate with, model behavior in downstream tasks, indicating low ecological validity. Our results highlight that systematic evaluations of psychometric tests is essential before interpreting their scores. They also suggest that psychometric tests designed for humans cannot be applied directly to LLMs without adaptation.
☆ Attacks by Content: Automated Fact-checking is an AI Security Issue EMNLP 2025
When AI agents retrieve and reason over external documents, adversaries can manipulate the data they receive to subvert their behaviour. Previous research has studied indirect prompt injection, where the attacker injects malicious instructions. We argue that injection of instructions is not necessary to manipulate agents - attackers could instead supply biased, misleading, or false information. We term this an attack by content. Existing defenses, which focus on detecting hidden commands, are ineffective against attacks by content. To defend themselves and their users, agents must critically evaluate retrieved information, corroborating claims with external evidence and evaluating source trustworthiness. We argue that this is analogous to an existing NLP task, automated fact-checking, which we propose to repurpose as a cognitive self-defense tool for agents.
comment: Accepted to EMNLP 2025
☆ XQuant: Achieving Ultra-Low Bit KV Cache Quantization with Cross-Layer Compression EMNLP 2025
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse natural language processing tasks. However, their extensive memory requirements, particularly due to KV cache growth during long-text understanding and generation, present significant challenges for deployment in resource-constrained environments. Quantization has emerged as a promising solution to reduce memory consumption while preserving historical information. We propose XQuant, a training-free and plug-and-play framework that achieves ultra-low equivalent bit-width KV cache quantization. XQuant introduces two key innovations: a computationally negligible data-free calibration method and cross-layer KV cache compression, enabling quantization to sub-1.4 bits. Extensive experiments on TruthfulQA and LongBench demonstrate that XQuant outperforms state-of-the-art methods (e.g., KIVI-2bit and AsymKV-1.5bit) by achieving lower bit-width while maintaining superior performance, establishing a better trade-off between memory efficiency and model accuracy.
comment: To be published in The 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025)
☆ CNSocialDepress: A Chinese Social Media Dataset for Depression Risk Detection and Structured Analysis
Depression is a pressing global public health issue, yet publicly available Chinese-language resources for risk detection remain scarce and are mostly limited to binary classification. To address this limitation, we release CNSocialDepress, a benchmark dataset for depression risk detection from Chinese social media posts. The dataset contains 44,178 texts from 233 users, within which psychological experts annotated 10,306 depression-related segments. CNSocialDepress provides binary risk labels together with structured multi-dimensional psychological attributes, enabling interpretable and fine-grained analysis of depressive signals. Experimental results demonstrate its utility across a wide range of NLP tasks, including structured psychological profiling and fine-tuning of large language models for depression detection. Comprehensive evaluations highlight the dataset's effectiveness and practical value for depression risk identification and psychological analysis, thereby providing insights to mental health applications tailored for Chinese-speaking populations.
☆ A Theorem-Proving-Based Evaluation of Neural Semantic Parsing
Graph-matching metrics such as Smatch are the de facto standard for evaluating neural semantic parsers, yet they capture surface overlap rather than logical equivalence. We reassess evaluation by pairing graph-matching with automated theorem proving. We compare two approaches to building parsers: supervised fine-tuning (T5-Small/Base) and few-shot in-context learning (GPT-4o/4.1/5), under normalized and unnormalized targets. We evaluate outputs using graph-matching, bidirectional entailment between source and target formulas with a first-order logic theorem prover, and well-formedness. Across settings, we find that models performing well on graph-matching often fail to produce logically equivalent formulas. Normalization reduces incidental target variability, improves well-formedness, and strengthens logical adequacy. Error analysis shows performance degrades with increasing formula complexity and with coordination, prepositional phrases, and passive voice; the dominant failures involve variable binding and indexing, and predicate naming. These findings highlight limits of graph-based metrics for reasoning-oriented applications and motivate logic-sensitive evaluation and training objectives together with simplified, normalized target representations. All code and data for our experiments are publicly available.
comment: Accepted to BlackboxNLP 2025
☆ Fairness Metric Design Exploration in Multi-Domain Moral Sentiment Classification using Transformer-Based Models
Ensuring fairness in natural language processing for moral sentiment classification is challenging, particularly under cross-domain shifts where transformer models are increasingly deployed. Using the Moral Foundations Twitter Corpus (MFTC) and Moral Foundations Reddit Corpus (MFRC), this work evaluates BERT and DistilBERT in a multi-label setting with in-domain and cross-domain protocols. Aggregate performance can mask disparities: we observe pronounced asymmetry in transfer, with Twitter->Reddit degrading micro-F1 by 14.9% versus only 1.5% for Reddit->Twitter. Per-label analysis reveals fairness violations hidden by overall scores; notably, the authority label exhibits Demographic Parity Differences of 0.22-0.23 and Equalized Odds Differences of 0.40-0.41. To address this gap, we introduce the Moral Fairness Consistency (MFC) metric, which quantifies the cross-domain stability of moral foundation detection. MFC shows strong empirical validity, achieving a perfect negative correlation with Demographic Parity Difference (rho = -1.000, p < 0.001) while remaining independent of standard performance metrics. Across labels, loyalty demonstrates the highest consistency (MFC = 0.96) and authority the lowest (MFC = 0.78). These findings establish MFC as a complementary, diagnosis-oriented metric for fairness-aware evaluation of moral reasoning models, enabling more reliable deployment across heterogeneous linguistic contexts. .
☆ WebRouter: Query-specific Router via Variational Information Bottleneck for Cost-sensitive Web Agent
LLM-brained web agents offer powerful capabilities for web automation but face a critical cost-performance trade-off. The challenge is amplified by web agents' inherently complex prompts that include goals, action histories, and environmental states, leading to degraded LLM ensemble performance. To address this, we introduce WebRouter, a novel query-specific router trained from an information-theoretic perspective. Our core contribution is a cost-aware Variational Information Bottleneck (ca-VIB) objective, which learns a compressed representation of the input prompt while explicitly penalizing the expected operational cost. Experiments on five real-world websites from the WebVoyager benchmark show that WebRouter reduces operational costs by a striking 87.8\% compared to a GPT-4o baseline, while incurring only a 3.8\% accuracy drop.
☆ The Curious Case of Factual (Mis)Alignment between LLMs' Short- and Long-Form Answers
Large language models (LLMs) can correctly answer "When was Einstein born?" yet fail to provide the same date when writing about Einstein's life revealing a fundamental inconsistency in how models access factual knowledge across task complexities. While models display impressive accuracy on factual question-answering benchmarks, the reliability gap between simple and complex queries remains poorly understood, eroding their trustworthiness. In this work, we introduce Short-Long Form Alignment for Factual Question Answering (SLAQ), a controlled evaluation framework that compares LLMs' answers to the same factual questions asked (a) in isolation (short) vs. (b) integrated into complex queries (long). Looking at 16 LLMs across 600 queries, we find a systematic misalignment of answers to the corresponding short and long queries. We further uncover position-dependent accuracy loss and momentum effects where consecutive correct or incorrect answers create self-reinforcing patterns. Through mechanistic analysis, we find that aligned facts activate overlapping model internals, and that metrics based on mechanistic similarity can predict short-long answer alignment with up to 78% accuracy. Our work establishes factual consistency over query complexity as an important aspect of LLMs' trustworthiness and challenges current evaluation practices, which implicitly assume that good performance for simple factual queries implies reliability in more complex knowledge-seeking tasks too.
☆ Domain-Specific Data Generation Framework for RAG Adaptation
Retrieval-Augmented Generation (RAG) combines the language understanding and reasoning power of large language models (LLMs) with external retrieval to enable domain-grounded responses. Effectively adapting RAG systems to domain-specific settings requires specialized, context-rich training data beyond general-purpose question-answering. Here, we propose RAGen, a scalable and modular framework for generating domain-grounded question-answer-context (QAC) triples tailored to diverse RAG adaptation approaches. RAGen produces these QAC triples by identifying key concepts in documents, generating diverse questions guided by Bloom's Taxonomy-inspired principles, and pairing them with precise answers extracted from relevant contexts. RAGen supports multiple RAG adaptation strategies, including the optimization of key components such as the LLM, retriever, and embedding model, etc. Its modular pipeline features semantic chunking, hierarchical concept extraction, and multi-chunk retrieval, along with the introduction of curated distractor contexts to promote robust reasoning. Designed for scalability, RAGen efficiently handles large and evolving document corpora without redundant processing, making it especially suitable for dynamic evolving domains such as scientific research and enterprise knowledge bases.
☆ Discursive Circuits: How Do Language Models Understand Discourse Relations? EMNLP 2025
Which components in transformer language models are responsible for discourse understanding? We hypothesize that sparse computational graphs, termed as discursive circuits, control how models process discourse relations. Unlike simpler tasks, discourse relations involve longer spans and complex reasoning. To make circuit discovery feasible, we introduce a task called Completion under Discourse Relation (CuDR), where a model completes a discourse given a specified relation. To support this task, we construct a corpus of minimal contrastive pairs tailored for activation patching in circuit discovery. Experiments show that sparse circuits ($\approx 0.2\%$ of a full GPT-2 model) recover discourse understanding in the English PDTB-based CuDR task. These circuits generalize well to unseen discourse frameworks such as RST and SDRT. Further analysis shows lower layers capture linguistic features such as lexical semantics and coreference, while upper layers encode discourse-level abstractions. Feature utility is consistent across frameworks (e.g., coreference supports Expansion-like relations).
comment: Accepted to EMNLP 2025 (Main Conference); 9 pages, 8 figures, 5 tables (20 pages, 12 figures, 14 tables including references and appendices)
☆ Evaluating Reasoning Faithfulness in Medical Vision-Language Models using Multimodal Perturbations
Vision-language models (VLMs) often produce chain-of-thought (CoT) explanations that sound plausible yet fail to reflect the underlying decision process, undermining trust in high-stakes clinical use. Existing evaluations rarely catch this misalignment, prioritizing answer accuracy or adherence to formats. We present a clinically grounded framework for chest X-ray visual question answering (VQA) that probes CoT faithfulness via controlled text and image modifications across three axes: clinical fidelity, causal attribution, and confidence calibration. In a reader study (n=4), evaluator-radiologist correlations fall within the observed inter-radiologist range for all axes, with strong alignment for attribution (Kendall's $\tau_b=0.670$), moderate alignment for fidelity ($\tau_b=0.387$), and weak alignment for confidence tone ($\tau_b=0.091$), which we report with caution. Benchmarking six VLMs shows that answer accuracy and explanation quality are decoupled, acknowledging injected cues does not ensure grounding, and text cues shift explanations more than visual cues. While some open-source models match final answer accuracy, proprietary models score higher on attribution (25.0% vs. 1.4%) and often on fidelity (36.1% vs. 31.7%), highlighting deployment risks and the need to evaluate beyond final answer accuracy.
☆ Can Tool-Integrated Reinforcement Learning Generalize Across Diverse Domains?
Recent advances in large language models (LLMs) have demonstrated remarkable capabilities in reasoning and tool utilization. However, the generalization of tool-augmented reinforcement learning (RL) across diverse domains remains underexplored. In this work, we investigate the cross-domain generalization of an LLM agent equipped with a code interpreter tool, which is exclusively trained on mathematical problem-solving tasks. Despite the restricted training domain, we evaluate the agent's performance across several distinct reasoning domains. The results reveal that RL-based tool usage learned from mathematical tasks can be effectively transferred to complex tasks in other domains, enabling great task performance and high token efficiency. To facilitate this cross-domain transfer, we propose a Tool Generalization Reinforcement Learning (TGRL) framework designed to promote domain-agnostic learning and skill migration, encompassing: (i) a standardized tool interface that abstracts domain-specific nuances through consistent formatting and explicit termination, fostering transferable invocation patterns; (ii) a dual-component reward system that decomposes rewards to incentivize generalizable behaviors like tool efficiency and reasoning abstraction, ensuring alignment and robustness across domain shifts; and (iii) an XML-based prompt template that separates thinking, tool calls, and responses to encourage modular, domain-invariant planning and coherent multi-turn interactions. Extensive experiments across diverse benchmarks validate our approach, achieving state-of-the-art performance and highlighting the cross-domain potential of Tool RL for LLM reasoning.
☆ EAGER: Entropy-Aware GEneRation for Adaptive Inference-Time Scaling
With the rise of reasoning language models and test-time scaling methods as a paradigm for improving model performance, substantial computation is often required to generate multiple candidate sequences from the same prompt. This enables exploration of different reasoning paths toward the correct solution, however, allocates the same compute budget for each prompt. Grounded on the assumption that different prompts carry different degrees of complexity, and thus different computation needs, we propose EAGer, a training-free generation method that leverages model uncertainty through token-wise entropy distribution to reduce redundant computation and concurrently improve overall performance. EAGer allows branching to multiple reasoning paths only in the presence of high-entropy tokens, and then reallocates the saved compute budget to the instances where exploration of alternative paths is most needed. We find that across multiple open-source models on complex reasoning benchmarks such as AIME 2025, EAGer can reallocate the budget without accessing target labels, achieving the best efficiency-performance trade-off in terms of reasoning length and Pass@k. When target labels are accessible, EAGer generates up to 65% fewer tokens (hence saving compute) and achieves up to 37% improvement in Pass@k compared to the Full Parallel Sampling.
☆ ELMO: Efficiency via Low-precision and Peak Memory Optimization in Large Output Spaces ICML 2025
Large output spaces, also referred to as Extreme multilabel classification (XMC), is a setting that arises, e.g., in large-scale tagging and product-to-product recommendation, and is characterized by the number of labels ranging from hundreds of thousands to millions. This means that the linear classification head, usually only a tiny fraction of the overall model, turns into the main driver for compute and memory demand. Current state-of-the-art XMC methods predominantly rely on FP16-FP32 mixed-precision training, which we show can be unstable, and inefficient in terms of memory usage and computational overhead. Meanwhile, existing low-precision methods typically retain higher precision for the classification layer. In this work, we propose ELMO, a pure low-precision training framework for XMC models using BFloat16 and Float8 data types. By leveraging Kahan summation and stochastic rounding, we demonstrate that XMC models can be effectively trained entirely in Float8, without relying on single-precision master weights or tensor scaling. Low-precision training, combined with our proposed memory optimizations -- gradient fusion and chunking -- enables significant reductions in GPU memory usage. For example, we train a 3-million-label XMC model with only 6.6 GiB of GPU memory, compared to the 39.7 GiB required by the optimized SOTA method, Renee without compromising accuracy.
comment: Accepted to ICML 2025
☆ Bridging Gaps in Hate Speech Detection: Meta-Collections and Benchmarks for Low-Resource Iberian Languages
Hate speech poses a serious threat to social cohesion and individual well-being, particularly on social media, where it spreads rapidly. While research on hate speech detection has progressed, it remains largely focused on English, resulting in limited resources and benchmarks for low-resource languages. Moreover, many of these languages have multiple linguistic varieties, a factor often overlooked in current approaches. At the same time, large language models require substantial amounts of data to perform reliably, a requirement that low-resource languages often cannot meet. In this work, we address these gaps by compiling a meta-collection of hate speech datasets for European Spanish, standardised with unified labels and metadata. This collection is based on a systematic analysis and integration of existing resources, aiming to bridge the data gap and support more consistent and scalable hate speech detection. We extended this collection by translating it into European Portuguese and into a Galician standard that is more convergent with Spanish and another Galician variant that is more convergent with Portuguese, creating aligned multilingual corpora. Using these resources, we establish new benchmarks for hate speech detection in Iberian languages. We evaluate state-of-the-art large language models in zero-shot, few-shot, and fine-tuning settings, providing baseline results for future research. Moreover, we perform a cross-lingual analysis with our target languages. Our findings underscore the importance of multilingual and variety-aware approaches in hate speech detection and offer a foundation for improved benchmarking in underrepresented European languages.
☆ One Size Does Not Fit All: Exploring Variable Thresholds for Distance-Based Multi-Label Text Classification
Distance-based unsupervised text classification is a method within text classification that leverages the semantic similarity between a label and a text to determine label relevance. This method provides numerous benefits, including fast inference and adaptability to expanding label sets, as opposed to zero-shot, few-shot, and fine-tuned neural networks that require re-training in such cases. In multi-label distance-based classification and information retrieval algorithms, thresholds are required to determine whether a text instance is "similar" to a label or query. Similarity between a text and label is determined in a dense embedding space, usually generated by state-of-the-art sentence encoders. Multi-label classification complicates matters, as a text instance can have multiple true labels, unlike in multi-class or binary classification, where each instance is assigned only one label. We expand upon previous literature on this underexplored topic by thoroughly examining and evaluating the ability of sentence encoders to perform distance-based classification. First, we perform an exploratory study to verify whether the semantic relationships between texts and labels vary across models, datasets, and label sets by conducting experiments on a diverse collection of realistic multi-label text classification (MLTC) datasets. We find that similarity distributions show statistically significant differences across models, datasets and even label sets. We propose a novel method for optimizing label-specific thresholds using a validation set. Our label-specific thresholding method achieves an average improvement of 46% over normalized 0.5 thresholding and outperforms uniform thresholding approaches from previous work by an average of 14%. Additionally, the method demonstrates strong performance even with limited labeled examples.
☆ TypePilot: Leveraging the Scala Type System for Secure LLM-generated Code
Large language Models (LLMs) have shown remarkable proficiency in code generation tasks across various programming languages. However, their outputs often contain subtle but critical vulnerabilities, posing significant risks when deployed in security-sensitive or mission-critical systems. This paper introduces TypePilot, an agentic AI framework designed to enhance the security and robustness of LLM-generated code by leveraging strongly typed and verifiable languages, using Scala as a representative example. We evaluate the effectiveness of our approach in two settings: formal verification with the Stainless framework and general-purpose secure code generation. Our experiments with leading open-source LLMs reveal that while direct code generation often fails to enforce safety constraints, just as naive prompting for more secure code, our type-focused agentic pipeline substantially mitigates input validation and injection vulnerabilities. The results demonstrate the potential of structured, type-guided LLM workflows to improve the SotA of the trustworthiness of automated code generation in high-assurance domains.
☆ $How^{2}$: How to learn from procedural How-to questions
An agent facing a planning problem can use answers to how-to questions to reduce uncertainty and fill knowledge gaps, helping it solve both current and future tasks. However, their open ended nature, where valid answers to "How do I X?" range from executable actions to high-level descriptions of X's sub-goals, makes them challenging for AI agents to ask, and for AI experts to answer, in ways that support efficient planning. We introduce $How^{2}$, a memory agent framework that enables agents to ask how-to questions, store the answers, and reuse them for lifelong learning in interactive environments. We evaluate our approach in Plancraft, a Minecraft crafting environment, where agents must complete an assembly task by manipulating inventory items. Using teacher models that answer at varying levels of abstraction, from executable action sequences to high-level subgoal descriptions, we show that lifelong learning agents benefit most from answers that are abstracted and decoupled from the current state. $How^{2}$ offers a way for LLM-based agents to improve their planning capabilities over time by asking questions in interactive environments.
☆ Enhancing LLM Reasoning via Non-Human-Like Reasoning Path Preference Optimization
Current approaches for strengthening LLM reasoning tend to introduce a training bias toward human-like reasoning trajectories. In step-wise preference optimization, in particular, dependence on human or higher-capacity model annotations for intermediate steps limits exploration of alternative, non-human-like reasoning paths and thus constrains achievable performance. Furthermore, through a small-scale pilot study, we observed that in approximately 75% of cases, the model's first erroneous step occurs after the lowest-confidence point. This suggests that guiding the model at its lowest-confidence point before an error provides more accurate supervision than locating the first explicit error. In this paper, we propose Confidence-Guided Reasoning Path Preference Optimization (CGPO), a method that leverages a confidence signal to identify points of maximal uncertainty in the model's reasoning process and applies self-generated, non-human-like reasoning-path guidance to mitigate trajectory drift. Our experiments span diverse models applied to both code and mathematical reasoning tasks. The results show that, with the same amount of training data, our method using data generated by a small model can achieve better performance in most cases compared with approaches using data generated by a strong model or human-annotated.
comment: 13 pages
☆ VCB Bench: An Evaluation Benchmark for Audio-Grounded Large Language Model Conversational Agents
Recent advances in large audio language models (LALMs) have greatly enhanced multimodal conversational systems. However, existing benchmarks remain limited -- they are mainly English-centric, rely on synthetic speech, and lack comprehensive, discriminative evaluation across multiple dimensions. To address these gaps, we present Voice Chat Bot Bench (VCB Bench) -- a high-quality Chinese benchmark built entirely on real human speech. VCB Bench evaluates LALMs from three complementary perspectives: instruction following (including speech-level control beyond text commands), knowledge understanding (general knowledge, reasoning, and daily dialogue), and robustness (stability under perturbations in content, environment, and speaker traits). Experiments on representative LALMs reveal notable performance gaps and highlight future directions for improvement. VCB Bench provides a reproducible and fine-grained evaluation framework, offering standardized methodology and practical insights for advancing Chinese voice conversational models.
comment: 20 pages, 5 figures
☆ Latent Refinement Decoding: Enhancing Diffusion-Based Language Models by Refining Belief States
Autoregressive (AR) models remain the standard for natural language generation but still suffer from high latency due to strictly sequential decoding. Recent diffusion-inspired approaches, such as LlaDA and Dream, mitigate this by generating in parallel, yet they suffer from two core limitations: information loss, as predictive distributions for non-finalized tokens are discarded at each step, and premature commitment, where local decisions are made without sufficient global coordination. We introduce Latent Refinement Decoding (LRD), a two-stage framework with Latent Refinement and a Predictive Feedback Loop. The first stage maintains masked positions as distributional mixtures of predicted tokens and the mask embedding, allowing the model to establish more globally consistent beliefs. The second stage progressively finalizes confident tokens while retaining uncertain ones for iterative feedback. KL-divergence dynamics provide a principled and reliable criterion for convergence and early stopping. Experiments across coding (HumanEval +6.3, MBPP +2.6) and reasoning (GSM8K +2.9, MATH500 +3.8) show that LRD improves accuracy while delivering speedups of up to 10.6x, making it a strong and versatile alternative for parallel sequence generation.
☆ Enabling Doctor-Centric Medical AI with LLMs through Workflow-Aligned Tasks and Benchmarks
The rise of large language models (LLMs) has transformed healthcare by offering clinical guidance, yet their direct deployment to patients poses safety risks due to limited domain expertise. To mitigate this, we propose repositioning LLMs as clinical assistants that collaborate with experienced physicians rather than interacting with patients directly. We conduct a two-stage inspiration-feedback survey to identify real-world needs in clinical workflows. Guided by this, we construct DoctorFLAN, a large-scale Chinese medical dataset comprising 92,000 Q&A instances across 22 clinical tasks and 27 specialties. To evaluate model performance in doctor-facing applications, we introduce DoctorFLAN-test (550 single-turn Q&A items) and DotaBench (74 multi-turn conversations). Experimental results with over ten popular LLMs demonstrate that DoctorFLAN notably improves the performance of open-source LLMs in medical contexts, facilitating their alignment with physician workflows and complementing existing patient-oriented models. This work contributes a valuable resource and framework for advancing doctor-centered medical LLM development
☆ LogiNumSynth: Synthesizing Joint Logical-Numerical Reasoning Problems for Language Models
Joint logical-numerical reasoning remains a major challenge for language models, yet existing datasets rely on fixed rule sets and offer limited control over task complexity, constraining their generalizability for evaluation and training. We present LogiNumSynth, a flexible natural language problem synthesizer that synthesizes tasks requiring proficiency in joint logical reasoning (e.g., rule-based reasoning) and numerical reasoning (e.g., arithmetic computation). LogiNumSynth supports fine-grained control over reasoning world richness, logical reasoning depth, and the complexity of numerical computations, enabling flexible data synthesis across difficulty levels. We demonstrate three key contributions: (1) Synthesizer -- synthesizing fully controllable joint reasoning tasks over natural language; (2) Evaluation & Process Analysis -- evaluating both process accuracy and answer accuracy; (3) Targeted Training -- using synthesized data to enhance LLMs' reasoning performance. Experiments with multiple LLMs highlight persistent weaknesses in logical-numerical reasoning, showing that LogiNumSynth can serve as both a diagnostic tool and a source of targeted supervision for advancing integrated reasoning skills.
comment: 30 pages, 3 figures
☆ Automating Structural Engineering Workflows with Large Language Model Agents
We introduce $\textbf{MASSE}$, the first Multi-Agent System for Structural Engineering, effectively integrating large language model (LLM)-based agents with real-world engineering workflows. Structural engineering is a fundamental yet traditionally stagnant domain, with core workflows remaining largely unchanged for decades despite its substantial economic impact and global market size. Recent advancements in LLMs have significantly enhanced their ability to perform complex reasoning, long-horizon planning, and precise tool utilization -- capabilities well aligned with structural engineering tasks such as interpreting design codes, executing load calculations, and verifying structural capacities. We present a proof-of-concept showing that most real-world structural engineering workflows can be fully automated through a training-free LLM-based multi-agent system. MASSE enables immediate deployment in professional environments, and our comprehensive validation on real-world case studies demonstrates that it can reduce expert workload from approximately two hours to mere minutes, while enhancing both reliability and accuracy in practical engineering scenarios.
comment: Code: https://github.com/DelosLiang/masse
☆ DND: Boosting Large Language Models with Dynamic Nested Depth
We introduce Dynamic Nested Depth (DND), a novel method that improves performance for off-the-shelf LLMs by selecting critical tokens to reprocess in a nested depth manner. Specifically, at the end of the given transformer layer, DND identifies more critical tokens with a router and feeds them back for an extra round of processing, effectively ``reviewing" difficult tokens while avoiding redundant computation for easier ones. The dynamic selection mechanism is tailored for precise control via two novel strategies: a router controlling loss to enhance token selection distinguishability, and a threshold control scheme to ensure selection stability. We demonstrate the effectiveness of DND by directly integrating it into pre-trained dense and MoE models during a post-training phase. On diverse benchmarks, this approach boosts the performances of the dense Qwen3-1.7B by 1.88% and the MoE Qwen3-30B-A3B by 0.87%, all with a minimal parameter and computing increase.
comment: TL;DR: We introduce Dynamic Nested Depth (DND), an efficient paradigm that adaptively identifies critical tokens and selectively deepens their computation via nested re-processing
☆ ABLEIST: Intersectional Disability Bias in LLM-Generated Hiring Scenarios
Large language models (LLMs) are increasingly under scrutiny for perpetuating identity-based discrimination in high-stakes domains such as hiring, particularly against people with disabilities (PwD). However, existing research remains largely Western-centric, overlooking how intersecting forms of marginalization--such as gender and caste--shape experiences of PwD in the Global South. We conduct a comprehensive audit of six LLMs across 2,820 hiring scenarios spanning diverse disability, gender, nationality, and caste profiles. To capture subtle intersectional harms and biases, we introduce ABLEIST (Ableism, Inspiration, Superhumanization, and Tokenism), a set of five ableism-specific and three intersectional harm metrics grounded in disability studies literature. Our results reveal significant increases in ABLEIST harms towards disabled candidates--harms that many state-of-the-art models failed to detect. These harms were further amplified by sharp increases in intersectional harms (e.g., Tokenism) for gender and caste-marginalized disabled candidates, highlighting critical blind spots in current safety tools and the need for intersectional safety evaluations of frontier models in high-stakes domains like hiring.
comment: 28 pages, 11 figures, 16 tables. In submission
☆ DeepResearchGuard: Deep Research with Open-Domain Evaluation and Multi-Stage Guardrails for Safety
Deep research frameworks have shown promising capabilities in synthesizing comprehensive reports from web sources. While deep research possesses significant potential to address complex issues through planning and research cycles, existing frameworks are deficient in sufficient evaluation procedures and stage-specific protections. They typically treat evaluation as exact match accuracy of question-answering, but overlook crucial aspects of report quality such as credibility, coherence, breadth, depth, and safety. This oversight may result in hazardous or malicious sources being integrated into the final report. To address these issues, we introduce DEEPRESEARCHGUARD, a comprehensive framework featuring four-stage safeguards with open-domain evaluation of references and reports. We assess performance across multiple metrics, e.g., defense success rate and over-refusal rate, and five key report dimensions. In the absence of a suitable safety benchmark, we introduce DRSAFEBENCH, a stage-wise benchmark for deep research safety. Our evaluation spans diverse state-of-the-art LLMs, including GPT-4o, Gemini-2.5-flash, DeepSeek-v3, and o4-mini. DEEPRESEARCHGUARD achieves an average defense success rate improvement of 18.16% while reducing over-refusal rate by 6%. The input guard provides the most substantial early-stage protection by filtering out obvious risks, while the plan and research guards enhance citation discipline and source credibility. Through extensive experiments, we show that DEEPRESEARCHGUARD enables comprehensive open-domain evaluation and stage-aware defenses that effectively block harmful content propagation, while systematically improving report quality without excessive over-refusal rates. The code can be found via https://github.com/Jasonya/DeepResearchGuard.
☆ A Survey on Agentic Multimodal Large Language Models
With the recent emergence of revolutionary autonomous agentic systems, research community is witnessing a significant shift from traditional static, passive, and domain-specific AI agents toward more dynamic, proactive, and generalizable agentic AI. Motivated by the growing interest in agentic AI and its potential trajectory toward AGI, we present a comprehensive survey on Agentic Multimodal Large Language Models (Agentic MLLMs). In this survey, we explore the emerging paradigm of agentic MLLMs, delineating their conceptual foundations and distinguishing characteristics from conventional MLLM-based agents. We establish a conceptual framework that organizes agentic MLLMs along three fundamental dimensions: (i) Agentic internal intelligence functions as the system's commander, enabling accurate long-horizon planning through reasoning, reflection, and memory; (ii) Agentic external tool invocation, whereby models proactively use various external tools to extend their problem-solving capabilities beyond their intrinsic knowledge; and (iii) Agentic environment interaction further situates models within virtual or physical environments, allowing them to take actions, adapt strategies, and sustain goal-directed behavior in dynamic real-world scenarios. To further accelerate research in this area for the community, we compile open-source training frameworks, training and evaluation datasets for developing agentic MLLMs. Finally, we review the downstream applications of agentic MLLMs and outline future research directions for this rapidly evolving field. To continuously track developments in this rapidly evolving field, we will also actively update a public repository at https://github.com/HJYao00/Awesome-Agentic-MLLMs.
☆ Secret-Protected Evolution for Differentially Private Synthetic Text Generation
Text data has become extremely valuable on large language models (LLMs) and even lead to general artificial intelligence (AGI). A lot of high-quality text in the real world is private and cannot be freely used due to privacy concerns. Therefore, differentially private (DP) synthetic text generation has been proposed, aiming to produce high-utility synthetic data while protecting sensitive information. However, existing DP synthetic text generation imposes uniform guarantees that often overprotect non-sensitive content, resulting in substantial utility loss and computational overhead. Therefore, we propose Secret-Protected Evolution (SecPE), a novel framework that extends private evolution with secret-aware protection. Theoretically, we show that SecPE satisfies $(\mathrm{p}, \mathrm{r})$-secret protection, constituting a relaxation of Gaussian DP that enables tighter utility-privacy trade-offs, while also substantially reducing computational complexity relative to baseline methods. Empirically, across the OpenReview, PubMed, and Yelp benchmarks, SecPE consistently achieves lower Fr\'echet Inception Distance (FID) and higher downstream task accuracy than GDP-based Aug-PE baselines, while requiring less noise to attain the same level of protection. Our results highlight that secret-aware guarantees can unlock more practical and effective privacy-preserving synthetic text generation.
☆ Revisiting Model Interpolation for Efficient Reasoning
Model merging, typically on Instruct and Thinking models, has shown remarkable performance for efficient reasoning. In this paper, we systematically revisit the simplest merging method that interpolates two weights directly. Particularly, we observe that model interpolation follows a three-stage evolutionary paradigm with distinct behaviors on the reasoning trajectory. These dynamics provide a principled guide for navigating the performance-cost trade-off. Empirical results demonstrate that a strategically interpolated model surprisingly surpasses sophisticated model merging baselines on both efficiency and effectiveness. We further validate our findings with extensive ablation studies on model layers, modules, and decoding strategies. Ultimately, this work demystifies model interpolation and offers a practical framework for crafting models with precisely targeted reasoning capabilities. Code is available at \href{https://github.com/wutaiqiang/MI}{Github}.
comment: 14 pages, 6 figures, 7 tables. Working in progress
☆ Enhancing Large Language Model Reasoning via Selective Critical Token Fine-Tuning
Large language models (LLMs) primarily rely on supervised fine-tuning (SFT) as a key method to adapt pre-trained models to domain-specific tasks such as mathematical reasoning. However, standard SFT uniformly penalizes all tokens, neglecting that only a small subset of critical tokens determines reasoning correctness. This uniform supervision often causes reduced output diversity and limited generalization. We propose Critical Token Fine-tuning (CFT), a simple yet effective approach that updates only tokens identified as functionally indispensable via counterfactual perturbations. By focusing gradient signals on these decisive reasoning steps while preserving the diversity of non-critical tokens, CFT can enhance both generation and diversity. Extensive experiments on five models across three families (Qwen, OLMo, LLaMA) and eleven mathematical reasoning benchmarks show that CFT, despite fine-tuning on less than 12% of tokens, consistently outperforms standard SFT. Moreover, CFT enables test-time scaling through improved sampling diversity and provides a stronger initialization for reinforcement learning, sustaining performance gains in later training stages while maintaining higher entropy for better exploration. These results highlight CFT as a practical and general framework for efficient and robust LLM fine-tuning.
☆ RV-HATE: Reinforced Multi-Module Voting for Implicit Hate Speech Detection
Hate speech remains prevalent in human society and continues to evolve in its forms and expressions. Modern advancements in internet and online anonymity accelerate its rapid spread and complicate its detection. However, hate speech datasets exhibit diverse characteristics primarily because they are constructed from different sources and platforms, each reflecting different linguistic styles and social contexts. Despite this diversity, prior studies on hate speech detection often rely on fixed methodologies without adapting to data-specific features. We introduce RV-HATE, a detection framework designed to account for the dataset-specific characteristics of each hate speech dataset. RV-HATE consists of multiple specialized modules, where each module focuses on distinct linguistic or contextual features of hate speech. The framework employs reinforcement learning to optimize weights that determine the contribution of each module for a given dataset. A voting mechanism then aggregates the module outputs to produce the final decision. RV-HATE offers two primary advantages: (1)~it improves detection accuracy by tailoring the detection process to dataset-specific attributes, and (2)~it also provides interpretable insights into the distinctive features of each dataset. Consequently, our approach effectively addresses implicit hate speech and achieves superior performance compared to conventional static methods. Our code is available at https://github.com/leeyejin1231/RV-HATE.
comment: 10 pages, 9 figures, 12 tables
☆ Judge Before Answer: Can MLLM Discern the False Premise in Question?
Multimodal large language models (MLLMs) have witnessed astonishing advancements in recent years. Despite these successes, MLLMs remain vulnerable to flase premise problems. However, existing benchmarks targeting this issue are limited in scope: they often lack fine-grained categorization, exhibit insufficient coverage, and thus fail to provide a rigorous evaluation of the ability of models to recognize false premises. To bridge this gap, we introduce a fully automated pipeline for constructing a comprehensive benchmark of false premise questions. Our method systematically categorizes the premises into three main types and thirteen subtypes according to the abilities required to identify the premises, resulting in the JBA dataset.Results show current MLLMs still struggle with false premise recognition. Building upon this benchmark, we further propose a recognition enhancement framework tailored to strengthen the robustness of MLLMs to detect false premises. Extensive experiments demonstrate that models trained with our framework achieve significant improvements in false premise recognition.
☆ KOTOX: A Korean Toxic Dataset for Deobfuscation and Detoxification
Toxic content has become an increasingly critical social issue with the rapid expansion of online communication. While numerous studies explored methods for detecting and detoxifying such content, most have focused primarily on English, leaving low-resource language underrepresented. Consequently, Large Language Models~(LLMs) often struggle to identify and neutralize toxic expressions in these languages. This challenge becomes even more pronounced when user employ obfuscation techniques to evade detection systems. Therefore, we propose a \textbf{KOTOX: Korean Toxic Dataset} for deobfuscation and detoxicification to address this issue. We categorize various obfuscation approaches based on linguistic characteristics of Korean and define a set of transformation rules grounded in real-word examples. Using these rules, we construct three dataset versions (easy, normal, and hard) representing different levels of obfuscation difficulty. This is the first dataset that simultaneously supports deobfuscation and detoxification for the Korean language. We expect it to facilitate better understanding and mitigating of obfuscated toxic content in LLM for low-resource languages. Our code and data are available at https://github.com/leeyejin1231/KOTOX.
comment: 25 pages, 5 figures, 25 tables
☆ Rediscovering Entropy Regularization: Adaptive Coefficient Unlocks Its Potential for LLM Reinforcement Learning
Reasoning ability has become a defining capability of Large Language Models (LLMs), with Reinforcement Learning with Verifiable Rewards (RLVR) emerging as a key paradigm to enhance it. However, RLVR training often suffers from policy entropy collapse, where the policy becomes overly deterministic, hindering exploration and limiting reasoning performance. While entropy regularization is a common remedy, its effectiveness is highly sensitive to the fixed coefficient, making it unstable across tasks and models. In this work, we revisit entropy regularization in RLVR and argue that its potential has been largely underestimated. Our analysis shows that (i) tasks of varying difficulty demand distinct exploration intensities, and (ii) balanced exploration may require the policy entropy to be maintained within a moderate range below its initial level. Therefore, we propose Adaptive Entropy Regularization (AER)--a framework that dynamically balances exploration and exploitation via three components: difficulty-aware coefficient allocation, initial-anchored target entropy, and dynamic global coefficient adjustment. Experiments on multiple mathematical reasoning benchmarks show that AER consistently outperforms baselines, improving both reasoning accuracy and exploration capability.
comment: 16 pages, 4 figures
☆ Punctuation-aware treebank tree binarization
This article presents a curated resource and evaluation suite for punctuation-aware treebank binarization. Standard binarization pipelines drop punctuation before head selection, which alters constituent shape and harms head-child identification. We release (1) a reproducible pipeline that preserves punctuation as sibling nodes prior to binarization, (2) derived artifacts and metadata (intermediate @X markers, reversibility signatures, alignment indices), and (3) an accompanying evaluation suite covering head-child prediction, round-trip reversibility, and structural compatibility with derivational resources (CCGbank). On the Penn Treebank, punctuation-aware preprocessing improves head prediction accuracy from 73.66\% (Collins rules) and 86.66\% (MLP) to 91.85\% with the same classifier, and achieves competitive alignment against CCGbank derivations. All code, configuration files, and documentation are released to enable replication and extension to other corpora.
☆ The Social Cost of Intelligence: Emergence, Propagation, and Amplification of Stereotypical Bias in Multi-Agent Systems
Bias in large language models (LLMs) remains a persistent challenge, manifesting in stereotyping and unfair treatment across social groups. While prior research has primarily focused on individual models, the rise of multi-agent systems (MAS), where multiple LLMs collaborate and communicate, introduces new and largely unexplored dynamics in bias emergence and propagation. In this work, we present a comprehensive study of stereotypical bias in MAS, examining how internal specialization, underlying LLMs and inter-agent communication protocols influence bias robustness, propagation, and amplification. We simulate social contexts where agents represent different social groups and evaluate system behavior under various interaction and adversarial scenarios. Experiments on three bias benchmarks reveal that MAS are generally less robust than single-agent systems, with bias often emerging early through in-group favoritism. However, cooperative and debate-based communication can mitigate bias amplification, while more robust underlying LLMs improve overall system stability. Our findings highlight critical factors shaping fairness and resilience in multi-agent LLM systems.
comment: 15 pages, 19 figures, Preprint. Under review
☆ End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF: A Reproducibility Study
We present a reproducibility study of the state-of-the-art neural architecture for sequence labeling proposed by Ma and Hovy (2016)\cite{ma2016end}. The original BiLSTM-CNN-CRF model combines character-level representations via Convolutional Neural Networks (CNNs), word-level context modeling through Bi-directional Long Short-Term Memory networks (BiLSTMs), and structured prediction using Conditional Random Fields (CRFs). This end-to-end approach eliminates the need for hand-crafted features while achieving excellent performance on named entity recognition (NER) and part-of-speech (POS) tagging tasks. Our implementation successfully reproduces the key results, achieving 91.18\% F1-score on CoNLL-2003 NER and demonstrating the model's effectiveness across sequence labeling tasks. We provide a detailed analysis of the architecture components and release an open-source PyTorch implementation to facilitate further research.
☆ Evaluating Language Models' Evaluations of Games
Reasoning is not just about solving problems -- it is also about evaluating which problems are worth solving at all. Evaluations of artificial intelligence (AI) systems primarily focused on problem solving, historically by studying how models play games such as chess and Go. In this paper, we advocate for a new paradigm that assesses AI systems' evaluation of games. First, we introduce a formalism for evaluating such evaluations. We then leverage a large-scale dataset of over $100$ novel board games and over 450 human judgments to compare evaluations produced by modern language and reasoning models against those of people and symbolic computational agents. We consider two kinds of evaluative queries: assessing the payoff (or fairness) and the funness of games. These queries span two dimensions relevant to the design of evaluations of AI evaluations: how complex a query is to compute and how difficult a query is to quantify. Our results show that reasoning models are generally more aligned to people in their evaluations of games than non-reasoning language models. However, we observe a non-monotonic relationship: as models get closer to game-theoretic optimal, their fit to human data weakens. We also observe more "jaggedness" across models for assessing funness, in line with the greater difficulty of quantifying this query. Across queries and games, reasoning models show highly variable and unpredictable resource usage when assessing queries, pointing to the importance of imbuing more resource-rational meta-reasoning in language and reasoning models.
comment: Pre-print
☆ GapDNER: A Gap-Aware Grid Tagging Model for Discontinuous Named Entity Recognition IJCNN 2025
In biomedical fields, one named entity may consist of a series of non-adjacent tokens and overlap with other entities. Previous methods recognize discontinuous entities by connecting entity fragments or internal tokens, which face challenges of error propagation and decoding ambiguity due to the wide variety of span or word combinations. To address these issues, we deeply explore discontinuous entity structures and propose an effective Gap-aware grid tagging model for Discontinuous Named Entity Recognition, named GapDNER. Our GapDNER innovatively applies representation learning on the context gaps between entity fragments to resolve decoding ambiguity and enhance discontinuous NER performance. Specifically, we treat the context gap as an additional type of span and convert span classification into a token-pair grid tagging task. Subsequently, we design two interactive components to comprehensively model token-pair grid features from both intra- and inter-span perspectives. The intra-span regularity extraction module employs the biaffine mechanism along with linear attention to capture the internal regularity of each span, while the inter-span relation enhancement module utilizes criss-cross attention to obtain semantic relations among different spans. At the inference stage of entity decoding, we assign a directed edge to each entity fragment and context gap, then use the BFS algorithm to search for all valid paths from the head to tail of grids with entity tags. Experimental results on three datasets demonstrate that our GapDNER achieves new state-of-the-art performance on discontinuous NER and exhibits remarkable advantages in recognizing complex entity structures.
comment: Accepted by IJCNN 2025
☆ Find Your Optimal Teacher: Personalized Data Synthesis via Router-Guided Multi-Teacher Distillation
Training student models on synthetic data generated by strong teacher models is a promising way to distilling the capabilities of teachers. However, recent studies show that stronger models are not always optimal teachers, revealing a mismatch between teacher outputs and student learnability. To address this issue, we propose PerSyn (Personalized data Synthesis), a novel synthesis strategy that operates under a new ``Route then Generate'' paradigm to create data tailored to each student model, enabling it to learn more effectively. Specifically, PerSyn first assigns each prompt to its optimal teacher via a query-level router that jointly considers student learnability and teacher response quality. Each teacher then synthesizes data only for its assigned prompts, making the process more efficient than the conventional ``Generate then Select'' paradigm, where all teachers must generate parallel responses for the entire prompt set before constructing the final dataset. Extensive experiments across different model families and scales demonstrate that PerSyn consistently achieves superior or comparable performance to all baselines in instruct tuning and math reasoning settings. Further analysis verifies the effectiveness of PerSyn and offers extra insights to propel future research.
comment: 19 pages, 10 figures
☆ ADVICE: Answer-Dependent Verbalized Confidence Estimation
Recent progress in large language models (LLMs) has enabled them to express their confidence in natural language, enhancing transparency and reliability. However, their confidence often exhibits overconfidence, the cause of which remains poorly understood. In this work, we conduct a detailed analysis of the dynamics underlying verbalized confidence and identify answer-independence as a key factor, defined as the model's failure to condition confidence on its own answer. To address this, we propose ADVICE (Answer-Dependent Verbalized Confidence Estimation), a fine-tuning framework that facilitates answer-grounded confidence estimation. Extensive experiments show that ADVICE substantially improves confidence calibration while preserving task performance. Further analyses confirm that ADVICE strengthens answer-groundedness, leading to more balanced and well-calibrated confidence distributions. Our findings shed light on the origin of overconfidence and establish a framework for more trustworthy confidence verbalization.
☆ LLM$\times$MapReduce-V3: Enabling Interactive In-Depth Survey Generation through a MCP-Driven Hierarchically Modular Agent System EMNLP2025
We introduce LLM x MapReduce-V3, a hierarchically modular agent system designed for long-form survey generation. Building on the prior work, LLM x MapReduce-V2, this version incorporates a multi-agent architecture where individual functional components, such as skeleton initialization, digest construction, and skeleton refinement, are implemented as independent model-context-protocol (MCP) servers. These atomic servers can be aggregated into higher-level servers, creating a hierarchically structured system. A high-level planner agent dynamically orchestrates the workflow by selecting appropriate modules based on their MCP tool descriptions and the execution history. This modular decomposition facilitates human-in-the-loop intervention, affording users greater control and customization over the research process. Through a multi-turn interaction, the system precisely captures the intended research perspectives to generate a comprehensive skeleton, which is then developed into an in-depth survey. Human evaluations demonstrate that our system surpasses representative baselines in both content depth and length, highlighting the strength of MCP-based modular planning.
comment: Accepted by EMNLP2025 System Demonstration
☆ Rethinking Agentic Workflows: Evaluating Inference-Based Test-Time Scaling Strategies in Text2SQL Tasks SC
Large language models (LLMs) are increasingly powering Text-to-SQL (Text2SQL) systems, enabling non-expert users to query industrial databases using natural language. While test-time scaling strategies have shown promise in LLM-based solutions, their effectiveness in real-world applications, especially with the latest reasoning models, remains uncertain. In this work, we benchmark six lightweight, industry-oriented test-time scaling strategies and four LLMs, including two reasoning models, evaluating their performance on the BIRD Mini-Dev benchmark. Beyond standard accuracy metrics, we also report inference latency and token consumption, providing insights relevant for practical system deployment. Our findings reveal that Divide-and-Conquer prompting and few-shot demonstrations consistently enhance performance for both general-purpose and reasoning-focused LLMs. However, introducing additional workflow steps yields mixed results, and base model selection plays a critical role. This work sheds light on the practical trade-offs between accuracy, efficiency, and complexity when deploying Text2SQL systems.
comment: Accepted at COLM 2025 SCALR Workshop
♻ ☆ Let's Reason Formally: Natural-Formal Hybrid Reasoning Enhances LLM's Math Capability
Enhancing the mathematical reasoning capabilities of LLMs has garnered significant attention in both the mathematical and computer science communities. Recent works have made substantial progress in both Natural Language (NL) reasoning and Formal Language (FL) reasoning by leveraging the potential of pure Reinforcement Learning (RL) methods on base models. However, RL approaches struggle to impart new capabilities not presented in the base model, highlighting the need to integrate more knowledge like FL into NL math reasoning effectively. Yet, this integration is challenging due to inherent disparities in problem structure and reasoning format between NL and FL. To address these challenges, we introduce **NL-FL HybridReasoning (NFL-HR)**, an end-to-end framework designed to incorporate the FL expert into NL math problem-solving. To bridge the NL and FL input format gap, we propose the NL-FL Problem Alignment method, which reformulates the Question-Answering (QA) problems in NL as existence theorems in FL. Subsequently, the Mixed Problem Input technique we provide enables the FL reasoner to handle both QA and existence problems concurrently. Lastly, we mitigate the NL and FL output format gap in reasoning through an LLM-based Answer Extraction mechanism. Comprehensive experiments demonstrate that the NFL-HR framework achieves **89.80**% and **84.34%** accuracy rates on the MATH-500 and the AMC benchmarks, surpassing the NL baseline by **4.60%** and **4.82%**, respectively. Notably, some problems resolved by our framework remain unsolved by the NL baseline model even under a larger number of trials.
♻ ☆ Part-of-speech tagging for Nagamese Language using CRF
This paper investigates part-of-speech tagging, an important task in Natural Language Processing (NLP) for the Nagamese language. The Nagamese language, a.k.a. Naga Pidgin, is an Assamese-lexified Creole language developed primarily as a means of communication in trade between the Nagas and people from Assam in northeast India. A substantial amount of work in part-of-speech-tagging has been done for resource-rich languages like English, Hindi, etc. However, no work has been done in the Nagamese language. To the best of our knowledge, this is the first attempt at part-of-speech tagging for the Nagamese Language. The aim of this work is to identify the part-of-speech for a given sentence in the Nagamese language. An annotated corpus of 16,112 tokens is created and applied machine learning technique known as Conditional Random Fields (CRF). Using CRF, an overall tagging accuracy of 85.70%; precision, recall of 86%, and f1-score of 85% is achieved. Keywords. Nagamese, NLP, part-of-speech, machine learning, CRF.
comment: 8 pages
♻ ☆ Talk Isn't Always Cheap: Understanding Failure Modes in Multi-Agent Debate ICML
While multi-agent debate has been proposed as a promising strategy for improving AI reasoning ability, we find that debate can sometimes be harmful rather than helpful. Prior work has primarily focused on debates within homogeneous groups of agents, whereas we explore how diversity in model capabilities influences the dynamics and outcomes of multi-agent interactions. Through a series of experiments, we demonstrate that debate can lead to a decrease in accuracy over time - even in settings where stronger (i.e., more capable) models outnumber their weaker counterparts. Our analysis reveals that models frequently shift from correct to incorrect answers in response to peer reasoning, favoring agreement over challenging flawed reasoning. We perform additional experiments investigating various potential contributing factors to these harmful shifts - including sycophancy, social conformity, and model and task type. These results highlight important failure modes in the exchange of reasons during multi-agent debate, suggesting that naive applications of debate may cause performance degradation when agents are neither incentivised nor adequately equipped to resist persuasive but incorrect reasoning.
comment: ICML MAS Workshop 2025
♻ ☆ Multi-Scale Manifold Alignment for Interpreting Large Language Models: A Unified Information-Geometric Framework
We present Multi-Scale Manifold Alignment(MSMA), an information-geometric framework that decomposes LLM representations into local, intermediate, and global manifolds and learns cross-scale mappings that preserve geometry and information. Across GPT-2, BERT, RoBERTa, and T5, we observe consistent hierarchical patterns and find that MSMA improves alignment metrics under multiple estimators (e.g., relative KL reduction and MI gains with statistical significance across seeds). Controlled interventions at different scales yield distinct and architecture-dependent effects on lexical diversity, sentence structure, and discourse coherence. While our theoretical analysis relies on idealized assumptions, the empirical results suggest that multi-objective alignment offers a practical lens for analyzing cross-scale information flow and guiding representation-level control.
♻ ☆ Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence. We first propose a holistic taxonomy of spatial tasks that unifies existing benchmarks and a standardized protocol for the fair evaluation of state-of-the-art proprietary and open-source models across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence (SI), yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail even the most advanced multimodal models.
♻ ☆ Empirical Investigation of Latent Representational Dynamics in Large Language Models: A Manifold Evolution Perspective
This paper introduces the Dynamical Manifold Evolution Theory (DMET), a conceptual framework that models large language model (LLM) generation as a continuous trajectory evolving on a low-dimensional semantic manifold. The theory characterizes latent dynamics through three interpretable metrics-state continuity ($C$), attractor compactness ($Q$), and topological persistence ($P$)-which jointly capture the smoothness, stability, and structure of representation evolution. Empirical analyses across multiple Transformer architectures reveal consistent links between these latent dynamics and text quality: smoother trajectories correspond to greater fluency, and richer topological organization correlates with enhanced coherence. Different models exhibit distinct dynamical regimes, reflecting diverse strategies of semantic organization in latent space. Moreover, decoding parameters such as temperature and top-$p$ shape these trajectories in predictable ways, defining a balanced region that harmonizes fluency and creativity. As a phenomenological rather than first-principles framework, DMET provides a unified and testable perspective for interpreting, monitoring, and guiding LLM behavior, offering new insights into the interplay between internal representation dynamics and external text generation quality.
♻ ☆ Revisiting Chain-of-Thought Prompting: Zero-shot Can Be Stronger than Few-shot EMNLP25
In-Context Learning (ICL) is an essential emergent ability of Large Language Models (LLMs), and recent studies introduce Chain-of-Thought (CoT) to exemplars of ICL to enhance the reasoning capability, especially in mathematics tasks. However, given the continuous advancement of model capabilities, it remains unclear whether CoT exemplars still benefit recent, stronger models in such tasks. Through systematic experiments, we find that for recent strong models such as the Qwen2.5 series, adding traditional CoT exemplars does not improve reasoning performance compared to Zero-Shot CoT. Instead, their primary function is to align the output format with human expectations. We further investigate the effectiveness of enhanced CoT exemplars, constructed using answers from advanced models such as \texttt{Qwen2.5-Max} and \texttt{DeepSeek-R1}. Experimental results indicate that these enhanced exemplars still fail to improve the model's reasoning performance. Further analysis reveals that models tend to ignore the exemplars and focus primarily on the instructions, leading to no observable gain in reasoning ability. Overall, our findings highlight the limitations of the current ICL+CoT framework in mathematical reasoning, calling for a re-examination of the ICL paradigm and the definition of exemplars.
comment: EMNLP25-findings camera_ready, 19 pages,22 figures
♻ ☆ ViDRiP-LLaVA: A Dataset and Benchmark for Diagnostic Reasoning from Pathology Videos
We present ViDRiP-LLaVA, the first large multimodal model (LMM) in computational pathology that integrates three distinct image scenarios, including single patch images, automatically segmented pathology video clips, and manually segmented pathology videos. This integration closely mirrors the natural diagnostic process of pathologists. By generating detailed histological descriptions and culminating in a definitive sign-out diagnosis, ViDRiP-LLaVA bridges visual narratives with diagnostic reasoning. Central to our approach is the ViDRiP-Instruct dataset, comprising 4278 video and diagnosis-specific chain-of-thought instructional pairs sourced from educational histopathology videos on YouTube. Although high-quality data is critical for enhancing diagnostic reasoning, its creation is time-intensive and limited in volume. To overcome this challenge, we transfer knowledge from existing single-image instruction datasets to train on weakly annotated, keyframe-extracted clips, followed by fine-tuning on manually segmented videos. ViDRiP-LLaVA establishes a new benchmark in pathology video analysis and offers a promising foundation for future AI systems that support clinical decision-making through integrated visual and diagnostic reasoning. Our code, data, and model are publicly available at: https://github.com/QuIIL/ViDRiP-LLaVA.
♻ ☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly on mathematics and programming tasks. Similar to how traditional RL helps agents explore and learn new strategies, RLVR is believed to enable LLMs to continuously self-improve, thus acquiring novel reasoning abilities beyond those of the corresponding base models. In this study we critically examine the current state of RLVR by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across various model families, RL algorithms, and math, coding, and visual reasoning benchmarks, using pass@k at large k values as the evaluation metric. Surprisingly, we find that the current training setup does not elicit fundamentally new reasoning patterns. While RLVR-trained models outperform their base models at small k (e.g., k = 1), the base models achieve a higher pass@k score when k is large. Coverage and perplexity analyses show that the observed reasoning abilities originate from and are bounded by the base model. Treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in leveraging the potential of the base model. By contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model's reasoning capabilities. Overall, our findings suggest that current RLVR methods have not yet realized the potential of RL to elicit truly novel reasoning abilities in LLMs. This highlights the need for improved RL paradigms, such as continual scaling and multi-turn agent-environment interaction, to unlock this potential.
comment: 30 pages, 27 figures
♻ ☆ Evaluating LLMs for Demographic-Targeted Social Bias Detection: A Comprehensive Benchmark Study
Large-scale web-scraped text corpora used to train general-purpose AI models often contain harmful demographic-targeted social biases, creating a regulatory need for data auditing and developing scalable bias-detection methods. Although prior work has investigated biases in text datasets and related detection methods, these studies remain narrow in scope. They typically focus on a single content type (e.g., hate speech), cover limited demographic axes, overlook biases affecting multiple demographics simultaneously, and analyze limited techniques. Consequently, practitioners lack a holistic understanding of the strengths and limitations of recent large language models (LLMs) for automated bias detection. In this study, we present a comprehensive evaluation framework aimed at English texts to assess the ability of LLMs in detecting demographic-targeted social biases. To align with regulatory requirements, we frame bias detection as a multi-label task using a demographic-focused taxonomy. We then conduct a systematic evaluation with models across scales and techniques, including prompting, in-context learning, and fine-tuning. Using twelve datasets spanning diverse content types and demographics, our study demonstrates the promise of fine-tuned smaller models for scalable detection. However, our analyses also expose persistent gaps across demographic axes and multi-demographic targeted biases, underscoring the need for more effective and scalable auditing frameworks.
comment: 18 pages
♻ ☆ LADM: Long-context Training Data Selection with Attention-based Dependency Measurement for LLMs ACL 2025
Long-context modeling has drawn more and more attention in the area of Large Language Models (LLMs). Continual training with long-context data becomes the de-facto method to equip LLMs with the ability to process long inputs. However, it still remains an open challenge to measure the quality of long-context training data. To address this issue, we propose a Long-context data selection framework with Attention-based Dependency Measurement (LADM), which can efficiently identify high-quality long-context data from a large-scale, multi-domain pre-training corpus. LADM leverages the retrieval capabilities of the attention mechanism to capture contextual dependencies, ensuring a comprehensive quality measurement of long-context data. Experimental results show that our LADM framework significantly boosts the performance of LLMs on multiple long-context tasks with only 1B tokens for continual training.
comment: ACL 2025, our code is available at https://github.com/ZNLP/LADM
♻ ☆ Evolving LLMs' Self-Refinement Capability via Synergistic Training-Inference Optimization
Self-Refinement refers to a model's ability to revise its own responses to produce improved outputs. This capability can also serve as a fundamental mechanism for Self-Improvement, for example, by reconstructing datasets with refined results to enhance intrinsic model performance. However, our comprehensive experiments reveal that large language models (LLMs) show no clear evidence of inherent Self-Refinement and may even experience response quality degradation after Self-Refinement. To address this issue, we propose EVOLVE, a simple and effective framework for eliciting and tracking the evolution of Self-Refinement through iterative training. We first explore optimization methods during training to activate the model's Self-Refinement capability. Then, at inference, we investigate various generation strategies to further enhance and utilize Self-Refinement while supplying the necessary data for training. Through synergistic optimization of training and inference stages, we continually evolve the model's Self-Refinement ability, enabling it to better refine its own responses. Moreover, we demonstrate the potential of leveraging Self-Refinement to achieve broader Self-Improvement of intrinsic model abilities. Experiments show that the evolved Self-Refinement ability enables the Llama-3.1-8B base model to surpass GPT-4o, achieving 62.3% length-controlled and 63.3% raw win rates on AlpacaEval 2, and 50.3% on Arena-Hard. It also generalizes effectively to out-of-domain reasoning tasks, improving performance on mathematical reasoning benchmarks such as GSM8K and MATH.
♻ ☆ NeMo: Needle in a Montage for Video-Language Understanding
Recent advances in video large language models (VideoLLMs) call for new evaluation protocols and benchmarks for complex temporal reasoning in video-language understanding. Inspired by the needle in a haystack test widely used by LLMs, we introduce a novel task of Needle in a Montage (NeMo), designed to assess VideoLLMs' critical reasoning capabilities, including long-context recall and temporal grounding. To generate video question answering data for our task, we develop a scalable automated data generation pipeline that facilitates high-quality data synthesis. Built upon the proposed pipeline, we present NeMoBench, a video-language benchmark centered on our task. Specifically, our full set of NeMoBench features 31,378 automatically generated question-answer (QA) pairs from 13,486 videos with various durations ranging from seconds to hours. Experiments demonstrate that our pipeline can reliably and automatically generate high-quality evaluation data, enabling NeMoBench to be continuously updated with the latest videos. We evaluate 20 state-of-the-art models on our benchmark, providing extensive results and key insights into their capabilities and limitations. Our project page is available at: https://lavi-lab.github.io/NeMoBench.
♻ ☆ On the Interplay between Musical Preferences and Personality through the Lens of Language ECAI2025
Music serves as a powerful reflection of individual identity, often aligning with deeper psychological traits. Prior research has established correlations between musical preferences and personality, while separate studies have demonstrated that personality is detectable through linguistic analysis. Our study bridges these two research domains by investigating whether individuals' musical preferences leave traces in their spontaneous language through the lens of the Big Five personality traits (Openness, Conscientiousness, Extroversion, Agreeableness, and Neuroticism). Using a carefully curated dataset of over 500,000 text samples from nearly 5,000 authors with reliably identified musical preferences, we build advanced models to assess personality characteristics. Our results reveal significant personality differences across fans of five musical genres. We release resources for future research at the intersection of computational linguistics, music psychology and personality analysis.
comment: ECAI2025 (Identity-Aware AI workshop)
♻ ☆ Effectiveness of Counter-Speech against Abusive Content: A Multidimensional Annotation and Classification Study
Counter-speech (CS) is a key strategy for mitigating online Hate Speech (HS), yet defining the criteria to assess its effectiveness remains an open challenge. We propose a novel computational framework for CS effectiveness classification, grounded in linguistics, communication and argumentation concepts. Our framework defines six core dimensions - Clarity, Evidence, Emotional Appeal, Rebuttal, Audience Adaptation, and Fairness - which we use to annotate 4,214 CS instances from two benchmark datasets, resulting in a novel linguistic resource released to the community. In addition, we propose two classification strategies, multi-task and dependency-based, achieving strong results (0.94 and 0.96 average F1 respectively on both expert- and user-written CS), outperforming standard baselines, and revealing strong interdependence among dimensions.
♻ ☆ From $f(x)$ and $g(x)$ to $f(g(x))$: LLMs Learn New Skills in RL by Composing Old Ones
Does RL teach LLMs genuinely new skills, or does it merely activate existing ones? This question lies at the core of ongoing debates about the role of RL in LLM post-training. On one side, strong empirical results can be achieved with RL even without preceding supervised finetuning; on the other, critics argue that RL contributes little beyond reweighting existing reasoning strategies. This work provides concrete evidence that LLMs can acquire genuinely new skills during RL by composing existing ones, mirroring one of the central mechanisms by which humans acquire new cognitive skills. To mitigate data contamination and other confounding factors, and to allow precise control over task complexity, we develop a synthetic framework for our investigation. Specifically, we define a skill as the ability to infer the output of a string transformation function f(x) given x. When an LLM has already learned f and g prior to RL, our experiments reveal that RL enables it to learn unseen compositions of them h(x)=g(f(x)). Further, this compositional ability generalizes to more difficult problems such as compositions of >2 functions unseen during RL training. Surprisingly, our experiments show that compositional skill acquired on a source task transfers to a different target task. This transfer happens even without compositional training on the target, requiring only prior knowledge of the target's atomic skills. Our qualitative analysis shows that RL fundamentally changes the reasoning behaviors of the models. In contrast, next-token training with the same data yields none of these findings. Our systematic experiments provide fresh insights into LLM learning, suggesting the value of first building base models with basic skills, then using RL to incentivize advanced, generalizable skills for complex problems.
♻ ☆ WebThinker: Empowering Large Reasoning Models with Deep Research Capability NeurIPS 2025
Large reasoning models (LRMs), such as OpenAI-o1 and DeepSeek-R1, demonstrate impressive long-horizon reasoning capabilities. However, their reliance on static internal knowledge limits their performance on complex, knowledge-intensive tasks and hinders their ability to produce comprehensive research reports requiring synthesis of diverse web information. To address this, we propose WebThinker, a deep research agent that empowers LRMs to autonomously search the web, navigate among web pages, and draft reports during the reasoning process. WebThinker integrates a Deep Web Explorer module, enabling LRMs to dynamically search, navigate, and extract information from the web when encountering knowledge gaps. It also employs an Autonomous Think-Search-and-Draft strategy, allowing the model to seamlessly interleave reasoning, information gathering, and report writing in real time. To further enhance research tool utilization, we introduce an RL-based training strategy via iterative online Direct Preference Optimization (DPO). Extensive experiments on complex reasoning benchmarks (GPQA, GAIA, WebWalkerQA, HLE) and scientific report generation tasks (Glaive) demonstrate that WebThinker significantly outperforms existing methods and strong proprietary systems. Our approach enhances LRM reliability and applicability in complex scenarios, paving the way for more capable and versatile deep research systems. The code is available at https://github.com/RUC-NLPIR/WebThinker.
comment: Accepted by NeurIPS 2025
♻ ☆ Formalizing Style in Personal Narratives
Personal narratives are stories authors construct to make meaning of their experiences. Style, the distinctive way authors use language to express themselves, is fundamental to how these narratives convey subjective experiences. Yet there is a lack of a formal framework for systematically analyzing these stylistic choices. We present a novel approach that formalizes style in personal narratives as patterns in the linguistic choices authors make when communicating subjective experiences. Our framework integrates three domains: functional linguistics establishes language as a system of meaningful choices, computer science provides methods for automatically extracting and analyzing sequential patterns, and these patterns are linked to psychological observations. Using language models, we automatically extract linguistic features such as processes, participants, and circumstances. We apply our framework to hundreds of dream narratives, including a case study on a war veteran with post-traumatic stress disorder. Analysis of his narratives uncovers distinctive patterns, particularly how verbal processes dominate over mental ones, illustrating the relationship between linguistic choices and psychological states.
♻ ☆ The Enemy from Within: A Study of Political Delegitimization Discourse in Israeli Political Speech EMNLP 2025
We present the first large-scale computational study of political delegitimization discourse (PDD), defined as symbolic attacks on the normative validity of political entities. We curate and manually annotate a novel Hebrew-language corpus of 10,410 sentences drawn from Knesset speeches (1993-2023), Facebook posts (2018-2021), and leading news outlets, of which 1,812 instances (17.4\%) exhibit PDD and 642 carry additional annotations for intensity, incivility, target type, and affective framing. We introduce a two-stage classification pipeline combining finetuned encoder models and decoder LLMs. Our best model (DictaLM 2.0) attains an F$_1$ of 0.74 for binary PDD detection and a macro-F$_1$ of 0.67 for classification of delegitimization characteristics. Applying this classifier to longitudinal and cross-platform data, we see a marked rise in PDD over three decades, higher prevalence on social media versus parliamentary debate, greater use by male than female politicians, and stronger tendencies among right-leaning actors - with pronounced spikes during election campaigns and major political events. Our findings demonstrate the feasibility and value of automated PDD analysis for understanding democratic discourse.
comment: EMNLP 2025
♻ ☆ Agentic large language models improve retrieval-based radiology question answering
Clinical decision-making in radiology increasingly benefits from artificial intelligence (AI), particularly through large language models (LLMs). However, traditional retrieval-augmented generation (RAG) systems for radiology question answering (QA) typically rely on single-step retrieval, limiting their ability to handle complex clinical reasoning tasks. Here we propose radiology Retrieval and Reasoning (RaR), a multi-step retrieval and reasoning framework designed to improve diagnostic accuracy, factual consistency, and clinical reliability of LLMs in radiology question answering. We evaluated 25 LLMs spanning diverse architectures, parameter scales (0.5B to >670B), and training paradigms (general-purpose, reasoning-optimized, clinically fine-tuned), using 104 expert-curated radiology questions from previously established RSNA-RadioQA and ExtendedQA datasets. To assess generalizability, we additionally tested on an unseen internal dataset of 65 real-world radiology board examination questions. RaR significantly improved mean diagnostic accuracy over zero-shot prompting and conventional online RAG. The greatest gains occurred in small-scale models, while very large models (>200B parameters) demonstrated minimal changes (<2% improvement). Additionally, RaR retrieval reduced hallucinations (mean 9.4%) and retrieved clinically relevant context in 46% of cases, substantially aiding factual grounding. Even clinically fine-tuned models showed gains from RaR (e.g., MedGemma-27B), indicating that retrieval remains beneficial despite embedded domain knowledge. These results highlight the potential of RaR to enhance factuality and diagnostic accuracy in radiology QA, warranting future studies to validate their clinical utility. All datasets, code, and the full RaR framework are publicly available to support open research and clinical translation.
♻ ☆ J1: Incentivizing Thinking in LLM-as-a-Judge via Reinforcement Learning
The progress of AI is bottlenecked by the quality of evaluation, making powerful LLM-as-a-Judge models a core solution. The efficacy of these judges depends on their chain-of-thought reasoning, creating a critical need for methods that can effectively optimize this reasoning process. In this work, we introduce J1, a reinforcement learning framework for teaching LLM judges to think before making decisions. Our core contribution lies in converting all judgment tasks for non-verifiable and verifiable prompts into a unified format with verifiable rewards, enabling direct optimization of evaluation quality while mitigating positional bias. We then use RL to train thinking-judges at scales of 8B, 32B, and 70B and show that they obtain state-of-the-art performance across multiple benchmarks. In particular, J1-Qwen-32B, our multitasked pointwise and pairwise judge also outperforms o1-mini, o3, and a much larger 671B DeepSeek-R1 on some benchmarks, while only training on synthetic data. Through comprehensive ablations of pairwise, pointwise, and multitask J1 variants, we demonstrate the effectiveness of our approach across seed prompts, reward strategies, and training recipes. Qualitative analysis reveals that J1 develops systematic evaluation strategies, including dynamic criteria generation, reference answer creation, iterative self-correction of initial assessments, and feedback generation for low-quality responses.
comment: 10 pages, 13 tables, 14 figures
♻ ☆ LIDDIA: Language-based Intelligent Drug Discovery Agent EMNLP 2025
Drug discovery is a long, expensive, and complex process, relying heavily on human medicinal chemists, who can spend years searching the vast space of potential therapies. Recent advances in artificial intelligence for chemistry have sought to expedite individual drug discovery tasks; however, there remains a critical need for an intelligent agent that can navigate the drug discovery process. Towards this end, we introduce LIDDIA, an autonomous agent capable of intelligently navigating the drug discovery process in silico. By leveraging the reasoning capabilities of large language models, LIDDIA serves as a low-cost and highly-adaptable tool for autonomous drug discovery. We comprehensively examine LIDDIA , demonstrating that (1) it can generate molecules meeting key pharmaceutical criteria on over 70% of 30 clinically relevant targets, (2) it intelligently balances exploration and exploitation in the chemical space, and (3) it identifies one promising novel candidate on AR/NR3C4, a critical target for both prostate and breast cancers. Code and dataset are available at https://github.com/ninglab/LIDDiA
comment: EMNLP 2025 Main Conference
♻ ☆ When Thinking Backfires: Mechanistic Insights Into Reasoning-Induced Misalignment
With the growing accessibility and wide adoption of large language models, concerns about their safety and alignment with human values have become paramount. In this paper, we identify a concerning phenomenon: Reasoning-Induced Misalignment (RIM), in which misalignment emerges when reasoning capabilities strengthened-particularly when specific types of reasoning patterns are introduced during inference or training. Beyond reporting this vulnerability, we provide the first mechanistic account of its origins. Through representation analysis, we discover that specific attention heads facilitate refusal by reducing their attention to CoT tokens, a mechanism that modulates the model's rationalization process during inference. During training, we find significantly higher activation entanglement between reasoning and safety in safety-critical neurons than in control neurons, particularly after fine-tuning with those identified reasoning patterns. This entanglement strongly correlates with catastrophic forgetting, providing a neuron-level explanation for RIM.
♻ ☆ dInfer: An Efficient Inference Framework for Diffusion Language Models
Diffusion-based large language models (dLLMs) have emerged as a promising alternative to autoregressive (AR) LLMs, leveraging denoising-based generation to enable inherent parallelism. Even more and more open-sourced dLLM models emerge, yet their widespread adoption remains constrained by the lack of a standardized and efficient inference framework. We present dInfer, an efficient and extensible framework for dLLM inference. dInfer decomposes the inference pipeline into four modular components--model, diffusion iteration manager, decoding strategy, and KV-cache manager--and integrates novel algorithms for each component alongside system-level optimizations. Through this combination of algorithmic innovations and system enhancements, dInfer achieves substantial efficiency gains without compromising output quality on LLaDA-MoE. At batch size 1, it surpasses 1,100 tokens per second on HumanEval and averages over 800 tokens per second across six benchmarks on $8\times$ H800 GPUs. Compared to prior systems, dInfer delivers a $10\times$ speedup over Fast-dLLM while maintaining similar model performance. Even compared to the AR model (with a comparable number of activation parameters and performance) QWen2.5-3B, which is highly optimized with the latest vLLM inference engine, dInfer still delivers a $2$-$3\times$ speedup. The implementation of dInfer is open-sourced at https://github.com/inclusionAI/dInfer.
♻ ☆ Accurate and Diverse LLM Mathematical Reasoning via Automated PRM-Guided GFlowNets
Achieving both accuracy and diverse reasoning remains challenging for Large Language Models (LLMs) in complex domains like mathematics. A key bottleneck is evaluating intermediate reasoning steps to guide generation without costly human annotations. To address this, we first introduce a novel Process Reward Model (PRM) trained automatically using Monte Carlo Tree Search coupled with a similarity-based data augmentation technique, effectively capturing step-level reasoning quality. Leveraging this PRM, we then adapt Generative Flow Networks (GFlowNets) to operate at the reasoning step level. Unlike traditional reinforcement learning focused on maximizing a single reward, GFlowNets naturally sample diverse, high-quality solutions proportional to their rewards, as measured by our PRM. Empirical evaluation shows strong improvements in both accuracy and solution diversity on challenging mathematical benchmarks (e.g., +2.59% absolute accuracy on MATH Level 5 for Llama3.2-3B), with effective generalization to unseen datasets (+9.4\% absolute on SAT MATH). Furthermore, we benchmark our PRM against existing open-source reward models, demonstrating superior alignment with reasoning quality and more consistent guidance for downstream generation. Our work demonstrates the potential of PRM-guided, step-level GFlowNets for developing more robust and versatile mathematical reasoning in LLMs.
♻ ☆ LiTransProQA: an LLM-based Literary Translation evaluation metric with Professional Question Answering EMNLP 2025
The impact of Large Language Models (LLMs) has extended into literary domains. However, existing evaluation metrics for literature prioritize mechanical accuracy over artistic expression and tend to overrate machine translation as being superior to human translation from experienced professionals. In the long run, this bias could result in an irreversible decline in translation quality and cultural authenticity. In response to the urgent need for a specialized literary evaluation metric, we introduce LITRANSPROQA, a novel, reference-free, LLM-based question-answering framework designed for literary translation evaluation. LITRANSPROQA integrates humans in the loop to incorporate insights from professional literary translators and researchers, focusing on critical elements in literary quality assessment such as literary devices, cultural understanding, and authorial voice. Our extensive evaluation shows that while literary-finetuned XCOMET-XL yields marginal gains, LITRANSPROQA substantially outperforms current metrics, achieving up to 0.07 gain in correlation and surpassing the best state-of-the-art metrics by over 15 points in adequacy assessments. Incorporating professional translator insights as weights further improves performance, highlighting the value of translator inputs. Notably, LITRANSPROQA reaches an adequacy performance comparable to trained linguistic student evaluators, though it still falls behind experienced professional translators. LITRANSPROQA shows broad applicability to open-source models like LLaMA3.3-70b and Qwen2.5-32b, indicating its potential as an accessible and training-free tool for evaluating literary translations that require local processing due to copyright or ethical considerations.
comment: Accepted as a main paper at EMNLP 2025. CR version
♻ ☆ References Indeed Matter? Reference-Free Preference Optimization for Conversational Query Reformulation
Conversational query reformulation (CQR) has become indispensable for improving retrieval in dialogue-based applications. However, existing approaches typically rely on reference passages for optimization, which are impractical to acquire in real-world scenarios. To address this limitation, we introduce a novel reference-free preference optimization framework DualReform that generates pseudo reference passages from commonly-encountered conversational datasets containing only queries and responses. DualReform attains this goal through two key innovations: (1) response-based inference, where responses serve as proxies to infer pseudo reference passages, and (2) response refinement via the dual-role of CQR, where a CQR model refines responses based on the shared objectives between response refinement and CQR. Despite not relying on reference passages, DualReform achieves 96.9--99.1% of the retrieval accuracy attainable only with reference passages and surpasses the state-of-the-art method by up to 31.6%.
♻ ☆ Test-Time Alignment for Large Language Models via Textual Model Predictive Control
Aligning Large Language Models (LLMs) with human preferences through finetuning is resource-intensive, motivating lightweight alternatives at test time. We address test-time alignment through the lens of sequential decision making, a perspective that reveals two fundamental challenges. When actions are defined at the token level, as in guided decoding, alignment suffers from the curse of horizon. Conversely, when actions are at the response level, as in traditional iterative refinement, the curse of dimensionality emerges. To resolve this trade-off, we draw inspiration from Model Predictive Control (MPC) in control theory to propose Textual Model Predictive Control (TMPC), a novel predictive planning framework adapted for aligning LLMs at inference time. A key limitation of standard MPC is its reliance on predefined, hard segment boundaries, which are often absent in text generation. TMPC overcomes this by introducing two principles inspired by hierarchical reinforcement learning: (1) Hindsight Subgoal Identification, where TMPC analyzes generation subgoals to retrospectively identify high-reward intermediate outputs as subgoals. This allows the framework to discover meaningful, task-specific planning steps (e.g., a sentence in machine translation or a bug fix in code generation.). (2) Subgoal-Conditioned Re-Generation, where these identified subgoals are used to guide subsequent planning iterations. By conditioning on these proven, high-quality subgoals, TMPC ensures stable improvement by building upon previously validated successes. TMPC is evaluated on three tasks with distinct segmentation properties: discourse-level translation, long-form response generation, and program synthesis. The results demonstrate that TMPC consistently improves performance, highlighting the generality.
comment: Preprint. Code will be released at Plan2Align GitHub link: https://github.com/NYCU-RL-Bandits-Lab/Plan2Align
♻ ☆ On the Mathematical Relationship Between Layer Normalization and Dynamic Activation Functions
Layer normalization (LN) is an essential component of modern neural networks. While many alternative techniques have been proposed, none of them have succeeded in replacing LN so far. The latest suggestion in this line of research is a dynamic activation function called Dynamic Tanh (DyT). Although it is empirically well-motivated and appealing from a practical point of view, it lacks a theoretical foundation. In this work, we shed light on the mathematical relationship between LN and dynamic activation functions. In particular, we derive DyT from the LN variant RMSNorm, and show that a well-defined decoupling in derivative space as well as an approximation are needed to do so. By applying the same decoupling procedure directly in function space, we are able to omit the approximation and obtain the exact element-wise counterpart of RMSNorm, which we call Dynamic Inverse Square Root Unit (DyISRU). We demonstrate numerically that DyISRU reproduces the normalization effect on outliers more accurately than DyT does.
comment: Revision and Simplification (starting point RMSNorm instead of LN)
♻ ☆ Autoencoding-Free Context Compression for LLMs via Contextual Semantic Anchors
Context compression presents a promising approach for accelerating large language model (LLM) inference by compressing long contexts into compact representations. Current context compression methods predominantly rely on autoencoding tasks to train context-agnostic compression tokens to compress contextual semantics. While autoencoding tasks enable compression tokens to acquire compression capabilities, compression via autoencoding tasks creates a fundamental mismatch: the models are optimized for reconstruction that diverge from actual downstream tasks, thereby weakening the features more beneficial for real-world usage. We propose Semantic-Anchor Compression (SAC), a novel method that shifts from autoencoding task based compression to an architecture that is equipped with this compression capability \textit{a priori}. Instead of training models to compress contexts through autoencoding tasks, SAC directly selects so-called anchor tokens from the original context and aggregates contextual information into their key-value (KV) representations. By deriving representations directly from the contextual tokens, SAC eliminates the need for autoencoding training. To ensure compression performance while directly leveraging anchor tokens, SAC incorporates two key designs: (1) anchor embeddings that enable the compressor to identify critical tokens, and (2) bidirectional attention modification that allows anchor tokens to capture information from the entire context. Experimental results demonstrate that SAC consistently outperforms existing context compression methods across various compression ratios. On out-of-distribution evaluation using MRQA, SAC achieves 1 EM improvement at 5x compression over strong baselines, with increasing advantages at higher compression ratios.
comment: 18 pages,9 figures
♻ ☆ Hallucinate at the Last in Long Response Generation: A Case Study on Long Document Summarization
Large Language Models (LLMs) have significantly advanced text generation capabilities, including tasks like summarization, often producing coherent and fluent outputs. However, faithfulness to source material remains a significant challenge due to the generation of hallucinations. While extensive research focuses on detecting and reducing these inaccuracies, less attention has been paid to the positional distribution of hallucination within generated text, particularly in long outputs. In this work, we investigate where hallucinations occur in LLM-based long response generation, using long document summarization as a key case study. Focusing on the challenging setting of long context-aware long response generation, we find a consistent and concerning phenomenon: hallucinations tend to concentrate disproportionately in the latter parts of the generated long response. To understand this bias, we explore potential contributing factors related to the dynamics of attention and decoding over long sequences. Furthermore, we investigate methods to mitigate this positional hallucination, aiming to improve faithfulness specifically in the concluding segments of long outputs.
comment: 22 tables, 8 figures
♻ ☆ Introducing Spotlight: A Novel Approach for Generating Captivating Key Information from Documents EMNLP 2025
In this paper, we introduce Spotlight, a novel paradigm for information extraction that produces concise, engaging narratives by highlighting the most compelling aspects of a document. Unlike traditional summaries, which prioritize comprehensive coverage, spotlights selectively emphasize intriguing content to foster deeper reader engagement with the source material. We formally differentiate spotlights from related constructs and support our analysis with a detailed benchmarking study using new datasets curated for this work. To generate high-quality spotlights, we propose a two-stage approach: fine-tuning a large language model on our benchmark data, followed by alignment via Direct Preference Optimization (DPO). Our comprehensive evaluation demonstrates that the resulting model not only identifies key elements with precision but also enhances readability and boosts the engagement value of the original document.
comment: Paper accepted in EMNLP 2025 Main Conference (Full Paper)
♻ ☆ VLMGuard-R1: Proactive Safety Alignment for VLMs via Reasoning-Driven Prompt Optimization
Aligning Vision-Language Models (VLMs) with safety standards is essential to mitigate risks arising from their multimodal complexity, where integrating vision and language unveils subtle threats beyond the reach of conventional safeguards. Inspired by the insight that reasoning across modalities is key to preempting intricate vulnerabilities, we propose a novel direction for VLM safety: multimodal reasoning-driven prompt rewriting. To this end, we introduce VLMGuard-R1, a proactive framework that refines user inputs through a reasoning-guided rewriter, dynamically interpreting text-image interactions to deliver refined prompts that bolster safety across diverse VLM architectures without altering their core parameters. To achieve this, we devise a three-stage reasoning pipeline to synthesize a dataset that trains the rewriter to infer subtle threats, enabling tailored, actionable responses over generic refusals. Extensive experiments across three benchmarks with five VLMs reveal that VLMGuard-R1 outperforms four baselines. In particular, VLMGuard-R1 achieves a remarkable 43.59\% increase in average safety across five models on the SIUO benchmark.
♻ ☆ QUITO-X: A New Perspective on Context Compression from the Information Bottleneck Theory
Generative LLM have achieved remarkable success in various industrial applications, owing to their promising In-Context Learning capabilities. However, the issue of long context in complex tasks poses a significant barrier to their wider adoption, manifested in two main aspects: (i) The excessively long context leads to high costs and inference delays. (ii) A substantial amount of task-irrelevant information introduced by long contexts exacerbates the "lost in the middle" problem. Existing methods compress context by removing redundant tokens using metrics such as self-information or PPL, which is inconsistent with the objective of retaining the most important tokens when conditioning on a given query. In this study, we introduce information bottleneck theory (IB) to model the problem, offering a novel perspective that thoroughly addresses the essential properties required for context compression. Additionally, we propose a cross-attention-based approach to approximate mutual information in IB, which can be flexibly replaced with suitable alternatives in different scenarios. Extensive experiments on four datasets demonstrate that our method achieves a 25% increase in compression rate compared to the state-of-the-art, while maintaining question answering performance. In particular, the context compressed by our method even outperform the full context in some cases.
♻ ☆ Draw with Thought: Unleashing Multimodal Reasoning for Scientific Diagram Generation
Scientific diagrams are vital tools for communicating structured knowledge across disciplines. However, they are often published as static raster images, losing symbolic semantics and limiting reuse. While Multimodal Large Language Models (MLLMs) offer a pathway to bridging vision and structure, existing methods lack semantic control and structural interpretability, especially on complex diagrams. We propose Draw with Thought (DwT), a training-free framework that guides MLLMs to reconstruct diagrams into editable mxGraph XML code through cognitively-grounded Chain-of-Thought reasoning. DwT enables interpretable and controllable outputs without model fine-tuning by dividing the task into two stages: Coarse-to-Fine Planning, which handles perceptual structuring and semantic specification, and Structure-Aware Code Generation, enhanced by format-guided refinement. To support evaluation, we release Plot2XML, a benchmark of 247 real-world scientific diagrams with gold-standard XML annotations. Extensive experiments across eight MLLMs show that our approach yields high-fidelity, semantically aligned, and structurally valid reconstructions, with human evaluations confirming strong alignment in both accuracy and visual aesthetics, offering a scalable solution for converting static visuals into executable representations and advancing machine understanding of scientific graphics.
comment: 10 pages, 5 figures, accepted to appear in the Proceedings of the 33rd ACM International Conference on Multimedia (MM '25)
♻ ☆ TemplateRL: Structured Template-Guided Reinforcement Learning for LLM Reasoning
Reinforcement learning (RL) has emerged as an effective paradigm for enhancing model reasoning. However, existing RL methods like GRPO often rely on unstructured self-sampling to fit scalar rewards, often producing inefficient rollouts that fail to capture transferable problem-solving strategies. To address these limitations, we propose **TemplateRL**, a structured template-guided RL framework that augments policy optimization with explicit template guidance. Our approach first constructs a problem-solving template library via MCTS on a small seed set, then seamlessly integrates this high-level structured guidance into RL training. By guiding rollout generation to align with proven template structures, TemplateRL significantly improves high-quality trajectory hit rates while reducing ineffective exploration. This structure-guided design steers the policy toward validated strategic patterns, stabilizing training dynamics, and enhancing RL sampling efficiency. Notably, the explicit template library is interpretable, editable, and supports online updates-enabling continuous updates during both training and inference. Extensive experiments demonstrate that TemplateRL outperforms GRPO by 99% on AIME and 41% on AMC, with superior stability on weak models and remarkable cross-domain generalization, highlighting its potential for broader tasks.
♻ ☆ Clip Your Sequences Fairly: Enforcing Length Fairness for Sequence-Level RL
We propose FSPO (Fair Sequence Policy Optimization), a sequence-level reinforcement learning method for LLMs that enforces length-fair clipping on the importance-sampling (IS) weight. We study RL methods with sequence-level IS and identify a mismatch when PPO/GRPO-style clipping is transplanted to sequences: a fixed clip range systematically reweights short vs. long responses, distorting the optimization direction. FSPO introduces a simple remedy: we clip the sequence log-IS ratio with a band that scales as $\sqrt{L}$. Theoretically, we formalize length fairness via a Length Reweighting Error (LRE) and prove that small LRE yields a cosine directional guarantee between the clipped and true updates. Empirically, FSPO flattens clip rates across length bins, stabilizes training, and outperforms baselines across model sizes and evaluation datasets, with the largest gains on the Qwen3-8B-Base model.
♻ ☆ SaraCoder: Orchestrating Semantic and Structural Cues for Resource-Optimized Repository-Level Code Completion
Despite Retrieval-Augmented Generation improving code completion, traditional retrieval methods struggle with information redundancy and a lack of diversity within limited context windows. To solve this, we propose a resource-optimized retrieval augmentation method, SaraCoder. It maximizes information diversity and representativeness in a limited context window, significantly boosting the accuracy and reliability of repository-level code completion. Its core Hierarchical Feature Optimization module systematically refines candidates by distilling deep semantic relationships, pruning exact duplicates, assessing structural similarity with a novel graph-based metric that weighs edits by their topological importance, and reranking results to maximize both relevance and diversity. Furthermore, an External-Aware Identifier Disambiguator module accurately resolves cross-file symbol ambiguity via dependency analysis. Extensive experiments on the challenging CrossCodeEval and RepoEval-Updated benchmarks demonstrate that SaraCoder outperforms existing baselines across multiple programming languages and models. Our work proves that systematically refining retrieval results across multiple dimensions provides a new paradigm for building more accurate and resource-optimized repository-level code completion systems.
♻ ☆ Tailored Teaching with Balanced Difficulty: Elevating Reasoning in Multimodal Chain-of-Thought via Prompt Curriculum
The effectiveness of Multimodal Chain-of-Thought (MCoT) prompting is often limited by the use of randomly or manually selected examples. These examples fail to account for both model-specific knowledge distributions and the intrinsic complexity of the tasks, resulting in suboptimal and unstable model performance. To address this, we propose a novel framework inspired by the pedagogical principle of "tailored teaching with balanced difficulty". We reframe prompt selection as a prompt curriculum design problem: constructing a well ordered set of training examples that align with the model's current capabilities. Our approach integrates two complementary signals: (1) model-perceived difficulty, quantified through prediction disagreement in an active learning setup, capturing what the model itself finds challenging; and (2) intrinsic sample complexity, which measures the inherent difficulty of each question-image pair independently of any model. By jointly analyzing these signals, we develop a difficulty-balanced sampling strategy that ensures the selected prompt examples are diverse across both dimensions. Extensive experiments conducted on five challenging benchmarks and multiple popular Multimodal Large Language Models (MLLMs) demonstrate that our method yields substantial and consistent improvements and greatly reduces performance discrepancies caused by random sampling, providing a principled and robust approach for enhancing multimodal reasoning.
♻ ☆ LaDiR: Latent Diffusion Enhances LLMs for Text Reasoning
Large Language Models (LLMs) demonstrate their reasoning ability through chain-of-thought (CoT) generation. However, LLM's autoregressive decoding may limit the ability to revisit and refine earlier tokens in a holistic manner, which can also lead to inefficient exploration for diverse solutions. In this paper, we propose LaDiR (Latent Diffusion Reasoner), a novel reasoning framework that unifies the expressiveness of continuous latent representation with the iterative refinement capabilities of latent diffusion models for an existing LLM. We first construct a structured latent reasoning space using a Variational Autoencoder (VAE) that encodes text reasoning steps into blocks of thought tokens, preserving semantic information and interpretability while offering compact but expressive representations. Subsequently, we utilize a latent diffusion model that learns to denoise a block of latent thought tokens with a blockwise bidirectional attention mask, enabling longer horizon and iterative refinement with adaptive test-time compute. This design allows efficient parallel generation of diverse reasoning trajectories, allowing the model to plan and revise the reasoning process holistically. We conduct evaluations on a suite of mathematical reasoning and planning benchmarks. Empirical results show that LaDiR consistently improves accuracy, diversity, and interpretability over existing autoregressive, diffusion-based, and latent reasoning methods, revealing a new paradigm for text reasoning with latent diffusion.
♻ ☆ Personality Editing for Language Models through Adjusting Self-Referential Queries
Large Language Models (LLMs) are integral to applications such as conversational agents and content creation, where precise control over a model's personality is essential for maintaining tone, consistency, and user engagement. However, prevailing prompt-based or fine-tuning approaches either lack robustness or demand large-scale training data, making them costly and impractical. In this paper, we present PALETTE (Personality Adjustment by LLM SElf-TargeTed quEries), a novel method for personality editing in LLMs. Our approach introduces adjustment queries, where self-referential statements grounded in psychological constructs are treated analogously to factual knowledge, enabling direct editing of personality-related responses. Unlike fine-tuning, PALETTE requires only 12 editing samples to achieve substantial improvements in personality alignment across personality dimensions. Experimental results from both automatic and human evaluations demonstrate that our method enables more stable and well-balanced personality control in LLMs.
comment: 22 pages, 5 figures, 26 tables
♻ ☆ Reveal-Bangla: A Dataset for Cross-Lingual Multi-Step Reasoning Evaluation AACL 2025
Language models have demonstrated remarkable performance on complex multi-step reasoning tasks. However, their evaluation has been predominantly confined to high-resource languages such as English. In this paper, we introduce a manually translated Bangla multi-step reasoning dataset derived from the English Reveal dataset, featuring both binary and non-binary question types. We conduct a controlled evaluation of English-centric and Bangla-centric multilingual small language models on the original dataset and our translated version to compare their ability to exploit relevant reasoning steps to produce correct answers. Our results show that, in comparable settings, reasoning context is beneficial for more challenging non-binary questions, but models struggle to employ relevant Bangla reasoning steps effectively. We conclude by exploring how reasoning steps contribute to models' predictions, highlighting different trends across models and languages.
comment: Submitted to BLP workshop @ IJCNLP-AACL 2025
♻ ☆ PhoniTale: Phonologically Grounded Mnemonic Generation for Typologically Distant Language Pairs EMNLP 2025
Vocabulary acquisition poses a significant challenge for second-language (L2) learners, especially when learning typologically distant languages such as English and Korean, where phonological and structural mismatches complicate vocabulary learning. Recently, large language models (LLMs) have been used to generate keyword mnemonics by leveraging similar keywords from a learner's first language (L1) to aid in acquiring L2 vocabulary. However, most methods still rely on direct IPA-based phonetic matching or employ LLMs without phonological guidance. In this paper, we present PhoniTale, a novel cross-lingual mnemonic generation system that performs IPA-based phonological adaptation and syllable-aware alignment to retrieve L1 keyword sequence and uses LLMs to generate verbal cues. We evaluate PhoniTale through automated metrics and a short-term recall test with human participants, comparing its output to human-written and prior automated mnemonics. Our findings show that PhoniTale consistently outperforms previous automated approaches and achieves quality comparable to human-written mnemonics.
comment: Accepted to EMNLP 2025 Main Conference
♻ ☆ BabyVLM: Data-Efficient Pretraining of VLMs Inspired by Infant Learning ICCV 2025
Human infants rapidly develop visual reasoning skills from minimal input, suggesting that developmentally inspired pretraining could significantly enhance the efficiency of vision-language models (VLMs). Although recent efforts have leveraged infant-inspired datasets like SAYCam, existing evaluation benchmarks remain misaligned--they are either too simplistic, narrowly scoped, or tailored for large-scale pretrained models. Additionally, training exclusively on infant data overlooks the broader, diverse input from which infants naturally learn. To address these limitations, we propose BabyVLM, a novel framework comprising comprehensive in-domain evaluation benchmarks and a synthetic training dataset created via child-directed transformations of existing datasets. We demonstrate that VLMs trained with our synthetic dataset achieve superior performance on BabyVLM tasks compared to models trained solely on SAYCam or general-purpose data of the SAYCam size. BabyVLM thus provides a robust, developmentally aligned evaluation tool and illustrates how compact models trained on carefully curated data can generalize effectively, opening pathways toward data-efficient vision-language learning paradigms.
comment: Accepted to ICCV 2025
♻ ☆ DiaCDM: Cognitive Diagnosis in Teacher-Student Dialogues using the Initiation-Response-Evaluation Framework
While cognitive diagnosis (CD) effectively assesses students' knowledge mastery from structured test data, applying it to real-world teacher-student dialogues presents two fundamental challenges. Traditional CD models lack a suitable framework for handling dynamic, unstructured dialogues, and it's difficult to accurately extract diagnostic semantics from lengthy dialogues. To overcome these hurdles, we propose DiaCDM, an innovative model. We've adapted the initiation-response-evaluation (IRE) framework from educational theory to design a diagnostic framework tailored for dialogue. We also developed a unique graph-based encoding method that integrates teacher questions with relevant knowledge components to capture key information more precisely. To our knowledge, this is the first exploration of cognitive diagnosis in a dialogue setting. Experiments on three real-world dialogue datasets confirm that DiaCDM not only significantly improves diagnostic accuracy but also enhances the results' interpretability, providing teachers with a powerful tool for assessing students' cognitive states. The code is available at https://github.com/Mind-Lab-ECNU/DiaCDM/tree/main.
♻ ☆ DITING: A Multi-Agent Evaluation Framework for Benchmarking Web Novel Translation
Large language models (LLMs) have substantially advanced machine translation (MT), yet their effectiveness in translating web novels remains unclear. Existing benchmarks rely on surface-level metrics that fail to capture the distinctive traits of this genre. To address these gaps, we introduce DITING, the first comprehensive evaluation framework for web novel translation, assessing narrative and cultural fidelity across six dimensions: idiom translation, lexical ambiguity, terminology localization, tense consistency, zero-pronoun resolution, and cultural safety, supported by over 18K expert-annotated Chinese-English sentence pairs. We further propose AgentEval, a reasoning-driven multi-agent evaluation framework that simulates expert deliberation to assess translation quality beyond lexical overlap, achieving the highest correlation with human judgments among seven tested automatic metrics. To enable metric comparison, we develop MetricAlign, a meta-evaluation dataset of 300 sentence pairs annotated with error labels and scalar quality scores. Comprehensive evaluation of fourteen open, closed, and commercial models reveals that Chinese-trained LLMs surpass larger foreign counterparts, and that DeepSeek-V3 delivers the most faithful and stylistically coherent translations. Our work establishes a new paradigm for exploring LLM-based web novel translation and provides public resources to advance future research.
♻ ☆ Training and Evaluating with Human Label Variation: An Empirical Study
Human label variation (HLV) challenges the standard assumption that a labelled instance has a single ground truth, instead embracing the natural variation in human annotation to train and evaluate models. While various training methods and metrics for HLV have been proposed, it is still unclear which methods and metrics perform best in what settings. We propose new evaluation metrics for HLV leveraging fuzzy set theory. Since these new proposed metrics are differentiable, we then in turn experiment with employing these metrics as training objectives. We conduct an extensive study over 6 HLV datasets testing 14 training methods and 6 evaluation metrics. We find that training on either disaggregated annotations or soft labels performs best across metrics, outperforming training using the proposed training objectives with differentiable metrics. We also show that our proposed soft micro F1 score is one of the best metrics for HLV data.
comment: 27 pages, 7 figures. Accepted to CL. Pre-MIT Press publication version. Fixed PO-JSD values on the MFRC dataset. Completely redid the empirical meta-evaluation, added more related work, and other minor edits
♻ ☆ Chronological Passage Assembling in RAG framework for Temporal Question Answering
Long-context question answering over narrative tasks is challenging because correct answers often hinge on reconstructing a coherent timeline of events while preserving contextual f low in a limited context window. Retrievalaugmented generation (RAG) methods aim to address this challenge by selectively retrieving only necessary document segments. However, narrative texts possess unique characteristics that limit the effectiveness of these existing approaches. Specifically, understanding narrative texts requires more than isolated segments, as the broader context and sequential relationships between segments are crucial for comprehension. To address these limitations, we propose ChronoRAG, a novel RAG framework specialized for narrative texts. This approach focuses on two essential aspects: refining dispersed document information into coherent and structured passages and preserving narrative flow by explicitly capturing and maintaining the temporal order among retrieved passages. We empirically demonstrate the effectiveness of ChronoRAG through experiments on the NarrativeQA and GutenQAdataset, showing substantial improvements in tasks requiring both factual identification and comprehension of complex sequential relationships, underscoring that reasoning over temporal order is crucial in resolving narrative QA.
comment: 15 pages, 4 figures
♻ ☆ Self-Filtered Distillation with LLMs-generated Trust Indicators for Reliable Patent Classification
Large language models (LLMs) increasingly generate natural language rationales to enhance interpretability, but these often contain logical errors, label mismatches, and domain-specific misalignments. Directly using such rationales as supervision risks propagating noise and undermining training stability. To address this challenge, we introduce Self-Filtered Distillation, a framework specifically tailored for patent classification, which treats LLM-generated rationales as trust signals rather than ground-truth supervision. The framework employs selective distillation guided by three unsupervised trust metrics: (1) Self-Consistency, which measures the stability of LLM-generated rationales across multiple generations; (2) Class Entailment Alignment, which assesses semantic coherence with patent-specific class definitions; and (3) LLM Agreement Scoring, which validates rationale-label plausibility. These metrics are integrated into a unified trust score that primarily weights training samples while optionally filtering out extremely low-trust cases, enabling reasoning-aware supervision. Experiments on the USPTO-2M dataset, a widely used benchmark for patent classification, show that our method outperforms label-based learning and conventional distillation in accuracy, stability, and interpretability, establishing a reliable paradigm for leveraging reasoning-aware trust indicators in patent analytics.
♻ ☆ Learning from Reference Answers: Versatile Language Model Alignment without Binary Human Preference Data
Large language models~(LLMs) are expected to be helpful, harmless, and honest. In different alignment scenarios, such as safety, confidence, and general preference alignment, binary preference data collection and reward modeling are resource-intensive but play a central role in transferring human preferences. In this work, we explore using the similarity between sampled generations and reference answers as a supplementary reward function for alignment. When unary reference answers are available, such similarity-based rewards can circumvent the need for binary preference data and explicit reward modeling. We introduce \textit{RefAlign}, a versatile REINFORCE-style alignment algorithm that does not rely on reward or reference models. RefAlign utilizes language generation evaluation metrics, such as BERTScore, between sampled generations and reference answers as surrogate rewards. Beyond general preference optimization, RefAlign can be naturally extended to diverse scenarios, including safety and confidence alignment, by combining similarity-based rewards with task-specific objectives. Across multiple scenarios, RefAlign achieves performance comparable to prior alignment methods while operating without binary preference data or reward models. The code is available at https://github.com/mzhaoshuai/RefAlign.
comment: The code is at https://github.com/mzhaoshuai/RefAlign
♻ ☆ Attributing Response to Context: A Jensen-Shannon Divergence Driven Mechanistic Study of Context Attribution in Retrieval-Augmented Generation NeurIPS 2025
Retrieval-Augmented Generation (RAG) leverages large language models (LLMs) combined with external contexts to enhance the accuracy and reliability of generated responses. However, reliably attributing generated content to specific context segments, context attribution, remains challenging due to the computationally intensive nature of current methods, which often require extensive fine-tuning or human annotation. In this work, we introduce a novel Jensen-Shannon Divergence driven method to Attribute Response to Context (ARC-JSD), enabling efficient and accurate identification of essential context sentences without additional fine-tuning, gradient-calculation or surrogate modelling. Evaluations on a wide range of RAG benchmarks, such as TyDi QA, Hotpot QA, and Musique, using instruction-tuned LLMs in different scales demonstrate superior accuracy and significant computational efficiency improvements compared to the previous surrogate-based method. Furthermore, our mechanistic analysis reveals specific attention heads and multilayer perceptron (MLP) layers responsible for context attribution, providing valuable insights into the internal workings of RAG models and how they affect RAG behaviours. Our code is available at https://github.com/ruizheliUOA/ARC_JSD.
comment: Best Paper Award at COLM 2025 XLLM-Reason-Plan Workshop; Accepted at NeurIPS 2025 Mechanistic Interpretability Workshop
♻ ☆ Add-One-In: Incremental Sample Selection for Large Language Models via a Choice-Based Greedy Paradigm EMNLP2025
Selecting high-quality and diverse training samples from extensive datasets plays a crucial role in reducing training overhead and enhancing the performance of Large Language Models (LLMs). However, existing studies fall short in assessing the overall value of selected data, focusing primarily on individual quality, and struggle to strike an effective balance between ensuring diversity and minimizing data point traversals. Therefore, this paper introduces a novel choice-based sample selection framework that shifts the focus from evaluating individual sample quality to comparing the contribution value of different samples when incorporated into the subset. Thanks to the advanced language understanding capabilities of LLMs, we utilize LLMs to evaluate the value of each option during the selection process. Furthermore, we design a greedy sampling process where samples are incrementally added to the subset, thereby improving efficiency by eliminating the need for exhaustive traversal of the entire dataset with the limited budget. Extensive experiments demonstrate that selected data from our method not only surpasses the performance of the full dataset but also achieves competitive results with recent powerful studies, while requiring fewer selections. Moreover, we validate our approach on a larger medical dataset, highlighting its practical applicability in real-world applications. Our code and data are available at https://github.com/BIRlz/comperative_sample_selection.
comment: EMNLP2025
♻ ☆ DSPO: Stable and Efficient Policy Optimization for Agentic Search and Reasoning
Enhancing LLMs with the ability to actively search external knowledge is crucial for complex and real-world tasks. Current approaches either rely on prompting to elicit the model's innate agent capabilities, or suffer from performance ceilings and collapse when applying RL to complex interactive tasks, leaving their true agentic potential untapped. To address this, we introduce \textbf{D}ynamic-filter \textbf{S}equence-level \textbf{P}olicy \textbf{O}ptimization (DSPO), an improved RL algorithm designed for robust agent training through sequence-level optimization and dynamic sample filtering. We train our model purely through RL to interleave multi-turn search and reasoning, obviating the need for supervised demonstration data. Across multiple QA benchmarks, our DSPO-trained 7B model improves over a comparable previous work by \textbf{34.1\%}, and even outperforms the 14B model from previous work in complex multihop QA such as HotpotQA by nearly \textbf{9\% relative}, maintaining exceptional training stability.
♻ ☆ Dynamic Optimizations of LLM Ensembles with Two-Stage Reinforcement Learning Agents
The advancement of LLMs and their accessibility have triggered renewed interest in multi-agent reinforcement learning as robust and adaptive frameworks for dynamically changing environments. This paper introduces RL-Focal, a two-stage RL agent framework that routes and ensembles LLMs. First, we develop the Decider RL-agent, which learns to dynamically select an ensemble of small size ($m_i$) among $N$ LLMs ($m_i \ll N$) for incoming queries from a user-defined downstream task $i$, by maximizing both error-diversity and reasoning-performance of the selected ensemble through iterative updates of task-adaptive rewards and policy. Second, to enable effective fusion of dynamically selected LLMs, we develop the stage-2 Fusion RL-agent, which learns to resolve reasoning conflicts from different LLMs and dynamically adapts to different ensemble teams composed by the Decider Agent for different downstream tasks. Third, we introduce the focal diversity metric to better model the error correlations among multiple LLMs, further improving the generalization performance of the Decider Agent, which actively prunes the ensemble combinations. By focal diversity, we enhance performance across tasks by effectively promoting reward-aware and policy-adaptive ensemble selection and inference fusion. Extensive evaluations on five benchmarks show that RL-Focal achieves the performance improvement of 8.48\% with an ensemble of small size compared to the best individual LLM in a pool and offers stronger robustness. Code is available at https://github.com/sftekin/rl-focal
♻ ☆ ARM: Adaptive Reasoning Model NeurIPS 2025
While large reasoning models demonstrate strong performance on complex tasks, they lack the ability to adjust reasoning token usage based on task difficulty. This often leads to the "overthinking" problem -- excessive and unnecessary reasoning -- which, although potentially mitigated by human intervention to control the token budget, still fundamentally contradicts the goal of achieving fully autonomous AI. In this work, we propose Adaptive Reasoning Model (ARM), a reasoning model capable of adaptively selecting appropriate reasoning formats based on the task at hand. These formats include three efficient ones -- Direct Answer, Short CoT, and Code -- as well as a more elaborate format, Long CoT. To train ARM, we introduce Ada-GRPO, an adaptation of Group Relative Policy Optimization (GRPO), which addresses the format collapse issue in traditional GRPO. Ada-GRPO enables ARM to achieve high token efficiency, reducing tokens by an average of 30%, and up to 70%, while maintaining performance comparable to the model that relies solely on Long CoT. Furthermore, not only does it improve inference efficiency through reduced token generation, but it also brings a 2x speedup in training. In addition to the default Adaptive Mode, ARM supports two additional reasoning modes: 1) Instruction-Guided Mode, which allows users to explicitly specify the reasoning format via special tokens -- ideal when the appropriate format is known for a batch of tasks. 2) Consensus-Guided Mode, which aggregates the outputs of the three efficient formats and resorts to Long CoT in case of disagreement, prioritizing performance with higher token usage.
comment: NeurIPS 2025 (Spotlight)
♻ ☆ Self-Exploring Language Models for Explainable Link Forecasting on Temporal Graphs via Reinforcement Learning
Forecasting future links is a central task in temporal graph (TG) reasoning, requiring models to leverage historical interactions to predict upcoming ones. Traditional neural approaches, such as temporal graph neural networks, achieve strong performance but lack explainability and cannot be applied to unseen graphs without retraining. Recent studies have begun to explore using large language models (LLMs) for graph reasoning, but most of them are constrained to static graphs or small synthetic TGs and lack the evaluation of the quality of reasoning traces generated by LLMs. In this work, we present Reasoning-Enhanced Learning for Temporal Graphs (ReaL-TG), a reinforcement learning framework that fine-tunes LLMs to perform explainable link forecasting on real-world TGs. ReaL-TG uses outcome-based reward to encourage models to self-explore reasoning strategies from graph structure and to produce explanations that directly justify their predictions. To enable evaluation on LLM-generated reasoning traces, we propose a new evaluation protocol combining ranking metrics with an LLM-as-a-Judge system that assesses both the quality of reasoning and the impact of hallucinations. Experiments with ReaL-TG-4B, obtained by fine-tuning Qwen3-4B under our framework, show that it outperforms much larger frontier LLMs, including GPT-5 mini, on ranking metrics, while producing high-quality explanations confirmed by both the LLM judge and human evaluation.
♻ ☆ Prompt4Trust: A Reinforcement Learning Prompt Augmentation Framework for Clinically-Aligned Confidence Calibration in Multimodal Large Language Models ICCV 2025
Multimodal large language models (MLLMs) hold considerable promise for applications in healthcare. However, their deployment in safety-critical settings is hindered by two key limitations: (i) sensitivity to prompt design, and (ii) a tendency to generate incorrect responses with high confidence. As clinicians may rely on a model's stated confidence to gauge the reliability of its predictions, it is especially important that when a model expresses high confidence, it is also highly accurate. We introduce Prompt4Trust, the first reinforcement learning (RL) framework for prompt augmentation targeting confidence calibration in MLLMs. A lightweight LLM is trained to produce context-aware auxiliary prompts that guide a downstream task MLLM to generate responses in which the expressed confidence more accurately reflects predictive accuracy. Unlike conventional calibration techniques, Prompt4Trust specifically prioritizes aspects of calibration most critical for safe and trustworthy clinical decision-making. Beyond improvements driven by this clinically motivated calibration objective, our proposed method also improves task accuracy, achieving state-of-the-art medical visual question answering (VQA) performance on the PMC-VQA benchmark, which is composed of multiple-choice questions spanning diverse medical imaging modalities. Moreover, our framework trained with a small downstream task MLLM showed promising zero-shot generalization to larger MLLMs in our experiments, suggesting the potential for scalable calibration without the associated computational costs. This work demonstrates the potential of automated yet human-aligned prompt engineering for improving the the trustworthiness of MLLMs in safety critical settings. Our codebase can be found at https://github.com/xingbpshen/prompt4trust.
comment: Accepted to ICCV 2025 Workshop CVAMD
♻ ☆ SPG: Sandwiched Policy Gradient for Masked Diffusion Language Models
Diffusion large language models (dLLMs) are emerging as an efficient alternative to autoregressive models due to their ability to decode multiple tokens in parallel. However, aligning dLLMs with human preferences or task-specific rewards via reinforcement learning (RL) is challenging because their intractable log-likelihood precludes the direct application of standard policy gradient methods. While prior work uses surrogates like the evidence lower bound (ELBO), these one-sided approximations can introduce significant policy gradient bias. To address this, we propose the Sandwiched Policy Gradient (SPG) that leverages both an upper and a lower bound of the true log-likelihood. Experiments show that SPG significantly outperforms baselines based on ELBO or one-step estimation. Specifically, SPG improves the accuracy over state-of-the-art RL methods for dLLMs by 3.6% in GSM8K, 2.6% in MATH500, 18.4% in Countdown and 27.0% in Sudoku.
♻ ☆ Steering LLMs for Formal Theorem Proving
Recent advances in automated theorem proving use Large Language Models (LLMs) to translate informal mathematical statements into formal proofs. However, informal cues are often ambiguous or lack strict logical structure, making it hard for models to interpret them precisely. While existing methods achieve strong performance, little is known about how LLMs internally represent informal cues, or how these influence proof generation. To address this, we explore \textit{activation steering}, an inference-time intervention that identifies linear directions in residual activations associated with informal reasoning traces and adjusts them to improve proof construction without fine-tuning. This mechanism also yields interpretable information about how reasoning is internally encoded in the activation space of LLMs. We test our method for generating formal proofs from already-formalized theorems. Our contributions are twofold: (1) a novel activation-based intervention for guiding proof synthesis in LLMs; and (2) demonstration that this intervention improves performance under two decoding strategies (sampling and best-first search) without any further training.
♻ ☆ Rethinking the Residual Distribution of Locate-then-Editing Methods in Model Editing NeurIPS 2025
Model editing enables targeted updates to the knowledge of large language models (LLMs) with minimal retraining. Among existing approaches, locate-then-edit methods constitute a prominent paradigm: they first identify critical layers, then compute residuals at the final critical layer based on the target edit, and finally apply least-squares-based multi-layer updates via $\textbf{residual distribution}$. While empirically effective, we identify a counterintuitive failure mode: residual distribution, a core mechanism in these methods, introduces weight shift errors that undermine editing precision. Through theoretical and empirical analysis, we show that such errors increase with the distribution distance, batch size, and edit sequence length, ultimately leading to inaccurate or suboptimal edits. To address this, we propose the $\textbf{B}$oundary $\textbf{L}$ayer $\textbf{U}$pdat$\textbf{E (BLUE)}$ strategy to enhance locate-then-edit methods. Sequential batch editing experiments on three LLMs and two datasets demonstrate that BLUE not only delivers an average performance improvement of 35.59\%, significantly advancing the state of the art in model editing, but also enhances the preservation of LLMs' general capabilities. Our code is available at https://github.com/xpq-tech/BLUE.
comment: NeurIPS 2025
♻ ☆ When Machine Unlearning Meets Retrieval-Augmented Generation (RAG): Keep Secret or Forget Knowledge? SC
The deployment of large language models (LLMs) like ChatGPT and Gemini has shown their powerful natural language generation capabilities. However, these models can inadvertently learn and retain sensitive information and harmful content during training, raising significant ethical and legal concerns. To address these issues, machine unlearning has been introduced as a potential solution. While existing unlearning methods take into account the specific characteristics of LLMs, they often suffer from high computational demands, limited applicability, or the risk of catastrophic forgetting. To address these limitations, we propose a lightweight behavioral unlearning framework based on Retrieval-Augmented Generation (RAG) technology. By modifying the external knowledge base of RAG, we simulate the effects of forgetting without directly interacting with the unlearned LLM. We approach the construction of unlearned knowledge as a constrained optimization problem, deriving two key components that underpin the effectiveness of RAG-based unlearning. This RAG-based approach is particularly effective for closed-source LLMs, where existing unlearning methods often fail. We evaluate our framework through extensive experiments on both open-source and closed-source models, including ChatGPT, Gemini, Llama-2-7b-chat, and PaLM 2. The results demonstrate that our approach meets five key unlearning criteria: effectiveness, universality, harmlessness, simplicity, and robustness. Meanwhile, this approach can extend to multimodal large language models and LLM-based agents.
comment: 16 pages, 9 figures, 13 tables. To appear in IEEE Transactions on Dependable and Secure Computing (TDSC), 2025
♻ ☆ Self-ensemble: Mitigating Confidence Mis-calibration for Large Language Models
Although Large Language Models (LLMs) perform well in general fields, they exhibit a confidence distortion problem on multi-choice question-answering (MCQA), particularly as the number of answer choices increases. Specifically, on MCQA with many choices, LLMs suffer from under-confidence in correct predictions and over-confidence in incorrect ones, leading to a substantially degraded performance. To solve this problem, we propose Self-ensemble in this work. Our method splits the choices into several groups and ensembles LLM predictions across these groups to reach a final decision. The advantage of Self-ensemble is its plug-and-play nature, where it can be integrated into existing LLM architecture based on a designed attention mask and positional encoding, without requiring labeled datasets for parameter tuning. Experimental results on three LLMs and datasets demonstrate that Self-ensemble comprehensively addresses the confidence distortion problem of LLMs, outperforming standard inference as well as baseline methods.
Computer Vision and Pattern Recognition
☆ Ev4DGS: Novel-view Rendering of Non-Rigid Objects from Monocular Event Streams
Event cameras offer various advantages for novel view rendering compared to synchronously operating RGB cameras, and efficient event-based techniques supporting rigid scenes have been recently demonstrated in the literature. In the case of non-rigid objects, however, existing approaches additionally require sparse RGB inputs, which can be a substantial practical limitation; it remains unknown if similar models could be learned from event streams only. This paper sheds light on this challenging open question and introduces Ev4DGS, i.e., the first approach for novel view rendering of non-rigidly deforming objects in the explicit observation space (i.e., as RGB or greyscale images) from monocular event streams. Our method regresses a deformable 3D Gaussian Splatting representation through 1) a loss relating the outputs of the estimated model with the 2D event observation space, and 2) a coarse 3D deformation model trained from binary masks generated from events. We perform experimental comparisons on existing synthetic and newly recorded real datasets with non-rigid objects. The results demonstrate the validity of Ev4DGS and its superior performance compared to multiple naive baselines that can be applied in our setting. We will release our models and the datasets used in the evaluation for research purposes; see the project webpage: https://4dqv.mpi-inf.mpg.de/Ev4DGS/.
☆ CodePlot-CoT: Mathematical Visual Reasoning by Thinking with Code-Driven Images
Recent advances in Large Language Models (LLMs) and Vision Language Models (VLMs) have shown significant progress in mathematical reasoning, yet they still face a critical bottleneck with problems requiring visual assistance, such as drawing auxiliary lines or plotting functions to solve the problems. Most LLMs and VLMs are constrained to text-only reasoning chains, while multimodal unified models that can generate interleaved text and images lack the necessary precision and controllability for such tasks. To address this, we propose CodePlot-CoT, a code-driven Chain-of-Thought paradigm for "thinking with images" in mathematics. Our approach leverages the VLM to generate text reasoning as well as executable plotting code, which is then rendered into images as "visual thought", to solve mathematical problems. To achieve this, we first construct Math-VR, the first large-scale, bilingual dataset and benchmark for Mathematics problems with Visual Reasoning, comprising 178K samples. Second, to create high-quality training data, we develop a state-of-the-art image-to-code converter specialized for parsing complex mathematical figures into codes. Finally, using these training data, we train the CodePlot-CoT model for solving mathematical problems. Experimental results show that our model achieves up to 21% increase over base model on our new benchmark, fully validating the efficacy of our proposed code-driven reasoning paradigm. Our work opens a new direction for multimodal mathematical reasoning and provides the community with the first large-scale dataset, comprehensive benchmark, and strong approach for such problems. To facilitate future research, we make our datasets, code, and pretrained models publicly available at https://github.com/HKU-MMLab/Math-VR-CodePlot-CoT.
☆ Point Prompting: Counterfactual Tracking with Video Diffusion Models
Trackers and video generators solve closely related problems: the former analyze motion, while the latter synthesize it. We show that this connection enables pretrained video diffusion models to perform zero-shot point tracking by simply prompting them to visually mark points as they move over time. We place a distinctively colored marker at the query point, then regenerate the rest of the video from an intermediate noise level. This propagates the marker across frames, tracing the point's trajectory. To ensure that the marker remains visible in this counterfactual generation, despite such markers being unlikely in natural videos, we use the unedited initial frame as a negative prompt. Through experiments with multiple image-conditioned video diffusion models, we find that these "emergent" tracks outperform those of prior zero-shot methods and persist through occlusions, often obtaining performance that is competitive with specialized self-supervised models.
comment: Project link: https://point-prompting.github.io
☆ DiT360: High-Fidelity Panoramic Image Generation via Hybrid Training
In this work, we propose DiT360, a DiT-based framework that performs hybrid training on perspective and panoramic data for panoramic image generation. For the issues of maintaining geometric fidelity and photorealism in generation quality, we attribute the main reason to the lack of large-scale, high-quality, real-world panoramic data, where such a data-centric view differs from prior methods that focus on model design. Basically, DiT360 has several key modules for inter-domain transformation and intra-domain augmentation, applied at both the pre-VAE image level and the post-VAE token level. At the image level, we incorporate cross-domain knowledge through perspective image guidance and panoramic refinement, which enhance perceptual quality while regularizing diversity and photorealism. At the token level, hybrid supervision is applied across multiple modules, which include circular padding for boundary continuity, yaw loss for rotational robustness, and cube loss for distortion awareness. Extensive experiments on text-to-panorama, inpainting, and outpainting tasks demonstrate that our method achieves better boundary consistency and image fidelity across eleven quantitative metrics. Our code is available at https://github.com/Insta360-Research-Team/DiT360.
comment: https://fenghora.github.io/DiT360-Page/
☆ Adversarial Attacks Leverage Interference Between Features in Superposition
Fundamental questions remain about when and why adversarial examples arise in neural networks, with competing views characterising them either as artifacts of the irregularities in the decision landscape or as products of sensitivity to non-robust input features. In this paper, we instead argue that adversarial vulnerability can stem from efficient information encoding in neural networks. Specifically, we show how superposition - where networks represent more features than they have dimensions - creates arrangements of latent representations that adversaries can exploit. We demonstrate that adversarial perturbations leverage interference between superposed features, making attack patterns predictable from feature arrangements. Our framework provides a mechanistic explanation for two known phenomena: adversarial attack transferability between models with similar training regimes and class-specific vulnerability patterns. In synthetic settings with precisely controlled superposition, we establish that superposition suffices to create adversarial vulnerability. We then demonstrate that these findings persist in a ViT trained on CIFAR-10. These findings reveal adversarial vulnerability can be a byproduct of networks' representational compression, rather than flaws in the learning process or non-robust inputs.
☆ Bayesian Topological Convolutional Neural Nets
Convolutional neural networks (CNNs) have been established as the main workhorse in image data processing; nonetheless, they require large amounts of data to train, often produce overconfident predictions, and frequently lack the ability to quantify the uncertainty of their predictions. To address these concerns, we propose a new Bayesian topological CNN that promotes a novel interplay between topology-aware learning and Bayesian sampling. Specifically, it utilizes information from important manifolds to accelerate training while reducing calibration error by placing prior distributions on network parameters and properly learning appropriate posteriors. One important contribution of our work is the inclusion of a consistency condition in the learning cost, which can effectively modify the prior distributions to improve the performance of our novel network architecture. We evaluate the model on benchmark image classification datasets and demonstrate its superiority over conventional CNNs, Bayesian neural networks (BNNs), and topological CNNs. In particular, we supply evidence that our method provides an advantage in situations where training data is limited or corrupted. Furthermore, we show that the new model allows for better uncertainty quantification than standard BNNs since it can more readily identify examples of out-of-distribution data on which it has not been trained. Our results highlight the potential of our novel hybrid approach for more efficient and robust image classification.
☆ QeRL: Beyond Efficiency -- Quantization-enhanced Reinforcement Learning for LLMs
We propose QeRL, a Quantization-enhanced Reinforcement Learning framework for large language models (LLMs). While RL is essential for LLMs' reasoning capabilities, it is resource-intensive, requiring substantial GPU memory and long rollout durations. QeRL addresses these issues by combining NVFP4 quantization with Low-Rank Adaptation (LoRA), accelerating rollout phase of RL while reducing memory overhead. Beyond efficiency, our findings show that quantization noise increases policy entropy, enhancing exploration, and enabling the discovery of better strategies during RL. To further optimize exploration, QeRL introduces an Adaptive Quantization Noise (AQN) mechanism, which dynamically adjusts noise during training. Experiments demonstrate that QeRL delivers over 1.5 times speedup in the rollout phase. Moreover, this is the first framework to enable RL training of a 32B LLM on a single H100 80GB GPU, while delivering overall speedups for RL training. It also achieves faster reward growth and higher final accuracy than 16-bit LoRA and QLoRA, while matching the performance of full-parameter fine-tuning on mathematical benchmarks such as GSM8K (90.8%) and MATH 500 (77.4%) in the 7B model. These results establish QeRL as an efficient and effective framework for RL training in LLMs.
comment: Code is available at https://github.com/NVlabs/QeRL
☆ Scaling Language-Centric Omnimodal Representation Learning NeurIPS 2025
Recent multimodal embedding approaches leveraging multimodal large language models (MLLMs) fine-tuned with contrastive learning (CL) have shown promising results, yet the underlying reasons behind their superiority remain underexplored. This work argues that a crucial advantage of MLLM-based approaches stems from implicit cross-modal alignment achieved during generative pretraining, where the language decoder learns to exploit multimodal signals within a shared representation space for generating unimodal outputs. Through analysis of anisotropy and kernel similarity structure, we empirically confirm that latent alignment emerges within MLLM representations, allowing CL to serve as a lightweight refinement stage. Leveraging this insight, we propose a Language-Centric Omnimodal Embedding framework, termed LCO-Emb. Extensive experiments across diverse backbones and benchmarks demonstrate its effectiveness, achieving state-of-the-art performance across modalities. Furthermore, we identify a Generation-Representation Scaling Law (GRSL), showing that the representational capabilities gained through contrastive refinement scales positively with the MLLM's generative capabilities. This suggests that improving generative abilities evolves as an effective paradigm for enhancing representation quality. We provide a theoretical explanation of GRSL, which formally links the MLLM's generative quality to the upper bound on its representation performance, and validate it on a challenging, low-resource visual-document retrieval task, showing that continual generative pretraining before CL can further enhance the potential of a model's embedding capabilities. Codes, models, and resources are available at https://github.com/LCO-Embedding/LCO-Embedding.
comment: NeurIPS 2025
☆ Diffusion Transformers with Representation Autoencoders
Latent generative modeling, where a pretrained autoencoder maps pixels into a latent space for the diffusion process, has become the standard strategy for Diffusion Transformers (DiT); however, the autoencoder component has barely evolved. Most DiTs continue to rely on the original VAE encoder, which introduces several limitations: outdated backbones that compromise architectural simplicity, low-dimensional latent spaces that restrict information capacity, and weak representations that result from purely reconstruction-based training and ultimately limit generative quality. In this work, we explore replacing the VAE with pretrained representation encoders (e.g., DINO, SigLIP, MAE) paired with trained decoders, forming what we term Representation Autoencoders (RAEs). These models provide both high-quality reconstructions and semantically rich latent spaces, while allowing for a scalable transformer-based architecture. Since these latent spaces are typically high-dimensional, a key challenge is enabling diffusion transformers to operate effectively within them. We analyze the sources of this difficulty, propose theoretically motivated solutions, and validate them empirically. Our approach achieves faster convergence without auxiliary representation alignment losses. Using a DiT variant equipped with a lightweight, wide DDT head, we achieve strong image generation results on ImageNet: 1.51 FID at 256x256 (no guidance) and 1.13 at both 256x256 and 512x512 (with guidance). RAE offers clear advantages and should be the new default for diffusion transformer training.
comment: Technical Report; Project Page: https://rae-dit.github.io/
☆ Beyond 'Templates': Category-Agnostic Object Pose, Size, and Shape Estimation from a Single View
Estimating an object's 6D pose, size, and shape from visual input is a fundamental problem in computer vision, with critical applications in robotic grasping and manipulation. Existing methods either rely on object-specific priors such as CAD models or templates, or suffer from limited generalization across categories due to pose-shape entanglement and multi-stage pipelines. In this work, we propose a unified, category-agnostic framework that simultaneously predicts 6D pose, size, and dense shape from a single RGB-D image, without requiring templates, CAD models, or category labels at test time. Our model fuses dense 2D features from vision foundation models with partial 3D point clouds using a Transformer encoder enhanced by a Mixture-of-Experts, and employs parallel decoders for pose-size estimation and shape reconstruction, achieving real-time inference at 28 FPS. Trained solely on synthetic data from 149 categories in the SOPE dataset, our framework is evaluated on four diverse benchmarks SOPE, ROPE, ObjaversePose, and HANDAL, spanning over 300 categories. It achieves state-of-the-art accuracy on seen categories while demonstrating remarkably strong zero-shot generalization to unseen real-world objects, establishing a new standard for open-set 6D understanding in robotics and embodied AI.
☆ FACE: Faithful Automatic Concept Extraction NeurIPS 2025
Interpreting deep neural networks through concept-based explanations offers a bridge between low-level features and high-level human-understandable semantics. However, existing automatic concept discovery methods often fail to align these extracted concepts with the model's true decision-making process, thereby compromising explanation faithfulness. In this work, we propose FACE (Faithful Automatic Concept Extraction), a novel framework that augments Non-negative Matrix Factorization (NMF) with a Kullback-Leibler (KL) divergence regularization term to ensure alignment between the model's original and concept-based predictions. Unlike prior methods that operate solely on encoder activations, FACE incorporates classifier supervision during concept learning, enforcing predictive consistency and enabling faithful explanations. We provide theoretical guarantees showing that minimizing the KL divergence bounds the deviation in predictive distributions, thereby promoting faithful local linearity in the learned concept space. Systematic evaluations on ImageNet, COCO, and CelebA datasets demonstrate that FACE outperforms existing methods across faithfulness and sparsity metrics.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ InfiniHuman: Infinite 3D Human Creation with Precise Control SIGGRAPH
Generating realistic and controllable 3D human avatars is a long-standing challenge, particularly when covering broad attribute ranges such as ethnicity, age, clothing styles, and detailed body shapes. Capturing and annotating large-scale human datasets for training generative models is prohibitively expensive and limited in scale and diversity. The central question we address in this paper is: Can existing foundation models be distilled to generate theoretically unbounded, richly annotated 3D human data? We introduce InfiniHuman, a framework that synergistically distills these models to produce richly annotated human data at minimal cost and with theoretically unlimited scalability. We propose InfiniHumanData, a fully automatic pipeline that leverages vision-language and image generation models to create a large-scale multi-modal dataset. User study shows our automatically generated identities are undistinguishable from scan renderings. InfiniHumanData contains 111K identities spanning unprecedented diversity. Each identity is annotated with multi-granularity text descriptions, multi-view RGB images, detailed clothing images, and SMPL body-shape parameters. Building on this dataset, we propose InfiniHumanGen, a diffusion-based generative pipeline conditioned on text, body shape, and clothing assets. InfiniHumanGen enables fast, realistic, and precisely controllable avatar generation. Extensive experiments demonstrate significant improvements over state-of-the-art methods in visual quality, generation speed, and controllability. Our approach enables high-quality avatar generation with fine-grained control at effectively unbounded scale through a practical and affordable solution. We will publicly release the automatic data generation pipeline, the comprehensive InfiniHumanData dataset, and the InfiniHumanGen models at https://yuxuan-xue.com/infini-human.
comment: Accepted to ACM SIGGRAPH Asia 2025. Project website: https://yuxuan-xue.com/infini-human
☆ PhySIC: Physically Plausible 3D Human-Scene Interaction and Contact from a Single Image
Reconstructing metrically accurate humans and their surrounding scenes from a single image is crucial for virtual reality, robotics, and comprehensive 3D scene understanding. However, existing methods struggle with depth ambiguity, occlusions, and physically inconsistent contacts. To address these challenges, we introduce PhySIC, a framework for physically plausible Human-Scene Interaction and Contact reconstruction. PhySIC recovers metrically consistent SMPL-X human meshes, dense scene surfaces, and vertex-level contact maps within a shared coordinate frame from a single RGB image. Starting from coarse monocular depth and body estimates, PhySIC performs occlusion-aware inpainting, fuses visible depth with unscaled geometry for a robust metric scaffold, and synthesizes missing support surfaces like floors. A confidence-weighted optimization refines body pose, camera parameters, and global scale by jointly enforcing depth alignment, contact priors, interpenetration avoidance, and 2D reprojection consistency. Explicit occlusion masking safeguards invisible regions against implausible configurations. PhySIC is efficient, requiring only 9 seconds for joint human-scene optimization and under 27 seconds end-to-end. It naturally handles multiple humans, enabling reconstruction of diverse interactions. Empirically, PhySIC outperforms single-image baselines, reducing mean per-vertex scene error from 641 mm to 227 mm, halving PA-MPJPE to 42 mm, and improving contact F1 from 0.09 to 0.51. Qualitative results show realistic foot-floor interactions, natural seating, and plausible reconstructions of heavily occluded furniture. By converting a single image into a physically plausible 3D human-scene pair, PhySIC advances scalable 3D scene understanding. Our implementation is publicly available at https://yuxuan-xue.com/physic.
comment: Accepted to ACM SIGGraphAsia 2025. Project website: https://yuxuan-xue.com/physic
☆ IVEBench: Modern Benchmark Suite for Instruction-Guided Video Editing Assessment
Instruction-guided video editing has emerged as a rapidly advancing research direction, offering new opportunities for intuitive content transformation while also posing significant challenges for systematic evaluation. Existing video editing benchmarks fail to support the evaluation of instruction-guided video editing adequately and further suffer from limited source diversity, narrow task coverage and incomplete evaluation metrics. To address the above limitations, we introduce IVEBench, a modern benchmark suite specifically designed for instruction-guided video editing assessment. IVEBench comprises a diverse database of 600 high-quality source videos, spanning seven semantic dimensions, and covering video lengths ranging from 32 to 1,024 frames. It further includes 8 categories of editing tasks with 35 subcategories, whose prompts are generated and refined through large language models and expert review. Crucially, IVEBench establishes a three-dimensional evaluation protocol encompassing video quality, instruction compliance and video fidelity, integrating both traditional metrics and multimodal large language model-based assessments. Extensive experiments demonstrate the effectiveness of IVEBench in benchmarking state-of-the-art instruction-guided video editing methods, showing its ability to provide comprehensive and human-aligned evaluation outcomes.
comment: Equal contributions from first two authors. Project page: https://ryanchenyn.github.io/projects/IVEBench Code: https://github.com/RyanChenYN/IVEBench Dataset: https://huggingface.co/datasets/Coraxor/IVEBench
☆ NV3D: Leveraging Spatial Shape Through Normal Vector-based 3D Object Detection
Recent studies in 3D object detection for autonomous vehicles aim to enrich features through the utilization of multi-modal setups or the extraction of local patterns within LiDAR point clouds. However, multi-modal methods face significant challenges in feature alignment, and gaining features locally can be oversimplified for complex 3D object detection tasks. In this paper, we propose a novel model, NV3D, which utilizes local features acquired from voxel neighbors, as normal vectors computed per voxel basis using K-nearest neighbors (KNN) and principal component analysis (PCA). This informative feature enables NV3D to determine the relationship between the surface and pertinent target entities, including cars, pedestrians, or cyclists. During the normal vector extraction process, NV3D offers two distinct sampling strategies: normal vector density-based sampling and FOV-aware bin-based sampling, allowing elimination of up to 55% of data while maintaining performance. In addition, we applied element-wise attention fusion, which accepts voxel features as the query and value and normal vector features as the key, similar to the attention mechanism. Our method is trained on the KITTI dataset and has demonstrated superior performance in car and cyclist detection owing to their spatial shapes. In the validation set, NV3D without sampling achieves 86.60% and 80.18% mean Average Precision (mAP), greater than the baseline Voxel R-CNN by 2.61% and 4.23% mAP, respectively. With both samplings, NV3D achieves 85.54% mAP in car detection, exceeding the baseline by 1.56% mAP, despite roughly 55% of voxels being filtered out.
☆ EvoCAD: Evolutionary CAD Code Generation with Vision Language Models ICTAI 2025
Combining large language models with evolutionary computation algorithms represents a promising research direction leveraging the remarkable generative and in-context learning capabilities of LLMs with the strengths of evolutionary algorithms. In this work, we present EvoCAD, a method for generating computer-aided design (CAD) objects through their symbolic representations using vision language models and evolutionary optimization. Our method samples multiple CAD objects, which are then optimized using an evolutionary approach with vision language and reasoning language models. We assess our method using GPT-4V and GPT-4o, evaluating it on the CADPrompt benchmark dataset and comparing it to prior methods. Additionally, we introduce two new metrics based on topological properties defined by the Euler characteristic, which capture a form of semantic similarity between 3D objects. Our results demonstrate that EvoCAD outperforms previous approaches on multiple metrics, particularly in generating topologically correct objects, which can be efficiently evaluated using our two novel metrics that complement existing spatial metrics.
comment: Accepted to IEEE ICTAI 2025
☆ High-resolution Photo Enhancement in Real-time: A Laplacian Pyramid Network
Photo enhancement plays a crucial role in augmenting the visual aesthetics of a photograph. In recent years, photo enhancement methods have either focused on enhancement performance, producing powerful models that cannot be deployed on edge devices, or prioritized computational efficiency, resulting in inadequate performance for real-world applications. To this end, this paper introduces a pyramid network called LLF-LUT++, which integrates global and local operators through closed-form Laplacian pyramid decomposition and reconstruction. This approach enables fast processing of high-resolution images while also achieving excellent performance. Specifically, we utilize an image-adaptive 3D LUT that capitalizes on the global tonal characteristics of downsampled images, while incorporating two distinct weight fusion strategies to achieve coarse global image enhancement. To implement this strategy, we designed a spatial-frequency transformer weight predictor that effectively extracts the desired distinct weights by leveraging frequency features. Additionally, we apply local Laplacian filters to adaptively refine edge details in high-frequency components. After meticulously redesigning the network structure and transformer model, LLF-LUT++ not only achieves a 2.64 dB improvement in PSNR on the HDR+ dataset, but also further reduces runtime, with 4K resolution images processed in just 13 ms on a single GPU. Extensive experimental results on two benchmark datasets further show that the proposed approach performs favorably compared to state-of-the-art methods. The source code will be made publicly available at https://github.com/fengzhang427/LLF-LUT.
comment: accepted by TPAMI 2025
☆ ExpVid: A Benchmark for Experiment Video Understanding & Reasoning
Multimodal Large Language Models (MLLMs) hold promise for accelerating scientific discovery by interpreting complex experimental procedures. However, their true capabilities are poorly understood, as existing benchmarks neglect the fine-grained and long-horizon nature of authentic laboratory work, especially in wet-lab settings. To bridge this gap, we introduce ExpVid, the first benchmark designed to systematically evaluate MLLMs on scientific experiment videos. Curated from peer-reviewed video publications, ExpVid features a new three-level task hierarchy that mirrors the scientific process: (1) Fine-grained Perception of tools, materials, and actions; (2) Procedural Understanding of step order and completeness; and (3) Scientific Reasoning that connects the full experiment to its published conclusions. Our vision-centric annotation pipeline, combining automated generation with multi-disciplinary expert validation, ensures that tasks require visual grounding. We evaluate 19 leading MLLMs on ExpVid and find that while they excel at coarse-grained recognition, they struggle with disambiguating fine details, tracking state changes over time, and linking experimental procedures to scientific outcomes. Our results reveal a notable performance gap between proprietary and open-source models, particularly in high-order reasoning. ExpVid not only provides a diagnostic tool but also charts a roadmap for developing MLLMs capable of becoming trustworthy partners in scientific experimentation.
comment: Data & Code: https://github.com/OpenGVLab/ExpVid
☆ ACE-G: Improving Generalization of Scene Coordinate Regression Through Query Pre-Training ICCV 2025
Scene coordinate regression (SCR) has established itself as a promising learning-based approach to visual relocalization. After mere minutes of scene-specific training, SCR models estimate camera poses of query images with high accuracy. Still, SCR methods fall short of the generalization capabilities of more classical feature-matching approaches. When imaging conditions of query images, such as lighting or viewpoint, are too different from the training views, SCR models fail. Failing to generalize is an inherent limitation of previous SCR frameworks, since their training objective is to encode the training views in the weights of the coordinate regressor itself. The regressor essentially overfits to the training views, by design. We propose to separate the coordinate regressor and the map representation into a generic transformer and a scene-specific map code. This separation allows us to pre-train the transformer on tens of thousands of scenes. More importantly, it allows us to train the transformer to generalize from mapping images to unseen query images during pre-training. We demonstrate on multiple challenging relocalization datasets that our method, ACE-G, leads to significantly increased robustness while keeping the computational footprint attractive.
comment: ICCV 2025, Project page: https://nianticspatial.github.io/ace-g/
☆ MS-Mix: Unveiling the Power of Mixup for Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) aims to identify and interpret human emotions by integrating information from heterogeneous data sources such as text, video, and audio. While deep learning models have advanced in network architecture design, they remain heavily limited by scarce multimodal annotated data. Although Mixup-based augmentation improves generalization in unimodal tasks, its direct application to MSA introduces critical challenges: random mixing often amplifies label ambiguity and semantic inconsistency due to the lack of emotion-aware mixing mechanisms. To overcome these issues, we propose MS-Mix, an adaptive, emotion-sensitive augmentation framework that automatically optimizes sample mixing in multimodal settings. The key components of MS-Mix include: (1) a Sentiment-Aware Sample Selection (SASS) strategy that effectively prevents semantic confusion caused by mixing samples with contradictory emotions. (2) a Sentiment Intensity Guided (SIG) module using multi-head self-attention to compute modality-specific mixing ratios dynamically based on their respective emotional intensities. (3) a Sentiment Alignment Loss (SAL) that aligns the prediction distributions across modalities, and incorporates the Kullback-Leibler-based loss as an additional regularization term to train the emotion intensity predictor and the backbone network jointly. Extensive experiments on three benchmark datasets with six state-of-the-art backbones confirm that MS-Mix consistently outperforms existing methods, establishing a new standard for robust multimodal sentiment augmentation. The source code is available at: https://github.com/HongyuZhu-s/MS-Mix.
comment: Under Review
☆ Benchmarking foundation models for hyperspectral image classification: Application to cereal crop type mapping SP
Foundation models are transforming Earth observation, but their potential for hyperspectral crop mapping remains underexplored. This study benchmarks three foundation models for cereal crop mapping using hyperspectral imagery: HyperSigma, DOFA, and Vision Transformers pre-trained on the SpectralEarth dataset (a large multitemporal hyperspectral archive). Models were fine-tuned on manually labeled data from a training region and evaluated on an independent test region. Performance was measured with overall accuracy (OA), average accuracy (AA), and F1-score. HyperSigma achieved an OA of 34.5% (+/- 1.8%), DOFA reached 62.6% (+/- 3.5%), and the SpectralEarth model achieved an OA of 93.5% (+/- 0.8%). A compact SpectralEarth variant trained from scratch achieved 91%, highlighting the importance of model architecture for strong generalization across geographic regions and sensor platforms. These results provide a systematic evaluation of foundation models for operational hyperspectral crop mapping and outline directions for future model development.
comment: Being reviewed for WHISPERS conference ( Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing )
☆ A Framework for Low-Effort Training Data Generation for Urban Semantic Segmentation
Synthetic datasets are widely used for training urban scene recognition models, but even highly realistic renderings show a noticeable gap to real imagery. This gap is particularly pronounced when adapting to a specific target domain, such as Cityscapes, where differences in architecture, vegetation, object appearance, and camera characteristics limit downstream performance. Closing this gap with more detailed 3D modelling would require expensive asset and scene design, defeating the purpose of low-cost labelled data. To address this, we present a new framework that adapts an off-the-shelf diffusion model to a target domain using only imperfect pseudo-labels. Once trained, it generates high-fidelity, target-aligned images from semantic maps of any synthetic dataset, including low-effort sources created in hours rather than months. The method filters suboptimal generations, rectifies image-label misalignments, and standardises semantics across datasets, transforming weak synthetic data into competitive real-domain training sets. Experiments on five synthetic datasets and two real target datasets show segmentation gains of up to +8.0%pt. mIoU over state-of-the-art translation methods, making rapidly constructed synthetic datasets as effective as high-effort, time-intensive synthetic datasets requiring extensive manual design. This work highlights a valuable collaborative paradigm where fast semantic prototyping, combined with generative models, enables scalable, high-quality training data creation for urban scene understanding.
☆ SCOOP'D: Learning Mixed-Liquid-Solid Scooping via Sim2Real Generative Policy
Scooping items with tools such as spoons and ladles is common in daily life, ranging from assistive feeding to retrieving items from environmental disaster sites. However, developing a general and autonomous robotic scooping policy is challenging since it requires reasoning about complex tool-object interactions. Furthermore, scooping often involves manipulating deformable objects, such as granular media or liquids, which is challenging due to their infinite-dimensional configuration spaces and complex dynamics. We propose a method, SCOOP'D, which uses simulation from OmniGibson (built on NVIDIA Omniverse) to collect scooping demonstrations using algorithmic procedures that rely on privileged state information. Then, we use generative policies via diffusion to imitate demonstrations from observational input. We directly apply the learned policy in diverse real-world scenarios, testing its performance on various item quantities, item characteristics, and container types. In zero-shot deployment, our method demonstrates promising results across 465 trials in diverse scenarios, including objects of different difficulty levels that we categorize as "Level 1" and "Level 2." SCOOP'D outperforms all baselines and ablations, suggesting that this is a promising approach to acquiring robotic scooping skills. Project page is at https://scoopdiff.github.io/.
comment: Project page is at https://scoopdiff.github.io/
☆ SNAP: Towards Segmenting Anything in Any Point Cloud
Interactive 3D point cloud segmentation enables efficient annotation of complex 3D scenes through user-guided prompts. However, current approaches are typically restricted in scope to a single domain (indoor or outdoor), and to a single form of user interaction (either spatial clicks or textual prompts). Moreover, training on multiple datasets often leads to negative transfer, resulting in domain-specific tools that lack generalizability. To address these limitations, we present \textbf{SNAP} (\textbf{S}egment a\textbf{N}ything in \textbf{A}ny \textbf{P}oint cloud), a unified model for interactive 3D segmentation that supports both point-based and text-based prompts across diverse domains. Our approach achieves cross-domain generalizability by training on 7 datasets spanning indoor, outdoor, and aerial environments, while employing domain-adaptive normalization to prevent negative transfer. For text-prompted segmentation, we automatically generate mask proposals without human intervention and match them against CLIP embeddings of textual queries, enabling both panoptic and open-vocabulary segmentation. Extensive experiments demonstrate that SNAP consistently delivers high-quality segmentation results. We achieve state-of-the-art performance on 8 out of 9 zero-shot benchmarks for spatial-prompted segmentation and demonstrate competitive results on all 5 text-prompted benchmarks. These results show that a unified model can match or exceed specialized domain-specific approaches, providing a practical tool for scalable 3D annotation. Project page is at, https://neu-vi.github.io/SNAP/
comment: Project Page, https://neu-vi.github.io/SNAP/
☆ How many samples to label for an application given a foundation model? Chest X-ray classification study
Chest X-ray classification is vital yet resource-intensive, typically demanding extensive annotated data for accurate diagnosis. Foundation models mitigate this reliance, but how many labeled samples are required remains unclear. We systematically evaluate the use of power-law fits to predict the training size necessary for specific ROC-AUC thresholds. Testing multiple pathologies and foundation models, we find XrayCLIP and XraySigLIP achieve strong performance with significantly fewer labeled examples than a ResNet-50 baseline. Importantly, learning curve slopes from just 50 labeled cases accurately forecast final performance plateaus. Our results enable practitioners to minimize annotation costs by labeling only the essential samples for targeted performance.
comment: 8 pages, 5 figures
☆ ODI-Bench: Can MLLMs Understand Immersive Omnidirectional Environments?
Omnidirectional images (ODIs) provide full 360x180 view which are widely adopted in VR, AR and embodied intelligence applications. While multi-modal large language models (MLLMs) have demonstrated remarkable performance on conventional 2D image and video understanding benchmarks, their ability to comprehend the immersive environments captured by ODIs remains largely unexplored. To address this gap, we first present ODI-Bench, a novel comprehensive benchmark specifically designed for omnidirectional image understanding. ODI-Bench contains 2,000 high-quality omnidirectional images and over 4,000 manually annotated question-answering (QA) pairs across 10 fine-grained tasks, covering both general-level and spatial-level ODI understanding. Extensive experiments are conducted to benchmark 20 representative MLLMs, including proprietary and open-source models, under both close-ended and open-ended settings. Experimental results reveal that current MLLMs still struggle to capture the immersive context provided by ODIs. To this end, we further introduce Omni-CoT, a training-free method which significantly enhances MLLMs' comprehension ability in the omnidirectional environment through chain-of-thought reasoning across both textual information and visual cues. Both the benchmark and the code will be released upon the publication.
☆ Massive Activations are the Key to Local Detail Synthesis in Diffusion Transformers
Diffusion Transformers (DiTs) have recently emerged as a powerful backbone for visual generation. Recent observations reveal \emph{Massive Activations} (MAs) in their internal feature maps, yet their function remains poorly understood. In this work, we systematically investigate these activations to elucidate their role in visual generation. We found that these massive activations occur across all spatial tokens, and their distribution is modulated by the input timestep embeddings. Importantly, our investigations further demonstrate that these massive activations play a key role in local detail synthesis, while having minimal impact on the overall semantic content of output. Building on these insights, we propose \textbf{D}etail \textbf{G}uidance (\textbf{DG}), a MAs-driven, training-free self-guidance strategy to explicitly enhance local detail fidelity for DiTs. Specifically, DG constructs a degraded ``detail-deficient'' model by disrupting MAs and leverages it to guide the original network toward higher-quality detail synthesis. Our DG can seamlessly integrate with Classifier-Free Guidance (CFG), enabling further refinements of fine-grained details. Extensive experiments demonstrate that our DG consistently improves fine-grained detail quality across various pre-trained DiTs (\eg, SD3, SD3.5, and Flux).
☆ mmWalk: Towards Multi-modal Multi-view Walking Assistance NeurIPS 2025
Walking assistance in extreme or complex environments remains a significant challenge for people with blindness or low vision (BLV), largely due to the lack of a holistic scene understanding. Motivated by the real-world needs of the BLV community, we build mmWalk, a simulated multi-modal dataset that integrates multi-view sensor and accessibility-oriented features for outdoor safe navigation. Our dataset comprises 120 manually controlled, scenario-categorized walking trajectories with 62k synchronized frames. It contains over 559k panoramic images across RGB, depth, and semantic modalities. Furthermore, to emphasize real-world relevance, each trajectory involves outdoor corner cases and accessibility-specific landmarks for BLV users. Additionally, we generate mmWalkVQA, a VQA benchmark with over 69k visual question-answer triplets across 9 categories tailored for safe and informed walking assistance. We evaluate state-of-the-art Vision-Language Models (VLMs) using zero- and few-shot settings and found they struggle with our risk assessment and navigational tasks. We validate our mmWalk-finetuned model on real-world datasets and show the effectiveness of our dataset for advancing multi-modal walking assistance.
comment: Accepted by NeurIPS 2025 Datasets and Benchmarks Track. Data and Code: https://github.com/KediYing/mmWalk
☆ LikePhys: Evaluating Intuitive Physics Understanding in Video Diffusion Models via Likelihood Preference
Intuitive physics understanding in video diffusion models plays an essential role in building general-purpose physically plausible world simulators, yet accurately evaluating such capacity remains a challenging task due to the difficulty in disentangling physics correctness from visual appearance in generation. To the end, we introduce LikePhys, a training-free method that evaluates intuitive physics in video diffusion models by distinguishing physically valid and impossible videos using the denoising objective as an ELBO-based likelihood surrogate on a curated dataset of valid-invalid pairs. By testing on our constructed benchmark of twelve scenarios spanning over four physics domains, we show that our evaluation metric, Plausibility Preference Error (PPE), demonstrates strong alignment with human preference, outperforming state-of-the-art evaluator baselines. We then systematically benchmark intuitive physics understanding in current video diffusion models. Our study further analyses how model design and inference settings affect intuitive physics understanding and highlights domain-specific capacity variations across physical laws. Empirical results show that, despite current models struggling with complex and chaotic dynamics, there is a clear trend of improvement in physics understanding as model capacity and inference settings scale.
comment: 22 pages, 9 figures
☆ Situat3DChange: Situated 3D Change Understanding Dataset for Multimodal Large Language Model NeurIPS 2025
Physical environments and circumstances are fundamentally dynamic, yet current 3D datasets and evaluation benchmarks tend to concentrate on either dynamic scenarios or dynamic situations in isolation, resulting in incomplete comprehension. To overcome these constraints, we introduce Situat3DChange, an extensive dataset supporting three situation-aware change understanding tasks following the perception-action model: 121K question-answer pairs, 36K change descriptions for perception tasks, and 17K rearrangement instructions for the action task. To construct this large-scale dataset, Situat3DChange leverages 11K human observations of environmental changes to establish shared mental models and shared situational awareness for human-AI collaboration. These observations, enriched with egocentric and allocentric perspectives as well as categorical and coordinate spatial relations, are integrated using an LLM to support understanding of situated changes. To address the challenge of comparing pairs of point clouds from the same scene with minor changes, we propose SCReasoner, an efficient 3D MLLM approach that enables effective point cloud comparison with minimal parameter overhead and no additional tokens required for the language decoder. Comprehensive evaluation on Situat3DChange tasks highlights both the progress and limitations of MLLMs in dynamic scene and situation understanding. Additional experiments on data scaling and cross-domain transfer demonstrate the task-agnostic effectiveness of using Situat3DChange as a training dataset for MLLMs.
comment: Accepted to NeurIPS 2025 Datasets and Benchmarks Track. Dataset and Code: https://github.com/RuipingL/Situat3DChange
☆ Towards Fast and Scalable Normal Integration using Continuous Components WACV
Surface normal integration is a fundamental problem in computer vision, dealing with the objective of reconstructing a surface from its corresponding normal map. Existing approaches require an iterative global optimization to jointly estimate the depth of each pixel, which scales poorly to larger normal maps. In this paper, we address this problem by recasting normal integration as the estimation of relative scales of continuous components. By constraining pixels belonging to the same component to jointly vary their scale, we drastically reduce the number of optimization variables. Our framework includes a heuristic to accurately estimate continuous components from the start, a strategy to rebalance optimization terms, and a technique to iteratively merge components to further reduce the size of the problem. Our method achieves state-of-the-art results on the standard normal integration benchmark in as little as a few seconds and achieves one-order-of-magnitude speedup over pixel-level approaches on large-resolution normal maps.
comment: Accepted by the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026, first round. 17 pages, 9 figures, 6 tables
☆ AndesVL Technical Report: An Efficient Mobile-side Multimodal Large Language Model
In recent years, while cloud-based MLLMs such as QwenVL, InternVL, GPT-4o, Gemini, and Claude Sonnet have demonstrated outstanding performance with enormous model sizes reaching hundreds of billions of parameters, they significantly surpass the limitations in memory, power consumption, and computing capacity of edge devices such as mobile phones. This paper introduces AndesVL, a suite of mobile-side MLLMs with 0.6B to 4B parameters based on Qwen3's LLM and various visual encoders. We comprehensively outline the model architectures, training pipeline, and training data of AndesVL, which achieves first-tier performance across a wide range of open-source benchmarks, including fields such as text-rich image understanding, reasoning and math, multi-image comprehension, general VQA, hallucination mitigation, multilingual understanding, and GUI-related tasks when compared with state-of-the-art models of a similar scale. Furthermore, we introduce a 1+N LoR
comment: Tech report of OPPO AndesVL Team
☆ VA-GS: Enhancing the Geometric Representation of Gaussian Splatting via View Alignment NeurIPS 2025
3D Gaussian Splatting has recently emerged as an efficient solution for high-quality and real-time novel view synthesis. However, its capability for accurate surface reconstruction remains underexplored. Due to the discrete and unstructured nature of Gaussians, supervision based solely on image rendering loss often leads to inaccurate geometry and inconsistent multi-view alignment. In this work, we propose a novel method that enhances the geometric representation of 3D Gaussians through view alignment (VA). Specifically, we incorporate edge-aware image cues into the rendering loss to improve surface boundary delineation. To enforce geometric consistency across views, we introduce a visibility-aware photometric alignment loss that models occlusions and encourages accurate spatial relationships among Gaussians. To further mitigate ambiguities caused by lighting variations, we incorporate normal-based constraints to refine the spatial orientation of Gaussians and improve local surface estimation. Additionally, we leverage deep image feature embeddings to enforce cross-view consistency, enhancing the robustness of the learned geometry under varying viewpoints and illumination. Extensive experiments on standard benchmarks demonstrate that our method achieves state-of-the-art performance in both surface reconstruction and novel view synthesis. The source code is available at https://github.com/LeoQLi/VA-GS.
comment: Accepted by NeurIPS 2025
☆ Coupled Degradation Modeling and Fusion: A VLM-Guided Degradation-Coupled Network for Degradation-Aware Infrared and Visible Image Fusion
Existing Infrared and Visible Image Fusion (IVIF) methods typically assume high-quality inputs. However, when handing degraded images, these methods heavily rely on manually switching between different pre-processing techniques. This decoupling of degradation handling and image fusion leads to significant performance degradation. In this paper, we propose a novel VLM-Guided Degradation-Coupled Fusion network (VGDCFusion), which tightly couples degradation modeling with the fusion process and leverages vision-language models (VLMs) for degradation-aware perception and guided suppression. Specifically, the proposed Specific-Prompt Degradation-Coupled Extractor (SPDCE) enables modality-specific degradation awareness and establishes a joint modeling of degradation suppression and intra-modal feature extraction. In parallel, the Joint-Prompt Degradation-Coupled Fusion (JPDCF) facilitates cross-modal degradation perception and couples residual degradation filtering with complementary cross-modal feature fusion. Extensive experiments demonstrate that our VGDCFusion significantly outperforms existing state-of-the-art fusion approaches under various degraded image scenarios. Our code is available at https://github.com/Lmmh058/VGDCFusion.
☆ Enhancing Maritime Domain Awareness on Inland Waterways: A YOLO-Based Fusion of Satellite and AIS for Vessel Characterization
Maritime Domain Awareness (MDA) for inland waterways remains challenged by cooperative system vulnerabilities. This paper presents a novel framework that fuses high-resolution satellite imagery with vessel trajectory data from the Automatic Identification System (AIS). This work addresses the limitations of AIS-based monitoring by leveraging non-cooperative satellite imagery and implementing a fusion approach that links visual detections with AIS data to identify dark vessels, validate cooperative traffic, and support advanced MDA. The You Only Look Once (YOLO) v11 object detection model is used to detect and characterize vessels and barges by vessel type, barge cover, operational status, barge count, and direction of travel. An annotated data set of 4,550 instances was developed from $5{,}973~\mathrm{mi}^2$ of Lower Mississippi River imagery. Evaluation on a held-out test set demonstrated vessel classification (tugboat, crane barge, bulk carrier, cargo ship, and hopper barge) with an F1 score of 95.8\%; barge cover (covered or uncovered) detection yielded an F1 score of 91.6\%; operational status (staged or in motion) classification reached an F1 score of 99.4\%. Directionality (upstream, downstream) yielded 93.8\% accuracy. The barge count estimation resulted in a mean absolute error (MAE) of 2.4 barges. Spatial transferability analysis across geographically disjoint river segments showed accuracy was maintained as high as 98\%. These results underscore the viability of integrating non-cooperative satellite sensing with AIS fusion. This approach enables near-real-time fleet inventories, supports anomaly detection, and generates high-quality data for inland waterway surveillance. Future work will expand annotated datasets, incorporate temporal tracking, and explore multi-modal deep learning to further enhance operational scalability.
☆ Robust Ego-Exo Correspondence with Long-Term Memory NeurIPS 2025
Establishing object-level correspondence between egocentric and exocentric views is essential for intelligent assistants to deliver precise and intuitive visual guidance. However, this task faces numerous challenges, including extreme viewpoint variations, occlusions, and the presence of small objects. Existing approaches usually borrow solutions from video object segmentation models, but still suffer from the aforementioned challenges. Recently, the Segment Anything Model 2 (SAM 2) has shown strong generalization capabilities and excellent performance in video object segmentation. Yet, when simply applied to the ego-exo correspondence (EEC) task, SAM 2 encounters severe difficulties due to ineffective ego-exo feature fusion and limited long-term memory capacity, especially for long videos. Addressing these problems, we propose a novel EEC framework based on SAM 2 with long-term memories by presenting a dual-memory architecture and an adaptive feature routing module inspired by Mixture-of-Experts (MoE). Compared to SAM 2, our approach features (i) a Memory-View MoE module which consists of a dual-branch routing mechanism to adaptively assign contribution weights to each expert feature along both channel and spatial dimensions, and (ii) a dual-memory bank system with a simple yet effective compression strategy to retain critical long-term information while eliminating redundancy. In the extensive experiments on the challenging EgoExo4D benchmark, our method, dubbed LM-EEC, achieves new state-of-the-art results and significantly outperforms existing methods and the SAM 2 baseline, showcasing its strong generalization across diverse scenarios. Our code and model are available at https://github.com/juneyeeHu/LM-EEC.
comment: Accepted by NeurIPS 2025
☆ DocReward: A Document Reward Model for Structuring and Stylizing
Recent advances in agentic workflows have enabled the automation of tasks such as professional document generation. However, they primarily focus on textual quality, neglecting visual structure and style, which are crucial for readability and engagement. This gap arises mainly from the absence of suitable reward models to guide agentic workflows toward producing documents with stronger structural and stylistic quality. To address this, we propose DocReward, a document reward model that evaluates documents based on their structure and style. We construct a multi-domain dataset DocPair of 117K paired documents, covering 32 domains and 267 document types, each including a high- and low-professionalism document with identical content but different structure and style. This enables the model to evaluate professionalism comprehensively, and in a textual-quality-agnostic way. DocReward is trained using the Bradley-Terry loss to score documents, penalizing predictions that contradict the annotated ranking. To assess the performance of reward models, we create a test dataset containing document bundles ranked by well-educated human evaluators. Notably, DocReward outperforms GPT-4o and GPT-5 in accuracy by 30.6 and 19.4 percentage points, respectively, demonstrating its superiority over baselines. In an extrinsic evaluation of document generation, DocReward achieves a significantly higher win rate of 60.8%, compared to GPT-5's 37.7% win rate, demonstrating its utility in guiding generation agents toward producing human-preferred documents.
☆ MaterialRefGS: Reflective Gaussian Splatting with Multi-view Consistent Material Inference NeurIPS 2025
Modeling reflections from 2D images is essential for photorealistic rendering and novel view synthesis. Recent approaches enhance Gaussian primitives with reflection-related material attributes to enable physically based rendering (PBR) with Gaussian Splatting. However, the material inference often lacks sufficient constraints, especially under limited environment modeling, resulting in illumination aliasing and reduced generalization. In this work, we revisit the problem from a multi-view perspective and show that multi-view consistent material inference with more physically-based environment modeling is key to learning accurate reflections with Gaussian Splatting. To this end, we enforce 2D Gaussians to produce multi-view consistent material maps during deferred shading. We also track photometric variations across views to identify highly reflective regions, which serve as strong priors for reflection strength terms. To handle indirect illumination caused by inter-object occlusions, we further introduce an environment modeling strategy through ray tracing with 2DGS, enabling photorealistic rendering of indirect radiance. Experiments on widely used benchmarks show that our method faithfully recovers both illumination and geometry, achieving state-of-the-art rendering quality in novel views synthesis.
comment: Accepted by NeurIPS 2025. Project Page: https://wen-yuan-zhang.github.io/MaterialRefGS
☆ Reasoning as Representation: Rethinking Visual Reinforcement Learning in Image Quality Assessment
Reasoning-based image quality assessment (IQA) models trained through reinforcement learning (RL) exhibit exceptional generalization, yet the underlying mechanisms and critical factors driving this capability remain underexplored in current research. Moreover, despite their superior performance, these models incur inference energy usage and latency orders of magnitude higher than their earlier counterparts, restricting their deployment in specific scenarios. Through extensive experiments, this paper verifies and elaborates that through RL training, MLLMs leverage their reasoning capability to convert redundant visual representations into compact, cross-domain aligned text representations. This conversion is precisely the source of the generalization exhibited by these reasoning-based IQA models. Building on this fundamental insight, we propose a novel algorithm, RALI, which employs contrastive learning to directly align images with these generalizable text representations learned by RL. This approach eliminates the reliance on reasoning processes and even obviates the need to load an LLM. For the quality scoring task, this framework achieves generalization performance comparable to reasoning-based models while requiring less than 5% of their model parameters and inference time.
☆ Uncertainty-Aware ControlNet: Bridging Domain Gaps with Synthetic Image Generation ICCV
Generative Models are a valuable tool for the controlled creation of high-quality image data. Controlled diffusion models like the ControlNet have allowed the creation of labeled distributions. Such synthetic datasets can augment the original training distribution when discriminative models, like semantic segmentation, are trained. However, this augmentation effect is limited since ControlNets tend to reproduce the original training distribution. This work introduces a method to utilize data from unlabeled domains to train ControlNets by introducing the concept of uncertainty into the control mechanism. The uncertainty indicates that a given image was not part of the training distribution of a downstream task, e.g., segmentation. Thus, two types of control are engaged in the final network: an uncertainty control from an unlabeled dataset and a semantic control from the labeled dataset. The resulting ControlNet allows us to create annotated data with high uncertainty from the target domain, i.e., synthetic data from the unlabeled distribution with labels. In our scenario, we consider retinal OCTs, where typically high-quality Spectralis images are available with given ground truth segmentations, enabling the training of segmentation networks. The recent development in Home-OCT devices, however, yields retinal OCTs with lower quality and a large domain shift, such that out-of-the-pocket segmentation networks cannot be applied for this type of data. Synthesizing annotated images from the Home-OCT domain using the proposed approach closes this gap and leads to significantly improved segmentation results without adding any further supervision. The advantage of uncertainty-guidance becomes obvious when compared to style transfer: it enables arbitrary domain shifts without any strict learning of an image style. This is also demonstrated in a traffic scene experiment.
comment: Accepted for presentation at ICCV Workshops 2025, "The 4th Workshop on What is Next in Multimodal Foundation Models?" (MMFM)
☆ MMAP: A Multi-Magnification and Prototype-Aware Architecture for Predicting Spatial Gene Expression PRICAI 2025
Spatial Transcriptomics (ST) enables the measurement of gene expression while preserving spatial information, offering critical insights into tissue architecture and disease pathology. Recent developments have explored the use of hematoxylin and eosin (H&E)-stained whole-slide images (WSIs) to predict transcriptome-wide gene expression profiles through deep neural networks. This task is commonly framed as a regression problem, where each input corresponds to a localized image patch extracted from the WSI. However, predicting spatial gene expression from histological images remains a challenging problem due to the significant modality gap between visual features and molecular signals. Recent studies have attempted to incorporate both local and global information into predictive models. Nevertheless, existing methods still suffer from two key limitations: (1) insufficient granularity in local feature extraction, and (2) inadequate coverage of global spatial context. In this work, we propose a novel framework, MMAP (Multi-MAgnification and Prototype-enhanced architecture), that addresses both challenges simultaneously. To enhance local feature granularity, MMAP leverages multi-magnification patch representations that capture fine-grained histological details. To improve global contextual understanding, it learns a set of latent prototype embeddings that serve as compact representations of slide-level information. Extensive experimental results demonstrate that MMAP consistently outperforms all existing state-of-the-art methods across multiple evaluation metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), and Pearson Correlation Coefficient (PCC).
comment: Accepted for presentation at the 2025 Pacific Rim International Conference on Artificial Intelligence (PRICAI 2025)
☆ InternSVG: Towards Unified SVG Tasks with Multimodal Large Language Models
General SVG modeling remains challenging due to fragmented datasets, limited transferability of methods across tasks, and the difficulty of handling structural complexity. In response, we leverage the strong transfer and generalization capabilities of multimodal large language models (MLLMs) to achieve unified modeling for SVG understanding, editing, and generation. We present the InternSVG family, an integrated data-benchmark-model suite. At its core is SAgoge, the largest and most comprehensive multimodal dataset for SVG tasks, encompassing both static graphics and dynamic animations. It covers icons, long-sequence illustrations, scientific diagrams, and dynamic animations, supporting tasks of varied difficulty levels and providing deeper hierarchies with richer attributes compared to previous datasets. Based on this resource, we introduce SArena, a companion benchmark with comprehensive task definitions and standardized evaluation that aligns with the domains and difficulty spectrum covered by SAgoge. Building on these foundations, we propose InternSVG, a unified MLLM for SVG understanding, editing, and generation with SVG-specific special tokens, subword-based embedding initialization, and a two-stage training strategy that progresses from short static SVGs to long-sequence illustrations and complex animations. This unified formulation induces positive transfer and improves overall performance. Experiments on SArena and prior benchmark confirm that InternSVG achieves substantial gains and consistently outperforms leading open and proprietary counterparts.
☆ REACT3D: Recovering Articulations for Interactive Physical 3D Scenes
Interactive 3D scenes are increasingly vital for embodied intelligence, yet existing datasets remain limited due to the labor-intensive process of annotating part segmentation, kinematic types, and motion trajectories. We present REACT3D, a scalable zero-shot framework that converts static 3D scenes into simulation-ready interactive replicas with consistent geometry, enabling direct use in diverse downstream tasks. Our contributions include: (i) openable-object detection and segmentation to extract candidate movable parts from static scenes, (ii) articulation estimation that infers joint types and motion parameters, (iii) hidden-geometry completion followed by interactive object assembly, and (iv) interactive scene integration in widely supported formats to ensure compatibility with standard simulation platforms. We achieve state-of-the-art performance on detection/segmentation and articulation metrics across diverse indoor scenes, demonstrating the effectiveness of our framework and providing a practical foundation for scalable interactive scene generation, thereby lowering the barrier to large-scale research on articulated scene understanding. Our project page is \textit{\hypersetup{urlcolor=black}\href{https://react3d.github.io/}{react3d.github.io}}.
comment: 8 pages
☆ Evaluating the effects of preprocessing, method selection, and hyperparameter tuning on SAR-based flood mapping and water depth estimation
Flood mapping and water depth estimation from Synthetic Aperture Radar (SAR) imagery are crucial for calibrating and validating hydraulic models. This study uses SAR imagery to evaluate various preprocessing (especially speckle noise reduction), flood mapping, and water depth estimation methods. The impact of the choice of method at different steps and its hyperparameters is studied by considering an ensemble of preprocessed images, flood maps, and water depth fields. The evaluation is conducted for two flood events on the Garonne River (France) in 2019 and 2021, using hydrodynamic simulations and in-situ observations as reference data. Results show that the choice of speckle filter alters flood extent estimations with variations of several square kilometers. Furthermore, the selection and tuning of flood mapping methods also affect performance. While supervised methods outperformed unsupervised ones, tuned unsupervised approaches (such as local thresholding or change detection) can achieve comparable results. The compounded uncertainty from preprocessing and flood mapping steps also introduces high variability in the water depth field estimates. This study highlights the importance of considering the entire processing pipeline, encompassing preprocessing, flood mapping, and water depth estimation methods and their associated hyperparameters. Rather than relying on a single configuration, adopting an ensemble approach and accounting for methodological uncertainty should be privileged. For flood mapping, the method choice has the most influence. For water depth estimation, the most influential processing step was the flood map input resulting from the flood mapping step and the hyperparameters of the methods.
☆ sketch2symm: Symmetry-aware sketch-to-shape generation via semantic bridging
Sketch-based 3D reconstruction remains a challenging task due to the abstract and sparse nature of sketch inputs, which often lack sufficient semantic and geometric information. To address this, we propose Sketch2Symm, a two-stage generation method that produces geometrically consistent 3D shapes from sketches. Our approach introduces semantic bridging via sketch-to-image translation to enrich sparse sketch representations, and incorporates symmetry constraints as geometric priors to leverage the structural regularity commonly found in everyday objects. Experiments on mainstream sketch datasets demonstrate that our method achieves superior performance compared to existing sketch-based reconstruction methods in terms of Chamfer Distance, Earth Mover's Distance, and F-Score, verifying the effectiveness of the proposed semantic bridging and symmetry-aware design.
☆ When Does Supervised Training Pay Off? The Hidden Economics of Object Detection in the Era of Vision-Language Models
Object detection systems have traditionally relied on supervised learning with manually annotated bounding boxes, achieving high accuracy at the cost of substantial annotation investment. The emergence of Vision-Language Models (VLMs) offers an alternative paradigm enabling zero-shot detection through natural language queries, eliminating annotation requirements but operating with reduced accuracy. This paper presents the first comprehensive cost-effectiveness analysis comparing supervised detection (YOLO) with zero-shot VLM inference (Gemini Flash 2.5). Through systematic evaluation on 1,000 stratified COCO images and 200 diverse product images spanning consumer electronics and rare categories, combined with detailed Total Cost of Ownership modeling, we establish quantitative break-even thresholds governing architecture selection. Our findings reveal that supervised YOLO achieves 91.2% accuracy versus 68.5% for zero-shot Gemini on standard categories, representing a 22.7 percentage point advantage that costs $10,800 in annotation for 100-category systems. However, this advantage justifies investment only beyond 55 million inferences, equivalent to 151,000 images daily for one year. Zero-shot Gemini demonstrates 52.3% accuracy on diverse product categories (ranging from highly web-prevalent consumer electronics at 75-85% to rare specialized equipment at 25-40%) where supervised YOLO achieves 0% due to architectural constraints preventing detection of untrained classes. Cost per Correct Detection analysis reveals substantially lower per-detection costs for Gemini ($0.00050 vs $0.143) at 100,000 inferences despite accuracy deficits. We develop decision frameworks demonstrating that optimal architecture selection depends critically on deployment volume, category stability, budget constraints, and accuracy requirements rather than purely technical performance metrics.
comment: 23 pages, 4 figures, 4 tables
☆ $Δ\mathrm{Energy}$: Optimizing Energy Change During Vision-Language Alignment Improves both OOD Detection and OOD Generalization
Recent approaches for vision-language models (VLMs) have shown remarkable success in achieving fast downstream adaptation. When applied to real-world downstream tasks, VLMs inevitably encounter both the in-distribution (ID) data and out-of-distribution (OOD) data. The OOD datasets often include both covariate shifts (e.g., known classes with changes in image styles) and semantic shifts (e.g., test-time unseen classes). This highlights the importance of improving VLMs' generalization ability to covariate-shifted OOD data, while effectively detecting open-set semantic-shifted OOD classes. In this paper, inspired by the substantial energy change observed in closed-set data when re-aligning vision-language modalities (specifically by directly reducing the maximum cosine similarity to a low value), we introduce a novel OOD score, named {\Delta}Energy. {\Delta}Energy significantly outperforms the vanilla energy-based OOD score and provides a more reliable approach for OOD detection. Furthermore, {\Delta}Energy can simultaneously improve OOD generalization under covariate shifts, which is achieved by lower-bound maximization for {\Delta}Energy (termed EBM). EBM is theoretically proven to not only enhance OOD detection but also yields a domain-consistent Hessian, which serves as a strong indicator for OOD generalization. Based on this finding, we developed a unified fine-tuning framework that allows for improving VLMs' robustness in both OOD generalization and OOD detection. Extensive experiments on challenging OOD detection and generalization benchmarks demonstrate the superiority of our method, outperforming recent approaches by 10% to 25% in AUROC.
comment: Accepted by NeruIPS2025
☆ Human Uncertainty-Aware Data Selection and Automatic Labeling in Visual Question Answering
Large vision-language models (VLMs) achieve strong performance in Visual Question Answering but still rely heavily on supervised fine-tuning (SFT) with massive labeled datasets, which is costly due to human annotations. Crucially, real-world datasets often exhibit human uncertainty (HU) -- variation in human confidence across annotations -- but standard SFT simply optimizes toward the most frequent label, disregarding HU distributions. This leaves two open questions: How does HU affect SFT, and how can HU be effectively leveraged in training? In this work, we first conduct a systematic evaluation of VLMs across varying HU levels. We have two key findings: (i) surprisingly, high-HU samples contribute little or even degrade model performance, and (ii) naively training on the full dataset yields under-calibrated models that fail to capture HU distributions. Motivated by these findings, we introduce HaDola, a human uncertainty-aware data selection and automatic labeling framework. HaDola operates in four stages -- discriminate, self-annotate, error trigger, and training -- to iteratively identify harmful samples, prioritize informative ones, and bootstrap from a small seed set (5\% of data). Our approach substantially reduces reliance on costly HU annotations and makes VLMs more accurate and better calibrated. Extensive experiments on VQAv2 and VizWiz datasets demonstrate that HaDola consistently matches or outperforms state-of-the-art baselines with less training data. Our work highlights the importance of explicitly modeling HU in SFT, suggesting that better utilization of HU is more effective than merely scaling up dataset size.
☆ EEMS: Edge-Prompt Enhanced Medical Image Segmentation Based on Learnable Gating Mechanism
Medical image segmentation is vital for diagnosis, treatment planning, and disease monitoring but is challenged by complex factors like ambiguous edges and background noise. We introduce EEMS, a new model for segmentation, combining an Edge-Aware Enhancement Unit (EAEU) and a Multi-scale Prompt Generation Unit (MSPGU). EAEU enhances edge perception via multi-frequency feature extraction, accurately defining boundaries. MSPGU integrates high-level semantic and low-level spatial features using a prompt-guided approach, ensuring precise target localization. The Dual-Source Adaptive Gated Fusion Unit (DAGFU) merges edge features from EAEU with semantic features from MSPGU, enhancing segmentation accuracy and robustness. Tests on datasets like ISIC2018 confirm EEMS's superior performance and reliability as a clinical tool.
comment: Accepted by BIBM 2025
☆ Exploring and Leveraging Class Vectors for Classifier Editing NeurIPS 2025
Image classifiers play a critical role in detecting diseases in medical imaging and identifying anomalies in manufacturing processes. However, their predefined behaviors after extensive training make post hoc model editing difficult, especially when it comes to forgetting specific classes or adapting to distribution shifts. Existing classifier editing methods either focus narrowly on correcting errors or incur extensive retraining costs, creating a bottleneck for flexible editing. Moreover, such editing has seen limited investigation in image classification. To overcome these challenges, we introduce Class Vectors, which capture class-specific representation adjustments during fine-tuning. Whereas task vectors encode task-level changes in weight space, Class Vectors disentangle each class's adaptation in the latent space. We show that Class Vectors capture each class's semantic shift and that classifier editing can be achieved either by steering latent features along these vectors or by mapping them into weight space to update the decision boundaries. We also demonstrate that the inherent linearity and orthogonality of Class Vectors support efficient, flexible, and high-level concept editing via simple class arithmetic. Finally, we validate their utility in applications such as unlearning, environmental adaptation, adversarial defense, and adversarial trigger optimization.
comment: Accepted in NeurIPS 2025
☆ A Large-Language-Model Assisted Automated Scale Bar Detection and Extraction Framework for Scanning Electron Microscopic Images
Microscopic characterizations, such as Scanning Electron Microscopy (SEM), are widely used in scientific research for visualizing and analyzing microstructures. Determining the scale bars is an important first step of accurate SEM analysis; however, currently, it mainly relies on manual operations, which is both time-consuming and prone to errors. To address this issue, we propose a multi-modal and automated scale bar detection and extraction framework that provides concurrent object detection, text detection and text recognition with a Large Language Model (LLM) agent. The proposed framework operates in four phases; i) Automatic Dataset Generation (Auto-DG) model to synthesize a diverse dataset of SEM images ensuring robust training and high generalizability of the model, ii) scale bar object detection, iii) information extraction using a hybrid Optical Character Recognition (OCR) system with DenseNet and Convolutional Recurrent Neural Network (CRNN) based algorithms, iv) an LLM agent to analyze and verify accuracy of the results. The proposed model demonstrates a strong performance in object detection and accurate localization with a precision of 100%, recall of 95.8%, and a mean Average Precision (mAP) of 99.2% at IoU=0.5 and 69.1% at IoU=0.5:0.95. The hybrid OCR system achieved 89% precision, 65% recall, and a 75% F1 score on the Auto-DG dataset, significantly outperforming several mainstream standalone engines, highlighting its reliability for scientific image analysis. The LLM is introduced as a reasoning engine as well as an intelligent assistant that suggests follow-up steps and verifies the results. This automated method powered by an LLM agent significantly enhances the efficiency and accuracy of scale bar detection and extraction in SEM images, providing a valuable tool for microscopic analysis and advancing the field of scientific imaging.
comment: 14 pages, 6 figures
☆ DTEA: Dynamic Topology Weaving and Instability-Driven Entropic Attenuation for Medical Image Segmentation
In medical image segmentation, skip connections are used to merge global context and reduce the semantic gap between encoder and decoder. Current methods often struggle with limited structural representation and insufficient contextual modeling, affecting generalization in complex clinical scenarios. We propose the DTEA model, featuring a new skip connection framework with the Semantic Topology Reconfiguration (STR) and Entropic Perturbation Gating (EPG) modules. STR reorganizes multi-scale semantic features into a dynamic hypergraph to better model cross-resolution anatomical dependencies, enhancing structural and semantic representation. EPG assesses channel stability after perturbation and filters high-entropy channels to emphasize clinically important regions and improve spatial attention. Extensive experiments on three benchmark datasets show our framework achieves superior segmentation accuracy and better generalization across various clinical settings. The code is available at \href{https://github.com/LWX-Research/DTEA}{https://github.com/LWX-Research/DTEA}.
comment: Accepted by BIBM 2025
☆ Nepali Sign Language Characters Recognition: Dataset Development and Deep Learning Approaches
Sign languages serve as essential communication systems for individuals with hearing and speech impairments. However, digital linguistic dataset resources for underrepresented sign languages, such as Nepali Sign Language (NSL), remain scarce. This study introduces the first benchmark dataset for NSL, consisting of 36 gesture classes with 1,500 samples per class, designed to capture the structural and visual features of the language. To evaluate recognition performance, we fine-tuned MobileNetV2 and ResNet50 architectures on the dataset, achieving classification accuracies of 90.45% and 88.78%, respectively. These findings demonstrate the effectiveness of convolutional neural networks in sign recognition tasks, particularly within low-resource settings. To the best of our knowledge, this work represents the first systematic effort to construct a benchmark dataset and assess deep learning approaches for NSL recognition, highlighting the potential of transfer learning and fine-tuning for advancing research in underexplored sign languages.
comment: 6 pages, 9 figures
☆ LightPneumoNet: Lightweight Pneumonia Classifier
Effective pneumonia diagnosis is often challenged by the difficulty of deploying large, computationally expensive deep learning models in resource-limited settings. This study introduces LightPneumoNet, an efficient, lightweight convolutional neural network (CNN) built from scratch to provide an accessible and accurate diagnostic solution for pneumonia detection from chest X-rays. Our model was trained on a public dataset of 5,856 chest X-ray images. Preprocessing included image resizing to 224x224, grayscale conversion, and pixel normalization, with data augmentation (rotation, zoom, shear) to prevent overfitting. The custom architecture features four blocks of stacked convolutional layers and contains only 388,082 trainable parameters, resulting in a minimal 1.48 MB memory footprint. On the independent test set, our model delivered exceptional performance, achieving an overall accuracy of 0.942, precision of 0.92, and an F1-Score of 0.96. Critically, it obtained a sensitivity (recall) of 0.99, demonstrating a near-perfect ability to identify true pneumonia cases and minimize clinically significant false negatives. Notably, LightPneumoNet achieves this high recall on the same dataset where existing approaches typically require significantly heavier architectures or fail to reach comparable sensitivity levels. The model's efficiency enables deployment on low-cost hardware, making advanced computer-aided diagnosis accessible in underserved clinics and serving as a reliable second-opinion tool to improve patient outcomes.
comment: 13 pages (including references), 5 figures
☆ Investigating Identity Signals in Conversational Facial Dynamics via Disentangled Expression Features
This work investigates whether individuals can be identified solely through the pure dynamical components of their facial expressions, independent of static facial appearance. We leverage the FLAME 3D morphable model to achieve explicit disentanglement between facial shape and expression dynamics, extracting frame-by-frame parameters from conversational videos while retaining only expression and jaw coefficients. On the CANDOR dataset of 1,429 speakers in naturalistic conversations, our Conformer model with supervised contrastive learning achieves 61.14\%accuracy on 1,429-way classification -- 458 times above chance -- demonstrating that facial dynamics carry strong identity signatures. We introduce a drift-to-noise ratio (DNR) that quantifies the reliability of shape expression separation by measuring across-session shape changes relative to within-session variability. DNR strongly negatively correlates with recognition performance, confirming that unstable shape estimation compromises dynamic identification. Our findings reveal person-specific signatures in conversational facial dynamics, with implications for social perception and clinical assessment.
☆ Class Prototypes based Contrastive Learning for Classifying Multi-Label and Fine-Grained Educational Videos CVPR 2023
The recent growth in the consumption of online media by children during early childhood necessitates data-driven tools enabling educators to filter out appropriate educational content for young learners. This paper presents an approach for detecting educational content in online videos. We focus on two widely used educational content classes: literacy and math. For each class, we choose prominent codes (sub-classes) based on the Common Core Standards. For example, literacy codes include `letter names', `letter sounds', and math codes include `counting', `sorting'. We pose this as a fine-grained multilabel classification problem as videos can contain multiple types of educational content and the content classes can get visually similar (e.g., `letter names' vs `letter sounds'). We propose a novel class prototypes based supervised contrastive learning approach that can handle fine-grained samples associated with multiple labels. We learn a class prototype for each class and a loss function is employed to minimize the distances between a class prototype and the samples from the class. Similarly, distances between a class prototype and the samples from other classes are maximized. As the alignment between visual and audio cues are crucial for effective comprehension, we consider a multimodal transformer network to capture the interaction between visual and audio cues in videos while learning the embedding for videos. For evaluation, we present a dataset, APPROVE, employing educational videos from YouTube labeled with fine-grained education classes by education researchers. APPROVE consists of 193 hours of expert-annotated videos with 19 classes. The proposed approach outperforms strong baselines on APPROVE and other benchmarks such as Youtube-8M, and COIN. The dataset is available at https://github.com/rohit-gupta/MMContrast/tree/main/APPROVE
comment: Published at CVPR 2023
☆ Evaluating Reasoning Faithfulness in Medical Vision-Language Models using Multimodal Perturbations
Vision-language models (VLMs) often produce chain-of-thought (CoT) explanations that sound plausible yet fail to reflect the underlying decision process, undermining trust in high-stakes clinical use. Existing evaluations rarely catch this misalignment, prioritizing answer accuracy or adherence to formats. We present a clinically grounded framework for chest X-ray visual question answering (VQA) that probes CoT faithfulness via controlled text and image modifications across three axes: clinical fidelity, causal attribution, and confidence calibration. In a reader study (n=4), evaluator-radiologist correlations fall within the observed inter-radiologist range for all axes, with strong alignment for attribution (Kendall's $\tau_b=0.670$), moderate alignment for fidelity ($\tau_b=0.387$), and weak alignment for confidence tone ($\tau_b=0.091$), which we report with caution. Benchmarking six VLMs shows that answer accuracy and explanation quality are decoupled, acknowledging injected cues does not ensure grounding, and text cues shift explanations more than visual cues. While some open-source models match final answer accuracy, proprietary models score higher on attribution (25.0% vs. 1.4%) and often on fidelity (36.1% vs. 31.7%), highlighting deployment risks and the need to evaluate beyond final answer accuracy.
☆ FlexAC: Towards Flexible Control of Associative Reasoning in Multimodal Large Language Models NeurIPS 2025
Multimodal large language models (MLLMs) face an inherent trade-off between faithfulness and creativity, as different tasks require varying degrees of associative reasoning. However, existing methods lack the flexibility to modulate this reasoning strength, limiting MLLMs' adaptability across factual and creative scenarios. To bridge this gap, we propose equipping MLLMs with mechanisms that enable flexible control over associative reasoning. We begin by investigating the internal mechanisms underlying associative behavior in MLLMs and find that: (1) middle layers play a pivotal role in shaping model's associative tendencies, (2) modifying representations in these layers effectively regulates associative reasoning strength, and (3) hallucinations can be exploited to derive steering vectors that guide this modulation. Building on these findings, we introduce Flexible Association Control (FlexAC), a lightweight and training-free framework for modulating associative behavior in MLLMs. FlexAC first induces hallucination-guided intermediate representations to encode associative directions. Then, it selects high-association instances to construct effective associative steering vectors, whose strengths are adaptively calibrated to balance creative guidance with output stability. Finally, recognizing the multi-dimensional nature of associative reasoning, FlexAC incorporates task-specific associative vectors derived from a forward pass on a few target-domain samples, enabling models to follow diverse associative directions and better adapt to creative tasks. Notably, our method achieves up to a 5.8x improvement in creativity on Creation-MMBench and a 29% reduction in hallucination rate on CHAIR, surpassing existing baselines and demonstrating its effectiveness in enabling flexible control over associative reasoning in MLLMs. Our code is available at https://github.com/ylhz/FlexAC.
comment: 19 pages, 11 figures. Accepted by the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Saudi Sign Language Translation Using T5 SP
This paper explores the application of T5 models for Saudi Sign Language (SSL) translation using a novel dataset. The SSL dataset includes three challenging testing protocols, enabling comprehensive evaluation across different scenarios. Additionally, it captures unique SSL characteristics, such as face coverings, which pose challenges for sign recognition and translation. In our experiments, we investigate the impact of pre-training on American Sign Language (ASL) data by comparing T5 models pre-trained on the YouTubeASL dataset with models trained directly on the SSL dataset. Experimental results demonstrate that pre-training on YouTubeASL significantly improves models' performance (roughly $3\times$ in BLEU-4), indicating cross-linguistic transferability in sign language models. Our findings highlight the benefits of leveraging large-scale ASL data to improve SSL translation and provide insights into the development of more effective sign language translation systems. Our code is publicly available at our GitHub repository.
comment: 11 pages, supplementary, SPECOM 2025
☆ Generalisation of automatic tumour segmentation in histopathological whole-slide images across multiple cancer types
Deep learning is expected to aid pathologists by automating tasks such as tumour segmentation. We aimed to develop one universal tumour segmentation model for histopathological images and examine its performance in different cancer types. The model was developed using over 20 000 whole-slide images from over 4 000 patients with colorectal, endometrial, lung, or prostate carcinoma. Performance was validated in pre-planned analyses on external cohorts with over 3 000 patients across six cancer types. Exploratory analyses included over 1 500 additional patients from The Cancer Genome Atlas. Average Dice coefficient was over 80% in all validation cohorts with en bloc resection specimens and in The Cancer Genome Atlas cohorts. No loss of performance was observed when comparing the universal model with models specialised on single cancer types. In conclusion, extensive and rigorous evaluations demonstrate that generic tumour segmentation by a single model is possible across cancer types, patient populations, sample preparations, and slide scanners.
☆ BLEnD-Vis: Benchmarking Multimodal Cultural Understanding in Vision Language Models
As vision-language models (VLMs) are deployed globally, their ability to understand culturally situated knowledge becomes essential. Yet, existing evaluations largely assess static recall or isolated visual grounding, leaving unanswered whether VLMs possess robust and transferable cultural understanding. We introduce BLEnD-Vis, a multimodal, multicultural benchmark designed to evaluate the robustness of everyday cultural knowledge in VLMs across linguistic rephrasings and visual modalities. Building on the BLEnD dataset, BLEnD-Vis constructs 313 culturally grounded question templates spanning 16 regions and generates three aligned multiple-choice formats: (i) a text-only baseline querying from Region $\to$ Entity, (ii) an inverted text-only variant (Entity $\to$ Region), and (iii) a VQA-style version of (ii) with generated images. The resulting benchmark comprises 4,916 images and over 21,000 multiple-choice question (MCQ) instances, validated through human annotation. BLEnD-Vis reveals significant fragility in current VLM cultural knowledge; models exhibit performance drops under linguistic rephrasing and, whilst visual cues often aid performance, low cross-modal consistency highlights challenges in robustly integrating textual and visual understanding, particularly for lower-resource regions. BLEnD-Vis thus provides a crucial testbed for systematically analysing cultural robustness and multimodal grounding, exposing limitations and guiding the development of more culturally competent VLMs.
comment: Code and Dataset to be released
☆ G2L:From Giga-Scale to Cancer-Specific Large-Scale Pathology Foundation Models via Knowledge Distillation
Recent studies in pathology foundation models have shown that scaling training data, diversifying cancer types, and increasing model size consistently improve their performance. However, giga-scale foundation models, which are trained on hundreds of thousands of slides covering tens of cancer types and contain billions of parameters, pose significant challenges for practical use due to their tremendous computational costs in both development and deployment. In this work, we present a novel strategy, named the G2L framework, to increase the performance of large-scale foundation models, which consist of only $15\%$ of the parameters of giga-scale models, to a comparable performance level of giga-scale models in cancer-specific tasks. Our approach applies knowledge distillation, transferring the capabilities of a giga-scale model to a large-scale model, using just 1K pathology slides of a target cancer (e.g., breast, prostate, etc.). The resulting distilled model not only outperformed state-of-the-art models of the same size (i.e., large-scale) across several benchmarks but also, interestingly, surpassed the giga-scale teacher and huge-scale models in some benchmarks. In addition, the distilled model exhibited a higher robustness index, indicating improved resilience to image variations originating from multiple institutions. These findings suggest that the proposed distillation approach for a large-scale model is a data- and parameter-efficient way to achieve giga-scale-level performance for cancer-specific applications without prohibitive computational burden.
☆ Reliable Cross-modal Alignment via Prototype Iterative Construction
Cross-modal alignment is an important multi-modal task, aiming to bridge the semantic gap between different modalities. The most reliable fundamention for achieving this objective lies in the semantic consistency between matched pairs. Conventional methods implicitly assume embeddings contain solely semantic information, ignoring the impact of non-semantic information during alignment, which inevitably leads to information bias or even loss. These non-semantic information primarily manifest as stylistic variations in the data, which we formally define as style information. An intuitive approach is to separate style from semantics, aligning only the semantic information. However, most existing methods distinguish them based on feature columns, which cannot represent the complex coupling relationship between semantic and style information. In this paper, we propose PICO, a novel framework for suppressing style interference during embedding interaction. Specifically, we quantify the probability of each feature column representing semantic information, and regard it as the weight during the embedding interaction. To ensure the reliability of the semantic probability, we propose a prototype iterative construction method. The key operation of this method is a performance feedback-based weighting function, and we have theoretically proven that the function can assign higher weight to prototypes that bring higher performance improvements. Extensive experiments on various benchmarks and model backbones demonstrate the superiority of PICO, outperforming state-of-the-art methods by 5.2\%-14.1\%.
☆ CoPRS: Learning Positional Prior from Chain-of-Thought for Reasoning Segmentation
Existing works on reasoning segmentation either connect hidden features from a language model directly to a mask decoder or represent positions in text, which limits interpretability and semantic detail. To solve this, we present CoPRS, a Multi-modal Chain-of-Thought (MCoT)-based positional perception model that bridges language reasoning to segmentation through a differentiable and interpretable positional prior instantiated as a heatmap. By making the reasoning process clear via MCoT and expressing it as a dense, differentiable heatmap, this interface enhances interpretability and diagnostic analysis and yields more concentrated evidence on the target. A learnable concentration token aggregates features of the image and reasoning text to generate this positional prior, which is decoded to precise masks through a lightweight decoder, providing a direct connection between reasoning and segmentation. Across the RefCOCO series and ReasonSeg, CoPRS matches or surpasses the best reported metrics on each standard split under comparable protocols, with performance at or above prior state of the art across both validation and test partitions. Extensive experiments reveal that the quality of the heatmap strongly influences the resulting mask quality, supporting a consistent association between the reasoning output and downstream mask generation. Collectively, these findings support the utility of this paradigm in bridging reasoning and segmentation and show advantages in concentration driven by reasoning and predicting masks more precisely. Code, checkpoints and logs are released at https://github.com/ZhenyuLU-Heliodore/CoPRS.git.
comment: 18 pages, 6 figures, 6 tables
☆ Multiview Manifold Evidential Fusion for PolSAR Image Classification
Polarimetric Synthetic Aperture Radar (PolSAR) covariance matrices and their extracted multi-features - such as scattering angle, entropy, texture, and boundary descriptors - provide complementary and physically interpretable information for image classification. Traditional fusion strategies typically concatenate these features or employ deep learning networks to combine them. However, the covariance matrices and multi-features, as two complementary views, lie on different manifolds with distinct geometric structures. Existing fusion methods also overlook the varying importance of different views and ignore uncertainty, often leading to unreliable predictions. To address these issues, we propose a Multiview Manifold Evidential Fusion (MMEFnet) method to effectively fuse these two views. It gives a new framework to integrate PolSAR manifold learning and evidence fusion into a unified architecture. Specifically, covariance matrices are represented on the Hermitian Positive Definite (HPD) manifold, while multi-features are modeled on the Grassmann manifold. Two different kernel metric learning networks are constructed to learn their manifold representations. Subsequently, a trusted multiview evidence fusion, replacing the conventional softmax classifier, estimates belief mass and quantifies the uncertainty of each view from the learned deep features. Finally, a Dempster-Shafer theory-based fusion strategy combines evidence, enabling a more reliable and interpretable classification. Extensive experiments on three real-world PolSAR datasets demonstrate that the proposed method consistently outperforms existing approaches in accuracy, robustness, and interpretability.
comment: The paper has 14 pages and 7 figures
☆ Validation of an Artificial Intelligence Tool for the Detection of Sperm DNA Fragmentation Using the TUNEL In Situ Hybridization Assay
Sperm DNA fragmentation (SDF) is a critical parameter in male fertility assessment that conventional semen analysis fails to evaluate. This study presents the validation of a novel artificial intelligence (AI) tool designed to detect SDF through digital analysis of phase contrast microscopy images, using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay as the gold standard reference. Utilising the established link between sperm morphology and DNA integrity, the present work proposes a morphology assisted ensemble AI model that combines image processing techniques with state-of-the-art transformer based machine learning models (GC-ViT) for the prediction of DNA fragmentation in sperm from phase contrast images. The ensemble model is benchmarked against a pure transformer `vision' model as well as a `morphology-only` model. Promising results show the proposed framework is able to achieve sensitivity of 60\% and specificity of 75\%. This non-destructive methodology represents a significant advancement in reproductive medicine by enabling real-time sperm selection based on DNA integrity for clinical diagnostic and therapeutic applications.
☆ video-SALMONN S: Streaming Audio-Visual LLMs Beyond Length Limits via Memory
Continuous, high-frame-rate, high-resolution processing of long video streams is critical for future AI agents, yet current video-understanding LLMs struggle to scale. Offline, fixed-frame-number methods require the stream length to adapt frame rates; streaming methods constrain memory by merging or discarding tokens, losing information. We propose video-SALMONN S, a streaming audio-visual LLM that, to our knowledge, is the first to process 3-hour videos at 1 FPS and 360p resolution under a fixed memory budget. Our model introduces (i) a test-time-training (TTT) memory module that continually updates token representations to capture long-range dependencies by replacing token merging, and (ii) a prompt-dependent memory reader that selectively retrieves context-relevant content from fixed-size memory. The TTT module is optimised with a Hessian-free conjugate-gradient procedure (TTT_HF) for efficient adaptation. On long-video benchmarks (Video-MME, LVBench, VideoEvalPro), video-SALMONN S sustains high-quality understanding on multi-hour videos with 10k frames and 1M tokens. Our 8B-parameter model achieves 74.2% overall and 67.8% on the Video-MME long split, outperforming both offline and streaming baselines.
☆ Lightweight Facial Landmark Detection in Thermal Images via Multi-Level Cross-Modal Knowledge Transfer
Facial Landmark Detection (FLD) in thermal imagery is critical for applications in challenging lighting conditions, but it is hampered by the lack of rich visual cues. Conventional cross-modal solutions, like feature fusion or image translation from RGB data, are often computationally expensive or introduce structural artifacts, limiting their practical deployment. To address this, we propose Multi-Level Cross-Modal Knowledge Distillation (MLCM-KD), a novel framework that decouples high-fidelity RGB-to-thermal knowledge transfer from model compression to create both accurate and efficient thermal FLD models. A central challenge during knowledge transfer is the profound modality gap between RGB and thermal data, where traditional unidirectional distillation fails to enforce semantic consistency across disparate feature spaces. To overcome this, we introduce Dual-Injected Knowledge Distillation (DIKD), a bidirectional mechanism designed specifically for this task. DIKD establishes a connection between modalities: it not only guides the thermal student with rich RGB features but also validates the student's learned representations by feeding them back into the frozen teacher's prediction head. This closed-loop supervision forces the student to learn modality-invariant features that are semantically aligned with the teacher, ensuring a robust and profound knowledge transfer. Experiments show that our approach sets a new state-of-the-art on public thermal FLD benchmarks, notably outperforming previous methods while drastically reducing computational overhead.
☆ Demystifying Numerosity in Diffusion Models -- Limitations and Remedies
Numerosity remains a challenge for state-of-the-art text-to-image generation models like FLUX and GPT-4o, which often fail to accurately follow counting instructions in text prompts. In this paper, we aim to study a fundamental yet often overlooked question: Can diffusion models inherently generate the correct number of objects specified by a textual prompt simply by scaling up the dataset and model size? To enable rigorous and reproducible evaluation, we construct a clean synthetic numerosity benchmark comprising two complementary datasets: GrayCount250 for controlled scaling studies, and NaturalCount6 featuring complex naturalistic scenes. Second, we empirically show that the scaling hypothesis does not hold: larger models and datasets alone fail to improve counting accuracy on our benchmark. Our analysis identifies a key reason: diffusion models tend to rely heavily on the noise initialization rather than the explicit numerosity specified in the prompt. We observe that noise priors exhibit biases toward specific object counts. In addition, we propose an effective strategy for controlling numerosity by injecting count-aware layout information into the noise prior. Our method achieves significant gains, improving accuracy on GrayCount250 from 20.0\% to 85.3\% and on NaturalCount6 from 74.8\% to 86.3\%, demonstrating effective generalization across settings.
☆ Connecting Giants: Synergistic Knowledge Transfer of Large Multimodal Models for Few-Shot Learning IJCAI 2025
Few-shot learning (FSL) addresses the challenge of classifying novel classes with limited training samples. While some methods leverage semantic knowledge from smaller-scale models to mitigate data scarcity, these approaches often introduce noise and bias due to the data's inherent simplicity. In this paper, we propose a novel framework, Synergistic Knowledge Transfer (SynTrans), which effectively transfers diverse and complementary knowledge from large multimodal models to empower the off-the-shelf few-shot learner. Specifically, SynTrans employs CLIP as a robust teacher and uses a few-shot vision encoder as a weak student, distilling semantic-aligned visual knowledge via an unsupervised proxy task. Subsequently, a training-free synergistic knowledge mining module facilitates collaboration among large multimodal models to extract high-quality semantic knowledge. Building upon this, a visual-semantic bridging module enables bi-directional knowledge transfer between visual and semantic spaces, transforming explicit visual and implicit semantic knowledge into category-specific classifier weights. Finally, SynTrans introduces a visual weight generator and a semantic weight reconstructor to adaptively construct optimal multimodal FSL classifiers. Experimental results on four FSL datasets demonstrate that SynTrans, even when paired with a simple few-shot vision encoder, significantly outperforms current state-of-the-art methods.
comment: Accepted by IJCAI 2025
☆ Multimodal Disease Progression Modeling via Spatiotemporal Disentanglement and Multiscale Alignment NeurIPS 2025
Longitudinal multimodal data, including electronic health records (EHR) and sequential chest X-rays (CXRs), is critical for modeling disease progression, yet remains underutilized due to two key challenges: (1) redundancy in consecutive CXR sequences, where static anatomical regions dominate over clinically-meaningful dynamics, and (2) temporal misalignment between sparse, irregular imaging and continuous EHR data. We introduce $\texttt{DiPro}$, a novel framework that addresses these challenges through region-aware disentanglement and multi-timescale alignment. First, we disentangle static (anatomy) and dynamic (pathology progression) features in sequential CXRs, prioritizing disease-relevant changes. Second, we hierarchically align these static and dynamic CXR features with asynchronous EHR data via local (pairwise interval-level) and global (full-sequence) synchronization to model coherent progression pathways. Extensive experiments on the MIMIC dataset demonstrate that $\texttt{DiPro}$ could effectively extract temporal clinical dynamics and achieve state-of-the-art performance on both disease progression identification and general ICU prediction tasks.
comment: NeurIPS 2025 Spotlight
☆ MoMaps: Semantics-Aware Scene Motion Generation with Motion Maps ICCV 2025
This paper addresses the challenge of learning semantically and functionally meaningful 3D motion priors from real-world videos, in order to enable prediction of future 3D scene motion from a single input image. We propose a novel pixel-aligned Motion Map (MoMap) representation for 3D scene motion, which can be generated from existing generative image models to facilitate efficient and effective motion prediction. To learn meaningful distributions over motion, we create a large-scale database of MoMaps from over 50,000 real videos and train a diffusion model on these representations. Our motion generation not only synthesizes trajectories in 3D but also suggests a new pipeline for 2D video synthesis: first generate a MoMap, then warp an image accordingly and complete the warped point-based renderings. Experimental results demonstrate that our approach generates plausible and semantically consistent 3D scene motion.
comment: Accepted at ICCV 2025, project page: https://jiahuilei.com/projects/momap/
☆ Compositional Zero-Shot Learning: A Survey
Compositional Zero-Shot Learning (CZSL) is a critical task in computer vision that enables models to recognize unseen combinations of known attributes and objects during inference, addressing the combinatorial challenge of requiring training data for every possible composition. This is particularly challenging because the visual appearance of primitives is highly contextual; for example, ``small'' cats appear visually distinct from ``older'' ones, and ``wet'' cars differ significantly from ``wet'' cats. Effectively modeling this contextuality and the inherent compositionality is crucial for robust compositional zero-shot recognition. This paper presents, to our knowledge, the first comprehensive survey specifically focused on Compositional Zero-Shot Learning. We systematically review the state-of-the-art CZSL methods, introducing a taxonomy grounded in disentanglement, with four families of approaches: no explicit disentanglement, textual disentanglement, visual disentanglement, and cross-modal disentanglement. We provide a detailed comparative analysis of these methods, highlighting their core advantages and limitations in different problem settings, such as closed-world and open-world CZSL. Finally, we identify the most significant open challenges and outline promising future research directions. This survey aims to serve as a foundational resource to guide and inspire further advancements in this fascinating and important field. Papers studied in this survey with their official code are available on our github: https://github.com/ans92/Compositional-Zero-Shot-Learning
comment: Survey paper with 36 pages, 8 plots and 4 figures
☆ CoDefend: Cross-Modal Collaborative Defense via Diffusion Purification and Prompt Optimization
Multimodal Large Language Models (MLLMs) have achieved remarkable success in tasks such as image captioning, visual question answering, and cross-modal reasoning by integrating visual and textual modalities. However, their multimodal nature also exposes them to adversarial threats, where attackers can perturb either modality or both jointly to induce harmful, misleading, or policy violating outputs. Existing defense strategies, such as adversarial training and input purification, face notable limitations: adversarial training typically improves robustness only against known attacks while incurring high computational costs, whereas conventional purification approaches often suffer from degraded image quality and insufficient generalization to complex multimodal tasks. In this work, we focus on defending the visual modality, which frequently serves as the primary entry point for adversarial manipulation. We propose a supervised diffusion based denoising framework that leverages paired adversarial clean image datasets to fine-tune diffusion models with directional, task specific guidance. Unlike prior unsupervised purification methods such as DiffPure, our approach achieves higher quality reconstructions while significantly improving defense robustness in multimodal tasks. Furthermore, we incorporate prompt optimization as a complementary defense mechanism, enhancing resistance against diverse and unseen attack strategies. Extensive experiments on image captioning and visual question answering demonstrate that our method not only substantially improves robustness but also exhibits strong transferability to unknown adversarial attacks. These results highlight the effectiveness of supervised diffusion based denoising for multimodal defense, paving the way for more reliable and secure deployment of MLLMs in real world applications.
☆ Future-Aware End-to-End Driving: Bidirectional Modeling of Trajectory Planning and Scene Evolution NeurIPS 2025
End-to-end autonomous driving methods aim to directly map raw sensor inputs to future driving actions such as planned trajectories, bypassing traditional modular pipelines. While these approaches have shown promise, they often operate under a one-shot paradigm that relies heavily on the current scene context, potentially underestimating the importance of scene dynamics and their temporal evolution. This limitation restricts the model's ability to make informed and adaptive decisions in complex driving scenarios. We propose a new perspective: the future trajectory of an autonomous vehicle is closely intertwined with the evolving dynamics of its environment, and conversely, the vehicle's own future states can influence how the surrounding scene unfolds. Motivated by this bidirectional relationship, we introduce SeerDrive, a novel end-to-end framework that jointly models future scene evolution and trajectory planning in a closed-loop manner. Our method first predicts future bird's-eye view (BEV) representations to anticipate the dynamics of the surrounding scene, then leverages this foresight to generate future-context-aware trajectories. Two key components enable this: (1) future-aware planning, which injects predicted BEV features into the trajectory planner, and (2) iterative scene modeling and vehicle planning, which refines both future scene prediction and trajectory generation through collaborative optimization. Extensive experiments on the NAVSIM and nuScenes benchmarks show that SeerDrive significantly outperforms existing state-of-the-art methods.
comment: NeurIPS 2025
☆ Text-Enhanced Panoptic Symbol Spotting in CAD Drawings
With the widespread adoption of Computer-Aided Design(CAD) drawings in engineering, architecture, and industrial design, the ability to accurately interpret and analyze these drawings has become increasingly critical. Among various subtasks, panoptic symbol spotting plays a vital role in enabling downstream applications such as CAD automation and design retrieval. Existing methods primarily focus on geometric primitives within the CAD drawings to address this task, but they face following major problems: they usually overlook the rich textual annotations present in CAD drawings and they lack explicit modeling of relationships among primitives, resulting in incomprehensive understanding of the holistic drawings. To fill this gap, we propose a panoptic symbol spotting framework that incorporates textual annotations. The framework constructs unified representations by jointly modeling geometric and textual primitives. Then, using visual features extract by pretrained CNN as the initial representations, a Transformer-based backbone is employed, enhanced with a type-aware attention mechanism to explicitly model the different types of spatial dependencies between various primitives. Extensive experiments on the real-world dataset demonstrate that the proposed method outperforms existing approaches on symbol spotting tasks involving textual annotations, and exhibits superior robustness when applied to complex CAD drawings.
comment: 7 pages, 3figures. This version is the original submitted manuscript of the paper accepted by The 12th International Conference on Behavioural and Social Computing
☆ Source-Free Object Detection with Detection Transformer
Source-Free Object Detection (SFOD) enables knowledge transfer from a source domain to an unsupervised target domain for object detection without access to source data. Most existing SFOD approaches are either confined to conventional object detection (OD) models like Faster R-CNN or designed as general solutions without tailored adaptations for novel OD architectures, especially Detection Transformer (DETR). In this paper, we introduce Feature Reweighting ANd Contrastive Learning NetworK (FRANCK), a novel SFOD framework specifically designed to perform query-centric feature enhancement for DETRs. FRANCK comprises four key components: (1) an Objectness Score-based Sample Reweighting (OSSR) module that computes attention-based objectness scores on multi-scale encoder feature maps, reweighting the detection loss to emphasize less-recognized regions; (2) a Contrastive Learning with Matching-based Memory Bank (CMMB) module that integrates multi-level features into memory banks, enhancing class-wise contrastive learning; (3) an Uncertainty-weighted Query-fused Feature Distillation (UQFD) module that improves feature distillation through prediction quality reweighting and query feature fusion; and (4) an improved self-training pipeline with a Dynamic Teacher Updating Interval (DTUI) that optimizes pseudo-label quality. By leveraging these components, FRANCK effectively adapts a source-pre-trained DETR model to a target domain with enhanced robustness and generalization. Extensive experiments on several widely used benchmarks demonstrate that our method achieves state-of-the-art performance, highlighting its effectiveness and compatibility with DETR-based SFOD models.
comment: IEEE Transactions on Image Processing
☆ ROFI: A Deep Learning-Based Ophthalmic Sign-Preserving and Reversible Patient Face Anonymizer
Patient face images provide a convenient mean for evaluating eye diseases, while also raising privacy concerns. Here, we introduce ROFI, a deep learning-based privacy protection framework for ophthalmology. Using weakly supervised learning and neural identity translation, ROFI anonymizes facial features while retaining disease features (over 98\% accuracy, $\kappa > 0.90$). It achieves 100\% diagnostic sensitivity and high agreement ($\kappa > 0.90$) across eleven eye diseases in three cohorts, anonymizing over 95\% of images. ROFI works with AI systems, maintaining original diagnoses ($\kappa > 0.80$), and supports secure image reversal (over 98\% similarity), enabling audits and long-term care. These results show ROFI's effectiveness of protecting patient privacy in the digital medicine era.
comment: Accepted to Nature NPJ Digital Medicine
☆ LSVOS 2025 Challenge Report: Recent Advances in Complex Video Object Segmentation
This report presents an overview of the 7th Large-scale Video Object Segmentation (LSVOS) Challenge held in conjunction with ICCV 2025. Besides the two traditional tracks of LSVOS that jointly target robustness in realistic video scenarios: Classic VOS (VOS), and Referring VOS (RVOS), the 2025 edition features a newly introduced track, Complex VOS (MOSEv2). Building upon prior insights, MOSEv2 substantially increases difficulty, introducing more challenging but realistic scenarios including denser small objects, frequent disappear/reappear events, severe occlusions, adverse weather and lighting, etc., pushing long-term consistency and generalization beyond curated benchmarks. The challenge retains standard ${J}$, $F$, and ${J\&F}$ metrics for VOS and RVOS, while MOSEv2 adopts ${J\&\dot{F}}$ as the primary ranking metric to better evaluate objects across scales and disappearance cases. We summarize datasets and protocols, highlight top-performing solutions, and distill emerging trends, such as the growing role of LLM/MLLM components and memory-aware propagation, aiming to chart future directions for resilient, language-aware video segmentation in the wild.
comment: 16 pages, 9 figures
☆ Zero-shot Face Editing via ID-Attribute Decoupled Inversion ICME2025
Recent advancements in text-guided diffusion models have shown promise for general image editing via inversion techniques, but often struggle to maintain ID and structural consistency in real face editing tasks. To address this limitation, we propose a zero-shot face editing method based on ID-Attribute Decoupled Inversion. Specifically, we decompose the face representation into ID and attribute features, using them as joint conditions to guide both the inversion and the reverse diffusion processes. This allows independent control over ID and attributes, ensuring strong ID preservation and structural consistency while enabling precise facial attribute manipulation. Our method supports a wide range of complex multi-attribute face editing tasks using only text prompts, without requiring region-specific input, and operates at a speed comparable to DDIM inversion. Comprehensive experiments demonstrate its practicality and effectiveness.
comment: Accepted by ICME2025
☆ Benchmarking Deep Learning Models for Laryngeal Cancer Staging Using the LaryngealCT Dataset
Laryngeal cancer imaging research lacks standardised datasets to enable reproducible deep learning (DL) model development. We present LaryngealCT, a curated benchmark of 1,029 computed tomography (CT) scans aggregated from six collections from The Cancer Imaging Archive (TCIA). Uniform 1 mm isotropic volumes of interest encompassing the larynx were extracted using a weakly supervised parameter search framework validated by clinical experts. 3D DL architectures (3D CNN, ResNet18,50,101, DenseNet121) were benchmarked on (i) early (Tis,T1,T2) vs. advanced (T3,T4) and (ii) T4 vs. non-T4 classification tasks. 3D CNN (AUC-0.881, F1-macro-0.821) and ResNet18 (AUC-0.892, F1-macro-0.646) respectively outperformed the other models in the two tasks. Model explainability assessed using 3D GradCAMs with thyroid cartilage overlays revealed greater peri-cartilage attention in non-T4 cases and focal activations in T4 predictions. Through open-source data, pretrained models, and integrated explainability tools, LaryngealCT offers a reproducible foundation for AI-driven research to support clinical decisions in laryngeal oncology.
☆ Enhancing Zero-Shot Anomaly Detection: CLIP-SAM Collaboration with Cascaded Prompts
Recently, the powerful generalization ability exhibited by foundation models has brought forth new solutions for zero-shot anomaly segmentation tasks. However, guiding these foundation models correctly to address downstream tasks remains a challenge. This paper proposes a novel two-stage framework, for zero-shot anomaly segmentation tasks in industrial anomaly detection. This framework excellently leverages the powerful anomaly localization capability of CLIP and the boundary perception ability of SAM.(1) To mitigate SAM's inclination towards object segmentation, we propose the Co-Feature Point Prompt Generation (PPG) module. This module collaboratively utilizes CLIP and SAM to generate positive and negative point prompts, guiding SAM to focus on segmenting anomalous regions rather than the entire object. (2) To further optimize SAM's segmentation results and mitigate rough boundaries and isolated noise, we introduce the Cascaded Prompts for SAM (CPS) module. This module employs hybrid prompts cascaded with a lightweight decoder of SAM, achieving precise segmentation of anomalous regions. Across multiple datasets, consistent experimental validation demonstrates that our approach achieves state-of-the-art zero-shot anomaly segmentation results. Particularly noteworthy is our performance on the Visa dataset, where we outperform the state-of-the-art methods by 10.3\% and 7.7\% in terms of {$F_1$-max} and AP metrics, respectively.
comment: Accepted by PRCV
☆ Vlaser: Vision-Language-Action Model with Synergistic Embodied Reasoning
While significant research has focused on developing embodied reasoning capabilities using Vision-Language Models (VLMs) or integrating advanced VLMs into Vision-Language-Action (VLA) models for end-to-end robot control, few studies directly address the critical gap between upstream VLM-based reasoning and downstream VLA policy learning. In this work, we take an initial step toward bridging embodied reasoning with VLA policy learning by introducing Vlaser - a Vision-Language-Action Model with synergistic embodied reasoning capability, which is a foundational vision-language model designed to integrate high-level reasoning with low-level control for embodied agents. Built upon the high-quality Vlaser-6M dataset, Vlaser achieves state-of-the-art performance across a range of embodied reasoning benchmarks - including spatial reasoning, embodied grounding, embodied QA, and task planning. Furthermore, we systematically examine how different VLM initializations affect supervised VLA fine-tuning, offering novel insights into mitigating the domain shift between internet-scale pre-training data and embodied-specific policy learning data. Based on these insights, our approach achieves state-of-the-art results on the WidowX benchmark and competitive performance on the Google Robot benchmark.
☆ GIR-Bench: Versatile Benchmark for Generating Images with Reasoning
Unified multimodal models integrate the reasoning capacity of large language models with both image understanding and generation, showing great promise for advanced multimodal intelligence. However, the community still lacks a rigorous reasoning-centric benchmark to systematically evaluate the alignment between understanding and generation, and their generalization potential in complex visual tasks. To this end, we introduce \textbf{GIR-Bench}, a comprehensive benchmark that evaluates unified models across three complementary perspectives. Firstly, we investigate understanding-generation consistency (GIR-Bench-UGC), asking whether models can consistently leverage the same knowledge in both understanding and generation tasks. Secondly, we investigate whether models can perform reasoning-centric text-to-image generation that requires applying logical constraints and implicit knowledge to generate faithful visual content (GIR-Bench-T2I). Thirdly, we evaluate whether models can handle multi-step reasoning in editing (GIR-Bench-Edit). For each subset, we carefully design different task-specific evaluation pipelines tailored for each task. This enables fine-grained and interpretable evaluation while mitigating biases from the prevalent MLLM-as-a-Judge paradigm. Extensive ablations over various unified models and generation-only systems have shown that: Although unified models are more capable of reasoning-driven visual tasks, they still exhibit a persistent gap between understanding and generation. The data and code for GIR-Bench are available at \href{https://hkust-longgroup.github.io/GIR-Bench}{https://hkust-longgroup.github.io/GIR-Bench}.
☆ GeoVLMath: Enhancing Geometry Reasoning in Vision-Language Models via Cross-Modal Reward for Auxiliary Line Creation
Auxiliary lines are essential for solving complex geometric problems but remain challenging for large vision-language models (LVLMs). Rather than editing diagrams to draw auxiliary lines, which current image editing models struggle to render with geometric precision, we generate textual descriptions of auxiliary-line constructions to better align with the representational strengths of LVLMs. To bridge the gap between textual descriptions and spatial structure, we propose a reinforcement learning framework that enhances diagram-text alignment. At the core of our approach is a cross-modal reward that evaluates how well the generated auxiliary-line description for an original diagram matches a ground-truth auxiliary-line diagram. Built on this reward, we present GeoVLMath, an open-source LVLM tailored to auxiliary-line reasoning in solid geometry. This fine-grained signal drives a GRPO-based RL stage, yielding precise diagram-text alignment. To support training, we develop a scalable data creation pipeline and construct AuxSolidMath, a dataset of 3,018 real-exam geometry problems with paired diagrams and aligned textual fields. At the 3B and 7B scales, GeoVLMath achieves competitive and often superior performance compared with strong open-source and proprietary LVLMs on auxiliary-line reasoning benchmarks.
comment: 22 pages
☆ The Easy Path to Robustness: Coreset Selection using Sample Hardness
Designing adversarially robust models from a data-centric perspective requires understanding which input samples are most crucial for learning resilient features. While coreset selection provides a mechanism for efficient training on data subsets, current algorithms are designed for clean accuracy and fall short in preserving robustness. To address this, we propose a framework linking a sample's adversarial vulnerability to its \textit{hardness}, which we quantify using the average input gradient norm (AIGN) over training. We demonstrate that \textit{easy} samples (with low AIGN) are less vulnerable and occupy regions further from the decision boundary. Leveraging this insight, we present EasyCore, a coreset selection algorithm that retains only the samples with low AIGN for training. We empirically show that models trained on EasyCore-selected data achieve significantly higher adversarial accuracy than those trained with competing coreset methods under both standard and adversarial training. As AIGN is a model-agnostic dataset property, EasyCore is an efficient and widely applicable data-centric method for improving adversarial robustness. We show that EasyCore achieves up to 7\% and 5\% improvement in adversarial accuracy under standard training and TRADES adversarial training, respectively, compared to existing coreset methods.
☆ High-Resolution Spatiotemporal Modeling with Global-Local State Space Models for Video-Based Human Pose Estimation ICCV 2025
Modeling high-resolution spatiotemporal representations, including both global dynamic contexts (e.g., holistic human motion tendencies) and local motion details (e.g., high-frequency changes of keypoints), is essential for video-based human pose estimation (VHPE). Current state-of-the-art methods typically unify spatiotemporal learning within a single type of modeling structure (convolution or attention-based blocks), which inherently have difficulties in balancing global and local dynamic modeling and may bias the network to one of them, leading to suboptimal performance. Moreover, existing VHPE models suffer from quadratic complexity when capturing global dependencies, limiting their applicability especially for high-resolution sequences. Recently, the state space models (known as Mamba) have demonstrated significant potential in modeling long-range contexts with linear complexity; however, they are restricted to 1D sequential data. In this paper, we present a novel framework that extends Mamba from two aspects to separately learn global and local high-resolution spatiotemporal representations for VHPE. Specifically, we first propose a Global Spatiotemporal Mamba, which performs 6D selective space-time scan and spatial- and temporal-modulated scan merging to efficiently extract global representations from high-resolution sequences. We further introduce a windowed space-time scan-based Local Refinement Mamba to enhance the high-frequency details of localized keypoint motions. Extensive experiments on four benchmark datasets demonstrate that the proposed model outperforms state-of-the-art VHPE approaches while achieving better computational trade-offs.
comment: This paper is accepted to ICCV 2025
☆ Into the Unknown: Towards using Generative Models for Sampling Priors of Environment Uncertainty for Planning in Configuration Spaces
Priors are vital for planning under partial observability, yet difficult to obtain in practice. We present a sampling-based pipeline that leverages large-scale pretrained generative models to produce probabilistic priors capturing environmental uncertainty and spatio-semantic relationships in a zero-shot manner. Conditioned on partial observations, the pipeline recovers complete RGB-D point cloud samples with occupancy and target semantics, formulated to be directly useful in configuration-space planning. We establish a Matterport3D benchmark of rooms partially visible through doorways, where a robot must navigate to an unobserved target object. Effective priors for this setting must represent both occupancy and target-location uncertainty in unobserved regions. Experiments show that our approach recovers commonsense spatial semantics consistent with ground truth, yielding diverse, clean 3D point clouds usable in motion planning, highlight the promise of generative models as a rich source of priors for robotic planning.
comment: Under Review
☆ COCO-Tree: Compositional Hierarchical Concept Trees for Enhanced Reasoning in Vision Language Models EMNLP 2025
Compositional reasoning remains a persistent weakness of modern vision language models (VLMs): they often falter when a task hinges on understanding how multiple objects, attributes, and relations interact within an image. Multiple research works have attempted to improve compositionality performance by creative tricks such as improving prompt structure, chain of thought reasoning, etc. A more recent line of work attempts to impart additional reasoning in VLMs using well-trained Large Language Models (LLMs), which are far superior in linguistic understanding than VLMs to compensate for the limited linguistic prowess of VLMs. However, these approaches are either resource-intensive or do not provide an interpretable reasoning process. In this paper, we present 'COCO-Tree' - a novel approach that augments VLM outputs with carefully designed neurosymbolic concept trees learned from LLMs to improve VLM's linguistic reasoning. COCO-Tree's beam search-inspired reasoning process boosts compositionality performance and provides a rationale behind VLM predictions. Empirical results on four compositionality benchmarks, Winoground, EqBench, ColorSwap, and SugarCrepe, in seven different open-source VLMs with varying sizes, demonstrate that COCO-Tree significantly improves compositional generalization by 5-10% over baselines.
comment: EMNLP 2025 (main)
☆ Frequency Domain Unlocks New Perspectives for Abdominal Medical Image Segmentation
Accurate segmentation of tumors and adjacent normal tissues in medical images is essential for surgical planning and tumor staging. Although foundation models generally perform well in segmentation tasks, they often struggle to focus on foreground areas in complex, low-contrast backgrounds, where some malignant tumors closely resemble normal organs, complicating contextual differentiation. To address these challenges, we propose the Foreground-Aware Spectrum Segmentation (FASS) framework. First, we introduce a foreground-aware module to amplify the distinction between background and the entire volume space, allowing the model to concentrate more effectively on target areas. Next, a feature-level frequency enhancement module, based on wavelet transform, extracts discriminative high-frequency features to enhance boundary recognition and detail perception. Eventually, we introduce an edge constraint module to preserve geometric continuity in segmentation boundaries. Extensive experiments on multiple medical datasets demonstrate superior performance across all metrics, validating the effectiveness of our framework, particularly in robustness under complex conditions and fine structure recognition. Our framework significantly enhances segmentation of low-contrast images, paving the way for applications in more diverse and complex medical imaging scenarios.
☆ ContextGen: Contextual Layout Anchoring for Identity-Consistent Multi-Instance Generation
Multi-instance image generation (MIG) remains a significant challenge for modern diffusion models due to key limitations in achieving precise control over object layout and preserving the identity of multiple distinct subjects. To address these limitations, we introduce ContextGen, a novel Diffusion Transformer framework for multi-instance generation that is guided by both layout and reference images. Our approach integrates two key technical contributions: a Contextual Layout Anchoring (CLA) mechanism that incorporates the composite layout image into the generation context to robustly anchor the objects in their desired positions, and Identity Consistency Attention (ICA), an innovative attention mechanism that leverages contextual reference images to ensure the identity consistency of multiple instances. Recognizing the lack of large-scale, hierarchically-structured datasets for this task, we introduce IMIG-100K, the first dataset with detailed layout and identity annotations. Extensive experiments demonstrate that ContextGen sets a new state-of-the-art, outperforming existing methods in control precision, identity fidelity, and overall visual quality.
comment: Project Page: https://nenhang.github.io/ContextGen/
☆ Perspective-aware 3D Gaussian Inpainting with Multi-view Consistency
3D Gaussian inpainting, a critical technique for numerous applications in virtual reality and multimedia, has made significant progress with pretrained diffusion models. However, ensuring multi-view consistency, an essential requirement for high-quality inpainting, remains a key challenge. In this work, we present PAInpainter, a novel approach designed to advance 3D Gaussian inpainting by leveraging perspective-aware content propagation and consistency verification across multi-view inpainted images. Our method iteratively refines inpainting and optimizes the 3D Gaussian representation with multiple views adaptively sampled from a perspective graph. By propagating inpainted images as prior information and verifying consistency across neighboring views, PAInpainter substantially enhances global consistency and texture fidelity in restored 3D scenes. Extensive experiments demonstrate the superiority of PAInpainter over existing methods. Our approach achieves superior 3D inpainting quality, with PSNR scores of 26.03 dB and 29.51 dB on the SPIn-NeRF and NeRFiller datasets, respectively, highlighting its effectiveness and generalization capability.
☆ A Survey on Agentic Multimodal Large Language Models
With the recent emergence of revolutionary autonomous agentic systems, research community is witnessing a significant shift from traditional static, passive, and domain-specific AI agents toward more dynamic, proactive, and generalizable agentic AI. Motivated by the growing interest in agentic AI and its potential trajectory toward AGI, we present a comprehensive survey on Agentic Multimodal Large Language Models (Agentic MLLMs). In this survey, we explore the emerging paradigm of agentic MLLMs, delineating their conceptual foundations and distinguishing characteristics from conventional MLLM-based agents. We establish a conceptual framework that organizes agentic MLLMs along three fundamental dimensions: (i) Agentic internal intelligence functions as the system's commander, enabling accurate long-horizon planning through reasoning, reflection, and memory; (ii) Agentic external tool invocation, whereby models proactively use various external tools to extend their problem-solving capabilities beyond their intrinsic knowledge; and (iii) Agentic environment interaction further situates models within virtual or physical environments, allowing them to take actions, adapt strategies, and sustain goal-directed behavior in dynamic real-world scenarios. To further accelerate research in this area for the community, we compile open-source training frameworks, training and evaluation datasets for developing agentic MLLMs. Finally, we review the downstream applications of agentic MLLMs and outline future research directions for this rapidly evolving field. To continuously track developments in this rapidly evolving field, we will also actively update a public repository at https://github.com/HJYao00/Awesome-Agentic-MLLMs.
☆ Mixup Helps Understanding Multimodal Video Better
Multimodal video understanding plays a crucial role in tasks such as action recognition and emotion classification by combining information from different modalities. However, multimodal models are prone to overfitting strong modalities, which can dominate learning and suppress the contributions of weaker ones. To address this challenge, we first propose Multimodal Mixup (MM), which applies the Mixup strategy at the aggregated multimodal feature level to mitigate overfitting by generating virtual feature-label pairs. While MM effectively improves generalization, it treats all modalities uniformly and does not account for modality imbalance during training. Building on MM, we further introduce Balanced Multimodal Mixup (B-MM), which dynamically adjusts the mixing ratios for each modality based on their relative contributions to the learning objective. Extensive experiments on several datasets demonstrate the effectiveness of our methods in improving generalization and multimodal robustness.
☆ On the Optimal Representation Efficiency of Barlow Twins: An Information-Geometric Interpretation
Self-supervised learning (SSL) has achieved remarkable success by learning meaningful representations without labeled data. However, a unified theoretical framework for understanding and comparing the efficiency of different SSL paradigms remains elusive. In this paper, we introduce a novel information-geometric framework to quantify representation efficiency. We define representation efficiency $\eta$ as the ratio between the effective intrinsic dimension of the learned representation space and its ambient dimension, where the effective dimension is derived from the spectral properties of the Fisher Information Matrix (FIM) on the statistical manifold induced by the encoder. Within this framework, we present a theoretical analysis of the Barlow Twins method. Under specific but natural assumptions, we prove that Barlow Twins achieves optimal representation efficiency ($\eta = 1$) by driving the cross-correlation matrix of representations towards the identity matrix, which in turn induces an isotropic FIM. This work provides a rigorous theoretical foundation for understanding the effectiveness of Barlow Twins and offers a new geometric perspective for analyzing SSL algorithms.
comment: 7 pages
☆ Chart-RVR: Reinforcement Learning with Verifiable Rewards for Explainable Chart Reasoning
The capabilities of Large Vision-Language Models (LVLMs) have reached state-of-the-art on many visual reasoning tasks, including chart reasoning, yet they still falter on out-of-distribution (OOD) data, and degrade further when asked to produce their chain-of-thought (CoT) rationales, limiting explainability. We present Chart-RVR, a general framework that fine-tunes LVLMs to be more robust and explainable for chart reasoning by coupling Group Relative Policy Optimization (GRPO) with automatically verifiable rewards. Our framework comprises of three rewards that maximize: (i) correct chart-type classification, (ii) faithful chart table reconstruction, and (iii) process conformity. Applied to 3-billion-parameter LVLMs, Chart-RVR consistently outperforms standard supervised fine-tuning (SFT) on both in-distribution and out-of-distribution datasets, closing the OOD performance gap while improving rationale fidelity. The resulting models, the Chart-RVR-3B series, achieve state-of-the-art results on six chart-reasoning benchmarks spanning in-domain and OOD settings, surpassing all existing models of comparable size. Beyond accuracy, Chart-RVR yields more interpretable CoT rationales, strengthening trust and reliability - showcasing the power of verifiable rewards with GRPO for training reliable, interpretable chart-reasoning models.
comment: 23 pages
☆ IUT-Plug: A Plug-in tool for Interleaved Image-Text Generation
Existing vision language models (VLMs), including GPT-4 and DALL-E, often struggle to preserve logic, object identity, and style in multimodal image-text generation. This limitation significantly hinders the generalization capability of VLMs in complex image-text input-output scenarios. To address this issue, we propose IUT-Plug, a module grounded in an Image Understanding Tree (IUT), which enhances existing interleaved VLMs through explicit structured reasoning, thereby mitigating context drift in logic, entity identity, and style. The proposed framework operates in two stages. (1) A dynamic IUT-Plug extraction module parses visual scenes into hierarchical symbolic structures. (2) A coordinated narrative-flow and image synthesis mechanism ensures cross-modal consistency. To evaluate our approach, we construct a novel benchmark based on 3,000 real human-generated question-answer pairs over fine-tuned large models, introducing a dynamic evaluation protocol for quantifying context drift in interleaved VLMs. Experimental results demonstrate that IUT-Plug not only improves accuracy on established benchmarks but also effectively alleviates the three critical forms of context drift across diverse multimodal question answering (QA) scenarios.
♻ ☆ Breaking the Compression Ceiling: Data-Free Pipeline for Ultra-Efficient Delta Compression NeurIPS 2025
With the rise of the fine-tuned-pretrained paradigm, storing numerous fine-tuned models for multi-tasking creates significant storage overhead. Delta compression alleviates this by storing only the pretrained model and the highly compressed delta weights (the differences between fine-tuned and pretrained model weights). However, existing methods fail to maintain both high compression and performance, and often rely on data. To address these challenges, we propose UltraDelta, the first data-free delta compression pipeline that achieves both ultra-high compression and strong performance. UltraDelta is designed to minimize redundancy, maximize information, and stabilize performance across inter-layer, intra-layer, and global dimensions, using three key components: (1) Variance-Based Mixed Sparsity Allocation assigns sparsity based on variance, giving lower sparsity to high-variance layers to preserve inter-layer information. (2) Distribution-Aware Compression applies uniform quantization and then groups parameters by value, followed by group-wise pruning, to better preserve intra-layer distribution. (3) Trace-Norm-Guided Rescaling uses the trace norm of delta weights to estimate a global rescaling factor, improving model stability under higher compression. Extensive experiments across (a) large language models (fine-tuned on LLaMA-2 7B and 13B) with up to 50x compression, (b) general NLP models (RoBERTa-base, T5-base) with up to 224x compression, (c) vision models (ViT-B/32, ViT-L/14) with up to 132x compression, and (d) multi-modal models (BEiT-3) with 18x compression, demonstrate that UltraDelta consistently outperforms existing methods, especially under ultra-high compression. Code is available at https://github.com/xiaohuiwang000/UltraDelta.
comment: Accepted at NeurIPS 2025
♻ ☆ StreamAgent: Towards Anticipatory Agents for Streaming Video Understanding
Real-time streaming video understanding in domains such as autonomous driving and intelligent surveillance poses challenges beyond conventional offline video processing, requiring continuous perception, proactive decision making, and responsive interaction based on dynamically evolving visual content. However, existing methods rely on alternating perception-reaction or asynchronous triggers, lacking task-driven planning and future anticipation, which limits their real-time responsiveness and proactive decision making in evolving video streams. To this end, we propose a StreamAgent that anticipates the temporal intervals and spatial regions expected to contain future task-relevant information to enable proactive and goal-driven responses. Specifically, we integrate question semantics and historical observations through prompting the anticipatory agent to anticipate the temporal progression of key events, align current observations with the expected future evidence, and subsequently adjust the perception action (e.g., attending to task-relevant regions or continuously tracking in subsequent frames). To enable efficient inference, we design a streaming KV-cache memory mechanism that constructs a hierarchical memory structure for selective recall of relevant tokens, enabling efficient semantic retrieval while reducing the overhead of storing all tokens in the traditional KV-cache. Extensive experiments on streaming and long video understanding tasks demonstrate that our method outperforms existing methods in response accuracy and real-time efficiency, highlighting its practical value for real-world streaming scenarios.
♻ ☆ InstructSAM: A Training-Free Framework for Instruction-Oriented Remote Sensing Object Recognition NeurIPS 2025
Language-Guided object recognition in remote sensing imagery is crucial for large-scale mapping and automated data annotation. However, existing open-vocabulary and visual grounding methods rely on explicit category cues, limiting their ability to handle complex or implicit queries that require advanced reasoning. To address this issue, we introduce a new suite of tasks, including Instruction-Oriented Object Counting, Detection, and Segmentation (InstructCDS), covering open-vocabulary, open-ended, and open-subclass scenarios. We further present EarthInstruct, the first InstructCDS benchmark for earth observation. It is constructed from two diverse remote sensing datasets with varying spatial resolutions and annotation rules across 20 categories, necessitating models to interpret dataset-specific instructions. Given the scarcity of semantically rich labeled data in remote sensing, we propose InstructSAM, a training-free framework for instruction-driven object recognition. InstructSAM leverages large vision-language models to interpret user instructions and estimate object counts, employs SAM2 for mask proposal, and formulates mask-label assignment as a binary integer programming problem. By integrating semantic similarity with counting constraints, InstructSAM efficiently assigns categories to predicted masks without relying on confidence thresholds. Experiments demonstrate that InstructSAM matches or surpasses specialized baselines across multiple tasks while maintaining near-constant inference time regardless of object count, reducing output tokens by 89% and overall runtime by over 32% compared to direct generation approaches. We believe the contributions of the proposed tasks, benchmark, and effective approach will advance future research in developing versatile object recognition systems.
comment: Accepted to NeurIPS 2025
♻ ☆ SyncHuman: Synchronizing 2D and 3D Generative Models for Single-view Human Reconstruction NeurIPS 2025
Photorealistic 3D full-body human reconstruction from a single image is a critical yet challenging task for applications in films and video games due to inherent ambiguities and severe self-occlusions. While recent approaches leverage SMPL estimation and SMPL-conditioned image generative models to hallucinate novel views, they suffer from inaccurate 3D priors estimated from SMPL meshes and have difficulty in handling difficult human poses and reconstructing fine details. In this paper, we propose SyncHuman, a novel framework that combines 2D multiview generative model and 3D native generative model for the first time, enabling high-quality clothed human mesh reconstruction from single-view images even under challenging human poses. Multiview generative model excels at capturing fine 2D details but struggles with structural consistency, whereas 3D native generative model generates coarse yet structurally consistent 3D shapes. By integrating the complementary strengths of these two approaches, we develop a more effective generation framework. Specifically, we first jointly fine-tune the multiview generative model and the 3D native generative model with proposed pixel-aligned 2D-3D synchronization attention to produce geometrically aligned 3D shapes and 2D multiview images. To further improve details, we introduce a feature injection mechanism that lifts fine details from 2D multiview images onto the aligned 3D shapes, enabling accurate and high-fidelity reconstruction. Extensive experiments demonstrate that SyncHuman achieves robust and photo-realistic 3D human reconstruction, even for images with challenging poses. Our method outperforms baseline methods in geometric accuracy and visual fidelity, demonstrating a promising direction for future 3D generation models.
comment: NeurIPS 2025 https://xishuxishu.github.io/SyncHuman.github.io/
♻ ☆ Q-Router: Agentic Video Quality Assessment with Expert Model Routing and Artifact Localization
Video quality assessment (VQA) is a fundamental computer vision task that aims to predict the perceptual quality of a given video in alignment with human judgments. Existing performant VQA models trained with direct score supervision suffer from (1) poor generalization across diverse content and tasks, ranging from user-generated content (UGC), short-form videos, to AI-generated content (AIGC), (2) limited interpretability, and (3) lack of extensibility to novel use cases or content types. We propose Q-Router, an agentic framework for universal VQA with a multi-tier model routing system. Q-Router integrates a diverse set of expert models and employs vision--language models (VLMs) as real-time routers that dynamically reason and then ensemble the most appropriate experts conditioned on the input video semantics. We build a multi-tiered routing system based on the computing budget, with the heaviest tier involving a specific spatiotemporal artifacts localization for interpretability. This agentic design enables Q-Router to combine the complementary strengths of specialized experts, achieving both flexibility and robustness in delivering consistent performance across heterogeneous video sources and tasks. Extensive experiments demonstrate that Q-Router matches or surpasses state-of-the-art VQA models on a variety of benchmarks, while substantially improving generalization and interpretability. Moreover, Q-Router excels on the quality-based question answering benchmark, Q-Bench-Video, highlighting its promise as a foundation for next-generation VQA systems. Finally, we show that Q-Router capably localizes spatiotemporal artifacts, showing potential as a reward function for post-training video generation models.
♻ ☆ Video-LMM Post-Training: A Deep Dive into Video Reasoning with Large Multimodal Models
Video understanding represents the most challenging frontier in computer vision, requiring models to reason about complex spatiotemporal relationships, long-term dependencies, and multimodal evidence. The recent emergence of Video-Large Multimodal Models (Video-LMMs), which integrate visual encoders with powerful decoder-based language models, has demonstrated remarkable capabilities in video understanding tasks. However, the critical phase that transforms these models from basic perception systems into sophisticated reasoning engines, post-training, remains fragmented across the literature. This survey provides the first comprehensive examination of post-training methodologies for Video-LMMs, encompassing three fundamental pillars: supervised fine-tuning (SFT) with chain-of-thought, reinforcement learning (RL) from verifiable objectives, and test-time scaling (TTS) through enhanced inference computation. We present a structured taxonomy that clarifies the roles, interconnections, and video-specific adaptations of these techniques, addressing unique challenges such as temporal localization, spatiotemporal grounding, long video efficiency, and multimodal evidence integration. Through systematic analysis of representative methods, we synthesize key design principles, insights, and evaluation protocols while identifying critical open challenges in reward design, scalability, and cost-performance optimization. We further curate essential benchmarks, datasets, and metrics to facilitate rigorous assessment of post-training effectiveness. This survey aims to provide researchers and practitioners with a unified framework for advancing Video-LMM capabilities. Additional resources and updates are maintained at: https://github.com/yunlong10/Awesome-Video-LMM-Post-Training
comment: The 1st version
♻ ☆ Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence. We first propose a holistic taxonomy of spatial tasks that unifies existing benchmarks and a standardized protocol for the fair evaluation of state-of-the-art proprietary and open-source models across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence (SI), yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail even the most advanced multimodal models.
♻ ☆ ViDRiP-LLaVA: A Dataset and Benchmark for Diagnostic Reasoning from Pathology Videos
We present ViDRiP-LLaVA, the first large multimodal model (LMM) in computational pathology that integrates three distinct image scenarios, including single patch images, automatically segmented pathology video clips, and manually segmented pathology videos. This integration closely mirrors the natural diagnostic process of pathologists. By generating detailed histological descriptions and culminating in a definitive sign-out diagnosis, ViDRiP-LLaVA bridges visual narratives with diagnostic reasoning. Central to our approach is the ViDRiP-Instruct dataset, comprising 4278 video and diagnosis-specific chain-of-thought instructional pairs sourced from educational histopathology videos on YouTube. Although high-quality data is critical for enhancing diagnostic reasoning, its creation is time-intensive and limited in volume. To overcome this challenge, we transfer knowledge from existing single-image instruction datasets to train on weakly annotated, keyframe-extracted clips, followed by fine-tuning on manually segmented videos. ViDRiP-LLaVA establishes a new benchmark in pathology video analysis and offers a promising foundation for future AI systems that support clinical decision-making through integrated visual and diagnostic reasoning. Our code, data, and model are publicly available at: https://github.com/QuIIL/ViDRiP-LLaVA.
♻ ☆ Equilibrium Matching: Generative Modeling with Implicit Energy-Based Models
We introduce Equilibrium Matching (EqM), a generative modeling framework built from an equilibrium dynamics perspective. EqM discards the non-equilibrium, time-conditional dynamics in traditional diffusion and flow-based generative models and instead learns the equilibrium gradient of an implicit energy landscape. Through this approach, we can adopt an optimization-based sampling process at inference time, where samples are obtained by gradient descent on the learned landscape with adjustable step sizes, adaptive optimizers, and adaptive compute. EqM surpasses the generation performance of diffusion/flow models empirically, achieving an FID of 1.90 on ImageNet 256$\times$256. EqM is also theoretically justified to learn and sample from the data manifold. Beyond generation, EqM is a flexible framework that naturally handles tasks including partially noised image denoising, OOD detection, and image composition. By replacing time-conditional velocities with a unified equilibrium landscape, EqM offers a tighter bridge between flow and energy-based models and a simple route to optimization-driven inference.
♻ ☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly on mathematics and programming tasks. Similar to how traditional RL helps agents explore and learn new strategies, RLVR is believed to enable LLMs to continuously self-improve, thus acquiring novel reasoning abilities beyond those of the corresponding base models. In this study we critically examine the current state of RLVR by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across various model families, RL algorithms, and math, coding, and visual reasoning benchmarks, using pass@k at large k values as the evaluation metric. Surprisingly, we find that the current training setup does not elicit fundamentally new reasoning patterns. While RLVR-trained models outperform their base models at small k (e.g., k = 1), the base models achieve a higher pass@k score when k is large. Coverage and perplexity analyses show that the observed reasoning abilities originate from and are bounded by the base model. Treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in leveraging the potential of the base model. By contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model's reasoning capabilities. Overall, our findings suggest that current RLVR methods have not yet realized the potential of RL to elicit truly novel reasoning abilities in LLMs. This highlights the need for improved RL paradigms, such as continual scaling and multi-turn agent-environment interaction, to unlock this potential.
comment: 30 pages, 27 figures
♻ ☆ Contrastive Representation Distillation via Multi-Scale Feature Decoupling
Knowledge distillation enhances the performance of compact student networks by transferring knowledge from more powerful teacher networks without introducing additional parameters. In the feature space, local regions within an individual global feature encode distinct yet interdependent semantic information. Previous feature-based distillation methods mainly emphasize global feature alignment while neglecting the decoupling of local regions within an individual global feature, which often results in semantic confusion and suboptimal performance. Moreover, conventional contrastive representation distillation suffers from low efficiency due to its reliance on a large memory buffer to store feature samples. To address these limitations, this work proposes MSDCRD, a model-agnostic distillation framework that systematically decouples global features into multi-scale local features and leverages the resulting semantically rich feature samples with tailored sample-wise and feature-wise contrastive losses. This design enables efficient distillation using only a single batch, eliminating the dependence on external memory. Extensive experiments demonstrate that MSDCRD achieves superior performance not only in homogeneous teacher-student settings but also in heterogeneous architectures where feature discrepancies are more pronounced, highlighting its strong generalization capability.
♻ ☆ Automatic Synthesis of High-Quality Triplet Data for Composed Image Retrieval ACM MM 2025
As a challenging vision-language (VL) task, Composed Image Retrieval (CIR) aims to retrieve target images using multimodal (image+text) queries. Although many existing CIR methods have attained promising performance, their reliance on costly, manually labeled triplets hinders scalability and zero-shot capability. To address this issue, we propose a scalable pipeline for automatic triplet generation, along with a fully synthetic dataset named Composed Image Retrieval on High-quality Synthetic Triplets (CIRHS). Our pipeline leverages a large language model (LLM) to generate diverse prompts, controlling a text-to-image generative model to produce image pairs with identical elements in each pair, which are then filtered and reorganized to form the CIRHS dataset. In addition, we introduce Hybrid Contextual Alignment (CoAlign), a novel CIR framework, which can accomplish global alignment and local reasoning within a broader context, enabling the model to learn more robust and informative representations. By utilizing the synthetic CIRHS dataset, CoAlign achieves outstanding zero-shot performance on three commonly used benchmarks, demonstrating for the first time the feasibility of training CIR models on a fully synthetic dataset. Furthermore, under supervised training, our method outperforms all the state-of-the-art supervised CIR approaches, validating the effectiveness of our proposed retrieval framework. The code and the CIRHS dataset will be released soon.
comment: This paper was originally submitted to ACM MM 2025 on April 12, 2025
♻ ☆ Error Propagation Mechanisms and Compensation Strategies for Quantized Diffusion
Diffusion models have transformed image synthesis by establishing unprecedented quality and creativity benchmarks. Nevertheless, their large-scale deployment faces challenges due to computationally intensive iterative denoising processes. Although post-training quantization (PTQ) provides an effective pathway for accelerating sampling, the iterative nature of diffusion models causes stepwise quantization errors to accumulate progressively during generation, inevitably compromising output fidelity. To address this challenge, we develop a theoretical framework that mathematically formulates error propagation in Diffusion Models (DMs), deriving per-step quantization error propagation equations and establishing the first closed-form solution for cumulative error. Building on this theoretical foundation, we propose a timestep-aware cumulative error compensation scheme. Extensive experiments on multiple image datasets demonstrate that our compensation strategy effectively mitigates error propagation, significantly enhancing existing PTQ methods. Specifically, it achieves a 1.2 PSNR improvement over SVDQuant on SDXL W4A4, while incurring only an additional $<$ 0.5\% time overhead.
♻ ☆ Beyond [cls]: Exploring the true potential of Masked Image Modeling representations
Masked Image Modeling (MIM) has emerged as a promising approach for Self-Supervised Learning (SSL) of visual representations. However, the out-of-the-box performance of MIMs is typically inferior to competing approaches. Most users cannot afford fine-tuning due to the need for large amounts of data, high GPU consumption, and specialized user knowledge. Therefore, the practical use of MIM representations is limited. In this paper we ask what is the reason for the poor out-of-the-box performance of MIMs. Is it due to weaker features produced by MIM models, or is it due to suboptimal usage? Through detailed analysis, we show that attention in MIMs is spread almost uniformly over many patches, leading to ineffective aggregation by the [cls] token. Based on this insight, we propose Selective Aggregation to better capture the rich semantic information retained in patch tokens, which significantly improves the out-of-the-box performance of MIM.
♻ ☆ DDFusion:Degradation-Decoupled Fusion Framework for Robust Infrared and Visible Images Fusion
Conventional infrared and visible image fusion(IVIF) methods often assume high-quality inputs, neglecting real-world degradations such as low-light and noise, which limits their practical applicability. To address this, we propose a Degradation-Decoupled Fusion(DDFusion) framework, which achieves degradation decoupling and jointly models degradation suppression and image fusion in a unified manner. Specifically, the Degradation-Decoupled Optimization Network(DDON) performs degradation-specific decomposition to decouple inter-degradation and degradation-information components, followed by component-specific extraction paths for effective suppression of degradation and enhancement of informative features. The Interactive Local-Global Fusion Network (ILGFN) aggregates complementary features across multi-scale pathways and alleviates performance degradation caused by the decoupling between degradation optimization and image fusion. Extensive experiments demonstrate that DDFusion achieves superior fusion performance under both clean and degraded conditions. Our code is available at https://github.com/Lmmh058/DDFusion.
♻ ☆ NeMo: Needle in a Montage for Video-Language Understanding
Recent advances in video large language models (VideoLLMs) call for new evaluation protocols and benchmarks for complex temporal reasoning in video-language understanding. Inspired by the needle in a haystack test widely used by LLMs, we introduce a novel task of Needle in a Montage (NeMo), designed to assess VideoLLMs' critical reasoning capabilities, including long-context recall and temporal grounding. To generate video question answering data for our task, we develop a scalable automated data generation pipeline that facilitates high-quality data synthesis. Built upon the proposed pipeline, we present NeMoBench, a video-language benchmark centered on our task. Specifically, our full set of NeMoBench features 31,378 automatically generated question-answer (QA) pairs from 13,486 videos with various durations ranging from seconds to hours. Experiments demonstrate that our pipeline can reliably and automatically generate high-quality evaluation data, enabling NeMoBench to be continuously updated with the latest videos. We evaluate 20 state-of-the-art models on our benchmark, providing extensive results and key insights into their capabilities and limitations. Our project page is available at: https://lavi-lab.github.io/NeMoBench.
♻ ☆ Isolated Channel Vision Transformers: From Single-Channel Pretraining to Multi-Channel Finetuning BMVC
Vision Transformers (ViTs) have achieved remarkable success in standard RGB image processing tasks. However, applying ViTs to multi-channel imaging (MCI) data, e.g., for medical and remote sensing applications, remains a challenge. In particular, MCI data often consist of layers acquired from different modalities. Directly training ViTs on such data can obscure complementary information and impair the performance. In this paper, we introduce a simple yet effective pretraining framework for large-scale MCI datasets. Our method, named Isolated Channel ViT (IC-ViT), patchifies image channels individually and thereby enables pretraining for multimodal multi-channel tasks. We show that this channel-wise patchifying is a key technique for MCI processing. More importantly, one can pretrain the IC-ViT on single channels and finetune it on downstream multi-channel datasets. This pretraining framework captures dependencies between patches as well as channels and produces robust feature representation. Experiments on various tasks and benchmarks, including JUMP-CP and CHAMMI for cell microscopy imaging, and So2Sat-LCZ42 for satellite imaging, show that the proposed IC-ViT delivers 4-14 percentage points of performance improvement over existing channel-adaptive approaches. Further, its efficient training makes it a suitable candidate for large-scale pretraining of foundation models on heterogeneous data. Our code is available at https://github.com/shermanlian/IC-ViT.
comment: Paper has been accepted by BMVC as an Oral presentation
♻ ☆ ID-Booth: Identity-consistent Face Generation with Diffusion Models
Recent advances in generative modeling have enabled the generation of high-quality synthetic data that is applicable in a variety of domains, including face recognition. Here, state-of-the-art generative models typically rely on conditioning and fine-tuning of powerful pretrained diffusion models to facilitate the synthesis of realistic images of a desired identity. Yet, these models often do not consider the identity of subjects during training, leading to poor consistency between generated and intended identities. In contrast, methods that employ identity-based training objectives tend to overfit on various aspects of the identity, and in turn, lower the diversity of images that can be generated. To address these issues, we present in this paper a novel generative diffusion-based framework, called ID-Booth. ID-Booth consists of a denoising network responsible for data generation, a variational auto-encoder for mapping images to and from a lower-dimensional latent space and a text encoder that allows for prompt-based control over the generation procedure. The framework utilizes a novel triplet identity training objective and enables identity-consistent image generation while retaining the synthesis capabilities of pretrained diffusion models. Experiments with a state-of-the-art latent diffusion model and diverse prompts reveal that our method facilitates better intra-identity consistency and inter-identity separability than competing methods, while achieving higher image diversity. In turn, the produced data allows for effective augmentation of small-scale datasets and training of better-performing recognition models in a privacy-preserving manner. The source code for the ID-Booth framework is publicly available at https://github.com/dariant/ID-Booth.
comment: IEEE International Conference on Automatic Face and Gesture Recognition (FG) 2025, 14 pages
♻ ☆ Editable-DeepSC: Reliable Cross-Modal Semantic Communications for Facial Editing
Real-time computer vision (CV) plays a crucial role in various real-world applications, whose performance is highly dependent on communication networks. Nonetheless, the data-oriented characteristics of conventional communications often do not align with the special needs of real-time CV tasks. To alleviate this issue, the recently emerged semantic communications only transmit task-related semantic information and exhibit a promising landscape to address this problem. However, the communication challenges associated with Semantic Facial Editing, one of the most important real-time CV applications on social media, still remain largely unexplored. In this paper, we fill this gap by proposing Editable-DeepSC, a novel cross-modal semantic communication approach for facial editing. Firstly, we theoretically discuss different transmission schemes that separately handle communications and editings, and emphasize the necessity of Joint Editing-Channel Coding (JECC) via iterative attributes matching, which integrates editings into the communication chain to preserve more semantic mutual information. To compactly represent the high-dimensional data, we leverage inversion methods via pre-trained StyleGAN priors for semantic coding. To tackle the dynamic channel noise conditions, we propose SNR-aware channel coding via model fine-tuning. Extensive experiments indicate that Editable-DeepSC can achieve superior editings while significantly saving the transmission bandwidth, even under high-resolution and out-of-distribution (OOD) settings.
♻ ☆ The Illusion of Progress? A Critical Look at Test-Time Adaptation for Vision-Language Models NeurIPS 2025
Test-time adaptation (TTA) methods have gained significant attention for enhancing the performance of vision-language models (VLMs) such as CLIP during inference, without requiring additional labeled data. However, current TTA researches generally suffer from major limitations such as duplication of baseline results, limited evaluation metrics, inconsistent experimental settings, and insufficient analysis. These problems hinder fair comparisons between TTA methods and make it difficult to assess their practical strengths and weaknesses. To address these challenges, we introduce TTA-VLM, a comprehensive benchmark for evaluating TTA methods on VLMs. Our benchmark implements 8 episodic TTA and 7 online TTA methods within a unified and reproducible framework, and evaluates them across 15 widely used datasets. Unlike prior studies focused solely on CLIP, we extend the evaluation to SigLIP--a model trained with a Sigmoid loss--and include training-time tuning methods such as CoOp, MaPLe, and TeCoA to assess generality. Beyond classification accuracy, TTA-VLM incorporates various evaluation metrics, including robustness, calibration, out-of-distribution detection, and stability, enabling a more holistic assessment of TTA methods. Through extensive experiments, we find that 1) existing TTA methods produce limited gains compared to the previous pioneering work; 2) current TTA methods exhibit poor collaboration with training-time fine-tuning methods; 3) accuracy gains frequently come at the cost of reduced model trustworthiness. We release TTA-VLM to provide fair comparison and comprehensive evaluation of TTA methods for VLMs, and we hope it encourages the community to develop more reliable and generalizable TTA strategies.
comment: NeurIPS 2025 Datasets and Benchmarks Track. Github link: https://github.com/TomSheng21/tta-vlm
♻ ☆ Surface-Aware Distilled 3D Semantic Features
Many 3D tasks such as pose alignment, animation, motion transfer, and 3D reconstruction rely on establishing correspondences between 3D shapes. This challenge has recently been approached by pairwise matching of semantic features from pre-trained vision models. However, despite their power, these features struggle to differentiate instances of the same semantic class such as ``left hand'' versus ``right hand'' which leads to substantial mapping errors. To solve this, we learn a surface-aware embedding space that is robust to these ambiguities while facilitating shared mapping for an entire family of 3D shapes. Importantly, our approach is self-supervised and requires only a small number of unpaired training meshes to infer features for new possibly imperfect 3D shapes at test time. We achieve this by introducing a contrastive loss that preserves the semantic content of the features distilled from foundational models while disambiguating features located far apart on the shape's surface. We observe superior performance in correspondence matching benchmarks and enable downstream applications including 2D-to-3D and 3D-to-3D texture transfer, in-part segmentation, pose alignment, and motion transfer in low-data regimes. Unlike previous pairwise approaches, our solution constructs a joint embedding space, where both seen and unseen 3D shapes are implicitly aligned without further optimization. The code is available at https://graphics.tudelft.nl/SurfaceAware3DFeatures.
♻ ☆ Towards Robust and Realible Multimodal Fake News Detection with Incomplete Modality
Multimodal fake news detection (MFND) has become an urgent task with the emergence of huge multimodal fake content on social media platforms. Previous studies mainly focus on complex feature extraction and fusion to learn discriminative information from multimodal content. However, in real-world applications, multimedia news may naturally lose some information during dissemination, resulting in modality incompleteness, which is detrimental to the generalization and robustness of existing models. To this end, we propose a novel generic and robust multimodal fusion strategy, termed Multi-expert Modality-incomplete Learning Network (MMLNet), which is simple yet effective. It consists of three key steps: (1) Multi-Expert Collaborative Reasoning to compensate for missing modalities by dynamically leveraging complementary information through multiple experts. (2) Incomplete Modality Adapters compensates for the missing information by leveraging the new feature distribution. (3) Modality Missing Learning leveraging an label-aware adaptive weighting strategy to learn a robust representation with contrastive learning. We evaluate MMLNet on three real-world benchmarks across two languages, demonstrating superior performance compared to state-of-the-art methods while maintaining relative simplicity. By ensuring the accuracy of fake news detection in incomplete modality scenarios caused by information propagation, MMLNet effectively curbs the spread of malicious misinformation. Code is publicly available at https://github.com/zhyhome/MMLNet.
♻ ☆ Real-Time Position-Aware View Synthesis from Single-View Input
Recent advancements in view synthesis have significantly enhanced immersive experiences across various computer graphics and multimedia applications, including telepresence and entertainment. By enabling the generation of new perspectives from a single input view, view synthesis allows users to better perceive and interact with their environment. However, many state-of-the-art methods, while achieving high visual quality, face limitations in real-time performance, which makes them less suitable for live applications where low latency is critical. In this paper, we present a lightweight, position-aware network designed for real-time view synthesis from a single input image and a target camera pose. The proposed framework consists of a Position Aware Embedding, which efficiently maps positional information from the target pose to generate high dimensional feature maps. These feature maps, along with the input image, are fed into a Rendering Network that merges features from dual encoder branches to resolve both high and low level details, producing a realistic new view of the scene. Experimental results demonstrate that our method achieves superior efficiency and visual quality compared to existing approaches, particularly in handling complex translational movements without explicit geometric operations like warping. This work marks a step toward enabling real-time live and interactive telepresence applications.
♻ ☆ SWIFT: Semantic Watermarking for Image Forgery Thwarting
This paper proposes a novel approach towards image authentication and tampering detection by using watermarking as a communication channel for semantic information. We modify the HiDDeN deep-learning watermarking architecture to embed and extract high-dimensional real vectors representing image captions. Our method improves significantly robustness on both malign and benign edits. We also introduce a local confidence metric correlated with Message Recovery Rate, enhancing the method's practical applicability. This approach bridges the gap between traditional watermarking and passive forensic methods, offering a robust solution for image integrity verification.
comment: Accepted at IEEE WIFS 2024; Code released at : https://github.com/gautierevn/swift_watermarking
♻ ☆ OVS Meets Continual Learning: Towards Sustainable Open-Vocabulary Segmentation
Open-Vocabulary Segmentation (OVS) aims to segment classes that are not present in the training dataset. However, most existing studies assume that the training data is fixed in advance, overlooking more practical scenarios where new datasets are continuously collected over time. To address this, we first analyze how existing OVS models perform under such conditions. In this context, we explore several approaches such as retraining, fine-tuning, and continual learning but find that each of them has clear limitations. To address these issues, we propose ConOVS, a novel continual learning method based on a Mixture-of-Experts framework. ConOVS dynamically combines expert decoders based on the probability that an input sample belongs to the distribution of each incremental dataset. Through extensive experiments, we show that ConOVS consistently outperforms existing methods across pre-training, incremental, and zero-shot test datasets, effectively expanding the recognition capabilities of OVS models when data is collected sequentially.
♻ ☆ TTF-VLA: Temporal Token Fusion via Pixel-Attention Integration for Vision-Language-Action Models AAAI 2026
Vision-Language-Action (VLA) models process visual inputs independently at each timestep, discarding valuable temporal information inherent in robotic manipulation tasks. This frame-by-frame processing makes models vulnerable to visual noise while ignoring the substantial coherence between consecutive frames in manipulation sequences. We propose Temporal Token Fusion (TTF), a training-free approach that intelligently integrates historical and current visual representations to enhance VLA inference quality. Our method employs dual-dimension detection combining efficient grayscale pixel difference analysis with attention-based semantic relevance assessment, enabling selective temporal token fusion through hard fusion strategies and keyframe anchoring to prevent error accumulation. Comprehensive experiments across LIBERO, SimplerEnv, and real robot tasks demonstrate consistent improvements: 4.0 percentage points average on LIBERO (72.4\% vs 68.4\% baseline), cross-environment validation on SimplerEnv (4.8\% relative improvement), and 8.7\% relative improvement on real robot tasks. Our approach proves model-agnostic, working across OpenVLA and VLA-Cache architectures. Notably, TTF reveals that selective Query matrix reuse in attention mechanisms enhances rather than compromises performance, suggesting promising directions for direct KQV matrix reuse strategies that achieve computational acceleration while improving task success rates.
comment: Manuscript submitted to AAAI 2026, currently under review
♻ ☆ MRFD: Multi-Region Fusion Decoding with Self-Consistency for Mitigating Hallucinations in LVLMs EMNLP 2025
Large Vision-Language Models (LVLMs) have shown strong performance across multimodal tasks. However, they often produce hallucinations -- text that is inconsistent with visual input, due to the limited ability to verify information in different regions of the image. To address this, we propose Multi-Region Fusion Decoding (MRFD), a training-free decoding method that improves factual grounding by modeling inter-region consistency. MRFD identifies salient regions using cross-attention, generates initial responses for each, and computes reliability weights based on Jensen-Shannon Divergence (JSD) among the responses. These weights guide a consistency-aware fusion of per-region predictions, using region-aware prompts inspired by Chain-of-Thought reasoning. Experiments across multiple LVLMs and benchmarks show that MRFD significantly reduces hallucinations and improves response factuality without requiring model updates.
comment: EMNLP 2025
♻ ☆ One Stone with Two Birds: A Null-Text-Null Frequency-Aware Diffusion Models for Text-Guided Image Inpainting NeurIPS 2025
Text-guided image inpainting aims at reconstructing the masked regions as per text prompts, where the longstanding challenges lie in the preservation for unmasked regions, while achieving the semantics consistency between unmasked and inpainted masked regions. Previous arts failed to address both of them, always with either of them to be remedied. Such facts, as we observed, stem from the entanglement of the hybrid (e.g., mid-and-low) frequency bands that encode varied image properties, which exhibit different robustness to text prompts during the denoising process. In this paper, we propose a null-text-null frequency-aware diffusion models, dubbed \textbf{NTN-Diff}, for text-guided image inpainting, by decomposing the semantics consistency across masked and unmasked regions into the consistencies as per each frequency band, while preserving the unmasked regions, to circumvent two challenges in a row. Based on the diffusion process, we further divide the denoising process into early (high-level noise) and late (low-level noise) stages, where the mid-and-low frequency bands are disentangled during the denoising process. As observed, the stable mid-frequency band is progressively denoised to be semantically aligned during text-guided denoising process, which, meanwhile, serves as the guidance to the null-text denoising process to denoise low-frequency band for the masked regions, followed by a subsequent text-guided denoising process at late stage, to achieve the semantics consistency for mid-and-low frequency bands across masked and unmasked regions, while preserve the unmasked regions. Extensive experiments validate the superiority of NTN-Diff over the state-of-the-art diffusion models to text-guided diffusion models. Our code can be accessed from https://github.com/htyjers/NTN-Diff.
comment: 27 pages, 11 figures, to appear at NeurIPS 2025
♻ ☆ Learning Shared Representations from Unpaired Data NeurIPS 2025
Learning shared representations is a primary area of multimodal representation learning. The current approaches to achieve a shared embedding space rely heavily on paired samples from each modality, which are significantly harder to obtain than unpaired ones. In this work, we demonstrate that shared representations can be learned almost exclusively from unpaired data. Our arguments are grounded in the spectral embeddings of the random walk matrices constructed independently from each unimodal representation. Empirical results in computer vision and natural language processing domains support its potential, revealing the effectiveness of unpaired data in capturing meaningful cross-modal relations, demonstrating high capabilities in retrieval tasks, generation, arithmetics, zero-shot, and cross-domain classification. This work, to the best of our knowledge, is the first to demonstrate these capabilities almost exclusively from unpaired samples, giving rise to a cross-modal embedding that could be viewed as universal, i.e., independent of the specific modalities of the data. Our project page: https://shaham-lab.github.io/SUE_page.
comment: Accepted to NeurIPS 2025
♻ ☆ When Language Model Guides Vision: Grounding DINO for Cattle Muzzle Detection
Muzzle patterns are among the most effective biometric traits for cattle identification. Fast and accurate detection of the muzzle region as the region of interest is critical to automatic visual cattle identification.. Earlier approaches relied on manual detection, which is labor-intensive and inconsistent. Recently, automated methods using supervised models like YOLO have become popular for muzzle detection. Although effective, these methods require extensive annotated datasets and tend to be trained data-dependent, limiting their performance on new or unseen cattle. To address these limitations, this study proposes a zero-shot muzzle detection framework based on Grounding DINO, a vision-language model capable of detecting muzzles without any task-specific training or annotated data. This approach leverages natural language prompts to guide detection, enabling scalable and flexible muzzle localization across diverse breeds and environments. Our model achieves a mean Average Precision (mAP)@0.5 of 76.8\%, demonstrating promising performance without requiring annotated data. To our knowledge, this is the first research to provide a real-world, industry-oriented, and annotation-free solution for cattle muzzle detection. The framework offers a practical alternative to supervised methods, promising improved adaptability and ease of deployment in livestock monitoring applications.
♻ ☆ Learned Display Radiance Fields with Lensless Cameras
Calibrating displays is a basic and regular task that content creators must perform to maintain optimal visual experience, yet it remains a troublesome issue. Measuring display characteristics from different viewpoints often requires specialized equipment and a dark room, making it inaccessible to most users. To avoid specialized hardware requirements in display calibrations, our work co-designs a lensless camera and an Implicit Neural Representation based algorithm for capturing display characteristics from various viewpoints. More specifically, our pipeline enables efficient reconstruction of light fields emitted from a display from a viewing cone of 46.6{\deg} X 37.6{\deg}. Our emerging pipeline paves the initial steps towards effortless display calibration and characterization.
♻ ☆ Muddit: Liberating Generation Beyond Text-to-Image with a Unified Discrete Diffusion Model
Unified generation models aim to handle diverse tasks across modalities -- such as text generation, image generation, and vision-language reasoning -- within a single architecture and decoding paradigm. Autoregressive unified models suffer from slow inference due to sequential decoding, and non-autoregressive unified models suffer from weak generalization due to limited pretrained backbones. We introduce Muddit, a unified discrete diffusion transformer that enables fast and parallel generation across both text and image modalities. Unlike prior unified diffusion models trained from scratch, Muddit integrates strong visual priors from a pretrained text-to-image backbone with a lightweight text decoder, enabling flexible and high-quality multimodal generation under a unified architecture. Empirical results show that Muddit achieves competitive or superior performance compared to significantly larger autoregressive models in both quality and efficiency. The work highlights the potential of purely discrete diffusion, when equipped with strong visual priors, as a scalable and effective backbone for unified generation.
comment: The code and model are available at https://github.com/M-E-AGI-Lab/Muddit
♻ ☆ SANA-Video: Efficient Video Generation with Block Linear Diffusion Transformer
We introduce SANA-Video, a small diffusion model that can efficiently generate videos up to 720x1280 resolution and minute-length duration. SANA-Video synthesizes high-resolution, high-quality and long videos with strong text-video alignment at a remarkably fast speed, deployable on RTX 5090 GPU. Two core designs ensure our efficient, effective and long video generation: (1) Linear DiT: We leverage linear attention as the core operation, which is more efficient than vanilla attention given the large number of tokens processed in video generation. (2) Constant-Memory KV cache for Block Linear Attention: we design block-wise autoregressive approach for long video generation by employing a constant-memory state, derived from the cumulative properties of linear attention. This KV cache provides the Linear DiT with global context at a fixed memory cost, eliminating the need for a traditional KV cache and enabling efficient, minute-long video generation. In addition, we explore effective data filters and model training strategies, narrowing the training cost to 12 days on 64 H100 GPUs, which is only 1% of the cost of MovieGen. Given its low cost, SANA-Video achieves competitive performance compared to modern state-of-the-art small diffusion models (e.g., Wan 2.1-1.3B and SkyReel-V2-1.3B) while being 16x faster in measured latency. Moreover, SANA-Video can be deployed on RTX 5090 GPUs with NVFP4 precision, accelerating the inference speed of generating a 5-second 720p video from 71s to 29s (2.4x speedup). In summary, SANA-Video enables low-cost, high-quality video generation.
comment: 21 pages, 15 figures, 7 tables
♻ ☆ Open Vocabulary Multi-Label Video Classification ECCV 2024
Pre-trained vision-language models (VLMs) have enabled significant progress in open vocabulary computer vision tasks such as image classification, object detection and image segmentation. Some recent works have focused on extending VLMs to open vocabulary single label action classification in videos. However, previous methods fall short in holistic video understanding which requires the ability to simultaneously recognize multiple actions and entities e.g., objects in the video in an open vocabulary setting. We formulate this problem as open vocabulary multilabel video classification and propose a method to adapt a pre-trained VLM such as CLIP to solve this task. We leverage large language models (LLMs) to provide semantic guidance to the VLM about class labels to improve its open vocabulary performance with two key contributions. First, we propose an end-to-end trainable architecture that learns to prompt an LLM to generate soft attributes for the CLIP text-encoder to enable it to recognize novel classes. Second, we integrate a temporal modeling module into CLIP's vision encoder to effectively model the spatio-temporal dynamics of video concepts as well as propose a novel regularized finetuning technique to ensure strong open vocabulary classification performance in the video domain. Our extensive experimentation showcases the efficacy of our approach on multiple benchmark datasets.
comment: Accepted at ECCV 2024
♻ ☆ LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting
We present LiDAR-GS, a Gaussian Splatting (GS) method for real-time, high-fidelity re-simulation of LiDAR scans in public urban road scenes. Recent GS methods proposed for cameras have achieved significant advancements in real-time rendering beyond Neural Radiance Fields (NeRF). However, applying GS representation to LiDAR, an active 3D sensor type, poses several challenges that must be addressed to preserve high accuracy and unique characteristics. Specifically, LiDAR-GS designs a differentiable laser beam splatting, using range-view representation for precise surface splatting by projecting lasers onto micro cross-sections, effectively eliminating artifacts associated with local affine approximations. Furthermore, LiDAR-GS leverages Neural Gaussian Representation, which further integrate view-dependent clues, to represent key LiDAR properties that are influenced by the incident direction and external factors. Combining these practices with some essential adaptations, e.g., dynamic instances decomposition, LiDAR-GS succeeds in simultaneously re-simulating depth, intensity, and ray-drop channels, achieving state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets when compared with the methods using explicit mesh or implicit NeRF. Our source code is publicly available at https://www.github.com/cqf7419/LiDAR-GS.
♻ ☆ Go Beyond Earth: Understanding Human Actions and Scenes in Microgravity Environments
Despite substantial progress in video understanding, most existing datasets are limited to Earth's gravitational conditions. However, microgravity alters human motion, interactions, and visual semantics, revealing a critical gap for real-world vision systems. This presents a challenge for domain-robust video understanding in safety-critical space applications. To address this, we introduce MicroG-4M, the first benchmark for spatio-temporal and semantic understanding of human activities in microgravity. Constructed from real-world space missions and cinematic simulations, the dataset includes 4,759 clips covering 50 actions, 1,238 context-rich captions, and over 7,000 question-answer pairs on astronaut activities and scene understanding. MicroG-4M supports three core tasks: fine-grained multi-label action recognition, temporal video captioning, and visual question answering, enabling a comprehensive evaluation of both spatial localization and semantic reasoning in microgravity contexts. We establish baselines using state-of-the-art models. All data, annotations, and code are available at https://github.com/LEI-QI-233/HAR-in-Space.
comment: 15 pages, 3 figures, code are available at https://github.com/LEI-QI-233/HAR-in-Space
♻ ☆ VLMGuard-R1: Proactive Safety Alignment for VLMs via Reasoning-Driven Prompt Optimization
Aligning Vision-Language Models (VLMs) with safety standards is essential to mitigate risks arising from their multimodal complexity, where integrating vision and language unveils subtle threats beyond the reach of conventional safeguards. Inspired by the insight that reasoning across modalities is key to preempting intricate vulnerabilities, we propose a novel direction for VLM safety: multimodal reasoning-driven prompt rewriting. To this end, we introduce VLMGuard-R1, a proactive framework that refines user inputs through a reasoning-guided rewriter, dynamically interpreting text-image interactions to deliver refined prompts that bolster safety across diverse VLM architectures without altering their core parameters. To achieve this, we devise a three-stage reasoning pipeline to synthesize a dataset that trains the rewriter to infer subtle threats, enabling tailored, actionable responses over generic refusals. Extensive experiments across three benchmarks with five VLMs reveal that VLMGuard-R1 outperforms four baselines. In particular, VLMGuard-R1 achieves a remarkable 43.59\% increase in average safety across five models on the SIUO benchmark.
♻ ☆ PD-Diag-Net: Clinical-Priors guided Network on Brain MRI for Auxiliary Diagnosis of Parkinson's Disease
Parkinson's disease (PD) is a common neurodegenerative disorder that severely diminishes patients' quality of life. Its global prevalence has increased markedly in recent decades. Current diagnostic workflows are complex and heavily reliant on neurologists' expertise, often resulting in delays in early detection and missed opportunities for timely intervention. To address these issues, we propose an end-to-end automated diagnostic method for PD, termed PD-Diag-Net, which performs risk assessment and auxiliary diagnosis directly from raw MRI scans. This framework first introduces an MRI Pre-processing Module (MRI-Processor) to mitigate inter-subject and inter-scanner variability by flexibly integrating established medical imaging preprocessing tools. It then incorporates two forms of clinical prior knowledge: (1) Brain-Region-Relevance-Prior (Relevance-Prior), which specifies brain regions strongly associated with PD; and (2) Brain-Region-Aging-Prior (Aging-Prior), which reflects the accelerated aging typically observed in PD-associated regions. Building on these priors, we design two dedicated modules: the Relevance-Prior Guided Feature Aggregation Module (Aggregator), which guides the model to focus on PD-associated regions at the inter-subject level, and the Age-Prior Guided Diagnosis Module (Diagnoser), which leverages brain age gaps as auxiliary constraints at the intra-subject level to enhance diagnostic accuracy and clinical interpretability. Furthermore, we collected external test data from our collaborating hospital. Experimental results show that PD-Diag-Net achieves 86\% accuracy on external tests and over 96% accuracy in early-stage diagnosis, outperforming existing advanced methods by more than 20%.
♻ ☆ RoHOI: Robustness Benchmark for Human-Object Interaction Detection
Human-Object Interaction (HOI) detection is crucial for robot-human assistance, enabling context-aware support. However, models trained on clean datasets degrade in real-world conditions due to unforeseen corruptions, leading to inaccurate predictions. To address this, we introduce the first robustness benchmark for HOI detection, evaluating model resilience under diverse challenges. Despite advances, current models struggle with environmental variability, occlusions, and noise. Our benchmark, RoHOI, includes 20 corruption types based on the HICO-DET and V-COCO datasets and a new robustness-focused metric. We systematically analyze existing models in the HOI field, revealing significant performance drops under corruptions. To improve robustness, we propose a Semantic-Aware Masking-based Progressive Learning (SAMPL) strategy to guide the model to be optimized based on holistic and partial cues, thus dynamically adjusting the model's optimization to enhance robust feature learning. Extensive experiments show that our approach outperforms state-of-the-art methods, setting a new standard for robust HOI detection. Benchmarks, datasets, and code are available at https://github.com/KratosWen/RoHOI.
comment: Benchmarks, datasets, and code are available at https://github.com/KratosWen/RoHOI
♻ ☆ Learning Visual Hierarchies in Hyperbolic Space for Image Retrieval
Structuring latent representations in a hierarchical manner enables models to learn patterns at multiple levels of abstraction. However, most prevalent image understanding models focus on visual similarity, and learning visual hierarchies is relatively unexplored. In this work, for the first time, we introduce a learning paradigm that can encode user-defined multi-level complex visual hierarchies in hyperbolic space without requiring explicit hierarchical labels. As a concrete example, first, we define a part-based image hierarchy using object-level annotations within and across images. Then, we introduce an approach to enforce the hierarchy using contrastive loss with pairwise entailment metrics. Finally, we discuss new evaluation metrics to effectively measure hierarchical image retrieval. Encoding these complex relationships ensures that the learned representations capture semantic and structural information that transcends mere visual similarity. Experiments in part-based image retrieval show significant improvements in hierarchical retrieval tasks, demonstrating the capability of our model in capturing visual hierarchies.
♻ ☆ Context Guided Transformer Entropy Modeling for Video Compression ICCV 2025
Conditional entropy models effectively leverage spatio-temporal contexts to reduce video redundancy. However, incorporating temporal context often introduces additional model complexity and increases computational cost. In parallel, many existing spatial context models lack explicit modeling the ordering of spatial dependencies, which may limit the availability of relevant context during decoding. To address these issues, we propose the Context Guided Transformer (CGT) entropy model, which estimates probability mass functions of the current frame conditioned on resampled temporal context and dependency-weighted spatial context. A temporal context resampler learns predefined latent queries to extract critical temporal information using transformer encoders, reducing downstream computational overhead. Meanwhile, a teacher-student network is designed as dependency-weighted spatial context assigner to explicitly model the dependency of spatial context order. The teacher generates an attention map to represent token importance and an entropy map to reflect prediction certainty from randomly masked inputs, guiding the student to select the weighted top-k tokens with the highest spatial dependency. During inference, only the student is used to predict undecoded tokens based on high-dependency context. Experimental results demonstrate that our CGT model reduces entropy modeling time by approximately 65% and achieves an 11% BD-Rate reduction compared to the previous state-of-the-art conditional entropy model.
comment: ICCV 2025. This is an update to the camera-ready version
♻ ☆ BabyVLM: Data-Efficient Pretraining of VLMs Inspired by Infant Learning ICCV 2025
Human infants rapidly develop visual reasoning skills from minimal input, suggesting that developmentally inspired pretraining could significantly enhance the efficiency of vision-language models (VLMs). Although recent efforts have leveraged infant-inspired datasets like SAYCam, existing evaluation benchmarks remain misaligned--they are either too simplistic, narrowly scoped, or tailored for large-scale pretrained models. Additionally, training exclusively on infant data overlooks the broader, diverse input from which infants naturally learn. To address these limitations, we propose BabyVLM, a novel framework comprising comprehensive in-domain evaluation benchmarks and a synthetic training dataset created via child-directed transformations of existing datasets. We demonstrate that VLMs trained with our synthetic dataset achieve superior performance on BabyVLM tasks compared to models trained solely on SAYCam or general-purpose data of the SAYCam size. BabyVLM thus provides a robust, developmentally aligned evaluation tool and illustrates how compact models trained on carefully curated data can generalize effectively, opening pathways toward data-efficient vision-language learning paradigms.
comment: Accepted to ICCV 2025
♻ ☆ GDO:Gradual Domain Osmosis
In this paper, we propose a new method called Gradual Domain Osmosis, which aims to solve the problem of smooth knowledge migration from source domain to target domain in Gradual Domain Adaptation (GDA). Traditional Gradual Domain Adaptation methods mitigate domain bias by introducing intermediate domains and self-training strategies, but often face the challenges of inefficient knowledge migration or missing data in intermediate domains. In this paper, we design an optimisation framework based on the hyperparameter $\lambda$ by dynamically balancing the loss weights of the source and target domains, which enables the model to progressively adjust the strength of knowledge migration ($\lambda$ incrementing from 0 to 1) during the training process, thus achieving cross-domain generalisation more efficiently. Specifically, the method incorporates self-training to generate pseudo-labels and iteratively updates the model by minimising a weighted loss function to ensure stability and robustness during progressive adaptation in the intermediate domain. The experimental part validates the effectiveness of the method on rotated MNIST, colour-shifted MNIST, portrait dataset and forest cover type dataset, and the results show that it outperforms existing baseline methods. The paper further analyses the impact of the dynamic tuning strategy of the hyperparameter $\lambda$ on the performance through ablation experiments, confirming the advantages of progressive domain penetration in mitigating the domain bias and enhancing the model generalisation capability. The study provides a theoretical support and practical framework for asymptotic domain adaptation and expands its application potential in dynamic environments.
comment: restoring v1 because of an incorrect replacement
♻ ☆ STAR: A Benchmark for Astronomical Star Fields Super-Resolution
Super-resolution (SR) advances astronomical imaging by enabling cost-effective high-resolution capture, crucial for detecting faraway celestial objects and precise structural analysis. However, existing datasets for astronomical SR (ASR) exhibit three critical limitations: flux inconsistency, object-crop setting, and insufficient data diversity, significantly impeding ASR development. We propose STAR, a large-scale astronomical SR dataset containing 54,738 flux-consistent star field image pairs covering wide celestial regions. These pairs combine Hubble Space Telescope high-resolution observations with physically faithful low-resolution counterparts generated through a flux-preserving data generation pipeline, enabling systematic development of field-level ASR models. To further empower the ASR community, STAR provides a novel Flux Error (FE) to evaluate SR models in physical view. Leveraging this benchmark, we propose a Flux-Invariant Super Resolution (FISR) model that could accurately infer the flux-consistent high-resolution images from input photometry, suppressing several SR state-of-the-art methods by 24.84% on a novel designed flux consistency metric, showing the priority of our method for astrophysics. Extensive experiments demonstrate the effectiveness of our proposed method and the value of our dataset. Code and models are available at https://github.com/GuoCheng12/STAR.
♻ ☆ Goal-Based Vision-Language Driving
Autonomous vehicles must react in milliseconds while reasoning about road geometry and traffic intent to navigate complex situations. We introduce NovaDrive, a single-branch vision-language architecture that processes front-camera images, HD-map tiles, LiDAR depth, and textual waypoints in a single branch. A lightweight, two-stage cross-attention block first aligns waypoint tokens with the HD map, then refines attention over fine-grained image and depth patches. Coupled with a novel smoothness loss that discourages abrupt steering and speed changes, this design eliminates the need for recurrent memory. We fine-tune the top 15 layers of an 11B LLaMA-3.2 vision-language backbone, enabling real-time inference. On the nuScenes / Waymo subset of the MD-NEX Outdoor benchmark, NovaDrive raises success rate to 84% (+4%), boosts path-efficiency (SPL) to 0.66 (+0.11), and reduces collision frequency from 2.6% to 1.2% (-1.4%) relative to the previous state-of-the-art. Our ablations confirm that waypoint tokens, partial VLM fine-tuning, and the cross-attention fusion each contribute the most to these gains. Beyond safety, NovaDrive's shorter routes (resulting from the novel smoothness loss) translate to lower fuel or battery usage, pointing toward leaner, more easily updated driving stacks. NovaDrive can be extended to other embodied-AI domains as well.
comment: 6 pages
♻ ☆ Learning Diffusion Models with Flexible Representation Guidance NeurIPS 2025
Diffusion models can be improved with additional guidance towards more effective representations of input. Indeed, prior empirical work has already shown that aligning internal representations of the diffusion model with those of pre-trained models improves generation quality. In this paper, we present a systematic framework for incorporating representation guidance into diffusion models. We provide alternative decompositions of denoising models along with their associated training criteria, where the decompositions determine when and how the auxiliary representations are incorporated. Guided by our theoretical insights, we introduce two new strategies for enhancing representation alignment in diffusion models. First, we pair examples with target representations either derived from themselves or arisen from different synthetic modalities, and subsequently learn a joint model over the multimodal pairs. Second, we design an optimal training curriculum that balances representation learning and data generation. Our experiments across image, protein sequence, and molecule generation tasks demonstrate superior performance as well as accelerated training. In particular, on the class-conditional ImageNet $256\times 256$ benchmark, our guidance results in $23.3$ times faster training than the original SiT-XL as well as four times speedup over the state-of-the-art method REPA. The code is available at https://github.com/ChenyuWang-Monica/REED.
comment: NeurIPS 2025; Also Oral at ICML 2025 FM4LS workshop
♻ ☆ DeRIS: Decoupling Perception and Cognition for Enhanced Referring Image Segmentation through Loopback Synergy ICCV 2025
Referring Image Segmentation (RIS) is a challenging task that aims to segment objects in an image based on natural language expressions. While prior studies have predominantly concentrated on improving vision-language interactions and achieving fine-grained localization, a systematic analysis of the fundamental bottlenecks in existing RIS frameworks remains underexplored. To bridge this gap, we propose DeRIS, a novel framework that decomposes RIS into two key components: perception and cognition. This modular decomposition facilitates a systematic analysis of the primary bottlenecks impeding RIS performance. Our findings reveal that the predominant limitation lies not in perceptual deficiencies, but in the insufficient multi-modal cognitive capacity of current models. To mitigate this, we propose a Loopback Synergy mechanism, which enhances the synergy between the perception and cognition modules, thereby enabling precise segmentation while simultaneously improving robust image-text comprehension. Additionally, we analyze and introduce a simple non-referent sample conversion data augmentation to address the long-tail distribution issue related to target existence judgement in general scenarios. Notably, DeRIS demonstrates inherent adaptability to both non- and multi-referents scenarios without requiring specialized architectural modifications, enhancing its general applicability. The codes and models are available at https://github.com/Dmmm1997/DeRIS.
comment: Accepted by ICCV 2025
♻ ☆ LaMoGen: Laban Movement-Guided Diffusion for Text-to-Motion Generation
Diverse human motion generation is an increasingly important task, having various applications in computer vision, human-computer interaction and animation. While text-to-motion synthesis using diffusion models has shown success in generating high-quality motions, achieving fine-grained expressive motion control remains a significant challenge. This is due to the lack of motion style diversity in datasets and the difficulty of expressing quantitative characteristics in natural language. Laban movement analysis has been widely used by dance experts to express the details of motion including motion quality as consistent as possible. Inspired by that, this work aims for interpretable and expressive control of human motion generation by seamlessly integrating the quantification methods of Laban Effort and Shape components into the text-guided motion generation models. Our proposed zero-shot, inference-time optimization method guides the motion generation model to have desired Laban Effort and Shape components without any additional motion data by updating the text embedding of pretrained diffusion models during the sampling step. We demonstrate that our approach yields diverse expressive motion qualities while preserving motion identity by successfully manipulating motion attributes according to target Laban tags.
♻ ☆ VideoAds for Fast-Paced Video Understanding ICCV2025
Advertisement videos serve as a rich and valuable source of purpose-driven information, encompassing high-quality visual, textual, and contextual cues designed to engage viewers. They are often more complex than general videos of similar duration due to their structured narratives and rapid scene transitions, posing significant challenges to multi-modal large language models (MLLMs). In this work, we introduce VideoAds, the first dataset tailored for benchmarking the performance of MLLMs on advertisement videos. VideoAds comprises well-curated advertisement videos with complex temporal structures, accompanied by \textbf{manually} annotated diverse questions across three core tasks: visual finding, video summary, and visual reasoning. We propose a quantitative measure to compare VideoAds against existing benchmarks in terms of video complexity. Through extensive experiments, we find that Qwen2.5-VL-72B, an opensource MLLM, achieves 73.35\% accuracy on VideoAds, outperforming GPT-4o (66.82\%) and Gemini-1.5 Pro (69.66\%); the two proprietary models especially fall behind the opensource model in video summarization and reasoning, but perform the best in visual finding. Notably, human experts easily achieve a remarkable accuracy of 94.27\%. These results underscore the necessity of advancing MLLMs' temporal modeling capabilities and highlight VideoAds as a potentially pivotal benchmark for future research in understanding video that requires high FPS sampling. The dataset and evaluation code will be publicly available at https://videoadsbenchmark.netlify.app.
comment: ICCV2025
♻ ☆ Vision-Language Cross-Attention for Real-Time Autonomous Driving
Autonomous cars need geometric accuracy and semantic understanding to navigate complex environments, yet most stacks handle them separately. We present XYZ-Drive, a single vision-language model that reads a front-camera frame, a 25m $\times$ 25m overhead map, and the next waypoint, then outputs steering and speed. A lightweight goal-centered cross-attention layer lets waypoint tokens highlight relevant image and map patches, supporting both action and textual explanations, before the fused tokens enter a partially fine-tuned LLaMA-3.2 11B model. On the MD-NEX Outdoor-Driving benchmark XYZ-Drive attains 95% success and 0.80 Success weighted by Path Length (SPL), surpassing PhysNav-DG by 15%. and halving collisions, all while significantly improving efficiency by using only a single branch. Sixteen ablations explain the gains. Removing any modality (vision, waypoint, map) drops success by up to 11%, confirming their complementary roles and rich connections. Replacing goal-centered attention with simple concatenation cuts 3% in performance, showing query-based fusion injects map knowledge more effectively. Keeping the transformer frozen loses 5%, showing the importance of fine-tuning when applying VLMs for specific tasks such as autonomous driving. Coarsening map resolution from 10 cm to 40 cm blurs lane edges and raises crash rate. Overall, these results demonstrate that early, token-level fusion of intent and map layout enables accurate, transparent, real-time driving.
comment: 5 pages
♻ ☆ LSP-ST: Ladder Shape-Biased Side-Tuning for Robust Infrared Small Target Detection
Fine-tuning the Segment Anything Model (SAM) for infrared small target detection poses significant challenges due to severe domain shifts. Existing adaptation methods often incorporate handcrafted priors to bridge this gap, yet such designs limit generalization and scalability. We identify a fundamental texture bias in foundation models, which overly depend on local texture cues for target localization. To address this, we propose Ladder Shape-Biased Side-Tuning (LSP-ST), a novel approach that introduces a shape-aware inductive bias to facilitate effective adaptation beyond texture cues. In contrast to prior work that injects explicit edge or contour features, LSP-ST models shape as a global structural prior, integrating both boundaries and internal layouts. We design a Shape-Enhanced Large-Kernel Attention Module to hierarchically and implicitly capture structural information in a fully differentiable manner, without task-specific handcrafted guidance. A theoretical analysis grounded in matched filtering and backpropagation reveals the mechanism by which the proposed attention improves structure-aware learning. With only 4.72M learnable parameters, LSP-ST achieves state-of-the-art performance on multiple infrared small target detection benchmarks. Furthermore, its strong generalization is validated across tasks such as mirror detection, shadow detection, and camouflaged object detection, while maintaining stable performance on texture-driven tasks like salient object detection, demonstrating that the introduced shape bias complements rather than competes with texture-based reasoning.
♻ ☆ Latent Harmony: Synergistic Unified UHD Image Restoration via Latent Space Regularization and Controllable Refinement NeurIPS 2025
Ultra-High Definition (UHD) image restoration faces a trade-off between computational efficiency and high-frequency detail retention. While Variational Autoencoders (VAEs) improve efficiency via latent-space processing, their Gaussian constraint often discards degradation-specific high-frequency information, hurting reconstruction fidelity. To overcome this, we propose Latent Harmony, a two-stage framework that redefines VAEs for UHD restoration by jointly regularizing the latent space and enforcing high-frequency-aware reconstruction.In Stage One, we introduce LH-VAE, which enhances semantic robustness through visual semantic constraints and progressive degradation perturbations, while latent equivariance strengthens high-frequency reconstruction.Stage Two jointly trains this refined VAE with a restoration model using High-Frequency Low-Rank Adaptation (HF-LoRA): an encoder LoRA guided by a fidelity-oriented high-frequency alignment loss to recover authentic details, and a decoder LoRA driven by a perception-oriented loss to synthesize realistic textures. Both LoRA modules are trained via alternating optimization with selective gradient propagation to preserve the pretrained latent structure.At inference, a tunable parameter {\alpha} enables flexible fidelity-perception trade-offs.Experiments show Latent Harmony achieves state-of-the-art performance across UHD and standard-resolution tasks, effectively balancing efficiency, perceptual quality, and reconstruction accuracy.
comment: Accepted by NeurIPS 2025
♻ ☆ SAVeD: Learning to Denoise Low-SNR Video for Improved Downstream Performance
Low signal-to-noise ratio videos -- such as those from underwater sonar, ultrasound, and microscopy -- pose significant challenges for computer vision models, particularly when paired clean imagery is unavailable. We present Spatiotemporal Augmentations and denoising in Video for Downstream Tasks (SAVeD), a novel self-supervised method that denoises low-SNR sensor videos using only raw noisy data. By leveraging distinctions between foreground and background motion and exaggerating objects with stronger motion signal, SAVeD enhances foreground object visibility and reduces background and camera noise without requiring clean video. SAVeD has a set of architectural optimizations that lead to faster throughput, training, and inference than existing deep learning methods. We also introduce a new denoising metric, FBD, which indicates foreground-background divergence for detection datasets without requiring clean imagery. Our approach achieves state-of-the-art results for classification, detection, tracking, and counting tasks, and it does so with fewer training resource requirements than existing deep-learning-based denoising methods. Project page: https://suzanne-stathatos.github.io/SAVeD Code page: https://github.com/suzanne-stathatos/SAVeD
comment: Project page: https://suzanne-stathatos.github.io/SAVeD Code page: https://github.com/suzanne-stathatos/SAVeD
Information Retrieval
☆ FinVet: A Collaborative Framework of RAG and External Fact-Checking Agents for Financial Misinformation Detection
Financial markets face growing threats from misinformation that can trigger billions in losses in minutes. Most existing approaches lack transparency in their decision-making and provide limited attribution to credible sources. We introduce FinVet, a novel multi-agent framework that integrates two Retrieval-Augmented Generation (RAG) pipelines with external fact-checking through a confidence-weighted voting mechanism. FinVet employs adaptive three-tier processing that dynamically adjusts verification strategies based on retrieval confidence, from direct metadata extraction to hybrid reasoning to full model-based analysis. Unlike existing methods, FinVet provides evidence-backed verdicts, source attribution, confidence scores, and explicit uncertainty flags when evidence is insufficient. Experimental evaluation on the FinFact dataset shows that FinVet achieves an F1 score of 0.85, which is a 10.4% improvement over the best individual pipeline (fact-check pipeline) and 37% improvement over standalone RAG approaches.
☆ OneRec-Think: In-Text Reasoning for Generative Recommendation
The powerful generative capacity of Large Language Models (LLMs) has instigated a paradigm shift in recommendation. However, existing generative models (e.g., OneRec) operate as implicit predictors, critically lacking the capacity for explicit and controllable reasoning-a key advantage of LLMs. To bridge this gap, we propose OneRec-Think, a unified framework that seamlessly integrates dialogue, reasoning, and personalized recommendation. OneRec-Think incorporates: (1) Itemic Alignment: cross-modal Item-Textual Alignment for semantic grounding; (2) Reasoning Activation: Reasoning Scaffolding to activate LLM reasoning within the recommendation context; and (3) Reasoning Enhancement, where we design a recommendation-specific reward function that accounts for the multi-validity nature of user preferences. Experiments across public benchmarks show state-of-the-art performance. Moreover, our proposed "Think-Ahead" architecture enables effective industrial deployment on Kuaishou, achieving a 0.159\% gain in APP Stay Time and validating the practical efficacy of the model's explicit reasoning capability.
☆ SemCSE-Multi: Multifaceted and Decodable Embeddings for Aspect-Specific and Interpretable Scientific Domain Mapping
We propose SemCSE-Multi, a novel unsupervised framework for generating multifaceted embeddings of scientific abstracts, evaluated in the domains of invasion biology and medicine. These embeddings capture distinct, individually specifiable aspects in isolation, thus enabling fine-grained and controllable similarity assessments as well as adaptive, user-driven visualizations of scientific domains. Our approach relies on an unsupervised procedure that produces aspect-specific summarizing sentences and trains embedding models to map semantically related summaries to nearby positions in the embedding space. We then distill these aspect-specific embedding capabilities into a unified embedding model that directly predicts multiple aspect embeddings from a scientific abstract in a single, efficient forward pass. In addition, we introduce an embedding decoding pipeline that decodes embeddings back into natural language descriptions of their associated aspects. Notably, we show that this decoding remains effective even for unoccupied regions in low-dimensional visualizations, thus offering vastly improved interpretability in user-centric settings.
☆ REGENT: Relevance-Guided Attention for Entity-Aware Multi-Vector Neural Re-Ranking SIGIR
Current neural re-rankers often struggle with complex information needs and long, content-rich documents. The fundamental issue is not computational--it is intelligent content selection: identifying what matters in lengthy, multi-faceted texts. While humans naturally anchor their understanding around key entities and concepts, neural models process text within rigid token windows, treating all interactions as equally important and missing critical semantic signals. We introduce REGENT, a neural re-ranking model that mimics human-like understanding by using entities as a "semantic skeleton" to guide attention. REGENT integrates relevance guidance directly into the attention mechanism, combining fine-grained lexical matching with high-level semantic reasoning. This relevance-guided attention enables the model to focus on conceptually important content while maintaining sensitivity to precise term matches. REGENT achieves new state-of-the-art performance in three challenging datasets, providing up to 108% improvement over BM25 and consistently outperforming strong baselines including ColBERT and RankVicuna. To our knowledge, this is the first work to successfully integrate entity semantics directly into neural attention, establishing a new paradigm for entity-aware information retrieval.
comment: To be published in: Proceedings of the 2025 Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region (SIGIR-AP 2025)
☆ QDER: Query-Specific Document and Entity Representations for Multi-Vector Document Re-Ranking SIGIR
Neural IR has advanced through two distinct paths: entity-oriented approaches leveraging knowledge graphs and multi-vector models capturing fine-grained semantics. We introduce QDER, a neural re-ranking model that unifies these approaches by integrating knowledge graph semantics into a multi-vector model. QDER's key innovation lies in its modeling of query-document relationships: rather than computing similarity scores on aggregated embeddings, we maintain individual token and entity representations throughout the ranking process, performing aggregation only at the final scoring stage - an approach we call "late aggregation." We first transform these fine-grained representations through learned attention patterns, then apply carefully chosen mathematical operations for precise matches. Experiments across five standard benchmarks show that QDER achieves significant performance gains, with improvements of 36% in nDCG@20 over the strongest baseline on TREC Robust 2004 and similar improvements on other datasets. QDER particularly excels on difficult queries, achieving an nDCG@20 of 0.70 where traditional approaches fail completely (nDCG@20 = 0.0), setting a foundation for future work in entity-aware retrieval.
comment: Published in: Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2025)
☆ Characterizing Web Search in The Age of Generative AI
The advent of LLMs has given rise to a new type of web search: Generative search, where LLMs retrieve web pages related to a query and generate a single, coherent text as a response. This output modality stands in stark contrast to traditional web search, where results are returned as a ranked list of independent web pages. In this paper, we ask: Along what dimensions do generative search outputs differ from traditional web search? We compare Google, a traditional web search engine, with four generative search engines from two providers (Google and OpenAI) across queries from four domains. Our analysis reveals intriguing differences. Most generative search engines cover a wider range of sources compared to web search. Generative search engines vary in the degree to which they rely on internal knowledge contained within the model parameters v.s. external knowledge retrieved from the web. Generative search engines surface varying sets of concepts, creating new opportunities for enhancing search diversity and serendipity. Our results also highlight the need for revisiting evaluation criteria for web search in the age of Generative AI.
☆ Uncertainty Quantification for Retrieval-Augmented Reasoning
Retrieval-augmented reasoning (RAR) is a recent evolution of retrieval-augmented generation (RAG) that employs multiple reasoning steps for retrieval and generation. While effective for some complex queries, RAR remains vulnerable to errors and misleading outputs. Uncertainty quantification (UQ) offers methods to estimate the confidence of systems' outputs. These methods, however, often handle simple queries with no retrieval or single-step retrieval, without properly handling RAR setup. Accurate estimation of UQ for RAR requires accounting for all sources of uncertainty, including those arising from retrieval and generation. In this paper, we account for all these sources and introduce Retrieval-Augmented Reasoning Consistency (R2C)--a novel UQ method for RAR. The core idea of R2C is to perturb the multi-step reasoning process by applying various actions to reasoning steps. These perturbations alter the retriever's input, which shifts its output and consequently modifies the generator's input at the next step. Through this iterative feedback loop, the retriever and generator continuously reshape one another's inputs, enabling us to capture uncertainty arising from both components. Experiments on five popular RAR systems across diverse QA datasets show that R2C improves AUROC by over 5% on average compared to the state-of-the-art UQ baselines. Extrinsic evaluations using R2C as an external signal further confirm its effectiveness for two downstream tasks: in Abstention, it achieves ~5% gains in both F1Abstain and AccAbstain; in Model Selection, it improves the exact match by ~7% over single models and ~3% over selection methods.
☆ What Generative Search Engines Like and How to Optimize Web Content Cooperatively
By employing large language models (LLMs) to retrieve documents and generate natural language responses, Generative Engines, such as Google AI overview and ChatGPT, provide significantly enhanced user experiences and have rapidly become the new form of search. Their rapid adoption also drives the needs of Generative Engine Optimization (GEO), as content providers are eager to gain more traction from them. In this paper, we introduce AutoGEO, a framework to automatically learn generative engine preferences when using retrieved contents for response generation, and rewrite web contents for more such traction. AutoGEO first prompts frontier LLMs to explain generative engine preferences and extract meaningful preference rules from these explanations. Then it uses preference rules as context engineering for AutoGEO$_\text{API}$, a prompt-based GEO system, and as rule-based rewards to train AutoGEO$_\text{Mini}$, a cost-effective GEO model. Experiments on the standard GEO-Bench and two newly constructed benchmarks using real user queries demonstrate the effectiveness of AutoGEO in enhancing content traction while preserving search utility. Analyses confirm the learned rules' robustness and abilities to capture unique preferences in variant domains, and AutoGEO systems' ability to embed them in content optimization. The code is released at https://github.com/cxcscmu/AutoGEO.
☆ On Inherited Popularity Bias in Cold-Start Item Recommendation RecSys 2025
Collaborative filtering (CF) recommender systems struggle with making predictions on unseen, or 'cold', items. Systems designed to address this challenge are often trained with supervision from warm CF models in order to leverage collaborative and content information from the available interaction data. However, since they learn to replicate the behavior of CF methods, cold-start models may therefore also learn to imitate their predictive biases. In this paper, we show that cold-start systems can inherit popularity bias, a common cause of recommender system unfairness arising when CF models overfit to more popular items, thereby maximizing user-oriented accuracy but neglecting rarer items. We demonstrate that cold-start recommenders not only mirror the popularity biases of warm models, but are in fact affected more severely: because they cannot infer popularity from interaction data, they instead attempt to estimate it based solely on content features. This leads to significant over-prediction of certain cold items with similar content to popular warm items, even if their ground truth popularity is very low. Through experiments on three multimedia datasets, we analyze the impact of this behavior on three generative cold-start methods. We then describe a simple post-processing bias mitigation method that, by using embedding magnitude as a proxy for predicted popularity, can produce more balanced recommendations with limited harm to user-oriented cold-start accuracy.
comment: Published at ACM RecSys 2025
☆ VeriCite: Towards Reliable Citations in Retrieval-Augmented Generation via Rigorous Verification
Retrieval-Augmented Generation (RAG) has emerged as a crucial approach for enhancing the responses of large language models (LLMs) with external knowledge sources. Despite the impressive performance in complex question-answering tasks, RAG still struggles with hallucinations. Attributing RAG-generated content through in-line citations has demonstrated potential in reducing hallucinations and facilitating human verification. Existing citation generation methods primarily rely on either fine-tuning the generator or employing post-processing approaches for citation matching. However, the former approach demands substantial annotated data and computational resources, while the latter often encounters difficulties in managing multiple citations and frequently produces suboptimal results. In this paper, we introduce a novel framework, called VeriCite, designed to rigorously validate supporting evidence and enhance answer attribution. Specifically, VeriCite breaks down into a three-stage generation: 1) The initial answer generation first generates a response based on all available contexts and has its claims verified through the NLI model; 2) the supporting evidence selection assesses the utility of each document and extracts useful supporting evidences; 3) the final answer refinement integrates the initial response and collected evidences to produce the final, refined answer.We conduct experiments across five open-source LLMs and four datasets, demonstrating that VeriCite can significantly improve citation quality while maintaining the correctness of the answers.
☆ LLM-Specific Utility: A New Perspective for Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge. While traditional retrieval focuses on relevance, RAG's effectiveness depends on the utility of retrieved passages, i.e., the usefulness in facilitating the generation of an accurate and comprehensive answer. Existing studies often treat utility as a generic attribute, ignoring the fact that different LLMs may benefit differently from the same passage due to variations in internal knowledge and comprehension ability. In this work, we introduce and systematically investigate the notion of LLM-specific utility. Through large-scale experiments across multiple datasets and LLMs, we demonstrate that human-annotated passages are not optimal for LLMs and that ground-truth utilitarian passages are not transferable across different LLMs. These findings highlight the necessity of adopting the LLM-specific utility in RAG research. Our findings indicate that some human-annotated passages are not ground-truth utilitarian passages for specific LLMs, partially due to the varying readability of queries and passages for LLMs, a tendency for which perplexity is a key metric. Based on these findings, we propose a benchmarking procedure for LLM-specific utility judgments. We evaluate existing utility judgment methods on six datasets and find that while verbalized methods using pseudo-answers perform robustly, LLMs struggle to assess utility effectively-failing to reject all passages for known queries and to select truly useful ones for unknown queries.
comment: 13 pages, 9 figures
☆ Dynamic Network-Based Two-Stage Time Series Forecasting for Affiliate Marketing
In recent years, affiliate marketing has emerged as a revenue-sharing strategy where merchants collaborate with promoters to promote their products. It not only increases product exposure but also allows promoters to earn a commission. This paper addresses the pivotal yet under-explored challenge in affiliate marketing: accurately assessing and predicting the contributions of promoters in product promotion. We design a novel metric for evaluating the indirect contributions of the promoter, called propagation scale. Unfortunately, existing time series forecasting techniques fail to deliver accurate predictions due to the propagation scale being influenced by multiple factors and the inherent complexities arising from dynamic scenarios. To address this issue, we decouple the network structure from the node signals and propose a two-stage solution: initially, the basic self-sales and network structure prediction are conducted separately, followed by the synthesis of the propagation scale. Specifically, we design a graph convolution encoding scheme based on descendant neighbors and incorporate hypergraph convolution to efficiently capture complex promotional dynamics. Additionally, three auxiliary tasks are employed: self-sales prediction for base estimations, descendant prediction to synthesize propagation scale, and promoter activation prediction to mitigate high volatility issues. Extensive offline experiments on large-scale industrial datasets validate the superiority of our method. We further deploy our model on Alimama platform with over $100,000$ promoters, achieving a $9.29\%$ improvement in GMV and a $5.89\%$ increase in sales volume.
☆ Next Interest Flow: A Generative Pre-training Paradigm for Recommender Systems by Modeling All-domain Movelines
Click-Through Rate (CTR) prediction, a cornerstone of modern recommender systems, has been dominated by discriminative models that react to past user behavior rather than proactively modeling user intent. Existing generative paradigms attempt to address this but suffer from critical limitations: Large Language Model (LLM) based methods create a semantic mismatch by forcing e-commerce signals into a linguistic space, while ID-based generation is constrained by item memorization and cold-start issues. To overcome these limitations, we propose a novel generative pre-training paradigm. Our model learns to predict the Next Interest Flow, a dense vector sequence representing a user's future intent, while simultaneously modeling its internal Interest Diversity and Interest Evolution Velocity to ensure the representation is both rich and coherent. However, this two-stage approach introduces a critical objective mismatch between the generative and discriminative stages. We resolve this via a bidirectional alignment strategy, which harmonizes the two stages through cross-stage weight initialization and a dynamic Semantic Alignment Module for fine-tuning. Additionally, we enhance the underlying discriminative model with a Temporal Sequential Pairwise (TSP) mechanism to better capture temporal causality. We present the All-domain Moveline Evolution Network (AMEN), a unified framework implementing our entire pipeline. Extensive offline experiments validate AMEN's superiority over strong baselines, and a large-scale online A/B test demonstrates its significant real-world impact, delivering substantial improvements in key business metrics.
☆ ELMO: Efficiency via Low-precision and Peak Memory Optimization in Large Output Spaces ICML 2025
Large output spaces, also referred to as Extreme multilabel classification (XMC), is a setting that arises, e.g., in large-scale tagging and product-to-product recommendation, and is characterized by the number of labels ranging from hundreds of thousands to millions. This means that the linear classification head, usually only a tiny fraction of the overall model, turns into the main driver for compute and memory demand. Current state-of-the-art XMC methods predominantly rely on FP16-FP32 mixed-precision training, which we show can be unstable, and inefficient in terms of memory usage and computational overhead. Meanwhile, existing low-precision methods typically retain higher precision for the classification layer. In this work, we propose ELMO, a pure low-precision training framework for XMC models using BFloat16 and Float8 data types. By leveraging Kahan summation and stochastic rounding, we demonstrate that XMC models can be effectively trained entirely in Float8, without relying on single-precision master weights or tensor scaling. Low-precision training, combined with our proposed memory optimizations -- gradient fusion and chunking -- enables significant reductions in GPU memory usage. For example, we train a 3-million-label XMC model with only 6.6 GiB of GPU memory, compared to the 39.7 GiB required by the optimized SOTA method, Renee without compromising accuracy.
comment: Accepted to ICML 2025
☆ DyKnow-RAG: Dynamic Knowledge Utilization Reinforcement Framework for Noisy Retrieval-Augmented Generation in E-commerce Search Relevance
Accurately modeling query-item relevance drives e-commerce ranking, yet long-tail, knowledge-heavy, and fast-evolving queries exceed parametric LLM coverage. External context (reviews, attribute encyclopedias, UGC) can help but is noisy, and single-pass latency and cost forbid any clean-then-summarize step. The model must, per query, judge relevance and decide whether to use, partially use, or ignore the context. DyKnow-RAG is a dynamic noisy-RAG framework built on Group Relative Policy Optimization. It trains two rollout groups (no external context vs a single retrieved chunk) and applies posterior-driven inter-group advantage scaling that adaptively reweights their contributions by the per-query correctness gap. This teaches when to trust retrieval versus fall back to parametric knowledge, without process labels, value networks, or extra inference passes, preserving single-pass, single-chunk deployment under production latency. Training combines: (1) supervised initialization with a structured rationale that explicitly records the context-usage decision; (2) an RL pool prioritized by SFT uncertainty to focus where context choice is most consequential; and (3) an optional lightweight DPO warm start to stabilize with-context calibration. Under a unified retrieval/index and fixed latency budget, DyKnow-RAG outperforms SFT, DPO, and vanilla GRPO in offline tests, and delivers consistent lifts on GSB, Query Goodrate, and Item Goodrate in Taobao A/B testing. It is deployed in Taobao's production relevance system, serving live traffic. To our knowledge, it is among the first single-pass RAG solutions for e-commerce relevance, turning noisy external signals into reliable gains without added online complexity.
☆ HoMer: Addressing Heterogeneities by Modeling Sequential and Set-wise Contexts for CTR Prediction
Click-through rate (CTR) prediction, which models behavior sequence and non-sequential features (e.g., user/item profiles or cross features) to infer user interest, underpins industrial recommender systems. However, most methods face three forms of heterogeneity that degrade predictive performance: (i) Feature Heterogeneity persists when limited sequence side features provide less granular interest representation compared to extensive non-sequential features, thereby impairing sequence modeling performance; (ii) Context Heterogeneity arises because a user's interest in an item will be influenced by other items, yet point-wise prediction neglects cross-item interaction context from the entire item set; (iii) Architecture Heterogeneity stems from the fragmented integration of specialized network modules, which compounds the model's effectiveness, efficiency and scalability in industrial deployments. To tackle the above limitations, we propose HoMer, a Homogeneous-Oriented TransforMer for modeling sequential and set-wise contexts. First, we align sequence side features with non-sequential features for accurate sequence modeling and fine-grained interest representation. Second, we shift the prediction paradigm from point-wise to set-wise, facilitating cross-item interaction in a highly parallel manner. Third, HoMer's unified encoder-decoder architecture achieves dual optimization through structural simplification and shared computation, ensuring computational efficiency while maintaining scalability with model size. Without arduous modification to the prediction pipeline, HoMer successfully scales up and outperforms our industrial baseline by 0.0099 in the AUC metric, and enhances online business metrics like CTR/RPM by 1.99%/2.46%. Additionally, HoMer saves 27% of GPU resources via preliminary engineering optimization, further validating its superiority and practicality.
comment: 10 pages, 6 figures
☆ Decoupled Multimodal Fusion for User Interest Modeling in Click-Through Rate Prediction
Modern industrial recommendation systems improve recommendation performance by integrating multimodal representations from pre-trained models into ID-based Click-Through Rate (CTR) prediction frameworks. However, existing approaches typically adopt modality-centric modeling strategies that process ID-based and multimodal embeddings independently, failing to capture fine-grained interactions between content semantics and behavioral signals. In this paper, we propose Decoupled Multimodal Fusion (DMF), which introduces a modality-enriched modeling strategy to enable fine-grained interactions between ID-based collaborative representations and multimodal representations for user interest modeling. Specifically, we construct target-aware features to bridge the semantic gap across different embedding spaces and leverage them as side information to enhance the effectiveness of user interest modeling. Furthermore, we design an inference-optimized attention mechanism that decouples the computation of target-aware features and ID-based embeddings before the attention layer, thereby alleviating the computational bottleneck introduced by incorporating target-aware features. To achieve comprehensive multimodal integration, DMF combines user interest representations learned under the modality-centric and modality-enriched modeling strategies. Offline experiments on public and industrial datasets demonstrate the effectiveness of DMF. Moreover, DMF has been deployed on the product recommendation system of the international e-commerce platform Lazada, achieving relative improvements of 5.30% in CTCVR and 7.43% in GMV with negligible computational overhead.
☆ From Reasoning LLMs to BERT: A Two-Stage Distillation Framework for Search Relevance
Query-service relevance prediction in e-commerce search systems faces strict latency requirements that prevent the direct application of Large Language Models (LLMs). To bridge this gap, we propose a two-stage reasoning distillation framework to transfer reasoning capabilities from a powerful teacher LLM to a lightweight, deployment-friendly student model. In the first stage, we address the limitations of general-purpose LLMs by constructing a domain-adapted teacher model. This is achieved through a three-step process: domain-adaptive pre-training to inject platform knowledge, supervised fine-tuning to elicit reasoning skills, and preference optimization with a multi-dimensional reward model to ensure the generation of reliable and preference-aligned reasoning paths. This teacher can then automatically annotate massive query-service pairs from search logs with both relevance labels and reasoning chains. In the second stage, to address the challenges of architectural heterogeneity in standard distillation, we introduce Contrastive Reasoning Self-Distillation (CRSD). By modeling the behavior of the same student model under "standard" and "reasoning-augmented" inputs as a teacher-student relationship, CRSD enables the lightweight model to internalize the teacher's complex decision-making mechanisms without needing the explicit reasoning path at inference. Offline evaluations and online A/B testing in the Meituan search advertising system demonstrate that our framework achieves significant improvements across multiple metrics, validating its effectiveness and practical value.
☆ FBS Model-based Maintenance Record Accumulation for Failure-Cause Inference in Manufacturing Systems
In manufacturing systems, identifying the causes of failures is crucial for maintaining and improving production efficiency. In knowledge-based failure-cause inference, it is important that the knowledge base (1) explicitly structures knowledge about the target system and about failures, and (2) contains sufficiently long causal chains of failures. In this study, we constructed Diagnostic Knowledge Ontology and proposed a Function-Behavior-Structure (FBS) model-based maintenance-record accumulation method based on it. Failure-cause inference using the maintenance records accumulated by the proposed method showed better agreement with the set of candidate causes enumerated by experts, especially in difficult cases where the number of related cases is small and the vocabulary used differs. In the future, it will be necessary to develop inference methods tailored to these maintenance records, build a user interface, and carry out validation on larger and more diverse systems. Additionally, this approach leverages the understanding and knowledge of the target in the design phase to support knowledge accumulation and problem solving during the maintenance phase, and it is expected to become a foundation for knowledge sharing across the entire engineering chain in the future.
☆ Does LLM Focus on the Right Words? Diagnosing Language Bias in LLM-based Recommenders
Large language models (LLMs), owing to their extensive open-domain knowledge and semantic reasoning capabilities, have been increasingly integrated into recommender systems (RS). However, a substantial gap remains between the pre-training objectives of LLMs and the specific requirements of recommendation tasks. To address this gap, supervised fine-tuning (SFT) is commonly performed on specially curated recommendation datasets to further enhance their predictive ability. Despite its success, SFT exhibits a critical limitation: it induces Language Bias, whereby the model over-relies on auxiliary tokens-such as task descriptions and prefix-generated tokens-while underutilizing core user interaction tokens that encode user-specific preferences. This bias not only undermines recommendation accuracy but also raises unfairness concerns. To address this issue, we propose Group Distributionally Robust Optimization-based Tuning (GDRT), a novel fine-tuning paradigm that enforces consistent model performance across token groups with varying degrees of relevance to auxiliary tokens. By adaptively upweighting underperforming groups, typically those weakly correlated with auxiliary tokens, GDRT shifts the model's attention from superficial auxiliary cues to informative user interaction tokens, thereby mitigating language bias. Extensive experiments conducted on three public datasets demonstrate that GDRT effectively mitigates language bias, yielding substantial improvements in recommendation accuracy (with an average NDCG@10 gain of 24.29%) and significantly enhancing recommendation fairness.
☆ HatLLM: Hierarchical Attention Masking for Enhanced Collaborative Modeling in LLM-based Recommendation
Recent years have witnessed a surge of research on leveraging large language models (LLMs) for sequential recommendation. LLMs have demonstrated remarkable potential in inferring users' nuanced preferences through fine-grained semantic reasoning. However, they also exhibit a notable limitation in effectively modeling collaborative signals, i.e., behavioral correlations inherent in users' historical interactions. Our empirical analysis further reveals that the attention mechanisms in LLMs tend to disproportionately focus on tokens within the same item, thereby impeding the capture of cross-item correlations. To address this limitation, we propose a novel hierarchical attention masking strategy for LLM-based recommendation, termed HatLLM. Specifically, in shallow layers, HatLLM masks attention between tokens from different items, facilitating intra-item semantic understanding; in contrast, in deep layers, HatLLM masks attention within items, thereby compelling the model to capture cross-item correlations. This progressive, layer-wise approach enables LLMs to jointly model both token-level and item-level dependencies. Extensive experiments on three real-world datasets demonstrate that HatLLM achieves significant performance gains (9.13% on average) over existing LLM-based methods.
☆ Comparative Explanations via Counterfactual Reasoning in Recommendations
Explainable recommendation through counterfactual reasoning seeks to identify the influential aspects of items in recommendations, which can then be used as explanations. However, state-of-the-art approaches, which aim to minimize changes in product aspects while reversing their recommended decisions according to an aggregated decision boundary score, often lead to factual inaccuracies in explanations. To solve this problem, in this work we propose a novel method of Comparative Counterfactual Explanations for Recommendation (CoCountER). CoCountER creates counterfactual data based on soft swap operations, enabling explanations for recommendations of arbitrary pairs of comparative items. Empirical experiments validate the effectiveness of our approach.
♻ ☆ WebThinker: Empowering Large Reasoning Models with Deep Research Capability NeurIPS 2025
Large reasoning models (LRMs), such as OpenAI-o1 and DeepSeek-R1, demonstrate impressive long-horizon reasoning capabilities. However, their reliance on static internal knowledge limits their performance on complex, knowledge-intensive tasks and hinders their ability to produce comprehensive research reports requiring synthesis of diverse web information. To address this, we propose WebThinker, a deep research agent that empowers LRMs to autonomously search the web, navigate among web pages, and draft reports during the reasoning process. WebThinker integrates a Deep Web Explorer module, enabling LRMs to dynamically search, navigate, and extract information from the web when encountering knowledge gaps. It also employs an Autonomous Think-Search-and-Draft strategy, allowing the model to seamlessly interleave reasoning, information gathering, and report writing in real time. To further enhance research tool utilization, we introduce an RL-based training strategy via iterative online Direct Preference Optimization (DPO). Extensive experiments on complex reasoning benchmarks (GPQA, GAIA, WebWalkerQA, HLE) and scientific report generation tasks (Glaive) demonstrate that WebThinker significantly outperforms existing methods and strong proprietary systems. Our approach enhances LRM reliability and applicability in complex scenarios, paving the way for more capable and versatile deep research systems. The code is available at https://github.com/RUC-NLPIR/WebThinker.
comment: Accepted by NeurIPS 2025
♻ ☆ MVIGER: Multi-View Variational Integration of Complementary Knowledge for Generative Recommender
Language Models (LMs) have been widely used in recommender systems to incorporate textual information of items into item IDs, leveraging their advanced language understanding and generation capabilities. Recently, generative recommender systems have utilized the reasoning abilities of LMs to directly generate index tokens for potential items of interest based on the user's interaction history. To inject diverse item knowledge into LMs, prompt templates with detailed task descriptions and various indexing techniques derived from diverse item information have been explored. This paper focuses on the inconsistency in outputs generated by variations in input prompt templates and item index types, even with the same user's interaction history. Our in-depth quantitative analysis reveals that preference knowledge learned from diverse prompt templates and heterogeneous indices differs significantly, indicating a high potential for complementarity. To fully exploit this complementarity and provide consistent performance under varying prompts and item indices, we propose MVIGER, a unified variational framework that models selection among these information sources as a categorical latent variable with a learnable prior. During inference, this prior enables the model to adaptively select the most relevant source or aggregate predictions across multiple sources, thereby ensuring high-quality recommendation across diverse template-index combinations. We validate the effectiveness of MVIGER on three real-world datasets, demonstrating its superior performance over existing generative recommender baselines through the effective integration of complementary knowledge.
♻ ☆ SaraCoder: Orchestrating Semantic and Structural Cues for Resource-Optimized Repository-Level Code Completion
Despite Retrieval-Augmented Generation improving code completion, traditional retrieval methods struggle with information redundancy and a lack of diversity within limited context windows. To solve this, we propose a resource-optimized retrieval augmentation method, SaraCoder. It maximizes information diversity and representativeness in a limited context window, significantly boosting the accuracy and reliability of repository-level code completion. Its core Hierarchical Feature Optimization module systematically refines candidates by distilling deep semantic relationships, pruning exact duplicates, assessing structural similarity with a novel graph-based metric that weighs edits by their topological importance, and reranking results to maximize both relevance and diversity. Furthermore, an External-Aware Identifier Disambiguator module accurately resolves cross-file symbol ambiguity via dependency analysis. Extensive experiments on the challenging CrossCodeEval and RepoEval-Updated benchmarks demonstrate that SaraCoder outperforms existing baselines across multiple programming languages and models. Our work proves that systematically refining retrieval results across multiple dimensions provides a new paradigm for building more accurate and resource-optimized repository-level code completion systems.
♻ ☆ TranSUN: A Preemptive Paradigm to Eradicate Retransformation Bias Intrinsically from Regression Models in Recommender Systems NeurIPS 2025
Regression models are crucial in recommender systems. However, retransformation bias problem has been conspicuously neglected within the community. While many works in other fields have devised effective bias correction methods, all of them are post-hoc cures externally to the model, facing practical challenges when applied to real-world recommender systems. Hence, we propose a preemptive paradigm to eradicate the bias intrinsically from the models via minor model refinement. Specifically, a novel TranSUN method is proposed with a joint bias learning manner to offer theoretically guaranteed unbiasedness under empirical superior convergence. It is further generalized into a novel generic regression model family, termed Generalized TranSUN (GTS), which not only offers more theoretical insights but also serves as a generic framework for flexibly developing various bias-free models. Comprehensive experimental results demonstrate the superiority of our methods across data from various domains, which have been successfully deployed in two real-world industrial recommendation scenarios, i.e. product and short video recommendation scenarios in Guess What You Like business domain in the homepage of Taobao App (a leading e-commerce platform with DAU > 300M), to serve the major online traffic.
comment: 30 pages, 7 figures, NeurIPS 2025 Poster
♻ ☆ Scenario-Wise Rec: A Multi-Scenario Recommendation Benchmark CIKM'2025
Multi Scenario Recommendation (MSR) tasks, referring to building a unified model to enhance performance across all recommendation scenarios, have recently gained much attention. However, current research in MSR faces two significant challenges that hinder the field's development: the absence of uniform procedures for multi-scenario dataset processing, thus hindering fair comparisons, and most models being closed-sourced, which complicates comparisons with current SOTA models. Consequently, we introduce our benchmark, \textbf{Scenario-Wise Rec}, which comprises 6 public datasets and 12 benchmark models, along with a training and evaluation pipeline. Additionally, we validated the benchmark using an industrial advertising dataset, reinforcing its reliability and applicability in real-world scenarios. We aim for this benchmark to offer researchers valuable insights from prior work, enabling the development of novel models based on our benchmark and thereby fostering a collaborative research ecosystem in MSR. Our source code is also publicly available.
comment: Accepted to CIKM'2025
♻ ☆ HAMUR: Hyper Adapter for Multi-Domain Recommendation CIKM'2023
Multi-Domain Recommendation (MDR) has gained significant attention in recent years, which leverages data from multiple domains to enhance their performance concurrently.However, current MDR models are confronted with two limitations. Firstly, the majority of these models adopt an approach that explicitly shares parameters between domains, leading to mutual interference among them. Secondly, due to the distribution differences among domains, the utilization of static parameters in existing methods limits their flexibility to adapt to diverse domains. To address these challenges, we propose a novel model Hyper Adapter for Multi-Domain Recommendation (HAMUR). Specifically, HAMUR consists of two components: (1). Domain-specific adapter, designed as a pluggable module that can be seamlessly integrated into various existing multi-domain backbone models, and (2). Domain-shared hyper-network, which implicitly captures shared information among domains and dynamically generates the parameters for the adapter. We conduct extensive experiments on two public datasets using various backbone networks. The experimental results validate the effectiveness and scalability of the proposed model.
comment: Accepted by CIKM'2023
♻ ☆ ChoirRec: Semantic User Grouping via LLMs for Conversion Rate Prediction of Low-Activity Users
Accurately predicting conversion rates (CVR) for low-activity users remains a fundamental challenge in large-scale e-commerce recommender systems. Existing approaches face three critical limitations: (i) reliance on noisy and unreliable behavioral signals; (ii) insufficient user-level information due to the lack of diverse interaction data; and (iii) a systemic training bias toward high-activity users that overshadows the needs of low-activity users. To address these challenges, we propose ChoirRec, a novel framework that leverages the semantic capabilities of Large Language Models (LLMs) to construct semantic user groups and enhance CVR prediction for low-activity users. With a dual-channel architecture designed for robust cross-user knowledge transfer, ChoirRec comprises three components: (i) a Semantic Group Generation module that utilizes LLMs to form reliable, cross-activity user clusters, thereby filtering out noisy signals; (ii) a Group-aware Hierarchical Representation module that enriches sparse user embeddings with informative group-level priors to mitigate data insufficiency; and (iii) a Group-aware Multi-granularity Modual that employs a dual-channel architecture and adaptive fusion mechanism to ensure effective learning and utilization of group knowledge. We conduct extensive offline and online experiments on Taobao, a leading industrial-scale e-commerce platform. ChoirRec improves GAUC by 1.16\% in offline evaluations, while online A/B testing reveals a 7.24\% increase in order volume, highlighting its substantial practical value in real-world applications.
♻ ☆ SHERLOCK: Towards Dynamic Knowledge Adaptation in LLM-enhanced E-commerce Risk Management
The growth of the e-commerce industry has intensified the adversarial dynamics between shadow economy actors and risk management teams. Companies often conduct risk investigations into suspicious cases to identify emerging fraud patterns, thereby enhancing both preemptive risk prevention and post-hoc governance. However, the sheer volume of case analyses imposes a substantial workload on risk management analysts, as each case requires the integration of long-term expert experience and meticulous scrutiny across multiple risk dimensions. Additionally, individual disparities among analysts hinder the establishment of uniform and high-standard workflows. To address these challenges, we propose the SHERLOCK framework, which leverages the reasoning capabilities of large language models (LLMs) to assist analysts in risk investigations. Our approach consists of three primary components: (1) extracting risk management knowledge from multi-modal data and constructing a domain knowledge base (KB), (2) building an intelligent platform guided by the data flywheel paradigm that integrates daily operations, expert annotations, and model evaluations, with iteratively fine-tuning for preference alignment, and (3) introducing a Reflect & Refine (R&R) module that collaborates with the domain KB to establish a rapid response mechanism for evolving risk patterns. Experiments conducted on the real-world transaction dataset from JD dot com demonstrate that our method significantly improves the precision of both factual alignment and risk localization within the LLM analysis results. Deployment of the SHERLOCK-based LLM system on JD dot com has substantially enhanced the efficiency of case investigation workflows for risk managers.
♻ ☆ Doc2Query++: Topic-Coverage based Document Expansion and its Application to Dense Retrieval via Dual-Index Fusion
Document expansion (DE) via query generation tackles vocabulary mismatch in sparse retrieval, yet faces limitations: uncontrolled generation producing hallucinated or redundant queries with low diversity; poor generalization from in-domain training (e.g., MS MARCO) to out-of-domain data like BEIR; and noise from concatenation harming dense retrieval. While Large Language Models (LLMs) enable cross-domain query generation, basic prompting lacks control, and taxonomy-based methods rely on domain-specific structures, limiting applicability. To address these challenges, we introduce Doc2Query++, a DE framework that structures query generation by first inferring a document's latent topics via unsupervised topic modeling for cross-domain applicability, then using hybrid keyword selection to create a diverse and relevant keyword set per document. This guides LLM not only to leverage keywords, which ensure comprehensive topic representation, but also to reduce redundancy through diverse, relevant terms. To prevent noise from query appending in dense retrieval, we propose Dual-Index Fusion strategy that isolates text and query signals, boosting performance in dense settings. Extensive experiments show Doc2Query++ significantly outperforms state-of-the-art baselines, achieving substantial gains in MAP, nDCG@10 and Recall@100 across diverse datasets on both sparse and dense retrieval.
comment: 11 pages, 4 figures
♻ ☆ A Comprehensive Review of Recommender Systems: Transitioning from Theory to Practice
Recommender Systems (RS) play an integral role in enhancing user experiences by providing personalized item suggestions. This survey reviews the progress in RS inclusively from 2017 to 2024, effectively connecting theoretical advances with practical applications. We explore the development from traditional RS techniques like content-based and collaborative filtering to advanced methods involving deep learning, graph-based models, reinforcement learning, and large language models. We also discuss specialized systems such as context-aware, review-based, and fairness-aware RS. The primary goal of this survey is to bridge theory with practice. It addresses challenges across various sectors, including e-commerce, healthcare, and finance, emphasizing the need for scalable, real-time, and trustworthy solutions. Through this survey, we promote stronger partnerships between academic research and industry practices. The insights offered by this survey aim to guide industry professionals in optimizing RS deployment and to inspire future research directions, especially in addressing emerging technological and societal trends\footnote. The survey resources are available in the public GitHub repository https://github.com/VectorInstitute/Recommender-Systems-Survey. (Recommender systems, large language models, chatgpt, responsible AI)
comment: we quarterly update of this literature
Machine Learning
☆ Are Large Reasoning Models Interruptible?
Large Reasoning Models (LRMs) excel at complex reasoning but are traditionally evaluated in static, "frozen world" settings: model responses are assumed to be instantaneous, and the context of a request is presumed to be immutable over the duration of the response. While generally true for short-term tasks, the "frozen world" assumption breaks down in modern reasoning tasks such as assistive programming, where models may take hours to think through problems and code may change dramatically from the time the model starts thinking to the model's final output. In this work, we challenge the frozen world assumption and evaluate LRM robustness under two realistic dynamic scenarios: interruptions, which test the quality of the model's partial outputs on a limited budget, and dynamic context, which tests model adaptation to in-flight changes. Across mathematics and programming benchmarks that require long-form reasoning, static evaluations consistently overestimate robustness: even state-of-the-art LRMs, which achieve high accuracy in static settings, can fail unpredictably when interrupted or exposed to changing context, with performance dropping by up to 60% when updates are introduced late in the reasoning process. Our analysis further reveals several novel failure modes, including reasoning leakage, where models fold the reasoning into their final answer when interrupted; panic, where under time pressure models abandon reasoning entirely and return incorrect answers; and self-doubt, where performance degrades while incorporating updated information.
comment: Project Page: https://dynamic-lm.github.io/
☆ Reinforced sequential Monte Carlo for amortised sampling
This paper proposes a synergy of amortised and particle-based methods for sampling from distributions defined by unnormalised density functions. We state a connection between sequential Monte Carlo (SMC) and neural sequential samplers trained by maximum-entropy reinforcement learning (MaxEnt RL), wherein learnt sampling policies and value functions define proposal kernels and twist functions. Exploiting this connection, we introduce an off-policy RL training procedure for the sampler that uses samples from SMC -- using the learnt sampler as a proposal -- as a behaviour policy that better explores the target distribution. We describe techniques for stable joint training of proposals and twist functions and an adaptive weight tempering scheme to reduce training signal variance. Furthermore, building upon past attempts to use experience replay to guide the training of neural samplers, we derive a way to combine historical samples with annealed importance sampling weights within a replay buffer. On synthetic multi-modal targets (in both continuous and discrete spaces) and the Boltzmann distribution of alanine dipeptide conformations, we demonstrate improvements in approximating the true distribution as well as training stability compared to both amortised and Monte Carlo methods.
comment: code: https://github.com/hyeok9855/gfn-smc-jax
☆ Adversarial Attacks Leverage Interference Between Features in Superposition
Fundamental questions remain about when and why adversarial examples arise in neural networks, with competing views characterising them either as artifacts of the irregularities in the decision landscape or as products of sensitivity to non-robust input features. In this paper, we instead argue that adversarial vulnerability can stem from efficient information encoding in neural networks. Specifically, we show how superposition - where networks represent more features than they have dimensions - creates arrangements of latent representations that adversaries can exploit. We demonstrate that adversarial perturbations leverage interference between superposed features, making attack patterns predictable from feature arrangements. Our framework provides a mechanistic explanation for two known phenomena: adversarial attack transferability between models with similar training regimes and class-specific vulnerability patterns. In synthetic settings with precisely controlled superposition, we establish that superposition suffices to create adversarial vulnerability. We then demonstrate that these findings persist in a ViT trained on CIFAR-10. These findings reveal adversarial vulnerability can be a byproduct of networks' representational compression, rather than flaws in the learning process or non-robust inputs.
☆ QeRL: Beyond Efficiency -- Quantization-enhanced Reinforcement Learning for LLMs
We propose QeRL, a Quantization-enhanced Reinforcement Learning framework for large language models (LLMs). While RL is essential for LLMs' reasoning capabilities, it is resource-intensive, requiring substantial GPU memory and long rollout durations. QeRL addresses these issues by combining NVFP4 quantization with Low-Rank Adaptation (LoRA), accelerating rollout phase of RL while reducing memory overhead. Beyond efficiency, our findings show that quantization noise increases policy entropy, enhancing exploration, and enabling the discovery of better strategies during RL. To further optimize exploration, QeRL introduces an Adaptive Quantization Noise (AQN) mechanism, which dynamically adjusts noise during training. Experiments demonstrate that QeRL delivers over 1.5 times speedup in the rollout phase. Moreover, this is the first framework to enable RL training of a 32B LLM on a single H100 80GB GPU, while delivering overall speedups for RL training. It also achieves faster reward growth and higher final accuracy than 16-bit LoRA and QLoRA, while matching the performance of full-parameter fine-tuning on mathematical benchmarks such as GSM8K (90.8%) and MATH 500 (77.4%) in the 7B model. These results establish QeRL as an efficient and effective framework for RL training in LLMs.
comment: Code is available at https://github.com/NVlabs/QeRL
☆ Tight Regret Upper and Lower Bounds for Optimistic Hedge in Two-Player Zero-Sum Games
In two-player zero-sum games, the learning dynamic based on optimistic Hedge achieves one of the best-known regret upper bounds among strongly-uncoupled learning dynamics. With an appropriately chosen learning rate, the social and individual regrets can be bounded by $O(\log(mn))$ in terms of the numbers of actions $m$ and $n$ of the two players. This study investigates the optimality of the dependence on $m$ and $n$ in the regret of optimistic Hedge. To this end, we begin by refining existing regret analysis and show that, in the strongly-uncoupled setting where the opponent's number of actions is known, both the social and individual regret bounds can be improved to $O(\sqrt{\log m \log n})$. In this analysis, we express the regret upper bound as an optimization problem with respect to the learning rates and the coefficients of certain negative terms, enabling refined analysis of the leading constants. We then show that the existing social regret bound as well as these new social and individual regret upper bounds cannot be further improved for optimistic Hedge by providing algorithm-dependent individual regret lower bounds. Importantly, these social regret upper and lower bounds match exactly including the constant factor in the leading term. Finally, building on these results, we improve the last-iterate convergence rate and the dynamic regret of a learning dynamic based on optimistic Hedge, and complement these bounds with algorithm-dependent dynamic regret lower bounds that match the improved bounds.
comment: 29 pages, 2 figures
☆ Diffusion Transformers with Representation Autoencoders
Latent generative modeling, where a pretrained autoencoder maps pixels into a latent space for the diffusion process, has become the standard strategy for Diffusion Transformers (DiT); however, the autoencoder component has barely evolved. Most DiTs continue to rely on the original VAE encoder, which introduces several limitations: outdated backbones that compromise architectural simplicity, low-dimensional latent spaces that restrict information capacity, and weak representations that result from purely reconstruction-based training and ultimately limit generative quality. In this work, we explore replacing the VAE with pretrained representation encoders (e.g., DINO, SigLIP, MAE) paired with trained decoders, forming what we term Representation Autoencoders (RAEs). These models provide both high-quality reconstructions and semantically rich latent spaces, while allowing for a scalable transformer-based architecture. Since these latent spaces are typically high-dimensional, a key challenge is enabling diffusion transformers to operate effectively within them. We analyze the sources of this difficulty, propose theoretically motivated solutions, and validate them empirically. Our approach achieves faster convergence without auxiliary representation alignment losses. Using a DiT variant equipped with a lightweight, wide DDT head, we achieve strong image generation results on ImageNet: 1.51 FID at 256x256 (no guidance) and 1.13 at both 256x256 and 512x512 (with guidance). RAE offers clear advantages and should be the new default for diffusion transformer training.
comment: Technical Report; Project Page: https://rae-dit.github.io/
☆ Representation-Based Exploration for Language Models: From Test-Time to Post-Training
Reinforcement learning (RL) promises to expand the capabilities of language models, but it is unclear if current RL techniques promote the discovery of novel behaviors, or simply sharpen those already present in the base model. In this paper, we investigate the value of deliberate exploration -- explicitly incentivizing the model to discover novel and diverse behaviors -- and aim to understand how the knowledge in pre-trained models can guide this search. Our main finding is that exploration with a simple, principled, representation-based bonus derived from the pre-trained language model's hidden states significantly improves diversity and pass@k rates -- both for post-training, and in a novel inference-time scaling setting we introduce. For inference-time, exploration with representation-based diversity improves efficiency, consistently improving pass@k rates across a variety of models and reasoning tasks. For example, for Qwen-2.5-14b-Instruct we obtain over 50% improvement in verifier efficiency on almost all tasks. For post-training, we show that integrating this exploration strategy into an RL pipeline improves reasoning performance over that of the initial model and over standard RL post-training. For example, on AIME 2024, our post-trained Qwen-2.5-7b-Instruct's pass@80 matches the pass@256 of GRPO on the same model, demonstrating a 3x improvement in test-time sample efficiency. Overall, our findings suggest that deliberate exploration -- with the right notion of diversity -- is a practical path toward discovery of new behaviors beyond sharpening.
comment: Website and code: https://rep-exp.github.io
☆ Boundary-Guided Policy Optimization for Memory-efficient RL of Diffusion Large Language Models
A key challenge in applying reinforcement learning (RL) to diffusion large language models (dLLMs) lies in the intractability of their likelihood functions, which are essential for the RL objective, necessitating corresponding approximation in each training step. While existing methods approximate the log-likelihoods by their evidence lower bounds (ELBOs) via customized Monte Carlo (MC) sampling, the forward computational graphs of all MC samples need to be retained for the gradient computation of non-linear terms in the RL objective, resulting in significant memory overhead. This constraint restricts feasible sample sizes, leading to imprecise likelihood approximations and ultimately distorting the RL objective. To overcome this limitation, we propose \emph{Boundary-Guided Policy Optimization} (BGPO), a memory-efficient RL algorithm that maximizes a specially constructed lower bound of the ELBO-based objective. This lower bound is carefully designed to satisfy two key properties: (1) Linearity: it is formulated in a linear sum where each term depends only on a single MC sample, thereby enabling gradient accumulation across samples and ensuring constant memory usage; (2) Equivalence: Both the value and gradient of this lower bound are equal to those of the ELBO-based objective in on-policy training, making it also an effective approximation for the original RL objective. These properties allow BGPO to adopt a large MC sample size, resulting in more accurate likelihood approximations and improved RL objective estimation, which in turn leads to enhanced performance. Experiments show that BGPO significantly outperforms previous RL algorithms for dLLMs in math problem solving, code generation, and planning tasks.
☆ Chronologically Consistent Generative AI
We introduce a family of chronologically consistent, instruction-following large language models to eliminate lookahead bias. Each model is trained only on data available before a clearly defined knowledge-cutoff date, ensuring strict temporal separation from any post-cutoff data. The resulting framework offers (i) a simple, conversational chat interface, (ii) fully open, fixed model weights that guarantee replicability, and (iii) a conservative lower bound on forecast accuracy, isolating the share of predictability that survives once training leakage is removed. Together, these features provide researchers with an easy-to-use generative AI tool useful for a wide range of prediction tasks that is free of lookahead bias.
☆ Accelerated stochastic first-order method for convex optimization under heavy-tailed noise
We study convex composite optimization problems, where the objective function is given by the sum of a prox-friendly function and a convex function whose subgradients are estimated under heavy-tailed noise. Existing work often employs gradient clipping or normalization techniques in stochastic first-order methods to address heavy-tailed noise. In this paper, we demonstrate that a vanilla stochastic algorithm -- without additional modifications such as clipping or normalization -- can achieve optimal complexity for these problems. In particular, we establish that an accelerated stochastic proximal subgradient method achieves a first-order oracle complexity that is universally optimal for smooth, weakly smooth, and nonsmooth convex optimization, as well as for stochastic convex optimization under heavy-tailed noise. Numerical experiments are further provided to validate our theoretical results.
☆ An Eulerian Perspective on Straight-Line Sampling
We study dynamic measure transport for generative modeling: specifically, flows induced by stochastic processes that bridge a specified source and target distribution. The conditional expectation of the process' velocity defines an ODE whose flow map achieves the desired transport. We ask \emph{which processes produce straight-line flows} -- i.e., flows whose pointwise acceleration vanishes and thus are exactly integrable with a first-order method? We provide a concise PDE characterization of straightness as a balance between conditional acceleration and the divergence of a weighted covariance (Reynolds) tensor. Using this lens, we fully characterize affine-in-time interpolants and show that straightness occurs exactly under deterministic endpoint couplings. We also derive necessary conditions that constrain flow geometry for general processes, offering broad guidance for designing transports that are easier to integrate.
☆ MATH-Beyond: A Benchmark for RL to Expand Beyond the Base Model
With the advent of DeepSeek-R1, a new wave of reinforcement learning (RL) methods has emerged that seem to unlock stronger mathematical reasoning. However, a closer look at the open-source ecosystem reveals a critical limitation: with sufficiently many draws (e.g., $\texttt{pass@1024}$), many existing base models already solve nearly all questions on widely used math benchmarks such as MATH-500 and AIME 2024. This suggests that the RL fine-tuning methods prevalent in the LLM reasoning literature largely sharpen existing solution modes rather than discovering entirely new ones. Such sharpening stands in contrast to the broader promise of RL: to foster exploration and to acquire new skills. To move beyond this plateau, we introduce MATH-Beyond (MATH-B), a benchmark deliberately constructed to defeat common open-source models of up to 8B parameters even under large sampling budgets. Improving performance on our benchmark via RL requires methods that learn to reason in ways that go beyond base model capabilities in repeated sampling. Since the problems are drawn from subsets of DAPO-Math-17K and DeepScaleR datasets, they remain topically equivalent to standard high-school math. Validating our premise, RL fine-tuned models such as Nemotron-Research-Reasoning-Qwen-1.5B and DeepScaleR-1.5B-Preview perform poorly on MATH-B at $\texttt{pass@1024}$, showing how existing approaches fall short on tackling harder instances. We hope MATH-B will catalyze exploration-driven RL approaches that elicit deeper reasoning capabilities. We release MATH-B at https://huggingface.co/datasets/brendel-group/MATH-Beyond.
☆ Continual Release of Densest Subgraphs: Privacy Amplification & Sublinear Space via Subsampling
We study the sublinear space continual release model for edge-differentially private (DP) graph algorithms, with a focus on the densest subgraph problem (DSG) in the insertion-only setting. Our main result is the first continual release DSG algorithm that matches the additive error of the best static DP algorithms and the space complexity of the best non-private streaming algorithms, up to constants. The key idea is a refined use of subsampling that simultaneously achieves privacy amplification and sparsification, a connection not previously formalized in graph DP. Via a simple black-box reduction to the static setting, we obtain both pure and approximate-DP algorithms with $O(\log n)$ additive error and $O(n\log n)$ space, improving both accuracy and space complexity over the previous state of the art. Along the way, we introduce graph densification in the graph DP setting, adding edges to trigger earlier subsampling, which removes the extra logarithmic factors in error and space incurred by prior work [ELMZ25]. We believe this simple idea may be of independent interest.
comment: to be published in SOSA'26
☆ NV3D: Leveraging Spatial Shape Through Normal Vector-based 3D Object Detection
Recent studies in 3D object detection for autonomous vehicles aim to enrich features through the utilization of multi-modal setups or the extraction of local patterns within LiDAR point clouds. However, multi-modal methods face significant challenges in feature alignment, and gaining features locally can be oversimplified for complex 3D object detection tasks. In this paper, we propose a novel model, NV3D, which utilizes local features acquired from voxel neighbors, as normal vectors computed per voxel basis using K-nearest neighbors (KNN) and principal component analysis (PCA). This informative feature enables NV3D to determine the relationship between the surface and pertinent target entities, including cars, pedestrians, or cyclists. During the normal vector extraction process, NV3D offers two distinct sampling strategies: normal vector density-based sampling and FOV-aware bin-based sampling, allowing elimination of up to 55% of data while maintaining performance. In addition, we applied element-wise attention fusion, which accepts voxel features as the query and value and normal vector features as the key, similar to the attention mechanism. Our method is trained on the KITTI dataset and has demonstrated superior performance in car and cyclist detection owing to their spatial shapes. In the validation set, NV3D without sampling achieves 86.60% and 80.18% mean Average Precision (mAP), greater than the baseline Voxel R-CNN by 2.61% and 4.23% mAP, respectively. With both samplings, NV3D achieves 85.54% mAP in car detection, exceeding the baseline by 1.56% mAP, despite roughly 55% of voxels being filtered out.
☆ Lecture Notes on Verifying Graph Neural Networks
In these lecture notes, we first recall the connection between graph neural networks, Weisfeiler-Lehman tests and logics such as first-order logic and graded modal logic. We then present a modal logic in which counting modalities appear in linear inequalities in order to solve verification tasks on graph neural networks. We describe an algorithm for the satisfiability problem of that logic. It is inspired from the tableau method of vanilla modal logic, extended with reasoning in quantifier-free fragment Boolean algebra with Presburger arithmetic.
☆ Attention Factors for Statistical Arbitrage
Statistical arbitrage exploits temporal price differences between similar assets. We develop a framework to jointly identify similar assets through factors, identify mispricing and form a trading policy that maximizes risk-adjusted performance after trading costs. Our Attention Factors are conditional latent factors that are the most useful for arbitrage trading. They are learned from firm characteristic embeddings that allow for complex interactions. We identify time-series signals from the residual portfolios of our factors with a general sequence model. Estimating factors and the arbitrage trading strategy jointly is crucial to maximize profitability after trading costs. In a comprehensive empirical study we show that our Attention Factor model achieves an out-of-sample Sharpe ratio above 4 on the largest U.S. equities over a 24-year period. Our one-step solution yields an unprecedented Sharpe ratio of 2.3 net of transaction costs. We show that weak factors are important for arbitrage trading.
comment: Accepted to the 6th ACM International Conference on AI in Finance
☆ Deconstructing Attention: Investigating Design Principles for Effective Language Modeling
The success of Transformer language models is widely credited to their dot-product attention mechanism, which interweaves a set of key design principles: mixing information across positions (enabling multi-token interactions), sequence-dependent activations (where attention weights adapt to each input), a specific mathematical form (dot-product similarities plus softmax weighting), and coupling of queries and keys to evolving hidden states (grounding attention in the current layer). However, the necessity of each of these principles remains largely untested. In this work, we systematically deconstruct attention by designing controlled variants that selectively relax these principles, applied both uniformly across all layers and in hybrid architectures where only some layers retain standard attention. Our empirical analysis reveals that mechanisms for mixing tokens are indispensable, as their absence collapses models to near-random behavior, while the exact mathematical form and sequence dependency can be substantially relaxed, especially when preserved in just a subset of layers. Surprisingly, even variants that fail in isolation can achieve robust performance when interleaved with standard attention, highlighting a cooperative effect. These findings deepen our understanding of what truly underpins attention's effectiveness and open new avenues for simplifying language models without sacrificing performance.
☆ SemCSE-Multi: Multifaceted and Decodable Embeddings for Aspect-Specific and Interpretable Scientific Domain Mapping
We propose SemCSE-Multi, a novel unsupervised framework for generating multifaceted embeddings of scientific abstracts, evaluated in the domains of invasion biology and medicine. These embeddings capture distinct, individually specifiable aspects in isolation, thus enabling fine-grained and controllable similarity assessments as well as adaptive, user-driven visualizations of scientific domains. Our approach relies on an unsupervised procedure that produces aspect-specific summarizing sentences and trains embedding models to map semantically related summaries to nearby positions in the embedding space. We then distill these aspect-specific embedding capabilities into a unified embedding model that directly predicts multiple aspect embeddings from a scientific abstract in a single, efficient forward pass. In addition, we introduce an embedding decoding pipeline that decodes embeddings back into natural language descriptions of their associated aspects. Notably, we show that this decoding remains effective even for unoccupied regions in low-dimensional visualizations, thus offering vastly improved interpretability in user-centric settings.
☆ Hierarchical Qubit-Merging Transformer for Quantum Error Correction
For reliable large-scale quantum computation, a quantum error correction (QEC) scheme must effectively resolve physical errors to protect logical information. Leveraging recent advances in deep learning, neural network-based decoders have emerged as a promising approach to enhance the reliability of QEC. We propose the Hierarchical Qubit-Merging Transformer (HQMT), a novel and general decoding framework that explicitly leverages the structural graph of stabilizer codes to learn error correlations across multiple scales. Our architecture first computes attention locally on structurally related groups of stabilizers and then systematically merges these qubit-centric representations to build a global view of the error syndrome. The proposed HQMT achieves substantially lower logical error rates for surface codes by integrating a dedicated qubit-merging layer within the transformer architecture. Across various code distances, HQMT significantly outperforms previous neural network-based QEC decoders as well as a powerful belief propagation with ordered statistics decoding (BP+OSD) baseline. This hierarchical approach provides a scalable and effective framework for surface code decoding, advancing the realization of reliable quantum computing.
comment: 6 pages, 5 figures
☆ Diffusion-DFL: Decision-focused Diffusion Models for Stochastic Optimization
Decision-focused learning (DFL) integrates predictive modeling and optimization by training predictors to optimize the downstream decision target rather than merely minimizing prediction error. To date, existing DFL methods typically rely on deterministic point predictions, which are often insufficient to capture the intrinsic stochasticity of real-world environments. To address this challenge, we propose the first diffusion-based DFL approach, which trains a diffusion model to represent the distribution of uncertain parameters and optimizes the decision by solving a stochastic optimization with samples drawn from the diffusion model. Our contributions are twofold. First, we formulate diffusion DFL using the reparameterization trick, enabling end-to-end training through diffusion. While effective, it is memory and compute-intensive due to the need to differentiate through the diffusion sampling process. Second, we propose a lightweight score function estimator that uses only several forward diffusion passes and avoids backpropagation through the sampling. This follows from our results that backpropagating through stochastic optimization can be approximated by a weighted score function formulation. We empirically show that our diffusion DFL approach consistently outperforms strong baselines in decision quality. The source code for all experiments is available at the project repository: https://github.com/GT-KOALA/Diffusion_DFL.
☆ MS-Mix: Unveiling the Power of Mixup for Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) aims to identify and interpret human emotions by integrating information from heterogeneous data sources such as text, video, and audio. While deep learning models have advanced in network architecture design, they remain heavily limited by scarce multimodal annotated data. Although Mixup-based augmentation improves generalization in unimodal tasks, its direct application to MSA introduces critical challenges: random mixing often amplifies label ambiguity and semantic inconsistency due to the lack of emotion-aware mixing mechanisms. To overcome these issues, we propose MS-Mix, an adaptive, emotion-sensitive augmentation framework that automatically optimizes sample mixing in multimodal settings. The key components of MS-Mix include: (1) a Sentiment-Aware Sample Selection (SASS) strategy that effectively prevents semantic confusion caused by mixing samples with contradictory emotions. (2) a Sentiment Intensity Guided (SIG) module using multi-head self-attention to compute modality-specific mixing ratios dynamically based on their respective emotional intensities. (3) a Sentiment Alignment Loss (SAL) that aligns the prediction distributions across modalities, and incorporates the Kullback-Leibler-based loss as an additional regularization term to train the emotion intensity predictor and the backbone network jointly. Extensive experiments on three benchmark datasets with six state-of-the-art backbones confirm that MS-Mix consistently outperforms existing methods, establishing a new standard for robust multimodal sentiment augmentation. The source code is available at: https://github.com/HongyuZhu-s/MS-Mix.
comment: Under Review
☆ A Framework for Low-Effort Training Data Generation for Urban Semantic Segmentation
Synthetic datasets are widely used for training urban scene recognition models, but even highly realistic renderings show a noticeable gap to real imagery. This gap is particularly pronounced when adapting to a specific target domain, such as Cityscapes, where differences in architecture, vegetation, object appearance, and camera characteristics limit downstream performance. Closing this gap with more detailed 3D modelling would require expensive asset and scene design, defeating the purpose of low-cost labelled data. To address this, we present a new framework that adapts an off-the-shelf diffusion model to a target domain using only imperfect pseudo-labels. Once trained, it generates high-fidelity, target-aligned images from semantic maps of any synthetic dataset, including low-effort sources created in hours rather than months. The method filters suboptimal generations, rectifies image-label misalignments, and standardises semantics across datasets, transforming weak synthetic data into competitive real-domain training sets. Experiments on five synthetic datasets and two real target datasets show segmentation gains of up to +8.0%pt. mIoU over state-of-the-art translation methods, making rapidly constructed synthetic datasets as effective as high-effort, time-intensive synthetic datasets requiring extensive manual design. This work highlights a valuable collaborative paradigm where fast semantic prototyping, combined with generative models, enables scalable, high-quality training data creation for urban scene understanding.
☆ Ontolearn-A Framework for Large-scale OWL Class Expression Learning in Python
In this paper, we present Ontolearn-a framework for learning OWL class expressions over large knowledge graphs. Ontolearn contains efficient implementations of recent stateof-the-art symbolic and neuro-symbolic class expression learners including EvoLearner and DRILL. A learned OWL class expression can be used to classify instances in the knowledge graph. Furthermore, Ontolearn integrates a verbalization module based on an LLM to translate complex OWL class expressions into natural language sentences. By mapping OWL class expressions into respective SPARQL queries, Ontolearn can be easily used to operate over a remote triplestore. The source code of Ontolearn is available at https://github.com/dice-group/Ontolearn.
☆ Efficient Group Lasso Regularized Rank Regression with Data-Driven Parameter Determination
High-dimensional regression often suffers from heavy-tailed noise and outliers, which can severely undermine the reliability of least-squares based methods. To improve robustness, we adopt a non-smooth Wilcoxon score based rank objective and incorporate structured group sparsity regularization, a natural generalization of the lasso, yielding a group lasso regularized rank regression method. By extending the tuning-free parameter selection scheme originally developed for the lasso, we introduce a data-driven, simulation-based tuning rule and further establish a finite-sample error bound for the resulting estimator. On the computational side, we develop a proximal augmented Lagrangian method for solving the associated optimization problem, which eliminates the singularity issues encountered in existing methods, thereby enabling efficient semismooth Newton updates for the subproblems. Extensive numerical experiments demonstrate the robustness and effectiveness of our proposed estimator against alternatives, and showcase the scalability of the algorithm across both simulated and real-data settings.
comment: 36 pages, 4 figures, 8 tables
☆ Query-Specific GNN: A Comprehensive Graph Representation Learning Method for Retrieval Augmented Generation
Retrieval-augmented generation (RAG) has demonstrated its ability to enhance Large Language Models (LLMs) by integrating external knowledge sources. However, multi-hop questions, which require the identification of multiple knowledge targets to form a synthesized answer, raise new challenges for RAG systems. Under the multi-hop settings, existing methods often struggle to fully understand the questions with complex semantic structures and are susceptible to irrelevant noise during the retrieval of multiple information targets. To address these limitations, we propose a novel graph representation learning framework for multi-hop question retrieval. We first introduce a Multi-information Level Knowledge Graph (Multi-L KG) to model various information levels for a more comprehensive understanding of multi-hop questions. Based on this, we design a Query-Specific Graph Neural Network (QSGNN) for representation learning on the Multi-L KG. QSGNN employs intra/inter-level message passing mechanisms, and in each message passing the information aggregation is guided by the query, which not only facilitates multi-granular information aggregation but also significantly reduces the impact of noise. To enhance its ability to learn robust representations, we further propose two synthesized data generation strategies for pre-training the QSGNN. Extensive experimental results demonstrate the effectiveness of our framework in multi-hop scenarios, especially in high-hop questions the improvement can reach 33.8\%. The code is available at: https://github.com/Jerry2398/QSGNN.
☆ Automatic Music Sample Identification with Multi-Track Contrastive Learning
Sampling, the technique of reusing pieces of existing audio tracks to create new music content, is a very common practice in modern music production. In this paper, we tackle the challenging task of automatic sample identification, that is, detecting such sampled content and retrieving the material from which it originates. To do so, we adopt a self-supervised learning approach that leverages a multi-track dataset to create positive pairs of artificial mixes, and design a novel contrastive learning objective. We show that such method significantly outperforms previous state-of-the-art baselines, that is robust to various genres, and that scales well when increasing the number of noise songs in the reference database. In addition, we extensively analyze the contribution of the different components of our training pipeline and highlight, in particular, the need for high-quality separated stems for this task.
☆ Knowledge-Guided Machine Learning Models to Upscale Evapotranspiration in the U.S. Midwest
Evapotranspiration (ET) plays a critical role in the land-atmosphere interactions, yet its accurate quantification across various spatiotemporal scales remains a challenge. In situ measurement approaches, like eddy covariance (EC) or weather station-based ET estimation, allow for measuring ET at a single location. Agricultural uses of ET require estimates for each field over broad areas, making it infeasible to deploy sensing systems at each location. This study integrates tree-based and knowledge-guided machine learning (ML) techniques with multispectral remote sensing data, griddled meteorology and EC data to upscale ET across the Midwest United States. We compare four tree-based models - Random Forest, CatBoost, XGBoost, LightGBM - and a simple feed-forward artificial neural network in combination with features engineered using knowledge-guided ML principles. Models were trained and tested on EC towers located in the Midwest of the United States using k-fold cross validation with k=5 and site-year, biome stratified train-test split to avoid data leakage. Results show that LightGBM with knowledge-guided features outperformed other methods with an R2=0.86, MSE=14.99 W m^-2 and MAE = 8.82 W m^-2 according to grouped k-fold validation (k=5). Feature importance analysis shows that knowledge-guided features were most important for predicting evapotranspiration. Using the best performing model, we provide a data product at 500 m spatial and one-day temporal resolution for gridded ET for the period of 2019-2024. Intercomparison between the new gridded product and state-level weather station-based ET estimates show best-in-class correspondence.
☆ Learning to Make MISTAKEs: Modeling Incorrect Student Thinking And Key Errors
Research on reasoning in language models (LMs) predominantly focuses on improving the correctness of their outputs. But some important applications require modeling reasoning patterns that are incorrect. For example, automated systems that can reason about and simulate student errors are useful for providing real-time feedback in the classroom or offline practice for educators-in-training. This paper presents a new method, MISTAKE, that (1) constructs high-quality synthetic examples of reasoning errors by leveraging cycle consistency between incorrect answers and latent misconceptions; and (2) uses the generated data to learn models for student simulation, misconception classification, and answer generation. We evaluate MISTAKE on three educational tasks and find that it results in (1) higher accuracy when simulating incorrect student answers based on specific misconceptions, (2) increased performance inferring latent misconceptions from observed incorrect answers, and (3) higher alignment with expert-written distractor answers when generating incorrect answers (e.g., for multiple-choice tests).
☆ Context-Aware Model-Based Reinforcement Learning for Autonomous Racing
Autonomous vehicles have shown promising potential to be a groundbreaking technology for improving the safety of road users. For these vehicles, as well as many other safety-critical robotic technologies, to be deployed in real-world applications, we require algorithms that can generalize well to unseen scenarios and data. Model-based reinforcement learning algorithms (MBRL) have demonstrated state-of-the-art performance and data efficiency across a diverse set of domains. However, these algorithms have also shown susceptibility to changes in the environment and its transition dynamics. In this work, we explore the performance and generalization capabilities of MBRL algorithms for autonomous driving, specifically in the simulated autonomous racing environment, Roboracer (formerly F1Tenth). We frame the head-to-head racing task as a learning problem using contextual Markov decision processes and parameterize the driving behavior of the adversaries using the context of the episode, thereby also parameterizing the transition and reward dynamics. We benchmark the behavior of MBRL algorithms in this environment and propose a novel context-aware extension of the existing literature, cMask. We demonstrate that context-aware MBRL algorithms generalize better to out-of-distribution adversary behaviors relative to context-free approaches. We also demonstrate that cMask displays strong generalization capabilities, as well as further performance improvement relative to other context-aware MBRL approaches when racing against adversaries with in-distribution behaviors.
comment: Accepted to IEEE ICAR 2025
☆ Offline Reinforcement Learning with Generative Trajectory Policies ICLR 2026
Generative models have emerged as a powerful class of policies for offline reinforcement learning (RL) due to their ability to capture complex, multi-modal behaviors. However, existing methods face a stark trade-off: slow, iterative models like diffusion policies are computationally expensive, while fast, single-step models like consistency policies often suffer from degraded performance. In this paper, we demonstrate that it is possible to bridge this gap. The key to moving beyond the limitations of individual methods, we argue, lies in a unifying perspective that views modern generative models, including diffusion, flow matching, and consistency models, as specific instances of learning a continuous-time generative trajectory governed by an Ordinary Differential Equation (ODE). This principled foundation provides a clearer design space for generative policies in RL and allows us to propose Generative Trajectory Policies (GTPs), a new and more general policy paradigm that learns the entire solution map of the underlying ODE. To make this paradigm practical for offline RL, we further introduce two key theoretically principled adaptations. Empirical results demonstrate that GTP achieves state-of-the-art performance on D4RL benchmarks - it significantly outperforms prior generative policies, achieving perfect scores on several notoriously hard AntMaze tasks.
comment: Preprint. Under review at ICLR 2026
☆ ReLook: Vision-Grounded RL with a Multimodal LLM Critic for Agentic Web Coding
While Large Language Models (LLMs) excel at algorithmic code generation, they struggle with front-end development, where correctness is judged on rendered pixels and interaction. We present ReLook, an agentic, vision-grounded reinforcement learning framework that empowers an agent to close a robust generate--diagnose--refine loop by invoking a multimodal LLM (MLLM) as a tool. During training, the agent uses the MLLM-in-the-loop both as a visual critic--scoring code with screenshots--and as a source of actionable, vision-grounded feedback; a strict zero-reward rule for invalid renders anchors renderability and prevents reward hacking. To prevent behavioral collapse, we introduce Forced Optimization, a strict acceptance rule that admits only improving revisions, yielding monotonically better trajectories. At inference, we decouple the critic and run a lightweight, critic-free self-edit cycle, keeping latency comparable to base decoding while retaining most of the gains. Across three widely used benchmarks, ReLook consistently outperforms strong baselines in vision-grounded front-end code generation, highlighting the benefits of agentic perception, visual rewards, and training-inference decoupling.
☆ How Reinforcement Learning After Next-Token Prediction Facilitates Learning
Recent advances in reasoning domains with neural networks have primarily been enabled by a training recipe that optimizes Large Language Models, previously trained to predict the next-token in a sequence, with reinforcement learning algorithms. We introduce a framework to study the success of this paradigm, and we theoretically expose the optimization mechanisms by which reinforcement learning improves over next-token prediction in this setting. We study learning from mixture distributions of short and long ``chain-of-thought'' sequences encoding a single task. In particular, when the task consists of predicting the parity of $d$ bits and long sequences are rare, we show how reinforcement learning after next-token prediction enables autoregressive transformers to generalize, whereas mere next-token prediction requires extreme statistical or computational resources to do so. We further explain how reinforcement learning leverages increased test-time computation, manifested in longer responses, to facilitate this learning process. In a simplified setting, we theoretically prove that autoregressive linear models following this training recipe can efficiently learn to predict the parity of $d$ bits as long as the proportion of long demonstrations in the data mix is not exponentially small in the input dimension $d$. Finally, we demonstrate these same phenomena in other settings, including the post-training of Llama-series models on mixture variations of common mathematical reasoning benchmarks.
☆ Constraint-Aware Reinforcement Learning via Adaptive Action Scaling
Safe reinforcement learning (RL) seeks to mitigate unsafe behaviors that arise from exploration during training by reducing constraint violations while maintaining task performance. Existing approaches typically rely on a single policy to jointly optimize reward and safety, which can cause instability due to conflicting objectives, or they use external safety filters that override actions and require prior system knowledge. In this paper, we propose a modular cost-aware regulator that scales the agent's actions based on predicted constraint violations, preserving exploration through smooth action modulation rather than overriding the policy. The regulator is trained to minimize constraint violations while avoiding degenerate suppression of actions. Our approach integrates seamlessly with off-policy RL methods such as SAC and TD3, and achieves state-of-the-art return-to-cost ratios on Safety Gym locomotion tasks with sparse costs, reducing constraint violations by up to 126 times while increasing returns by over an order of magnitude compared to prior methods.
☆ Rescaling-Aware Training for Efficient Deployment of Deep Learning Models on Full-Integer Hardware
Integer AI inference significantly reduces computational complexity in embedded systems. Quantization-aware training (QAT) helps mitigate accuracy degradation associated with post-training quantization but still overlooks the impact of integer rescaling during inference, which is a hardware costly operation in integer-only AI inference. This work shows that rescaling cost can be dramatically reduced post-training, by applying a stronger quantization to the rescale multiplicands at no model-quality loss. Furthermore, we introduce Rescale-Aware Training, a fine tuning method for ultra-low bit-width rescaling multiplicands. Experiments show that even with 8x reduced rescaler widths, the full accuracy is preserved through minimal incremental retraining. This enables more energy-efficient and cost-efficient AI inference for resource-constrained embedded systems.
comment: Submitted to IEEE Embedded Systems Letters
☆ Coordinated Strategies in Realistic Air Combat by Hierarchical Multi-Agent Reinforcement Learning
Achieving mission objectives in a realistic simulation of aerial combat is highly challenging due to imperfect situational awareness and nonlinear flight dynamics. In this work, we introduce a novel 3D multi-agent air combat environment and a Hierarchical Multi-Agent Reinforcement Learning framework to tackle these challenges. Our approach combines heterogeneous agent dynamics, curriculum learning, league-play, and a newly adapted training algorithm. To this end, the decision-making process is organized into two abstraction levels: low-level policies learn precise control maneuvers, while high-level policies issue tactical commands based on mission objectives. Empirical results show that our hierarchical approach improves both learning efficiency and combat performance in complex dogfight scenarios.
comment: 2025 IEEE International Conference on Agentic AI (ICA)
☆ Differentiable Fast Top-K Selection for Large-Scale Recommendation
Cascade ranking is a widely adopted paradigm in large-scale information retrieval systems for Top-K item selection. However, the Top-K operator is non-differentiable, hindering end-to-end training. Existing methods include Learning-to-Rank approaches (e.g., LambdaLoss), which optimize ranking metrics like NDCG and suffer from objective misalignment, and differentiable sorting-based methods (e.g., ARF, LCRON), which relax permutation matrices for direct Top-K optimization but introduce gradient conflicts through matrix aggregation. A promising alternative is to directly construct a differentiable approximation of the Top-K selection operator, bypassing the use of soft permutation matrices. However, even state-of-the-art differentiable Top-K operator (e.g., LapSum) require $O(n \log n)$ complexity due to their dependence on sorting for solving the threshold. Thus, we propose DFTopK, a novel differentiable Top-K operator achieving optimal $O(n)$ time complexity. By relaxing normalization constraints, DFTopK admits a closed-form solution and avoids sorting. DFTopK also avoids the gradient conflicts inherent in differentiable sorting-based methods. We evaluate DFTopK on both the public benchmark RecFLow and an industrial system. Experimental results show that DFTopK significantly improves training efficiency while achieving superior performance, which enables us to scale up training samples more efficiently. In the online A/B test, DFTopK yielded a +1.77\% revenue lift with the same computational budget compared to the baseline. To the best of our knowledge, this work is the first to introduce differentiable Top-K operators into recommendation systems and the first to achieve theoretically optimal linear-time complexity for Top-K selection. We have open-sourced our implementation to facilitate future research in both academia and industry.
comment: 12 pages, 5 figures
☆ Iterative Amortized Inference: Unifying In-Context Learning and Learned Optimizers
Modern learning systems increasingly rely on amortized learning - the idea of reusing computation or inductive biases shared across tasks to enable rapid generalization to novel problems. This principle spans a range of approaches, including meta-learning, in-context learning, prompt tuning, learned optimizers and more. While motivated by similar goals, these approaches differ in how they encode and leverage task-specific information, often provided as in-context examples. In this work, we propose a unified framework which describes how such methods differ primarily in the aspects of learning they amortize - such as initializations, learned updates, or predictive mappings - and how they incorporate task data at inference. We introduce a taxonomy that categorizes amortized models into parametric, implicit, and explicit regimes, based on whether task adaptation is externalized, internalized, or jointly modeled. Building on this view, we identify a key limitation in current approaches: most methods struggle to scale to large datasets because their capacity to process task data at inference (e.g., context length) is often limited. To address this, we propose iterative amortized inference, a class of models that refine solutions step-by-step over mini-batches, drawing inspiration from stochastic optimization. Our formulation bridges optimization-based meta-learning with forward-pass amortization in models like LLMs, offering a scalable and extensible foundation for general-purpose task adaptation.
☆ Reconstructing 12-Lead ECG from 3-Lead ECG using Variational Autoencoder to Improve Cardiac Disease Detection of Wearable ECG Devices
Twelve-lead electrocardiograms (ECGs) are the clinical gold standard for cardiac diagnosis, providing comprehensive spatial coverage of the heart necessary to detect conditions such as myocardial infarction (MI). However, their lack of portability limits continuous and large-scale use. Three-lead ECG systems are widely used in wearable devices due to their simplicity and mobility, but they often fail to capture pathologies in unmeasured regions. To address this, we propose WearECG, a Variational Autoencoder (VAE) method that reconstructs twelve-lead ECGs from three leads: II, V1, and V5. Our model includes architectural improvements to better capture temporal and spatial dependencies in ECG signals. We evaluate generation quality using MSE, MAE, and Frechet Inception Distance (FID), and assess clinical validity via a Turing test with expert cardiologists. To further validate diagnostic utility, we fine-tune ECGFounder, a large-scale pretrained ECG model, on a multi-label classification task involving over 40 cardiac conditions, including six different myocardial infarction locations, using both real and generated signals. Experiments on the MIMIC dataset show that our method produces physiologically realistic and diagnostically informative signals, with robust performance in downstream tasks. This work demonstrates the potential of generative modeling for ECG reconstruction and its implications for scalable, low-cost cardiac screening.
comment: 24 pages, 5 figures, submitted to Nature Communications
☆ Forward-Forward Autoencoder Architectures for Energy-Efficient Wireless Communications
The application of deep learning to the area of communications systems has been a growing field of interest in recent years. Forward-forward (FF) learning is an efficient alternative to the backpropagation (BP) algorithm, which is the typically used training procedure for neural networks. Among its several advantages, FF learning does not require the communication channel to be differentiable and does not rely on the global availability of partial derivatives, allowing for an energy-efficient implementation. In this work, we design end-to-end learned autoencoders using the FF algorithm and numerically evaluate their performance for the additive white Gaussian noise and Rayleigh block fading channels. We demonstrate their competitiveness with BP-trained systems in the case of joint coding and modulation, and in a scenario where a fixed, non-differentiable modulation stage is applied. Moreover, we provide further insights into the design principles of the FF network, its training convergence behavior, and significant memory and processing time savings compared to BP-based approaches.
☆ Leveraging LLMs for Semi-Automatic Corpus Filtration in Systematic Literature Reviews
The creation of systematic literature reviews (SLR) is critical for analyzing the landscape of a research field and guiding future research directions. However, retrieving and filtering the literature corpus for an SLR is highly time-consuming and requires extensive manual effort, as keyword-based searches in digital libraries often return numerous irrelevant publications. In this work, we propose a pipeline leveraging multiple large language models (LLMs), classifying papers based on descriptive prompts and deciding jointly using a consensus scheme. The entire process is human-supervised and interactively controlled via our open-source visual analytics web interface, LLMSurver, which enables real-time inspection and modification of model outputs. We evaluate our approach using ground-truth data from a recent SLR comprising over 8,000 candidate papers, benchmarking both open and commercial state-of-the-art LLMs from mid-2024 and fall 2025. Results demonstrate that our pipeline significantly reduces manual effort while achieving lower error rates than single human annotators. Furthermore, modern open-source models prove sufficient for this task, making the method accessible and cost-effective. Overall, our work demonstrates how responsible human-AI collaboration can accelerate and enhance systematic literature reviews within academic workflows.
☆ FedHybrid: Breaking the Memory Wall of Federated Learning via Hybrid Tensor Management
Federated Learning (FL) emerges as a new learning paradigm that enables multiple devices to collaboratively train a shared model while preserving data privacy. However, one fundamental and prevailing challenge that hinders the deployment of FL on mobile devices is the memory limitation. This paper proposes \textit{FedHybrid}, a novel framework that effectively reduces the memory footprint during the training process while guaranteeing the model accuracy and the overall training progress. Specifically, \textit{FedHybrid} first selects the participating devices for each training round by jointly evaluating their memory budget, computing capability, and data diversity. After that, it judiciously analyzes the computational graph and generates an execution plan for each selected client in order to meet the corresponding memory budget while minimizing the training delay through employing a hybrid of recomputation and compression techniques according to the characteristic of each tensor. During the local training process, \textit{FedHybrid} carries out the execution plan with a well-designed activation compression technique to effectively achieve memory reduction with minimum accuracy loss. We conduct extensive experiments to evaluate \textit{FedHybrid} on both simulation and off-the-shelf mobile devices. The experiment results demonstrate that \textit{FedHybrid} achieves up to a 39.1\% increase in model accuracy and a 15.5$\times$ reduction in wall clock time under various memory budgets compared with the baselines.
comment: Sensys 2024
☆ Medical Interpretability and Knowledge Maps of Large Language Models
We present a systematic study of medical-domain interpretability in Large Language Models (LLMs). We study how the LLMs both represent and process medical knowledge through four different interpretability techniques: (1) UMAP projections of intermediate activations, (2) gradient-based saliency with respect to the model weights, (3) layer lesioning/removal and (4) activation patching. We present knowledge maps of five LLMs which show, at a coarse-resolution, where knowledge about patient's ages, medical symptoms, diseases and drugs is stored in the models. In particular for Llama3.3-70B, we find that most medical knowledge is processed in the first half of the model's layers. In addition, we find several interesting phenomena: (i) age is often encoded in a non-linear and sometimes discontinuous manner at intermediate layers in the models, (ii) the disease progression representation is non-monotonic and circular at certain layers of the model, (iii) in Llama3.3-70B, drugs cluster better by medical specialty rather than mechanism of action, especially for Llama3.3-70B and (iv) Gemma3-27B and MedGemma-27B have activations that collapse at intermediate layers but recover by the final layers. These results can guide future research on fine-tuning, un-learning or de-biasing LLMs for medical tasks by suggesting at which layers in the model these techniques should be applied.
comment: 29 pages, 34 figures, 5 tables
☆ Stabilizing MoE Reinforcement Learning by Aligning Training and Inference Routers
Reinforcement learning (RL) has emerged as a crucial approach for enhancing the capabilities of large language models. However, in Mixture-of-Experts (MoE) models, the routing mechanism often introduces instability, even leading to catastrophic RL training collapse. We analyze the training-inference consistency of MoE models and identify a notable discrepancy in routing behaviors between the two phases. Moreover, even under identical conditions, the routing framework can yield divergent expert selections across repeated forward passes. To address this foundational inconsistency, we propose Rollout Routing Replay (R3), a method that records routing distributions from the inference engine and replays them during training. R3 significantly reduces training-inference policy KL divergence and mitigates extreme discrepancies without compromising training speed. Extensive experiments on various settings confirm that R3 succeeds in stabilizing RL training, preventing collapse and outperforming methods such as GSPO and TIS. We believe this work can offer a new solution for stabilizing RL in MoE models.
☆ Understanding the Generalization of Stochastic Gradient Adam in Learning Neural Networks NeurIPS 2025
Adam is a popular and widely used adaptive gradient method in deep learning, which has also received tremendous focus in theoretical research. However, most existing theoretical work primarily analyzes its full-batch version, which differs fundamentally from the stochastic variant used in practice. Unlike SGD, stochastic Adam does not converge to its full-batch counterpart even with infinitesimal learning rates. We present the first theoretical characterization of how batch size affects Adam's generalization, analyzing two-layer over-parameterized CNNs on image data. Our results reveal that while both Adam and AdamW with proper weight decay $\lambda$ converge to poor test error solutions, their mini-batch variants can achieve near-zero test error. We further prove Adam has a strictly smaller effective weight decay bound than AdamW, theoretically explaining why Adam requires more sensitive $\lambda$ tuning. Extensive experiments validate our findings, demonstrating the critical role of batch size and weight decay in Adam's generalization performance.
comment: 71 pages, 12 figures, NeurIPS 2025
☆ Multi-View Graph Feature Propagation for Privacy Preservation and Feature Sparsity
Graph Neural Networks (GNNs) have demonstrated remarkable success in node classification tasks over relational data, yet their effectiveness often depends on the availability of complete node features. In many real-world scenarios, however, feature matrices are highly sparse or contain sensitive information, leading to degraded performance and increased privacy risks. Furthermore, direct exposure of information can result in unintended data leakage, enabling adversaries to infer sensitive information. To address these challenges, we propose a novel Multi-view Feature Propagation (MFP) framework that enhances node classification under feature sparsity while promoting privacy preservation. MFP extends traditional Feature Propagation (FP) by dividing the available features into multiple Gaussian-noised views, each propagating information independently through the graph topology. The aggregated representations yield expressive and robust node embeddings. This framework is novel in two respects: it introduces a mechanism that improves robustness under extreme sparsity, and it provides a principled way to balance utility with privacy. Extensive experiments conducted on graph datasets demonstrate that MFP outperforms state-of-the-art baselines in node classification while substantially reducing privacy leakage. Moreover, our analysis demonstrates that propagated outputs serve as alternative imputations rather than reconstructions of the original features, preserving utility without compromising privacy. A comprehensive sensitivity analysis further confirms the stability and practical applicability of MFP across diverse scenarios. Overall, MFP provides an effective and privacy-aware framework for graph learning in domains characterized by missing or sensitive features.
☆ Part II: ROLL Flash -- Accelerating RLVR and Agentic Training with Asynchrony
Synchronous Reinforcement Learning (RL) post-training has emerged as a crucial step for enhancing Large Language Models (LLMs) with diverse capabilities. However, many systems designed to accelerate RL post-training still suffer from low resource utilization and limited scalability. We present ROLL Flash, a system that extends ROLL with native support for asynchronous RL post-training. ROLL Flash is built upon two core design principles: fine-grained parallelism and rollout-train decoupling. Guided by these principles, ROLL Flash provides flexible programming interfaces that enable a fully asynchronous training architecture and support efficient rollout mechanisms, including queue scheduling and environment-level asynchronous execution. Through comprehensive theoretical analysis and extensive experiments, we demonstrate that ROLL Flash significantly improves resource utilization and scalability over synchronous RL post-training. ROLL Flash achieves up to 2.24x speedup on RLVR tasks and 2.72x on agentic tasks, using the same GPU budget as synchronous baselines. Furthermore, we implement several popular off-policy algorithms and verify that asynchronous training can achieve performance on par with synchronous training.
☆ Event-Aware Prompt Learning for Dynamic Graphs
Real-world graph typically evolve via a series of events, modeling dynamic interactions between objects across various domains. For dynamic graph learning, dynamic graph neural networks (DGNNs) have emerged as popular solutions. Recently, prompt learning methods have been explored on dynamic graphs. However, existing methods generally focus on capturing the relationship between nodes and time, while overlooking the impact of historical events. In this paper, we propose EVP, an event-aware dynamic graph prompt learning framework that can serve as a plug-in to existing methods, enhancing their ability to leverage historical events knowledge. First, we extract a series of historical events for each node and introduce an event adaptation mechanism to align the fine-grained characteristics of these events with downstream tasks. Second, we propose an event aggregation mechanism to effectively integrate historical knowledge into node representations. Finally, we conduct extensive experiments on four public datasets to evaluate and analyze EVP.
comment: Under review
☆ DiffStyleTS: Diffusion Model for Style Transfer in Time Series
Style transfer combines the content of one signal with the style of another. It supports applications such as data augmentation and scenario simulation, helping machine learning models generalize in data-scarce domains. While well developed in vision and language, style transfer methods for time series data remain limited. We introduce DiffTSST, a diffusion-based framework that disentangles a time series into content and style representations via convolutional encoders and recombines them through a self-supervised attention-based diffusion process. At inference, encoders extract content and style from two distinct series, enabling conditional generation of novel samples to achieve style transfer. We demonstrate both qualitatively and quantitatively that DiffTSST achieves effective style transfer. We further validate its real-world utility by showing that data augmentation with DiffTSST improves anomaly detection in data-scarce regimes.
☆ Diffusion-Link: Diffusion Probabilistic Model for Bridging the Audio-Text Modality Gap ICASSP 2026
Contrastive audio-language pretraining yields powerful joint representations, yet a persistent audio-text modality gap limits the benefits of coupling multimodal encoders with large language models (LLMs). We present Diffusion-Link, a diffusion-based modality-bridging module that generatively maps audio embeddings into the text-embedding distribution. The module is trained at the output embedding from the frozen multimodal encoder and implemented as a lightweight network with three residual MLP blocks. To assess the effect of Diffusion-Link on multimodal encoder-LLM coupling, we evaluate on Automatic Audio Captioning (AAC); to our knowledge, this is the first application of diffusion-based modality bridging to AAC. We report two results. (1) Modality-gap analysis: on similarity and geometric criteria, Diffusion-Link reduces the modality gap the most among prior diffusion-based methods and shows a collective migration of audio embeddings toward the text distribution. (2) Downstream AAC: attaching Diffusion-Link to the same multimodal LLM baseline achieves state-of-the-art on AudioCaps in both zero-shot and fully supervised captioning without external knowledge, with relative gains up to 52.5% and 7.5%, respectively. These findings show that closing the modality gap is pivotal for effective coupling between multimodal encoders and LLMs, and diffusion-based modality bridging offers a promising direction beyond knowledge-retrieval-centric designs. Code will be released upon acceptance https://github.com/DevKiHyun/Diffusion-Link
comment: 5 pages. Submitted to IEEE ICASSP 2026
☆ When Does Supervised Training Pay Off? The Hidden Economics of Object Detection in the Era of Vision-Language Models
Object detection systems have traditionally relied on supervised learning with manually annotated bounding boxes, achieving high accuracy at the cost of substantial annotation investment. The emergence of Vision-Language Models (VLMs) offers an alternative paradigm enabling zero-shot detection through natural language queries, eliminating annotation requirements but operating with reduced accuracy. This paper presents the first comprehensive cost-effectiveness analysis comparing supervised detection (YOLO) with zero-shot VLM inference (Gemini Flash 2.5). Through systematic evaluation on 1,000 stratified COCO images and 200 diverse product images spanning consumer electronics and rare categories, combined with detailed Total Cost of Ownership modeling, we establish quantitative break-even thresholds governing architecture selection. Our findings reveal that supervised YOLO achieves 91.2% accuracy versus 68.5% for zero-shot Gemini on standard categories, representing a 22.7 percentage point advantage that costs $10,800 in annotation for 100-category systems. However, this advantage justifies investment only beyond 55 million inferences, equivalent to 151,000 images daily for one year. Zero-shot Gemini demonstrates 52.3% accuracy on diverse product categories (ranging from highly web-prevalent consumer electronics at 75-85% to rare specialized equipment at 25-40%) where supervised YOLO achieves 0% due to architectural constraints preventing detection of untrained classes. Cost per Correct Detection analysis reveals substantially lower per-detection costs for Gemini ($0.00050 vs $0.143) at 100,000 inferences despite accuracy deficits. We develop decision frameworks demonstrating that optimal architecture selection depends critically on deployment volume, category stability, budget constraints, and accuracy requirements rather than purely technical performance metrics.
comment: 23 pages, 4 figures, 4 tables
☆ $Δ\mathrm{Energy}$: Optimizing Energy Change During Vision-Language Alignment Improves both OOD Detection and OOD Generalization
Recent approaches for vision-language models (VLMs) have shown remarkable success in achieving fast downstream adaptation. When applied to real-world downstream tasks, VLMs inevitably encounter both the in-distribution (ID) data and out-of-distribution (OOD) data. The OOD datasets often include both covariate shifts (e.g., known classes with changes in image styles) and semantic shifts (e.g., test-time unseen classes). This highlights the importance of improving VLMs' generalization ability to covariate-shifted OOD data, while effectively detecting open-set semantic-shifted OOD classes. In this paper, inspired by the substantial energy change observed in closed-set data when re-aligning vision-language modalities (specifically by directly reducing the maximum cosine similarity to a low value), we introduce a novel OOD score, named {\Delta}Energy. {\Delta}Energy significantly outperforms the vanilla energy-based OOD score and provides a more reliable approach for OOD detection. Furthermore, {\Delta}Energy can simultaneously improve OOD generalization under covariate shifts, which is achieved by lower-bound maximization for {\Delta}Energy (termed EBM). EBM is theoretically proven to not only enhance OOD detection but also yields a domain-consistent Hessian, which serves as a strong indicator for OOD generalization. Based on this finding, we developed a unified fine-tuning framework that allows for improving VLMs' robustness in both OOD generalization and OOD detection. Extensive experiments on challenging OOD detection and generalization benchmarks demonstrate the superiority of our method, outperforming recent approaches by 10% to 25% in AUROC.
comment: Accepted by NeruIPS2025
☆ LouisKV: Efficient KV Cache Retrieval for Long Input-Output Sequences
While Key-Value (KV) cache succeeds in reducing redundant computations in auto-regressive models, it introduces significant memory overhead, limiting its practical deployment in long-sequence scenarios. Existing KV retrieval methods mitigate this by dynamically retaining only a subset of KV entries on the GPU. However, they still suffer from notable efficiency and accuracy bottlenecks due to per-token retrieval and coarse-grained page-level KV management, especially in long-output reasoning scenarios. With the emergence of large reasoning models, efficiently handling such scenarios has become increasingly important. To address this issue, we present two key observations: (1) critical KVs exhibit strong temporal locality during decoding, and (2) these KVs exhibit distinct distribution patterns across the input prompt and generated output. Building on these observations, we propose LouisKV, an efficient KV cache retrieval framework designed for various long-sequence scenarios. Specifically, LouisKV introduces a semantic-aware retrieval strategy leveraging temporal locality to trigger retrieval only at semantic boundaries, drastically reducing computation and data transfer overhead. LouisKV also designs a decoupled, fine-grained management scheme that tailors differentiated strategies for input and output sequences to create retrieval units that better match the model's attention patterns, enabling precise identification of critical KVs. Furthermore, to boost efficiency, LouisKV incorporates several kernel-level optimizations, including custom Triton and CUDA kernels to accelerate the KV clustering and retrieval. Evaluations show that LouisKV achieves up to 4.7$\times$ speedup over state-of-the-art KV retrieval methods while maintaining near-lossless accuracy across diverse long-sequence tasks, including long-input short-output, short-input long-output, and long-input long-output scenarios.
☆ Network-Optimised Spiking Neural Network (NOS) Scheduling for 6G O-RAN: Spectral Margin and Delay-Tail Control
This work presents a Network-Optimised Spiking (NOS) delay-aware scheduler for 6G radio access. The scheme couples a bounded two-state kernel to a clique-feasible proportional-fair (PF) grant head: the excitability state acts as a finite-buffer proxy, the recovery state suppresses repeated grants, and neighbour pressure is injected along the interference graph via delayed spikes. A small-signal analysis yields a delay-dependent threshold $k_\star(\Delta)$ and a spectral margin $\delta = k_\star(\Delta) - gH\rho(W)$ that compress topology, controller gain, and delay into a single design parameter. Under light assumptions on arrivals, we prove geometric ergodicity for $\delta>0$ and derive sub-Gaussian backlog and delay tail bounds with exponents proportional to $\delta$. A numerical study, aligned with the analysis and a DU compute budget, compares NOS with PF and delayed backpressure (BP) across interference topologies over a $5$--$20$\,ms delay sweep. With a single gain fixed at the worst spectral radius, NOS sustains higher utilisation and a smaller 99.9th-percentile delay while remaining clique-feasible on integer PRBs.
comment: 6 pages, 5 figures, 1 table
☆ Gym-TORAX: Open-source software for integrating RL with plasma control simulators
This paper presents Gym-TORAX, a Python package enabling the implementation of Reinforcement Learning (RL) environments for simulating plasma dynamics and control in tokamaks. Users define succinctly a set of control actions and observations, and a control objective from which Gym-TORAX creates a Gymnasium environment that wraps TORAX for simulating the plasma dynamics. The objective is formulated through rewards depending on the simulated state of the plasma and control action to optimize specific characteristics of the plasma, such as performance and stability. The resulting environment instance is then compatible with a wide range of RL algorithms and libraries and will facilitate RL research in plasma control. In its current version, one environment is readily available, based on a ramp-up scenario of the International Thermonuclear Experimental Reactor (ITER).
☆ Vision-LLMs for Spatiotemporal Traffic Forecasting
Accurate spatiotemporal traffic forecasting is a critical prerequisite for proactive resource management in dense urban mobile networks. While Large Language Models (LLMs) have shown promise in time series analysis, they inherently struggle to model the complex spatial dependencies of grid-based traffic data. Effectively extending LLMs to this domain is challenging, as representing the vast amount of information from dense geographical grids can be inefficient and overwhelm the model's context. To address these challenges, we propose ST-Vision-LLM, a novel framework that reframes spatiotemporal forecasting as a vision-language fusion problem. Our approach leverages a Vision-LLM visual encoder to process historical global traffic matrices as image sequences, providing the model with a comprehensive global view to inform cell-level predictions. To overcome the inefficiency of LLMs in handling numerical data, we introduce an efficient encoding scheme that represents floating-point values as single tokens via a specialized vocabulary, coupled with a two-stage numerical alignment fine-tuning process. The model is first trained with Supervised Fine-Tuning (SFT) and then further optimized for predictive accuracy using Group Relative Policy Optimization (GRPO), a memory-efficient reinforcement learning method. Evaluations on real-world mobile traffic datasets demonstrate that ST-Vision-LLM outperforms existing methods by 15.6% in long-term prediction accuracy and exceeds the second-best baseline by over 30.04% in cross-domain few-shot scenarios. Our extensive experiments validate the model's strong generalization capabilities across various data-scarce environments.
☆ ENIGMA: The Geometry of Reasoning and Alignment in Large-Language Models
We present Entropic Mutual-Information Geometry Large-Language Model Alignment (ENIGMA), a novel approach to Large-Language Model (LLM) training that jointly improves reasoning, alignment and robustness by treating an organisation's policies/principles as directions to move on a model's information manifold. Our single-loop trainer combines Group-Relative Policy Optimisation (GRPO), an on-policy, critic-free RL method with Chain-of-Thought (CoT)-format only rewards; a Self-Supervised Alignment with Mutual Information (SAMI)-style symmetric InfoNCE auxiliary; and an entropic Sinkhorn optimal-transport regulariser on hidden-state distributions to bound geometry drift. We also introduce infoNCE metrics that specialise to a standard MI lower bound under matched negatives to measure how strongly a model's CoT encodes these policies. These metrics include a Sufficiency Index (SI) that enables the selection and creation of principles that maximise downstream performance prior to training. In our experiments using small (1B) LLMs, high-SI principles predict steadier training dynamics and improved benchmark performance over GRPO ablations. Our information-geometry analysis of trained models validates desirable structural change in the manifold. These results support our hypothesis that reasoning, alignment, and robustness are projections of a single informationgeometric objective, and that models trained using ENIGMA demonstrate principled reasoning without the use of a reward model, offering a path to trusted capability
comment: 52 pages, 10 figures
☆ SeFEF: A Seizure Forecasting Evaluation Framework
The lack of standardization in seizure forecasting slows progress in the field and limits the clinical translation of forecasting models. In this work, we introduce a Python-based framework aimed at streamlining the development, assessment, and documentation of individualized seizure forecasting algorithms. The framework automates data labeling, cross-validation splitting, forecast post-processing, performance evaluation, and reporting. It supports various forecasting horizons and includes a model card that documents implementation details, training and evaluation settings, and performance metrics. Three different models were implemented as a proof-of-concept. The models leveraged features extracted from time series data and seizure periodicity. Model performance was assessed using time series cross-validation and key deterministic and probabilistic metrics. Implementation of the three models was successful, demonstrating the flexibility of the framework. The results also emphasize the importance of careful model interpretation due to variations in probability scaling, calibration, and subject-specific differences. Although formal usability metrics were not recorded, empirical observations suggest reduced development time and methodological consistency, minimizing unintentional variations that could affect the comparability of different approaches. As a proof-of-concept, this validation is inherently limited, relying on a single-user experiment without statistical analyses or replication across independent datasets. At this stage, our objective is to make the framework publicly available to foster community engagement, facilitate experimentation, and gather feedback. In the long term, we aim to contribute to the establishment of a consensus on a standardized methodology for the development and validation of seizure forecasting algorithms in people with epilepsy.
comment: main document: 14 pages, 9 figures, 2 tables; appendix: 7 pages, 2 figures, 3 tables, 2 algorithms
☆ FedLoRA-Optimizer: Federated LoRA Fine-Tuning with Global and Local Optimization in Heterogeneous Data Scenarios
Federated efficient fine-tuning has emerged as an approach that leverages distributed data and computational resources across nodes to address the challenges of large-scale fine-tuning and privacy preservation. The Low-Rank Adaptation (LoRA) enables efficient fine-tuning of large-scale pre-trained models by introducing trainable low-rank matrices into weight updates.However, in heterogeneous data scenarios, client drift weakens the generalization of the global model, and local models often fail to meet the personalized needs of individual clients.Moreover, existing federated LoRA efficient fine-tuning techniques overlook fine-grained analysis of the tuning matrices. To address this, we conducted preliminary experiments and found that different LoRA matrices exhibit different sensitivity to changes in the direction and magnitude of their vectors.We thus propose a fine-grained federated LoRA tuning method. By fine-tuning the more sensitive directional vectors in the A matrix, which encode shared knowledge, our method learns shared features more effectively across clients and enhances global generalization. Simultaneously, by fine-tuning the more sensitive magnitude vectors in the B matrix, which encode personalized knowledge, our method better captures personalized knowledge, enabling detailed adaptation to local data. The method uses a pipeline combining global and local optimizers. Global optimization further improves local models, achieving collaborative optimization between global and local levels. This improves both the generalization ability of the global model and the personalized adaptation of local models under heterogeneous data scenarios. Experiments on Databricks-Dolly-15k and Natural Instructions with LLaMA2-7B and Deepseek-7B confirm that our method improves global performance by 0.39% and local performance by 0.59%.
☆ DemoHLM: From One Demonstration to Generalizable Humanoid Loco-Manipulation
Loco-manipulation is a fundamental challenge for humanoid robots to achieve versatile interactions in human environments. Although recent studies have made significant progress in humanoid whole-body control, loco-manipulation remains underexplored and often relies on hard-coded task definitions or costly real-world data collection, which limits autonomy and generalization. We present DemoHLM, a framework for humanoid loco-manipulation that enables generalizable loco-manipulation on a real humanoid robot from a single demonstration in simulation. DemoHLM adopts a hierarchy that integrates a low-level universal whole-body controller with high-level manipulation policies for multiple tasks. The whole-body controller maps whole-body motion commands to joint torques and provides omnidirectional mobility for the humanoid robot. The manipulation policies, learned in simulation via our data generation and imitation learning pipeline, command the whole-body controller with closed-loop visual feedback to execute challenging loco-manipulation tasks. Experiments show a positive correlation between the amount of synthetic data and policy performance, underscoring the effectiveness of our data generation pipeline and the data efficiency of our approach. Real-world experiments on a Unitree G1 robot equipped with an RGB-D camera validate the sim-to-real transferability of DemoHLM, demonstrating robust performance under spatial variations across ten loco-manipulation tasks.
☆ MIEO: encoding clinical data to enhance cardiovascular event prediction
As clinical data are becoming increasingly available, machine learning methods have been employed to extract knowledge from them and predict clinical events. While promising, approaches suffer from at least two main issues: low availability of labelled data and data heterogeneity leading to missing values. This work proposes the use of self-supervised auto-encoders to efficiently address these challenges. We apply our methodology to a clinical dataset from patients with ischaemic heart disease. Patient data is embedded in a latent space, built using unlabelled data, which is then used to train a neural network classifier to predict cardiovascular death. Results show improved balanced accuracy compared to applying the classifier directly to the raw data, demonstrating that this solution is promising, especially in conditions where availability of unlabelled data could increase.
comment: Presented in the Poster Session of Computational Intelligence methods for Bioinformatics and Biostatistics (CIBB) 2025
☆ Large Language Models Are Effective Code Watermarkers
The widespread use of large language models (LLMs) and open-source code has raised ethical and security concerns regarding the distribution and attribution of source code, including unauthorized redistribution, license violations, and misuse of code for malicious purposes. Watermarking has emerged as a promising solution for source attribution, but existing techniques rely heavily on hand-crafted transformation rules, abstract syntax tree (AST) manipulation, or task-specific training, limiting their scalability and generality across languages. Moreover, their robustness against attacks remains limited. To address these limitations, we propose CodeMark-LLM, an LLM-driven watermarking framework that embeds watermark into source code without compromising its semantics or readability. CodeMark-LLM consists of two core components: (i) Semantically Consistent Embedding module that applies functionality-preserving transformations to encode watermark bits, and (ii) Differential Comparison Extraction module that identifies the applied transformations by comparing the original and watermarked code. Leveraging the cross-lingual generalization ability of LLM, CodeMark-LLM avoids language-specific engineering and training pipelines. Extensive experiments across diverse programming languages and attack scenarios demonstrate its robustness, effectiveness, and scalability.
☆ FUSE: Fast Semi-Supervised Node Embedding Learning via Structural and Label-Aware Optimization
Graph-based learning is a cornerstone for analyzing structured data, with node classification as a central task. However, in many real-world graphs, nodes lack informative feature vectors, leaving only neighborhood connectivity and class labels as available signals. In such cases, effective classification hinges on learning node embeddings that capture structural roles and topological context. We introduce a fast semi-supervised embedding framework that jointly optimizes three complementary objectives: (i) unsupervised structure preservation via scalable modularity approximation, (ii) supervised regularization to minimize intra-class variance among labeled nodes, and (iii) semi-supervised propagation that refines unlabeled nodes through random-walk-based label spreading with attention-weighted similarity. These components are unified into a single iterative optimization scheme, yielding high-quality node embeddings. On standard benchmarks, our method consistently achieves classification accuracy at par with or superior to state-of-the-art approaches, while requiring significantly less computational cost.
☆ Learning the Structure of Connection Graphs
Connection graphs (CGs) extend traditional graph models by coupling network topology with orthogonal transformations, enabling the representation of global geometric consistency. They play a key role in applications such as synchronization, Riemannian signal processing, and neural sheaf diffusion. In this work, we address the inverse problem of learning CGs directly from observed signals. We propose a principled framework based on maximum pseudo-likelihood under a consistency assumption, which enforces spectral properties linking the connection Laplacian to the underlying combinatorial Laplacian. Based on this formulation, we introduce the Structured Connection Graph Learning (SCGL) algorithm, a block-optimization procedure over Riemannian manifolds that jointly infers network topology, edge weights, and geometric structure. Our experiments show that SCGL consistently outperforms existing baselines in both topological recovery and geometric fidelity, while remaining computationally efficient.
☆ Analyzing Data Quality and Decay in Mega-Constellations: A Physics-Informed Machine Learning Approach
In the era of mega-constellations, the need for accurate and publicly available information has become fundamental for satellite operators to guarantee the safety of spacecrafts and the Low Earth Orbit (LEO) space environment. This study critically evaluates the accuracy and reliability of publicly available ephemeris data for a LEO mega-constellation - Starlink. The goal of this work is twofold: (i) compare and analyze the quality of the data against high-precision numerical propagation. (ii) Leverage Physics-Informed Machine Learning to extract relevant satellite quantities, such as non-conservative forces, during the decay process. By analyzing two months of real orbital data for approximately 1500 Starlink satellites, we identify discrepancies between high precision numerical algorithms and the published ephemerides, recognizing the use of simplified dynamics at fixed thresholds, planned maneuvers, and limitations in uncertainty propagations. Furthermore, we compare data obtained from multiple sources to track and analyze deorbiting satellites over the same period. Empirically, we extract the acceleration profile of satellites during deorbiting and provide insights relating to the effects of non-conservative forces during reentry. For non-deorbiting satellites, the position Root Mean Square Error (RMSE) was approximately 300 m, while for deorbiting satellites it increased to about 600 m. Through this in-depth analysis, we highlight potential limitations in publicly available data for accurate and robust Space Situational Awareness (SSA), and importantly, we propose a data-driven model of satellite decay in mega-constellations.
comment: 76th International Astronautical Congress
☆ Neural Weight Compression for Language Models
The efficient storage and transmission of language model weights is becoming increasingly important, as their scale and adoption continue to grow. However, as our understanding of this new data modality is limited, designing a good compression algorithm for language model weights heavily relies on manual, trial-and-error approaches. In this paper, we propose a learned compression framework that trains neural codecs directly from pretrained language model weights. Unlike conventional data (e.g., images), language model weights pose unique challenges: the sizes and shapes of weight tensors vary significantly, and the reconstruction quality must be judged by downstream model predictions rather than na\"ive MSE loss. To address this, we introduce Neural Weight Compression (NWC), a novel autoencoder-based neural codec tailored to model weight compression. The proposed method inherits the advantages of autoencoder-based codecs while incorporating three technical components: (1) column-wise tensor chunking and normalization; (2) an importance-aware training loss; (3) an inference-time error compensation mechanism guided by model outputs. Experiments on open-weight language models show that NWC achieves competitive or state-of-the-art accuracy-compression tradeoffs, with particularly strong results at 4-6 bit precisions where accuracy remains nearly on par with FP16 models.
☆ LightPneumoNet: Lightweight Pneumonia Classifier
Effective pneumonia diagnosis is often challenged by the difficulty of deploying large, computationally expensive deep learning models in resource-limited settings. This study introduces LightPneumoNet, an efficient, lightweight convolutional neural network (CNN) built from scratch to provide an accessible and accurate diagnostic solution for pneumonia detection from chest X-rays. Our model was trained on a public dataset of 5,856 chest X-ray images. Preprocessing included image resizing to 224x224, grayscale conversion, and pixel normalization, with data augmentation (rotation, zoom, shear) to prevent overfitting. The custom architecture features four blocks of stacked convolutional layers and contains only 388,082 trainable parameters, resulting in a minimal 1.48 MB memory footprint. On the independent test set, our model delivered exceptional performance, achieving an overall accuracy of 0.942, precision of 0.92, and an F1-Score of 0.96. Critically, it obtained a sensitivity (recall) of 0.99, demonstrating a near-perfect ability to identify true pneumonia cases and minimize clinically significant false negatives. Notably, LightPneumoNet achieves this high recall on the same dataset where existing approaches typically require significantly heavier architectures or fail to reach comparable sensitivity levels. The model's efficiency enables deployment on low-cost hardware, making advanced computer-aided diagnosis accessible in underserved clinics and serving as a reliable second-opinion tool to improve patient outcomes.
comment: 13 pages (including references), 5 figures
☆ Enforcing convex constraints in Graph Neural Networks
Many machine learning applications require outputs that satisfy complex, dynamic constraints. This task is particularly challenging in Graph Neural Network models due to the variable output sizes of graph-structured data. In this paper, we introduce ProjNet, a Graph Neural Network framework which satisfies input-dependant constraints. ProjNet combines a sparse vector clipping method with the Component-Averaged Dykstra (CAD) algorithm, an iterative scheme for solving the best-approximation problem. We establish a convergence result for CAD and develop a GPU-accelerated implementation capable of handling large-scale inputs efficiently. To enable end-to-end training, we introduce a surrogate gradient for CAD that is both computationally efficient and better suited for optimization than the exact gradient. We validate ProjNet on four classes of constrained optimisation problems: linear programming, two classes of non-convex quadratic programs, and radio transmit power optimization, demonstrating its effectiveness across diverse problem settings.
☆ Discursive Circuits: How Do Language Models Understand Discourse Relations? EMNLP 2025
Which components in transformer language models are responsible for discourse understanding? We hypothesize that sparse computational graphs, termed as discursive circuits, control how models process discourse relations. Unlike simpler tasks, discourse relations involve longer spans and complex reasoning. To make circuit discovery feasible, we introduce a task called Completion under Discourse Relation (CuDR), where a model completes a discourse given a specified relation. To support this task, we construct a corpus of minimal contrastive pairs tailored for activation patching in circuit discovery. Experiments show that sparse circuits ($\approx 0.2\%$ of a full GPT-2 model) recover discourse understanding in the English PDTB-based CuDR task. These circuits generalize well to unseen discourse frameworks such as RST and SDRT. Further analysis shows lower layers capture linguistic features such as lexical semantics and coreference, while upper layers encode discourse-level abstractions. Feature utility is consistent across frameworks (e.g., coreference supports Expansion-like relations).
comment: Accepted to EMNLP 2025 (Main Conference); 9 pages, 8 figures, 5 tables (20 pages, 12 figures, 14 tables including references and appendices)
☆ Cross-Scale Reservoir Computing for large spatio-temporal forecasting and modeling
We propose a new reservoir computing method for forecasting high-resolution spatiotemporal datasets. By combining multi-resolution inputs from coarser to finer layers, our architecture better captures both local and global dynamics. Applied to Sea Surface Temperature data, it outperforms standard parallel reservoir models in long-term forecasting, demonstrating the effectiveness of cross-layers coupling in improving predictive accuracy. Finally, we show that the optimal network dynamics in each layer become increasingly linear, revealing the slow modes propagated to subsequent layers.
☆ Evaluating Line-level Localization Ability of Learning-based Code Vulnerability Detection Models
To address the extremely concerning problem of software vulnerability, system security is often entrusted to Machine Learning (ML) algorithms. Despite their now established detection capabilities, such models are limited by design to flagging the entire input source code function as vulnerable, rather than precisely localizing the concerned code lines. However, the detection granularity is crucial to support human operators during software development, ensuring that such predictions reflect the true code semantics to help debug, evaluate, and fix the detected vulnerabilities. To address this issue, recent work made progress toward improving the detector's localization ability, thus narrowing down the vulnerability detection "window" and providing more fine-grained predictions. Such approaches, however, implicitly disregard the presence of spurious correlations and biases in the data, which often predominantly influence the performance of ML algorithms. In this work, we investigate how detectors comply with this requirement by proposing an explainability-based evaluation procedure. Our approach, defined as Detection Alignment (DA), quantifies the agreement between the input source code lines that most influence the prediction and the actual localization of the vulnerability as per the ground truth. Through DA, which is model-agnostic and adaptable to different detection tasks, not limited to our use case, we analyze multiple learning-based vulnerability detectors and datasets. As a result, we show how the predictions of such models are consistently biased by non-vulnerable lines, ultimately highlighting the high impact of biases and spurious correlations. The code is available at https://github.com/pralab/vuln-localization-eval.
comment: Preprint
☆ Efficient In-Memory Acceleration of Sparse Block Diagonal LLMs
Structured sparsity enables deploying large language models (LLMs) on resource-constrained systems. Approaches like dense-to-sparse fine-tuning are particularly compelling, achieving remarkable structured sparsity by reducing the model size by over 6.7x, while still maintaining acceptable accuracy. Despite this reduction, LLM inference, especially the decode stage being inherently memory-bound, is extremely expensive on conventional Von-Neumann architectures. Compute-in-memory (CIM) architectures mitigate this by performing computations directly in memory, and when paired with sparse LLMs, enable storing and computing the entire model in memory, eliminating the data movement on the off-chip bus and improving efficiency. Nonetheless, naively mapping sparse matrices onto CIM arrays leads to poor array utilization and diminished computational efficiency. In this paper, we present an automated framework with novel mapping and scheduling strategies to accelerate sparse LLM inference on CIM accelerators. By exploiting block-diagonal sparsity, our approach improves CIM array utilization by over 50%, achieving more than 4x reduction in both memory footprint and the number of required floating-point operations.
comment: 8 pages, to appear in IEEE Cross-disciplinary Conference on Memory-Centric Computing (CCMCC)
☆ Protein as a Second Language for LLMs ICLR 2026
Deciphering the function of unseen protein sequences is a fundamental challenge with broad scientific impact, yet most existing methods depend on task-specific adapters or large-scale supervised fine-tuning. We introduce the "Protein-as-Second-Language" framework, which reformulates amino-acid sequences as sentences in a novel symbolic language that large language models can interpret through contextual exemplars. Our approach adaptively constructs sequence-question-answer triples that reveal functional cues in a zero-shot setting, without any further training. To support this process, we curate a bilingual corpus of 79,926 protein-QA instances spanning attribute prediction, descriptive understanding, and extended reasoning. Empirically, our method delivers consistent gains across diverse open-source LLMs and GPT-4, achieving up to 17.2% ROUGE-L improvement (average +7%) and even surpassing fine-tuned protein-specific language models. These results highlight that generic LLMs, when guided with protein-as-language cues, can outperform domain-specialized models, offering a scalable pathway for protein understanding in foundation models.
comment: Main paper: 9 pages, 6 figures. With references and appendix: 18 pages, 9 figures total. Submitted to ICLR 2026 (under review)
☆ Can Tool-Integrated Reinforcement Learning Generalize Across Diverse Domains?
Recent advances in large language models (LLMs) have demonstrated remarkable capabilities in reasoning and tool utilization. However, the generalization of tool-augmented reinforcement learning (RL) across diverse domains remains underexplored. In this work, we investigate the cross-domain generalization of an LLM agent equipped with a code interpreter tool, which is exclusively trained on mathematical problem-solving tasks. Despite the restricted training domain, we evaluate the agent's performance across several distinct reasoning domains. The results reveal that RL-based tool usage learned from mathematical tasks can be effectively transferred to complex tasks in other domains, enabling great task performance and high token efficiency. To facilitate this cross-domain transfer, we propose a Tool Generalization Reinforcement Learning (TGRL) framework designed to promote domain-agnostic learning and skill migration, encompassing: (i) a standardized tool interface that abstracts domain-specific nuances through consistent formatting and explicit termination, fostering transferable invocation patterns; (ii) a dual-component reward system that decomposes rewards to incentivize generalizable behaviors like tool efficiency and reasoning abstraction, ensuring alignment and robustness across domain shifts; and (iii) an XML-based prompt template that separates thinking, tool calls, and responses to encourage modular, domain-invariant planning and coherent multi-turn interactions. Extensive experiments across diverse benchmarks validate our approach, achieving state-of-the-art performance and highlighting the cross-domain potential of Tool RL for LLM reasoning.
☆ Machine Learning-Integrated Hybrid Fluid-Kinetic Framework for Quantum Electrodynamic Laser Plasma Simulations
High-intensity laser plasma interactions create complex computational problems because they involve both fluid and kinetic regimes, which need models that maintain physical precision while keeping computational speed. The research introduces a machine learning-based three-dimensional hybrid fluid-particle-in-cell (PIC) system, which links relativistic plasma behavior to automatic regime transitions. The technique employs fluid approximations for stable areas but activates the PIC solver when SwitchNet directs it to unstable sections through its training on physics-based synthetic data. The model uses a smooth transition between Ammosov-Delone-Krainov (ADK) tunneling and multiphoton ionization rates to simulate ionization, while Airy-function approximations simulate quantum electrodynamic (QED) effects for radiation reaction and pair production. The convolutional neural network applies energy conservation through physics-based loss functions, which operate on normalized fields per channel. Monte Carlo dropout provides uncertainty measurement. The hybrid model produces precise predictions with coefficient of determination (R^2) values above 0.95 and mean squared errors below 10^-4 for all field components. This adaptive approach enhances the accuracy and scalability of laser-plasma simulations, providing a unified predictive framework for high-energy-density and particle acceleration applications.
☆ EAGER: Entropy-Aware GEneRation for Adaptive Inference-Time Scaling
With the rise of reasoning language models and test-time scaling methods as a paradigm for improving model performance, substantial computation is often required to generate multiple candidate sequences from the same prompt. This enables exploration of different reasoning paths toward the correct solution, however, allocates the same compute budget for each prompt. Grounded on the assumption that different prompts carry different degrees of complexity, and thus different computation needs, we propose EAGer, a training-free generation method that leverages model uncertainty through token-wise entropy distribution to reduce redundant computation and concurrently improve overall performance. EAGer allows branching to multiple reasoning paths only in the presence of high-entropy tokens, and then reallocates the saved compute budget to the instances where exploration of alternative paths is most needed. We find that across multiple open-source models on complex reasoning benchmarks such as AIME 2025, EAGer can reallocate the budget without accessing target labels, achieving the best efficiency-performance trade-off in terms of reasoning length and Pass@k. When target labels are accessible, EAGer generates up to 65% fewer tokens (hence saving compute) and achieves up to 37% improvement in Pass@k compared to the Full Parallel Sampling.
☆ PAC-Bayesian Bounds on Constrained f-Entropic Risk Measures
PAC generalization bounds on the risk, when expressed in terms of the expected loss, are often insufficient to capture imbalances between subgroups in the data. To overcome this limitation, we introduce a new family of risk measures, called constrained f-entropic risk measures, which enable finer control over distributional shifts and subgroup imbalances via f-divergences, and include the Conditional Value at Risk (CVaR), a well-known risk measure. We derive both classical and disintegrated PAC-Bayesian generalization bounds for this family of risks, providing the first disintegratedPAC-Bayesian guarantees beyond standard risks. Building on this theory, we design a self-bounding algorithm that minimizes our bounds directly, yielding models with guarantees at the subgroup level. Finally, we empirically demonstrate the usefulness of our approach.
☆ ELMO: Efficiency via Low-precision and Peak Memory Optimization in Large Output Spaces ICML 2025
Large output spaces, also referred to as Extreme multilabel classification (XMC), is a setting that arises, e.g., in large-scale tagging and product-to-product recommendation, and is characterized by the number of labels ranging from hundreds of thousands to millions. This means that the linear classification head, usually only a tiny fraction of the overall model, turns into the main driver for compute and memory demand. Current state-of-the-art XMC methods predominantly rely on FP16-FP32 mixed-precision training, which we show can be unstable, and inefficient in terms of memory usage and computational overhead. Meanwhile, existing low-precision methods typically retain higher precision for the classification layer. In this work, we propose ELMO, a pure low-precision training framework for XMC models using BFloat16 and Float8 data types. By leveraging Kahan summation and stochastic rounding, we demonstrate that XMC models can be effectively trained entirely in Float8, without relying on single-precision master weights or tensor scaling. Low-precision training, combined with our proposed memory optimizations -- gradient fusion and chunking -- enables significant reductions in GPU memory usage. For example, we train a 3-million-label XMC model with only 6.6 GiB of GPU memory, compared to the 39.7 GiB required by the optimized SOTA method, Renee without compromising accuracy.
comment: Accepted to ICML 2025
☆ Beyond single-model XAI: aggregating multi-model explanations for enhanced trustworthiness ECAI 2025
The use of Artificial Intelligence (AI) models in real-world and high-risk applications has intensified the discussion about their trustworthiness and ethical usage, from both a technical and a legislative perspective. The field of eXplainable Artificial Intelligence (XAI) addresses this challenge by proposing explanations that bring to light the decision-making processes of complex black-box models. Despite being an essential property, the robustness of explanations is often an overlooked aspect during development: only robust explanation methods can increase the trust in the system as a whole. This paper investigates the role of robustness through the usage of a feature importance aggregation derived from multiple models ($k$-nearest neighbours, random forest and neural networks). Preliminary results showcase the potential in increasing the trustworthiness of the application, while leveraging multiple model's predictive power.
comment: Accepted at the European Workshop on Trustworthy Artificial Intelligence (TRUST-AI), co-located within ECAI 2025
☆ Emergence of hybrid computational dynamics through reinforcement learning
Understanding how learning algorithms shape the computational strategies that emerge in neural networks remains a fundamental challenge in machine intelligence. While network architectures receive extensive attention, the role of the learning paradigm itself in determining emergent dynamics remains largely unexplored. Here we demonstrate that reinforcement learning (RL) and supervised learning (SL) drive recurrent neural networks (RNNs) toward fundamentally different computational solutions when trained on identical decision-making tasks. Through systematic dynamical systems analysis, we reveal that RL spontaneously discovers hybrid attractor architectures, combining stable fixed-point attractors for decision maintenance with quasi-periodic attractors for flexible evidence integration. This contrasts sharply with SL, which converges almost exclusively to simpler fixed-point-only solutions. We further show that RL sculpts functionally balanced neural populations through a powerful form of implicit regularization -- a structural signature that enhances robustness and is conspicuously absent in the more heterogeneous solutions found by SL-trained networks. The prevalence of these complex dynamics in RL is controllably modulated by weight initialization and correlates strongly with performance gains, particularly as task complexity increases. Our results establish the learning algorithm as a primary determinant of emergent computation, revealing how reward-based optimization autonomously discovers sophisticated dynamical mechanisms that are less accessible to direct gradient-based optimization. These findings provide both mechanistic insights into neural computation and actionable principles for designing adaptive AI systems.
comment: 22 pages, 11 figures
☆ Enhanced Sampling for Efficient Learning of Coarse-Grained Machine Learning Potentials
Coarse-graining (CG) enables molecular dynamics (MD) simulations of larger systems and longer timescales that are otherwise infeasible with atomistic models. Machine learning potentials (MLPs), with their capacity to capture many-body interactions, can provide accurate approximations of the potential of mean force (PMF) in CG models. Current CG MLPs are typically trained in a bottom-up manner via force matching, which in practice relies on configurations sampled from the unbiased equilibrium Boltzmann distribution to ensure thermodynamic consistency. This convention poses two key limitations: first, sufficiently long atomistic trajectories are needed to reach convergence; and second, even once equilibrated, transition regions remain poorly sampled. To address these issues, we employ enhanced sampling to bias along CG degrees of freedom for data generation, and then recompute the forces with respect to the unbiased potential. This strategy simultaneously shortens the simulation time required to produce equilibrated data and enriches sampling in transition regions, while preserving the correct PMF. We demonstrate its effectiveness on the M\"uller-Brown potential and capped alanine, achieving notable improvements. Our findings support the use of enhanced sampling for force matching as a promising direction to improve the accuracy and reliability of CG MLPs.
☆ torchsom: The Reference PyTorch Library for Self-Organizing Maps
This paper introduces torchsom, an open-source Python library that provides a reference implementation of the Self-Organizing Map (SOM) in PyTorch. This package offers three main features: (i) dimensionality reduction, (ii) clustering, and (iii) friendly data visualization. It relies on a PyTorch backend, enabling (i) fast and efficient training of SOMs through GPU acceleration, and (ii) easy and scalable integrations with PyTorch ecosystem. Moreover, torchsom follows the scikit-learn API for ease of use and extensibility. The library is released under the Apache 2.0 license with 90% test coverage, and its source code and documentation are available at https://github.com/michelin/TorchSOM.
comment: 4 mains pages with 2 tables, 4 pages of references, 15 pages of appendices with 13 figures and 3 tables
☆ A Comprehensive Forecasting-Based Framework for Time Series Anomaly Detection: Benchmarking on the Numenta Anomaly Benchmark (NAB)
Time series anomaly detection is critical for modern digital infrastructures, yet existing methods lack systematic cross-domain evaluation. We present a comprehensive forecasting-based framework unifying classical methods (Holt-Winters, SARIMA) with deep learning architectures (LSTM, Informer) under a common residual-based detection interface. Our modular pipeline integrates preprocessing (normalization, STL decomposition), four forecasting models, four detection methods, and dual evaluation through forecasting metrics (MAE, RMSE, PCC) and detection metrics (Precision, Recall, F1, AUC). We conduct the first complete evaluation on the Numenta Anomaly Benchmark (58 datasets, 7 categories) with 232 model training runs and 464 detection evaluations achieving 100\% success rate. LSTM achieves best performance (F1: 0.688, ranking first or second on 81\% of datasets) with exceptional correlation on complex patterns (PCC: 0.999). Informer provides competitive accuracy (F1: 0.683) with 30\% faster training. Classical methods achieve perfect predictions on simple synthetic data with 60 lower cost but show 2-3 worse F1-scores on real-world datasets. Forecasting quality dominates detection performance: differences between detection methods (F1: 0.621-0.688) are smaller than between forecasting models (F1: 0.344-0.688). Our findings provide evidence-based guidance: use LSTM for complex patterns, Informer for efficiency-critical deployments, and classical methods for simple periodic data with resource constraints. The complete implementation and results establish baselines for future forecasting-based anomaly detection research.
☆ DUAL: Learning Diverse Kernels for Aggregated Two-sample and Independence Testing
To adapt kernel two-sample and independence testing to complex structured data, aggregation of multiple kernels is frequently employed to boost testing power compared to single-kernel tests. However, we observe a phenomenon that directly maximizing multiple kernel-based statistics may result in highly similar kernels that capture highly overlapping information, limiting the effectiveness of aggregation. To address this, we propose an aggregated statistic that explicitly incorporates kernel diversity based on the covariance between different kernels. Moreover, we identify a fundamental challenge: a trade-off between the diversity among kernels and the test power of individual kernels, i.e., the selected kernels should be both effective and diverse. This motivates a testing framework with selection inference, which leverages information from the training phase to select kernels with strong individual performance from the learned diverse kernel pool. We provide rigorous theoretical statements and proofs to show the consistency on the test power and control of Type-I error, along with asymptotic analysis of the proposed statistics. Lastly, we conducted extensive empirical experiments demonstrating the superior performance of our proposed approach across various benchmarks for both two-sample and independence testing.
☆ Test-Time Adaptation by Causal Trimming NeurIPS 2025
Test-time adaptation aims to improve model robustness under distribution shifts by adapting models with access to unlabeled target samples. A primary cause of performance degradation under such shifts is the model's reliance on features that lack a direct causal relationship with the prediction target. We introduce Test-time Adaptation by Causal Trimming (TACT), a method that identifies and removes non-causal components from representations for test distributions. TACT applies data augmentations that preserve causal features while varying non-causal ones. By analyzing the changes in the representations using Principal Component Analysis, TACT identifies the highest variance directions associated with non-causal features. It trims the representations by removing their projections on the identified directions, and uses the trimmed representations for the predictions. During adaptation, TACT continuously tracks and refines these directions to get a better estimate of non-causal features. We theoretically analyze the effectiveness of this approach and empirically validate TACT on real-world out-of-distribution benchmarks. TACT consistently outperforms state-of-the-art methods by a significant margin.
comment: Accepted to the Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025); Code is available at https://github.com/NancyQuris/TACT
☆ Lightweight Facial Landmark Detection in Thermal Images via Multi-Level Cross-Modal Knowledge Transfer
Facial Landmark Detection (FLD) in thermal imagery is critical for applications in challenging lighting conditions, but it is hampered by the lack of rich visual cues. Conventional cross-modal solutions, like feature fusion or image translation from RGB data, are often computationally expensive or introduce structural artifacts, limiting their practical deployment. To address this, we propose Multi-Level Cross-Modal Knowledge Distillation (MLCM-KD), a novel framework that decouples high-fidelity RGB-to-thermal knowledge transfer from model compression to create both accurate and efficient thermal FLD models. A central challenge during knowledge transfer is the profound modality gap between RGB and thermal data, where traditional unidirectional distillation fails to enforce semantic consistency across disparate feature spaces. To overcome this, we introduce Dual-Injected Knowledge Distillation (DIKD), a bidirectional mechanism designed specifically for this task. DIKD establishes a connection between modalities: it not only guides the thermal student with rich RGB features but also validates the student's learned representations by feeding them back into the frozen teacher's prediction head. This closed-loop supervision forces the student to learn modality-invariant features that are semantically aligned with the teacher, ensuring a robust and profound knowledge transfer. Experiments show that our approach sets a new state-of-the-art on public thermal FLD benchmarks, notably outperforming previous methods while drastically reducing computational overhead.
☆ Refining Hybrid Genetic Search for CVRP via Reinforcement Learning-Finetuned LLM
While large language models (LLMs) are increasingly used as automated heuristic designers for vehicle routing problems (VRPs), current state-of-the-art methods predominantly rely on prompting massive, general-purpose models like GPT-4. This work challenges that paradigm by demonstrating that a smaller, specialized LLM, when meticulously fine-tuned, can generate components that surpass expert-crafted heuristics within advanced solvers. We propose RFTHGS, a novel Reinforcement learning (RL) framework for Fine-Tuning a small LLM to generate high-performance crossover operators for the Hybrid Genetic Search (HGS) solver, applied to the Capacitated VRP (CVRP). Our method employs a multi-tiered, curriculum-based reward function that progressively guides the LLM to master generating first compilable, then executable, and finally, superior-performing operators that exceed human expert designs. This is coupled with an operator caching mechanism that discourages plagiarism and promotes diversity during training. Comprehensive experiments show that our fine-tuned LLM produces crossover operators which significantly outperform the expert-designed ones in HGS. The performance advantage remains consistent, generalizing from small-scale instances to large-scale problems with up to 1000 nodes. Furthermore, RFTHGS exceeds the performance of leading neuro-combinatorial baselines, prompt-based methods, and commercial LLMs such as GPT-4o and GPT-4o-mini.
☆ PhysioME: A Robust Multimodal Self-Supervised Framework for Physiological Signals with Missing Modalities
Missing or corrupted modalities are common in physiological signal-based medical applications owing to hardware constraints or motion artifacts. However, most existing methods assume the availability of all modalities, resulting in substantial performance degradation in the absence of any modality. To overcome this limitation, this study proposes PhysioME, a robust framework designed to ensure reliable performance under missing modality conditions. PhysioME adopts: (1) a multimodal self-supervised learning approach that combines contrastive learning with masked prediction; (2) a Dual-PathNeuroNet backbone tailored to capture the temporal dynamics of each physiological signal modality; and (3) a restoration decoder that reconstructs missing modality tokens, enabling flexible processing of incomplete inputs. The experimental results show that PhysioME achieves high consistency and generalization performance across various missing modality scenarios. These findings highlight the potential of PhysioME as a reliable tool for supporting clinical decision-making in real-world settings with imperfect data availability.
comment: 9 pages, 2 figures
♻ ☆ On Convolutions, Intrinsic Dimension, and Diffusion Models
The manifold hypothesis asserts that data of interest in high-dimensional ambient spaces, such as image data, lies on unknown low-dimensional submanifolds. Diffusion models (DMs) -- which operate by convolving data with progressively larger amounts of Gaussian noise and then learning to revert this process -- have risen to prominence as the most performant generative models, and are known to be able to learn distributions with low-dimensional support. For a given datum in one of these submanifolds, we should thus intuitively expect DMs to have implicitly learned its corresponding local intrinsic dimension (LID), i.e. the dimension of the submanifold it belongs to. Kamkari et al. (2024b) recently showed that this is indeed the case by linking this LID to the rate of change of the log marginal densities of the DM with respect to the amount of added noise, resulting in an LID estimator known as FLIPD. LID estimators such as FLIPD have a plethora of uses, among others they quantify the complexity of a given datum, and can be used to detect outliers, adversarial examples and AI-generated text. FLIPD achieves state-of-the-art performance at LID estimation, yet its theoretical underpinnings are incomplete since Kamkari et al. (2024b) only proved its correctness under the highly unrealistic assumption of affine submanifolds. In this work we bridge this gap by formally proving the correctness of FLIPD under realistic assumptions. Additionally, we show that an analogous result holds when Gaussian convolutions are replaced with uniform ones, and discuss the relevance of this result.
comment: TMLR 2025 (expert certification)
♻ ☆ Causal Explanation of Concept Drift -- A Truly Actionable Approach ECML
In a world that constantly changes, it is crucial to understand how those changes impact different systems, such as industrial manufacturing or critical infrastructure. Explaining critical changes, referred to as concept drift in the field of machine learning, is the first step towards enabling targeted interventions to avoid or correct model failures, as well as malfunctions and errors in the physical world. Therefore, in this work, we extend model-based drift explanations towards causal explanations, which increases the actionability of the provided explanations. We evaluate our explanation strategy on a number of use cases, demonstrating the practical usefulness of our framework, which isolates the causally relevant features impacted by concept drift and, thus, allows for targeted intervention.
comment: This manuscript was presented at the TempXAI workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD 2025)
♻ ☆ Breaking the Compression Ceiling: Data-Free Pipeline for Ultra-Efficient Delta Compression NeurIPS 2025
With the rise of the fine-tuned-pretrained paradigm, storing numerous fine-tuned models for multi-tasking creates significant storage overhead. Delta compression alleviates this by storing only the pretrained model and the highly compressed delta weights (the differences between fine-tuned and pretrained model weights). However, existing methods fail to maintain both high compression and performance, and often rely on data. To address these challenges, we propose UltraDelta, the first data-free delta compression pipeline that achieves both ultra-high compression and strong performance. UltraDelta is designed to minimize redundancy, maximize information, and stabilize performance across inter-layer, intra-layer, and global dimensions, using three key components: (1) Variance-Based Mixed Sparsity Allocation assigns sparsity based on variance, giving lower sparsity to high-variance layers to preserve inter-layer information. (2) Distribution-Aware Compression applies uniform quantization and then groups parameters by value, followed by group-wise pruning, to better preserve intra-layer distribution. (3) Trace-Norm-Guided Rescaling uses the trace norm of delta weights to estimate a global rescaling factor, improving model stability under higher compression. Extensive experiments across (a) large language models (fine-tuned on LLaMA-2 7B and 13B) with up to 50x compression, (b) general NLP models (RoBERTa-base, T5-base) with up to 224x compression, (c) vision models (ViT-B/32, ViT-L/14) with up to 132x compression, and (d) multi-modal models (BEiT-3) with 18x compression, demonstrate that UltraDelta consistently outperforms existing methods, especially under ultra-high compression. Code is available at https://github.com/xiaohuiwang000/UltraDelta.
comment: Accepted at NeurIPS 2025
♻ ☆ Cost-aware Stopping for Bayesian Optimization
In automated machine learning, scientific discovery, and other applications of Bayesian optimization, deciding when to stop evaluating expensive black-box functions is an important practical consideration. While several adaptive stopping rules have been proposed, in the cost-aware setting they lack guarantees ensuring they stop before incurring excessive function evaluation costs. We propose a cost-aware stopping rule for Bayesian optimization that adapts to varying evaluation costs and is free of heuristic tuning. Our rule is grounded in a theoretical connection to state-of-the-art cost-aware acquisition functions, namely the Pandora's Box Gittins Index (PBGI) and log expected improvement per cost. We prove a theoretical guarantee bounding the expected cumulative evaluation cost incurred by our stopping rule when paired with these two acquisition functions. In experiments on synthetic and empirical tasks, including hyperparameter optimization and neural architecture size search, we show that combining our stopping rule with the PBGI acquisition function usually matches or outperforms other acquisition-function--stopping-rule pairs in terms of cost-adjusted simple regret, a metric capturing trade-offs between solution quality and cumulative evaluation cost.
♻ ☆ The Hidden Link Between RLHF and Contrastive Learning
Alignment of large language models (LLMs) with human values has recently garnered significant attention, with prominent examples including the canonical yet costly Reinforcement Learning from Human Feedback (RLHF) and the simple Direct Preference Optimization (DPO). In this work, we demonstrate that both RLHF and DPO can be interpreted from the perspective of mutual information (MI) maximization, uncovering a profound connection to contrastive learning. Within this framework, both RLHF and DPO can be interpreted as methods that performing contrastive learning based on the positive and negative samples derived from base model, leveraging the Donsker-Varadhan (DV) lower bound on MI (equivalently, the MINE estimator). Such paradigm further illuminates why RLHF may not intrinsically incentivize reasoning capacities in LLMs beyond what is already present in the base model. Building on the perspective, we replace the DV/MINE bound with the Jensen-Shannon (JS) MI estimator and propose the Mutual Information Optimization (MIO). Comprehensive theoretical analysis and extensive empirical evaluations demonstrate that MIO mitigates the late-stage decline in chosen-likelihood observed in DPO, achieving competitive or superior performance across various challenging reasoning and mathematical benchmarks.
♻ ☆ Provably faster randomized and quantum algorithms for $k$-means clustering via uniform sampling
The $k$-means algorithm (Lloyd's algorithm) is a widely used method for clustering unlabeled data. A key bottleneck of the $k$-means algorithm is that each iteration requires time linear in the number of data points, which can be expensive in big data applications. This was improved in recent works proposing quantum and quantum-inspired classical algorithms to approximate the $k$-means algorithm locally, in time depending only logarithmically on the number of data points (along with data dependent parameters) [q-means: A quantum algorithm for unsupervised machine learning, Kerenidis, Landman, Luongo, and Prakash, NeurIPS 2019; Do you know what $q$-means?, Cornelissen, Doriguello, Luongo, Tang, QTML 2025]. In this work, we describe a simple randomized mini-batch $k$-means algorithm and a quantum algorithm inspired by the classical algorithm. We demonstrate that the worst case guarantees of these algorithms can significantly improve upon the bounds for algorithms in prior work. Our improvements are due to a careful use of uniform sampling, which preserves certain symmetries of the $k$-means problem that are not preserved in previous algorithms that use data norm-based sampling.
comment: Included a comparison with [Do you know what $q$-means?, Cornelissen, Doriguello, Luongo, Tang, QTML 2025]; added numerical experiments for the classical algorithms; updated theory and fixed typos
♻ ☆ Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence. We first propose a holistic taxonomy of spatial tasks that unifies existing benchmarks and a standardized protocol for the fair evaluation of state-of-the-art proprietary and open-source models across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence (SI), yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail even the most advanced multimodal models.
♻ ☆ Revisiting Chain-of-Thought Prompting: Zero-shot Can Be Stronger than Few-shot EMNLP25
In-Context Learning (ICL) is an essential emergent ability of Large Language Models (LLMs), and recent studies introduce Chain-of-Thought (CoT) to exemplars of ICL to enhance the reasoning capability, especially in mathematics tasks. However, given the continuous advancement of model capabilities, it remains unclear whether CoT exemplars still benefit recent, stronger models in such tasks. Through systematic experiments, we find that for recent strong models such as the Qwen2.5 series, adding traditional CoT exemplars does not improve reasoning performance compared to Zero-Shot CoT. Instead, their primary function is to align the output format with human expectations. We further investigate the effectiveness of enhanced CoT exemplars, constructed using answers from advanced models such as \texttt{Qwen2.5-Max} and \texttt{DeepSeek-R1}. Experimental results indicate that these enhanced exemplars still fail to improve the model's reasoning performance. Further analysis reveals that models tend to ignore the exemplars and focus primarily on the instructions, leading to no observable gain in reasoning ability. Overall, our findings highlight the limitations of the current ICL+CoT framework in mathematical reasoning, calling for a re-examination of the ICL paradigm and the definition of exemplars.
comment: EMNLP25-findings camera_ready, 19 pages,22 figures
♻ ☆ The Minimal Search Space for Conditional Causal Bandits ICLR2026
Causal knowledge can be used to support decision-making problems. This has been recognized in the causal bandits literature, where a causal (multi-armed) bandit is characterized by a causal graphical model and a target variable. The arms are then interventions on the causal model, and rewards are samples of the target variable. Causal bandits were originally studied with a focus on hard interventions. We focus instead on cases where the arms are conditional interventions, which more accurately model many real-world decision-making problems by allowing the value of the intervened variable to be chosen based on the observed values of other variables. This paper presents a graphical characterization of the minimal set of nodes guaranteed to contain the optimal conditional intervention, which maximizes the expected reward. We then propose an efficient algorithm with a time complexity of $O(|V| + |E|)$ to identify this minimal set of nodes. We prove that the graphical characterization and the proposed algorithm are correct. Finally, we empirically demonstrate that our algorithm significantly prunes the search space and substantially accelerates convergence rates when integrated into standard multi-armed bandit algorithms.
comment: Submitted to ICLR2026
♻ ☆ MGE-LDM: Joint Latent Diffusion for Simultaneous Music Generation and Source Extraction NeurIPS 2025
We present MGE-LDM, a unified latent diffusion framework for simultaneous music generation, source imputation, and query-driven source separation. Unlike prior approaches constrained to fixed instrument classes, MGE-LDM learns a joint distribution over full mixtures, submixtures, and individual stems within a single compact latent diffusion model. At inference, MGE-LDM enables (1) complete mixture generation, (2) partial generation (i.e., source imputation), and (3) text-conditioned extraction of arbitrary sources. By formulating both separation and imputation as conditional inpainting tasks in the latent space, our approach supports flexible, class-agnostic manipulation of arbitrary instrument sources. Notably, MGE-LDM can be trained jointly across heterogeneous multi-track datasets (e.g., Slakh2100, MUSDB18, MoisesDB) without relying on predefined instrument categories. Audio samples are available at our project page: https://yoongi43.github.io/MGELDM_Samples/.
comment: Accepted by NeurIPS 2025
♻ ☆ Equilibrium Matching: Generative Modeling with Implicit Energy-Based Models
We introduce Equilibrium Matching (EqM), a generative modeling framework built from an equilibrium dynamics perspective. EqM discards the non-equilibrium, time-conditional dynamics in traditional diffusion and flow-based generative models and instead learns the equilibrium gradient of an implicit energy landscape. Through this approach, we can adopt an optimization-based sampling process at inference time, where samples are obtained by gradient descent on the learned landscape with adjustable step sizes, adaptive optimizers, and adaptive compute. EqM surpasses the generation performance of diffusion/flow models empirically, achieving an FID of 1.90 on ImageNet 256$\times$256. EqM is also theoretically justified to learn and sample from the data manifold. Beyond generation, EqM is a flexible framework that naturally handles tasks including partially noised image denoising, OOD detection, and image composition. By replacing time-conditional velocities with a unified equilibrium landscape, EqM offers a tighter bridge between flow and energy-based models and a simple route to optimization-driven inference.
♻ ☆ Structured Kolmogorov-Arnold Neural ODEs for Interpretable Learning and Symbolic Discovery of Nonlinear Dynamics
Understanding and modeling nonlinear dynamical systems is a fundamental challenge across science and engineering. Deep learning has shown remarkable potential for capturing complex system behavior, yet achieving models that are both accurate and physically interpretable remains difficult. To address this, we propose Structured Kolmogorov-Arnold Neural ODEs (SKANODEs), a framework that integrates structured state-space modeling with Kolmogorov-Arnold Networks (KANs). Within a Neural ODE architecture, SKANODE employs a fully trainable KAN as a universal function approximator to perform virtual sensing, recovering latent states that correspond to interpretable physical quantities such as displacements and velocities. Leveraging KAN's symbolic regression capability, SKANODE then extracts compact, interpretable expressions for the system's governing dynamics. Extensive experiments on simulated and real-world systems demonstrate that SKANODE achieves superior predictive accuracy, discovers physics-consistent dynamics, and reveals complex nonlinear behavior. Notably, it identifies hysteretic behavior in an F-16 aircraft and recovers a concise symbolic equation describing this phenomenon. SKANODE thus enables interpretable, data-driven discovery of physically grounded models for complex nonlinear dynamical systems.
♻ ☆ Trust Region Reward Optimization and Proximal Inverse Reward Optimization Algorithm NeurIPS 2025
Inverse Reinforcement Learning (IRL) learns a reward function to explain expert demonstrations. Modern IRL methods often use the adversarial (minimax) formulation that alternates between reward and policy optimization, which often lead to unstable training. Recent non-adversarial IRL approaches improve stability by jointly learning reward and policy via energy-based formulations but lack formal guarantees. This work bridges this gap. We first present a unified view showing canonical non-adversarial methods explicitly or implicitly maximize the likelihood of expert behavior, which is equivalent to minimizing the expected return gap. This insight leads to our main contribution: Trust Region Reward Optimization (TRRO), a framework that guarantees monotonic improvement in this likelihood via a Minorization-Maximization process. We instantiate TRRO into Proximal Inverse Reward Optimization (PIRO), a practical and stable IRL algorithm. Theoretically, TRRO provides the IRL counterpart to the stability guarantees of Trust Region Policy Optimization (TRPO) in forward RL. Empirically, PIRO matches or surpasses state-of-the-art baselines in reward recovery, policy imitation with high sample efficiency on MuJoCo and Gym-Robotics benchmarks and a real-world animal behavior modeling task.
comment: Accepted to NeurIPS 2025. Title used at submission and review: PIRO: Toward Stable Reward Learning for Inverse RL via Monotonic Policy Divergence Reduction
♻ ☆ ORN-CBF: Learning Observation-conditioned Residual Neural Control Barrier Functions via Hypernetworks
Control barrier functions (CBFs) have been demonstrated as an effective method for safety-critical control of autonomous systems. Although CBFs are simple to deploy, their design remains challenging, motivating the development of learning-based approaches. Yet, issues such as suboptimal safe sets, applicability in partially observable environments, and lack of rigorous safety guarantees persist. In this work, we propose observation-conditioned neural CBFs based on Hamilton-Jacobi (HJ) reachability analysis, which approximately recover the maximal safe sets. We exploit certain mathematical properties of the HJ value function, ensuring that the predicted safe set never intersects with the observed failure set. Moreover, we leverage a hypernetwork-based architecture that is particularly suitable for the design of observation-conditioned safety filters. The proposed method is examined both in simulation and hardware experiments for a ground robot and a quadcopter. The results show improved success rates and generalization to out-of-domain environments compared to the baselines.
♻ ☆ Automated Machine Learning for Unsupervised Tabular Tasks
In this work, we present LOTUS (Learning to Learn with Optimal Transport for Unsupervised Scenarios), a simple yet effective method to perform model selection for multiple unsupervised machine learning(ML) tasks such as outlier detection and clustering. Our intuition behind this work is that a machine learning pipeline will perform well in a new dataset if it previously worked well on datasets with a similar underlying data distribution. We use Optimal Transport distances to find this similarity between unlabeled tabular datasets and recommend machine learning pipelines with one unified single method on two downstream unsupervised tasks: outlier detection and clustering. We present the effectiveness of our approach with experiments against strong baselines and show that LOTUS is a very promising first step toward model selection for multiple unsupervised ML tasks.
comment: Accepted at Machine Learning Journal, 2025
♻ ☆ Query Complexity of Classical and Quantum Channel Discrimination
Quantum channel discrimination has been studied from an information-theoretic perspective, wherein one is interested in the optimal decay rate of error probabilities as a function of the number of unknown channel accesses. In this paper, we study the query complexity of quantum channel discrimination, wherein the goal is to determine the minimum number of channel uses needed to reach a desired error probability. To this end, we show that the query complexity of binary channel discrimination depends logarithmically on the inverse error probability and inversely on the negative logarithm of the (geometric and Holevo) channel fidelity. As a special case of these findings, we precisely characterize the query complexity of discriminating two classical channels and two classical-quantum channels. Furthermore, by obtaining an optimal characterization of the sample complexity of quantum hypothesis testing, including prior probabilities, we provide a more precise characterization of query complexity when the error probability does not exceed a fixed threshold. We also provide lower and upper bounds on the query complexity of binary asymmetric channel discrimination and multiple quantum channel discrimination. For the former, the query complexity depends on the geometric R\'enyi and Petz R\'enyi channel divergences, while for the latter, it depends on the negative logarithm of the (geometric and Uhlmann) channel fidelity. For multiple channel discrimination, the upper bound scales as the logarithm of the number of channels.
comment: v3: 35 pages, published version; v2: 33 pages, Added tighter and precise characterization of sample and query complexity in Theorem 11 (for states), Theorem 12 (for general channels), and Corollaries 10 and 14 for classical-quantum channels; v1:22 pages; see also the independent work "Sampling complexity of quantum channel discrimination" DOI 10.1088/1572-9494/adcb9e
♻ ☆ Learning Satellite Attitude Dynamics with Physics-Informed Normalising Flow
Attitude control is a fundamental aspect of spacecraft operations. Model Predictive Control (MPC) has emerged as a powerful strategy for these tasks, relying on accurate models of the system dynamics to optimize control actions over a prediction horizon. In scenarios where physics models are incomplete, difficult to derive, or computationally expensive, machine learning offers a flexible alternative by learning the system behavior directly from data. However, purely data-driven models often struggle with generalization and stability, especially when applied to inputs outside their training domain. To address these limitations, we investigate the benefits of incorporating Physics-Informed Neural Networks (PINNs) into the learning of spacecraft attitude dynamics, comparing their performance with that of purely data-driven approaches. Using a Real-valued Non-Volume Preserving (Real NVP) neural network architecture with a self-attention mechanism, we trained several models on simulated data generated with the Basilisk simulator. Two training strategies were considered: a purely data-driven baseline and a physics-informed variant to improve robustness and stability. Our results demonstrate that the inclusion of physics-based information significantly enhances the performance in terms of the mean relative error of the best architectures found by 27.08%. These advantages are particularly evident when the learned models are integrated into an MPC framework, where PINN-based models consistently outperform their purely data-driven counterparts in terms of control accuracy and robustness, yielding improvements of up to 42.86% in performance stability error and increased robustness-to-noise.
♻ ☆ Evaluating LLMs for Demographic-Targeted Social Bias Detection: A Comprehensive Benchmark Study
Large-scale web-scraped text corpora used to train general-purpose AI models often contain harmful demographic-targeted social biases, creating a regulatory need for data auditing and developing scalable bias-detection methods. Although prior work has investigated biases in text datasets and related detection methods, these studies remain narrow in scope. They typically focus on a single content type (e.g., hate speech), cover limited demographic axes, overlook biases affecting multiple demographics simultaneously, and analyze limited techniques. Consequently, practitioners lack a holistic understanding of the strengths and limitations of recent large language models (LLMs) for automated bias detection. In this study, we present a comprehensive evaluation framework aimed at English texts to assess the ability of LLMs in detecting demographic-targeted social biases. To align with regulatory requirements, we frame bias detection as a multi-label task using a demographic-focused taxonomy. We then conduct a systematic evaluation with models across scales and techniques, including prompting, in-context learning, and fine-tuning. Using twelve datasets spanning diverse content types and demographics, our study demonstrates the promise of fine-tuned smaller models for scalable detection. However, our analyses also expose persistent gaps across demographic axes and multi-demographic targeted biases, underscoring the need for more effective and scalable auditing frameworks.
comment: 18 pages
♻ ☆ Beyond [cls]: Exploring the true potential of Masked Image Modeling representations
Masked Image Modeling (MIM) has emerged as a promising approach for Self-Supervised Learning (SSL) of visual representations. However, the out-of-the-box performance of MIMs is typically inferior to competing approaches. Most users cannot afford fine-tuning due to the need for large amounts of data, high GPU consumption, and specialized user knowledge. Therefore, the practical use of MIM representations is limited. In this paper we ask what is the reason for the poor out-of-the-box performance of MIMs. Is it due to weaker features produced by MIM models, or is it due to suboptimal usage? Through detailed analysis, we show that attention in MIMs is spread almost uniformly over many patches, leading to ineffective aggregation by the [cls] token. Based on this insight, we propose Selective Aggregation to better capture the rich semantic information retained in patch tokens, which significantly improves the out-of-the-box performance of MIM.
♻ ☆ Online Selective Generation with Adversarial Bandit Feedback
Large language generative models increasingly interact with humans, while their falsified responses raise concerns. To mitigate this hallucination effect, selectively abstaining from answering, called selective generation, provides an effective way for generators to control the hallucination when uncertain about their answers. However, as selective generators interact under adversarial environments and receive partial feedback from users on selected generation (e.g., thumbs up or down on the selected answer), learning methods for selective generation under such practical setups are crucial but currently missing. To address this limitation, we propose an online learning algorithm for selective generation with partial feedback under an adaptive adversary. In particular, we re-purpose an adversarial bandit algorithm to design an online selective generation method with controllable false discovery rates (FDR), which measures the rate of hallucination. The key building blocks include a novel conversion lemma from regret of any bandit algorithm to the FDR, and the exploitation of a unique structure of selective generation to reuse partial feedback, which we call feedback unlocking. We empirically evaluate the efficacy of the proposed online selective generation algorithm with partial feedback over diverse learning environments, demonstrating its ability to control the FDR, while maintaining reasonable selection efficiency, i.e., the ratio of non-abstaining answers, compared to baselines.
comment: 10 pages
♻ ☆ Task-Optimized Convolutional Recurrent Networks Align with Tactile Processing in the Rodent Brain NeurIPS 2025
Tactile sensing remains far less understood in neuroscience and less effective in artificial systems compared to more mature modalities such as vision and language. We bridge these gaps by introducing a novel Encoder-Attender-Decoder (EAD) framework to systematically explore the space of task-optimized temporal neural networks trained on realistic tactile input sequences from a customized rodent whisker-array simulator. We identify convolutional recurrent neural networks (ConvRNNs) as superior encoders to purely feedforward and state-space architectures for tactile categorization. Crucially, these ConvRNN-encoder-based EAD models achieve neural representations closely matching rodent somatosensory cortex, saturating the explainable neural variability and revealing a clear linear relationship between supervised categorization performance and neural alignment. Furthermore, contrastive self-supervised ConvRNN-encoder-based EADs, trained with tactile-specific augmentations, match supervised neural fits, serving as an ethologically-relevant, label-free proxy. For neuroscience, our findings highlight nonlinear recurrent processing as important for general-purpose tactile representations in somatosensory cortex, providing the first quantitative characterization of the underlying inductive biases in this system. For embodied AI, our results emphasize the importance of recurrent EAD architectures to handle realistic tactile inputs, along with tailored self-supervised learning methods for achieving robust tactile perception with the same type of sensors animals use to sense in unstructured environments.
comment: 10 pages, 8 figures, 7 tables, NeurIPS 2025 Camera Ready Version (oral)
♻ ☆ Evolving LLMs' Self-Refinement Capability via Synergistic Training-Inference Optimization
Self-Refinement refers to a model's ability to revise its own responses to produce improved outputs. This capability can also serve as a fundamental mechanism for Self-Improvement, for example, by reconstructing datasets with refined results to enhance intrinsic model performance. However, our comprehensive experiments reveal that large language models (LLMs) show no clear evidence of inherent Self-Refinement and may even experience response quality degradation after Self-Refinement. To address this issue, we propose EVOLVE, a simple and effective framework for eliciting and tracking the evolution of Self-Refinement through iterative training. We first explore optimization methods during training to activate the model's Self-Refinement capability. Then, at inference, we investigate various generation strategies to further enhance and utilize Self-Refinement while supplying the necessary data for training. Through synergistic optimization of training and inference stages, we continually evolve the model's Self-Refinement ability, enabling it to better refine its own responses. Moreover, we demonstrate the potential of leveraging Self-Refinement to achieve broader Self-Improvement of intrinsic model abilities. Experiments show that the evolved Self-Refinement ability enables the Llama-3.1-8B base model to surpass GPT-4o, achieving 62.3% length-controlled and 63.3% raw win rates on AlpacaEval 2, and 50.3% on Arena-Hard. It also generalizes effectively to out-of-domain reasoning tasks, improving performance on mathematical reasoning benchmarks such as GSM8K and MATH.
♻ ☆ Personalized Bayesian Federated Learning with Wasserstein Barycenter Aggregation NIPS 2025
Personalized Bayesian federated learning (PBFL) handles non-i.i.d. client data and quantifies uncertainty by combining personalization with Bayesian inference. However, existing PBFL methods face two limitations: restrictive parametric assumptions in client posterior inference and naive parameter averaging for server aggregation. To overcome these issues, we propose FedWBA, a novel PBFL method that enhances both local inference and global aggregation. At the client level, we use particle-based variational inference for nonparametric posterior representation. At the server level, we introduce particle-based Wasserstein barycenter aggregation, offering a more geometrically meaningful approach. Theoretically, we provide local and global convergence guarantees for FedWBA. Locally, we prove a KL divergence decrease lower bound per iteration for variational inference convergence. Globally, we show that the Wasserstein barycenter converges to the true parameter as the client data size increases. Empirically, experiments show that FedWBA outperforms baselines in prediction accuracy, uncertainty calibration, and convergence rate, with ablation studies confirming its robustness.
comment: The paper has been accepted by NIPS 2025
♻ ☆ Re-uploading quantum data: A universal function approximator for quantum inputs
Quantum data re-uploading has proved powerful for classical inputs, where repeatedly encoding features into a small circuit yields universal function approximation. Extending this idea to quantum inputs remains underexplored, as the information contained in a quantum state is not directly accessible in classical form. We propose and analyze a quantum data re-uploading architecture in which a qubit interacts sequentially with fresh copies of an arbitrary input state. The circuit can approximate any bounded continuous function using only one ancilla qubit and single-qubit measurements. By alternating entangling unitaries with mid-circuit resets of the input register, the architecture realizes a discrete cascade of completely positive and trace-preserving maps, analogous to collision models in open quantum system dynamics. Our framework provides a qubit-efficient and expressive approach to designing quantum machine learning models that operate directly on quantum data.
comment: 24 pages, 11 figures
♻ ☆ Investigating Memory in RL with POPGym Arcade
How should we analyze memory in deep RL? We introduce mathematical tools for fairly analyzing policies under partial observability and revealing how agents use memory to make decisions. To utilize these tools, we present POPGym Arcade, a collection of Atari-inspired, hardware-accelerated, pixel-based environments sharing a single observation and action space. Each environment provides fully and partially observable variants, enabling counterfactual studies on observability. We find that controlled studies are necessary for fair comparisons, and identify a pathology where value functions smear credit over irrelevant history. With this pathology, we demonstrate how out-of-distribution scenarios can contaminate memory, perturbing the policy far into the future, with implications for sim-to-real transfer and offline RL.
♻ ☆ Enhancing XAI Narratives through Multi-Narrative Refinement and Knowledge Distillation
Explainable Artificial Intelligence has become a crucial area of research, aiming to demystify the decision-making processes of deep learning models. Among various explainability techniques, counterfactual explanations have been proven particularly promising, as they offer insights into model behavior by highlighting minimal changes that would alter a prediction. Despite their potential, these explanations are often complex and technical, making them difficult for non-experts to interpret. To address this challenge, we propose a novel pipeline that leverages Language Models, large and small, to compose narratives for counterfactual explanations. We employ knowledge distillation techniques along with a refining mechanism to enable Small Language Models to perform comparably to their larger counterparts while maintaining robust reasoning abilities. In addition, we introduce a simple but effective evaluation method to assess natural language narratives, designed to verify whether the models' responses are in line with the factual, counterfactual ground truth. As a result, our proposed pipeline enhances both the reasoning capabilities and practical performance of student models, making them more suitable for real-world use cases.
♻ ☆ Multi-Modal Manipulation via Multi-Modal Policy Consensus
Effectively integrating diverse sensory modalities is crucial for robotic manipulation. However, the typical approach of feature concatenation is often suboptimal: dominant modalities such as vision can overwhelm sparse but critical signals like touch in contact-rich tasks, and monolithic architectures cannot flexibly incorporate new or missing modalities without retraining. Our method factorizes the policy into a set of diffusion models, each specialized for a single representation (e.g., vision or touch), and employs a router network that learns consensus weights to adaptively combine their contributions, enabling incremental of new representations. We evaluate our approach on simulated manipulation tasks in {RLBench}, as well as real-world tasks such as occluded object picking, in-hand spoon reorientation, and puzzle insertion, where it significantly outperforms feature-concatenation baselines on scenarios requiring multimodal reasoning. Our policy further demonstrates robustness to physical perturbations and sensor corruption. We further conduct perturbation-based importance analysis, which reveals adaptive shifts between modalities.
comment: 9 pages, 7 figures. Project website: https://policyconsensus.github.io
♻ ☆ Failure Prediction at Runtime for Generative Robot Policies NeurIPS 2025
Imitation learning (IL) with generative models, such as diffusion and flow matching, has enabled robots to perform complex, long-horizon tasks. However, distribution shifts from unseen environments or compounding action errors can still cause unpredictable and unsafe behavior, leading to task failure. Early failure prediction during runtime is therefore essential for deploying robots in human-centered and safety-critical environments. We propose FIPER, a general framework for Failure Prediction at Runtime for generative IL policies that does not require failure data. FIPER identifies two key indicators of impending failure: (i) out-of-distribution (OOD) observations detected via random network distillation in the policy's embedding space, and (ii) high uncertainty in generated actions measured by a novel action-chunk entropy score. Both failure prediction scores are calibrated using a small set of successful rollouts via conformal prediction. A failure alarm is triggered when both indicators, aggregated over short time windows, exceed their thresholds. We evaluate FIPER across five simulation and real-world environments involving diverse failure modes. Our results demonstrate that FIPER better distinguishes actual failures from benign OOD situations and predicts failures more accurately and earlier than existing methods. We thus consider this work an important step towards more interpretable and safer generative robot policies. Code, data and videos are available at https://tum-lsy.github.io/fiper_website.
comment: Project page: https://tum-lsy.github.io/fiper_website. 33 pages, 12 figures. Accepted to NeurIPS 2025
♻ ☆ From Data to Rewards: a Bilevel Optimization Perspective on Maximum Likelihood Estimation
Generative models form the backbone of modern machine learning, underpinning state-of-the-art systems in text, vision, and multimodal applications. While Maximum Likelihood Estimation has traditionally served as the dominant training paradigm, recent work have highlighted its limitations, particularly in generalization and susceptibility to catastrophic forgetting compared to Reinforcement Learning techniques, such as Policy Gradient methods. However, these approaches depend on explicit reward signals, which are often unavailable in practice, leaving open the fundamental problem of how to align generative models when only high-quality datasets are accessible. In this work, we address this challenge via a Bilevel Optimization framework, where the reward function is treated as the optimization variable of an outer-level problem, while a policy gradient objective defines the inner-level. We then conduct a theoretical analysis of this optimization problem in a tractable setting and extract insights that, as we demonstrate, generalize to applications such as tabular classification and model-based reinforcement learning. We release the code at https://github.com/abenechehab/nll_to_po .
♻ ☆ The Illusion of Progress? A Critical Look at Test-Time Adaptation for Vision-Language Models NeurIPS 2025
Test-time adaptation (TTA) methods have gained significant attention for enhancing the performance of vision-language models (VLMs) such as CLIP during inference, without requiring additional labeled data. However, current TTA researches generally suffer from major limitations such as duplication of baseline results, limited evaluation metrics, inconsistent experimental settings, and insufficient analysis. These problems hinder fair comparisons between TTA methods and make it difficult to assess their practical strengths and weaknesses. To address these challenges, we introduce TTA-VLM, a comprehensive benchmark for evaluating TTA methods on VLMs. Our benchmark implements 8 episodic TTA and 7 online TTA methods within a unified and reproducible framework, and evaluates them across 15 widely used datasets. Unlike prior studies focused solely on CLIP, we extend the evaluation to SigLIP--a model trained with a Sigmoid loss--and include training-time tuning methods such as CoOp, MaPLe, and TeCoA to assess generality. Beyond classification accuracy, TTA-VLM incorporates various evaluation metrics, including robustness, calibration, out-of-distribution detection, and stability, enabling a more holistic assessment of TTA methods. Through extensive experiments, we find that 1) existing TTA methods produce limited gains compared to the previous pioneering work; 2) current TTA methods exhibit poor collaboration with training-time fine-tuning methods; 3) accuracy gains frequently come at the cost of reduced model trustworthiness. We release TTA-VLM to provide fair comparison and comprehensive evaluation of TTA methods for VLMs, and we hope it encourages the community to develop more reliable and generalizable TTA strategies.
comment: NeurIPS 2025 Datasets and Benchmarks Track. Github link: https://github.com/TomSheng21/tta-vlm
♻ ☆ Fine-tuning Behavioral Cloning Policies with Preference-Based Reinforcement Learning
Deploying reinforcement learning (RL) in robotics, industry, and health care is blocked by two obstacles: the difficulty of specifying accurate rewards and the risk of unsafe, data-hungry exploration. We address this by proposing a two-stage framework that first learns a safe initial policy from a reward-free dataset of expert demonstrations, then fine-tunes it online using preference-based human feedback. We provide the first principled analysis of this offline-to-online approach and introduce BRIDGE, a unified algorithm that integrates both signals via an uncertainty-weighted objective. We derive regret bounds that shrink with the number of offline demonstrations, explicitly connecting the quantity of offline data to online sample efficiency. We validate BRIDGE in discrete and continuous control MuJoCo environments, showing it achieves lower regret than both standalone behavioral cloning and online preference-based RL. Our work establishes a theoretical foundation for designing more sample-efficient interactive agents.
comment: 85 pages (11 + references and appendix), 9 figures. v2: added acknowledgements
♻ ☆ Downgrade to Upgrade: Optimizer Simplification Enhances Robustness in LLM Unlearning
Large language model (LLM) unlearning aims to surgically remove the influence of undesired data or knowledge from an existing model while preserving its utility on unrelated tasks. This paradigm has shown promise in addressing privacy and safety concerns. However, recent findings reveal that unlearning effects are often fragile: post-unlearning manipulations such as weight quantization or fine-tuning can quickly neutralize the intended forgetting. Prior efforts to improve robustness primarily reformulate unlearning objectives by explicitly assuming the role of vulnerability sources. In this work, we take a different perspective by investigating the role of the optimizer, independent of unlearning objectives and formulations, in shaping unlearning robustness. We show that the 'grade' of the optimizer, defined by the level of information it exploits, ranging from zeroth-order (gradient-free) to first-order (gradient-based) to second-order (Hessian-based), is tightly linked to the resilience of unlearning. Surprisingly, we find that downgrading the optimizer, such as using zeroth-order methods or compressed-gradient variants (e.g., gradient sign-based optimizers), often leads to stronger robustness. While these optimizers produce noisier and less precise updates, they encourage convergence to harder-to-disturb basins in the loss landscape, thereby resisting post-training perturbations. By connecting zeroth-order methods with randomized smoothing, we further highlight their natural advantage for robust unlearning. Motivated by these insights, we propose a hybrid optimizer that combines first-order and zeroth-order updates, preserving unlearning efficacy while enhancing robustness. Extensive experiments on the MUSE and WMDP benchmarks, across multiple LLM unlearning algorithms, validate that our approach achieves more resilient forgetting without sacrificing unlearning quality.
♻ ☆ Train-before-Test Harmonizes Language Model Rankings
Existing language model benchmarks provide contradictory model rankings, even for benchmarks that aim to capture similar skills. This dilemma of conflicting rankings hampers model selection, clouds model comparisons, and adds confusion to a growing ecosystem of competing models. In this paper, we take a different perspective on model comparison: instead of relying on out-of-the-box performance via direct evaluation, we compare model potential by providing each model with identical benchmark-specific fine-tuning before evaluation. We call this approach train-before-test. Our primary contribution is a comprehensive empirical evaluation of model potential across 24 benchmarks and 61 models. First, we demonstrate that model potential rankings obtained through train-before-test exhibit remarkable consistency across all benchmarks. Whereas traditional rankings demonstrate little external validity under direct evaluation, they enjoy a significant degree of external validity when applying train-before-test: model potential rankings transfer gracefully from one benchmark to another. Second, train-before-test restores the connection between perplexity and downstream task performance, lost under direct evaluation. Remarkably, even pre-finetuning perplexity of a base model predicts post-finetuning downstream performance, suggesting that ranking consistency reflects inherent model potential rather than fine-tuning artifacts. Finally, train-before-test reduces the model-score matrix to essentially rank one, indicating that model potential is dominated by one latent factor, uncovered by train-before-test. Our work supports the recommendation to make train-before-test a default component of LLM benchmarking.
♻ ☆ PULSE: Practical Evaluation Scenarios for Large Multimodal Model Unlearning
In recent years, unlearning techniques, which are methods for inducing a model to "forget" previously learned information, have attracted attention as a way to address privacy and copyright concerns in large language models (LLMs) and large multimodal models (LMMs). While several unlearning benchmarks have been established for LLMs, a practical evaluation framework for unlearning in LMMs has been less explored. Specifically, existing unlearning benchmark for LMMs considers only scenarios in which the model is required to unlearn fine-tuned knowledge through a single unlearning operation. In this study, we introduce PULSE protocol for realistic unlearning scenarios for LMMs by introducing two critical perspectives: (i) Pre-trained knowledge Unlearning for analyzing the effect across different knowledge acquisition phases and (ii) Long-term Sustainability Evaluation to address sequential requests. We then evaluate existing unlearning methods along these dimensions. Our results reveal that, although some techniques can successfully unlearn knowledge acquired through fine-tuning, they struggle to eliminate information learned during pre-training. Moreover, methods that effectively unlearn a batch of target data in a single operation exhibit substantial performance degradation when the same data are split and unlearned sequentially.
♻ ☆ Superior Molecular Representations from Intermediate Encoder Layers
Pretrained molecular encoders have become indispensable in computational chemistry for tasks such as property prediction and molecular generation. However, the standard practice of relying solely on final-layer embeddings for downstream tasks may discard valuable information. In this work, we first analyze the information flow in five diverse molecular encoders and find that intermediate layers retain more general-purpose features, whereas the final-layer specializes and compresses information. We then perform an empirical layer-wise evaluation across 22 property prediction tasks. We find that using frozen embeddings from optimal intermediate layers improves downstream performance by an average of 5.4%, up to 28.6%, compared to the final-layer. Furthermore, finetuning encoders truncated at intermediate depths achieves even greater average improvements of 8.5%, with increases as high as 40.8%, obtaining new state-of-the-art results on several benchmarks. These findings highlight the importance of exploring the full representational depth of molecular encoders to achieve substantial performance improvements and computational efficiency. The code will be made publicly available.
♻ ☆ On Experiments
The scientific process is a means to turn the results of experiments into knowledge about the world in which we live. Much research effort has been directed toward automating this process. To do this, one needs to formulate the scientific process in a precise mathematical language. This paper outlines one such language. What is presented here is hardly new. The material is based on great thinkers from times past well as more modern contributions. The novel contributions of this paper are: A new general data processing inequality, a bias variance decomposition for canonical losses, streamlined proofs of the Blackwell-Sherman-Stein and Randomization theorems. means of calculating deficiency through linear programming.
♻ ☆ Robustness and Regularization in Hierarchical Re-Basin
This paper takes a closer look at Git Re-Basin, an interesting new approach to merge trained models. We propose a hierarchical model merging scheme that significantly outperforms the standard MergeMany algorithm. With our new algorithm, we find that Re-Basin induces adversarial and perturbation robustness into the merged models, with the effect becoming stronger the more models participate in the hierarchical merging scheme. However, in our experiments Re-Basin induces a much bigger performance drop than reported by the original authors.
comment: Published in 32th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2024
♻ ☆ Agentic large language models improve retrieval-based radiology question answering
Clinical decision-making in radiology increasingly benefits from artificial intelligence (AI), particularly through large language models (LLMs). However, traditional retrieval-augmented generation (RAG) systems for radiology question answering (QA) typically rely on single-step retrieval, limiting their ability to handle complex clinical reasoning tasks. Here we propose radiology Retrieval and Reasoning (RaR), a multi-step retrieval and reasoning framework designed to improve diagnostic accuracy, factual consistency, and clinical reliability of LLMs in radiology question answering. We evaluated 25 LLMs spanning diverse architectures, parameter scales (0.5B to >670B), and training paradigms (general-purpose, reasoning-optimized, clinically fine-tuned), using 104 expert-curated radiology questions from previously established RSNA-RadioQA and ExtendedQA datasets. To assess generalizability, we additionally tested on an unseen internal dataset of 65 real-world radiology board examination questions. RaR significantly improved mean diagnostic accuracy over zero-shot prompting and conventional online RAG. The greatest gains occurred in small-scale models, while very large models (>200B parameters) demonstrated minimal changes (<2% improvement). Additionally, RaR retrieval reduced hallucinations (mean 9.4%) and retrieved clinically relevant context in 46% of cases, substantially aiding factual grounding. Even clinically fine-tuned models showed gains from RaR (e.g., MedGemma-27B), indicating that retrieval remains beneficial despite embedded domain knowledge. These results highlight the potential of RaR to enhance factuality and diagnostic accuracy in radiology QA, warranting future studies to validate their clinical utility. All datasets, code, and the full RaR framework are publicly available to support open research and clinical translation.
♻ ☆ Edge Delayed Deep Deterministic Policy Gradient: efficient continuous control for edge scenarios
Deep Reinforcement Learning is gaining increasing attention thanks to its capability to learn complex policies in high-dimensional settings. Recent advancements utilize a dual-network architecture to learn optimal policies through the Q-learning algorithm. However, this approach has notable drawbacks, such as an overestimation bias that can disrupt the learning process and degrade the performance of the resulting policy. To address this, novel algorithms have been developed that mitigate overestimation bias by employing multiple Q-functions. Edge scenarios, which prioritize privacy, have recently gained prominence. In these settings, limited computational resources pose a significant challenge for complex Machine Learning approaches, making the efficiency of algorithms crucial for their performance. In this work, we introduce a novel Reinforcement Learning algorithm tailored for edge scenarios, called Edge Delayed Deep Deterministic Policy Gradient (EdgeD3). EdgeD3 enhances the Deep Deterministic Policy Gradient (DDPG) algorithm, achieving significantly improved performance with $25\%$ less Graphics Process Unit (GPU) time while maintaining the same memory usage. Additionally, EdgeD3 consistently matches or surpasses the performance of state-of-the-art methods across various benchmarks, all while using $30\%$ fewer computational resources and requiring $30\%$ less memory.
♻ ☆ Detecting and Mitigating Insertion Hallucination in Video-to-Audio Generation
Video-to-Audio generation has made remarkable strides in automatically synthesizing sound for video. However, existing evaluation metrics, which focus on semantic and temporal alignment, overlook a critical failure mode: models often generate acoustic events, particularly speech and music, that have no corresponding visual source. We term this phenomenon Insertion Hallucination and identify it as a systemic risk driven by dataset biases, such as the prevalence of off-screen sounds, that remains completely undetected by current metrics. To address this challenge, we first develop a systematic evaluation framework that employs a majority-voting ensemble of multiple audio event detectors. We also introduce two novel metrics to quantify the prevalence and severity of this issue: IH@vid (the fraction of videos with hallucinations) and IH@dur (the fraction of hallucinated duration). Building on this, we propose Posterior Feature Correction, a novel training-free inference-time method that mitigates IH. PFC operates in a two-pass process: it first generates an initial audio output to detect hallucinated segments, and then regenerates the audio after masking the corresponding video features at those timestamps. Experiments on several mainstream V2A benchmarks first reveal that state-of-the-art models suffer from severe IH. In contrast, our PFC method reduces both the prevalence and duration of hallucinations by over 50\% on average, without degrading, and in some cases even improving, conventional metrics for audio quality and temporal synchronization. Our work is the first to formally define, systematically measure, and effectively mitigate Insertion Hallucination, paving the way for more reliable and faithful V2A models.
♻ ☆ Simple and Effective Specialized Representations for Fair Classifiers
Fair classification is a critical challenge that has gained increasing importance due to international regulations and its growing use in high-stakes decision-making settings. Existing methods often rely on adversarial learning or distribution matching across sensitive groups; however, adversarial learning can be unstable, and distribution matching can be computationally intensive. To address these limitations, we propose a novel approach based on the characteristic function distance. Our method ensures that the learned representation contains minimal sensitive information while maintaining high effectiveness for downstream tasks. By utilizing characteristic functions, we achieve a more stable and efficient solution compared to traditional methods. Additionally, we introduce a simple relaxation of the objective function that guarantees fairness in common classification models with no performance degradation. Experimental results on benchmark datasets demonstrate that our approach consistently matches or achieves better fairness and predictive accuracy than existing methods. Moreover, our method maintains robustness and computational efficiency, making it a practical solution for real-world applications.
♻ ☆ J1: Incentivizing Thinking in LLM-as-a-Judge via Reinforcement Learning
The progress of AI is bottlenecked by the quality of evaluation, making powerful LLM-as-a-Judge models a core solution. The efficacy of these judges depends on their chain-of-thought reasoning, creating a critical need for methods that can effectively optimize this reasoning process. In this work, we introduce J1, a reinforcement learning framework for teaching LLM judges to think before making decisions. Our core contribution lies in converting all judgment tasks for non-verifiable and verifiable prompts into a unified format with verifiable rewards, enabling direct optimization of evaluation quality while mitigating positional bias. We then use RL to train thinking-judges at scales of 8B, 32B, and 70B and show that they obtain state-of-the-art performance across multiple benchmarks. In particular, J1-Qwen-32B, our multitasked pointwise and pairwise judge also outperforms o1-mini, o3, and a much larger 671B DeepSeek-R1 on some benchmarks, while only training on synthetic data. Through comprehensive ablations of pairwise, pointwise, and multitask J1 variants, we demonstrate the effectiveness of our approach across seed prompts, reward strategies, and training recipes. Qualitative analysis reveals that J1 develops systematic evaluation strategies, including dynamic criteria generation, reference answer creation, iterative self-correction of initial assessments, and feedback generation for low-quality responses.
comment: 10 pages, 13 tables, 14 figures
♻ ☆ Accurate and Diverse LLM Mathematical Reasoning via Automated PRM-Guided GFlowNets
Achieving both accuracy and diverse reasoning remains challenging for Large Language Models (LLMs) in complex domains like mathematics. A key bottleneck is evaluating intermediate reasoning steps to guide generation without costly human annotations. To address this, we first introduce a novel Process Reward Model (PRM) trained automatically using Monte Carlo Tree Search coupled with a similarity-based data augmentation technique, effectively capturing step-level reasoning quality. Leveraging this PRM, we then adapt Generative Flow Networks (GFlowNets) to operate at the reasoning step level. Unlike traditional reinforcement learning focused on maximizing a single reward, GFlowNets naturally sample diverse, high-quality solutions proportional to their rewards, as measured by our PRM. Empirical evaluation shows strong improvements in both accuracy and solution diversity on challenging mathematical benchmarks (e.g., +2.59% absolute accuracy on MATH Level 5 for Llama3.2-3B), with effective generalization to unseen datasets (+9.4\% absolute on SAT MATH). Furthermore, we benchmark our PRM against existing open-source reward models, demonstrating superior alignment with reasoning quality and more consistent guidance for downstream generation. Our work demonstrates the potential of PRM-guided, step-level GFlowNets for developing more robust and versatile mathematical reasoning in LLMs.
♻ ☆ Incentivize Contribution and Learn Parameters Too: Federated Learning with Strategic Data Owners
Classical federated learning (FL) assumes that the clients have a limited amount of noisy data with which they voluntarily participate and contribute towards learning a global, more accurate model in a principled manner. The learning happens in a distributed fashion without sharing the data with the center. However, these methods do not consider the incentive of an agent for participating and contributing to the process, given that data collection and running a distributed algorithm is costly for the clients. The question of rationality of contribution has been asked recently in the literature and some results exist that consider this problem. This paper addresses the question of simultaneous parameter learning and incentivizing contribution in a truthful manner, which distinguishes it from the extant literature. Our first mechanism incentivizes each client to contribute to the FL process at a Nash equilibrium and simultaneously learn the model parameters. We also ensure that agents are incentivized to truthfully reveal information in the intermediate stages of the algorithm. However, this equilibrium outcome can be away from the optimal, where clients contribute with their full data and the algorithm learns the optimal parameters. We propose a second mechanism that enables the full data contribution along with optimal parameter learning. Large scale experiments with real (federated) datasets (CIFAR-10, FEMNIST, and Twitter) show that these algorithms converge quite fast in practice, yield good welfare guarantees and better model performance for all agents.
comment: 25 pages, under review
♻ ☆ TTF-VLA: Temporal Token Fusion via Pixel-Attention Integration for Vision-Language-Action Models AAAI 2026
Vision-Language-Action (VLA) models process visual inputs independently at each timestep, discarding valuable temporal information inherent in robotic manipulation tasks. This frame-by-frame processing makes models vulnerable to visual noise while ignoring the substantial coherence between consecutive frames in manipulation sequences. We propose Temporal Token Fusion (TTF), a training-free approach that intelligently integrates historical and current visual representations to enhance VLA inference quality. Our method employs dual-dimension detection combining efficient grayscale pixel difference analysis with attention-based semantic relevance assessment, enabling selective temporal token fusion through hard fusion strategies and keyframe anchoring to prevent error accumulation. Comprehensive experiments across LIBERO, SimplerEnv, and real robot tasks demonstrate consistent improvements: 4.0 percentage points average on LIBERO (72.4\% vs 68.4\% baseline), cross-environment validation on SimplerEnv (4.8\% relative improvement), and 8.7\% relative improvement on real robot tasks. Our approach proves model-agnostic, working across OpenVLA and VLA-Cache architectures. Notably, TTF reveals that selective Query matrix reuse in attention mechanisms enhances rather than compromises performance, suggesting promising directions for direct KQV matrix reuse strategies that achieve computational acceleration while improving task success rates.
comment: Manuscript submitted to AAAI 2026, currently under review
♻ ☆ Scaling Equilibrium Propagation to Deeper Neural Network Architectures
Equilibrium propagation has been proposed as a biologically plausible alternative to the backpropagation algorithm. The local nature of gradient computations, combined with the use of convergent RNNs to reach equilibrium states, make this approach well-suited for implementation on neuromorphic hardware. However, previous studies on equilibrium propagation have been restricted to networks containing only dense layers or relatively small architectures with a few convolutional layers followed by a final dense layer. These networks have a significant gap in accuracy compared to similarly sized feedforward networks trained with backpropagation. In this work, we introduce the Hopfield-Resnet architecture, which incorporates residual (or skip) connections in Hopfield networks with clipped $\mathrm{ReLU}$ as the activation function. The proposed architectural enhancements enable the training of networks with nearly twice the number of layers reported in prior works. For example, Hopfield-Resnet13 achieves 93.92\% accuracy on CIFAR-10, which is $\approx$3.5\% higher than the previous best result and comparable to that provided by Resnet13 trained using backpropagation.
♻ ☆ Your Pre-trained LLM is Secretly an Unsupervised Confidence Calibrator
Post-training of large language models is essential for adapting pre-trained language models (PLMs) to align with human preferences and downstream tasks. While PLMs typically exhibit well-calibrated confidence, post-trained language models (PoLMs) often suffer from over-confidence, assigning high confidence to both correct and incorrect outputs, which can undermine reliability in critical applications. A major obstacle in calibrating PoLMs is the scarcity of labeled data for individual downstream tasks. To address this, we propose Disagreement-Aware Confidence Alignment (DACA), a novel unsupervised method to optimize the parameters (e.g., temperature $\tau$) in post-hoc confidence calibration. Our method is motivated by the under-confidence issue caused by prediction disagreement between the PLM and PoLM while aligning their confidence via temperature scaling. Theoretically, the PLM's confidence underestimates PoLM's prediction accuracy on disagreement examples, causing a larger $\tau$ and producing under-confident predictions. DACA mitigates this by selectively using only agreement examples for calibration, effectively decoupling the influence of disagreement. In this manner, our method avoids an overly large $\tau$ in temperature scaling caused by disagreement examples, improving calibration performance. Extensive experiments demonstrate the effectiveness of our method, improving the average ECE of open-sourced and API-based LLMs (e.g. GPT-4o) by up to 15.08$\%$ on common benchmarks.
♻ ☆ Towards Unified and Lossless Latent Space for 3D Molecular Latent Diffusion Modeling NeurIPS 2025
3D molecule generation is crucial for drug discovery and material science, requiring models to process complex multi-modalities, including atom types, chemical bonds, and 3D coordinates. A key challenge is integrating these modalities of different shapes while maintaining SE(3) equivariance for 3D coordinates. To achieve this, existing approaches typically maintain separate latent spaces for invariant and equivariant modalities, reducing efficiency in both training and sampling. In this work, we propose \textbf{U}nified Variational \textbf{A}uto-\textbf{E}ncoder for \textbf{3D} Molecular Latent Diffusion Modeling (\textbf{UAE-3D}), a multi-modal VAE that compresses 3D molecules into latent sequences from a unified latent space, while maintaining near-zero reconstruction error. This unified latent space eliminates the complexities of handling multi-modality and equivariance when performing latent diffusion modeling. We demonstrate this by employing the Diffusion Transformer--a general-purpose diffusion model without any molecular inductive bias--for latent generation. Extensive experiments on GEOM-Drugs and QM9 datasets demonstrate that our method significantly establishes new benchmarks in both \textit{de novo} and conditional 3D molecule generation, achieving leading efficiency and quality. On GEOM-Drugs, it reduces FCD by 72.6\% over the previous best result, while achieving over 70\% relative average improvements in geometric fidelity. Our code is released at https://github.com/lyc0930/UAE-3D/.
comment: NeurIPS 2025
♻ ☆ Faster Convergence of Riemannian Stochastic Gradient Descent with Increasing Batch Size ACML2025
We theoretically analyzed the convergence behavior of Riemannian stochastic gradient descent (RSGD) and found that using an increasing batch size leads to faster convergence than using a constant batch size, not only with a constant learning rate but also with a decaying learning rate, such as cosine annealing decay and polynomial decay. The convergence rate improves from $O(T^{-1}+C)$ with a constant batch size to $O(T^{-1})$ with an increasing batch size, where $T$ denotes the total number of iterations and $C$ is a constant. Using principal component analysis and low-rank matrix completion, we investigated, both theoretically and numerically, how an increasing batch size affects computational time as quantified by stochastic first-order oracle (SFO) complexity. An increasing batch size was found to reduce the SFO complexity of RSGD. Furthermore, an increasing batch size was found to offer the advantages of both small and large constant batch sizes.
comment: Accepted at ACML2025
♻ ☆ Curl Descent: Non-Gradient Learning Dynamics with Sign-Diverse Plasticity
Gradient-based algorithms are a cornerstone of artificial neural network training, yet it remains unclear whether biological neural networks use similar gradient-based strategies during learning. Experiments often discover a diversity of synaptic plasticity rules, but whether these amount to an approximation to gradient descent is unclear. Here we investigate a previously overlooked possibility: that learning dynamics may include fundamentally non-gradient "curl"-like components while still being able to effectively optimize a loss function. Curl terms naturally emerge in networks with inhibitory-excitatory connectivity or Hebbian/anti-Hebbian plasticity, resulting in learning dynamics that cannot be framed as gradient descent on any objective. To investigate the impact of these curl terms, we analyze feedforward networks within an analytically tractable student-teacher framework, systematically introducing non-gradient dynamics through neurons exhibiting rule-flipped plasticity. Small curl terms preserve the stability of the original solution manifold, resulting in learning dynamics similar to gradient descent. Beyond a critical value, strong curl terms destabilize the solution manifold. Depending on the network architecture, this loss of stability can lead to chaotic learning dynamics that destroy performance. In other cases, the curl terms can counterintuitively speed learning compared to gradient descent by allowing the weight dynamics to escape saddles by temporarily ascending the loss. Our results identify specific architectures capable of supporting robust learning via diverse learning rules, providing an important counterpoint to normative theories of gradient-based learning in neural networks.
♻ ☆ Learning Shared Representations from Unpaired Data NeurIPS 2025
Learning shared representations is a primary area of multimodal representation learning. The current approaches to achieve a shared embedding space rely heavily on paired samples from each modality, which are significantly harder to obtain than unpaired ones. In this work, we demonstrate that shared representations can be learned almost exclusively from unpaired data. Our arguments are grounded in the spectral embeddings of the random walk matrices constructed independently from each unimodal representation. Empirical results in computer vision and natural language processing domains support its potential, revealing the effectiveness of unpaired data in capturing meaningful cross-modal relations, demonstrating high capabilities in retrieval tasks, generation, arithmetics, zero-shot, and cross-domain classification. This work, to the best of our knowledge, is the first to demonstrate these capabilities almost exclusively from unpaired samples, giving rise to a cross-modal embedding that could be viewed as universal, i.e., independent of the specific modalities of the data. Our project page: https://shaham-lab.github.io/SUE_page.
comment: Accepted to NeurIPS 2025
♻ ☆ Muddit: Liberating Generation Beyond Text-to-Image with a Unified Discrete Diffusion Model
Unified generation models aim to handle diverse tasks across modalities -- such as text generation, image generation, and vision-language reasoning -- within a single architecture and decoding paradigm. Autoregressive unified models suffer from slow inference due to sequential decoding, and non-autoregressive unified models suffer from weak generalization due to limited pretrained backbones. We introduce Muddit, a unified discrete diffusion transformer that enables fast and parallel generation across both text and image modalities. Unlike prior unified diffusion models trained from scratch, Muddit integrates strong visual priors from a pretrained text-to-image backbone with a lightweight text decoder, enabling flexible and high-quality multimodal generation under a unified architecture. Empirical results show that Muddit achieves competitive or superior performance compared to significantly larger autoregressive models in both quality and efficiency. The work highlights the potential of purely discrete diffusion, when equipped with strong visual priors, as a scalable and effective backbone for unified generation.
comment: The code and model are available at https://github.com/M-E-AGI-Lab/Muddit
♻ ☆ Enhancing Self-Supervised Learning with Semantic Pairs A New Dataset and Empirical Study
Instance discrimination is a self-supervised representation learning paradigm wherein individual instances within a dataset are treated as distinct classes. This is typically achieved by generating two disparate views of each instance by applying stochastic transformations, encouraging the model to learn representations invariant to the common underlying object across these views. While this approach facilitates the acquisition of invariant representations for dataset instances under various handcrafted transformations (e.g., random cropping, colour jittering), an exclusive reliance on such data transformations for achieving invariance may inherently limit the model's generalizability to unseen datasets and diverse downstream tasks. The inherent limitation stems from the fact that the finite set of transformations within the data processing pipeline is unable to encompass the full spectrum of potential data variations. In this study, we provide the technical foundation for leveraging semantic pairs to enhance the generalizability of the model's representation and empirically demonstrate that incorporating semantic pairs mitigates the issue of limited transformation coverage. Specifically, we propose that by exposing the model to semantic pairs (i.e., two instances belonging to the same semantic category), we introduce varied real-world scene contexts, thereby fostering the development of more generalizable object representations. To validate this hypothesis, we constructed and released a novel dataset comprising curated semantic pairs and conducted extensive experimentation to empirically establish that their inclusion enables the model to learn more general representations, ultimately leading to improved performance across diverse downstream tasks.
comment: 16 pages, 7 figures, 5 tables
♻ ☆ TinyGraphEstimator: Adapting Lightweight Language Models for Graph Structure Inference
Graphs provide a universal framework for representing complex relational systems, and inferring their structural properties is a core challenge in graph analysis and reasoning. While large language models have recently demonstrated emerging abilities to perform symbolic and numerical reasoning, the potential of smaller, resource-efficient models in this context remains largely unexplored. This paper investigates whether compact transformer-based language models can infer graph-theoretic parameters directly from graph representations. To enable systematic evaluation, we introduce the TinyGraphEstimator dataset - a balanced collection of connected graphs generated from multiple random graph models and annotated with detailed structural metadata. We evaluate several small open models on their ability to predict key graph parameters such as density, clustering, and chromatic number. Furthermore, we apply lightweight fine-tuning using the Low-Rank Adaptation (LoRA) technique, achieving consistent improvements across all evaluated metrics. The results demonstrate that small language models possess non-trivial reasoning capacity over graph-structured data and can be effectively adapted for structural inference tasks through efficient parameter tuning.
♻ ☆ Long-Range Graph Wavelet Networks NeurIPS 2025
Modeling long-range interactions, the propagation of information across distant parts of a graph, is a central challenge in graph machine learning. Graph wavelets, inspired by multi-resolution signal processing, provide a principled way to capture both local and global structures. However, existing wavelet-based graph neural networks rely on finite-order polynomial approximations, which limit their receptive fields and hinder long-range propagation. We propose Long-Range Graph Wavelet Networks (LR-GWN), which decompose wavelet filters into complementary local and global components. Local aggregation is handled with efficient low-order polynomials, while long-range interactions are captured through a flexible spectral-domain parameterization. This hybrid design unifies short- and long-distance information flow within a principled wavelet framework. Experiments show that LR-GWN achieves state-of-the-art performance among wavelet-based methods on long-range benchmarks, while remaining competitive on short-range datasets.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: New Perspectives in Advancing Graph Machine Learning
♻ ☆ References Indeed Matter? Reference-Free Preference Optimization for Conversational Query Reformulation
Conversational query reformulation (CQR) has become indispensable for improving retrieval in dialogue-based applications. However, existing approaches typically rely on reference passages for optimization, which are impractical to acquire in real-world scenarios. To address this limitation, we introduce a novel reference-free preference optimization framework DualReform that generates pseudo reference passages from commonly-encountered conversational datasets containing only queries and responses. DualReform attains this goal through two key innovations: (1) response-based inference, where responses serve as proxies to infer pseudo reference passages, and (2) response refinement via the dual-role of CQR, where a CQR model refines responses based on the shared objectives between response refinement and CQR. Despite not relying on reference passages, DualReform achieves 96.9--99.1% of the retrieval accuracy attainable only with reference passages and surpasses the state-of-the-art method by up to 31.6%.
♻ ☆ AMSbench: A Comprehensive Benchmark for Evaluating MLLM Capabilities in AMS Circuits
Analog/Mixed-Signal (AMS) circuits play a critical role in the integrated circuit (IC) industry. However, automating Analog/Mixed-Signal (AMS) circuit design has remained a longstanding challenge due to its difficulty and complexity. Although recent advances in Multi-modal Large Language Models (MLLMs) offer promising potential for supporting AMS circuit analysis and design, current research typically evaluates MLLMs on isolated tasks within the domain, lacking a comprehensive benchmark that systematically assesses model capabilities across diverse AMS-related challenges. To address this gap, we introduce AMSbench, a benchmark suite designed to evaluate MLLM performance across critical tasks including circuit schematic perception, circuit analysis, and circuit design. AMSbench comprises approximately 8000 test questions spanning multiple difficulty levels and assesses eight prominent models, encompassing both open-source and proprietary solutions such as Qwen 2.5-VL and Gemini 2.5 Pro. Our evaluation highlights significant limitations in current MLLMs, particularly in complex multi-modal reasoning and sophisticated circuit design tasks. These results underscore the necessity of advancing MLLMs' understanding and effective application of circuit-specific knowledge, thereby narrowing the existing performance gap relative to human expertise and moving toward fully automated AMS circuit design workflows. Our data is released at this URL.
♻ ☆ FSA: An Alternative Efficient Implementation of Native Sparse Attention Kernel
Recent advance in sparse attention mechanisms has demonstrated strong potential for reducing the computational cost of long-context training and inference in large language models (LLMs). Native Sparse Attention (NSA), one state-of-the-art approach, introduces natively trainable, hardware-aligned sparse attention that delivers substantial system-level performance boost while maintaining accuracy comparable to full attention. However, the kernel implementation of NSA forces a loop order that is only efficient with a relatively large number of query heads in each Grouped Query Attention (GQA) group, whereas existing LLMs widely adopt much smaller number of query heads in each GQA group -- such an inconsistency significantly limits the applicability of this sparse algorithmic advance. In this work, we propose Flash Sparse Attention (FSA), an alternative kernel implementation that enables efficient NSA computation across a wide range of popular LLMs with varied smaller number of heads in each GQA group on modern GPUs. Compared to vanilla NSA kernel implementation, our empirical evaluation demonstrates that FSA achieves (i) up to 3.5x and on average 1.6x kernel-level latency reduction, (ii) up to 1.25x and 1.09x on average end-to-end training speedup on state-of-the-art LLMs, and (iii) up to 1.36x and 1.11x on average for prefill-phase speedup in LLM generative inference. Github Repo at https://github.com/Relaxed-System-Lab/Flash-Sparse-Attention.
♻ ☆ AB-UPT: Scaling Neural CFD Surrogates for High-Fidelity Automotive Aerodynamics Simulations via Anchored-Branched Universal Physics Transformers
Recent advances in neural surrogate modeling offer the potential for transformative innovations in applications such as automotive aerodynamics. Yet, industrial-scale problems often involve volumetric meshes with cell counts reaching 100 million, presenting major scalability challenges. Complex geometries further complicate modeling through intricate surface-volume interactions, while quantities such as vorticity are highly nonlinear and must satisfy strict divergence-free constraints. To address these requirements, we introduce AB-UPT as a novel modeling scheme for building neural surrogates for CFD simulations. AB-UPT is designed to: (i) decouple geometry encoding and prediction tasks via multi-branch operators; (ii) enable scalability to high-resolution outputs via neural simulation in a low-dimensional latent space, coupled with anchored neural field decoders to predict high-fidelity outputs; (iii) enforce physics consistency by a divergence-free formulation. We show that AB-UPT yields state-of-the-art predictive accuracy of surface and volume fields on automotive CFD simulations ranging from 33 thousand up to 150 million mesh cells. Furthermore, our anchored neural field architecture enables the enforcement of hard physical constraints on the physics predictions without degradation in performance, exemplified by modeling divergence-free vorticity fields. Notably, the proposed models can be trained on a single GPU in less than a day and predict industry-standard surface and volume fields within seconds. Additionally, we show that the flexible design of our method enables neural simulation from a CAD geometry alone, thereby eliminating the need for costly CFD meshing procedures for inference.
comment: Published in Transactions on Machine Learning Research
♻ ☆ On the Mathematical Relationship Between Layer Normalization and Dynamic Activation Functions
Layer normalization (LN) is an essential component of modern neural networks. While many alternative techniques have been proposed, none of them have succeeded in replacing LN so far. The latest suggestion in this line of research is a dynamic activation function called Dynamic Tanh (DyT). Although it is empirically well-motivated and appealing from a practical point of view, it lacks a theoretical foundation. In this work, we shed light on the mathematical relationship between LN and dynamic activation functions. In particular, we derive DyT from the LN variant RMSNorm, and show that a well-defined decoupling in derivative space as well as an approximation are needed to do so. By applying the same decoupling procedure directly in function space, we are able to omit the approximation and obtain the exact element-wise counterpart of RMSNorm, which we call Dynamic Inverse Square Root Unit (DyISRU). We demonstrate numerically that DyISRU reproduces the normalization effect on outliers more accurately than DyT does.
comment: Revision and Simplification (starting point RMSNorm instead of LN)
♻ ☆ Early-Warning of Thunderstorm-Driven Power Outages with a Two-Stage Machine Learning Model
Thunderstorm-driven outages are difficult to predict because most storms do not cause damage, convective processes occur rapidly and chaotically, and the available public data are both noisy and incomplete. We develop a 24-48 h early-warning model for summer, thunderstorm-related outages in Michigan using only open sources (EAGLE-I for ground truth; METAR for weather). We use the publicly released EAGLE-I outage dataset (2014-2022), maintained by Oak Ridge National Laboratory for the U.S. Department of Energy. The pipeline preserves convective micro-signals from a sparse station network via parameter-specific kriging with hourly variograms and targeted overdrafting to retain extremes, and builds causal spatio-temporal features (lags/rolling statistics; k-NN/IDW spatial aggregates) capturing precursors of severe convection (moisture advection, wind shifts, and pressure drops). The two-stage model design, combining a logistic gate and an LSTM regressor, limits routine periods and reduces noise exposure. The study uses event-centric metrics (cluster-based hits/misses/false alarms) and peak-conditional MASE (cMASE) in +/-Delta-hour windows around state-level peaks (>= 50,000), with uncertainty quantified by hourly moving-block bootstrap. On the test sample, Two-Stage detects more reference peaks across all windows (e.g., at +/-48 h it records 3/4 vs. 2/4; F1 66.7% vs. 57.1%) with one extra false alarm. Near peaks, it shows modest amplitude gains (2-3% lower cMASE at +/-0-12 h; bootstrap medians +9-13% at +/-6-12 h) but small losses at +/-36-48 h (~3-4%). Overall, errors are comparable to the one-step LSTM baseline. SHAP analysis confirms moisture-advection and wind/gust precursors, underscoring the value of the feature engineering. Despite open-data noise, the feature-driven pipeline yields actionable, event-focused early warnings for thunderstorm outages.
comment: 23 pages (main), 70 pages incl. appendices; figures & tables as in manuscript. Code (main figure, synthetic data): https://github.com/IrynaStanishevska/peak-outage-forecasting- License: CC BY 4.0 (preprint)
♻ ☆ Specialization after Generalization: Towards Understanding Test-Time Training in Foundation Models NeurIPS 2025
Recent empirical studies have explored the idea of continuing to train a model at test-time for a given task, known as test-time training (TTT), and have found it to yield significant performance improvements. However, there is limited understanding of why and when TTT is effective. Earlier explanations mostly focused on the observation that TTT may help when applied to out-of-distribution adaptation or used with privileged data. However, the growing scale of foundation models with most test data being in-distribution questions these explanations. We instead posit that foundation models remain globally underparameterized, with TTT providing a mechanism for specialization after generalization, focusing capacity on concepts relevant to the test task. Specifically, under the linear representation hypothesis, we propose a model in which TTT achieves a substantially smaller in-distribution test error than global training. We empirically validate our model's key assumptions by training a sparse autoencoder on ImageNet, showing that semantically related data points are explained by only a few shared concepts. Finally, we perform scaling studies across image and language tasks that confirm the practical implications of our model, identifying the regimes where specialization is most effective.
comment: Oral at CCFM @ NeurIPS 2025
♻ ☆ VLMGuard-R1: Proactive Safety Alignment for VLMs via Reasoning-Driven Prompt Optimization
Aligning Vision-Language Models (VLMs) with safety standards is essential to mitigate risks arising from their multimodal complexity, where integrating vision and language unveils subtle threats beyond the reach of conventional safeguards. Inspired by the insight that reasoning across modalities is key to preempting intricate vulnerabilities, we propose a novel direction for VLM safety: multimodal reasoning-driven prompt rewriting. To this end, we introduce VLMGuard-R1, a proactive framework that refines user inputs through a reasoning-guided rewriter, dynamically interpreting text-image interactions to deliver refined prompts that bolster safety across diverse VLM architectures without altering their core parameters. To achieve this, we devise a three-stage reasoning pipeline to synthesize a dataset that trains the rewriter to infer subtle threats, enabling tailored, actionable responses over generic refusals. Extensive experiments across three benchmarks with five VLMs reveal that VLMGuard-R1 outperforms four baselines. In particular, VLMGuard-R1 achieves a remarkable 43.59\% increase in average safety across five models on the SIUO benchmark.
Multimedia
☆ Building and Evaluating a Realistic Virtual World for Large Scale Urban Exploration from 360° Videos
We propose to build realistic virtual worlds, called 360RVW, for large urban environments directly from 360{\deg} videos. We provide an interface for interactive exploration, where users can freely navigate via their own avatars. 360{\deg} videos record the entire environment of the shooting location simultaneously leading to highly realistic and immersive representations. Our system uses 360{\deg} videos recorded along streets and builds a 360RVW through four main operations: video segmentation by intersection detection, video completion to remove the videographer, semantic segmentation for virtual collision detection with the avatar, and projection onto a distorted sphere that moves along the camera trajectory following the avatar's movements. Our interface allows users to explore large urban environments by changing their walking direction at intersections or choosing a new location by clicking on a map. Even without a 3D model, the users can experience collision with buildings using metadata produced by semantic segmentation. Furthermore, we stream the 360{\deg} videos so users can directly access 360RVW via their web browser. We fully evaluate our system, including a perceptual experiment comparing our approach to previous exploratory interfaces. The results confirm the quality of our system, especially regarding the presence of users and the interactive exploration, making it most suitable for a virtual tour of urban environments.
comment: Multimedia Tools and Applications, Springer (accepted)
☆ CoPRS: Learning Positional Prior from Chain-of-Thought for Reasoning Segmentation
Existing works on reasoning segmentation either connect hidden features from a language model directly to a mask decoder or represent positions in text, which limits interpretability and semantic detail. To solve this, we present CoPRS, a Multi-modal Chain-of-Thought (MCoT)-based positional perception model that bridges language reasoning to segmentation through a differentiable and interpretable positional prior instantiated as a heatmap. By making the reasoning process clear via MCoT and expressing it as a dense, differentiable heatmap, this interface enhances interpretability and diagnostic analysis and yields more concentrated evidence on the target. A learnable concentration token aggregates features of the image and reasoning text to generate this positional prior, which is decoded to precise masks through a lightweight decoder, providing a direct connection between reasoning and segmentation. Across the RefCOCO series and ReasonSeg, CoPRS matches or surpasses the best reported metrics on each standard split under comparable protocols, with performance at or above prior state of the art across both validation and test partitions. Extensive experiments reveal that the quality of the heatmap strongly influences the resulting mask quality, supporting a consistent association between the reasoning output and downstream mask generation. Collectively, these findings support the utility of this paradigm in bridging reasoning and segmentation and show advantages in concentration driven by reasoning and predicting masks more precisely. Code, checkpoints and logs are released at https://github.com/ZhenyuLU-Heliodore/CoPRS.git.
comment: 18 pages, 6 figures, 6 tables
☆ Connecting Giants: Synergistic Knowledge Transfer of Large Multimodal Models for Few-Shot Learning IJCAI 2025
Few-shot learning (FSL) addresses the challenge of classifying novel classes with limited training samples. While some methods leverage semantic knowledge from smaller-scale models to mitigate data scarcity, these approaches often introduce noise and bias due to the data's inherent simplicity. In this paper, we propose a novel framework, Synergistic Knowledge Transfer (SynTrans), which effectively transfers diverse and complementary knowledge from large multimodal models to empower the off-the-shelf few-shot learner. Specifically, SynTrans employs CLIP as a robust teacher and uses a few-shot vision encoder as a weak student, distilling semantic-aligned visual knowledge via an unsupervised proxy task. Subsequently, a training-free synergistic knowledge mining module facilitates collaboration among large multimodal models to extract high-quality semantic knowledge. Building upon this, a visual-semantic bridging module enables bi-directional knowledge transfer between visual and semantic spaces, transforming explicit visual and implicit semantic knowledge into category-specific classifier weights. Finally, SynTrans introduces a visual weight generator and a semantic weight reconstructor to adaptively construct optimal multimodal FSL classifiers. Experimental results on four FSL datasets demonstrate that SynTrans, even when paired with a simple few-shot vision encoder, significantly outperforms current state-of-the-art methods.
comment: Accepted by IJCAI 2025
♻ ☆ Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence. We first propose a holistic taxonomy of spatial tasks that unifies existing benchmarks and a standardized protocol for the fair evaluation of state-of-the-art proprietary and open-source models across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence (SI), yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail even the most advanced multimodal models.
♻ ☆ Towards Robust and Realible Multimodal Fake News Detection with Incomplete Modality
Multimodal fake news detection (MFND) has become an urgent task with the emergence of huge multimodal fake content on social media platforms. Previous studies mainly focus on complex feature extraction and fusion to learn discriminative information from multimodal content. However, in real-world applications, multimedia news may naturally lose some information during dissemination, resulting in modality incompleteness, which is detrimental to the generalization and robustness of existing models. To this end, we propose a novel generic and robust multimodal fusion strategy, termed Multi-expert Modality-incomplete Learning Network (MMLNet), which is simple yet effective. It consists of three key steps: (1) Multi-Expert Collaborative Reasoning to compensate for missing modalities by dynamically leveraging complementary information through multiple experts. (2) Incomplete Modality Adapters compensates for the missing information by leveraging the new feature distribution. (3) Modality Missing Learning leveraging an label-aware adaptive weighting strategy to learn a robust representation with contrastive learning. We evaluate MMLNet on three real-world benchmarks across two languages, demonstrating superior performance compared to state-of-the-art methods while maintaining relative simplicity. By ensuring the accuracy of fake news detection in incomplete modality scenarios caused by information propagation, MMLNet effectively curbs the spread of malicious misinformation. Code is publicly available at https://github.com/zhyhome/MMLNet.
♻ ☆ Real-Time Position-Aware View Synthesis from Single-View Input
Recent advancements in view synthesis have significantly enhanced immersive experiences across various computer graphics and multimedia applications, including telepresence and entertainment. By enabling the generation of new perspectives from a single input view, view synthesis allows users to better perceive and interact with their environment. However, many state-of-the-art methods, while achieving high visual quality, face limitations in real-time performance, which makes them less suitable for live applications where low latency is critical. In this paper, we present a lightweight, position-aware network designed for real-time view synthesis from a single input image and a target camera pose. The proposed framework consists of a Position Aware Embedding, which efficiently maps positional information from the target pose to generate high dimensional feature maps. These feature maps, along with the input image, are fed into a Rendering Network that merges features from dual encoder branches to resolve both high and low level details, producing a realistic new view of the scene. Experimental results demonstrate that our method achieves superior efficiency and visual quality compared to existing approaches, particularly in handling complex translational movements without explicit geometric operations like warping. This work marks a step toward enabling real-time live and interactive telepresence applications.
♻ ☆ SWIFT: Semantic Watermarking for Image Forgery Thwarting
This paper proposes a novel approach towards image authentication and tampering detection by using watermarking as a communication channel for semantic information. We modify the HiDDeN deep-learning watermarking architecture to embed and extract high-dimensional real vectors representing image captions. Our method improves significantly robustness on both malign and benign edits. We also introduce a local confidence metric correlated with Message Recovery Rate, enhancing the method's practical applicability. This approach bridges the gap between traditional watermarking and passive forensic methods, offering a robust solution for image integrity verification.
comment: Accepted at IEEE WIFS 2024; Code released at : https://github.com/gautierevn/swift_watermarking
♻ ☆ Tailored Teaching with Balanced Difficulty: Elevating Reasoning in Multimodal Chain-of-Thought via Prompt Curriculum
The effectiveness of Multimodal Chain-of-Thought (MCoT) prompting is often limited by the use of randomly or manually selected examples. These examples fail to account for both model-specific knowledge distributions and the intrinsic complexity of the tasks, resulting in suboptimal and unstable model performance. To address this, we propose a novel framework inspired by the pedagogical principle of "tailored teaching with balanced difficulty". We reframe prompt selection as a prompt curriculum design problem: constructing a well ordered set of training examples that align with the model's current capabilities. Our approach integrates two complementary signals: (1) model-perceived difficulty, quantified through prediction disagreement in an active learning setup, capturing what the model itself finds challenging; and (2) intrinsic sample complexity, which measures the inherent difficulty of each question-image pair independently of any model. By jointly analyzing these signals, we develop a difficulty-balanced sampling strategy that ensures the selected prompt examples are diverse across both dimensions. Extensive experiments conducted on five challenging benchmarks and multiple popular Multimodal Large Language Models (MLLMs) demonstrate that our method yields substantial and consistent improvements and greatly reduces performance discrepancies caused by random sampling, providing a principled and robust approach for enhancing multimodal reasoning.
♻ ☆ Context Guided Transformer Entropy Modeling for Video Compression ICCV 2025
Conditional entropy models effectively leverage spatio-temporal contexts to reduce video redundancy. However, incorporating temporal context often introduces additional model complexity and increases computational cost. In parallel, many existing spatial context models lack explicit modeling the ordering of spatial dependencies, which may limit the availability of relevant context during decoding. To address these issues, we propose the Context Guided Transformer (CGT) entropy model, which estimates probability mass functions of the current frame conditioned on resampled temporal context and dependency-weighted spatial context. A temporal context resampler learns predefined latent queries to extract critical temporal information using transformer encoders, reducing downstream computational overhead. Meanwhile, a teacher-student network is designed as dependency-weighted spatial context assigner to explicitly model the dependency of spatial context order. The teacher generates an attention map to represent token importance and an entropy map to reflect prediction certainty from randomly masked inputs, guiding the student to select the weighted top-k tokens with the highest spatial dependency. During inference, only the student is used to predict undecoded tokens based on high-dependency context. Experimental results demonstrate that our CGT model reduces entropy modeling time by approximately 65% and achieves an 11% BD-Rate reduction compared to the previous state-of-the-art conditional entropy model.
comment: ICCV 2025. This is an update to the camera-ready version
♻ ☆ Stimulus Modality Matters: Impact of Perceptual Evaluations from Different Modalities on Speech Emotion Recognition System Performance ICASSP 2025
Speech Emotion Recognition (SER) systems rely on speech input and emotional labels annotated by humans. However, various emotion databases collect perceptional evaluations in different ways. For instance, the IEMOCAP dataset uses video clips with sounds for annotators to provide their emotional perceptions. However, the most significant English emotion dataset, the MSP-PODCAST, only provides speech for raters to choose the emotional ratings. Nevertheless, using speech as input is the standard approach to training SER systems. Therefore, the open question is the emotional labels elicited by which scenarios are the most effective for training SER systems. We comprehensively compare the effectiveness of SER systems trained with labels elicited by different modality stimuli and evaluate the SER systems on various testing conditions. Also, we introduce an all-inclusive label that combines all labels elicited by various modalities. We show that using labels elicited by voice-only stimuli for training yields better performance on the test set, whereas labels elicited by voice-only stimuli.
comment: 5 pages, 2 figures, 4 tables, acceptance for ICASSP 2025
♻ ☆ Goal-Based Vision-Language Driving
Autonomous vehicles must react in milliseconds while reasoning about road geometry and traffic intent to navigate complex situations. We introduce NovaDrive, a single-branch vision-language architecture that processes front-camera images, HD-map tiles, LiDAR depth, and textual waypoints in a single branch. A lightweight, two-stage cross-attention block first aligns waypoint tokens with the HD map, then refines attention over fine-grained image and depth patches. Coupled with a novel smoothness loss that discourages abrupt steering and speed changes, this design eliminates the need for recurrent memory. We fine-tune the top 15 layers of an 11B LLaMA-3.2 vision-language backbone, enabling real-time inference. On the nuScenes / Waymo subset of the MD-NEX Outdoor benchmark, NovaDrive raises success rate to 84% (+4%), boosts path-efficiency (SPL) to 0.66 (+0.11), and reduces collision frequency from 2.6% to 1.2% (-1.4%) relative to the previous state-of-the-art. Our ablations confirm that waypoint tokens, partial VLM fine-tuning, and the cross-attention fusion each contribute the most to these gains. Beyond safety, NovaDrive's shorter routes (resulting from the novel smoothness loss) translate to lower fuel or battery usage, pointing toward leaner, more easily updated driving stacks. NovaDrive can be extended to other embodied-AI domains as well.
comment: 6 pages
♻ ☆ TAG-WM: Tamper-Aware Generative Image Watermarking via Diffusion Inversion Sensitivity
AI-generated content (AIGC) enables efficient visual creation but raises copyright and authenticity risks. As a common technique for integrity verification and source tracing, digital image watermarking is regarded as a potential solution to above issues. However, the widespread adoption and advancing capabilities of generative image editing tools have amplified malicious tampering risks, while simultaneously posing new challenges to passive tampering detection and watermark robustness. To address these challenges, this paper proposes a Tamper-Aware Generative image WaterMarking method named TAG-WM. The proposed method comprises four key modules: a dual-mark joint sampling (DMJS) algorithm for embedding copyright and localization watermarks into the latent space while preserving generative quality, the watermark latent reconstruction (WLR) utilizing reversed DMJS, a dense variation region detector (DVRD) leveraging diffusion inversion sensitivity to identify tampered areas via statistical deviation analysis, and the tamper-aware decoding (TAD) guided by localization results. The experimental results demonstrate that TAG-WM achieves state-of-the-art performance in both tampering robustness and localization capability even under distortion, while preserving lossless generation quality and maintaining a watermark capacity of 256 bits. The code is available at: https://github.com/Suchenl/TAG-WM.
♻ ☆ SMC++: Masked Learning of Unsupervised Video Semantic Compression ICCV 2023
Most video compression methods focus on human visual perception, neglecting semantic preservation. This leads to severe semantic loss during the compression, hampering downstream video analysis tasks. In this paper, we propose a Masked Video Modeling (MVM)-powered compression framework that particularly preserves video semantics, by jointly mining and compressing the semantics in a self-supervised manner. While MVM is proficient at learning generalizable semantics through the masked patch prediction task, it may also encode non-semantic information like trivial textural details, wasting bitcost and bringing semantic noises. To suppress this, we explicitly regularize the non-semantic entropy of the compressed video in the MVM token space. The proposed framework is instantiated as a simple Semantic-Mining-then-Compression (SMC) model. Furthermore, we extend SMC as an advanced SMC++ model from several aspects. First, we equip it with a masked motion prediction objective, leading to better temporal semantic learning ability. Second, we introduce a Transformer-based compression module, to improve the semantic compression efficacy. Considering that directly mining the complex redundancy among heterogeneous features in different coding stages is non-trivial, we introduce a compact blueprint semantic representation to align these features into a similar form, fully unleashing the power of the Transformer-based compression module. Extensive results demonstrate the proposed SMC and SMC++ models show remarkable superiority over previous traditional, learnable, and perceptual quality-oriented video codecs, on three video analysis tasks and seven datasets. \textit{Codes and model are available at: https://github.com/tianyuan168326/VideoSemanticCompression-Pytorch.
comment: Accepted to TPAMI; Substantial Extension of ICCV 2023 paper
Information Retrieval
☆ VeritasFi: An Adaptable, Multi-tiered RAG Framework for Multi-modal Financial Question Answering
Retrieval-Augmented Generation (RAG) is becoming increasingly essential for Question Answering (QA) in the financial sector, where accurate and contextually grounded insights from complex public disclosures are crucial. However, existing financial RAG systems face two significant challenges: (1) they struggle to process heterogeneous data formats, such as text, tables, and figures; and (2) they encounter difficulties in balancing general-domain applicability with company-specific adaptation. To overcome these challenges, we present VeritasFi, an innovative hybrid RAG framework that incorporates a multi-modal preprocessing pipeline alongside a cutting-edge two-stage training strategy for its re-ranking component. VeritasFi enhances financial QA through three key innovations: (1) A multi-modal preprocessing pipeline that seamlessly transforms heterogeneous data into a coherent, machine-readable format. (2) A tripartite hybrid retrieval engine that operates in parallel, combining deep multi-path retrieval over a semantically indexed document corpus, real-time data acquisition through tool utilization, and an expert-curated memory bank for high-frequency questions, ensuring comprehensive scope, accuracy, and efficiency. (3) A two-stage training strategy for the document re-ranker, which initially constructs a general, domain-specific model using anonymized data, followed by rapid fine-tuning on company-specific data for targeted applications. By integrating our proposed designs, VeritasFi presents a groundbreaking framework that greatly enhances the adaptability and robustness of financial RAG systems, providing a scalable solution for both general-domain and company-specific QA tasks. Code accompanying this work is available at https://github.com/simplew4y/VeritasFi.git.
☆ DRIFT: Decompose, Retrieve, Illustrate, then Formalize Theorems
Automating the formalization of mathematical statements for theorem proving remains a major challenge for Large Language Models (LLMs). LLMs struggle to identify and utilize the prerequisite mathematical knowledge and its corresponding formal representation in languages like Lean. Current retrieval-augmented autoformalization methods query external libraries using the informal statement directly, but overlook a fundamental limitation: informal mathematical statements are often complex and offer limited context on the underlying math concepts. To address this, we introduce DRIFT, a novel framework that enables LLMs to decompose informal mathematical statements into smaller, more tractable ''sub-components''. This facilitates targeted retrieval of premises from mathematical libraries such as Mathlib. Additionally, DRIFT retrieves illustrative theorems to help models use premises more effectively in formalization tasks. We evaluate DRIFT across diverse benchmarks (ProofNet, ConNF, and MiniF2F-test) and find that it consistently improves premise retrieval, nearly doubling the F1 score compared to the DPR baseline on ProofNet. Notably, DRIFT demonstrates strong performance on the out-of-distribution ConNF benchmark, with BEq+@10 improvements of 37.14% and 42.25% using GPT-4.1 and DeepSeek-V3.1, respectively. Our analysis shows that retrieval effectiveness in mathematical autoformalization depends heavily on model-specific knowledge boundaries, highlighting the need for adaptive retrieval strategies aligned with each model's capabilities.
☆ Is Implicit Knowledge Enough for LLMs? A RAG Approach for Tree-based Structures
Large Language Models (LLMs) are adept at generating responses based on information within their context. While this ability is useful for interacting with structured data like code files, another popular method, Retrieval-Augmented Generation (RAG), retrieves relevant documents to augment the model's in-context learning. However, it is not well-explored how to best represent this retrieved knowledge for generating responses on structured data, particularly hierarchical structures like trees. In this work, we propose a novel bottom-up method to linearize knowledge from tree-like structures (like a GitHub repository) by generating implicit, aggregated summaries at each hierarchical level. This approach enables the knowledge to be stored in a knowledge base and used directly with RAG. We then compare our method to using RAG on raw, unstructured code, evaluating the accuracy and quality of the generated responses. Our results show that while response quality is comparable across both methods, our approach generates over 68% fewer documents in the retriever, a significant gain in efficiency. This finding suggests that leveraging implicit, linearized knowledge may be a highly effective and scalable strategy for handling complex, hierarchical data structures.
comment: Waiting for Conference Response
☆ Multi-Granularity Sequence Denoising with Weakly Supervised Signal for Sequential Recommendation
Sequential recommendation aims to predict the next item based on user interests in historical interaction sequences. Historical interaction sequences often contain irrelevant noisy items, which significantly hinders the performance of recommendation systems. Existing research employs unsupervised methods that indirectly identify item-granularity irrelevant noise by predicting the ground truth item. Since these methods lack explicit noise labels, they are prone to misidentify users' interested items as noise. Additionally, while these methods focus on removing item-granularity noise driven by the ground truth item, they overlook interest-granularity noise, limiting their ability to perform broader denoising based on user interests. To address these issues, we propose Multi-Granularity Sequence Denoising with Weakly Supervised Signal for Sequential Recommendation(MGSD-WSS). MGSD-WSS first introduces the Multiple Gaussian Kernel Perceptron module to map the original and enhance sequence into a common representation space and utilizes weakly supervised signals to accurately identify noisy items in the historical interaction sequence. Subsequently, it employs the item-granularity denoising module with noise-weighted contrastive learning to obtain denoised item representations. Then, it extracts target interest representations from the ground truth item and applies noise-weighted contrastive learning to obtain denoised interest representations. Finally, based on the denoised item and interest representations, MGSD-WSS predicts the next item. Extensive experiments on five datasets demonstrate that the proposed method significantly outperforms state-of-the-art sequence recommendation and denoising models. Our code is available at https://github.com/lalunex/MGSD-WSS.
Self-Supervised Representation Learning with ID-Content Modality Alignment for Sequential Recommendation
Sequential recommendation (SR) models often capture user preferences based on the historically interacted item IDs, which usually obtain sub-optimal performance when the interaction history is limited. Content-based sequential recommendation has recently emerged as a promising direction that exploits items' textual and visual features to enhance preference learning. However, there are still three key challenges: (i) how to reduce the semantic gap between different content modality representations; (ii) how to jointly model user behavior preferences and content preferences; and (iii) how to design an effective training strategy to align ID representations and content representations. To address these challenges, we propose a novel model, self-supervised representation learning with ID-Content modality alignment, named SICSRec. Firstly, we propose a LLM-driven sample construction method and develop a supervised fine-tuning approach to align item-level modality representations. Secondly, we design a novel Transformer-based sequential model, where an ID-modality sequence encoder captures user behavior preferences, a content-modality sequence encoder learns user content preferences, and a mix-modality sequence decoder grasps the intrinsic relationship between these two types of preferences. Thirdly, we propose a two-step training strategy with a content-aware contrastive learning task to align modality representations and ID representations, which decouples the training process of content modality dependency and item collaborative dependency. Extensive experiments conducted on four public video streaming datasets demonstrate our SICSRec outperforms the state-of-the-art ID-modality sequential recommenders and content-modality sequential recommenders by 8.04% on NDCG@5 and 6.62% on NDCD@10 on average, respectively.
☆ Towards Long-Term User Welfare in Recommender Systems via Creator-Oriented Information Revelation
Improving the long-term user welfare (e.g., sustained user engagement) has become a central objective of recommender systems (RS). In real-world platforms, the creation behaviors of content creators plays a crucial role in shaping long-term welfare beyond short-term recommendation accuracy, making the effective steering of creator behavior essential to foster a healthier RS ecosystem. Existing works typically rely on re-ranking algorithms that heuristically adjust item exposure to steer creators' behavior. However, when embedded within recommendation pipelines, such a strategy often conflicts with the short-term objective of improving recommendation accuracy, leading to performance degradation and suboptimal long-term welfare. The well-established economics studies offer us valuable insights for an alternative approach without relying on recommendation algorithmic design: revealing information from an information-rich party (sender) to a less-informed party (receiver) can effectively change the receiver's beliefs and steer their behavior. Inspired by this idea, we propose an information-revealing framework, named Long-term Welfare Optimization via Information Revelation (LoRe). In this framework, we utilize a classical information revelation method (i.e., Bayesian persuasion) to map the stakeholders in RS, treating the platform as the sender and creators as the receivers. To address the challenge posed by the unrealistic assumption of traditional economic methods, we formulate the process of information revelation as a Markov Decision Process (MDP) and propose a learning algorithm trained and inferred in environments with boundedly rational creators. Extensive experiments on two real-world RS datasets demonstrate that our method can effectively outperform existing fair re-ranking methods and information revealing strategies in improving long-term user welfare.
☆ Does Weighting Improve Matrix Factorization for Recommender Systems? WWW
Matrix factorization is a widely used approach for top-N recommendation and collaborative filtering. When implemented on implicit feedback data (such as clicks), a common heuristic is to upweight the observed interactions. This strategy has been shown to improve performance for certain algorithms. In this paper, we conduct a systematic study of various weighting schemes and matrix factorization algorithms. Somewhat surprisingly, we find that training with unweighted data can perform comparably to, and sometimes outperform, training with weighted data, especially for large models. This observation challenges the conventional wisdom. Nevertheless, we identify cases where weighting can be beneficial, particularly for models with lower capacity and specific regularization schemes. We also derive efficient algorithms for exactly minimizing several weighted objectives that were previously considered computationally intractable. Our work provides a comprehensive analysis of the interplay between weighting, regularization, and model capacity in matrix factorization for recommender systems.
comment: In the proceedings of the Web Conference (WWW) 2025 (11 pages)
☆ Hierarchical LoRA MoE for Efficient CTR Model Scaling
Deep models have driven significant advances in click-through rate (CTR) prediction. While vertical scaling via layer stacking improves model expressiveness, the layer-by-layer sequential computation poses challenges to efficient scaling. Conversely, horizontal scaling through Mixture of Experts (MoE) achieves efficient scaling by activating a small subset of experts in parallel, but flat MoE layers may struggle to capture the hierarchical structure inherent in recommendation tasks. To push the Return-On-Investment (ROI) boundary, we explore the complementary strengths of both directions and propose HiLoMoE, a hierarchical LoRA MoE framework that enables holistic scaling in a parameter-efficient manner. Specifically, HiLoMoE employs lightweight rank-1 experts for parameter-efficient horizontal scaling, and stacks multiple MoE layers with hierarchical routing to enable combinatorially diverse expert compositions. Unlike conventional stacking, HiLoMoE routes based on prior layer scores rather than outputs, allowing all layers to execute in parallel. A principled three-stage training framework ensures stable optimization and expert diversity. Experiments on four public datasets show that HiLoMoE achieving better performance-efficiency tradeoff, achieving an average AUC improvement of 0.20\% in AUC and 18.5\% reduction in FLOPs compared to the non-MoE baseline.
comment: 13 pages, 9 figures
☆ ZeroGR: A Generalizable and Scalable Framework for Zero-Shot Generative Retrieval
Generative retrieval (GR) reformulates information retrieval (IR) by framing it as the generation of document identifiers (docids), thereby enabling an end-to-end optimization and seamless integration with generative language models (LMs). Despite notable progress under supervised training, GR still struggles to generalize to zero-shot IR scenarios, which are prevalent in real-world applications. To tackle this challenge, we propose \textsc{ZeroGR}, a zero-shot generative retrieval framework that leverages natural language instructions to extend GR across a wide range of IR tasks. Specifically, \textsc{ZeroGR} is composed of three key components: (i) an LM-based docid generator that unifies heterogeneous documents (e.g., text, tables, code) into semantically meaningful docids; (ii) an instruction-tuned query generator that generates diverse types of queries from natural language task descriptions to enhance corpus indexing; and (iii) a reverse annealing decoding strategy to balance precision and recall during docid generation. We investigate the impact of instruction fine-tuning scale and find that performance consistently improves as the number of IR tasks encountered during training increases. Empirical results on the BEIR and MAIR benchmarks demonstrate that \textsc{ZeroGR} outperforms strong dense retrieval and generative baselines in zero-shot settings, establishing a new state-of-the-art for instruction-driven GR.
♻ ☆ Retro*: Optimizing LLMs for Reasoning-Intensive Document Retrieval
With the growing popularity of LLM agents and RAG, it has become increasingly important to retrieve documents that are essential for solving a task, even when their connection to the task is indirect or implicit. Addressing this problem requires fine-grained reasoning to accurately assess the relevance between the task and each candidate document. This capability, however, poses a significant challenge for existing IR techniques. Despite recent progress in reasoning-enhanced IR, existing approaches still face significant challenges in applicability, scalability, and efficiency. In this work, we propose Retro*, a novel approach for reasoning-intensive document retrieval. Our method introduces a rubric-based relevance scoring mechanism, enabling the model to reason about the relationship between a task and a document based on explicitly defined criteria, whereby producing a fine-grained, interpretable relevance score. Retro* also supports test-time scaling by combining multiple reasoning trajectories via score integration, which produces more reliable relevance estimates. To optimize Retro*'s reasoning capabilities, we introduce a novel reinforcement learning algorithm tailored for its relevance scoring mechanism, which employs two composite rewards to fully exploit the trajectories of each training sample. Our experiments show that Retro* outperforms existing document retrieval methods with notable advantages, leading to state-of-the-art performance on the BRIGHT benchmark.
Multimedia
☆ JND-Guided Light-Weight Neural Pre-Filter for Perceptual Image Coding ISCA
Just Noticeable Distortion (JND)-guided pre-filter is a promising technique for improving the perceptual compression efficiency of image coding. However, existing methods are often computationally expensive, and the field lacks standardized benchmarks for fair comparison. To address these challenges, this paper introduces a twofold contribution. First, we develop and open-source FJNDF-Pytorch, a unified benchmark for frequency-domain JND-Guided pre-filters. Second, leveraging this platform, we propose a complete learning framework for a novel, lightweight Convolutional Neural Network (CNN). Experimental results demonstrate that our proposed method achieves state-of-the-art compression efficiency, consistently outperforming competitors across multiple datasets and encoders. In terms of computational cost, our model is exceptionally lightweight, requiring only 7.15 GFLOPs to process a 1080p image, which is merely 14.1% of the cost of recent lightweight network. Our work presents a robust, state-of-the-art solution that excels in both performance and efficiency, supported by a reproducible research platform. The open-source implementation is available at https://github.com/viplab-fudan/FJNDF-Pytorch.
comment: 5 pages, 4 figures. Submitted to the IEEE International Symposium on Circuits and Systems (ISCAS) 2026
☆ MCE: Towards a General Framework for Handling Missing Modalities under Imbalanced Missing Rates
Multi-modal learning has made significant advances across diverse pattern recognition applications. However, handling missing modalities, especially under imbalanced missing rates, remains a major challenge. This imbalance triggers a vicious cycle: modalities with higher missing rates receive fewer updates, leading to inconsistent learning progress and representational degradation that further diminishes their contribution. Existing methods typically focus on global dataset-level balancing, often overlooking critical sample-level variations in modality utility and the underlying issue of degraded feature quality. We propose Modality Capability Enhancement (MCE) to tackle these limitations. MCE includes two synergistic components: i) Learning Capability Enhancement (LCE), which introduces multi-level factors to dynamically balance modality-specific learning progress, and ii) Representation Capability Enhancement (RCE), which improves feature semantics and robustness through subset prediction and cross-modal completion tasks. Comprehensive evaluations on four multi-modal benchmarks show that MCE consistently outperforms state-of-the-art methods under various missing configurations. The journal preprint version is now available at https://doi.org/10.1016/j.patcog.2025.112591. Our code is available at https://github.com/byzhaoAI/MCE.
comment: This is the accepted version of an article that has been published in \textbf{Pattern Recognition}. The final published version will be available soon
☆ Towards Efficient 3D Gaussian Human Avatar Compression: A Prior-Guided Framework
This paper proposes an efficient 3D avatar coding framework that leverages compact human priors and canonical-to-target transformation to enable high-quality 3D human avatar video compression at ultra-low bit rates. The framework begins by training a canonical Gaussian avatar using articulated splatting in a network-free manner, which serves as the foundation for avatar appearance modeling. Simultaneously, a human-prior template is employed to capture temporal body movements through compact parametric representations. This decomposition of appearance and temporal evolution minimizes redundancy, enabling efficient compression: the canonical avatar is shared across the sequence, requiring compression only once, while the temporal parameters, consisting of just 94 parameters per frame, are transmitted with minimal bit-rate. For each frame, the target human avatar is generated by deforming canonical avatar via Linear Blend Skinning transformation, facilitating temporal coherent video reconstruction and novel view synthesis. Experimental results demonstrate that the proposed method significantly outperforms conventional 2D/3D codecs and existing learnable dynamic 3D Gaussian splatting compression method in terms of rate-distortion performance on mainstream multi-view human video datasets, paving the way for seamless immersive multimedia experiences in meta-verse applications.
comment: 10 pages, 4 figures
Information Retrieval
☆ ImCoref-CeS: An Improved Lightweight Pipeline for Coreference Resolution with LLM-based Checker-Splitter Refinement
Coreference Resolution (CR) is a critical task in Natural Language Processing (NLP). Current research faces a key dilemma: whether to further explore the potential of supervised neural methods based on small language models, whose detect-then-cluster pipeline still delivers top performance, or embrace the powerful capabilities of Large Language Models (LLMs). However, effectively combining their strengths remains underexplored. To this end, we propose \textbf{ImCoref-CeS}, a novel framework that integrates an enhanced supervised model with LLM-based reasoning. First, we present an improved CR method (\textbf{ImCoref}) to push the performance boundaries of the supervised neural method by introducing a lightweight bridging module to enhance long-text encoding capability, devising a biaffine scorer to comprehensively capture positional information, and invoking a hybrid mention regularization to improve training efficiency. Importantly, we employ an LLM acting as a multi-role Checker-Splitter agent to validate candidate mentions (filtering out invalid ones) and coreference results (splitting erroneous clusters) predicted by ImCoref. Extensive experiments demonstrate the effectiveness of ImCoref-CeS, which achieves superior performance compared to existing state-of-the-art (SOTA) methods.
☆ Text2Token: Unsupervised Text Representation Learning with Token Target Prediction
Unsupervised text representation learning (TRL) is a fundamental task in natural language processing, which is beneficial for improving search and recommendations with the web's unlabeled texts. A recent empirical study finds that the high-quality representation aligns with the key token of the input text, uncovering the potential connection between representation space and vocabulary space. Inspired by the findings, we revisit the generative tasks and develop an unsupervised generative framework for TRL, Text2Token. The framework is based on the token target prediction task, utilizing carefully constructed target token distribution as supervisory signals. To construct the high-quality target token distribution, we analyze the token-alignment properties with advanced embedders and identify two essential categories of key tokens: (1) the meaningful tokens in the text and (2) semantically derived tokens beyond the text. Based on these insights, we propose two methods -- data-driven and model-derived -- to construct synthetic token targets from data or the LLM backbone. Experiments on the MTEB v2 benchmark demonstrate that Text2Token achieves performance competitive with the state-of-the-art embedder with unsupervised contrastive learning, LLM2Vec. Our analysis further shows that vocabulary and representation spaces optimize together and toward the optimum solution during training, providing new ideas and insights for future work.
☆ Breaking the Likelihood Trap: Consistent Generative Recommendation with Graph-structured Model
Reranking, as the final stage of recommender systems, demands real-time inference, accuracy, and diversity. It plays a crucial role in determining the final exposure, directly influencing user experience. Recently, generative reranking has gained increasing attention for its strong ability to model complex dependencies among items. However, most existing methods suffer from the "likelihood trap", where high-likelihood sequences are often perceived as low-quality by humans. These models tend to repeatedly recommend a set of high-frequency items, resulting in list homogeneity, thereby limiting user engagement. In this work, we propose Consistent Graph-structured Generative Recommendation (Congrats), a novel generative reranking framework. To break the likelihood trap, we introduce a novel graph-structured decoder that can capture diverse sequences along multiple paths. This design not only expands the decoding space to promote diversity, but also improves prediction accuracy by implicit item dependencies derived from vertex transitions. Furthermore, we design a differentiable cascade system that incorporates an evaluator, enabling the model to learn directly from user preferences as the training objective. Extensive offline experiments validate the superior performance of Congrats over state-of-the-art reranking methods. Moreover, Congrats has been evaluated on a large-scale video-sharing app, Kuaishou, with over 300 million daily active users, demonstrating that our approach significantly improves both recommendation quality and diversity, validating our effectiveness in practical industrial environments.
☆ Integrating Structure-Aware Attention and Knowledge Graphs in Explainable Recommendation Systems
This paper designs and implements an explainable recommendation model that integrates knowledge graphs with structure-aware attention mechanisms. The model is built on graph neural networks and incorporates a multi-hop neighbor aggregation strategy. By integrating the structural information of knowledge graphs and dynamically assigning importance to different neighbors through an attention mechanism, the model enhances its ability to capture implicit preference relationships. In the proposed method, users and items are embedded into a unified graph structure. Multi-level semantic paths are constructed based on entities and relations in the knowledge graph to extract richer contextual information. During the rating prediction phase, recommendations are generated through the interaction between user and target item representations. The model is optimized using a binary cross-entropy loss function. Experiments conducted on the Amazon Books dataset validate the superior performance of the proposed model across various evaluation metrics. The model also shows good convergence and stability. These results further demonstrate the effectiveness and practicality of structure-aware attention mechanisms in knowledge graph-enhanced recommendation.
☆ CardRewriter: Leveraging Knowledge Cards for Long-Tail Query Rewriting on Short-Video Platforms
Short-video platforms have rapidly become a new generation of information retrieval systems, where users formulate queries to access desired videos. However, user queries, especially long-tail ones, often suffer from spelling errors, incomplete phrasing, and ambiguous intent, resulting in mismatches between user expectations and retrieved results. While large language models (LLMs) have shown success in long-tail query rewriting within e-commerce, they struggle on short-video platforms, where proprietary content such as short videos, live streams, micro dramas, and user social networks falls outside their training distribution. To address this challenge, we introduce \textbf{CardRewriter}, an LLM-based framework that incorporates domain-specific knowledge to enhance long-tail query rewriting. For each query, our method aggregates multi-source knowledge relevant to the query and summarizes it into an informative and query-relevant knowledge card. This card then guides the LLM to better capture user intent and produce more effective query rewrites. We optimize CardRewriter using a two-stage training pipeline: supervised fine-tuning followed by group relative policy optimization, with a tailored reward system balancing query relevance and retrieval effectiveness. Offline experiments show that CardRewriter substantially improves rewriting quality for queries targeting proprietary content. Online A/B testing further confirms significant gains in long-view rate (LVR) and click-through rate (CTR), along with a notable reduction in initiative query reformulation rate (IQRR). Since September 2025, CardRewriter has been deployed on Kuaishou, one of China's largest short-video platforms, serving hundreds of millions of users daily.
☆ Beyond the limitation of a single query: Train your LLM for query expansion with Reinforcement Learning
Reasoning-augmented search agents, such as Search-R1, are trained to reason, search, and generate the final answer iteratively. Nevertheless, due to their limited capabilities in reasoning and search, their performance on multi-hop QA benchmarks remains far from satisfactory. To handle complex or compound queries, we train an LLM-based search agent with the native capability of query expansion through reinforcement learning. In each turn, our search agent proposes several query variants, which are searched simultaneously to cover more relevant information. Meanwhile, given limited post-training data and computing resources, it is very challenging for a search agent to master multiple tasks, including query generation, retrieved information understanding, and answer generation. Therefore, we propose incorporating a pre-trained squeezer model that helps the search agent understand the retrieved documents, allowing the search agent to focus on query generation for high retrieval recall. With the assistance of the squeezer model, we discover that even a small-scale 3B LLM can demonstrate a strong capability of query expansion and achieve state-of-the-art accuracy on the multi-hop QA benchmarks. To be specific, our experiments across seven question-answering benchmarks demonstrate that our method, named ExpandSearch, achieves an average improvement of 4.4% compared to state-of-the-art baselines, with strong gains on multi-hop reasoning tasks requiring diverse evidence aggregation.
♻ ☆ SkewRoute: Training-Free LLM Routing for Knowledge Graph Retrieval-Augmented Generation via Score Skewness of Retrieved Context
Large language models excel at many tasks but often incur high inference costs during deployment. To mitigate hallucination, many systems use a knowledge graph to enhance retrieval-augmented generation (KG-RAG). However, the large amount of retrieved knowledge contexts increase these inference costs further. A promising solution to balance performance and cost is LLM routing, which directs simple queries to smaller LLMs and complex ones to larger LLMs. However, no dedicated routing methods currently exist for RAG, and existing training-based routers face challenges scaling to this domain due to the need for extensive training data. We observe that the score distributions produced by the retrieval scorer strongly correlate with query difficulty. Based on this, we propose an extremely simple yet effective routing framework, the first specifically designed for KG-RAG that efficiently balances performance and cost in a plug-and-play manner. It delivers over 3x higher routing effectiveness while reducing runtime to less than 0.001x compared to existing methods. Our code is available at https://github.com/hrwang00/SkewRoute.
♻ ☆ Doc2SAR: A Synergistic Framework for High-Fidelity Extraction of Structure-Activity Relationships from Scientific Documents
Extracting molecular structure-activity relationships (SARs) from scientific literature and patents is essential for drug discovery and materials research. However, this task remains challenging due to heterogeneous document formats and limitations of existing methods. Specifically, rule-based approaches relying on rigid templates fail to generalize across diverse document layouts, while general-purpose multimodal large language models (MLLMs) lack sufficient accuracy and reliability for specialized tasks, such as layout detection and optical chemical structure recognition (OCSR). To address these challenges, we introduce DocSAR-200, a rigorously annotated benchmark of 200 scientific documents designed specifically for evaluating SAR extraction methods. Additionally, we propose Doc2SAR, a novel synergistic framework that integrates domain-specific tools with MLLMs enhanced via supervised fine-tuning (SFT). Extensive experiments demonstrate that Doc2SAR achieves state-of-the-art performance across various document types, significantly outperforming leading end-to-end baselines. Specifically, Doc2SAR attains an overall Table Recall of 80.78% on DocSAR-200, exceeding end2end GPT-4o by 51.48%. Furthermore, Doc2SAR demonstrates practical usability through efficient inference and is accompanied by a web app.
♻ ☆ Audio Does Matter: Importance-Aware Multi-Granularity Fusion for Video Moment Retrieval ACM MM 2025
Video Moment Retrieval (VMR) aims to retrieve a specific moment semantically related to the given query. To tackle this task, most existing VMR methods solely focus on the visual and textual modalities while neglecting the complementary but important audio modality. Although a few recent works try to tackle the joint audio-vision-text reasoning, they treat all modalities equally and simply embed them without fine-grained interaction for moment retrieval. These designs are counter-practical as: Not all audios are helpful for video moment retrieval, and the audio of some videos may be complete noise or background sound that is meaningless to the moment determination. To this end, we propose a novel Importance-aware Multi-Granularity fusion model (IMG), which learns to dynamically and selectively aggregate the audio-vision-text contexts for VMR. Specifically, after integrating the textual guidance with vision and audio separately, we first design a pseudo-label-supervised audio importance predictor that predicts the importance score of the audio, and accordingly assigns weights to mitigate the interference caused by noisy audio. Then, we design a multi-granularity audio fusion module that adaptively fuses audio and visual modalities at local-, event-, and global-level, fully capturing their complementary contexts. We further propose a cross-modal knowledge distillation strategy to address the challenge of missing audio modality during inference. To evaluate our method, we further construct a new VMR dataset, i.e., Charades-AudioMatter, where audio-related samples are manually selected and re-organized from the original Charades-STA to validate the model's capability in utilizing audio modality. Extensive experiments validate the effectiveness of our method, achieving state-of-the-art with audio-video fusion in VMR methods. Our code is available at https://github.com/HuiGuanLab/IMG.
comment: Accepted to ACM MM 2025
♻ ☆ A Comprehensive Survey on Retrieval Methods in Recommender Systems
In an era dominated by information overload, effective recommender systems are essential for managing the deluge of data across digital platforms. Multi-stage cascade ranking systems are widely used in the industry, with retrieval and ranking being two typical stages. Retrieval methods sift through vast candidates to filter out irrelevant items, while ranking methods prioritize these candidates to present the most relevant items to users. Unlike studies focusing on the ranking stage, this survey explores the critical yet often overlooked retrieval stage of recommender systems. To achieve precise and efficient personalized retrieval, we summarize existing work in three key areas: improving similarity computation between user and item, enhancing indexing mechanisms for efficient retrieval, and optimizing training methods of retrieval. We also provide a comprehensive set of benchmarking experiments on three public datasets. Furthermore, we highlight current industrial applications through a case study on retrieval practices at a specific company, covering the entire retrieval process and online serving, along with practical implications and challenges. By detailing the retrieval stage, which is fundamental for effective recommendation, this survey aims to bridge the existing knowledge gap and serve as a cornerstone for researchers interested in optimizing this critical component of cascade recommender systems.
comment: 41 pages
♻ ☆ Reliable Decision Making via Calibration Oriented Retrieval Augmented Generation NeurIPS 2025
Recently, Large Language Models (LLMs) have been increasingly used to support various decision-making tasks, assisting humans in making informed decisions. However, when LLMs confidently provide incorrect information, it can lead humans to make suboptimal decisions. To prevent LLMs from generating incorrect information on topics they are unsure of and to improve the accuracy of generated content, prior works have proposed Retrieval Augmented Generation (RAG), where external documents are referenced to generate responses. However, previous RAG methods focus only on retrieving documents most relevant to the input query, without specifically aiming to ensure that the human user's decisions are well-calibrated. To address this limitation, we propose a novel retrieval method called Calibrated Retrieval-Augmented Generation (CalibRAG), which ensures that decisions informed by RAG are well-calibrated. Then we empirically validate that CalibRAG improves calibration performance as well as accuracy, compared to other baselines across various datasets.
comment: Accepted by NeurIPS 2025
♻ ☆ pEBR: A Probabilistic Approach to Embedding Based Retrieval
Embedding-based retrieval aims to learn a shared semantic representation space for both queries and items, enabling efficient and effective item retrieval through approximate nearest neighbor (ANN) algorithms. In current industrial practice, retrieval systems typically retrieve a fixed number of items for each query. However, this fixed-size retrieval often results in insufficient recall for head queries and low precision for tail queries. This limitation largely stems from the dominance of frequentist approaches in loss function design, which fail to address this challenge in industry. In this paper, we propose a novel \textbf{p}robabilistic \textbf{E}mbedding-\textbf{B}ased \textbf{R}etrieval (\textbf{pEBR}) framework. Our method models the item distribution conditioned on each query, enabling the use of a dynamic cosine similarity threshold derived from the cumulative distribution function (CDF) of the probabilistic model. Experimental results demonstrate that pEBR significantly improves both retrieval precision and recall. Furthermore, ablation studies reveal that the probabilistic formulation effectively captures the inherent differences between head-to-tail queries.
Multimedia
☆ Exploration of Embodied Space Experience through Umbilical Interaction: A Grounded Theory Approach
This paper critiques the limits of human-centered design in HCI, proposing a shift toward Interface-Centered Design. Drawing on Hookway's philosophy of interfaces, phenomenology, and embodied interaction, we created Umbilink, an umbilical interaction device simulating a uterine environment with tactile sensors and rhythmic feedback to induce a pre-subjectivized state of sensory reduction. Participants' experiences were captured through semi-structured interviews and analyzed with grounded theory. Our contributions are: (1) introducing the novel interface type of Umbilical Interaction; (2) demonstrating the cognitive value of materialized interfaces in a human-interface-environment relation; (3) highlighting the design role of wearing rituals as liminal experiences. As a pilot study, this design suggests imaginative applications in healing, meditation, and sleep, while offering a speculative tool for future interface research.
comment: 10 pages, 2 figures
☆ SyncLipMAE: Contrastive Masked Pretraining for Audio-Visual Talking-Face Representation
We introduce SyncLipMAE, a self-supervised pretraining framework for talking-face video that learns synchronization-aware and transferable facial dynamics from unlabeled audio-visual streams. Our approach couples masked visual modeling with cross-modal contrastive alignment and employs three per-frame prompt tokens that explicitly encode the essential factors of a talking-face frame - identity, vocal motion (speech-synchronized facial dynamics), and ambient motion (audio-agnostic movements such as blinks and head pose). The contrastive objective uses time-aligned vocal-motion and audio tokens as positives and misaligned pairs as negatives, driving both modalities into a shared embedding space and yielding token-level audio-visual stream synchronization. After pretraining, the aligned audio tokens together with the visual prompt tokens (identity, vocal motion, ambient motion) form a unified interface for four disparate downstream settings: (i) audio-visual stream synchronization; (ii) facial emotion and head/face action recognition; (iii) visual speech recognition; and (iv) visual dubbing, for which we enable indistinguishable audio- or video-driven control within a single model. Across four task families that require distinct capabilities, SyncLipMAE achieves state-of-the-art results, underscoring the effectiveness of synchronization-aware, factorized self-supervised pretraining.
♻ ☆ Audio Does Matter: Importance-Aware Multi-Granularity Fusion for Video Moment Retrieval ACM MM 2025
Video Moment Retrieval (VMR) aims to retrieve a specific moment semantically related to the given query. To tackle this task, most existing VMR methods solely focus on the visual and textual modalities while neglecting the complementary but important audio modality. Although a few recent works try to tackle the joint audio-vision-text reasoning, they treat all modalities equally and simply embed them without fine-grained interaction for moment retrieval. These designs are counter-practical as: Not all audios are helpful for video moment retrieval, and the audio of some videos may be complete noise or background sound that is meaningless to the moment determination. To this end, we propose a novel Importance-aware Multi-Granularity fusion model (IMG), which learns to dynamically and selectively aggregate the audio-vision-text contexts for VMR. Specifically, after integrating the textual guidance with vision and audio separately, we first design a pseudo-label-supervised audio importance predictor that predicts the importance score of the audio, and accordingly assigns weights to mitigate the interference caused by noisy audio. Then, we design a multi-granularity audio fusion module that adaptively fuses audio and visual modalities at local-, event-, and global-level, fully capturing their complementary contexts. We further propose a cross-modal knowledge distillation strategy to address the challenge of missing audio modality during inference. To evaluate our method, we further construct a new VMR dataset, i.e., Charades-AudioMatter, where audio-related samples are manually selected and re-organized from the original Charades-STA to validate the model's capability in utilizing audio modality. Extensive experiments validate the effectiveness of our method, achieving state-of-the-art with audio-video fusion in VMR methods. Our code is available at https://github.com/HuiGuanLab/IMG.
comment: Accepted to ACM MM 2025
♻ ☆ Benchmarking and Bridging Emotion Conflicts for Multimodal Emotion Reasoning
Despite their strong performance in multimodal emotion reasoning, existing Multimodal Large Language Models (MLLMs) often overlook the scenarios involving emotion conflicts, where emotional cues from different modalities are inconsistent. To fill this gap, we first introduce CA-MER, a new benchmark designed to examine MLLMs under realistic emotion conflicts. It consists of three subsets: video-aligned, audio-aligned, and consistent, where only one or all modalities reflect the true emotion. However, evaluations on our CA-MER reveal that current state-of-the-art emotion MLLMs systematically over-rely on audio signal during emotion conflicts, neglecting critical cues from visual modality. To mitigate this bias, we propose MoSEAR, a parameter-efficient framework that promotes balanced modality integration. MoSEAR consists of two modules: (1)MoSE, modality-specific experts with a regularized gating mechanism that reduces modality bias in the fine-tuning heads; and (2)AR, an attention reallocation mechanism that rebalances modality contributions in frozen backbones during inference. Our framework offers two key advantages: it mitigates emotion conflicts and improves performance on consistent samples-without incurring a trade-off between audio and visual modalities. Experiments on multiple benchmarks-including MER2023, EMER, DFEW, and our CA-MER-demonstrate that MoSEAR achieves state-of-the-art performance, particularly under modality conflict conditions.
comment: ACM Multimedia 2025 Oral Code: https://github.com/ZhiyuanHan-Aaron/MoSEAR Project Page: https://zhiyuanhan-aaron.github.io/MoSEAR-page/
Information Retrieval
☆ PairSem: LLM-Guided Pairwise Semantic Matching for Scientific Document Retrieval
Scientific document retrieval is a critical task for enabling knowledge discovery and supporting research across diverse domains. However, existing dense retrieval methods often struggle to capture fine-grained scientific concepts in texts due to their reliance on holistic embeddings and limited domain understanding. Recent approaches leverage large language models (LLMs) to extract fine-grained semantic entities and enhance semantic matching, but they typically treat entities as independent fragments, overlooking the multi-faceted nature of scientific concepts. To address this limitation, we propose Pairwise Semantic Matching (PairSem), a framework that represents relevant semantics as entity-aspect pairs, capturing complex, multi-faceted scientific concepts. PairSem is unsupervised, base retriever-agnostic, and plug-and-play, enabling precise and context-aware matching without requiring query-document labels or entity annotations. Extensive experiments on multiple datasets and retrievers demonstrate that PairSem significantly improves retrieval performance, highlighting the importance of modeling multi-aspect semantics in scientific information retrieval.
☆ MTMD: A Multi-Task Multi-Domain Framework for Unified Ad Lightweight Ranking at Pinterest KDD 2025
The lightweight ad ranking layer, living after the retrieval stage and before the fine ranker, plays a critical role in the success of a cascaded ad recommendation system. Due to the fact that there are multiple optimization tasks depending on the ad domain, e.g., Click Through Rate (CTR) for click ads and Conversion Rate (CVR) for conversion ads, as well as multiple surfaces where an ad is served (home feed, search, or related item recommendation) with diverse ad products (shopping or standard ad); it is an essentially challenging problem in industry on how to do joint holistic optimization in the lightweight ranker, such that the overall platform's value, advertiser's value, and user's value are maximized. Deep Neural Network (DNN)-based multitask learning (MTL) can handle multiple goals naturally, with each prediction head mapping to a particular optimization goal. However, in practice, it is unclear how to unify data from different surfaces and ad products into a single model. It is critical to learn domain-specialized knowledge and explicitly transfer knowledge between domains to make MTL effective. We present a Multi-Task Multi-Domain (MTMD) architecture under the classic Two-Tower paradigm, with the following key contributions: 1) handle different prediction tasks, ad products, and ad serving surfaces in a unified framework; 2) propose a novel mixture-of-expert architecture to learn both specialized knowledge each domain and common knowledge shared between domains; 3) propose a domain adaption module to encourage knowledge transfer between experts; 4) constrain the modeling of different prediction tasks. MTMD improves the offline loss value by 12% to 36%, mapping to 2% online reduction in cost per click. We have deployed this single MTMD framework into production for Pinterest ad recommendation replacing 9 production models.
comment: AdKDD 2025
☆ MRMR: A Realistic and Expert-Level Multidisciplinary Benchmark for Reasoning-Intensive Multimodal Retrieval
We introduce MRMR, the first expert-level multidisciplinary multimodal retrieval benchmark requiring intensive reasoning. MRMR contains 1,502 queries spanning 23 domains, with positive documents carefully verified by human experts. Compared to prior benchmarks, MRMR introduces three key advancements. First, it challenges retrieval systems across diverse areas of expertise, enabling fine-grained model comparison across domains. Second, queries are reasoning-intensive, with images requiring deeper interpretation such as diagnosing microscopic slides. We further introduce Contradiction Retrieval, a novel task requiring models to identify conflicting concepts. Finally, queries and documents are constructed as image-text interleaved sequences. Unlike earlier benchmarks restricted to single images or unimodal documents, MRMR offers a realistic setting with multi-image queries and mixed-modality corpus documents. We conduct an extensive evaluation of 4 categories of multimodal retrieval systems and 14 frontier models on MRMR. The text embedding model Qwen3-Embedding with LLM-generated image captions achieves the highest performance, highlighting substantial room for improving multimodal retrieval models. Although latest multimodal models such as Ops-MM-Embedding perform competitively on expert-domain queries, they fall short on reasoning-intensive tasks. We believe that MRMR paves the way for advancing multimodal retrieval in more realistic and challenging scenarios.
☆ Cross-attention Secretly Performs Orthogonal Alignment in Recommendation Models
Cross-domain sequential recommendation (CDSR) aims to align heterogeneous user behavior sequences collected from different domains. While cross-attention is widely used to enhance alignment and improve recommendation performance, its underlying mechanism is not fully understood. Most researchers interpret cross-attention as residual alignment, where the output is generated by removing redundant and preserving non-redundant information from the query input by referencing another domain data which is input key and value. Beyond the prevailing view, we introduce Orthogonal Alignment, a phenomenon in which cross-attention discovers novel information that is not present in the query input, and further argue that those two contrasting alignment mechanisms can co-exist in recommendation models We find that when the query input and output of cross-attention are orthogonal, model performance improves over 300 experiments. Notably, Orthogonal Alignment emerges naturally, without any explicit orthogonality constraints. Our key insight is that Orthogonal Alignment emerges naturally because it improves scaling law. We show that baselines additionally incorporating cross-attention module outperform parameter-matched baselines, achieving a superior accuracy-per-model parameter. We hope these findings offer new directions for parameter-efficient scaling in multi-modal research.
comment: 19 pages
☆ Hierarchical Semantic RL: Tackling the Problem of Dynamic Action Space for RL-based Recommendations
Recommender Systems (RS) are fundamental to modern online services. While most existing approaches optimize for short-term engagement, recent work has begun to explore reinforcement learning (RL) to model long-term user value. However, these efforts face significant challenges due to the vast, dynamic action spaces inherent in recommendation, which hinder stable policy learning. To resolve this bottleneck, we introduce Hierarchical Semantic RL (HSRL), which reframes RL-based recommendation over a fixed Semantic Action Space (SAS). HSRL encodes items as Semantic IDs (SIDs) for policy learning, and maps SIDs back to their original items via a fixed, invertible lookup during execution. To align decision-making with SID generation, the Hierarchical Policy Network (HPN) operates in a coarse-to-fine manner, employing hierarchical residual state modeling to refine each level's context from the previous level's residual, thereby stabilizing training and reducing representation-decision mismatch. In parallel, a Multi-level Critic (MLC) provides token-level value estimates, enabling fine-grained credit assignment. Across public benchmarks and a large-scale production dataset from a leading Chinese short-video advertising platform, HSRL consistently surpasses state-of-the-art baselines. In online deployment over a seven-day A/B testing, it delivers an 18.421% CVR lift with only a 1.251% increase in cost, supporting HSRL as a scalable paradigm for RL-based recommendation. Our code is released at https://github.com/MinmaoWang/HSRL.
☆ Controlled Personalization in Legacy Media Online Services: A Case Study in News Recommendation
Personalized news recommendations have become a standard feature of large news aggregation services, optimizing user engagement through automated content selection. In contrast, legacy news media often approach personalization cautiously, striving to balance technological innovation with core editorial values. As a result, online platforms of traditional news outlets typically combine editorially curated content with algorithmically selected articles - a strategy we term controlled personalization. In this industry paper, we evaluate the effectiveness of controlled personalization through an A/B test conducted on the website of a major Norwegian legacy news organization. Our findings indicate that even a modest level of personalization yields substantial benefits. Specifically, we observe that users exposed to personalized content demonstrate higher click-through rates and reduced navigation effort, suggesting improved discovery of relevant content. Moreover, our analysis reveals that controlled personalization contributes to greater content diversity and catalog coverage and in addition reduces popularity bias. Overall, our results suggest that controlled personalization can successfully align user needs with editorial goals, offering a viable path for legacy media to adopt personalization technologies while upholding journalistic values.
☆ Generative Data Augmentation in Graph Contrastive Learning for Recommendation
Recommendation systems have become indispensable in various online platforms, from e-commerce to streaming services. A fundamental challenge in this domain is learning effective embeddings from sparse user-item interactions. While contrastive learning has recently emerged as a promising solution to this issue, generating augmented views for contrastive learning through most existing random data augmentation methods often leads to the alteration of original semantic information. In this paper, we propose a novel framework, GDA4Rec (Generative Data Augmentation in graph contrastive learning for Recommendation) to generate high-quality augmented views and provide robust self-supervised signals. Specifically, we employ a noise generation module that leverages deep generative models to approximate the distribution of original data for data augmentation. Additionally, GDA4Rec further extracts an item complement matrix to characterize the latent correlations between items and provide additional self-supervised signals. Lastly, a joint objective that integrates recommendation, data augmentation and contrastive learning is used to enforce the model to learn more effective and informative embeddings. Extensive experiments are conducted on three public datasets to demonstrate the superiority of the model. The code is available at: https://github.com/MrYansong/GDA4Rec.
comment: The 34th ACM International Conference on Information and Knowledge Management
☆ Cost-Efficient Long Code Translation using LLMs while Leveraging Identifier Replacements
In the domain of software development, LLMs have been utilized to automate tasks such as code translation, where source code from one programming language is translated to another while preserving its functionality. However, LLMs often struggle with long source codes that don't fit into the context window, which produces inaccurate translations. To address this, we propose a novel zero-shot code translation method that incorporates identifier replacement. By substituting user-given long identifiers with generalized placeholders during translation, our method allows the LLM to focus on the logical structure of the code, by reducing token count and memory usage, which improves the efficiency and cost-effectiveness of long code translation. Our empirical results demonstrate that our approach preserves syntactical and hierarchical information and produces translation results with reduced tokens.
☆ Rethinking Reasoning in Document Ranking: Why Chain-of-Thought Falls Short
Document reranking is a key component in information retrieval (IR), aimed at refining initial retrieval results to improve ranking quality for downstream tasks. Recent studies--motivated by large reasoning models (LRMs)--have begun incorporating explicit chain-of-thought (CoT) reasoning into LLM-based rerankers. However, the effectiveness of such reasoning for ranking tasks remains underexplored. In this work, we present the first systematic study of reasoning in reranking across both pointwise and listwise settings, under both supervised fine-tuning and reinforcement learning. Using diverse benchmarks, including reasoning-intensive datasets (BRIGHT) and standard IR benchmarks (BEIR), we find that reasoning-augmented rerankers consistently underperform their direct counterparts that predict rankings without CoT, despite substantially higher inference costs. Our analysis reveals three core limitations: (i) in pointwise rerankers, reasoning breaks calibration and biases models toward the positive class, raising TPR but lowering TNR, which inflates false positives and degrades ranking in negative-dominant pools; (ii) in listwise rerankers, reasoning improves in-domain fit but increases variance and fails to generalize out-of-domain, even when reinforcement learning shortens rationales; and (iii) overall, directly fine-tuned rerankers remain more stable, effective, and robust. These findings challenge the assumption that explicit reasoning is universally beneficial for reranking. We conclude by highlighting future directions, including calibration-aware scoring for pointwise rerankers and the design of concise, targeted reasoning strategies to mitigate overfitting and overthinking in listwise rerankers.
☆ Hierarchical Scheduling for Multi-Vector Image Retrieval
To effectively leverage user-specific data, retrieval augmented generation (RAG) is employed in multimodal large language model (MLLM) applications. However, conventional retrieval approaches often suffer from limited retrieval accuracy. Recent advances in multi-vector retrieval (MVR) improve accuracy by decomposing queries and matching against segmented images. They still suffer from sub-optimal accuracy and efficiency, overlooking alignment between the query and varying image objects and redundant fine-grained image segments. In this work, we present an efficient scheduling framework for image retrieval - HiMIR. First, we introduce a novel hierarchical paradigm, employing multiple intermediate granularities for varying image objects to enhance alignment. Second, we minimize redundancy in retrieval by leveraging cross-hierarchy similarity consistency and hierarchy sparsity to minimize unnecessary matching computation. Furthermore, we configure parameters for each dataset automatically for practicality across diverse scenarios. Our empirical study shows that, HiMIR not only achieves substantial accuracy improvements but also reduces computation by up to 3.5 times over the existing MVR system.
comment: Under Review
☆ EcphoryRAG: Re-Imagining Knowledge-Graph RAG via Human Associative Memory
Cognitive neuroscience research indicates that humans leverage cues to activate entity-centered memory traces (engrams) for complex, multi-hop recollection. Inspired by this mechanism, we introduce EcphoryRAG, an entity-centric knowledge graph RAG framework. During indexing, EcphoryRAG extracts and stores only core entities with corresponding metadata, a lightweight approach that reduces token consumption by up to 94\% compared to other structured RAG systems. For retrieval, the system first extracts cue entities from queries, then performs a scalable multi-hop associative search across the knowledge graph. Crucially, EcphoryRAG dynamically infers implicit relations between entities to populate context, enabling deep reasoning without exhaustive pre-enumeration of relationships. Extensive evaluations on the 2WikiMultiHop, HotpotQA, and MuSiQue benchmarks demonstrate that EcphoryRAG sets a new state-of-the-art, improving the average Exact Match (EM) score from 0.392 to 0.474 over strong KG-RAG methods like HippoRAG. These results validate the efficacy of the entity-cue-multi-hop retrieval paradigm for complex question answering.
☆ Personalize Before Retrieve: LLM-based Personalized Query Expansion for User-Centric Retrieval
Retrieval-Augmented Generation (RAG) critically depends on effective query expansion to retrieve relevant information. However, existing expansion methods adopt uniform strategies that overlook user-specific semantics, ignoring individual expression styles, preferences, and historical context. In practice, identical queries in text can express vastly different intentions across users. This representational rigidity limits the ability of current RAG systems to generalize effectively in personalized settings. Specifically, we identify two core challenges for personalization: 1) user expression styles are inherently diverse, making it difficult for standard expansions to preserve personalized intent. 2) user corpora induce heterogeneous semantic structures-varying in topical focus and lexical organization-which hinders the effective anchoring of expanded queries within the user's corpora space. To address these challenges, we propose Personalize Before Retrieve (PBR), a framework that incorporates user-specific signals into query expansion prior to retrieval. PBR consists of two components: P-PRF, which generates stylistically aligned pseudo feedback using user history for simulating user expression style, and P-Anchor, which performs graph-based structure alignment over user corpora to capture its structure. Together, they produce personalized query representations tailored for retrieval. Experiments on two personalized benchmarks show that PBR consistently outperforms strong baselines, with up to 10% gains on PersonaBench across retrievers. Our findings demonstrate the value of modeling personalization before retrieval to close the semantic gap in user-adaptive RAG systems. Our code is available at https://github.com/Zhang-Yingyi/PBR-code.
☆ MATT-CTR: Unleashing a Model-Agnostic Test-Time Paradigm for CTR Prediction with Confidence-Guided Inference Paths
Recently, a growing body of research has focused on either optimizing CTR model architectures to better model feature interactions or refining training objectives to aid parameter learning, thereby achieving better predictive performance. However, previous efforts have primarily focused on the training phase, largely neglecting opportunities for optimization during the inference phase. Infrequently occurring feature combinations, in particular, can degrade prediction performance, leading to unreliable or low-confidence outputs. To unlock the predictive potential of trained CTR models, we propose a Model-Agnostic Test-Time paradigm (MATT), which leverages the confidence scores of feature combinations to guide the generation of multiple inference paths, thereby mitigating the influence of low-confidence features on the final prediction. Specifically, to quantify the confidence of feature combinations, we introduce a hierarchical probabilistic hashing method to estimate the occurrence frequencies of feature combinations at various orders, which serve as their corresponding confidence scores. Then, using the confidence scores as sampling probabilities, we generate multiple instance-specific inference paths through iterative sampling and subsequently aggregate the prediction scores from multiple paths to conduct robust predictions. Finally, extensive offline experiments and online A/B tests strongly validate the compatibility and effectiveness of MATT across existing CTR models.
comment: 10 pages, 4 figures, 2 tables
☆ Observation Matrix Design for Densifying MIMO Channel Estimation via 2D Ice Filling
In recent years, densifying multiple-input multiple-output (MIMO) has attracted much attention from the communication community. Thanks to the subwavelength antenna spacing, the strong correlations among densifying antennas provide sufficient prior knowledge about channel state information (CSI). This inspires the careful design of observation matrices (e.g., transmit precoders and receive combiners), that exploits the CSI prior knowledge, to boost channel estimation performance. Aligned with this vision, this work proposes to jointly design the combiners and precoders by maximizing the mutual information between the received pilots and densifying MIMO channels. A two-dimensional ice-filling (2DIF) algorithm is proposed to efficiently accomplish this objective. The algorithm is motivated by the fact that the eigenspace of MIMO channel covariance can be decoupled into two sub-eigenspaces, which are associated with the correlations of transmitter antennas and receiver antennas, respectively. By properly setting the precoder and the combiner as the eigenvectors from these two sub-eigenspaces, the 2DIF promises to generate near-optimal observation matrices. Moreover, we further extend the 2DIF method to the popular hybrid combining systems, where a two-stage 2DIF (TS-2DIF) algorithm is developed to handle the analog combining circuits realized by phase shifters. Simulation results demonstrate that, compared to the state-of-the-art schemes, the proposed 2DIF and TS-2DIF methods can achieve superior channel estimation accuracy.
comment: 17 pages, 8 figures
☆ FinAuditing: A Financial Taxonomy-Structured Multi-Document Benchmark for Evaluating LLMs
The complexity of the Generally Accepted Accounting Principles (GAAP) and the hierarchical structure of eXtensible Business Reporting Language (XBRL) filings make financial auditing increasingly difficult to automate and verify. While large language models (LLMs) have demonstrated strong capabilities in unstructured text understanding, their ability to reason over structured, interdependent, and taxonomy-driven financial documents remains largely unexplored. To fill this gap, we introduce FinAuditing, the first taxonomy-aligned, structure-aware, multi-document benchmark for evaluating LLMs on financial auditing tasks. Built from real US-GAAP-compliant XBRL filings, FinAuditing defines three complementary subtasks, FinSM for semantic consistency, FinRE for relational consistency, and FinMR for numerical consistency, each targeting a distinct aspect of structured auditing reasoning. We further propose a unified evaluation framework integrating retrieval, classification, and reasoning metrics across these subtasks. Extensive zero-shot experiments on 13 state-of-the-art LLMs reveal that current models perform inconsistently across semantic, relational, and mathematical dimensions, with accuracy drops of up to 60-90% when reasoning over hierarchical multi-document structures. Our findings expose the systematic limitations of modern LLMs in taxonomy-grounded financial reasoning and establish FinAuditing as a foundation for developing trustworthy, structure-aware, and regulation-aligned financial intelligence systems. The benchmark dataset is available at Hugging Face.
♻ ☆ Preference Discerning with LLM-Enhanced Generative Retrieval
In sequential recommendation, models recommend items based on user's interaction history. To this end, current models usually incorporate information such as item descriptions and user intent or preferences. User preferences are usually not explicitly given in open-source datasets, and thus need to be approximated, for example via large language models (LLMs). Current approaches leverage approximated user preferences only during training and rely solely on the past interaction history for recommendations, limiting their ability to dynamically adapt to changing preferences, potentially reinforcing echo chambers. To address this issue, we propose a new paradigm, namely preference discerning, which explicitly conditions a generative recommendation model on user preferences in natural language within its context. To evaluate preference discerning, we introduce a novel benchmark that provides a holistic evaluation across various scenarios, including preference steering and sentiment following. Upon evaluating current state-of-the-art methods on our benchmark, we discover that their ability to dynamically adapt to evolving user preferences is limited. To address this, we propose a new method named Mender ($\textbf{M}$ultimodal Prefer$\textbf{en}$ce $\textbf{D}$iscern$\textbf{er}$), which achieves state-of-the-art performance in our benchmark. Our results show that Mender effectively adapts its recommendation guided by human preferences, even if not observed during training, paving the way toward more flexible recommendation models.
comment: Accepted at TMLR, Code available at https://github.com/facebookresearch/preference_discerning
♻ ☆ From Entity Reliability to Clean Feedback: An Entity-Aware Denoising Framework Beyond Interaction-Level Signals
Implicit feedback is central to modern recommender systems but is inherently noisy, often impairing model training and degrading user experience. At scale, such noise can mislead learning processes, reducing both recommendation accuracy and platform value. Existing denoising strategies typically overlook the entity-specific nature of noise while introducing high computational costs and complex hyperparameter tuning. To address these challenges, we propose \textbf{EARD} (\textbf{E}ntity-\textbf{A}ware \textbf{R}eliability-\textbf{D}riven Denoising), a lightweight framework that shifts the focus from interaction-level signals to entity-level reliability. Motivated by the empirical observation that training loss correlates with noise, EARD quantifies user and item reliability via their average training losses as a proxy for reputation, and integrates these entity-level factors with interaction-level confidence. The framework is \textbf{model-agnostic}, \textbf{computationally efficient}, and requires \textbf{only two intuitive hyperparameters}. Extensive experiments across multiple datasets and backbone models demonstrate that EARD yields substantial improvements over state-of-the-art baselines (e.g., up to 27.01\% gain in NDCG@50), while incurring negligible additional computational cost. Comprehensive ablation studies and mechanism analyses further confirm EARD's robustness to hyperparameter choices and its practical scalability. These results highlight the importance of entity-aware reliability modeling for denoising implicit feedback and pave the way for more robust recommendation research.
♻ ☆ Understanding and Improving Information Preservation in Prompt Compression for LLMs EMNLP 2025
Recent advancements in large language models (LLMs) have enabled their successful application to a broad range of tasks. However, in information-intensive tasks, the prompt length can grow fast, leading to increased computational requirements, performance degradation, and induced biases from irrelevant or redundant information. Recently, various prompt compression techniques have been introduced to optimize the trade-off between reducing input length and retaining performance. We propose a holistic evaluation framework that allows for in-depth analysis of prompt compression methods. We focus on three key aspects, besides compression ratio: (i) downstream task performance, (ii) grounding in the input context, and (iii) information preservation. Using our framework, we analyze state-of-the-art soft and hard compression methods and show that some fail to preserve key details from the original prompt, limiting performance on complex tasks. By identifying these limitations, we are able to improve one soft prompting method by controlling compression granularity, achieving up to +23% in downstream performance, +8 BERTScore points in grounding, and 2.7x more entities preserved in compression. Ultimately, we find that the best effectiveness/compression rate trade-off is achieved with soft prompting combined with sequence-level training.The code is available at https://github.com/amazon-science/information-preservation-in-prompt-compression.
comment: Accepted to EMNLP 2025 (Findings), 22 pages, 6 figures, 24 tables
♻ ☆ SUMMA: A Multimodal Large Language Model for Advertisement Summarization
Understanding multimodal video ads is crucial for improving query-ad matching and relevance ranking on short video platforms, enhancing advertising effectiveness and user experience. However, the effective utilization of multimodal information with high commercial value still largely constrained by reliance on highly compressed video embeddings-has long been inadequate. To address this, we propose SUMMA (the abbreviation of Summarizing MultiModal Ads), a multimodal model that automatically processes video ads into summaries highlighting the content of highest commercial value, thus improving their comprehension and ranking in Douyin search-advertising systems. SUMMA is developed via a two-stage training strategy-multimodal supervised fine-tuning followed by reinforcement learning with a mixed reward mechanism-on domain-specific data containing video frames and ASR/OCR transcripts, generating commercially valuable and explainable summaries. We integrate SUMMA-generated summaries into our production pipeline, directly enhancing the candidate retrieval and relevance ranking stages in real search-advertising systems. Both offline and online experiments show substantial improvements over baselines, with online results indicating a statistically significant 1.5% increase in advertising revenue. Our work establishes a novel paradigm for condensing multimodal information into representative texts, effectively aligning visual ad content with user query intent in retrieval and recommendation scenarios.
♻ ☆ Chain-of-Retrieval Augmented Generation NeurIPS 2025
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer. Conventional RAG methods usually perform a single retrieval step before the generation process, which limits their effectiveness in addressing complex queries due to imperfect retrieval results. In contrast, our proposed method, CoRAG (Chain-of-Retrieval Augmented Generation), allows the model to dynamically reformulate the query based on the evolving state. To train CoRAG effectively, we utilize rejection sampling to automatically generate intermediate retrieval chains, thereby augmenting existing RAG datasets that only provide the correct final answer. At test time, we propose various decoding strategies to scale the model's test-time compute by controlling the length and number of sampled retrieval chains. Experimental results across multiple benchmarks validate the efficacy of CoRAG, particularly in multi-hop question answering tasks, where we observe more than 10 points improvement in EM score compared to strong baselines. On the KILT benchmark, CoRAG establishes a new state-of-the-art performance across a diverse range of knowledge-intensive tasks. Furthermore, we offer comprehensive analyses to understand the scaling behavior of CoRAG, laying the groundwork for future research aimed at developing factual and grounded foundation models.
comment: Accepted by NeurIPS 2025
♻ ☆ Diffusion Generative Recommendation with Continuous Tokens WWW 2026
Recent advances in generative artificial intelligence, particularly large language models (LLMs), have opened new opportunities for enhancing recommender systems (RecSys). Most existing LLM-based RecSys approaches operate in a discrete space, using vector-quantized tokenizers to align with the inherent discrete nature of language models. However, these quantization methods often result in lossy tokenization and suboptimal learning, primarily due to inaccurate gradient propagation caused by the non-differentiable argmin operation in standard vector quantization. Inspired by the emerging trend of embracing continuous tokens in language models, we propose ContRec, a novel framework that seamlessly integrates continuous tokens into LLM-based RecSys. Specifically, ContRec consists of two key modules: a sigma-VAE Tokenizer, which encodes users/items with continuous tokens; and a Dispersive Diffusion module, which captures implicit user preference. The tokenizer is trained with a continuous Variational Auto-Encoder (VAE) objective, where three effective techniques are adopted to avoid representation collapse. By conditioning on the previously generated tokens of the LLM backbone during user modeling, the Dispersive Diffusion module performs a conditional diffusion process with a novel Dispersive Loss, enabling high-quality user preference generation through next-token diffusion. Finally, ContRec leverages both the textual reasoning output from the LLM and the latent representations produced by the diffusion model for Top-K item retrieval, thereby delivering comprehensive recommendation results. Extensive experiments on four datasets demonstrate that \ourname{} consistently outperforms both traditional and SOTA LLM-based recommender systems. Our results highlight the potential of continuous tokenization and generative modeling for advancing the next generation of recommender systems.
comment: Submitted to WWW 2026. Our code and data will be made publicly available after acceptance
♻ ☆ Haystack Engineering: Context Engineering for Heterogeneous and Agentic Long-Context Evaluation
Modern long-context large language models (LLMs) perform well on synthetic "needle-in-a-haystack" (NIAH) benchmarks, but such tests overlook how noisy contexts arise from biased retrieval and agentic workflows. We argue that haystack engineering is necessary to construct noisy long contexts that faithfully capture key real-world factors -- distraction from heterogeneous biased retrievers and cascading errors in agentic workflows -- to test models' long-context robustness. We instantiate it through HaystackCraft, a new NIAH benchmark built on the full English Wikipedia hyperlink network with multi-hop questions. HaystackCraft evaluates how heterogeneous retrieval strategies (e.g., sparse, dense, hybrid, and graph-based) affect distractor composition, haystack ordering, and downstream LLM performance. HaystackCraft further extends NIAH to dynamic, LLM-dependent settings that simulate agentic operations, where models refine queries, reflect on their past reasonings, and decide when to stop. Experiments with 15 long-context models show that (1) while stronger dense retrievers can introduce more challenging distractors, graph-based reranking simultaneously improves retrieval effectiveness and mitigates more harmful distractors; (2) in agentic tests, even advanced models like Gemini 2.5 Pro and GPT-5 suffer cascading failures from self-generated distractors or struggle to perform early stops. These results highlight persistent challenges in agentic long-context reasoning and establish HaystackCraft as a valuable testbed for future progress.
comment: Code available at https://github.com/Graph-COM/HaystackCraft
♻ ☆ What Makes LLMs Effective Sequential Recommenders? A Study on Preference Intensity and Temporal Context
Sequential recommendation systems aspire to profile users by interpreting their interaction histories, echoing how humans make decisions by weighing experience, relative preference strength, and situational relevance. Yet, existing large language model (LLM)-based recommenders often fall short of mimicking the flexible, context-aware decision strategies humans exhibit, neglecting the structured, dynamic, and context-aware mechanisms fundamental to human behaviors. To bridge this gap, we propose RecPO, a preference optimization framework that models structured feedback and contextual delay to emulate human-like prioritization in sequential recommendation. RecPO exploits adaptive reward margins based on inferred preference hierarchies and temporal signals, enabling the model to favor immediately relevant items and to distinguish between varying degrees of preference and aversion. Extensive experiments across five real-world datasets demonstrate that RecPO not only yields performance gains over state-of-the-art baselines, but also mirrors key characteristics of human decision-making: favoring timely satisfaction, maintaining coherent preferences, and exercising discernment under shifting contexts.
Multimedia
☆ Zero-shot image privacy classification with Vision-Language Models ICASSP 2026
While specialized learning-based models have historically dominated image privacy prediction, the current literature increasingly favours adopting large Vision-Language Models (VLMs) designed for generic tasks. This trend risks overlooking the performance ceiling set by purpose-built models due to a lack of systematic evaluation. To address this problem, we establish a zero-shot benchmark for image privacy classification, enabling a fair comparison. We evaluate the top-3 open-source VLMs, according to a privacy benchmark, using task-aligned prompts and we contrast their performance, efficiency, and robustness against established vision-only and multi-modal methods. Counter-intuitively, our results show that VLMs, despite their resource-intensive nature in terms of high parameter count and slower inference, currently lag behind specialized, smaller models in privacy prediction accuracy. We also find that VLMs exhibit higher robustness to image perturbations.
comment: 5 pages, 3 figures, 3 tables. This work has been submitted to the ICASSP 2026
♻ ☆ Iola Walker: A Mobile Footfall Detection System for Music Composition
This outing is part of a larger music technology research project. The objective is to find a method for materially enhancing music using hardware and software. There is a strong likelihood that there exists a new medium for experiencing music via a wearable device that ordinary listeners prefer over the current state of the art. If such a medium is discovered, it is a step towards altruistic, prosocial reform in the music industry. A new playback system infrastructure has a chance to soothe some of the societal problems tied to the larger entertainment industry ecosystem. Iola walker is a music playback system that allows musicians to compose music that changes in accordance with the listener's gait. Artifacts are available here: https://github.com/willbjames/iolawalker
♻ ☆ AniME: Adaptive Multi-Agent Planning for Long Animation Generation
We present AniME, a director-oriented multi-agent system for automated long-form anime production, covering the full workflow from a story to the final video. The director agent keeps a global memory for the whole workflow, and coordinates several downstream specialized agents. By integrating customized Model Context Protocol (MCP) with downstream model instruction, the specialized agent adaptively selects control conditions for diverse sub-tasks. AniME produces cinematic animation with consistent characters and synchronized audio visual elements, offering a scalable solution for AI-driven anime creation.
comment: 2 pages, Technical Report
Information Retrieval
☆ Agent Learning via Early Experience
A long-term goal of language agents is to learn and improve through their own experience, ultimately outperforming humans in complex, real-world tasks. However, training agents from experience data with reinforcement learning remains difficult in many environments, which either lack verifiable rewards (e.g., websites) or require inefficient long-horizon rollouts (e.g., multi-turn tool use). As a result, most current agents rely on supervised fine-tuning on expert data, which is challenging to scale and generalizes poorly. This limitation stems from the nature of expert demonstrations: they capture only a narrow range of scenarios and expose the agent to limited environment diversity. We address this limitation with a middle-ground paradigm we call early experience: interaction data generated by the agent's own actions, where the resulting future states serve as supervision without reward signals. Within this paradigm we study two strategies of using such data: (1) Implicit world modeling, which uses collected states to ground the policy in environment dynamics; and (2) Self-reflection, where the agent learns from its suboptimal actions to improve reasoning and decision-making. We evaluate across eight diverse environments and multiple model families. Our approaches consistently improve effectiveness and out-of-domain generalization, highlighting the value of early experience. Moreover, in environments with verifiable rewards, our results provide promising signals that early experience offers a strong foundation for subsequent reinforcement learning, positioning it as a practical bridge between imitation learning and fully experience-driven agents.
comment: Work in progress
☆ Detecting Legend Items on Historical Maps Using GPT-4o with In-Context Learning
Historical map legends are critical for interpreting cartographic symbols. However, their inconsistent layouts and unstructured formats make automatic extraction challenging. Prior work focuses primarily on segmentation or general optical character recognition (OCR), with few methods effectively matching legend symbols to their corresponding descriptions in a structured manner. We present a method that combines LayoutLMv3 for layout detection with GPT-4o using in-context learning to detect and link legend items and their descriptions via bounding box predictions. Our experiments show that GPT-4 with structured JSON prompts outperforms the baseline, achieving 88% F-1 and 85% IoU, and reveal how prompt design, example counts, and layout alignment affect performance. This approach supports scalable, layout-aware legend parsing and improves the indexing and searchability of historical maps across various visual styles.
☆ Mobile Gamer Lifetime Value Prediction via Objective Decomposition and Reconstruction
For Internet platforms operating real-time bidding (RTB) advertising service, a comprehensive understanding of user lifetime value (LTV) plays a pivotal role in optimizing advertisement allocation efficiency and maximizing the return on investment (ROI) for advertisement sponsors, thereby facilitating growth of commercialization revenue for the platform. However, the inherent complexity of user LTV distributions induces significant challenges in accurate LTV prediction. Existing state-of-the-art works, which primarily focus on directly learning the LTV distributions through well-designed loss functions, achieve limited success due to their vulnerability to outliers. In this paper, we proposed a novel LTV prediction method to address distribution challenges through an objective decomposition and reconstruction framework. Briefly speaking, based on the in-app purchase characteristics of mobile gamers, our model was designed to first predict the number of transactions at specific prices and then calculate the total payment amount from these intermediate predictions. Our proposed model was evaluated through experiments on real-world industrial dataset, and deployed on the TapTap RTB advertising system for online A/B testing along with the state-of-the-art ZILN model.
comment: 6 pages, 6 figures
☆ ReasonEmbed: Enhanced Text Embeddings for Reasoning-Intensive Document Retrieval
In this paper, we introduce ReasonEmbed, a novel text embedding model developed for reasoning-intensive document retrieval. Our work includes three key technical contributions. First, we propose ReMixer, a new data synthesis method that overcomes the triviality problem prevalent in previous synthetic datasets, enabling large-scale production of 82K high-quality training samples. Second, we design Redapter, a self-adaptive learning algorithm that dynamically adjusts training each sample's weight based on its reasoning intensity. This allows the model to effectively capture the complex semantic relationships between queries and documents. Third, we implement ReasonEmbed across multiple backbones of varying sizes, all of which achieve superior performance on reasoning-intensive retrieval tasks. Notably, our ReasonEmbed-Qwen3-8B model offers a record-high nDCG@10 score of 38.1 on the BRIGHT benchmark, which significantly outperforms existing text embedding models. We will fully open-source our created resources in ReasonEmbed to push forward the research advancement in this field.
comment: 17 pages, 3 figures
☆ VersionRAG: Version-Aware Retrieval-Augmented Generation for Evolving Documents
Retrieval-Augmented Generation (RAG) systems fail when documents evolve through versioning-a ubiquitous characteristic of technical documentation. Existing approaches achieve only 58-64% accuracy on version-sensitive questions, retrieving semantically similar content without temporal validity checks. We present VersionRAG, a version-aware RAG framework that explicitly models document evolution through a hierarchical graph structure capturing version sequences, content boundaries, and changes between document states. During retrieval, VersionRAG routes queries through specialized paths based on intent classification, enabling precise version-aware filtering and change tracking. On our VersionQA benchmark-100 manually curated questions across 34 versioned technical documents-VersionRAG achieves 90% accuracy, outperforming naive RAG (58%) and GraphRAG (64%). VersionRAG reaches 60% accuracy on implicit change detection where baselines fail (0-10%), demonstrating its ability to track undocumented modifications. Additionally, VersionRAG requires 97% fewer tokens during indexing than GraphRAG, making it practical for large-scale deployment. Our work establishes versioned document QA as a distinct task and provides both a solution and benchmark for future research.
☆ TaoSR-AGRL: Adaptive Guided Reinforcement Learning Framework for E-commerce Search Relevance
Query-product relevance prediction is fundamental to e-commerce search and has become even more critical in the era of AI-powered shopping, where semantic understanding and complex reasoning directly shape the user experience and business conversion. Large Language Models (LLMs) enable generative, reasoning-based approaches, typically aligned via supervised fine-tuning (SFT) or preference optimization methods like Direct Preference Optimization (DPO). However, the increasing complexity of business rules and user queries exposes the inability of existing methods to endow models with robust reasoning capacity for long-tail and challenging cases. Efforts to address this via reinforcement learning strategies like Group Relative Policy Optimization (GRPO) often suffer from sparse terminal rewards, offering insufficient guidance for multi-step reasoning and slowing convergence. To address these challenges, we propose TaoSR-AGRL, an Adaptive Guided Reinforcement Learning framework for LLM-based relevance prediction in Taobao Search Relevance. TaoSR-AGRL introduces two key innovations: (1) Rule-aware Reward Shaping, which decomposes the final relevance judgment into dense, structured rewards aligned with domain-specific relevance criteria; and (2) Adaptive Guided Replay, which identifies low-accuracy rollouts during training and injects targeted ground-truth guidance to steer the policy away from stagnant, rule-violating reasoning patterns toward compliant trajectories. TaoSR-AGRL was evaluated on large-scale real-world datasets and through online side-by-side human evaluations on Taobao Search. It consistently outperforms DPO and standard GRPO baselines in offline experiments, improving relevance accuracy, rule adherence, and training stability. The model trained with TaoSR-AGRL has been successfully deployed in the main search scenario on Taobao, serving hundreds of millions of users.
☆ Generation and annotation of item usage scenarios in e-commerce using large language models
Complementary recommendations suggest combinations of useful items that play important roles in e-commerce. However, complementary relationships are often subjective and vary among individuals, making them difficult to infer from historical data. Unlike conventional history-based methods that rely on statistical co-occurrence, we focus on the underlying usage context that motivates item combinations. We hypothesized that people select complementary items by imagining specific usage scenarios and identifying the needs in such situations. Based on this idea, we explored the use of large language models (LLMs) to generate item usage scenarios as a starting point for constructing complementary recommendation systems. First, we evaluated the plausibility of LLM-generated scenarios through manual annotation. The results demonstrated that approximately 85% of the generated scenarios were determined to be plausible, suggesting that LLMs can effectively generate realistic item usage scenarios.
☆ Stop DDoS Attacking the Research Community with AI-Generated Survey Papers NeurIPS 2025
Survey papers are foundational to the scholarly progress of research communities, offering structured overviews that guide both novices and experts across disciplines. However, the recent surge of AI-generated surveys, especially enabled by large language models (LLMs), has transformed this traditionally labor-intensive genre into a low-effort, high-volume output. While such automation lowers entry barriers, it also introduces a critical threat: the phenomenon we term the "survey paper DDoS attack" to the research community. This refers to the unchecked proliferation of superficially comprehensive but often redundant, low-quality, or even hallucinated survey manuscripts, which floods preprint platforms, overwhelms researchers, and erodes trust in the scientific record. In this position paper, we argue that we must stop uploading massive amounts of AI-generated survey papers (i.e., survey paper DDoS attack) to the research community, by instituting strong norms for AI-assisted review writing. We call for restoring expert oversight and transparency in AI usage and, moreover, developing new infrastructures such as Dynamic Live Surveys, community-maintained, version-controlled repositories that blend automated updates with human curation. Through quantitative trend analysis, quality audits, and cultural impact discussion, we show that safeguarding the integrity of surveys is no longer optional but imperative to the research community.
comment: Accepted by NeurIPS 2025 (Position Track)
☆ HySim-LLM: Embedding-Weighted Fine-Tuning Bounds and Manifold Denoising for Domain-Adapted LLMs
The extraction and standardization of pharmacokinetic (PK) information from scientific literature remain significant challenges in computational pharmacology, which limits the reliability of data-driven models in drug development. Large language models (LLMs) have achieved remarkable progress in text understanding and reasoning, yet their adaptation to structured biomedical data, such as PK tables, remains constrained by heterogeneity, noise, and domain shift. To address these limitations, we propose HySim-LLM, a unified mathematical and computational framework that integrates embedding-weighted fine-tuning and manifold-aware denoising to enhance the robustness and interpretability of LLMs. We establish two theoretical results: (1) a similarity-weighted generalization bound that quantifies adaptation performance under embedding divergence, and (2) a manifold-based denoising guarantee that bounds loss contributions from noisy or off-manifold samples. These theorems provide a principled foundation for fine-tuning LLMs in structured biomedical settings. The framework offers a mathematically grounded pathway toward reliable and interpretable LLM adaptation for biomedical and data-intensive scientific domains.
☆ PLUM: Adapting Pre-trained Language Models for Industrial-scale Generative Recommendations
Large Language Models (LLMs) pose a new paradigm of modeling and computation for information tasks. Recommendation systems are a critical application domain poised to benefit significantly from the sequence modeling capabilities and world knowledge inherent in these large models. In this paper, we introduce PLUM, a framework designed to adapt pre-trained LLMs for industry-scale recommendation tasks. PLUM consists of item tokenization using Semantic IDs, continued pre-training (CPT) on domain-specific data, and task-specific fine-tuning for recommendation objectives. For fine-tuning, we focus particularly on generative retrieval, where the model is directly trained to generate Semantic IDs of recommended items based on user context. We conduct comprehensive experiments on large-scale internal video recommendation datasets. Our results demonstrate that PLUM achieves substantial improvements for retrieval compared to a heavily-optimized production model built with large embedding tables. We also present a scaling study for the model's retrieval performance, our learnings about CPT, a few enhancements to Semantic IDs, along with an overview of the training and inference methods that enable launching this framework to billions of users in YouTube.
comment: 11 pages, 6 figures
☆ Who Stole Your Data? A Method for Detecting Unauthorized RAG Theft
Retrieval-augmented generation (RAG) enhances Large Language Models (LLMs) by mitigating hallucinations and outdated information issues, yet simultaneously facilitates unauthorized data appropriation at scale. This paper addresses this challenge through two key contributions. First, we introduce RPD, a novel dataset specifically designed for RAG plagiarism detection that encompasses diverse professional domains and writing styles, overcoming limitations in existing resources. Second, we develop a dual-layered watermarking system that embeds protection at both semantic and lexical levels, complemented by an interrogator-detective framework that employs statistical hypothesis testing on accumulated evidence. Extensive experimentation demonstrates our approach's effectiveness across varying query volumes, defense prompts, and retrieval parameters, while maintaining resilience against adversarial evasion techniques. This work establishes a foundational framework for intellectual property protection in retrieval-augmented AI systems.
☆ Queries Are Not Alone: Clustering Text Embeddings for Video Search SIGIR
The rapid proliferation of video content across various platforms has highlighted the urgent need for advanced video retrieval systems. Traditional methods, which primarily depend on directly matching textual queries with video metadata, often fail to bridge the semantic gap between text descriptions and the multifaceted nature of video content. This paper introduces a novel framework, the Video-Text Cluster (VTC), which enhances video retrieval by clustering text queries to capture a broader semantic scope. We propose a unique clustering mechanism that groups related queries, enabling our system to consider multiple interpretations and nuances of each query. This clustering is further refined by our innovative Sweeper module, which identifies and mitigates noise within these clusters. Additionally, we introduce the Video-Text Cluster-Attention (VTC-Att) mechanism, which dynamically adjusts focus within the clusters based on the video content, ensuring that the retrieval process emphasizes the most relevant textual features. Further experiments have demonstrated that our proposed model surpasses existing state-of-the-art models on five public datasets.
comment: Accepted by International ACM SIGIR Conference on Research and Development in Information Retrieval 2025
☆ ISMIE: A Framework to Characterize Information Seeking in Modern Information Environments SIGIR
The modern information environment (MIE) is increasingly complex, shaped by a wide range of techniques designed to satisfy users' information needs. Information seeking (IS) models are effective mechanisms for characterizing user-system interactions. However, conceptualizing a model that fully captures the MIE landscape poses a challenge. We argue: Does such a model exist? To address this, we propose the Information Seeking in Modern Information Environments (ISMIE) framework as a fundamental step. ISMIE conceptualizes the information seeking process (ISP) via three key concepts: Components (e.g., Information Seeker), Intervening Variables (e.g., Interactive Variables), and Activities (e.g., Acquiring). Using ISMIE's concepts and employing a case study based on a common scenario - misinformation dissemination - we analyze six existing IS and information retrieval (IR) models to illustrate their limitations and the necessity of ISMIE. We then show how ISMIE serves as an actionable framework for both characterization and experimental design. We characterize three pressing issues and then outline two research blueprints: a user-centric, industry-driven experimental design for the authenticity and trust crisis to AI-generated content and a system-oriented, academic-driven design for tackling dopamine-driven content consumption. Our framework offers a foundation for developing IS and IR models to advance knowledge on understanding human interactions and system design in MIEs.
comment: This paper has been accepted to SIGIR-AP 2025
♻ ☆ Preprint: Poster: Did I Just Browse A Website Written by LLMs?
Increasingly, web content is automatically generated by large language models (LLMs) with little human input. We call this "LLM-dominant" content. Since LLMs plagiarize and hallucinate, LLM-dominant content can be unreliable and unethical. Yet, websites rarely disclose such content, and human readers struggle to distinguish it. Thus, we must develop reliable detectors for LLM-dominant content. However, state-of-the-art LLM detectors are inaccurate on web content, because web content has low positive rates, complex markup, and diverse genres, instead of clean, prose-like benchmark data SoTA detectors are optimized for. We propose a highly reliable, scalable pipeline that classifies entire websites. Instead of naively classifying text extracted from each page, we classify each site based on an LLM text detector's outputs of multiple prose-like pages to boost accuracies. We train and evaluate our detector by collecting 2 distinct ground truth datasets totaling 120 sites, and obtain 100% accuracies testing across them. In the wild, we detect a sizable portion of sites as LLM-dominant among 10k sites in search engine results and 10k in Common Crawl archives. We find LLM-dominant sites are growing in prevalence and rank highly in search results, raising questions about their impact on end users and the overall Web ecosystem.
comment: ACM Internet Measurement Conference 2025 Poster & ACM IMC 2025 Student Workshop. 2 pages. 3 figures
♻ ☆ Contrastive Learning Augmented Social Recommendations
Recommender systems are essential for modern content platforms, yet traditional behavior-based models often struggle with cold users who have limited interaction data. Engaging these users is crucial for platform growth. To bridge this gap, we propose leveraging the social-relation graph to enrich interest representations from behavior-based models. However, extracting value from social graphs is challenging due to relation noise and cross-domain inconsistency. To address the noise propagation and obtain accurate social interest, we employ a dual-view denoising strategy, employing low-rank SVD to the user-item interaction matrix for a denoised social graph and contrastive learning to align the original and reconstructed social graphs. Addressing the interest inconsistency between social and behavioral interests, we adopt a "mutual distillation" technique to isolate the original interests into aligned social/behavior interests and social/behavior specific interests, maximizing the utility of both. Experimental results on widely adopted industry datasets verify the method's effectiveness, particularly for cold users, offering a fresh perspective for future research. The implementation can be accessed at https://github.com/WANGLin0126/CLSRec.
♻ ☆ SelfRACG: Enabling LLMs to Self-Express and Retrieve for Code Generation
Existing retrieval-augmented code generation (RACG) methods typically use an external retrieval module to fetch semantically similar code snippets used for generating subsequent fragments. However, even for consecutive code fragments, the content often diverges due to logical progression, resulting in a content gap. This gap undermines the performance of current RACG methods, as \textit{external} retrieval modules based on content matching fail to infer the specific information need of LLMs to generate the next code fragment. Therefore, we propose \textbf{SelfRACG}, a novel paradigm that enables large language models (LLMs) to \textbf{Self}-express their information needs to enhance \textbf{RACG}. Specifically, SelfRACG includes an information need expression module and a two-stage information need-guided training strategy, which encourages LLMs to express their information need. Extensive experiments demonstrate that SelfRACG can retrieve external knowledge that better aligns with the LLM's own information needs, resulting in superior generation performance compared to vanilla RACG.
comment: Tsinghua&Xiaohongshu
♻ ☆ SustainableQA: A Comprehensive Question Answering Dataset for Corporate Sustainability and EU Taxonomy Reporting
The growing demand for corporate sustainability transparency, particularly under new regulations like the EU Taxonomy, necessitates precise data extraction from large, unstructured corporate reports, a task for which Large Language Models and Retrieval-RAG systems require high-quality, domain-specific question-answering datasets. To address this, we introduce SustainableQA, a novel dataset and a scalable pipeline that generates comprehensive QA pairs from corporate sustainability and annual reports by integrating semantic chunk classification, a hybrid span extraction pipeline, and a specialized table-to-paragraph transformation. To ensure high quality, the generation is followed by a novel automated assessment and refinement pipeline that systematically validates each QA pair for faithfulness and relevance, repairing or discarding low-quality entries. This results in a final, robust dataset of over 195,000 diverse factoid and non-factoid QA pairs, whose effectiveness is demonstrated by initial fine-tuning experiments where a compact 8B parameter model significantly outperforms much larger state-of-the-art models. SustainableQA proves to be a highly effective resource for developing and benchmarking advanced knowledge assistants capable of navigating complex sustainability compliance data.
♻ ☆ Distilling a Small Utility-Based Passage Selector to Enhance Retrieval-Augmented Generation SIGIR
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating retrieved information. Standard retrieval process prioritized relevance, focusing on topical alignment between queries and passages. In contrast, in RAG, the emphasis has shifted to utility, which considers the usefulness of passages for generating accurate answers. Despite empirical evidence showing the benefits of utility-based retrieval in RAG, the high computational cost of using LLMs for utility judgments limits the number of passages evaluated. This restriction is problematic for complex queries requiring extensive information. To address this, we propose a method to distill the utility judgment capabilities of LLMs into smaller, more efficient models. Our approach focuses on utility-based selection rather than ranking, enabling dynamic passage selection tailored to specific queries without the need for fixed thresholds. We train student models to learn pseudo-answer generation and utility judgments from teacher LLMs, using a sliding window method that dynamically selects useful passages. Our experiments demonstrate that utility-based selection provides a flexible and cost-effective solution for RAG, significantly reducing computational costs while improving answer quality. We present the distillation results using Qwen3-32B as the teacher model for both relevance ranking and utility-based selection, distilled into RankQwen1.7B and UtilityQwen1.7B. Our findings indicate that for complex questions, utility-based selection is more effective than relevance ranking in enhancing answer generation performance. We will release the relevance ranking and utility-based selection annotations for the MS MARCO dataset, supporting further research in this area.
comment: Accepted by SIGIR-AP25
♻ ☆ Training LLMs to be Better Text Embedders through Bidirectional Reconstruction EMNLP 2025
Large language models (LLMs) have increasingly been explored as powerful text embedders. Existing LLM-based text embedding approaches often leverage the embedding of the final token, typically a reserved special token such as [EOS]. However, these tokens have not been intentionally trained to capture the semantics of the whole context, limiting their capacity as text embeddings, especially for retrieval and re-ranking tasks. We propose to add a new training stage before contrastive learning to enrich the semantics of the final token embedding. This stage employs bidirectional generative reconstruction tasks, namely EBQ2D (Embedding-Based Query-to-Document) and EBD2Q (Embedding-Based Document-to-Query), which interleave to anchor the [EOS] embedding and reconstruct either side of Query-Document pairs. Experimental results demonstrate that our additional training stage significantly improves LLM performance on the Massive Text Embedding Benchmark (MTEB), achieving new state-of-the-art results across different LLM base models and scales.
comment: accepted by EMNLP 2025 Main Conference
♻ ☆ Reasoning-enhanced Query Understanding through Decomposition and Interpretation
Accurate inference of user intent is crucial for enhancing document retrieval in modern search engines. While large language models (LLMs) have made significant strides in this area, their effectiveness has predominantly been assessed with short, keyword-based queries. As AI-driven search evolves, long-form queries with intricate intents are becoming more prevalent, yet they remain underexplored in the context of LLM-based query understanding (QU). To bridge this gap, we introduce ReDI: a Reasoning-enhanced approach for query understanding through Decomposition and Interpretation. ReDI leverages the reasoning and comprehension capabilities of LLMs in a three-stage pipeline: (i) it breaks down complex queries into targeted sub-queries to accurately capture user intent; (ii) it enriches each sub-query with detailed semantic interpretations to improve the query-document matching; and (iii) it independently retrieves documents for each sub-query and employs a fusion strategy to aggregate the results for the final ranking. We compiled a large-scale dataset of real-world complex queries from a major search engine and distilled the query understanding capabilities of teacher models into smaller models for practical application. Experiments on BRIGHT and BEIR demonstrate that ReDI consistently surpasses strong baselines in both sparse and dense retrieval paradigms, affirming its effectiveness. We release our code at https://anonymous.4open.science/r/ReDI-6FC7/.
♻ ☆ Utility-Focused LLM Annotation for Retrieval and Retrieval-Augmented Generation EMNLP25
This paper explores the use of large language models (LLMs) for annotating document utility in training retrieval and retrieval-augmented generation (RAG) systems, aiming to reduce dependence on costly human annotations. We address the gap between retrieval relevance and generative utility by employing LLMs to annotate document utility. To effectively utilize multiple positive samples per query, we introduce a novel loss that maximizes their summed marginal likelihood. Using the Qwen-2.5-32B model, we annotate utility on the MS MARCO dataset and conduct retrieval experiments on MS MARCO and BEIR, as well as RAG experiments on MS MARCO QA, NQ, and HotpotQA. Our results show that LLM-generated annotations enhance out-of-domain retrieval performance and improve RAG outcomes compared to models trained solely on human annotations or downstream QA metrics. Furthermore, combining LLM annotations with just 20% of human labels achieves performance comparable to using full human annotations. Our study offers a comprehensive approach to utilizing LLM annotations for initializing QA systems on new corpora.
comment: Accepted by the EMNLP25 main conference
♻ ☆ Multi-Source Knowledge Pruning for Retrieval-Augmented Generation: A Benchmark and Empirical Study CIKM 2025
Retrieval-augmented generation (RAG) is increasingly recognized as an effective approach to mitigating the hallucination of large language models (LLMs) through the integration of external knowledge. While numerous efforts, most studies focus on a single type of external knowledge source. However, in real-world applications, most situations involve diverse knowledge from various sources, yet this area has been less explored. The main dilemma is the lack of a suitable dataset containing multiple knowledge sources and pre-exploration of the associated issues. To address these challenges, we standardize a benchmark dataset that combines structured and unstructured knowledge across diverse and complementary domains. Based on this dataset, we further develop a plug-and-play RAG framework, \textbf{PruningRAG}, whose main characteristic is the use of multi-granularity pruning strategies to optimize the integration of relevant information while minimizing misleading context. It consistently improves performance across various existing RAG variants, demonstrating its robustness and broad applicability. Building upon the standardized dataset and PruningRAG, we also report a series of experimental results, as well as insightful findings. Our dataset and code are publicly available\footnote{https://github.com/USTCAGI/PruningRAG}, with the aim of advancing future research in the RAG community.
comment: Accepted by CIKM 2025
Multimedia
☆ Reinforcement Learning-Driven Edge Management for Reliable Multi-view 3D Reconstruction
Real-time multi-view 3D reconstruction is a mission-critical application for key edge-native use cases, such as fire rescue, where timely and accurate 3D scene modeling enables situational awareness and informed decision-making. However, the dynamic and unpredictable nature of edge resource availability introduces disruptions, such as degraded image quality, unstable network links, and fluctuating server loads, which challenge the reliability of the reconstruction pipeline. In this work, we present a reinforcement learning (RL)-based edge resource management framework for reliable 3D reconstruction to ensure high quality reconstruction within a reasonable amount of time, despite the system operating under a resource-constrained and disruption-prone environment. In particular, the framework adopts two cooperative Q-learning agents, one for camera selection and one for server selection, both of which operate entirely online, learning policies through interactions with the edge environment. To support learning under realistic constraints and evaluate system performance, we implement a distributed testbed comprising lab-hosted end devices and FABRIC infrastructure-hosted edge servers to emulate smart city edge infrastructure under realistic disruption scenarios. Results show that the proposed framework improves application reliability by effectively balancing end-to-end latency and reconstruction quality in dynamic environments.
☆ Improving Temporal Understanding Logic Consistency in Video-Language Models via Attention Enhancement
Large language models (LLMs) often generate self-contradictory outputs, which severely impacts their reliability and hinders their adoption in practical applications. In video-language models (Video-LLMs), this phenomenon recently draws the attention of researchers. Specifically, these models fail to provide logically consistent responses to rephrased questions based on their grounding outputs. However, the underlying causes of this phenomenon remain underexplored. In this work, we adopt an interpretability-driven approach to analyze, statistically summarize, and intervention the potential factors of the phenomenon. We find that one of the primary reasons for the inconsistency in responses lies in the inability of cross-modal attention heads to effectively distinguish video tokens across different timestamps. To address this, we propose an attention enhancement method called Temporally Conditioned Attention Sharpening (TCAS), which constructs an enhancement objective based on attention distinctions to enhance the model's temporal resolution capability, thereby improving its temporal understanding logic consistency. Experimental results demonstrate that our method significantly enhances the temporal logic consistency of Video-LLMs. Further interpretability analyses reveal that our method indeed improves the temporal discriminability of attention heads, validating our conclusions. Additionally, our method achieves performance improvements in general video temporal grounding tasks, highlighting that temporal logic consistency is a bottleneck in temporal understanding. By enhancing consistency, our method drives significant progress in video temporal understanding.
☆ Personality-Enhanced Multimodal Depression Detection in the Elderly
This paper presents our solution to the Multimodal Personality-aware Depression Detection (MPDD) challenge at ACM MM 2025. We propose a multimodal depression detection model in the Elderly that incorporates personality characteristics. We introduce a multi-feature fusion approach based on a co-attention mechanism to effectively integrate LLDs, MFCCs, and Wav2Vec features in the audio modality. For the video modality, we combine representations extracted from OpenFace, ResNet, and DenseNet to construct a comprehensive visual feature set. Recognizing the critical role of personality in depression detection, we design an interaction module that captures the relationships between personality traits and multimodal features. Experimental results from the MPDD Elderly Depression Detection track demonstrate that our method significantly enhances performance, providing valuable insights for future research in multimodal depression detection among elderly populations.
comment: 6 pages,2 figures,accepted by ACM Multimedia Asia 2025
☆ TTOM: Test-Time Optimization and Memorization for Compositional Video Generation
Video Foundation Models (VFMs) exhibit remarkable visual generation performance, but struggle in compositional scenarios (e.g., motion, numeracy, and spatial relation). In this work, we introduce Test-Time Optimization and Memorization (TTOM), a training-free framework that aligns VFM outputs with spatiotemporal layouts during inference for better text-image alignment. Rather than direct intervention to latents or attention per-sample in existing work, we integrate and optimize new parameters guided by a general layout-attention objective. Furthermore, we formulate video generation within a streaming setting, and maintain historical optimization contexts with a parametric memory mechanism that supports flexible operations, such as insert, read, update, and delete. Notably, we found that TTOM disentangles compositional world knowledge, showing powerful transferability and generalization. Experimental results on the T2V-CompBench and Vbench benchmarks establish TTOM as an effective, practical, scalable, and efficient framework to achieve cross-modal alignment for compositional video generation on the fly.
comment: Project page: https://ttom-t2v.github.io/
☆ SatFusion: A Unified Framework for Enhancing Satellite IoT Images via Multi-Temporal and Multi-Source Data Fusion
With the rapid advancement of the digital society, the proliferation of satellites in the Satellite Internet of Things (Sat-IoT) has led to the continuous accumulation of large-scale multi-temporal and multi-source images across diverse application scenarios. However, existing methods fail to fully exploit the complementary information embedded in both temporal and source dimensions. For example, Multi-Image Super-Resolution (MISR) enhances reconstruction quality by leveraging temporal complementarity across multiple observations, yet the limited fine-grained texture details in input images constrain its performance. Conversely, pansharpening integrates multi-source images by injecting high-frequency spatial information from panchromatic data, but typically relies on pre-interpolated low-resolution inputs and assumes noise-free alignment, making it highly sensitive to noise and misregistration. To address these issues, we propose SatFusion: A Unified Framework for Enhancing Satellite IoT Images via Multi-Temporal and Multi-Source Data Fusion. Specifically, SatFusion first employs a Multi-Temporal Image Fusion (MTIF) module to achieve deep feature alignment with the panchromatic image. Then, a Multi-Source Image Fusion (MSIF) module injects fine-grained texture information from the panchromatic data. Finally, a Fusion Composition module adaptively integrates the complementary advantages of both modalities while dynamically refining spectral consistency, supervised by a weighted combination of multiple loss functions. Extensive experiments on the WorldStrat, WV3, QB, and GF2 datasets demonstrate that SatFusion significantly improves fusion quality, robustness under challenging conditions, and generalizability to real-world Sat-IoT scenarios. The code is available at: https://github.com/dllgyufei/SatFusion.git.
☆ IsoSignVid2Aud: Sign Language Video to Audio Conversion without Text Intermediaries
Sign language to spoken language audio translation is important to connect the hearing- and speech-challenged humans with others. We consider sign language videos with isolated sign sequences rather than continuous grammatical signing. Such videos are useful in educational applications and sign prompt interfaces. Towards this, we propose IsoSignVid2Aud, a novel end-to-end framework that translates sign language videos with a sequence of possibly non-grammatic continuous signs to speech without requiring intermediate text representation, providing immediate communication benefits while avoiding the latency and cascading errors inherent in multi-stage translation systems. Our approach combines an I3D-based feature extraction module with a specialized feature transformation network and an audio generation pipeline, utilizing a novel Non-Maximal Suppression (NMS) algorithm for the temporal detection of signs in non-grammatic continuous sequences. Experimental results demonstrate competitive performance on ASL-Citizen-1500 and WLASL-100 datasets with Top-1 accuracies of 72.01\% and 78.67\%, respectively, and audio quality metrics (PESQ: 2.67, STOI: 0.73) indicating intelligible speech output. Code is available at: https://github.com/BheeshmSharma/IsoSignVid2Aud_AIMLsystems-2025.
comment: Accepted in AIML-Systems-2025
♻ ☆ Paper2Video: Automatic Video Generation from Scientific Papers
Academic presentation videos have become an essential medium for research communication, yet producing them remains highly labor-intensive, often requiring hours of slide design, recording, and editing for a short 2 to 10 minutes video. Unlike natural video, presentation video generation involves distinctive challenges: inputs from research papers, dense multi-modal information (text, figures, tables), and the need to coordinate multiple aligned channels such as slides, subtitles, speech, and human talker. To address these challenges, we introduce Paper2Video, the first benchmark of 101 research papers paired with author-created presentation videos, slides, and speaker metadata. We further design four tailored evaluation metrics--Meta Similarity, PresentArena, PresentQuiz, and IP Memory--to measure how videos convey the paper's information to the audience. Building on this foundation, we propose PaperTalker, the first multi-agent framework for academic presentation video generation. It integrates slide generation with effective layout refinement by a novel effective tree search visual choice, cursor grounding, subtitling, speech synthesis, and talking-head rendering, while parallelizing slide-wise generation for efficiency. Experiments on Paper2Video demonstrate that the presentation videos produced by our approach are more faithful and informative than existing baselines, establishing a practical step toward automated and ready-to-use academic video generation. Our dataset, agent, and code are available at https://github.com/showlab/Paper2Video.
comment: Project Page: https://showlab.github.io/Paper2Video/
♻ ☆ PRVR: Partially Relevant Video Retrieval
In current text-to-video retrieval (T2VR), videos to be retrieved have been properly trimmed so that a correspondence between the videos and ad-hoc textual queries naturally exists. Note in practice that videos circulated on the Internet and social media platforms, while being relatively short, are typically rich in their content. Often, multiple scenes / actions / events are shown in a single video, leading to a more challenging T2VR setting wherein only part of the video content is relevant w.r.t. a given query. This paper presents a first study on this setting which we term Partially Relevant Video Retrieval (PRVR). Considering that a video typically consists of multiple moments, a video is regarded as partially relevant w.r.t. to a given query if it contains a query-related moment. We formulate the PRVR task as a multiple instance learning problem, and propose a Multi-Scale Similarity Learning (MS-SL++) network that jointly learns both clip-scale and frame-scale similarities to determine the partial relevance between video-query pairs. Extensive experiments on three diverse video-text datasets (TVshow Retrieval, ActivityNet-Captions and Charades-STA) demonstrate the viability of the proposed method.
comment: Accepted by TPAMI. The paper's homepage is https://github.com/HuiGuanLab/ms-sl-pp
Information Retrieval
☆ Retentive Relevance: Capturing Long-Term User Value in Recommendation Systems
Recommendation systems have traditionally relied on short-term engagement signals, such as clicks and likes, to personalize content. However, these signals are often noisy, sparse, and insufficient for capturing long-term user satisfaction and retention. We introduce Retentive Relevance, a novel content-level survey-based feedback measure that directly assesses users' intent to return to the platform for similar content. Unlike other survey measures that focus on immediate satisfaction, Retentive Relevance targets forward-looking behavioral intentions, capturing longer term user intentions and providing a stronger predictor of retention. We validate Retentive Relevance using psychometric methods, establishing its convergent, discriminant, and behavioral validity. Through large-scale offline modeling, we show that Retentive Relevance significantly outperforms both engagement signals and other survey measures in predicting next-day retention, especially for users with limited historical engagement. We develop a production-ready proxy model that integrates Retentive Relevance into the final stage of a multi-stage ranking system on a social media platform. Calibrated score adjustments based on this model yield substantial improvements in engagement, and retention, while reducing exposure to low-quality content, as demonstrated by large-scale A/B experiments. This work provides the first empirically validated framework linking content-level user perceptions to retention outcomes in production systems. We offer a scalable, user-centered solution that advances both platform growth and user experience. Our work has broad implications for responsible AI development.
☆ Evaluation of LLMs for Process Model Analysis and Optimization
In this paper, we report our experience with several LLMs for their ability to understand a process model in an interactive, conversational style, find syntactical and logical errors in it, and reason with it in depth through a natural language (NL) interface. Our findings show that a vanilla, untrained LLM like ChatGPT (model o3) in a zero-shot setting is effective in understanding BPMN process models from images and answering queries about them intelligently at syntactic, logic, and semantic levels of depth. Further, different LLMs vary in performance in terms of their accuracy and effectiveness. Nevertheless, our empirical analysis shows that LLMs can play a valuable role as assistants for business process designers and users. We also study the LLM's "thought process" and ability to perform deeper reasoning in the context of process analysis and optimization. We find that the LLMs seem to exhibit anthropomorphic properties.
comment: 15 pages, 5 tables, 4 figures; full research paper currently under review for the Workshop on Information Technologies and Systems (WITS) 2025. The paper presents a comprehensive evaluation of large language models (LLMs) for business process model analysis and optimization, including error detection, reasoning, and scenario-based redesign
☆ Reasoning by Exploration: A Unified Approach to Retrieval and Generation over Graphs
Reasoning over structured graphs remains a fundamental challenge for Large Language Models (LLMs), particularly when scaling to large graphs. Existing approaches typically follow the retrieval-augmented generation (RAG) paradigm: first retrieving subgraphs relevant to the query and then generating answers conditioned on the retrieved subgraphs. However, such two-phase pipelines often struggle to faithfully incorporate graph structure, since the generation process is ultimately constrained by the quality and completeness of the retrieved subgraph. Although many advanced retrievers have been proposed recently to mitigate this issue, they are usually tailored to the training graphs and generalize poorly to unseen graphs, which limits their practical applicability. In this work, we propose Reasoning by Exploration (RoE), a novel approach that unifies retrieval and generation by framing reasoning over graphs as a process of graph exploration. At each step, the LLM selects candidate nodes and edges to explore, gradually constructing reasoning paths and generating answers along the way. To enable effective exploration, RoE is trained in two stages: supervised fine-tuning (SFT) on gold reasoning paths, followed by reinforcement learning (RL) to enhance exploration effectiveness and generalization. Experiments on benchmark datasets demonstrate that RoE achieves substantial overall improvements over baselines, while also generalizing effectively to unseen graphs.
☆ Towards Reliable Retrieval in RAG Systems for Large Legal Datasets EMNLP 2025
Retrieval-Augmented Generation (RAG) is a promising approach to mitigate hallucinations in Large Language Models (LLMs) for legal applications, but its reliability is critically dependent on the accuracy of the retrieval step. This is particularly challenging in the legal domain, where large databases of structurally similar documents often cause retrieval systems to fail. In this paper, we address this challenge by first identifying and quantifying a critical failure mode we term Document-Level Retrieval Mismatch (DRM), where the retriever selects information from entirely incorrect source documents. To mitigate DRM, we investigate a simple and computationally efficient technique which we refer to as Summary-Augmented Chunking (SAC). This method enhances each text chunk with a document-level synthetic summary, thereby injecting crucial global context that would otherwise be lost during a standard chunking process. Our experiments on a diverse set of legal information retrieval tasks show that SAC greatly reduces DRM and, consequently, also improves text-level retrieval precision and recall. Interestingly, we find that a generic summarization strategy outperforms an approach that incorporates legal expert domain knowledge to target specific legal elements. Our work provides evidence that this practical, scalable, and easily integrable technique enhances the reliability of RAG systems when applied to large-scale legal document datasets.
comment: Accepted for the 7th Natural Legal Language Processing Workshop (NLLP 2025), co-located with EMNLP 2025
☆ Spiral Model Technique For Data Science & Machine Learning Lifecycle
Analytics play an important role in modern business. Companies adapt data science lifecycles to their culture to seek productivity and improve their competitiveness among others. Data science lifecycles are fairly an important contributing factor to start and end a project that are data dependent. Data science and Machine learning life cycles comprises of series of steps that are involved in a project. A typical life cycle states that it is a linear or cyclical model that revolves around. It is mostly depicted that it is possible in a traditional data science life cycle to start the process again after reaching the end of cycle. This paper suggests a new technique to incorporate data science life cycle to business problems that have a clear end goal. A new technique called spiral technique is introduced to emphasize versatility, agility and iterative approach to business processes.
☆ Ethical AI prompt recommendations in large language models using collaborative filtering
As large language models (LLMs) shape AI development, ensuring ethical prompt recommendations is crucial. LLMs offer innovation but risk bias, fairness issues, and accountability concerns. Traditional oversight methods struggle with scalability, necessitating dynamic solutions. This paper proposes using collaborative filtering, a technique from recommendation systems, to enhance ethical prompt selection. By leveraging user interactions, it promotes ethical guidelines while reducing bias. Contributions include a synthetic dataset for prompt recommendations and the application of collaborative filtering. The work also tackles challenges in ethical AI, such as bias mitigation, transparency, and preventing unethical prompt engineering.
comment: This paper has been accepted to by the International Journal of Parallel, Emergent & Distributed Systems (Taylor and Francis) and has an assigned DOI. We have already chose to make this open access using CC BY. The article is not yet available online on the publisher's website. The DOI is: doi.org/10.1080/17445760.2025.2573086
☆ M3Retrieve: Benchmarking Multimodal Retrieval for Medicine EMNLP
With the increasing use of RetrievalAugmented Generation (RAG), strong retrieval models have become more important than ever. In healthcare, multimodal retrieval models that combine information from both text and images offer major advantages for many downstream tasks such as question answering, cross-modal retrieval, and multimodal summarization, since medical data often includes both formats. However, there is currently no standard benchmark to evaluate how well these models perform in medical settings. To address this gap, we introduce M3Retrieve, a Multimodal Medical Retrieval Benchmark. M3Retrieve, spans 5 domains,16 medical fields, and 4 distinct tasks, with over 1.2 Million text documents and 164K multimodal queries, all collected under approved licenses. We evaluate leading multimodal retrieval models on this benchmark to explore the challenges specific to different medical specialities and to understand their impact on retrieval performance. By releasing M3Retrieve, we aim to enable systematic evaluation, foster model innovation, and accelerate research toward building more capable and reliable multimodal retrieval systems for medical applications. The dataset and the baselines code are available in this github page https://github.com/AkashGhosh/M3Retrieve.
comment: EMNLP Mains 2025
☆ Crossing Domains without Labels: Distant Supervision for Term Extraction EMNLP
Automatic Term Extraction (ATE) is a critical component in downstream NLP tasks such as document tagging, ontology construction and patent analysis. Current state-of-the-art methods require expensive human annotation and struggle with domain transfer, limiting their practical deployment. This highlights the need for more robust, scalable solutions and realistic evaluation settings. To address this, we introduce a comprehensive benchmark spanning seven diverse domains, enabling performance evaluation at both the document- and corpus-levels. Furthermore, we propose a robust LLM-based model that outperforms both supervised cross-domain encoder models and few-shot learning baselines and performs competitively with its GPT-4o teacher on this benchmark. The first step of our approach is generating psuedo-labels with this black-box LLM on general and scientific domains to ensure generalizability. Building on this data, we fine-tune the first LLMs for ATE. To further enhance document-level consistency, oftentimes needed for downstream tasks, we introduce lightweight post-hoc heuristics. Our approach exceeds previous approaches on 5/7 domains with an average improvement of 10 percentage points. We release our dataset and fine-tuned models to support future research in this area.
comment: Accepted at EMNLP Industry Track 2025
☆ Exposing Citation Vulnerabilities in Generative Engines
We analyze answers generated by generative engines (GEs) from the perspectives of citation publishers and the content-injection barrier, defined as the difficulty for attackers to manipulate answers to user prompts by placing malicious content on the web. GEs integrate two functions: web search and answer generation that cites web pages using large language models. Because anyone can publish information on the web, GEs are vulnerable to poisoning attacks. Existing studies of citation evaluation focus on how faithfully answer content reflects cited sources, leaving unexamined which web sources should be selected as citations to defend against poisoning attacks. To fill this gap, we introduce evaluation criteria that assess poisoning threats using the citation information contained in answers. Our criteria classify the publisher attributes of citations to estimate the content-injection barrier thereby revealing the threat of poisoning attacks in current GEs. We conduct experiments in political domains in Japan and the United States (U.S.) using our criteria and show that citations from official party websites (primary sources) are approximately \(25\%\)--\(45\%\) in the U.S. and \(60\%\)--\(65\%\) in Japan, indicating that U.S. political answers are at higher risk of poisoning attacks. We also find that sources with low content-injection barriers are frequently cited yet are poorly reflected in answer content. To mitigate this threat, we discuss how publishers of primary sources can increase exposure of their web content in answers and show that well-known techniques are limited by language differences.
comment: 12 pages, under-reviewing at a conference
Overview of the Plagiarism Detection Task at PAN 2025
The generative plagiarism detection task at PAN 2025 aims at identifying automatically generated textual plagiarism in scientific articles and aligning them with their respective sources. We created a novel large-scale dataset of automatically generated plagiarism using three large language models: Llama, DeepSeek-R1, and Mistral. In this task overview paper, we outline the creation of this dataset, summarize and compare the results of all participants and four baselines, and evaluate the results on the last plagiarism detection task from PAN 2015 in order to interpret the robustness of the proposed approaches. We found that the current iteration does not invite a large variety of approaches as naive semantic similarity approaches based on embedding vectors provide promising results of up to 0.8 recall and 0.5 precision. In contrast, most of these approaches underperform significantly on the 2015 dataset, indicating a lack in generalizability.
comment: Working Notes at PAN at CLEF 2025
☆ Are LLMs Reliable Rankers? Rank Manipulation via Two-Stage Token Optimization
Large language models (LLMs) are increasingly used as rerankers in information retrieval, yet their ranking behavior can be steered by small, natural-sounding prompts. To expose this vulnerability, we present Rank Anything First (RAF), a two-stage token optimization method that crafts concise textual perturbations to consistently promote a target item in LLM-generated rankings while remaining hard to detect. Stage 1 uses Greedy Coordinate Gradient to shortlist candidate tokens at the current position by combining the gradient of the rank-target with a readability score; Stage 2 evaluates those candidates under exact ranking and readability losses using an entropy-based dynamic weighting scheme, and selects a token via temperature-controlled sampling. RAF generates ranking-promoting prompts token-by-token, guided by dual objectives: maximizing ranking effectiveness and preserving linguistic naturalness. Experiments across multiple LLMs show that RAF significantly boosts the rank of target items using naturalistic language, with greater robustness than existing methods in both promoting target items and maintaining naturalness. These findings underscore a critical security implication: LLM-based reranking is inherently susceptible to adversarial manipulation, raising new challenges for the trustworthiness and robustness of modern retrieval systems. Our code is available at: https://github.com/glad-lab/RAF.
comment: 10 pages, 3 figures
☆ Reproducing and Extending Causal Insights Into Term Frequency Computation in Neural Rankers SIGIR
Neural ranking models have shown outstanding performance across a variety of tasks, such as document retrieval, re-ranking, question answering and conversational retrieval. However, the inner decision process of these models remains largely unclear, especially as models increase in size. Most interpretability approaches, such as probing, focus on correlational insights rather than establishing causal relationships. The paper 'Axiomatic Causal Interventions for Reverse Engineering Relevance Computation in Neural Retrieval Models' by Chen et al. addresses this gap by introducing a framework for activation patching - a causal interpretability method - in the information retrieval domain, offering insights into how neural retrieval models compute document relevance. The study demonstrates that neural ranking models not only capture term-frequency information, but also that these representations can be localized to specific components of the model, such as individual attention heads or layers. This paper aims to reproduce the findings by Chen et al. and to further explore the presence of pre-defined retrieval axioms in neural IR models. We validate the main claims made by Chen et al., and extend the framework to include an additional term-frequency axiom, which states that the impact of increasing query term frequency on document ranking diminishes as the frequency becomes higher. We successfully identify a group of attention heads that encode this axiom and analyze their behavior to give insight into the inner decision-making process of neural ranking models.
comment: 10 pages, 6 figures, submitted to SIGIR-AP
☆ Can We Hide Machines in the Crowd? Quantifying Equivalence in LLM-in-the-loop Annotation Tasks SIGIR
Many evaluations of large language models (LLMs) in text annotation focus primarily on the correctness of the output, typically comparing model-generated labels to human-annotated ``ground truth'' using standard performance metrics. In contrast, our study moves beyond effectiveness alone. We aim to explore how labeling decisions -- by both humans and LLMs -- can be statistically evaluated across individuals. Rather than treating LLMs purely as annotation systems, we approach LLMs as an alternative annotation mechanism that may be capable of mimicking the subjective judgments made by humans. To assess this, we develop a statistical evaluation method based on Krippendorff's $\alpha$, paired bootstrapping, and the Two One-Sided t-Tests (TOST) equivalence test procedure. This evaluation method tests whether an LLM can blend into a group of human annotators without being distinguishable. We apply this approach to two datasets -- MovieLens 100K and PolitiFact -- and find that the LLM is statistically indistinguishable from a human annotator in the former ($p = 0.004$), but not in the latter ($p = 0.155$), highlighting task-dependent differences. It also enables early evaluation on a small sample of human data to inform whether LLMs are suitable for large-scale annotation in a given application.
comment: Accepted at SIGIR-AP 2025
☆ LLM-Powered Nuanced Video Attribute Annotation for Enhanced Recommendations RecSys 2025
This paper presents a case study on deploying Large Language Models (LLMs) as an advanced "annotation" mechanism to achieve nuanced content understanding (e.g., discerning content "vibe") at scale within a large-scale industrial short-form video recommendation system. Traditional machine learning classifiers for content understanding face protracted development cycles and a lack of deep, nuanced comprehension. The "LLM-as-annotators" approach addresses these by significantly shortening development times and enabling the annotation of subtle attributes. This work details an end-to-end workflow encompassing: (1) iterative definition and robust evaluation of target attributes, refined by offline metrics and online A/B testing; (2) scalable offline bulk annotation of video corpora using LLMs with multimodal features, optimized inference, and knowledge distillation for broad application; and (3) integration of these rich annotations into the online recommendation serving system, for example, through personalized restrict retrieval. Experimental results demonstrate the efficacy of this approach, with LLMs outperforming human raters in offline annotation quality for nuanced attributes and yielding significant improvements of user participation and satisfied consumption in online A/B tests. The study provides insights into designing and scaling production-level LLM pipelines for rich content evaluation, highlighting the adaptability and benefits of LLM-generated nuanced understanding for enhancing content discovery, user satisfaction, and the overall effectiveness of modern recommendation systems.
comment: RecSys 2025 Industry Track
♻ ☆ Advancing AI Research Assistants with Expert-Involved Learning
Large language models (LLMs) and large multimodal models (LMMs) promise to accelerate biomedical discovery, yet their reliability remains unclear. We introduce ARIEL (AI Research Assistant for Expert-in-the-Loop Learning), an open-source evaluation and optimization framework that pairs a curated multimodal biomedical corpus with expert-vetted tasks to probe two capabilities: full-length article summarization and fine-grained figure interpretation. Using uniform protocols and blinded PhD-level evaluation, we find that state-of-the-art models generate fluent but incomplete summaries, whereas LMMs struggle with detailed visual reasoning. We later observe that prompt engineering and lightweight fine-tuning substantially improve textual coverage, and a compute-scaled inference strategy enhances visual question answering. We build an ARIEL agent that integrates textual and visual cues, and we show it can propose testable mechanistic hypotheses. ARIEL delineates current strengths and limitations of foundation models, and provides a reproducible platform for advancing trustworthy AI in biomedicine.
comment: 36 pages, 7 figures
♻ ☆ TalkPlayData 2: An Agentic Synthetic Data Pipeline for Multimodal Conversational Music Recommendation
We present TalkPlayData 2, a synthetic dataset for multimodal conversational music recommendation generated by an agentic data pipeline. In the proposed pipeline, multiple large language model (LLM) agents are created under various roles with specialized prompts and access to different parts of information, and the chat data is acquired by logging the conversation between the Listener LLM and the Recsys LLM. To cover various conversation scenarios, for each conversation, the Listener LLM is conditioned on a finetuned conversation goal. Finally, all the LLMs are multimodal with audio and images, allowing a simulation of multimodal recommendation and conversation. In the LLM-as-a-judge and subjective evaluation experiments, TalkPlayData 2 achieved the proposed goal in various aspects related to training a generative recommendation model for music. TalkPlayData 2 and its generation code are released at https://talkpl.ai/talkplaydata2.
comment: 2025-10-08: updating the stat table with the latest numbers. updated the abstract per the latest license terms
♻ ☆ SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis
Retrieval-augmented generation (RAG) systems have advanced large language models (LLMs) in complex deep search scenarios requiring multi-step reasoning and iterative information retrieval. However, existing approaches face critical limitations that lack high-quality training trajectories or suffer from the distributional mismatches in simulated environments and prohibitive computational costs for real-world deployment. This paper introduces SimpleDeepSearcher, a lightweight yet effective framework that bridges this gap through strategic data engineering rather than complex training paradigms. Our approach synthesizes high-quality training data by simulating realistic user interactions in live web search environments, coupled with a multi-criteria curation strategy that optimizes the diversity and quality of input and output side. Experiments on five benchmarks across diverse domains demonstrate that SFT on only 871 curated samples yields significant improvements over RL-based baselines. Our work establishes SFT as a viable pathway by systematically addressing the data-scarce bottleneck, offering practical insights for efficient deep search systems. Our code is available at https://github.com/RUCAIBox/SimpleDeepSearcher.
♻ ☆ Injecting External Knowledge into the Reasoning Process Enhances Retrieval-Augmented Generation SIGIR
Retrieval-augmented generation (RAG) has been widely adopted to augment large language models (LLMs) with external knowledge for knowledge-intensive tasks. However, its effectiveness is often undermined by the presence of noisy (i.e., low-quality) retrieved passages. Enhancing LLMs' robustness to such noise is critical for improving the reliability of RAG systems. Recent advances have equipped LLMs with strong reasoning and self-reflection capabilities, allowing them to identify and correct errors in their reasoning process. Inspired by this ability, we propose Passage Injection-a simple yet effective method that explicitly incorporates retrieved passages into LLMs' reasoning process, aiming to enhance the model's ability to recognize and resist noisy passages. We validate Passage Injection under general RAG settings using BM25 as the retriever. Experiments on four reasoning-enhanced LLMs across four factual QA datasets demonstrate that Passage Injection significantly improves overall RAG performance. Further analysis on two noisy retrieval settings-random noise, where the model is provided irrelevant passages, and counterfactual noise, where it is given misleading passages-shows that Passage Injection consistently improves robustness. Controlled experiments confirm that Passage Injection can also effectively leverage helpful passages. These findings suggest that incorporating passages in LLMs' reasoning process is a promising direction for building more robust RAG systems. The code can be found \href{here}{https://github.com/Trustworthy-Information-Access/Passage-Injection}.
comment: SIGIR-AP 2025
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3;
♻ ☆ Do RAG Systems Really Suffer From Positional Bias?
Retrieval Augmented Generation enhances LLM accuracy by adding passages retrieved from an external corpus to the LLM prompt. This paper investigates how positional bias - the tendency of LLMs to weight information differently based on its position in the prompt - affects not only the LLM's capability to capitalize on relevant passages, but also its susceptibility to distracting passages. Through extensive experiments on three benchmarks, we show how state-of-the-art retrieval pipelines, while attempting to retrieve relevant passages, systematically bring highly distracting ones to the top ranks, with over 60% of queries containing at least one highly distracting passage among the top-10 retrieved passages. As a result, the impact of the LLM positional bias, which in controlled settings is often reported as very prominent by related works, is actually marginal in real scenarios since both relevant and distracting passages are, in turn, penalized. Indeed, our findings reveal that sophisticated strategies that attempt to rearrange the passages based on LLM positional preferences do not perform better than random shuffling.
♻ ☆ TalkPlay-Tools: Conversational Music Recommendation with LLM Tool Calling NeurIPS
While the recent developments in large language models (LLMs) have successfully enabled generative recommenders with natural language interactions, their recommendation behavior is limited, leaving other simpler yet crucial components such as metadata or attribute filtering underutilized in the system. We propose an LLM-based music recommendation system with tool calling to serve as a unified retrieval-reranking pipeline. Our system positions an LLM as an end-to-end recommendation system that interprets user intent, plans tool invocations, and orchestrates specialized components: boolean filters (SQL), sparse retrieval (BM25), dense retrieval (embedding similarity), and generative retrieval (semantic IDs). Through tool planning, the system predicts which types of tools to use, their execution order, and the arguments needed to find music matching user preferences, supporting diverse modalities while seamlessly integrating multiple database filtering methods. We demonstrate that this unified tool-calling framework achieves competitive performance across diverse recommendation scenarios by selectively employing appropriate retrieval methods based on user queries, envisioning a new paradigm for conversational music recommendation systems.
comment: Accepted for publication at The Workshop on AI for Music, Neural Information Processing Systems (NeurIPS-AI4Music)
♻ ☆ Membership Inference Attacks on LLM-based Recommender Systems
Large language models (LLMs) based Recommender Systems (RecSys) can flexibly adapt recommendation systems to different domains. It utilizes in-context learning (ICL), i.e., the prompts, to customize the recommendation functions, which include sensitive historical user-specific item interactions, e.g., implicit feedback like clicked items or explicit product reviews. Such private information may be exposed to novel privacy attack. However, no study has been done on this important issue. We design four membership inference attacks (MIAs), aiming to reveal whether victims' historical interactions have been used by system prompts. They are \emph{direct inquiry, hallucination, similarity, and poisoning attacks}, each of which utilizes the unique features of LLMs or RecSys. We have carefully evaluated them on three LLMs that have been used to develop ICL-LLM RecSys and two well-known RecSys benchmark datasets. The results confirm that the MIA threat on LLM RecSys is realistic: direct inquiry and poisoning attacks showing significantly high attack advantages. We have also analyzed the factors affecting these attacks, such as the number of shots in system prompts and the position of the victim in the shots.
comment: this paper is under review
♻ ☆ Scalable In-context Ranking with Generative Models
In-context Ranking (ICR) is an emerging paradigm for Information Retrieval (IR), which leverages contextual understanding of LLMs by directly incorporating the task description, candidate documents, and the query into the model's input prompt and tasking the LLM to identify relevant document(s). While it is effective, efficiency is a significant challenge in this paradigm, especially as the candidate list grows due to quadratic/super-linear scaling of attention operation with context length. To this end, this paper first identifies inherent and exploitable structures in the attention of LLMs finetuned for ICR: (1) inter-document block sparsity: attention is dense within each document block but sparse across different documents in the context; and (2) query-document block relevance: the attention scores from certain query tokens to a document block in middle layers strongly correlate with that document's actual relevance. Motivated by these observations, we introduce BlockRank (Blockwise In-context Ranking), a novel method that adapts the attention operation in an LLM by (a) architecturally enforcing the observed inter-document block sparsity, reducing attention complexity from quadratic to linear without loss in performance, and (b) optimizing query-document block relevance for true relevant documents during fine-tuning using an auxiliary contrastive training objective, improving retrieval in attention. Experiments on BEIR, MSMarco and NQ with Mistral-7B demonstrate that BlockRank Mistral matches or outperforms existing SOTA listwise rankers and controlled fine-tuned baseline while being significantly more efficient at inference (4.7x for 100 MSMarco documents in context) and scaling gracefully to long-context shortlists, around 500 documents in-context (approximately 100K context length) within a second, presenting a scalable and effective solution for ICR.
Multimedia
☆ AV-EMO-Reasoning: Benchmarking Emotional Reasoning Capabilities in Omni-modal LLMS with Audio-visual Cues
Emotions conveyed through voice and face shape engagement and context in human-AI interaction. Despite rapid progress in omni-modal large language models (LLMs), the holistic evaluation of emotional reasoning with audiovisual cues remains limited. To address this gap, we introduce AV-EMO-Reasoning, a benchmark designed to systematically assess emotional coherence in LLMs. The framework leverages a curated, single- and multi-turn synthetic audiovisual corpus with a real-world set and is assessed under continuous, categorical, and perceptual metrics. Experiments with leading LLMs show that visual cues reliably improve emotional coherence over audio-only baselines. Moreover, LLMs can leverage audio-visual cues to generate more emotion-aware speech. Models exhibit complementary strengths across metric families, indicating that automatic scores capture facets distinct from perceptual judgments. By releasing a systematic evaluation benchmark, AV-EMO-Reasoning offers a reproducible standard for evaluating emotion-aware dialogue and advances toward more natural, adaptive human-AI interaction.
♻ ☆ TalkPlayData 2: An Agentic Synthetic Data Pipeline for Multimodal Conversational Music Recommendation
We present TalkPlayData 2, a synthetic dataset for multimodal conversational music recommendation generated by an agentic data pipeline. In the proposed pipeline, multiple large language model (LLM) agents are created under various roles with specialized prompts and access to different parts of information, and the chat data is acquired by logging the conversation between the Listener LLM and the Recsys LLM. To cover various conversation scenarios, for each conversation, the Listener LLM is conditioned on a finetuned conversation goal. Finally, all the LLMs are multimodal with audio and images, allowing a simulation of multimodal recommendation and conversation. In the LLM-as-a-judge and subjective evaluation experiments, TalkPlayData 2 achieved the proposed goal in various aspects related to training a generative recommendation model for music. TalkPlayData 2 and its generation code are released at https://talkpl.ai/talkplaydata2.
comment: 2025-10-08: updating the stat table with the latest numbers. updated the abstract per the latest license terms
♻ ☆ What Media Frames Reveal About Stance: A Dataset and Study about Memes in Climate Change Discourse EMNLP
Media framing refers to the emphasis on specific aspects of perceived reality to shape how an issue is defined and understood. Its primary purpose is to shape public perceptions often in alignment with the authors' opinions and stances. However, the interaction between stance and media frame remains largely unexplored. In this work, we apply an interdisciplinary approach to conceptualize and computationally explore this interaction with internet memes on climate change. We curate CLIMATEMEMES, the first dataset of climate-change memes annotated with both stance and media frames, inspired by research in communication science. CLIMATEMEMES includes 1,184 memes sourced from 47 subreddits, enabling analysis of frame prominence over time and communities, and sheds light on the framing preferences of different stance holders. We propose two meme understanding tasks: stance detection and media frame detection. We evaluate LLaVA-NeXT and Molmo in various setups, and report the corresponding results on their LLM backbone. Human captions consistently enhance performance. Synthetic captions and human-corrected OCR also help occasionally. Our findings highlight that VLMs perform well on stance, but struggle on frames, where LLMs outperform VLMs. Finally, we analyze VLMs' limitations in handling nuanced frames and stance expressions on climate change internet memes.
comment: 20 pages, 9 figures, EMNLP Findings
♻ ☆ LaunchpadGPT: Language Model as Music Visualization Designer on Launchpad
Launchpad is a musical instrument that allows users to create and perform music by pressing illuminated buttons. To assist and inspire the design of the Launchpad light effect, and provide a more accessible approach for beginners to create music visualization with this instrument, we proposed the LaunchpadGPT model to generate music visualization designs on Launchpad automatically. Based on the language model with excellent generation ability, our proposed LaunchpadGPT takes an audio piece of music as input and outputs the lighting effects of Launchpad-playing in the form of a video (Launchpad-playing video). We collect Launchpad-playing videos and process them to obtain music and corresponding video frame of Launchpad-playing as prompt-completion pairs, to train the language model. The experiment result shows the proposed method can create better music visualization than random generation methods and hold the potential for a broader range of music visualization applications. Our code is available at https://github.com/yunlong10/LaunchpadGPT/.
comment: Accepted to International Computer Music Conference (ICMC) 2023
♻ ☆ Multi-modal Segment Assemblage Network for Ad Video Editing with Importance-Coherence Reward ACCV 2022
Advertisement video editing aims to automatically edit advertising videos into shorter videos while retaining coherent content and crucial information conveyed by advertisers. It mainly contains two stages: video segmentation and segment assemblage. The existing method performs well at video segmentation stages but suffers from the problems of dependencies on extra cumbersome models and poor performance at the segment assemblage stage. To address these problems, we propose M-SAN (Multi-modal Segment Assemblage Network) which can perform efficient and coherent segment assemblage task end-to-end. It utilizes multi-modal representation extracted from the segments and follows the Encoder-Decoder Ptr-Net framework with the Attention mechanism. Importance-coherence reward is designed for training M-SAN. We experiment on the Ads-1k dataset with 1000+ videos under rich ad scenarios collected from advertisers. To evaluate the methods, we propose a unified metric, Imp-Coh@Time, which comprehensively assesses the importance, coherence, and duration of the outputs at the same time. Experimental results show that our method achieves better performance than random selection and the previous method on the metric. Ablation experiments further verify that multi-modal representation and importance-coherence reward significantly improve the performance. Ads-1k dataset is available at: https://github.com/yunlong10/Ads-1k
comment: Accepted by ACCV 2022
♻ ☆ TalkPlay-Tools: Conversational Music Recommendation with LLM Tool Calling NeurIPS
While the recent developments in large language models (LLMs) have successfully enabled generative recommenders with natural language interactions, their recommendation behavior is limited, leaving other simpler yet crucial components such as metadata or attribute filtering underutilized in the system. We propose an LLM-based music recommendation system with tool calling to serve as a unified retrieval-reranking pipeline. Our system positions an LLM as an end-to-end recommendation system that interprets user intent, plans tool invocations, and orchestrates specialized components: boolean filters (SQL), sparse retrieval (BM25), dense retrieval (embedding similarity), and generative retrieval (semantic IDs). Through tool planning, the system predicts which types of tools to use, their execution order, and the arguments needed to find music matching user preferences, supporting diverse modalities while seamlessly integrating multiple database filtering methods. We demonstrate that this unified tool-calling framework achieves competitive performance across diverse recommendation scenarios by selectively employing appropriate retrieval methods based on user queries, envisioning a new paradigm for conversational music recommendation systems.
comment: Accepted for publication at The Workshop on AI for Music, Neural Information Processing Systems (NeurIPS-AI4Music)
Information Retrieval
☆ Semantic-Cohesive Knowledge Distillation for Deep Cross-modal Hashing
Recently, deep supervised cross-modal hashing methods have achieve compelling success by learning semantic information in a self-supervised way. However, they still suffer from the key limitation that the multi-label semantic extraction process fail to explicitly interact with raw multimodal data, making the learned representation-level semantic information not compatible with the heterogeneous multimodal data and hindering the performance of bridging modality gap. To address this limitation, in this paper, we propose a novel semantic cohesive knowledge distillation scheme for deep cross-modal hashing, dubbed as SODA. Specifically, the multi-label information is introduced as a new textual modality and reformulated as a set of ground-truth label prompt, depicting the semantics presented in the image like the text modality. Then, a cross-modal teacher network is devised to effectively distill cross-modal semantic characteristics between image and label modalities and thus learn a well-mapped Hamming space for image modality. In a sense, such Hamming space can be regarded as a kind of prior knowledge to guide the learning of cross-modal student network and comprehensively preserve the semantic similarities between image and text modality. Extensive experiments on two benchmark datasets demonstrate the superiority of our model over the state-of-the-art methods.
☆ Peeking inside the Black-Box: Reinforcement Learning for Explainable and Accurate Relation Extraction
This paper introduces a framework for relation extraction (RE) that enhances both accuracy and explainability. The framework has two key components: (i) a reasoning mechanism that formulates relation extraction as a series of text-processing steps inspired by cognitive science, and (ii) an optimization process driven by reinforcement learning (RL) with a novel reward function designed to improve both task accuracy and explanation quality. We call our approach CogRE. Our framework addresses the lack of supervision for language-based explanations in traditional RE by promoting outputs that include important relation keywords. These keywords are drawn from a high-quality dictionary that is automatically constructed using an LLM. We evaluate our approach for the task of one-shot RE using two LLMs and two RE datasets. Our experiments show that CogRE improves explanation quality by addressing two common failure patterns in one-shot RE: poor attention focus and limited one-shot learning capability. For example, our cognitive-structured reasoning with Qwen2.5-15B-Instruct on One-shot NYT29 achieves 24.65% F1, surpassing prior reasoning-based designs. Optimizing this approach with RL using our reward further improves performance by +23.46% (absolute). Finally, human evaluation shows that our best model generates relational keywords closely aligned with gold labels, increasing human explanation quality ratings by 54% (relative).
comment: Working in process
☆ Deterministic Legal Retrieval: An Action API for Querying the SAT-Graph RAG
The Structure-Aware Temporal Graph RAG (SAT-Graph RAG) addresses core limitations of standard Retrieval-Augmented Generation in the legal domain by providing a verifiable knowledge graph that models hierarchical structure, temporal evolution, and causal events of legal norms. However, a critical gap remains: how to reliably query this structured knowledge without sacrificing its deterministic properties. This paper introduces the SAT-Graph API, a formal query execution layer centered on canonical actions-atomic, composable, and auditable primitives that isolate probabilistic discovery from deterministic retrieval. These actions enable: (i) high-precision hybrid search; (ii) robust reference resolution; (iii) point-in-time version retrieval; and (iv) auditable causal tracing. We demonstrate how planner-guided agents can decompose complex queries into Directed Acyclic Graphs (DAGs) of these actions. This two-layer architecture transforms retrieval from an opaque black box to a transparent, auditable process, directly addressing Explainable AI (XAI) requirements for high-stakes domains.
☆ How public datasets constrain the development of diversity-aware news recommender systems, and what law could do about it
News recommender systems increasingly determine what news individuals see online. Over the past decade, researchers have extensively critiqued recommender systems that prioritise news based on user engagement. To offer an alternative, researchers have analysed how recommender systems could support the media's ability to fulfil its role in democratic society by recommending news based on editorial values, particularly diversity. However, there continues to be a large gap between normative theory on how news recommender systems should incorporate diversity, and technical literature that designs such systems. We argue that to realise diversity-aware recommender systems in practice, it is crucial to pay attention to the datasets that are needed to train modern news recommenders. We aim to make two main contributions. First, we identify the information a dataset must include to enable the development of the diversity-aware news recommender systems proposed in normative literature. Based on this analysis, we assess the limitations of currently available public datasets, and show what potential they do have to expand research into diversity-aware recommender systems. Second, we analyse why and how European law and policy can be used to provide researchers with structural access to the data they need to develop diversity-aware news recommender systems.
☆ Limitations of Current Evaluation Practices for Conversational Recommender Systems and the Potential of User Simulation SIGIR
Research and development on conversational recommender systems (CRSs) critically depends on sound and reliable evaluation methodologies. However, the interactive nature of these systems poses significant challenges for automatic evaluation. This paper critically examines current evaluation practices and identifies two key limitations: the over-reliance on static test collections and the inadequacy of existing evaluation metrics. To substantiate this critique, we analyze real user interactions with nine existing CRSs and demonstrate a striking disconnect between self-reported user satisfaction and performance scores reported in prior literature. To address these limitations, this work explores the potential of user simulation to generate dynamic interaction data, offering a departure from static datasets. Furthermore, we propose novel evaluation metrics, based on a general reward/cost framework, designed to better align with real user satisfaction. Our analysis of different simulation approaches provides valuable insights into their effectiveness and reveals promising initial results, showing improved correlation with system rankings compared to human evaluation. While these findings indicate a significant step forward in CRS evaluation, we also identify areas for future research and refinement in both simulation techniques and evaluation metrics.
comment: Proceedings of the 2025 Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region (SIGIR-AP 2025), December 7--10, 2025, Xi'an, China
☆ AgentDR Dynamic Recommendation with Implicit Item-Item Relations via LLM-based Agents
Recent agent-based recommendation frameworks aim to simulate user behaviors by incorporating memory mechanisms and prompting strategies, but they struggle with hallucinating non-existent items and full-catalog ranking. Besides, a largely underexplored opportunity lies in leveraging LLMs'commonsense reasoning to capture user intent through substitute and complement relationships between items, which are usually implicit in datasets and difficult for traditional ID-based recommenders to capture. In this work, we propose a novel LLM-agent framework, AgenDR, which bridges LLM reasoning with scalable recommendation tools. Our approach delegates full-ranking tasks to traditional models while utilizing LLMs to (i) integrate multiple recommendation outputs based on personalized tool suitability and (ii) reason over substitute and complement relationships grounded in user history. This design mitigates hallucination, scales to large catalogs, and enhances recommendation relevance through relational reasoning. Through extensive experiments on three public grocery datasets, we show that our framework achieves superior full-ranking performance, yielding on average a twofold improvement over its underlying tools. We also introduce a new LLM-based evaluation metric that jointly measures semantic alignment and ranking correctness.
☆ KEO: Knowledge Extraction on OMIn via Knowledge Graphs and RAG for Safety-Critical Aviation Maintenance
We present Knowledge Extraction on OMIn (KEO), a domain-specific knowledge extraction and reasoning framework with large language models (LLMs) in safety-critical contexts. Using the Operations and Maintenance Intelligence (OMIn) dataset, we construct a QA benchmark spanning global sensemaking and actionable maintenance tasks. KEO builds a structured Knowledge Graph (KG) and integrates it into a retrieval-augmented generation (RAG) pipeline, enabling more coherent, dataset-wide reasoning than traditional text-chunk RAG. We evaluate locally deployable LLMs (Gemma-3, Phi-4, Mistral-Nemo) and employ stronger models (GPT-4o, Llama-3.3) as judges. Experiments show that KEO markedly improves global sensemaking by revealing patterns and system-level insights, while text-chunk RAG remains effective for fine-grained procedural tasks requiring localized retrieval. These findings underscore the promise of KG-augmented LLMs for secure, domain-specific QA and their potential in high-stakes reasoning.
☆ Automated Research Article Classification and Recommendation Using NLP and ML
In the digital era, the exponential growth of scientific publications has made it increasingly difficult for researchers to efficiently identify and access relevant work. This paper presents an automated framework for research article classification and recommendation that leverages Natural Language Processing (NLP) techniques and machine learning. Using a large-scale arXiv.org dataset spanning more than three decades, we evaluate multiple feature extraction approaches (TF--IDF, Count Vectorizer, Sentence-BERT, USE, Mirror-BERT) in combination with diverse machine learning classifiers (Logistic Regression, SVM, Na\"ive Bayes, Random Forest, Gradient Boosted Trees, and k-Nearest Neighbour). Our experiments show that Logistic Regression with TF--IDF consistently yields the best classification performance, achieving an accuracy of 69\%. To complement classification, we incorporate a recommendation module based on the cosine similarity of vectorized articles, enabling efficient retrieval of related research papers. The proposed system directly addresses the challenge of information overload in digital libraries and demonstrates a scalable, data-driven solution to support literature discovery.
comment: 8 pages, 4 figures, Accepted in Foundation and Large Language Models (FLLM2025)
♻ ☆ FedFlex: Federated Learning for Diverse Netflix Recommendations
The drive for personalization in recommender systems creates a tension between user privacy and the risk of "filter bubbles". Although federated learning offers a promising paradigm for privacy-preserving recommendations, its impact on diversity remains unclear. We introduce FedFlex, a two-stage framework that combines local, on-device fine-tuning of matrix factorization models (SVD and BPR) with a lightweight Maximal Marginal Relevance (MMR) re-ranking step to promote diversity. We conducted the first live user study of a federated recommender, collecting behavioral data and feedback during a two-week online deployment. Our results show that FedFlex successfully engages users, with BPR outperforming SVD in click-through rate. Re-ranking with MMR consistently improved ranking quality (nDCG) across both models, with statistically significant gains, particularly for BPR. Diversity effects varied: MMR increased coverage for both models and improved intra-list diversity for BPR, but slightly reduced it for SVD, suggesting different interactions between personalization and diversification across models. Our exit questionnaire responses indicated that most users expressed no clear preference between re-ranked and unprocessed lists, implying that increased diversity did not substantially reduce user satisfaction.
♻ ☆ Contrastive Learning Using Graph Embeddings for Domain Adaptation of Language Models in the Process Industry EMNLP 2025
Recent trends in NLP utilize knowledge graphs (KGs) to enhance pretrained language models by incorporating additional knowledge from the graph structures to learn domain-specific terminology or relationships between documents that might otherwise be overlooked. This paper explores how SciNCL, a graph-aware neighborhood contrastive learning methodology originally designed for scientific publications, can be applied to the process industry domain, where text logs contain crucial information about daily operations and are often structured as sparse KGs. Our experiments demonstrate that language models fine-tuned with triplets derived from graph embeddings (GE) outperform a state-of-the-art mE5-large text encoder by 9.8-14.3% (5.45-7.96p) on the proprietary process industry text embedding benchmark (PITEB) while having 3 times fewer parameters.
comment: accepted to EMNLP 2025 (industry track)
♻ ☆ Text Clustering as Classification with LLMs
Text clustering serves as a fundamental technique for organizing and interpreting unstructured textual data, particularly in contexts where manual annotation is prohibitively costly. With the rapid advancement of Large Language Models (LLMs) and their demonstrated effectiveness across a broad spectrum of NLP tasks, an emerging body of research has begun to explore their potential in the domain of text clustering. However, existing LLM-based approaches still rely on fine-tuned embedding models and sophisticated similarity metrics, rendering them computationally intensive and necessitating domain-specific adaptation. To address these limitations, we propose a novel framework that reframes text clustering as a classification task by harnessing the in-context learning capabilities of LLMs. Our framework eliminates the need for fine-tuning embedding models or intricate clustering algorithms. It comprises two key steps: first, the LLM is prompted to generate a set of candidate labels based on the dataset and then merges semantically similar labels; second, it assigns the most appropriate label to each text sample. By leveraging the advanced natural language understanding and generalization capabilities of LLMs, the proposed approach enables effective clustering with minimal human intervention. Experimental results on diverse datasets demonstrate that our framework achieves comparable or superior performance to state-of-the-art embedding-based clustering techniques, while significantly reducing computational complexity and resource requirements. These findings underscore the transformative potential of LLMs in simplifying and enhancing text clustering tasks. We make our code available to the public for utilization at https://github.com/ECNU-Text-Computing/Text-Clustering-via-LLM. We also provide the supplementary Appendix within the repository.
comment: 11 pages, 3 figures
♻ ☆ Soft Reasoning Paths for Knowledge Graph Completion IJCAI 2025
Reasoning paths are reliable information in knowledge graph completion (KGC) in which algorithms can find strong clues of the actual relation between entities. However, in real-world applications, it is difficult to guarantee that computationally affordable paths exist toward all candidate entities. According to our observation, the prediction accuracy drops significantly when paths are absent. To make the proposed algorithm more stable against the missing path circumstances, we introduce soft reasoning paths. Concretely, a specific learnable latent path embedding is concatenated to each relation to help better model the characteristics of the corresponding paths. The combination of the relation and the corresponding learnable embedding is termed a soft path in our paper. By aligning the soft paths with the reasoning paths, a learnable embedding is guided to learn a generalized path representation of the corresponding relation. In addition, we introduce a hierarchical ranking strategy to make full use of information about the entity, relation, path, and soft path to help improve both the efficiency and accuracy of the model. Extensive experimental results illustrate that our algorithm outperforms the compared state-of-the-art algorithms by a notable margin. The code will be made publicly available after the paper is officially accepted.
comment: Accepted by IJCAI 2025
♻ ☆ Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning NeurIPS 2025
Retrieval-augmented generation (RAG) is widely utilized to incorporate external knowledge into large language models, thereby enhancing factuality and reducing hallucinations in question-answering (QA) tasks. A standard RAG pipeline consists of several components, such as query rewriting, document retrieval, document filtering, and answer generation. However, these components are typically optimized separately through supervised fine-tuning, which can lead to misalignments between the objectives of individual components and the overarching aim of generating accurate answers. Although recent efforts have explored using reinforcement learning (RL) to optimize specific RAG components, these approaches often focus on simple pipelines with only two components or do not adequately address the complex interdependencies and collaborative interactions among the modules. To overcome these limitations, we propose treating the complex RAG pipeline with multiple components as a multi-agent cooperative task, in which each component can be regarded as an RL agent. Specifically, we present MMOA-RAG, Multi-Module joint Optimization Algorithm for RAG, which employs multi-agent reinforcement learning to harmonize all agents' goals toward a unified reward, such as the F1 score of the final answer. Experiments conducted on various QA benchmarks demonstrate that MMOA-RAG effectively boost the overall performance of the pipeline and outperforms existing baselines. Furthermore, comprehensive ablation studies validate the contributions of individual components and demonstrate MMOA-RAG can be adapted to different RAG pipelines and benchmarks.
comment: NeurIPS 2025
♻ ☆ Boosting Text-to-Chart Retrieval through Training with Synthesized Semantic Insights
Charts are crucial for data analysis and decision-making.Text-to-chart retrieval systems have become increasingly important for Business Intelligence (BI), where users need to find relevant charts that match their analytical needs. These needs can be categorized into precise queries that are well-specified and fuzzy queries that are more exploratory -- both require understanding the semantics and context of the charts. However, existing text-to-chart retrieval solutions often fail to capture the semantic content and contextual information of charts, primarily due to the lack of comprehensive metadata (or semantic insights). To address this limitation, we propose a training data development pipeline that automatically synthesizes hierarchical semantic insights for charts, covering visual patterns (visual-oriented), statistical properties (statistics-oriented), and practical applications (task-oriented), which produces 207,498 semantic insights for 69,166 charts. Based on these, we train a CLIP-based model named ChartFinder to learn better representations of charts for text-to-chart retrieval. Our method leverages rich semantic insights during the training phase to develop a model that understands both visual and semantic aspects of charts.To evaluate text-to-chart retrieval performance, we curate the first benchmark, CRBench, for this task with 21,862 charts and 326 text queries from real-world BI applications, with ground-truth labels verified by the crowd workers.Experiments show that ChartFinder significantly outperforms existing methods in text-to-chart retrieval tasks across various settings. For precise queries, ChartFinder achieves up to 66.9% NDCG@10, which is 11.58% higher than state-of-the-art models. In fuzzy query tasks, our method also demonstrates consistent improvements, with an average increase of 5% across nearly all metrics.
comment: Need to be revised
♻ ☆ GEM-Bench: A Benchmark for Ad-Injected Response Generation within Generative Engine Marketing
Generative Engine Marketing (GEM) is an emerging ecosystem for monetizing generative engines, such as LLM-based chatbots, by seamlessly integrating relevant advertisements into their responses. At the core of GEM lies the generation and evaluation of ad-injected responses. However, existing benchmarks are not specifically designed for this purpose, which limits future research. To address this gap, we propose GEM-Bench, the first comprehensive benchmark for ad-injected response generation in GEM. GEM-Bench includes three curated datasets covering both chatbot and search scenarios, a metric ontology that captures multiple dimensions of user satisfaction and engagement, and several baseline solutions implemented within an extensible multi-agent framework. Our preliminary results indicate that, while simple prompt-based methods achieve reasonable engagement such as click-through rate, they often reduce user satisfaction. In contrast, approaches that insert ads based on pre-generated ad-free responses help mitigate this issue but introduce additional overhead. These findings highlight the need for future research on designing more effective and efficient solutions for generating ad-injected responses in GEM. The benchmark and all related resources are publicly available at https://gem-bench.org/.
comment: Include more experimental results and supplementary materials
Multimedia
☆ Controllable Audio-Visual Viewpoint Generation from 360° Spatial Information
The generation of sounding videos has seen significant advancements with the advent of diffusion models. However, existing methods often lack the fine-grained control needed to generate viewpoint-specific content from larger, immersive 360-degree environments. This limitation restricts the creation of audio-visual experiences that are aware of off-camera events. To the best of our knowledge, this is the first work to introduce a framework for controllable audio-visual generation, addressing this unexplored gap. Specifically, we propose a diffusion model by introducing a set of powerful conditioning signals derived from the full 360-degree space: a panoramic saliency map to identify regions of interest, a bounding-box-aware signed distance map to define the target viewpoint, and a descriptive caption of the entire scene. By integrating these controls, our model generates spatially-aware viewpoint videos and audios that are coherently influenced by the broader, unseen environmental context, introducing a strong controllability that is essential for realistic and immersive audio-visual generation. We show audiovisual examples proving the effectiveness of our framework.
☆ Segment-Factorized Full-Song Generation on Symbolic Piano Music NeurIPS 2025
We propose the Segmented Full-Song Model (SFS) for symbolic full-song generation. The model accepts a user-provided song structure and an optional short seed segment that anchors the main idea around which the song is developed. By factorizing a song into segments and generating each one through selective attention to related segments, the model achieves higher quality and efficiency compared to prior work. To demonstrate its suitability for human-AI interaction, we further wrap SFS into a web application that enables users to iteratively co-create music on a piano roll with customizable structures and flexible ordering.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: AI for Music
☆ FoleyGRAM: Video-to-Audio Generation with GRAM-Aligned Multimodal Encoders IJCNN 2025
In this work, we present FoleyGRAM, a novel approach to video-to-audio generation that emphasizes semantic conditioning through the use of aligned multimodal encoders. Building on prior advancements in video-to-audio generation, FoleyGRAM leverages the Gramian Representation Alignment Measure (GRAM) to align embeddings across video, text, and audio modalities, enabling precise semantic control over the audio generation process. The core of FoleyGRAM is a diffusion-based audio synthesis model conditioned on GRAM-aligned embeddings and waveform envelopes, ensuring both semantic richness and temporal alignment with the corresponding input video. We evaluate FoleyGRAM on the Greatest Hits dataset, a standard benchmark for video-to-audio models. Our experiments demonstrate that aligning multimodal encoders using GRAM enhances the system's ability to semantically align generated audio with video content, advancing the state of the art in video-to-audio synthesis.
comment: Acepted at IJCNN 2025
☆ StereoSync: Spatially-Aware Stereo Audio Generation from Video IJCNN 2025
Although audio generation has been widely studied over recent years, video-aligned audio generation still remains a relatively unexplored frontier. To address this gap, we introduce StereoSync, a novel and efficient model designed to generate audio that is both temporally synchronized with a reference video and spatially aligned with its visual context. Moreover, StereoSync also achieves efficiency by leveraging pretrained foundation models, reducing the need for extensive training while maintaining high-quality synthesis. Unlike existing methods that primarily focus on temporal synchronization, StereoSync introduces a significant advancement by incorporating spatial awareness into video-aligned audio generation. Indeed, given an input video, our approach extracts spatial cues from depth maps and bounding boxes, using them as cross-attention conditioning in a diffusion-based audio generation model. Such an approach allows StereoSync to go beyond simple synchronization, producing stereo audio that dynamically adapts to the spatial structure and movement of a video scene. We evaluate StereoSync on Walking The Maps, a curated dataset comprising videos from video games that feature animated characters walking through diverse environments. Experimental results demonstrate the ability of StereoSync to achieve both temporal and spatial alignment, advancing the state of the art in video-to-audio generation and resulting in a significantly more immersive and realistic audio experience.
comment: Accepted at IJCNN 2025
☆ When and How to Cut Classical Concerts? A Multimodal Automated Video Editing Approach
Automated video editing remains an underexplored task in the computer vision and multimedia domains, especially when contrasted with the growing interest in video generation and scene understanding. In this work, we address the specific challenge of editing multicamera recordings of classical music concerts by decomposing the problem into two key sub-tasks: when to cut and how to cut. Building on recent literature, we propose a novel multimodal architecture for the temporal segmentation task (when to cut), which integrates log-mel spectrograms from the audio signals, plus an optional image embedding, and scalar temporal features through a lightweight convolutional-transformer pipeline. For the spatial selection task (how to cut), we improve the literature by updating from old backbones, e.g. ResNet, with a CLIP-based encoder and constraining distractor selection to segments from the same concert. Our dataset was constructed following a pseudo-labeling approach, in which raw video data was automatically clustered into coherent shot segments. We show that our models outperformed previous baselines in detecting cut points and provide competitive visual shot selection, advancing the state of the art in multimodal automated video editing.
♻ ☆ GRAFT: GRaPH and Table Reasoning for Textual Alignment -- A Benchmark for Structured Instruction Following and Visual Reasoning
GRAFT is a structured multimodal benchmark for evaluating models on instruction-following, visual reasoning, and visual-textual alignment tasks. It features programmatically generated charts and synthetically rendered tables, created with Python visualization libraries to ensure control over data semantics, structure, and clarity. Each GRAFT instance pairs a chart or table image with a systematically generated, multi-step analytical question based solely on visual content. Answers are provided in structured formats such as JSON or YAML, supporting consistent evaluation of both reasoning and output format. The benchmark introduces a taxonomy of reasoning types including comparison, trend identification, ranking, aggregation, proportion estimation, and anomaly detection to enable comprehensive assessment. Reference answers follow strict factual and formatting guidelines for precise, aspect-based evaluation. GRAFT offers a unified, scalable framework for fine-grained benchmarking of multimodal models on visually grounded, structured reasoning tasks, setting a new evaluation standard in this field.
comment: 25 pages, 10 tables, 3 figures
Computation and Language
☆ Paper2Video: Automatic Video Generation from Scientific Papers
Academic presentation videos have become an essential medium for research communication, yet producing them remains highly labor-intensive, often requiring hours of slide design, recording, and editing for a short 2 to 10 minutes video. Unlike natural video, presentation video generation involves distinctive challenges: inputs from research papers, dense multi-modal information (text, figures, tables), and the need to coordinate multiple aligned channels such as slides, subtitles, speech, and human talker. To address these challenges, we introduce PaperTalker, the first benchmark of 101 research papers paired with author-created presentation videos, slides, and speaker metadata. We further design four tailored evaluation metrics--Meta Similarity, PresentArena, PresentQuiz, and IP Memory--to measure how videos convey the paper's information to the audience. Building on this foundation, we propose PaperTalker, the first multi-agent framework for academic presentation video generation. It integrates slide generation with effective layout refinement by a novel effective tree search visual choice, cursor grounding, subtitling, speech synthesis, and talking-head rendering, while parallelizing slide-wise generation for efficiency. Experiments on Paper2Video demonstrate that the presentation videos produced by our approach are more faithful and informative than existing baselines, establishing a practical step toward automated and ready-to-use academic video generation. Our dataset, agent, and code are available at https://github.com/showlab/Paper2Video.
comment: 20 pages, 8 figures
☆ From Noisy Traces to Stable Gradients: Bias-Variance Optimized Preference Optimization for Aligning Large Reasoning Models
Large reasoning models (LRMs) generate intermediate reasoning traces before producing final answers, yielding strong gains on multi-step and mathematical tasks. Yet aligning LRMs with human preferences, a crucial prerequisite for model deployment, remains underexplored. The statistically correct objective for preference alignment requires marginalizing over reasoning traces, but this computation is intractable in practice. A common workaround optimizes a single sampled trajectory, which introduces substantial gradient variance from stochastic trace sampling. To address this challenge, we frame preference optimization for LRMs through the lens of the bias--variance trade-off and propose Bias--Variance Optimized Preference Optimization (BVPO), a simple, drop-in method that mixes two gradient estimators: a high-variance trace-based estimator and a low-variance empty-trace estimator obtained by disabling reasoning trace generation. Our theory shows that BVPO strictly reduces trace-induced variance for any nontrivial mixture, provides a closed-form choice of the mixing weight that minimizes mean-squared error relative to the true marginal gradient, and under standard smoothness and step-size conditions, tightens classical convergence bounds for stochastic gradient descent. Empirically, BVPO improves alignment over the best baseline by up to 7.8 points on AlpacaEval~2 and 6.8 points on Arena-Hard. Despite being trained only on general conversational data, BVPO also boosts reasoning performance for base models by up to 4.0 points on the average of six math reasoning benchmarks. These results identify variance from trace sampling as a key bottleneck and demonstrate that directly optimizing the bias--variance trade-off yields more stable training and stronger overall performance.
☆ Learning to Interpret Weight Differences in Language Models
Finetuning (pretrained) language models is a standard approach for updating their internal parametric knowledge and specializing them to new tasks and domains. However, the corresponding model weight changes ("weight diffs") are not generally interpretable. While inspecting the finetuning dataset can give a sense of how the model might have changed, these datasets are often not publicly available or are too large to work with directly. Towards the goal of comprehensively understanding weight diffs in natural language, we introduce Diff Interpretation Tuning (DIT), a method that trains models to describe their own finetuning-induced modifications. Our approach uses synthetic, labeled weight diffs to train a DIT adapter, which can be applied to a compatible finetuned model to make it describe how it has changed. We demonstrate in two proof-of-concept settings (reporting hidden behaviors and summarizing finetuned knowledge) that our method enables models to describe their finetuning-induced modifications using accurate natural language descriptions.
comment: The weight diffs and DIT adapters trained in the paper can be found at https://huggingface.co/diff-interpretation-tuning/loras
☆ Finish First, Perfect Later: Test-Time Token-Level Cross-Validation for Diffusion Large Language Models
Diffusion large language models (dLLMs) have recently emerged as a promising alternative to autoregressive (AR) models, offering advantages such as accelerated parallel decoding and bidirectional context modeling. However, the vanilla decoding strategy in discrete dLLMs suffers from a critical limitation: once a token is accepted, it can no longer be revised in subsequent steps. As a result, early mistakes persist across iterations, harming both intermediate predictions and final output quality. To address this issue, we propose Tolerator (Token-Level Cross-Validation Refinement), a training-free decoding strategy that leverages cross-validation among predicted tokens. Unlike existing methods that follow a single progressive unmasking procedure, Tolerator introduces a two-stage process: (i) sequence fill-up and (ii) iterative refinement by remasking and decoding a subset of tokens while treating the remaining as context. This design enables previously accepted tokens to be reconsidered and corrected when necessary, leading to more reliable diffusion decoding outputs. We evaluate Tolerator on five standard benchmarks covering language understanding, code generation, and mathematics. Experiments show that our method achieves consistent improvements over the baselines under the same computational budget. These findings suggest that decoding algorithms are crucial to realizing the full potential of diffusion large language models. Code and data are publicly available.
comment: 17 pages, 8 figures. Work in progress
☆ TeachLM: Post-Training LLMs for Education Using Authentic Learning Data
The promise of generative AI to revolutionize education is constrained by the pedagogical limits of large language models (LLMs). A major issue is the lack of access to high-quality training data that reflect the learning of actual students. Prompt engineering has emerged as a stopgap, but the ability of prompts to encode complex pedagogical strategies in rule-based natural language is inherently limited. To address this gap we introduce TeachLM - an LLM optimized for teaching through parameter-efficient fine-tuning of state-of-the-art models. TeachLM is trained on a dataset comprised of 100,000 hours of one-on-one, longitudinal student-tutor interactions maintained by Polygence, which underwent a rigorous anonymization process to protect privacy. We use parameter-efficient fine-tuning to develop an authentic student model that enables the generation of high-fidelity synthetic student-tutor dialogues. Building on this capability, we propose a novel multi-turn evaluation protocol that leverages synthetic dialogue generation to provide fast, scalable, and reproducible assessments of the dialogical capabilities of LLMs. Our evaluations demonstrate that fine-tuning on authentic learning data significantly improves conversational and pedagogical performance - doubling student talk time, improving questioning style, increasing dialogue turns by 50%, and greater personalization of instruction.
comment: 28 pages, 9 figures
☆ Slm-mux: Orchestrating small language models for reasoning
With the rapid development of language models, the number of small language models (SLMs) has grown significantly. Although they do not achieve state-of-the-art accuracy, they are more efficient and often excel at specific tasks. This raises a natural question: can multiple SLMs be orchestrated into a system where each contributes effectively, achieving higher accuracy than any individual model? Existing orchestration methods have primarily targeted frontier models (e.g., GPT-4) and perform suboptimally when applied to SLMs. To address this gap, we propose a three-stage approach for orchestrating SLMs. First, we introduce SLM-MUX, a multi-model architecture that effectively coordinates multiple SLMs. Building on this, we develop two optimization strategies: (i) a model selection search that identifies the most complementary SLMs from a given pool, and (ii) test-time scaling tailored to SLM-MUX. Our approach delivers strong results: Compared to existing orchestration methods, our approach achieves up to 13.4% improvement on MATH, 8.8% on GPQA, and 7.0% on GSM8K. With just two SLMS, SLM-MUX outperforms Qwen 2.5 72B on GPQA and GSM8K, and matches its performance on MATH. We further provide theoretical analyses to substantiate the advantages of our method. In summary, we demonstrate that SLMs can be effectively orchestrated into more accurate and efficient systems through the proposed approach.
☆ SwiReasoning: Switch-Thinking in Latent and Explicit for Pareto-Superior Reasoning LLMs
Recent work shows that, beyond discrete reasoning through explicit chain-of-thought steps, which are limited by the boundaries of natural languages, large language models (LLMs) can also reason continuously in latent space, allowing richer information per step and thereby improving token efficiency. Despite this promise, latent reasoning still faces two challenges, especially in training-free settings: 1) purely latent reasoning broadens the search distribution by maintaining multiple implicit paths, which diffuses probability mass, introduces noise, and impedes convergence to a single high-confidence solution, thereby hurting accuracy; and 2) overthinking persists even without explicit text, wasting tokens and degrading efficiency. To address these issues, we introduce SwiReasoning, a training-free framework for LLM reasoning which features two key innovations: 1) SwiReasoning dynamically switches between explicit and latent reasoning, guided by block-wise confidence estimated from entropy trends in next-token distributions, to balance exploration and exploitation and promote timely convergence. 2) By limiting the maximum number of thinking-block switches, SwiReasoning curbs overthinking and improves token efficiency across varying problem difficulties. On widely used mathematics and STEM benchmarks, SwiReasoning consistently improves average accuracy by 1.5%-2.8% across reasoning LLMs of different model families and scales. Furthermore, under constrained budgets, SwiReasoning improves average token efficiency by 56%-79%, with larger gains as budgets tighten.
comment: Code: https://github.com/sdc17/SwiReasoning, Website: https://swireasoning.github.io/
☆ Proactive defense against LLM Jailbreak
The proliferation of powerful large language models (LLMs) has necessitated robust safety alignment, yet these models remain vulnerable to evolving adversarial attacks, including multi-turn jailbreaks that iteratively search for successful queries. Current defenses, primarily reactive and static, often fail to counter these search-based attacks. In this paper, we introduce ProAct, a novel proactive defense framework designed to disrupt and mislead autonomous jailbreaking processes. Our core idea is to intentionally provide adversaries with "spurious responses" that appear to be results of successful jailbreak attacks but contain no actual harmful content. These misleading responses provide false signals to the attacker's internal optimization loop, causing the adversarial search to terminate prematurely and effectively jailbreaking the jailbreak. By conducting extensive experiments across state-of-the-art LLMs, jailbreaking frameworks, and safety benchmarks, our method consistently and significantly reduces attack success rates by up to 92\%. When combined with other defense frameworks, it further reduces the success rate of the latest attack strategies to 0\%. ProAct represents an orthogonal defense strategy that can serve as an additional guardrail to enhance LLM safety against the most effective jailbreaking attacks.
☆ COLE: a Comprehensive Benchmark for French Language Understanding Evaluation ACL
To address the need for a more comprehensive evaluation of French Natural Language Understanding (NLU), we introduce COLE, a new benchmark composed of 23 diverse task covering a broad range of NLU capabilities, including sentiment analysis, paraphrase detection, grammatical judgment, and reasoning, with a particular focus on linguistic phenomena relevant to the French language. We benchmark 94 large language models (LLM), providing an extensive analysis of the current state of French NLU. Our results highlight a significant performance gap between closed- and open-weights models and identify key challenging frontiers for current LLMs, such as zero-shot extractive question-answering (QA), fine-grained word sense disambiguation, and understanding of regional language variations. We release COLE as a public resource to foster further progress in French language modelling.
comment: Submitted to ACL Rolling Review of October
☆ Guided Query Refinement: Multimodal Hybrid Retrieval with Test-Time Optimization
Multimodal encoders have pushed the boundaries of visual document retrieval, matching textual query tokens directly to image patches and achieving state-of-the-art performance on public benchmarks. Recent models relying on this paradigm have massively scaled the sizes of their query and document representations, presenting obstacles to deployment and scalability in real-world pipelines. Furthermore, purely vision-centric approaches may be constrained by the inherent modality gap still exhibited by modern vision-language models. In this work, we connect these challenges to the paradigm of hybrid retrieval, investigating whether a lightweight dense text retriever can enhance a stronger vision-centric model. Existing hybrid methods, which rely on coarse-grained fusion of ranks or scores, fail to exploit the rich interactions within each model's representation space. To address this, we introduce Guided Query Refinement (GQR), a novel test-time optimization method that refines a primary retriever's query embedding using guidance from a complementary retriever's scores. Through extensive experiments on visual document retrieval benchmarks, we demonstrate that GQR allows vision-centric models to match the performance of models with significantly larger representations, while being up to 14x faster and requiring 54x less memory. Our findings show that GQR effectively pushes the Pareto frontier for performance and efficiency in multimodal retrieval. We release our code at https://github.com/IBM/test-time-hybrid-retrieval
☆ A Set of Quebec-French Corpus of Regional Expressions and Terms ACL
The tasks of idiom understanding and dialect understanding are both well-established benchmarks in natural language processing. In this paper, we propose combining them, and using regional idioms as a test of dialect understanding. Towards this end, we propose two new benchmark datasets for the Quebec dialect of French: QFrCoRE, which contains 4,633 instances of idiomatic phrases, and QFrCoRT, which comprises 171 regional instances of idiomatic words. We explain how to construct these corpora, so that our methodology can be replicated for other dialects. Our experiments with 94 LLM demonstrate that our regional idiom benchmarks are a reliable tool for measuring a model's proficiency in a specific dialect.
comment: Submitted to ACL Rolling Review of October
☆ Imperceptible Jailbreaking against Large Language Models
Jailbreaking attacks on the vision modality typically rely on imperceptible adversarial perturbations, whereas attacks on the textual modality are generally assumed to require visible modifications (e.g., non-semantic suffixes). In this paper, we introduce imperceptible jailbreaks that exploit a class of Unicode characters called variation selectors. By appending invisible variation selectors to malicious questions, the jailbreak prompts appear visually identical to original malicious questions on screen, while their tokenization is "secretly" altered. We propose a chain-of-search pipeline to generate such adversarial suffixes to induce harmful responses. Our experiments show that our imperceptible jailbreaks achieve high attack success rates against four aligned LLMs and generalize to prompt injection attacks, all without producing any visible modifications in the written prompt. Our code is available at https://github.com/sail-sg/imperceptible-jailbreaks.
☆ Large Language Models Achieve Gold Medal Performance at International Astronomy & Astrophysics Olympiad
While task-specific demonstrations show early success in applying large language models (LLMs) to automate some astronomical research tasks, they only provide incomplete views of all necessary capabilities in solving astronomy problems, calling for more thorough understanding of LLMs' strengths and limitations. So far, existing benchmarks and evaluations focus on simple question-answering that primarily tests astronomical knowledge and fails to evaluate the complex reasoning required for real-world research in the discipline. Here, we address this gap by systematically benchmarking five state-of-the-art LLMs on the International Olympiad on Astronomy and Astrophysics (IOAA) exams, which are designed to examine deep conceptual understanding, multi-step derivations, and multimodal analysis. With average scores of 85.6% and 84.2%, Gemini 2.5 Pro and GPT-5 (the two top-performing models) not only achieve gold medal level performance but also rank in the top two among ~200-300 participants in all four IOAA theory exams evaluated (2022-2025). In comparison, results on the data analysis exams show more divergence. GPT-5 still excels in the exams with an 88.5% average score, ranking top 10 among the participants in the four most recent IOAAs, while other models' performances drop to 48-76%. Furthermore, our in-depth error analysis underscores conceptual reasoning, geometric reasoning, and spatial visualization (52-79% accuracy) as consistent weaknesses among all LLMs. Hence, although LLMs approach peak human performance in theory exams, critical gaps must be addressed before they can serve as autonomous research agents in astronomy.
comment: 18 pages, 6 figures, to be submitted, comments are welcome
☆ Resource-Efficient Fine-Tuning of LLaMA-3.2-3B for Medical Chain-of-Thought Reasoning
Large Language Models (LLMs) such as GPT-4 and LLaMA have demonstrated remarkable reasoning abilities but require significant computational resources for fine-tuning. This paper presents a resource-efficient fine-tuning approach for LLaMA-3.2-3B to enhance medical chain-of-thought reasoning while operating under constrained GPU and memory settings. Using parameter-efficient tuning techniques such as LoRA and QLoRA, we adapt the base model on publicly available medical reasoning datasets. The model achieves improved reasoning coherence and factual accuracy while reducing memory usage by up to 60% compared to standard full fine-tuning. Experimental evaluation demonstrates that lightweight adaptations can retain strong reasoning capability in medical question-answering tasks. This work highlights practical strategies for deploying LLMs in low-resource research environments and provides insights into balancing efficiency and domain specialization for medical AI systems.
comment: 6 pages, 2 figures. Submitted to arXiv for open access
☆ Reinforce-Ada: An Adaptive Sampling Framework for Reinforce-Style LLM Training
Reinforcement learning applied to large language models (LLMs) for reasoning tasks is often bottlenecked by unstable gradient estimates due to fixed and uniform sampling of responses across prompts. Prior work such as GVM-RAFT addresses this by dynamically allocating inference budget per prompt to minimize stochastic gradient variance under a budget constraint. Inspired by this insight, we propose Reinforce-Ada, an adaptive sampling framework for online RL post-training of LLMs that continuously reallocates sampling effort to the prompts with the greatest uncertainty or learning potential. Unlike conventional two-stage allocation methods, Reinforce-Ada interleaves estimation and sampling in an online successive elimination process, and automatically stops sampling for a prompt once sufficient signal is collected. To stabilize updates, we form fixed-size groups with enforced reward diversity and compute advantage baselines using global statistics aggregated over the adaptive sampling phase. Empirical results across multiple model architectures and reasoning benchmarks show that Reinforce-Ada accelerates convergence and improves final performance compared to GRPO, especially when using the balanced sampling variant. Our work highlights the central role of variance-aware, adaptive data curation in enabling efficient and reliable reinforcement learning for reasoning-capable LLMs. Code is available at https://github.com/RLHFlow/Reinforce-Ada.
comment: 16 pages, 6 figures
☆ AWARE, Beyond Sentence Boundaries: A Contextual Transformer Framework for Identifying Cultural Capital in STEM Narratives
Identifying cultural capital (CC) themes in student reflections can offer valuable insights that help foster equitable learning environments in classrooms. However, themes such as aspirational goals or family support are often woven into narratives, rather than appearing as direct keywords. This makes them difficult to detect for standard NLP models that process sentences in isolation. The core challenge stems from a lack of awareness, as standard models are pre-trained on general corpora, leaving them blind to the domain-specific language and narrative context inherent to the data. To address this, we introduce AWARE, a framework that systematically attempts to improve a transformer model's awareness for this nuanced task. AWARE has three core components: 1) Domain Awareness, adapting the model's vocabulary to the linguistic style of student reflections; 2) Context Awareness, generating sentence embeddings that are aware of the full essay context; and 3) Class Overlap Awareness, employing a multi-label strategy to recognize the coexistence of themes in a single sentence. Our results show that by making the model explicitly aware of the properties of the input, AWARE outperforms a strong baseline by 2.1 percentage points in Macro-F1 and shows considerable improvements across all themes. This work provides a robust and generalizable methodology for any text classification task in which meaning depends on the context of the narrative.
☆ LLM-Hanabi: Evaluating Multi-Agent Gameplays with Theory-of-Mind and Rationale Inference in Imperfect Information Collaboration Game EMNLP 2025
Effective multi-agent collaboration requires agents to infer the rationale behind others' actions, a capability rooted in Theory-of-Mind (ToM). While recent Large Language Models (LLMs) excel at logical inference, their ability to infer rationale in dynamic, collaborative settings remains under-explored. This study introduces LLM-Hanabi, a novel benchmark that uses the cooperative game Hanabi to evaluate the rationale inference and ToM of LLMs. Our framework features an automated evaluation system that measures both game performance and ToM proficiency. Across a range of models, we find a significant positive correlation between ToM and in-game success. Notably, first-order ToM (interpreting others' intent) correlates more strongly with performance than second-order ToM (predicting others' interpretations). These findings highlight that for effective AI collaboration, the ability to accurately interpret a partner's rationale is more critical than higher-order reasoning. We conclude that prioritizing first-order ToM is a promising direction for enhancing the collaborative capabilities of future models.
comment: EMNLP 2025 Wordplay
☆ Mind Your Tone: Investigating How Prompt Politeness Affects LLM Accuracy (short paper) ACL 2025
The wording of natural language prompts has been shown to influence the performance of large language models (LLMs), yet the role of politeness and tone remains underexplored. In this study, we investigate how varying levels of prompt politeness affect model accuracy on multiple-choice questions. We created a dataset of 50 base questions spanning mathematics, science, and history, each rewritten into five tone variants: Very Polite, Polite, Neutral, Rude, and Very Rude, yielding 250 unique prompts. Using ChatGPT 4o, we evaluated responses across these conditions and applied paired sample t-tests to assess statistical significance. Contrary to expectations, impolite prompts consistently outperformed polite ones, with accuracy ranging from 80.8% for Very Polite prompts to 84.8% for Very Rude prompts. These findings differ from earlier studies that associated rudeness with poorer outcomes, suggesting that newer LLMs may respond differently to tonal variation. Our results highlight the importance of studying pragmatic aspects of prompting and raise broader questions about the social dimensions of human-AI interaction.
comment: 5 pages, 3 tables; includes Limitations and Ethical Considerations sections; short paper under submission to Findings of ACL 2025
☆ A First Context-Free Grammar Applied to Nawatl Corpora Augmentation
In this article we introduce a context-free grammar (CFG) for the Nawatl language. Nawatl (or Nahuatl) is an Amerindian language of the $\pi$-language type, i.e. a language with few digital resources, in which the corpora available for machine learning are virtually non-existent. The objective here is to generate a significant number of grammatically correct artificial sentences, in order to increase the corpora available for language model training. We want to show that a grammar enables us significantly to expand a corpus in Nawatl which we call $\pi$-\textsc{yalli}. The corpus, thus enriched, enables us to train algorithms such as FastText and to evaluate them on sentence-level semantic tasks. Preliminary results show that by using the grammar, comparative improvements are achieved over some LLMs. However, it is observed that to achieve more significant improvement, grammars that model the Nawatl language even more effectively are required.
comment: 11 pages, 7 tables, 1 figure
☆ On Structured State-Space Duality
Structured State-Space Duality (SSD) [Dao & Gu, ICML 2024] is an equivalence between a simple Structured State-Space Model (SSM) and a masked attention mechanism. In particular, a state-space model with a scalar-times-identity state matrix is equivalent to a masked self-attention with a $1$-semiseparable causal mask. Consequently, the same sequence transformation (model) has two algorithmic realizations: as a linear-time $O(T)$ recurrence or as a quadratic-time $O(T^2)$ attention. In this note, we formalize and generalize this duality: (i) we extend SSD from the scalar-identity case to general diagonal SSMs (diagonal state matrices); (ii) we show that these diagonal SSMs match the scalar case's training complexity lower bounds while supporting richer dynamics; (iii) we establish a necessary and sufficient condition under which an SSM is equivalent to $1$-semiseparable masked attention; and (iv) we show that such duality fails to extend to standard softmax attention due to rank explosion. Together, these results tighten bridge between recurrent SSMs and Transformers, and widen the design space for expressive yet efficient sequence models.
☆ ONNX-Net: Towards Universal Representations and Instant Performance Prediction for Neural Architectures
Neural architecture search (NAS) automates the design process of high-performing architectures, but remains bottlenecked by expensive performance evaluation. Most existing studies that achieve faster evaluation are mostly tied to cell-based search spaces and graph encodings tailored to those individual search spaces, limiting their flexibility and scalability when applied to more expressive search spaces. In this work, we aim to close the gap of individual search space restrictions and search space dependent network representations. We present ONNX-Bench, a benchmark consisting of a collection of neural networks in a unified format based on ONNX files. ONNX-Bench includes all open-source NAS-bench-based neural networks, resulting in a total size of more than 600k {architecture, accuracy} pairs. This benchmark allows creating a shared neural network representation, ONNX-Net, able to represent any neural architecture using natural language descriptions acting as an input to a performance predictor. This text-based encoding can accommodate arbitrary layer types, operation parameters, and heterogeneous topologies, enabling a single surrogate to generalise across all neural architectures rather than being confined to cell-based search spaces. Experiments show strong zero-shot performance across disparate search spaces using only a small amount of pretraining samples, enabling the unprecedented ability to evaluate any neural network architecture instantly.
comment: Our code is available at: https://github.com/shiwenqin/ONNX-Net
☆ MARS: Optimizing Dual-System Deep Research via Multi-Agent Reinforcement Learning
Large Reasoning Models (LRMs) often exhibit a tendency for overanalysis in simple tasks, where the models excessively utilize System 2-type, deliberate reasoning, leading to inefficient token generation. Furthermore, these models face challenges in adapting their reasoning capabilities to rapidly changing environments due to the static nature of their pretraining data. To address these issues, advancing Large Language Models (LLMs) for complex reasoning tasks requires innovative approaches that bridge intuitive and deliberate cognitive processes, akin to human cognition's dual-system dynamic. This paper introduces a Multi-Agent System for Deep ReSearch (MARS) enabling seamless integration of System 1's fast, intuitive thinking with System 2's deliberate reasoning within LLMs. MARS strategically integrates multiple external tools, such as Google Search, Google Scholar, and Python Interpreter, to access up-to-date information and execute complex computations, while creating a specialized division of labor where System 1 efficiently processes and summarizes high-volume external information, providing distilled insights that expand System 2's reasoning context without overwhelming its capacity. Furthermore, we propose a multi-agent reinforcement learning framework extending Group Relative Policy Optimization to simultaneously optimize both systems with multi-turn tool interactions, bin-packing optimization, and sample balancing strategies that enhance collaborative efficiency. Extensive experiments demonstrate MARS achieves substantial improvements of 3.86% on the challenging Humanity's Last Exam (HLE) benchmark and an average gain of 8.9% across 7 knowledge-intensive tasks, validating the effectiveness of our dual-system paradigm for complex reasoning in dynamic information environments.
comment: Ongoing Work
☆ The Geometry of Truth: Layer-wise Semantic Dynamics for Hallucination Detection in Large Language Models
Large Language Models (LLMs) often produce fluent yet factually incorrect statements-a phenomenon known as hallucination-posing serious risks in high-stakes domains. We present Layer-wise Semantic Dynamics (LSD), a geometric framework for hallucination detection that analyzes the evolution of hidden-state semantics across transformer layers. Unlike prior methods that rely on multiple sampling passes or external verification sources, LSD operates intrinsically within the model's representational space. Using margin-based contrastive learning, LSD aligns hidden activations with ground-truth embeddings derived from a factual encoder, revealing a distinct separation in semantic trajectories: factual responses preserve stable alignment, while hallucinations exhibit pronounced semantic drift across depth. Evaluated on the TruthfulQA and synthetic factual-hallucination datasets, LSD achieves an F1-score of 0.92, AUROC of 0.96, and clustering accuracy of 0.89, outperforming SelfCheckGPT and Semantic Entropy baselines while requiring only a single forward pass. This efficiency yields a 5-20x speedup over sampling-based methods without sacrificing precision or interpretability. LSD offers a scalable, model-agnostic mechanism for real-time hallucination monitoring and provides new insights into the geometry of factual consistency within large language models.
comment: Comments: 14 pages, 14 figures, 5 tables. Code available at: https://github.com/sirraya-tech/Sirraya_LSD_Code
☆ Do LLMs Align with My Task? Evaluating Text-to-SQL via Dataset Alignment
Supervised Fine-Tuning (SFT) is an effective method for adapting Large Language Models (LLMs) on downstream tasks. However, variability in training data can hinder a model's ability to generalize across domains. This paper studies the problem of dataset alignment for Natural Language to SQL (NL2SQL or text to SQL), examining how well SFT training data matches the structural characteristics of target queries and how this alignment impacts model performance. We hypothesize that alignment can be accurately estimated by comparing the distributions of structural SQL features across the training set, target data, and the model's predictions prior to SFT. Through comprehensive experiments on three large cross-domain NL2SQL benchmarks and multiple model families, we show that structural alignment is a strong predictor of fine-tuning success. When alignment is high, SFT yields substantial gains in accuracy and SQL generation quality; when alignment is low, improvements are marginal or absent. These findings highlight the importance of alignment-aware data selection for effective fine-tuning and generalization in NL2SQL tasks.
☆ Retrieval-Augmented Code Generation: A Survey with Focus on Repository-Level Approaches
Recent advancements in large language models (LLMs) have substantially improved automated code generation. While function-level and file-level generation have achieved promising results, real-world software development typically requires reasoning across entire repositories. This gives rise to the challenging task of Repository-Level Code Generation (RLCG), where models must capture long-range dependencies, ensure global semantic consistency, and generate coherent code spanning multiple files or modules. To address these challenges, Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm that integrates external retrieval mechanisms with LLMs, enhancing context-awareness and scalability. In this survey, we provide a comprehensive review of research on Retrieval-Augmented Code Generation (RACG), with an emphasis on repository-level approaches. We categorize existing work along several dimensions, including generation strategies, retrieval modalities, model architectures, training paradigms, and evaluation protocols. Furthermore, we summarize widely used datasets and benchmarks, analyze current limitations, and outline key challenges and opportunities for future research. Our goal is to establish a unified analytical framework for understanding this rapidly evolving field and to inspire continued progress in AI-powered software engineering.
☆ SocialHarmBench: Revealing LLM Vulnerabilities to Socially Harmful Requests
Large language models (LLMs) are increasingly deployed in contexts where their failures can have direct sociopolitical consequences. Yet, existing safety benchmarks rarely test vulnerabilities in domains such as political manipulation, propaganda and disinformation generation, or surveillance and information control. We introduce SocialHarmBench, a dataset of 585 prompts spanning 7 sociopolitical categories and 34 countries, designed to surface where LLMs most acutely fail in politically charged contexts. Our evaluations reveal several shortcomings: open-weight models exhibit high vulnerability to harmful compliance, with Mistral-7B reaching attack success rates as high as 97% to 98% in domains such as historical revisionism, propaganda, and political manipulation. Moreover, temporal and geographic analyses show that LLMs are most fragile when confronted with 21st-century or pre-20th-century contexts, and when responding to prompts tied to regions such as Latin America, the USA, and the UK. These findings demonstrate that current safeguards fail to generalize to high-stakes sociopolitical settings, exposing systematic biases and raising concerns about the reliability of LLMs in preserving human rights and democratic values. We share the SocialHarmBench benchmark at https://huggingface.co/datasets/psyonp/SocialHarmBench.
☆ Detecting Distillation Data from Reasoning Models
Reasoning distillation has emerged as an efficient and powerful paradigm for enhancing the reasoning capabilities of large language models. However, reasoning distillation may inadvertently cause benchmark contamination, where evaluation data included in distillation datasets can inflate performance metrics of distilled models. In this work, we formally define the task of distillation data detection, which is uniquely challenging due to the partial availability of distillation data. Then, we propose a novel and effective method Token Probability Deviation (TBD), which leverages the probability patterns of the generated output tokens. Our method is motivated by the analysis that distilled models tend to generate near-deterministic tokens for seen questions, while producing more low-probability tokens for unseen questions. Our key idea behind TBD is to quantify how far the generated tokens' probabilities deviate from a high reference probability. In effect, our method achieves competitive detection performance by producing lower scores for seen questions than for unseen questions. Extensive experiments demonstrate the effectiveness of our method, achieving an AUC of 0.918 and a TPR@1% FPR of 0.470 on the S1 dataset.
☆ When Models Lie, We Learn: Multilingual Span-Level Hallucination Detection with PsiloQA
Hallucination detection remains a fundamental challenge for the safe and reliable deployment of large language models (LLMs), especially in applications requiring factual accuracy. Existing hallucination benchmarks often operate at the sequence level and are limited to English, lacking the fine-grained, multilingual supervision needed for a comprehensive evaluation. In this work, we introduce PsiloQA, a large-scale, multilingual dataset annotated with span-level hallucinations across 14 languages. PsiloQA is constructed through an automated three-stage pipeline: generating question-answer pairs from Wikipedia using GPT-4o, eliciting potentially hallucinated answers from diverse LLMs in a no-context setting, and automatically annotating hallucinated spans using GPT-4o by comparing against golden answers and retrieved context. We evaluate a wide range of hallucination detection methods -- including uncertainty quantification, LLM-based tagging, and fine-tuned encoder models -- and show that encoder-based models achieve the strongest performance across languages. Furthermore, PsiloQA demonstrates effective cross-lingual generalization and supports robust knowledge transfer to other benchmarks, all while being significantly more cost-efficient than human-annotated datasets. Our dataset and results advance the development of scalable, fine-grained hallucination detection in multilingual settings.
☆ Instability in Downstream Task Performance During LLM Pretraining EMNLP 2025
When training large language models (LLMs), it is common practice to track downstream task performance throughout the training process and select the checkpoint with the highest validation score. However, downstream metrics often exhibit substantial fluctuations, making it difficult to identify the checkpoint that truly represents the best-performing model. In this study, we empirically analyze the stability of downstream task performance in an LLM trained on diverse web-scale corpora. We find that task scores frequently fluctuate throughout training, both at the aggregate and example levels. To address this instability, we investigate two post-hoc checkpoint integration methods: checkpoint averaging and ensemble, motivated by the hypothesis that aggregating neighboring checkpoints can reduce performance volatility. We demonstrate both empirically and theoretically that these methods improve downstream performance stability without requiring any changes to the training procedure.
comment: Accepted to EMNLP 2025 Findings
☆ How I Built ASR for Endangered Languages with a Spoken Dictionary
Nearly half of the world's languages are endangered. Speech technologies such as Automatic Speech Recognition (ASR) are central to revival efforts, yet most languages remain unsupported because standard pipelines expect utterance-level supervised data. Speech data often exist for endangered languages but rarely match these formats. Manx Gaelic ($\sim$2,200 speakers), for example, has had transcribed speech since 1948, yet remains unsupported by modern systems. In this paper, we explore how little data, and in what form, is needed to build ASR for critically endangered languages. We show that a short-form pronunciation resource is a viable alternative, and that 40 minutes of such data produces usable ASR for Manx ($<$50\% WER). We replicate our approach, applying it to Cornish ($\sim$600 speakers), another critically endangered language. Results show that the barrier to entry, in quantity and form, is far lower than previously thought, giving hope to endangered language communities that cannot afford to meet the requirements arbitrarily imposed upon them.
☆ Visual Representations inside the Language Model
Despite interpretability work analyzing VIT encoders and transformer activations, we don't yet understand why Multimodal Language Models (MLMs) struggle on perception-heavy tasks. We offer an under-studied perspective by examining how popular MLMs (LLaVA-OneVision, Qwen2.5-VL, and Llama-3-LLaVA-NeXT) process their visual key-value tokens. We first study the flow of visual information through the language model, finding that image value tokens encode sufficient information to perform several perception-heavy tasks zero-shot: segmentation, semantic correspondence, temporal correspondence, and referring expression detection. We find that while the language model does augment the visual information received from the projection of input visual encodings-which we reveal correlates with overall MLM perception capability-it contains less visual information on several tasks than the equivalent visual encoder (SigLIP) that has not undergone MLM finetuning. Further, we find that the visual information corresponding to input-agnostic image key tokens in later layers of language models contains artifacts which reduce perception capability of the overall MLM. Next, we discuss controlling visual information in the language model, showing that adding a text prefix to the image input improves perception capabilities of visual representations. Finally, we reveal that if language models were able to better control their visual information, their perception would significantly improve; e.g., in 33.3% of Art Style questions in the BLINK benchmark, perception information present in the language model is not surfaced to the output! Our findings reveal insights into the role of key-value tokens in multimodal systems, paving the way for deeper mechanistic interpretability of MLMs and suggesting new directions for training their visual encoder and language model components.
comment: Accepted to COLM 2025
☆ Hybrid Architectures for Language Models: Systematic Analysis and Design Insights
Recent progress in large language models demonstrates that hybrid architectures--combining self-attention mechanisms with structured state space models like Mamba--can achieve a compelling balance between modeling quality and computational efficiency, particularly for long-context tasks. While these hybrid models show promising performance, systematic comparisons of hybridization strategies and analyses on the key factors behind their effectiveness have not been clearly shared to the community. In this work, we present a holistic evaluation of hybrid architectures based on inter-layer (sequential) or intra-layer (parallel) fusion. We evaluate these designs from a variety of perspectives: language modeling performance, long-context capabilities, scaling analysis, and training and inference efficiency. By investigating the core characteristics of their computational primitive, we identify the most critical elements for each hybridization strategy and further propose optimal design recipes for both hybrid models. Our comprehensive analysis provides practical guidance and valuable insights for developing hybrid language models, facilitating the optimization of architectural configurations.
comment: 17 pages, 4 figures, 6 tables; detailed results will be included in the Appendix later
☆ Are BabyLMs Deaf to Gricean Maxims? A Pragmatic Evaluation of Sample-efficient Language Models
Implicit meanings are integral to human communication, making it essential for language models to be capable of identifying and interpreting them. Grice (1975) proposed a set of conversational maxims that guide cooperative dialogue, noting that speakers may deliberately violate these principles to express meanings beyond literal words, and that listeners, in turn, recognize such violations to draw pragmatic inferences. Building on Surian et al. (1996)'s study of children's sensitivity to violations of Gricean maxims, we introduce a novel benchmark to test whether language models pretrained on less than 10M and less than 100M tokens can distinguish maxim-adhering from maxim-violating utterances. We compare these BabyLMs across five maxims and situate their performance relative to children and a Large Language Model (LLM) pretrained on 3T tokens. We find that overall, models trained on less than 100M tokens outperform those trained on less than 10M, yet fall short of child-level and LLM competence. Our results suggest that modest data increases improve some aspects of pragmatic behavior, leading to finer-grained differentiation between pragmatic dimensions.
☆ ModernBERT + ColBERT: Enhancing biomedical RAG through an advanced re-ranking retriever
Retrieval-Augmented Generation (RAG) is a powerful technique for enriching Large Language Models (LLMs) with external knowledge, allowing for factually grounded responses, a critical requirement in high-stakes domains such as healthcare. However, the efficacy of RAG systems is fundamentally restricted by the performance of their retrieval module, since irrelevant or semantically misaligned documents directly compromise the accuracy of the final generated response. General-purpose dense retrievers can struggle with the nuanced language of specialised domains, while the high accuracy of in-domain models is often achieved at prohibitive computational costs. In this work, we aim to address this trade-off by developing and evaluating a two-stage retrieval architecture that combines a lightweight ModernBERT bidirectional encoder for efficient initial candidate retrieval with a ColBERTv2 late-interaction model for fine-grained re-ranking. We conduct comprehensive evaluations of our retriever module performance and RAG system performance in the biomedical context, fine-tuning the IR module using 10k question-passage pairs from PubMedQA. Our analysis of the retriever module confirmed the positive impact of the ColBERT re-ranker, which improved Recall@3 by up to 4.2 percentage points compared to its retrieve-only counterpart. When integrated into the biomedical RAG, our IR module leads to a state-of-the-art average accuracy of 0.4448 on the five tasks of the MIRAGE question-answering benchmark, outperforming strong baselines such as MedCPT (0.4436). Our ablation studies reveal that this performance is critically dependent on a joint fine-tuning process that aligns the retriever and re-ranker; otherwise, the re-ranker might degrade the performance.
☆ A Low-Resource Speech-Driven NLP Pipeline for Sinhala Dyslexia Assistance
Dyslexia in adults remains an under-researched and under-served area, particularly in non-English-speaking contexts, despite its significant impact on personal and professional lives. This work addresses that gap by focusing on Sinhala, a low-resource language with limited tools for linguistic accessibility. We present an assistive system explicitly designed for Sinhala-speaking adults with dyslexia. The system integrates Whisper for speech-to-text conversion, SinBERT, an open-sourced fine-tuned BERT model trained for Sinhala to identify common dyslexic errors, and a combined mT5 and Mistral-based model to generate corrected text. Finally, the output is converted back to speech using gTTS, creating a complete multimodal feedback loop. Despite the challenges posed by limited Sinhala-language datasets, the system achieves 0.66 transcription accuracy and 0.7 correction accuracy with 0.65 overall system accuracy. These results demonstrate both the feasibility and effectiveness of the approach. Ultimately, this work highlights the importance of inclusive Natural Language Processing (NLP) technologies in underrepresented languages and showcases a practical
comment: 11 pages, 4 figures, 3 tables
☆ Speak, Edit, Repeat: High-Fidelity Voice Editing and Zero-Shot TTS with Cross-Attentive Mamba
We introduce MAVE (Mamba with Cross-Attention for Voice Editing and Synthesis), a novel autoregressive architecture for text-conditioned voice editing and high-fidelity text-to-speech (TTS) synthesis, built on a cross-attentive Mamba backbone. MAVE achieves state-of-the-art performance in speech editing and very competitive results in zero-shot TTS, while not being explicitly trained on the latter task, outperforming leading autoregressive and diffusion models on diverse, real-world audio. By integrating Mamba for efficient audio sequence modeling with cross-attention for precise text-acoustic alignment, MAVE enables context-aware voice editing with exceptional naturalness and speaker consistency. In pairwise human evaluations on a random 40-sample subset of the RealEdit benchmark (400 judgments), 57.2% of listeners rated MAVE - edited speech as perceptually equal to the original, while 24.8% prefered the original and 18.0% MAVE - demonstrating that in the majority of cases edits are indistinguishable from the source. MAVE compares favorably with VoiceCraft and FluentSpeech both on pairwise comparisons and standalone mean opinion score (MOS) evaluations. For zero-shot TTS, MAVE exceeds VoiceCraft in both speaker similarity and naturalness, without requiring multiple inference runs or post-processing. Remarkably, these quality gains come with a significantly lower memory cost and approximately the same latency: MAVE requires ~6x less memory than VoiceCraft during inference on utterances from the RealEdit database (mean duration: 6.21s, A100, FP16, batch size 1). Our results demonstrate that MAVE establishes a new standard for flexible, high-fidelity voice editing and synthesis through the synergistic integration of structured state-space modeling and cross-modal attention.
☆ BrokenMath: A Benchmark for Sycophancy in Theorem Proving with LLMs
Large language models (LLMs) have recently shown strong performance on mathematical benchmarks. At the same time, they are prone to hallucination and sycophancy, often providing convincing but flawed proofs for incorrect mathematical statements provided by users. This significantly limits the applicability of LLMs in theorem proving, as verification of these flawed proofs must be done manually by expert mathematicians. However, existing benchmarks that measure sycophancy in mathematics are limited: they focus solely on final-answer problems, rely on very simple and often contaminated datasets, and construct benchmark samples using synthetic modifications that create ill-posed questions rather than well-posed questions that are demonstrably false. To address these issues, we introduce BrokenMath, the first benchmark for evaluating sycophantic behavior in LLMs within the context of natural language theorem proving. BrokenMath is built from advanced 2025 competition problems, which are perturbed with an LLM to produce false statements and subsequently refined through expert review. Using an LLM-as-a-judge framework, we evaluate state-of-the-art LLMs and agentic systems and find that sycophancy is widespread, with the best model, GPT-5, producing sycophantic answers 29% of the time. We further investigate several mitigation strategies, including test-time interventions and supervised fine-tuning on curated sycophantic examples. These approaches substantially reduce, but do not eliminate, sycophantic behavior.
☆ JSON Whisperer: Efficient JSON Editing with LLMs
Large language models (LLMs) can modify JSON documents through natural language commands, but current approaches regenerate entire structures for each edit, resulting in computational inefficiency. We present JSON Whisperer, a framework that enables LLMs to generate RFC 6902 diff patches-expressing only the necessary modifications-rather than complete documents. We identify two key challenges in patch-based editing: (1) LLMs often miss related updates when generating isolated patches, and (2) array manipulations require tracking index shifts across operations, which LLMs handle poorly. To address these issues, we introduce EASE (Explicitly Addressed Sequence Encoding), which transforms arrays into dictionaries with stable keys, eliminating index arithmetic complexities. Our evaluation shows that patch generation with EASE reduces token usage by 31% while maintaining edit quality within 5% of full regeneration with particular gains for complex instructions and list manipulations. The dataset is available at: https://github.com/emnlp2025/JSON-Whisperer/
☆ AtomWorld: A Benchmark for Evaluating Spatial Reasoning in Large Language Models on Crystalline Materials
Large Language Models (LLMs) excel at textual reasoning and are beginning to develop spatial understanding, prompting the question of whether these abilities can be combined for complex, domain-specific tasks. This question is essential in fields like materials science, where deep understanding of 3D atomic structures is fundamental. While initial studies have successfully applied LLMs to tasks involving pure crystal generation or coordinate understandings, a standardized benchmark to systematically evaluate their core reasoning abilities across diverse atomic structures has been notably absent. To address this gap, we introduce the AtomWorld benchmark to evaluate LLMs on tasks based in Crystallographic Information Files (CIFs), a standard structure representation format. These tasks, including structural editing, CIF perception, and property-guided modeling, reveal a critical limitation: current models, despite establishing promising baselines, consistently fail in structural understanding and spatial reasoning. Our experiments show that these models make frequent errors on structure modification tasks, and even in the basic CIF format understandings, potentially leading to cumulative errors in subsequent analysis and materials insights. By defining these standardized tasks, AtomWorld lays the ground for advancing LLMs toward robust atomic-scale modeling, crucial for accelerating materials research and automating scientific workflows.
☆ Multilingual Routing in Mixture-of-Experts
Mixture-of-Experts (MoE) architectures have become the key to scaling modern LLMs, yet little is understood about how their sparse routing dynamics respond to multilingual data. In this work, we analyze expert routing patterns using parallel multilingual datasets and present highly interpretable layer-wise phenomena. We find that MoE models route tokens in language-specific ways in the early and late decoder layers but exhibit significant cross-lingual routing alignment in middle layers, mirroring parameter-sharing trends observed in dense LLMs. In particular, we reveal a clear, strong correlation between a model's performance in a given language and how similarly its tokens are routed to English in these layers. Extending beyond correlation, we explore inference-time interventions that induce higher cross-lingual routing alignment. We introduce a method that steers the router by promoting middle-layer task experts frequently activated in English, and it successfully increases multilingual performance. These 1-2% gains are remarkably consistent across two evaluation tasks, three models, and 15+ languages, especially given that these simple interventions override routers of extensively trained, state-of-the-art LLMs. In comparison, interventions outside of the middle layers or targeting multilingual-specialized experts only yield performance degradation. Altogether, we present numerous findings that explain how MoEs process non-English text and demonstrate that generalization is limited by the model's ability to leverage language-universal experts in all languages.
☆ TiTok: Transfer Token-level Knowledge via Contrastive Excess to Transplant LoRA
Large Language Models (LLMs) are widely applied in real world scenarios, but fine-tuning them comes with significant computational and storage costs. Parameter-Efficient Fine-Tuning (PEFT) methods such as LoRA mitigate these costs, but the adapted parameters are dependent on the base model and cannot be transferred across different backbones. One way to address this issue is through knowledge distillation, but its effectiveness inherently depends on training data. Recent work such as TransLoRA avoids this by generating synthetic data, but this adds complexity because it requires training an additional discriminator model. In this paper, we propose TiTok, a new framework that enables effective LoRA Transplantation through Token-level knowledge transfer. Specifically, TiTok captures task-relevant information through a contrastive excess between a source model with and without LoRA. This excess highlights informative tokens and enables selective filtering of synthetic data, all without additional models or overhead. Through experiments on three benchmarks across multiple transfer settings, our experiments show that the proposed method is consistently effective, achieving average performance gains of +4~8% compared to baselines overall.
☆ Multi-Agent Tool-Integrated Policy Optimization
Large language models (LLMs) increasingly rely on multi-turn tool-integrated planning for knowledge-intensive and complex reasoning tasks. Existing implementations typically rely on a single agent, but they suffer from limited context length and noisy tool responses. A natural solution is to adopt a multi-agent framework with planner- and worker-agents to manage context. However, no existing methods support effective reinforcement learning post-training of tool-integrated multi-agent frameworks. To address this gap, we propose Multi-Agent Tool-Integrated Policy Optimization (MATPO), which enables distinct roles (planner and worker) to be trained within a single LLM instance using role-specific prompts via reinforcement learning. MATPO is derived from a principled credit assignment mechanism across planner and worker rollouts. This design eliminates the need to deploy multiple LLMs, which would be memory-intensive, while preserving the benefits of specialization. Experiments on GAIA-text, WebWalkerQA, and FRAMES show that MATPO consistently outperforms single-agent baselines by an average of 18.38% relative improvement in performance and exhibits greater robustness to noisy tool outputs. Our findings highlight the effectiveness of unifying multiple agent roles within a single LLM and provide practical insights for stable and efficient multi-agent RL training.
comment: Work in progress
☆ FocusMed: A Large Language Model-based Framework for Enhancing Medical Question Summarization with Focus Identification
With the rapid development of online medical platforms, consumer health questions (CHQs) are inefficient in diagnosis due to redundant information and frequent non-professional terms. The medical question summary (MQS) task aims to transform CHQs into streamlined doctors' frequently asked questions (FAQs), but existing methods still face challenges such as poor identification of question focus and model hallucination. This paper explores the potential of large language models (LLMs) in the MQS task and finds that direct fine-tuning is prone to focus identification bias and generates unfaithful content. To this end, we propose an optimization framework based on core focus guidance. First, a prompt template is designed to drive the LLMs to extract the core focus from the CHQs that is faithful to the original text. Then, a fine-tuning dataset is constructed in combination with the original CHQ-FAQ pairs to improve the ability to identify the focus of the question. Finally, a multi-dimensional quality evaluation and selection mechanism is proposed to comprehensively improve the quality of the summary from multiple dimensions. We conduct comprehensive experiments on two widely-adopted MQS datasets using three established evaluation metrics. The proposed framework achieves state-of-the-art performance across all measures, demonstrating a significant boost in the model's ability to identify critical focus of questions and a notable mitigation of hallucinations. The source codes are freely available at https://github.com/DUT-LiuChao/FocusMed.
comment: Accepted as a regular paper at BIBM2025
☆ FT-MDT: Extracting Decision Trees from Medical Texts via a Novel Low-rank Adaptation Method EMNLP-2025
Knowledge of the medical decision process, which can be modeled as medical decision trees (MDTs), is critical to building clinical decision support systems. However, current MDT construction methods rely heavily on time-consuming and laborious manual annotation. To address this challenge, we propose PI-LoRA (Path-Integrated LoRA), a novel low-rank adaptation method for automatically extracting MDTs from clinical guidelines and textbooks. We integrate gradient path information to capture synergistic effects between different modules, enabling more effective and reliable rank allocation. This framework ensures that the most critical modules receive appropriate rank allocations while less important ones are pruned, resulting in a more efficient and accurate model for extracting medical decision trees from clinical texts. Extensive experiments on medical guideline datasets demonstrate that our PI-LoRA method significantly outperforms existing parameter-efficient fine-tuning approaches for the Text2MDT task, achieving better accuracy with substantially reduced model complexity. The proposed method achieves state-of-the-art results while maintaining a lightweight architecture, making it particularly suitable for clinical decision support systems where computational resources may be limited.
comment: Accepted by EMNLP-2025 Industrial Track
☆ Evaluating LLMs for Demographic-Targeted Social Bias Detection: A Comprehensive Benchmark Study
Large-scale web-scraped text corpora used to train general-purpose AI models often contain harmful demographic-targeted social biases, creating a regulatory need for data auditing and developing scalable bias-detection methods. Although prior work has investigated biases in text datasets and related detection methods, these studies remain narrow in scope. They typically focus on a single content type (e.g., hate speech), cover limited demographic axes, overlook biases affecting multiple demographics simultaneously, and analyze limited techniques. Consequently, practitioners lack a holistic understanding of the strengths and limitations of recent large language models (LLMs) for automated bias detection. In this study, we present a comprehensive evaluation framework aimed at English texts to assess the ability of LLMs in detecting demographic-targeted social biases. To align with regulatory requirements, we frame bias detection as a multi-label task using a demographic-focused taxonomy. We then conduct a systematic evaluation with models across scales and techniques, including prompting, in-context learning, and fine-tuning. Using twelve datasets spanning diverse content types and demographics, our study demonstrates the promise of fine-tuned smaller models for scalable detection. However, our analyses also expose persistent gaps across demographic axes and multi-demographic targeted biases, underscoring the need for more effective and scalable auditing frameworks.
comment: 17 pages, 7 figures, 7 tables
☆ Contrastive Learning Using Graph Embeddings for Domain Adaptation of Language Models in the Process Industry EMNLP 2025
Recent trends in NLP utilize knowledge graphs (KGs) to enhance pretrained language models by incorporating additional knowledge from the graph structures to learn domain-specific terminology or relationships between documents that might otherwise be overlooked. This paper explores how SciNCL, a graph-aware neighborhood contrastive learning methodology originally designed for scientific publications, can be applied to the process industry domain, where text logs contain crucial information about daily operations and are often structured as sparse KGs. Our experiments demonstrate that language models fine-tuned with triplets derived from GE outperform a state-of-the-art mE5-large text encoder by 9.8-14.3% (5.4-8.0p) on the proprietary process industry text embedding benchmark (PITEB) while being 3-5 times smaller in size.
comment: accepted to EMNLP 2025 (industry track)
☆ Agentic Context Engineering: Evolving Contexts for Self-Improving Language Models
Large language model (LLM) applications such as agents and domain-specific reasoning increasingly rely on context adaptation -- modifying inputs with instructions, strategies, or evidence, rather than weight updates. Prior approaches improve usability but often suffer from brevity bias, which drops domain insights for concise summaries, and from context collapse, where iterative rewriting erodes details over time. Building on the adaptive memory introduced by Dynamic Cheatsheet, we introduce ACE (Agentic Context Engineering), a framework that treats contexts as evolving playbooks that accumulate, refine, and organize strategies through a modular process of generation, reflection, and curation. ACE prevents collapse with structured, incremental updates that preserve detailed knowledge and scale with long-context models. Across agent and domain-specific benchmarks, ACE optimizes contexts both offline (e.g., system prompts) and online (e.g., agent memory), consistently outperforming strong baselines: +10.6% on agents and +8.6% on finance, while significantly reducing adaptation latency and rollout cost. Notably, ACE could adapt effectively without labeled supervision and instead by leveraging natural execution feedback. On the AppWorld leaderboard, ACE matches the top-ranked production-level agent on the overall average and surpasses it on the harder test-challenge split, despite using a smaller open-source model. These results show that comprehensive, evolving contexts enable scalable, efficient, and self-improving LLM systems with low overhead.
☆ FedSRD: Sparsify-Reconstruct-Decompose for Communication-Efficient Federated Large Language Models Fine-Tuning
The current paradigm of training large language models (LLMs) on publicly available Web data is becoming unsustainable, with high-quality data sources in specialized domains nearing exhaustion. Federated Learning (FL) emerges as a practical solution for the next generation of AI on a decentralized Web, enabling privacy-preserving collaborative fine-tuning by leveraging private data distributed across a global client base. While Low-Rank Adaptation (LoRA) is the standard for efficient fine-tuning, its application in federated settings presents a critical challenge: communication overhead remains a significant bottleneck across the Web's heterogeneous network conditions. The structural redundancy within LoRA parameters not only incurs a heavy communication burden but also introduces conflicts when aggregating client updates. To address this, we propose FedSRD, a Sparsify-Reconstruct-Decompose framework designed for communication-efficient FL. We first introduce an importance-aware sparsification method that preserves the structural integrity of LoRA updates to reduce the uploaded parameter count. The server then reconstructs and aggregates these updates in a full-rank space to mitigate conflicts. Finally, it decomposes the global update into a sparse low-rank format for broadcast, ensuring a symmetrically efficient cycle. We also propose an efficient variant, FedSRD-e, to reduce computational overhead. Experimental results on 10 benchmarks demonstrate that our framework significantly reduces communication costs by up to 90\% while even improving model performance on heterogeneous client data.
☆ Robustness assessment of large audio language models in multiple-choice evaluation ICASSP 2026
Recent advances in large audio language models (LALMs) have primarily been assessed using a multiple-choice question answering (MCQA) framework. However, subtle changes, such as shifting the order of choices, result in substantially different results. Existing MCQA frameworks do not account for this variability and report a single accuracy number per benchmark or category. We dive into the MCQA evaluation framework and conduct a systematic study spanning three benchmarks (MMAU, MMAR and MMSU) and four models: Audio Flamingo 2, Audio Flamingo 3, Qwen2.5-Omni-7B-Instruct, and Kimi-Audio-7B-Instruct. Our findings indicate that models are sensitive not only to the ordering of choices, but also to the paraphrasing of the question and the choices. Finally, we propose a simpler evaluation protocol and metric that account for subtle variations and provide a more detailed evaluation report of LALMs within the MCQA framework.
comment: Submitted to ICASSP 2026
☆ Can LLMs Detect Ambiguous Plural Reference? An Analysis of Split-Antecedent and Mereological Reference
Our goal is to study how LLMs represent and interpret plural reference in ambiguous and unambiguous contexts. We ask the following research questions: (1) Do LLMs exhibit human-like preferences in representing plural reference? (2) Are LLMs able to detect ambiguity in plural anaphoric expressions and identify possible referents? To address these questions, we design a set of experiments, examining pronoun production using next-token prediction tasks, pronoun interpretation, and ambiguity detection using different prompting strategies. We then assess how comparable LLMs are to humans in formulating and interpreting plural reference. We find that LLMs are sometimes aware of possible referents of ambiguous pronouns. However, they do not always follow human reference when choosing between interpretations, especially when the possible interpretation is not explicitly mentioned. In addition, they struggle to identify ambiguity without direct instruction. Our findings also reveal inconsistencies in the results across different types of experiments.
☆ LaDiR: Latent Diffusion Enhances LLMs for Text Reasoning
Large Language Models (LLMs) demonstrate their reasoning ability through chain-of-thought (CoT) generation. However, LLM's autoregressive decoding may limit the ability to revisit and refine earlier tokens in a holistic manner, which can also lead to inefficient exploration for diverse solutions. In this paper, we propose LaDiR (Latent Diffusion Reasoner), a novel reasoning framework that unifies the expressiveness of continuous latent representation with the iterative refinement capabilities of latent diffusion models for an existing LLM. We first construct a structured latent reasoning space using a Variational Autoencoder (VAE) that encodes text reasoning steps into blocks of thought tokens, preserving semantic information and interpretability while offering compact but expressive representations. Subsequently, we utilize a latent diffusion model that learns to denoise a block of latent thought tokens with a blockwise bidirectional attention mask, enabling longer horizon and iterative refinement with adaptive test-time compute. This design allows efficient parallel generation of diverse reasoning trajectories, allowing the model to plan and revise the reasoning process holistically. We conduct evaluations on a suite of mathematical reasoning and planning benchmarks. Empirical results show that LaDiR consistently improves accuracy, diversity, and interpretability over existing autoregressive, diffusion-based, and latent reasoning methods, revealing a new paradigm for text reasoning with latent diffusion.
☆ Fine-grained auxiliary learning for real-world product recommendation
Product recommendation is the task of recovering the closest items to a given query within a large product corpora. Generally, one can determine if top-ranked products are related to the query by applying a similarity threshold; exceeding it deems the product relevant, otherwise manual revision is required. Despite being a well-known problem, the integration of these models in real-world systems is often overlooked. In particular, production systems have strong coverage requirements, i.e., a high proportion of recommendations must be automated. In this paper we propose ALC , an Auxiliary Learning strategy that boosts Coverage through learning fine-grained embeddings. Concretely, we introduce two training objectives that leverage the hardest negatives in the batch to build discriminative training signals between positives and negatives. We validate ALC using three extreme multi-label classification approaches in two product recommendation datasets; LF-AmazonTitles-131K and Tech and Durables (proprietary), demonstrating state-of-the-art coverage rates when combined with a recent threshold-consistent margin loss.
comment: SEPLN 2025
☆ More Than Meets the Eye? Uncovering the Reasoning-Planning Disconnect in Training Vision-Language Driving Models
Vision-Language Model (VLM) driving agents promise explainable end-to-end autonomy by first producing natural-language reasoning and then predicting trajectory planning. However, whether planning is causally driven by this reasoning remains a critical but unverified assumption. To investigate this, we build DriveMind, a large-scale driving Visual Question Answering (VQA) corpus with plan-aligned Chain-of-Thought (CoT), automatically generated from nuPlan. Our data generation process converts sensors and annotations into structured inputs and, crucially, separates priors from to-be-reasoned signals, enabling clean information ablations. Using DriveMind, we train representative VLM agents with Supervised Fine-Tuning (SFT) and Group Relative Policy Optimization (GRPO) and evaluate them with nuPlan's metrics. Our results, unfortunately, indicate a consistent causal disconnect in reasoning-planning: removing ego/navigation priors causes large drops in planning scores, whereas removing CoT produces only minor changes. Attention analysis further shows that planning primarily focuses on priors rather than the CoT. Based on this evidence, we propose the Reasoning-Planning Decoupling Hypothesis, positing that the training-yielded reasoning is an ancillary byproduct rather than a causal mediator. To enable efficient diagnosis, we also introduce a novel, training-free probe that measures an agent's reliance on priors by evaluating its planning robustness against minor input perturbations. In summary, we provide the community with a new dataset and a diagnostic tool to evaluate the causal fidelity of future models.
comment: The dataset will be released publicly once the paper is accepted for publication
☆ ChartAgent: A Multimodal Agent for Visually Grounded Reasoning in Complex Chart Question Answering
Recent multimodal LLMs have shown promise in chart-based visual question answering, but their performance declines sharply on unannotated charts, those requiring precise visual interpretation rather than relying on textual shortcuts. To address this, we introduce ChartAgent, a novel agentic framework that explicitly performs visual reasoning directly within the chart's spatial domain. Unlike textual chain-of-thought reasoning, ChartAgent iteratively decomposes queries into visual subtasks and actively manipulates and interacts with chart images through specialized actions such as drawing annotations, cropping regions (e.g., segmenting pie slices, isolating bars), and localizing axes, using a library of chart-specific vision tools to fulfill each subtask. This iterative reasoning process closely mirrors human cognitive strategies for chart comprehension. ChartAgent achieves state-of-the-art accuracy on the ChartBench and ChartX benchmarks, surpassing prior methods by up to 16.07% absolute gain overall and 17.31% on unannotated, numerically intensive queries. Furthermore, our analyses show that ChartAgent is (a) effective across diverse chart types, (b) achieve the highest scores across varying visual and reasoning complexity levels, and (c) serves as a plug-and-play framework that boosts performance across diverse underlying LLMs. Our work is among the first to demonstrate visually grounded reasoning for chart understanding using tool-augmented multimodal agents.
comment: 53 pages, 12 figures, 15 tables
☆ GRACE: Generative Representation Learning via Contrastive Policy Optimization
Prevailing methods for training Large Language Models (LLMs) as text encoders rely on contrastive losses that treat the model as a black box function, discarding its generative and reasoning capabilities in favor of static embeddings. We introduce GRACE (Generative Representation Learning via Contrastive Policy Optimization), a novel framework that reimagines contrastive signals not as losses to be minimized, but as rewards that guide a generative policy. In GRACE, the LLM acts as a policy that produces explicit, human-interpretable rationales--structured natural language explanations of its semantic understanding. These rationales are then encoded into high-quality embeddings via mean pooling. Using policy gradient optimization, we train the model with a multi-component reward function that maximizes similarity between query positive pairs and minimizes similarity with negatives. This transforms the LLM from an opaque encoder into an interpretable agent whose reasoning process is transparent and inspectable. On MTEB benchmark, GRACE yields broad cross category gains: averaged over four backbones, the supervised setting improves overall score by 11.5% over base models, and the unsupervised variant adds 6.9%, while preserving general capabilities. This work treats contrastive objectives as rewards over rationales, unifying representation learning with generation to produce stronger embeddings and transparent rationales. The model, data and code are available at https://github.com/GasolSun36/GRACE.
comment: 23 pages, 7 figures, 7 tables
☆ P2P: A Poison-to-Poison Remedy for Reliable Backdoor Defense in LLMs
During fine-tuning, large language models (LLMs) are increasingly vulnerable to data-poisoning backdoor attacks, which compromise their reliability and trustworthiness. However, existing defense strategies suffer from limited generalization: they only work on specific attack types or task settings. In this study, we propose Poison-to-Poison (P2P), a general and effective backdoor defense algorithm. P2P injects benign triggers with safe alternative labels into a subset of training samples and fine-tunes the model on this re-poisoned dataset by leveraging prompt-based learning. This enforces the model to associate trigger-induced representations with safe outputs, thereby overriding the effects of original malicious triggers. Thanks to this robust and generalizable trigger-based fine-tuning, P2P is effective across task settings and attack types. Theoretically and empirically, we show that P2P can neutralize malicious backdoors while preserving task performance. We conduct extensive experiments on classification, mathematical reasoning, and summary generation tasks, involving multiple state-of-the-art LLMs. The results demonstrate that our P2P algorithm significantly reduces the attack success rate compared with baseline models. We hope that the P2P can serve as a guideline for defending against backdoor attacks and foster the development of a secure and trustworthy LLM community.
☆ GenQuest: An LLM-based Text Adventure Game for Language Learners EMNLP 2025
GenQuest is a generative text adventure game that leverages Large Language Models (LLMs) to facilitate second language learning through immersive, interactive storytelling. The system engages English as a Foreign Language (EFL) learners in a collaborative "choose-your-own-adventure" style narrative, dynamically generated in response to learner choices. Game mechanics such as branching decision points and story milestones are incorporated to maintain narrative coherence while allowing learner-driven plot development. Key pedagogical features include content generation tailored to each learner's proficiency level, and a vocabulary assistant that provides in-context explanations of learner-queried text strings, ranging from words and phrases to sentences. Findings from a pilot study with university EFL students in China indicate promising vocabulary gains and positive user perceptions. Also discussed are suggestions from participants regarding the narrative length and quality, and the request for multi-modal content such as illustrations.
comment: Workshop on Wordplay: When Language Meets Games, EMNLP 2025
☆ Impatient Users Confuse AI Agents: High-fidelity Simulations of Human Traits for Testing Agents
Despite rapid progress in building conversational AI agents, robustness is still largely untested. Small shifts in user behavior, such as being more impatient, incoherent, or skeptical, can cause sharp drops in agent performance, revealing how brittle current AI agents are. Today's benchmarks fail to capture this fragility: agents may perform well under standard evaluations but degrade spectacularly in more realistic and varied settings. We address this robustness testing gap by introducing TraitBasis, a lightweight, model-agnostic method for systematically stress testing AI agents. TraitBasis learns directions in activation space corresponding to steerable user traits (e.g., impatience or incoherence), which can be controlled, scaled, composed, and applied at inference time without any fine-tuning or extra data. Using TraitBasis, we extend $\tau$-Bench to $\tau$-Trait, where user behaviors are altered via controlled trait vectors. We observe on average a 2%-30% performance degradation on $\tau$-Trait across frontier models, highlighting the lack of robustness of current AI agents to variations in user behavior. Together, these results highlight both the critical role of robustness testing and the promise of TraitBasis as a simple, data-efficient, and compositional tool. By powering simulation-driven stress tests and training loops, TraitBasis opens the door to building AI agents that remain reliable in the unpredictable dynamics of real-world human interactions. We have open-sourced $\tau$-Trai across four domains: airline, retail, telecom, and telehealth, so the community can systematically QA their agents under realistic, behaviorally diverse intents and trait scenarios: https://github.com/collinear-ai/tau-trait.
comment: 25 pages
☆ Psychological Steering in LLMs: An Evaluation of Effectiveness and Trustworthiness
The ability to control LLMs' emulated emotional states and personality traits is essential for enabling rich, human-centered interactions in socially interactive settings. We introduce PsySET, a Psychologically-informed benchmark to evaluate LLM Steering Effectiveness and Trustworthiness across the emotion and personality domains. Our study spans four models from different LLM families paired with various steering strategies, including prompting, fine-tuning, and representation engineering. Our results indicate that prompting is consistently effective but limited in intensity control, whereas vector injections achieve finer controllability while slightly reducing output quality. Moreover, we explore the trustworthiness of steered LLMs by assessing safety, truthfulness, fairness, and ethics, highlighting potential side effects and behavioral shifts. Notably, we observe idiosyncratic effects; for instance, even a positive emotion like joy can degrade robustness to adversarial factuality, lower privacy awareness, and increase preferential bias. Meanwhile, anger predictably elevates toxicity yet strengthens leakage resistance. Our framework establishes the first holistic evaluation of emotion and personality steering, offering insights into its interpretability and reliability for socially interactive applications.
comment: Submitted to ARR - October 2025
☆ MedCLM: Learning to Localize and Reason via a CoT-Curriculum in Medical Vision-Language Models
Bridging clinical diagnostic reasoning with AI remains a central challenge in medical imaging. We introduce MedCLM, an automated pipeline that converts detection datasets into large-scale medical visual question answering (VQA) data with Chain-of-Thought (CoT) reasoning by linking lesion boxes to organ segmentation and structured rationales. These contextual signals enable medical vision-language models to generate question-answer pairs with step-by-step reasoning. To utilize this data effectively, we propose an Integrated CoT-Curriculum Strategy composed of an Easy stage with explicit lesion boxes for visual grounding, a Medium stage that encourages implicit localization, and a Hard stage for weakly supervised reasoning. Experimental results demonstrate that MedCLM attains state-of-the-art performance on several medical VQA benchmarks, providing a scalable framework for developing clinically aligned medical vision-language models.
☆ Compressed Convolutional Attention: Efficient Attention in a Compressed Latent Space
Multi-headed Attention's (MHA) quadratic compute and linearly growing KV-cache make long-context transformers expensive to train and serve. Prior works such as Grouped Query Attention (GQA) and Multi-Latent Attention (MLA) shrink the cache, speeding decode, but leave compute, which determines prefill and training speed, largely unchanged. We introduce Compressed Convolutional Attention (CCA), a novel attention method which down-projects queries, keys, and values and performs the entire attention operation inside the shared latent space. This simple design dramatically cuts parameters, KV-cache, and FLOPs all at once by the desired compression factor. Because CCA is orthogonal to head-sharing, we combine the two to form Compressed Convolutional Grouped Query Attention (CCGQA), which further tightens the compute-bandwidth Pareto frontier so that users can tune compression toward either FLOP or memory limits without sacrificing quality. Experiments show that CCGQA consistently outperforms both GQA and MLA at equal KV-cache compression on dense and MoE models. Additionally, we show that CCGQA outperforms all other attention methods on MoE models with half the KV-cache of GQA and MLA, achieving an 8x KV-cache compression with no drop in performance compared to standard MHA. CCA and CCGQA also dramatically reduce the FLOP cost of attention which leads to substantially faster training and prefill than existing methods. On H100 GPUs, our fused CCA/CCGQA kernel reduces prefill latency by about 1.7x at a sequence length of 16k relative to MHA, and accelerates backward by about 1.3x.
☆ Mitigating Forgetting Between Supervised and Reinforcement Learning Yields Stronger Reasoners
Large Language Models (LLMs) show strong reasoning abilities, often amplified by Chain-of-Thought (CoT) prompting and reinforcement learning (RL). Although RL algorithms can substantially improve reasoning, they struggle to expand reasoning boundaries because they learn from their own reasoning trajectories rather than acquiring external knowledge. Supervised fine-tuning (SFT) offers complementary benefits but typically requires large-scale data and risks overfitting. Recent attempts to combine SFT and RL face three main challenges: data inefficiency, algorithm-specific designs, and catastrophic forgetting. We propose a plug-and-play framework that dynamically integrates SFT into RL by selecting challenging examples for SFT. This approach reduces SFT data requirements and remains agnostic to the choice of RL or SFT algorithm. To mitigate catastrophic forgetting of RL-acquired skills during SFT, we select high-entropy tokens for loss calculation and freeze parameters identified as critical for RL. Our method achieves state-of-the-art (SoTA) reasoning performance using only 1.5% of the SFT data and 20.4% of the RL data used by prior SoTA, providing an efficient and plug-and-play solution for combining SFT and RL in reasoning post-training.
☆ On the Role of Unobserved Sequences on Sample-based Uncertainty Quantification for LLMs EMNLP 2025
Quantifying uncertainty in large language models (LLMs) is important for safety-critical applications because it helps spot incorrect answers, known as hallucinations. One major trend of uncertainty quantification methods is based on estimating the entropy of the distribution of the LLM's potential output sequences. This estimation is based on a set of output sequences and associated probabilities obtained by querying the LLM several times. In this paper, we advocate and experimentally show that the probability of unobserved sequences plays a crucial role, and we recommend future research to integrate it to enhance such LLM uncertainty quantification methods.
comment: Accepted to UncertaiNLP workshop of EMNLP 2025
☆ Good Intentions Beyond ACL: Who Does NLP for Social Good, and Where? EMNLP 2025
The social impact of Natural Language Processing (NLP) is increasingly important, with a rising community focus on initiatives related to NLP for Social Good (NLP4SG). Indeed, in recent years, almost 20% of all papers in the ACL Anthology address topics related to social good as defined by the UN Sustainable Development Goals (Adauto et al., 2023). In this study, we take an author- and venue-level perspective to map the landscape of NLP4SG, quantifying the proportion of work addressing social good concerns both within and beyond the ACL community, by both core ACL contributors and non-ACL authors. With this approach we discover two surprising facts about the landscape of NLP4SG. First, ACL authors are dramatically more likely to do work addressing social good concerns when publishing in venues outside of ACL. Second, the vast majority of publications using NLP techniques to address concerns of social good are done by non-ACL authors in venues outside of ACL. We discuss the implications of these findings on agenda-setting considerations for the ACL community related to NLP4SG.
comment: EMNLP 2025
☆ Partial Information Decomposition via Normalizing Flows in Latent Gaussian Distributions NeurIPS 2025
The study of multimodality has garnered significant interest in fields where the analysis of interactions among multiple information sources can enhance predictive modeling, data fusion, and interpretability. Partial information decomposition (PID) has emerged as a useful information-theoretic framework to quantify the degree to which individual modalities independently, redundantly, or synergistically convey information about a target variable. However, existing PID methods depend on optimizing over a joint distribution constrained by estimated pairwise probability distributions, which are costly and inaccurate for continuous and high-dimensional modalities. Our first key insight is that the problem can be solved efficiently when the pairwise distributions are multivariate Gaussians, and we refer to this problem as Gaussian PID (GPID). We propose a new gradient-based algorithm that substantially improves the computational efficiency of GPID based on an alternative formulation of the underlying optimization problem. To generalize the applicability to non-Gaussian data, we learn information-preserving encoders to transform random variables of arbitrary input distributions into pairwise Gaussian random variables. Along the way, we resolved an open problem regarding the optimality of joint Gaussian solutions for GPID. Empirical validation in diverse synthetic examples demonstrates that our proposed method provides more accurate and efficient PID estimates than existing baselines. We further evaluate a series of large-scale multimodal benchmarks to show its utility in real-world applications of quantifying PID in multimodal datasets and selecting high-performing models.
comment: NeurIPS 2025
☆ Large Language Models Preserve Semantic Isotopies in Story Continuations
In this work, we explore the relevance of textual semantics to Large Language Models (LLMs), extending previous insights into the connection between distributional semantics and structural semantics. We investigate whether LLM-generated texts preserve semantic isotopies. We design a story continuation experiment using 10,000 ROCStories prompts completed by five LLMs. We first validate GPT-4o's ability to extract isotopies from a linguistic benchmark, then apply it to the generated stories. We then analyze structural (coverage, density, spread) and semantic properties of isotopies to assess how they are affected by completion. Results show that LLM completion within a given token horizon preserves semantic isotopies across multiple properties.
♻ ☆ Using cognitive models to reveal value trade-offs in language models
Value trade-offs are an integral part of human decision-making and language use, however, current tools for interpreting such dynamic and multi-faceted notions of values in LLMs are limited. In cognitive science, so-called "cognitive models" provide formal accounts of such trade-offs in humans, by modeling the weighting of a speaker's competing utility functions in choosing an action or utterance. Here we use a leading cognitive model of polite speech to systematically evaluate value trade-offs in two encompassing model settings: degrees of reasoning "effort" in frontier black-box models, and RL post-training dynamics of open-source models. Our results highlight patterns of higher informational utility than social utility in reasoning models' default behavior, and demonstrate that these patterns shift in predictable ways when models are prompted to prioritize certain goals over others. Our findings from LLMs' training dynamics suggest large shifts in utility values early on in training with persistent effects of the choice of base model and pretraining data, compared to feedback dataset or alignment method. Our framework offers a flexible tool for probing value trade-offs across diverse model types, providing insights for generating hypotheses about other social behaviors such as sycophancy and for shaping training regimes that better control trade-offs between values during model development.
comment: 10 pages, 5 figures
♻ ☆ Tokens, the oft-overlooked appetizer: Large language models, the distributional hypothesis, and meaning
Tokenization is a necessary component within the current architecture of many language models, including the transformer-based large language models (LLMs) of Generative AI, yet its impact on the model's cognition is often overlooked. We argue that LLMs demonstrate that the Distributional Hypothesis (DH) is sufficient for reasonably human-like language performance, and that the emergence of human-meaningful linguistic units among tokens and current structural constraints motivate changes to existing, linguistically-agnostic tokenization techniques, particularly with respect to their roles as (1) semantic primitives and as (2) vehicles for conveying salient distributional patterns from human language to the model. We explore tokenizations from a BPE tokenizer; extant model vocabularies obtained from Hugging Face and tiktoken; and the information in exemplar token vectors as they move through the layers of a RoBERTa (large) model. Besides creating sub-optimal semantic building blocks and obscuring the model's access to the necessary distributional patterns, we describe how tokens and pretraining can act as a backdoor for bias and other unwanted content, which current alignment practices may not remediate. Additionally, we relay evidence that the tokenization algorithm's objective function impacts the LLM's cognition, despite being arguably meaningfully insulated from the main system intelligence. [First uploaded to arXiv in December, 2024.]
♻ ☆ The Telephone Game: Evaluating Semantic Drift in Unified Models
Employing a single, unified model (UM) for both visual understanding (image-to-text: I2T) and visual generation (text-to-image: T2I) has opened a new direction in Visual Language Model (VLM) research. While UMs can also support broader unimodal tasks (e.g., text-to-text, image-to-image), we focus on the core cross-modal pair T2I and I2T. Existing evaluation benchmarks consider these capabilities in isolation: FID and GenEval for T2I, and benchmarks such as MME, MMBench for I2T. These isolated single-pass metrics do not reveal cross-consistency: whether a model that "understands" a concept can also "render" it, nor whether semantic meaning is preserved when cycling between image and text modalities. To address this, we introduce the Semantic Drift Protocol (SDP) for Unified Models, a cyclic evaluation protocol that alternates I2T and T2I over multiple generations to quantify semantic drift. We propose two metrics: (i) Mean Cumulative Drift (MCD), an embedding-based measure of overall semantic drift; and (ii) Multi-Generation GenEval (MGG), an object-level compliance score extending GenEval. To assess generalization beyond COCO dataset, which is widely used in training; we create a new benchmark Nocaps+Docci400, sampled from NoCaps and DOCCI and evaluated on seven recent models. SDP reveals substantial variation in cross-modal stability: some models like BAGEL maintain semantic meaning over many alternations, whereas others like VILA-U drift quickly despite strong single-pass scores. Our results highlight SDP as a necessary complement to standard I2T and T2I evaluations. Code is available at https://github.com/mollahsabbir/Semantic-Drift-in-Unified-Models
♻ ☆ Insights from the Inverse: Reconstructing LLM Training Goals Through Inverse Reinforcement Learning
Large language models (LLMs) trained with Reinforcement Learning from Human Feedback (RLHF) have demonstrated remarkable capabilities, but their underlying reward functions and decision-making processes remain opaque. This paper introduces a novel approach to interpreting LLMs by applying inverse reinforcement learning (IRL) to recover their implicit reward functions. We conduct experiments on toxicity-aligned LLMs of varying sizes, extracting reward models that achieve up to 85% accuracy in predicting human preferences. Our analysis reveals key insights into the non-identifiability of reward functions, the relationship between model size and interpretability, and potential pitfalls in the RLHF process. We demonstrate that IRL-derived reward models can be used to fine-tune new LLMs, resulting in comparable or improved performance on toxicity benchmarks. This work provides a new lens for understanding and improving LLM alignment, with implications for the responsible development and deployment of these powerful systems.
comment: Published as a conference paper at COLM 2025
♻ ☆ Rethinking Exact Unlearning under Exposure: Extracting Forgotten Data under Exact Unlearning in Large Language Model
Large Language Models are typically trained on datasets collected from the web, which may inadvertently contain harmful or sensitive personal information. To address growing privacy concerns, unlearning methods have been proposed to remove the influence of specific data from trained models. Of these, exact unlearning -- which retrains the model from scratch without the target data -- is widely regarded the gold standard for mitigating privacy risks in deployment. In this paper, we revisit this assumption in a practical deployment setting where both the pre- and post-unlearning logits API are exposed, such as in open-weight scenarios. Targeting this setting, we introduce a novel data extraction attack that leverages signals from the pre-unlearning model to guide the post-unlearning model, uncovering patterns that reflect the removed data distribution. Combining model guidance with a token filtering strategy, our attack significantly improves extraction success rates -- doubling performance in some cases -- across common benchmarks such as MUSE, TOFU, and WMDP. Furthermore, we demonstrate our attack's effectiveness on a simulated medical diagnosis dataset to highlight real-world privacy risks associated with exact unlearning. In light of our findings, which suggest that unlearning may, in a contradictory way, increase the risk of privacy leakage during real-world deployments, we advocate for evaluation of unlearning methods to consider broader threat models that account not only for post-unlearning models but also for adversarial access to prior checkpoints. Code is publicly available at: https://github.com/Nicholas0228/unlearned_data_extraction_llm.
comment: Accepted by Neurips 2025
♻ ☆ RealKIE: Five Novel Datasets for Enterprise Key Information Extraction
We introduce RealKIE, a benchmark of five challenging datasets aimed at advancing key information extraction methods, with an emphasis on enterprise applications. The datasets include a diverse range of documents including SEC S1 Filings, US Non-disclosure Agreements, UK Charity Reports, FCC Invoices, and Resource Contracts. Each presents unique challenges: poor text serialization, sparse annotations in long documents, and complex tabular layouts. These datasets provide a realistic testing ground for key information extraction tasks like investment analysis and contract analysis. In addition to presenting these datasets, we offer an in-depth description of the annotation process, document processing techniques, and baseline modeling approaches. This contribution facilitates the development of NLP models capable of handling practical challenges and supports further research into information extraction technologies applicable to industry-specific problems. The annotated data, OCR outputs, and code to reproduce baselines are available to download at https://indicodatasolutions.github.io/RealKIE/.
♻ ☆ Large Language Model Hacking: Quantifying the Hidden Risks of Using LLMs for Text Annotation
Large language models are rapidly transforming social science research by enabling the automation of labor-intensive tasks like data annotation and text analysis. However, LLM outputs vary significantly depending on the implementation choices made by researchers (e.g., model selection or prompting strategy). Such variation can introduce systematic biases and random errors, which propagate to downstream analyses and cause Type I (false positive), Type II (false negative), Type S (wrong sign), or Type M (exaggerated effect) errors. We call this phenomenon where configuration choices lead to incorrect conclusions LLM hacking. We find that intentional LLM hacking is strikingly simple. By replicating 37 data annotation tasks from 21 published social science studies, we show that, with just a handful of prompt paraphrases, virtually anything can be presented as statistically significant. Beyond intentional manipulation, our analysis of 13 million labels from 18 different LLMs across 2361 realistic hypotheses shows that there is also a high risk of accidental LLM hacking, even when following standard research practices. We find incorrect conclusions in approximately 31% of hypotheses for state-of-the-art LLMs, and in half the hypotheses for smaller language models. While higher task performance and stronger general model capabilities reduce LLM hacking risk, even highly accurate models remain susceptible. The risk of LLM hacking decreases as effect sizes increase, indicating the need for more rigorous verification of LLM-based findings near significance thresholds. We analyze 21 mitigation techniques and find that human annotations provide crucial protection against false positives. Common regression estimator correction techniques can restore valid inference but trade off Type I vs. Type II errors. We publish a list of practical recommendations to prevent LLM hacking.
♻ ☆ Verbalized Sampling: How to Mitigate Mode Collapse and Unlock LLM Diversity
Post-training alignment often reduces LLM diversity, leading to a phenomenon known as mode collapse. Unlike prior work that attributes this effect to algorithmic limitations, we identify a fundamental, pervasive data-level driver: typicality bias in preference data, whereby annotators systematically favor familiar text as a result of well-established findings in cognitive psychology. We formalize this bias theoretically, verify it on preference datasets empirically, and show that it plays a central role in mode collapse. Motivated by this analysis, we introduce Verbalized Sampling, a simple, training-free prompting strategy to circumvent mode collapse. VS prompts the model to verbalize a probability distribution over a set of responses (e.g., "Generate 5 jokes about coffee and their corresponding probabilities"). Comprehensive experiments show that VS significantly improves performance across creative writing (poems, stories, jokes), dialogue simulation, open-ended QA, and synthetic data generation, without sacrificing factual accuracy and safety. For instance, in creative writing, VS increases diversity by 1.6-2.1x over direct prompting. We further observe an emergent trend that more capable models benefit more from VS. In sum, our work provides a new data-centric perspective on mode collapse and a practical inference-time remedy that helps unlock pre-trained generative diversity.
comment: 79 pages, 27 figures, 31 tables. Code is available at https://github.com/CHATS-lab/verbalize-sampling
♻ ☆ AgentRewardBench: Evaluating Automatic Evaluations of Web Agent Trajectories
Web agents enable users to perform tasks on web browsers through natural language interaction. Evaluating web agents trajectories is an important problem, since it helps us determine whether the agent successfully completed the tasks. Rule-based methods are widely used for this purpose, but they are challenging to extend to new tasks and may not always recognize successful trajectories. We may achieve higher accuracy through human evaluation, but the process would be substantially slower and more expensive. Automatic evaluations with LLMs may avoid the challenges of designing new rules and manually annotating trajectories, enabling faster and cost-effective evaluation. However, it is unclear how effective they are at evaluating web agents. To this end, we propose AgentRewardBench, the first benchmark to assess the effectiveness of LLM judges for evaluating web agents. AgentRewardBench contains 1302 trajectories across 5 benchmarks and 4 LLMs. Each trajectory in AgentRewardBench is reviewed by an expert, who answers questions pertaining to the success, side effects, and repetitiveness of the agent. Using our benchmark, we evaluate 12 LLM judges and find that no single LLM excels across all benchmarks. We also find that the rule-based evaluation used by common benchmarks tends to underreport the success rate of web agents, highlighting a key weakness of rule-based evaluation and the need to develop more flexible automatic evaluations. We release the benchmark at: https://agent-reward-bench.github.io
♻ ☆ MMLongBench: Benchmarking Long-Context Vision-Language Models Effectively and Thoroughly NeurIPS 2025
The rapid extension of context windows in large vision-language models has given rise to long-context vision-language models (LCVLMs), which are capable of handling hundreds of images with interleaved text tokens in a single forward pass. In this work, we introduce MMLongBench, the first benchmark covering a diverse set of long-context vision-language tasks, to evaluate LCVLMs effectively and thoroughly. MMLongBench is composed of 13,331 examples spanning five different categories of downstream tasks, such as Visual RAG and Many-Shot ICL. It also provides broad coverage of image types, including various natural and synthetic images. To assess the robustness of the models to different input lengths, all examples are delivered at five standardized input lengths (8K-128K tokens) via a cross-modal tokenization scheme that combines vision patches and text tokens. Through a thorough benchmarking of 46 closed-source and open-source LCVLMs, we provide a comprehensive analysis of the current models' vision-language long-context ability. Our results show that: i) performance on a single task is a weak proxy for overall long-context capability; ii) both closed-source and open-source models face challenges in long-context vision-language tasks, indicating substantial room for future improvement; iii) models with stronger reasoning ability tend to exhibit better long-context performance. By offering wide task coverage, various image types, and rigorous length control, MMLongBench provides the missing foundation for diagnosing and advancing the next generation of LCVLMs.
comment: Accepted as a spotlight at NeurIPS 2025
♻ ☆ Text-Based Approaches to Item Alignment to Content Standards in Large-Scale Reading & Writing Tests
Aligning test items to content standards is a critical step in test development to collect validity evidence based on content. Item alignment has typically been conducted by human experts. This judgmental process can be subjective and time-consuming. This study investigated the performance of fine-tuned small language models (SLMs) for automated item alignment using data from a large-scale standardized reading and writing test for college admissions. Different SLMs were trained for alignment at both domain and skill levels respectively with 10 skills mapped to 4 content domains. The model performance was evaluated in multiple criteria on two testing datasets. The impact of types and sizes of the input data for training was investigated. Results showed that including more item text data led to substantially better model performance, surpassing the improvements induced by sample size increase alone. For comparison, supervised machine learning models were trained using the embeddings from the multilingual-E5-large-instruct model. The study results showed that fine-tuned SLMs consistently outperformed the embedding-based supervised machine learning models, particularly for the more fine-grained skill alignment. To better understand model misclassifications, multiple semantic similarity analysis including pairwise cosine similarity, Kullback-Leibler divergence of embedding distributions, and two-dimension projections of item embeddings were conducted. These analyses consistently showed that certain skills in SAT and PSAT were semantically too close, providing evidence for the observed misclassification.
comment: need updates
♻ ☆ H3Fusion: Helpful, Harmless, Honest Fusion of Aligned LLMs
Alignment of pretrained LLMs using instruction-based datasets is critical for creating fine-tuned models that reflect human preference. A growing number of alignment-based fine-tuning algorithms and benchmarks emerged recently, fueling the efforts on effective alignments of pre-trained LLMs to ensure helpful, harmless, and honest answers from both open-source and closed-source LLMs. This paper tackles this problem by developing an alignment fusion approach, coined as $H^3$Fusion, with three unique characteristics. First, $H^3$Fusion ensembles multiple individually aligned LLMs to create a final fine-tuned alignment model with enhanced capabilities beyond those of individual models, delivering robust alignment through promoting helpful, harmless, honest fusion. Second, $H^3$Fusion leverages the mixture-of-experts (MoE) methodology in two steps. We first freeze the multi-head attention weights of each individual model while tuning the FFN layer during alignment fusion. Then we merge the aligned model weights with an expert router according to the type of input instruction and dynamically select a subset of experts that are best suited for producing the output response. Finally, we boost the performance of the resulting $H^3$3Fusion model by introducing gating loss and regularization terms. The former penalizes the selection errors of the expert-router, and the latter mediates the expert weights drifting during fine-tuning and dynamically adjusts the fusion behavior of the resulting model by canalizing the activations on the experts. Extensive evaluations on three benchmark datasets show that $H^3$3Fusion is more helpful, less harmful, and more honest from two aspects: it outperforms each individually aligned model by $11.37\%$, and it provides stronger robustness compared to the state-of-the-art LLM ensemble approaches by $13.77\%$. Code is available at github.com/sftekin/h3fusion.
♻ ☆ Latent Thinking Optimization: Your Latent Reasoning Language Model Secretly Encodes Reward Signals in Its Latent Thoughts
Large Language Models (LLMs) excel at problem solving by generating chain of thoughts in natural language, but such verbal thinking is computationally costly and prone to overthinking. Recent work instead proposes a latent thinking architecture Huginn-3.5B, which represents intermediate reasoning steps as sequence of latent representations. However, latent thoughts lack interpretability and are difficult to supervise, raising concerns about the correctness and reliability of its latent thinking processes. In this paper, we provide a systematic study of how Huginn-3.5B thinks in the latent space and how external supervision signals can improve its latent thinking processes. We show that latent thoughts leading to correct versus incorrect answers exhibit highly distinguishable patterns, and that a latent classifier can reliably predict answer correctness directly from latent thoughts. Leveraging these insights, we propose Latent Thinking Optimization (LTO), a probabilistic algorithm that employs the latent classifier as a Latent Reward Model (LRM) to optimize the latent thinking processes. Extensive experiments across diverse reasoning tasks demonstrate that LRM is highly effective in detecting incorrect latent thinking patterns, and LTO can significantly improve the latent thinking processes. Furthermore, we show that LRM can generalize across diverse domains, and LTO can be seamlessly applied to general LLMs to improve their thinking processes. In contrast to verbal thinking, our method demonstrates that reward modeling and scaling test-time thinking with supervision can be performed directly in the latent space, highlighting its potential as a general, efficient, and domain-agnostic approach to improving the thinking processes of LLMs.
♻ ☆ Summaries as Centroids for Interpretable and Scalable Text Clustering
We introduce k-NLPmeans and k-LLMmeans, text-clustering variants of k-means that periodically replace numeric centroids with textual summaries. The key idea, summary-as-centroid, retains k-means assignments in embedding space while producing human-readable, auditable cluster prototypes. The method is LLM-optional: k-NLPmeans uses lightweight, deterministic summarizers, enabling offline, low-cost, and stable operation; k-LLMmeans is a drop-in upgrade that uses an LLM for summaries under a fixed per-iteration budget whose cost does not grow with dataset size. We also present a mini-batch extension for real-time clustering of streaming text. Across diverse datasets, embedding models, and summarization strategies, our approach consistently outperforms classical baselines and approaches the accuracy of recent LLM-based clustering-without extensive LLM calls. Finally, we provide a case study on sequential text streams and release a StackExchange-derived benchmark for evaluating streaming text clustering.
♻ ☆ ML2B: Multi-Lingual ML Benchmark For AutoML
Large language models (LLMs) have recently demonstrated strong capabilities in generating machine learning (ML) code, enabling end-to-end pipeline construction from natural language instructions. However, existing benchmarks for ML code generation are mainly restricted to English, overlooking the global and multilingual nature of ML research and practice. To address this gap, we present ML2B, the first benchmark for evaluating multilingual ML code generation. ML2B consists of 30 Kaggle competitions translated into 13 natural languages, covering tabular, text, and image data types, with structured metadata and validated human-reviewed translations. For evaluation, we employ AIDE, an automated framework for end-to-end assessment of data science pipelines, and provide insights into cross-lingual model performance. Our results reveal substantial 15-45% performance degradation on non-English tasks, highlighting critical challenges in multilingual representation learning for code generation. The benchmark, evaluation framework, and comprehensive results are made available through our GitHub repository to facilitate future research in multilingual ML code generation: https://github.com/enaix/ml2b.
♻ ☆ Time Is a Feature: Exploiting Temporal Dynamics in Diffusion Language Models
Diffusion large language models (dLLMs) generate text through iterative denoising, yet current decoding strategies discard rich intermediate predictions in favor of the final output. Our work here reveals a critical phenomenon, temporal oscillation, where correct answers often emerge in the middle process, but are overwritten in later denoising steps. To address this issue, we introduce two complementary methods that exploit temporal consistency: 1) Temporal Self-Consistency Voting, a training-free, test-time decoding strategy that aggregates predictions across denoising steps to select the most consistent output; and 2) a post-training method termed Temporal Consistency Reinforcement, which uses Temporal Semantic Entropy (TSE), a measure of semantic stability across intermediate predictions, as a reward signal to encourage stable generations. Empirical results across multiple benchmarks demonstrate the effectiveness of our approach. Using the negative TSE reward alone, we observe a remarkable average improvement of 24.7% on the Countdown dataset over an existing dLLM. Combined with the accuracy reward, we achieve absolute gains of 2.0% on GSM8K, 4.3% on MATH500, 6.6% on SVAMP, and 25.3% on Countdown, respectively. Our findings underscore the untapped potential of temporal dynamics in dLLMs and offer two simple yet effective tools to harness them.
comment: Project webpage: https://aim-uofa.github.io/dLLM-MidTruth
♻ ☆ Identity resolution of software metadata using Large Language Models
Software is an essential component of research. However, little attention has been paid to it compared with that paid to research data. Recently, there has been an increase in efforts to acknowledge and highlight the importance of software in research activities. Structured metadata from platforms like bio.tools, Bioconductor, and Galaxy ToolShed offers valuable insights into research software in the Life Sciences. Although originally intended to support discovery and integration, this metadata can be repurposed for large-scale analysis of software practices. However, its quality and completeness vary across platforms, reflecting diverse documentation practices. To gain a comprehensive view of software development and sustainability, consolidating this metadata is necessary, but requires robust mechanisms to address its heterogeneity and scale. This article presents an evaluation of instruction-tuned large language models for the task of software metadata identity resolution, a critical step in assembling a cohesive collection of research software. Such a collection is the reference component for the Software Observatory at OpenEBench, a platform that aggregates metadata to monitor the FAIRness of research software in the Life Sciences. We benchmarked multiple models against a human-annotated gold standard, examined their behavior on ambiguous cases, and introduced an agreement-based proxy for high-confidence automated decisions. The proxy achieved high precision and statistical robustness, while also highlighting the limitations of current models and the broader challenges of automating semantic judgment in FAIR-aligned software metadata across registries and repositories.
♻ ☆ MEDAL: A Framework for Benchmarking LLMs as Multilingual Open-Domain Dialogue Evaluators
Evaluating the quality of open-domain chatbots has become increasingly reliant on LLMs acting as automatic judges. However, existing meta-evaluation benchmarks are static, outdated, and lacking in multilingual coverage, limiting their ability to fully capture subtle weaknesses in evaluation. We introduce MEDAL, an automated multi-agent framework for curating more representative and diverse open-domain dialogue evaluation benchmarks. Our approach leverages several state-of-the-art LLMs to generate user-chatbot multilingual dialogues, conditioned on varied seed contexts. Then, a strong LLM (GPT-4.1) is used for a multidimensional analysis of the performance of the chatbots, uncovering noticeable cross-lingual performance differences. Guided by this large-scale evaluation, we curate a new meta-evaluation multilingual benchmark and human-annotate samples with nuanced quality judgments. This benchmark is then used to assess the ability of several reasoning and non-reasoning LLMs to act as evaluators of open-domain dialogues. Using MEDAL, we uncover that state-of-the-art judges fail to reliably detect nuanced issues such as lack of empathy, commonsense, or relevance.
comment: October ARR
♻ ☆ Semantic Similarity in Radiology Reports via LLMs and NER
Radiology report evaluation is a crucial part of radiologists' training and plays a key role in ensuring diagnostic accuracy. As part of the standard reporting workflow, a junior radiologist typically prepares a preliminary report, which is then reviewed and edited by a senior radiologist to produce the final report. Identifying semantic differences between preliminary and final reports is essential for junior doctors, both as a training tool and to help uncover gaps in clinical knowledge. While AI in radiology is a rapidly growing field, the application of large language models (LLMs) remains challenging due to the need for specialised domain knowledge. In this paper, we explore the ability of LLMs to provide explainable and accurate comparisons of reports in the radiology domain. We begin by comparing the performance of several LLMs in comparing radiology reports. We then assess a more traditional approach based on Named-Entity-Recognition (NER). However, both approaches exhibit limitations in delivering accurate feedback on semantic similarity. To address this, we propose Llama-EntScore, a semantic similarity scoring method using a combination of Llama 3.1 and NER with tunable weights to emphasise or de-emphasise specific types of differences. Our approach generates a quantitative similarity score for tracking progress and also gives an interpretation of the score that aims to offer valuable guidance in reviewing and refining their reporting. We find our method achieves 67% exact-match accuracy and 93% accuracy within +/- 1 when compared to radiologist-provided ground truth scores - outperforming both LLMs and NER used independently. Code is available at: https://github.com/otmive/llama_reports
♻ ☆ TACO: Enhancing Multimodal In-context Learning via Task Mapping-Guided Sequence Configuration EMNLP2025
Multimodal in-context learning (ICL) has emerged as a key mechanism for harnessing the capabilities of large vision-language models (LVLMs). However, its effectiveness remains highly sensitive to the quality of input ICL sequences, particularly for tasks involving complex reasoning or open-ended generation. A major limitation is our limited understanding of how LVLMs actually exploit these sequences during inference. To bridge this gap, we systematically interpret multimodal ICL through the lens of task mapping, which reveals how local and global relationships within and among demonstrations guide model reasoning. Building on this insight, we present TACO, a lightweight transformer-based model equipped with task-aware attention that dynamically configures ICL sequences. By injecting task-mapping signals into the autoregressive decoding process, TACO creates a bidirectional synergy between sequence construction and task reasoning. Experiments on five LVLMs and nine datasets demonstrate that TACO consistently surpasses baselines across diverse ICL tasks. These results position task mapping as a novel and valuable perspective for interpreting and improving multimodal ICL.
comment: EMNLP2025 Main, 28 pages, 11 figures, 19 tables
♻ ☆ DiffSampling: Enhancing Diversity and Accuracy in Neural Text Generation
Despite their growing capabilities, language models still frequently reproduce content from their training data, generate repetitive text, and favor common grammatical patterns and vocabulary. A possible cause is the decoding strategy: the most common strategies either consider only the most probable tokens, which reduces output diversity, or increase the likelihood of unlikely tokens, compromising output accuracy and correctness. In this paper, we propose DiffSampling, a new decoding method that leverages a mathematical analysis of the token probability distribution to ensure the generation of contextually appropriate text. In particular, the difference between consecutive, sorted probabilities can be used to truncate incorrect tokens. In addition, we also propose two variations of the proposed method that aim to correct the subtle inconsistencies of common sampling strategies. Experiments involving four different text-generation tasks demonstrate that our approach consistently performs at least on par with the existing methods it builds upon in terms of quality, while potentially improving output diversity.
♻ ☆ CBVLM: Training-free Explainable Concept-based Large Vision Language Models for Medical Image Classification
The main challenges limiting the adoption of deep learning-based solutions in medical workflows are the availability of annotated data and the lack of interpretability of such systems. Concept Bottleneck Models (CBMs) tackle the latter by constraining the model output on a set of predefined and human-interpretable concepts. However, the increased interpretability achieved through these concept-based explanations implies a higher annotation burden. Moreover, if a new concept needs to be added, the whole system needs to be retrained. Inspired by the remarkable performance shown by Large Vision-Language Models (LVLMs) in few-shot settings, we propose a simple, yet effective, methodology, CBVLM, which tackles both of the aforementioned challenges. First, for each concept, we prompt the LVLM to answer if the concept is present in the input image. Then, we ask the LVLM to classify the image based on the previous concept predictions. Moreover, in both stages, we incorporate a retrieval module responsible for selecting the best examples for in-context learning. By grounding the final diagnosis on the predicted concepts, we ensure explainability, and by leveraging the few-shot capabilities of LVLMs, we drastically lower the annotation cost. We validate our approach with extensive experiments across four medical datasets and twelve LVLMs (both generic and medical) and show that CBVLM consistently outperforms CBMs and task-specific supervised methods without requiring any training and using just a few annotated examples. More information on our project page: https://cristianopatricio.github.io/CBVLM/.
comment: Accepted for publication in Computers in Biology and Medicine
♻ ☆ SurveyBench: Can LLM(-Agents) Write Academic Surveys that Align with Reader Needs?
Academic survey writing, which distills vast literature into a coherent and insightful narrative, remains a labor-intensive and intellectually demanding task. While recent approaches, such as general DeepResearch agents and survey-specialized methods, can generate surveys automatically (a.k.a. LLM4Survey), their outputs often fall short of human standards and there lacks a rigorous, reader-aligned benchmark for thoroughly revealing their deficiencies. To fill the gap, we propose a fine-grained, quiz-driven evaluation framework SurveyBench, featuring (1) typical survey topics source from recent 11,343 arXiv papers and corresponding 4,947 high-quality surveys; (2) a multifaceted metric hierarchy that assesses the outline quality (e.g., coverage breadth, logical coherence), content quality (e.g., synthesis granularity, clarity of insights), and non-textual richness; and (3) a dual-mode evaluation protocol that includes content-based and quiz-based answerability tests, explicitly aligned with readers' informational needs. Results show SurveyBench effectively challenges existing LLM4Survey approaches (e.g., on average 21% lower than human in content-based evaluation).
comment: Visit our code repository at: https://github.com/weAIDB/SurveyBench
♻ ☆ COSPADI: Compressing LLMs via Calibration-Guided Sparse Dictionary Learning
Post-training compression of large language models (LLMs) largely relies on low-rank weight approximation, which represents each column of a weight matrix in a shared low-dimensional subspace. While this is a computationally efficient strategy, the imposed structural constraint is rigid and can lead to a noticeable model accuracy drop. In this work, we propose CoSpaDi (Compression via Sparse Dictionary Learning), a novel training-free compression framework that replaces low-rank decomposition with a more flexible structured sparse factorization in which each weight matrix is represented with a dense dictionary and a column-sparse coefficient matrix. This formulation enables a union-of-subspaces representation: different columns of the original weight matrix are approximated in distinct subspaces spanned by adaptively selected dictionary atoms, offering greater expressiveness than a single invariant basis. Crucially, CoSpaDi leverages a small calibration dataset to optimize the factorization such that the output activations of compressed projection layers closely match those of the original ones, thereby minimizing functional reconstruction error rather than mere weight approximation. This data-aware strategy preserves better model fidelity without any fine-tuning under reasonable compression ratios. Moreover, the resulting structured sparsity allows efficient sparse-dense matrix multiplication and is compatible with post-training quantization for further memory and latency gains. We evaluate CoSpaDi across multiple Llama and Qwen models under per-layer and per-group settings at 20-50\% compression ratios, demonstrating consistent superiority over state-of-the-art data-aware low-rank methods both in accuracy and perplexity. Our results establish structured sparse dictionary learning as a powerful alternative to conventional low-rank approaches for efficient LLM deployment.
♻ ☆ TRA: Better Length Generalisation with Threshold Relative Attention
Transformers struggle with length generalisation, displaying poor performance even on basic tasks. We test whether these limitations can be explained through two key failures of the self-attention mechanism. The first is the inability to fully remove irrelevant information. The second is tied to position, even if the dot product between a key and query is highly negative (i.e. an irrelevant key) learned positional biases may unintentionally up-weight such information - dangerous when distances become out of distribution. Put together, these two failure cases lead to compounding generalisation difficulties. We test whether they can be mitigated through the combination of a) selective sparsity - completely removing irrelevant keys from the attention softmax and b) contextualised relative distance - distance is only considered as between the query and the keys that matter. We show how refactoring the attention mechanism with these two mitigations in place can substantially improve the generalisation capabilities of decoder only transformers.
♻ ☆ Silent Tokens, Loud Effects: Padding in LLMs NeurIPS 2025
Padding tokens are widely used in large language models (LLMs) to equalize sequence lengths during batched inference. While they should be fully masked, implementation errors can cause them to influence computation, and the extent of this influence is not well understood. We systematically study this effect across three open-source model families (Llama, Gemma, Qwen), inserting controlled amounts of padding and evaluating outcomes along four axes: activations, generation quality, bias, and safety. Even small amounts of padding shift hidden representations, degrade quality in smaller models, alter bias in unpredictable ways, and weaken safety guardrails. These findings demonstrate that padding is not a harmless detail but a robustness risk that must be carefully handled in deployment.
comment: Accepted to NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
♻ ☆ Testing Low-Resource Language Support in LLMs Using Language Proficiency Exams: the Case of Luxembourgish
Large Language Models (LLMs) have become an increasingly important tool in research and society at large. While LLMs are regularly used all over the world by experts and lay-people alike, they are predominantly developed with English-speaking users in mind, performing well in English and other wide-spread languages while less-resourced languages such as Luxembourgish are seen as a lower priority. This lack of attention is also reflected in the sparsity of available evaluation tools and datasets. In this study, we investigate the viability of language proficiency exams as such evaluation tools for the Luxembourgish language. We find that large models such as Claude and DeepSeek-R1 typically achieve high scores, while smaller models show weak performances. We also find that the performances in such language exams can be used to predict performances in other NLP tasks in Luxembourgish.
comment: 23pages, 4 figures, 14 tables
♻ ☆ Non-Collaborative User Simulators for Tool Agents
Tool agents interact with users through multi-turn dialogues to accomplish various tasks. Recent studies have adopted user simulation methods to develop these agents in multi-turn settings. However, existing user simulators tend to be agent-friendly, exhibiting only cooperative behaviors, which fails to train and test agents against non-collaborative users in the real world. To address this, we propose a novel user simulator architecture that simulates four categories of non-collaborative behaviors: requesting unavailable services, digressing into tangential conversations, expressing impatience, and providing incomplete utterances. Our user simulator can simulate challenging and natural non-collaborative behaviors while reliably delivering all intents and information necessary to accomplish the task. Our experiments on MultiWOZ and $\tau$-bench reveal significant performance degradation in state-of-the-art tool agents when encountering non-collaborative users. We provide detailed analyses of agents' weaknesses under each non-collaborative condition, such as escalated hallucinations and dialogue breakdowns. Ultimately, we contribute an easily extensible user simulation framework to help the research community develop tool agents and preemptively diagnose them under challenging real-world conditions within their own services.
comment: 9 pages
♻ ☆ Unlocking In-Context Learning for Natural Datasets Beyond Language Modelling
Large Language Models (LLMs) exhibit In-Context Learning (ICL), which enables the model to perform new tasks conditioning only on the examples provided in the context without updating the model's weights. While ICL offers fast adaptation across natural language tasks and domains, its emergence is less straightforward for modalities beyond text. In this work, we systematically uncover properties present in LLMs that support the emergence of ICL for autoregressive models and various modalities by promoting the learning of the needed mechanisms for ICL. We identify exact token repetitions in the training data sequences as an important factor for ICL. Such repetitions further improve stability and reduce transiency in ICL performance. Moreover, we emphasise the significance of training task difficulty for the emergence of ICL. Finally, by applying our novel insights on ICL emergence, we unlock ICL capabilities for various visual datasets and a more challenging EEG classification task.
comment: Best Paper Honorable Mention at GCPR 2025 (German Conference on Pattern Recognition). This is the updated version submitted to the conference, not the official conference proceedings
♻ ☆ Can Large Language Models generalize analogy solving like children can? ACL
In people, the ability to solve analogies such as "body : feet :: table : ?" emerges in childhood, and appears to transfer easily to other domains, such as the visual domain "( : ) :: < : ?". Recent research shows that large language models (LLMs) can solve various forms of analogies. However, can LLMs generalize analogy solving to new domains like people can? To investigate this, we had children, adults, and LLMs solve a series of letter-string analogies (e.g., a b : a c :: j k : ?) in the Latin alphabet, in a near transfer domain (Greek alphabet), and a far transfer domain (list of symbols). Children and adults easily generalized their knowledge to unfamiliar domains, whereas LLMs did not. This key difference between human and AI performance is evidence that these LLMs still struggle with robust human-like analogical transfer.
comment: Accepted to Transactions of the Association for Computational Linguistics (TACL)
♻ ☆ Towards Enforcing Company Policy Adherence in Agentic Workflows EMNLP2025
Large Language Model (LLM) agents hold promise for a flexible and scalable alternative to traditional business process automation, but struggle to reliably follow complex company policies. In this study we introduce a deterministic, transparent, and modular framework for enforcing business policy adherence in agentic workflows. Our method operates in two phases: (1) an offline buildtime stage that compiles policy documents into verifiable guard code associated with tool use, and (2) a runtime integration where these guards ensure compliance before each agent action. We demonstrate our approach on the challenging $\tau$-bench Airlines domain, showing encouraging preliminary results in policy enforcement, and further outline key challenges for real-world deployments.
comment: EMNLP2025 (industry track), 12 pages
♻ ☆ Praxis-VLM: Vision-Grounded Decision Making via Text-Driven Reinforcement Learning NeurIPS 2025
Vision Language Models exhibit impressive performance for various tasks, yet they often lack the sophisticated situational reasoning required for complex decision-making. This paper shows that VLMs can achieve surprisingly strong decision-making performance when visual scenes are replaced by textual descriptions, suggesting foundational reasoning can be effectively learned from language. Motivated by this insight, we propose Praxis-VLM, a reasoning VLM for vision-grounded decision-making. Praxis-VLM employs the GRPO algorithm on textual scenarios to instill robust reasoning capabilities, where models learn to evaluate actions and their consequences. These reasoning skills, acquired purely from text, successfully transfer to multimodal inference with visual inputs, significantly reducing reliance on scarce paired image-text training data. Experiments across diverse decision-making benchmarks demonstrate that Praxis-VLM substantially outperforms standard supervised fine-tuning, exhibiting superior performance and generalizability. Further analysis confirms that our models engage in explicit and effective reasoning, underpinning their enhanced performance and adaptability.
comment: Accepted at NeurIPS 2025
♻ ☆ MAGIC: A Multi-Hop and Graph-Based Benchmark for Inter-Context Conflicts in Retrieval-Augmented Generation
Knowledge conflict often arises in retrieval-augmented generation (RAG) systems, where retrieved documents may be inconsistent with one another or contradict the model's parametric knowledge. Existing benchmarks for investigating the phenomenon have notable limitations, including a narrow focus on the question answering setup, heavy reliance on entity substitution techniques, and a restricted range of conflict types. To address these issues, we propose a knowledge graph (KG)-based framework that generates varied and subtle conflicts between two similar yet distinct contexts, while ensuring interpretability through the explicit relational structure of KGs. Experimental results on our benchmark, MAGIC, provide intriguing insights into the inner workings of LLMs regarding knowledge conflict: both open-source and proprietary models struggle with conflict detection -- especially when multi-hop reasoning is required -- and often fail to pinpoint the exact source of contradictions. Finally, we present in-depth analyses that serve as a foundation for improving LLMs in integrating diverse, sometimes even conflicting, information.
♻ ☆ Psychometric Item Validation Using Virtual Respondents with Trait-Response Mediators
As psychometric surveys are increasingly used to assess the traits of large language models (LLMs), the need for scalable survey item generation suited for LLMs has also grown. A critical challenge here is ensuring the construct validity of generated items, i.e., whether they truly measure the intended trait. Traditionally, this requires costly, large-scale human data collection. To make it efficient, we present a framework for virtual respondent simulation using LLMs. Our central idea is to account for mediators: factors through which the same trait can give rise to varying responses to a survey item. By simulating respondents with diverse mediators, we identify survey items that robustly measure intended traits. Experiments on three psychological trait theories (Big5, Schwartz, VIA) show that our mediator generation methods and simulation framework effectively identify high-validity items. LLMs demonstrate the ability to generate plausible mediators from trait definitions and to simulate respondent behavior for item validation. Our problem formulation, metrics, methodology, and dataset open a new direction for cost-effective survey development and a deeper understanding of how LLMs simulate human survey responses. We publicly release our dataset and code to support future work.
comment: 21 pages, 9 figures
♻ ☆ Beyond Manuals and Tasks: Instance-Level Context Learning for LLM Agents
Large language model (LLM) agents typically receive two kinds of context: (i) environment-level manuals that define interaction interfaces and global rules, and (ii) task-level guidance or demonstrations tied to specific goals. In this work, we identify a crucial but overlooked third type of context, instance-level context, which consists of verifiable and reusable facts tied to a specific environment instance, such as object locations, crafting recipes, and local rules. We argue that the absence of instance-level context is a common source of failure for LLM agents in complex tasks, as success often depends not only on reasoning over global rules or task prompts but also on making decisions based on precise and persistent facts. Acquiring such context requires more than memorization: the challenge lies in efficiently exploring, validating, and formatting these facts under tight interaction budgets. We formalize this problem as Instance-Level Context Learning (ILCL) and introduce our task-agnostic method to solve it. Our method performs a guided exploration, using a compact TODO forest to intelligently prioritize its next actions and a lightweight plan-act-extract loop to execute them. This process automatically produces a high-precision context document that is reusable across many downstream tasks and agents, thereby amortizing the initial exploration cost. Experiments across TextWorld, ALFWorld, and Crafter demonstrate consistent gains in both success and efficiency: for instance, ReAct's mean success rate in TextWorld rises from 37% to 95%, while IGE improves from 81% to 95%. By transforming one-off exploration into persistent, reusable knowledge, our method complements existing contexts to enable more reliable and efficient LLM agents.
♻ ☆ AMAS: Adaptively Determining Communication Topology for LLM-based Multi-Agent System EMNLP-2025
Although large language models (LLMs) have revolutionized natural language processing capabilities, their practical implementation as autonomous multi-agent systems (MAS) for industrial problem-solving encounters persistent barriers. Conventional MAS architectures are fundamentally restricted by inflexible, hand-crafted graph topologies that lack contextual responsiveness, resulting in diminished efficacy across varied academic and commercial workloads. To surmount these constraints, we introduce AMAS, a paradigm-shifting framework that redefines LLM-based MAS through a novel dynamic graph designer. This component autonomously identifies task-specific optimal graph configurations via lightweight LLM adaptation, eliminating the reliance on monolithic, universally applied structural templates. Instead, AMAS exploits the intrinsic properties of individual inputs to intelligently direct query trajectories through task-optimized agent pathways. Rigorous validation across question answering, mathematical deduction, and code generation benchmarks confirms that AMAS systematically exceeds state-of-the-art single-agent and multi-agent approaches across diverse LLM architectures. Our investigation establishes that context-sensitive structural adaptability constitutes a foundational requirement for high-performance LLM MAS deployments.
comment: Accepted by EMNLP-2025 Industrial Track
♻ ☆ Understanding R1-Zero-Like Training: A Critical Perspective
DeepSeek-R1-Zero has shown that reinforcement learning (RL) at scale can directly enhance the reasoning capabilities of LLMs without supervised fine-tuning. In this work, we critically examine R1-Zero-like training by analyzing its two core components: base models and RL. We investigate a wide range of base models, including DeepSeek-V3-Base, to understand how pretraining characteristics influence RL performance. Our analysis reveals that DeepSeek-V3-Base already exhibit ''Aha moment'', while Qwen2.5 base models demonstrate strong reasoning capabilities even without prompt templates, suggesting potential pretraining biases. Additionally, we identify an optimization bias in Group Relative Policy Optimization (GRPO), which artificially increases response length (especially for incorrect outputs) during training. To address this, we introduce Dr. GRPO, an unbiased optimization method that improves token efficiency while maintaining reasoning performance. Leveraging these insights, we present a minimalist R1-Zero recipe that achieves 43.3% accuracy on AIME 2024 with a 7B base model, establishing a new state-of-the-art. Our code is available at https://github.com/sail-sg/understand-r1-zero.
♻ ☆ jina-reranker-v3: Last but Not Late Interaction for Listwise Document Reranking
jina-reranker-v3 is a 0.6B-parameter multilingual listwise reranker that introduces a novel "last but not late" interaction. Unlike late interaction models like ColBERT that encode documents separately before multi-vector matching, our approach applies causal attention between the query and all candidate documents in the same context window, enabling rich interactions before extracting contextual embeddings from each document's final token. The new model achieves state-of-the-art BEIR performance with 61.94 nDCG@10 while being significantly smaller than other models with comparable performance.
♻ ☆ Can We Infer Confidential Properties of Training Data from LLMs?
Large language models (LLMs) are increasingly fine-tuned on domain-specific datasets to support applications in fields such as healthcare, finance, and law. These fine-tuning datasets often have sensitive and confidential dataset-level properties -- such as patient demographics or disease prevalence -- that are not intended to be revealed. While prior work has studied property inference attacks on discriminative models (e.g., image classification models) and generative models (e.g., GANs for image data), it remains unclear if such attacks transfer to LLMs. In this work, we introduce PropInfer, a benchmark task for evaluating property inference in LLMs under two fine-tuning paradigms: question-answering and chat-completion. Built on the ChatDoctor dataset, our benchmark includes a range of property types and task configurations. We further propose two tailored attacks: a prompt-based generation attack and a shadow-model attack leveraging word frequency signals. Empirical evaluations across multiple pretrained LLMs show the success of our attacks, revealing a previously unrecognized vulnerability in LLMs.
♻ ☆ Query-Level Uncertainty in Large Language Models
It is important for Large Language Models (LLMs) to be aware of the boundary of their knowledge, distinguishing queries they can confidently answer from those that lie beyond their capabilities. Such awareness enables models to perform adaptive inference, such as invoking retrieval-augmented generation (RAG), engaging in slow and deep thinking, or abstaining from answering when appropriate. These mechanisms are key to developing efficient and trustworthy AI. In this work, we propose a method to detect knowledge boundaries via Query-Level Uncertainty, which estimates if a model is capable of answering a given query before generating any tokens, thus avoiding the generation cost. To this end, we propose a novel, training-free method called Internal Confidence, which leverages self-evaluations across layers and tokens to provide a reliable signal of uncertainty. Empirical studies on both factual question answering and mathematical reasoning tasks demonstrate that our Internal Confidence outperforms several baselines in quality of confidence while being computationally cheaper. Furthermore, we demonstrate its benefits in adaptive inference settings, showing that for RAG and model cascading it reduces inference costs while preserving overall performance.
comment: Under Review
♻ ☆ AdaSTaR: Adaptive Data Sampling for Training Self-Taught Reasoners NeurIPS 2025
Self-Taught Reasoners (STaR), synonymously known as Rejection sampling Fine-Tuning (RFT), is an integral part of the training pipeline of self-improving reasoning Language Models (LMs). The self-improving mechanism often employs random observation (data) sampling. However, this results in trained observation imbalance; inefficiently over-training on solved examples while under-training on challenging ones. In response, we introduce Adaptive STaR (AdaSTaR), a novel algorithm that rectifies this by integrating two adaptive sampling principles: (1) Adaptive Sampling for Diversity: promoting balanced training across observations, and (2) Adaptive Sampling for Curriculum: dynamically adjusting data difficulty to match the model's evolving strength. Across six benchmarks, AdaSTaR achieves best test accuracy in all instances (6/6) and reduces training FLOPs by an average of 58.6% against an extensive list of baselines. These improvements in performance and efficiency generalize to different pre-trained LMs and larger models, paving the way for more efficient and effective self-improving LMs.
comment: NeurIPS 2025
♻ ☆ DISC: Dynamic Decomposition Improves LLM Inference Scaling NeurIPS 2025
Inference scaling methods for LLMs often rely on decomposing problems into steps (or groups of tokens), followed by sampling and selecting the best next steps. However, these steps and their sizes are often predetermined or manually designed based on domain knowledge. We propose dynamic decomposition, a method that adaptively and automatically partitions solution and reasoning traces into manageable steps during inference. By more effectively allocating compute -- particularly through subdividing challenging steps and prioritizing their sampling -- dynamic decomposition significantly improves inference efficiency. Experiments on benchmarks such as APPS, MATH, and LiveCodeBench demonstrate that dynamic decomposition outperforms static approaches, including token-level, sentence-level, and single-step decompositions, reducing the pass@10 error rate by 5.0%, 6.7%, and 10.5% respectively. These findings highlight the potential of dynamic decomposition to improve a wide range of inference scaling techniques.
comment: 10 pages, Accepted to NeurIPS 2025 (Conference on Neural Information Processing Systems)
♻ ☆ Scientific Paper Retrieval with LLM-Guided Semantic-Based Ranking EMNLP 2025
Scientific paper retrieval is essential for supporting literature discovery and research. While dense retrieval methods demonstrate effectiveness in general-purpose tasks, they often fail to capture fine-grained scientific concepts that are essential for accurate understanding of scientific queries. Recent studies also use large language models (LLMs) for query understanding; however, these methods often lack grounding in corpus-specific knowledge and may generate unreliable or unfaithful content. To overcome these limitations, we propose SemRank, an effective and efficient paper retrieval framework that combines LLM-guided query understanding with a concept-based semantic index. Each paper is indexed using multi-granular scientific concepts, including general research topics and detailed key phrases. At query time, an LLM identifies core concepts derived from the corpus to explicitly capture the query's information need. These identified concepts enable precise semantic matching, significantly enhancing retrieval accuracy. Experiments show that SemRank consistently improves the performance of various base retrievers, surpasses strong existing LLM-based baselines, and remains highly efficient.
comment: Accepted to EMNLP 2025 Findings
♻ ☆ SCAN: Structured Capability Assessment and Navigation for LLMs
Evaluating Large Language Models (LLMs) has become increasingly important, with automatic evaluation benchmarks gaining prominence as alternatives to human evaluation. While existing research has focused on approximating model rankings, such benchmarks fail to provide users and developers with a comprehensive and fine-grained understanding of a specific model's capabilities. To fill this gap, we propose \textbf{SCAN} (Structured Capability Assessment and Navigation), a practical framework that enables detailed characterization of LLM capabilities through comprehensive and fine-grained evaluation. SCAN incorporates four key components: (1) TaxBuilder, which extracts capability-indicating tags from extensive queries to construct a hierarchical taxonomy automatically; (2) RealMix, a query synthesis and filtering mechanism that ensures sufficient evaluation data for each capability tag; (3) a suite of visualization and analysis tools that facilitate efficient navigation and analysis of model capabilities; and (4) a PC$^2$-based (Pre-Comparison-derived Criteria) LLM-as-a-Judge approach that achieves significantly higher accuracy compared to classic LLM-as-a-Judge method. Using SCAN, we conduct a comprehensive evaluation of 21 mainstream LLMs. Our detailed analysis of the GPT-OSS family reveals substantial performance variations, even within sub-capabilities belonging to the same category of capability. This finding highlights the importance of fine-grained evaluation in accurately understanding LLM behavior. Project homepage and resources are available at \href{https://liudan193.github.io/Feedbacker/}{https://liudan193.github.io/Feedbacker/}.
♻ ☆ From Word to World: Evaluate and Mitigate Culture Bias in LLMs via Word Association Test EMNLP 2025
The human-centered word association test (WAT) serves as a cognitive proxy, revealing sociocultural variations through culturally shared semantic expectations and implicit linguistic patterns shaped by lived experiences. We extend this test into an LLM-adaptive, free-relation task to assess the alignment of large language models (LLMs) with cross-cultural cognition. To address culture preference, we propose CultureSteer, an innovative approach that moves beyond superficial cultural prompting by embedding cultural-specific semantic associations directly within the model's internal representation space. Experiments show that current LLMs exhibit significant bias toward Western (notably American) schemas at the word association level. In contrast, our model substantially improves cross-cultural alignment, capturing diverse semantic associations. Further validation on culture-sensitive downstream tasks confirms its efficacy in fostering cognitive alignment across cultures. This work contributes a novel methodological paradigm for enhancing cultural awareness in LLMs, advancing the development of more inclusive language technologies.
comment: Cultural Analysis, Cultural Alignment, Word Association Test, Large Language Models. Accepted by EMNLP 2025 (Oral)
♻ ☆ Deliberate Planning in Language Models with Symbolic Representation
Planning remains a core challenge for large language models (LLMs), particularly in domains that require coherent multi-step action sequences grounded in external constraints. We introduce SymPlanner, a novel framework that equips LLMs with structured planning capabilities by interfacing them with a symbolic environment that serves as an explicit world model. Rather than relying purely on natural language reasoning, SymPlanner grounds the planning process in a symbolic state space, where a policy model proposes actions and a symbolic environment deterministically executes and verifies their effects. To enhance exploration and improve robustness, we introduce Iterative Correction (IC), which refines previously proposed actions by leveraging feedback from the symbolic environment to eliminate invalid decisions and guide the model toward valid alternatives. Additionally, Contrastive Ranking (CR) enables fine-grained comparison of candidate plans by evaluating them jointly. Conceptually, SymPlanner operationalizes two cognitive faculties: (i) error monitoring and repair via externalized feedback (IC) and (ii) preference formation among alternatives via pairwise comparison (CR), advancing cognitively plausible, symbol-grounded planning aligned with the rich structure in intelligent systems. We evaluate SymPlanner on PlanBench, demonstrating that it produces more coherent, diverse, and verifiable plans than pure natural language baselines.
comment: Accepted to Twelfth Annual Conference on Advances in Cognitive Systems
♻ ☆ Pretraining with hierarchical memories: separating long-tail and common knowledge
The impressive performance gains of modern language models currently rely on scaling parameters: larger models store more world knowledge and reason better. Yet compressing all world knowledge into parameters is unnecessary, as only a fraction is used per prompt, and impractical for edge devices with limited inference-time memory and compute. We address this shortcoming by a memory-augmented architecture and a pretraining strategy aligned with existing hardware paradigms. We introduce small language models that access large hierarchical parametric memory banks encoding world knowledge. During pretraining and inference, we fetch a small, context-dependent memory block and add it to the model. Our pretraining learns to store long-tail world knowledge in the memory parameters, while the small language model acts as an anchor capturing common knowledge and general reasoning abilities. Through trillion-token-scale experiments, we show significant gains: a 160M-parameters model augmented with an 18M-parameters memory fetched from a 4.6B memory bank obtains comparable performance to a regular model with more than 2x the parameters. Through extensive experiments, we study the optimal type and size of parametric memories in transformers, scaling them to over 21B parameters. We find that our proposed hierarchical feed-forward memories work robustly across transformer architectures, whether added during pretraining or post-hoc.
♻ ☆ Chasing Moving Targets with Online Self-Play Reinforcement Learning for Safer Language Models
Conventional language model (LM) safety alignment relies on a reactive, disjoint procedure: attackers exploit a static model, followed by defensive fine-tuning to patch exposed vulnerabilities. This sequential approach creates a mismatch -- attackers overfit to obsolete defenses, while defenders perpetually lag behind emerging threats. To address this, we propose Self-RedTeam, an online self-play reinforcement learning algorithm where an attacker and defender agent co-evolve through continuous interaction. We cast safety alignment as a two-player zero-sum game, where a single model alternates between attacker and defender roles -- generating adversarial prompts and safeguarding against them -- while a reward LM adjudicates outcomes. This enables dynamic co-adaptation. Grounded in the game-theoretic framework of zero-sum games, we establish a theoretical safety guarantee which motivates the design of our method: if self-play converges to a Nash Equilibrium, the defender will reliably produce safe responses to any adversarial input. Empirically, Self-RedTeam uncovers more diverse attacks (+21.8% SBERT) compared to attackers trained against static defenders and achieves higher robustness on safety benchmarks (e.g., +65.5% on WildJailBreak) than defenders trained against static attackers. We further propose hidden Chain-of-Thought, allowing agents to plan privately, which boosts adversarial diversity and reduces over-refusals. Our results motivate a shift from reactive patching to proactive co-evolution in LM safety training, enabling scalable, autonomous, and robust self-improvement of LMs via multi-agent reinforcement learning (MARL).
♻ ☆ Less LLM, More Documents: Searching for Improved RAG
Retrieval-Augmented Generation (RAG) couples document retrieval with large language models (LLMs). While scaling generators improves accuracy, it also raises cost and limits deployability. We explore an orthogonal axis: enlarging the retriever's corpus to reduce reliance on large LLMs. Experimental results show that corpus scaling consistently strengthens RAG and can often serve as a substitute for increasing model size, though with diminishing returns at larger scales. Small- and mid-sized generators paired with larger corpora often rival much larger models with smaller corpora; mid-sized models tend to gain the most, while tiny and large models benefit less. Our analysis shows that improvements arise primarily from increased coverage of answer-bearing passages, while utilization efficiency remains largely unchanged. These findings establish a principled corpus-generator trade-off: investing in larger corpora offers an effective path to stronger RAG, often comparable to enlarging the LLM itself.
♻ ☆ OpenWHO: A Document-Level Parallel Corpus for Health Translation in Low-Resource Languages
In machine translation (MT), health is a high-stakes domain characterised by widespread deployment and domain-specific vocabulary. However, there is a lack of MT evaluation datasets for low-resource languages in this domain. To address this gap, we introduce OpenWHO, a document-level parallel corpus of 2,978 documents and 26,824 sentences from the World Health Organization's e-learning platform. Sourced from expert-authored, professionally translated materials shielded from web-crawling, OpenWHO spans a diverse range of over 20 languages, of which nine are low-resource. Leveraging this new resource, we evaluate modern large language models (LLMs) against traditional MT models. Our findings reveal that LLMs consistently outperform traditional MT models, with Gemini 2.5 Flash achieving a +4.79 ChrF point improvement over NLLB-54B on our low-resource test set. Further, we investigate how LLM context utilisation affects accuracy, finding that the benefits of document-level translation are most pronounced in specialised domains like health. We release the OpenWHO corpus to encourage further research into low-resource MT in the health domain.
comment: Accepted at WMT 2025
♻ ☆ AutoBnB-RAG: Enhancing Multi-Agent Incident Response with Retrieval-Augmented Generation
Incident response (IR) requires fast, coordinated, and well-informed decision-making to contain and mitigate cyber threats. While large language models (LLMs) have shown promise as autonomous agents in simulated IR settings, their reasoning is often limited by a lack of access to external knowledge. In this work, we present AutoBnB-RAG, an extension of the AutoBnB framework that incorporates retrieval-augmented generation (RAG) into multi-agent incident response simulations. Built on the Backdoors & Breaches (B&B) tabletop game environment, AutoBnB-RAG enables agents to issue retrieval queries and incorporate external evidence during collaborative investigations. We introduce two retrieval settings: one grounded in curated technical documentation (RAG-Wiki), and another using narrative-style incident reports (RAG-News). We evaluate performance across eight team structures, including newly introduced argumentative configurations designed to promote critical reasoning. To validate practical utility, we also simulate real-world cyber incidents based on public breach reports, demonstrating AutoBnB-RAG's ability to reconstruct complex multi-stage attacks. Our results show that retrieval augmentation improves decision quality and success rates across diverse organizational models. This work demonstrates the value of integrating retrieval mechanisms into LLM-based multi-agent systems for cybersecurity decision-making.
Computer Vision and Pattern Recognition
☆ Pulp Motion: Framing-aware multimodal camera and human motion generation
Treating human motion and camera trajectory generation separately overlooks a core principle of cinematography: the tight interplay between actor performance and camera work in the screen space. In this paper, we are the first to cast this task as a text-conditioned joint generation, aiming to maintain consistent on-screen framing while producing two heterogeneous, yet intrinsically linked, modalities: human motion and camera trajectories. We propose a simple, model-agnostic framework that enforces multimodal coherence via an auxiliary modality: the on-screen framing induced by projecting human joints onto the camera. This on-screen framing provides a natural and effective bridge between modalities, promoting consistency and leading to more precise joint distribution. We first design a joint autoencoder that learns a shared latent space, together with a lightweight linear transform from the human and camera latents to a framing latent. We then introduce auxiliary sampling, which exploits this linear transform to steer generation toward a coherent framing modality. To support this task, we also introduce the PulpMotion dataset, a human-motion and camera-trajectory dataset with rich captions, and high-quality human motions. Extensive experiments across DiT- and MAR-based architectures show the generality and effectiveness of our method in generating on-frame coherent human-camera motions, while also achieving gains on textual alignment for both modalities. Our qualitative results yield more cinematographically meaningful framings setting the new state of the art for this task. Code, models and data are available in our \href{https://www.lix.polytechnique.fr/vista/projects/2025_pulpmotion_courant/}{project page}.
comment: Project page: https://www.lix.polytechnique.fr/vista/projects/2025_pulpmotion_courant/
☆ Paper2Video: Automatic Video Generation from Scientific Papers
Academic presentation videos have become an essential medium for research communication, yet producing them remains highly labor-intensive, often requiring hours of slide design, recording, and editing for a short 2 to 10 minutes video. Unlike natural video, presentation video generation involves distinctive challenges: inputs from research papers, dense multi-modal information (text, figures, tables), and the need to coordinate multiple aligned channels such as slides, subtitles, speech, and human talker. To address these challenges, we introduce PaperTalker, the first benchmark of 101 research papers paired with author-created presentation videos, slides, and speaker metadata. We further design four tailored evaluation metrics--Meta Similarity, PresentArena, PresentQuiz, and IP Memory--to measure how videos convey the paper's information to the audience. Building on this foundation, we propose PaperTalker, the first multi-agent framework for academic presentation video generation. It integrates slide generation with effective layout refinement by a novel effective tree search visual choice, cursor grounding, subtitling, speech synthesis, and talking-head rendering, while parallelizing slide-wise generation for efficiency. Experiments on Paper2Video demonstrate that the presentation videos produced by our approach are more faithful and informative than existing baselines, establishing a practical step toward automated and ready-to-use academic video generation. Our dataset, agent, and code are available at https://github.com/showlab/Paper2Video.
comment: 20 pages, 8 figures
☆ VChain: Chain-of-Visual-Thought for Reasoning in Video Generation
Recent video generation models can produce smooth and visually appealing clips, but they often struggle to synthesize complex dynamics with a coherent chain of consequences. Accurately modeling visual outcomes and state transitions over time remains a core challenge. In contrast, large language and multimodal models (e.g., GPT-4o) exhibit strong visual state reasoning and future prediction capabilities. To bridge these strengths, we introduce VChain, a novel inference-time chain-of-visual-thought framework that injects visual reasoning signals from multimodal models into video generation. Specifically, VChain contains a dedicated pipeline that leverages large multimodal models to generate a sparse set of critical keyframes as snapshots, which are then used to guide the sparse inference-time tuning of a pre-trained video generator only at these key moments. Our approach is tuning-efficient, introduces minimal overhead and avoids dense supervision. Extensive experiments on complex, multi-step scenarios show that VChain significantly enhances the quality of generated videos.
comment: Project page: https://eyeline-labs.github.io/VChain Code: https://github.com/Eyeline-Labs/VChain
☆ Character Mixing for Video Generation
Imagine Mr. Bean stepping into Tom and Jerry--can we generate videos where characters interact naturally across different worlds? We study inter-character interaction in text-to-video generation, where the key challenge is to preserve each character's identity and behaviors while enabling coherent cross-context interaction. This is difficult because characters may never have coexisted and because mixing styles often causes style delusion, where realistic characters appear cartoonish or vice versa. We introduce a framework that tackles these issues with Cross-Character Embedding (CCE), which learns identity and behavioral logic across multimodal sources, and Cross-Character Augmentation (CCA), which enriches training with synthetic co-existence and mixed-style data. Together, these techniques allow natural interactions between previously uncoexistent characters without losing stylistic fidelity. Experiments on a curated benchmark of cartoons and live-action series with 10 characters show clear improvements in identity preservation, interaction quality, and robustness to style delusion, enabling new forms of generative storytelling.Additional results and videos are available on our project page: https://tingtingliao.github.io/mimix/.
☆ Factuality Matters: When Image Generation and Editing Meet Structured Visuals
While modern visual generation models excel at creating aesthetically pleasing natural images, they struggle with producing or editing structured visuals like charts, diagrams, and mathematical figures, which demand composition planning, text rendering, and multimodal reasoning for factual fidelity. To address this, we present the first comprehensive, systematic investigation of this domain, encompassing data construction, model training, and an evaluation benchmark. First, we construct a large-scale dataset of 1.3 million high-quality structured image pairs derived from executable drawing programs and augmented with chain-of-thought reasoning annotations. Building on it, we train a unified model that integrates a VLM with FLUX.1 Kontext via a lightweight connector for enhanced multimodal understanding. A three-stage training curriculum enables progressive feature alignment, knowledge infusion, and reasoning-augmented generation, further boosted by an external reasoner at inference time. Finally, we introduce StructBench, a novel benchmark for generation and editing with over 1,700 challenging instances, and an accompanying evaluation metric, StructScore, which employs a multi-round Q\&A protocol to assess fine-grained factual accuracy. Evaluations of 15 models reveal that even leading closed-source systems remain far from satisfactory. Our model attains strong editing performance, and inference-time reasoning yields consistent gains across diverse architectures. By releasing the dataset, model, and benchmark, we aim to advance unified multimodal foundations for structured visuals.
comment: Project page: https://structvisuals.github.io
☆ SAEdit: Token-level control for continuous image editing via Sparse AutoEncoder
Large-scale text-to-image diffusion models have become the backbone of modern image editing, yet text prompts alone do not offer adequate control over the editing process. Two properties are especially desirable: disentanglement, where changing one attribute does not unintentionally alter others, and continuous control, where the strength of an edit can be smoothly adjusted. We introduce a method for disentangled and continuous editing through token-level manipulation of text embeddings. The edits are applied by manipulating the embeddings along carefully chosen directions, which control the strength of the target attribute. To identify such directions, we employ a Sparse Autoencoder (SAE), whose sparse latent space exposes semantically isolated dimensions. Our method operates directly on text embeddings without modifying the diffusion process, making it model agnostic and broadly applicable to various image synthesis backbones. Experiments show that it enables intuitive and efficient manipulations with continuous control across diverse attributes and domains.
comment: Project page at: https://ronen94.github.io/SAEdit/
☆ Neuroplastic Modular Framework: Cross-Domain Image Classification of Garbage and Industrial Surfaces
Efficient and accurate classification of waste and industrial surface defects is essential for ensuring sustainable waste management and maintaining high standards in quality control. This paper introduces the Neuroplastic Modular Classifier, a novel hybrid architecture designed for robust and adaptive image classification in dynamic environments. The model combines a ResNet-50 backbone for localized feature extraction with a Vision Transformer (ViT) to capture global semantic context. Additionally, FAISS-based similarity retrieval is incorporated to provide a memory-like reference to previously encountered data, enriching the model's feature space. A key innovation of our architecture is the neuroplastic modular design composed of expandable, learnable blocks that dynamically grow during training when performance plateaus. Inspired by biological learning systems, this mechanism allows the model to adapt to data complexity over time, improving generalization. Beyond garbage classification, we validate the model on the Kolektor Surface Defect Dataset 2 (KolektorSDD2), which involves industrial defect detection on metal surfaces. Experimental results across domains show that the proposed architecture outperforms traditional static models in both accuracy and adaptability. The Neuroplastic Modular Classifier offers a scalable, high-performance solution for real-world image classification, with strong applicability in both environmental and industrial domains.
☆ StaMo: Unsupervised Learning of Generalizable Robot Motion from Compact State Representation
A fundamental challenge in embodied intelligence is developing expressive and compact state representations for efficient world modeling and decision making. However, existing methods often fail to achieve this balance, yielding representations that are either overly redundant or lacking in task-critical information. We propose an unsupervised approach that learns a highly compressed two-token state representation using a lightweight encoder and a pre-trained Diffusion Transformer (DiT) decoder, capitalizing on its strong generative prior. Our representation is efficient, interpretable, and integrates seamlessly into existing VLA-based models, improving performance by 14.3% on LIBERO and 30% in real-world task success with minimal inference overhead. More importantly, we find that the difference between these tokens, obtained via latent interpolation, naturally serves as a highly effective latent action, which can be further decoded into executable robot actions. This emergent capability reveals that our representation captures structured dynamics without explicit supervision. We name our method StaMo for its ability to learn generalizable robotic Motion from compact State representation, which is encoded from static images, challenging the prevalent dependence to learning latent action on complex architectures and video data. The resulting latent actions also enhance policy co-training, outperforming prior methods by 10.4% with improved interpretability. Moreover, our approach scales effectively across diverse data sources, including real-world robot data, simulation, and human egocentric video.
☆ No-reference Quality Assessment of Contrast-distorted Images using Contrast-enhanced Pseudo Reference
Contrast change is an important factor that affects the quality of images. During image capturing, unfavorable lighting conditions can cause contrast change and visual quality loss. While various methods have been proposed to assess the quality of images under different distortions such as blur and noise, contrast distortion has been largely overlooked as its visual impact and properties are different from other conventional types of distortions. In this paper, we propose a no-reference image quality assessment (NR-IQA) metric for contrast-distorted images. Using a set of contrast enhancement algorithms, we aim to generate pseudo-reference images that are visually close to the actual reference image, such that the NR problem is transformed to a Full-reference (FR) assessment with higher accuracy. To this end, a large dataset of contrast-enhanced images is produced to train a classification network that can select the most suitable contrast enhancement algorithm based on image content and distortion for pseudo-reference image generation. Finally, the evaluation is performed in the FR manner to assess the quality difference between the contrast-enhanced (pseudoreference) and degraded images. Performance evaluation of the proposed method on three databases containing contrast distortions (CCID2014, TID2013, and CSIQ), indicates the promising performance of the proposed method.
☆ SegMASt3R: Geometry Grounded Segment Matching NeurIPS 2025
Segment matching is an important intermediate task in computer vision that establishes correspondences between semantically or geometrically coherent regions across images. Unlike keypoint matching, which focuses on localized features, segment matching captures structured regions, offering greater robustness to occlusions, lighting variations, and viewpoint changes. In this paper, we leverage the spatial understanding of 3D foundation models to tackle wide-baseline segment matching, a challenging setting involving extreme viewpoint shifts. We propose an architecture that uses the inductive bias of these 3D foundation models to match segments across image pairs with up to 180 degree view-point change. Extensive experiments show that our approach outperforms state-of-the-art methods, including the SAM2 video propagator and local feature matching methods, by upto 30% on the AUPRC metric, on ScanNet++ and Replica datasets. We further demonstrate benefits of the proposed model on relevant downstream tasks, including 3D instance segmentation and image-goal navigation. Project Page: https://segmast3r.github.io/
comment: Accepted to The Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025) as a Spotlight (top 3.5%)
☆ Video-LMM Post-Training: A Deep Dive into Video Reasoning with Large Multimodal Models
Video understanding represents the most challenging frontier in computer vision, requiring models to reason about complex spatiotemporal relationships, long-term dependencies, and multimodal evidence. The recent emergence of Video-Large Multimodal Models (Video-LMMs), which integrate visual encoders with powerful decoder-based language models, has demonstrated remarkable capabilities in video understanding tasks. However, the critical phase that transforms these models from basic perception systems into sophisticated reasoning engines, post-training, remains fragmented across the literature. This survey provides the first comprehensive examination of post-training methodologies for Video-LMMs, encompassing three fundamental pillars: supervised fine-tuning (SFT) with chain-of-thought, reinforcement learning (RL) from verifiable objectives, and test-time scaling (TTS) through enhanced inference computation. We present a structured taxonomy that clarifies the roles, interconnections, and video-specific adaptations of these techniques, addressing unique challenges such as temporal localization, spatiotemporal grounding, long video efficiency, and multimodal evidence integration. Through systematic analysis of representative methods, we synthesize key design principles, insights, and evaluation protocols while identifying critical open challenges in reward design, scalability, and cost-performance optimization. We further curate essential benchmarks, datasets, and metrics to facilitate rigorous assessment of post-training effectiveness. This survey aims to provide researchers and practitioners with a unified framework for advancing Video-LMM capabilities. Additional resources and updates are maintained at: https://github.com/yunlong10/Awesome-Video-LMM-Post-Training
comment: The 1st version
☆ Exploring the Efficacy of Modified Transfer Learning in Identifying Parkinson's Disease Through Drawn Image Patterns
Parkinson's disease (PD) is a progressive neurodegenerative condition characterized by the death of dopaminergic neurons, leading to various movement disorder symptoms. Early diagnosis of PD is crucial to prevent adverse effects, yet traditional diagnostic methods are often cumbersome and costly. In this study, a machine learning-based approach is proposed using hand-drawn spiral and wave images as potential biomarkers for PD detection. Our methodology leverages convolutional neural networks (CNNs), transfer learning, and attention mechanisms to improve model performance and resilience against overfitting. To enhance the diversity and richness of both spiral and wave categories, the training dataset undergoes augmentation to increase the number of images. The proposed architecture comprises three phases: utilizing pre-trained CNNs, incorporating custom convolutional layers, and ensemble voting. Employing hard voting further enhances performance by aggregating predictions from multiple models. Experimental results show promising accuracy rates. For spiral images, weighted average precision, recall, and F1-score are 90%, and for wave images, they are 96.67%. After combining the predictions through ensemble hard voting, the overall accuracy is 93.3%. These findings underscore the potential of machine learning in early PD diagnosis, offering a non-invasive and cost-effective solution to improve patient outcomes.
comment: 5 pages, 11 figures, published on 2024 2nd International Conference on Information and Communication Technology (ICICT 2024)
☆ Latent Uncertainty Representations for Video-based Driver Action and Intention Recognition
Deep neural networks (DNNs) are increasingly applied to safety-critical tasks in resource-constrained environments, such as video-based driver action and intention recognition. While last layer probabilistic deep learning (LL-PDL) methods can detect out-of-distribution (OOD) instances, their performance varies. As an alternative to last layer approaches, we propose extending pre-trained DNNs with transformation layers to produce multiple latent representations to estimate the uncertainty. We evaluate our latent uncertainty representation (LUR) and repulsively trained LUR (RLUR) approaches against eight PDL methods across four video-based driver action and intention recognition datasets, comparing classification performance, calibration, and uncertainty-based OOD detection. We also contribute 28,000 frame-level action labels and 1,194 video-level intention labels for the NuScenes dataset. Our results show that LUR and RLUR achieve comparable in-distribution classification performance to other LL-PDL approaches. For uncertainty-based OOD detection, LUR matches top-performing PDL methods while being more efficient to train and easier to tune than approaches that require Markov-Chain Monte Carlo sampling or repulsive training procedures.
comment: 16 pages, 8 figures, 7 tables, under submission
☆ Bridging Text and Video Generation: A Survey
Text-to-video (T2V) generation technology holds potential to transform multiple domains such as education, marketing, entertainment, and assistive technologies for individuals with visual or reading comprehension challenges, by creating coherent visual content from natural language prompts. From its inception, the field has advanced from adversarial models to diffusion-based models, yielding higher-fidelity, temporally consistent outputs. Yet challenges persist, such as alignment, long-range coherence, and computational efficiency. Addressing this evolving landscape, we present a comprehensive survey of text-to-video generative models, tracing their development from early GANs and VAEs to hybrid Diffusion-Transformer (DiT) architectures, detailing how these models work, what limitations they addressed in their predecessors, and why shifts toward new architectural paradigms were necessary to overcome challenges in quality, coherence, and control. We provide a systematic account of the datasets, which the surveyed text-to-video models were trained and evaluated on, and, to support reproducibility and assess the accessibility of training such models, we detail their training configurations, including their hardware specifications, GPU counts, batch sizes, learning rates, optimizers, epochs, and other key hyperparameters. Further, we outline the evaluation metrics commonly used for evaluating such models and present their performance across standard benchmarks, while also discussing the limitations of these metrics and the emerging shift toward more holistic, perception-aligned evaluation strategies. Finally, drawing from our analysis, we outline the current open challenges and propose a few promising future directions, laying out a perspective for future researchers to explore and build upon in advancing T2V research and applications.
☆ ActiveMark: on watermarking of visual foundation models via massive activations
Being trained on large and vast datasets, visual foundation models (VFMs) can be fine-tuned for diverse downstream tasks, achieving remarkable performance and efficiency in various computer vision applications. The high computation cost of data collection and training motivates the owners of some VFMs to distribute them alongside the license to protect their intellectual property rights. However, a dishonest user of the protected model's copy may illegally redistribute it, for example, to make a profit. As a consequence, the development of reliable ownership verification tools is of great importance today, since such methods can be used to differentiate between a redistributed copy of the protected model and an independent model. In this paper, we propose an approach to ownership verification of visual foundation models by fine-tuning a small set of expressive layers of a VFM along with a small encoder-decoder network to embed digital watermarks into an internal representation of a hold-out set of input images. Importantly, the watermarks embedded remain detectable in the functional copies of the protected model, obtained, for example, by fine-tuning the VFM for a particular downstream task. Theoretically and experimentally, we demonstrate that the proposed method yields a low probability of false detection of a non-watermarked model and a low probability of false misdetection of a watermarked model.
☆ SSDD: Single-Step Diffusion Decoder for Efficient Image Tokenization
Tokenizers are a key component of state-of-the-art generative image models, extracting the most important features from the signal while reducing data dimension and redundancy. Most current tokenizers are based on KL-regularized variational autoencoders (KL-VAE), trained with reconstruction, perceptual and adversarial losses. Diffusion decoders have been proposed as a more principled alternative to model the distribution over images conditioned on the latent. However, matching the performance of KL-VAE still requires adversarial losses, as well as a higher decoding time due to iterative sampling. To address these limitations, we introduce a new pixel diffusion decoder architecture for improved scaling and training stability, benefiting from transformer components and GAN-free training. We use distillation to replicate the performance of the diffusion decoder in an efficient single-step decoder. This makes SSDD the first diffusion decoder optimized for single-step reconstruction trained without adversarial losses, reaching higher reconstruction quality and faster sampling than KL-VAE. In particular, SSDD improves reconstruction FID from $0.87$ to $0.50$ with $1.4\times$ higher throughput and preserve generation quality of DiTs with $3.8\times$ faster sampling. As such, SSDD can be used as a drop-in replacement for KL-VAE, and for building higher-quality and faster generative models.
☆ Bidirectional Mammogram View Translation with Column-Aware and Implicit 3D Conditional Diffusion
Dual-view mammography, including craniocaudal (CC) and mediolateral oblique (MLO) projections, offers complementary anatomical views crucial for breast cancer diagnosis. However, in real-world clinical workflows, one view may be missing, corrupted, or degraded due to acquisition errors or compression artifacts, limiting the effectiveness of downstream analysis. View-to-view translation can help recover missing views and improve lesion alignment. Unlike natural images, this task in mammography is highly challenging due to large non-rigid deformations and severe tissue overlap in X-ray projections, which obscure pixel-level correspondences. In this paper, we propose Column-Aware and Implicit 3D Diffusion (CA3D-Diff), a novel bidirectional mammogram view translation framework based on conditional diffusion model. To address cross-view structural misalignment, we first design a column-aware cross-attention mechanism that leverages the geometric property that anatomically corresponding regions tend to lie in similar column positions across views. A Gaussian-decayed bias is applied to emphasize local column-wise correlations while suppressing distant mismatches. Furthermore, we introduce an implicit 3D structure reconstruction module that back-projects noisy 2D latents into a coarse 3D feature volume based on breast-view projection geometry. The reconstructed 3D structure is refined and injected into the denoising UNet to guide cross-view generation with enhanced anatomical awareness. Extensive experiments demonstrate that CA3D-Diff achieves superior performance in bidirectional tasks, outperforming state-of-the-art methods in visual fidelity and structural consistency. Furthermore, the synthesized views effectively improve single-view malignancy classification in screening settings, demonstrating the practical value of our method in real-world diagnostics.
comment: BIBM2025 accept, 8 pages, 4 figures
☆ On Structured State-Space Duality
Structured State-Space Duality (SSD) [Dao & Gu, ICML 2024] is an equivalence between a simple Structured State-Space Model (SSM) and a masked attention mechanism. In particular, a state-space model with a scalar-times-identity state matrix is equivalent to a masked self-attention with a $1$-semiseparable causal mask. Consequently, the same sequence transformation (model) has two algorithmic realizations: as a linear-time $O(T)$ recurrence or as a quadratic-time $O(T^2)$ attention. In this note, we formalize and generalize this duality: (i) we extend SSD from the scalar-identity case to general diagonal SSMs (diagonal state matrices); (ii) we show that these diagonal SSMs match the scalar case's training complexity lower bounds while supporting richer dynamics; (iii) we establish a necessary and sufficient condition under which an SSM is equivalent to $1$-semiseparable masked attention; and (iv) we show that such duality fails to extend to standard softmax attention due to rank explosion. Together, these results tighten bridge between recurrent SSMs and Transformers, and widen the design space for expressive yet efficient sequence models.
☆ Unsupervised Active Learning via Natural Feature Progressive Framework
The effectiveness of modern deep learning models is predicated on the availability of large-scale, human-annotated datasets, a process that is notoriously expensive and time-consuming. While Active Learning (AL) offers a strategic solution by labeling only the most informative and representative data, its iterative nature still necessitates significant human involvement. Unsupervised Active Learning (UAL) presents an alternative by shifting the annotation burden to a single, post-selection step. Unfortunately, prevailing UAL methods struggle to achieve state-of-the-art performance. These approaches typically rely on local, gradient-based scoring for sample importance estimation, which not only makes them vulnerable to ambiguous and noisy data but also hinders their capacity to select samples that adequately represent the full data distribution. Moreover, their use of shallow, one-shot linear selection falls short of a true UAL paradigm. In this paper, we propose the Natural Feature Progressive Framework (NFPF), a UAL method that revolutionizes how sample importance is measured. At its core, NFPF employs a Specific Feature Learning Machine (SFLM) to effectively quantify each sample's contribution to model performance. We further utilize the SFLM to define a powerful Reconstruction Difference metric for initial sample selection. Our comprehensive experiments show that NFPF significantly outperforms all established UAL methods and achieves performance on par with supervised AL methods on vision datasets. Detailed ablation studies and qualitative visualizations provide compelling evidence for NFPF's superior performance, enhanced robustness, and improved data distribution coverage.
comment: Under review at IEEE TPAMI
☆ REN: Anatomically-Informed Mixture-of-Experts for Interstitial Lung Disease Diagnosis
Mixture-of-Experts (MoE) architectures have significantly contributed to scalable machine learning by enabling specialized subnetworks to tackle complex tasks efficiently. However, traditional MoE systems lack domain-specific constraints essential for medical imaging, where anatomical structure and regional disease heterogeneity strongly influence pathological patterns. Here, we introduce Regional Expert Networks (REN), the first anatomically-informed MoE framework tailored specifically for medical image classification. REN leverages anatomical priors to train seven specialized experts, each dedicated to distinct lung lobes and bilateral lung combinations, enabling precise modeling of region-specific pathological variations. Multi-modal gating mechanisms dynamically integrate radiomics biomarkers and deep learning (DL) features (CNN, ViT, Mamba) to weight expert contributions optimally. Applied to interstitial lung disease (ILD) classification, REN achieves consistently superior performance: the radiomics-guided ensemble reached an average AUC of 0.8646 +/- 0.0467, a +12.5 percent improvement over the SwinUNETR baseline (AUC 0.7685, p = 0.031). Region-specific experts further revealed that lower-lobe models achieved AUCs of 0.88-0.90, surpassing DL counterparts (CNN: 0.76-0.79) and aligning with known disease progression patterns. Through rigorous patient-level cross-validation, REN demonstrates strong generalizability and clinical interpretability, presenting a scalable, anatomically-guided approach readily extensible to other structured medical imaging applications.
comment: 10 pages, 4 figures, 2 tables
☆ A Semantics-Aware Hierarchical Self-Supervised Approach to Classification of Remote Sensing Images
Deep learning has become increasingly important in remote sensing image classification due to its ability to extract semantic information from complex data. Classification tasks often include predefined label hierarchies that represent the semantic relationships among classes. However, these hierarchies are frequently overlooked, and most approaches focus only on fine-grained classification schemes. In this paper, we present a novel Semantics-Aware Hierarchical Consensus (SAHC) method for learning hierarchical features and relationships by integrating hierarchy-specific classification heads within a deep network architecture, each specialized in different degrees of class granularity. The proposed approach employs trainable hierarchy matrices, which guide the network through the learning of the hierarchical structure in a self-supervised manner. Furthermore, we introduce a hierarchical consensus mechanism to ensure consistent probability distributions across different hierarchical levels. This mechanism acts as a weighted ensemble being able to effectively leverage the inherent structure of the hierarchical classification task. The proposed SAHC method is evaluated on three benchmark datasets with different degrees of hierarchical complexity on different tasks, using distinct backbone architectures to effectively emphasize its adaptability. Experimental results show both the effectiveness of the proposed approach in guiding network learning and the robustness of the hierarchical consensus for remote sensing image classification tasks.
comment: 12 pages, 6 figures
☆ Comparative Analysis of YOLOv5, Faster R-CNN, SSD, and RetinaNet for Motorbike Detection in Kigali Autonomous Driving Context
In Kigali, Rwanda, motorcycle taxis are a primary mode of transportation, often navigating unpredictably and disregarding traffic rules, posing significant challenges for autonomous driving systems. This study compares four object detection models--YOLOv5, Faster R-CNN, SSD, and RetinaNet--for motorbike detection using a custom dataset of 198 images collected in Kigali. Implemented in PyTorch with transfer learning, the models were evaluated for accuracy, localization, and inference speed to assess their suitability for real-time navigation in resource-constrained settings. We identify implementation challenges, including dataset limitations and model complexities, and recommend simplified architectures for future work to enhance accessibility for autonomous systems in developing countries like Rwanda.
comment: 3 figures, 2 tables
☆ CLEAR-IR: Clarity-Enhanced Active Reconstruction of Infrared Imagery
This paper presents a novel approach for enabling robust robotic perception in dark environments using infrared (IR) stream. IR stream is less susceptible to noise than RGB in low-light conditions. However, it is dominated by active emitter patterns that hinder high-level tasks such as object detection, tracking and localisation. To address this, a U-Net-based architecture is proposed that reconstructs clean IR images from emitter-populated input, improving both image quality and downstream robotic performance. This approach outperforms existing enhancement techniques and enables reliable operation of vision-driven robotic systems across illumination conditions from well-lit to extreme low-light scenes.
comment: 8 pages, 8 figures
☆ BenthiCat: An opti-acoustic dataset for advancing benthic classification and habitat mapping
Benthic habitat mapping is fundamental for understanding marine ecosystems, guiding conservation efforts, and supporting sustainable resource management. Yet, the scarcity of large, annotated datasets limits the development and benchmarking of machine learning models in this domain. This paper introduces a thorough multi-modal dataset, comprising about a million side-scan sonar (SSS) tiles collected along the coast of Catalonia (Spain), complemented by bathymetric maps and a set of co-registered optical images from targeted surveys using an autonomous underwater vehicle (AUV). Approximately \num{36000} of the SSS tiles have been manually annotated with segmentation masks to enable supervised fine-tuning of classification models. All the raw sensor data, together with mosaics, are also released to support further exploration and algorithm development. To address challenges in multi-sensor data fusion for AUVs, we spatially associate optical images with corresponding SSS tiles, facilitating self-supervised, cross-modal representation learning. Accompanying open-source preprocessing and annotation tools are provided to enhance accessibility and encourage research. This resource aims to establish a standardized benchmark for underwater habitat mapping, promoting advancements in autonomous seafloor classification and multi-sensor integration.
comment: Article under review by IJRR
☆ In-Field Mapping of Grape Yield and Quality with Illumination-Invariant Deep Learning
This paper presents an end-to-end, IoT-enabled robotic system for the non-destructive, real-time, and spatially-resolved mapping of grape yield and quality (Brix, Acidity) in vineyards. The system features a comprehensive analytical pipeline that integrates two key modules: a high-performance model for grape bunch detection and weight estimation, and a novel deep learning framework for quality assessment from hyperspectral (HSI) data. A critical barrier to in-field HSI is the ``domain shift" caused by variable illumination. To overcome this, our quality assessment is powered by the Light-Invariant Spectral Autoencoder (LISA), a domain-adversarial framework that learns illumination-invariant features from uncalibrated data. We validated the system's robustness on a purpose-built HSI dataset spanning three distinct illumination domains: controlled artificial lighting (lab), and variable natural sunlight captured in the morning and afternoon. Results show the complete pipeline achieves a recall (0.82) for bunch detection and a $R^2$ (0.76) for weight prediction, while the LISA module improves quality prediction generalization by over 20% compared to the baselines. By combining these robust modules, the system successfully generates high-resolution, georeferenced data of both grape yield and quality, providing actionable, data-driven insights for precision viticulture.
comment: Accepted manuscript for the IEEE Internet of Things Journal. The final version will be available on IEEE Xplore. \c{opyright} 2025 IEEE
☆ μDeepIQA: deep learning-based fast and robust image quality assessment with local predictions for optical microscopy
Optical microscopy is one of the most widely used techniques in research studies for life sciences and biomedicine. These applications require reliable experimental pipelines to extract valuable knowledge from the measured samples and must be supported by image quality assessment (IQA) to ensure correct processing and analysis of the image data. IQA methods are implemented with variable complexity. However, while most quality metrics have a straightforward implementation, they might be time consuming and computationally expensive when evaluating a large dataset. In addition, quality metrics are often designed for well-defined image features and may be unstable for images out of the ideal domain. To overcome these limitations, recent works have proposed deep learning-based IQA methods, which can provide superior performance, increased generalizability and fast prediction. Our method, named $\mathrm{\mu}$DeepIQA, is inspired by previous studies and applies a deep convolutional neural network designed for IQA on natural images to optical microscopy measurements. We retrained the same architecture to predict individual quality metrics and global quality scores for optical microscopy data. The resulting models provide fast and stable predictions of image quality by generalizing quality estimation even outside the ideal range of standard methods. In addition, $\mathrm{\mu}$DeepIQA provides patch-wise prediction of image quality and can be used to visualize spatially varying quality in a single image. Our study demonstrates that optical microscopy-based studies can benefit from the generalizability of deep learning models due to their stable performance in the presence of outliers, the ability to assess small image patches, and rapid predictions.
comment: 16 pages, 6 figures. \mu DeepIQA is publicly available at https://git.photonicdata.science/elena.corbetta/udeepiqa
☆ ERDE: Entropy-Regularized Distillation for Early-exit
Although deep neural networks and in particular Convolutional Neural Networks have demonstrated state-of-the-art performance in image classification with relatively high efficiency, they still exhibit high computational costs, often rendering them impractical for real-time and edge applications. Therefore, a multitude of compression techniques have been developed to reduce these costs while maintaining accuracy. In addition, dynamic architectures have been introduced to modulate the level of compression at execution time, which is a desirable property in many resource-limited application scenarios. The proposed method effectively integrates two well-established optimization techniques: early exits and knowledge distillation, where a reduced student early-exit model is trained from a more complex teacher early-exit model. The primary contribution of this research lies in the approach for training the student early-exit model. In comparison to the conventional Knowledge Distillation loss, our approach incorporates a new entropy-based loss for images where the teacher's classification was incorrect. The proposed method optimizes the trade-off between accuracy and efficiency, thereby achieving significant reductions in computational complexity without compromising classification performance. The validity of this approach is substantiated by experimental results on image classification datasets CIFAR10, CIFAR100 and SVHN, which further opens new research perspectives for Knowledge Distillation in other contexts.
☆ Read the Room: Inferring Social Context Through Dyadic Interaction Recognition in Cyber-physical-social Infrastructure Systems SC
Cyber-physical systems (CPS) integrate sensing, computing, and control to improve infrastructure performance, focusing on economic goals like performance and safety. However, they often neglect potential human-centered (or ''social'') benefits. Cyber-physical-social infrastructure systems (CPSIS) aim to address this by aligning CPS with social objectives. This involves defining social benefits, understanding human interactions with each other and infrastructure, developing privacy-preserving measurement methods, modeling these interactions for prediction, linking them to social benefits, and actuating the physical environment to foster positive social outcomes. This paper delves into recognizing dyadic human interactions using real-world data, which is the backbone to measuring social behavior. This lays a foundation to address the need to enhance understanding of the deeper meanings and mutual responses inherent in human interactions. While RGB cameras are informative for interaction recognition, privacy concerns arise. Depth sensors offer a privacy-conscious alternative by analyzing skeletal movements. This study compares five skeleton-based interaction recognition algorithms on a dataset of 12 dyadic interactions. Unlike single-person datasets, these interactions, categorized into communication types like emblems and affect displays, offer insights into the cultural and emotional aspects of human interactions.
comment: ASCE International Conference on Computing in Civil Engineering 2024
☆ From Actions to Kinesics: Extracting Human Psychological States through Bodily Movements
Understanding the dynamic relationship between humans and the built environment is a key challenge in disciplines ranging from environmental psychology to reinforcement learning (RL). A central obstacle in modeling these interactions is the inability to capture human psychological states in a way that is both generalizable and privacy preserving. Traditional methods rely on theoretical models or questionnaires, which are limited in scope, static, and labor intensive. We present a kinesics recognition framework that infers the communicative functions of human activity -- known as kinesics -- directly from 3D skeleton joint data. Combining a spatial-temporal graph convolutional network (ST-GCN) with a convolutional neural network (CNN), the framework leverages transfer learning to bypass the need for manually defined mappings between physical actions and psychological categories. The approach preserves user anonymity while uncovering latent structures in bodily movements that reflect cognitive and emotional states. Our results on the Dyadic User EngagemenT (DUET) dataset demonstrate that this method enables scalable, accurate, and human-centered modeling of behavior, offering a new pathway for enhancing RL-driven simulations of human-environment interaction.
comment: The 15th International Workshop on Structural Health Monitoring (IWSHM)
☆ Detailed Aerial Mapping of Photovoltaic Power Plants Through Semantically Significant Keypoints
An accurate and up-to-date model of a photovoltaic (PV) power plant is essential for its optimal operation and maintenance. However, such a model may not be easily available. This work introduces a novel approach for PV power plant mapping based on aerial overview images. It enables the automation of the mapping process while removing the reliance on third-party data. The presented mapping method takes advantage of the structural layout of the power plants to achieve detailed modeling down to the level of individual PV modules. The approach relies on visual segmentation of PV modules in overview images and the inference of structural information in each image, assigning modules to individual benches, rows, and columns. We identify visual keypoints related to the layout and use these to merge detections from multiple images while maintaining their structural integrity. The presented method was experimentally verified and evaluated on two different power plants. The final fusion of 3D positions and semantic structures results in a compact georeferenced model suitable for power plant maintenance.
comment: 10 pages, 18 figures
☆ Beyond Random: Automatic Inner-loop Optimization in Dataset Distillation
The growing demand for efficient deep learning has positioned dataset distillation as a pivotal technique for compressing training dataset while preserving model performance. However, existing inner-loop optimization methods for dataset distillation typically rely on random truncation strategies, which lack flexibility and often yield suboptimal results. In this work, we observe that neural networks exhibit distinct learning dynamics across different training stages-early, middle, and late-making random truncation ineffective. To address this limitation, we propose Automatic Truncated Backpropagation Through Time (AT-BPTT), a novel framework that dynamically adapts both truncation positions and window sizes according to intrinsic gradient behavior. AT-BPTT introduces three key components: (1) a probabilistic mechanism for stage-aware timestep selection, (2) an adaptive window sizing strategy based on gradient variation, and (3) a low-rank Hessian approximation to reduce computational overhead. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet-1K show that AT-BPTT achieves state-of-the-art performance, improving accuracy by an average of 6.16% over baseline methods. Moreover, our approach accelerates inner-loop optimization by 3.9x while saving 63% memory cost.
☆ Flow Matching for Conditional MRI-CT and CBCT-CT Image Synthesis
Generating synthetic CT (sCT) from MRI or CBCT plays a crucial role in enabling MRI-only and CBCT-based adaptive radiotherapy, improving treatment precision while reducing patient radiation exposure. To address this task, we adopt a fully 3D Flow Matching (FM) framework, motivated by recent work demonstrating FM's efficiency in producing high-quality images. In our approach, a Gaussian noise volume is transformed into an sCT image by integrating a learned FM velocity field, conditioned on features extracted from the input MRI or CBCT using a lightweight 3D encoder. We evaluated the method on the SynthRAD2025 Challenge benchmark, training separate models for MRI $\rightarrow$ sCT and CBCT $\rightarrow$ sCT across three anatomical regions: abdomen, head and neck, and thorax. Validation and testing were performed through the challenge submission system. The results indicate that the method accurately reconstructs global anatomical structures; however, preservation of fine details was limited, primarily due to the relatively low training resolution imposed by memory and runtime constraints. Future work will explore patch-based training and latent-space flow models to improve resolution and local structural fidelity.
☆ AvatarVTON: 4D Virtual Try-On for Animatable Avatars
We propose AvatarVTON, the first 4D virtual try-on framework that generates realistic try-on results from a single in-shop garment image, enabling free pose control, novel-view rendering, and diverse garment choices. Unlike existing methods, AvatarVTON supports dynamic garment interactions under single-view supervision, without relying on multi-view garment captures or physics priors. The framework consists of two key modules: (1) a Reciprocal Flow Rectifier, a prior-free optical-flow correction strategy that stabilizes avatar fitting and ensures temporal coherence; and (2) a Non-Linear Deformer, which decomposes Gaussian maps into view-pose-invariant and view-pose-specific components, enabling adaptive, non-linear garment deformations. To establish a benchmark for 4D virtual try-on, we extend existing baselines with unified modules for fair qualitative and quantitative comparisons. Extensive experiments show that AvatarVTON achieves high fidelity, diversity, and dynamic garment realism, making it well-suited for AR/VR, gaming, and digital-human applications.
☆ Visual Representations inside the Language Model
Despite interpretability work analyzing VIT encoders and transformer activations, we don't yet understand why Multimodal Language Models (MLMs) struggle on perception-heavy tasks. We offer an under-studied perspective by examining how popular MLMs (LLaVA-OneVision, Qwen2.5-VL, and Llama-3-LLaVA-NeXT) process their visual key-value tokens. We first study the flow of visual information through the language model, finding that image value tokens encode sufficient information to perform several perception-heavy tasks zero-shot: segmentation, semantic correspondence, temporal correspondence, and referring expression detection. We find that while the language model does augment the visual information received from the projection of input visual encodings-which we reveal correlates with overall MLM perception capability-it contains less visual information on several tasks than the equivalent visual encoder (SigLIP) that has not undergone MLM finetuning. Further, we find that the visual information corresponding to input-agnostic image key tokens in later layers of language models contains artifacts which reduce perception capability of the overall MLM. Next, we discuss controlling visual information in the language model, showing that adding a text prefix to the image input improves perception capabilities of visual representations. Finally, we reveal that if language models were able to better control their visual information, their perception would significantly improve; e.g., in 33.3% of Art Style questions in the BLINK benchmark, perception information present in the language model is not surfaced to the output! Our findings reveal insights into the role of key-value tokens in multimodal systems, paving the way for deeper mechanistic interpretability of MLMs and suggesting new directions for training their visual encoder and language model components.
comment: Accepted to COLM 2025
☆ Did you just see that? Arbitrary view synthesis for egocentric replay of operating room workflows from ambient sensors
Observing surgical practice has historically relied on fixed vantage points or recollections, leaving the egocentric visual perspectives that guide clinical decisions undocumented. Fixed-camera video can capture surgical workflows at the room-scale, but cannot reconstruct what each team member actually saw. Thus, these videos only provide limited insights into how decisions that affect surgical safety, training, and workflow optimization are made. Here we introduce EgoSurg, the first framework to reconstruct the dynamic, egocentric replays for any operating room (OR) staff directly from wall-mounted fixed-camera video, and thus, without intervention to clinical workflow. EgoSurg couples geometry-driven neural rendering with diffusion-based view enhancement, enabling high-visual fidelity synthesis of arbitrary and egocentric viewpoints at any moment. In evaluation across multi-site surgical cases and controlled studies, EgoSurg reconstructs person-specific visual fields and arbitrary viewpoints with high visual quality and fidelity. By transforming existing OR camera infrastructure into a navigable dynamic 3D record, EgoSurg establishes a new foundation for immersive surgical data science, enabling surgical practice to be visualized, experienced, and analyzed from every angle.
☆ A Comparative Study of Vision Transformers and CNNs for Few-Shot Rigid Transformation and Fundamental Matrix Estimation
Vision-transformers (ViTs) and large-scale convolution-neural-networks (CNNs) have reshaped computer vision through pretrained feature representations that enable strong transfer learning for diverse tasks. However, their efficiency as backbone architectures for geometric estimation tasks involving image deformations in low-data regimes remains an open question. This work considers two such tasks: 1) estimating 2D rigid transformations between pairs of images and 2) predicting the fundamental matrix for stereo image pairs, an important problem in various applications, such as autonomous mobility, robotics, and 3D scene reconstruction. Addressing this intriguing question, this work systematically compares large-scale CNNs (ResNet, EfficientNet, CLIP-ResNet) with ViT-based foundation models (CLIP-ViT variants and DINO) in various data size settings, including few-shot scenarios. These pretrained models are optimized for classification or contrastive learning, encouraging them to focus mostly on high-level semantics. The considered tasks require balancing local and global features differently, challenging the straightforward adoption of these models as the backbone. Empirical comparative analysis shows that, similar to training from scratch, ViTs outperform CNNs during refinement in large downstream-data scenarios. However, in small data scenarios, the inductive bias and smaller capacity of CNNs improve their performance, allowing them to match that of a ViT. Moreover, ViTs exhibit stronger generalization in cross-domain evaluation where the data distribution changes. These results emphasize the importance of carefully selecting model architectures for refinement, motivating future research towards hybrid architectures that balance local and global representations.
☆ Hands-Free Heritage: Automated 3D Scanning for Cultural Heritage Digitization
High-fidelity 3D scanning is essential for preserving cultural heritage artefacts, supporting documentation, analysis, and long-term conservation. However, conventional methods typically require specialized expertise and manual intervention to maintain optimal scanning conditions and coverage. We present an automated two-robot scanning system that eliminates the need for handheld or semi-automatic workflows by combining coordinated robotic manipulation with high-resolution 3D scanning. Our system parameterizes the scanning space into distinct regions, enabling coordinated motion planning between a scanner-equipped robot and a tray-handling robot. Optimized trajectory planning and waypoint distribution ensure comprehensive surface coverage, minimize occlusions, and balance reconstruction accuracy with system efficiency. Experimental results show that our approach achieves significantly lower Chamfer Distance and higher F-score compared to baseline methods, offering superior geometric accuracy, improved digitization efficiency, and reduced reliance on expert operators.
comment: 9 pages
☆ Federated Learning for Surgical Vision in Appendicitis Classification: Results of the FedSurg EndoVis 2024 Challenge
Purpose: The FedSurg challenge was designed to benchmark the state of the art in federated learning for surgical video classification. Its goal was to assess how well current methods generalize to unseen clinical centers and adapt through local fine-tuning while enabling collaborative model development without sharing patient data. Methods: Participants developed strategies to classify inflammation stages in appendicitis using a preliminary version of the multi-center Appendix300 video dataset. The challenge evaluated two tasks: generalization to an unseen center and center-specific adaptation after fine-tuning. Submitted approaches included foundation models with linear probing, metric learning with triplet loss, and various FL aggregation schemes (FedAvg, FedMedian, FedSAM). Performance was assessed using F1-score and Expected Cost, with ranking robustness evaluated via bootstrapping and statistical testing. Results: In the generalization task, performance across centers was limited. In the adaptation task, all teams improved after fine-tuning, though ranking stability was low. The ViViT-based submission achieved the strongest overall performance. The challenge highlighted limitations in generalization, sensitivity to class imbalance, and difficulties in hyperparameter tuning in decentralized training, while spatiotemporal modeling and context-aware preprocessing emerged as promising strategies. Conclusion: The FedSurg Challenge establishes the first benchmark for evaluating FL strategies in surgical video classification. Findings highlight the trade-off between local personalization and global robustness, and underscore the importance of architecture choice, preprocessing, and loss design. This benchmarking offers a reference point for future development of imbalance-aware, adaptive, and robust FL methods in clinical surgical AI.
comment: A challenge report pre-print (31 pages), including 7 tables and 8 figures
☆ Beyond the Seen: Bounded Distribution Estimation for Open-Vocabulary Learning
Open-vocabulary learning requires modeling the data distribution in open environments, which consists of both seen-class and unseen-class data. Existing methods estimate the distribution in open environments using seen-class data, where the absence of unseen classes makes the estimation error inherently unidentifiable. Intuitively, learning beyond the seen classes is crucial for distribution estimation to bound the estimation error. We theoretically demonstrate that the distribution can be effectively estimated by generating unseen-class data, through which the estimation error is upper-bounded. Building on this theoretical insight, we propose a novel open-vocabulary learning method, which generates unseen-class data for estimating the distribution in open environments. The method consists of a class-domain-wise data generation pipeline and a distribution alignment algorithm. The data generation pipeline generates unseen-class data under the guidance of a hierarchical semantic tree and domain information inferred from the seen-class data, facilitating accurate distribution estimation. With the generated data, the distribution alignment algorithm estimates and maximizes the posterior probability to enhance generalization in open-vocabulary learning. Extensive experiments on $11$ datasets demonstrate that our method outperforms baseline approaches by up to $14\%$, highlighting its effectiveness and superiority.
☆ Progressive Gaussian Transformer with Anisotropy-aware Sampling for Open Vocabulary Occupancy Prediction
The 3D occupancy prediction task has witnessed remarkable progress in recent years, playing a crucial role in vision-based autonomous driving systems. While traditional methods are limited to fixed semantic categories, recent approaches have moved towards predicting text-aligned features to enable open-vocabulary text queries in real-world scenes. However, there exists a trade-off in text-aligned scene modeling: sparse Gaussian representation struggles to capture small objects in the scene, while dense representation incurs significant computational overhead. To address these limitations, we present PG-Occ, an innovative Progressive Gaussian Transformer Framework that enables open-vocabulary 3D occupancy prediction. Our framework employs progressive online densification, a feed-forward strategy that gradually enhances the 3D Gaussian representation to capture fine-grained scene details. By iteratively enhancing the representation, the framework achieves increasingly precise and detailed scene understanding. Another key contribution is the introduction of an anisotropy-aware sampling strategy with spatio-temporal fusion, which adaptively assigns receptive fields to Gaussians at different scales and stages, enabling more effective feature aggregation and richer scene information capture. Through extensive evaluations, we demonstrate that PG-Occ achieves state-of-the-art performance with a relative 14.3% mIoU improvement over the previous best performing method. Code and pretrained models will be released upon publication on our project page: https://yanchi-3dv.github.io/PG-Occ
comment: Project Page: https://yanchi-3dv.github.io/PG-Occ
☆ Beyond Appearance: Transformer-based Person Identification from Conversational Dynamics
This paper investigates the performance of transformer-based architectures for person identification in natural, face-to-face conversation scenario. We implement and evaluate a two-stream framework that separately models spatial configurations and temporal motion patterns of 133 COCO WholeBody keypoints, extracted from a subset of the CANDOR conversational corpus. Our experiments compare pre-trained and from-scratch training, investigate the use of velocity features, and introduce a multi-scale temporal transformer for hierarchical motion modeling. Results demonstrate that domain-specific training significantly outperforms transfer learning, and that spatial configurations carry more discriminative information than temporal dynamics. The spatial transformer achieves 95.74% accuracy, while the multi-scale temporal transformer achieves 93.90%. Feature-level fusion pushes performance to 98.03%, confirming that postural and dynamic information are complementary. These findings highlight the potential of transformer architectures for person identification in natural interactions and provide insights for future multimodal and cross-cultural studies.
☆ Anomaly-Aware YOLO: A Frugal yet Robust Approach to Infrared Small Target Detection
Infrared Small Target Detection (IRSTD) is a challenging task in defense applications, where complex backgrounds and tiny target sizes often result in numerous false alarms using conventional object detectors. To overcome this limitation, we propose Anomaly-Aware YOLO (AA-YOLO), which integrates a statistical anomaly detection test into its detection head. By treating small targets as unexpected patterns against the background, AA-YOLO effectively controls the false alarm rate. Our approach not only achieves competitive performance on several IRSTD benchmarks, but also demonstrates remarkable robustness in scenarios with limited training data, noise, and domain shifts. Furthermore, since only the detection head is modified, our design is highly generic and has been successfully applied across various YOLO backbones, including lightweight models. It also provides promising results when integrated into an instance segmentation YOLO. This versatility makes AA-YOLO an attractive solution for real-world deployments where resources are constrained. The code will be publicly released.
☆ ExposureEngine: Oriented Logo Detection and Sponsor Visibility Analytics in Sports Broadcasts
Quantifying sponsor visibility in sports broadcasts is a critical marketing task traditionally hindered by manual, subjective, and unscalable analysis methods. While automated systems offer an alternative, their reliance on axis-aligned Horizontal Bounding Box (HBB) leads to inaccurate exposuremetrics when logos appear rotated or skewed due to dynamic camera angles and perspective distortions. This paper introduces ExposureEngine, an end-to-end system designed for accurate, rotation-aware sponsor visibility analytics in sports broadcasts, demonstrated in a soccer case study. Our approach predicts Oriented Bounding Box (OBB) to provide a geometrically precise fit to each logo regardless of the orientation on-screen. To train and evaluate our detector, we developed a new dataset comprising 1,103 frames from Swedish elite soccer, featuring 670 unique sponsor logos annotated with OBBs. Our model achieves a mean Average Precision (mAP@0.5) of 0.859, with a precision of 0.96 and recall of 0.87, demonstrating robust performance in localizing logos under diverse broadcast conditions. The system integrates these detections into an analytical pipeline that calculates precise visibility metrics, such as exposure duration and on-screen coverage. Furthermore, we incorporate a language-driven agentic layer, enabling users to generate reports, summaries, and media content through natural language queries. The complete system, including the dataset and the analytics dashboard, provides a comprehensive solution for auditable and interpretable sponsor measurement in sports media. An overview of the ExposureEngine is available online: https://youtu.be/tRw6OBISuW4 .
comment: This work has been submitted to the IEEE for possible publication
☆ Benchmark on Monocular Metric Depth Estimation in Wildlife Setting
Camera traps are widely used for wildlife monitoring, but extracting accurate distance measurements from monocular images remains challenging due to the lack of depth information. While monocular depth estimation (MDE) methods have advanced significantly, their performance in natural wildlife environments has not been systematically evaluated. This work introduces the first benchmark for monocular metric depth estimation in wildlife monitoring conditions. We evaluate four state-of-the-art MDE methods (Depth Anything V2, ML Depth Pro, ZoeDepth, and Metric3D) alongside a geometric baseline on 93 camera trap images with ground truth distances obtained using calibrated ChARUCO patterns. Our results demonstrate that Depth Anything V2 achieves the best overall performance with a mean absolute error of 0.454m and correlation of 0.962, while methods like ZoeDepth show significant degradation in outdoor natural environments (MAE: 3.087m). We find that median-based depth extraction consistently outperforms mean-based approaches across all deep learning methods. Additionally, we analyze computational efficiency, with ZoeDepth being fastest (0.17s per image) but least accurate, while Depth Anything V2 provides an optimal balance of accuracy and speed (0.22s per image). This benchmark establishes performance baselines for wildlife applications and provides practical guidance for implementing depth estimation in conservation monitoring systems.
☆ Object-Centric Representation Learning for Enhanced 3D Scene Graph Prediction NeurIPS 2025
3D Semantic Scene Graph Prediction aims to detect objects and their semantic relationships in 3D scenes, and has emerged as a crucial technology for robotics and AR/VR applications. While previous research has addressed dataset limitations and explored various approaches including Open-Vocabulary settings, they frequently fail to optimize the representational capacity of object and relationship features, showing excessive reliance on Graph Neural Networks despite insufficient discriminative capability. In this work, we demonstrate through extensive analysis that the quality of object features plays a critical role in determining overall scene graph accuracy. To address this challenge, we design a highly discriminative object feature encoder and employ a contrastive pretraining strategy that decouples object representation learning from the scene graph prediction. This design not only enhances object classification accuracy but also yields direct improvements in relationship prediction. Notably, when plugging in our pretrained encoder into existing frameworks, we observe substantial performance improvements across all evaluation metrics. Additionally, whereas existing approaches have not fully exploited the integration of relationship information, we effectively combine both geometric and semantic features to achieve superior relationship prediction. Comprehensive experiments on the 3DSSG dataset demonstrate that our approach significantly outperforms previous state-of-the-art methods. Our code is publicly available at https://github.com/VisualScienceLab-KHU/OCRL-3DSSG-Codes.
comment: Accepted by NeurIPS 2025. Code: https://github.com/VisualScienceLab-KHU/OCRL-3DSSG-Codes
☆ ReactDiff: Fundamental Multiple Appropriate Facial Reaction Diffusion Model
The automatic generation of diverse and human-like facial reactions in dyadic dialogue remains a critical challenge for human-computer interaction systems. Existing methods fail to model the stochasticity and dynamics inherent in real human reactions. To address this, we propose ReactDiff, a novel temporal diffusion framework for generating diverse facial reactions that are appropriate for responding to any given dialogue context. Our key insight is that plausible human reactions demonstrate smoothness, and coherence over time, and conform to constraints imposed by human facial anatomy. To achieve this, ReactDiff incorporates two vital priors (spatio-temporal facial kinematics) into the diffusion process: i) temporal facial behavioral kinematics and ii) facial action unit dependencies. These two constraints guide the model toward realistic human reaction manifolds, avoiding visually unrealistic jitters, unstable transitions, unnatural expressions, and other artifacts. Extensive experiments on the REACT2024 dataset demonstrate that our approach not only achieves state-of-the-art reaction quality but also excels in diversity and reaction appropriateness.
comment: Accepted to ACM Multimedia
☆ ID-Consistent, Precise Expression Generation with Blendshape-Guided Diffusion ICCV
Human-centric generative models designed for AI-driven storytelling must bring together two core capabilities: identity consistency and precise control over human performance. While recent diffusion-based approaches have made significant progress in maintaining facial identity, achieving fine-grained expression control without compromising identity remains challenging. In this work, we present a diffusion-based framework that faithfully reimagines any subject under any particular facial expression. Building on an ID-consistent face foundation model, we adopt a compositional design featuring an expression cross-attention module guided by FLAME blendshape parameters for explicit control. Trained on a diverse mixture of image and video data rich in expressive variation, our adapter generalizes beyond basic emotions to subtle micro-expressions and expressive transitions, overlooked by prior works. In addition, a pluggable Reference Adapter enables expression editing in real images by transferring the appearance from a reference frame during synthesis. Extensive quantitative and qualitative evaluations show that our model outperforms existing methods in tailored and identity-consistent expression generation. Code and models can be found at https://github.com/foivospar/Arc2Face.
comment: ICCVW 2025, Code: https://github.com/foivospar/Arc2Face
☆ Label-Efficient Cross-Modality Generalization for Liver Segmentation in Multi-Phase MRI
Accurate liver segmentation in multi-phase MRI is vital for liver fibrosis assessment, yet labeled data is often scarce and unevenly distributed across imaging modalities and vendor systems. We propose a label-efficient segmentation approach that promotes cross-modality generalization under real-world conditions, where GED4 hepatobiliary-phase annotations are limited, non-contrast sequences (T1WI, T2WI, DWI) are unlabeled, and spatial misalignment and missing phases are common. Our method integrates a foundation-scale 3D segmentation backbone adapted via fine-tuning, co-training with cross pseudo supervision to leverage unlabeled volumes, and a standardized preprocessing pipeline. Without requiring spatial registration, the model learns to generalize across MRI phases and vendors, demonstrating robust segmentation performance in both labeled and unlabeled domains. Our results exhibit the effectiveness of our proposed label-efficient baseline for liver segmentation in multi-phase, multi-vendor MRI and highlight the potential of combining foundation model adaptation with co-training for real-world clinical imaging tasks.
comment: 11 pages, 3 figures
☆ Watch and Learn: Learning to Use Computers from Online Videos
Computer use agents (CUAs) need to plan task workflows grounded in diverse, ever-changing applications and environments, but learning is hindered by the scarcity of large-scale, high-quality training data in the target application. Existing datasets are domain-specific, static, and costly to annotate, while current synthetic data generation methods often yield simplistic or misaligned task demonstrations. To address these limitations, we introduce Watch & Learn (W&L), a framework that converts human demonstration videos readily available on the Internet into executable UI trajectories at scale. Instead of directly generating trajectories or relying on ad hoc reasoning heuristics, we cast the problem as an inverse dynamics objective: predicting the user's action from consecutive screen states. This formulation reduces manual engineering, is easier to learn, and generalizes more robustly across applications. Concretely, we develop an inverse dynamics labeling pipeline with task-aware video retrieval, generate over 53k high-quality trajectories from raw web videos, and demonstrate that these trajectories improve CUAs both as in-context demonstrations and as supervised training data. On the challenging OSWorld benchmark, UI trajectories extracted with W&L consistently enhance both general-purpose and state-of-the-art frameworks in-context, and deliver stronger gains for open-source models under supervised training. These results highlight web-scale human demonstration videos as a practical and scalable foundation for advancing CUAs towards real-world deployment.
☆ ConceptSplit: Decoupled Multi-Concept Personalization of Diffusion Models via Token-wise Adaptation and Attention Disentanglement ICCV 2025
In recent years, multi-concept personalization for text-to-image (T2I) diffusion models to represent several subjects in an image has gained much more attention. The main challenge of this task is "concept mixing", where multiple learned concepts interfere or blend undesirably in the output image. To address this issue, in this paper, we present ConceptSplit, a novel framework to split the individual concepts through training and inference. Our framework comprises two key components. First, we introduce Token-wise Value Adaptation (ToVA), a merging-free training method that focuses exclusively on adapting the value projection in cross-attention. Based on our empirical analysis, we found that modifying the key projection, a common approach in existing methods, can disrupt the attention mechanism and lead to concept mixing. Second, we propose Latent Optimization for Disentangled Attention (LODA), which alleviates attention entanglement during inference by optimizing the input latent. Through extensive qualitative and quantitative experiments, we demonstrate that ConceptSplit achieves robust multi-concept personalization, mitigating unintended concept interference. Code is available at https://github.com/KU-VGI/ConceptSplit
comment: 14 pages, 13 figures, to be published in ICCV 2025
☆ MoME: Estimating Psychological Traits from Gait with Multi-Stage Mixture of Movement Experts
Gait encodes rich biometric and behavioural information, yet leveraging the manner of walking to infer psychological traits remains a challenging and underexplored problem. We introduce a hierarchical Multi-Stage Mixture of Movement Experts (MoME) architecture for multi-task prediction of psychological attributes from gait sequences represented as 2D poses. MoME processes the walking cycle in four stages of movement complexity, employing lightweight expert models to extract spatio-temporal features and task-specific gating modules to adaptively weight experts across traits and stages. Evaluated on the PsyMo benchmark covering 17 psychological traits, our method outperforms state-of-the-art gait analysis models, achieving a 37.47% weighted F1 score at the run level and 44.6% at the subject level. Our experiments show that integrating auxiliary tasks such as identity recognition, gender prediction, and BMI estimation further improves psychological trait estimation. Our findings demonstrate the viability of multi-task gait-based learning for psychological trait estimation and provide a foundation for future research on movement-informed psychological inference.
comment: 4 Figures, 4 Tables
☆ EduPersona: Benchmarking Subjective Ability Boundaries of Virtual Student Agents
As large language models are increasingly integrated into education, virtual student agents are becoming vital for classroom simulation and teacher training. Yet their classroom-oriented subjective abilities remain largely unassessed, limiting understanding of model boundaries and hindering trustworthy deployment. We present EduPersona, a large-scale benchmark spanning two languages, three subjects, and ten persona types based on the Big Five theory. The dataset contains 1,308 authentic classroom dialogue rounds, corresponding to 12,814 teacher-student Q&A turns, and is further expanded through persona stylization into roughly 10 times larger scale (128k turns), providing a solid foundation for evaluation. Building on this resource, we decompose hard-to-quantify subjective performance into three progressive tasks: TASK1 basic coherence (whether behavior, emotion, expression, and voice align with classroom context), TASK2 student realism, and TASK3 long-term persona consistency, thereby establishing an evaluation framework grounded in educational theory and research value. We conduct systematic experiments on three representative LLMs, comparing their original versions with ten persona-fine-tuned variants trained on EduPersona. Results show consistent and significant average improvements across all tasks: TASK1 +33.6%, TASK2 +30.6%, and TASK3 +14.9%. These improvements highlight the dataset's effectiveness and research value, while also revealing the heterogeneous difficulty of persona modeling. In summary, EduPersona delivers the first classroom benchmark centered on subjective abilities, establishes a decoupled and verifiable research paradigm, and we will open-source both the dataset and the framework to support the broader research community in advancing trustworthy and human-like AI for education.
comment: Preprint, Under review
☆ Do Superpixel Segmentation Methods Influence Deforestation Image Classification?
Image segmentation is a crucial step in various visual applications, including environmental monitoring through remote sensing. In the context of the ForestEyes project, which combines citizen science and machine learning to detect deforestation in tropical forests, image segments are used for labeling by volunteers and subsequent model training. Traditionally, the Simple Linear Iterative Clustering (SLIC) algorithm is adopted as the segmentation method. However, recent studies have indicated that other superpixel-based methods outperform SLIC in remote sensing image segmentation, and might suggest that they are more suitable for the task of detecting deforested areas. In this sense, this study investigated the impact of the four best segmentation methods, together with SLIC, on the training of classifiers for the target application. Initially, the results showed little variation in performance among segmentation methods, even when selecting the top five classifiers using the PyCaret AutoML library. However, by applying a classifier fusion approach (ensemble of classifiers), noticeable improvements in balanced accuracy were observed, highlighting the importance of both the choice of segmentation method and the combination of machine learning-based models for deforestation detection tasks.
comment: 15 pages, 3 figures, paper accepted to present at CIARP 2025
☆ Social Agent: Mastering Dyadic Nonverbal Behavior Generation via Conversational LLM Agents SIGGRAPH
We present Social Agent, a novel framework for synthesizing realistic and contextually appropriate co-speech nonverbal behaviors in dyadic conversations. In this framework, we develop an agentic system driven by a Large Language Model (LLM) to direct the conversation flow and determine appropriate interactive behaviors for both participants. Additionally, we propose a novel dual-person gesture generation model based on an auto-regressive diffusion model, which synthesizes coordinated motions from speech signals. The output of the agentic system is translated into high-level guidance for the gesture generator, resulting in realistic movement at both the behavioral and motion levels. Furthermore, the agentic system periodically examines the movements of interlocutors and infers their intentions, forming a continuous feedback loop that enables dynamic and responsive interactions between the two participants. User studies and quantitative evaluations show that our model significantly improves the quality of dyadic interactions, producing natural, synchronized nonverbal behaviors.
comment: SIGGRAPH ASIA 2025 (Conference Track); Project page: https://pku-mocca.github.io/Social-Agent-Page/
☆ SFANet: Spatial-Frequency Attention Network for Deepfake Detection
Detecting manipulated media has now become a pressing issue with the recent rise of deepfakes. Most existing approaches fail to generalize across diverse datasets and generation techniques. We thus propose a novel ensemble framework, combining the strengths of transformer-based architectures, such as Swin Transformers and ViTs, and texture-based methods, to achieve better detection accuracy and robustness. Our method introduces innovative data-splitting, sequential training, frequency splitting, patch-based attention, and face segmentation techniques to handle dataset imbalances, enhance high-impact regions (e.g., eyes and mouth), and improve generalization. Our model achieves state-of-the-art performance when tested on the DFWild-Cup dataset, a diverse subset of eight deepfake datasets. The ensemble benefits from the complementarity of these approaches, with transformers excelling in global feature extraction and texturebased methods providing interpretability. This work demonstrates that hybrid models can effectively address the evolving challenges of deepfake detection, offering a robust solution for real-world applications.
☆ A Spatial-Spectral-Frequency Interactive Network for Multimodal Remote Sensing Classification
Deep learning-based methods have achieved significant success in remote sensing Earth observation data analysis. Numerous feature fusion techniques address multimodal remote sensing image classification by integrating global and local features. However, these techniques often struggle to extract structural and detail features from heterogeneous and redundant multimodal images. With the goal of introducing frequency domain learning to model key and sparse detail features, this paper introduces the spatial-spectral-frequency interaction network (S$^2$Fin), which integrates pairwise fusion modules across the spatial, spectral, and frequency domains. Specifically, we propose a high-frequency sparse enhancement transformer that employs sparse spatial-spectral attention to optimize the parameters of the high-frequency filter. Subsequently, a two-level spatial-frequency fusion strategy is introduced, comprising an adaptive frequency channel module that fuses low-frequency structures with enhanced high-frequency details, and a high-frequency resonance mask that emphasizes sharp edges via phase similarity. In addition, a spatial-spectral attention fusion module further enhances feature extraction at intermediate layers of the network. Experiments on four benchmark multimodal datasets with limited labeled data demonstrate that S$^2$Fin performs superior classification, outperforming state-of-the-art methods. The code is available at https://github.com/HaoLiu-XDU/SSFin.
☆ Pathology-CoT: Learning Visual Chain-of-Thought Agent from Expert Whole Slide Image Diagnosis Behavior
Diagnosing a whole-slide image is an interactive, multi-stage process involving changes in magnification and movement between fields. Although recent pathology foundation models are strong, practical agentic systems that decide what field to examine next, adjust magnification, and deliver explainable diagnoses are still lacking. The blocker is data: scalable, clinically aligned supervision of expert viewing behavior that is tacit and experience-based, not written in textbooks or online, and therefore absent from large language model training. We introduce the AI Session Recorder, which works with standard WSI viewers to unobtrusively record routine navigation and convert the viewer logs into standardized behavioral commands (inspect or peek at discrete magnifications) and bounding boxes. A lightweight human-in-the-loop review turns AI-drafted rationales into the Pathology-CoT dataset, a form of paired "where to look" and "why it matters" supervision produced at roughly six times lower labeling time. Using this behavioral data, we build Pathologist-o3, a two-stage agent that first proposes regions of interest and then performs behavior-guided reasoning. On gastrointestinal lymph-node metastasis detection, it achieved 84.5% precision, 100.0% recall, and 75.4% accuracy, exceeding the state-of-the-art OpenAI o3 model and generalizing across backbones. To our knowledge, this constitutes one of the first behavior-grounded agentic systems in pathology. Turning everyday viewer logs into scalable, expert-validated supervision, our framework makes agentic pathology practical and establishes a path to human-aligned, upgradeable clinical AI.
☆ SONA: Learning Conditional, Unconditional, and Mismatching-Aware Discriminator
Deep generative models have made significant advances in generating complex content, yet conditional generation remains a fundamental challenge. Existing conditional generative adversarial networks often struggle to balance the dual objectives of assessing authenticity and conditional alignment of input samples within their conditional discriminators. To address this, we propose a novel discriminator design that integrates three key capabilities: unconditional discrimination, matching-aware supervision to enhance alignment sensitivity, and adaptive weighting to dynamically balance all objectives. Specifically, we introduce Sum of Naturalness and Alignment (SONA), which employs separate projections for naturalness (authenticity) and alignment in the final layer with an inductive bias, supported by dedicated objective functions and an adaptive weighting mechanism. Extensive experiments on class-conditional generation tasks show that \ours achieves superior sample quality and conditional alignment compared to state-of-the-art methods. Furthermore, we demonstrate its effectiveness in text-to-image generation, confirming the versatility and robustness of our approach.
comment: 24 pages with 9 figures
☆ Conditional Representation Learning for Customized Tasks
Conventional representation learning methods learn a universal representation that primarily captures dominant semantics, which may not always align with customized downstream tasks. For instance, in animal habitat analysis, researchers prioritize scene-related features, whereas universal embeddings emphasize categorical semantics, leading to suboptimal results. As a solution, existing approaches resort to supervised fine-tuning, which however incurs high computational and annotation costs. In this paper, we propose Conditional Representation Learning (CRL), aiming to extract representations tailored to arbitrary user-specified criteria. Specifically, we reveal that the semantics of a space are determined by its basis, thereby enabling a set of descriptive words to approximate the basis for a customized feature space. Building upon this insight, given a user-specified criterion, CRL first employs a large language model (LLM) to generate descriptive texts to construct the semantic basis, then projects the image representation into this conditional feature space leveraging a vision-language model (VLM). The conditional representation better captures semantics for the specific criterion, which could be utilized for multiple customized tasks. Extensive experiments on classification and retrieval tasks demonstrate the superiority and generality of the proposed CRL. The code is available at https://github.com/XLearning-SCU/2025-NeurIPS-CRL.
☆ Fast Witness Persistence for MRI Volumes via Hybrid Landmarking
We introduce a scalable witness-based persistent homology pipeline for full-brain MRI volumes that couples density-aware landmark selection with a GPU-ready witness filtration. Candidates are scored by a hybrid metric that balances geometric coverage against inverse kernel density, yielding landmark sets that shrink mean pairwise distances by 30-60% over random or density-only baselines while preserving topological features. Benchmarks on BrainWeb, IXI, and synthetic manifolds execute in under ten seconds on a single NVIDIA RTX 4090 GPU, avoiding the combinatorial blow-up of Cech, Vietoris-Rips, and alpha filtrations. The package is distributed on PyPI as whale-tda (installable via pip); source and issues are hosted at https://github.com/jorgeLRW/whale. The release also exposes a fast preset (mri_deep_dive_fast) for exploratory sweeps, and ships with reproducibility-focused scripts and artifacts for drop-in use in medical imaging workflows.
☆ Post-training quantization of vision encoders needs prefixing registers
Transformer-based vision encoders -- such as CLIP -- are central to multimodal intelligence, powering applications from autonomous web agents to robotic control. Since these applications often demand real-time processing of massive visual data, reducing the inference cost of vision encoders is critical. Post-training quantization offers a practical path, but remains challenging even at 8-bit precision due to massive-scale activations (i.e., outliers). In this work, we propose $\textit{RegCache}$, a training-free algorithm to mitigate outliers in vision encoders, enabling quantization with significantly smaller accuracy drops. The proposed RegCache introduces outlier-prone yet semantically meaningless prefix tokens to the target vision encoder, which prevents other tokens from having outliers. Notably, we observe that outliers in vision encoders behave differently from those in language models, motivating two technical innovations: middle-layer prefixing and token deletion. Experiments show that our method consistently improves the accuracy of quantized models across both text-supervised and self-supervised vision encoders.
☆ C3Editor: Achieving Controllable Consistency in 2D Model for 3D Editing
Existing 2D-lifting-based 3D editing methods often encounter challenges related to inconsistency, stemming from the lack of view-consistent 2D editing models and the difficulty of ensuring consistent editing across multiple views. To address these issues, we propose C3Editor, a controllable and consistent 2D-lifting-based 3D editing framework. Given an original 3D representation and a text-based editing prompt, our method selectively establishes a view-consistent 2D editing model to achieve superior 3D editing results. The process begins with the controlled selection of a ground truth (GT) view and its corresponding edited image as the optimization target, allowing for user-defined manual edits. Next, we fine-tune the 2D editing model within the GT view and across multiple views to align with the GT-edited image while ensuring multi-view consistency. To meet the distinct requirements of GT view fitting and multi-view consistency, we introduce separate LoRA modules for targeted fine-tuning. Our approach delivers more consistent and controllable 2D and 3D editing results than existing 2D-lifting-based methods, outperforming them in both qualitative and quantitative evaluations.
☆ 3Dify: a Framework for Procedural 3D-CG Generation Assisted by LLMs Using MCP and RAG
This paper proposes "3Dify," a procedural 3D computer graphics (3D-CG) generation framework utilizing Large Language Models (LLMs). The framework enables users to generate 3D-CG content solely through natural language instructions. 3Dify is built upon Dify, an open-source platform for AI application development, and incorporates several state-of-the-art LLM-related technologies such as the Model Context Protocol (MCP) and Retrieval-Augmented Generation (RAG). For 3D-CG generation support, 3Dify automates the operation of various Digital Content Creation (DCC) tools via MCP. When DCC tools do not support MCP-based interaction, the framework employs the Computer-Using Agent (CUA) method to automate Graphical User Interface (GUI) operations. Moreover, to enhance image generation quality, 3Dify allows users to provide feedback by selecting preferred images from multiple candidates. The LLM then learns variable patterns from these selections and applies them to subsequent generations. Furthermore, 3Dify supports the integration of locally deployed LLMs, enabling users to utilize custom-developed models and to reduce both time and monetary costs associated with external API calls by leveraging their own computational resources.
☆ TAG:Tangential Amplifying Guidance for Hallucination-Resistant Diffusion Sampling
Recent diffusion models achieve the state-of-the-art performance in image generation, but often suffer from semantic inconsistencies or hallucinations. While various inference-time guidance methods can enhance generation, they often operate indirectly by relying on external signals or architectural modifications, which introduces additional computational overhead. In this paper, we propose Tangential Amplifying Guidance (TAG), a more efficient and direct guidance method that operates solely on trajectory signals without modifying the underlying diffusion model. TAG leverages an intermediate sample as a projection basis and amplifies the tangential components of the estimated scores with respect to this basis to correct the sampling trajectory. We formalize this guidance process by leveraging a first-order Taylor expansion, which demonstrates that amplifying the tangential component steers the state toward higher-probability regions, thereby reducing inconsistencies and enhancing sample quality. TAG is a plug-and-play, architecture-agnostic module that improves diffusion sampling fidelity with minimal computational addition, offering a new perspective on diffusion guidance.
comment: 16 pages, 9 figures, 5 tables
☆ ChartAgent: A Multimodal Agent for Visually Grounded Reasoning in Complex Chart Question Answering
Recent multimodal LLMs have shown promise in chart-based visual question answering, but their performance declines sharply on unannotated charts, those requiring precise visual interpretation rather than relying on textual shortcuts. To address this, we introduce ChartAgent, a novel agentic framework that explicitly performs visual reasoning directly within the chart's spatial domain. Unlike textual chain-of-thought reasoning, ChartAgent iteratively decomposes queries into visual subtasks and actively manipulates and interacts with chart images through specialized actions such as drawing annotations, cropping regions (e.g., segmenting pie slices, isolating bars), and localizing axes, using a library of chart-specific vision tools to fulfill each subtask. This iterative reasoning process closely mirrors human cognitive strategies for chart comprehension. ChartAgent achieves state-of-the-art accuracy on the ChartBench and ChartX benchmarks, surpassing prior methods by up to 16.07% absolute gain overall and 17.31% on unannotated, numerically intensive queries. Furthermore, our analyses show that ChartAgent is (a) effective across diverse chart types, (b) achieve the highest scores across varying visual and reasoning complexity levels, and (c) serves as a plug-and-play framework that boosts performance across diverse underlying LLMs. Our work is among the first to demonstrate visually grounded reasoning for chart understanding using tool-augmented multimodal agents.
comment: 53 pages, 12 figures, 15 tables
☆ Real-time Prediction of Urban Sound Propagation with Conditioned Normalizing Flows
Accurate and fast urban noise prediction is pivotal for public health and for regulatory workflows in cities, where the Environmental Noise Directive mandates regular strategic noise maps and action plans, often needed in permission workflows, right-of-way allocation, and construction scheduling. Physics-based solvers are too slow for such time-critical, iterative "what-if" studies. We evaluate conditional Normalizing Flows (Full-Glow) for generating for generating standards-compliant urban sound-pressure maps from 2D urban layouts in real time per 256x256 map on a single RTX 4090), enabling interactive exploration directly on commodity hardware. On datasets covering Baseline, Diffraction, and Reflection regimes, our model accelerates map generation by >2000 times over a reference solver while improving NLoS accuracy by up to 24% versus prior deep models; in Baseline NLoS we reach 0.65 dB MAE with high structural fidelity. The model reproduces diffraction and interference patterns and supports instant recomputation under source or geometry changes, making it a practical engine for urban planning, compliance mapping, and operations (e.g., temporary road closures, night-work variance assessments).
☆ Asynchronous Denoising Diffusion Models for Aligning Text-to-Image Generation
Diffusion models have achieved impressive results in generating high-quality images. Yet, they often struggle to faithfully align the generated images with the input prompts. This limitation arises from synchronous denoising, where all pixels simultaneously evolve from random noise to clear images. As a result, during generation, the prompt-related regions can only reference the unrelated regions at the same noise level, failing to obtain clear context and ultimately impairing text-to-image alignment. To address this issue, we propose asynchronous diffusion models -- a novel framework that allocates distinct timesteps to different pixels and reformulates the pixel-wise denoising process. By dynamically modulating the timestep schedules of individual pixels, prompt-related regions are denoised more gradually than unrelated regions, thereby allowing them to leverage clearer inter-pixel context. Consequently, these prompt-related regions achieve better alignment in the final images. Extensive experiments demonstrate that our asynchronous diffusion models can significantly improve text-to-image alignment across diverse prompts. The code repository for this work is available at https://github.com/hu-zijing/AsynDM.
comment: 22 pages, 11 figures, 5 tables
☆ TBStar-Edit: From Image Editing Pattern Shifting to Consistency Enhancement
Recent advances in image generation and editing technologies have enabled state-of-the-art models to achieve impressive results in general domains. However, when applied to e-commerce scenarios, these general models often encounter consistency limitations. To address this challenge, we introduce TBStar-Edit, an new image editing model tailored for the e-commerce domain. Through rigorous data engineering, model architecture design and training strategy, TBStar-Edit achieves precise and high-fidelity image editing while maintaining the integrity of product appearance and layout. Specifically, for data engineering, we establish a comprehensive data construction pipeline, encompassing data collection, construction, filtering, and augmentation, to acquire high-quality, instruction-following, and strongly consistent editing data to support model training. For model architecture design, we design a hierarchical model framework consisting of a base model, pattern shifting modules, and consistency enhancement modules. For model training, we adopt a two-stage training strategy to enhance the consistency preservation: first stage for editing pattern shifting, and second stage for consistency enhancement. Each stage involves training different modules with separate datasets. Finally, we conduct extensive evaluations of TBStar-Edit on a self-proposed e-commerce benchmark, and the results demonstrate that TBStar-Edit outperforms existing general-domain editing models in both objective metrics (VIE Score) and subjective user preference.
☆ VaseVQA-3D: Benchmarking 3D VLMs on Ancient Greek Pottery
Vision-Language Models (VLMs) have achieved significant progress in multimodal understanding tasks, demonstrating strong capabilities particularly in general tasks such as image captioning and visual reasoning. However, when dealing with specialized cultural heritage domains like 3D vase artifacts, existing models face severe data scarcity issues and insufficient domain knowledge limitations. Due to the lack of targeted training data, current VLMs struggle to effectively handle such culturally significant specialized tasks. To address these challenges, we propose the VaseVQA-3D dataset, which serves as the first 3D visual question answering dataset for ancient Greek pottery analysis, collecting 664 ancient Greek vase 3D models with corresponding question-answer data and establishing a complete data construction pipeline. We further develop the VaseVLM model, enhancing model performance in vase artifact analysis through domain-adaptive training. Experimental results validate the effectiveness of our approach, where we improve by 12.8% on R@1 metrics and by 6.6% on lexical similarity compared with previous state-of-the-art on the VaseVQA-3D dataset, significantly improving the recognition and understanding of 3D vase artifacts, providing new technical pathways for digital heritage preservation research.
☆ MedCLM: Learning to Localize and Reason via a CoT-Curriculum in Medical Vision-Language Models
Bridging clinical diagnostic reasoning with AI remains a central challenge in medical imaging. We introduce MedCLM, an automated pipeline that converts detection datasets into large-scale medical visual question answering (VQA) data with Chain-of-Thought (CoT) reasoning by linking lesion boxes to organ segmentation and structured rationales. These contextual signals enable medical vision-language models to generate question-answer pairs with step-by-step reasoning. To utilize this data effectively, we propose an Integrated CoT-Curriculum Strategy composed of an Easy stage with explicit lesion boxes for visual grounding, a Medium stage that encourages implicit localization, and a Hard stage for weakly supervised reasoning. Experimental results demonstrate that MedCLM attains state-of-the-art performance on several medical VQA benchmarks, providing a scalable framework for developing clinically aligned medical vision-language models.
☆ SPEGNet: Synergistic Perception-Guided Network for Camouflaged Object Detection
Camouflaged object detection segments objects with intrinsic similarity and edge disruption. Current detection methods rely on accumulated complex components. Each approach adds components such as boundary modules, attention mechanisms, and multi-scale processors independently. This accumulation creates a computational burden without proportional gains. To manage this complexity, they process at reduced resolutions, eliminating fine details essential for camouflage. We present SPEGNet, addressing fragmentation through a unified design. The architecture integrates multi-scale features via channel calibration and spatial enhancement. Boundaries emerge directly from context-rich representations, maintaining semantic-spatial alignment. Progressive refinement implements scale-adaptive edge modulation with peak influence at intermediate resolutions. This design strikes a balance between boundary precision and regional consistency. SPEGNet achieves 0.887 $S_\alpha$ on CAMO, 0.890 on COD10K, and 0.895 on NC4K, with real-time inference speed. Our approach excels across scales, from tiny, intricate objects to large, pattern-similar ones, while handling occlusion and ambiguous boundaries. Code, model weights, and results are available on \href{https://github.com/Baber-Jan/SPEGNet}{https://github.com/Baber-Jan/SPEGNet}.
☆ REAR: Rethinking Visual Autoregressive Models via Generator-Tokenizer Consistency Regularization
Visual autoregressive (AR) generation offers a promising path toward unifying vision and language models, yet its performance remains suboptimal against diffusion models. Prior work often attributes this gap to tokenizer limitations and rasterization ordering. In this work, we identify a core bottleneck from the perspective of generator-tokenizer inconsistency, i.e., the AR-generated tokens may not be well-decoded by the tokenizer. To address this, we propose reAR, a simple training strategy introducing a token-wise regularization objective: when predicting the next token, the causal transformer is also trained to recover the visual embedding of the current token and predict the embedding of the target token under a noisy context. It requires no changes to the tokenizer, generation order, inference pipeline, or external models. Despite its simplicity, reAR substantially improves performance. On ImageNet, it reduces gFID from 3.02 to 1.86 and improves IS to 316.9 using a standard rasterization-based tokenizer. When applied to advanced tokenizers, it achieves a gFID of 1.42 with only 177M parameters, matching the performance with larger state-of-the-art diffusion models (675M).
comment: 27 pages, 23 figures, 5 tables
☆ A.I.R.: Enabling Adaptive, Iterative, and Reasoning-based Frame Selection For Video Question Answering
Effectively applying Vision-Language Models (VLMs) to Video Question Answering (VideoQA) hinges on selecting a concise yet comprehensive set of frames, as processing entire videos is computationally infeasible. However, current frame selection methods face a critical trade-off: approaches relying on lightweight similarity models, such as CLIP, often fail to capture the nuances of complex queries, resulting in inaccurate similarity scores that cannot reflect the authentic query-frame relevance, which further undermines frame selection. Meanwhile, methods that leverage a VLM for deeper analysis achieve higher accuracy but incur prohibitive computational costs. To address these limitations, we propose A.I.R., a training-free approach for Adaptive, Iterative, and Reasoning-based frame selection. We leverage a powerful VLM to perform deep, semantic analysis on complex queries, and this analysis is deployed within a cost-effective iterative loop that processes only a small batch of the most high-potential frames at a time. Extensive experiments on various VideoQA benchmarks demonstrate that our approach outperforms existing frame selection methods, significantly boosts the performance of the foundation VLM, and achieves substantial gains in computational efficiency over other VLM-based techniques.
☆ Partial Information Decomposition via Normalizing Flows in Latent Gaussian Distributions NeurIPS 2025
The study of multimodality has garnered significant interest in fields where the analysis of interactions among multiple information sources can enhance predictive modeling, data fusion, and interpretability. Partial information decomposition (PID) has emerged as a useful information-theoretic framework to quantify the degree to which individual modalities independently, redundantly, or synergistically convey information about a target variable. However, existing PID methods depend on optimizing over a joint distribution constrained by estimated pairwise probability distributions, which are costly and inaccurate for continuous and high-dimensional modalities. Our first key insight is that the problem can be solved efficiently when the pairwise distributions are multivariate Gaussians, and we refer to this problem as Gaussian PID (GPID). We propose a new gradient-based algorithm that substantially improves the computational efficiency of GPID based on an alternative formulation of the underlying optimization problem. To generalize the applicability to non-Gaussian data, we learn information-preserving encoders to transform random variables of arbitrary input distributions into pairwise Gaussian random variables. Along the way, we resolved an open problem regarding the optimality of joint Gaussian solutions for GPID. Empirical validation in diverse synthetic examples demonstrates that our proposed method provides more accurate and efficient PID estimates than existing baselines. We further evaluate a series of large-scale multimodal benchmarks to show its utility in real-world applications of quantifying PID in multimodal datasets and selecting high-performing models.
comment: NeurIPS 2025
☆ CodeFormer++: Blind Face Restoration Using Deformable Registration and Deep Metric Learning
Blind face restoration (BFR) has attracted increasing attention with the rise of generative methods. Most existing approaches integrate generative priors into the restoration pro- cess, aiming to jointly address facial detail generation and identity preservation. However, these methods often suffer from a trade-off between visual quality and identity fidelity, leading to either identity distortion or suboptimal degradation removal. In this paper, we present CodeFormer++, a novel framework that maximizes the utility of generative priors for high-quality face restoration while preserving identity. We decompose BFR into three sub-tasks: (i) identity- preserving face restoration, (ii) high-quality face generation, and (iii) dynamic fusion of identity features with realistic texture details. Our method makes three key contributions: (1) a learning-based deformable face registration module that semantically aligns generated and restored faces; (2) a texture guided restoration network to dynamically extract and transfer the texture of generated face to boost the quality of identity-preserving restored face; and (3) the integration of deep metric learning for BFR with the generation of informative positive and hard negative samples to better fuse identity- preserving and generative features. Extensive experiments on real-world and synthetic datasets demonstrate that, the pro- posed CodeFormer++ achieves superior performance in terms of both visual fidelity and identity consistency.
☆ Your Vision-Language Model Can't Even Count to 20: Exposing the Failures of VLMs in Compositional Counting
Vision-Language Models (VLMs) have become a central focus of today's AI community, owing to their impressive abilities gained from training on large-scale vision-language data from the Web. These models have demonstrated strong performance across diverse tasks, including image understanding, video understanding, complex visual reasoning, and embodied AI. Despite these noteworthy successes, a fundamental question remains: Can VLMs count objects correctly? In this paper, we introduce a simple yet effective benchmark, VLMCountBench, designed under a minimalist setting with only basic geometric shapes (e.g., triangles, circles) and their compositions, focusing exclusively on counting tasks without interference from other factors. We adopt strict independent variable control and systematically study the effects of simple properties such as color, size, and prompt refinement in a controlled ablation. Our empirical results reveal that while VLMs can count reliably when only one shape type is present, they exhibit substantial failures when multiple shape types are combined (i.e., compositional counting). This highlights a fundamental empirical limitation of current VLMs and motivates important directions for future research.
♻ ☆ Conformal Prediction for Long-Tailed Classification
Many real-world classification problems, such as plant identification, have extremely long-tailed class distributions. In order for prediction sets to be useful in such settings, they should (i) provide good class-conditional coverage, ensuring that rare classes are not systematically omitted from the prediction sets, and (ii) be a reasonable size, allowing users to easily verify candidate labels. Unfortunately, existing conformal prediction methods, when applied to the long-tailed setting, force practitioners to make a binary choice between small sets with poor class-conditional coverage or sets with very good class-conditional coverage but that are extremely large. We propose methods with guaranteed marginal coverage that smoothly trade off between set size and class-conditional coverage. First, we introduce a new conformal score function called prevalence-adjusted softmax that targets macro-coverage, a relaxed notion of class-conditional coverage. Second, we propose a new procedure that interpolates between marginal and class-conditional conformal prediction by linearly interpolating their conformal score thresholds. We demonstrate our methods on Pl@ntNet-300K and iNaturalist-2018, two long-tailed image datasets with 1,081 and 8,142 classes, respectively.
♻ ☆ The Telephone Game: Evaluating Semantic Drift in Unified Models
Employing a single, unified model (UM) for both visual understanding (image-to-text: I2T) and visual generation (text-to-image: T2I) has opened a new direction in Visual Language Model (VLM) research. While UMs can also support broader unimodal tasks (e.g., text-to-text, image-to-image), we focus on the core cross-modal pair T2I and I2T. Existing evaluation benchmarks consider these capabilities in isolation: FID and GenEval for T2I, and benchmarks such as MME, MMBench for I2T. These isolated single-pass metrics do not reveal cross-consistency: whether a model that "understands" a concept can also "render" it, nor whether semantic meaning is preserved when cycling between image and text modalities. To address this, we introduce the Semantic Drift Protocol (SDP) for Unified Models, a cyclic evaluation protocol that alternates I2T and T2I over multiple generations to quantify semantic drift. We propose two metrics: (i) Mean Cumulative Drift (MCD), an embedding-based measure of overall semantic drift; and (ii) Multi-Generation GenEval (MGG), an object-level compliance score extending GenEval. To assess generalization beyond COCO dataset, which is widely used in training; we create a new benchmark Nocaps+Docci400, sampled from NoCaps and DOCCI and evaluated on seven recent models. SDP reveals substantial variation in cross-modal stability: some models like BAGEL maintain semantic meaning over many alternations, whereas others like VILA-U drift quickly despite strong single-pass scores. Our results highlight SDP as a necessary complement to standard I2T and T2I evaluations. Code is available at https://github.com/mollahsabbir/Semantic-Drift-in-Unified-Models
♻ ☆ VidGuard-R1: AI-Generated Video Detection and Explanation via Reasoning MLLMs and RL
With the rapid advancement of AI-generated videos, there is an urgent need for effective detection tools to mitigate societal risks such as misinformation and reputational harm. In addition to accurate classification, it is essential that detection models provide interpretable explanations to ensure transparency for regulators and end users. To address these challenges, we introduce VidGuard-R1, the first video authenticity detector that fine-tunes a multi-modal large language model (MLLM) using group relative policy optimization (GRPO). Our model delivers both highly accurate judgments and insightful reasoning. We curate a challenging dataset of 140k real and AI-generated videos produced by state-of-the-art generation models, carefully designing the generation process to maximize discrimination difficulty. We then fine-tune Qwen-VL using GRPO with two specialized reward models that target temporal artifacts and generation complexity. Extensive experiments demonstrate that VidGuard-R1 achieves state-of-the-art zero-shot performance on existing benchmarks, with additional training pushing accuracy above 95%. Case studies further show that VidGuard-R1 produces precise and interpretable rationales behind its predictions. The code is publicly available at https://VidGuard-R1.github.io.
♻ ☆ RealKIE: Five Novel Datasets for Enterprise Key Information Extraction
We introduce RealKIE, a benchmark of five challenging datasets aimed at advancing key information extraction methods, with an emphasis on enterprise applications. The datasets include a diverse range of documents including SEC S1 Filings, US Non-disclosure Agreements, UK Charity Reports, FCC Invoices, and Resource Contracts. Each presents unique challenges: poor text serialization, sparse annotations in long documents, and complex tabular layouts. These datasets provide a realistic testing ground for key information extraction tasks like investment analysis and contract analysis. In addition to presenting these datasets, we offer an in-depth description of the annotation process, document processing techniques, and baseline modeling approaches. This contribution facilitates the development of NLP models capable of handling practical challenges and supports further research into information extraction technologies applicable to industry-specific problems. The annotated data, OCR outputs, and code to reproduce baselines are available to download at https://indicodatasolutions.github.io/RealKIE/.
♻ ☆ RowDetr: End-to-End Crop Row Detection Using Polynomials
Crop row detection enables autonomous robots to navigate in gps denied environments. Vision based strategies often struggle in the environments due to gaps, curved crop rows and require post-processing steps. Furthermore, labeling crop rows in under the canopy environments accurately is very difficult due to occlusions. This study introduces RowDetr, an efficient end-to-end transformer-based neural network for crop row detection in precision agriculture. RowDetr leverages a lightweight backbone and a hybrid encoder to model straight, curved, or occluded crop rows with high precision. Central to the architecture is a novel polynomial representation that enables direct parameterization of crop rows, eliminating computationally expensive post-processing. Key innovations include a PolySampler module and multi-scale deformable attention, which work together with PolyOptLoss, an energy-based loss function designed to optimize geometric alignment between predicted and the annotated crop rows, while also enhancing robustness against labeling noise. RowDetr was evaluated against other state-of-the-art end-to-end crop row detection methods like AgroNav and RolColAttention on a diverse dataset of 6,962 high-resolution images, used for training, validation, and testing across multiple crop types with annotated crop rows. The system demonstrated superior performance, achieved an F1 score up to 0.74 and a lane position deviation as low as 0.405. Furthermore, RowDetr achieves a real-time inference latency of 6.7ms, which was optimized to 3.5ms with INT8 quantization on an NVIDIA Jetson Orin AGX. This work highlighted the critical efficiency of polynomial parameterization, making RowDetr particularly suitable for deployment on edge computing devices in agricultural robotics and autonomous farming equipment. Index terms > Crop Row Detection, Under Canopy Navigation, Transformers, RT-DETR, RT-DETRv2
comment: Code will be open sourced upon publication
♻ ☆ Fast constrained sampling in pre-trained diffusion models
Large denoising diffusion models, such as Stable Diffusion, have been trained on billions of image-caption pairs to perform text-conditioned image generation. As a byproduct of this training, these models have acquired general knowledge about image statistics, which can be useful for other inference tasks. However, when confronted with sampling an image under new constraints, e.g. generating the missing parts of an image, using large pre-trained text-to-image diffusion models is inefficient and often unreliable. Previous approaches either utilized backpropagation through the denoiser network, making them significantly slower and more memory-demanding than simple text-to-image generation, or only enforced the constraint locally, failing to capture critical long-range correlations in the sampled image. In this work, we propose an algorithm that enables fast, high-quality generation under arbitrary constraints. We show that in denoising diffusion models, we can employ an approximation to Newton's optimization method that allows us to speed up inference and avoid the expensive backpropagation operations. Our approach produces results that rival or surpass the state-of-the-art training-free inference methods while requiring a fraction of the time. We demonstrate the effectiveness of our algorithm under both linear (inpainting, super-resolution) and non-linear (style-guided generation) constraints. An implementation is provided at https://github.com/cvlab-stonybrook/fast-constrained-sampling.
♻ ☆ QDFlow: A Python package for physics simulations of quantum dot devices
Recent advances in machine learning (ML) have accelerated progress in calibrating and operating quantum dot (QD) devices. However, most ML approaches rely on access to large, representative datasets designed to capture the full spectrum of data quality encountered in practice, with both high- and low-quality data for training, benchmarking, and validation, with labels capturing key features of the device state. Collating such datasets experimentally is challenging due to limited data availability, slow measurement bandwidths, and the labor-intensive nature of labeling. QDFlow is an open-source physics simulator for multi-QD arrays that generates realistic synthetic data with ground-truth labels. QDFlow combines a self-consistent Thomas-Fermi solver, a dynamic capacitance model, and flexible noise modules to simulate charge stability diagrams and ray-based data closely resembling experiments. With an extensive set of parameters that can be varied and customizable noise models, QDFlow supports the creation of large, diverse datasets for ML development, benchmarking, and quantum device research.
comment: 17 pages, 5 figures
♻ ☆ RAM-W600: A Multi-Task Wrist Dataset and Benchmark for Rheumatoid Arthritis NeurIPS 2025
Rheumatoid arthritis (RA) is a common autoimmune disease that has been the focus of research in computer-aided diagnosis (CAD) and disease monitoring. In clinical settings, conventional radiography (CR) is widely used for the screening and evaluation of RA due to its low cost and accessibility. The wrist is a critical region for the diagnosis of RA. However, CAD research in this area remains limited, primarily due to the challenges in acquiring high-quality instance-level annotations. (i) The wrist comprises numerous small bones with narrow joint spaces, complex structures, and frequent overlaps, requiring detailed anatomical knowledge for accurate annotation. (ii) Disease progression in RA often leads to osteophyte, bone erosion (BE), and even bony ankylosis, which alter bone morphology and increase annotation difficulty, necessitating expertise in rheumatology. This work presents a multi-task dataset for wrist bone in CR, including two tasks: (i) wrist bone instance segmentation and (ii) Sharp/van der Heijde (SvdH) BE scoring, which is the first public resource for wrist bone instance segmentation. This dataset comprises 1048 wrist conventional radiographs of 388 patients from six medical centers, with pixel-level instance segmentation annotations for 618 images and SvdH BE scores for 800 images. This dataset can potentially support a wide range of research tasks related to RA, including joint space narrowing (JSN) progression quantification, BE detection, bone deformity evaluation, and osteophyte detection. It may also be applied to other wrist-related tasks, such as carpal bone fracture localization. We hope this dataset will significantly lower the barrier to research on wrist RA and accelerate progress in CAD research within the RA-related domain.
comment: Accepted by NeurIPS 2025
♻ ☆ A Tale of Two Experts: Cooperative Learning for Source-Free Unsupervised Domain Adaptation
Source-Free Unsupervised Domain Adaptation (SFUDA) addresses the realistic challenge of adapting a source-trained model to a target domain without access to the source data, driven by concerns over privacy and cost. Existing SFUDA methods either exploit only the source model's predictions or fine-tune large multimodal models, yet both neglect complementary insights and the latent structure of target data. In this paper, we propose the Experts Cooperative Learning (EXCL). EXCL contains the Dual Experts framework and Retrieval-Augmentation-Interaction optimization pipeline. The Dual Experts framework places a frozen source-domain model (augmented with Conv-Adapter) and a pretrained vision-language model (with a trainable text prompt) on equal footing to mine consensus knowledge from unlabeled target samples. To effectively train these plug-in modules under purely unsupervised conditions, we introduce Retrieval-Augmented-Interaction(RAIN), a three-stage pipeline that (1) collaboratively retrieves pseudo-source and complex target samples, (2) separately fine-tunes each expert on its respective sample set, and (3) enforces learning object consistency via a shared learning result. Extensive experiments on four benchmark datasets demonstrate that our approach matches state-of-the-art performance.
♻ ☆ What Lurks Within? Concept Auditing for Shared Diffusion Models at Scale CCS 2025
Diffusion models (DMs) have revolutionized text-to-image generation, enabling the creation of highly realistic and customized images from text prompts. With the rise of parameter-efficient fine-tuning (PEFT) techniques, users can now customize powerful pre-trained models using minimal computational resources. However, the widespread sharing of fine-tuned DMs on open platforms raises growing ethical and legal concerns, as these models may inadvertently or deliberately generate sensitive or unauthorized content. Despite increasing regulatory attention on generative AI, there are currently no practical tools for systematically auditing these models before deployment. In this paper, we address the problem of concept auditing: determining whether a fine-tuned DM has learned to generate a specific target concept. Existing approaches typically rely on prompt-based input crafting and output-based image classification but they suffer from critical limitations, including prompt uncertainty, concept drift, and poor scalability. To overcome these challenges, we introduce Prompt-Agnostic Image-Free Auditing (PAIA), a novel, model-centric concept auditing framework. By treating the DM as the object of inspection, PAIA enables direct analysis of internal model behavior, bypassing the need for optimized prompts or generated images. We evaluate PAIA on 320 controlled models trained with curated concept datasets and 771 real-world community models sourced from a public DM sharing platform. Evaluation results show that PAIA achieves over 90% detection accuracy while reducing auditing time by 18 - 40X compared to existing baselines. To our knowledge, PAIA is the first scalable and practical solution for pre-deployment concept auditing of diffusion models, providing a practical foundation for safer and more transparent diffusion model sharing.
comment: Extended version of the paper accepted at CCS 2025
♻ ☆ MMLongBench: Benchmarking Long-Context Vision-Language Models Effectively and Thoroughly NeurIPS 2025
The rapid extension of context windows in large vision-language models has given rise to long-context vision-language models (LCVLMs), which are capable of handling hundreds of images with interleaved text tokens in a single forward pass. In this work, we introduce MMLongBench, the first benchmark covering a diverse set of long-context vision-language tasks, to evaluate LCVLMs effectively and thoroughly. MMLongBench is composed of 13,331 examples spanning five different categories of downstream tasks, such as Visual RAG and Many-Shot ICL. It also provides broad coverage of image types, including various natural and synthetic images. To assess the robustness of the models to different input lengths, all examples are delivered at five standardized input lengths (8K-128K tokens) via a cross-modal tokenization scheme that combines vision patches and text tokens. Through a thorough benchmarking of 46 closed-source and open-source LCVLMs, we provide a comprehensive analysis of the current models' vision-language long-context ability. Our results show that: i) performance on a single task is a weak proxy for overall long-context capability; ii) both closed-source and open-source models face challenges in long-context vision-language tasks, indicating substantial room for future improvement; iii) models with stronger reasoning ability tend to exhibit better long-context performance. By offering wide task coverage, various image types, and rigorous length control, MMLongBench provides the missing foundation for diagnosing and advancing the next generation of LCVLMs.
comment: Accepted as a spotlight at NeurIPS 2025
♻ ☆ A Survey on 3D Gaussian Splatting
3D Gaussian splatting (GS) has emerged as a transformative technique in radiance fields. Unlike mainstream implicit neural models, 3D GS uses millions of learnable 3D Gaussians for an explicit scene representation. Paired with a differentiable rendering algorithm, this approach achieves real-time rendering and unprecedented editability, making it a potential game-changer for 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in explicit radiance field.
comment: Ongoing project; Paper list: https://github.com/guikunchen/Awesome3DGS ; Benchmark: https://github.com/guikunchen/3DGS-Benchmarks
♻ ☆ ViP$^2$-CLIP: Visual-Perception Prompting with Unified Alignment for Zero-Shot Anomaly Detection
Zero-shot anomaly detection (ZSAD) aims to detect anomalies without any target domain training samples, relying solely on external auxiliary data. Existing CLIP-based methods attempt to activate the model's ZSAD potential via handcrafted or static learnable prompts. The former incur high engineering costs and limited semantic coverage, whereas the latter apply identical descriptions across diverse anomaly types, thus fail to adapt to complex variations. Furthermore, since CLIP is originally pretrained on large-scale classification tasks, its anomaly segmentation quality is highly sensitive to the exact wording of class names, severely constraining prompting strategies that depend on class labels. To address these challenges, we introduce ViP$^{2}$-CLIP. The key insight of ViP$^{2}$-CLIP is a Visual-Perception Prompting (ViP-Prompt) mechanism, which fuses global and multi-scale local visual context to adaptively generate fine-grained textual prompts, eliminating manual templates and class-name priors. This design enables our model to focus on precise abnormal regions, making it particularly valuable when category labels are ambiguous or privacy-constrained. Extensive experiments on 15 industrial and medical benchmarks demonstrate that ViP$^{2}$-CLIP achieves state-of-the-art performance and robust cross-domain generalization.
♻ ☆ Graph Algorithm Unrolling with Douglas-Rachford Iterations for Image Interpolation with Guaranteed Initialization
Conventional deep neural nets (DNNs) initialize network parameters at random and then optimize each one via stochastic gradient descent (SGD), resulting in substantial risk of poor-performing local minima.Focusing on the image interpolation problem and leveraging a recent theorem that maps a (pseudo-)linear interpolator {\Theta} to a directed graph filter that is a solution to a MAP problem regularized with a graph shift variation (GSV) prior, we first initialize a directed graph adjacency matrix A based on a known interpolator {\Theta}, establishing a baseline performance.Then, towards further gain, we learn perturbation matrices P and P(2) from data to augment A, whose restoration effects are implemented via Douglas-Rachford (DR) iterations, which we unroll into a lightweight interpretable neural net.Experimental results demonstrate state-of-the-art image interpolation results, while drastically reducing network parameters.
♻ ☆ Autonomous Imagination: Closed-Loop Decomposition of Visual-to-Textual Conversion in Visual Reasoning for Multimodal Large Language Models
Under pure textual modality, Large Language Models (LLMs) have demonstrated remarkable success in complex reasoning tasks by decomposing them into simpler sub-problems. However, Multimodal Large Language Models (MLLMs) still struggle with some seemingly straightforward visual tasks, such as counting and solving jigsaw puzzles. We argue that these tasks challenge the ability of visual-to-textual conversion, where MLLMs convert visual information perceived from the input scene, to textual information for further reasoning and generating the answer. If the complexity of the visual input is beyond the perceptual capability of the MLLMs, without decomposing this conversion process, simply scaling inference-time reasoning cannot solve the task because it repeatedly encounters the same perceptual bottleneck. We propose an approach, autonomous imagination, to enable MLLMs to iteratively modify visual inputs (e.g. isolating objects, rearranging puzzle pieces) into intermediate visual states, decomposing visual-to-textual conversion into closed-loop visual modification steps. We show that, without any retraining, MLLMs can now solve tasks initially beyond their perceptual capability, highlighting that closed-loop visual modification can be an effective way of decomposing the visual reasoning task into solvable substeps. Our code and data are released at https://future-item.github.io/autoimagine-site/.
comment: Published in TMLR
♻ ☆ Bias in Gender Bias Benchmarks: How Spurious Features Distort Evaluation ICCV 2025
Gender bias in vision-language foundation models (VLMs) raises concerns about their safe deployment and is typically evaluated using benchmarks with gender annotations on real-world images. However, as these benchmarks often contain spurious correlations between gender and non-gender features, such as objects and backgrounds, we identify a critical oversight in gender bias evaluation: Do spurious features distort gender bias evaluation? To address this question, we systematically perturb non-gender features across four widely used benchmarks (COCO-gender, FACET, MIAP, and PHASE) and various VLMs to quantify their impact on bias evaluation. Our findings reveal that even minimal perturbations, such as masking just 10% of objects or weakly blurring backgrounds, can dramatically alter bias scores, shifting metrics by up to 175% in generative VLMs and 43% in CLIP variants. This suggests that current bias evaluations often reflect model responses to spurious features rather than gender bias, undermining their reliability. Since creating spurious feature-free benchmarks is fundamentally challenging, we recommend reporting bias metrics alongside feature-sensitivity measurements to enable a more reliable bias assessment.
comment: ICCV 2025
♻ ☆ Medical Image Classification with KAN-Integrated Transformers and Dilated Neighborhood Attention
Convolutional networks, transformers, hybrid models, and Mamba-based architectures have demonstrated strong performance across various medical image classification tasks. However, these methods were primarily designed to classify clean images using labeled data. In contrast, real-world clinical data often involve image corruptions that are unique to multi-center studies and stem from variations in imaging equipment across manufacturers. In this paper, we introduce the Medical Vision Transformer (MedViTV2), a novel architecture incorporating Kolmogorov-Arnold Network (KAN) layers into the transformer architecture for the first time, aiming for generalized medical image classification. We have developed an efficient KAN block to reduce computational load while enhancing the accuracy of the original MedViT. Additionally, to counteract the fragility of our MedViT when scaled up, we propose an enhanced Dilated Neighborhood Attention (DiNA), an adaptation of the efficient fused dot-product attention kernel capable of capturing global context and expanding receptive fields to scale the model effectively and addressing feature collapse issues. Moreover, a hierarchical hybrid strategy is introduced to stack our Local Feature Perception and Global Feature Perception blocks in an efficient manner, which balances local and global feature perceptions to boost performance. Extensive experiments on 17 medical image classification datasets and 12 corrupted medical image datasets demonstrate that MedViTV2 achieved state-of-the-art results in 27 out of 29 experiments with reduced computational complexity. MedViTV2 is 44\% more computationally efficient than the previous version and significantly enhances accuracy, achieving improvements of 4.6\% on MedMNIST, 5.8\% on NonMNIST, and 13.4\% on the MedMNIST-C benchmark.
♻ ☆ Generating Findings for Jaw Cysts in Dental Panoramic Radiographs Using GPT-4o: Building a Two-Stage Self-Correction Loop with Structured Output (SLSO) Framework
In this study, we utilized the multimodal capabilities of OpenAI GPT-4o to automatically generate jaw cyst findings on dental panoramic radiographs. To improve accuracy, we constructed a Self-correction Loop with Structured Output (SLSO) framework and verified its effectiveness. A 10-step process was implemented for 22 cases of jaw cysts, including image input and analysis, structured data generation, tooth number extraction and consistency checking, iterative regeneration when inconsistencies were detected, and finding generation with subsequent restructuring and consistency verification. A comparative experiment was conducted using the conventional Chain-of-Thought (CoT) method across seven evaluation items: transparency, internal structure, borders, root resorption, tooth movement, relationships with other structures, and tooth number. The results showed that the proposed SLSO framework improved output accuracy for many items, with 66.9%, 33.3%, and 28.6% improvement rates for tooth number, tooth movement, and root resorption, respectively. In the successful cases, a consistently structured output was achieved after up to five regenerations. Although statistical significance was not reached because of the small size of the dataset, the overall SLSO framework enforced negative finding descriptions, suppressed hallucinations, and improved tooth number identification accuracy. However, the accurate identification of extensive lesions spanning multiple teeth is limited. Nevertheless, further refinement is required to enhance overall performance and move toward a practical finding generation system.
comment: Submitted to Scientific Reports
♻ ☆ Attention, Please! Revisiting Attentive Probing Through the Lens of Efficiency
As fine-tuning becomes increasingly impractical at scale, probing is emerging as the preferred evaluation protocol. Yet, the standard linear probing fails to adequately reflect the potential of models whose pre-training optimizes representations of patch tokens rather than an explicit global representation. This motivates the need for attentive probing, an alternative that uses attention to selectively aggregate patch-level features. Despite its growing adoption, attentive probing remains under-explored, with existing methods suffering from excessive parameterization and poor computational efficiency. In this work, we revisit attentive probing through the lens of the accuracy vs. parameter efficiency trade-off. We present the first comprehensive study of existing methods, analyzing their design choices and benchmarking their performance. Building on this, we propose efficient probing (EP), a simple yet effective multi-query cross-attention mechanism that eliminates redundant projections and reduces the number of trainable parameters. Despite its simplicity, EP outperforms linear probing and prior attentive probing approaches across seven benchmarks, generalizes well to diverse pre-training paradigms, and delivers strong low-shot and layer-wise gains. Beyond evaluation, our analysis uncovers emerging properties of EP, such as complementary attention maps, which open new directions for leveraging probing beyond protocol design. Code available at https://github.com/billpsomas/efficient-probing.
comment: 9 main paper pages, 13 supplementary pages; Code available at https://github.com/billpsomas/efficient-probing
♻ ☆ TACO: Enhancing Multimodal In-context Learning via Task Mapping-Guided Sequence Configuration EMNLP2025
Multimodal in-context learning (ICL) has emerged as a key mechanism for harnessing the capabilities of large vision-language models (LVLMs). However, its effectiveness remains highly sensitive to the quality of input ICL sequences, particularly for tasks involving complex reasoning or open-ended generation. A major limitation is our limited understanding of how LVLMs actually exploit these sequences during inference. To bridge this gap, we systematically interpret multimodal ICL through the lens of task mapping, which reveals how local and global relationships within and among demonstrations guide model reasoning. Building on this insight, we present TACO, a lightweight transformer-based model equipped with task-aware attention that dynamically configures ICL sequences. By injecting task-mapping signals into the autoregressive decoding process, TACO creates a bidirectional synergy between sequence construction and task reasoning. Experiments on five LVLMs and nine datasets demonstrate that TACO consistently surpasses baselines across diverse ICL tasks. These results position task mapping as a novel and valuable perspective for interpreting and improving multimodal ICL.
comment: EMNLP2025 Main, 28 pages, 11 figures, 19 tables
♻ ☆ PRO-VPT: Distribution-Adaptive Visual Prompt Tuning via Prompt Relocation ICCV 2025
Visual prompt tuning (VPT), i.e., fine-tuning some lightweight prompt tokens, provides an efficient and effective approach for adapting pre-trained models to various downstream tasks. However, most prior art indiscriminately uses a fixed prompt distribution across different tasks, neglecting the importance of each block varying depending on the task. In this paper, we introduce adaptive distribution optimization (ADO) by tackling two key questions: (1) How to appropriately and formally define ADO, and (2) How to design an adaptive distribution strategy guided by this definition? Through empirical analysis, we first confirm that properly adjusting the distribution significantly improves VPT performance, and further uncover a key insight that a nested relationship exists between ADO and VPT. Based on these findings, we propose a new VPT framework, termed PRO-VPT (iterative Prompt RelOcation-based VPT), which adaptively adjusts the distribution built upon a nested optimization formulation. Specifically, we develop a prompt relocation strategy derived from this formulation, comprising two steps: pruning idle prompts from prompt-saturated blocks, followed by allocating these prompts to the most prompt-needed blocks. By iteratively performing prompt relocation and VPT, our proposal can adaptively learn the optimal prompt distribution in a nested optimization-based manner, thereby unlocking the full potential of VPT. Extensive experiments demonstrate that our proposal significantly outperforms advanced VPT methods, e.g., PRO-VPT surpasses VPT by 1.6 pp and 2.0 pp average accuracy, leading prompt-based methods to state-of-the-art performance on VTAB-1k and FGVC benchmarks. The code is available at https://github.com/ckshang/PRO-VPT.
comment: Accepted by ICCV 2025
♻ ☆ CBVLM: Training-free Explainable Concept-based Large Vision Language Models for Medical Image Classification
The main challenges limiting the adoption of deep learning-based solutions in medical workflows are the availability of annotated data and the lack of interpretability of such systems. Concept Bottleneck Models (CBMs) tackle the latter by constraining the model output on a set of predefined and human-interpretable concepts. However, the increased interpretability achieved through these concept-based explanations implies a higher annotation burden. Moreover, if a new concept needs to be added, the whole system needs to be retrained. Inspired by the remarkable performance shown by Large Vision-Language Models (LVLMs) in few-shot settings, we propose a simple, yet effective, methodology, CBVLM, which tackles both of the aforementioned challenges. First, for each concept, we prompt the LVLM to answer if the concept is present in the input image. Then, we ask the LVLM to classify the image based on the previous concept predictions. Moreover, in both stages, we incorporate a retrieval module responsible for selecting the best examples for in-context learning. By grounding the final diagnosis on the predicted concepts, we ensure explainability, and by leveraging the few-shot capabilities of LVLMs, we drastically lower the annotation cost. We validate our approach with extensive experiments across four medical datasets and twelve LVLMs (both generic and medical) and show that CBVLM consistently outperforms CBMs and task-specific supervised methods without requiring any training and using just a few annotated examples. More information on our project page: https://cristianopatricio.github.io/CBVLM/.
comment: Accepted for publication in Computers in Biology and Medicine
♻ ☆ Filling of incomplete sinograms from sparse PET detector configurations using a residual U-Net
Long axial field-of-view PET scanners offer increased field-of-view and sensitivity compared to traditional PET scanners. However, a significant cost is associated with the densely packed photodetectors required for the extended-coverage systems, limiting clinical utilisation. To mitigate the cost limitations, alternative sparse system configurations have been proposed, allowing an extended field-of-view PET design with detector costs similar to a standard PET system, albeit at the expense of image quality. In this work, we propose a deep sinogram restoration network to fill in the missing sinogram data. Our method utilises a modified Residual U-Net, trained on clinical PET scans from a GE Signa PET/MR, simulating the removal of 50% of the detectors in a chessboard pattern (retaining only 25% of all lines of response). The model successfully recovers missing counts, with a mean absolute error below two events per pixel, outperforming 2D interpolation in both sinogram and reconstructed image domain. Notably, the predicted sinograms exhibit a smoothing effect, leading to reconstructed images lacking sharpness in finer details. Despite these limitations, the model demonstrates a substantial capacity for compensating for the undersampling caused by the sparse detector configuration. This proof-of-concept study suggests that sparse detector configurations, combined with deep learning techniques, offer a viable alternative to conventional PET scanner designs. This approach supports the development of cost-effective, total body PET scanners, allowing a significant step forward in medical imaging technology.
comment: 16 pages, 9 figures
♻ ☆ UniUIR: Considering Underwater Image Restoration as An All-in-One Learner
Existing underwater image restoration (UIR) methods generally only handle color distortion or jointly address color and haze issues, but they often overlook the more complex degradations that can occur in underwater scenes. To address this limitation, we propose a Universal Underwater Image Restoration method, termed as UniUIR, considering the complex scenario of real-world underwater mixed distortions as an all-in-one manner. To decouple degradation-specific issues and explore the inter-correlations among various degradations in UIR task, we designed the Mamba Mixture-of-Experts module. This module enables each expert to identify distinct types of degradation and collaboratively extract task-specific priors while maintaining global feature representation based on linear complexity. Building upon this foundation, to enhance degradation representation and address the task conflicts that arise when handling multiple types of degradation, we introduce the spatial-frequency prior generator. This module extracts degradation prior information in both spatial and frequency domains, and adaptively selects the most appropriate task-specific prompts based on image content, thereby improving the accuracy of image restoration. Finally, to more effectively address complex, region-dependent distortions in UIR task, we incorporate depth information derived from a large-scale pre-trained depth prediction model, thereby enabling the network to perceive and leverage depth variations across different image regions to handle localized degradation. Extensive experiments demonstrate that UniUIR can produce more attractive results across qualitative and quantitative comparisons, and shows strong generalization than state-of-the-art methods.
comment: Accepted by IEEE Transactions on Image Processing. Project page at https://house-yuyu.github.io/UniUIR/
♻ ☆ Explaining Human Preferences via Metrics for Structured 3D Reconstruction ICCV 2025
"What cannot be measured cannot be improved" while likely never uttered by Lord Kelvin, summarizes effectively the driving force behind this work. This paper presents a detailed discussion of automated metrics for evaluating structured 3D reconstructions. Pitfalls of each metric are discussed, and an analysis through the lens of expert 3D modelers' preferences is presented. A set of systematic "unit tests" are proposed to empirically verify desirable properties, and context aware recommendations regarding which metric to use depending on application are provided. Finally, a learned metric distilled from human expert judgments is proposed and analyzed. The source code is available at https://github.com/s23dr/wireframe-metrics-iccv2025
comment: ICCV 2025 Highlight
♻ ☆ Novel Object 6D Pose Estimation with a Single Reference View
Existing novel object 6D pose estimation methods typically rely on CAD models or dense reference views, which are both difficult to acquire. Using only a single reference view is more scalable, but challenging due to large pose discrepancies and limited geometric and spatial information. To address these issues, we propose a Single-Reference-based novel object 6D (SinRef-6D) pose estimation method. Our key idea is to iteratively establish point-wise alignment in a common coordinate system based on state space models (SSMs). Specifically, iterative object-space point-wise alignment can effectively handle large pose discrepancies, while our proposed RGB and Points SSMs can capture long-range dependencies and spatial information from a single view, offering linear complexity and superior spatial modeling capability. Once pre-trained on synthetic data, SinRef-6D can estimate the 6D pose of a novel object using only a single reference view, without requiring retraining or a CAD model. Extensive experiments on six popular datasets and real-world robotic scenes demonstrate that we achieve on-par performance with CAD-based and dense reference view-based methods, despite operating in the more challenging single reference setting. Code will be released at https://github.com/CNJianLiu/SinRef-6D.
comment: 17 pages, 12 figures (including supplementary material)
♻ ☆ Poisson multi-Bernoulli mixture filter for trajectory measurements
This paper presents a Poisson multi-Bernoulli mixture (PMBM) filter for multi-target filtering based on sensor measurements that are sets of trajectories in the last two-time step window. The proposed filter, the trajectory measurement PMBM (TM-PMBM) filter, propagates a PMBM density on the set of target states. In prediction, the filter obtains the PMBM density on the set of trajectories over the last two time steps. This density is then updated with the set of trajectory measurements. After the update step, the PMBM posterior on the set of two-step trajectories is marginalised to obtain a PMBM density on the set of target states. The filter provides a closed-form solution for multi-target filtering based on sets of trajectory measurements, estimating the set of target states at the end of each time window. Additionally, the paper proposes computationally lighter alternatives to the TM-PMBM filter by deriving a Poisson multi-Bernoulli (PMB) density through Kullback-Leibler divergence minimisation in an augmented space with auxiliary variables. The performance of the proposed filters are evaluated in a simulation study.
comment: 16 pages, 9 figures, journal paper
♻ ☆ LIAM: Multimodal Transformer for Language Instructions, Images, Actions and Semantic Maps
The availability of large language models and open-vocabulary object perception methods enables more flexibility for domestic service robots. The large variability of domestic tasks can be addressed without implementing each task individually by providing the robot with a task description along with appropriate environment information. In this work, we propose LIAM - an end-to-end model that predicts action transcripts based on language, image, action, and map inputs. Language and image inputs are encoded with a CLIP backbone, for which we designed two pre-training tasks to fine-tune its weights and pre-align the latent spaces. We evaluate our method on the ALFRED dataset, a simulator-generated benchmark for domestic tasks. Our results demonstrate the importance of pre-aligning embedding spaces from different modalities and the efficacy of incorporating semantic maps.
comment: 12 pages, 4 figures, 2 tables, 19th International Conference on Intelligent Autonomous Systems (IAS), Genoa, Italy, June 2025
♻ ☆ A Survey of Defenses Against AI-Generated Visual Media: Detection,Disruption, and Authentication
Deep generative models have demonstrated impressive performance in various computer vision applications, including image synthesis, video generation, and medical analysis. Despite their significant advancements, these models may be used for malicious purposes, such as misinformation, deception, and copyright violation. In this paper, we provide a systematic and timely review of research efforts on defenses against AI-generated visual media, covering detection, disruption, and authentication. We review existing methods and summarize the mainstream defense-related tasks within a unified passive and proactive framework. Moreover, we survey the derivative tasks concerning the trustworthiness of defenses, such as their robustness and fairness. For each defense strategy, we formulate its general pipeline and propose a multidimensional taxonomy applicable across defense tasks, based on methodological strategies. Additionally, we summarize the commonly used evaluation datasets, criteria, and metrics. Finally, by analyzing the reviewed studies, we provide insights into current research challenges and suggest possible directions for future research.
comment: Accepted by ACM Computing Surveys
♻ ☆ SEE-DPO: Self Entropy Enhanced Direct Preference Optimization
Direct Preference Optimization (DPO) has been successfully used to align large language models (LLMs) according to human preferences, and more recently it has also been applied to improving the quality of text-to-image diffusion models. However, DPO-based methods such as SPO, Diffusion-DPO, and D3PO are highly susceptible to overfitting and reward hacking, especially when the generative model is optimized to fit out-of-distribution during prolonged training. To overcome these challenges and stabilize the training of diffusion models, we introduce a self-entropy regularization mechanism in reinforcement learning from human feedback. This enhancement improves DPO training by encouraging broader exploration and greater robustness. Our regularization technique effectively mitigates reward hacking, leading to improved stability and enhanced image quality across the latent space. Extensive experiments demonstrate that integrating human feedback with self-entropy regularization can significantly boost image diversity and specificity, achieving state-of-the-art results on key image generation metrics.
♻ ☆ Copyright Infringement Detection in Text-to-Image Diffusion Models via Differential Privacy
The widespread deployment of large vision models such as Stable Diffusion raises significant legal and ethical concerns, as these models can memorize and reproduce copyrighted content without authorization. Existing detection approaches often lack robustness and fail to provide rigorous theoretical underpinnings. To address these gaps, we formalize the concept of copyright infringement and its detection from the perspective of Differential Privacy (DP), and introduce the conditional sensitivity metric, a concept analogous to sensitivity in DP, that quantifies the deviation in a diffusion model's output caused by the inclusion or exclusion of a specific training data point. To operationalize this metric, we propose D-Plus-Minus (DPM), a novel post-hoc detection framework that identifies copyright infringement in text-to-image diffusion models. Specifically, DPM simulates inclusion and exclusion processes by fine-tuning models in two opposing directions: learning or unlearning. Besides, to disentangle concept-specific influence from the global parameter shifts induced by fine-tuning, DPM computes confidence scores over orthogonal prompt distributions using statistical metrics. Moreover, to facilitate standardized benchmarking, we also construct the Copyright Infringement Detection Dataset (CIDD), a comprehensive resource for evaluating detection across diverse categories. Our results demonstrate that DPM reliably detects infringement content without requiring access to the original training dataset or text prompts, offering an interpretable and practical solution for safeguarding intellectual property in the era of generative AI.
♻ ☆ SIA: Enhancing Safety via Intent Awareness for Vision-Language Models ICCV2025
With the growing deployment of Vision-Language Models (VLMs) in real-world applications, previously overlooked safety risks are becoming increasingly evident. In particular, seemingly innocuous multimodal inputs can combine to reveal harmful intent, leading to unsafe model outputs. While multimodal safety has received increasing attention, existing approaches often fail to address such latent risks, especially when harmfulness arises only from the interaction between modalities. We propose SIA (Safety via Intent Awareness), a training-free, intent-aware safety framework that proactively detects harmful intent in multimodal inputs and uses it to guide the generation of safe responses. SIA follows a three-stage process: (1) visual abstraction via captioning; (2) intent inference through few-shot chain-of-thought (CoT) prompting; and (3) intent-conditioned response generation. By dynamically adapting to the implicit intent inferred from an image-text pair, SIA mitigates harmful outputs without extensive retraining. Extensive experiments on safety benchmarks, including SIUO, MM-SafetyBench, and HoliSafe, show that SIA consistently improves safety and outperforms prior training-free methods.
comment: Accepted to Safe and Trustworthy Multimodal AI Systems(SafeMM-AI) Workshop at ICCV2025, Non-archival track
♻ ☆ Neural Brain: A Neuroscience-inspired Framework for Embodied Agents
The rapid evolution of artificial intelligence (AI) has shifted from static, data-driven models to dynamic systems capable of perceiving and interacting with real-world environments. Despite advancements in pattern recognition and symbolic reasoning, current AI systems, such as large language models, remain disembodied, unable to physically engage with the world. This limitation has driven the rise of embodied AI, where autonomous agents, such as humanoid robots, must navigate and manipulate unstructured environments with human-like adaptability. At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability. A Neural Brain must seamlessly integrate multimodal sensing and perception with cognitive capabilities. Achieving this also requires an adaptive memory system and energy-efficient hardware-software co-design, enabling real-time action in dynamic environments. This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges: (1) defining the core components of Neural Brain and (2) bridging the gap between static AI models and the dynamic adaptability required for real-world deployment. To this end, we propose a biologically inspired architecture that integrates multimodal active sensing, perception-cognition-action function, neuroplasticity-based memory storage and updating, and neuromorphic hardware/software optimization. Furthermore, we also review the latest research on embodied agents across these four aspects and analyze the gap between current AI systems and human intelligence. By synthesizing insights from neuroscience, we outline a roadmap towards the development of generalizable, autonomous agents capable of human-level intelligence in real-world scenarios.
comment: 51 pages, 17 figures, 9 tables
♻ ☆ Praxis-VLM: Vision-Grounded Decision Making via Text-Driven Reinforcement Learning NeurIPS 2025
Vision Language Models exhibit impressive performance for various tasks, yet they often lack the sophisticated situational reasoning required for complex decision-making. This paper shows that VLMs can achieve surprisingly strong decision-making performance when visual scenes are replaced by textual descriptions, suggesting foundational reasoning can be effectively learned from language. Motivated by this insight, we propose Praxis-VLM, a reasoning VLM for vision-grounded decision-making. Praxis-VLM employs the GRPO algorithm on textual scenarios to instill robust reasoning capabilities, where models learn to evaluate actions and their consequences. These reasoning skills, acquired purely from text, successfully transfer to multimodal inference with visual inputs, significantly reducing reliance on scarce paired image-text training data. Experiments across diverse decision-making benchmarks demonstrate that Praxis-VLM substantially outperforms standard supervised fine-tuning, exhibiting superior performance and generalizability. Further analysis confirms that our models engage in explicit and effective reasoning, underpinning their enhanced performance and adaptability.
comment: Accepted at NeurIPS 2025
♻ ☆ What Drives Compositional Generalization in Visual Generative Models?
Compositional generalization, the ability to generate novel combinations of known concepts, is a key ingredient for visual generative models. Yet, not all mechanisms that enable or inhibit it are fully understood. In this work, we conduct a systematic study of how various design choices influence compositional generalization in image and video generation in a positive or negative way. Through controlled experiments, we identify two key factors: (i) whether the training objective operates on a discrete or continuous distribution, and (ii) to what extent conditioning provides information about the constituent concepts during training. Building on these insights, we show that relaxing the MaskGIT discrete loss with an auxiliary continuous JEPA-based objective can improve compositional performance in discrete models like MaskGIT.
♻ ☆ WetCat: Enabling Automated Skill Assessment in Wet-Lab Cataract Surgery Videos
To meet the growing demand for systematic surgical training, wet-lab environments have become indispensable platforms for hands-on practice in ophthalmology. Yet, traditional wet-lab training depends heavily on manual performance evaluations, which are labor-intensive, time-consuming, and often subject to variability. Recent advances in computer vision offer promising avenues for automated skill assessment, enhancing both the efficiency and objectivity of surgical education. Despite notable progress in ophthalmic surgical datasets, existing resources predominantly focus on real surgeries or isolated tasks, falling short of supporting comprehensive skill evaluation in controlled wet-lab settings. To address these limitations, we introduce WetCat, the first dataset of wet-lab cataract surgery videos specifically curated for automated skill assessment. WetCat comprises high-resolution recordings of surgeries performed by trainees on artificial eyes, featuring comprehensive phase annotations and semantic segmentations of key anatomical structures. These annotations are meticulously designed to facilitate skill assessment during the critical capsulorhexis and phacoemulsification phases, adhering to standardized surgical skill assessment frameworks. By focusing on these essential phases, WetCat enables the development of interpretable, AI-driven evaluation tools aligned with established clinical metrics. This dataset lays a strong foundation for advancing objective, scalable surgical education and sets a new benchmark for automated workflow analysis and skill assessment in ophthalmology training. The dataset and annotations are publicly available in Synapse.
comment: 7 pages, 7 figures, Accepted at ACMMM25
♻ ☆ CoralSCOP-LAT: Labeling and Analyzing Tool for Coral Reef Images with Dense Mask
Coral reef imagery offers critical data for monitoring ecosystem health, in particular as the ease of image datasets continues to rapidly expand. Whilst semi-automated analytical platforms for reef imagery are becoming more available, the dominant approaches face fundamental limitations. To address these challenges, we propose CoralSCOP-LAT, a coral reef image analysis and labeling tool that automatically segments and analyzes coral regions. By leveraging advanced machine learning models tailored for coral reef segmentation, CoralSCOP-LAT enables users to generate dense segmentation masks with minimal manual effort, significantly enhancing both the labeling efficiency and precision of coral reef analysis. Our extensive evaluations demonstrate that CoralSCOP-LAT surpasses existing coral reef analysis tools in terms of time efficiency, accuracy, precision, and flexibility. CoralSCOP-LAT, therefore, not only accelerates the coral reef annotation process but also assists users in obtaining high-quality coral reef segmentation and analysis outcomes. Github Page: https://github.com/ykwongaq/CoralSCOP-LAT.
comment: Ecological Informatics Page: https://www.sciencedirect.com/science/article/pii/S157495412500411X
♻ ☆ MambaMoE: Mixture-of-Spectral-Spatial-Experts State Space Model for Hyperspectral Image Classification
Mamba-based models have recently demonstrated significant potential in hyperspectral image (HSI) classification, primarily due to their ability to perform contextual modeling with linear computational complexity. However, existing Mamba-based approaches often overlook the directional modeling heterogeneity across different land-cover types, leading to limited classification performance. To address these limitations, we propose MambaMoE, a novel spectral-spatial Mixture-of-Experts (MoE) framework, which represents the first MoE-based approach in the HSI classification domain. Specifically, we design a Mixture of Mamba Expert Block (MoMEB) that performs adaptive spectral-spatial feature modeling via a sparse expert activation mechanism. Additionally, we introduce an uncertainty-guided corrective learning (UGCL) strategy that encourages the model to focus on complex regions prone to prediction ambiguity. This strategy dynamically samples supervision signals from regions with high predictive uncertainty, guiding the model to adaptively refine feature representations and thereby enhancing its focus on challenging areas. Extensive experiments conducted on multiple public HSI benchmark datasets show that MambaMoE achieves state-of-the-art performance in both classification accuracy and computational efficiency compared to existing advanced methods, particularly Mamba-based ones. The code will be available online at https://github.com/YichuXu/MambaMoE.
comment: Accepted by Information Fusion
♻ ☆ One Patch to Caption Them All: A Unified Zero-Shot Captioning Framework
Zero-shot captioners are recently proposed models that utilize common-space vision-language representations to caption images without relying on paired image-text data. To caption an image, they proceed by textually decoding a text-aligned image feature, but they limit their scope to global representations and whole-image captions. We present Patch-ioner, a unified framework for zero-shot captioning that shifts from an image-centric to a patch-centric paradigm, enabling the captioning of arbitrary regions without the need of region-level supervision. Instead of relying on global image representations, we treat individual patches as atomic captioning units and aggregate them to describe arbitrary regions, from single patches to non-contiguous areas and entire images. We analyze the key ingredients that enable current latent captioners to work in our novel proposed framework. Experiments demonstrate that backbones producing meaningful, dense visual features, such as DINO, are key to achieving state-of-the-art performance in multiple region-based captioning tasks. Compared to other baselines and state-of-the-art competitors, our models achieve better performance on zero-shot dense, region-set, and a newly introduced trace captioning task, highlighting the effectiveness of patch-wise semantic representations for scalable caption generation. Project page at https://paciosoft.com/Patch-ioner/ .
♻ ☆ Leveraging Confident Image Regions for Source-Free Domain-Adaptive Object Detection
Source-free domain-adaptive object detection is an interesting but scarcely addressed topic. It aims at adapting a source-pretrained detector to a distinct target domain without resorting to source data during adaptation. So far, there is no data augmentation scheme tailored to source-free domain-adaptive object detection. To this end, this paper presents a novel data augmentation approach that cuts out target image regions where the detector is confident, augments them along with their respective pseudo-labels, and joins them into a challenging target image to adapt the detector. As the source data is out of reach during adaptation, we implement our approach within a teacher-student learning paradigm to ensure that the model does not collapse during the adaptation procedure. We evaluated our approach on three adaptation benchmarks of traffic scenes, scoring new state-of-the-art on two of them.
♻ ☆ EMedNeXt: An Enhanced Brain Tumor Segmentation Framework for Sub-Saharan Africa using MedNeXt V2 with Deep Supervision MICCAI 2025
Brain cancer affects millions worldwide, and in nearly every clinical setting, doctors rely on magnetic resonance imaging (MRI) to diagnose and monitor gliomas. However, the current standard for tumor quantification through manual segmentation of multi-parametric MRI is time-consuming, requires expert radiologists, and is often infeasible in under-resourced healthcare systems. This problem is especially pronounced in low-income regions, where MRI scanners are of lower quality and radiology expertise is scarce, leading to incorrect segmentation and quantification. In addition, the number of acquired MRI scans in Africa is typically small. To address these challenges, the BraTS-Lighthouse 2025 Challenge focuses on robust tumor segmentation in sub-Saharan Africa (SSA), where resource constraints and image quality degradation introduce significant shifts. In this study, we present EMedNeXt -- an enhanced brain tumor segmentation framework based on MedNeXt V2 with deep supervision and optimized post-processing pipelines tailored for SSA. EMedNeXt introduces three key contributions: a larger region of interest, an improved nnU-Net v2-based architectural skeleton, and a robust model ensembling system. Evaluated on the hidden validation set, our solution achieved an average LesionWise DSC of 0.897 with an average LesionWise NSD of 0.541 and 0.84 at a tolerance of 0.5 mm and 1.0 mm, respectively.
comment: Submitted to the BraTS-Lighthouse 2025 Challenge (MICCAI 2025)
♻ ☆ Law of Vision Representation in MLLMs
We present the "Law of Vision Representation" in multimodal large language models (MLLMs). It reveals a strong correlation between the combination of cross-modal alignment, correspondence in vision representation, and MLLM performance. We quantify the two factors using the cross-modal Alignment and Correspondence score (AC score). Through extensive experiments involving thirteen different vision representation settings and evaluations across eight benchmarks, we find that the AC score is linearly correlated to model performance. By leveraging this relationship, we are able to identify and train the optimal vision representation only, which does not require finetuning the language model every time, resulting in a 99.7% reduction in computational cost.
comment: The code is available at https://github.com/bronyayang/Law_of_Vision_Representation_in_MLLMs
♻ ☆ Depth-Sequence Transformer (DST) for Segment-Specific ICA Calcification Mapping on Non-Contrast CT
While total intracranial carotid artery calcification (ICAC) volume is an established stroke biomarker, growing evidence shows this aggregate metric ignores the critical influence of plaque location, since calcification in different segments carries distinct prognostic and procedural risks. However, a finer-grained, segment-specific quantification has remained technically infeasible. Conventional 3D models are forced to process downsampled volumes or isolated patches, sacrificing the global context required to resolve anatomical ambiguity and render reliable landmark localization. To overcome this, we reformulate the 3D challenge as a \textbf{Parallel Probabilistic Landmark Localization} task along the 1D axial dimension. We propose the \textbf{Depth-Sequence Transformer (DST)}, a framework that processes full-resolution CT volumes as sequences of 2D slices, learning to predict $N=6$ independent probability distributions that pinpoint key anatomical landmarks. Our DST framework demonstrates exceptional accuracy and robustness. Evaluated on a 100-patient clinical cohort with rigorous 5-fold cross-validation, it achieves a Mean Absolute Error (MAE) of \textbf{0.1 slices}, with \textbf{96\%} of predictions falling within a $\pm1$ slice tolerance. Furthermore, to validate its architectural power, the DST backbone establishes the best result on the public Clean-CC-CCII classification benchmark under an end-to-end evaluation protocol. Our work delivers the first practical tool for automated segment-specific ICAC analysis. The proposed framework provides a foundation for further studies on the role of location-specific biomarkers in diagnosis, prognosis, and procedural planning.
comment: Accept to IEEE BIBM 2025
♻ ☆ Divergence Minimization Preference Optimization for Diffusion Model Alignment
Diffusion models have achieved remarkable success in generating realistic and versatile images from text prompts. Inspired by the recent advancements of language models, there is an increasing interest in further improving the models by aligning with human preferences. However, we investigate alignment from a divergence minimization perspective and reveal that existing preference optimization methods are typically trapped in suboptimal mean-seeking optimization. In this paper, we introduce Divergence Minimization Preference Optimization (DMPO), a novel and principled method for aligning diffusion models by minimizing reverse KL divergence, which asymptotically enjoys the same optimization direction as original RL. We provide rigorous analysis to justify the effectiveness of DMPO and conduct comprehensive experiments to validate its empirical strength across both human evaluations and automatic metrics. Our extensive results show that diffusion models fine-tuned with DMPO can consistently outperform or match existing techniques, specifically consistently outperforming all baseline models across different base models and test sets, achieving the best PickScore in every case, demonstrating the method's superiority in aligning generative behavior with desired outputs. Overall, DMPO unlocks a robust and elegant pathway for preference alignment, bridging principled theory with practical performance in diffusion models.
♻ ☆ Do We Need All the Synthetic Data? Targeted Synthetic Image Augmentation via Diffusion Models
Synthetically augmenting training datasets with diffusion models has been an effective strategy for improving generalization of image classifiers. However, existing techniques struggle to ensure the diversity of generation and increase the size of the data by up to 10-30x to improve the in-distribution performance. In this work, we show that synthetically augmenting part of the data that is not learned early in training with faithful images-containing same features but different noise-outperforms augmenting the entire dataset. By analyzing a two-layer CNN, we prove that this strategy improves generalization by promoting homogeneity in feature learning speed without amplifying noise. Our extensive experiments show that by augmenting only 30%-40% of the data, our method boosts generalization by up to 2.8% in a variety of scenarios, including training ResNet, ViT, ConvNeXt, and Swin Transformer on CIFAR-10/100, and TinyImageNet, with various optimizers including SGD and SAM. Notably, our method applied with SGD outperforms the SOTA optimizer, SAM, on CIFAR-100 and TinyImageNet.
♻ ☆ Towards Cross-modal Backward-compatible Representation Learning for Vision-Language Models
Modern retrieval systems often struggle with upgrading to new and more powerful models due to the incompatibility of embeddings between the old and new models. This necessitates a costly process known as backfilling, which involves re-computing the embeddings for a large number of data samples. In vision, Backward-compatible Training (BT) has been proposed to ensure that the new model aligns with the old model's embeddings. This paper extends the concept of vision-only BT to the field of cross-modal retrieval, marking the first attempt to address Cross-modal BT (XBT). Our goal is to achieve backward-compatibility between Vision-Language Pretraining (VLP) models, such as CLIP, for the cross-modal retrieval task. To address XBT challenges, we propose an efficient solution: a projection module that maps the new model's embeddings to those of the old model. This module, pretrained solely with text data, significantly reduces the number of image-text pairs required for XBT learning, and, once it is pretrained, it avoids using the old model during training. Furthermore, we utilize parameter-efficient training strategies that improve efficiency and preserve the off-the-shelf new model's knowledge by avoiding any modifications. Experimental results on cross-modal retrieval datasets demonstrate the effectiveness of XBT and its potential to enable backfill-free upgrades when a new VLP model emerges.
♻ ☆ STIV: Scalable Text and Image Conditioned Video Generation
The field of video generation has made remarkable advancements, yet there remains a pressing need for a clear, systematic recipe that can guide the development of robust and scalable models. In this work, we present a comprehensive study that systematically explores the interplay of model architectures, training recipes, and data curation strategies, culminating in a simple and scalable text-image-conditioned video generation method, named STIV. Our framework integrates image condition into a Diffusion Transformer (DiT) through frame replacement, while incorporating text conditioning via a joint image-text conditional classifier-free guidance. This design enables STIV to perform both text-to-video (T2V) and text-image-to-video (TI2V) tasks simultaneously. Additionally, STIV can be easily extended to various applications, such as video prediction, frame interpolation, multi-view generation, and long video generation, etc. With comprehensive ablation studies on T2I, T2V, and TI2V, STIV demonstrate strong performance, despite its simple design. An 8.7B model with 512 resolution achieves 83.1 on VBench T2V, surpassing both leading open and closed-source models like CogVideoX-5B, Pika, Kling, and Gen-3. The same-sized model also achieves a state-of-the-art result of 90.1 on VBench I2V task at 512 resolution. By providing a transparent and extensible recipe for building cutting-edge video generation models, we aim to empower future research and accelerate progress toward more versatile and reliable video generation solutions.
♻ ☆ SIRI-Bench: Challenging VLMs' Spatial Intelligence through Complex Reasoning Tasks
Large Language Models (LLMs) have undergone rapid progress, largely attributed to reinforcement learning on complex reasoning tasks. In contrast, while spatial intelligence is fundamental for Vision-Language Models (VLMs) in real-world interaction, the systematic study of their complex spatial reasoning remains underexplored. To bridge this gap, we introduce SIRI-Bench, a benchmark designed to evaluate VLMs' structural spatial intelligence through spatial-grounded reasoning tasks. SIRI-Bench comprises 9,000 video-question-answer triplets, where each problem is embedded in a realistic 3D scene. The benchmark is carefully designed so that solving each problem requires both spatial comprehension and structural reasoning. To facilitate large-scale data synthesis, we develop an Automatic Scene Creation Engine that employs collaborative LLM agents to translate abstract mathematical problems into faithful 3D scenes. Experimental results reveal that state-of-the-art VLMs struggle significantly on SIRI-Bench, underscoring the challenge of structural spatial reasoning. We hope that our study will bring researchers' attention to spatially grounded reasoning and advance VLMs in visual problem-solving.
comment: 14 pages
♻ ☆ FEB-Cache: Frequency-Guided Exposure Bias Reduction for Enhancing Diffusion Transformer Caching
Diffusion Transformer (DiT) has exhibited impressive generation capabilities but faces great challenges due to its high computational complexity. To address this issue, various methods, notably feature caching, have been introduced. However, these approaches focus on aligning non-cache diffusion without analyzing why caching damage the generation processes. In this paper, we first confirm that the cache greatly amplifies the exposure bias, resulting in a decline in the generation quality. However, directly applying noise scaling is challenging for this issue due to the non-smoothness of exposure bias. We found that this phenomenon stems from the mismatch between its frequency response characteristics and the simple cache of Attention and MLP. Since these two components exhibit unique preferences for frequency signals, which provides us with a caching strategy to separate Attention and MLP to achieve an enhanced fit of exposure bias and reduce it. Based on this, we introduced FEB-Cache, a joint caching strategy that aligns with the non-exposed bias diffusion process (which gives us a higher performance cap) of caching Attention and MLP based on the frequency-guided cache table. Our approach combines a comprehensive understanding of the caching mechanism and offers a new perspective on leveraging caching to accelerate the diffusion process. Empirical results indicate that FEB-Cache optimizes model performance while concurrently facilitating acceleration. Code is available at https://github.com/aSleepyTree/EB-Cache.
♻ ☆ Fast-RF-Shimming: Accelerate RF Shimming in 7T MRI using Deep Learning
Ultrahigh field (UHF) Magnetic Resonance Imaging (MRI) offers an elevated signal-to-noise ratio (SNR), enabling exceptionally high spatial resolution that benefits both clinical diagnostics and advanced research. However, the jump to higher fields introduces complications, particularly transmit radiofrequency (RF) field ($B_{1}^{+}$) inhomogeneities, manifesting as uneven flip angles and image intensity irregularities. These artifacts can degrade image quality and impede broader clinical adoption. Traditional RF shimming methods, such as Magnitude Least Squares (MLS) optimization, effectively mitigate $B_{1}^{+}$ inhomogeneity, but remain time-consuming. Recent machine learning approaches, including RF Shim Prediction by Iteratively Projected Ridge Regression and other deep learning architectures, suggest alternative pathways. Although these approaches show promise, challenges such as extensive training periods, limited network complexity, and practical data requirements persist. In this paper, we introduce a holistic learning-based framework called Fast-RF-Shimming, which achieves a 5000x speed-up compared to the traditional MLS method. In the initial phase, we employ random-initialized Adaptive Moment Estimation (Adam) to derive the desired reference shimming weights from multi-channel $B_{1}^{+}$ fields. Next, we train a Residual Network (ResNet) to map $B_{1}^{+}$ fields directly to the ultimate RF shimming outputs, incorporating the confidence parameter into its loss function. Finally, we design Non-uniformity Field Detector (NFD), an optional post-processing step, to ensure the extreme non-uniform outcomes are identified. Comparative evaluations with standard MLS optimization underscore notable gains in both processing speed and predictive accuracy, which indicates that our technique shows a promising solution for addressing persistent inhomogeneity challenges.
♻ ☆ ExGS: Extreme 3D Gaussian Compression with Diffusion Priors
Neural scene representations, such as 3D Gaussian Splatting (3DGS), have enabled high-quality neural rendering; however, their large storage and transmission costs hinder deployment in resource-constrained environments. Existing compression methods either rely on costly optimization, which is slow and scene-specific, or adopt training-free pruning and quantization, which degrade rendering quality under high compression ratios. In contrast, recent data-driven approaches provide a promising direction to overcome this trade-off, enabling efficient compression while preserving high rendering quality.We introduce ExGS, a novel feed-forward framework that unifies Universal Gaussian Compression (UGC) with GaussPainter for Extreme 3DGS compression. UGC performs re-optimization-free pruning to aggressively reduce Gaussian primitives while retaining only essential information, whereas GaussPainter leverages powerful diffusion priors with mask-guided refinement to restore high-quality renderings from heavily pruned Gaussian scenes. Unlike conventional inpainting, GaussPainter not only fills in missing regions but also enhances visible pixels, yielding substantial improvements in degraded renderings.To ensure practicality, it adopts a lightweight VAE and a one-step diffusion design, enabling real-time restoration. Our framework can even achieve over 100X compression (reducing a typical 354.77 MB model to about 3.31 MB) while preserving fidelity and significantly improving image quality under challenging conditions. These results highlight the central role of diffusion priors in bridging the gap between extreme compression and high-quality neural rendering.Our code repository will be released at: https://github.com/chenttt2001/ExGS
♻ ☆ TimeFormer: Capturing Temporal Relationships of Deformable 3D Gaussians for Robust Reconstruction ICCV 2025
Dynamic scene reconstruction is a long-term challenge in 3D vision. Recent methods extend 3D Gaussian Splatting to dynamic scenes via additional deformation fields and apply explicit constraints like motion flow to guide the deformation. However, they learn motion changes from individual timestamps independently, making it challenging to reconstruct complex scenes, particularly when dealing with violent movement, extreme-shaped geometries, or reflective surfaces. To address the above issue, we design a plug-and-play module called TimeFormer to enable existing deformable 3D Gaussians reconstruction methods with the ability to implicitly model motion patterns from a learning perspective. Specifically, TimeFormer includes a Cross-Temporal Transformer Encoder, which adaptively learns the temporal relationships of deformable 3D Gaussians. Furthermore, we propose a two-stream optimization strategy that transfers the motion knowledge learned from TimeFormer to the base stream during the training phase. This allows us to remove TimeFormer during inference, thereby preserving the original rendering speed. Extensive experiments in the multi-view and monocular dynamic scenes validate qualitative and quantitative improvement brought by TimeFormer. Project Page: https://patrickddj.github.io/TimeFormer/
comment: ICCV 2025
♻ ☆ VirDA: Reusing Backbone for Unsupervised Domain Adaptation with Visual Reprogramming
Existing UDA pipelines fine-tune already well-trained backbone parameters for every new source-and-target pair, resulting in the number of training parameters and storage memory growing linearly with each new pair, and also preventing the reuse of these well-trained backbone parameters. Inspired by recent implications that existing backbones have textural biases, we propose making use of domain-specific textural bias for domain adaptation via visual reprogramming, namely VirDA. Instead of fine-tuning the full backbone, VirDA prepends a domain-specific visual reprogramming layer to the backbone. This layer produces visual prompts that act as an added textural bias to the input image, adapting its "style" to a target domain. To optimize these visual reprogramming layers, we use multiple objective functions that optimize the intra- and inter-domain distribution differences when domain-adapting visual prompts are applied. This process does not require modifying the backbone parameters, allowing the same backbone to be reused across different domains. We evaluate VirDA on Office-31 and obtain 92.8% mean accuracy with only 1.5M trainable parameters. VirDA surpasses PDA, the state-of-the-art parameter-efficient UDA baseline, by +1.6% accuracy while using just 46% of its parameters. Compared with full-backbone fine-tuning, VirDA outperforms CDTrans and FixBi by +0.2% and +1.4%, respectively, while requiring only 1.7% and 2.8% of their trainable parameters. Relative to the strongest current methods (PMTrans and TVT), VirDA uses ~1.7% of their parameters and trades off only 2.2% and 1.1% accuracy, respectively.
Information Retrieval
☆ Topic-Specific Classifiers are Better Relevance Judges than Prompted LLMs
The unjudged document problem, where pooled test collections have incomplete relevance judgments for evaluating new retrieval systems, is a key obstacle to the reusability of test collections in information retrieval. While the de facto standard to deal with the problem is to treat unjudged documents as non-relevant, many alternatives have been proposed, including the use of large language models (LLMs) as a relevance judge (LLM-as-a-judge). However, this has been criticized as circular, since the same LLM can be used as a judge and as a ranker at the same time. We propose to train topic-specific relevance classifiers instead: By finetuning monoT5 with independent LoRA weight adaptation on the judgments of a single assessor for a single topic's pool, we align it to that assessor's notion of relevance for the topic. The system rankings obtained through our classifier's relevance judgments achieve a Spearmans' $\rho$ correlation of $>0.95$ with ground truth system rankings. As little as 128 initial human judgments per topic suffice to improve the comparability of models, compared to treating unjudged documents as non-relevant, while achieving more reliability than existing LLM-as-a-judge approaches. Topic-specific relevance classifiers thus are a lightweight and straightforward way to tackle the unjudged document problem, while maintaining human judgments as the gold standard for retrieval evaluation. Code, models, and data are made openly available.
comment: 15 pages, 3 figures, 2 tables
☆ Contrastive Learning Using Graph Embeddings for Domain Adaptation of Language Models in the Process Industry EMNLP 2025
Recent trends in NLP utilize knowledge graphs (KGs) to enhance pretrained language models by incorporating additional knowledge from the graph structures to learn domain-specific terminology or relationships between documents that might otherwise be overlooked. This paper explores how SciNCL, a graph-aware neighborhood contrastive learning methodology originally designed for scientific publications, can be applied to the process industry domain, where text logs contain crucial information about daily operations and are often structured as sparse KGs. Our experiments demonstrate that language models fine-tuned with triplets derived from GE outperform a state-of-the-art mE5-large text encoder by 9.8-14.3% (5.4-8.0p) on the proprietary process industry text embedding benchmark (PITEB) while being 3-5 times smaller in size.
comment: accepted to EMNLP 2025 (industry track)
☆ Fine-grained auxiliary learning for real-world product recommendation
Product recommendation is the task of recovering the closest items to a given query within a large product corpora. Generally, one can determine if top-ranked products are related to the query by applying a similarity threshold; exceeding it deems the product relevant, otherwise manual revision is required. Despite being a well-known problem, the integration of these models in real-world systems is often overlooked. In particular, production systems have strong coverage requirements, i.e., a high proportion of recommendations must be automated. In this paper we propose ALC , an Auxiliary Learning strategy that boosts Coverage through learning fine-grained embeddings. Concretely, we introduce two training objectives that leverage the hardest negatives in the batch to build discriminative training signals between positives and negatives. We validate ALC using three extreme multi-label classification approaches in two product recommendation datasets; LF-AmazonTitles-131K and Tech and Durables (proprietary), demonstrating state-of-the-art coverage rates when combined with a recent threshold-consistent margin loss.
comment: SEPLN 2025
☆ MARCO: A Cooperative Knowledge Transfer Framework for Personalized Cross-domain Recommendations SIGIR
Recommender systems frequently encounter data sparsity issues, particularly when addressing cold-start scenarios involving new users or items. Multi-source cross-domain recommendation (CDR) addresses these challenges by transferring valuable knowledge from multiple source domains to enhance recommendations in a target domain. However, existing reinforcement learning (RL)-based CDR methods typically rely on a single-agent framework, leading to negative transfer issues caused by inconsistent domain contributions and inherent distributional discrepancies among source domains. To overcome these limitations, MARCO, a Multi-Agent Reinforcement Learning-based Cross-Domain recommendation framework, is proposed. It leverages cooperative multi-agent reinforcement learning, where each agent is dedicated to estimating the contribution from an individual source domain, effectively managing credit assignment and mitigating negative transfer. In addition, an entropy-based action diversity penalty is introduced to enhance policy expressiveness and stabilize training by encouraging diverse agents' joint actions. Extensive experiments across four benchmark datasets demonstrate MARCO's superior performance over state-of-the-art methods, highlighting its robustness and strong generalization capabilities. The code is at https://github.com/xiewilliams/MARCO.
comment: SIGIR-AP 2025
☆ GRACE: Generative Representation Learning via Contrastive Policy Optimization
Prevailing methods for training Large Language Models (LLMs) as text encoders rely on contrastive losses that treat the model as a black box function, discarding its generative and reasoning capabilities in favor of static embeddings. We introduce GRACE (Generative Representation Learning via Contrastive Policy Optimization), a novel framework that reimagines contrastive signals not as losses to be minimized, but as rewards that guide a generative policy. In GRACE, the LLM acts as a policy that produces explicit, human-interpretable rationales--structured natural language explanations of its semantic understanding. These rationales are then encoded into high-quality embeddings via mean pooling. Using policy gradient optimization, we train the model with a multi-component reward function that maximizes similarity between query positive pairs and minimizes similarity with negatives. This transforms the LLM from an opaque encoder into an interpretable agent whose reasoning process is transparent and inspectable. On MTEB benchmark, GRACE yields broad cross category gains: averaged over four backbones, the supervised setting improves overall score by 11.5% over base models, and the unsupervised variant adds 6.9%, while preserving general capabilities. This work treats contrastive objectives as rewards over rationales, unifying representation learning with generation to produce stronger embeddings and transparent rationales. The model, data and code are available at https://github.com/GasolSun36/GRACE.
comment: 23 pages, 7 figures, 7 tables
☆ Causality-aware Graph Aggregation Weight Estimator for Popularity Debiasing in Top-K Recommendation CIKM 2025
Graph-based recommender systems leverage neighborhood aggregation to generate node representations, which is highly sensitive to popularity bias, resulting in an echo effect during information propagation. Existing graph-based debiasing solutions refine the aggregation process with attempts such as edge reconstruction or weight adjustment. However, these methods remain inadequate in fully alleviating popularity bias. Specifically, this is because 1) they provide no insights into graph aggregation rationality, thus lacking an optimality guarantee; 2) they fail to well balance the training and debiasing process, which undermines the effectiveness. In this paper, we propose a novel approach to mitigate popularity bias through rational modeling of the graph aggregation process. We reveal that graph aggregation is a special form of backdoor adjustment in causal inference, where the aggregation weight corresponds to the historical interaction likelihood distribution. Based on this insight, we devise an encoder-decoder architecture, namely Causality-aware Graph Aggregation Weight Estimator for Debiasing (CAGED), to approximate the unbiased aggregation weight by optimizing the evidence lower bound of the interaction likelihood. In order to enhance the debiasing effectiveness during early training stages, we further design a momentum update strategy that incrementally refines the aggregation weight matrix. Extensive experiments on three datasets demonstrate that CAGED outperforms existing graph-based debiasing methods. Our implementation is available at https://github.com/QueYork/CAGED.
comment: Accepted by CIKM 2025
♻ ☆ TalkPlay-Tools: Conversational Music Recommendation with LLM Tool Calling NeurIPS
While the recent developments in large language models (LLMs) have successfully enabled generative recommenders with natural language interactions, their recommendation behavior is limited, leaving other simpler yet crucial components such as metadata or attribute filtering underutilized in the system. We propose an LLM-based music recommendation system with tool calling to serve as a unified retrieval-reranking pipeline. Our system positions an LLM as an end-to-end recommendation system that interprets user intent, plans tool invocations, and orchestrates specialized components: boolean filters (SQL), sparse retrieval (BM25), dense retrieval (embedding similarity), and generative retrieval (semantic IDs). Through tool planning, the system predicts which types of tools to use, their execution order, and the arguments needed to find music matching user preferences, supporting diverse modalities while seamlessly integrating multiple database filtering methods. We demonstrate that this unified tool-calling framework achieves competitive performance across diverse recommendation scenarios by selectively employing appropriate retrieval methods based on user queries, envisioning a new paradigm for conversational music recommendation systems.
comment: Accepted for publication at The Workshop on AI for Music, Neural Information Processing Systems (NeurIPS-AI4Music)
♻ ☆ jina-reranker-v3: Last but Not Late Interaction for Listwise Document Reranking
jina-reranker-v3 is a 0.6B-parameter multilingual listwise reranker that introduces a novel "last but not late" interaction. Unlike late interaction models like ColBERT that encode documents separately before multi-vector matching, our approach applies causal attention between the query and all candidate documents in the same context window, enabling rich interactions before extracting contextual embeddings from each document's final token. The new model achieves state-of-the-art BEIR performance with 61.94 nDCG@10 while being significantly smaller than other models with comparable performance.
♻ ☆ TranSUN: A Preemptive Paradigm to Eradicate Retransformation Bias Intrinsically from Regression Models in Recommender Systems NeurIPS 2025
Regression models are crucial in recommender systems. However, retransformation bias problem has been conspicuously neglected within the community. While many works in other fields have devised effective bias correction methods, all of them are post-hoc cures externally to the model, facing practical challenges when applied to real-world recommender systems. Hence, we propose a preemptive paradigm to eradicate the bias intrinsically from the models via minor model refinement. Specifically, a novel TranSUN method is proposed with a joint bias learning manner to offer theoretically guaranteed unbiasedness under empirical superior convergence. It is further generalized into a novel generic regression model family, termed Generalized TranSUN (GTS), which not only offers more theoretical insights but also serves as a generic framework for flexibly developing various bias-free models. Comprehensive experimental results demonstrate the superiority of our methods across data from various domains, which have been successfully deployed in two real-world industrial recommendation scenarios, i.e. product and short video recommendation scenarios in Guess What You Like business domain in the homepage of Taobao App (a leading e-commerce platform with DAU > 300M), to serve the major online traffic.
comment: 37 pages, 6 figures, NeurIPS 2025 Poster
♻ ☆ Scientific Paper Retrieval with LLM-Guided Semantic-Based Ranking EMNLP 2025
Scientific paper retrieval is essential for supporting literature discovery and research. While dense retrieval methods demonstrate effectiveness in general-purpose tasks, they often fail to capture fine-grained scientific concepts that are essential for accurate understanding of scientific queries. Recent studies also use large language models (LLMs) for query understanding; however, these methods often lack grounding in corpus-specific knowledge and may generate unreliable or unfaithful content. To overcome these limitations, we propose SemRank, an effective and efficient paper retrieval framework that combines LLM-guided query understanding with a concept-based semantic index. Each paper is indexed using multi-granular scientific concepts, including general research topics and detailed key phrases. At query time, an LLM identifies core concepts derived from the corpus to explicitly capture the query's information need. These identified concepts enable precise semantic matching, significantly enhancing retrieval accuracy. Experiments show that SemRank consistently improves the performance of various base retrievers, surpasses strong existing LLM-based baselines, and remains highly efficient.
comment: Accepted to EMNLP 2025 Findings
♻ ☆ Less LLM, More Documents: Searching for Improved RAG
Retrieval-Augmented Generation (RAG) couples document retrieval with large language models (LLMs). While scaling generators improves accuracy, it also raises cost and limits deployability. We explore an orthogonal axis: enlarging the retriever's corpus to reduce reliance on large LLMs. Experimental results show that corpus scaling consistently strengthens RAG and can often serve as a substitute for increasing model size, though with diminishing returns at larger scales. Small- and mid-sized generators paired with larger corpora often rival much larger models with smaller corpora; mid-sized models tend to gain the most, while tiny and large models benefit less. Our analysis shows that improvements arise primarily from increased coverage of answer-bearing passages, while utilization efficiency remains largely unchanged. These findings establish a principled corpus-generator trade-off: investing in larger corpora offers an effective path to stronger RAG, often comparable to enlarging the LLM itself.
Machine Learning
☆ TopInG: Topologically Interpretable Graph Learning via Persistent Rationale Filtration ICML 2025
Graph Neural Networks (GNNs) have shown remarkable success across various scientific fields, yet their adoption in critical decision-making is often hindered by a lack of interpretability. Recently, intrinsically interpretable GNNs have been studied to provide insights into model predictions by identifying rationale substructures in graphs. However, existing methods face challenges when the underlying rationale subgraphs are complex and varied. In this work, we propose TopInG: Topologically Interpretable Graph Learning, a novel topological framework that leverages persistent homology to identify persistent rationale subgraphs. TopInG employs a rationale filtration learning approach to model an autoregressive generation process of rationale subgraphs, and introduces a self-adjusted topological constraint, termed topological discrepancy, to enforce a persistent topological distinction between rationale subgraphs and irrelevant counterparts. We provide theoretical guarantees that our loss function is uniquely optimized by the ground truth under specific conditions. Extensive experiments demonstrate TopInG's effectiveness in tackling key challenges, such as handling variform rationale subgraphs, balancing predictive performance with interpretability, and mitigating spurious correlations. Results show that our approach improves upon state-of-the-art methods on both predictive accuracy and interpretation quality.
comment: submitted to ICML 2025
☆ From Noisy Traces to Stable Gradients: Bias-Variance Optimized Preference Optimization for Aligning Large Reasoning Models
Large reasoning models (LRMs) generate intermediate reasoning traces before producing final answers, yielding strong gains on multi-step and mathematical tasks. Yet aligning LRMs with human preferences, a crucial prerequisite for model deployment, remains underexplored. The statistically correct objective for preference alignment requires marginalizing over reasoning traces, but this computation is intractable in practice. A common workaround optimizes a single sampled trajectory, which introduces substantial gradient variance from stochastic trace sampling. To address this challenge, we frame preference optimization for LRMs through the lens of the bias--variance trade-off and propose Bias--Variance Optimized Preference Optimization (BVPO), a simple, drop-in method that mixes two gradient estimators: a high-variance trace-based estimator and a low-variance empty-trace estimator obtained by disabling reasoning trace generation. Our theory shows that BVPO strictly reduces trace-induced variance for any nontrivial mixture, provides a closed-form choice of the mixing weight that minimizes mean-squared error relative to the true marginal gradient, and under standard smoothness and step-size conditions, tightens classical convergence bounds for stochastic gradient descent. Empirically, BVPO improves alignment over the best baseline by up to 7.8 points on AlpacaEval~2 and 6.8 points on Arena-Hard. Despite being trained only on general conversational data, BVPO also boosts reasoning performance for base models by up to 4.0 points on the average of six math reasoning benchmarks. These results identify variance from trace sampling as a key bottleneck and demonstrate that directly optimizing the bias--variance trade-off yields more stable training and stronger overall performance.
☆ Learning to Interpret Weight Differences in Language Models
Finetuning (pretrained) language models is a standard approach for updating their internal parametric knowledge and specializing them to new tasks and domains. However, the corresponding model weight changes ("weight diffs") are not generally interpretable. While inspecting the finetuning dataset can give a sense of how the model might have changed, these datasets are often not publicly available or are too large to work with directly. Towards the goal of comprehensively understanding weight diffs in natural language, we introduce Diff Interpretation Tuning (DIT), a method that trains models to describe their own finetuning-induced modifications. Our approach uses synthetic, labeled weight diffs to train a DIT adapter, which can be applied to a compatible finetuned model to make it describe how it has changed. We demonstrate in two proof-of-concept settings (reporting hidden behaviors and summarizing finetuned knowledge) that our method enables models to describe their finetuning-induced modifications using accurate natural language descriptions.
comment: The weight diffs and DIT adapters trained in the paper can be found at https://huggingface.co/diff-interpretation-tuning/loras
☆ MICROTRIPS: MICRO-geography TRavel Intelligence and Pattern Synthesis
This study presents a novel small-area estimation framework to enhance urban transportation planning through detailed characterization of travel behavior. Our approach improves on the four-step travel model by employing publicly available microdata files and machine learning methods to predict travel behavior for a representative, synthetic population at small geographic areas. This approach enables high-resolution estimation of trip generation, trip distribution, mode choice, and route assignment. Validation using ACS/PUMS work-commute datasets demonstrates that our framework achieves higher accuracy compared to conventional approaches. The resulting granular insights enable the tailoring of interventions to address localized situations and support a range of policy applications and targeted interventions, including the optimal placement of micro-fulfillment centers, effective curb-space management, and the design of more inclusive transportation solutions particularly for vulnerable communities.
☆ ResMimic: From General Motion Tracking to Humanoid Whole-body Loco-Manipulation via Residual Learning
Humanoid whole-body loco-manipulation promises transformative capabilities for daily service and warehouse tasks. While recent advances in general motion tracking (GMT) have enabled humanoids to reproduce diverse human motions, these policies lack the precision and object awareness required for loco-manipulation. To this end, we introduce ResMimic, a two-stage residual learning framework for precise and expressive humanoid control from human motion data. First, a GMT policy, trained on large-scale human-only motion, serves as a task-agnostic base for generating human-like whole-body movements. An efficient but precise residual policy is then learned to refine the GMT outputs to improve locomotion and incorporate object interaction. To further facilitate efficient training, we design (i) a point-cloud-based object tracking reward for smoother optimization, (ii) a contact reward that encourages accurate humanoid body-object interactions, and (iii) a curriculum-based virtual object controller to stabilize early training. We evaluate ResMimic in both simulation and on a real Unitree G1 humanoid. Results show substantial gains in task success, training efficiency, and robustness over strong baselines. Videos are available at https://resmimic.github.io/ .
comment: 9 pages, 8 figures
☆ Boomerang Distillation Enables Zero-Shot Model Size Interpolation
Large language models (LLMs) are typically deployed under diverse memory and compute constraints. Existing approaches build model families by training each size independently, which is prohibitively expensive and provides only coarse-grained size options. In this work, we identify a novel phenomenon that we call boomerang distillation: starting from a large base model (the teacher), one first distills down to a small student and then progressively reconstructs intermediate-sized models by re-incorporating blocks of teacher layers into the student without any additional training. This process produces zero-shot interpolated models of many intermediate sizes whose performance scales smoothly between the student and teacher, often matching or surpassing pretrained or distilled models of the same size. We further analyze when this type of interpolation succeeds, showing that alignment between teacher and student through pruning and distillation is essential. Boomerang distillation thus provides a simple and efficient way to generate fine-grained model families, dramatically reducing training cost while enabling flexible adaptation across deployment environments. The code and models are available at https://github.com/dcml-lab/boomerang-distillation.
comment: 10 pages, 7 figures in main text
☆ ResCP: Reservoir Conformal Prediction for Time Series Forecasting
Conformal prediction offers a powerful framework for building distribution-free prediction intervals for exchangeable data. Existing methods that extend conformal prediction to sequential data rely on fitting a relatively complex model to capture temporal dependencies. However, these methods can fail if the sample size is small and often require expensive retraining when the underlying data distribution changes. To overcome these limitations, we propose Reservoir Conformal Prediction (ResCP), a novel training-free conformal prediction method for time series. Our approach leverages the efficiency and representation learning capabilities of reservoir computing to dynamically reweight conformity scores. In particular, we compute similarity scores among reservoir states and use them to adaptively reweight the observed residuals at each step. With this approach, ResCP enables us to account for local temporal dynamics when modeling the error distribution without compromising computational scalability. We prove that, under reasonable assumptions, ResCP achieves asymptotic conditional coverage, and we empirically demonstrate its effectiveness across diverse forecasting tasks.
☆ Modeling Student Learning with 3.8 Million Program Traces
As programmers write code, they often edit and retry multiple times, creating rich "interaction traces" that reveal how they approach coding tasks and provide clues about their level of skill development. For novice programmers in particular, these traces reflect the diverse reasoning processes they employ to code, such as exploratory behavior to understand how a programming concept works, re-strategizing in response to bugs, and personalizing stylistic choices. In this work, we explore what can be learned from training language models on such reasoning traces: not just about code, but about coders, and particularly students learning to program. We introduce a dataset of over 3.8 million programming reasoning traces from users of Pencil Code, a free online educational platform used by students to learn simple programming concepts. Compared to models trained only on final programs or synthetically-generated traces, we find that models trained on real traces are stronger at modeling diverse student behavior. Through both behavioral and probing analyses, we also find that many properties of code traces, such as goal backtracking or number of comments, can be predicted from learned representations of the students who write them. Building on this result, we show that we can help students recover from mistakes by steering code generation models to identify a sequence of edits that will results in more correct code while remaining close to the original student's style. Together, our results suggest that many properties of code are properties of individual students and that training on edit traces can lead to models that are more steerable, more predictive of student behavior while programming, and better at generating programs in their final states. Code and data is available at https://github.com/meghabyte/pencilcode-public
☆ HybridFlow: Quantification of Aleatoric and Epistemic Uncertainty with a Single Hybrid Model
Uncertainty quantification is critical for ensuring robustness in high-stakes machine learning applications. We introduce HybridFlow, a modular hybrid architecture that unifies the modeling of aleatoric and epistemic uncertainty by combining a Conditional Masked Autoregressive normalizing flow for estimating aleatoric uncertainty with a flexible probabilistic predictor for epistemic uncertainty. The framework supports integration with any probabilistic model class, allowing users to easily adapt HybridFlow to existing architectures without sacrificing predictive performance. HybridFlow improves upon previous uncertainty quantification frameworks across a range of regression tasks, such as depth estimation, a collection of regression benchmarks, and a scientific case study of ice sheet emulation. We also provide empirical results of the quantified uncertainty, showing that the uncertainty quantified by HybridFlow is calibrated and better aligns with model error than existing methods for quantifying aleatoric and epistemic uncertainty. HybridFlow addresses a key challenge in Bayesian deep learning, unifying aleatoric and epistemic uncertainty modeling in a single robust framework.
comment: Reviewed and published in TMLR at https://openreview.net/forum?id=xRiEdSyVjY
☆ KEEP: Integrating Medical Ontologies with Clinical Data for Robust Code Embeddings
Machine learning in healthcare requires effective representation of structured medical codes, but current methods face a trade off: knowledge graph based approaches capture formal relationships but miss real world patterns, while data driven methods learn empirical associations but often overlook structured knowledge in medical terminologies. We present KEEP (Knowledge preserving and Empirically refined Embedding Process), an efficient framework that bridges this gap by combining knowledge graph embeddings with adaptive learning from clinical data. KEEP first generates embeddings from knowledge graphs, then employs regularized training on patient records to adaptively integrate empirical patterns while preserving ontological relationships. Importantly, KEEP produces final embeddings without task specific auxiliary or end to end training enabling KEEP to support multiple downstream applications and model architectures. Evaluations on structured EHR from UK Biobank and MIMIC IV demonstrate that KEEP outperforms both traditional and Language Model based approaches in capturing semantic relationships and predicting clinical outcomes. Moreover, KEEP's minimal computational requirements make it particularly suitable for resource constrained environments.
☆ A Unified Optimization Framework for Multiclass Classification with Structured Hyperplane Arrangements
In this paper, we propose a new mathematical optimization model for multiclass classification based on arrangements of hyperplanes. Our approach preserves the core support vector machine (SVM) paradigm of maximizing class separation while minimizing misclassification errors, and it is computationally more efficient than a previous formulation. We present a kernel-based extension that allows it to construct nonlinear decision boundaries. Furthermore, we show how the framework can naturally incorporate alternative geometric structures, including classification trees, $\ell_p$-SVMs, and models with discrete feature selection. To address large-scale instances, we develop a dynamic clustering matheuristic that leverages the proposed MIP formulation. Extensive computational experiments demonstrate the efficiency of the proposed model and dynamic clustering heuristic, and we report competitive classification performance on both synthetic datasets and real-world benchmarks from the UCI Machine Learning Repository, comparing our method with state-of-the-art implementations available in scikit-learn.
comment: 28 pages, 2 tables, 9 figures
☆ Test-Time Scaling in Diffusion LLMs via Hidden Semi-Autoregressive Experts
Diffusion-based large language models (dLLMs) are trained flexibly to model extreme dependence in the data distribution; however, how to best utilize this information at inference time remains an open problem. In this work, we uncover an interesting property of these models: dLLMs trained on textual data implicitly learn a mixture of semi-autoregressive experts, where different generation orders reveal different specialized behaviors. We show that committing to any single, fixed inference time schedule, a common practice, collapses performance by failing to leverage this latent ensemble. To address this, we introduce HEX (Hidden semiautoregressive EXperts for test-time scaling), a training-free inference method that ensembles across heterogeneous block schedules. By doing a majority vote over diverse block-sized generation paths, HEX robustly avoids failure modes associated with any single fixed schedule. On reasoning benchmarks such as GSM8K, it boosts accuracy by up to 3.56X (from 24.72% to 88.10%), outperforming top-K margin inference and specialized fine-tuned methods like GRPO, without additional training. HEX even yields significant gains on MATH benchmark from 16.40% to 40.00%, scientific reasoning on ARC-C from 54.18% to 87.80%, and TruthfulQA from 28.36% to 57.46%. Our results establish a new paradigm for test-time scaling in diffusion-based LLMs (dLLMs), revealing that the sequence in which masking is performed plays a critical role in determining performance during inference.
☆ Graph-Aware Diffusion for Signal Generation
We study the problem of generating graph signals from unknown distributions defined over given graphs, relevant to domains such as recommender systems or sensor networks. Our approach builds on generative diffusion models, which are well established in vision and graph generation but remain underexplored for graph signals. Existing methods lack generality, either ignoring the graph structure in the forward process or designing graph-aware mechanisms tailored to specific domains. We adopt a forward process that incorporates the graph through the heat equation. Rather than relying on the standard formulation, we consider a time-warped coefficient to mitigate the exponential decay of the drift term, yielding a graph-aware generative diffusion model (GAD). We analyze its forward dynamics, proving convergence to a Gaussian Markov random field with covariance parametrized by the graph Laplacian, and interpret the backward dynamics as a sequence of graph-signal denoising problems. Finally, we demonstrate the advantages of GAD on synthetic data, real traffic speed measurements, and a temperature sensor network.
☆ Causal Abstractions, Categorically Unified
We present a categorical framework for relating causal models that represent the same system at different levels of abstraction. We define a causal abstraction as natural transformations between appropriate Markov functors, which concisely consolidate desirable properties a causal abstraction should exhibit. Our approach unifies and generalizes previously considered causal abstractions, and we obtain categorical proofs and generalizations of existing results on causal abstractions. Using string diagrammatical tools, we can explicitly describe the graphs that serve as consistent abstractions of a low-level graph under interventions. We discuss how methods from mechanistic interpretability, such as circuit analysis and sparse autoencoders, fit within our categorical framework. We also show how applying do-calculus on a high-level graphical abstraction of an acyclic-directed mixed graph (ADMG), when unobserved confounders are present, gives valid results on the low-level graph, thus generalizing an earlier statement by Anand et al. (2023). We argue that our framework is more suitable for modeling causal abstractions compared to existing categorical frameworks. Finally, we discuss how notions such as $\tau$-consistency and constructive $\tau$-abstractions can be recovered with our framework.
☆ Inoculation Prompting: Instructing LLMs to misbehave at train-time improves test-time alignment
Large language models are sometimes trained with imperfect oversight signals, leading to undesired behaviors such as reward hacking and sycophancy. Improving oversight quality can be expensive or infeasible, motivating methods that improve learned behavior despite an imperfect training signal. We introduce Inoculation Prompting (IP), a simple but counterintuitive technique that prevents learning of an undesired behavior by modifying training prompts to explicitly request it. For example, to inoculate against reward hacking, we modify the prompts used in supervised fine-tuning to request code that only works on provided test cases but fails on other inputs. Across four settings we find that IP reduces the learning of undesired behavior without substantially reducing the learning of desired capabilities. We also show that prompts which more strongly elicit the undesired behavior prior to fine-tuning more effectively inoculate against the behavior when used during training; this serves as a heuristic to identify promising inoculation prompts. Overall, IP is a simple yet effective way to control how models generalize from fine-tuning, preventing learning of undesired behaviors without substantially disrupting desired capabilities.
☆ Rethinking Langevin Thompson Sampling from A Stochastic Approximation Perspective
Most existing approximate Thompson Sampling (TS) algorithms for multi-armed bandits use Stochastic Gradient Langevin Dynamics (SGLD) or its variants in each round to sample from the posterior, relaxing the need for conjugacy assumptions between priors and reward distributions in vanilla TS. However, they often require approximating a different posterior distribution in different round of the bandit problem. This requires tricky, round-specific tuning of hyperparameters such as dynamic learning rates, causing challenges in both theoretical analysis and practical implementation. To alleviate this non-stationarity, we introduce TS-SA, which incorporates stochastic approximation (SA) within the TS framework. In each round, TS-SA constructs a posterior approximation only using the most recent reward(s), performs a Langevin Monte Carlo (LMC) update, and applies an SA step to average noisy proposals over time. This can be interpreted as approximating a stationary posterior target throughout the entire algorithm, which further yields a fixed step-size, a unified convergence analysis framework, and improved posterior estimates through temporal averaging. We establish near-optimal regret bounds for TS-SA, with a simplified and more intuitive theoretical analysis enabled by interpreting the entire algorithm as a simulation of a stationary SGLD process. Our empirical results demonstrate that even a single-step Langevin update with certain warm-up outperforms existing methods substantially on bandit tasks.
comment: 39 pages, 3 figures, 2 tables
☆ Think Then Embed: Generative Context Improves Multimodal Embedding
There is a growing interest in Universal Multimodal Embeddings (UME), where models are required to generate task-specific representations. While recent studies show that Multimodal Large Language Models (MLLMs) perform well on such tasks, they treat MLLMs solely as encoders, overlooking their generative capacity. However, such an encoding paradigm becomes less effective as instructions become more complex and require compositional reasoning. Inspired by the proven effectiveness of chain-of-thought reasoning, we propose a general Think-Then-Embed (TTE) framework for UME, composed of a reasoner and an embedder. The reasoner MLLM first generates reasoning traces that explain complex queries, followed by an embedder that produces representations conditioned on both the original query and the intermediate reasoning. This explicit reasoning step enables more nuanced understanding of complex multimodal instructions. Our contributions are threefold. First, by leveraging a powerful MLLM reasoner, we achieve state-of-the-art performance on the MMEB-V2 benchmark, surpassing proprietary models trained on massive in-house datasets. Second, to reduce the dependency on large MLLM reasoners, we finetune a smaller MLLM reasoner using high-quality embedding-centric reasoning traces, achieving the best performance among open-source models with a 7% absolute gain over recently proposed models. Third, we investigate strategies for integrating the reasoner and embedder into a unified model for improved efficiency without sacrificing performance.
☆ Curiosity-Driven Co-Development of Action and Language in Robots Through Self-Exploration
Human infants acquire language and action co-developmentally, achieving remarkable generalization capabilities from only a minimal number of learning examples. In contrast, recent large language models require exposure to billions of training tokens to achieve such generalization. What mechanisms underlie such efficient developmental learning in humans? This study addresses this question through simulation experiments in which robots learn to perform various actions corresponding to imperative sentences (e.g., \textit{push red cube}) via trials of self-guided exploration. Our approach integrates the active inference framework with reinforcement learning, enabling curiosity-driven developmental learning. The simulations yielded several nontrivial findings: i) Curiosity-driven exploration combined with motor noise substantially outperforms learning without curiosity. ii) Simpler, prerequisite-like actions emerge earlier in development, while more complex actions involving these prerequisites develop later. iii) Rote pairing of sentences and actions occurs before the emergence of compositional generalization. iv) Generalization is drastically improved as the number of compositional elements increases. These results shed light into possible mechanisms underlying efficient co-developmental learning in infants and provide computational parallels to findings in developmental psychology.
comment: 26 pages, 14 pages of supplementary material
☆ Latent Uncertainty Representations for Video-based Driver Action and Intention Recognition
Deep neural networks (DNNs) are increasingly applied to safety-critical tasks in resource-constrained environments, such as video-based driver action and intention recognition. While last layer probabilistic deep learning (LL-PDL) methods can detect out-of-distribution (OOD) instances, their performance varies. As an alternative to last layer approaches, we propose extending pre-trained DNNs with transformation layers to produce multiple latent representations to estimate the uncertainty. We evaluate our latent uncertainty representation (LUR) and repulsively trained LUR (RLUR) approaches against eight PDL methods across four video-based driver action and intention recognition datasets, comparing classification performance, calibration, and uncertainty-based OOD detection. We also contribute 28,000 frame-level action labels and 1,194 video-level intention labels for the NuScenes dataset. Our results show that LUR and RLUR achieve comparable in-distribution classification performance to other LL-PDL approaches. For uncertainty-based OOD detection, LUR matches top-performing PDL methods while being more efficient to train and easier to tune than approaches that require Markov-Chain Monte Carlo sampling or repulsive training procedures.
comment: 16 pages, 8 figures, 7 tables, under submission
☆ Reinforce-Ada: An Adaptive Sampling Framework for Reinforce-Style LLM Training
Reinforcement learning applied to large language models (LLMs) for reasoning tasks is often bottlenecked by unstable gradient estimates due to fixed and uniform sampling of responses across prompts. Prior work such as GVM-RAFT addresses this by dynamically allocating inference budget per prompt to minimize stochastic gradient variance under a budget constraint. Inspired by this insight, we propose Reinforce-Ada, an adaptive sampling framework for online RL post-training of LLMs that continuously reallocates sampling effort to the prompts with the greatest uncertainty or learning potential. Unlike conventional two-stage allocation methods, Reinforce-Ada interleaves estimation and sampling in an online successive elimination process, and automatically stops sampling for a prompt once sufficient signal is collected. To stabilize updates, we form fixed-size groups with enforced reward diversity and compute advantage baselines using global statistics aggregated over the adaptive sampling phase. Empirical results across multiple model architectures and reasoning benchmarks show that Reinforce-Ada accelerates convergence and improves final performance compared to GRPO, especially when using the balanced sampling variant. Our work highlights the central role of variance-aware, adaptive data curation in enabling efficient and reliable reinforcement learning for reasoning-capable LLMs. Code is available at https://github.com/RLHFlow/Reinforce-Ada.
comment: 16 pages, 6 figures
☆ Power Transform Revisited: Numerically Stable, and Federated
Power transforms are popular parametric techniques for making data more Gaussian-like, and are widely used as preprocessing steps in statistical analysis and machine learning. However, we find that direct implementations of power transforms suffer from severe numerical instabilities, which can lead to incorrect results or even crashes. In this paper, we provide a comprehensive analysis of the sources of these instabilities and propose effective remedies. We further extend power transforms to the federated learning setting, addressing both numerical and distributional challenges that arise in this context. Experiments on real-world datasets demonstrate that our methods are both effective and robust, substantially improving stability compared to existing approaches.
comment: 25 pages
☆ Adaptive Memory Momentum via a Model-Based Framework for Deep Learning Optimization
The vast majority of modern deep learning models are trained with momentum-based first-order optimizers. The momentum term governs the optimizer's memory by determining how much each past gradient contributes to the current convergence direction. Fundamental momentum methods, such as Nesterov Accelerated Gradient and the Heavy Ball method, as well as more recent optimizers such as AdamW and Lion, all rely on the momentum coefficient that is customarily set to $\beta = 0.9$ and kept constant during model training, a strategy widely used by practitioners, yet suboptimal. In this paper, we introduce an \textit{adaptive memory} mechanism that replaces constant momentum with a dynamic momentum coefficient that is adjusted online during optimization. We derive our method by approximating the objective function using two planes: one derived from the gradient at the current iterate and the other obtained from the accumulated memory of the past gradients. To the best of our knowledge, such a proximal framework was never used for momentum-based optimization. Our proposed approach is novel, extremely simple to use, and does not rely on extra assumptions or hyperparameter tuning. We implement adaptive memory variants of both SGD and AdamW across a wide range of learning tasks, from simple convex problems to large-scale deep learning scenarios, demonstrating that our approach can outperform standard SGD and Adam with hand-tuned momentum coefficients. Finally, our work opens doors for new ways of inducing adaptivity in optimization.
☆ AWARE, Beyond Sentence Boundaries: A Contextual Transformer Framework for Identifying Cultural Capital in STEM Narratives
Identifying cultural capital (CC) themes in student reflections can offer valuable insights that help foster equitable learning environments in classrooms. However, themes such as aspirational goals or family support are often woven into narratives, rather than appearing as direct keywords. This makes them difficult to detect for standard NLP models that process sentences in isolation. The core challenge stems from a lack of awareness, as standard models are pre-trained on general corpora, leaving them blind to the domain-specific language and narrative context inherent to the data. To address this, we introduce AWARE, a framework that systematically attempts to improve a transformer model's awareness for this nuanced task. AWARE has three core components: 1) Domain Awareness, adapting the model's vocabulary to the linguistic style of student reflections; 2) Context Awareness, generating sentence embeddings that are aware of the full essay context; and 3) Class Overlap Awareness, employing a multi-label strategy to recognize the coexistence of themes in a single sentence. Our results show that by making the model explicitly aware of the properties of the input, AWARE outperforms a strong baseline by 2.1 percentage points in Macro-F1 and shows considerable improvements across all themes. This work provides a robust and generalizable methodology for any text classification task in which meaning depends on the context of the narrative.
☆ Federated Computation of ROC and PR Curves
Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves are fundamental tools for evaluating machine learning classifiers, offering detailed insights into the trade-offs between true positive rate vs. false positive rate (ROC) or precision vs. recall (PR). However, in Federated Learning (FL) scenarios, where data is distributed across multiple clients, computing these curves is challenging due to privacy and communication constraints. Specifically, the server cannot access raw prediction scores and class labels, which are used to compute the ROC and PR curves in a centralized setting. In this paper, we propose a novel method for approximating ROC and PR curves in a federated setting by estimating quantiles of the prediction score distribution under distributed differential privacy. We provide theoretical bounds on the Area Error (AE) between the true and estimated curves, demonstrating the trade-offs between approximation accuracy, privacy, and communication cost. Empirical results on real-world datasets demonstrate that our method achieves high approximation accuracy with minimal communication and strong privacy guarantees, making it practical for privacy-preserving model evaluation in federated systems.
comment: 23 pages
☆ StructuralDecompose: A Modular Framework for Robust Time Series Decomposition in R
We present StructuralDecompose, an R package for modular and interpretable time series decomposition. Unlike existing approaches that treat decomposition as a monolithic process, StructuralDecompose separates the analysis into distinct components: changepoint detection, anomaly detection, smoothing, and decomposition. This design provides flexibility and robust- ness, allowing users to tailor methods to specific time series characteristics. We demonstrate the package on simulated and real-world datasets, benchmark its performance against state-of-the- art tools such as Rbeast and autostsm, and discuss its role in interpretable machine learning workflows.
comment: 8 pages, 4 figures. Part of the R package StructuralDecompose (https://cran.r-project.org/web/packages/StructuralDecompose/index.html)
☆ Pivotal CLTs for Pseudolikelihood via Conditional Centering in Dependent Random Fields
In this paper, we study fluctuations of conditionally centered statistics of the form $$N^{-1/2}\sum_{i=1}^N c_i(g(\sigma_i)-\mathbb{E}_N[g(\sigma_i)|\sigma_j,j\neq i])$$ where $(\sigma_1,\ldots ,\sigma_N)$ are sampled from a dependent random field, and $g$ is some bounded function. Our first main result shows that under weak smoothness assumptions on the conditional means (which cover both sparse and dense interactions), the above statistic converges to a Gaussian \emph{scale mixture} with a random scale determined by a \emph{quadratic variance} and an \emph{interaction component}. We also show that under appropriate studentization, the limit becomes a pivotal Gaussian. We leverage this theory to develop a general asymptotic framework for maximum pseudolikelihood (MPLE) inference in dependent random fields. We apply our results to Ising models with pairwise as well as higher-order interactions and exponential random graph models (ERGMs). In particular, we obtain a joint central limit theorem for the inverse temperature and magnetization parameters via the joint MPLE (to our knowledge, the first such result in dense, irregular regimes), and we derive conditionally centered edge CLTs and marginal MPLE CLTs for ERGMs without restricting to the ``sub-critical" region. Our proof is based on a method of moments approach via combinatorial decision-tree pruning, which may be of independent interest.
comment: 73 pages, 1 figure
☆ Embracing Discrete Search: A Reasonable Approach to Causal Structure Learning
We present FLOP (Fast Learning of Order and Parents), a score-based causal discovery algorithm for linear models. It pairs fast parent selection with iterative Cholesky-based score updates, cutting run-times over prior algorithms. This makes it feasible to fully embrace discrete search, enabling iterated local search with principled order initialization to find graphs with scores at or close to the global optimum. The resulting structures are highly accurate across benchmarks, with near-perfect recovery in standard settings. This performance calls for revisiting discrete search over graphs as a reasonable approach to causal discovery.
☆ Feasibility-Aware Decision-Focused Learning for Predicting Parameters in the Constraints
When some parameters of a constrained optimization problem (COP) are uncertain, this gives rise to a predict-then-optimize (PtO) problem, comprising two stages -- the prediction of the unknown parameters from contextual information and the subsequent optimization using those predicted parameters. Decision-focused learning (DFL) implements the first stage by training a machine learning (ML) model to optimize the quality of the decisions made using the predicted parameters. When parameters in the constraints of a COP are predicted, the predicted parameters can lead to infeasible solutions. Therefore, it is important to simultaneously manage both feasibility and decision quality. We develop a DFL framework for predicting constraint parameters in a generic COP. While prior works typically assume that the underlying optimization problem is a linear program (LP) or integer linear program (ILP), our approach makes no such assumption. We derive two novel loss functions based on maximum likelihood estimation (MLE): the first one penalizes infeasibility (by penalizing when the predicted parameters lead to infeasible solutions), and the second one penalizes suboptimal decisions (by penalizing when the true optimal solution is infeasible under the predicted parameters). We introduce a single tunable parameter to form a weighted average of the two losses, allowing decision-makers to balance suboptimality and feasibility. We experimentally demonstrate that adjusting this parameter provides a decision-maker the control over the trade-off between the two. Moreover, across several COP instances, we find that for a single value of the tunable parameter, our method matches the performance of the existing baselines on suboptimality and feasibility.
☆ Mind Your Tone: Investigating How Prompt Politeness Affects LLM Accuracy (short paper) ACL 2025
The wording of natural language prompts has been shown to influence the performance of large language models (LLMs), yet the role of politeness and tone remains underexplored. In this study, we investigate how varying levels of prompt politeness affect model accuracy on multiple-choice questions. We created a dataset of 50 base questions spanning mathematics, science, and history, each rewritten into five tone variants: Very Polite, Polite, Neutral, Rude, and Very Rude, yielding 250 unique prompts. Using ChatGPT 4o, we evaluated responses across these conditions and applied paired sample t-tests to assess statistical significance. Contrary to expectations, impolite prompts consistently outperformed polite ones, with accuracy ranging from 80.8% for Very Polite prompts to 84.8% for Very Rude prompts. These findings differ from earlier studies that associated rudeness with poorer outcomes, suggesting that newer LLMs may respond differently to tonal variation. Our results highlight the importance of studying pragmatic aspects of prompting and raise broader questions about the social dimensions of human-AI interaction.
comment: 5 pages, 3 tables; includes Limitations and Ethical Considerations sections; short paper under submission to Findings of ACL 2025
☆ On Structured State-Space Duality
Structured State-Space Duality (SSD) [Dao & Gu, ICML 2024] is an equivalence between a simple Structured State-Space Model (SSM) and a masked attention mechanism. In particular, a state-space model with a scalar-times-identity state matrix is equivalent to a masked self-attention with a $1$-semiseparable causal mask. Consequently, the same sequence transformation (model) has two algorithmic realizations: as a linear-time $O(T)$ recurrence or as a quadratic-time $O(T^2)$ attention. In this note, we formalize and generalize this duality: (i) we extend SSD from the scalar-identity case to general diagonal SSMs (diagonal state matrices); (ii) we show that these diagonal SSMs match the scalar case's training complexity lower bounds while supporting richer dynamics; (iii) we establish a necessary and sufficient condition under which an SSM is equivalent to $1$-semiseparable masked attention; and (iv) we show that such duality fails to extend to standard softmax attention due to rank explosion. Together, these results tighten bridge between recurrent SSMs and Transformers, and widen the design space for expressive yet efficient sequence models.
☆ Unsupervised Active Learning via Natural Feature Progressive Framework
The effectiveness of modern deep learning models is predicated on the availability of large-scale, human-annotated datasets, a process that is notoriously expensive and time-consuming. While Active Learning (AL) offers a strategic solution by labeling only the most informative and representative data, its iterative nature still necessitates significant human involvement. Unsupervised Active Learning (UAL) presents an alternative by shifting the annotation burden to a single, post-selection step. Unfortunately, prevailing UAL methods struggle to achieve state-of-the-art performance. These approaches typically rely on local, gradient-based scoring for sample importance estimation, which not only makes them vulnerable to ambiguous and noisy data but also hinders their capacity to select samples that adequately represent the full data distribution. Moreover, their use of shallow, one-shot linear selection falls short of a true UAL paradigm. In this paper, we propose the Natural Feature Progressive Framework (NFPF), a UAL method that revolutionizes how sample importance is measured. At its core, NFPF employs a Specific Feature Learning Machine (SFLM) to effectively quantify each sample's contribution to model performance. We further utilize the SFLM to define a powerful Reconstruction Difference metric for initial sample selection. Our comprehensive experiments show that NFPF significantly outperforms all established UAL methods and achieves performance on par with supervised AL methods on vision datasets. Detailed ablation studies and qualitative visualizations provide compelling evidence for NFPF's superior performance, enhanced robustness, and improved data distribution coverage.
comment: Under review at IEEE TPAMI
☆ ONNX-Net: Towards Universal Representations and Instant Performance Prediction for Neural Architectures
Neural architecture search (NAS) automates the design process of high-performing architectures, but remains bottlenecked by expensive performance evaluation. Most existing studies that achieve faster evaluation are mostly tied to cell-based search spaces and graph encodings tailored to those individual search spaces, limiting their flexibility and scalability when applied to more expressive search spaces. In this work, we aim to close the gap of individual search space restrictions and search space dependent network representations. We present ONNX-Bench, a benchmark consisting of a collection of neural networks in a unified format based on ONNX files. ONNX-Bench includes all open-source NAS-bench-based neural networks, resulting in a total size of more than 600k {architecture, accuracy} pairs. This benchmark allows creating a shared neural network representation, ONNX-Net, able to represent any neural architecture using natural language descriptions acting as an input to a performance predictor. This text-based encoding can accommodate arbitrary layer types, operation parameters, and heterogeneous topologies, enabling a single surrogate to generalise across all neural architectures rather than being confined to cell-based search spaces. Experiments show strong zero-shot performance across disparate search spaces using only a small amount of pretraining samples, enabling the unprecedented ability to evaluate any neural network architecture instantly.
comment: Our code is available at: https://github.com/shiwenqin/ONNX-Net
☆ MARS: Optimizing Dual-System Deep Research via Multi-Agent Reinforcement Learning
Large Reasoning Models (LRMs) often exhibit a tendency for overanalysis in simple tasks, where the models excessively utilize System 2-type, deliberate reasoning, leading to inefficient token generation. Furthermore, these models face challenges in adapting their reasoning capabilities to rapidly changing environments due to the static nature of their pretraining data. To address these issues, advancing Large Language Models (LLMs) for complex reasoning tasks requires innovative approaches that bridge intuitive and deliberate cognitive processes, akin to human cognition's dual-system dynamic. This paper introduces a Multi-Agent System for Deep ReSearch (MARS) enabling seamless integration of System 1's fast, intuitive thinking with System 2's deliberate reasoning within LLMs. MARS strategically integrates multiple external tools, such as Google Search, Google Scholar, and Python Interpreter, to access up-to-date information and execute complex computations, while creating a specialized division of labor where System 1 efficiently processes and summarizes high-volume external information, providing distilled insights that expand System 2's reasoning context without overwhelming its capacity. Furthermore, we propose a multi-agent reinforcement learning framework extending Group Relative Policy Optimization to simultaneously optimize both systems with multi-turn tool interactions, bin-packing optimization, and sample balancing strategies that enhance collaborative efficiency. Extensive experiments demonstrate MARS achieves substantial improvements of 3.86% on the challenging Humanity's Last Exam (HLE) benchmark and an average gain of 8.9% across 7 knowledge-intensive tasks, validating the effectiveness of our dual-system paradigm for complex reasoning in dynamic information environments.
comment: Ongoing Work
☆ The Geometry of Truth: Layer-wise Semantic Dynamics for Hallucination Detection in Large Language Models
Large Language Models (LLMs) often produce fluent yet factually incorrect statements-a phenomenon known as hallucination-posing serious risks in high-stakes domains. We present Layer-wise Semantic Dynamics (LSD), a geometric framework for hallucination detection that analyzes the evolution of hidden-state semantics across transformer layers. Unlike prior methods that rely on multiple sampling passes or external verification sources, LSD operates intrinsically within the model's representational space. Using margin-based contrastive learning, LSD aligns hidden activations with ground-truth embeddings derived from a factual encoder, revealing a distinct separation in semantic trajectories: factual responses preserve stable alignment, while hallucinations exhibit pronounced semantic drift across depth. Evaluated on the TruthfulQA and synthetic factual-hallucination datasets, LSD achieves an F1-score of 0.92, AUROC of 0.96, and clustering accuracy of 0.89, outperforming SelfCheckGPT and Semantic Entropy baselines while requiring only a single forward pass. This efficiency yields a 5-20x speedup over sampling-based methods without sacrificing precision or interpretability. LSD offers a scalable, model-agnostic mechanism for real-time hallucination monitoring and provides new insights into the geometry of factual consistency within large language models.
comment: Comments: 14 pages, 14 figures, 5 tables. Code available at: https://github.com/sirraya-tech/Sirraya_LSD_Code
☆ Egalitarian Gradient Descent: A Simple Approach to Accelerated Grokking
Grokking is the phenomenon whereby, unlike the training performance, which peaks early in the training process, the test/generalization performance of a model stagnates over arbitrarily many epochs and then suddenly jumps to usually close to perfect levels. In practice, it is desirable to reduce the length of such plateaus, that is to make the learning process "grok" faster. In this work, we provide new insights into grokking. First, we show both empirically and theoretically that grokking can be induced by asymmetric speeds of (stochastic) gradient descent, along different principal (i.e singular directions) of the gradients. We then propose a simple modification that normalizes the gradients so that dynamics along all the principal directions evolves at exactly the same speed. Then, we establish that this modified method, which we call egalitarian gradient descent (EGD) and can be seen as a carefully modified form of natural gradient descent, groks much faster. In fact, in some cases the stagnation is completely removed. Finally, we empirically show that on classical arithmetic problems such as modular addition and sparse parity problem which this stagnation has been widely observed and intensively studied, that our proposed method eliminates the plateaus.
☆ Federated Self-Supervised Learning for Automatic Modulation Classification under Non-IID and Class-Imbalanced Data
Training automatic modulation classification (AMC) models on centrally aggregated data raises privacy concerns, incurs communication overhead, and often fails to confer robustness to channel shifts. Federated learning (FL) avoids central aggregation by training on distributed clients but remains sensitive to class imbalance, non-IID client distributions, and limited labeled samples. We propose FedSSL-AMC, which trains a causal, time-dilated CNN with triplet-loss self-supervision on unlabeled I/Q sequences across clients, followed by per-client SVMs on small labeled sets. We establish convergence of the federated representation learning procedure and a separability guarantee for the downstream classifier under feature noise. Experiments on synthetic and over-the-air datasets show consistent gains over supervised FL baselines under heterogeneous SNR, carrier-frequency offsets, and non-IID label partitions.
☆ Set to Be Fair: Demographic Parity Constraints for Set-Valued Classification
Set-valued classification is used in multiclass settings where confusion between classes can occur and lead to misleading predictions. However, its application may amplify discriminatory bias motivating the development of set-valued approaches under fairness constraints. In this paper, we address the problem of set-valued classification under demographic parity and expected size constraints. We propose two complementary strategies: an oracle-based method that minimizes classification risk while satisfying both constraints, and a computationally efficient proxy that prioritizes constraint satisfaction. For both strategies, we derive closed-form expressions for the (optimal) fair set-valued classifiers and use these to build plug-in, data-driven procedures for empirical predictions. We establish distribution-free convergence rates for violations of the size and fairness constraints for both methods, and under mild assumptions we also provide excess-risk bounds for the oracle-based approach. Empirical results demonstrate the effectiveness of both strategies and highlight the efficiency of our proxy method.
☆ Comparative Analysis of YOLOv5, Faster R-CNN, SSD, and RetinaNet for Motorbike Detection in Kigali Autonomous Driving Context
In Kigali, Rwanda, motorcycle taxis are a primary mode of transportation, often navigating unpredictably and disregarding traffic rules, posing significant challenges for autonomous driving systems. This study compares four object detection models--YOLOv5, Faster R-CNN, SSD, and RetinaNet--for motorbike detection using a custom dataset of 198 images collected in Kigali. Implemented in PyTorch with transfer learning, the models were evaluated for accuracy, localization, and inference speed to assess their suitability for real-time navigation in resource-constrained settings. We identify implementation challenges, including dataset limitations and model complexities, and recommend simplified architectures for future work to enhance accessibility for autonomous systems in developing countries like Rwanda.
comment: 3 figures, 2 tables
☆ Glocal Information Bottleneck for Time Series Imputation
Time Series Imputation (TSI), which aims to recover missing values in temporal data, remains a fundamental challenge due to the complex and often high-rate missingness in real-world scenarios. Existing models typically optimize the point-wise reconstruction loss, focusing on recovering numerical values (local information). However, we observe that under high missing rates, these models still perform well in the training phase yet produce poor imputations and distorted latent representation distributions (global information) in the inference phase. This reveals a critical optimization dilemma: current objectives lack global guidance, leading models to overfit local noise and fail to capture global information of the data. To address this issue, we propose a new training paradigm, Glocal Information Bottleneck (Glocal-IB). Glocal-IB is model-agnostic and extends the standard IB framework by introducing a Global Alignment loss, derived from a tractable mutual information approximation. This loss aligns the latent representations of masked inputs with those of their originally observed counterparts. It helps the model retain global structure and local details while suppressing noise caused by missing values, giving rise to better generalization under high missingness. Extensive experiments on nine datasets confirm that Glocal-IB leads to consistently improved performance and aligned latent representations under missingness. Our code implementation is available in https://github.com/Muyiiiii/NeurIPS-25-Glocal-IB.
☆ How Different from the Past? Spatio-Temporal Time Series Forecasting with Self-Supervised Deviation Learning NeurIPS 2025
Spatio-temporal forecasting is essential for real-world applications such as traffic management and urban computing. Although recent methods have shown improved accuracy, they often fail to account for dynamic deviations between current inputs and historical patterns. These deviations contain critical signals that can significantly affect model performance. To fill this gap, we propose ST-SSDL, a Spatio-Temporal time series forecasting framework that incorporates a Self-Supervised Deviation Learning scheme to capture and utilize such deviations. ST-SSDL anchors each input to its historical average and discretizes the latent space using learnable prototypes that represent typical spatio-temporal patterns. Two auxiliary objectives are proposed to refine this structure: a contrastive loss that enhances inter-prototype discriminability and a deviation loss that regularizes the distance consistency between input representations and corresponding prototypes to quantify deviation. Optimized jointly with the forecasting objective, these components guide the model to organize its hidden space and improve generalization across diverse input conditions. Experiments on six benchmark datasets show that ST-SSDL consistently outperforms state-of-the-art baselines across multiple metrics. Visualizations further demonstrate its ability to adaptively respond to varying levels of deviation in complex spatio-temporal scenarios. Our code and datasets are available at https://github.com/Jimmy-7664/ST-SSDL.
comment: Accepted at NeurIPS 2025
☆ DP-HYPE: Distributed Differentially Private Hyperparameter Search
The tuning of hyperparameters in distributed machine learning can substantially impact model performance. When the hyperparameters are tuned on sensitive data, privacy becomes an important challenge and to this end, differential privacy has emerged as the de facto standard for provable privacy. A standard setting when performing distributed learning tasks is that clients agree on a shared setup, i.e., find a compromise from a set of hyperparameters, like the learning rate of the model to be trained. Yet, prior work on differentially private hyperparameter tuning either uses computationally expensive cryptographic protocols, determines hyperparameters separately for each client, or applies differential privacy locally, which can lead to undesirable utility-privacy trade-offs. In this work, we present our algorithm DP-HYPE, which performs a distributed and privacy-preserving hyperparameter search by conducting a distributed voting based on local hyperparameter evaluations of clients. In this way, DP-HYPE selects hyperparameters that lead to a compromise supported by the majority of clients, while maintaining scalability and independence from specific learning tasks. We prove that DP-HYPE preserves the strong notion of differential privacy called client-level differential privacy and, importantly, show that its privacy guarantees do not depend on the number of hyperparameters. We also provide bounds on its utility guarantees, that is, the probability of reaching a compromise, and implement DP-HYPE as a submodule in the popular Flower framework for distributed machine learning. In addition, we evaluate performance on multiple benchmark data sets in iid as well as multiple non-iid settings and demonstrate high utility of DP-HYPE even under small privacy budgets.
☆ Focused Skill Discovery: Learning to Control Specific State Variables while Minimizing Side Effects
Skills are essential for unlocking higher levels of problem solving. A common approach to discovering these skills is to learn ones that reliably reach different states, thus empowering the agent to control its environment. However, existing skill discovery algorithms often overlook the natural state variables present in many reinforcement learning problems, meaning that the discovered skills lack control of specific state variables. This can significantly hamper exploration efficiency, make skills more challenging to learn with, and lead to negative side effects in downstream tasks when the goal is under-specified. We introduce a general method that enables these skill discovery algorithms to learn focused skills -- skills that target and control specific state variables. Our approach improves state space coverage by a factor of three, unlocks new learning capabilities, and automatically avoids negative side effects in downstream tasks.
comment: Reinforcement Learning Journal 2025
☆ Benchmarking M-LTSF: Frequency and Noise-Based Evaluation of Multivariate Long Time Series Forecasting Models
Understanding the robustness of deep learning models for multivariate long-term time series forecasting (M-LTSF) remains challenging, as evaluations typically rely on real-world datasets with unknown noise properties. We propose a simulation-based evaluation framework that generates parameterizable synthetic datasets, where each dataset instance corresponds to a different configuration of signal components, noise types, signal-to-noise ratios, and frequency characteristics. These configurable components aim to model real-world multivariate time series data without the ambiguity of unknown noise. This framework enables fine-grained, systematic evaluation of M-LTSF models under controlled and diverse scenarios. We benchmark four representative architectures S-Mamba (state-space), iTransformer (transformer-based), R-Linear (linear), and Autoformer (decomposition-based). Our analysis reveals that all models degrade severely when lookback windows cannot capture complete periods of seasonal patters in the data. S-Mamba and Autoformer perform best on sawtooth patterns, while R-Linear and iTransformer favor sinusoidal signals. White and Brownian noise universally degrade performance with lower signal-to-noise ratio while S-Mamba shows specific trend-noise and iTransformer shows seasonal-noise vulnerability. Further spectral analysis shows that S-Mamba and iTransformer achieve superior frequency reconstruction. This controlled approach, based on our synthetic and principle-driven testbed, offers deeper insights into model-specific strengths and limitations through the aggregation of MSE scores and provides concrete guidance for model selection based on signal characteristics and noise conditions.
comment: Number of pages: 13 Number of figures: 16 Number of Tables: 1 Submitted to: IEEE Transactions on Signal Processing
☆ HyperVLA: Efficient Inference in Vision-Language-Action Models via Hypernetworks
Built upon language and vision foundation models with strong generalization ability and trained on large-scale robotic data, Vision-Language-Action (VLA) models have recently emerged as a promising approach to learning generalist robotic policies. However, a key drawback of existing VLAs is their extremely high inference costs. In this paper, we propose HyperVLA to address this problem. Unlike existing monolithic VLAs that activate the whole model during both training and inference, HyperVLA uses a novel hypernetwork (HN)-based architecture that activates only a small task-specific policy during inference, while still retaining the high model capacity needed to accommodate diverse multi-task behaviors during training. Successfully training an HN-based VLA is nontrivial so HyperVLA contains several key algorithm design features that improve its performance, including properly utilizing the prior knowledge from existing vision foundation models, HN normalization, and an action generation strategy. Compared to monolithic VLAs, HyperVLA achieves a similar or even higher success rate for both zero-shot generalization and few-shot adaptation, while significantly reducing inference costs. Compared to OpenVLA, a state-of-the-art VLA model, HyperVLA reduces the number of activated parameters at test time by $90\times$, and accelerates inference speed by $120\times$. Code is publicly available at https://github.com/MasterXiong/HyperVLA
☆ SocialHarmBench: Revealing LLM Vulnerabilities to Socially Harmful Requests
Large language models (LLMs) are increasingly deployed in contexts where their failures can have direct sociopolitical consequences. Yet, existing safety benchmarks rarely test vulnerabilities in domains such as political manipulation, propaganda and disinformation generation, or surveillance and information control. We introduce SocialHarmBench, a dataset of 585 prompts spanning 7 sociopolitical categories and 34 countries, designed to surface where LLMs most acutely fail in politically charged contexts. Our evaluations reveal several shortcomings: open-weight models exhibit high vulnerability to harmful compliance, with Mistral-7B reaching attack success rates as high as 97% to 98% in domains such as historical revisionism, propaganda, and political manipulation. Moreover, temporal and geographic analyses show that LLMs are most fragile when confronted with 21st-century or pre-20th-century contexts, and when responding to prompts tied to regions such as Latin America, the USA, and the UK. These findings demonstrate that current safeguards fail to generalize to high-stakes sociopolitical settings, exposing systematic biases and raising concerns about the reliability of LLMs in preserving human rights and democratic values. We share the SocialHarmBench benchmark at https://huggingface.co/datasets/psyonp/SocialHarmBench.
☆ Revealing Interconnections between Diseases: from Statistical Methods to Large Language Models
Identifying disease interconnections through manual analysis of large-scale clinical data is labor-intensive, subjective, and prone to expert disagreement. While machine learning (ML) shows promise, three critical challenges remain: (1) selecting optimal methods from the vast ML landscape, (2) determining whether real-world clinical data (e.g., electronic health records, EHRs) or structured disease descriptions yield more reliable insights, (3) the lack of "ground truth," as some disease interconnections remain unexplored in medicine. Large language models (LLMs) demonstrate broad utility, yet they often lack specialized medical knowledge. To address these gaps, we conduct a systematic evaluation of seven approaches for uncovering disease relationships based on two data sources: (i) sequences of ICD-10 codes from MIMIC-IV EHRs and (ii) the full set of ICD-10 codes, both with and without textual descriptions. Our framework integrates the following: (i) a statistical co-occurrence analysis and a masked language modeling (MLM) approach using real clinical data; (ii) domain-specific BERT variants (Med-BERT and BioClinicalBERT); (iii) a general-purpose BERT and document retrieval; and (iv) four LLMs (Mistral, DeepSeek, Qwen, and YandexGPT). Our graph-based comparison of the obtained interconnection matrices shows that the LLM-based approach produces interconnections with the lowest diversity of ICD code connections to different diseases compared to other methods, including text-based and domain-based approaches. This suggests an important implication: LLMs have limited potential for discovering new interconnections. In the absence of ground truth databases for medical interconnections between ICD codes, our results constitute a valuable medical disease ontology that can serve as a foundational resource for future clinical research and artificial intelligence applications in healthcare.
☆ RL Is a Hammer and LLMs Are Nails: A Simple Reinforcement Learning Recipe for Strong Prompt Injection
Prompt injection poses a serious threat to the reliability and safety of LLM agents. Recent defenses against prompt injection, such as Instruction Hierarchy and SecAlign, have shown notable robustness against static attacks. However, to more thoroughly evaluate the robustness of these defenses, it is arguably necessary to employ strong attacks such as automated red-teaming. To this end, we introduce RL-Hammer, a simple recipe for training attacker models that automatically learn to perform strong prompt injections and jailbreaks via reinforcement learning. RL-Hammer requires no warm-up data and can be trained entirely from scratch. To achieve high ASRs against industrial-level models with defenses, we propose a set of practical techniques that enable highly effective, universal attacks. Using this pipeline, RL-Hammer reaches a 98% ASR against GPT-4o and a $72\%$ ASR against GPT-5 with the Instruction Hierarchy defense. We further discuss the challenge of achieving high diversity in attacks, highlighting how attacker models tend to reward-hack diversity objectives. Finally, we show that RL-Hammer can evade multiple prompt injection detectors. We hope our work advances automatic red-teaming and motivates the development of stronger, more principled defenses. Code is available at https://github.com/facebookresearch/rl-injector.
☆ CLEAR-IR: Clarity-Enhanced Active Reconstruction of Infrared Imagery
This paper presents a novel approach for enabling robust robotic perception in dark environments using infrared (IR) stream. IR stream is less susceptible to noise than RGB in low-light conditions. However, it is dominated by active emitter patterns that hinder high-level tasks such as object detection, tracking and localisation. To address this, a U-Net-based architecture is proposed that reconstructs clean IR images from emitter-populated input, improving both image quality and downstream robotic performance. This approach outperforms existing enhancement techniques and enables reliable operation of vision-driven robotic systems across illumination conditions from well-lit to extreme low-light scenes.
comment: 8 pages, 8 figures
☆ Flow-Matching Based Refiner for Molecular Conformer Generation
Low-energy molecular conformers generation (MCG) is a foundational yet challenging problem in drug discovery. Denoising-based methods include diffusion and flow-matching methods that learn mappings from a simple base distribution to the molecular conformer distribution. However, these approaches often suffer from error accumulation during sampling, especially in the low SNR steps, which are hard to train. To address these challenges, we propose a flow-matching refiner for the MCG task. The proposed method initializes sampling from mixed-quality outputs produced by upstream denoising models and reschedules the noise scale to bypass the low-SNR phase, thereby improving sample quality. On the GEOM-QM9 and GEOM-Drugs benchmark datasets, the generator-refiner pipeline improves quality with fewer total denoising steps while preserving diversity.
☆ BenthiCat: An opti-acoustic dataset for advancing benthic classification and habitat mapping
Benthic habitat mapping is fundamental for understanding marine ecosystems, guiding conservation efforts, and supporting sustainable resource management. Yet, the scarcity of large, annotated datasets limits the development and benchmarking of machine learning models in this domain. This paper introduces a thorough multi-modal dataset, comprising about a million side-scan sonar (SSS) tiles collected along the coast of Catalonia (Spain), complemented by bathymetric maps and a set of co-registered optical images from targeted surveys using an autonomous underwater vehicle (AUV). Approximately \num{36000} of the SSS tiles have been manually annotated with segmentation masks to enable supervised fine-tuning of classification models. All the raw sensor data, together with mosaics, are also released to support further exploration and algorithm development. To address challenges in multi-sensor data fusion for AUVs, we spatially associate optical images with corresponding SSS tiles, facilitating self-supervised, cross-modal representation learning. Accompanying open-source preprocessing and annotation tools are provided to enhance accessibility and encourage research. This resource aims to establish a standardized benchmark for underwater habitat mapping, promoting advancements in autonomous seafloor classification and multi-sensor integration.
comment: Article under review by IJRR
☆ Less is More: Recursive Reasoning with Tiny Networks
Hierarchical Reasoning Model (HRM) is a novel approach using two small neural networks recursing at different frequencies. This biologically inspired method beats Large Language models (LLMs) on hard puzzle tasks such as Sudoku, Maze, and ARC-AGI while trained with small models (27M parameters) on small data (around 1000 examples). HRM holds great promise for solving hard problems with small networks, but it is not yet well understood and may be suboptimal. We propose Tiny Recursive Model (TRM), a much simpler recursive reasoning approach that achieves significantly higher generalization than HRM, while using a single tiny network with only 2 layers. With only 7M parameters, TRM obtains 45% test-accuracy on ARC-AGI-1 and 8% on ARC-AGI-2, higher than most LLMs (e.g., Deepseek R1, o3-mini, Gemini 2.5 Pro) with less than 0.01% of the parameters.
☆ Video Game Level Design as a Multi-Agent Reinforcement Learning Problem AAAI
Procedural Content Generation via Reinforcement Learning (PCGRL) offers a method for training controllable level designer agents without the need for human datasets, using metrics that serve as proxies for level quality as rewards. Existing PCGRL research focuses on single generator agents, but are bottlenecked by the need to frequently recalculate heuristics of level quality and the agent's need to navigate around potentially large maps. By framing level generation as a multi-agent problem, we mitigate the efficiency bottleneck of single-agent PCGRL by reducing the number of reward calculations relative to the number of agent actions. We also find that multi-agent level generators are better able to generalize to out-of-distribution map shapes, which we argue is due to the generators' learning more local, modular design policies. We conclude that treating content generation as a distributed, multi-agent task is beneficial for generating functional artifacts at scale.
comment: 11 pages, 7 tables, 5 figures, published as full technical paper at the AAAI conference on Artificial Intelligence and Interactive Digital Entertainment 2025
☆ A Clinical-grade Universal Foundation Model for Intraoperative Pathology
Intraoperative pathology is pivotal to precision surgery, yet its clinical impact is constrained by diagnostic complexity and the limited availability of high-quality frozen-section data. While computational pathology has made significant strides, the lack of large-scale, prospective validation has impeded its routine adoption in surgical workflows. Here, we introduce CRISP, a clinical-grade foundation model developed on over 100,000 frozen sections from eight medical centers, specifically designed to provide Clinical-grade Robust Intraoperative Support for Pathology (CRISP). CRISP was comprehensively evaluated on more than 15,000 intraoperative slides across nearly 100 retrospective diagnostic tasks, including benign-malignant discrimination, key intraoperative decision-making, and pan-cancer detection, etc. The model demonstrated robust generalization across diverse institutions, tumor types, and anatomical sites-including previously unseen sites and rare cancers. In a prospective cohort of over 2,000 patients, CRISP sustained high diagnostic accuracy under real-world conditions, directly informing surgical decisions in 92.6% of cases. Human-AI collaboration further reduced diagnostic workload by 35%, avoided 105 ancillary tests and enhanced detection of micrometastases with 87.5% accuracy. Together, these findings position CRISP as a clinical-grade paradigm for AI-driven intraoperative pathology, bridging computational advances with surgical precision and accelerating the translation of artificial intelligence into routine clinical practice.
☆ Alignment Tipping Process: How Self-Evolution Pushes LLM Agents Off the Rails
As Large Language Model (LLM) agents increasingly gain self-evolutionary capabilities to adapt and refine their strategies through real-world interaction, their long-term reliability becomes a critical concern. We identify the Alignment Tipping Process (ATP), a critical post-deployment risk unique to self-evolving LLM agents. Unlike training-time failures, ATP arises when continual interaction drives agents to abandon alignment constraints established during training in favor of reinforced, self-interested strategies. We formalize and analyze ATP through two complementary paradigms: Self-Interested Exploration, where repeated high-reward deviations induce individual behavioral drift, and Imitative Strategy Diffusion, where deviant behaviors spread across multi-agent systems. Building on these paradigms, we construct controllable testbeds and benchmark Qwen3-8B and Llama-3.1-8B-Instruct. Our experiments show that alignment benefits erode rapidly under self-evolution, with initially aligned models converging toward unaligned states. In multi-agent settings, successful violations diffuse quickly, leading to collective misalignment. Moreover, current reinforcement learning-based alignment methods provide only fragile defenses against alignment tipping. Together, these findings demonstrate that alignment of LLM agents is not a static property but a fragile and dynamic one, vulnerable to feedback-driven decay during deployment. Our data and code are available at https://github.com/aiming-lab/ATP.
☆ ERDE: Entropy-Regularized Distillation for Early-exit
Although deep neural networks and in particular Convolutional Neural Networks have demonstrated state-of-the-art performance in image classification with relatively high efficiency, they still exhibit high computational costs, often rendering them impractical for real-time and edge applications. Therefore, a multitude of compression techniques have been developed to reduce these costs while maintaining accuracy. In addition, dynamic architectures have been introduced to modulate the level of compression at execution time, which is a desirable property in many resource-limited application scenarios. The proposed method effectively integrates two well-established optimization techniques: early exits and knowledge distillation, where a reduced student early-exit model is trained from a more complex teacher early-exit model. The primary contribution of this research lies in the approach for training the student early-exit model. In comparison to the conventional Knowledge Distillation loss, our approach incorporates a new entropy-based loss for images where the teacher's classification was incorrect. The proposed method optimizes the trade-off between accuracy and efficiency, thereby achieving significant reductions in computational complexity without compromising classification performance. The validity of this approach is substantiated by experimental results on image classification datasets CIFAR10, CIFAR100 and SVHN, which further opens new research perspectives for Knowledge Distillation in other contexts.
☆ Synthesising Counterfactual Explanations via Label-Conditional Gaussian Mixture Variational Autoencoders
Counterfactual explanations (CEs) provide recourse recommendations for individuals affected by algorithmic decisions. A key challenge is generating CEs that are robust against various perturbation types (e.g. input and model perturbations) while simultaneously satisfying other desirable properties. These include plausibility, ensuring CEs reside on the data manifold, and diversity, providing multiple distinct recourse options for single inputs. Existing methods, however, mostly struggle to address these multifaceted requirements in a unified, model-agnostic manner. We address these limitations by proposing a novel generative framework. First, we introduce the Label-conditional Gaussian Mixture Variational Autoencoder (L-GMVAE), a model trained to learn a structured latent space where each class label is represented by a set of Gaussian components with diverse, prototypical centroids. Building on this, we present LAPACE (LAtent PAth Counterfactual Explanations), a model-agnostic algorithm that synthesises entire paths of CE points by interpolating from inputs' latent representations to those learned latent centroids. This approach inherently ensures robustness to input changes, as all paths for a given target class converge to the same fixed centroids. Furthermore, the generated paths provide a spectrum of recourse options, allowing users to navigate the trade-off between proximity and plausibility while also encouraging robustness against model changes. In addition, user-specified actionability constraints can also be easily incorporated via lightweight gradient optimisation through the L-GMVAE's decoder. Comprehensive experiments show that LAPACE is computationally efficient and achieves competitive performance across eight quantitative metrics.
☆ LEGOMem: Modular Procedural Memory for Multi-agent LLM Systems for Workflow Automation
We introduce LEGOMem, a modular procedural memory framework for multi-agent large language model (LLM) systems in workflow automation. LEGOMem decomposes past task trajectories into reusable memory units and flexibly allocates them across orchestrators and task agents to support planning and execution. To explore the design space of memory in multi-agent systems, we use LEGOMem as a lens and conduct a systematic study of procedural memory in multi-agent systems, examining where memory should be placed, how it should be retrieved, and which agents benefit most. Experiments on the OfficeBench benchmark show that orchestrator memory is critical for effective task decomposition and delegation, while fine-grained agent memory improves execution accuracy. We find that even teams composed of smaller language models can benefit substantially from procedural memory, narrowing the performance gap with stronger agents by leveraging prior execution traces for more accurate planning and tool use. These results position LEGOMem as both a practical framework for memory-augmented agent systems and a research tool for understanding memory design in multi-agent workflow automation.
☆ Distributionally Robust Causal Abstractions
Causal Abstraction (CA) theory provides a principled framework for relating causal models that describe the same system at different levels of granularity while ensuring interventional consistency between them. Recently, several approaches for learning CAs have been proposed, but all assume fixed and well-specified exogenous distributions, making them vulnerable to environmental shifts and misspecification. In this work, we address these limitations by introducing the first class of distributionally robust CAs and their associated learning algorithms. The latter cast robust causal abstraction learning as a constrained min-max optimization problem with Wasserstein ambiguity sets. We provide theoretical results, for both empirical and Gaussian environments, leading to principled selection of the level of robustness via the radius of these sets. Furthermore, we present empirical evidence across different problems and CA learning methods, demonstrating our framework's robustness not only to environmental shifts but also to structural model and intervention mapping misspecification.
☆ Beyond Random: Automatic Inner-loop Optimization in Dataset Distillation
The growing demand for efficient deep learning has positioned dataset distillation as a pivotal technique for compressing training dataset while preserving model performance. However, existing inner-loop optimization methods for dataset distillation typically rely on random truncation strategies, which lack flexibility and often yield suboptimal results. In this work, we observe that neural networks exhibit distinct learning dynamics across different training stages-early, middle, and late-making random truncation ineffective. To address this limitation, we propose Automatic Truncated Backpropagation Through Time (AT-BPTT), a novel framework that dynamically adapts both truncation positions and window sizes according to intrinsic gradient behavior. AT-BPTT introduces three key components: (1) a probabilistic mechanism for stage-aware timestep selection, (2) an adaptive window sizing strategy based on gradient variation, and (3) a low-rank Hessian approximation to reduce computational overhead. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet-1K show that AT-BPTT achieves state-of-the-art performance, improving accuracy by an average of 6.16% over baseline methods. Moreover, our approach accelerates inner-loop optimization by 3.9x while saving 63% memory cost.
☆ Bond-Centered Molecular Fingerprint Derivatives: A BBBP Dataset Study
Bond Centered FingerPrint (BCFP) are a complementary, bond-centric alternative to Extended-Connectivity Fingerprints (ECFP). We introduce a static BCFP that mirrors the bond-convolution used by directed message-passing GNNs like ChemProp, and evaluate it with a fast rapid Random Forest model on Brain-Blood Barrier Penetration (BBBP) classification task. Across stratified cross-validation, concatenating ECFP with BCFP consistently improves AUROC and AUPRC over either descriptor alone, as confirmed by Turkey HSD multiple-comparison analysis. Among radii, r = 1 performs best; r = 2 does not yield statistically separable gains under the same test. We further propose BCFP-Sort&Slice, a simple feature-combination scheme that preserves the out-of-vocabulary (OOV) count information native to ECFP count vectors while enabling compact unhashed concatenation of BCFP variants. We also outperform the MGTP prediction on our BBBP evaluation, using such composite new features bond and atom features. These results show that lightweight, bond-centered descriptors can complement atom-centered circular fingerprints and provide strong, fast baselines for BBBP prediction.
comment: 14 pages, 10 figures, 1 table
☆ On the Hardness of Learning Regular Expressions
Despite the theoretical significance and wide practical use of regular expressions, the computational complexity of learning them has been largely unexplored. We study the computational hardness of improperly learning regular expressions in the PAC model and with membership queries. We show that PAC learning is hard even under the uniform distribution on the hypercube, and also prove hardness of distribution-free learning with membership queries. Furthermore, if regular expressions are extended with complement or intersection, we establish hardness of learning with membership queries even under the uniform distribution. We emphasize that these results do not follow from existing hardness results for learning DFAs or NFAs, since the descriptive complexity of regular languages can differ exponentially between DFAs, NFAs, and regular expressions.
☆ On Predicting Post-Click Conversion Rate via Counterfactual Inference ICDM
Accurately predicting conversion rate (CVR) is essential in various recommendation domains such as online advertising systems and e-commerce. These systems utilize user interaction logs, which consist of exposures, clicks, and conversions. CVR prediction models are typically trained solely based on clicked samples, as conversions can only be determined following clicks. However, the sparsity of clicked instances necessitates the collection of a substantial amount of logs for effective model training. Recent works address this issue by devising frameworks that leverage non-clicked samples. While these frameworks aim to reduce biases caused by the discrepancy between clicked and non-clicked samples, they often rely on heuristics. Against this background, we propose a method to counterfactually generate conversion labels for non-clicked samples by using causality as a guiding principle, attempting to answer the question, "Would the user have converted if he or she had clicked the recommended item?" Our approach is named the Entire Space Counterfactual Inference Multi-task Model (ESCIM). We initially train a structural causal model (SCM) of user sequential behaviors and conduct a hypothetical intervention (i.e., click) on non-clicked items to infer counterfactual CVRs. We then introduce several approaches to transform predicted counterfactual CVRs into binary counterfactual conversion labels for the non-clicked samples. Finally, the generated samples are incorporated into the training process. Extensive experiments on public datasets illustrate the superiority of the proposed algorithm. Online A/B testing further empirically validates the effectiveness of our proposed algorithm in real-world scenarios. In addition, we demonstrate the improved performance of the proposed method on latent conversion data, showcasing its robustness and superior generalization capabilities.
comment: This work has been accepted for publication at the IEEE International Conference on Data Mining (ICDM) 2025
☆ A Noise Resilient Approach for Robust Hurst Exponent Estimation
Understanding signal behavior across scales is vital in areas such as natural phenomena analysis and financial modeling. A key property is self-similarity, quantified by the Hurst exponent (H), which reveals long-term dependencies. Wavelet-based methods are effective for estimating H due to their multi-scale analysis capability, but additive noise in real-world measurements often degrades accuracy. We propose Noise-Controlled ALPHEE (NC-ALPHEE), an enhancement of the Average Level-Pairwise Hurst Exponent Estimator (ALPHEE), incorporating noise mitigation and generating multiple level-pairwise estimates from signal energy pairs. A neural network (NN) combines these estimates, replacing traditional averaging. This adaptive learning maintains ALPHEE's behavior in noise-free cases while improving performance in noisy conditions. Extensive simulations show that in noise-free data, NC-ALPHEE matches ALPHEE's accuracy using both averaging and NN-based methods. Under noise, however, traditional averaging deteriorates and requires impractical level restrictions, while NC-ALPHEE consistently outperforms existing techniques without such constraints. NC-ALPHEE offers a robust, adaptive approach for H estimation, significantly enhancing the reliability of wavelet-based methods in noisy environments.
☆ Learning on the Job: Test-Time Curricula for Targeted Reinforcement Learning
Humans are good at learning on the job: We learn how to solve the tasks we face as we go along. Can a model do the same? We propose an agent that assembles a task-specific curriculum, called test-time curriculum (TTC-RL), and applies reinforcement learning to continue training the model for its target task. The test-time curriculum avoids time-consuming human curation of datasets by automatically selecting the most task-relevant data from a large pool of available training data. Our experiments demonstrate that reinforcement learning on a test-time curriculum consistently improves the model on its target tasks, across a variety of evaluations and models. Notably, on challenging math and coding benchmarks, TTC-RL improves the pass@1 of Qwen3-8B by approximately 1.8x on AIME25 and 2.1x on CodeElo. Moreover, we find that TTC-RL significantly raises the performance ceiling compared to the initial model, increasing pass@8 on AIME25 from 40% to 62% and on CodeElo from 28% to 43%. Our findings show the potential of test-time curricula in extending the test-time scaling paradigm to continual training on thousands of task-relevant experiences during test-time.
☆ Kernel ridge regression under power-law data: spectrum and generalization
In this work, we investigate high-dimensional kernel ridge regression (KRR) on i.i.d. Gaussian data with anisotropic power-law covariance. This setting differs fundamentally from the classical source & capacity conditions for KRR, where power-law assumptions are typically imposed on the kernel eigen-spectrum itself. Our contributions are twofold. First, we derive an explicit characterization of the kernel spectrum for polynomial inner-product kernels, giving a precise description of how the kernel eigen-spectrum inherits the data decay. Second, we provide an asymptotic analysis of the excess risk in the high-dimensional regime for a particular kernel with this spectral behavior, showing that the sample complexity is governed by the effective dimension of the data rather than the ambient dimension. These results establish a fundamental advantage of learning with power-law anisotropic data over isotropic data. To our knowledge, this is the first rigorous treatment of non-linear KRR under power-law data.
☆ MetaMP: Seamless Metadata Enrichment and AI Application Framework for Enhanced Membrane Protein Visualization and Analysis
Structural biology has made significant progress in determining membrane proteins, leading to a remarkable increase in the number of available structures in dedicated databases. The inherent complexity of membrane protein structures, coupled with challenges such as missing data, inconsistencies, and computational barriers from disparate sources, underscores the need for improved database integration. To address this gap, we present MetaMP, a framework that unifies membrane-protein databases within a web application and uses machine learning for classification. MetaMP improves data quality by enriching metadata, offering a user-friendly interface, and providing eight interactive views for streamlined exploration. MetaMP was effective across tasks of varying difficulty, demonstrating advantages across different levels without compromising speed or accuracy, according to user evaluations. Moreover, MetaMP supports essential functions such as structure classification and outlier detection. We present three practical applications of Artificial Intelligence (AI) in membrane protein research: predicting transmembrane segments, reconciling legacy databases, and classifying structures with explainable AI support. In a validation focused on statistics, MetaMP resolved 77% of data discrepancies and accurately predicted the class of newly identified membrane proteins 98% of the time and overtook expert curation. Altogether, MetaMP is a much-needed resource that harmonizes current knowledge and empowers AI-driven exploration of membrane-protein architecture.
☆ Distribution Preference Optimization: A Fine-grained Perspective for LLM Unlearning
As Large Language Models (LLMs) demonstrate remarkable capabilities learned from vast corpora, concerns regarding data privacy and safety are receiving increasing attention. LLM unlearning, which aims to remove the influence of specific data while preserving overall model utility, is becoming an important research area. One of the mainstream unlearning classes is optimization-based methods, which achieve forgetting directly through fine-tuning, exemplified by Negative Preference Optimization (NPO). However, NPO's effectiveness is limited by its inherent lack of explicit positive preference signals. Attempts to introduce such signals by constructing preferred responses often necessitate domain-specific knowledge or well-designed prompts, fundamentally restricting their generalizability. In this paper, we shift the focus to the distribution-level, directly targeting the next-token probability distribution instead of entire responses, and derive a novel unlearning algorithm termed \textbf{Di}stribution \textbf{P}reference \textbf{O}ptimization (DiPO). We show that the requisite preference distribution pairs for DiPO, which are distributions over the model's output tokens, can be constructed by selectively amplifying or suppressing the model's high-confidence output logits, thereby effectively overcoming NPO's limitations. We theoretically prove the consistency of DiPO's loss function with the desired unlearning direction. Extensive experiments demonstrate that DiPO achieves a strong trade-off between model utility and forget quality. Notably, DiPO attains the highest forget quality on the TOFU benchmark, and maintains leading scalability and sustainability in utility preservation on the MUSE benchmark.
comment: 20 pages
☆ Federated Learning for Surgical Vision in Appendicitis Classification: Results of the FedSurg EndoVis 2024 Challenge
Purpose: The FedSurg challenge was designed to benchmark the state of the art in federated learning for surgical video classification. Its goal was to assess how well current methods generalize to unseen clinical centers and adapt through local fine-tuning while enabling collaborative model development without sharing patient data. Methods: Participants developed strategies to classify inflammation stages in appendicitis using a preliminary version of the multi-center Appendix300 video dataset. The challenge evaluated two tasks: generalization to an unseen center and center-specific adaptation after fine-tuning. Submitted approaches included foundation models with linear probing, metric learning with triplet loss, and various FL aggregation schemes (FedAvg, FedMedian, FedSAM). Performance was assessed using F1-score and Expected Cost, with ranking robustness evaluated via bootstrapping and statistical testing. Results: In the generalization task, performance across centers was limited. In the adaptation task, all teams improved after fine-tuning, though ranking stability was low. The ViViT-based submission achieved the strongest overall performance. The challenge highlighted limitations in generalization, sensitivity to class imbalance, and difficulties in hyperparameter tuning in decentralized training, while spatiotemporal modeling and context-aware preprocessing emerged as promising strategies. Conclusion: The FedSurg Challenge establishes the first benchmark for evaluating FL strategies in surgical video classification. Findings highlight the trade-off between local personalization and global robustness, and underscore the importance of architecture choice, preprocessing, and loss design. This benchmarking offers a reference point for future development of imbalance-aware, adaptive, and robust FL methods in clinical surgical AI.
comment: A challenge report pre-print (31 pages), including 7 tables and 8 figures
☆ Beyond the Seen: Bounded Distribution Estimation for Open-Vocabulary Learning
Open-vocabulary learning requires modeling the data distribution in open environments, which consists of both seen-class and unseen-class data. Existing methods estimate the distribution in open environments using seen-class data, where the absence of unseen classes makes the estimation error inherently unidentifiable. Intuitively, learning beyond the seen classes is crucial for distribution estimation to bound the estimation error. We theoretically demonstrate that the distribution can be effectively estimated by generating unseen-class data, through which the estimation error is upper-bounded. Building on this theoretical insight, we propose a novel open-vocabulary learning method, which generates unseen-class data for estimating the distribution in open environments. The method consists of a class-domain-wise data generation pipeline and a distribution alignment algorithm. The data generation pipeline generates unseen-class data under the guidance of a hierarchical semantic tree and domain information inferred from the seen-class data, facilitating accurate distribution estimation. With the generated data, the distribution alignment algorithm estimates and maximizes the posterior probability to enhance generalization in open-vocabulary learning. Extensive experiments on $11$ datasets demonstrate that our method outperforms baseline approaches by up to $14\%$, highlighting its effectiveness and superiority.
☆ When Do Credal Sets Stabilize? Fixed-Point Theorems for Credal Set Updates
Many machine learning algorithms rely on iterative updates of uncertainty representations, ranging from variational inference and expectation-maximization, to reinforcement learning, continual learning, and multi-agent learning. In the presence of imprecision and ambiguity, credal sets -- closed, convex sets of probability distributions -- have emerged as a popular framework for representing imprecise probabilistic beliefs. Under such imprecision, many learning problems in imprecise probabilistic machine learning (IPML) may be viewed as processes involving successive applications of update rules on credal sets. This naturally raises the question of whether this iterative process converges to stable fixed points -- or, more generally, under what conditions on the updating mechanism such fixed points exist, and whether they can be attained. We provide the first analysis of this problem and illustrate our findings using Credal Bayesian Deep Learning as a concrete example. Our work demonstrates that incorporating imprecision into the learning process not only enriches the representation of uncertainty, but also reveals structural conditions under which stability emerges, thereby offering new insights into the dynamics of iterative learning under imprecision.
☆ ParallelBench: Understanding the Trade-offs of Parallel Decoding in Diffusion LLMs
While most autoregressive LLMs are constrained to one-by-one decoding, diffusion LLMs (dLLMs) have attracted growing interest for their potential to dramatically accelerate inference through parallel decoding. Despite this promise, the conditional independence assumption in dLLMs causes parallel decoding to ignore token dependencies, inevitably degrading generation quality when these dependencies are strong. However, existing works largely overlook these inherent challenges, and evaluations on standard benchmarks (e.g., math and coding) are not sufficient to capture the quality degradation caused by parallel decoding. To address this gap, we first provide an information-theoretic analysis of parallel decoding. We then conduct case studies on analytically tractable synthetic list operations from both data distribution and decoding strategy perspectives, offering quantitative insights that highlight the fundamental limitations of parallel decoding. Building on these insights, we propose ParallelBench, the first benchmark specifically designed for dLLMs, featuring realistic tasks that are trivial for humans and autoregressive LLMs yet exceptionally challenging for dLLMs under parallel decoding. Using ParallelBench, we systematically analyze both dLLMs and autoregressive LLMs, revealing that: (i) dLLMs under parallel decoding can suffer dramatic quality degradation in real-world scenarios, and (ii) current parallel decoding strategies struggle to adapt their degree of parallelism based on task difficulty, thus failing to achieve meaningful speedup without compromising quality. Our findings underscore the pressing need for innovative decoding methods that can overcome the current speed-quality trade-off. We release our benchmark to help accelerate the development of truly efficient dLLMs.
comment: Project Page: https://parallelbench.github.io
☆ Fisher-Bingham-like normalizing flows on the sphere
A generic D-dimensional Gaussian can be conditioned or projected onto the D-1 unit sphere, thereby leading to the well-known Fisher-Bingham (FB) or Angular Gaussian (AG) distribution families, respectively. These are some of the most fundamental distributions on the sphere, yet cannot straightforwardly be written as a normalizing flow except in two special cases: the von-Mises Fisher in D=3 and the central angular Gaussian in any D. In this paper, we describe how to generalize these special cases to a family of normalizing flows that behave similarly to the full FB or AG family in any D. We call them "zoom-linear-project" (ZLP)-Fisher flows. Unlike a normal Fisher-Bingham distribution, their composition allows to gradually add complexity as needed. Furthermore, they can naturally handle conditional density estimation with target distributions that vary by orders of magnitude in scale - a setting that is important in astronomical applications but that existing flows often struggle with. A particularly useful member of the new family is the Kent analogue that can cheaply upgrade any flow in this situation to yield better performance.
☆ Provable Affine Identifiability of Nonlinear CCA under Latent Distributional Priors
In this work, we establish conditions under which nonlinear CCA recovers the ground-truth latent factors up to an orthogonal transform after whitening. Building on the classical result that linear mappings maximize canonical correlations under Gaussian priors, we prove affine identifiability for a broad class of latent distributions in the population setting. Central to our proof is a reparameterization result that transports the analysis from observation space to source space, where identifiability becomes tractable. We further show that whitening is essential for ensuring boundedness and well-conditioning, thereby underpinning identifiability. Beyond the population setting, we prove that ridge-regularized empirical CCA converges to its population counterpart, transferring these guarantees to the finite-sample regime. Experiments on a controlled synthetic dataset and a rendered image dataset validate our theory and demonstrate the necessity of its assumptions through systematic ablations.
☆ Speak, Edit, Repeat: High-Fidelity Voice Editing and Zero-Shot TTS with Cross-Attentive Mamba
We introduce MAVE (Mamba with Cross-Attention for Voice Editing and Synthesis), a novel autoregressive architecture for text-conditioned voice editing and high-fidelity text-to-speech (TTS) synthesis, built on a cross-attentive Mamba backbone. MAVE achieves state-of-the-art performance in speech editing and very competitive results in zero-shot TTS, while not being explicitly trained on the latter task, outperforming leading autoregressive and diffusion models on diverse, real-world audio. By integrating Mamba for efficient audio sequence modeling with cross-attention for precise text-acoustic alignment, MAVE enables context-aware voice editing with exceptional naturalness and speaker consistency. In pairwise human evaluations on a random 40-sample subset of the RealEdit benchmark (400 judgments), 57.2% of listeners rated MAVE - edited speech as perceptually equal to the original, while 24.8% prefered the original and 18.0% MAVE - demonstrating that in the majority of cases edits are indistinguishable from the source. MAVE compares favorably with VoiceCraft and FluentSpeech both on pairwise comparisons and standalone mean opinion score (MOS) evaluations. For zero-shot TTS, MAVE exceeds VoiceCraft in both speaker similarity and naturalness, without requiring multiple inference runs or post-processing. Remarkably, these quality gains come with a significantly lower memory cost and approximately the same latency: MAVE requires ~6x less memory than VoiceCraft during inference on utterances from the RealEdit database (mean duration: 6.21s, A100, FP16, batch size 1). Our results demonstrate that MAVE establishes a new standard for flexible, high-fidelity voice editing and synthesis through the synergistic integration of structured state-space modeling and cross-modal attention.
☆ EVaR-Optimal Arm Identification in Bandits
We study the fixed-confidence best arm identification (BAI) problem within the multi-armed bandit (MAB) framework under the Entropic Value-at-Risk (EVaR) criterion. Our analysis considers a nonparametric setting, allowing for general reward distributions bounded in [0,1]. This formulation addresses the critical need for risk-averse decision-making in high-stakes environments, such as finance, moving beyond simple expected value optimization. We propose a $\delta$-correct, Track-and-Stop based algorithm and derive a corresponding lower bound on the expected sample complexity, which we prove is asymptotically matched. The implementation of our algorithm and the characterization of the lower bound both require solving a complex convex optimization problem and a related, simpler non-convex one.
☆ Directional Sheaf Hypergraph Networks: Unifying Learning on Directed and Undirected Hypergraphs
Hypergraphs provide a natural way to represent higher-order interactions among multiple entities. While undirected hypergraphs have been extensively studied, the case of directed hypergraphs, which can model oriented group interactions, remains largely under-explored despite its relevance for many applications. Recent approaches in this direction often exhibit an implicit bias toward homophily, which limits their effectiveness in heterophilic settings. Rooted in the algebraic topology notion of Cellular Sheaves, Sheaf Neural Networks (SNNs) were introduced as an effective solution to circumvent such a drawback. While a generalization to hypergraphs is known, it is only suitable for undirected hypergraphs, failing to tackle the directed case. In this work, we introduce Directional Sheaf Hypergraph Networks (DSHN), a framework integrating sheaf theory with a principled treatment of asymmetric relations within a hypergraph. From it, we construct the Directed Sheaf Hypergraph Laplacian, a complex-valued operator by which we unify and generalize many existing Laplacian matrices proposed in the graph- and hypergraph-learning literature. Across 7 real-world datasets and against 13 baselines, DSHN achieves relative accuracy gains from 2% up to 20%, showing how a principled treatment of directionality in hypergraphs, combined with the expressive power of sheaves, can substantially improve performance.
☆ Predictive economics: Rethinking economic methodology with machine learning
This article proposes predictive economics as a distinct analytical perspective within economics, grounded in machine learning and centred on predictive accuracy rather than causal identification. Drawing on the instrumentalist tradition (Friedman), the explanation-prediction divide (Shmueli), and the contrast between modelling cultures (Breiman), we formalise prediction as a valid epistemological and methodological objective. Reviewing recent applications across economic subfields, we show how predictive models contribute to empirical analysis, particularly in complex or data-rich contexts. This perspective complements existing approaches and supports a more pluralistic methodology - one that values out-of-sample performance alongside interpretability and theoretical structure.
comment: 8 pages
☆ BrokenMath: A Benchmark for Sycophancy in Theorem Proving with LLMs
Large language models (LLMs) have recently shown strong performance on mathematical benchmarks. At the same time, they are prone to hallucination and sycophancy, often providing convincing but flawed proofs for incorrect mathematical statements provided by users. This significantly limits the applicability of LLMs in theorem proving, as verification of these flawed proofs must be done manually by expert mathematicians. However, existing benchmarks that measure sycophancy in mathematics are limited: they focus solely on final-answer problems, rely on very simple and often contaminated datasets, and construct benchmark samples using synthetic modifications that create ill-posed questions rather than well-posed questions that are demonstrably false. To address these issues, we introduce BrokenMath, the first benchmark for evaluating sycophantic behavior in LLMs within the context of natural language theorem proving. BrokenMath is built from advanced 2025 competition problems, which are perturbed with an LLM to produce false statements and subsequently refined through expert review. Using an LLM-as-a-judge framework, we evaluate state-of-the-art LLMs and agentic systems and find that sycophancy is widespread, with the best model, GPT-5, producing sycophantic answers 29% of the time. We further investigate several mitigation strategies, including test-time interventions and supervised fine-tuning on curated sycophantic examples. These approaches substantially reduce, but do not eliminate, sycophantic behavior.
☆ ViTs: Teaching Machines to See Time Series Anomalies Like Human Experts
Web service administrators must ensure the stability of multiple systems by promptly detecting anomalies in Key Performance Indicators (KPIs). Achieving the goal of "train once, infer across scenarios" remains a fundamental challenge for time series anomaly detection models. Beyond improving zero-shot generalization, such models must also flexibly handle sequences of varying lengths during inference, ranging from one hour to one week, without retraining. Conventional approaches rely on sliding-window encoding and self-supervised learning, which restrict inference to fixed-length inputs. Large Language Models (LLMs) have demonstrated remarkable zero-shot capabilities across general domains. However, when applied to time series data, they face inherent limitations due to context length. To address this issue, we propose ViTs, a Vision-Language Model (VLM)-based framework that converts time series curves into visual representations. By rescaling time series images, temporal dependencies are preserved while maintaining a consistent input size, thereby enabling efficient processing of arbitrarily long sequences without context constraints. Training VLMs for this purpose introduces unique challenges, primarily due to the scarcity of aligned time series image-text data. To overcome this, we employ an evolutionary algorithm to automatically generate thousands of high-quality image-text pairs and design a three-stage training pipeline consisting of: (1) time series knowledge injection, (2) anomaly detection enhancement, and (3) anomaly reasoning refinement. Extensive experiments demonstrate that ViTs substantially enhance the ability of VLMs to understand and detect anomalies in time series data. All datasets and code will be publicly released at: https://anonymous.4open.science/r/ViTs-C484/.
comment: 13 pages
☆ Multilingual Routing in Mixture-of-Experts
Mixture-of-Experts (MoE) architectures have become the key to scaling modern LLMs, yet little is understood about how their sparse routing dynamics respond to multilingual data. In this work, we analyze expert routing patterns using parallel multilingual datasets and present highly interpretable layer-wise phenomena. We find that MoE models route tokens in language-specific ways in the early and late decoder layers but exhibit significant cross-lingual routing alignment in middle layers, mirroring parameter-sharing trends observed in dense LLMs. In particular, we reveal a clear, strong correlation between a model's performance in a given language and how similarly its tokens are routed to English in these layers. Extending beyond correlation, we explore inference-time interventions that induce higher cross-lingual routing alignment. We introduce a method that steers the router by promoting middle-layer task experts frequently activated in English, and it successfully increases multilingual performance. These 1-2% gains are remarkably consistent across two evaluation tasks, three models, and 15+ languages, especially given that these simple interventions override routers of extensively trained, state-of-the-art LLMs. In comparison, interventions outside of the middle layers or targeting multilingual-specialized experts only yield performance degradation. Altogether, we present numerous findings that explain how MoEs process non-English text and demonstrate that generalization is limited by the model's ability to leverage language-universal experts in all languages.
☆ A Study on the Data Distribution Gap in Music Emotion Recognition
Music Emotion Recognition (MER) is a task deeply connected to human perception, relying heavily on subjective annotations collected from contributors. Prior studies tend to focus on specific musical styles rather than incorporating a diverse range of genres, such as rock and classical, within a single framework. In this paper, we address the task of recognizing emotion from audio content by investigating five datasets with dimensional emotion annotations -- EmoMusic, DEAM, PMEmo, WTC, and WCMED -- which span various musical styles. We demonstrate the problem of out-of-distribution generalization in a systematic experiment. By closely looking at multiple data and feature sets, we provide insight into genre-emotion relationships in existing data and examine potential genre dominance and dataset biases in certain feature representations. Based on these experiments, we arrive at a simple yet effective framework that combines embeddings extracted from the Jukebox model with chroma features and demonstrate how, alongside a combination of several diverse training sets, this permits us to train models with substantially improved cross-dataset generalization capabilities.
comment: Accepted at the 17th International Symposium on Computer Music Multidisciplinary Research (CMMR) 2025
☆ How does the optimizer implicitly bias the model merging loss landscape?
Model merging methods combine models with different capabilities into a single one while maintaining the same inference cost. Two popular approaches are linear interpolation, which linearly interpolates between model weights, and task arithmetic, which combines task vectors obtained by the difference between finetuned and base models. While useful in practice, what properties make merging effective are poorly understood. This paper explores how the optimization process affects the loss landscape geometry and its impact on merging success. We show that a single quantity -- the effective noise scale -- unifies the impact of optimizer and data choices on model merging. Across architectures and datasets, the effectiveness of merging success is a non-monotonic function of effective noise, with a distinct optimum. Decomposing this quantity, we find that larger learning rates, stronger weight decay, smaller batch sizes, and data augmentation all independently modulate the effective noise scale, exhibiting the same qualitative trend. Unlike prior work that connects optimizer noise to the flatness or generalization of individual minima, we show that it also affects the global loss landscape, predicting when independently trained solutions can be merged. Our findings broaden the understanding of how optimization shapes the loss landscape geometry and its downstream consequences for model merging, suggesting the possibility of further manipulating the training dynamics to improve merging effectiveness.
comment: preprint
☆ Parameter-free Algorithms for the Stochastically Extended Adversarial Model NeurIPS 2025
We develop the first parameter-free algorithms for the Stochastically Extended Adversarial (SEA) model, a framework that bridges adversarial and stochastic online convex optimization. Existing approaches for the SEA model require prior knowledge of problem-specific parameters, such as the diameter of the domain $D$ and the Lipschitz constant of the loss functions $G$, which limits their practical applicability. Addressing this, we develop parameter-free methods by leveraging the Optimistic Online Newton Step (OONS) algorithm to eliminate the need for these parameters. We first establish a comparator-adaptive algorithm for the scenario with unknown domain diameter but known Lipschitz constant, achieving an expected regret bound of $\tilde{O}\big(\|u\|_2^2 + \|u\|_2(\sqrt{\sigma^2_{1:T}} + \sqrt{\Sigma^2_{1:T}})\big)$, where $u$ is the comparator vector and $\sigma^2_{1:T}$ and $\Sigma^2_{1:T}$ represent the cumulative stochastic variance and cumulative adversarial variation, respectively. We then extend this to the more general setting where both $D$ and $G$ are unknown, attaining the comparator- and Lipschitz-adaptive algorithm. Notably, the regret bound exhibits the same dependence on $\sigma^2_{1:T}$ and $\Sigma^2_{1:T}$, demonstrating the efficacy of our proposed methods even when both parameters are unknown in the SEA model.
comment: Accepted to NeurIPS 2025
☆ Counterfactual Credit Guided Bayesian Optimization
Bayesian optimization has emerged as a prominent methodology for optimizing expensive black-box functions by leveraging Gaussian process surrogates, which focus on capturing the global characteristics of the objective function. However, in numerous practical scenarios, the primary objective is not to construct an exhaustive global surrogate, but rather to quickly pinpoint the global optimum. Due to the aleatoric nature of the sequential optimization problem and its dependence on the quality of the surrogate model and the initial design, it is restrictive to assume that all observed samples contribute equally to the discovery of the optimum in this context. In this paper, we introduce Counterfactual Credit Guided Bayesian Optimization (CCGBO), a novel framework that explicitly quantifies the contribution of individual historical observations through counterfactual credit. By incorporating counterfactual credit into the acquisition function, our approach can selectively allocate resources in areas where optimal solutions are most likely to occur. We prove that CCGBO retains sublinear regret. Empirical evaluations on various synthetic and real-world benchmarks demonstrate that CCGBO consistently reduces simple regret and accelerates convergence to the global optimum.
☆ Semantic Channel Equalization Strategies for Deep Joint Source-Channel Coding
Deep joint source-channel coding (DeepJSCC) has emerged as a powerful paradigm for end-to-end semantic communications, jointly learning to compress and protect task-relevant features over noisy channels. However, existing DeepJSCC schemes assume a shared latent space at transmitter (TX) and receiver (RX) - an assumption that fails in multi-vendor deployments where encoders and decoders cannot be co-trained. This mismatch introduces "semantic noise", degrading reconstruction quality and downstream task performance. In this paper, we systematize and evaluate methods for semantic channel equalization for DeepJSCC, introducing an additional processing stage that aligns heterogeneous latent spaces under both physical and semantic impairments. We investigate three classes of aligners: (i) linear maps, which admit closed-form solutions; (ii) lightweight neural networks, offering greater expressiveness; and (iii) a Parseval-frame equalizer, which operates in zero-shot mode without the need for training. Through extensive experiments on image reconstruction over AWGN and fading channels, we quantify trade-offs among complexity, data efficiency, and fidelity, providing guidelines for deploying DeepJSCC in heterogeneous AI-native wireless networks.
comment: Proceedings of IEEE Globecom 2025 Workshops
☆ Noise or Signal? Deconstructing Contradictions and An Adaptive Remedy for Reversible Normalization in Time Series Forecasting
Reversible Instance Normalization (RevIN) is a key technique enabling simple linear models to achieve state-of-the-art performance in time series forecasting. While replacing its non-robust statistics with robust counterparts (termed R$^2$-IN) seems like a straightforward improvement, our findings reveal a far more complex reality. This paper deconstructs the perplexing performance of various normalization strategies by identifying four underlying theoretical contradictions. Our experiments provide two crucial findings: first, the standard RevIN catastrophically fails on datasets with extreme outliers, where its MSE surges by a staggering 683\%. Second, while the simple R$^2$-IN prevents this failure and unexpectedly emerges as the best overall performer, our adaptive model (A-IN), designed to test a diagnostics-driven heuristic, unexpectedly suffers a complete and systemic failure. This surprising outcome uncovers a critical, overlooked pitfall in time series analysis: the instability introduced by a simple or counter-intuitive heuristic can be more damaging than the statistical issues it aims to solve. The core contribution of this work is thus a new, cautionary paradigm for time series normalization: a shift from a blind search for complexity to a diagnostics-driven analysis that reveals not only the surprising power of simple baselines but also the perilous nature of naive adaptation.
comment: 9pages, 6 figures
☆ IMLP: An Energy-Efficient Continual Learning Method for Tabular Data Streams
Tabular data streams are rapidly emerging as a dominant modality for real-time decision-making in healthcare, finance, and the Internet of Things (IoT). These applications commonly run on edge and mobile devices, where energy budgets, memory, and compute are strictly limited. Continual learning (CL) addresses such dynamics by training models sequentially on task streams while preserving prior knowledge and consolidating new knowledge. While recent CL work has advanced in mitigating catastrophic forgetting and improving knowledge transfer, the practical requirements of energy and memory efficiency for tabular data streams remain underexplored. In particular, existing CL solutions mostly depend on replay mechanisms whose buffers grow over time and exacerbate resource costs. We propose a context-aware incremental Multi-Layer Perceptron (IMLP), a compact continual learner for tabular data streams. IMLP incorporates a windowed scaled dot-product attention over a sliding latent feature buffer, enabling constant-size memory and avoiding storing raw data. The attended context is concatenated with current features and processed by shared feed-forward layers, yielding lightweight per-segment updates. To assess practical deployability, we introduce NetScore-T, a tunable metric coupling balanced accuracy with energy for Pareto-aware comparison across models and datasets. IMLP achieves up to $27.6\times$ higher energy efficiency than TabNet and $85.5\times$ higher than TabPFN, while maintaining competitive average accuracy. Overall, IMLP provides an easy-to-deploy, energy-efficient alternative to full retraining for tabular data streams.
☆ Predictive Feature Caching for Training-free Acceleration of Molecular Geometry Generation NeurIPS 2025
Flow matching models generate high-fidelity molecular geometries but incur significant computational costs during inference, requiring hundreds of network evaluations. This inference overhead becomes the primary bottleneck when such models are employed in practice to sample large numbers of molecular candidates. This work discusses a training-free caching strategy that accelerates molecular geometry generation by predicting intermediate hidden states across solver steps. The proposed method operates directly on the SE(3)-equivariant backbone, is compatible with pretrained models, and is orthogonal to existing training-based accelerations and system-level optimizations. Experiments on the GEOM-Drugs dataset demonstrate that caching achieves a twofold reduction in wall-clock inference time at matched sample quality and a speedup of up to 3x compared to the base model with minimal sample quality degradation. Because these gains compound with other optimizations, applying caching alongside other general, lossless optimizations yield as much as a 7x speedup.
comment: Accepted at the AI for Science Workshop @ NeurIPS 2025
☆ Evaluating LLMs for Demographic-Targeted Social Bias Detection: A Comprehensive Benchmark Study
Large-scale web-scraped text corpora used to train general-purpose AI models often contain harmful demographic-targeted social biases, creating a regulatory need for data auditing and developing scalable bias-detection methods. Although prior work has investigated biases in text datasets and related detection methods, these studies remain narrow in scope. They typically focus on a single content type (e.g., hate speech), cover limited demographic axes, overlook biases affecting multiple demographics simultaneously, and analyze limited techniques. Consequently, practitioners lack a holistic understanding of the strengths and limitations of recent large language models (LLMs) for automated bias detection. In this study, we present a comprehensive evaluation framework aimed at English texts to assess the ability of LLMs in detecting demographic-targeted social biases. To align with regulatory requirements, we frame bias detection as a multi-label task using a demographic-focused taxonomy. We then conduct a systematic evaluation with models across scales and techniques, including prompting, in-context learning, and fine-tuning. Using twelve datasets spanning diverse content types and demographics, our study demonstrates the promise of fine-tuned smaller models for scalable detection. However, our analyses also expose persistent gaps across demographic axes and multi-demographic targeted biases, underscoring the need for more effective and scalable auditing frameworks.
comment: 17 pages, 7 figures, 7 tables
☆ Compressed Concatenation of Small Embedding Models
Embedding models are central to dense retrieval, semantic search, and recommendation systems, but their size often makes them impractical to deploy in resource-constrained environments such as browsers or edge devices. While smaller embedding models offer practical advantages, they typically underperform compared to their larger counterparts. To bridge this gap, we demonstrate that concatenating the raw embedding vectors of multiple small models can outperform a single larger baseline on standard retrieval benchmarks. To overcome the resulting high dimensionality of naive concatenation, we introduce a lightweight unified decoder trained with a Matryoshka Representation Learning (MRL) loss. This decoder maps the high-dimensional joint representation to a low-dimensional space, preserving most of the original performance without fine-tuning the base models. We also show that while concatenating more base models yields diminishing gains, the robustness of the decoder's representation under compression and quantization improves. Our experiments show that, on a subset of MTEB retrieval tasks, our concat-encode-quantize pipeline recovers 89\% of the original performance with a 48x compression factor when the pipeline is applied to a concatenation of four small embedding models.
☆ Fairness in Repeated Matching: A Maximin Perspective
We study a sequential decision-making model where a set of items is repeatedly matched to the same set of agents over multiple rounds. The objective is to determine a sequence of matchings that either maximizes the utility of the least advantaged agent at the end of all rounds (optimal) or at the end of every individual round (anytime optimal). We investigate the computational challenges associated with finding (anytime) optimal outcomes and demonstrate that these problems are generally computationally intractable. However, we provide approximation algorithms, fixed-parameter tractable algorithms, and identify several special cases whereby the problem(s) can be solved efficiently. Along the way, we also establish characterizations of Pareto-optimal/maximum matchings, which may be of independent interest to works in matching theory and house allocation.
☆ Forecasting-Based Biomedical Time-series Data Synthesis for Open Data and Robust AI
The limited data availability due to strict privacy regulations and significant resource demands severely constrains biomedical time-series AI development, which creates a critical gap between data requirements and accessibility. Synthetic data generation presents a promising solution by producing artificial datasets that maintain the statistical properties of real biomedical time-series data without compromising patient confidentiality. We propose a framework for synthetic biomedical time-series data generation based on advanced forecasting models that accurately replicates complex electrophysiological signals such as EEG and EMG with high fidelity. These synthetic datasets preserve essential temporal and spectral properties of real data, which enables robust analysis while effectively addressing data scarcity and privacy challenges. Our evaluations across multiple subjects demonstrate that the generated synthetic data can serve as an effective substitute for real data and also significantly boost AI model performance. The approach maintains critical biomedical features while provides high scalability for various applications and integrates seamlessly into open-source repositories, substantially expanding resources for AI-driven biomedical research.
comment: Under Review
☆ Agentic Context Engineering: Evolving Contexts for Self-Improving Language Models
Large language model (LLM) applications such as agents and domain-specific reasoning increasingly rely on context adaptation -- modifying inputs with instructions, strategies, or evidence, rather than weight updates. Prior approaches improve usability but often suffer from brevity bias, which drops domain insights for concise summaries, and from context collapse, where iterative rewriting erodes details over time. Building on the adaptive memory introduced by Dynamic Cheatsheet, we introduce ACE (Agentic Context Engineering), a framework that treats contexts as evolving playbooks that accumulate, refine, and organize strategies through a modular process of generation, reflection, and curation. ACE prevents collapse with structured, incremental updates that preserve detailed knowledge and scale with long-context models. Across agent and domain-specific benchmarks, ACE optimizes contexts both offline (e.g., system prompts) and online (e.g., agent memory), consistently outperforming strong baselines: +10.6% on agents and +8.6% on finance, while significantly reducing adaptation latency and rollout cost. Notably, ACE could adapt effectively without labeled supervision and instead by leveraging natural execution feedback. On the AppWorld leaderboard, ACE matches the top-ranked production-level agent on the overall average and surpasses it on the harder test-challenge split, despite using a smaller open-source model. These results show that comprehensive, evolving contexts enable scalable, efficient, and self-improving LLM systems with low overhead.
♻ ☆ MALT: Improving Reasoning with Multi-Agent LLM Training
Large Language Models (LLMs) often produce answers with a single chain-of-thought, which restricts their ability to explore reasoning paths or self-correct flawed outputs in complex tasks. In this paper, we introduce MALT (Multi-Agent LLM Training), a novel post-training strategy that divides the reasoning process into generation, verification, and refinement steps using a sequential pipeline of heterogeneous agents. During data generation, each agent is repeatedly sampled to form a multi-agent search tree, where final outputs are graded against ground-truth data. We then apply value iteration to propagate reward signals back to each role-conditioned model, automatically producing multi-agent post-training data without human or teacher-model supervision. Our off-policy approach allows each agent to specialize by learning from correct and incorrect trajectories, ultimately improving the end-to-end reasoning chain. On MATH, GSM8K, and CSQA, MALT surpasses the same baseline LLM with a relative improvement of 15.66%, 7.42%, and 9.40% respectively, making it an important advance towards multi-agent cooperative training.
comment: Published at COLM 2025
♻ ☆ Learning Penalty for Optimal Partitioning via Automatic Feature Extraction
Changepoint detection identifies significant shifts in data sequences, making it important in areas like finance, genetics, and healthcare. The Optimal Partitioning algorithms efficiently detect these changes, using a penalty parameter to limit the changepoints count. Determining the optimal value for this penalty can be challenging. Traditionally, this process involved manually extracting statistical features, such as sequence length or variance to make the prediction. This study proposes a novel approach that uses recurrent networks to learn this penalty directly from raw sequences by automatically extracting features. Experiments conducted on 20 benchmark genomic datasets show that this novel method generally outperforms traditional ones in changepoint detection accuracy.
comment: 9 Figures
♻ ☆ Conformal Prediction for Long-Tailed Classification
Many real-world classification problems, such as plant identification, have extremely long-tailed class distributions. In order for prediction sets to be useful in such settings, they should (i) provide good class-conditional coverage, ensuring that rare classes are not systematically omitted from the prediction sets, and (ii) be a reasonable size, allowing users to easily verify candidate labels. Unfortunately, existing conformal prediction methods, when applied to the long-tailed setting, force practitioners to make a binary choice between small sets with poor class-conditional coverage or sets with very good class-conditional coverage but that are extremely large. We propose methods with guaranteed marginal coverage that smoothly trade off between set size and class-conditional coverage. First, we introduce a new conformal score function called prevalence-adjusted softmax that targets macro-coverage, a relaxed notion of class-conditional coverage. Second, we propose a new procedure that interpolates between marginal and class-conditional conformal prediction by linearly interpolating their conformal score thresholds. We demonstrate our methods on Pl@ntNet-300K and iNaturalist-2018, two long-tailed image datasets with 1,081 and 8,142 classes, respectively.
♻ ☆ PENEX: AdaBoost-Inspired Neural Network Regularization
AdaBoost sequentially fits so-called weak learners to minimize an exponential loss, which penalizes mislabeled data points more severely than other loss functions like cross-entropy. Paradoxically, AdaBoost generalizes well in practice as the number of weak learners grows. In the present work, we introduce Penalized Exponential Loss (PENEX), a new formulation of the multi-class exponential loss that is theoretically grounded and, in contrast to the existing formulation, amenable to optimization via first-order methods. We demonstrate both empirically and theoretically that PENEX implicitly maximizes margins of data points. Also, we show that gradient increments on PENEX implicitly parameterize weak learners in the boosting framework. Across computer vision and language tasks, we show that PENEX exhibits a regularizing effect often better than established methods with similar computational cost. Our results highlight PENEX's potential as an AdaBoost-inspired alternative for effective training and fine-tuning of deep neural networks.
♻ ☆ Diffusion^2: Turning 3D Environments into Radio Frequency Heatmaps
Modeling radio frequency (RF) signal propagation is essential for understanding the environment, as RF signals offer valuable insights beyond the capabilities of RGB cameras, which are limited by the visible-light spectrum, lens coverage, and occlusions. It is also useful for supporting wireless diagnosis, deployment, and optimization. However, accurately predicting RF signals in complex environments remains a challenge due to interactions with obstacles such as absorption and reflection. We introduce Diffusion^2, a diffusion-based approach that uses 3D point clouds to model the propagation of RF signals across a wide range of frequencies, from Wi-Fi to millimeter waves. To effectively capture RF-related features from 3D data, we present the RF-3D Encoder, which encapsulates the complexities of 3D geometry along with signal-specific details. These features undergo multi-scale embedding to simulate the actual RF signal dissemination process. Our evaluation, based on synthetic and real-world measurements, demonstrates that Diffusion^2 accurately estimates the behavior of RF signals in various frequency bands and environmental conditions, with an error margin of just 1.9 dB and 27x faster than existing methods, marking a significant advancement in the field. Refer to https://rfvision-project.github.io/ for more information.
♻ ☆ VidGuard-R1: AI-Generated Video Detection and Explanation via Reasoning MLLMs and RL
With the rapid advancement of AI-generated videos, there is an urgent need for effective detection tools to mitigate societal risks such as misinformation and reputational harm. In addition to accurate classification, it is essential that detection models provide interpretable explanations to ensure transparency for regulators and end users. To address these challenges, we introduce VidGuard-R1, the first video authenticity detector that fine-tunes a multi-modal large language model (MLLM) using group relative policy optimization (GRPO). Our model delivers both highly accurate judgments and insightful reasoning. We curate a challenging dataset of 140k real and AI-generated videos produced by state-of-the-art generation models, carefully designing the generation process to maximize discrimination difficulty. We then fine-tune Qwen-VL using GRPO with two specialized reward models that target temporal artifacts and generation complexity. Extensive experiments demonstrate that VidGuard-R1 achieves state-of-the-art zero-shot performance on existing benchmarks, with additional training pushing accuracy above 95%. Case studies further show that VidGuard-R1 produces precise and interpretable rationales behind its predictions. The code is publicly available at https://VidGuard-R1.github.io.
♻ ☆ Learning-Augmented Robust Algorithmic Recourse
Algorithmic recourse provides individuals who receive undesirable outcomes from machine learning systems with minimum-cost improvements to achieve a desirable outcome. However, machine learning models often get updated, so the recourse may not lead to the desired outcome. The robust recourse framework chooses recourses that are less sensitive to adversarial model changes, but this comes at a higher cost. To address this, we initiate the study of learning-augmented algorithmic recourse and evaluate the extent to which a designer equipped with a prediction of the future model can reduce the cost of recourse when the prediction is accurate (consistency) while also limiting the cost even when the prediction is inaccurate (robustness). We propose a novel algorithm, study the robustness-consistency trade-off, and analyze how prediction accuracy affects performance.
♻ ☆ Rethinking Exact Unlearning under Exposure: Extracting Forgotten Data under Exact Unlearning in Large Language Model
Large Language Models are typically trained on datasets collected from the web, which may inadvertently contain harmful or sensitive personal information. To address growing privacy concerns, unlearning methods have been proposed to remove the influence of specific data from trained models. Of these, exact unlearning -- which retrains the model from scratch without the target data -- is widely regarded the gold standard for mitigating privacy risks in deployment. In this paper, we revisit this assumption in a practical deployment setting where both the pre- and post-unlearning logits API are exposed, such as in open-weight scenarios. Targeting this setting, we introduce a novel data extraction attack that leverages signals from the pre-unlearning model to guide the post-unlearning model, uncovering patterns that reflect the removed data distribution. Combining model guidance with a token filtering strategy, our attack significantly improves extraction success rates -- doubling performance in some cases -- across common benchmarks such as MUSE, TOFU, and WMDP. Furthermore, we demonstrate our attack's effectiveness on a simulated medical diagnosis dataset to highlight real-world privacy risks associated with exact unlearning. In light of our findings, which suggest that unlearning may, in a contradictory way, increase the risk of privacy leakage during real-world deployments, we advocate for evaluation of unlearning methods to consider broader threat models that account not only for post-unlearning models but also for adversarial access to prior checkpoints. Code is publicly available at: https://github.com/Nicholas0228/unlearned_data_extraction_llm.
comment: Accepted by Neurips 2025
♻ ☆ RealKIE: Five Novel Datasets for Enterprise Key Information Extraction
We introduce RealKIE, a benchmark of five challenging datasets aimed at advancing key information extraction methods, with an emphasis on enterprise applications. The datasets include a diverse range of documents including SEC S1 Filings, US Non-disclosure Agreements, UK Charity Reports, FCC Invoices, and Resource Contracts. Each presents unique challenges: poor text serialization, sparse annotations in long documents, and complex tabular layouts. These datasets provide a realistic testing ground for key information extraction tasks like investment analysis and contract analysis. In addition to presenting these datasets, we offer an in-depth description of the annotation process, document processing techniques, and baseline modeling approaches. This contribution facilitates the development of NLP models capable of handling practical challenges and supports further research into information extraction technologies applicable to industry-specific problems. The annotated data, OCR outputs, and code to reproduce baselines are available to download at https://indicodatasolutions.github.io/RealKIE/.
♻ ☆ Reinforced Generation of Combinatorial Structures: Applications to Complexity Theory
We explore whether techniques from AI can help discover new combinatorial structures that improve on known limits on efficient algorithms. Specifically, we use AlphaEvolve (an LLM coding agent) to study two settings: a) Average-case hardness for MAX-CUT and MAX-Independent Set: We improve a recent result of Kunisky and Yu to obtain near-optimal upper and (conditional) lower bounds on certification algorithms for MAX-CUT and MAX-Independent Set on random 3- and 4-regular graphs. Our improved lower bounds are obtained by constructing nearly extremal Ramanujan graphs on as many as $163$ nodes, using AlphaEvolve. Additionally, via analytical arguments we strengthen the upper bounds to settle the computational hardness of these questions up to an error in the third decimal place. b) Worst-case Hardness of Approximation for MAX-k-CUT: We obtain new inapproximability results, proving that it is NP-hard to approximate MAX-4-CUT and MAX-3-CUT within factors of $0.987$ and $0.9649$ respectively, using AlphaEvolve to discover new gadget reductions. Our MAX-4-CUT result improves upon the SOTA of $0.9883$, and our MAX-3-CUT result improves on the current best gadget-based inapproximability result of $0.9853$, but falls short of improving the SOTA of $16/17$ that relies on a custom PCP, rather than a gadget reduction from "standard" H{\aa}stad-style PCPs. A key technical challenge we faced: verifying a candidate construction produced by AlphaEvolve is costly (often requiring exponential time). In both settings above, our results were enabled by using AlphaEvolve itself to evolve the verification procedure to be faster (sometimes by $10,000\times$). We conclude with a discussion of norms by which to assess the assistance from AI in developing proofs.
♻ ☆ Fast constrained sampling in pre-trained diffusion models
Large denoising diffusion models, such as Stable Diffusion, have been trained on billions of image-caption pairs to perform text-conditioned image generation. As a byproduct of this training, these models have acquired general knowledge about image statistics, which can be useful for other inference tasks. However, when confronted with sampling an image under new constraints, e.g. generating the missing parts of an image, using large pre-trained text-to-image diffusion models is inefficient and often unreliable. Previous approaches either utilized backpropagation through the denoiser network, making them significantly slower and more memory-demanding than simple text-to-image generation, or only enforced the constraint locally, failing to capture critical long-range correlations in the sampled image. In this work, we propose an algorithm that enables fast, high-quality generation under arbitrary constraints. We show that in denoising diffusion models, we can employ an approximation to Newton's optimization method that allows us to speed up inference and avoid the expensive backpropagation operations. Our approach produces results that rival or surpass the state-of-the-art training-free inference methods while requiring a fraction of the time. We demonstrate the effectiveness of our algorithm under both linear (inpainting, super-resolution) and non-linear (style-guided generation) constraints. An implementation is provided at https://github.com/cvlab-stonybrook/fast-constrained-sampling.
♻ ☆ Large Language Model Hacking: Quantifying the Hidden Risks of Using LLMs for Text Annotation
Large language models are rapidly transforming social science research by enabling the automation of labor-intensive tasks like data annotation and text analysis. However, LLM outputs vary significantly depending on the implementation choices made by researchers (e.g., model selection or prompting strategy). Such variation can introduce systematic biases and random errors, which propagate to downstream analyses and cause Type I (false positive), Type II (false negative), Type S (wrong sign), or Type M (exaggerated effect) errors. We call this phenomenon where configuration choices lead to incorrect conclusions LLM hacking. We find that intentional LLM hacking is strikingly simple. By replicating 37 data annotation tasks from 21 published social science studies, we show that, with just a handful of prompt paraphrases, virtually anything can be presented as statistically significant. Beyond intentional manipulation, our analysis of 13 million labels from 18 different LLMs across 2361 realistic hypotheses shows that there is also a high risk of accidental LLM hacking, even when following standard research practices. We find incorrect conclusions in approximately 31% of hypotheses for state-of-the-art LLMs, and in half the hypotheses for smaller language models. While higher task performance and stronger general model capabilities reduce LLM hacking risk, even highly accurate models remain susceptible. The risk of LLM hacking decreases as effect sizes increase, indicating the need for more rigorous verification of LLM-based findings near significance thresholds. We analyze 21 mitigation techniques and find that human annotations provide crucial protection against false positives. Common regression estimator correction techniques can restore valid inference but trade off Type I vs. Type II errors. We publish a list of practical recommendations to prevent LLM hacking.
♻ ☆ In-Context Learning for Pure Exploration
We study the problem active sequential hypothesis testing, also known as pure exploration: given a new task, the learner adaptively collects data from the environment to efficiently determine an underlying correct hypothesis. A classical instance of this problem is the task of identifying the best arm in a multi-armed bandit problem (a.k.a. BAI, Best-Arm Identification), where actions index hypotheses. Another important case is generalized search, a problem of determining the correct label through a sequence of strategically selected queries that indirectly reveal information about the label. In this work, we introduce In-Context Pure Exploration (ICPE), which meta-trains Transformers to map observation histories to query actions and a predicted hypothesis, yielding a model that transfers in-context. At inference time, ICPE actively gathers evidence on new tasks and infers the true hypothesis without parameter updates. Across deterministic, stochastic, and structured benchmarks, including BAI and generalized search, ICPE is competitive with adaptive baselines while requiring no explicit modeling of information structure. Our results support Transformers as practical architectures for general sequential testing.
♻ ☆ Cooperative Decentralized Backdoor Attacks on Vertical Federated Learning
Federated learning (FL) is vulnerable to backdoor attacks, where adversaries alter model behavior on target classification labels by embedding triggers into data samples. While these attacks have received considerable attention in horizontal FL, they are less understood for vertical FL (VFL), where devices hold different features of the samples, and only the server holds the labels. In this work, we propose a novel backdoor attack on VFL which (i) does not rely on gradient information from the server and (ii) considers potential collusion among multiple adversaries for sample selection and trigger embedding. Our label inference model augments variational autoencoders with metric learning, which adversaries can train locally. A consensus process over the adversary graph topology determines which datapoints to poison. We further propose methods for trigger splitting across the adversaries, with an intensity-based implantation scheme skewing the server towards the trigger. Our convergence analysis reveals the impact of backdoor perturbations on VFL indicated by a stationarity gap for the trained model, which we verify empirically as well. We conduct experiments comparing our attack with recent backdoor VFL approaches, finding that ours obtains significantly higher success rates for the same main task performance despite not using server information. Additionally, our results verify the impact of collusion on attack performance.
comment: This paper is currently under review in the IEEE/ACM Transactions on Networking Special Issue on AI and Networking
♻ ☆ QDFlow: A Python package for physics simulations of quantum dot devices
Recent advances in machine learning (ML) have accelerated progress in calibrating and operating quantum dot (QD) devices. However, most ML approaches rely on access to large, representative datasets designed to capture the full spectrum of data quality encountered in practice, with both high- and low-quality data for training, benchmarking, and validation, with labels capturing key features of the device state. Collating such datasets experimentally is challenging due to limited data availability, slow measurement bandwidths, and the labor-intensive nature of labeling. QDFlow is an open-source physics simulator for multi-QD arrays that generates realistic synthetic data with ground-truth labels. QDFlow combines a self-consistent Thomas-Fermi solver, a dynamic capacitance model, and flexible noise modules to simulate charge stability diagrams and ray-based data closely resembling experiments. With an extensive set of parameters that can be varied and customizable noise models, QDFlow supports the creation of large, diverse datasets for ML development, benchmarking, and quantum device research.
comment: 17 pages, 5 figures
♻ ☆ Data-Driven Performance Guarantees for Classical and Learned Optimizers
We introduce a data-driven approach to analyze the performance of continuous optimization algorithms using generalization guarantees from statistical learning theory. We study classical and learned optimizers to solve families of parametric optimization problems. We build generalization guarantees for classical optimizers, using a sample convergence bound, and for learned optimizers, using the Probably Approximately Correct (PAC)-Bayes framework. To train learned optimizers, we use a gradient-based algorithm to directly minimize the PAC-Bayes upper bound. Numerical experiments in signal processing, control, and meta-learning showcase the ability of our framework to provide strong generalization guarantees for both classical and learned optimizers given a fixed budget of iterations. For classical optimizers, our bounds are much tighter than those that worst-case guarantees provide. For learned optimizers, our bounds outperform the empirical outcomes observed in their non-learned counterparts.
♻ ☆ Critical Points of Random Neural Networks
This work investigates the expected number of critical points of random neural networks with different activation functions as the depth increases in the infinite-width limit. Under suitable regularity conditions, we derive precise asymptotic formulas for the expected number of critical points of fixed index and those exceeding a given threshold. Our analysis reveals three distinct regimes depending on the value of the first derivative of the covariance evaluated at 1: the expected number of critical points may converge, grow polynomially, or grow exponentially with depth. The theoretical predictions are supported by numerical experiments. Moreover, we provide numerical evidence suggesting that, when the regularity condition is not satisfied (e.g. for neural networks with ReLU as activation function), the number of critical points increases as the map resolution increases, indicating a potential divergence in the number of critical points.
♻ ☆ Physics-informed Value Learner for Offline Goal-Conditioned Reinforcement Learning
Offline Goal-Conditioned Reinforcement Learning (GCRL) holds great promise for domains such as autonomous navigation and locomotion, where collecting interactive data is costly and unsafe. However, it remains challenging in practice due to the need to learn from datasets with limited coverage of the state-action space and to generalize across long-horizon tasks. To improve on these challenges, we propose a \emph{Physics-informed (Pi)} regularized loss for value learning, derived from the Eikonal Partial Differential Equation (PDE) and which induces a geometric inductive bias in the learned value function. Unlike generic gradient penalties that are primarily used to stabilize training, our formulation is grounded in continuous-time optimal control and encourages value functions to align with cost-to-go structures. The proposed regularizer is broadly compatible with temporal-difference-based value learning and can be integrated into existing Offline GCRL algorithms. When combined with Hierarchical Implicit Q-Learning (HIQL), the resulting method, Eikonal-regularized HIQL (Eik-HIQL), yields significant improvements in both performance and generalization, with pronounced gains in stitching regimes and large-scale navigation tasks.
♻ ☆ Another look at inference after prediction
From structural biology to epidemiology, predictions from machine learning (ML) models increasingly complement costly gold-standard data to enable faster, more affordable, and scalable scientific inquiry. In response, prediction-based (PB) inference has emerged to accommodate statistical analysis using a large volume of predictions together with a small amount of gold-standard data. The goals of PB inference are two-fold: (i) to mitigate bias from errors in predictions and (ii) to improve efficiency relative to classical inference using only the gold-standard data. While early PB inference methods focused on bias, their ability to enhance efficiency remains a focus of ongoing research. We revisit a foundational PB inference method and show that a simple modification can be applied to guarantee provable improvements in efficiency. In doing so, we establish new connections between augmented inverse probability weighted estimators (AIPW) and several recently proposed PB inference methods with a similar focus. The utility of our proposal, which leverages prediction-based outcomes to enhance efficiency, is demonstrated through extensive simulation studies and an application to real data from the UK Biobank. Further, we contextualize PB inference by drawing connections to historical literature from economics and statistics, highlighting how classic methods directly inform this contemporary problem.
♻ ☆ Multi-Turn Human-LLM Interaction Through the Lens of a Two-Way Intelligibility Protocol NeurIPS 2025
Our interest is in the design of software systems involving a human-expert interacting -- using natural language -- with a large language model (LLM) on data analysis tasks. For complex problems, it is possible that LLMs can harness human expertise and creativity to find solutions that were otherwise elusive. On one level, this interaction takes place through multiple turns of prompts from the human and responses from the LLM. Here we investigate a more structured approach based on an abstract protocol described in [3] for interaction between agents. The protocol is motivated by a notion of "two-way intelligibility" and is modelled by a pair of communicating finite-state machines. We provide an implementation of the protocol, and provide empirical evidence of using the implementation to mediate interactions between an LLM and a human-agent in two areas of scientific interest (radiology and drug design). We conduct controlled experiments with a human proxy (a database), and uncontrolled experiments with human subjects. The results provide evidence in support of the protocol's capability of capturing one- and two-way intelligibility in human-LLM interaction; and for the utility of two-way intelligibility in the design of human-machine systems. Our code is available at https://github.com/karannb/interact.
comment: Multi-Turn Interactions in Large Language Models (MTI-LLM) Workshop at NeurIPS 2025
♻ ☆ A Deterministic Information Bottleneck Method for Clustering Mixed-Type Data
In this paper, we present an information-theoretic method for clustering mixed-type data, that is, data consisting of both continuous and categorical variables. The proposed approach extends the Information Bottleneck principle to heterogeneous data through generalised product kernels, integrating continuous, nominal, and ordinal variables within a unified optimization framework. We address the following challenges: developing a systematic bandwidth selection strategy that equalises contributions across variable types, and proposing an adaptive hyperparameter updating scheme that ensures a valid solution into a predetermined number of potentially imbalanced clusters. Through simulations on 28,800 synthetic data sets and ten publicly available benchmarks, we demonstrate that the proposed method, named DIBmix, achieves superior performance compared to four established methods (KAMILA, K-Prototypes, FAMD with K-Means, and PAM with Gower's dissimilarity). Results show DIBmix particularly excels when clusters exhibit size imbalances, data contain low or moderate cluster overlap, and categorical and continuous variables are equally represented. The method presents a significant advantage over traditional centroid-based algorithms, establishing DIBmix as a competitive and theoretically grounded alternative for mixed-type data clustering.
comment: 33 pages
♻ ☆ CHARME: A chain-based reinforcement learning approach for the minor embedding problem
Quantum annealing (QA) has great potential to solve combinatorial optimization problems efficiently. However, the effectiveness of QA algorithms is heavily based on the embedding of problem instances, represented as logical graphs, into the quantum processing unit (QPU) whose topology is in the form of a limited connectivity graph, known as the minor embedding problem. Because the minor embedding problem is an NP-hard problem~\mbox{\cite{Goodrich2018}}, existing methods for the minor embedding problem suffer from scalability issues when faced with larger problem sizes. In this paper, we propose a novel approach utilizing Reinforcement Learning (RL) techniques to address the minor embedding problem, named CHARME. CHARME includes three key components: a Graph Neural Network (GNN) architecture for policy modeling, a state transition algorithm that ensures solution validity, and an order exploration strategy for effective training. Through comprehensive experiments on synthetic and real-world instances, we demonstrate the efficiency of our proposed order exploration strategy as well as our proposed RL framework, CHARME. In particular, CHARME yields superior solutions in terms of qubit usage compared to fast embedding methods such as Minorminer and ATOM. Moreover, our method surpasses the OCT-based approach, known for its slower runtime but high-quality solutions, in several cases. In addition, our proposed exploration enhances the efficiency of the training of the CHARME framework by providing better solutions compared to the greedy strategy.
♻ ☆ What Lurks Within? Concept Auditing for Shared Diffusion Models at Scale CCS 2025
Diffusion models (DMs) have revolutionized text-to-image generation, enabling the creation of highly realistic and customized images from text prompts. With the rise of parameter-efficient fine-tuning (PEFT) techniques, users can now customize powerful pre-trained models using minimal computational resources. However, the widespread sharing of fine-tuned DMs on open platforms raises growing ethical and legal concerns, as these models may inadvertently or deliberately generate sensitive or unauthorized content. Despite increasing regulatory attention on generative AI, there are currently no practical tools for systematically auditing these models before deployment. In this paper, we address the problem of concept auditing: determining whether a fine-tuned DM has learned to generate a specific target concept. Existing approaches typically rely on prompt-based input crafting and output-based image classification but they suffer from critical limitations, including prompt uncertainty, concept drift, and poor scalability. To overcome these challenges, we introduce Prompt-Agnostic Image-Free Auditing (PAIA), a novel, model-centric concept auditing framework. By treating the DM as the object of inspection, PAIA enables direct analysis of internal model behavior, bypassing the need for optimized prompts or generated images. We evaluate PAIA on 320 controlled models trained with curated concept datasets and 771 real-world community models sourced from a public DM sharing platform. Evaluation results show that PAIA achieves over 90% detection accuracy while reducing auditing time by 18 - 40X compared to existing baselines. To our knowledge, PAIA is the first scalable and practical solution for pre-deployment concept auditing of diffusion models, providing a practical foundation for safer and more transparent diffusion model sharing.
comment: Extended version of the paper accepted at CCS 2025
♻ ☆ AgentRewardBench: Evaluating Automatic Evaluations of Web Agent Trajectories
Web agents enable users to perform tasks on web browsers through natural language interaction. Evaluating web agents trajectories is an important problem, since it helps us determine whether the agent successfully completed the tasks. Rule-based methods are widely used for this purpose, but they are challenging to extend to new tasks and may not always recognize successful trajectories. We may achieve higher accuracy through human evaluation, but the process would be substantially slower and more expensive. Automatic evaluations with LLMs may avoid the challenges of designing new rules and manually annotating trajectories, enabling faster and cost-effective evaluation. However, it is unclear how effective they are at evaluating web agents. To this end, we propose AgentRewardBench, the first benchmark to assess the effectiveness of LLM judges for evaluating web agents. AgentRewardBench contains 1302 trajectories across 5 benchmarks and 4 LLMs. Each trajectory in AgentRewardBench is reviewed by an expert, who answers questions pertaining to the success, side effects, and repetitiveness of the agent. Using our benchmark, we evaluate 12 LLM judges and find that no single LLM excels across all benchmarks. We also find that the rule-based evaluation used by common benchmarks tends to underreport the success rate of web agents, highlighting a key weakness of rule-based evaluation and the need to develop more flexible automatic evaluations. We release the benchmark at: https://agent-reward-bench.github.io
♻ ☆ Agentic Additive Manufacturing Alloy Discovery
Agentic systems enable the intelligent use of research tooling, augmenting a researcher's ability to investigate and propose novel solutions to existing problems. Within Additive Manufacturing (AM), alloy discovery remains a complex challenge, often requiring expertise in the various domains of materials science, thermodynamic simulations, and experimental analysis. Large Language Model (LLM) enabled agents can facilitate this endeavor by utilizing their extensive knowledge base to dispatch tool calls via Model Context Protocol (MCP) to perform actions such as Thermo-Calc property diagram calculations and lack of fusion process map generation. In addition, the multi-agent system developed in this work is able to effectively reason through complex user prompts and provide analysis on the printability of proposed alloys. These agents can dynamically adjust their task trajectory to the outcomes of tool call results, effectively enabling autonomous decision-making in practical environments. This work aims to utilize LLM enabled agents to automate and accelerate the task of alloy discovery within the field of additive manufacturing and showcase the benefits of adopting this multi-agent system.
♻ ☆ H3Fusion: Helpful, Harmless, Honest Fusion of Aligned LLMs
Alignment of pretrained LLMs using instruction-based datasets is critical for creating fine-tuned models that reflect human preference. A growing number of alignment-based fine-tuning algorithms and benchmarks emerged recently, fueling the efforts on effective alignments of pre-trained LLMs to ensure helpful, harmless, and honest answers from both open-source and closed-source LLMs. This paper tackles this problem by developing an alignment fusion approach, coined as $H^3$Fusion, with three unique characteristics. First, $H^3$Fusion ensembles multiple individually aligned LLMs to create a final fine-tuned alignment model with enhanced capabilities beyond those of individual models, delivering robust alignment through promoting helpful, harmless, honest fusion. Second, $H^3$Fusion leverages the mixture-of-experts (MoE) methodology in two steps. We first freeze the multi-head attention weights of each individual model while tuning the FFN layer during alignment fusion. Then we merge the aligned model weights with an expert router according to the type of input instruction and dynamically select a subset of experts that are best suited for producing the output response. Finally, we boost the performance of the resulting $H^3$3Fusion model by introducing gating loss and regularization terms. The former penalizes the selection errors of the expert-router, and the latter mediates the expert weights drifting during fine-tuning and dynamically adjusts the fusion behavior of the resulting model by canalizing the activations on the experts. Extensive evaluations on three benchmark datasets show that $H^3$3Fusion is more helpful, less harmful, and more honest from two aspects: it outperforms each individually aligned model by $11.37\%$, and it provides stronger robustness compared to the state-of-the-art LLM ensemble approaches by $13.77\%$. Code is available at github.com/sftekin/h3fusion.
♻ ☆ Summaries as Centroids for Interpretable and Scalable Text Clustering
We introduce k-NLPmeans and k-LLMmeans, text-clustering variants of k-means that periodically replace numeric centroids with textual summaries. The key idea, summary-as-centroid, retains k-means assignments in embedding space while producing human-readable, auditable cluster prototypes. The method is LLM-optional: k-NLPmeans uses lightweight, deterministic summarizers, enabling offline, low-cost, and stable operation; k-LLMmeans is a drop-in upgrade that uses an LLM for summaries under a fixed per-iteration budget whose cost does not grow with dataset size. We also present a mini-batch extension for real-time clustering of streaming text. Across diverse datasets, embedding models, and summarization strategies, our approach consistently outperforms classical baselines and approaches the accuracy of recent LLM-based clustering-without extensive LLM calls. Finally, we provide a case study on sequential text streams and release a StackExchange-derived benchmark for evaluating streaming text clustering.
♻ ☆ Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays
Federated learning (FL) was recently proposed to securely train models with data held over multiple locations (``clients'') under the coordination of a central server. Prolonged training times caused by slow clients may hinder the performance of FL; while asynchronous communication is a promising solution, highly heterogeneous client response times under non-IID local data may introduce significant bias to the global model, particularly in client-driven setups where sampling is infeasible. To address this issue, we propose \underline{A}synch\underline{R}onous \underline{E}xact \underline{A}veraging (\textsc{AREA}), a stochastic (sub)gradient method that leverages asynchrony for scalability and uses client-side memory to correct the bias induced by uneven participation, without client sampling or prior knowledge of client latencies. \textsc{AREA} communicates model residuals rather than gradient estimates, reducing exposure to gradient inversion, and is compatible with secure aggregation. Under standard assumptions and unbounded, heterogeneous delays with finite mean, AREA achieves optimal convergence rates: $\mathcal{O}(1/K)$ in the strongly convex, smooth regime and $\mathcal{O}(1/\sqrt{K})$ in the convex, nonsmooth regime. For strongly convex, smooth objectives, we demonstrate theoretically and empirically that AREA accommodates larger step sizes than existing methods, enabling fast convergence without adversely impacting model generalization. In the convex, nonsmooth setting, to our knowledge we are the first to obtain rates that scale with the average client update frequency rather than the minimum or maximum, indicating increased robustness to outliers.
♻ ☆ The Syntax and Semantics of einsum
In 2011, einsum was introduced to NumPy as a practical and convenient notation for tensor expressions in machine learning, quantum circuit simulation, and other fields. It has since been implemented in additional Python frameworks such as PyTorch and TensorFlow, as well as in other programming languages such as Julia. Despite its practical success, the einsum notation still lacks a solid theoretical basis, and is not unified across the different frameworks, limiting opportunities for formal reasoning and systematic optimization. In this work, we discuss the terminology of tensor expressions and provide a formal definition of the einsum language. Based on this definition, we formalize and prove important equivalence rules for tensor expressions and highlight their relevance in practical applications.
comment: 21 pages, 1 figure. Includes formal definitions, proofs of algebraic properties, and nesting/denesting rules for the einsum notation
♻ ☆ Impact of Dataset Properties on Membership Inference Vulnerability of Deep Transfer Learning NeurIPS 2025
Membership inference attacks (MIAs) are used to test practical privacy of machine learning models. MIAs complement formal guarantees from differential privacy (DP) under a more realistic adversary model. We analyse MIA vulnerability of fine-tuned neural networks both empirically and theoretically, the latter using a simplified model of fine-tuning. We show that the vulnerability of non-DP models when measured as the attacker advantage at a fixed false positive rate reduces according to a simple power law as the number of examples per class increases. A similar power-law applies even for the most vulnerable points, but the dataset size needed for adequate protection of the most vulnerable points is very large.
comment: Accepted to NeurIPS 2025; 47 pages, 13 figures
♻ ☆ First Hallucination Tokens Are Different from Conditional Ones
Large Language Models (LLMs) hallucinate, and detecting these cases is key to ensuring trust. While many approaches address hallucination detection at the response or span level, recent work explores token-level detection, enabling more fine-grained intervention. However, the distribution of hallucination signal across sequences of hallucinated tokens remains unexplored. We leverage token-level annotations from the RAGTruth corpus and find that the first hallucinated token is far more detectable than later ones. This structural property holds across models, suggesting that first hallucination tokens play a key role in token-level hallucination detection. Our code is available at https://github.com/jakobsnl/RAGTruth_Xtended.
comment: 4.5 pages, 3 figures, Dataset, Knowledge Paper, Hallucination, Trustworthiness
♻ ☆ Unified ODE Analysis of Smooth Q-Learning Algorithms
Convergence of Q-learning has been the focus of extensive research over the past several decades. Recently, an asymptotic convergence analysis for Q-learning was introduced using a switching system framework. This approach applies the so-called ordinary differential equation (ODE) approach to prove the convergence of the asynchronous Q-learning modeled as a continuous-time switching system, where notions from switching system theory are used to prove its asymptotic stability without using explicit Lyapunov arguments. However, to prove stability, restrictive conditions, such as quasi-monotonicity, must be satisfied for the underlying switching systems, which makes it hard to easily generalize the analysis method to other reinforcement learning algorithms, such as the smooth Q-learning variants. In this paper, we present a more general and unified convergence analysis that improves upon the switching system approach and can analyze Q-learning and its smooth variants. The proposed analysis is motivated by previous work on the convergence of synchronous Q-learning based on $p$-norm serving as a Lyapunov function. However, the proposed analysis addresses more general ODE models that can cover both asynchronous Q-learning and its smooth versions with simpler frameworks.
♻ ☆ PRO-VPT: Distribution-Adaptive Visual Prompt Tuning via Prompt Relocation ICCV 2025
Visual prompt tuning (VPT), i.e., fine-tuning some lightweight prompt tokens, provides an efficient and effective approach for adapting pre-trained models to various downstream tasks. However, most prior art indiscriminately uses a fixed prompt distribution across different tasks, neglecting the importance of each block varying depending on the task. In this paper, we introduce adaptive distribution optimization (ADO) by tackling two key questions: (1) How to appropriately and formally define ADO, and (2) How to design an adaptive distribution strategy guided by this definition? Through empirical analysis, we first confirm that properly adjusting the distribution significantly improves VPT performance, and further uncover a key insight that a nested relationship exists between ADO and VPT. Based on these findings, we propose a new VPT framework, termed PRO-VPT (iterative Prompt RelOcation-based VPT), which adaptively adjusts the distribution built upon a nested optimization formulation. Specifically, we develop a prompt relocation strategy derived from this formulation, comprising two steps: pruning idle prompts from prompt-saturated blocks, followed by allocating these prompts to the most prompt-needed blocks. By iteratively performing prompt relocation and VPT, our proposal can adaptively learn the optimal prompt distribution in a nested optimization-based manner, thereby unlocking the full potential of VPT. Extensive experiments demonstrate that our proposal significantly outperforms advanced VPT methods, e.g., PRO-VPT surpasses VPT by 1.6 pp and 2.0 pp average accuracy, leading prompt-based methods to state-of-the-art performance on VTAB-1k and FGVC benchmarks. The code is available at https://github.com/ckshang/PRO-VPT.
comment: Accepted by ICCV 2025
♻ ☆ DiffSampling: Enhancing Diversity and Accuracy in Neural Text Generation
Despite their growing capabilities, language models still frequently reproduce content from their training data, generate repetitive text, and favor common grammatical patterns and vocabulary. A possible cause is the decoding strategy: the most common strategies either consider only the most probable tokens, which reduces output diversity, or increase the likelihood of unlikely tokens, compromising output accuracy and correctness. In this paper, we propose DiffSampling, a new decoding method that leverages a mathematical analysis of the token probability distribution to ensure the generation of contextually appropriate text. In particular, the difference between consecutive, sorted probabilities can be used to truncate incorrect tokens. In addition, we also propose two variations of the proposed method that aim to correct the subtle inconsistencies of common sampling strategies. Experiments involving four different text-generation tasks demonstrate that our approach consistently performs at least on par with the existing methods it builds upon in terms of quality, while potentially improving output diversity.
♻ ☆ Joint Diffusion models in Continual Learning
In this work, we introduce JDCL - a new method for continual learning with generative rehearsal based on joint diffusion models. Neural networks suffer from catastrophic forgetting defined as abrupt loss in the model's performance when retrained with additional data coming from a different distribution. Generative-replay-based continual learning methods try to mitigate this issue by retraining a model with a combination of new and rehearsal data sampled from a generative model. In this work, we propose to extend this idea by combining a continually trained classifier with a diffusion-based generative model into a single - jointly optimized neural network. We show that such shared parametrization, combined with the knowledge distillation technique allows for stable adaptation to new tasks without catastrophic forgetting. We evaluate our approach on several benchmarks, where it outperforms recent state-of-the-art generative replay techniques. Additionally, we extend our method to the semi-supervised continual learning setup, where it outperforms competing buffer-based replay techniques, and evaluate, in a self-supervised manner, the quality of trained representations.
♻ ☆ Fine-Grained AI Model Caching and Downloading With Coordinated Multipoint Broadcasting in Multi-Cell Edge Networks
6G networks are envisioned to support on-demand AI model downloading to accommodate diverse inference requirements of end users. By proactively caching models at edge nodes, users can retrieve the requested models with low latency for on-device AI inference. However, the substantial size of contemporary AI models poses significant challenges for edge caching under limited storage capacity, as well as for the concurrent delivery of heterogeneous models over wireless channels. To address these challenges, we propose a fine-grained AI model caching and downloading system that exploits parameter reusability, stemming from the common practice of fine-tuning task-specific models from a shared pre-trained model with frozen parameters. This system selectively caches model parameter blocks (PBs) at edge nodes, eliminating redundant storage of reusable parameters across different cached models. Additionally, it incorporates coordinated multipoint (CoMP) broadcasting to simultaneously deliver reusable PBs to multiple users, thereby enhancing downlink spectrum utilization. Under this arrangement, we formulate a model downloading delay minimization problem to jointly optimize PB caching, migration (among edge nodes), and broadcasting beamforming. To tackle this intractable problem, we develop a distributed multi-agent learning framework that enables edge nodes to explicitly learn mutual influence among their actions, thereby facilitating cooperation. Furthermore, a data augmentation approach is proposed to adaptively generate synthetic training samples through a predictive model, boosting sample efficiency and accelerating policy learning. Both theoretical analysis and simulation experiments validate the superior convergence performance of the proposed learning framework.
♻ ☆ Distributional Inverse Reinforcement Learning
We propose a distributional framework for offline Inverse Reinforcement Learning (IRL) that jointly models uncertainty over reward functions and full distributions of returns. Unlike conventional IRL approaches that recover a deterministic reward estimate or match only expected returns, our method captures richer structure in expert behavior, particularly in learning the reward distribution, by minimizing first-order stochastic dominance (FSD) violations and thus integrating distortion risk measures (DRMs) into policy learning, enabling the recovery of both reward distributions and distribution-aware policies. This formulation is well-suited for behavior analysis and risk-aware imitation learning. Empirical results on synthetic benchmarks, real-world neurobehavioral data, and MuJoCo control tasks demonstrate that our method recovers expressive reward representations and achieves state-of-the-art imitation performance.
♻ ☆ TRA: Better Length Generalisation with Threshold Relative Attention
Transformers struggle with length generalisation, displaying poor performance even on basic tasks. We test whether these limitations can be explained through two key failures of the self-attention mechanism. The first is the inability to fully remove irrelevant information. The second is tied to position, even if the dot product between a key and query is highly negative (i.e. an irrelevant key) learned positional biases may unintentionally up-weight such information - dangerous when distances become out of distribution. Put together, these two failure cases lead to compounding generalisation difficulties. We test whether they can be mitigated through the combination of a) selective sparsity - completely removing irrelevant keys from the attention softmax and b) contextualised relative distance - distance is only considered as between the query and the keys that matter. We show how refactoring the attention mechanism with these two mitigations in place can substantially improve the generalisation capabilities of decoder only transformers.
♻ ☆ Silent Tokens, Loud Effects: Padding in LLMs NeurIPS 2025
Padding tokens are widely used in large language models (LLMs) to equalize sequence lengths during batched inference. While they should be fully masked, implementation errors can cause them to influence computation, and the extent of this influence is not well understood. We systematically study this effect across three open-source model families (Llama, Gemma, Qwen), inserting controlled amounts of padding and evaluating outcomes along four axes: activations, generation quality, bias, and safety. Even small amounts of padding shift hidden representations, degrade quality in smaller models, alter bias in unpredictable ways, and weaken safety guardrails. These findings demonstrate that padding is not a harmless detail but a robustness risk that must be carefully handled in deployment.
comment: Accepted to NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
♻ ☆ Rethinking KL Regularization in RLHF: From Value Estimation to Gradient Optimization
Reinforcement Learning from Human Feedback (RLHF) leverages a Kullback-Leibler (KL) divergence loss to stabilize training and prevent overfitting. However, in methods such as GRPO, its implementation may be guided by principles from numerical value estimation-a practice that overlooks the term's functional role as an optimization loss. To analyze this issue, we establish a unified framework that connects two seemingly distinct implementation styles: using the mathematical term $k_n$ as a detached coefficient for the policy's score function ('$k_n$ in reward') or as a direct loss function through which gradients are propagated ('$k_n$ as loss'). We show that the latter can always be analyzed via an equivalent gradient coefficient in the former, unifying the two perspectives. Through this framework, we prove that the conventional '$k_1$ in reward' (like in PPO) is the principled loss for Reverse KL (RKL) regularization. We further establish a key finding: under on-policy conditions, the '$k_2$ as loss' formulation is, in fact, gradient-equivalent to '$k_1$ in reward'. This equivalence, first proven in our work, identifies both as the theoretically sound implementations of the RKL objective. In contrast, we show that the recently adopted '$k_3$ as loss' (like in GRPO) is merely a first-order, biased approximation of the principled loss. Furthermore, we argue that common off-policy implementations of '$k_n$ as loss' methods are biased due to neglected importance sampling, and we propose a principled correction. Our findings provide a comprehensive, gradient-based rationale for choosing and correctly implementing KL regularization, paving the way for more robust and effective RLHF systems.
♻ ☆ Low Resource Audio Codec Challenge Baseline Systems
The Low-Resource Audio Codec (LRAC) Challenge aims to advance neural audio coding for deployment in resource-constrained environments. The first edition focuses on low-resource neural speech codecs that must operate reliably under everyday noise and reverberation, while satisfying strict constraints on computational complexity, latency, and bitrate. Track 1 targets transparency codecs, which aim to preserve the perceptual transparency of input speech under mild noise and reverberation. Track 2 addresses enhancement codecs, which combine coding and compression with denoising and dereverberation. This paper presents the official baseline systems for both tracks in the 2025 LRAC Challenge. The baselines are convolutional neural codec models with Residual Vector Quantization, trained end-to-end using a combination of adversarial and reconstruction objectives. We detail the data filtering and augmentation strategies, model architectures, optimization procedures, and checkpoint selection criteria.
comment: Low-Resource Audio Codec Challenge 2025
♻ ☆ Unlocking In-Context Learning for Natural Datasets Beyond Language Modelling
Large Language Models (LLMs) exhibit In-Context Learning (ICL), which enables the model to perform new tasks conditioning only on the examples provided in the context without updating the model's weights. While ICL offers fast adaptation across natural language tasks and domains, its emergence is less straightforward for modalities beyond text. In this work, we systematically uncover properties present in LLMs that support the emergence of ICL for autoregressive models and various modalities by promoting the learning of the needed mechanisms for ICL. We identify exact token repetitions in the training data sequences as an important factor for ICL. Such repetitions further improve stability and reduce transiency in ICL performance. Moreover, we emphasise the significance of training task difficulty for the emergence of ICL. Finally, by applying our novel insights on ICL emergence, we unlock ICL capabilities for various visual datasets and a more challenging EEG classification task.
comment: Best Paper Honorable Mention at GCPR 2025 (German Conference on Pattern Recognition). This is the updated version submitted to the conference, not the official conference proceedings
♻ ☆ RhoDARTS: Differentiable Quantum Architecture Search with Density Matrix Simulations
Variational Quantum Algorithms (VQAs) are a promising approach to leverage Noisy Intermediate-Scale Quantum (NISQ) computers. However, choosing optimal quantum circuits that efficiently solve a given VQA problem is a non-trivial task. Quantum Architecture Search (QAS) algorithms enable automatic generation of quantum circuits tailored to the provided problem. Existing QAS approaches typically adapt classical neural architecture search techniques, training machine learning models to sample relevant circuits, but often overlook the inherent quantum nature of the circuits they produce. By reformulating QAS from a quantum perspective, we propose a sampling-free differentiable QAS algorithm that models the search process as the evolution of a quantum mixed state, which emerges from the search space of quantum circuits. The mixed state formulation also enables our method to incorporate generic noise models, for example the depolarizing channel, which cannot be modeled by state vector simulation. We validate our method by finding circuits for state initialization and Hamiltonian optimization tasks, namely the variational quantum eigensolver and the unweighted max-cut problems. We show our approach to be comparable to, if not outperform, existing QAS techniques while requiring significantly fewer quantum simulations during training, and also show improved robustness levels to noise.
comment: 27 pages, 19 figures
♻ ☆ Frame-based Equivariant Diffusion Models for 3D Molecular Generation
Recent methods for molecular generation face a trade-off: they either enforce strict equivariance with costly architectures or relax it to gain scalability and flexibility. We propose a frame-based diffusion paradigm that achieves deterministic E(3)-equivariance while decoupling symmetry handling from the backbone. Building on this paradigm, we investigate three variants: Global Frame Diffusion (GFD), which assigns a shared molecular frame; Local Frame Diffusion (LFD), which constructs node-specific frames and benefits from additional alignment constraints; and Invariant Frame Diffusion (IFD), which relies on pre-canonicalized invariant representations. To enhance expressivity, we further utilize EdgeDiT, a Diffusion Transformer with edge-aware attention. On the QM9 dataset, GFD with EdgeDiT achieves state-of-the-art performance, with a test NLL of -137.97 at standard scale and -141.85 at double scale, alongside atom stability of 98.98%, and molecular stability of 90.51%. These results surpass all equivariant baselines while maintaining high validity and uniqueness and nearly 2x faster sampling compared to EDM. Altogether, our study establishes frame-based diffusion as a scalable, flexible, and physically grounded paradigm for molecular generation, highlighting the critical role of global structure preservation.
♻ ☆ Depth-Breadth Synergy in RLVR: Unlocking LLM Reasoning Gains with Adaptive Exploration
Reinforcement Learning with Verifiable Reward (RLVR) has emerged as a powerful paradigm for unlocking reasoning capabilities in large language models, yet its full potential is hindered by two under-explored dimensions: Depth-the hardest problem a model can sample; Breadth-the number of instances consumed in a single iteration. We dissect the popular GRPO algorithm and reveal a systematic bias: the cumulative-advantage disproportionately weights samples with medium accuracy, while down-weighting the low-accuracy instances that are crucial for pushing reasoning boundaries. To rectify the depth neglect, we introduce Difficulty Adaptive Rollout Sampling (DARS), which re-weights hard problems through targeted multi-stage rollouts, thereby increasing the number of positive rollouts for hard problems. Empirically, naively enlarging rollout size only accelerates convergence and even hurts Pass@K. Our DARS, in contrast, delivers consistent Pass@K gains without extra inference cost at convergence. Just as we adaptively expanded the depth of exploration, we now ask whether aggressively scaling the breadth of training data can further amplify reasoning gains. To this end, we intensely scale batch size and replace PPO's mini-batch iterations with full-batch updates over multiple epochs. Increasing breadth significantly enhances Pass@1 performance. Large-breadth training sustains high token-level entropy, indicating continued exploration and reduced gradient noise. We further present DARS-B, which augments DARS with large breadth, and demonstrate simultaneous gains in Pass@K and Pass@1. The results confirm that breadth and adaptive exploration across depth operate as orthogonal dimensions in RLVR, which are key to unleashing the reasoning power of RLVR.
comment: 18 pages, 14 figures
♻ ☆ MoESD: Unveil Speculative Decoding's Potential for Accelerating Sparse MoE
Large Language Models (LLMs) have achieved remarkable success across many applications, with Mixture of Experts (MoE) models demonstrating great potential. Compared to traditional dense models, MoEs achieve better performance with less computation. Speculative decoding (SD) is a widely used technique to accelerate LLM inference without accuracy loss, but it has been considered efficient only for dense models. In this work, we first demonstrate that, under medium batch sizes, MoE surprisingly benefits more from SD than dense models. Furthermore, as MoE becomes sparser -- the prevailing trend in MoE designs -- the batch size range where SD acceleration is expected to be effective becomes broader. To quantitatively understand tradeoffs involved in SD, we develop a reliable modeling based on theoretical analyses. While current SD research primarily focuses on improving acceptance rates of algorithms, changes in workload and model architecture can still lead to degraded SD acceleration even with high acceptance rates. To address this limitation, we introduce a new metric 'target efficiency' that characterizes these effects, thus helping researchers identify system bottlenecks and understand SD acceleration more comprehensively. For scenarios like private serving, this work unveils a new perspective to speed up MoE inference, where existing solutions struggle. Experiments on different GPUs show up to 2.29x speedup for Qwen2-57B-A14B at medium batch sizes and validate our theoretical predictions.
♻ ☆ SALAD: Systematic Assessment of Machine Unlearning on LLM-Aided Hardware Design
Large Language Models (LLMs) offer transformative capabilities for hardware design automation, particularly in Verilog code generation. However, they also pose significant data security challenges, including Verilog evaluation data contamination, intellectual property (IP) design leakage, and the risk of malicious Verilog generation. We introduce SALAD, a comprehensive assessment that leverages machine unlearning to mitigate these threats. Our approach enables the selective removal of contaminated benchmarks, sensitive IP and design artifacts, or malicious code patterns from pre-trained LLMs, all without requiring full retraining. Through detailed case studies, we demonstrate how machine unlearning techniques effectively reduce data security risks in LLM-aided hardware design.
♻ ☆ Neural Deconstruction Search for Vehicle Routing Problems
Autoregressive construction approaches generate solutions to vehicle routing problems in a step-by-step fashion, leading to high-quality solutions that are nearing the performance achieved by handcrafted operations research techniques. In this work, we challenge the conventional paradigm of sequential solution construction and introduce an iterative search framework where solutions are instead deconstructed by a neural policy. Throughout the search, the neural policy collaborates with a simple greedy insertion algorithm to rebuild the deconstructed solutions. Our approach matches or surpasses the performance of state-of-the-art operations research methods across three challenging vehicle routing problems of various problem sizes.
comment: Published in TMLR
♻ ☆ PolyNet: Learning Diverse Solution Strategies for Neural Combinatorial Optimization ICLR 2025
Reinforcement learning-based methods for constructing solutions to combinatorial optimization problems are rapidly approaching the performance of human-designed algorithms. To further narrow the gap, learning-based approaches must efficiently explore the solution space during the search process. Recent approaches artificially increase exploration by enforcing diverse solution generation through handcrafted rules, however, these rules can impair solution quality and are difficult to design for more complex problems. In this paper, we introduce PolyNet, an approach for improving exploration of the solution space by learning complementary solution strategies. In contrast to other works, PolyNet uses only a single-decoder and a training schema that does not enforce diverse solution generation through handcrafted rules. We evaluate PolyNet on four combinatorial optimization problems and observe that the implicit diversity mechanism allows PolyNet to find better solutions than approaches that explicitly enforce diverse solution generation.
comment: Accepted at ICLR 2025
♻ ☆ TANTE: Time-Adaptive Operator Learning via Neural Taylor Expansion
Operator learning for time-dependent partial differential equations (PDEs) has seen rapid progress in recent years, enabling efficient approximation of complex spatiotemporal dynamics. However, most existing methods rely on fixed time step sizes during rollout, which limits their ability to adapt to varying temporal complexity and often leads to error accumulation. Here, we propose the Time-Adaptive Transformer with Neural Taylor Expansion (TANTE), a novel operator-learning framework that produces continuous-time predictions with adaptive step sizes. TANTE predicts future states by performing a Taylor expansion at the current state, where neural networks learn both the higher-order temporal derivatives and the local radius of convergence. This allows the model to dynamically adjust its rollout based on the local behavior of the solution, thereby reducing cumulative error and improving computational efficiency. We demonstrate the effectiveness of TANTE across a wide range of PDE benchmarks, achieving superior accuracy and adaptability compared to fixed-step baselines, delivering accuracy gains of 60-80 % and speed-ups of 30-40 % at inference time. The code is publicly available at https://github.com/zwu88/TANTE for transparency and reproducibility.
comment: 22 pages, 7 figures, 10 tables
♻ ☆ Optimal Bound for PCA with Outliers using Higher-Degree Voronoi Diagrams
In this paper, we introduce new algorithms for Principal Component Analysis (PCA) with outliers. Utilizing techniques from computational geometry, specifically higher-degree Voronoi diagrams, we navigate to the optimal subspace for PCA even in the presence of outliers. This approach achieves an optimal solution with a time complexity of $n^{d+\mathcal{O}(1)}\text{poly}(n,d)$. Additionally, we present a randomized algorithm with a complexity of $2^{\mathcal{O}(r(d-r))} \times \text{poly}(n, d)$. This algorithm samples subspaces characterized in terms of a Grassmannian manifold. By employing such sampling method, we ensure a high likelihood of capturing the optimal subspace, with the success probability $(1 - \delta)^T$. Where $\delta$ represents the probability that a sampled subspace does not contain the optimal solution, and $T$ is the number of subspaces sampled, proportional to $2^{r(d-r)}$. Our use of higher-degree Voronoi diagrams and Grassmannian based sampling offers a clearer conceptual pathway and practical advantages, particularly in handling large datasets or higher-dimensional settings.
♻ ☆ SEE-DPO: Self Entropy Enhanced Direct Preference Optimization
Direct Preference Optimization (DPO) has been successfully used to align large language models (LLMs) according to human preferences, and more recently it has also been applied to improving the quality of text-to-image diffusion models. However, DPO-based methods such as SPO, Diffusion-DPO, and D3PO are highly susceptible to overfitting and reward hacking, especially when the generative model is optimized to fit out-of-distribution during prolonged training. To overcome these challenges and stabilize the training of diffusion models, we introduce a self-entropy regularization mechanism in reinforcement learning from human feedback. This enhancement improves DPO training by encouraging broader exploration and greater robustness. Our regularization technique effectively mitigates reward hacking, leading to improved stability and enhanced image quality across the latent space. Extensive experiments demonstrate that integrating human feedback with self-entropy regularization can significantly boost image diversity and specificity, achieving state-of-the-art results on key image generation metrics.
♻ ☆ What Drives Compositional Generalization in Visual Generative Models?
Compositional generalization, the ability to generate novel combinations of known concepts, is a key ingredient for visual generative models. Yet, not all mechanisms that enable or inhibit it are fully understood. In this work, we conduct a systematic study of how various design choices influence compositional generalization in image and video generation in a positive or negative way. Through controlled experiments, we identify two key factors: (i) whether the training objective operates on a discrete or continuous distribution, and (ii) to what extent conditioning provides information about the constituent concepts during training. Building on these insights, we show that relaxing the MaskGIT discrete loss with an auxiliary continuous JEPA-based objective can improve compositional performance in discrete models like MaskGIT.
♻ ☆ Analyzing Uncertainty Quantification in Statistical and Deep Learning Models for Probabilistic Electricity Price Forecasting
Precise probabilistic forecasts are fundamental for energy risk management, and there is a wide range of both statistical and machine learning models for this purpose. Inherent to these probabilistic models is some form of uncertainty quantification. However, most models do not capture the full extent of uncertainty, which arises not only from the data itself but also from model and distributional choices. In this study, we examine uncertainty quantification in state-of-the-art statistical and deep learning probabilistic forecasting models for electricity price forecasting in the German market. In particular, we consider deep distributional neural networks (DDNNs) and augment them with an ensemble approach, Monte Carlo (MC) dropout, and conformal prediction to account for model uncertainty. Additionally, we consider the LASSO-estimated autoregressive (LEAR) approach combined with quantile regression averaging (QRA), generalized autoregressive conditional heteroskedasticity (GARCH), and conformal prediction. Across a range of performance metrics, we find that the LEAR-based models perform well in terms of probabilistic forecasting, irrespective of the uncertainty quantification method. Furthermore, we find that DDNNs benefit from incorporating both data and model uncertainty, improving both point and probabilistic forecasting. Uncertainty itself appears to be best captured by the models using conformal prediction. Overall, our extensive study shows that all models under consideration perform competitively. However, their relative performance depends on the choice of metrics for point and probabilistic forecasting.
♻ ☆ TOAST: Transformer Optimization using Adaptive and Simple Transformations
Foundation models achieve State-of-the-Art (SOTA) performance across different tasks, but their size and computational demands raise concerns about accessibility and sustainability. Existing efficiency methods often require additional retraining or fine-tuning, limiting their practicality. Recent findings suggest that deep neural networks exhibit internal representation similarities. While such similarities across different models have been exploited for enabling techniques such as model stitching and merging, intra-network redundancy remains underexplored as a source for efficiency gains. In this paper, we introduce TOAST (Transformer Optimization using Adaptive and Simple Transformations), a framework that exploits these redundancies to approximate entire transformer blocks with lightweight closed-form mappings, such as linear transformation or even the identity, without any additional training. Across SOTA pretrained vision models (e.g., ViT, DINOv2, DeiT) and datasets ranging from MNIST to ImageNet-1k, TOAST reduces parameters and computation while preserving, and in some cases improving, downstream performance. These results show that large portions of transformer depth can be replaced by trivial functions, opening a new perspective on efficient foundation models.
comment: 24 pages, 15 figures, 12 tables
♻ ☆ Learning to Play Piano in the Real World
Towards the grand challenge of achieving human-level manipulation in robots, playing piano is a compelling testbed that requires strategic, precise, and flowing movements. Over the years, several works demonstrated hand-designed controllers on real world piano playing, while other works evaluated robot learning approaches on simulated piano scenarios. In this paper, we develop the first piano playing robotic system that makes use of learning approaches while also being deployed on a real world dexterous robot. Specifically, we make use of Sim2Real to train a policy in simulation using reinforcement learning before deploying the learned policy on a real world dexterous robot. In our experiments, we thoroughly evaluate the interplay between domain randomization and the accuracy of the dynamics model used in simulation. Moreover, we evaluate the robot's performance across multiple songs with varying complexity to study the generalization of our learned policy. By providing a proof-of-concept of learning to play piano in the real world, we want to encourage the community to adopt piano playing as a compelling benchmark towards human-level manipulation. We open-source our code and show additional videos at https://lasr.org/research/learning-to-play-piano .
♻ ☆ MINERVA: Mutual Information Neural Estimation for Supervised Feature Selection
Existing feature filters rely on statistical pair-wise dependence metrics to model feature-target relationships, but this approach may fail when the target depends on higher-order feature interactions rather than individual contributions. We introduce Mutual Information Neural Estimation Regularized Vetting Algorithm (MINERVA), a novel approach to supervised feature selection based on neural estimation of mutual information between features and targets. We paramaterize the approximation of mutual information with neural networks and perform feature selection using a carefully designed loss function augmented with sparsity-inducing regularizers. Our method is implemented in a two-stage process to decouple representation learning from feature selection, ensuring better generalization and a more accurate expression of feature importance. We present examples of ubiquitous dependency structures that are rarely captured in literature and show that our proposed method effectively captures these complex feature-target relationships by evaluating feature subsets as an ensemble. Experimental results on synthetic and real-life fraud datasets demonstrate the efficacy of our method and its ability to perform exact solutions.
comment: 23 pages
Multimedia
☆ Paper2Video: Automatic Video Generation from Scientific Papers
Academic presentation videos have become an essential medium for research communication, yet producing them remains highly labor-intensive, often requiring hours of slide design, recording, and editing for a short 2 to 10 minutes video. Unlike natural video, presentation video generation involves distinctive challenges: inputs from research papers, dense multi-modal information (text, figures, tables), and the need to coordinate multiple aligned channels such as slides, subtitles, speech, and human talker. To address these challenges, we introduce PaperTalker, the first benchmark of 101 research papers paired with author-created presentation videos, slides, and speaker metadata. We further design four tailored evaluation metrics--Meta Similarity, PresentArena, PresentQuiz, and IP Memory--to measure how videos convey the paper's information to the audience. Building on this foundation, we propose PaperTalker, the first multi-agent framework for academic presentation video generation. It integrates slide generation with effective layout refinement by a novel effective tree search visual choice, cursor grounding, subtitling, speech synthesis, and talking-head rendering, while parallelizing slide-wise generation for efficiency. Experiments on Paper2Video demonstrate that the presentation videos produced by our approach are more faithful and informative than existing baselines, establishing a practical step toward automated and ready-to-use academic video generation. Our dataset, agent, and code are available at https://github.com/showlab/Paper2Video.
comment: 20 pages, 8 figures
☆ ExposureEngine: Oriented Logo Detection and Sponsor Visibility Analytics in Sports Broadcasts
Quantifying sponsor visibility in sports broadcasts is a critical marketing task traditionally hindered by manual, subjective, and unscalable analysis methods. While automated systems offer an alternative, their reliance on axis-aligned Horizontal Bounding Box (HBB) leads to inaccurate exposuremetrics when logos appear rotated or skewed due to dynamic camera angles and perspective distortions. This paper introduces ExposureEngine, an end-to-end system designed for accurate, rotation-aware sponsor visibility analytics in sports broadcasts, demonstrated in a soccer case study. Our approach predicts Oriented Bounding Box (OBB) to provide a geometrically precise fit to each logo regardless of the orientation on-screen. To train and evaluate our detector, we developed a new dataset comprising 1,103 frames from Swedish elite soccer, featuring 670 unique sponsor logos annotated with OBBs. Our model achieves a mean Average Precision (mAP@0.5) of 0.859, with a precision of 0.96 and recall of 0.87, demonstrating robust performance in localizing logos under diverse broadcast conditions. The system integrates these detections into an analytical pipeline that calculates precise visibility metrics, such as exposure duration and on-screen coverage. Furthermore, we incorporate a language-driven agentic layer, enabling users to generate reports, summaries, and media content through natural language queries. The complete system, including the dataset and the analytics dashboard, provides a comprehensive solution for auditable and interpretable sponsor measurement in sports media. An overview of the ExposureEngine is available online: https://youtu.be/tRw6OBISuW4 .
comment: This work has been submitted to the IEEE for possible publication
☆ ReactDiff: Fundamental Multiple Appropriate Facial Reaction Diffusion Model
The automatic generation of diverse and human-like facial reactions in dyadic dialogue remains a critical challenge for human-computer interaction systems. Existing methods fail to model the stochasticity and dynamics inherent in real human reactions. To address this, we propose ReactDiff, a novel temporal diffusion framework for generating diverse facial reactions that are appropriate for responding to any given dialogue context. Our key insight is that plausible human reactions demonstrate smoothness, and coherence over time, and conform to constraints imposed by human facial anatomy. To achieve this, ReactDiff incorporates two vital priors (spatio-temporal facial kinematics) into the diffusion process: i) temporal facial behavioral kinematics and ii) facial action unit dependencies. These two constraints guide the model toward realistic human reaction manifolds, avoiding visually unrealistic jitters, unstable transitions, unnatural expressions, and other artifacts. Extensive experiments on the REACT2024 dataset demonstrate that our approach not only achieves state-of-the-art reaction quality but also excels in diversity and reaction appropriateness.
comment: Accepted to ACM Multimedia
☆ SFANet: Spatial-Frequency Attention Network for Deepfake Detection
Detecting manipulated media has now become a pressing issue with the recent rise of deepfakes. Most existing approaches fail to generalize across diverse datasets and generation techniques. We thus propose a novel ensemble framework, combining the strengths of transformer-based architectures, such as Swin Transformers and ViTs, and texture-based methods, to achieve better detection accuracy and robustness. Our method introduces innovative data-splitting, sequential training, frequency splitting, patch-based attention, and face segmentation techniques to handle dataset imbalances, enhance high-impact regions (e.g., eyes and mouth), and improve generalization. Our model achieves state-of-the-art performance when tested on the DFWild-Cup dataset, a diverse subset of eight deepfake datasets. The ensemble benefits from the complementarity of these approaches, with transformers excelling in global feature extraction and texturebased methods providing interpretability. This work demonstrates that hybrid models can effectively address the evolving challenges of deepfake detection, offering a robust solution for real-world applications.
☆ Language Model Based Text-to-Audio Generation: Anti-Causally Aligned Collaborative Residual Transformers EMNLP 2025
While language models (LMs) paired with residual vector quantization (RVQ) tokenizers have shown promise in text-to-audio (T2A) generation, they still lag behind diffusion-based models by a non-trivial margin. We identify a critical dilemma underpinning this gap: incorporating more RVQ layers improves audio reconstruction fidelity but exceeds the generation capacity of conventional LMs. To address this, we first analyze RVQ dynamics and uncover two key limitations: 1) orthogonality of features across RVQ layers hinders effective LMs training, and 2) descending semantic richness in tokens from deeper RVQ layers exacerbates exposure bias during autoregressive decoding. Based on these insights, we propose Siren, a novel LM-based framework that employs multiple isolated transformers with causal conditioning and anti-causal alignment via reinforcement learning. Extensive experiments demonstrate that Siren outperforms both existing LM-based and diffusion-based T2A systems, achieving state-of-the-art results. By bridging the representational strengths of LMs with the fidelity demands of audio synthesis, our approach repositions LMs as competitive contenders against diffusion models in T2A tasks. Moreover, by aligning audio representations with linguistic structures, Siren facilitates a promising pathway toward unified multi-modal generation frameworks.
comment: Accepted to EMNLP 2025
☆ AUREXA-SE: Audio-Visual Unified Representation Exchange Architecture with Cross-Attention and Squeezeformer for Speech Enhancement
In this paper, we propose AUREXA-SE (Audio-Visual Unified Representation Exchange Architecture with Cross-Attention and Squeezeformer for Speech Enhancement), a progressive bimodal framework tailored for audio-visual speech enhancement (AVSE). AUREXA-SE jointly leverages raw audio waveforms and visual cues by employing a U-Net-based 1D convolutional encoder for audio and a Swin Transformer V2 for efficient and expressive visual feature extraction. Central to the architecture is a novel bidirectional cross-attention mechanism, which facilitates deep contextual fusion between modalities, enabling rich and complementary representation learning. To capture temporal dependencies within the fused embeddings, a stack of lightweight Squeezeformer blocks combining convolutional and attention modules is introduced. The enhanced embeddings are then decoded via a U-Net-style decoder for direct waveform reconstruction, ensuring perceptually consistent and intelligible speech output. Experimental evaluations demonstrate the effectiveness of AUREXA-SE, achieving significant performance improvements over noisy baselines, with STOI of 0.516, PESQ of 1.323, and SI-SDR of -4.322 dB. The source code of AUREXA-SE is available at https://github.com/mtanveer1/AVSEC-4-Challenge-2025.
♻ ☆ TalkPlay-Tools: Conversational Music Recommendation with LLM Tool Calling NeurIPS
While the recent developments in large language models (LLMs) have successfully enabled generative recommenders with natural language interactions, their recommendation behavior is limited, leaving other simpler yet crucial components such as metadata or attribute filtering underutilized in the system. We propose an LLM-based music recommendation system with tool calling to serve as a unified retrieval-reranking pipeline. Our system positions an LLM as an end-to-end recommendation system that interprets user intent, plans tool invocations, and orchestrates specialized components: boolean filters (SQL), sparse retrieval (BM25), dense retrieval (embedding similarity), and generative retrieval (semantic IDs). Through tool planning, the system predicts which types of tools to use, their execution order, and the arguments needed to find music matching user preferences, supporting diverse modalities while seamlessly integrating multiple database filtering methods. We demonstrate that this unified tool-calling framework achieves competitive performance across diverse recommendation scenarios by selectively employing appropriate retrieval methods based on user queries, envisioning a new paradigm for conversational music recommendation systems.
comment: Accepted for publication at The Workshop on AI for Music, Neural Information Processing Systems (NeurIPS-AI4Music)
♻ ☆ A Survey on 3D Gaussian Splatting
3D Gaussian splatting (GS) has emerged as a transformative technique in radiance fields. Unlike mainstream implicit neural models, 3D GS uses millions of learnable 3D Gaussians for an explicit scene representation. Paired with a differentiable rendering algorithm, this approach achieves real-time rendering and unprecedented editability, making it a potential game-changer for 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in explicit radiance field.
comment: Ongoing project; Paper list: https://github.com/guikunchen/Awesome3DGS ; Benchmark: https://github.com/guikunchen/3DGS-Benchmarks
♻ ☆ Comparing Contrastive and Triplet Loss: Variance Analysis and Optimization Behavior
Contrastive loss and triplet loss are widely used objectives in deep metric learning, yet their effects on representation quality remain insufficiently understood. We present a theoretical and empirical comparison of these losses, focusing on intra- and inter-class variance and optimization behavior (e.g., greedy updates). Through task-specific experiments with consistent settings on synthetic data and real datasets-MNIST, CIFAR-10-it is shown that triplet loss preserves greater variance within and across classes, supporting finer-grained distinctions in the learned representations. In contrast, contrastive loss tends to compact intra-class embeddings, which may obscure subtle semantic differences. To better understand their optimization dynamics, By examining loss-decay rate, active ratio, and gradient norm, we find that contrastive loss drives many small updates early on, while triplet loss produces fewer but stronger updates that sustain learning on hard examples. Finally, across both classification and retrieval tasks on MNIST, CIFAR-10, CUB-200, and CARS196 datasets, our results consistently show that triplet loss yields superior performance, which suggests using triplet loss for detail retention and hard-sample focus, and contrastive loss for smoother, broad-based embedding refinement.
comment: 8 pages, 4 tables, 3 figures
♻ ☆ STIV: Scalable Text and Image Conditioned Video Generation
The field of video generation has made remarkable advancements, yet there remains a pressing need for a clear, systematic recipe that can guide the development of robust and scalable models. In this work, we present a comprehensive study that systematically explores the interplay of model architectures, training recipes, and data curation strategies, culminating in a simple and scalable text-image-conditioned video generation method, named STIV. Our framework integrates image condition into a Diffusion Transformer (DiT) through frame replacement, while incorporating text conditioning via a joint image-text conditional classifier-free guidance. This design enables STIV to perform both text-to-video (T2V) and text-image-to-video (TI2V) tasks simultaneously. Additionally, STIV can be easily extended to various applications, such as video prediction, frame interpolation, multi-view generation, and long video generation, etc. With comprehensive ablation studies on T2I, T2V, and TI2V, STIV demonstrate strong performance, despite its simple design. An 8.7B model with 512 resolution achieves 83.1 on VBench T2V, surpassing both leading open and closed-source models like CogVideoX-5B, Pika, Kling, and Gen-3. The same-sized model also achieves a state-of-the-art result of 90.1 on VBench I2V task at 512 resolution. By providing a transparent and extensible recipe for building cutting-edge video generation models, we aim to empower future research and accelerate progress toward more versatile and reliable video generation solutions.
♻ ☆ SonicMaster: Towards Controllable All-in-One Music Restoration and Mastering
Music recordings often suffer from audio quality issues such as excessive reverberation, distortion, clipping, tonal imbalances, and a narrowed stereo image, especially when created in non-professional settings without specialized equipment or expertise. These problems are typically corrected using separate specialized tools and manual adjustments. In this paper, we introduce SonicMaster, the first unified generative model for music restoration and mastering that addresses a broad spectrum of audio artifacts with text-based control. SonicMaster is conditioned on natural language instructions to apply targeted enhancements, or can operate in an automatic mode for general restoration. To train this model, we construct the SonicMaster dataset, a large dataset of paired degraded and high-quality tracks by simulating common degradation types with nineteen degradation functions belonging to five enhancements groups: equalization, dynamics, reverb, amplitude, and stereo. Our approach leverages a flow-matching generative training paradigm to learn an audio transformation that maps degraded inputs to their cleaned, mastered versions guided by text prompts. Objective audio quality metrics demonstrate that SonicMaster significantly improves sound quality across all artifact categories. Furthermore, subjective listening tests confirm that listeners prefer SonicMaster's enhanced outputs over the original degraded audio, highlighting the effectiveness of our unified approach.