MyArxiv
Computation and Language
☆ Robust Persona-Aware Toxicity Detection with Prompt Optimization and Learned Ensembling
Toxicity detection is inherently subjective, shaped by the diverse perspectives and social priors of different demographic groups. While ``pluralistic'' modeling as used in economics and the social sciences aims to capture perspective differences across contexts, current Large Language Model (LLM) prompting techniques have different results across different personas and base models. In this work, we conduct a systematic evaluation of persona-aware toxicity detection, showing that no single prompting method, including our proposed automated prompt optimization strategy, uniformly dominates across all model-persona pairs. To exploit complementary errors, we explore ensembling four prompting variants and propose a lightweight meta-ensemble: an SVM over the 4-bit vector of prompt predictions. Our results demonstrate that the proposed SVM ensemble consistently outperforms individual prompting methods and traditional majority-voting techniques, achieving the strongest overall performance across diverse personas. This work provides one of the first systematic comparisons of persona-conditioned prompting for toxicity detection and offers a robust method for pluralistic evaluation in subjective NLP tasks.
☆ Estimating Text Temperature
Autoregressive language models typically use temperature parameter at inference to shape the probability distribution and control the randomness of the text generated. After the text was generated, this parameter can be estimated using maximum likelihood approach. Following it, we propose a procedure to estimate the temperature of any text, including ones written by humans, with respect to a given language model. We evaluate the temperature estimation capability of a wide selection of small-to-medium LLMs. We then use the best-performing Qwen3 14B to estimate temperatures of popular corpora.
☆ Classifying several dialectal Nawatl varieties
Mexico is a country with a large number of indigenous languages, among which the most widely spoken is Nawatl, with more than two million people currently speaking it (mainly in North and Central America). Despite its rich cultural heritage, which dates back to the 15th century, Nawatl is a language with few computer resources. The problem is compounded when it comes to its dialectal varieties, with approximately 30 varieties recognised, not counting the different spellings in the written forms of the language. In this research work, we addressed the problem of classifying Nawatl varieties using Machine Learning and Neural Networks.
comment: 9 pages, 5 figures, 4 tables
☆ Power-of-Two Quantization-Aware-Training (PoT-QAT) in Large Language Models (LLMs)
In Large Language Models (LLMs), the number of parameters has grown exponentially in the past few years, e.g., from 1.5 billion parameters in GPT-2 to 175 billion in GPT-3 to possibly more than trillion in higher versions. This raises a significant challenge for implementation, especially for Edge devices. Unlike cloud computing, memory and processing power for Edge devices are very limited, which necessitates developing novel ideas to make such applications feasible. In this work, we investigate compressing weights with a special quantization that limits numbers to only power-of-two (PoT). This helps save a huge amount of memory as only exponents need to be stored, more importantly, it significantly reduces processing power by replacing costly multiplication with low cost bit shifting. To overcome performance loss due to this strict quantization, we investigate Quantization Aware Training (QAT) to enhance performance through additional training. Results on GPT-2 124M show a major enhancement for quantized PoT model after additional training, with a perplexity enhancement of 66% and BERT-Score loss to baseline GPT-2 of 1%. The memory saving is estimated to be 87.5% while the inference speed is expected to be 3-10x faster with PoT quantization versus full-precision.
☆ pdfQA: Diverse, Challenging, and Realistic Question Answering over PDFs
PDFs are the second-most used document type on the internet (after HTML). Yet, existing QA datasets commonly start from text sources or only address specific domains. In this paper, we present pdfQA, a multi-domain 2K human-annotated (real-pdfQA) and 2K synthetic dataset (syn-pdfQA) differentiating QA pairs in ten complexity dimensions (e.g., file type, source modality, source position, answer type). We apply and evaluate quality and difficulty filters on both datasets, obtaining valid and challenging QA pairs. We answer the questions with open-source LLMs, revealing existing challenges that correlate with our complexity dimensions. pdfQA presents a basis for end-to-end QA pipeline evaluation, testing diverse skill sets and local optimizations (e.g., in information retrieval or parsing).
☆ CD4LM: Consistency Distillation and aDaptive Decoding for Diffusion Language Models
Autoregressive large language models achieve strong results on many benchmarks, but decoding remains fundamentally latency-limited by sequential dependence on previously generated tokens. Diffusion language models (DLMs) promise parallel generation but suffer from a fundamental static-to-dynamic misalignment: Training optimizes local transitions under fixed schedules, whereas efficient inference requires adaptive "long-jump" refinements through unseen states. Our goal is to enable highly parallel decoding for DLMs with low number of function evaluations while preserving generation quality. To achieve this, we propose CD4LM, a framework that decouples training from inference via Discrete-Space Consistency Distillation (DSCD) and Confidence-Adaptive Decoding (CAD). Unlike standard objectives, DSCD trains a student to be trajectory-invariant, mapping diverse noisy states directly to the clean distribution. This intrinsic robustness enables CAD to dynamically allocate compute resources based on token confidence, aggressively skipping steps without the quality collapse typical of heuristic acceleration. On GSM8K, CD4LM matches the LLaDA baseline with a 5.18x wall-clock speedup; across code and math benchmarks, it strictly dominates the accuracy-efficiency Pareto frontier, achieving a 3.62x mean speedup while improving average accuracy. Code is available at https://github.com/yihao-liang/CDLM
comment: 33 pages, 7 figures
☆ From XAI to Stories: A Factorial Study of LLM-Generated Explanation Quality
Explainable AI (XAI) methods like SHAP and LIME produce numerical feature attributions that remain inaccessible to non expert users. Prior work has shown that Large Language Models (LLMs) can transform these outputs into natural language explanations (NLEs), but it remains unclear which factors contribute to high-quality explanations. We present a systematic factorial study investigating how Forecasting model choice, XAI method, LLM selection, and prompting strategy affect NLE quality. Our design spans four models (XGBoost (XGB), Random Forest (RF), Multilayer Perceptron (MLP), and SARIMAX - comparing black-box Machine-Learning (ML) against classical time-series approaches), three XAI conditions (SHAP, LIME, and a no-XAI baseline), three LLMs (GPT-4o, Llama-3-8B, DeepSeek-R1), and eight prompting strategies. Using G-Eval, an LLM-as-a-judge evaluation method, with dual LLM judges and four evaluation criteria, we evaluate 660 explanations for time-series forecasting. Our results suggest that: (1) XAI provides only small improvements over no-XAI baselines, and only for expert audiences; (2) LLM choice dominates all other factors, with DeepSeek-R1 outperforming GPT-4o and Llama-3; (3) we observe an interpretability paradox: in our setting, SARIMAX yielded lower NLE quality than ML models despite higher prediction accuracy; (4) zero-shot prompting is competitive with self-consistency at 7-times lower cost; and (5) chain-of-thought hurts rather than helps.
☆ ARCADE: A City-Scale Corpus for Fine-Grained Arabic Dialect Tagging
The Arabic language is characterized by a rich tapestry of regional dialects that differ substantially in phonetics and lexicon, reflecting the geographic and cultural diversity of its speakers. Despite the availability of many multi-dialect datasets, mapping speech to fine-grained dialect sources, such as cities, remains underexplored. We present ARCADE (Arabic Radio Corpus for Audio Dialect Evaluation), the first Arabic speech dataset designed explicitly with city-level dialect granularity. The corpus comprises Arabic radio speech collected from streaming services across the Arab world. Our data pipeline captures 30-second segments from verified radio streams, encompassing both Modern Standard Arabic (MSA) and diverse dialectal speech. To ensure reliability, each clip was annotated by one to three native Arabic reviewers who assigned rich metadata, including emotion, speech type, dialect category, and a validity flag for dialect identification tasks. The resulting corpus comprises 6,907 annotations and 3,790 unique audio segments spanning 58 cities across 19 countries. These fine-grained annotations enable robust multi-task learning, serving as a benchmark for city-level dialect tagging. We detail the data collection methodology, assess audio quality, and provide a comprehensive analysis of label distributions. The dataset is available on: https://huggingface.co/datasets/riotu-lab/ARCADE-full
☆ Toward Global Large Language Models in Medicine
Despite continuous advances in medical technology, the global distribution of health care resources remains uneven. The development of large language models (LLMs) has transformed the landscape of medicine and holds promise for improving health care quality and expanding access to medical information globally. However, existing LLMs are primarily trained on high-resource languages, limiting their applicability in global medical scenarios. To address this gap, we constructed GlobMed, a large multilingual medical dataset, containing over 500,000 entries spanning 12 languages, including four low-resource languages. Building on this, we established GlobMed-Bench, which systematically assesses 56 state-of-the-art proprietary and open-weight LLMs across multiple multilingual medical tasks, revealing significant performance disparities across languages, particularly for low-resource languages. Additionally, we introduced GlobMed-LLMs, a suite of multilingual medical LLMs trained on GlobMed, with parameters ranging from 1.7B to 8B. GlobMed-LLMs achieved an average performance improvement of over 40% relative to baseline models, with a more than threefold increase in performance on low-resource languages. Together, these resources provide an important foundation for advancing the equitable development and application of LLMs globally, enabling broader language communities to benefit from technological advances.
comment: 182 pages, 65 figures
☆ Confidence Estimation for LLMs in Multi-turn Interactions
While confidence estimation is a promising direction for mitigating hallucinations in Large Language Models (LLMs), current research dominantly focuses on single-turn settings. The dynamics of model confidence in multi-turn conversations, where context accumulates and ambiguity is progressively resolved, remain largely unexplored. Reliable confidence estimation in multi-turn settings is critical for many downstream applications, such as autonomous agents and human-in-the-loop systems. This work presents the first systematic study of confidence estimation in multi-turn interactions, establishing a formal evaluation framework grounded in two key desiderata: per-turn calibration and monotonicity of confidence as more information becomes available. To facilitate this, we introduce novel metrics, including a length-normalized Expected Calibration Error (InfoECE), and a new "Hinter-Guesser" paradigm for generating controlled evaluation datasets. Our experiments reveal that widely-used confidence techniques struggle with calibration and monotonicity in multi-turn dialogues. We propose P(Sufficient), a logit-based probe that achieves comparatively better performance, although the task remains far from solved. Our work provides a foundational methodology for developing more reliable and trustworthy conversational agents.
☆ EverMemOS: A Self-Organizing Memory Operating System for Structured Long-Horizon Reasoning
Large Language Models (LLMs) are increasingly deployed as long-term interactive agents, yet their limited context windows make it difficult to sustain coherent behavior over extended interactions. Existing memory systems often store isolated records and retrieve fragments, limiting their ability to consolidate evolving user states and resolve conflicts. We introduce EverMemOS, a self-organizing memory operating system that implements an engram-inspired lifecycle for computational memory. Episodic Trace Formation converts dialogue streams into MemCells that capture episodic traces, atomic facts, and time-bounded Foresight signals. Semantic Consolidation organizes MemCells into thematic MemScenes, distilling stable semantic structures and updating user profiles. Reconstructive Recollection performs MemScene-guided agentic retrieval to compose the necessary and sufficient context for downstream reasoning. Experiments on LoCoMo and LongMemEval show that EverMemOS achieves state-of-the-art performance on memory-augmented reasoning tasks. We further report a profile study on PersonaMem v2 and qualitative case studies illustrating chat-oriented capabilities such as user profiling and Foresight. Code is available at https://github.com/EverMind-AI/EverMemOS.
comment: 16 pages, 6 figures, 12 tables. Code available at https://github.com/EverMind-AI/EverMemOS
☆ FormationEval, an open multiple-choice benchmark for petroleum geoscience
This paper presents FormationEval, an open multiple-choice question benchmark for evaluating language models on petroleum geoscience and subsurface disciplines. The dataset contains 505 questions across seven domains including petrophysics, petroleum geology and reservoir engineering, derived from three authoritative sources using a reasoning model with detailed instructions and a concept-based approach that avoids verbatim copying of copyrighted text. Each question includes source metadata to support traceability and audit. The evaluation covers 72 models from major providers including OpenAI, Anthropic, Google, Meta and open-weight alternatives. The top performers achieve over 97\% accuracy, with Gemini 3 Pro Preview reaching 99.8\%, while tier and domain gaps persist. Among open-weight models, GLM-4.7 leads at 98.6\%, with several DeepSeek, Llama, Qwen and Mistral models also exceeding 93\%. The performance gap between open-weight and closed models is narrower than expected, with several lower-cost open-weight models exceeding 90\% accuracy. Petrophysics emerges as the most challenging domain across all models, while smaller models show wider performance variance. Residual length bias in the dataset (correct answers tend to be longer) is documented along with bias mitigation strategies applied during construction. The benchmark, evaluation code and results are publicly available.
comment: 24 pages, 8 figures, 10 tables; benchmark and code at https://github.com/AlmazErmilov/FormationEval-an-Open-Benchmark-for-Oil-Gas-Geoscience-MCQ-Evaluation
☆ Entropy-Adaptive Fine-Tuning: Resolving Confident Conflicts to Mitigate Forgetting
Supervised Fine-Tuning (SFT) is the standard paradigm for domain adaptation, yet it frequently incurs the cost of catastrophic forgetting. In sharp contrast, on-policy Reinforcement Learning (RL) effectively preserves general capabilities. We investigate this discrepancy and identify a fundamental distributional gap: while RL aligns with the model's internal belief, SFT forces the model to fit external supervision. This mismatch often manifests as "Confident Conflicts" tokens characterized by low probability but low entropy. In these instances, the model is highly confident in its own prediction but is forced to learn a divergent ground truth, triggering destructive gradient updates. To address this, we propose Entropy-Adaptive Fine-Tuning (EAFT). Unlike methods relying solely on prediction probability, EAFT utilizes token-level entropy as a gating mechanism to distinguish between epistemic uncertainty and knowledge conflict. This allows the model to learn from uncertain samples while suppressing gradients on conflicting data. Extensive experiments on Qwen and GLM series (ranging from 4B to 32B parameters) across mathematical, medical, and agentic domains confirm our hypothesis. EAFT consistently matches the downstream performance of standard SFT while significantly mitigating the degradation of general capabilities.
☆ Routing by Analogy: kNN-Augmented Expert Assignment for Mixture-of-Experts
Mixture-of-Experts (MoE) architectures scale large language models efficiently by employing a parametric "router" to dispatch tokens to a sparse subset of experts. Typically, this router is trained once and then frozen, rendering routing decisions brittle under distribution shifts. We address this limitation by introducing kNN-MoE, a retrieval-augmented routing framework that reuses optimal expert assignments from a memory of similar past cases. This memory is constructed offline by directly optimizing token-wise routing logits to maximize the likelihood on a reference set. Crucially, we use the aggregate similarity of retrieved neighbors as a confidence-driven mixing coefficient, thus allowing the method to fall back to the frozen router when no relevant cases are found. Experiments show kNN-MoE outperforms zero-shot baselines and rivals computationally expensive supervised fine-tuning.
☆ Towards Multi-Level Transcript Segmentation: LoRA Fine-Tuning for Table-of-Contents Generation
Segmenting speech transcripts into thematic sections benefits both downstream processing and users who depend on written text for accessibility. We introduce a novel approach to hierarchical topic segmentation in transcripts, generating multi-level tables of contents that capture both topic and subtopic boundaries. We compare zero-shot prompting and LoRA fine-tuning on large language models, while also exploring the integration of high-level speech pause features. Evaluations on English meeting recordings and multilingual lecture transcripts (Portuguese, German) show significant improvements over established topic segmentation baselines. Additionally, we adapt a common evaluation measure for multi-level segmentation, taking into account all hierarchical levels within one metric.
comment: Published in Proceedings of Interspeech 2025. Please cite the proceedings version (DOI: 10.21437/Interspeech.2025-2792)
☆ DeCode: Decoupling Content and Delivery for Medical QA
Large language models (LLMs) exhibit strong medical knowledge and can generate factually accurate responses. However, existing models often fail to account for individual patient contexts, producing answers that are clinically correct yet poorly aligned with patients' needs. In this work, we introduce DeCode, a training-free, model-agnostic framework that adapts existing LLMs to produce contextualized answers in clinical settings. We evaluate DeCode on OpenAI HealthBench, a comprehensive and challenging benchmark designed to assess clinical relevance and validity of LLM responses. DeCode improves the previous state of the art from $28.4\%$ to $49.8\%$, corresponding to a $75\%$ relative improvement. Experimental results suggest the effectiveness of DeCode in improving clinical question answering of LLMs.
comment: Preprint
☆ Deferred Commitment Decoding for Diffusion Language Models with Confidence-Aware Sliding Windows
Diffusion language models (DLMs) have recently emerged as a strong alternative to autoregressive models by enabling parallel text generation. To improve inference efficiency and KV-cache compatibility, prior work commonly adopts block-based diffusion, decoding tokens block by block. However, this paradigm suffers from a structural limitation that we term Boundary-Induced Context Truncation (BICT): undecoded tokens near block boundaries are forced to commit without access to nearby future context, even when such context could substantially reduce uncertainty. This limitation degrades decoding confidence and generation quality, especially for tasks requiring precise reasoning, such as mathematical problem solving and code generation. We propose Deferred Commitment Decoding (DCD), a novel, training-free decoding strategy that mitigates this issue. DCD maintains a confidence-aware sliding window over masked tokens, resolving low-uncertainty tokens early while deferring high-uncertainty tokens until sufficient contextual evidence becomes available. This design enables effective bidirectional information flow within the decoding window without sacrificing efficiency. Extensive experiments across multiple diffusion language models, benchmarks, and caching configurations show that DCD improves generation accuracy by 1.39% with comparable time on average compared to fixed block-based diffusion methods, with the most significant improvement reaching 9.0%. These results demonstrate that deferring token commitment based on uncertainty is a simple yet effective principle for improving both the quality and efficiency of diffusion language model decoding.
☆ Cost-Efficient Cross-Lingual Retrieval-Augmented Generation for Low-Resource Languages: A Case Study in Bengali Agricultural Advisory
Access to reliable agricultural advisory remains limited in many developing regions due to a persistent language barrier: authoritative agricultural manuals are predominantly written in English, while farmers primarily communicate in low-resource local languages such as Bengali. Although recent advances in Large Language Models (LLMs) enable natural language interaction, direct generation in low-resource languages often exhibits poor fluency and factual inconsistency, while cloud-based solutions remain cost-prohibitive. This paper presents a cost-efficient, cross-lingual Retrieval-Augmented Generation (RAG) framework for Bengali agricultural advisory that emphasizes factual grounding and practical deployability. The proposed system adopts a translation-centric architecture in which Bengali user queries are translated into English, enriched through domain-specific keyword injection to align colloquial farmer terminology with scientific nomenclature, and answered via dense vector retrieval over a curated corpus of English agricultural manuals (FAO, IRRI). The generated English response is subsequently translated back into Bengali to ensure accessibility. The system is implemented entirely using open-source models and operates on consumer-grade hardware without reliance on paid APIs. Experimental evaluation demonstrates reliable source-grounded responses, robust rejection of out-of-domain queries, and an average end-to-end latency below 20 seconds. The results indicate that cross-lingual retrieval combined with controlled translation offers a practical and scalable solution for agricultural knowledge access in low-resource language settings
comment: 5 pages, 3 figures, 1 table
☆ Simulated Reasoning is Reasoning
Reasoning has long been understood as a pathway between stages of understanding. Proper reasoning leads to understanding of a given subject. This reasoning was conceptualized as a process of understanding in a particular way, i.e., "symbolic reasoning". Foundational Models (FM) demonstrate that this is not a necessary condition for many reasoning tasks: they can "reason" by way of imitating the process of "thinking out loud", testing the produced pathways, and iterating on these pathways on their own. This leads to some form of reasoning that can solve problems on its own or with few-shot learning, but appears fundamentally different from human reasoning due to its lack of grounding and common sense, leading to brittleness of the reasoning process. These insights promise to substantially alter our assessment of reasoning and its necessary conditions, but also inform the approaches to safety and robust defences against this brittleness of FMs. This paper offers and discusses several philosophical interpretations of this phenomenon, argues that the previously apt metaphor of the "stochastic parrot" has lost its relevance and thus should be abandoned, and reflects on different normative elements in the safety- and appropriateness-considerations emerging from these reasoning models and their growing capacity.
comment: 21 pages
☆ Output Embedding Centering for Stable LLM Pretraining
Pretraining of large language models is not only expensive but also prone to certain training instabilities. A specific instability that often occurs for large learning rates at the end of training is output logit divergence. The most widely used mitigation strategy, z-loss, merely addresses the symptoms rather than the underlying cause of the problem. In this paper, we analyze the instability from the perspective of the output embeddings' geometry and identify its cause. Based on this, we propose output embedding centering (OEC) as a new mitigation strategy, and prove that it suppresses output logit divergence. OEC can be implemented in two different ways, as a deterministic operation called μ-centering, or a regularization method called μ-loss. Our experiments show that both variants outperform z-loss in terms of training stability and learning rate sensitivity. In particular, they ensure that training converges even for large learning rates when z-loss fails. Furthermore, we find that μ-loss is significantly less sensitive to regularization hyperparameter tuning than z-loss.
comment: 11 pages, 5 figures
☆ Not All Needles Are Found: How Fact Distribution and Don't Make It Up Prompts Shape Literal Extraction, Logical Inference, and Hallucination Risks in Long-Context LLMs
Large language models (LLMs) increasingly support very long input contexts. Yet it remains unclear how reliably they extract and infer information at scale. Performance varies with context length and strongly interacts with how information is distributed in real-world corpora. Motivated by these observations, we study how fact placement, corpus-level fact distributions, and Don't Make It Up prompts influence model behavior. We introduce an extended needle-in-a-haystack benchmark across four production-scale models: Gemini-2.5-flash, ChatGPT-5-mini, Claude-4.5-haiku, and Deepseek-v3.2-chat. Unlike prior work, we separately evaluate literal extraction, logical inference, and hallucination risk. Our study considers both positional effects and realistic distributions of evidence across long contexts, as well as prompts that explicitly discourage fabrication. We find that longer contexts alone do not guarantee better performance and can be detrimental when relevant evidence is diluted or widely dispersed. Performance varies substantially across models: some show severe degradation under realistic conditions, while others remain more robust at longer context lengths. Anti-hallucination (AH) instructions can make some models overly conservative, sharply reducing accuracy in literal extraction and logical inference. While we do not directly compare retrieval-augmented generation (RAG) and cache-augmented generation (CAG), our results suggest many failures stem from ineffective context utilization. Models often struggle to identify and prioritize relevant information even when it is present. These findings have direct practical implications, as enterprise workflows increasingly involve pasting large volumes of unfiltered documents into LLM prompts. Effective context length and model-specific robustness to long contexts are therefore critical for reliable LLM deployment in research and business.
comment: 25 pages, 8 figures, 3 tables
☆ Surprisal and Metaphor Novelty: Moderate Correlations and Divergent Scaling Effects EACL 2026
Novel metaphor comprehension involves complex semantic processes and linguistic creativity, making it an interesting task for studying language models (LMs). This study investigates whether surprisal, a probabilistic measure of predictability in LMs, correlates with different metaphor novelty datasets. We analyse surprisal from 16 LM variants on corpus-based and synthetic metaphor novelty datasets. We explore a cloze-style surprisal method that conditions on full-sentence context. Results show that LMs yield significant moderate correlations with scores/labels of metaphor novelty. We further identify divergent scaling patterns: on corpus-based data, correlation strength decreases with model size (inverse scaling effect), whereas on synthetic data it increases (Quality-Power Hypothesis). We conclude that while surprisal can partially account for annotations of metaphor novelty, it remains a limited metric of linguistic creativity.
comment: to be published at EACL 2026 main conference
☆ A neural network for modeling human concept formation, understanding and communication
A remarkable capability of the human brain is to form more abstract conceptual representations from sensorimotor experiences and flexibly apply them independent of direct sensory inputs. However, the computational mechanism underlying this ability remains poorly understood. Here, we present a dual-module neural network framework, the CATS Net, to bridge this gap. Our model consists of a concept-abstraction module that extracts low-dimensional conceptual representations, and a task-solving module that performs visual judgement tasks under the hierarchical gating control of the formed concepts. The system develops transferable semantic structure based on concept representations that enable cross-network knowledge transfer through conceptual communication. Model-brain fitting analyses reveal that these emergent concept spaces align with both neurocognitive semantic model and brain response structures in the human ventral occipitotemporal cortex, while the gating mechanisms mirror that in the semantic control brain network. This work establishes a unified computational framework that can offer mechanistic insights for understanding human conceptual cognition and engineering artificial systems with human-like conceptual intelligence.
comment: 6 main figures, 5 extended data figures and 4 supplementary figures
☆ Exploring Approaches for Detecting Memorization of Recommender System Data in Large Language Models
Large Language Models (LLMs) are increasingly applied in recommendation scenarios due to their strong natural language understanding and generation capabilities. However, they are trained on vast corpora whose contents are not publicly disclosed, raising concerns about data leakage. Recent work has shown that the MovieLens-1M dataset is memorized by both the LLaMA and OpenAI model families, but the extraction of such memorized data has so far relied exclusively on manual prompt engineering. In this paper, we pose three main questions: Is it possible to enhance manual prompting? Can LLM memorization be detected through methods beyond manual prompting? And can the detection of data leakage be automated? To address these questions, we evaluate three approaches: (i) jailbreak prompt engineering; (ii) unsupervised latent knowledge discovery, probing internal activations via Contrast-Consistent Search (CCS) and Cluster-Norm; and (iii) Automatic Prompt Engineering (APE), which frames prompt discovery as a meta-learning process that iteratively refines candidate instructions. Experiments on MovieLens-1M using LLaMA models show that jailbreak prompting does not improve the retrieval of memorized items and remains inconsistent; CCS reliably distinguishes genuine from fabricated movie titles but fails on numerical user and rating data; and APE retrieves item-level information with moderate success yet struggles to recover numerical interactions. These findings suggest that automatically optimizing prompts is the most promising strategy for extracting memorized samples.
☆ Exploring Diversity, Novelty, and Popularity Bias in ChatGPT's Recommendations
ChatGPT has emerged as a versatile tool, demonstrating capabilities across diverse domains. Given these successes, the Recommender Systems (RSs) community has begun investigating its applications within recommendation scenarios primarily focusing on accuracy. While the integration of ChatGPT into RSs has garnered significant attention, a comprehensive analysis of its performance across various dimensions remains largely unexplored. Specifically, the capabilities of providing diverse and novel recommendations or exploring potential biases such as popularity bias have not been thoroughly examined. As the use of these models continues to expand, understanding these aspects is crucial for enhancing user satisfaction and achieving long-term personalization. This study investigates the recommendations provided by ChatGPT-3.5 and ChatGPT-4 by assessing ChatGPT's capabilities in terms of diversity, novelty, and popularity bias. We evaluate these models on three distinct datasets and assess their performance in Top-N recommendation and cold-start scenarios. The findings reveal that ChatGPT-4 matches or surpasses traditional recommenders, demonstrating the ability to balance novelty and diversity in recommendations. Furthermore, in the cold-start scenario, ChatGPT models exhibit superior performance in both accuracy and novelty, suggesting they can be particularly beneficial for new users. This research highlights the strengths and limitations of ChatGPT's recommendations, offering new perspectives on the capacity of these models to provide recommendations beyond accuracy-focused metrics.
☆ Hidden State Poisoning Attacks against Mamba-based Language Models ACL 2026
State space models (SSMs) like Mamba offer efficient alternatives to Transformer-based language models, with linear time complexity. Yet, their adversarial robustness remains critically unexplored. This paper studies the phenomenon whereby specific short input phrases induce a partial amnesia effect in such models, by irreversibly overwriting information in their hidden states, referred to as a Hidden State Poisoning Attack (HiSPA). Our benchmark RoBench25 allows evaluating a model's information retrieval capabilities when subject to HiSPAs, and confirms the vulnerability of SSMs against such attacks. Even a recent 52B hybrid SSM-Transformer model from the Jamba family collapses on RoBench25 under optimized HiSPA triggers, whereas pure Transformers do not. We also observe that HiSPA triggers significantly weaken the Jamba model on the popular Open-Prompt-Injections benchmark, unlike pure Transformers. Finally, our interpretability study reveals patterns in Mamba's hidden layers during HiSPAs that could be used to build a HiSPA mitigation system. The full code and data to reproduce the experiments can be found at https://anonymous.4open.science/r/hispa_anonymous-5DB0.
comment: 17 pages, 4 figures. Submitted to ACL 2026
☆ CSF: Contrastive Semantic Features for Direct Multilingual Sign Language Generation
Sign language translation systems typically require English as an intermediary language, creating barriers for non-English speakers in the global deaf community. We present Canonical Semantic Form (CSF), a language-agnostic semantic representation framework that enables direct translation from any source language to sign language without English mediation. CSF decomposes utterances into nine universal semantic slots: event, intent, time, condition, agent, object, location, purpose, and modifier. A key contribution is our comprehensive condition taxonomy comprising 35 condition types across eight semantic categories, enabling nuanced representation of conditional expressions common in everyday communication. We train a lightweight transformer-based extractor (0.74 MB) that achieves 99.03% average slot extraction accuracy across four typologically diverse languages: English, Vietnamese, Japanese, and French. The model demonstrates particularly strong performance on condition classification (99.4% accuracy) despite the 35-class complexity. With inference latency of 3.02ms on CPU, our approach enables real-time sign language generation in browser-based applications. We release our code, trained models, and multilingual dataset to support further research in accessible sign language technology.
comment: 9 pages, 8 tables, code available at https://github.com/transybao1393/csf-sign-language
☆ The Invisible Hand of AI Libraries Shaping Open Source Projects and Communities
In the early 1980s, Open Source Software emerged as a revolutionary concept amidst the dominance of proprietary software. What began as a revolutionary idea has now become the cornerstone of computer science. Amidst OSS projects, AI is increasing its presence and relevance. However, despite the growing popularity of AI, its adoption and impacts on OSS projects remain underexplored. We aim to assess the adoption of AI libraries in Python and Java OSS projects and examine how they shape development, including the technical ecosystem and community engagement. To this end, we will perform a large-scale analysis on 157.7k potential OSS repositories, employing repository metrics and software metrics to compare projects adopting AI libraries against those that do not. We expect to identify measurable differences in development activity, community engagement, and code complexity between OSS projects that adopt AI libraries and those that do not, offering evidence-based insights into how AI integration reshapes software development practices.
comment: ACCEPTED REGISTERED REPORT AT SANER (CORE A*) 2026
☆ Tackling the Inherent Difficulty of Noise Filtering in RAG
Retrieval-Augmented Generation (RAG) has become a widely adopted approach to enhance Large Language Models (LLMs) by incorporating external knowledge and reducing hallucinations. However, noisy or irrelevant documents are often introduced during RAG, potentially degrading performance and even causing hallucinated outputs. While various methods have been proposed to filter out such noise, we argue that identifying irrelevant information from retrieved content is inherently difficult and limited number of transformer layers can hardly solve this. Consequently, retrievers fail to filter out irrelevant documents entirely. Therefore, LLMs must be robust against such noise, but we demonstrate that standard fine-tuning approaches are often ineffective in enabling the model to selectively utilize relevant information while ignoring irrelevant content due to the structural constraints of attention patterns. To address this, we propose a novel fine-tuning method designed to enhance the model's ability to distinguish between relevant and irrelevant information within retrieved documents. Extensive experiments across multiple benchmarks show that our approach significantly improves the robustness and performance of LLMs.
☆ Agentic Memory: Learning Unified Long-Term and Short-Term Memory Management for Large Language Model Agents
Large language model (LLM) agents face fundamental limitations in long-horizon reasoning due to finite context windows, making effective memory management critical. Existing methods typically handle long-term memory (LTM) and short-term memory (STM) as separate components, relying on heuristics or auxiliary controllers, which limits adaptability and end-to-end optimization. In this paper, we propose Agentic Memory (AgeMem), a unified framework that integrates LTM and STM management directly into the agent's policy. AgeMem exposes memory operations as tool-based actions, enabling the LLM agent to autonomously decide what and when to store, retrieve, update, summarize, or discard information. To train such unified behaviors, we propose a three-stage progressive reinforcement learning strategy and design a step-wise GRPO to address sparse and discontinuous rewards induced by memory operations. Experiments on five long-horizon benchmarks demonstrate that AgeMem consistently outperforms strong memory-augmented baselines across multiple LLM backbones, achieving improved task performance, higher-quality long-term memory, and more efficient context usage.
☆ DermoGPT: Open Weights and Open Data for Morphology-Grounded Dermatological Reasoning MLLMs
Multimodal Large Language Models (MLLMs) show promise for medical applications, yet progress in dermatology lags due to limited training data, narrow task coverage, and lack of clinically-grounded supervision that mirrors expert diagnostic workflows. We present a comprehensive framework to address these gaps. First, we introduce DermoInstruct, a large-scale morphology-anchored instruction corpus comprising 211,243 images and 772,675 trajectories across five task formats, capturing the complete diagnostic pipeline from morphological observation and clinical reasoning to final diagnosis. Second, we establish DermoBench, a rigorous benchmark evaluating 11 tasks across four clinical axes: Morphology, Diagnosis, Reasoning, and Fairness, including a challenging subset of 3,600 expert-verified open-ended instances and human performance baselines. Third, we develop DermoGPT, a dermatology reasoning MLLM trained via supervised fine-tuning followed by our Morphologically-Anchored Visual-Inference-Consistent (MAVIC) reinforcement learning objective, which enforces consistency between visual observations and diagnostic conclusions. At inference, we deploy Confidence-Consistency Test-time adaptation (CCT) for robust predictions. Experiments show DermoGPT significantly outperforms 16 representative baselines across all axes, achieving state-of-the-art performance while substantially narrowing the human-AI gap. DermoInstruct, DermoBench and DermoGPT will be made publicly available at https://github.com/mendicant04/DermoGPT upon acceptance.
☆ Judging with Personality and Confidence: A Study on Personality-Conditioned LLM Relevance Assessment
Recent studies have shown that prompting can enable large language models (LLMs) to simulate specific personality traits and produce behaviors that align with those traits. However, there is limited understanding of how these simulated personalities influence critical web search decisions, specifically relevance assessment. Moreover, few studies have examined how simulated personalities impact confidence calibration, specifically the tendencies toward overconfidence or underconfidence. This gap exists even though psychological literature suggests these biases are trait-specific, often linking high extraversion to overconfidence and high neuroticism to underconfidence. To address this gap, we conducted a comprehensive study evaluating multiple LLMs, including commercial models and open-source models, prompted to simulate Big Five personality traits. We tested these models across three test collections (TREC DL 2019, TREC DL 2020, and LLMJudge), collecting two key outputs for each query-document pair: a relevance judgment and a self-reported confidence score. The findings show that personalities such as low agreeableness consistently align more closely with human labels than the unprompted condition. Additionally, low conscientiousness performs well in balancing the suppression of both overconfidence and underconfidence. We also observe that relevance scores and confidence distributions vary systematically across different personalities. Based on the above findings, we incorporate personality-conditioned scores and confidence as features in a random forest classifier. This approach achieves performance that surpasses the best single-personality condition on a new dataset (TREC DL 2021), even with limited training data. These findings highlight that personality-derived confidence offers a complementary predictive signal, paving the way for more reliable and human-aligned LLM evaluators.
☆ Towards Automated Lexicography: Generating and Evaluating Definitions for Learner's Dictionaries
We study dictionary definition generation (DDG), i.e., the generation of non-contextualized definitions for given headwords. Dictionary definitions are an essential resource for learning word senses, but manually creating them is costly, which motivates us to automate the process. Specifically, we address learner's dictionary definition generation (LDDG), where definitions should consist of simple words. First, we introduce a reliable evaluation approach for DDG, based on our new evaluation criteria and powered by an LLM-as-a-judge. To provide reference definitions for the evaluation, we also construct a Japanese dataset in collaboration with a professional lexicographer. Validation results demonstrate that our evaluation approach agrees reasonably well with human annotators. Second, we propose an LDDG approach via iterative simplification with an LLM. Experimental results indicate that definitions generated by our approach achieve high scores on our criteria while maintaining lexical simplicity.
☆ Emergent Introspective Awareness in Large Language Models
We investigate whether large language models can introspect on their internal states. It is difficult to answer this question through conversation alone, as genuine introspection cannot be distinguished from confabulations. Here, we address this challenge by injecting representations of known concepts into a model's activations, and measuring the influence of these manipulations on the model's self-reported states. We find that models can, in certain scenarios, notice the presence of injected concepts and accurately identify them. Models demonstrate some ability to recall prior internal representations and distinguish them from raw text inputs. Strikingly, we find that some models can use their ability to recall prior intentions in order to distinguish their own outputs from artificial prefills. In all these experiments, Claude Opus 4 and 4.1, the most capable models we tested, generally demonstrate the greatest introspective awareness; however, trends across models are complex and sensitive to post-training strategies. Finally, we explore whether models can explicitly control their internal representations, finding that models can modulate their activations when instructed or incentivized to "think about" a concept. Overall, our results indicate that current language models possess some functional introspective awareness of their own internal states. We stress that in today's models, this capacity is highly unreliable and context-dependent; however, it may continue to develop with further improvements to model capabilities.
☆ Aspect Extraction from E-Commerce Product and Service Reviews
Aspect Extraction (AE) is a key task in Aspect-Based Sentiment Analysis (ABSA), yet it remains difficult to apply in low-resource and code-switched contexts like Taglish, a mix of Tagalog and English commonly used in Filipino e-commerce reviews. This paper introduces a comprehensive AE pipeline designed for Taglish, combining rule-based, large language model (LLM)-based, and fine-tuning techniques to address both aspect identification and extraction. A Hierarchical Aspect Framework (HAF) is developed through multi-method topic modeling, along with a dual-mode tagging scheme for explicit and implicit aspects. For aspect identification, four distinct models are evaluated: a Rule-Based system, a Generative LLM (Gemini 2.0 Flash), and two Fine-Tuned Gemma-3 1B models trained on different datasets (Rule-Based vs. LLM-Annotated). Results indicate that the Generative LLM achieved the highest performance across all tasks (Macro F1 0.91), demonstrating superior capability in handling implicit aspects. In contrast, the fine-tuned models exhibited limited performance due to dataset imbalance and architectural capacity constraints. This work contributes a scalable and linguistically adaptive framework for enhancing ABSA in diverse, code-switched environments.
☆ CSCBench: A PVC Diagnostic Benchmark for Commodity Supply Chain Reasoning
Large Language Models (LLMs) have achieved remarkable success in general benchmarks, yet their competence in commodity supply chains (CSCs) -- a domain governed by institutional rule systems and feasibility constraints -- remains under-explored. CSC decisions are shaped jointly by process stages (e.g., planning, procurement, delivery), variety-specific rules (e.g., contract specifications and delivery grades), and reasoning depth (from retrieval to multi-step analysis and decision selection). We introduce CSCBench, a 2.3K+ single-choice benchmark for CSC reasoning, instantiated through our PVC 3D Evaluation Framework (Process, Variety, and Cognition). The Process axis aligns tasks with SCOR+Enable; the Variety axis operationalizes commodity-specific rule systems under coupled material-information-financial constraints, grounded in authoritative exchange guidebooks/rulebooks and industry reports; and the Cognition axis follows Bloom's revised taxonomy. Evaluating representative LLMs under a direct prompting setting, we observe strong performance on the Process and Cognition axes but substantial degradation on the Variety axis, especially on Freight Agreements. CSCBench provides a diagnostic yardstick for measuring and improving LLM capabilities in this high-stakes domain.
☆ HyperCLOVA X 8B Omni
In this report, we present HyperCLOVA X 8B Omni, the first any-to-any omnimodal model in the HyperCLOVA X family that supports text, audio, and vision as both inputs and outputs. By consolidating multimodal understanding and generation into a single model rather than separate modality-specific pipelines, HyperCLOVA X 8B Omni serves as an 8B-scale omni-pathfinding point toward practical any-to-any omni assistants. At a high level, the model unifies modalities through a shared next-token prediction interface over an interleaved multimodal sequence, while vision and audio encoders inject continuous embeddings for fine-grained understanding and grounding. Empirical evaluations demonstrate competitive performance against comparably sized models across diverse input-output combinations spanning text, audio, and vision, in both Korean and English. We anticipate that the open-weight release of HyperCLOVA X 8B Omni will support a wide range of research and deployment scenarios.
comment: Technical Report
☆ BanglaIPA: Towards Robust Text-to-IPA Transcription with Contextual Rewriting in Bengali
Despite its widespread use, Bengali lacks a robust automated International Phonetic Alphabet (IPA) transcription system that effectively supports both standard language and regional dialectal texts. Existing approaches struggle to handle regional variations, numerical expressions, and generalize poorly to previously unseen words. To address these limitations, we propose BanglaIPA, a novel IPA generation system that integrates a character-based vocabulary with word-level alignment. The proposed system accurately handles Bengali numerals and demonstrates strong performance across regional dialects. BanglaIPA improves inference efficiency by leveraging a precomputed word-to-IPA mapping dictionary for previously observed words. The system is evaluated on the standard Bengali and six regional variations of the DUAL-IPA dataset. Experimental results show that BanglaIPA outperforms baseline IPA transcription models by 58.4-78.7% and achieves an overall mean word error rate of 11.4%, highlighting its robustness in phonetic transcription generation for the Bengali language.
☆ Can LLMs Track Their Output Length? A Dynamic Feedback Mechanism for Precise Length Regulation
Precisely controlling the length of generated text is a common requirement in real-world applications. However, despite significant advancements in following human instructions, Large Language Models (LLMs) still struggle with this task. In this work, we demonstrate that LLMs often fail to accurately measure input text length, leading to poor adherence to length constraints. To address this issue, we propose a novel length regulation approach that incorporates dynamic length feedback during generation, enabling adaptive adjustments to meet target lengths. Experiments on summarization and biography tasks show our training-free approach significantly improves precision in achieving target token, word, or sentence counts without compromising quality. Additionally, we demonstrate that further supervised fine-tuning allows our method to generalize effectively to broader text-generation tasks.
☆ Context-Free Recognition with Transformers
Transformers excel on tasks that process well-formed inputs according to some grammar, such as natural language and code. However, it remains unclear how they can process grammatical syntax. In fact, under standard complexity conjectures, standard transformers cannot recognize context-free languages (CFLs), a canonical formalism to describe syntax, or even regular languages, a subclass of CFLs (Merrill et al., 2022). Merrill & Sabharwal (2024) show that $\mathcal{O}(\log n)$ looping layers (w.r.t. input length $n$) allows transformers to recognize regular languages, but the question of context-free recognition remained open. In this work, we show that looped transformers with $\mathcal{O}(\log n)$ looping layers and $\mathcal{O}(n^6)$ padding tokens can recognize all CFLs. However, training and inference with $\mathcal{O}(n^6)$ padding tokens is potentially impractical. Fortunately, we show that, for natural subclasses such as unambiguous CFLs, the recognition problem on transformers becomes more tractable, requiring $\mathcal{O}(n^3)$ padding. We empirically validate our results and show that looping helps on a language that provably requires logarithmic depth. Overall, our results shed light on the intricacy of CFL recognition by transformers: While general recognition may require an intractable amount of padding, natural constraints such as unambiguity yield efficient recognition algorithms.
☆ Query-Document Dense Vectors for LLM Relevance Judgment Bias Analysis ECIR 2026
Large Language Models (LLMs) have been used as relevance assessors for Information Retrieval (IR) evaluation collection creation due to reduced cost and increased scalability as compared to human assessors. While previous research has looked at the reliability of LLMs as compared to human assessors, in this work, we aim to understand if LLMs make systematic mistakes when judging relevance, rather than just understanding how good they are on average. To this aim, we propose a novel representational method for queries and documents that allows us to analyze relevance label distributions and compare LLM and human labels to identify patterns of disagreement and localize systematic areas of disagreement. We introduce a clustering-based framework that embeds query-document (Q-D) pairs into a joint semantic space, treating relevance as a relational property. Experiments on TREC Deep Learning 2019 and 2020 show that systematic disagreement between humans and LLMs is concentrated in specific semantic clusters rather than distributed randomly. Query-level analyses reveal recurring failures, most often in definition-seeking, policy-related, or ambiguous contexts. Queries with large variation in agreement across their clusters emerge as disagreement hotspots, where LLMs tend to under-recall relevant content or over-include irrelevant material. This framework links global diagnostics with localized clustering to uncover hidden weaknesses in LLM judgments, enabling bias-aware and more reliable IR evaluation.
comment: Accepted for presentation at the ECIR 2026 Full Papers track
☆ Multi-granularity Interactive Attention Framework for Residual Hierarchical Pronunciation Assessment AAAI 2026
Automatic pronunciation assessment plays a crucial role in computer-assisted pronunciation training systems. Due to the ability to perform multiple pronunciation tasks simultaneously, multi-aspect multi-granularity pronunciation assessment methods are gradually receiving more attention and achieving better performance than single-level modeling tasks. However, existing methods only consider unidirectional dependencies between adjacent granularity levels, lacking bidirectional interaction among phoneme, word, and utterance levels and thus insufficiently capturing the acoustic structural correlations. To address this issue, we propose a novel residual hierarchical interactive method, HIA for short, that enables bidirectional modeling across granularities. As the core of HIA, the Interactive Attention Module leverages an attention mechanism to achieve dynamic bidirectional interaction, effectively capturing linguistic features at each granularity while integrating correlations between different granularity levels. We also propose a residual hierarchical structure to alleviate the feature forgetting problem when modeling acoustic hierarchies. In addition, we use 1-D convolutional layers to enhance the extraction of local contextual cues at each granularity. Extensive experiments on the speechocean762 dataset show that our model is comprehensively ahead of the existing state-of-the-art methods.
comment: 9 pages, 4 figures, 5 tables, accepted by AAAI 2026
☆ K-EXAONE Technical Report
This technical report presents K-EXAONE, a large-scale multilingual language model developed by LG AI Research. K-EXAONE is built on a Mixture-of-Experts architecture with 236B total parameters, activating 23B parameters during inference. It supports a 256K-token context window and covers six languages: Korean, English, Spanish, German, Japanese, and Vietnamese. We evaluate K-EXAONE on a comprehensive benchmark suite spanning reasoning, agentic, general, Korean, and multilingual abilities. Across these evaluations, K-EXAONE demonstrates performance comparable to open-weight models of similar size. K-EXAONE, designed to advance AI for a better life, is positioned as a powerful proprietary AI foundation model for a wide range of industrial and research applications.
comment: 29 pages
☆ Entropy-Aligned Decoding of LMs for Better Writing and Reasoning
Language models (LMs) are trained on billions of tokens in an attempt to recover the true language distribution. Still, vanilla random sampling from LMs yields low quality generations. Decoding algorithms attempt to restrict the LM distribution to a set of high-probability continuations, but rely on greedy heuristics that introduce myopic distortions, yielding sentences that are homogeneous, repetitive and incoherent. In this paper, we introduce EPIC, a hyperparameter-free decoding approach that incorporates the entropy of future trajectories into LM decoding. EPIC explicitly regulates the amount of uncertainty expressed at every step of generation, aligning the sampling distribution's entropy to the aleatoric (data) uncertainty. Through Entropy-Aware Lazy Gumbel-Max sampling, EPIC manages to be exact, while also being efficient, requiring only a sublinear number of entropy evaluations per step. Unlike current baselines, EPIC yields sampling distributions that are empirically well-aligned with the entropy of the underlying data distribution. Across creative writing and summarization tasks, EPIC consistently improves LM-as-judge preference win-rates over widely used decoding strategies. These preference gains are complemented by automatic metrics, showing that EPIC produces more diverse generations and more faithful summaries. We also evaluate EPIC on mathematical reasoning, where it outperforms all baselines.
☆ A Training-Free Large Reasoning Model-based Knowledge Tracing Framework for Unified Prediction and Prescription
Knowledge Tracing (KT) aims to estimate a learner's evolving mastery based on interaction histories. Recent studies have explored Large Language Models (LLMs) for KT via autoregressive nature, but such approaches typically require fine-tuning and exhibit unstable or near-random performance. Moreover, prior KT systems primarily focus on prediction and rely on multi-stage pipelines for feedback and recommendation, resulting in increased system complexity and resources. To address this gap, we propose Thinking-KT, a training-free KT framework that incorporates Test-Time Scaling (TTS), enabling even small LLMs to achieve competitive KT performance. Moreover, in this framework, a small LLM can jointly perform KT prediction, personalized feedback generation, and learning recommendation in a unified output without degrading prediction accuracy. Beyond performance, we present the systematic analysis of reasoning traces in KT. Our results demonstrate that TTS is a critical yet underexplored factor in LLM-based KT, and that small LLMs can serve as unified ITS engines.
♻ ☆ EmoNet-Voice: A Fine-Grained, Expert-Verified Benchmark for Speech Emotion Detection
Speech emotion recognition (SER) systems are constrained by existing datasets that typically cover only 6-10 basic emotions, lack scale and diversity, and face ethical challenges when collecting sensitive emotional states. We introduce EMONET-VOICE, a comprehensive resource addressing these limitations through two components: (1) EmoNet-Voice Big, a 5,000-hour multilingual pre-training dataset spanning 40 fine-grained emotion categories across 11 voices and 4 languages, and (2) EmoNet-Voice Bench, a rigorously validated benchmark of 4,7k samples with unanimous expert consensus on emotion presence and intensity levels. Using state-of-the-art synthetic voice generation, our privacy-preserving approach enables ethical inclusion of sensitive emotions (e.g., pain, shame) while maintaining controlled experimental conditions. Each sample underwent validation by three psychology experts. We demonstrate that our Empathic Insight models trained on our synthetic data achieve strong real-world dataset generalization, as tested on EmoDB and RAVDESS. Furthermore, our comprehensive evaluation reveals that while high-arousal emotions (e.g., anger: 95% accuracy) are readily detected, the benchmark successfully exposes the difficulty of distinguishing perceptually similar emotions (e.g., sadness vs. distress: 63% discrimination), providing quantifiable metrics for advancing nuanced emotion AI. EMONET-VOICE establishes a new paradigm for large-scale, ethically-sourced, fine-grained SER research.
♻ ☆ Scaling Open-Ended Reasoning to Predict the Future
High-stakes decision making involves reasoning under uncertainty about the future. In this work, we train language models to make predictions on open-ended forecasting questions. To scale up training data, we synthesize novel forecasting questions from global events reported in daily news, using a fully automated, careful curation recipe. We train the Qwen3 thinking models on our dataset, OpenForesight. To prevent leakage of future information during training and evaluation, we use an offline news corpus, both for data generation and retrieval in our forecasting system. Guided by a small validation set, we show the benefits of retrieval, and an improved reward function for reinforcement learning (RL). Once we obtain our final forecasting system, we perform held-out testing between May to August 2025. Our specialized model, OpenForecaster 8B, matches much larger proprietary models, with our training improving the accuracy, calibration, and consistency of predictions. We find calibration improvements from forecasting training generalize across popular benchmarks. We open-source all our models, code, and data to make research on language model forecasting broadly accessible.
comment: 45 pages
♻ ☆ SteganoBackdoor: Stealthy and Data-Efficient Backdoor Attacks on Language Models
Modern language models remain vulnerable to backdoor attacks via poisoned data, where training inputs containing a trigger are paired with a target output, causing the model to reproduce that behavior whenever the trigger appears at inference time. Recent work has emphasized stealthy attacks that stress-test data-curation defenses using stylized artifacts or token-level perturbations as triggers, but this focus leaves a more practically relevant threat model underexplored: backdoors tied to naturally occurring semantic concepts. We introduce SteganoBackdoor, an optimization-based framework that constructs SteganoPoisons, steganographic poisoned training examples in which a backdoor payload is distributed across a fluent sentence while exhibiting no representational overlap with the inference-time semantic trigger. Across diverse model architectures, SteganoBackdoor achieves high attack success under constrained poisoning budgets and remains effective under conservative data-level filtering, highlighting a blind spot in existing data-curation defenses.
♻ ☆ Vision-Language Reasoning for Geolocalization: A Reinforcement Learning Approach AAAI 2026
Recent advances in vision-language models have opened up new possibilities for reasoning-driven image geolocalization. However, existing approaches often rely on synthetic reasoning annotations or external image retrieval, which can limit interpretability and generalizability. In this paper, we present Geo-R, a retrieval-free framework that uncovers structured reasoning paths from existing ground-truth coordinates and optimizes geolocation accuracy via reinforcement learning. We propose the Chain of Region, a rule-based hierarchical reasoning paradigm that generates precise, interpretable supervision by mapping GPS coordinates to geographic entities (e.g., country, province, city) without relying on model-generated or synthetic labels. Building on this, we introduce a lightweight reinforcement learning strategy with coordinate-aligned rewards based on Haversine distance, enabling the model to refine predictions through spatially meaningful feedback. Our approach bridges structured geographic reasoning with direct spatial supervision, yielding improved localization accuracy, stronger generalization, and more transparent inference. Experimental results across multiple benchmarks confirm the effectiveness of Geo-R, establishing a new retrieval-free paradigm for scalable and interpretable image geolocalization. To facilitate further research and ensure reproducibility, both the model and code will be made publicly available.
comment: Accepted to AAAI 2026. Project Page: https://github.com/aialt/geo-r
♻ ☆ BitDecoding: Unlocking Tensor Cores for Long-Context LLMs with Low-Bit KV Cache
The growth of long-context Large Language Models (LLMs) significantly increases memory and bandwidth pressure during autoregressive decoding due to the expanding Key-Value (KV) cache. While accuracy-preserving KV-cache quantization (e.g., 4-bit or 2-bit) reduces memory footprint, existing systems decode inefficiently by relying solely on CUDA cores, underutilizing Tensor Cores-the dominant compute resource on GPUs. We present BitDecoding, the first inference system to efficiently decode low-bit KV caches by cooperatively leveraging CUDA cores and Tensor Cores. BitDecoding smartly induces Tensor-Core-friendly layouts, introduces warp-level dequantization parallelism, and provides unified system support through query transformation, high-performance tensor- and channel-wise quantization, and a software-pipelined dequantization kernel enabling mixed-precision execution. Architecture-aware optimizations further leverage Hopper's warpgroup tensor instructions and Blackwell's NVFP4 (MXFP4) tensor formats. Evaluated on Blackwell, Hopper, and Ampere GPUs, BitDecoding achieves an average 7.5x decoding speedup over FP16 FlashDecoding-v2, up to 8.6x on Blackwell with NVFP4, and up to 4.3x over state-of-the-art approaches. On LLaMA-3.1-8B with a 128K context, BitDecoding reduces single-batch decoding latency by 3x. BitDecoding is open-sourced at https://github.com/OpenBitSys/BitDecoding.
♻ ☆ Tales of the 2025 Los Angeles Fire: Hotwash for Public Health Concerns in Reddit via LLM-Enhanced Topic Modeling
Wildfires have become increasingly frequent, irregular, and severe in recent years. Understanding how affected populations perceive and respond during wildfire crises is critical for timely and empathetic disaster response. Social media platforms offer a crowd-sourced channel to capture evolving public discourse, providing hyperlocal information and insight into public sentiment. This study analyzes Reddit discourse during the 2025 Los Angeles wildfires, spanning from the onset of the disaster to full containment. We collect 385 posts and 114,879 comments related to the Palisades and Eaton fires. We adopt topic modeling methods to identify the latent topics, enhanced by large language models (LLMs) and human-in-the-loop (HITL) refinement. Furthermore, we develop a hierarchical framework to categorize latent topics, consisting of two main categories, Situational Awareness (SA) and Crisis Narratives (CN). The volume of SA category closely aligns with real-world fire progressions, peaking within the first 2-5 days as the fires reach the maximum extent. The most frequent co-occurring category set of public health and safety, loss and damage, and emergency resources expands on a wide range of health-related latent topics, including environmental health, occupational health, and one health. Grief signals and mental health risks consistently accounted for 60 percentage and 40 percentage of CN instances, respectively, with the highest total volume occurring at night. This study contributes the first annotated social media dataset on the 2025 LA fires, and introduces a scalable multi-layer framework that leverages topic modeling for crisis discourse analysis. By identifying persistent public health concerns, our results can inform more empathetic and adaptive strategies for disaster response, public health communication, and future research in comparable climate-related disaster events.
comment: Fix typos in Method Section. Add data/code availability
♻ ☆ MIND Your Reasoning: A Meta-Cognitive Intuitive-Reflective Network for Dual-Reasoning in Multimodal Stance Detection
Multimodal Stance Detection (MSD) is a crucial task for understanding public opinion on social media. Existing methods predominantly operate by learning to fuse modalities. They lack an explicit reasoning process to discern how inter-modal dynamics, such as irony or conflict, collectively shape the user's final stance, leading to frequent misjudgments. To address this, we advocate for a paradigm shift from *learning to fuse* to *learning to reason*. We introduce **MIND**, a **M**eta-cognitive **I**ntuitive-reflective **N**etwork for **D**ual-reasoning. Inspired by the dual-process theory of human cognition, MIND operationalizes a self-improving loop. It first generates a rapid, intuitive hypothesis by querying evolving Modality and Semantic Experience Pools. Subsequently, a meta-cognitive reflective stage uses Modality-CoT and Semantic-CoT to scrutinize this initial judgment, distill superior adaptive strategies, and evolve the experience pools themselves. These dual experience structures are continuously refined during training and recalled at inference to guide robust and context-aware stance decisions. Extensive experiments on the MMSD benchmark demonstrate that our MIND significantly outperforms most baseline models and exhibits strong generalization.
♻ ☆ Language as a Wave Phenomenon: Iso-Energetic Phase-Locking and Semantic Interference in Neural Networks
Conventional deep learning paradigms rely on metabolically expensive magnitude-based representations, rendering them fundamentally incompatible with passive photonic hardware. We introduce PRISM, a sequence modeling architecture that bridges high-level reasoning and physical constraints by enforcing an Iso-Energetic (Unity Gain) principle, compelling the network to encode semantic information exclusively in the phase angle. Validated on the WMT14 translation benchmark, PRISM achieves a 0.799 COMET score, demonstrating that phase-based reasoning competes with standard Transformers (0.821) and functionally matches unconstrained spectral baselines like FNet (0.805), despite enforcing strict energy constraints and requiring 11.5% fewer parameters. Furthermore, to verify hardware feasibility, we simulate a Holographic Backpropagation mechanism on a noisy, 4-bit optical correlator. Ablation studies reveal a substantial performance gain (48.4% vs. 62.4%) over a frozen baseline, proving that the proposed phase-steering mechanism actively optimizes physical parameters under strict energy constraints. These results establish an existence proof that ultra-low-power, passive optical hardware can support high-level linguistic intelligence without sacrificing representational capacity.
comment: Major Revision. Title changed to reflect the new theoretical framework. Complete narrative shift from "Optimization Efficiency" to "Iso-Energetic Phase Coding" and "Optical Hardware Compatibility". Replaced ISMR diagnostics with Holographic Optical Learning simulations and mechanistic "Dual-Regime" phase analysis. Comparison with spectral baselines (FNet) added
♻ ☆ mHC: Manifold-Constrained Hyper-Connections
Recently, studies exemplified by Hyper-Connections (HC) have extended the ubiquitous residual connection paradigm established over the past decade by expanding the residual stream width and diversifying connectivity patterns. While yielding substantial performance gains, this diversification fundamentally compromises the identity mapping property intrinsic to the residual connection, which causes severe training instability and restricted scalability, and additionally incurs notable memory access overhead. To address these challenges, we propose Manifold-Constrained Hyper-Connections (mHC), a general framework that projects the residual connection space of HC onto a specific manifold to restore the identity mapping property, while incorporating rigorous infrastructure optimization to ensure efficiency. Empirical experiments demonstrate that mHC is effective for training at scale, offering tangible performance improvements and superior scalability. We anticipate that mHC, as a flexible and practical extension of HC, will contribute to a deeper understanding of topological architecture design and suggest promising directions for the evolution of foundational models.
♻ ☆ Tuning without Peeking: Provable Generalization Bounds and Robust LLM Post-Training
Gradient-based optimization is the workhorse of deep learning, offering efficient and scalable training via backpropagation. However, exposing gradients during training can leak sensitive information about the underlying data, raising privacy and security concerns such as susceptibility to data poisoning attacks. In contrast, black box optimization methods, which treat the model as an opaque function, relying solely on function evaluations to guide optimization, offer a promising alternative in scenarios where data access is restricted, adversarial risks are high, or overfitting is a concern. This paper introduces BBoxER, an evolutionary black-box method for LLM post-training that induces an information bottleneck via implicit compression of the training data. Leveraging the tractability of information flow, we provide non-vacuous generalization bounds and strong theoretical guarantees for privacy, robustness to data poisoning attacks, and extraction attacks. In experiments with LLMs, we demonstrate empirically that black-box optimization methods, despite the scalability and computational challenges inherent to black-box approaches, are able to learn, showing how a few iterations of BBoxER improve performance, generalize well on a benchmark of reasoning datasets, and are robust to membership inference attacks. This positions BBoxER as an attractive add-on on top of gradient-based optimization, offering suitability for deployment in restricted or privacy-sensitive environments while also providing non-vacuous generalization guarantees.
♻ ☆ QFrBLiMP: a Quebec-French Benchmark of Linguistic Minimal Pairs EACL 2026
In this paper, we introduce the Quebec-French Benchmark of Linguistic Minimal Pairs (QFrBLiMP), a corpus designed to evaluate LLMs' linguistic knowledge of prominent grammatical phenomena in Quebec-French. QFrBLiMP comprises 1,761 minimal pairs annotated with 20 LPs. Specifically, these minimal pairs have been created by manually modifying sentences extracted from an official online resource maintained by a Québec government institution. Each pair is annotated by 12 Quebec-French native speakers, who select the sentence they consider grammatical from the two. These annotations are used to compare the competency of LLMs with that of humans. We evaluate different LLMs on QFrBLiMP and MultiBLiMP-Fr by observing the rate of higher probabilities assigned to the sentences of each minimal pair for each category. We find that while grammatical competence scales with model size, a clear hierarchy of difficulty emerges. All benchmarked models consistently fail on phenomena requiring deep semantic understanding, revealing a critical limitation. Finally, our statistical analysis comparing QFrBLiMP and MultiBLiMP reveals a significant performance degradation for most models on Quebec-French; however, the most capable models remain within the statistical significance interval, demonstrating cross-dialectal robustness.
comment: Acceptged to EACL 2026
♻ ☆ FaithLens: Detecting and Explaining Faithfulness Hallucination
Recognizing whether outputs from large language models (LLMs) contain faithfulness hallucination is crucial for real-world applications, e.g., retrieval-augmented generation and summarization. In this paper, we introduce FaithLens, a cost-efficient and effective faithfulness hallucination detection model that can jointly provide binary predictions and corresponding explanations to improve trustworthiness. To achieve this, we first synthesize training data with explanations via advanced LLMs and apply a well-defined data filtering strategy to ensure label correctness, explanation quality, and data diversity. Subsequently, we fine-tune the model on these well-curated training data as a cold start and further optimize it with rule-based reinforcement learning, using rewards for both prediction correctness and explanation quality. Results on 12 diverse tasks show that the 8B-parameter FaithLens outperforms advanced models such as GPT-4.1 and o3. Also, FaithLens can produce high-quality explanations, delivering a distinctive balance of trustworthiness, efficiency, and effectiveness.
♻ ☆ Evaluating LLM-based Agents for Multi-Turn Conversations: A Survey
This survey examines evaluation methods for large language model (LLM)-based agents in multi-turn conversational settings. Using a PRISMA-inspired framework, we systematically reviewed nearly 250 scholarly sources, capturing the state of the art from various venues of publication, and establishing a solid foundation for our analysis. Our study offers a structured approach by developing two interrelated taxonomy systems: one that defines \emph{what to evaluate} and another that explains \emph{how to evaluate}. The first taxonomy identifies key components of LLM-based agents for multi-turn conversations and their evaluation dimensions, including task completion, response quality, user experience, memory and context retention, as well as planning and tool integration. These components ensure that the performance of conversational agents is assessed in a holistic and meaningful manner. The second taxonomy system focuses on the evaluation methodologies. It categorizes approaches into annotation-based evaluations, automated metrics, hybrid strategies that combine human assessments with quantitative measures, and self-judging methods utilizing LLMs. This framework not only captures traditional metrics derived from language understanding, such as BLEU and ROUGE scores, but also incorporates advanced techniques that reflect the dynamic, interactive nature of multi-turn dialogues.
♻ ☆ SwiftEmbed: Ultra-Fast Text Embeddings via Static Token Lookup for Real-Time Applications
We present a static token lookup methodology for text embedding generation that achieves 1.12 ms p50 latency for single text embeddings while maintaining 60.6 MTEB average score across 8 representative tasks, corresponding to 89% of contextual model quality. The Rust implementation delivers 50,000 requests per second throughput through static embedding lookup, optimized mean pooling, and zero-copy IEEE754 binary serialization. Evaluation demonstrates exceptional duplicate detection performance (90.1% AP), strong semantic similarity (76.1% Spearman correlation), and domain-specific performance ranging from 75% to 131% of baseline across specialized domains. The system enables real-time embedding applications where sub-5ms latency is critica
♻ ☆ Interpretable Safety Alignment via SAE-Constructed Low-Rank Subspace Adaptation
Safety alignment -- training large language models (LLMs) to refuse harmful requests while remaining helpful -- is critical for responsible deployment. Prior work established that safety behaviors are governed by low-rank structures, suggesting parameter-efficient fine-tuning (PEFT) should be well-suited for alignment. However, Low-Rank Adaptation (LoRA) consistently underperforms full fine-tuning and reinforcement learning on safety benchmarks. We attribute this gap to semantic entanglement: safety-relevant directions are intertwined with unrelated concepts due to polysemanticity, impeding implicit subspace identification. To address this, we propose SAILS (Safety Alignment via Interpretable Low-rank Subspace), which leverages Sparse Autoencoders (SAEs) to disentangle representations into monosemantic features, constructs an interpretable safety subspace from SAE decoder directions, and uses it to initialize LoRA adapters. Theoretically, we prove that SAE-based identification achieves arbitrarily small recovery error under monosemanticity assumptions, while direct identification suffers an irreducible error floor. Empirically, SAILS achieves up to 99.6% safety rate on Gemma-2-9B -- exceeding full fine-tuning by 7.4 points and matching RLHF-based models -- while updating only 0.19% of parameters and providing interpretability.
♻ ☆ Deployability-Centric Infrastructure-as-Code Generation: Fail, Learn, Refine, and Succeed through LLM-Empowered DevOps Simulation
Infrastructure-as-Code (IaC) generation holds significant promise for automating cloud infrastructure provisioning. Recent advances in Large Language Models (LLMs) present a promising opportunity to democratize IaC development by generating deployable infrastructure templates from natural language descriptions. However, current evaluation focuses on syntactic correctness while ignoring deployability, the critical measure of the utility of IaC configuration files. Six state-of-the-art LLMs performed poorly on deployability, achieving only 20.8$\sim$30.2% deployment success rate on the first attempt. In this paper, we construct DPIaC-Eval, the first deployability-centric IaC template benchmark consisting of 153 real-world scenarios cross 58 unique services. Also, we propose an LLM-based deployability-centric framework, dubbed IaCGen, that uses iterative feedback mechanism encompassing format verification, syntax checking, and live deployment stages, thereby closely mirroring the real DevOps workflows. Results show that IaCGen can make 54.6$\sim$91.6% generated IaC templates from all evaluated models deployable in the first 10 iterations. Additionally, human-in-the-loop feedback that provide direct guidance for the deployability errors, can further boost the performance to over 90% passItr@25 on all evaluated LLMs. Furthermore, we explore the trustworthiness of the generated IaC templates on user intent alignment and security compliance. The poor performance (25.2% user requirement coverage and 8.4% security compliance rate) indicates a critical need for continued research in this domain.
comment: Accepted by FSE 2026
♻ ☆ CMDAR: A Chinese Multi-scene Dynamic Audio Reasoning Benchmark with Diverse Challenges
The ability to reason from audio, including speech, environmental sounds, and music, is essential for AI agents to interact effectively in real-world scenarios. Existing benchmarks mainly focus on static or single-scene settings and English audio data and do not fully capture scenarios where multiple speakers, unfolding events, and heterogeneous audio sources interact. To address these challenges, we introduce CMDAR, a Chinese benchmark for evaluating models on complex, multi-scene, and dynamically evolving audio reasoning tasks. CMDAR comprises 3,000 carefully curated question-answer pairs linked to diverse audio clips, covering five categories of complex reasoning and spanning three question types. We benchmark 26 state-of-the-art audio language models on CMDAR and observe that they exhibit limitations in complex reasoning tasks. In CMDAR-main, Qwen2.5-Omni achieves 76.67% accuracy, whereas GPT-4o Audio reaches 68.47%. However, GPT-4o Audio substantially outperforms Qwen2.5-Omni on the more challenging multiple-choice with multiple audios and open-ended tasks. And we provide detail analysis corresponding suggestions for the future development of large audio language models.
comment: 25 pages, 7 figures
♻ ☆ VISTA Score: Verification In Sequential Turn-based Assessment
Hallucination--defined here as generating statements unsupported or contradicted by available evidence or conversational context--remains a major obstacle to deploying conversational AI systems in settings that demand factual reliability. Existing metrics either evaluate isolated responses or treat unverifiable content as errors, limiting their use for multi-turn dialogue. We introduce VISTA (Verification In Sequential Turn-based Assessment), a framework for evaluating conversational factuality through claim-level verification and sequential consistency tracking. VISTA decomposes each assistant turn into atomic factual claims, verifies them against trusted sources and dialogue history, and categorizes unverifiable statements (subjective, contradicted, lacking evidence, or abstaining). Across eight large language models and four dialogue factuality benchmarks (AIS, BEGIN, FAITHDIAL, and FADE), VISTA substantially improves hallucination detection over FACTSCORE and LLM-as-Judge baselines. Human evaluation confirms that VISTA's decomposition improves annotator agreement and reveals inconsistencies in existing benchmarks. By modeling factuality as a dynamic property of conversation, VISTA offers a more transparent, human-aligned measure of truthfulness in dialogue systems.
♻ ☆ SIP-BMM: Constructing the Capability--Efficiency Pareto Set for LLMs via Structural Importance Prior Bayesian Model Merging
Constructing a Pareto set is pivotal for navigating the capability--efficiency trade-offs in Large Language Models (LLMs). However, existing merging techniques remain inadequate for this task. Coarse-grained, model-level methods yield only a sparse set of suboptimal solutions, while fine-grained, layer-wise approaches suffer from the curse of dimensionality, rendering the search space computationally intractable. To resolve this dichotomy, we propose Structural Importance Prior Bayesian Model Merging (SIP-BMM), a framework that automatically constructs the LLM Pareto set. SIP-BMM renders high-dimensional layer-wise search tractable by introducing an importance-aware Sparse Axis-Aligned Subspace Bayesian Optimization (SAASBO) strategy. By leveraging a structural importance prior derived from task-vector differences, our method guides SAASBO to automatically identify critical layers, thereby dramatically reducing the effective dimensionality without sacrificing the granularity of full-model control. The entire process is automated within an evolutionary loop driven by the Log-Noisy Expected Hypervolume Improvement ($q$NEHVI) acquisition function. Experiments demonstrate that SIP-BMM discovers a stronger and denser Pareto front than competitive baselines, enabling agile model selection tailored to diverse operational constraints. Code is available at: https://github.com/MiLab-HITSZ/2026-SIPBMM.
♻ ☆ LTLBench: Towards Benchmarks for Evaluating Temporal Reasoning in Large Language Models
Temporal Reasoning (TR) is a critical ability for LLMs to understand and reason over temporal information and relationships between events. To study the TR ability in LLMs, prior works provide different ways for evaluating various aspects of TR ability. In this work, we propose an alternative perspective for evaluating TR ability by leveraging Linear Temporal Logic (LTL), and develop a pipeline to automatically synthesize challenges for assessing the TR ability of LLMs. Based on this pipeline, we construct a dataset, namely LTLBench, consisting of $2000$ TR challenges, and benchmark 12 LLMs across 5 different methods. Furthermore, we conduct additional experiments to investigate the impact of increasing the number of formula operators and events on both LLM performance and the complexity of TR problems. We also perform qualitative analyses of their reasoning processes and the effects of varying the number of events and formula operators, which reveal 3 main issues in their temporal reasoning processes and the unexpected performance changes observed as problem complexity increases. We expect this work to provide valuable insights into the TR ability of LLMs.
♻ ☆ When in Doubt, Consult: Expert Debate for Sexism Detection via Confidence-Based Routin
Sexist content online increasingly appears in subtle, context-dependent forms that evade traditional detection methods. Its interpretation often depends on overlapping linguistic, psychological, legal, and cultural dimensions, which produce mixed and sometimes contradictory signals, even in annotated datasets. These inconsistencies, combined with label scarcity and class imbalance, result in unstable decision boundaries and cause fine-tuned models to overlook subtler, underrepresented forms of harm. Together, these limitations point to the need for a design that explicitly addresses the combined effects of (i) underrepresentation, (ii) noise, and (iii) conceptual ambiguity in both data and model predictions. To address these challenges, we propose a two-stage framework that unifies (i) targeted training procedures to adapt supervision to scarce and noisy data with (ii) selective, reasoning-based inference to handle ambiguous or borderline cases. Our training setup applies class-balanced focal loss, class-aware batching, and post-hoc threshold calibration to mitigate label imbalance and noisy supervision. At inference time, a dynamic routing mechanism classifies high-confidence cases directly and escalates uncertain instances to a novel \textit{Collaborative Expert Judgment} (CEJ) module, which prompts multiple personas and consolidates their reasoning through a judge model. Our approach achieves state-of-the-art results across several benchmarks, with F1 gains of +4.48% and +1.30% on EDOS Tasks A and B, respectively, and a +2.79% improvement in ICM on EXIST 2025 Task 1.1.
♻ ☆ Learning an Efficient Multi-Turn Dialogue Evaluator from Multiple LLM Judges
Evaluating the conversational abilities of large language models (LLMs) remains a challenging task. Current mainstream approaches primarily rely on the "LLM-as-a-judge" paradigm, where an LLM is prompted to serve as an evaluator to assess dialogue quality. However, such methods often suffer from various biases, which undermine the reliability and consistency of the evaluation results. To mitigate these biases, recent methods employ multiple LLMs as judges and aggregate their judgments to select the optimal assessment. Although effective, this multi-judge approach incurs significant computational overhead during inference. In this paper, we propose an efficient dialogue evaluator that captures the collective wisdom of multiple LLM judges by aggregating their preference knowledge into a single model. Our approach preserves the advantages of diverse multi-judge feedback while drastically reducing the evaluation cost, enabling fast, flexible, and fine-grained dialogue quality assessment. Extensive experiments on seven single rating and pairwise comparison dialogue evaluation benchmarks demonstrate that our method outperforms existing baselines across diverse scenarios, showcasing its efficiency and robustness.
comment: 20 pages, 4 pages, under review
♻ ☆ Adversarial Training for Failure-Sensitive User Simulation in Mental Health Dialogue Optimization
Realistic user simulation is crucial for training and evaluating task-oriented dialogue (TOD) systems, yet creating simulators that accurately replicate human behavior remains challenging. A key property of effective simulators is their ability to expose failure modes of the systems they evaluate. We present an adversarial training framework that iteratively improves user simulator realism through a competitive dynamic between a generator (user simulator) and a discriminator. Applied to mental health support chatbots, our approach demonstrates that fine-tuned simulators dramatically outperform zero-shot base models at surfacing system issues, and adversarial training further enhances diversity, distributional alignment, and predictive validity. The resulting simulator achieves a strong correlation between simulated and real failure occurrence rates across diverse chatbot configurations while maintaining low distributional divergence of failure modes. Discriminator accuracy decreases drastically after three adversarial iterations, suggesting improved realism. These results provide evidence that adversarial training is a promising approach for creating realistic user simulators in mental health support TOD domains, enabling rapid, reliable, and cost-effective system evaluation before deployment.
♻ ☆ I Large Language Models possono nascondere un testo in un altro testo della stessa lunghezza
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present Calgacus, a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something. -- Un testo di senso compiuto può essere nascosto all'interno di un altro testo completamente diverso, eppure coerente e plausibile, della stessa lunghezza. Ad esempio, un tweet che celebra un leader politico potrebbe celare un tweet che lo critica duramente, o un'anonima recensione di un prodotto potrebbe in realtà codificare un manoscritto segreto. Questa sconcertante possibilità è oggi alla nostra portata grazie ai Large Language Models (LLM); in questo articolo presentiamo Calgacus, un protocollo semplice ed efficiente per realizzarla. Mostriamo che anche modesti LLM open-source da 8 miliardi di parametri sono sufficienti per ottenere risultati di alta qualità, e che un messaggio lungo quanto questo abstract può essere codificato e decodificato su un comune portatile in pochi secondi. L'esistenza di tale protocollo dimostra un radicale disaccoppiamento del testo dall'intento del suo autore, erodendo ulteriormente la fiducia nella comunicazione scritta, già scossa dall'ascesa dei chatbot basati su LLMs. Illustriamo ciò con uno scenario concreto: un'azienda potrebbe offrire pubblicamente i servizi di un LLM senza filtri nascondendo le sue risposte all'interno di risposte apparentemente innocue generate da un LLM considerato sicuro. Questa possibilità solleva questioni urgenti per la sicurezza dell'Intelligenza Artificiale e sfida la nostra comprensione di cosa significhi, per un Large Language Model, sapere qualcosa.
comment: 21 pages, in Italian language, main paper 9 pages. v1-v4 are in English
♻ ☆ From Context to EDUs: Faithful and Structured Context Compression via Elementary Discourse Unit Decomposition
Managing extensive context remains a critical bottleneck for Large Language Models (LLMs), particularly in applications like long-document question answering and autonomous agents where lengthy inputs incur high computational costs and introduce noise. Existing compression techniques often disrupt local coherence through discrete token removal or rely on implicit latent encoding that suffers from positional bias and incompatibility with closed-source APIs. To address these limitations, we introduce the EDU-based Context Compressor, a novel explicit compression framework designed to preserve both global structure and fine-grained details. Our approach reformulates context compression as a structure-then-select process. First, our LingoEDU transforms linear text into a structural relation tree of Elementary Discourse Units (EDUs) which are anchored strictly to source indices to eliminate hallucination. Second, a lightweight ranking module selects query-relevant sub-trees for linearization. To rigorously evaluate structural understanding, we release StructBench, a manually annotated dataset of 248 diverse documents. Empirical results demonstrate that our method achieves state-of-the-art structural prediction accuracy and significantly outperforms frontier LLMs while reducing costs. Furthermore, our structure-aware compression substantially enhances performance across downstream tasks ranging from long-context tasks to complex Deep Search scenarios.
♻ ☆ Self-Guided Defense: Adaptive Safety Alignment for Reasoning Models via Synthesized Guidelines
Reasoning models have demonstrated remarkable capabilities in complex reasoning tasks. However, ensuring their safety against adversarial jailbreak prompts remains a critical challenge. Due to the covert and deceptive nature of such prompts, they can often evade built-in safety mechanisms and lead to the generation of harmful content. This underscores the need for an adaptive safety alignment approach that enables models to autonomously reinforce their defenses in response to adversarial inputs. This paper introduces the Synthesized Guideline-based Adaptive Safety Alignment (SGASA) framework, which internalizes model-generated safety guidelines to strengthen models' ability to enhance robustness against harmful adversarial prompts while minimizing unnecessary refusals of benign requests. SGASA consists of two key stages: Data Pre-synthesis, which generates safety guidelines and augmented prompts; and Alignment Fine-tuning, which leverages Supervised Fine-tuning (SFT) and Direct Preference Optimization (DPO) to embed these guidelines into the model. Extensive experiments across multiple datasets demonstrate that SGASA significantly improves model safety, validating its adaptive and scalable effectiveness.
♻ ☆ TabiBERT: A Large-Scale ModernBERT Foundation Model and A Unified Benchmark for Turkish
Since the inception of BERT, encoder-only Transformers have evolved significantly in computational efficiency, training stability, and long-context modeling. ModernBERT consolidates these advances by integrating Rotary Positional Embeddings (RoPE), FlashAttention, and refined normalization. Despite these developments, Turkish NLP lacks a monolingual encoder trained from scratch, incorporating such modern architectural paradigms. This work introduces TabiBERT, a monolingual Turkish encoder based on ModernBERT architecture trained from scratch on a large, curated corpus. TabiBERT is pre-trained on one trillion tokens sampled from an 84.88B token multi-domain corpus: web text (73%), scientific publications (20%), source code (6%), and mathematical content (0.3%). It supports 8,192-token context length (16x original BERT), achieves up to 2.65x inference speedup, and reduces GPU memory consumption, enabling larger batch sizes. We introduce TabiBench with 28 datasets across eight task categories with standardized splits and protocols, evaluated using GLUE-style macro-averaging. TabiBERT attains 77.58 on TabiBench, outperforming BERTurk by 1.62 points and establishing state-of-the-art on five of eight categories, with particularly strong gains on question answering (+9.55 points), code retrieval (+2.41 points), and academic understanding (+0.66 points). Compared with task-specific prior best results, including specialized models like TurkishBERTweet, TabiBERT achieves +1.47 average improvement, indicating robust cross-domain generalization. We release model weights, training configurations, and evaluation code for transparent, reproducible Turkish encoder research.
comment: 33 pages, 2 figures, 13 tables
♻ ☆ Autoregressive Semantic Visual Reconstruction Helps VLMs Understand Better
Typical large vision-language models (LVLMs) apply autoregressive supervision solely to textual sequences, without fully incorporating the visual modality into the learning process. This results in three key limitations: (1) an inability to utilize images without accompanying captions, (2) the risk that captions omit critical visual details, and (3) the challenge that certain vision-centric content cannot be adequately conveyed through text. As a result, current LVLMs often prioritize vision-to-language alignment while potentially overlooking fine-grained visual information. While some prior works have explored autoregressive image generation, effectively leveraging autoregressive visual supervision to enhance image understanding remains an open challenge. In this paper, we introduce Autoregressive Semantic Visual Reconstruction (ASVR), which enables joint learning of visual and textual modalities within a unified autoregressive framework. We show that autoregressively reconstructing the raw visual appearance of images does not enhance and may even impair multimodal understanding. In contrast, autoregressively reconstructing the semantic representation of images consistently improves comprehension. Notably, we find that even when models are given continuous image features as input, they can effectively reconstruct discrete semantic tokens, resulting in stable and consistent improvements across a wide range of multimodal understanding benchmarks. Our approach delivers significant performance gains across varying data scales (556k-2M) and types of LLM bacbones. Specifically, ASVR improves LLaVA-1.5 by 5% in average scores across 14 multimodal benchmarks. The code is available at https://github.com/AlenjandroWang/ASVR.
♻ ☆ Sorting the Babble in Babel: Assessing the Performance of Language Identification Algorithms on the OpenAlex Database
This project aims to optimize the linguistic indexing of the OpenAlex database by comparing the performance of various Python-based language identification procedures on different metadata corpora extracted from a manually-annotated article sample \footnote{OpenAlex used the results presented in this article to inform the language metadata overhaul carried out as part of its recent Walden system launch. The precision and recall performance of each algorithm, corpus, and language is first analyzed, followed by an assessment of processing speeds recorded for each algorithm and corpus type. These different performance measures are then simulated at the database level using probabilistic confusion matrices for each algorithm, corpus, and language, as well as a probabilistic modeling of relative article language frequencies for the whole OpenAlex database. Results show that procedure performance strongly depends on the importance given to each of the measures implemented: for contexts where precision is preferred, using the LangID algorithm on the greedy corpus gives the best results; however, for all cases where recall is considered at least slightly more important than precision or as soon as processing times are given any kind of consideration, the procedure that consists in the application of the FastText algorithm on the Titles corpus outperforms all other alternatives. Given the lack of truly multilingual large-scale bibliographic databases, it is hoped that these results help confirm and foster the unparalleled potential of the OpenAlex database for cross-linguistic and comprehensive measurement and evaluation.
comment: 43 pages, 4 figures
♻ ☆ Cosmos: Compressed and Smooth Latent Space for Text Diffusion Modeling
Autoregressive language models dominate modern text generation, yet their sequential nature introduces fundamental limitations: decoding is slow, and maintaining global coherence remains challenging. Diffusion models offer a promising alternative by enabling parallel generation and flexible control; however, their application to text generation is hindered by the high dimensionality of token-level representations. We introduce Cosmos, a novel approach to text generation that operates entirely in a compressed, smooth latent space tailored specifically for diffusion. This space is learned using an autoencoder trained simultaneously for token-level reconstruction and alignment with frozen activations from a pretrained language encoder, providing robust semantic grounding and enabling effective perturbation-based augmentations. Empirically, we demonstrate that text representations can be compressed by $8\times$ while maintaining generation quality comparable to token-level diffusion models. Furthermore, increasing the latent sequence length allows Cosmos to surpass both diffusion-based and autoregressive baselines. We evaluate Cosmos on four diverse generative tasks including story generation, question generation, summarization, and detoxification and compare it with various generative paradigms. Cosmos achieves comparable or superior generation quality while offering more than $2\times$ faster inference. Code is released at \href{https://github.com/MeshchaninovViacheslav/cosmos}{GitHub}
♻ ☆ Beyond Direct Generation: A Decomposed Approach to Well-Crafted Screenwriting with LLMs
The screenplay serves as the foundation for television production, defining narrative structure, character development, and dialogue. While Large Language Models (LLMs) show great potential in creative writing, direct end-to-end generation approaches often fail to produce well-crafted screenplays. We argue this failure stems from forcing a single model to simultaneously master two disparate capabilities: creative narrative construction and rigid format adherence. The resulting outputs may mimic superficial style but lack the deep structural integrity and storytelling substance required for professional use. To enable LLMs to generate high-quality screenplays, we introduce Dual-Stage Refinement (DSR), a decomposed framework that decouples creative narrative generation from format conversion. The first stage transforms a brief outline into rich, novel-style prose. The second stage refines this narrative into a professionally formatted screenplay. This separation enables the model to specialize in one distinct capability at each stage. A key challenge in implementing DSR is the scarcity of paired outline-to-novel training data. We address this through hybrid data synthesis: reverse synthesis deconstructs existing screenplays into structured inputs, while forward synthesis leverages these inputs to generate high-quality narrative texts as training targets. Blind evaluations by professional screenwriters show that DSR achieves a 75% win rate against strong baselines like Gemini-2.5-Pro and reaches 82.7% of human-level performance. Our work demonstrates that decomposed generation architecture with tailored data synthesis effectively specializes LLMs in complex creative domains.
♻ ☆ Text2VLM: Adapting Text-Only Datasets to Evaluate Alignment Training in Visual Language Models
The increasing integration of Visual Language Models (VLMs) into AI systems necessitates robust model alignment, especially when handling multimodal content that combines text and images. Existing evaluation datasets heavily lean towards text-only prompts, leaving visual vulnerabilities under evaluated. To address this gap, we propose \textbf{Text2VLM}, a novel multi-stage pipeline that adapts text-only datasets into multimodal formats, specifically designed to evaluate the resilience of VLMs against typographic prompt injection attacks. The Text2VLM pipeline identifies harmful content in the original text and converts it into a typographic image, creating a multimodal prompt for VLMs. Also, our evaluation of open-source VLMs highlights their increased susceptibility to prompt injection when visual inputs are introduced, revealing critical weaknesses in the current models' alignment. This is in addition to a significant performance gap compared to closed-source frontier models. We validate Text2VLM through human evaluations, ensuring the alignment of extracted salient concepts; text summarization and output classification align with human expectations. Text2VLM provides a scalable tool for comprehensive safety assessment, contributing to the development of more robust safety mechanisms for VLMs. By enhancing the evaluation of multimodal vulnerabilities, Text2VLM plays a role in advancing the safe deployment of VLMs in diverse, real-world applications.
comment: 9 pages, 9 figures. Jake Thomas served as Editor for this manuscript
♻ ☆ AprielGuard
Safeguarding large language models (LLMs) against unsafe or adversarial behavior is critical as they are increasingly deployed in conversational and agentic settings. Existing moderation tools often treat safety risks (e.g. toxicity, bias) and adversarial threats (e.g. prompt injections, jailbreaks) as separate problems, limiting their robustness and generalizability. We introduce AprielGuard, an 8B parameter safeguard model that unify these dimensions within a single taxonomy and learning framework. AprielGuard is trained on a diverse mix of open and synthetic data covering standalone prompts, multi-turn conversations, and agentic workflows, augmented with structured reasoning traces to improve interpretability. Across multiple public and proprietary benchmarks, AprielGuard achieves strong performance in detecting harmful content and adversarial manipulations, outperforming existing opensource guardrails such as Llama-Guard and Granite Guardian, particularly in multi-step and reasoning intensive scenarios. By releasing the model, we aim to advance transparent and reproducible research on reliable safeguards for LLMs.
♻ ☆ MATEX: A Multi-Agent Framework for Explaining Ethereum Transactions
Understanding the economic intent of Ethereum transactions is critical for user safety, yet current tools expose only raw on-chain data, leading to widespread "blind signing" (approving transactions without understanding them). Through interviews with 16 Web3 users, we find that effective explanations should be structured, risk-aware, and grounded at the token-flow level. Based on interviews, we propose TxSum, a new task and dataset of 100 complex Ethereum transactions annotated with natural-language summaries and step-wise semantic labels (intent, mechanism, etc.). We then introduce MATEX, a multi-agent system that emulates human experts' dual-process reasoning. MATEX achieves the highest faithfulness and intent clarity among strong baselines. It boosts user comprehension by 23.6% on complex transactions and doubles users' ability to find real attacks, significantly reducing blind signing.
♻ ☆ Context-aware Decoding Reduces Hallucination in Query-focused Summarization
Query-focused summarization (QFS) aims to provide a summary of a single document/multi documents that can satisfy the information needs of a given query. It is useful for various real-world applications, such as abstractive snippet generation or more recent retrieval augmented generation (RAG). A prototypical QFS pipeline consists of a retriever (sparse or dense retrieval) and a generator (usually a large language model). However, applying large language models (LLM) potentially leads to hallucinations, especially when the evidence contradicts the prior belief of LLMs. There has been growing interest in developing new decoding methods to improve generation quality and reduce hallucination. In this work, we conduct a large-scale reproducibility study on one recently proposed decoding method\, -- \,Context-aware Decoding (CAD). In addition to replicating CAD's experiments on news summarization datasets, we include experiments on QFS datasets, and conduct more rigorous analysis on computational complexity and hyperparameter sensitivity. Experiments with eight different language models show that performance-wise, CAD improves QFS quality by (1) reducing factuality errors/hallucinations while (2) mostly retaining the match of lexical patterns, measured by ROUGE scores, while also at a cost of increased inference-time FLOPs and reduced decoding speed. The \href{https://github.com/zhichaoxu-shufe/context-aware-decoding-qfs}{code implementation} based on Huggingface Library is made available
comment: technical report
♻ ☆ Improving End-to-End Training of Retrieval-Augmented Generation Models via Joint Stochastic Approximation
Retrieval-augmented generation (RAG) has become a widely recognized paradigm to combine parametric memory with non-parametric memories. An RAG model consists of two serial connecting components (retriever and generator). A major challenge in end-to-end optimization of the RAG model is that marginalization over relevant passages (modeled as discrete latent variables) from a knowledge base is required. Traditional top-K marginalization and variational RAG (VRAG) suffer from biased or high-variance gradient estimates. In this paper, we propose and develop joint stochastic approximation (JSA) based end-to-end training of RAG, which is referred to as JSA-RAG. The JSA algorithm is a stochastic extension of the EM (expectation-maximization) algorithm and is particularly powerful in estimating discrete latent variable models. Extensive experiments are conducted on five datasets for two tasks (open-domain question answering, knowledge-grounded dialogs) and show that JSA-RAG significantly outperforms both vanilla RAG and VRAG. Further analysis shows the efficacy of JSA-RAG from the perspectives of generation, retrieval, and low-variance gradient estimate.
♻ ☆ RankMamba: Benchmarking Mamba's Document Ranking Performance in the Era of Transformers
Transformer structure has achieved great success in multiple applied machine learning communities, such as natural language processing (NLP), computer vision (CV) and information retrieval (IR). Transformer architecture's core mechanism\, -- \,attention requires $O(n^2)$ time complexity in training and $O(n)$ time complexity in inference. Many works have been proposed to improve the attention mechanism's scalability, such as Flash Attention and Multi-query Attention. A different line of work aims to design new mechanisms to replace attention. Recently, a notable model structure Mamba, which is based on state space models, has achieved transformer-equivalent performance in multiple sequence modeling tasks. In this work, we examine Mamba's efficacy through the lens of a classical IR task\, -- \,document ranking. A reranker model takes a query and a document as input, and predicts a scalar relevance score. This task demands the language model's ability to comprehend lengthy contextual inputs and to capture the interaction between query and document tokens. We find that \textbf{(1) Mamba models achieve competitive performance compared to transformer-based models with the same training recipe; (2) but also have a lower training throughput in comparison to efficient transformer implementations such as flash attention.} We hope this study can serve as a starting point to explore \mamba models in other classical IR tasks. Our \href{https://github.com/zhichaoxu-shufe/RankMamba}{code implementation} is made public to facilitate reproducibility. Refer to~\cite{xu-etal-2025-state} for more comprehensive experiments and results, including passage ranking.
♻ ☆ Opportunities and Challenges of Large Language Models for Low-Resource Languages in Humanities Research
Low-resource languages serve as invaluable repositories of human history, embodying cultural evolution and intellectual diversity. Despite their significance, these languages face critical challenges, including data scarcity and technological limitations, which hinder their comprehensive study and preservation. Recent advancements in large language models (LLMs) offer transformative opportunities for addressing these challenges, enabling innovative methodologies in linguistic, historical, and cultural research. This study systematically evaluates the applications of LLMs in low-resource language research, encompassing linguistic variation, historical documentation, cultural expressions, and literary analysis. By analyzing technical frameworks, current methodologies, and ethical considerations, this paper identifies key challenges such as data accessibility, model adaptability, and cultural sensitivity. Given the cultural, historical, and linguistic richness inherent in low-resource languages, this work emphasizes interdisciplinary collaboration and the development of customized models as promising avenues for advancing research in this domain. By underscoring the potential of integrating artificial intelligence with the humanities to preserve and study humanity's linguistic and cultural heritage, this study fosters global efforts towards safeguarding intellectual diversity.
♻ ☆ ScRPO: From Errors to Insights
We introduce Self-correction Relative Policy Optimization (ScRPO), a novel reinforcement learning framework designed to empower large language models with advanced mathematical reasoning capabilities through iterative self-reflection and error correction. The ScRPO framework operates in two distinct phases: (1) Trial-and-error learning stage, where the model is trained via GRPO, and incorrect responses are collected to form an "error pool"; and (2) Self-correction learning stage, which guides the model to introspectively analyze and rectify the reasoning flaws behind its previous errors. Extensive evaluations across challenging mathematical benchmarks, including AIME, AMC, Olympiad, MATH-500, and GSM8k, validate the efficacy of our approach. Using DeepSeek-R1-Distill-Qwen-1.5B and 7B as backbones, ScRPO achieves average accuracies of 64.8% and 77.8%, respectively. This represents a significant improvement of 6.0% and 3.2% over vanilla baselines, consistently outperforming strong post-training methods such as DAPO and GRPO. These findings establish ScRPO as a robust paradigm for enabling autonomous self-improvement in AI systems, particularly in tasks with limited external feedback.
♻ ☆ ERA-IT: Aligning Semantic Models with Revealed Economic Preference for Real-Time and Explainable Patent Valuation
Valuing intangible assets under uncertainty remains a critical challenge in the strategic management of technological innovation due to the information asymmetry inherent in high-dimensional technical specifications. Traditional bibliometric indicators, such as citation counts, fail to address this friction in a timely manner due to the systemic latency inherent in data accumulation. To bridge this gap, this study proposes the Economic Reasoning Alignment via Instruction Tuning (ERA-IT) framework. We theoretically conceptualize patent renewal history as a revealed economic preference and leverage it as an objective supervisory signal to align the generative reasoning of Large Language Models (LLMs) with market realities, a process we term Eco-Semantic Alignment. Using a randomly sampled dataset of 10,000 European Patent Office patents across diverse technological domains, we trained the model not only to predict value tiers but also to reverse-engineer the Economic Chain-of-Thought from unstructured text. Empirical results demonstrate that ERA-IT significantly outperforms both conventional econometric models and zero-shot LLMs in predictive accuracy. More importantly, by generating explicit, logically grounded rationales for valuation, the framework serves as a transparent cognitive scaffold for decision-makers, reducing the opacity of black-box AI in high-stakes intellectual property management.
♻ ☆ On the Robustness of Answer Formats in Medical Reasoning Models
Medical reasoning models (MRMs) achieve superior performance on medical benchmarks compared to medical LLMs; however, high accuracy alone is insufficient for practical deployment. One of such requirements for real-world application is robustness to varying output constraints. Specifically, posing the same medical question while requesting different answer formats should not affect the underlying correctness of the response. We investigate this phenomenon in this paper, focusing on MRMs. To quantify this behavior, we propose the metric answer-format robustness: the ability to reliably generate correct outputs across varying specified formats. We examine three representative formats: multiple-choice, open-ended question-answering, and ranked lists. Across 15 proprietary and open-weight models, we observe substantial variation in format robustness (35-100%). Furthermore, we conduct controlled fine-tuning experiments on a shared backbone with matched training data to isolate the effects of the fine-tuning paradigm. We find that supervised fine-tuning yields more stable behavior across formats, whereas reinforcement fine-tuning often exhibits higher cross-format brittleness, with the degree of instability strongly dependent on reward design. Overall, answer-format robustness in MRMs is trainable yet brittle and requires careful evaluation for practical medical use.
comment: 62 pages, 47 figures
♻ ☆ CSSBench: Evaluating the Safety of Lightweight LLMs against Chinese-Specific Adversarial Patterns
Large language models (LLMs) are increasingly deployed in cost-sensitive and on-device scenarios, and safety guardrails have advanced mainly in English. However, real-world Chinese malicious queries typically conceal intent via homophones, pinyin, symbol-based splitting, and other Chinese-specific patterns. These Chinese-specific adversarial patterns create the safety evaluation gap that is not well captured by existing benchmarks focused on English. This gap is particularly concerning for lightweight models, which may be more vulnerable to such specific adversarial perturbations. To bridge this gap, we introduce the Chinese-Specific Safety Benchmark (CSSBench) that emphasizes these adversarial patterns and evaluates the safety of lightweight LLMs in Chinese. Our benchmark covers six domains that are common in real Chinese scenarios, including illegal activities and compliance, privacy leakage, health and medical misinformation, fraud and hate, adult content, and public and political safety, and organizes queries into multiple task types. We evaluate a set of popular lightweight LLMs and measure over-refusal behavior to assess safety-induced performance degradation. Our results show that the Chinese-specific adversarial pattern is a critical challenge for lightweight LLMs. This benchmark offers a comprehensive evaluation of LLM safety in Chinese, assisting robust deployments in practice.
comment: 18 pages
♻ ☆ UNIDOC-BENCH: A Unified Benchmark for Document-Centric Multimodal RAG
Multimodal retrieval-augmented Generation (MM-RAG) is a key approach for applying large language models (LLMs) and agents to real-world knowledge bases, yet current evaluations are fragmented -- focusing on either text or images in isolation, or simplified multimodal setup, failing to capture document-centric multimodal use cases. In this paper, we introduce UniDoc-Bench, the first large-scale, realistic benchmark for MM-RAG built from $k$ real-world PDF pages across domains. Our pipeline extracts and links evidence from text, tables, and figures, then generates multimodal QA pairs spanning factual retrieval, comparison, summarization, and logical reasoning queries. To ensure reliability, all of QA pairs are validated by multiple human annotators and expert adjudication. UniDoc-Bench supports apples-to-apples comparison across four paradigms: 1) text-only, 2) image-only, 3) \emph{multimodal} text-image fusion and 4) multimodal joint retrieval -- under a unified protocol with standardized candidate pools, prompts, and evaluation metrics. UniDoc-Bench can also be used to evaluate Visual Question Answering (VQA) tasks. Our experiments show that multimodal text-image fusion RAG systems consistently outperform both unimodal and jointly multimodal embedding-based retrieval, indicating that neither text nor images alone are sufficient and that current multimodal embeddings remain inadequate. Beyond benchmarking, our analysis reveals when and how visual context complements textual evidence, uncovers systematic failure modes, and offers actionable guidance for developing more robust MM-RAG pipelines.
♻ ☆ RIMRULE: Improving Tool-Using Language Agents via MDL-Guided Rule Learning
Large language models (LLMs) often struggle to use tools reliably in domain-specific settings, where APIs may be idiosyncratic, under-documented, or tailored to private workflows. This highlights the need for effective adaptation to task-specific tools. We propose RIMRULE, a neuro-symbolic approach for LLM adaptation based on dynamic rule injection. Compact, interpretable rules are distilled from failure traces and injected into the prompt during inference to improve task performance. These rules are proposed by the LLM itself and consolidated using a Minimum Description Length (MDL) objective that favors generality and conciseness. Each rule is stored in both natural language and a structured symbolic form, supporting efficient retrieval at inference time. Experiments on tool-use benchmarks show that this approach improves accuracy on both seen and unseen tools without modifying LLM weights. It outperforms prompting-based adaptation methods and complements finetuning. Moreover, rules learned from one LLM can be reused to improve others, including long reasoning LLMs, highlighting the portability of symbolic knowledge across architectures.
♻ ☆ AFA-LoRA: Enabling Non-Linear Adaptations in LoRA with Activation Function Annealing
Low-Rank Adaptation (LoRA) is a widely adopted parameter-efficient fine-tuning (PEFT) method. However, its linear adaptation process limits its expressive power. This means there is a gap between the expressive power of linear training and non-linear training. To bridge this gap, we propose AFA-LoRA, a novel training strategy that brings non-linear expressivity to LoRA while maintaining its seamless mergeability. Our key innovation is an annealed activation function that transitions from a non-linear to a linear transformation during training, allowing the adapter to initially adopt stronger representational capabilities before converging to a mergeable linear form. We implement our method on supervised fine-tuning, reinforcement learning, and speculative decoding. The results show that AFA-LoRA reduces the performance gap between LoRA and full-parameter training. This work enables a more powerful and practical paradigm of parameter-efficient adaptation.
♻ ☆ Diagnosing and Mitigating Semantic Inconsistencies in Wikidata's Classification Hierarchy
Wikidata is currently the largest open knowledge graph on the web, encompassing over 120 million entities. It integrates data from various domain-specific databases and imports a substantial amount of content from Wikipedia, while also allowing users to freely edit its content. This openness has positioned Wikidata as a central resource in knowledge graph research and has enabled convenient knowledge access for users worldwide. However, its relatively loose editorial policy has also led to a degree of taxonomic inconsistency. Building on prior work, this study proposes and applies a novel validation method to confirm the presence of classification errors, over-generalized subclass links, and redundant connections in specific domains of Wikidata. We further introduce a new evaluation criterion for determining whether such issues warrant correction and develop a system that allows users to inspect the taxonomic relationships of arbitrary Wikidata entities-leveraging the platform's crowdsourced nature to its full potential.
♻ ☆ Fine-Grained Preference Optimization Improves Spatial Reasoning in VLMs
Current Vision-Language Models (VLMs) struggle with fine-grained spatial reasoning, particularly when multi-step logic and precise spatial alignment are required. In this work, we introduce SpatialReasoner-R1, a vision-language reasoning model designed to address these limitations. To construct high-quality supervision for spatial reasoning, we design a Multi-Model Monte Carlo Tree Search (M3CTS) method that generates diverse, logically consistent Long Chain-of-Thought (LongCOT) reasoning trajectories. In addition, we propose a fine-grained Direct Preference Optimization (fDPO) method that introduces segment-specific preference granularity for descriptive grounding and logical reasoning, guided by a spatial reward mechanism that evaluates candidate responses based on visual consistency, spatial grounding, and logical coherence. Experimental results demonstrate that fDPO achieves relative performance gains of 4.1% and 9.0% over standard DPO on spatial qualitative and quantitative tasks, respectively. SpatialReasoner-R1, trained with fDPO, sets a new SoTA on SpatialRGPT-Bench, outperforming the strongest baseline by 9.4% in average accuracy, while maintaining competitive performance on general vision-language tasks.
♻ ☆ KVCrush: Key value cache size-reduction using similarity in head-behaviour
Key-value (KV) caching has emerged as a crucial optimization technique for accelerating inference in large language models (LLMs). By allowing the attention operation to scale linearly rather than quadratically with the total sequence length, KV caching significantly enhances generation throughput. However, due to large context lengths in the modern LLMs, the memory footprint of the KV is a huge bottleneck for model deployment directly impacting the model's batch size, hindering its ability to deliver high-throughput. Existing research addresses this challenge using several techniques, such as discarding low-attention tokens, quantization, and matrix approximation which typically lead to a negative impact on the model accuracy. In this paper, We propose KVCrush technology which can be combined with many KV compression technologies to improve the model accuracy at a much smaller memory. KVCrush provides an alternate representation scheme for key-value states, along with a low-overhead token pruning algorithm that accounts for the token distribution in the KV cache, which in turn allows for a a smaller footprint while maintaining the accuracy of the model. Based on our results, KVCrush reduces LongBench KV Cache size by 4x with less than 1% accuracy drop and achieves state-of-the-art average accuracy with minimal overhead, incurring less than 0.5% total inference latency. KVCrush not only outperforms the accuracy of state-of-the-art importance-based token retention schemes but is also compatible with typical practical LLM deployments using KV cache paging schemes such as vLLM and mixed precision quantization.
♻ ☆ HaluMem: Evaluating Hallucinations in Memory Systems of Agents
Memory systems are key components that enable AI systems such as LLMs and AI agents to achieve long-term learning and sustained interaction. However, during memory storage and retrieval, these systems frequently exhibit memory hallucinations, including fabrication, errors, conflicts, and omissions. Existing evaluations of memory hallucinations are primarily end-to-end question answering, which makes it difficult to localize the operational stage within the memory system where hallucinations arise. To address this, we introduce the Hallucination in Memory Benchmark (HaluMem), the first operation level hallucination evaluation benchmark tailored to memory systems. HaluMem defines three evaluation tasks (memory extraction, memory updating, and memory question answering) to comprehensively reveal hallucination behaviors across different operational stages of interaction. To support evaluation, we construct user-centric, multi-turn human-AI interaction datasets, HaluMem-Medium and HaluMem-Long. Both include about 15k memory points and 3.5k multi-type questions. The average dialogue length per user reaches 1.5k and 2.6k turns, with context lengths exceeding 1M tokens, enabling evaluation of hallucinations across different context scales and task complexities. Empirical studies based on HaluMem show that existing memory systems tend to generate and accumulate hallucinations during the extraction and updating stages, which subsequently propagate errors to the question answering stage. Future research should focus on developing interpretable and constrained memory operation mechanisms that systematically suppress hallucinations and improve memory reliability.
♻ ☆ GIFT: Group-relative Implicit Fine Tuning Integrates GRPO with DPO and UNA
I propose \textbf{G}roup-relative \textbf{I}mplicit \textbf{F}ine \textbf{T}uning (GIFT), a novel reinforcement learning framework for aligning LLMs. Instead of directly maximizing cumulative rewards like PPO or GRPO, GIFT minimizes the discrepancy between implicit and explicit reward models. It combines three key ideas: (1) the online multi-response generation and normalization of GRPO, (2) the implicit reward formulation of DPO, and (3) the implicit-explicit reward alignment principle of UNA. By jointly normalizing the implicit and explicit rewards, GIFT eliminates an otherwise intractable term that prevents effective use of implicit rewards. This normalization transforms the complex reward maximization objective into a simple mean squared error (MSE) loss between the normalized reward functions, converting a non-convex optimization problem into a convex, stable, and analytically differentiable formulation. Unlike offline methods such as DPO and UNA, GIFT remains on-policy and thus retains exploration capability. Compared to GRPO, it requires fewer hyperparameters, converges faster, and generalizes better with significantly reduced training overfitting. Empirically, GIFT achieves superior reasoning and alignment performance on mathematical benchmarks while remaining computationally efficient.
♻ ☆ Thunder-NUBench: A Benchmark for LLMs' Sentence-Level Negation Understanding
Negation is a fundamental linguistic phenomenon that poses ongoing challenges for Large Language Models (LLMs), particularly in tasks requiring deep semantic understanding. Current benchmarks often treat negation as a minor detail within broader tasks, such as natural language inference. Consequently, there is a lack of benchmarks specifically designed to evaluate comprehension of negation. In this work, we introduce Thunder-NUBench, a novel benchmark explicitly created to assess sentence-level understanding of negation in LLMs. Thunder-NUBench goes beyond merely identifying surface-level cues by contrasting standard negation with structurally diverse alternatives, such as local negation, contradiction, and paraphrase. This benchmark includes manually curated sentence-negation pairs and a multiple-choice dataset, allowing for a comprehensive evaluation of models' understanding of negation.
♻ ☆ Youtu-LLM: Unlocking the Native Agentic Potential for Lightweight Large Language Models
We introduce Youtu-LLM, a lightweight yet powerful language model that harmonizes high computational efficiency with native agentic intelligence. Unlike typical small models that rely on distillation, Youtu-LLM (1.96B) is pre-trained from scratch to systematically cultivate reasoning and planning capabilities. The key technical advancements are as follows: (1) Compact Architecture with Long-Context Support: Built on a dense Multi-Latent Attention (MLA) architecture with a novel STEM-oriented vocabulary, Youtu-LLM supports a 128k context window. This design enables robust long-context reasoning and state tracking within a minimal memory footprint, making it ideal for long-horizon agent and reasoning tasks. (2) Principled "Commonsense-STEM-Agent" Curriculum: We curated a massive corpus of approximately 11T tokens and implemented a multi-stage training strategy. By progressively shifting the pre-training data distribution from general commonsense to complex STEM and agentic tasks, we ensure the model acquires deep cognitive abilities rather than superficial alignment. (3) Scalable Agentic Mid-training: Specifically for the agentic mid-training, we employ diverse data construction schemes to synthesize rich and varied trajectories across math, coding, and tool-use domains. This high-quality data enables the model to internalize planning and reflection behaviors effectively. Extensive evaluations show that Youtu-LLM sets a new state-of-the-art for sub-2B LLMs. On general benchmarks, it achieves competitive performance against larger models, while on agent-specific tasks, it significantly surpasses existing SOTA baselines, demonstrating that lightweight models can possess strong intrinsic agentic capabilities.
comment: 57 pages, 26 figures
♻ ☆ CAT: Circular-Convolutional Attention for Sub-Quadratic Transformers NeurIPS 2025
Transformers have driven remarkable breakthroughs in natural language processing and computer vision, yet their standard attention mechanism still imposes O(N^2) complexity, hindering scalability to longer sequences. We introduce Circular-convolutional ATtention (CAT), a Fourier-based approach that efficiently applies circular convolutions to reduce complexity without sacrificing representational power. CAT achieves O(NlogN) computations, requires fewer learnable parameters by streamlining fully connected layers, and introduces no additional heavy operations, resulting in consistent accuracy improvements and about a 10% speedup in naive PyTorch implementations. Based on the Engineering-Isomorphic Transformers (EITs) framework, CAT's design not only offers practical efficiency and ease of implementation, but also provides insights to guide the development of future high-performance Transformer architectures. Finally, our ablation studies highlight the key conditions underlying CAT's success, shedding light on broader principles for scalable attention mechanisms.
comment: Accepted as a poster at NeurIPS 2025
♻ ☆ Steering Evaluation-Aware Language Models to Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
Computer Vision and Pattern Recognition
☆ ExposeAnyone: Personalized Audio-to-Expression Diffusion Models Are Robust Zero-Shot Face Forgery Detectors
Detecting unknown deepfake manipulations remains one of the most challenging problems in face forgery detection. Current state-of-the-art approaches fail to generalize to unseen manipulations, as they primarily rely on supervised training with existing deepfakes or pseudo-fakes, which leads to overfitting to specific forgery patterns. In contrast, self-supervised methods offer greater potential for generalization, but existing work struggles to learn discriminative representations only from self-supervision. In this paper, we propose ExposeAnyone, a fully self-supervised approach based on a diffusion model that generates expression sequences from audio. The key idea is, once the model is personalized to specific subjects using reference sets, it can compute the identity distances between suspected videos and personalized subjects via diffusion reconstruction errors, enabling person-of-interest face forgery detection. Extensive experiments demonstrate that 1) our method outperforms the previous state-of-the-art method by 4.22 percentage points in the average AUC on DF-TIMIT, DFDCP, KoDF, and IDForge datasets, 2) our model is also capable of detecting Sora2-generated videos, where the previous approaches perform poorly, and 3) our method is highly robust to corruptions such as blur and compression, highlighting the applicability in real-world face forgery detection.
comment: 17 pages, 8 figures, 11 tables; project page: https://mapooon.github.io/ExposeAnyonePage/
☆ VINO: A Unified Visual Generator with Interleaved OmniModal Context
We present VINO, a unified visual generator that performs image and video generation and editing within a single framework. Instead of relying on task-specific models or independent modules for each modality, VINO uses a shared diffusion backbone that conditions on text, images and videos, enabling a broad range of visual creation and editing tasks under one model. Specifically, VINO couples a vision-language model (VLM) with a Multimodal Diffusion Transformer (MMDiT), where multimodal inputs are encoded as interleaved conditioning tokens, and then used to guide the diffusion process. This design supports multi-reference grounding, long-form instruction following, and coherent identity preservation across static and dynamic content, while avoiding modality-specific architectural components. To train such a unified system, we introduce a multi-stage training pipeline that progressively expands a video generation base model into a unified, multi-task generator capable of both image and video input and output. Across diverse generation and editing benchmarks, VINO demonstrates strong visual quality, faithful instruction following, improved reference and attribute preservation, and more controllable multi-identity edits. Our results highlight a practical path toward scalable unified visual generation, and the promise of interleaved, in-context computation as a foundation for general-purpose visual creation.
comment: Project page: https://sotamak1r.github.io/VINO-web/
☆ Talk2Move: Reinforcement Learning for Text-Instructed Object-Level Geometric Transformation in Scenes
We introduce Talk2Move, a reinforcement learning (RL) based diffusion framework for text-instructed spatial transformation of objects within scenes. Spatially manipulating objects in a scene through natural language poses a challenge for multimodal generation systems. While existing text-based manipulation methods can adjust appearance or style, they struggle to perform object-level geometric transformations-such as translating, rotating, or resizing objects-due to scarce paired supervision and pixel-level optimization limits. Talk2Move employs Group Relative Policy Optimization (GRPO) to explore geometric actions through diverse rollouts generated from input images and lightweight textual variations, removing the need for costly paired data. A spatial reward guided model aligns geometric transformations with linguistic description, while off-policy step evaluation and active step sampling improve learning efficiency by focusing on informative transformation stages. Furthermore, we design object-centric spatial rewards that evaluate displacement, rotation, and scaling behaviors directly, enabling interpretable and coherent transformations. Experiments on curated benchmarks demonstrate that Talk2Move achieves precise, consistent, and semantically faithful object transformations, outperforming existing text-guided editing approaches in both spatial accuracy and scene coherence.
comment: Project page: https://sparkstj.github.io/talk2move
☆ Meta-Learning Guided Pruning for Few-Shot Plant Pathology on Edge Devices
Farmers in remote areas need quick and reliable methods for identifying plant diseases, yet they often lack access to laboratories or high-performance computing resources. Deep learning models can detect diseases from leaf images with high accuracy, but these models are typically too large and computationally expensive to run on low-cost edge devices such as Raspberry Pi. Furthermore, collecting thousands of labeled disease images for training is both expensive and time-consuming. This paper addresses both challenges by combining neural network pruning -- removing unnecessary parts of the model -- with few-shot learning, which enables the model to learn from limited examples. This paper proposes Disease-Aware Channel Importance Scoring (DACIS), a method that identifies which parts of the neural network are most important for distinguishing between different plant diseases, integrated into a three-stage Prune-then-Meta-Learn-then-Prune (PMP) pipeline. Experiments on PlantVillage and PlantDoc datasets demonstrate that the proposed approach reduces model size by 78\% while maintaining 92.3\% of the original accuracy, with the compressed model running at 7 frames per second on a Raspberry Pi 4, making real-time field diagnosis practical for smallholder farmers.
☆ Joint Semantic and Rendering Enhancements in 3D Gaussian Modeling with Anisotropic Local Encoding ICCV 2025
Recent works propose extending 3DGS with semantic feature vectors for simultaneous semantic segmentation and image rendering. However, these methods often treat the semantic and rendering branches separately, relying solely on 2D supervision while ignoring the 3D Gaussian geometry. Moreover, current adaptive strategies adapt the Gaussian set depending solely on rendering gradients, which can be insufficient in subtle or textureless regions. In this work, we propose a joint enhancement framework for 3D semantic Gaussian modeling that synergizes both semantic and rendering branches. Firstly, unlike conventional point cloud shape encoding, we introduce an anisotropic 3D Gaussian Chebyshev descriptor using the Laplace-Beltrami operator to capture fine-grained 3D shape details, thereby distinguishing objects with similar appearances and reducing reliance on potentially noisy 2D guidance. In addition, without relying solely on rendering gradient, we adaptively adjust Gaussian allocation and spherical harmonics with local semantic and shape signals, enhancing rendering efficiency through selective resource allocation. Finally, we employ a cross-scene knowledge transfer module to continuously update learned shape patterns, enabling faster convergence and robust representations without relearning shape information from scratch for each new scene. Experiments on multiple datasets demonstrate improvements in segmentation accuracy and rendering quality while maintaining high rendering frame rates.
comment: Accepted by ICCV 2025
☆ BEDS: Bayesian Emergent Dissipative Structures
We present BEDS (Bayesian Emergent Dissipative Structures), a theoretical framework that unifies concepts from non-equilibrium thermodynamics, Bayesian inference, information geometry, and machine learning. The central thesis proposes that learning, across physical, biological, and computational systems, fundamentally constitutes the conversion of flux into structure through entropy export. Building on Prigogine's theory of dissipative structures, we establish a formal isomorphism between thermodynamic processes and Bayesian updating, demonstrating that sustainable learning systems must follow dissipative patterns where crystallized posteriors become priors for subsequent levels of emergence. We derive fundamental mathematical constants (e, π, φ) as fixed points of Bayesian inference under minimal axioms, suggesting these constants emerge necessarily from any system capable of representing and updating uncertainty. Furthermore, we propose a conjecture linking Gödel's incompleteness theorems to thermodynamic constraints, hypothesizing that pathologies of formal systems (incompleteness, undecidability) are structurally analogous to dissipation deficits in physical systems. As practical validation, we present a peer-to-peer network architecture implementing BEDS principles, achieving six orders of magnitude improvement in energy efficiency compared to existing distributed consensus systems while enabling continuous learning. This work bridges fundamental physics, mathematical logic, and practical system design, offering both theoretical insights into the nature of learning and computation, and a concrete pathway toward sustainable artificial intelligence.
comment: 19 pages
☆ Fusion2Print: Deep Flash-Non-Flash Fusion for Contactless Fingerprint Matching ICPR 2026
Contactless fingerprint recognition offers a hygienic and convenient alternative to contact-based systems, enabling rapid acquisition without latent prints, pressure artifacts, or hygiene risks. However, contactless images often show degraded ridge clarity due to illumination variation, subcutaneous skin discoloration, and specular reflections. Flash captures preserve ridge detail but introduce noise, whereas non-flash captures reduce noise but lower ridge contrast. We propose Fusion2Print (F2P), the first framework to systematically capture and fuse paired flash-non-flash contactless fingerprints. We construct a custom paired dataset, FNF Database, and perform manual flash-non-flash subtraction to isolate ridge-preserving signals. A lightweight attention-based fusion network also integrates both modalities, emphasizing informative channels and suppressing noise, and then a U-Net enhancement module produces an optimally weighted grayscale image. Finally, a deep embedding model with cross-domain compatibility, generates discriminative and robust representations in a unified embedding space compatible with both contactless and contact-based fingerprints for verification. F2P enhances ridge clarity and achieves superior recognition performance (AUC=0.999, EER=1.12%) over single-capture baselines (Verifinger, DeepPrint).
comment: 15 pages, 8 figures, 5 tables. Submitted to ICPR 2026
☆ Prithvi-Complimentary Adaptive Fusion Encoder (CAFE): unlocking full-potential for flood inundation mapping WACV 2026
Geo-Foundation Models (GFMs), have proven effective in diverse downstream applications, including semantic segmentation, classification, and regression tasks. However, in case of flood mapping using Sen1Flood11 dataset as a downstream task, GFMs struggles to outperform the baseline U-Net, highlighting model's limitation in capturing critical local nuances. To address this, we present the Prithvi-Complementary Adaptive Fusion Encoder (CAFE), which integrate Prithvi GFM pretrained encoder with a parallel CNN residual branch enhanced by Convolutional Attention Modules (CAM). Prithvi-CAFE enables fast and efficient fine-tuning through adapters in Prithvi and performs multi-scale, multi-level fusion with CNN features, capturing critical local details while preserving long-range dependencies. We achieve state-of-the-art results on two comprehensive flood mapping datasets: Sen1Flood11 and FloodPlanet. On Sen1Flood11 test data, Prithvi-CAFE (IoU 83.41) outperforms the original Prithvi (IoU 82.50) and other major GFMs (TerraMind 82.90, DOFA 81.54, spectralGPT: 81.02). The improvement is even more pronounced on the hold-out test site, where Prithvi-CAFE achieves an IoU of 81.37 compared to the baseline U-Net (70.57) and original Prithvi (72.42). On FloodPlanet, Prithvi-CAFE also surpasses the baseline U-Net and other GFMs, achieving an IoU of 64.70 compared to U-Net (60.14), Terramind (62.33), DOFA (59.15) and Prithvi 2.0 (61.91). Our proposed simple yet effective Prithvi-CAFE demonstrates strong potential for improving segmentation tasks where multi-channel and multi-modal data provide complementary information and local details are critical. The code is released on \href{https://github.com/Sk-2103/Prithvi-CAFE}{Prithvi-CAFE Github}
comment: Accepted at CV4EO Workshop @ WACV 2026
☆ 360DVO: Deep Visual Odometry for Monocular 360-Degree Camera
Monocular omnidirectional visual odometry (OVO) systems leverage 360-degree cameras to overcome field-of-view limitations of perspective VO systems. However, existing methods, reliant on handcrafted features or photometric objectives, often lack robustness in challenging scenarios, such as aggressive motion and varying illumination. To address this, we present 360DVO, the first deep learning-based OVO framework. Our approach introduces a distortion-aware spherical feature extractor (DAS-Feat) that adaptively learns distortion-resistant features from 360-degree images. These sparse feature patches are then used to establish constraints for effective pose estimation within a novel omnidirectional differentiable bundle adjustment (ODBA) module. To facilitate evaluation in realistic settings, we also contribute a new real-world OVO benchmark. Extensive experiments on this benchmark and public synthetic datasets (TartanAir V2 and 360VO) demonstrate that 360DVO surpasses state-of-the-art baselines (including 360VO and OpenVSLAM), improving robustness by 50% and accuracy by 37.5%. Homepage: https://chris1004336379.github.io/360DVO-homepage
comment: 12 pages. Received by RA-L
☆ SortWaste: A Densely Annotated Dataset for Object Detection in Industrial Waste Sorting
The increasing production of waste, driven by population growth, has created challenges in managing and recycling materials effectively. Manual waste sorting is a common practice; however, it remains inefficient for handling large-scale waste streams and presents health risks for workers. On the other hand, existing automated sorting approaches still struggle with the high variability, clutter, and visual complexity of real-world waste streams. The lack of real-world datasets for waste sorting is a major reason automated systems for this problem are underdeveloped. Accordingly, we introduce SortWaste, a densely annotated object detection dataset collected from a Material Recovery Facility. Additionally, we contribute to standardizing waste detection in sorting lines by proposing ClutterScore, an objective metric that gauges the scene's hardness level using a set of proxies that affect visual complexity (e.g., object count, class and size entropy, and spatial overlap). In addition to these contributions, we provide an extensive benchmark of state-of-the-art object detection models, detailing their results with respect to the hardness level assessed by the proposed metric. Despite achieving promising results (mAP of 59.7% in the plastic-only detection task), performance significantly decreases in highly cluttered scenes. This highlights the need for novel and more challenging datasets on the topic.
comment: 9 pages
☆ Rank-based Geographical Regularization: Revisiting Contrastive Self-Supervised Learning for Multispectral Remote Sensing Imagery
Self-supervised learning (SSL) has become a powerful paradigm for learning from large, unlabeled datasets, particularly in computer vision (CV). However, applying SSL to multispectral remote sensing (RS) images presents unique challenges and opportunities due to the geographical and temporal variability of the data. In this paper, we introduce GeoRank, a novel regularization method for contrastive SSL that improves upon prior techniques by directly optimizing spherical distances to embed geographical relationships into the learned feature space. GeoRank outperforms or matches prior methods that integrate geographical metadata and consistently improves diverse contrastive SSL algorithms (e.g., BYOL, DINO). Beyond this, we present a systematic investigation of key adaptations of contrastive SSL for multispectral RS images, including the effectiveness of data augmentations, the impact of dataset cardinality and image size on performance, and the task dependency of temporal views. Code is available at https://github.com/tomburgert/georank.
comment: accepted for publication at IEEE/CVF Winter Conference on Applications of Computer Vision
☆ InfiniteVGGT: Visual Geometry Grounded Transformer for Endless Streams
The grand vision of enabling persistent, large-scale 3D visual geometry understanding is shackled by the irreconcilable demands of scalability and long-term stability. While offline models like VGGT achieve inspiring geometry capability, their batch-based nature renders them irrelevant for live systems. Streaming architectures, though the intended solution for live operation, have proven inadequate. Existing methods either fail to support truly infinite-horizon inputs or suffer from catastrophic drift over long sequences. We shatter this long-standing dilemma with InfiniteVGGT, a causal visual geometry transformer that operationalizes the concept of a rolling memory through a bounded yet adaptive and perpetually expressive KV cache. Capitalizing on this, we devise a training-free, attention-agnostic pruning strategy that intelligently discards obsolete information, effectively ``rolling'' the memory forward with each new frame. Fully compatible with FlashAttention, InfiniteVGGT finally alleviates the compromise, enabling infinite-horizon streaming while outperforming existing streaming methods in long-term stability. The ultimate test for such a system is its performance over a truly infinite horizon, a capability that has been impossible to rigorously validate due to the lack of extremely long-term, continuous benchmarks. To address this critical gap, we introduce the Long3D benchmark, which, for the first time, enables a rigorous evaluation of continuous 3D geometry estimation on sequences about 10,000 frames. This provides the definitive evaluation platform for future research in long-term 3D geometry understanding. Code is available at: https://github.com/AutoLab-SAI-SJTU/InfiniteVGGT
☆ TopoLoRA-SAM: Topology-Aware Parameter-Efficient Adaptation of Foundation Segmenters for Thin-Structure and Cross-Domain Binary Semantic Segmentation
Foundation segmentation models such as the Segment Anything Model (SAM) exhibit strong zero-shot generalization through large-scale pretraining, but adapting them to domain-specific semantic segmentation remains challenging, particularly for thin structures (e.g., retinal vessels) and noisy modalities (e.g., SAR imagery). Full fine-tuning is computationally expensive and risks catastrophic forgetting. We propose \textbf{TopoLoRA-SAM}, a topology-aware and parameter-efficient adaptation framework for binary semantic segmentation. TopoLoRA-SAM injects Low-Rank Adaptation (LoRA) into the frozen ViT encoder, augmented with a lightweight spatial convolutional adapter and optional topology-aware supervision via differentiable clDice. We evaluate our approach on five benchmarks spanning retinal vessel segmentation (DRIVE, STARE, CHASE\_DB1), polyp segmentation (Kvasir-SEG), and SAR sea/land segmentation (SL-SSDD), comparing against U-Net, DeepLabV3+, SegFormer, and Mask2Former. TopoLoRA-SAM achieves the best retina-average Dice and the best overall average Dice across datasets, while training only \textbf{5.2\%} of model parameters ($\sim$4.9M). On the challenging CHASE\_DB1 dataset, our method substantially improves segmentation accuracy and robustness, demonstrating that topology-aware parameter-efficient adaptation can match or exceed fully fine-tuned specialist models. Code is available at : https://github.com/salimkhazem/Seglab.git
☆ DiffProxy: Multi-View Human Mesh Recovery via Diffusion-Generated Dense Proxies
Human mesh recovery from multi-view images faces a fundamental challenge: real-world datasets contain imperfect ground-truth annotations that bias the models' training, while synthetic data with precise supervision suffers from domain gap. In this paper, we propose DiffProxy, a novel framework that generates multi-view consistent human proxies for mesh recovery. Central to DiffProxy is leveraging the diffusion-based generative priors to bridge the synthetic training and real-world generalization. Its key innovations include: (1) a multi-conditional mechanism for generating multi-view consistent, pixel-aligned human proxies; (2) a hand refinement module that incorporates flexible visual prompts to enhance local details; and (3) an uncertainty-aware test-time scaling method that increases robustness to challenging cases during optimization. These designs ensure that the mesh recovery process effectively benefits from the precise synthetic ground truth and generative advantages of the diffusion-based pipeline. Trained entirely on synthetic data, DiffProxy achieves state-of-the-art performance across five real-world benchmarks, demonstrating strong zero-shot generalization particularly on challenging scenarios with occlusions and partial views. Project page: https://wrk226.github.io/DiffProxy.html
comment: Page: https://wrk226.github.io/DiffProxy.html, Code: https://github.com/wrk226/DiffProxy
☆ VAR RL Done Right: Tackling Asynchronous Policy Conflicts in Visual Autoregressive Generation
Visual generation is dominated by three paradigms: AutoRegressive (AR), diffusion, and Visual AutoRegressive (VAR) models. Unlike AR and diffusion, VARs operate on heterogeneous input structures across their generation steps, which creates severe asynchronous policy conflicts. This issue becomes particularly acute in reinforcement learning (RL) scenarios, leading to unstable training and suboptimal alignment. To resolve this, we propose a novel framework to enhance Group Relative Policy Optimization (GRPO) by explicitly managing these conflicts. Our method integrates three synergistic components: 1) a stabilizing intermediate reward to guide early-stage generation; 2) a dynamic time-step reweighting scheme for precise credit assignment; and 3) a novel mask propagation algorithm, derived from principles of Reward Feedback Learning (ReFL), designed to isolate optimization effects both spatially and temporally. Our approach demonstrates significant improvements in sample quality and objective alignment over the vanilla GRPO baseline, enabling robust and effective optimization for VAR models.
comment: Project page: https://github.com/ByteVisionLab/NextFlow
☆ Neuro-Channel Networks: A Multiplication-Free Architecture by Biological Signal Transmission
The rapid proliferation of Deep Learning is increasingly constrained by its heavy reliance on high-performance hardware, particularly Graphics Processing Units (GPUs). These specialized accelerators are not only prohibitively expensive and energy-intensive but also suffer from significant supply scarcity, limiting the ubiquity of Artificial Intelligence (AI) deployment on edge devices. The core of this inefficiency stems from the standard artificial perceptron's dependence on intensive matrix multiplications. However, biological nervous systems achieve unparalleled efficiency without such arithmetic intensity; synaptic signal transmission is regulated by physical ion channel limits and chemical neurotransmitter levels rather than a process that can be analogous to arithmetic multiplication. Inspired by this biological mechanism, we propose Neuro-Channel Networks (NCN), a novel multiplication-free architecture designed to decouple AI from expensive hardware dependencies. In our model, weights are replaced with Channel Widths that physically limit the signal magnitude, while a secondary parameter acts as a Neurotransmitter to regulate Signal Transmission based on sign logic. The forward pass relies exclusively on addition, subtraction, and bitwise operations (minimum, sign), eliminating floating-point multiplication entirely. In this proof-of-concept study, we demonstrate that NCNs can solve non-linearly separable problems like XOR and the Majority function with 100% accuracy using standard backpropagation, proving their capability to form complex decision boundaries without multiplicative weights. This architecture offers a highly efficient alternative for next-generation neuromorphic hardware, paving the way for running complex models on commodity CPUs or ultra-low-power chips without relying on costly GPU clusters.
comment: 9 pages, 4 figures
☆ SLGNet: Synergizing Structural Priors and Language-Guided Modulation for Multimodal Object Detection
Multimodal object detection leveraging RGB and Infrared (IR) images is pivotal for robust perception in all-weather scenarios. While recent adapter-based approaches efficiently transfer RGB-pretrained foundation models to this task, they often prioritize model efficiency at the expense of cross-modal structural consistency. Consequently, critical structural cues are frequently lost when significant domain gaps arise, such as in high-contrast or nighttime environments. Moreover, conventional static multimodal fusion mechanisms typically lack environmental awareness, resulting in suboptimal adaptation and constrained detection performance under complex, dynamic scene variations. To address these limitations, we propose SLGNet, a parameter-efficient framework that synergizes hierarchical structural priors and language-guided modulation within a frozen Vision Transformer (ViT)-based foundation model. Specifically, we design a Structure-Aware Adapter to extract hierarchical structural representations from both modalities and dynamically inject them into the ViT to compensate for structural degradation inherent in ViT-based backbones. Furthermore, we propose a Language-Guided Modulation module that exploits VLM-driven structured captions to dynamically recalibrate visual features, thereby endowing the model with robust environmental awareness. Extensive experiments on the LLVIP, FLIR, KAIST, and DroneVehicle datasets demonstrate that SLGNet establishes new state-of-the-art performance. Notably, on the LLVIP benchmark, our method achieves an mAP of 66.1, while reducing trainable parameters by approximately 87% compared to traditional full fine-tuning. This confirms SLGNet as a robust and efficient solution for multimodal perception.
☆ A Comparative Study of Custom CNNs, Pre-trained Models, and Transfer Learning Across Multiple Visual Datasets
Convolutional Neural Networks (CNNs) are a standard approach for visual recognition due to their capacity to learn hierarchical representations from raw pixels. In practice, practitioners often choose among (i) training a compact custom CNN from scratch, (ii) using a large pre-trained CNN as a fixed feature extractor, and (iii) performing transfer learning via partial or full fine-tuning of a pre-trained backbone. This report presents a controlled comparison of these three paradigms across five real-world image classification datasets spanning road-surface defect recognition, agricultural variety identification, fruit/leaf disease recognition, pedestrian walkway encroachment recognition, and unauthorized vehicle recognition. Models are evaluated using accuracy and macro F1-score, complemented by efficiency metrics including training time per epoch and parameter counts. The results show that transfer learning consistently yields the strongest predictive performance, while the custom CNN provides an attractive efficiency--accuracy trade-off, especially when compute and memory budgets are constrained.
☆ VIBE: Visual Instruction Based Editor
Instruction-based image editing is among the fastest developing areas in generative AI. Over the past year, the field has reached a new level, with dozens of open-source models released alongside highly capable commercial systems. However, only a limited number of open-source approaches currently achieve real-world quality. In addition, diffusion backbones, the dominant choice for these pipelines, are often large and computationally expensive for many deployments and research settings, with widely used variants typically containing 6B to 20B parameters. This paper presents a compact, high-throughput instruction-based image editing pipeline that uses a modern 2B-parameter Qwen3-VL model to guide the editing process and the 1.6B-parameter diffusion model Sana1.5 for image generation. Our design decisions across architecture, data processing, training configuration, and evaluation target low-cost inference and strict source consistency while maintaining high quality across the major edit categories feasible at this scale. Evaluated on the ImgEdit and GEdit benchmarks, the proposed method matches or exceeds the performance of substantially heavier baselines, including models with several times as many parameters and higher inference cost, and is particularly strong on edits that require preserving the input image, such as an attribute adjustment, object removal, background edits, and targeted replacement. The model fits within 24 GB of GPU memory and generates edited images at up to 2K resolution in approximately 4 seconds on an NVIDIA H100 in BF16, without additional inference optimizations or distillation.
☆ FMVP: Masked Flow Matching for Adversarial Video Purification
Video recognition models remain vulnerable to adversarial attacks, while existing diffusion-based purification methods suffer from inefficient sampling and curved trajectories. Directly regressing clean videos from adversarial inputs often fails to recover faithful content due to the subtle nature of perturbations; this necessitates physically shattering the adversarial structure. Therefore, we propose Flow Matching for Adversarial Video Purification FMVP. FMVP physically shatters global adversarial structures via a masking strategy and reconstructs clean video dynamics using Conditional Flow Matching (CFM) with an inpainting objective. To further decouple semantic content from adversarial noise, we design a Frequency-Gated Loss (FGL) that explicitly suppresses high-frequency adversarial residuals while preserving low-frequency fidelity. We design Attack-Aware and Generalist training paradigms to handle known and unknown threats, respectively. Extensive experiments on UCF-101 and HMDB-51 demonstrate that FMVP outperforms state-of-the-art methods (DiffPure, Defense Patterns (DP), Temporal Shuffling (TS) and FlowPure), achieving robust accuracy exceeding 87% against PGD and 89% against CW attacks. Furthermore, FMVP demonstrates superior robustness against adaptive attacks (DiffHammer) and functions as a zero-shot adversarial detector, attaining detection accuracies of 98% for PGD and 79% for highly imperceptible CW attacks.
☆ Prior-Guided DETR for Ultrasound Nodule Detection
Accurate detection of ultrasound nodules is essential for the early diagnosis and treatment of thyroid and breast cancers. However, this task remains challenging due to irregular nodule shapes, indistinct boundaries, substantial scale variations, and the presence of speckle noise that degrades structural visibility. To address these challenges, we propose a prior-guided DETR framework specifically designed for ultrasound nodule detection. Instead of relying on purely data-driven feature learning, the proposed framework progressively incorporates different prior knowledge at multiple stages of the network. First, a Spatially-adaptive Deformable FFN with Prior Regularization (SDFPR) is embedded into the CNN backbone to inject geometric priors into deformable sampling, stabilizing feature extraction for irregular and blurred nodules. Second, a Multi-scale Spatial-Frequency Feature Mixer (MSFFM) is designed to extract multi-scale structural priors, where spatial-domain processing emphasizes contour continuity and boundary cues, while frequency-domain modeling captures global morphology and suppresses speckle noise. Furthermore, a Dense Feature Interaction (DFI) mechanism propagates and exploits these prior-modulated features across all encoder layers, enabling the decoder to enhance query refinement under consistent geometric and structural guidance. Experiments conducted on two clinically collected thyroid ultrasound datasets (Thyroid I and Thyroid II) and two public benchmarks (TN3K and BUSI) for thyroid and breast nodules demonstrate that the proposed method achieves superior accuracy compared with 18 detection methods, particularly in detecting morphologically complex nodules.The source code is publicly available at https://github.com/wjj1wjj/Ultrasound-DETR.
☆ Unraveling MMDiT Blocks: Training-free Analysis and Enhancement of Text-conditioned Diffusion
Recent breakthroughs of transformer-based diffusion models, particularly with Multimodal Diffusion Transformers (MMDiT) driven models like FLUX and Qwen Image, have facilitated thrilling experiences in text-to-image generation and editing. To understand the internal mechanism of MMDiT-based models, existing methods tried to analyze the effect of specific components like positional encoding and attention layers. Yet, a comprehensive understanding of how different blocks and their interactions with textual conditions contribute to the synthesis process remains elusive. In this paper, we first develop a systematic pipeline to comprehensively investigate each block's functionality by removing, disabling and enhancing textual hidden-states at corresponding blocks. Our analysis reveals that 1) semantic information appears in earlier blocks and finer details are rendered in later blocks, 2) removing specific blocks is usually less disruptive than disabling text conditions, and 3) enhancing textual conditions in selective blocks improves semantic attributes. Building on these observations, we further propose novel training-free strategies for improved text alignment, precise editing, and acceleration. Extensive experiments demonstrated that our method outperforms various baselines and remains flexible across text-to-image generation, image editing, and inference acceleration. Our method improves T2I-Combench++ from 56.92% to 63.00% and GenEval from 66.42% to 71.63% on SD3.5, without sacrificing synthesis quality. These results advance understanding of MMDiT models and provide valuable insights to unlock new possibilities for further improvements.
comment: 11 pages
☆ Seeing the Unseen: Zooming in the Dark with Event Cameras AAAI 2026
This paper addresses low-light video super-resolution (LVSR), aiming to restore high-resolution videos from low-light, low-resolution (LR) inputs. Existing LVSR methods often struggle to recover fine details due to limited contrast and insufficient high-frequency information. To overcome these challenges, we present RetinexEVSR, the first event-driven LVSR framework that leverages high-contrast event signals and Retinex-inspired priors to enhance video quality under low-light scenarios. Unlike previous approaches that directly fuse degraded signals, RetinexEVSR introduces a novel bidirectional cross-modal fusion strategy to extract and integrate meaningful cues from noisy event data and degraded RGB frames. Specifically, an illumination-guided event enhancement module is designed to progressively refine event features using illumination maps derived from the Retinex model, thereby suppressing low-light artifacts while preserving high-contrast details. Furthermore, we propose an event-guided reflectance enhancement module that utilizes the enhanced event features to dynamically recover reflectance details via a multi-scale fusion mechanism. Experimental results show that our RetinexEVSR achieves state-of-the-art performance on three datasets. Notably, on the SDSD benchmark, our method can get up to 2.95 dB gain while reducing runtime by 65% compared to prior event-based methods. Code: https://github.com/DachunKai/RetinexEVSR.
comment: Accepted to AAAI 2026
☆ NextFlow: Unified Sequential Modeling Activates Multimodal Understanding and Generation
We present NextFlow, a unified decoder-only autoregressive transformer trained on 6 trillion interleaved text-image discrete tokens. By leveraging a unified vision representation within a unified autoregressive architecture, NextFlow natively activates multimodal understanding and generation capabilities, unlocking abilities of image editing, interleaved content and video generation. Motivated by the distinct nature of modalities - where text is strictly sequential and images are inherently hierarchical - we retain next-token prediction for text but adopt next-scale prediction for visual generation. This departs from traditional raster-scan methods, enabling the generation of 1024x1024 images in just 5 seconds - orders of magnitude faster than comparable AR models. We address the instabilities of multi-scale generation through a robust training recipe. Furthermore, we introduce a prefix-tuning strategy for reinforcement learning. Experiments demonstrate that NextFlow achieves state-of-the-art performance among unified models and rivals specialized diffusion baselines in visual quality.
comment: Project page: https://github.com/ByteVisionLab/NextFlow
☆ Parameter-Efficient Domain Adaption for CSI Crowd-Counting via Self-Supervised Learning with Adapter Modules
Device-free crowd-counting using WiFi Channel State Information (CSI) is a key enabling technology for a new generation of privacy-preserving Internet of Things (IoT) applications. However, practical deployment is severely hampered by the domain shift problem, where models trained in one environment fail to generalise to another. To overcome this, we propose a novel two-stage framework centred on a CSI-ResNet-A architecture. This model is pre-trained via self-supervised contrastive learning to learn domain-invariant representations and leverages lightweight Adapter modules for highly efficient fine-tuning. The resulting event sequence is then processed by a stateful counting machine to produce a final, stable occupancy estimate. We validate our framework extensively. On our WiFlow dataset, our unsupervised approach excels in a 10-shot learning scenario, achieving a final Mean Absolute Error (MAE) of just 0.44--a task where supervised baselines fail. To formally quantify robustness, we introduce the Generalisation Index (GI), on which our model scores near-perfectly, confirming its ability to generalise. Furthermore, our framework sets a new state-of-the-art public WiAR benchmark with 98.8\% accuracy. Our ablation studies reveal the core strength of our design: adapter-based fine-tuning achieves performance within 1\% of a full fine-tune (98.84\% vs. 99.67\%) while training 97.2\% fewer parameters. Our work provides a practical and scalable solution for developing robust sensing systems ready for real-world IoT deployments.
☆ CORE: Code-based Inverse Self-Training Framework with Graph Expansion for Virtual Agents
The development of Multimodal Virtual Agents has made significant progress through the integration of Multimodal Large Language Models. However, mainstream training paradigms face key challenges: Behavior Cloning is simple and effective through imitation but suffers from low behavioral diversity, while Reinforcement Learning is capable of discovering novel strategies through exploration but heavily relies on manually designed reward functions. To address the conflict between these two methods, we present CORE, a Code-based Inverse Self-Training Framework with Graph Expansion that bridges imitation and exploration, offering a novel training framework that promotes behavioral diversity while eliminating the reliance on manually reward design. Specifically, we introduce Semantic Code Abstraction to automatically infers reward functions from expert demonstrations without manual design. The inferred reward function, referred to as the Label Function, is executable code that verifies one key step within a task. Building on this, we propose Strategy Graph Expansion to enhance in-domain behavioral diversity, which constructs a multi-path graph called Strategy Graph that captures diverse valid solutions beyond expert demonstrations. Furthermore, we introduce Trajectory-Guided Extrapolation, which enriches out-of-domain behavioral diversity by utilizing both successful and failed trajectories to expand the task space. Experiments on Web and Android platforms demonstrate that CORE significantly improves both overall performance and generalization, highlighting its potential as a robust and generalizable training paradigm for building powerful virtual agents.
comment: 19 pages, 12 figures
☆ Mind the Gap: Continuous Magnification Sampling for Pathology Foundation Models
In histopathology, pathologists examine both tissue architecture at low magnification and fine-grained morphology at high magnification. Yet, the performance of pathology foundation models across magnifications and the effect of magnification sampling during training remain poorly understood. We model magnification sampling as a multi-source domain adaptation problem and develop a simple theoretical framework that reveals systematic trade-offs between sampling strategies. We show that the widely used discrete uniform sampling of magnifications (0.25, 0.5, 1.0, 2.0 mpp) leads to degradation at intermediate magnifications. We introduce continuous magnification sampling, which removes gaps in magnification coverage while preserving performance at standard scales. Further, we derive sampling distributions that optimize representation quality across magnification scales. To evaluate these strategies, we introduce two new benchmarks (TCGA-MS, BRACS-MS) with appropriate metrics. Our experiments show that continuous sampling substantially improves over discrete sampling at intermediate magnifications, with gains of up to 4 percentage points in balanced classification accuracy, and that optimized distributions can further improve performance. Finally, we evaluate current histopathology foundation models, finding that magnification is a primary driver of performance variation across models. Our work paves the way towards future pathology foundation models that perform reliably across magnifications.
☆ QuIC: A Quantum-Inspired Interaction Classifier for Revitalizing Shallow CNNs in Fine-Grained Recognition
Deploying deep learning models for Fine-Grained Visual Classification (FGVC) on resource-constrained edge devices remains a significant challenge. While deep architectures achieve high accuracy on benchmarks like CUB-200-2011, their computational cost is often prohibitive. Conversely, shallow networks (e.g., AlexNet, VGG) offer efficiency but fail to distinguish visually similar sub-categories. This is because standard Global Average Pooling (GAP) heads capture only first-order statistics, missing the subtle high-order feature interactions required for FGVC. While Bilinear CNNs address this, they suffer from high feature dimensionality and instability during training. To bridge this gap, we propose the Quantum-inspired Interaction Classifier (QuIC). Drawing inspiration from quantum mechanics, QuIC models feature channels as interacting quantum states and captures second-order feature covariance via a learnable observable operator. Designed as a lightweight, plug-and-play module, QuIC supports stable, single-stage end-to-end training without exploding feature dimensions. Experimental results demonstrate that QuIC significantly revitalizes shallow backbones: it boosts the Top-1 accuracy of VGG16 by nearly 20% and outperforms state-of-the-art attention mechanisms (SE-Block) on ResNet18. Qualitative analysis, including t-SNE visualization, further confirms that QuIC resolves ambiguous cases by explicitly attending to fine-grained discriminative features and enforcing compact intra-class clustering.
☆ Why Commodity WiFi Sensors Fail at Multi-Person Gait Identification: A Systematic Analysis Using ESP32
WiFi Channel State Information (CSI) has shown promise for single-person gait identification, with numerous studies reporting high accuracy. However, multi-person identification remains largely unexplored, with the limited existing work relying on complex, expensive setups requiring modified firmware. A critical question remains unanswered: is poor multi-person performance an algorithmic limitation or a fundamental hardware constraint? We systematically evaluate six diverse signal separation methods (FastICA, SOBI, PCA, NMF, Wavelet, Tensor Decomposition) across seven scenarios with 1-10 people using commodity ESP32 WiFi sensors--a simple, low-cost, off-the-shelf solution. Through novel diagnostic metrics (intra-subject variability, inter-subject distinguishability, performance degradation rate), we reveal that all methods achieve similarly low accuracy (45-56\%, $σ$=3.74\%) with statistically insignificant differences (p $>$ 0.05). Even the best-performing method, NMF, achieves only 56\% accuracy. Our analysis reveals high intra-subject variability, low inter-subject distinguishability, and severe performance degradation as person count increases, indicating that commodity ESP32 sensors cannot provide sufficient signal quality for reliable multi-person separation.
☆ BiPrompt: Bilateral Prompt Optimization for Visual and Textual Debiasing in Vision-Language Models AAAI 2026
Vision language foundation models such as CLIP exhibit impressive zero-shot generalization yet remain vulnerable to spurious correlations across visual and textual modalities. Existing debiasing approaches often address a single modality either visual or textual leading to partial robustness and unstable adaptation under distribution shifts. We propose a bilateral prompt optimization framework (BiPrompt) that simultaneously mitigates non-causal feature reliance in both modalities during test-time adaptation. On the visual side, it employs structured attention-guided erasure to suppress background activations and enforce orthogonal prediction consistency between causal and spurious regions. On the textual side, it introduces balanced prompt normalization, a learnable re-centering mechanism that aligns class embeddings toward an isotropic semantic space. Together, these modules jointly minimize conditional mutual information between spurious cues and predictions, steering the model toward causal, domain invariant reasoning without retraining or domain supervision. Extensive evaluations on real-world and synthetic bias benchmarks demonstrate consistent improvements in both average and worst-group accuracies over prior test-time debiasing methods, establishing a lightweight yet effective path toward trustworthy and causally grounded vision-language adaptation.
comment: Accepted at the AAAI 2026 Workshop AIR-FM, Assessing and Improving Reliability of Foundation Models in the Real World
☆ Efficient Unrolled Networks for Large-Scale 3D Inverse Problems
Deep learning-based methods have revolutionized the field of imaging inverse problems, yielding state-of-the-art performance across various imaging domains. The best performing networks incorporate the imaging operator within the network architecture, typically in the form of deep unrolling. However, in large-scale problems, such as 3D imaging, most existing methods fail to incorporate the operator in the architecture due to the prohibitive amount of memory required by global forward operators, which hinder typical patching strategies. In this work, we present a domain partitioning strategy and normal operator approximations that enable the training of end-to-end reconstruction models incorporating forward operators of arbitrarily large problems into their architecture. The proposed method achieves state-of-the-art performance on 3D X-ray cone-beam tomography and 3D multi-coil accelerated MRI, while requiring only a single GPU for both training and inference.
☆ Beyond Segmentation: An Oil Spill Change Detection Framework Using Synthetic SAR Imagery
Marine oil spills are urgent environmental hazards that demand rapid and reliable detection to minimise ecological and economic damage. While Synthetic Aperture Radar (SAR) imagery has become a key tool for large-scale oil spill monitoring, most existing detection methods rely on deep learning-based segmentation applied to single SAR images. These static approaches struggle to distinguish true oil spills from visually similar oceanic features (e.g., biogenic slicks or low-wind zones), leading to high false positive rates and limited generalizability, especially under data-scarce conditions. To overcome these limitations, we introduce Oil Spill Change Detection (OSCD), a new bi-temporal task that focuses on identifying changes between pre- and post-spill SAR images. As real co-registered pre-spill imagery is not always available, we propose the Temporal-Aware Hybrid Inpainting (TAHI) framework, which generates synthetic pre-spill images from post-spill SAR data. TAHI integrates two key components: High-Fidelity Hybrid Inpainting for oil-free reconstruction, and Temporal Realism Enhancement for radiometric and sea-state consistency. Using TAHI, we construct the first OSCD dataset and benchmark several state-of-the-art change detection models. Results show that OSCD significantly reduces false positives and improves detection accuracy compared to conventional segmentation, demonstrating the value of temporally-aware methods for reliable, scalable oil spill monitoring in real-world scenarios.
☆ Remote Sensing Change Detection via Weak Temporal Supervision
Semantic change detection in remote sensing aims to identify land cover changes between bi-temporal image pairs. Progress in this area has been limited by the scarcity of annotated datasets, as pixel-level annotation is costly and time-consuming. To address this, recent methods leverage synthetic data or generate artificial change pairs, but out-of-domain generalization remains limited. In this work, we introduce a weak temporal supervision strategy that leverages additional temporal observations of existing single-temporal datasets, without requiring any new annotations. Specifically, we extend single-date remote sensing datasets with new observations acquired at different times and train a change detection model by assuming that real bi-temporal pairs mostly contain no change, while pairing images from different locations to generate change examples. To handle the inherent noise in these weak labels, we employ an object-aware change map generation and an iterative refinement process. We validate our approach on extended versions of the FLAIR and IAILD aerial datasets, achieving strong zero-shot and low-data regime performance across different benchmarks. Lastly, we showcase results over large areas in France, highlighting the scalability potential of our method.
☆ Car Drag Coefficient Prediction from 3D Point Clouds Using a Slice-Based Surrogate Model
The automotive industry's pursuit of enhanced fuel economy and performance necessitates efficient aerodynamic design. However, traditional evaluation methods such as computational fluid dynamics (CFD) and wind tunnel testing are resource intensive, hindering rapid iteration in the early design stages. Machine learning-based surrogate models offer a promising alternative, yet many existing approaches suffer from high computational complexity, limited interpretability, or insufficient accuracy for detailed geometric inputs. This paper introduces a novel lightweight surrogate model for the prediction of the aerodynamic drag coefficient (Cd) based on a sequential slice-wise processing of the geometry of the 3D vehicle. Inspired by medical imaging, 3D point clouds of vehicles are decomposed into an ordered sequence of 2D cross-sectional slices along the stream-wise axis. Each slice is encoded by a lightweight PointNet2D module, and the sequence of slice embeddings is processed by a bidirectional LSTM to capture longitudinal geometric evolution. The model, trained and evaluated on the DrivAerNet++ dataset, achieves a high coefficient of determination (R^2 > 0.9528) and a low mean absolute error (MAE approx 6.046 x 10^{-3}) in Cd prediction. With an inference time of approximately 0.025 seconds per sample on a consumer-grade GPU, our approach provides fast, accurate, and interpretable aerodynamic feedback, facilitating more agile and informed automotive design exploration.
comment: 14 pages, 5 figures. Published in: Bramer M., Stahl F. (eds) Artificial Intelligence XLII. SGAI 2025. Lecture Notes in Computer Science, vol 16302. Springer, Cham
☆ MagicFight: Personalized Martial Arts Combat Video Generation ACM MM 2024
Amid the surge in generic text-to-video generation, the field of personalized human video generation has witnessed notable advancements, primarily concentrated on single-person scenarios. However, to our knowledge, the domain of two-person interactions, particularly in the context of martial arts combat, remains uncharted. We identify a significant gap: existing models for single-person dancing generation prove insufficient for capturing the subtleties and complexities of two engaged fighters, resulting in challenges such as identity confusion, anomalous limbs, and action mismatches. To address this, we introduce a pioneering new task, Personalized Martial Arts Combat Video Generation. Our approach, MagicFight, is specifically crafted to overcome these hurdles. Given this pioneering task, we face a lack of appropriate datasets. Thus, we generate a bespoke dataset using the game physics engine Unity, meticulously crafting a multitude of 3D characters, martial arts moves, and scenes designed to represent the diversity of combat. MagicFight refines and adapts existing models and strategies to generate high-fidelity two-person combat videos that maintain individual identities and ensure seamless, coherent action sequences, thereby laying the groundwork for future innovations in the realm of interactive video content creation. Website: https://MingfuYAN.github.io/MagicFight/ Dataset: https://huggingface.co/datasets/MingfuYAN/KungFu-Fiesta
comment: Accepted by ACM MM 2024
☆ HeadLighter: Disentangling Illumination in Generative 3D Gaussian Heads via Lightstage Captures
Recent 3D-aware head generative models based on 3D Gaussian Splatting achieve real-time, photorealistic and view-consistent head synthesis. However, a fundamental limitation persists: the deep entanglement of illumination and intrinsic appearance prevents controllable relighting. Existing disentanglement methods rely on strong assumptions to enable weakly supervised learning, which restricts their capacity for complex illumination. To address this challenge, we introduce HeadLighter, a novel supervised framework that learns a physically plausible decomposition of appearance and illumination in head generative models. Specifically, we design a dual-branch architecture that separately models lighting-invariant head attributes and physically grounded rendering components. A progressive disentanglement training is employed to gradually inject head appearance priors into the generative architecture, supervised by multi-view images captured under controlled light conditions with a light stage setup. We further introduce a distillation strategy to generate high-quality normals for realistic rendering. Experiments demonstrate that our method preserves high-quality generation and real-time rendering, while simultaneously supporting explicit lighting and viewpoint editing. We will publicly release our code and dataset.
☆ 360-GeoGS: Geometrically Consistent Feed-Forward 3D Gaussian Splatting Reconstruction for 360 Images
3D scene reconstruction is fundamental for spatial intelligence applications such as AR, robotics, and digital twins. Traditional multi-view stereo struggles with sparse viewpoints or low-texture regions, while neural rendering approaches, though capable of producing high-quality results, require per-scene optimization and lack real-time efficiency. Explicit 3D Gaussian Splatting (3DGS) enables efficient rendering, but most feed-forward variants focus on visual quality rather than geometric consistency, limiting accurate surface reconstruction and overall reliability in spatial perception tasks. This paper presents a novel feed-forward 3DGS framework for 360 images, capable of generating geometrically consistent Gaussian primitives while maintaining high rendering quality. A Depth-Normal geometric regularization is introduced to couple rendered depth gradients with normal information, supervising Gaussian rotation, scale, and position to improve point cloud and surface accuracy. Experimental results show that the proposed method maintains high rendering quality while significantly improving geometric consistency, providing an effective solution for 3D reconstruction in spatial perception tasks.
☆ InpaintHuman: Reconstructing Occluded Humans with Multi-Scale UV Mapping and Identity-Preserving Diffusion Inpainting
Reconstructing complete and animatable 3D human avatars from monocular videos remains challenging, particularly under severe occlusions. While 3D Gaussian Splatting has enabled photorealistic human rendering, existing methods struggle with incomplete observations, often producing corrupted geometry and temporal inconsistencies. We present InpaintHuman, a novel method for generating high-fidelity, complete, and animatable avatars from occluded monocular videos. Our approach introduces two key innovations: (i) a multi-scale UV-parameterized representation with hierarchical coarse-to-fine feature interpolation, enabling robust reconstruction of occluded regions while preserving geometric details; and (ii) an identity-preserving diffusion inpainting module that integrates textual inversion with semantic-conditioned guidance for subject-specific, temporally coherent completion. Unlike SDS-based methods, our approach employs direct pixel-level supervision to ensure identity fidelity. Experiments on synthetic benchmarks (PeopleSnapshot, ZJU-MoCap) and real-world scenarios (OcMotion) demonstrate competitive performance with consistent improvements in reconstruction quality across diverse poses and viewpoints.
☆ Dancing Points: Synthesizing Ballroom Dancing with Three-Point Inputs
Ballroom dancing is a structured yet expressive motion category. Its highly diverse movement and complex interactions between leader and follower dancers make the understanding and synthesis challenging. We demonstrate that the three-point trajectory available from a virtual reality (VR) device can effectively serve as a dancer's motion descriptor, simplifying the modeling and synthesis of interplay between dancers' full-body motions down to sparse trajectories. Thanks to the low dimensionality, we can employ an efficient MLP network to predict the follower's three-point trajectory directly from the leader's three-point input for certain types of ballroom dancing, addressing the challenge of modeling high-dimensional full-body interaction. It also prevents our method from overfitting thanks to its compact yet explicit representation. By leveraging the inherent structure of the movements and carefully planning the autoregressive procedure, we show a deterministic neural network is able to translate three-point trajectories into a virtual embodied avatar, which is typically considered under-constrained and requires generative models for common motions. In addition, we demonstrate this deterministic approach generalizes beyond small, structured datasets like ballroom dancing, and performs robustly on larger, more diverse datasets such as LaFAN. Our method provides a computationally- and data-efficient solution, opening new possibilities for immersive paired dancing applications. Code and pre-trained models for this paper are available at https://peizhuoli.github.io/dancing-points.
☆ MCD-Net: A Lightweight Deep Learning Baseline for Optical-Only Moraine Segmentation
Glacial segmentation is essential for reconstructing past glacier dynamics and evaluating climate-driven landscape change. However, weak optical contrast and the limited availability of high-resolution DEMs hinder automated mapping. This study introduces the first large-scale optical-only moraine segmentation dataset, comprising 3,340 manually annotated high-resolution images from Google Earth covering glaciated regions of Sichuan and Yunnan, China. We develop MCD-Net, a lightweight baseline that integrates a MobileNetV2 encoder, a Convolutional Block Attention Module (CBAM), and a DeepLabV3+ decoder. Benchmarking against deeper backbones (ResNet152, Xception) shows that MCD-Net achieves 62.3\% mean Intersection over Union (mIoU) and 72.8\% Dice coefficient while reducing computational cost by more than 60\%. Although ridge delineation remains constrained by sub-pixel width and spectral ambiguity, the results demonstrate that optical imagery alone can provide reliable moraine-body segmentation. The dataset and code are publicly available at https://github.com/Lyra-alpha/MCD-Net, establishing a reproducible benchmark for moraine-specific segmentation and offering a deployable baseline for high-altitude glacial monitoring.
comment: 13 pages, 10 figures. This manuscript is under review at IEEE Transactions on Geoscience and Remote Sensing
☆ PhysSFI-Net: Physics-informed Geometric Learning of Skeletal and Facial Interactions for Orthognathic Surgical Outcome Prediction
Orthognathic surgery repositions jaw bones to restore occlusion and enhance facial aesthetics. Accurate simulation of postoperative facial morphology is essential for preoperative planning. However, traditional biomechanical models are computationally expensive, while geometric deep learning approaches often lack interpretability. In this study, we develop and validate a physics-informed geometric deep learning framework named PhysSFI-Net for precise prediction of soft tissue deformation following orthognathic surgery. PhysSFI-Net consists of three components: a hierarchical graph module with craniofacial and surgical plan encoders combined with attention mechanisms to extract skeletal-facial interaction features; a Long Short-Term Memory (LSTM)-based sequential predictor for incremental soft tissue deformation; and a biomechanics-inspired module for high-resolution facial surface reconstruction. Model performance was assessed using point cloud shape error (Hausdorff distance), surface deviation error, and landmark localization error (Euclidean distances of craniomaxillofacial landmarks) between predicted facial shapes and corresponding ground truths. A total of 135 patients who underwent combined orthodontic and orthognathic treatment were included for model training and validation. Quantitative analysis demonstrated that PhysSFI-Net achieved a point cloud shape error of 1.070 +/- 0.088 mm, a surface deviation error of 1.296 +/- 0.349 mm, and a landmark localization error of 2.445 +/- 1.326 mm. Comparative experiments indicated that PhysSFI-Net outperformed the state-of-the-art method ACMT-Net in prediction accuracy. In conclusion, PhysSFI-Net enables interpretable, high-resolution prediction of postoperative facial morphology with superior accuracy, showing strong potential for clinical application in orthognathic surgical planning and simulation.
comment: 31 pages, 8 figures
☆ SketchRodGS: Sketch-based Extraction of Slender Geometries for Animating Gaussian Splatting Scenes SIGGRAPH
Physics simulation of slender elastic objects often requires discretization as a polyline. However, constructing a polyline from Gaussian splatting is challenging as Gaussian splatting lacks connectivity information and the configuration of Gaussian primitives contains much noise. This paper presents a method to extract a polyline representation of the slender part of the objects in a Gaussian splatting scene from the user's sketching input. Our method robustly constructs a polyline mesh that represents the slender parts using the screen-space shortest path analysis that can be efficiently solved using dynamic programming. We demonstrate the effectiveness of our approach in several in-the-wild examples.
comment: Presented at SIGGRAPH Asia 2025 (Technical Communications). Best Technical Communications Award
☆ Agentic Retoucher for Text-To-Image Generation
Text-to-image (T2I) diffusion models such as SDXL and FLUX have achieved impressive photorealism, yet small-scale distortions remain pervasive in limbs, face, text and so on. Existing refinement approaches either perform costly iterative re-generation or rely on vision-language models (VLMs) with weak spatial grounding, leading to semantic drift and unreliable local edits. To close this gap, we propose Agentic Retoucher, a hierarchical decision-driven framework that reformulates post-generation correction as a human-like perception-reasoning-action loop. Specifically, we design (1) a perception agent that learns contextual saliency for fine-grained distortion localization under text-image consistency cues, (2) a reasoning agent that performs human-aligned inferential diagnosis via progressive preference alignment, and (3) an action agent that adaptively plans localized inpainting guided by user preference. This design integrates perceptual evidence, linguistic reasoning, and controllable correction into a unified, self-corrective decision process. To enable fine-grained supervision and quantitative evaluation, we further construct GenBlemish-27K, a dataset of 6K T2I images with 27K annotated artifact regions across 12 categories. Extensive experiments demonstrate that Agentic Retoucher consistently outperforms state-of-the-art methods in perceptual quality, distortion localization and human preference alignment, establishing a new paradigm for self-corrective and perceptually reliable T2I generation.
☆ AlignVTOFF: Texture-Spatial Feature Alignment for High-Fidelity Virtual Try-Off
Virtual Try-Off (VTOFF) is a challenging multimodal image generation task that aims to synthesize high-fidelity flat-lay garments under complex geometric deformation and rich high-frequency textures. Existing methods often rely on lightweight modules for fast feature extraction, which struggles to preserve structured patterns and fine-grained details, leading to texture attenuation during generation.To address these issues, we propose AlignVTOFF, a novel parallel U-Net framework built upon a Reference U-Net and Texture-Spatial Feature Alignment (TSFA). The Reference U-Net performs multi-scale feature extraction and enhances geometric fidelity, enabling robust modeling of deformation while retaining complex structured patterns. TSFA then injects the reference garment features into a frozen denoising U-Net via a hybrid attention design, consisting of a trainable cross-attention module and a frozen self-attention module. This design explicitly aligns texture and spatial cues and alleviates the loss of high-frequency information during the denoising process.Extensive experiments across multiple settings demonstrate that AlignVTOFF consistently outperforms state-of-the-art methods, producing flat-lay garment results with improved structural realism and high-frequency detail fidelity.
☆ GDRO: Group-level Reward Post-training Suitable for Diffusion Models
Recent advancements adopt online reinforcement learning (RL) from LLMs to text-to-image rectified flow diffusion models for reward alignment. The use of group-level rewards successfully aligns the model with the targeted reward. However, it faces challenges including low efficiency, dependency on stochastic samplers, and reward hacking. The problem is that rectified flow models are fundamentally different from LLMs: 1) For efficiency, online image sampling takes much more time and dominates the time of training. 2) For stochasticity, rectified flow is deterministic once the initial noise is fixed. Aiming at these problems and inspired by the effects of group-level rewards from LLMs, we design Group-level Direct Reward Optimization (GDRO). GDRO is a new post-training paradigm for group-level reward alignment that combines the characteristics of rectified flow models. Through rigorous theoretical analysis, we point out that GDRO supports full offline training that saves the large time cost for image rollout sampling. Also, it is diffusion-sampler-independent, which eliminates the need for the ODE-to-SDE approximation to obtain stochasticity. We also empirically study the reward hacking trap that may mislead the evaluation, and involve this factor in the evaluation using a corrected score that not only considers the original evaluation reward but also the trend of reward hacking. Extensive experiments demonstrate that GDRO effectively and efficiently improves the reward score of the diffusion model through group-wise offline optimization across the OCR and GenEval tasks, while demonstrating strong stability and robustness in mitigating reward hacking.
☆ Leveraging 2D-VLM for Label-Free 3D Segmentation in Large-Scale Outdoor Scene Understanding
This paper presents a novel 3D semantic segmentation method for large-scale point cloud data that does not require annotated 3D training data or paired RGB images. The proposed approach projects 3D point clouds onto 2D images using virtual cameras and performs semantic segmentation via a foundation 2D model guided by natural language prompts. 3D segmentation is achieved by aggregating predictions from multiple viewpoints through weighted voting. Our method outperforms existing training-free approaches and achieves segmentation accuracy comparable to supervised methods. Moreover, it supports open-vocabulary recognition, enabling users to detect objects using arbitrary text queries, thus overcoming the limitations of traditional supervised approaches.
comment: 19
☆ Adapting Depth Anything to Adverse Imaging Conditions with Events
Robust depth estimation under dynamic and adverse lighting conditions is essential for robotic systems. Currently, depth foundation models, such as Depth Anything, achieve great success in ideal scenes but remain challenging under adverse imaging conditions such as extreme illumination and motion blur. These degradations corrupt the visual signals of frame cameras, weakening the discriminative features of frame-based depths across the spatial and temporal dimensions. Typically, existing approaches incorporate event cameras to leverage their high dynamic range and temporal resolution, aiming to compensate for corrupted frame features. However, such specialized fusion models are predominantly trained from scratch on domain-specific datasets, thereby failing to inherit the open-world knowledge and robust generalization inherent to foundation models. In this work, we propose ADAE, an event-guided spatiotemporal fusion framework for Depth Anything in degraded scenes. Our design is guided by two key insights: 1) Entropy-Aware Spatial Fusion. We adaptively merge frame-based and event-based features using an information entropy strategy to indicate illumination-induced degradation. 2) Motion-Guided Temporal Correction. We resort to the event-based motion cue to recalibrate ambiguous features in blurred regions. Under our unified framework, the two components are complementary to each other and jointly enhance Depth Anything under adverse imaging conditions. Extensive experiments have been performed to verify the superiority of the proposed method. Our code will be released upon acceptance.
comment: This work has been submitted to the IEEE for possible publication
☆ Towards Any-Quality Image Segmentation via Generative and Adaptive Latent Space Enhancement
Segment Anything Models (SAMs), known for their exceptional zero-shot segmentation performance, have garnered significant attention in the research community. Nevertheless, their performance drops significantly on severely degraded, low-quality images, limiting their effectiveness in real-world scenarios. To address this, we propose GleSAM++, which utilizes Generative Latent space Enhancement to boost robustness on low-quality images, thus enabling generalization across various image qualities. Additionally, to improve compatibility between the pre-trained diffusion model and the segmentation framework, we introduce two techniques, i.e., Feature Distribution Alignment (FDA) and Channel Replication and Expansion (CRE). However, the above components lack explicit guidance regarding the degree of degradation. The model is forced to implicitly fit a complex noise distribution that spans conditions from mild noise to severe artifacts, which substantially increases the learning burden and leads to suboptimal reconstructions. To address this issue, we further introduce a Degradation-aware Adaptive Enhancement (DAE) mechanism. The key principle of DAE is to decouple the reconstruction process for arbitrary-quality features into two stages: degradation-level prediction and degradation-aware reconstruction. Our method can be applied to pre-trained SAM and SAM2 with only minimal additional learnable parameters, allowing for efficient optimization. Extensive experiments demonstrate that GleSAM++ significantly improves segmentation robustness on complex degradations while maintaining generalization to clear images. Furthermore, GleSAM++ also performs well on unseen degradations, underscoring the versatility of our approach and dataset.
comment: Diffusion-based latent space enhancement helps improve the robustness of SAM
☆ Enhancing Object Detection with Privileged Information: A Model-Agnostic Teacher-Student Approach
This paper investigates the integration of the Learning Using Privileged Information (LUPI) paradigm in object detection to exploit fine-grained, descriptive information available during training but not at inference. We introduce a general, model-agnostic methodology for injecting privileged information-such as bounding box masks, saliency maps, and depth cues-into deep learning-based object detectors through a teacher-student architecture. Experiments are conducted across five state-of-the-art object detection models and multiple public benchmarks, including UAV-based litter detection datasets and Pascal VOC 2012, to assess the impact on accuracy, generalization, and computational efficiency. Our results demonstrate that LUPI-trained students consistently outperform their baseline counterparts, achieving significant boosts in detection accuracy with no increase in inference complexity or model size. Performance improvements are especially marked for medium and large objects, while ablation studies reveal that intermediate weighting of teacher guidance optimally balances learning from privileged and standard inputs. The findings affirm that the LUPI framework provides an effective and practical strategy for advancing object detection systems in both resource-constrained and real-world settings.
comment: Code available on GitHub: https://github.com/mbar0075/lupi-for-object-detection
☆ XAI-MeD: Explainable Knowledge Guided Neuro-Symbolic Framework for Domain Generalization and Rare Class Detection in Medical Imaging AAAI
Explainability domain generalization and rare class reliability are critical challenges in medical AI where deep models often fail under real world distribution shifts and exhibit bias against infrequent clinical conditions This paper introduces XAIMeD an explainable medical AI framework that integrates clinically accurate expert knowledge into deep learning through a unified neuro symbolic architecture XAIMeD is designed to improve robustness under distribution shift enhance rare class sensitivity and deliver transparent clinically aligned interpretations The framework encodes clinical expertise as logical connectives over atomic medical propositions transforming them into machine checkable class specific rules Their diagnostic utility is quantified through weighted feature satisfaction scores enabling a symbolic reasoning branch that complements neural predictions A confidence weighted fusion integrates symbolic and deep outputs while a Hunt inspired adaptive routing mechanism guided by Entropy Imbalance Gain EIG and Rare Class Gini mitigates class imbalance high intra class variability and uncertainty We evaluate XAIMeD across diverse modalities on four challenging tasks i Seizure Onset Zone SOZ localization from rs fMRI ii Diabetic Retinopathy grading across 6 multicenter datasets demonstrate substantial performance improvements including 6 percent gains in cross domain generalization and a 10 percent improved rare class F1 score far outperforming state of the art deep learning baselines Ablation studies confirm that the clinically grounded symbolic components act as effective regularizers ensuring robustness to distribution shifts XAIMeD thus provides a principled clinically faithful and interpretable approach to multimodal medical AI.
comment: Accepted at AAAI Bridge Program 2026
☆ Nighttime Hazy Image Enhancement via Progressively and Mutually Reinforcing Night-Haze Priors
Enhancing the visibility of nighttime hazy images is challenging due to the complex degradation distributions. Existing methods mainly address a single type of degradation (e.g., haze or low-light) at a time, ignoring the interplay of different degradation types and resulting in limited visibility improvement. We observe that the domain knowledge shared between low-light and haze priors can be reinforced mutually for better visibility. Based on this key insight, in this paper, we propose a novel framework that enhances visibility in nighttime hazy images by reinforcing the intrinsic consistency between haze and low-light priors mutually and progressively. In particular, our model utilizes image-, patch-, and pixel-level experts that operate across visual and frequency domains to recover global scene structure, regional patterns, and fine-grained details progressively. A frequency-aware router is further introduced to adaptively guide the contribution of each expert, ensuring robust image restoration. Extensive experiments demonstrate the superior performance of our model on nighttime dehazing benchmarks both quantitatively and qualitatively. Moreover, we showcase the generalizability of our model in daytime dehazing and low-light enhancement tasks.
☆ API: Empowering Generalizable Real-World Image Dehazing via Adaptive Patch Importance Learning
Real-world image dehazing is a fundamental yet challenging task in low-level vision. Existing learning-based methods often suffer from significant performance degradation when applied to complex real-world hazy scenes, primarily due to limited training data and the intrinsic complexity of haze density distributions.To address these challenges, we introduce a novel Adaptive Patch Importance-aware (API) framework for generalizable real-world image dehazing. Specifically, our framework consists of an Automatic Haze Generation (AHG) module and a Density-aware Haze Removal (DHR) module. AHG provides a hybrid data augmentation strategy by generating realistic and diverse hazy images as additional high-quality training data. DHR considers hazy regions with varying haze density distributions for generalizable real-world image dehazing in an adaptive patch importance-aware manner. To alleviate the ambiguity of the dehazed image details, we further introduce a new Multi-Negative Contrastive Dehazing (MNCD) loss, which fully utilizes information from multiple negative samples across both spatial and frequency domains. Extensive experiments demonstrate that our framework achieves state-of-the-art performance across multiple real-world benchmarks, delivering strong results in both quantitative metrics and qualitative visual quality, and exhibiting robust generalization across diverse haze distributions.
☆ VIT-Ped: Visionary Intention Transformer for Pedestrian Behavior Analysis
Pedestrian Intention prediction is one of the key technologies in the transition from level 3 to level 4 autonomous driving. To understand pedestrian crossing behaviour, several elements and features should be taken into consideration to make the roads of tomorrow safer for everybody. We introduce a transformer / video vision transformer based algorithm of different sizes which uses different data modalities .We evaluated our algorithms on popular pedestrian behaviour dataset, JAAD, and have reached SOTA performance and passed the SOTA in metrics like Accuracy, AUC and F1-score. The advantages brought by different model design choices are investigated via extensive ablation studies.
☆ Thinking with Blueprints: Assisting Vision-Language Models in Spatial Reasoning via Structured Object Representation
Spatial reasoning -- the ability to perceive and reason about relationships in space -- advances vision-language models (VLMs) from visual perception toward spatial semantic understanding. Existing approaches either revisit local image patches, improving fine-grained perception but weakening global spatial awareness, or mark isolated coordinates, which capture object locations but overlook their overall organization. In this work, we integrate the cognitive concept of an object-centric blueprint into VLMs to enhance spatial reasoning. Given an image and a question, the model first constructs a JSON-style blueprint that records the positions, sizes, and attributes of relevant objects, and then reasons over this structured representation to produce the final answer. To achieve this, we introduce three key techniques: (1) blueprint-embedded reasoning traces for supervised fine-tuning to elicit basic reasoning skills; (2) blueprint-aware rewards in reinforcement learning to encourage the blueprint to include an appropriate number of objects and to align final answers with this causal reasoning; and (3) anti-shortcut data augmentation that applies targeted perturbations to images and questions, discouraging reliance on superficial visual or linguistic cues. Experiments show that our method consistently outperforms existing VLMs and specialized spatial reasoning models.
comment: Preprint. Under review
☆ Forget Less by Learning Together through Concept Consolidation WACV-26
Custom Diffusion Models (CDMs) have gained significant attention due to their remarkable ability to personalize generative processes. However, existing CDMs suffer from catastrophic forgetting when continuously learning new concepts. Most prior works attempt to mitigate this issue under the sequential learning setting with a fixed order of concept inflow and neglect inter-concept interactions. In this paper, we propose a novel framework - Forget Less by Learning Together (FL2T) - that enables concurrent and order-agnostic concept learning while addressing catastrophic forgetting. Specifically, we introduce a set-invariant inter-concept learning module where proxies guide feature selection across concepts, facilitating improved knowledge retention and transfer. By leveraging inter-concept guidance, our approach preserves old concepts while efficiently incorporating new ones. Extensive experiments, across three datasets, demonstrates that our method significantly improves concept retention and mitigates catastrophic forgetting, highlighting the effectiveness of inter-concept catalytic behavior in incremental concept learning of ten tasks with at least 2% gain on average CLIP Image Alignment scores.
comment: Accepted at WACV-26
☆ AFTER: Mitigating the Object Hallucination of LVLM via Adaptive Factual-Guided Activation Editing
Large Vision-Language Models (LVLMs) have achieved substantial progress in cross-modal tasks. However, due to language bias, LVLMs are susceptible to object hallucination, which can be primarily divided into category, attribute, and relation hallucination, significantly impeding the trustworthy AI applications. Editing the internal activations of LVLMs has shown promising effectiveness in mitigating hallucinations with minimal cost. However, previous editing approaches neglect the effective guidance offered by factual textual semantics, thereby struggling to explicitly mitigate language bias. To address these issues, we propose Adaptive Factual-guided Visual-Textual Editing for hallucination mitigation (AFTER), which comprises Factual-Augmented Activation Steering (FAS) and Query-Adaptive Offset Optimization (QAO), to adaptively guides the original biased activations towards factual semantics. Specifically, FAS is proposed to provide factual and general guidance for activation editing, thereby explicitly modeling the precise visual-textual associations. Subsequently, QAO introduces a query-aware offset estimator to establish query-specific editing from the general steering vector, enhancing the diversity and granularity of editing. Extensive experiments on standard hallucination benchmarks across three widely adopted LVLMs validate the efficacy of the proposed AFTER, notably achieving up to a 16.3% reduction of hallucination over baseline on the AMBER benchmark. Our code and data will be released for reproducibility.
☆ MotionAdapter: Video Motion Transfer via Content-Aware Attention Customization
Recent advances in diffusion-based text-to-video models, particularly those built on the diffusion transformer architecture, have achieved remarkable progress in generating high-quality and temporally coherent videos. However, transferring complex motions between videos remains challenging. In this work, we present MotionAdapter, a content-aware motion transfer framework that enables robust and semantically aligned motion transfer within DiT-based T2V models. Our key insight is that effective motion transfer requires \romannumeral1) explicit disentanglement of motion from appearance and \romannumeral 2) adaptive customization of motion to target content. MotionAdapter first isolates motion by analyzing cross-frame attention within 3D full-attention modules to extract attention-derived motion fields. To bridge the semantic gap between reference and target videos, we further introduce a DINO-guided motion customization module that rearranges and refines motion fields based on content correspondences. The customized motion field is then used to guide the DiT denoising process, ensuring that the synthesized video inherits the reference motion while preserving target appearance and semantics. Extensive experiments demonstrate that MotionAdapter outperforms state-of-the-art methods in both qualitative and quantitative evaluations. Moreover, MotionAdapter naturally supports complex motion transfer and motion editing tasks such as zooming.
☆ Face Normal Estimation from Rags to Riches
Although recent approaches to face normal estimation have achieved promising results, their effectiveness heavily depends on large-scale paired data for training. This paper concentrates on relieving this requirement via developing a coarse-to-fine normal estimator. Concretely, our method first trains a neat model from a small dataset to produce coarse face normals that perform as guidance (called exemplars) for the following refinement. A self-attention mechanism is employed to capture long-range dependencies, thus remedying severe local artifacts left in estimated coarse facial normals. Then, a refinement network is customized for the sake of mapping input face images together with corresponding exemplars to fine-grained high-quality facial normals. Such a logical function split can significantly cut the requirement of massive paired data and computational resource. Extensive experiments and ablation studies are conducted to demonstrate the efficacy of our design and reveal its superiority over state-of-the-art methods in terms of both training expense as well as estimation quality. Our code and models are open-sourced at: https://github.com/AutoHDR/FNR2R.git.
☆ MacVQA: Adaptive Memory Allocation and Global Noise Filtering for Continual Visual Question Answering AAAI 2026
Visual Question Answering (VQA) requires models to reason over multimodal information, combining visual and textual data. With the development of continual learning, significant progress has been made in retaining knowledge and adapting to new information in the VQA domain. However, current methods often struggle with balancing knowledge retention, adaptation, and robust feature representation. To address these challenges, we propose a novel framework with adaptive memory allocation and global noise filtering called MacVQA for visual question answering. MacVQA fuses visual and question information while filtering noise to ensure robust representations, and employs prototype-based memory allocation to optimize feature quality and memory usage. These designs enable MacVQA to balance knowledge acquisition, retention, and compositional generalization in continual VQA learning. Experiments on ten continual VQA tasks show that MacVQA outperforms existing baselines, achieving 43.38% average accuracy and 2.32% average forgetting on standard tasks, and 42.53% average accuracy and 3.60% average forgetting on novel composition tasks.
comment: Accepted to AAAI 2026
☆ AR-MOT: Autoregressive Multi-object Tracking
As multi-object tracking (MOT) tasks continue to evolve toward more general and multi-modal scenarios, the rigid and task-specific architectures of existing MOT methods increasingly hinder their applicability across diverse tasks and limit flexibility in adapting to new tracking formulations. Most approaches rely on fixed output heads and bespoke tracking pipelines, making them difficult to extend to more complex or instruction-driven tasks. To address these limitations, we propose AR-MOT, a novel autoregressive paradigm that formulates MOT as a sequence generation task within a large language model (LLM) framework. This design enables the model to output structured results through flexible sequence construction, without requiring any task-specific heads. To enhance region-level visual perception, we introduce an Object Tokenizer based on a pretrained detector. To mitigate the misalignment between global and regional features, we propose a Region-Aware Alignment (RAA) module, and to support long-term tracking, we design a Temporal Memory Fusion (TMF) module that caches historical object tokens. AR-MOT offers strong potential for extensibility, as new modalities or instructions can be integrated by simply modifying the output sequence format without altering the model architecture. Extensive experiments on MOT17 and DanceTrack validate the feasibility of our approach, achieving performance comparable to state-of-the-art methods while laying the foundation for more general and flexible MOT systems.
comment: 12 pages, 5 figures
☆ TalkPhoto: A Versatile Training-Free Conversational Assistant for Intelligent Image Editing
Thanks to the powerful language comprehension capabilities of Large Language Models (LLMs), existing instruction-based image editing methods have introduced Multimodal Large Language Models (MLLMs) to promote information exchange between instructions and images, ensuring the controllability and flexibility of image editing. However, these frameworks often build a multi-instruction dataset to train the model to handle multiple editing tasks, which is not only time-consuming and labor-intensive but also fails to achieve satisfactory results. In this paper, we present TalkPhoto, a versatile training-free image editing framework that facilitates precise image manipulation through conversational interaction. We instruct the open-source LLM with a specially designed prompt template to analyze user needs after receiving instructions and hierarchically invoke existing advanced editing methods, all without additional training. Moreover, we implement a plug-and-play and efficient invocation of image editing methods, allowing complex and unseen editing tasks to be integrated into the current framework, achieving stable and high-quality editing results. Extensive experiments demonstrate that our method not only provides more accurate invocation with fewer token consumption but also achieves higher editing quality across various image editing tasks.
comment: a Conversational Assistant for Intelligent Image Editing
☆ Learning Action Hierarchies via Hybrid Geometric Diffusion WACV-26
Temporal action segmentation is a critical task in video understanding, where the goal is to assign action labels to each frame in a video. While recent advances leverage iterative refinement-based strategies, they fail to explicitly utilize the hierarchical nature of human actions. In this work, we propose HybridTAS - a novel framework that incorporates a hybrid of Euclidean and hyperbolic geometries into the denoising process of diffusion models to exploit the hierarchical structure of actions. Hyperbolic geometry naturally provides tree-like relationships between embeddings, enabling us to guide the action label denoising process in a coarse-to-fine manner: higher diffusion timesteps are influenced by abstract, high-level action categories (root nodes), while lower timesteps are refined using fine-grained action classes (leaf nodes). Extensive experiments on three benchmark datasets, GTEA, 50Salads, and Breakfast, demonstrate that our method achieves state-of-the-art performance, validating the effectiveness of hyperbolic-guided denoising for the temporal action segmentation task.
comment: Accepted at WACV-26
☆ Nodule-DETR: A Novel DETR Architecture with Frequency-Channel Attention for Ultrasound Thyroid Nodule Detection
Thyroid cancer is the most common endocrine malignancy, and its incidence is rising globally. While ultrasound is the preferred imaging modality for detecting thyroid nodules, its diagnostic accuracy is often limited by challenges such as low image contrast and blurred nodule boundaries. To address these issues, we propose Nodule-DETR, a novel detection transformer (DETR) architecture designed for robust thyroid nodule detection in ultrasound images. Nodule-DETR introduces three key innovations: a Multi-Spectral Frequency-domain Channel Attention (MSFCA) module that leverages frequency analysis to enhance features of low-contrast nodules; a Hierarchical Feature Fusion (HFF) module for efficient multi-scale integration; and Multi-Scale Deformable Attention (MSDA) to flexibly capture small and irregularly shaped nodules. We conducted extensive experiments on a clinical dataset of real-world thyroid ultrasound images. The results demonstrate that Nodule-DETR achieves state-of-the-art performance, outperforming the baseline model by a significant margin of 0.149 in mAP@0.5:0.95. The superior accuracy of Nodule-DETR highlights its significant potential for clinical application as an effective tool in computer-aided thyroid diagnosis. The code of work is available at https://github.com/wjj1wjj/Nodule-DETR.
☆ Forget Less by Learning from Parents Through Hierarchical Relationships AAAI-26
Custom Diffusion Models (CDMs) offer impressive capabilities for personalization in generative modeling, yet they remain vulnerable to catastrophic forgetting when learning new concepts sequentially. Existing approaches primarily focus on minimizing interference between concepts, often neglecting the potential for positive inter-concept interactions. In this work, we present Forget Less by Learning from Parents (FLLP), a novel framework that introduces a parent-child inter-concept learning mechanism in hyperbolic space to mitigate forgetting. By embedding concept representations within a Lorentzian manifold, naturally suited to modeling tree-like hierarchies, we define parent-child relationships in which previously learned concepts serve as guidance for adapting to new ones. Our method not only preserves prior knowledge but also supports continual integration of new concepts. We validate FLLP on three public datasets and one synthetic benchmark, showing consistent improvements in both robustness and generalization.
comment: Accepted at AAAI-26
☆ Agentic AI in Remote Sensing: Foundations, Taxonomy, and Emerging Systems WACV
The paradigm of Earth Observation analysis is shifting from static deep learning models to autonomous agentic AI. Although recent vision foundation models and multimodal large language models advance representation learning, they often lack the sequential planning and active tool orchestration required for complex geospatial workflows. This survey presents the first comprehensive review of agentic AI in remote sensing. We introduce a unified taxonomy distinguishing between single-agent copilots and multi-agent systems while analyzing architectural foundations such as planning mechanisms, retrieval-augmented generation, and memory structures. Furthermore, we review emerging benchmarks that move the evaluation from pixel-level accuracy to trajectory-aware reasoning correctness. By critically examining limitations in grounding, safety, and orchestration, this work outlines a strategic roadmap for the development of robust, autonomous geospatial intelligence.
comment: Accepted to the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026, GeoCV Workshop
☆ CogFlow: Bridging Perception and Reasoning through Knowledge Internalization for Visual Mathematical Problem Solving
Despite significant progress, multimodal large language models continue to struggle with visual mathematical problem solving. Some recent works recognize that visual perception is a bottleneck in visual mathematical reasoning, but their solutions are limited to improving the extraction and interpretation of visual inputs. Notably, they all ignore the key issue of whether the extracted visual cues are faithfully integrated and properly utilized in subsequent reasoning. Motivated by this, we present CogFlow, a novel cognitive-inspired three-stage framework that incorporates a knowledge internalization stage, explicitly simulating the hierarchical flow of human reasoning: perception$\Rightarrow$internalization$\Rightarrow$reasoning. Inline with this hierarchical flow, we holistically enhance all its stages. We devise Synergistic Visual Rewards to boost perception capabilities in parametric and semantic spaces, jointly improving visual information extraction from symbols and diagrams. To guarantee faithful integration of extracted visual cues into subsequent reasoning, we introduce a Knowledge Internalization Reward model in the internalization stage, bridging perception and reasoning. Moreover, we design a Visual-Gated Policy Optimization algorithm to further enforce the reasoning is grounded with the visual knowledge, preventing models seeking shortcuts that appear coherent but are visually ungrounded reasoning chains. Moreover, we contribute a new dataset MathCog for model training, which contains samples with over 120K high-quality perception-reasoning aligned annotations. Comprehensive experiments and analysis on commonly used visual mathematical reasoning benchmarks validate the superiority of the proposed CogFlow.
☆ Entity-Guided Multi-Task Learning for Infrared and Visible Image Fusion
Existing text-driven infrared and visible image fusion approaches often rely on textual information at the sentence level, which can lead to semantic noise from redundant text and fail to fully exploit the deeper semantic value of textual information. To address these issues, we propose a novel fusion approach named Entity-Guided Multi-Task learning for infrared and visible image fusion (EGMT). Our approach includes three key innovative components: (i) A principled method is proposed to extract entity-level textual information from image captions generated by large vision-language models, eliminating semantic noise from raw text while preserving critical semantic information; (ii) A parallel multi-task learning architecture is constructed, which integrates image fusion with a multi-label classification task. By using entities as pseudo-labels, the multi-label classification task provides semantic supervision, enabling the model to achieve a deeper understanding of image content and significantly improving the quality and semantic density of the fused image; (iii) An entity-guided cross-modal interactive module is also developed to facilitate the fine-grained interaction between visual and entity-level textual features, which enhances feature representation by capturing cross-modal dependencies at both inter-visual and visual-entity levels. To promote the wide application of the entity-guided image fusion framework, we release the entity-annotated version of four public datasets (i.e., TNO, RoadScene, M3FD, and MSRS). Extensive experiments demonstrate that EGMT achieves superior performance in preserving salient targets, texture details, and semantic consistency, compared to the state-of-the-art methods. The code and dataset will be publicly available at https://github.com/wyshao-01/EGMT.
comment: Accepted by IEEE Transactions on Multimedia
☆ RRNet: Configurable Real-Time Video Enhancement with Arbitrary Local Lighting Variations
With the growing demand for real-time video enhancement in live applications, existing methods often struggle to balance speed and effective exposure control, particularly under uneven lighting. We introduce RRNet (Rendering Relighting Network), a lightweight and configurable framework that achieves a state-of-the-art tradeoff between visual quality and efficiency. By estimating parameters for a minimal set of virtual light sources, RRNet enables localized relighting through a depth-aware rendering module without requiring pixel-aligned training data. This object-aware formulation preserves facial identity and supports real-time, high-resolution performance using a streamlined encoder and lightweight prediction head. To facilitate training, we propose a generative AI-based dataset creation pipeline that synthesizes diverse lighting conditions at low cost. With its interpretable lighting control and efficient architecture, RRNet is well suited for practical applications such as video conferencing, AR-based portrait enhancement, and mobile photography. Experiments show that RRNet consistently outperforms prior methods in low-light enhancement, localized illumination adjustment, and glare removal.
☆ GCR: Geometry-Consistent Routing for Task-Agnostic Continual Anomaly Detection
Feature-based anomaly detection is widely adopted in industrial inspection due to the strong representational power of large pre-trained vision encoders. While most existing methods focus on improving within-category anomaly scoring, practical deployments increasingly require task-agnostic operation under continual category expansion, where the category identity is unknown at test time. In this setting, overall performance is often dominated by expert selection, namely routing an input to an appropriate normality model before any head-specific scoring is applied. However, routing rules that compare head-specific anomaly scores across independently constructed heads are unreliable in practice, as score distributions can differ substantially across categories in scale and tail behavior. We propose GCR, a lightweight mixture-of-experts framework for stabilizing task-agnostic continual anomaly detection through geometry-consistent routing. GCR routes each test image directly in a shared frozen patch-embedding space by minimizing an accumulated nearest-prototype distance to category-specific prototype banks, and then computes anomaly maps only within the routed expert using a standard prototype-based scoring rule. By separating cross-head decision making from within-head anomaly scoring, GCR avoids cross-head score comparability issues without requiring end-to-end representation learning. Experiments on MVTec AD and VisA show that geometry-consistent routing substantially improves routing stability and mitigates continual performance collapse, achieving near-zero forgetting while maintaining competitive detection and localization performance. These results indicate that many failures previously attributed to representation forgetting can instead be explained by decision-rule instability in cross-head routing. Code is available at https://github.com/jw-chae/GCR
☆ ESGaussianFace: Emotional and Stylized Audio-Driven Facial Animation via 3D Gaussian Splatting
Most current audio-driven facial animation research primarily focuses on generating videos with neutral emotions. While some studies have addressed the generation of facial videos driven by emotional audio, efficiently generating high-quality talking head videos that integrate both emotional expressions and style features remains a significant challenge. In this paper, we propose ESGaussianFace, an innovative framework for emotional and stylized audio-driven facial animation. Our approach leverages 3D Gaussian Splatting to reconstruct 3D scenes and render videos, ensuring efficient generation of 3D consistent results. We propose an emotion-audio-guided spatial attention method that effectively integrates emotion features with audio content features. Through emotion-guided attention, the model is able to reconstruct facial details across different emotional states more accurately. To achieve emotional and stylized deformations of the 3D Gaussian points through emotion and style features, we introduce two 3D Gaussian deformation predictors. Futhermore, we propose a multi-stage training strategy, enabling the step-by-step learning of the character's lip movements, emotional variations, and style features. Our generated results exhibit high efficiency, high quality, and 3D consistency. Extensive experimental results demonstrate that our method outperforms existing state-of-the-art techniques in terms of lip movement accuracy, expression variation, and style feature expressiveness.
comment: 13 pages, 10 figures
☆ RSwinV2-MD: An Enhanced Residual SwinV2 Transformer for Monkeypox Detection from Skin Images
In this paper, a deep learning approach for Mpox diagnosis named Customized Residual SwinTransformerV2 (RSwinV2) has been proposed, trying to enhance the capability of lesion classification by employing the RSwinV2 tool-assisted vision approach. In the RSwinV2 method, a hierarchical structure of the transformer has been customized based on the input dimensionality, embedding structure, and output targeted by the method. In this RSwinV2 approach, the input image has been split into non-overlapping patches and processed using shifted windows and attention in these patches. This process has helped the method link all the windows efficiently by avoiding the locality issues of non-overlapping regions in attention, while being computationally efficient. RSwinV2 has further developed based on SwinTransformer and has included patch and position embeddings to take advantage of the transformer global-linking capability by employing multi-head attention in these embeddings. Furthermore, RSwinV2 has developed and incorporated the Inverse Residual Block (IRB) into this method, which utilizes convolutional skip connections with these inclusive designs to address the vanishing gradient issues during processing. RSwinV2 inclusion of IRB has therefore facilitated this method to link global patterns as well as local patterns; hence, its integrity has helped improve lesion classification capability by minimizing variability of Mpox and increasing differences of Mpox, chickenpox, measles, and cowpox. In testing SwinV2, its accuracy of 96.21 and an F1score of 95.62 have been achieved on the Kaggle public dataset, which has outperformed standard CNN models and SwinTransformers; RSwinV2 vector has thus proved its valiance as a computer-assisted tool for Mpox lesion observation interpretation.
comment: 15 Pages, 7 Figures, 4 Tables
☆ DisCo-FLoc: Using Dual-Level Visual-Geometric Contrasts to Disambiguate Depth-Aware Visual Floorplan Localization
Since floorplan data is readily available, long-term persistent, and robust to changes in visual appearance, visual Floorplan Localization (FLoc) has garnered significant attention. Existing methods either ingeniously match geometric priors or utilize sparse semantics to reduce FLoc uncertainty. However, they still suffer from ambiguous FLoc caused by repetitive structures within minimalist floorplans. Moreover, expensive but limited semantic annotations restrict their applicability. To address these issues, we propose DisCo-FLoc, which utilizes dual-level visual-geometric Contrasts to Disambiguate depth-aware visual Floc, without requiring additional semantic labels. Our solution begins with a ray regression predictor tailored for ray-casting-based FLoc, predicting a series of FLoc candidates using depth estimation expertise. In addition, a novel contrastive learning method with position-level and orientation-level constraints is proposed to strictly match depth-aware visual features with the corresponding geometric structures in the floorplan. Such matches can effectively eliminate FLoc ambiguity and select the optimal imaging pose from FLoc candidates. Exhaustive comparative studies on two standard visual Floc benchmarks demonstrate that our method outperforms the state-of-the-art semantic-based method, achieving significant improvements in both robustness and accuracy.
comment: 7 pages, 4 figures
☆ Robust Egocentric Visual Attention Prediction Through Language-guided Scene Context-aware Learning
As the demand for analyzing egocentric videos grows, egocentric visual attention prediction, anticipating where a camera wearer will attend, has garnered increasing attention. However, it remains challenging due to the inherent complexity and ambiguity of dynamic egocentric scenes. Motivated by evidence that scene contextual information plays a crucial role in modulating human attention, in this paper, we present a language-guided scene context-aware learning framework for robust egocentric visual attention prediction. We first design a context perceiver which is guided to summarize the egocentric video based on a language-based scene description, generating context-aware video representations. We then introduce two training objectives that: 1) encourage the framework to focus on the target point-of-interest regions and 2) suppress distractions from irrelevant regions which are less likely to attract first-person attention. Extensive experiments on Ego4D and Aria Everyday Activities (AEA) datasets demonstrate the effectiveness of our approach, achieving state-of-the-art performance and enhanced robustness across diverse, dynamic egocentric scenarios.
comment: 11 pages, 7 figures, 4 tables
☆ Adaptive Hybrid Optimizer based Framework for Lumpy Skin Disease Identification
Lumpy Skin Disease (LSD) is a contagious viral infection that significantly deteriorates livestock health, thereby posing a serious threat to the global economy and food security. Owing to its rapid spread characteristics, early and precise identification is crucial to prevent outbreaks and ensure timely intervention. In this paper, we propose a hybrid deep learning-based approach called LUMPNet for the early detection of LSD. LUMPNet utilizes image data to detect and classify skin nodules -- the primary indicator of LSD. To this end, LUMPNet uses YOLOv11, EfficientNet-based CNN classifier with compound scaling, and a novel adaptive hybrid optimizer. More precisely, LUMPNet detects and localizes LSD skin nodules and lesions on cattle images. It exploits EfficientNet to classify the localized cattle images into LSD-affected or healthy categories. To stabilize and accelerate the training of YOLOv11 and EfficientNet hybrid model, a novel adaptive hybrid optimizer is proposed and utilized. We evaluate LUMPNet at various stages of LSD using a publicly available dataset. Results indicate that the proposed scheme achieves 99% LSD detection training accuracy, and outperforms existing schemes. The model also achieves validation accuracy of 98%. Moreover, for further evaluation, we conduct a case study using an optimized EfficientNet-B0 model trained with the AdamW optimizer, and compare its performance with LUMPNet. The results show that LUMPNet achieves superior performance.
☆ Causality-Aware Temporal Projection for Video Understanding in Video-LLMs
Recent Video Large Language Models (Video-LLMs) have shown strong multimodal reasoning capabilities, yet remain challenged by video understanding tasks that require consistent temporal ordering and causal coherence. Many parameter-efficient Video-LLMs rely on unconstrained bidirectional projectors to model inter-frame interactions, which can blur temporal ordering by allowing later frames to influence earlier representations, without explicit architectural mechanisms to respect the directional nature of video reasoning. To address this limitation, we propose V-CORE, a parameter-efficient framework that introduces explicit temporal ordering constraints for video understanding. V-CORE consists of two key components: (1) Learnable Spatial Aggregation (LSA), which adaptively selects salient spatial tokens to reduce redundancy, and (2) a Causality-Aware Temporal Projector (CATP), which enforces structured unidirectional information flow via block-causal attention and a terminal dynamic summary token acting as a causal sink. This design preserves intra-frame spatial interactions while ensuring that temporal information is aggregated in a strictly ordered manner. With 4-bit QLoRA and a frozen LLM backbone, V-CORE can be trained efficiently on a single consumer GPU. Experiments show that V-CORE achieves strong performance on the challenging NExT-QA benchmark, reaching 61.2% accuracy, and remains competitive across MSVD-QA, MSRVTT-QA, and TGIF-QA, with gains concentrated in temporal and causal reasoning subcategories (+3.5% and +5.2% respectively), directly validating the importance of explicit temporal ordering constraints.
comment: 7 pages, 4 figures
☆ VerLM: Explaining Face Verification Using Natural Language
Face verification systems have seen substantial advancements; however, they often lack transparency in their decision-making processes. In this paper, we introduce an innovative Vision-Language Model (VLM) for Face Verification, which not only accurately determines if two face images depict the same individual but also explicitly explains the rationale behind its decisions. Our model is uniquely trained using two complementary explanation styles: (1) concise explanations that summarize the key factors influencing its decision, and (2) comprehensive explanations detailing the specific differences observed between the images. We adapt and enhance a state-of-the-art modeling approach originally designed for audio-based differentiation to suit visual inputs effectively. This cross-modal transfer significantly improves our model's accuracy and interpretability. The proposed VLM integrates sophisticated feature extraction techniques with advanced reasoning capabilities, enabling clear articulation of its verification process. Our approach demonstrates superior performance, surpassing baseline methods and existing models. These findings highlight the immense potential of vision language models in face verification set up, contributing to more transparent, reliable, and explainable face verification systems.
☆ DDNet: A Dual-Stream Graph Learning and Disentanglement Framework for Temporal Forgery Localization
The rapid evolution of AIGC technology enables misleading viewers by tampering mere small segments within a video, rendering video-level detection inaccurate and unpersuasive. Consequently, temporal forgery localization (TFL), which aims to precisely pinpoint tampered segments, becomes critical. However, existing methods are often constrained by \emph{local view}, failing to capture global anomalies. To address this, we propose a \underline{d}ual-stream graph learning and \underline{d}isentanglement framework for temporal forgery localization (DDNet). By coordinating a \emph{Temporal Distance Stream} for local artifacts and a \emph{Semantic Content Stream} for long-range connections, DDNet prevents global cues from being drowned out by local smoothness. Furthermore, we introduce Trace Disentanglement and Adaptation (TDA) to isolate generic forgery fingerprints, alongside Cross-Level Feature Embedding (CLFE) to construct a robust feature foundation via deep fusion of hierarchical features. Experiments on ForgeryNet and TVIL benchmarks demonstrate that our method outperforms state-of-the-art approaches by approximately 9\% in AP@0.95, with significant improvements in cross-domain robustness.
☆ Subimage Overlap Prediction: Task-Aligned Self-Supervised Pretraining For Semantic Segmentation In Remote Sensing Imagery WACV 2026
Self-supervised learning (SSL) methods have become a dominant paradigm for creating general purpose models whose capabilities can be transferred to downstream supervised learning tasks. However, most such methods rely on vast amounts of pretraining data. This work introduces Subimage Overlap Prediction, a novel self-supervised pretraining task to aid semantic segmentation in remote sensing imagery that uses significantly lesser pretraining imagery. Given an image, a sub-image is extracted and the model is trained to produce a semantic mask of the location of the extracted sub-image within the original image. We demonstrate that pretraining with this task results in significantly faster convergence, and equal or better performance (measured via mIoU) on downstream segmentation. This gap in convergence and performance widens when labeled training data is reduced. We show this across multiple architecture types, and with multiple downstream datasets. We also show that our method matches or exceeds performance while requiring significantly lesser pretraining data relative to other SSL methods. Code and model weights are provided at \href{https://github.com/sharmalakshay93/subimage-overlap-prediction}{github.com/sharmalakshay93/subimage-overlap-prediction}.
comment: Accepted at CV4EO Workshop at WACV 2026
☆ CTIS-QA: Clinical Template-Informed Slide-level Question Answering for Pathology
In this paper, we introduce a clinical diagnosis template-based pipeline to systematically collect and structure pathological information. In collaboration with pathologists and guided by the the College of American Pathologists (CAP) Cancer Protocols, we design a Clinical Pathology Report Template (CPRT) that ensures comprehensive and standardized extraction of diagnostic elements from pathology reports. We validate the effectiveness of our pipeline on TCGA-BRCA. First, we extract pathological features from reports using CPRT. These features are then used to build CTIS-Align, a dataset of 80k slide-description pairs from 804 WSIs for vision-language alignment training, and CTIS-Bench, a rigorously curated VQA benchmark comprising 977 WSIs and 14,879 question-answer pairs. CTIS-Bench emphasizes clinically grounded, closed-ended questions (e.g., tumor grade, receptor status) that reflect real diagnostic workflows, minimize non-visual reasoning, and require genuine slide understanding. We further propose CTIS-QA, a Slide-level Question Answering model, featuring a dual-stream architecture that mimics pathologists' diagnostic approach. One stream captures global slide-level context via clustering-based feature aggregation, while the other focuses on salient local regions through attention-guided patch perception module. Extensive experiments on WSI-VQA, CTIS-Bench, and slide-level diagnostic tasks show that CTIS-QA consistently outperforms existing state-of-the-art models across multiple metrics. Code and data are available at https://github.com/HLSvois/CTIS-QA.
comment: The paper has been accepted by BIBM 2025
☆ AlignDrive: Aligned Lateral-Longitudinal Planning for End-to-End Autonomous Driving
End-to-end autonomous driving has rapidly progressed, enabling joint perception and planning in complex environments. In the planning stage, state-of-the-art (SOTA) end-to-end autonomous driving models decouple planning into parallel lateral and longitudinal predictions. While effective, this parallel design can lead to i) coordination failures between the planned path and speed, and ii) underutilization of the drive path as a prior for longitudinal planning, thus redundantly encoding static information. To address this, we propose a novel cascaded framework that explicitly conditions longitudinal planning on the drive path, enabling coordinated and collision-aware lateral and longitudinal planning. Specifically, we introduce a path-conditioned formulation that explicitly incorporates the drive path into longitudinal planning. Building on this, the model predicts longitudinal displacements along the drive path rather than full 2D trajectory waypoints. This design simplifies longitudinal reasoning and more tightly couples it with lateral planning. Additionally, we introduce a planning-oriented data augmentation strategy that simulates rare safety-critical events, such as vehicle cut-ins, by adding agents and relabeling longitudinal targets to avoid collision. Evaluated on the challenging Bench2Drive benchmark, our method sets a new SOTA, achieving a driving score of 89.07 and a success rate of 73.18%, demonstrating significantly improved coordination and safety
comment: underreview
☆ MANGO:Natural Multi-speaker 3D Talking Head Generation via 2D-Lifted Enhancement
Current audio-driven 3D head generation methods mainly focus on single-speaker scenarios, lacking natural, bidirectional listen-and-speak interaction. Achieving seamless conversational behavior, where speaking and listening states transition fluidly remains a key challenge. Existing 3D conversational avatar approaches rely on error-prone pseudo-3D labels that fail to capture fine-grained facial dynamics. To address these limitations, we introduce a novel two-stage framework MANGO, which leveraging pure image-level supervision by alternately training to mitigate the noise introduced by pseudo-3D labels, thereby achieving better alignment with real-world conversational behaviors. Specifically, in the first stage, a diffusion-based transformer with a dual-audio interaction module models natural 3D motion from multi-speaker audio. In the second stage, we use a fast 3D Gaussian Renderer to generate high-fidelity images and provide 2D-level photometric supervision for the 3D motions through alternate training. Additionally, we introduce MANGO-Dialog, a high-quality dataset with over 50 hours of aligned 2D-3D conversational data across 500+ identities. Extensive experiments demonstrate that our method achieves exceptional accuracy and realism in modeling two-person 3D dialogue motion, significantly advancing the fidelity and controllability of audio-driven talking heads.
comment: 20 pages, 11i figures
☆ Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization EACL
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
☆ Point-SRA: Self-Representation Alignment for 3D Representation Learning AAAI 2026
Masked autoencoders (MAE) have become a dominant paradigm in 3D representation learning, setting new performance benchmarks across various downstream tasks. Existing methods with fixed mask ratio neglect multi-level representational correlations and intrinsic geometric structures, while relying on point-wise reconstruction assumptions that conflict with the diversity of point cloud. To address these issues, we propose a 3D representation learning method, termed Point-SRA, which aligns representations through self-distillation and probabilistic modeling. Specifically, we assign different masking ratios to the MAE to capture complementary geometric and semantic information, while the MeanFlow Transformer (MFT) leverages cross-modal conditional embeddings to enable diverse probabilistic reconstruction. Our analysis further reveals that representations at different time steps in MFT also exhibit complementarity. Therefore, a Dual Self-Representation Alignment mechanism is proposed at both the MAE and MFT levels. Finally, we design a Flow-Conditioned Fine-Tuning Architecture to fully exploit the point cloud distribution learned via MeanFlow. Point-SRA outperforms Point-MAE by 5.37% on ScanObjectNN. On intracranial aneurysm segmentation, it reaches 96.07% mean IoU for arteries and 86.87% for aneurysms. For 3D object detection, Point-SRA achieves 47.3% AP@50, surpassing MaskPoint by 5.12%.
comment: This is an AAAI 2026 accepted paper titled "Point-SRA: Self-Representation Alignment for 3D Representation Learning", spanning 13 pages in total. The submission includes 7 figures (fig1 to fig7) that visually support the technical analysis
☆ FFP-300K: Scaling First-Frame Propagation for Generalizable Video Editing
First-Frame Propagation (FFP) offers a promising paradigm for controllable video editing, but existing methods are hampered by a reliance on cumbersome run-time guidance. We identify the root cause of this limitation as the inadequacy of current training datasets, which are often too short, low-resolution, and lack the task diversity required to teach robust temporal priors. To address this foundational data gap, we first introduce FFP-300K, a new large-scale dataset comprising 300K high-fidelity video pairs at 720p resolution and 81 frames in length, constructed via a principled two-track pipeline for diverse local and global edits. Building on this dataset, we propose a novel framework designed for true guidance-free FFP that resolves the critical tension between maintaining first-frame appearance and preserving source video motion. Architecturally, we introduce Adaptive Spatio-Temporal RoPE (AST-RoPE), which dynamically remaps positional encodings to disentangle appearance and motion references. At the objective level, we employ a self-distillation strategy where an identity propagation task acts as a powerful regularizer, ensuring long-term temporal stability and preventing semantic drift. Comprehensive experiments on the EditVerseBench benchmark demonstrate that our method significantly outperforming existing academic and commercial models by receiving about 0.2 PickScore and 0.3 VLM score improvement against these competitors.
☆ Real-Time Lane Detection via Efficient Feature Alignment and Covariance Optimization for Low-Power Embedded Systems
Real-time lane detection in embedded systems encounters significant challenges due to subtle and sparse visual signals in RGB images, often constrained by limited computational resources and power consumption. Although deep learning models for lane detection categorized into segmentation-based, anchor-based, and curve-based methods there remains a scarcity of universally applicable optimization techniques tailored for low-power embedded environments. To overcome this, we propose an innovative Covariance Distribution Optimization (CDO) module specifically designed for efficient, real-time applications. The CDO module aligns lane feature distributions closely with ground-truth labels, significantly enhancing detection accuracy without increasing computational complexity. Evaluations were conducted on six diverse models across all three method categories, including two optimized for real-time applications and four state-of-the-art (SOTA) models, tested comprehensively on three major datasets: CULane, TuSimple, and LLAMAS. Experimental results demonstrate accuracy improvements ranging from 0.01% to 1.5%. The proposed CDO module is characterized by ease of integration into existing systems without structural modifications and utilizes existing model parameters to facilitate ongoing training, thus offering substantial benefits in performance, power efficiency, and operational flexibility in embedded systems.
♻ ☆ Explainable AI Technique in Lung Cancer Detection Using Convolutional Neural Networks
Early detection of lung cancer is critical to improving survival outcomes. We present a deep learning framework for automated lung cancer screening from chest computed tomography (CT) images with integrated explainability. Using the IQ-OTH/NCCD dataset (1,197 scans across Normal, Benign, and Malignant classes), we evaluate a custom convolutional neural network (CNN) and three fine-tuned transfer learning backbones: DenseNet121, ResNet152, and VGG19. Models are trained with cost-sensitive learning to mitigate class imbalance and evaluated via accuracy, precision, recall, F1-score, and ROC-AUC. While ResNet152 achieved the highest accuracy (97.3%), DenseNet121 provided the best overall balance in precision, recall, and F1 (up to 92%, 90%, 91%, respectively). We further apply Shapley Additive Explanations (SHAP) to visualize evidence contributing to predictions, improving clinical transparency. Results indicate that CNN-based approaches augmented with explainability can provide fast, accurate, and interpretable support for lung cancer screening, particularly in resource-limited settings.
comment: 11 pages, 9 figures, 4 tables. Undergraduate research project report
♻ ☆ Diminishing Returns in Self-Supervised Learning
Transformer-based architectures have become a dominant paradigm in vision and language, but their success is often attributed to large model capacity and massive training data. In this work, we examine how self-supervised pre-training, intermediate fine-tuning, and downstream fine-tuning interact in a low-capacity regime, using a 5M-parameter Vision Transformer for semantic segmentation. Across multiple data scales, we find that masked image modeling pre-training and downstream fine-tuning reliably improve performance, but with clear diminishing returns as supervision increases. In contrast, inserting an intermediate classification fine-tuning stage consistently degrades downstream performance, with the largest drops occurring precisely where pre-training is most effective. Through an analysis of patch-level representation geometry, we show that classification-based intermediate supervision actively interferes with representations learned during pre-training by collapsing spatial structure critical for dense prediction. These results indicate that, in small models, the geometry of supervision matters more than the number of training stages: misaligned intermediate objectives can negate the benefits of pre-training rather than amplify them.
♻ ☆ TI-PREGO: Chain of Thought and In-Context Learning for Online Mistake Detection in PRocedural EGOcentric Videos
Identifying procedural errors online from egocentric videos is a critical yet challenging task across various domains, including manufacturing, healthcare, and skill-based training. The nature of such mistakes is inherently open-set, as unforeseen or novel errors may occur, necessitating robust detection systems that do not rely on prior examples of failure. Currently, however, no technique effectively detects open-set procedural mistakes online. We propose a dual branch architecture to address this problem in an online fashion: one branch continuously performs step recognition from the input egocentric video, while the other anticipates future steps based on the recognition module's output. Mistakes are detected as mismatches between the currently recognized action and the action predicted by the anticipation module. The recognition branch takes input frames, predicts the current action, and aggregates frame-level results into action tokens. The anticipation branch, specifically, leverages the solid pattern-matching capabilities of Large Language Models (LLMs) to predict action tokens based on previously predicted ones. Given the online nature of the task, we also thoroughly benchmark the difficulties associated with per-frame evaluations, particularly the need for accurate and timely predictions in dynamic online scenarios. Extensive experiments on two procedural datasets demonstrate the challenges and opportunities of leveraging a dual-branch architecture for mistake detection, showcasing the effectiveness of our proposed approach. In a thorough evaluation including recognition and anticipation variants and state-of-the-art models, our method reveals its robustness and effectiveness in online applications.
♻ ☆ PrevMatch: Revisiting and Maximizing Temporal Knowledge in Semi-Supervised Semantic Segmentation WACV 2026
In semi-supervised semantic segmentation, the Mean Teacher- and co-training-based approaches are employed to mitigate confirmation bias and coupling problems. However, despite their high performance, these approaches frequently involve complex training pipelines and a substantial computational burden, limiting the scalability and compatibility of these methods. In this paper, we propose a PrevMatch framework that effectively mitigates the aforementioned limitations by maximizing the utilization of the temporal knowledge obtained during the training process. The PrevMatch framework relies on two core strategies: (1) we reconsider the use of temporal knowledge and thus directly utilize previous models obtained during training to generate additional pseudo-label guidance, referred to as previous guidance. (2) we design a highly randomized ensemble strategy to maximize the effectiveness of the previous guidance. PrevMatch, a simple yet effective plug-in method, can be seamlessly integrated into existing semi-supervised learning frameworks with minimal computational overhead. Experimental results on three benchmark semantic segmentation datasets show that incorporating PrevMatch into existing methods significantly improves their performance. Furthermore, our analysis indicates that PrevMatch facilitates stable optimization during training, resulting in improved generalization performance.
comment: To appear in WACV 2026. Code: https://github.com/wooseok-shin/PrevMatch
♻ ☆ Answering from Sure to Uncertain: Uncertainty-Aware Curriculum Learning for Video Question Answering BMVC 2025
While significant advancements have been made in video question answering (VideoQA), the potential benefits of enhancing model generalization through tailored difficulty scheduling have been largely overlooked in existing research. This paper seeks to bridge that gap by incorporating VideoQA into a curriculum learning (CL) framework that progressively trains models from simpler to more complex data. Recognizing that conventional self-paced CL methods rely on training loss for difficulty measurement, which might not accurately reflect the intricacies of video-question pairs, we introduce the concept of uncertainty-aware CL. Here, uncertainty serves as the guiding principle for dynamically adjusting the difficulty. Furthermore, we address the challenge posed by uncertainty by presenting a probabilistic modeling approach for VideoQA. Specifically, we conceptualize VideoQA as a stochastic computation graph, where the hidden representations are treated as stochastic variables. This yields two distinct types of uncertainty: one related to the inherent uncertainty in the data and another pertaining to the model's confidence. In practice, we seamlessly integrate the VideoQA model into our framework and conduct comprehensive experiments. The findings affirm that our approach not only achieves enhanced performance but also effectively quantifies uncertainty in the context of VideoQA.
comment: Accepted by BMVC 2025
♻ ☆ RingMo-Agent: A Unified Remote Sensing Foundation Model for Multi-Platform and Multi-Modal Reasoning
Remote sensing (RS) images from multiple modalities and platforms exhibit diverse details due to differences in sensor characteristics and imaging perspectives. Existing vision-language research in RS largely relies on relatively homogeneous data sources. Moreover, they still remain limited to conventional visual perception tasks such as classification or captioning. As a result, these methods fail to serve as a unified and standalone framework capable of effectively handling RS imagery from diverse sources in real-world applications. To address these issues, we propose RingMo-Agent, a model designed to handle multi-modal and multi-platform data that performs perception and reasoning tasks based on user textual instructions. Compared with existing models, RingMo-Agent 1) is supported by a large-scale vision-language dataset named RS-VL3M, comprising over 3 million image-text pairs, spanning optical, SAR, and infrared (IR) modalities collected from both satellite and UAV platforms, covering perception and challenging reasoning tasks; 2) learns modality adaptive representations by incorporating separated embedding layers to construct isolated features for heterogeneous modalities and reduce cross-modal interference; 3) unifies task modeling by introducing task-specific tokens and employing a token-based high-dimensional hidden state decoding mechanism designed for long-horizon spatial tasks. Extensive experiments on various RS vision-language tasks demonstrate that RingMo-Agent not only proves effective in both visual understanding and sophisticated analytical tasks, but also exhibits strong generalizability across different platforms and sensing modalities.
comment: 23 pages, 6 figures, 20 tables
♻ ☆ Multimodal Adversarial Defense for Vision-Language Models by Leveraging One-To-Many Relationships WACV 2026
Pre-trained vision-language (VL) models are highly vulnerable to adversarial attacks. However, existing defense methods primarily focus on image classification, overlooking two key aspects of VL tasks: multimodal attacks, where both image and text can be perturbed, and the one-to-many relationship of images and texts, where a single image can correspond to multiple textual descriptions and vice versa (1:N and N:1). This work is the first to explore defense strategies against multimodal attacks in VL tasks, whereas prior VL defense methods focus on vision robustness. We propose multimodal adversarial training (MAT), which incorporates adversarial perturbations in both image and text modalities during training, significantly outperforming existing unimodal defenses. Furthermore, we discover that MAT is limited by deterministic one-to-one (1:1) image-text pairs in VL training data. To address this, we conduct a comprehensive study on leveraging one-to-many relationships to enhance robustness, investigating diverse augmentation techniques. Our analysis shows that, for a more effective defense, augmented image-text pairs should be well-aligned, diverse, yet avoid distribution shift -- conditions overlooked by prior research. This work pioneers defense strategies against multimodal attacks, providing insights for building robust VLMs from both optimization and data perspectives. Our code is publicly available at https://github.com/CyberAgentAILab/multimodal-adversarial-training.
comment: WACV 2026 Accepted. Code available at https://github.com/CyberAgentAILab/multimodal-adversarial-training
♻ ☆ TD3Net: A temporal densely connected multi-dilated convolutional network for lipreading
The word-level lipreading approach typically employs a two-stage framework with separate frontend and backend architectures to model dynamic lip movements. Each component has been extensively studied, and in the backend architecture, temporal convolutional networks (TCNs) have been widely adopted in state-of-the-art methods. Recently, dense skip connections have been introduced in TCNs to mitigate the limited density of the receptive field, thereby improving the modeling of complex temporal representations. However, their performance remains constrained owing to potential information loss regarding the continuous nature of lip movements, caused by blind spots in the receptive field. To address this limitation, we propose TD3Net, a temporal densely connected multi-dilated convolutional network that combines dense skip connections and multi-dilated temporal convolutions as the backend architecture. TD3Net covers a wide and dense receptive field without blind spots by applying different dilation factors to skip-connected features. Experimental results on a word-level lipreading task using two large publicly available datasets, Lip Reading in the Wild (LRW) and LRW-1000, indicate that the proposed method achieves performance comparable to state-of-the-art methods. It achieved higher accuracy with fewer parameters and lower floating-point operations compared to existing TCN-based backend architectures. Moreover, visualization results suggest that our approach effectively utilizes diverse temporal features while preserving temporal continuity, presenting notable advantages in lipreading systems. The code is available at our GitHub repository (https://github.com/Leebh-kor/TD3Net).
comment: Accepted for publication in Journal of Visual Communication and Image Representation. DOI: https://doi.org/10.1016/j.jvcir.2025.104540
♻ ☆ Data-Augmented Multimodal Feature Fusion for Multiclass Visual Recognition of Oral Cancer Lesions
Oral cancer is frequently diagnosed at later stages due to its similarity to other lesions. Existing research on computer aided diagnosis has made progress using deep learning; however, most approaches remain limited by small, imbalanced datasets and a dependence on single-modality features, which restricts model generalization in real-world clinical settings. To address these limitations, this study proposes a novel data-augmentation driven multimodal feature-fusion framework integrated within a (Vision Recognition)VR assisted oral cancer recognition system. Our method combines extensive data centric augmentation with fused clinical and image-based representations to enhance model robustness and reduce diagnostic ambiguity. Using a stratified training pipeline and an EfficientNetV2 B1 backbone, the system improves feature diversity, mitigates imbalance, and strengthens the learned multimodal embeddings. Experimental evaluation demonstrates that the proposed framework achieves an overall accuracy of 82.57 percent on 2 classes, 65.13 percent on 3 classes, and 54.97 percent on 4 classes, outperforming traditional single stream CNN models. These results highlight the effectiveness of multimodal feature fusion combined with strategic augmentation for reliable early oral cancer lesion recognition and serve as a foundation for immersive VR based clinical decision support tools.
♻ ☆ VALLR: Visual ASR Language Model for Lip Reading
Lip Reading, or Visual Automatic Speech Recognition (V-ASR), is a complex task requiring the interpretation of spoken language exclusively from visual cues, primarily lip movements and facial expressions. This task is especially challenging due to the absence of auditory information and the inherent ambiguity when visually distinguishing phonemes that have overlapping visemes where different phonemes appear identical on the lips. Current methods typically attempt to predict words or characters directly from these visual cues, but this approach frequently encounters high error rates due to coarticulation effects and viseme ambiguity. We propose a novel two-stage, phoneme-centric framework for Visual Automatic Speech Recognition (V-ASR) that addresses these longstanding challenges. First, our model predicts a compact sequence of phonemes from visual inputs using a Video Transformer with a CTC head, thereby reducing the task complexity and achieving robust speaker invariance. This phoneme output then serves as the input to a fine-tuned Large Language Model (LLM), which reconstructs coherent words and sentences by leveraging broader linguistic context. Unlike existing methods that either predict words directly-often faltering on visually similar phonemes-or rely on large-scale multimodal pre-training, our approach explicitly encodes intermediate linguistic structure while remaining highly data efficient. We demonstrate state-of-the-art performance on two challenging datasets, LRS2 and LRS3, where our method achieves significant reductions in Word Error Rate (WER) achieving a SOTA WER of 18.7 on LRS3 despite using 99.4% less labelled data than the next best approach.
♻ ☆ Unsupervised Stereo via Multi-Baseline Geometry-Consistent Self-Training
Photometric loss and pseudo-label-based self-training are two widely used methods for training stereo networks on unlabeled data. However, they both struggle to provide accurate supervision in occluded regions. The former lacks valid correspondences, while the latter's pseudo labels are often unreliable. To overcome these limitations, we present S$^3$, a simple yet effective framework based on multi-baseline geometry consistency. Unlike conventional self-training where teacher and student share identical stereo pairs, S$^3$ assigns them different target images, introducing natural visibility asymmetry. Regions occluded in the student's view often remain visible and matchable to the teacher, enabling reliable pseudo labels even in regions where photometric supervision fails. The teacher's disparities are rescaled to align with the student's baseline and used to guide student learning. An occlusion-aware weighting strategy is further proposed to mitigate unreliable supervision in teacher-occluded regions and to encourage the student to learn robust occlusion completion. To support training, we construct MBS20K, a multi-baseline stereo dataset synthesized using the CARLA simulator. Extensive experiments demonstrate that S$^3$ provides effective supervision in both occluded and non-occluded regions, achieves strong generalization performance, and surpasses previous state-of-the-art methods on the KITTI 2015 and 2012 benchmarks.
♻ ☆ SAM-aware Test-time Adaptation for Universal Medical Image Segmentation
Leveraging the Segment Anything Model (SAM) for medical image segmentation remains challenging due to its limited adaptability across diverse medical domains. Although fine-tuned variants, such as MedSAM, improve performance in scenarios similar to the training modalities or organs, they may lack generalizability to unseen data. To overcome this limitation, we propose SAM-aware Test-time Adaptation (SAM-TTA), a lightweight and flexible framework that preserves SAM's inherent generalization ability while enhancing segmentation accuracy for medical images. SAM-TTA tackles two major challenges: (1) input-level discrepancy caused by channel mismatches between natural and medical images, and (2) semantic-level discrepancy due to different object characteristics in natural versus medical images (e.g., with clear boundaries vs. ambiguous structures). To this end, we introduce two complementary components: a self-adaptive Bezier Curve-based Transformation (SBCT), which maps single-channel medical images into SAM-compatible three-channel images via a few learnable parameters to be optimized at test time; and IoU-guided Multi-scale Adaptation (IMA), which leverages SAM's intrinsic IoU scores to enforce high output confidence, dual-scale prediction consistency, and intermediate feature consistency, to improve semantic-level alignments. Extensive experiments on eight public medical image segmentation tasks, covering six grayscale and two color (endoscopic) tasks, demonstrate that SAM-TTA consistently outperforms state-of-the-art test-time adaptation methods. Notably, on six grayscale datasets, SAM-TTA even surpasses fully fine-tuned models, achieving significant Dice improvements (i.e., average 4.8% and 7.4% gains over MedSAM and SAM-Med2D) and establishing a new paradigm for universal medical image segmentation. Code is available at https://github.com/JianghaoWu/SAM-TTA.
comment: 10 pages, 5 figures
♻ ☆ Test-Time Modification: Inverse Domain Transformation for Robust Perception
Generative foundation models contain broad visual knowledge and can produce diverse image variations, making them particularly promising for advancing domain generalization tasks. While they can be used for training data augmentation, synthesizing comprehensive target-domain variations remains slow, expensive, and incomplete. We propose an alternative: using diffusion models at test time to map target images back to the source distribution where the downstream model was trained. This approach requires only a source domain description, preserves the task model, and eliminates large-scale synthetic data generation. We demonstrate consistent improvements across segmentation, detection, and classification tasks under challenging environmental shifts in real-to-real domain generalization scenarios with unknown target distributions. Our analysis spans multiple generative and downstream models, including an ensemble variant for enhanced robustness. The method achieves substantial relative gains: 137% on BDD100K-Night, 68% on ImageNet-R, and 62% on DarkZurich.
comment: Preprint
♻ ☆ On Exact Editing of Flow-Based Diffusion Models
Recent methods in flow-based diffusion editing have enabled direct transformations between source and target image distribution without explicit inversion. However, the latent trajectories in these methods often exhibit accumulated velocity errors, leading to semantic inconsistency and loss of structural fidelity. We propose Conditioned Velocity Correction (CVC), a principled framework that reformulates flow-based editing as a distribution transformation problem driven by a known source prior. CVC rethinks the role of velocity in inter-distribution transformation by introducing a dual-perspective velocity conversion mechanism. This mechanism explicitly decomposes the latent evolution into two components: a structure-preserving branch that remains consistent with the source trajectory, and a semantically-guided branch that drives a controlled deviation toward the target distribution. The conditional velocity field exhibits an absolute velocity error relative to the true underlying distribution trajectory, which inherently introduces potential instability and trajectory drift in the latent space. To address this quantifiable deviation and maintain fidelity to the true flow, we apply a posterior-consistent update to the resulting conditional velocity field. This update is derived from Empirical Bayes Inference and Tweedie correction, which ensures a mathematically grounded error compensation over time. Our method yields stable and interpretable latent dynamics, achieving faithful reconstruction alongside smooth local semantic conversion. Comprehensive experiments demonstrate that CVC consistently achieves superior fidelity, better semantic alignment, and more reliable editing behavior across diverse tasks.
♻ ☆ Sports-QA: A Large-Scale Video Question Answering Benchmark for Complex and Professional Sports
Reasoning over sports videos for question answering is an important task with numerous applications, such as player training and information retrieval. However, this task has not been explored due to the lack of relevant datasets and the challenging nature it presents. Most datasets for video question answering (VideoQA) focus mainly on general and coarse-grained understanding of daily-life videos, which is not applicable to sports scenarios requiring professional action understanding and fine-grained motion analysis. In this paper, we introduce the first dataset, named Sports-QA, specifically designed for the sports VideoQA task. The Sports-QA dataset includes various types of questions, such as descriptions, chronologies, causalities, and counterfactual conditions, covering multiple sports. Furthermore, to address the characteristics of the sports VideoQA task, we propose a new Auto-Focus Transformer (AFT) capable of automatically focusing on particular scales of temporal information for question answering. We conduct extensive experiments on Sports-QA, including baseline studies and the evaluation of different methods. The results demonstrate that our AFT achieves state-of-the-art performance.
♻ ☆ PMGS: Reconstruction of Projectile Motion Across Large Spatiotemporal Spans via 3D Gaussian Splatting
Modeling complex rigid motion across large spatiotemporal spans remains an unresolved challenge in dynamic reconstruction. Existing paradigms are mainly confined to short-term, small-scale deformation and offer limited consideration for physical consistency. This study proposes PMGS, focusing on reconstructing Projectile Motion via 3D Gaussian Splatting. The workflow comprises two stages: 1) Target Modeling: achieving object-centralized reconstruction through dynamic scene decomposition and an improved point density control; 2) Motion Recovery: restoring full motion sequences by learning per-frame SE(3) poses. We introduce an acceleration consistency constraint to bridge Newtonian mechanics and pose estimation, and design a dynamic simulated annealing strategy that adaptively schedules learning rates based on motion states. Furthermore, we devise a Kalman fusion scheme to optimize error accumulation from multi-source observations to mitigate disturbances. Experiments show PMGS's superior performance in reconstructing high-speed nonlinear rigid motion compared to mainstream dynamic methods.
♻ ☆ CountCluster: Training-Free Object Quantity Guidance with Cross-Attention Map Clustering for Text-to-Image Generation
Diffusion-based text-to-image generation models have demonstrated strong performance in terms of image quality and diversity. However, they still struggle to generate images that accurately reflect the number of objects specified in the input prompt. Several approaches have been proposed that rely on either external counting modules for iterative refinement or quantity representations derived from learned tokens or latent features. However, they still have limitations in accurately reflecting the specified number of objects and overlook an important structural characteristic--The number of object instances in the generated image is largely determined in the early timesteps of the denoising process. To correctly reflect the object quantity for image generation, the highly activated regions in the object cross-attention map at the early timesteps should match the input object quantity, while each region should be clearly separated. To address this issue, we propose \textit{CountCluster}, a method that guides the object cross-attention map to be clustered according to the specified object count in the input, without relying on any external tools or additional training. The proposed method partitions the object cross-attention map into $k$ clusters at inference time based on attention scores, defines an ideal distribution in which each cluster is spatially well-separated, and optimizes the latent to align with this target distribution. Our method achieves an average improvement of 18.5\%p in object count accuracy compared to existing methods, and demonstrates superior quantity control performance across a variety of prompts. Code will be released at: https://github.com/JoohyeonL22/CountCluster
comment: Under review
♻ ☆ ULTra: Unveiling Latent Token Interpretability in Transformer-Based Understanding and Segmentation
Transformers have revolutionized Computer Vision (CV) through self-attention mechanisms. However, their complexity makes latent token representations difficult to interpret. We introduce ULTra, a framework for interpreting Transformer embeddings and uncovering meaningful semantic patterns within them. ULTra enables unsupervised semantic segmentation using pre-trained models without requiring fine-tuning. Additionally, we propose a self-supervised training approach that refines segmentation performance by learning an external transformation matrix without modifying the underlying model. Our method achieves state-of-the-art performance in unsupervised semantic segmentation, outperforming existing segmentation methods. Furthermore, we validate ULTra for model interpretation on both synthetic and real-world scenarios, including Object Selection and interpretable text summarization using LLMs, demonstrating its broad applicability in explaining the semantic structure of latent token representations.
♻ ☆ Ideal Observer for Segmentation of Dead Leaves Images
The human visual environment is comprised of different surfaces that are distributed in space. The parts of a scene that are visible at any one time are governed by the occlusion of overlapping objects. In this work we consider "dead leaves" models, which replicate these occlusions when generating images by layering objects on top of each other. A dead leaves model is a generative model comprised of distributions for object position, shape, color and texture. An image is generated from a dead leaves model by sampling objects ("leaves") from these distributions until a stopping criterion is reached, usually when the image is fully covered or until a given number of leaves was sampled. Here, we describe a theoretical approach, based on previous work, to derive a Bayesian ideal observer for the partition of a given set of pixels based on independent dead leaves model distributions. Extending previous work, we provide step-by-step explanations for the computation of the posterior probability as well as describe factors that determine the feasibility of practically applying this computation. The dead leaves image model and the associated ideal observer can be applied to study segmentation decisions in a limited number of pixels, providing a principled upper-bound on performance, to which humans and vision algorithms could be compared.
comment: 41 pages, 16 figures
♻ ☆ CADMorph: Geometry-Driven Parametric CAD Editing via a Plan-Generate-Verify Loop NeurIPS 2025
A Computer-Aided Design (CAD) model encodes an object in two coupled forms: a parametric construction sequence and its resulting visible geometric shape. During iterative design, adjustments to the geometric shape inevitably require synchronized edits to the underlying parametric sequence, called geometry-driven parametric CAD editing. The task calls for 1) preserving the original sequence's structure, 2) ensuring each edit's semantic validity, and 3) maintaining high shape fidelity to the target shape, all under scarce editing data triplets. We present CADMorph, an iterative plan-generate-verify framework that orchestrates pretrained domain-specific foundation models during inference: a parameter-to-shape (P2S) latent diffusion model and a masked-parameter-prediction (MPP) model. In the planning stage, cross-attention maps from the P2S model pinpoint the segments that need modification and offer editing masks. The MPP model then infills these masks with semantically valid edits in the generation stage. During verification, the P2S model embeds each candidate sequence in shape-latent space, measures its distance to the target shape, and selects the closest one. The three stages leverage the inherent geometric consciousness and design knowledge in pretrained priors, and thus tackle structure preservation, semantic validity, and shape fidelity respectively. Besides, both P2S and MPP models are trained without triplet data, bypassing the data-scarcity bottleneck. CADMorph surpasses GPT-4o and specialized CAD baselines, and supports downstream applications such as iterative editing and reverse-engineering enhancement.
comment: NeurIPS 2025
♻ ☆ Autoregressive Semantic Visual Reconstruction Helps VLMs Understand Better
Typical large vision-language models (LVLMs) apply autoregressive supervision solely to textual sequences, without fully incorporating the visual modality into the learning process. This results in three key limitations: (1) an inability to utilize images without accompanying captions, (2) the risk that captions omit critical visual details, and (3) the challenge that certain vision-centric content cannot be adequately conveyed through text. As a result, current LVLMs often prioritize vision-to-language alignment while potentially overlooking fine-grained visual information. While some prior works have explored autoregressive image generation, effectively leveraging autoregressive visual supervision to enhance image understanding remains an open challenge. In this paper, we introduce Autoregressive Semantic Visual Reconstruction (ASVR), which enables joint learning of visual and textual modalities within a unified autoregressive framework. We show that autoregressively reconstructing the raw visual appearance of images does not enhance and may even impair multimodal understanding. In contrast, autoregressively reconstructing the semantic representation of images consistently improves comprehension. Notably, we find that even when models are given continuous image features as input, they can effectively reconstruct discrete semantic tokens, resulting in stable and consistent improvements across a wide range of multimodal understanding benchmarks. Our approach delivers significant performance gains across varying data scales (556k-2M) and types of LLM bacbones. Specifically, ASVR improves LLaVA-1.5 by 5% in average scores across 14 multimodal benchmarks. The code is available at https://github.com/AlenjandroWang/ASVR.
♻ ☆ Point Cloud to Mesh Reconstruction: Methods, Trade-offs, and Implementation Guide
Reconstructing meshes from point clouds is a fundamental task in computer vision with applications spanning robotics, autonomous systems, and medical imaging. Selecting an appropriate learning-based method requires understanding trade-offs between computational efficiency, geometric accuracy, and output constraints. This paper categorizes over fifteen methods into five paradigms -- PointNet family, autoencoder architectures, deformation-based methods, point-move techniques, and primitive-based approaches -- and provides practical guidance for method selection. We contribute: (1) a decision framework mapping input/output requirements to suitable paradigms, (2) a failure mode analysis to assist practitioners in debugging implementations, (3) standardized comparisons on ShapeNet benchmarks, and (4) a curated list of maintained codebases with implementation resources. By synthesizing both theoretical foundations and practical considerations, this work serves as an entry point for practitioners and researchers new to learning-based 3D mesh reconstruction.
♻ ☆ AdaVLN: Towards Visual Language Navigation in Continuous Indoor Environments with Moving Humans
Visual Language Navigation is a task that challenges robots to navigate in realistic environments based on natural language instructions. While previous research has largely focused on static settings, real-world navigation must often contend with dynamic human obstacles. Hence, we propose an extension to the task, termed Adaptive Visual Language Navigation (AdaVLN), which seeks to narrow this gap. AdaVLN requires robots to navigate complex 3D indoor environments populated with dynamically moving human obstacles, adding a layer of complexity to navigation tasks that mimic the real-world. To support exploration of this task, we also present AdaVLN simulator and AdaR2R datasets. The AdaVLN simulator enables easy inclusion of fully animated human models directly into common datasets like Matterport3D. We also introduce a "freeze-time" mechanism for both the navigation task and simulator, which pauses world state updates during agent inference, enabling fair comparisons and experimental reproducibility across different hardware. We evaluate several baseline models on this task, analyze the unique challenges introduced by AdaVLN, and demonstrate its potential to bridge the sim-to-real gap in VLN research.
♻ ☆ RS-Prune: Training-Free Data Pruning at High Ratios for Efficient Remote Sensing Diffusion Foundation Models
Diffusion-based remote sensing (RS) generative foundation models are cruial for downstream tasks. However, these models rely on large amounts of globally representative data, which often contain redundancy, noise, and class imbalance, reducing training efficiency and preventing convergence. Existing RS diffusion foundation models typically aggregate multiple classification datasets or apply simplistic deduplication, overlooking the distributional requirements of generation modeling and the heterogeneity of RS imagery. To address these limitations, we propose a training-free, two-stage data pruning approach that quickly select a high-quality subset under high pruning ratios, enabling a preliminary foundation model to converge rapidly and serve as a versatile backbone for generation, downstream fine-tuning, and other applications. Our method jointly considers local information content with global scene-level diversity and representativeness. First, an entropy-based criterion efficiently removes low-information samples. Next, leveraging RS scene classification datasets as reference benchmarks, we perform scene-aware clustering with stratified sampling to improve clustering effectiveness while reducing computational costs on large-scale unlabeled data. Finally, by balancing cluster-level uniformity and sample representativeness, the method enables fine-grained selection under high pruning ratios while preserving overall diversity and representativeness. Experiments show that, even after pruning 85\% of the training data, our method significantly improves convergence and generation quality. Furthermore, diffusion foundation models trained with our method consistently achieve state-of-the-art performance across downstream tasks, including super-resolution and semantic image synthesis. This data pruning paradigm offers practical guidance for developing RS generative foundation models.
♻ ☆ Wukong's 72 Transformations: High-fidelity Textured 3D Morphing via Flow Models
We present WUKONG, a novel training-free framework for high-fidelity textured 3D morphing that takes a pair of source and target prompts (image or text) as input. Unlike conventional methods -- which rely on manual correspondence matching and deformation trajectory estimation (limiting generalization and requiring costly preprocessing) -- WUKONG leverages the generative prior of flow-based transformers to produce high-fidelity 3D transitions with rich texture details. To ensure smooth shape transitions, we exploit the inherent continuity of flow-based generative processes and formulate morphing as an optimal transport barycenter problem. We further introduce a sequential initialization strategy to prevent abrupt geometric distortions and preserve identity coherence. For faithful texture preservation, we propose a similarity-guided semantic consistency mechanism that selectively retains high-frequency details and enables precise control over blending dynamics. This empowers WUKONG to support both global texture transitions and identity-preserving texture morphing, catering to diverse generation needs. Extensive quantitative and qualitative evaluations demonstrate that WUKONG significantly outperforms state-of-the-art methods, achieving superior results across diverse geometry and texture variations.
♻ ☆ SJTU:Spatial judgments in multimodal models towards unified segmentation through coordinate detection
Despite significant advances in vision-language understanding, implementing image segmentation within multimodal architectures remains a fundamental challenge in modern artificial intelligence systems. Existing vision-language models, which primarily rely on backbone architectures or CLIP-based embedding learning, demonstrate inherent limitations in fine-grained spatial localization and operational capabilities. This paper introduces SJTU: Spatial Judgments in Multimodal Models - Towards Unified Segmentation through Coordinate Detection, a framework that leverages spatial coordinate understanding to bridge vision-language interaction and precise segmentation, enabling accurate target identification through natural language instructions. The framework presents an approach for integrating segmentation techniques with vision-language models through spatial inference in multimodal space. By utilizing normalized coordinate detection for bounding boxes and transforming them into actionable segmentation outputs, we establish a connection between spatial and language representations in multimodal architectures. Experimental results demonstrate superior performance across benchmark datasets, achieving IoU scores of 0.5958 on COCO 2017 and 0.6758 on Pascal VOC. Testing on a single NVIDIA RTX 3090 GPU with 512x512 resolution images yields an average inference time of 7 seconds per image, demonstrating the framework's effectiveness in both accuracy and practical deployability. The project code is available at https://github.com/jw-chae/SJTU
comment: A flaw was discovered in the experimental setup. Therefore, we are retracting the paper
♻ ☆ G2L:From Giga-Scale to Cancer-Specific Large-Scale Pathology Foundation Models via Knowledge Distillation AAAI 2026
Recent studies in pathology foundation models have shown that scaling training data, diversifying cancer types, and increasing model size consistently improve their performance. However, giga-scale foundation models, which are trained on hundreds of thousands of slides covering tens of cancer types and contain billions of parameters, pose significant challenges for practical use due to their tremendous computational costs in both development and deployment. In this work, we present a novel strategy, named the G2L framework, to increase the performance of large-scale foundation models, which consist of only $15\%$ of the parameters of giga-scale models, to a comparable performance level of giga-scale models in cancer-specific tasks. Our approach applies knowledge distillation, transferring the capabilities of a giga-scale model to a large-scale model, using just 1K pathology slides of a target cancer (e.g., breast, prostate, etc.). The resulting distilled model not only outperformed state-of-the-art models of the same size (i.e., large-scale) across several benchmarks but also, interestingly, surpassed the giga-scale teacher and huge-scale models in some benchmarks. In addition, the distilled model exhibited a higher robustness index, indicating improved resilience to image variations originating from multiple institutions. These findings suggest that the proposed distillation approach for a large-scale model is a data- and parameter-efficient way to achieve giga-scale-level performance for cancer-specific applications without prohibitive computational burden.
comment: Accepted in AAAI 2026 workshop in Health Intelligence Special Theme on Foundation Models and AI Agents
♻ ☆ SurgWorld: Learning Surgical Robot Policies from Videos via World Modeling
Data scarcity remains a fundamental barrier to achieving fully autonomous surgical robots. While large scale vision language action (VLA) models have shown impressive generalization in household and industrial manipulation by leveraging paired video action data from diverse domains, surgical robotics suffers from the paucity of datasets that include both visual observations and accurate robot kinematics. In contrast, vast corpora of surgical videos exist, but they lack corresponding action labels, preventing direct application of imitation learning or VLA training. In this work, we aim to alleviate this problem by learning policy models from SurgWorld, a world model designed for surgical physical AI. We curated the Surgical Action Text Alignment (SATA) dataset with detailed action description specifically for surgical robots. Then we built SurgeWorld based on the most advanced physical AI world model and SATA. It's able to generate diverse, generalizable and realistic surgery videos. We are also the first to use an inverse dynamics model to infer pseudokinematics from synthetic surgical videos, producing synthetic paired video action data. We demonstrate that a surgical VLA policy trained with these augmented data significantly outperforms models trained only on real demonstrations on a real surgical robot platform. Our approach offers a scalable path toward autonomous surgical skill acquisition by leveraging the abundance of unlabeled surgical video and generative world modeling, thus opening the door to generalizable and data efficient surgical robot policies.
♻ ☆ OVSeg3R: Learn Open-vocabulary Instance Segmentation from 2D via 3D Reconstruction
In this paper, we propose a training scheme called OVSeg3R to learn open-vocabulary 3D instance segmentation from well-studied 2D perception models with the aid of 3D reconstruction. OVSeg3R directly adopts reconstructed scenes from 2D videos as input, avoiding costly manual adjustment while aligning input with real-world applications. By exploiting the 2D to 3D correspondences provided by 3D reconstruction models, OVSeg3R projects each view's 2D instance mask predictions, obtained from an open-vocabulary 2D model, onto 3D to generate annotations for the view's corresponding sub-scene. To avoid incorrectly introduced false positives as supervision due to partial annotations from 2D to 3D, we propose a View-wise Instance Partition algorithm, which partitions predictions to their respective views for supervision, stabilizing the training process. Furthermore, since 3D reconstruction models tend to over-smooth geometric details, clustering reconstructed points into representative super-points based solely on geometry, as commonly done in mainstream 3D segmentation methods, may overlook geometrically non-salient objects. We therefore introduce 2D Instance Boundary-aware Superpoint, which leverages 2D masks to constrain the superpoint clustering, preventing superpoints from violating instance boundaries. With these designs, OVSeg3R not only extends a state-of-the-art closed-vocabulary 3D instance segmentation model to open-vocabulary, but also substantially narrows the performance gap between tail and head classes, ultimately leading to an overall improvement of +2.3 mAP on the ScanNet200 benchmark. Furthermore, under the standard open-vocabulary setting, OVSeg3R surpasses previous methods by about +7.1 mAP on the novel classes, further validating its effectiveness.
♻ ☆ Video Detective: Seek Critical Clues Recurrently to Answer Question from Long Videos
Long Video Question-Answering (LVQA) presents a significant challenge for Multi-modal Large Language Models (MLLMs) due to immense context and overloaded information, which could also lead to prohibitive memory consumption. While existing methods attempt to address these issues by reducing visual tokens or extending model's context length, they may miss useful information or take considerable computation. In fact, when answering given questions, only a small amount of crucial information is required. Therefore, we propose an efficient question-aware memory mechanism, enabling MLLMs to recurrently seek these critical clues. Our approach, named VideoDetective, simplifies this task by iteratively processing video sub-segments. For each sub-segment, a question-aware compression strategy is employed by introducing a few special memory tokens to achieve purposefully compression. This allows models to effectively seek critical clues while reducing visual tokens. Then, due to history context could have a significant impact, we recurrently aggregate and store these memory tokens to update history context, which would be reused for subsequent sub-segments. Furthermore, to more effectively measure model's long video understanding ability, we introduce GLVC (Grounding Long Video Clues), a long video question-answering dataset, which features grounding critical and concrete clues scattered throughout entire videos. Experimental results demonstrate our method enables MLLMs with limited context length of 32K to efficiently process 100K tokens (3600 frames, an hour-long video sampled at 1fps), requiring only 2 minutes and 37GB GPU memory usage. Evaluation results across multiple long video benchmarks illustrate our method can more effectively seek critical clues from massive information.
♻ ☆ UNIDOC-BENCH: A Unified Benchmark for Document-Centric Multimodal RAG
Multimodal retrieval-augmented Generation (MM-RAG) is a key approach for applying large language models (LLMs) and agents to real-world knowledge bases, yet current evaluations are fragmented -- focusing on either text or images in isolation, or simplified multimodal setup, failing to capture document-centric multimodal use cases. In this paper, we introduce UniDoc-Bench, the first large-scale, realistic benchmark for MM-RAG built from $k$ real-world PDF pages across domains. Our pipeline extracts and links evidence from text, tables, and figures, then generates multimodal QA pairs spanning factual retrieval, comparison, summarization, and logical reasoning queries. To ensure reliability, all of QA pairs are validated by multiple human annotators and expert adjudication. UniDoc-Bench supports apples-to-apples comparison across four paradigms: 1) text-only, 2) image-only, 3) \emph{multimodal} text-image fusion and 4) multimodal joint retrieval -- under a unified protocol with standardized candidate pools, prompts, and evaluation metrics. UniDoc-Bench can also be used to evaluate Visual Question Answering (VQA) tasks. Our experiments show that multimodal text-image fusion RAG systems consistently outperform both unimodal and jointly multimodal embedding-based retrieval, indicating that neither text nor images alone are sufficient and that current multimodal embeddings remain inadequate. Beyond benchmarking, our analysis reveals when and how visual context complements textual evidence, uncovers systematic failure modes, and offers actionable guidance for developing more robust MM-RAG pipelines.
♻ ☆ COMPASS: High-Efficiency Deep Image Compression with Arbitrary-scale Spatial Scalability ICCV 2023
Recently, neural network (NN)-based image compression studies have actively been made and has shown impressive performance in comparison to traditional methods. However, most of the works have focused on non-scalable image compression (single-layer coding) while spatially scalable image compression has drawn less attention although it has many applications. In this paper, we propose a novel NN-based spatially scalable image compression method, called COMPASS, which supports arbitrary-scale spatial scalability. Our proposed COMPASS has a very flexible structure where the number of layers and their respective scale factors can be arbitrarily determined during inference. To reduce the spatial redundancy between adjacent layers for arbitrary scale factors, our COMPASS adopts an inter-layer arbitrary scale prediction method, called LIFF, based on implicit neural representation. We propose a combined RD loss function to effectively train multiple layers. Experimental results show that our COMPASS achieves BD-rate gain of -58.33% and -47.17% at maximum compared to SHVC and the state-of-the-art NN-based spatially scalable image compression method, respectively, for various combinations of scale factors. Our COMPASS also shows comparable or even better coding efficiency than the single-layer coding for various scale factors.
comment: Accepted in ICCV 2023. Please visit our project page at https://kaist-viclab.github.io/compass-site/
♻ ☆ AdaptInfer: Adaptive Token Pruning for Vision-Language Model Inference with Dynamical Text Guidance
Vision-language models (VLMs) have achieved impressive performance on multimodal reasoning tasks such as visual question answering, image captioning and so on, but their inference cost remains a significant challenge due to the large number of vision tokens processed during the prefill stage. Existing pruning methods often rely on directly using the attention patterns or static text prompt guidance, failing to exploit the dynamic internal signals generated during inference. To address these issues, we propose AdaptInfer, a plug-and-play framework for adaptive vision token pruning in VLMs. First, we introduce a fine-grained, dynamic text-guided pruning mechanism that reuses layer-wise text-to-text attention maps to construct soft priors over text-token importance, allowing more informed scoring of vision tokens at each stage. Second, we perform an offline analysis of cross-modal attention shifts and identify consistent inflection locations in inference, which inspire us to propose a more principled and efficient pruning schedule. Our method is lightweight and plug-and-play, also generalizable across multi-modal tasks. Experimental results have verified the effectiveness of the proposed method. For example, it reduces CUDA latency by 61.3% while maintaining an average accuracy of 93.1% on vanilla LLaVA-1.5-7B. Under the same token budget, AdaptInfer surpasses SOTA in accuracy.
♻ ☆ Fine-Grained Preference Optimization Improves Spatial Reasoning in VLMs
Current Vision-Language Models (VLMs) struggle with fine-grained spatial reasoning, particularly when multi-step logic and precise spatial alignment are required. In this work, we introduce SpatialReasoner-R1, a vision-language reasoning model designed to address these limitations. To construct high-quality supervision for spatial reasoning, we design a Multi-Model Monte Carlo Tree Search (M3CTS) method that generates diverse, logically consistent Long Chain-of-Thought (LongCOT) reasoning trajectories. In addition, we propose a fine-grained Direct Preference Optimization (fDPO) method that introduces segment-specific preference granularity for descriptive grounding and logical reasoning, guided by a spatial reward mechanism that evaluates candidate responses based on visual consistency, spatial grounding, and logical coherence. Experimental results demonstrate that fDPO achieves relative performance gains of 4.1% and 9.0% over standard DPO on spatial qualitative and quantitative tasks, respectively. SpatialReasoner-R1, trained with fDPO, sets a new SoTA on SpatialRGPT-Bench, outperforming the strongest baseline by 9.4% in average accuracy, while maintaining competitive performance on general vision-language tasks.
♻ ☆ Spinal Line Detection for Posture Evaluation through Train-ing-free 3D Human Body Reconstruction with 2D Depth Images
The spinal angle is an important indicator of body balance. It is important to restore the 3D shape of the human body and estimate the spine center line. Existing mul-ti-image-based body restoration methods require expensive equipment and complex pro-cedures, and single image-based body restoration methods have limitations in that it is difficult to accurately estimate the internal structure such as the spine center line due to occlusion and viewpoint limitation. This study proposes a method to compensate for the shortcomings of the multi-image-based method and to solve the limitations of the sin-gle-image method. We propose a 3D body posture analysis system that integrates depth images from four directions to restore a 3D human model and automatically estimate the spine center line. Through hierarchical matching of global and fine registration, restora-tion to noise and occlusion is performed. Also, the Adaptive Vertex Reduction is applied to maintain the resolution and shape reliability of the mesh, and the accuracy and stabil-ity of spinal angle estimation are simultaneously secured by using the Level of Detail en-semble. The proposed method achieves high-precision 3D spine registration estimation without relying on training data or complex neural network models, and the verification confirms the improvement of matching quality.
comment: GitHub, see https://github.com/DevChoco/TF3D_SpineDetect
♻ ☆ Training-Free Adaptive Quantization for Variable Rate Image Coding for Machines
Image Coding for Machines (ICM) has become increasingly important with the rapid integration of computer vision technology into real-world applications. However, most neural network-based ICM frameworks operate at a fixed rate, thus requiring individual training for each target bitrate. This limitation may restrict their practical usage. Existing variable rate image compression approaches mitigate this issue but often rely on additional training, which increases computational costs and complicates deployment. Moreover, variable rate control has not been thoroughly explored for ICM. To address these challenges, we propose a training-free framework for quantization strength control which enables flexible bitrate adjustment. By exploiting the scale parameter predicted by the hyperprior network, the proposed method adaptively modulates quantization step sizes across both channel and spatial dimensions. This allows the model to preserve semantically important regions while coarsely quantizing less critical areas. Our architectural design further enables continuous bitrate control through a single parameter. Experimental results demonstrate the effectiveness of our proposed method, achieving up to 11.07% BD-rate savings over the non-adaptive variable rate baseline. The code is available at https://github.com/qwert-top/AQVR-ICM.
comment: Accepted to IEEE 44th International Conference on Consumer Electronics (ICCE 2026)
♻ ☆ VisionReward: Fine-Grained Multi-Dimensional Human Preference Learning for Image and Video Generation
Visual generative models have achieved remarkable progress in synthesizing photorealistic images and videos, yet aligning their outputs with human preferences across critical dimensions remains a persistent challenge. Though reinforcement learning from human feedback offers promise for preference alignment, existing reward models for visual generation face limitations, including black-box scoring without interpretability and potentially resultant unexpected biases. We present VisionReward, a general framework for learning human visual preferences in both image and video generation. Specifically, we employ a hierarchical visual assessment framework to capture fine-grained human preferences, and leverages linear weighting to enable interpretable preference learning. Furthermore, we propose a multi-dimensional consistent strategy when using VisionReward as a reward model during preference optimization for visual generation. Experiments show that VisionReward can significantly outperform existing image and video reward models on both machine metrics and human evaluation. Notably, VisionReward surpasses VideoScore by 17.2% in preference prediction accuracy, and text-to-video models with VisionReward achieve a 31.6% higher pairwise win rate compared to the same models using VideoScore. All code and datasets are provided at https://github.com/THUDM/VisionReward.
comment: 27 pages
♻ ☆ HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain Generalization
Domain Generalization (DG) endeavors to create machine learning models that excel in unseen scenarios by learning invariant features. In DG, the prevalent practice of constraining models to a fixed structure or uniform parameterization to encapsulate invariant features can inadvertently blend specific aspects. Such an approach struggles with nuanced differentiation of inter-domain variations and may exhibit bias towards certain domains, hindering the precise learning of domain-invariant features. Recognizing this, we introduce a novel method designed to supplement the model with domain-level and task-specific characteristics. This approach aims to guide the model in more effectively separating invariant features from specific characteristics, thereby boosting the generalization. Building on the emerging trend of visual prompts in the DG paradigm, our work introduces the novel \textbf{H}ierarchical \textbf{C}ontrastive \textbf{V}isual \textbf{P}rompt (HCVP) methodology. This represents a significant advancement in the field, setting itself apart with a unique generative approach to prompts, alongside an explicit model structure and specialized loss functions. Differing from traditional visual prompts that are often shared across entire datasets, HCVP utilizes a hierarchical prompt generation network enhanced by prompt contrastive learning. These generative prompts are instance-dependent, catering to the unique characteristics inherent to different domains and tasks. Additionally, we devise a prompt modulation network that serves as a bridge, effectively incorporating the generated visual prompts into the vision transformer backbone. Experiments conducted on five DG datasets demonstrate the effectiveness of HCVP, outperforming both established DG algorithms and adaptation protocols.
♻ ☆ Bridging Cognitive Gap: Hierarchical Description Learning for Artistic Image Aesthetics Assessment AAAI2026
The aesthetic quality assessment task is crucial for developing a human-aligned quantitative evaluation system for AIGC. However, its inherently complex nature, spanning visual perception, cognition, and emotion, poses fundamental challenges. Although aesthetic descriptions offer a viable representation of this complexity, two critical challenges persist: (1) data scarcity and imbalance: existing dataset overly focuses on visual perception and neglects deeper dimensions due to the expensive manual annotation; and (2) model fragmentation: current visual networks isolate aesthetic attributes with multi-branch encoder, while multimodal methods represented by contrastive learning struggle to effectively process long-form textual descriptions. To resolve challenge (1), we first present the Refined Aesthetic Description (RAD) dataset, a large-scale (70k), multi-dimensional structured dataset, generated via an iterative pipeline without heavy annotation costs and easy to scale. To address challenge (2), we propose ArtQuant, an aesthetics assessment framework for artistic images which not only couples isolated aesthetic dimensions through joint description generation, but also better models long-text semantics with the help of LLM decoders. Besides, theoretical analysis confirms this symbiosis: RAD's semantic adequacy (data) and generation paradigm (model) collectively minimize prediction entropy, providing mathematical grounding for the framework. Our approach achieves state-of-the-art performance on several datasets while requiring only 33% of conventional training epochs, narrowing the cognitive gap between artistic images and aesthetic judgment. We will release both code and dataset to support future research.
comment: AAAI2026,Project Page:https://github.com/Henglin-Liu/ArtQuant
♻ ☆ Loupe: A Generalizable and Adaptive Framework for Image Forgery Detection
The proliferation of generative models has raised serious concerns about visual content forgery. Existing deepfake detection methods primarily target either image-level classification or pixel-wise localization. While some achieve high accuracy, they often suffer from limited generalization across manipulation types or rely on complex architectures. In this paper, we propose Loupe, a lightweight yet effective framework for joint deepfake detection and localization. Loupe integrates a patch-aware classifier and a segmentation module with conditional queries, allowing simultaneous global authenticity classification and fine-grained mask prediction. To enhance robustness against distribution shifts of test set, Loupe introduces a pseudo-label-guided test-time adaptation mechanism by leveraging patch-level predictions to supervise the segmentation head. Extensive experiments on the DDL dataset demonstrate that Loupe achieves state-of-the-art performance, securing the first place in the IJCAI 2025 Deepfake Detection and Localization Challenge with an overall score of 0.846. Our results validate the effectiveness of the proposed patch-level fusion and conditional query design in improving both classification accuracy and spatial localization under diverse forgery patterns. The code is available at https://github.com/Kamichanw/Loupe.
comment: There is some controversy over the methods of the content
♻ ☆ CAT: Circular-Convolutional Attention for Sub-Quadratic Transformers NeurIPS 2025
Transformers have driven remarkable breakthroughs in natural language processing and computer vision, yet their standard attention mechanism still imposes O(N^2) complexity, hindering scalability to longer sequences. We introduce Circular-convolutional ATtention (CAT), a Fourier-based approach that efficiently applies circular convolutions to reduce complexity without sacrificing representational power. CAT achieves O(NlogN) computations, requires fewer learnable parameters by streamlining fully connected layers, and introduces no additional heavy operations, resulting in consistent accuracy improvements and about a 10% speedup in naive PyTorch implementations. Based on the Engineering-Isomorphic Transformers (EITs) framework, CAT's design not only offers practical efficiency and ease of implementation, but also provides insights to guide the development of future high-performance Transformer architectures. Finally, our ablation studies highlight the key conditions underlying CAT's success, shedding light on broader principles for scalable attention mechanisms.
comment: Accepted as a poster at NeurIPS 2025
♻ ☆ Virtual Multiplex Staining for Histological Images using a Marker-wise Conditioned Diffusion Model AAAI 2026
Multiplex imaging is revolutionizing pathology by enabling the simultaneous visualization of multiple biomarkers within tissue samples, providing molecular-level insights that traditional hematoxylin and eosin (H&E) staining cannot provide. However, the complexity and cost of multiplex data acquisition have hindered its widespread adoption. Additionally, most existing large repositories of H&E images lack corresponding multiplex images, limiting opportunities for multimodal analysis. To address these challenges, we leverage recent advances in latent diffusion models (LDMs), which excel at modeling complex data distributions by utilizing their powerful priors for fine-tuning to a target domain. In this paper, we introduce a novel framework for virtual multiplex staining that utilizes pretrained LDM parameters to generate multiplex images from H&E images using a conditional diffusion model. Our approach enables marker-by-marker generation by conditioning the diffusion model on each marker, while sharing the same architecture across all markers. To tackle the challenge of varying pixel value distributions across different marker stains and to improve inference speed, we fine-tune the model for single-step sampling, enhancing both color contrast fidelity and inference efficiency through pixel-level loss functions. We validate our framework on two publicly available datasets, notably demonstrating its effectiveness in generating up to 18 different marker types with improved accuracy, a substantial increase over the 2-3 marker types achieved in previous approaches. This validation highlights the potential of our framework, pioneering virtual multiplex staining. Finally, this paper bridges the gap between H&E and multiplex imaging, potentially enabling retrospective studies and large-scale analyses of existing H&E image repositories.
comment: Accepted at AAAI 2026
♻ ☆ DGE-YOLO: Dual-Branch Gathering and Attention for Accurate UAV Object Detection
The rapid proliferation of unmanned aerial vehicles (UAVs) has highlighted the importance of robust and efficient object detection in diverse aerial scenarios. Detecting small objects under complex conditions, however, remains a significant challenge.To address this, we present DGE-YOLO, an enhanced YOLO-based detection framework designed to effectively fuse multi-modal information. We introduce a dual-branch architecture for modality-specific feature extraction, enabling the model to process both infrared and visible images. To further enrich semantic representation, we propose an Efficient Multi-scale Attention (EMA) mechanism that enhances feature learning across spatial scales. Additionally, we replace the conventional neck with a Gather-and-Distribute(GD) module to mitigate information loss during feature aggregation. Extensive experiments on the Drone Vehicle dataset demonstrate that DGE-YOLO achieves superior performance over state-of-the-art methods, validating its effectiveness in multi-modal UAV object detection tasks.
comment: 5 pages, 5 figures
Information Retrieval
☆ Cold-Starting Podcast Ads and Promotions with Multi-Task Learning on Spotify WSDM 2026
We present a unified multi-objective model for targeting both advertisements and promotions within the Spotify podcast ecosystem. Our approach addresses key challenges in personalization and cold-start initialization, particularly for new advertising objectives. By leveraging transfer learning from large-scale ad and content interactions within a multi-task learning (MTL) framework, a single joint model can be fine-tuned or directly applied to new or low-data targeting tasks, including in-app promotions. This multi-objective design jointly optimizes podcast outcomes such as streams, clicks, and follows for both ads and promotions using a shared representation over user, content, context, and creative features, effectively supporting diverse business goals while improving user experience. Online A/B tests show up to a 22% reduction in effective Cost-Per-Stream (eCPS), particularly for less-streamed podcasts, and an 18-24% increase in podcast stream rates. Offline experiments and ablations highlight the contribution of ancillary objectives and feature groups to cold-start performance. Our experience shows that a unified modeling strategy improves maintainability, cold-start performance, and coverage, while breaking down historically siloed targeting pipelines. We discuss practical trade-offs of such joint models in a real-world advertising system.
comment: Accepted at WSDM 2026
☆ Exploring Approaches for Detecting Memorization of Recommender System Data in Large Language Models
Large Language Models (LLMs) are increasingly applied in recommendation scenarios due to their strong natural language understanding and generation capabilities. However, they are trained on vast corpora whose contents are not publicly disclosed, raising concerns about data leakage. Recent work has shown that the MovieLens-1M dataset is memorized by both the LLaMA and OpenAI model families, but the extraction of such memorized data has so far relied exclusively on manual prompt engineering. In this paper, we pose three main questions: Is it possible to enhance manual prompting? Can LLM memorization be detected through methods beyond manual prompting? And can the detection of data leakage be automated? To address these questions, we evaluate three approaches: (i) jailbreak prompt engineering; (ii) unsupervised latent knowledge discovery, probing internal activations via Contrast-Consistent Search (CCS) and Cluster-Norm; and (iii) Automatic Prompt Engineering (APE), which frames prompt discovery as a meta-learning process that iteratively refines candidate instructions. Experiments on MovieLens-1M using LLaMA models show that jailbreak prompting does not improve the retrieval of memorized items and remains inconsistent; CCS reliably distinguishes genuine from fabricated movie titles but fails on numerical user and rating data; and APE retrieves item-level information with moderate success yet struggles to recover numerical interactions. These findings suggest that automatically optimizing prompts is the most promising strategy for extracting memorized samples.
☆ Exploring Diversity, Novelty, and Popularity Bias in ChatGPT's Recommendations
ChatGPT has emerged as a versatile tool, demonstrating capabilities across diverse domains. Given these successes, the Recommender Systems (RSs) community has begun investigating its applications within recommendation scenarios primarily focusing on accuracy. While the integration of ChatGPT into RSs has garnered significant attention, a comprehensive analysis of its performance across various dimensions remains largely unexplored. Specifically, the capabilities of providing diverse and novel recommendations or exploring potential biases such as popularity bias have not been thoroughly examined. As the use of these models continues to expand, understanding these aspects is crucial for enhancing user satisfaction and achieving long-term personalization. This study investigates the recommendations provided by ChatGPT-3.5 and ChatGPT-4 by assessing ChatGPT's capabilities in terms of diversity, novelty, and popularity bias. We evaluate these models on three distinct datasets and assess their performance in Top-N recommendation and cold-start scenarios. The findings reveal that ChatGPT-4 matches or surpasses traditional recommenders, demonstrating the ability to balance novelty and diversity in recommendations. Furthermore, in the cold-start scenario, ChatGPT models exhibit superior performance in both accuracy and novelty, suggesting they can be particularly beneficial for new users. This research highlights the strengths and limitations of ChatGPT's recommendations, offering new perspectives on the capacity of these models to provide recommendations beyond accuracy-focused metrics.
☆ The Invisible Hand of AI Libraries Shaping Open Source Projects and Communities
In the early 1980s, Open Source Software emerged as a revolutionary concept amidst the dominance of proprietary software. What began as a revolutionary idea has now become the cornerstone of computer science. Amidst OSS projects, AI is increasing its presence and relevance. However, despite the growing popularity of AI, its adoption and impacts on OSS projects remain underexplored. We aim to assess the adoption of AI libraries in Python and Java OSS projects and examine how they shape development, including the technical ecosystem and community engagement. To this end, we will perform a large-scale analysis on 157.7k potential OSS repositories, employing repository metrics and software metrics to compare projects adopting AI libraries against those that do not. We expect to identify measurable differences in development activity, community engagement, and code complexity between OSS projects that adopt AI libraries and those that do not, offering evidence-based insights into how AI integration reshapes software development practices.
comment: ACCEPTED REGISTERED REPORT AT SANER (CORE A*) 2026
☆ MCGI: Manifold-Consistent Graph Indexing for Billion-Scale Disk-Resident Vector Search
Graph-based Approximate Nearest Neighbor (ANN) search often suffers from performance degradation in high-dimensional spaces due to the ``Euclidean-Geodesic mismatch,'' where greedy routing diverges from the underlying data manifold. To address this, we propose Manifold-Consistent Graph Indexing (MCGI), a geometry-aware and disk-resident indexing method that leverages Local Intrinsic Dimensionality (LID) to dynamically adapt search strategies to the data's intrinsic geometry. Unlike standard algorithms that treat dimensions uniformly, MCGI modulates its beam search budget based on in situ geometric analysis, eliminating dependency on static hyperparameters. Theoretical analysis confirms that MCGI enables improved approximation guarantees by preserving manifold-consistent topological connectivity. Empirically, MCGI achieves 5.8$\times$ higher throughput at 95\% recall on high-dimensional GIST1M compared to state-of-the-art DiskANN. On the billion-scale SIFT1B dataset, MCGI further validates its scalability by reducing high-recall query latency by 3$\times$, while maintaining performance parity on standard lower-dimensional datasets.
☆ A Defect is Being Born: How Close Are We? A Time Sensitive Forecasting Approach
Background. Defect prediction has been a highly active topic among researchers in the Empirical Software Engineering field. Previous literature has successfully achieved the most accurate prediction of an incoming fault and identified the features and anomalies that precede it through just-in-time prediction. As software systems evolve continuously, there is a growing need for time-sensitive methods capable of forecasting defects before they manifest. Aim. Our study seeks to explore the effectiveness of time-sensitive techniques for defect forecasting. Moreover, we aim to investigate the early indicators that precede the occurrence of a defect. Method. We will train multiple time-sensitive forecasting techniques to forecast the future bug density of a software project, as well as identify the early symptoms preceding the occurrence of a defect. Expected results. Our expected results are translated into empirical evidence on the effectiveness of our approach for early estimation of bug proneness.
comment: ACCEPTED REGISTERED REPORT AT SANER (CORE A*) 2026
☆ A Hybrid Architecture for Multi-Stage Claim Document Understanding: Combining Vision-Language Models and Machine Learning for Real-Time Processing
Claims documents are fundamental to healthcare and insurance operations, serving as the basis for reimbursement, auditing, and compliance. However, these documents are typically not born digital; they often exist as scanned PDFs or photographs captured under uncontrolled conditions. Consequently, they exhibit significant content heterogeneity, ranging from typed invoices to handwritten medical reports, as well as linguistic diversity. This challenge is exemplified by operations at Fullerton Health, which handles tens of millions of claims annually across nine markets, including Singapore, the Philippines, Indonesia, Malaysia, Mainland China, Hong Kong, Vietnam, Papua New Guinea, and Cambodia. Such variability, coupled with inconsistent image quality and diverse layouts, poses a significant obstacle to automated parsing and structured information extraction. This paper presents a robust multi-stage pipeline that integrates the multilingual optical character recognition (OCR) engine PaddleOCR, a traditional Logistic Regression classifier, and a compact Vision-Language Model (VLM), Qwen 2.5-VL-7B, to achieve efficient and accurate field extraction from large-scale claims data. The proposed system achieves a document-type classification accuracy of over 95 percent and a field-level extraction accuracy of approximately 87 percent, while maintaining an average processing latency of under 2 seconds per document. Compared to manual processing, which typically requires around 10 minutes per claim, our system delivers a 300x improvement in efficiency. These results demonstrate that combining traditional machine learning models with modern VLMs enables production-grade accuracy and speed for real-world automation. The solution has been successfully deployed in our mobile application and is currently processing tens of thousands of claims weekly from Vietnam and Singapore.
comment: 19 pages, 3 figures, 3 tables
☆ Judging with Personality and Confidence: A Study on Personality-Conditioned LLM Relevance Assessment
Recent studies have shown that prompting can enable large language models (LLMs) to simulate specific personality traits and produce behaviors that align with those traits. However, there is limited understanding of how these simulated personalities influence critical web search decisions, specifically relevance assessment. Moreover, few studies have examined how simulated personalities impact confidence calibration, specifically the tendencies toward overconfidence or underconfidence. This gap exists even though psychological literature suggests these biases are trait-specific, often linking high extraversion to overconfidence and high neuroticism to underconfidence. To address this gap, we conducted a comprehensive study evaluating multiple LLMs, including commercial models and open-source models, prompted to simulate Big Five personality traits. We tested these models across three test collections (TREC DL 2019, TREC DL 2020, and LLMJudge), collecting two key outputs for each query-document pair: a relevance judgment and a self-reported confidence score. The findings show that personalities such as low agreeableness consistently align more closely with human labels than the unprompted condition. Additionally, low conscientiousness performs well in balancing the suppression of both overconfidence and underconfidence. We also observe that relevance scores and confidence distributions vary systematically across different personalities. Based on the above findings, we incorporate personality-conditioned scores and confidence as features in a random forest classifier. This approach achieves performance that surpasses the best single-personality condition on a new dataset (TREC DL 2021), even with limited training data. These findings highlight that personality-derived confidence offers a complementary predictive signal, paving the way for more reliable and human-aligned LLM evaluators.
☆ ARIES: A Scalable Multi-Agent Orchestration Framework for Real-Time Epidemiological Surveillance and Outbreak Monitoring
Global health surveillance is currently facing a challenge of Knowledge Gaps. While general-purpose AI has proliferated, it remains fundamentally unsuited for the high-stakes epidemiological domain due to chronic hallucinations and an inability to navigate specialized data silos. This paper introduces ARIES (Agentic Retrieval Intelligence for Epidemiological Surveillance), a specialized, autonomous multi-agent framework designed to move beyond static, disease-specific dashboards toward a dynamic intelligence ecosystem. Built on a hierarchical command structure, ARIES utilizes GPTs to orchestrate a scalable swarm of sub-agents capable of autonomously querying World Health Organization (WHO), Center for Disease Control and Prevention (CDC), and peer-reviewed research papers. By automating the extraction and logical synthesis of surveillance data, ARIES provides a specialized reasoning that identifies emergent threats and signal divergence in near real-time. This modular architecture proves that a task-specific agentic swarm can outperform generic models, offering a robust, extensible for next-generation outbreak response and global health intelligence.
comment: 6 pages, 14 figures, 1 table
☆ SRAS: A Lightweight Reinforcement Learning-based Document Selector for Edge-Native RAG Pipelines
Retrieval-Augmented Generation (RAG) systems often rely on fixed top-k document selection mechanisms that ignore downstream generation quality and impose computational overheads. We propose SRAS (Sparse Reward-Aware Selector), a lightweight document selector trained via reinforcement learning (RL) for edge-native RAG deployment. Unlike prior RL-based retrievers that assume large memory and latency budgets, SRAS learns a compact (~0.76MB) policy using Proximal Policy Optimization (PPO), guided by a hybrid reward signal combining Relaxed F1 and BERTScore. Our method operates under tight token and compute constraints, maintaining <1s latency on CPU. SRAS outperforms supervised and random selectors on a synthetic QA benchmark, and generalizes to real-world data, achieving BERTScore F1 of 0.8546 on SQuAD v2 without domain-specific tuning. This work is the first to demonstrate that RL-based document selection can be made ultra-lightweight, latency-aware, and effective for on-device RAG pipelines.
comment: Presented at ICEdge 2025; nominated for Best Paper Award
☆ MergeRec: Model Merging for Data-Isolated Cross-Domain Sequential Recommendation KDD 2026
Modern recommender systems trained on domain-specific data often struggle to generalize across multiple domains. Cross-domain sequential recommendation has emerged as a promising research direction to address this challenge; however, existing approaches face fundamental limitations, such as reliance on overlapping users or items across domains, or unrealistic assumptions that ignore privacy constraints. In this work, we propose a new framework, MergeRec, based on model merging under a new and realistic problem setting termed data-isolated cross-domain sequential recommendation, where raw user interaction data cannot be shared across domains. MergeRec consists of three key components: (1) merging initialization, (2) pseudo-user data construction, and (3) collaborative merging optimization. First, we initialize a merged model using training-free merging techniques. Next, we construct pseudo-user data by treating each item as a virtual sequence in each domain, enabling the synthesis of meaningful training samples without relying on real user interactions. Finally, we optimize domain-specific merging weights through a joint objective that combines a recommendation loss, which encourages the merged model to identify relevant items, and a distillation loss, which transfers collaborative filtering signals from the fine-tuned source models. Extensive experiments demonstrate that MergeRec not only preserves the strengths of the original models but also significantly enhances generalizability to unseen domains. Compared to conventional model merging methods, MergeRec consistently achieves superior performance, with average improvements of up to 17.21% in Recall@10, highlighting the potential of model merging as a scalable and effective approach for building universal recommender systems. The source code is available at https://github.com/DIALLab-SKKU/MergeRec.
comment: Accepted by KDD 2026
☆ Query-Document Dense Vectors for LLM Relevance Judgment Bias Analysis ECIR 2026
Large Language Models (LLMs) have been used as relevance assessors for Information Retrieval (IR) evaluation collection creation due to reduced cost and increased scalability as compared to human assessors. While previous research has looked at the reliability of LLMs as compared to human assessors, in this work, we aim to understand if LLMs make systematic mistakes when judging relevance, rather than just understanding how good they are on average. To this aim, we propose a novel representational method for queries and documents that allows us to analyze relevance label distributions and compare LLM and human labels to identify patterns of disagreement and localize systematic areas of disagreement. We introduce a clustering-based framework that embeds query-document (Q-D) pairs into a joint semantic space, treating relevance as a relational property. Experiments on TREC Deep Learning 2019 and 2020 show that systematic disagreement between humans and LLMs is concentrated in specific semantic clusters rather than distributed randomly. Query-level analyses reveal recurring failures, most often in definition-seeking, policy-related, or ambiguous contexts. Queries with large variation in agreement across their clusters emerge as disagreement hotspots, where LLMs tend to under-recall relevant content or over-include irrelevant material. This framework links global diagnostics with localized clustering to uncover hidden weaknesses in LLM judgments, enabling bias-aware and more reliable IR evaluation.
comment: Accepted for presentation at the ECIR 2026 Full Papers track
☆ When Attention Becomes Exposure in Generative Search
Generative search engines are reshaping information access by replacing traditional ranked lists with synthesized answers and references. In parallel, with the growth of Web3 platforms, incentive-driven creator ecosystems have become an essential part of how enterprises build visibility and community by rewarding creators for contributing to shared narratives. However, the extent to which exposure in generative search engine citations is shaped by external attention markets remains uncertain. In this study, we audit the exposure for 44 Web3 enterprises. First, we show that the creator community around each enterprise is persistent over time. Second, enterprise-specific queries reveal that more popular voices systematically receive greater citation exposure than others. Third, we find that larger follower bases and enterprises with more concentrated creator cores are associated with higher-ranked exposure. Together, these results show that generative search engine citations exhibit exposure bias toward already prominent voices, which risks entrenching incumbents and narrowing viewpoint diversity.
comment: 8 pages, 2 figures
☆ Beyond Homophily: Community Search on Heterophilic Graphs
Community search aims to identify a refined set of nodes that are most relevant to a given query, supporting tasks ranging from fraud detection to recommendation. Unlike homophilic graphs, many real-world networks are heterophilic, where edges predominantly connect dissimilar nodes. Therefore, structural signals that once reflected smooth, low-frequency similarity now appear as sharp, high-frequency contrasts. However, both classical algorithms (e.g., k-core, k-truss) and recent ML-based models struggle to achieve effective community search on heterophilic graphs, where edge signs or semantics are generally unknown. Algorithm-based methods often return communities with mixed class labels, while GNNs, built on homophily, smooth away meaningful signals and blur community boundaries. Therefore, we propose Adaptive Community Search (AdaptCS), a unified framework featuring three key designs: (i) an AdaptCS Encoder that disentangles multi-hop and multi-frequency signals, enabling the model to capture both smooth (homophilic) and contrastive (heterophilic) relations; (ii) a memory-efficient low-rank optimization that removes the main computational bottleneck and ensures model scalability; and (iii) an Adaptive Community Score (ACS) that guides online search by balancing embedding similarity and topological relations. Extensive experiments on both heterophilic and homophilic benchmarks demonstrate that AdaptCS outperforms the best-performing baseline by an average of 11% in F1-score, retains robustness across heterophily levels, and achieves up to 2 orders of magnitude speedup.
♻ ☆ Adaptive Evidence Budgeting for Scalable Long-Document Reranking with LLMs
Decoder-only LLM rerankers are powerful but often struggle with long documents: inference is costly and relevance signals can be diluted as irrelevant text accumulates in the context window. Motivated by an attention analysis showing that relevance-aligned heads degrade when non-relevant text is appended, we propose EviRerank, a scalable framework that (i) scores document blocks with a lightweight selector (BM25, bi-encoder, or cross-encoder), (ii) constructs a compact evidence context under a strict token budget, and (iii) reranks with a decoder-only LLM. Our key contribution is Adaptive Evidence Budgeting (AEB), an information-density-aware dynamic stopping strategy that avoids low-utility tail blocks, and we further study Summary Augmentation (SA) within the same budget. Across TREC DL'19, DL'23, and MLDR-zh, EviRerank consistently improves over full-document LLM reranking and strong block-selection baselines while substantially reducing the required input length. On TREC DL'19, EviRerank achieves 0.743 nDCG@10 and 0.307 MAP, improving over RankLLaMA (0.701/0.288) by +0.042 nDCG@10 (+6.0%) and +0.019 MAP (+6.6%).
♻ ☆ Multimodal Adversarial Defense for Vision-Language Models by Leveraging One-To-Many Relationships WACV 2026
Pre-trained vision-language (VL) models are highly vulnerable to adversarial attacks. However, existing defense methods primarily focus on image classification, overlooking two key aspects of VL tasks: multimodal attacks, where both image and text can be perturbed, and the one-to-many relationship of images and texts, where a single image can correspond to multiple textual descriptions and vice versa (1:N and N:1). This work is the first to explore defense strategies against multimodal attacks in VL tasks, whereas prior VL defense methods focus on vision robustness. We propose multimodal adversarial training (MAT), which incorporates adversarial perturbations in both image and text modalities during training, significantly outperforming existing unimodal defenses. Furthermore, we discover that MAT is limited by deterministic one-to-one (1:1) image-text pairs in VL training data. To address this, we conduct a comprehensive study on leveraging one-to-many relationships to enhance robustness, investigating diverse augmentation techniques. Our analysis shows that, for a more effective defense, augmented image-text pairs should be well-aligned, diverse, yet avoid distribution shift -- conditions overlooked by prior research. This work pioneers defense strategies against multimodal attacks, providing insights for building robust VLMs from both optimization and data perspectives. Our code is publicly available at https://github.com/CyberAgentAILab/multimodal-adversarial-training.
comment: WACV 2026 Accepted. Code available at https://github.com/CyberAgentAILab/multimodal-adversarial-training
♻ ☆ AI Prior Art Search: Semantic Clusters and Evaluation Infrastructure
The key to success in automating prior art search in patent research using artificial intelligence (AI) lies in developing large datasets for machine learning (ML) and ensuring their availability. This work is dedicated to providing a comprehensive solution to the problem of creating infrastructure for research in this field, including datasets and tools for calculating search quality criteria. The paper discusses the concept of semantic clusters of patent documents that determine the state of the art in a given subject, as proposed by the authors. A definition of such semantic clusters is also provided. Prior art search is presented as the task of identifying elements within a semantic cluster of patent documents in the subject area specified by the document under consideration. A generator of user-configurable datasets for ML, based on collections of U.S. and Russian patent documents, is described. The dataset generator creates a database of links to documents in semantic clusters. Then, based on user-defined parameters, it forms a dataset of semantic clusters in JSON format for ML. A collection of publicly available patent documents was created. The collection contains 14 million semantic clusters of US patent documents and 1 million clusters of Russian patent documents. To evaluate ML outcomes, it is proposed to calculate search quality scores that account for semantic clusters of the documents being searched. To automate the evaluation process, the paper describes a utility developed by the authors for assessing the quality of prior art document search.
comment: 16 pages, 3 figures, 2 tables
♻ ☆ On Efficient Approximate Aggregate Nearest Neighbor Queries over Learned Representations
We study Aggregation Queries over Nearest Neighbors (AQNN), which compute aggregates over the learned representations of the neighborhood of a designated query object. For example, a medical professional may be interested in the average heart rate of patients whose representations are similar to that of an insomnia patient. Answering AQNNs accurately and efficiently is challenging due to the high cost of generating high-quality representations (e.g., via a deep learning model trained on human expert annotations) and the different sensitivities of different aggregation functions to neighbor selection errors. We address these challenges by combining high-quality and low-cost representations to approximate the aggregate. We characterize value- and count-sensitive AQNNs and propose the Sampler with Precision-Recall in Target (SPRinT), a query answering framework that works in three steps: (1) sampling, (2) nearest neighbor selection, and (3) aggregation. We further establish theoretical bounds on sample sizes and aggregation errors. Extensive experiments on five datasets from three domains (medical, social media, and e-commerce) demonstrate that SPRinT achieves the lowest aggregation error with minimal computation cost in most cases compared to existing solutions. SPRinT's performance remains stable as dataset size grows, confirming its scalability for large-scale applications requiring both accuracy and efficiency.
comment: 26 pages, 12 figures, 10 tables
♻ ☆ Context-aware Decoding Reduces Hallucination in Query-focused Summarization
Query-focused summarization (QFS) aims to provide a summary of a single document/multi documents that can satisfy the information needs of a given query. It is useful for various real-world applications, such as abstractive snippet generation or more recent retrieval augmented generation (RAG). A prototypical QFS pipeline consists of a retriever (sparse or dense retrieval) and a generator (usually a large language model). However, applying large language models (LLM) potentially leads to hallucinations, especially when the evidence contradicts the prior belief of LLMs. There has been growing interest in developing new decoding methods to improve generation quality and reduce hallucination. In this work, we conduct a large-scale reproducibility study on one recently proposed decoding method\, -- \,Context-aware Decoding (CAD). In addition to replicating CAD's experiments on news summarization datasets, we include experiments on QFS datasets, and conduct more rigorous analysis on computational complexity and hyperparameter sensitivity. Experiments with eight different language models show that performance-wise, CAD improves QFS quality by (1) reducing factuality errors/hallucinations while (2) mostly retaining the match of lexical patterns, measured by ROUGE scores, while also at a cost of increased inference-time FLOPs and reduced decoding speed. The \href{https://github.com/zhichaoxu-shufe/context-aware-decoding-qfs}{code implementation} based on Huggingface Library is made available
comment: technical report
♻ ☆ RankMamba: Benchmarking Mamba's Document Ranking Performance in the Era of Transformers
Transformer structure has achieved great success in multiple applied machine learning communities, such as natural language processing (NLP), computer vision (CV) and information retrieval (IR). Transformer architecture's core mechanism\, -- \,attention requires $O(n^2)$ time complexity in training and $O(n)$ time complexity in inference. Many works have been proposed to improve the attention mechanism's scalability, such as Flash Attention and Multi-query Attention. A different line of work aims to design new mechanisms to replace attention. Recently, a notable model structure Mamba, which is based on state space models, has achieved transformer-equivalent performance in multiple sequence modeling tasks. In this work, we examine Mamba's efficacy through the lens of a classical IR task\, -- \,document ranking. A reranker model takes a query and a document as input, and predicts a scalar relevance score. This task demands the language model's ability to comprehend lengthy contextual inputs and to capture the interaction between query and document tokens. We find that \textbf{(1) Mamba models achieve competitive performance compared to transformer-based models with the same training recipe; (2) but also have a lower training throughput in comparison to efficient transformer implementations such as flash attention.} We hope this study can serve as a starting point to explore \mamba models in other classical IR tasks. Our \href{https://github.com/zhichaoxu-shufe/RankMamba}{code implementation} is made public to facilitate reproducibility. Refer to~\cite{xu-etal-2025-state} for more comprehensive experiments and results, including passage ranking.
♻ ☆ Mem-Rec: Memory Efficient Recommendation System using Alternative Representation
Deep learning-based recommendation systems (e.g., DLRMs) are widely used AI models to provide high-quality personalized recommendations. Training data used for modern recommendation systems commonly includes categorical features taking on tens-of-millions of possible distinct values. These categorical tokens are typically assigned learned vector representations, that are stored in large embedding tables, on the order of 100s of GB. Storing and accessing these tables represent a substantial burden in commercial deployments. Our work proposes MEM-REC, a novel alternative representation approach for embedding tables. MEM-REC leverages bloom filters and hashing methods to encode categorical features using two cache-friendly embedding tables. The first table (token embedding) contains raw embeddings (i.e. learned vector representation), and the second table (weight embedding), which is much smaller, contains weights to scale these raw embeddings to provide better discriminative capability to each data point. We provide a detailed architecture, design and analysis of MEM-REC addressing trade-offs in accuracy and computation requirements, in comparison with state-of-the-art techniques. We show that MEM-REC can not only maintain the recommendation quality and significantly reduce the memory footprint for commercial scale recommendation models but can also improve the embedding latency. In particular, based on our results, MEM-REC compresses the MLPerf CriteoTB benchmark DLRM model size by 2900x and performs up to 3.4x faster embeddings while achieving the same AUC as that of the full uncompressed model.
♻ ☆ Pairwise Judgment Formulation for Semantic Embedding Model in Web Search
Semantic Embedding Models (SEMs) have become a core component in information retrieval and natural language processing due to their ability to model semantic relevance. However, despite its growing applications in search engines, few studies have systematically explored how to construct effective training data for SEMs from large-scale search engine query logs. In this paper, we present a comprehensive analysis of strategies for generating pairwise judgments as SEM training data. An interesting (perhaps surprising) discovery reveals that conventional formulation approaches used in Learning-to-Rank (LTR) are not necessarily optimal for SEM training. Through a large-scale empirical study using query logs and click-through data from a major search engine, we identify effective strategies and demonstrate the advantages of a proposed hybrid heuristic over simpler atomic heuristics. Finally, we provide best practices for SEM training and outline directions for future research.
comment: Accepted by IEEE BigComp 2026
Machine Learning
☆ Heterogeneous Low-Bandwidth Pre-Training of LLMs
Pre-training large language models (LLMs) increasingly requires distributed compute, yet bandwidth constraints make it difficult to scale beyond well-provisioned datacenters-especially when model parallelism forces frequent, large inter-device communications. We study whether SparseLoCo, a low-communication data parallel method based on infrequent synchronization and sparse pseudo-gradient exchange, can be combined with low-bandwidth pipeline model parallelism via activation and activation-gradient compression. We introduce a heterogeneous distributed training framework where some participants host full replicas on high-bandwidth interconnects, while resource-limited participants are grouped to jointly instantiate a replica using pipeline parallelism with subspace-projected inter-stage communication. To make the recently introduced subspace pipeline compression compatible with SparseLoCo, we study a number of adaptations. Across large-scale language modeling experiments (178M-1B parameters) on standard pretraining corpora, we find that activation compression composes with SparseLoCo at modest cost, while selective (heterogeneous) compression consistently improves the loss-communication tradeoff relative to compressing all replicas-especially at aggressive compression ratios. These results suggest a practical path to incorporating low-bandwidth model parallelism and heterogeneous participants into LLM pre-training.
☆ Meta-Learning Guided Pruning for Few-Shot Plant Pathology on Edge Devices
Farmers in remote areas need quick and reliable methods for identifying plant diseases, yet they often lack access to laboratories or high-performance computing resources. Deep learning models can detect diseases from leaf images with high accuracy, but these models are typically too large and computationally expensive to run on low-cost edge devices such as Raspberry Pi. Furthermore, collecting thousands of labeled disease images for training is both expensive and time-consuming. This paper addresses both challenges by combining neural network pruning -- removing unnecessary parts of the model -- with few-shot learning, which enables the model to learn from limited examples. This paper proposes Disease-Aware Channel Importance Scoring (DACIS), a method that identifies which parts of the neural network are most important for distinguishing between different plant diseases, integrated into a three-stage Prune-then-Meta-Learn-then-Prune (PMP) pipeline. Experiments on PlantVillage and PlantDoc datasets demonstrate that the proposed approach reduces model size by 78\% while maintaining 92.3\% of the original accuracy, with the compressed model running at 7 frames per second on a Raspberry Pi 4, making real-time field diagnosis practical for smallholder farmers.
☆ Hunting for "Oddballs" with Machine Learning: Detecting Anomalous Exoplanets Using a Deep-Learned Low-Dimensional Representation of Transit Spectra with Autoencoders
This study explores the application of autoencoder-based machine learning techniques for anomaly detection to identify exoplanet atmospheres with unconventional chemical signatures using a low-dimensional data representation. We use the Atmospheric Big Challenge (ABC) database, a publicly available dataset with over 100,000 simulated exoplanet spectra, to construct an anomaly detection scenario by defining CO2-rich atmospheres as anomalies and CO2-poor atmospheres as the normal class. We benchmarked four different anomaly detection strategies: Autoencoder Reconstruction Loss, One-Class Support Vector Machine (1 class-SVM), K-means Clustering, and Local Outlier Factor (LOF). Each method was evaluated in both the original spectral space and the autoencoder's latent space using Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) metrics. To test the performance of the different methods under realistic conditions, we introduced Gaussian noise levels ranging from 10 to 50 ppm. Our results indicate that anomaly detection is consistently more effective when performed within the latent space across all noise levels. Specifically, K-means clustering in the latent space emerged as a stable and high-performing method. We demonstrate that this anomaly detection approach is robust to noise levels up to 30 ppm (consistent with realistic space-based observations) and remains viable even at 50 ppm when leveraging latent space representations. On the other hand, the performance of the anomaly detection methods applied directly in the raw spectral space degrades significantly with increasing the level of noise. This suggests that autoencoder-driven dimensionality reduction offers a robust methodology for flagging chemically anomalous targets in large-scale surveys where exhaustive retrievals are computationally prohibitive.
comment: 14 pages, 12 figures
☆ Environment-Adaptive Covariate Selection: Learning When to Use Spurious Correlations for Out-of-Distribution Prediction
Out-of-distribution (OOD) prediction is often approached by restricting models to causal or invariant covariates, avoiding non-causal spurious associations that may be unstable across environments. Despite its theoretical appeal, this strategy frequently underperforms empirical risk minimization (ERM) in practice. We investigate the source of this gap and show that such failures naturally arise when only a subset of the true causes of the outcome is observed. In these settings, non-causal spurious covariates can serve as informative proxies for unobserved causes and substantially improve prediction, except under distribution shifts that break these proxy relationships. Consequently, the optimal set of predictive covariates is neither universal nor necessarily exhibits invariant relationships with the outcome across all environments, but instead depends on the specific type of shift encountered. Crucially, we observe that different covariate shifts induce distinct, observable signatures in the covariate distribution itself. Moreover, these signatures can be extracted from unlabeled data in the target OOD environment and used to assess when proxy covariates remain reliable and when they fail. Building on this observation, we propose an environment-adaptive covariate selection (EACS) algorithm that maps environment-level covariate summaries to environment-specific covariate sets, while allowing the incorporation of prior causal knowledge as constraints. Across simulations and applied datasets, EACS consistently outperforms static causal, invariant, and ERM-based predictors under diverse distribution shifts.
☆ DatBench: Discriminative, Faithful, and Efficient VLM Evaluations
Empirical evaluation serves as the primary compass guiding research progress in foundation models. Despite a large body of work focused on training frontier vision-language models (VLMs), approaches to their evaluation remain nascent. To guide their maturation, we propose three desiderata that evaluations should satisfy: (1) faithfulness to the modality and application, (2) discriminability between models of varying quality, and (3) efficiency in compute. Through this lens, we identify critical failure modes that violate faithfulness and discriminability, misrepresenting model capabilities: (i) multiple-choice formats reward guessing, poorly reflect downstream use cases, and saturate early as models improve; (ii) blindly solvable questions, which can be answered without images, constitute up to 70% of some evaluations; and (iii) mislabeled or ambiguous samples compromise up to 42% of examples in certain datasets. Regarding efficiency, the computational burden of evaluating frontier models has become prohibitive: by some accounts, nearly 20% of development compute is devoted to evaluation alone. Rather than discarding existing benchmarks, we curate them via transformation and filtering to maximize fidelity and discriminability. We find that converting multiple-choice questions to generative tasks reveals sharp capability drops of up to 35%. In addition, filtering blindly solvable and mislabeled samples improves discriminative power while simultaneously reducing computational cost. We release DatBench-Full, a cleaned evaluation suite of 33 datasets spanning nine VLM capabilities, and DatBench, a discriminative subset that achieves 13x average speedup (up to 50x) while closely matching the discriminative power of the original datasets. Our work outlines a path toward evaluation practices that are both rigorous and sustainable as VLMs continue to scale.
☆ Game of Coding: Coding Theory in the Presence of Rational Adversaries, Motivated by Decentralized Machine Learning
Coding theory plays a crucial role in enabling reliable communication, storage, and computation. Classical approaches assume a worst-case adversarial model and ensure error correction and data recovery only when the number of honest nodes exceeds the number of adversarial ones by some margin. However, in some emerging decentralized applications, particularly in decentralized machine learning (DeML), participating nodes are rewarded for accepted contributions. This incentive structure naturally gives rise to rational adversaries who act strategically rather than behaving in purely malicious ways. In this paper, we first motivate the need for coding in the presence of rational adversaries, particularly in the context of outsourced computation in decentralized systems. We contrast this need with existing approaches and highlight their limitations. We then introduce the game of coding, a novel game-theoretic framework that extends coding theory to trust-minimized settings where honest nodes are not in the majority. Focusing on repetition coding, we highlight two key features of this framework: (1) the ability to achieve a non-zero probability of data recovery even when adversarial nodes are in the majority, and (2) Sybil resistance, i.e., the equilibrium remains unchanged even as the number of adversarial nodes increases. Finally, we explore scenarios in which the adversary's strategy is unknown and outline several open problems for future research.
☆ Temporal Kolmogorov-Arnold Networks (T-KAN) for High-Frequency Limit Order Book Forecasting: Efficiency, Interpretability, and Alpha Decay
High-Frequency trading (HFT) environments are characterised by large volumes of limit order book (LOB) data, which is notoriously noisy and non-linear. Alpha decay represents a significant challenge, with traditional models such as DeepLOB losing predictive power as the time horizon (k) increases. In this paper, using data from the FI-2010 dataset, we introduce Temporal Kolmogorov-Arnold Networks (T-KAN) to replace the fixed, linear weights of standard LSTMs with learnable B-spline activation functions. This allows the model to learn the 'shape' of market signals as opposed to just their magnitude. This resulted in a 19.1% relative improvement in the F1-score at the k = 100 horizon. The efficacy of T-KAN networks cannot be understated, producing a 132.48% return compared to the -82.76% DeepLOB drawdown under 1.0 bps transaction costs. In addition to this, the T-KAN model proves quite interpretable, with the 'dead-zones' being clearly visible in the splines. The T-KAN architecture is also uniquely optimized for low-latency FPGA implementation via High level Synthesis (HLS). The code for the experiments in this project can be found at https://github.com/AhmadMak/Temporal-Kolmogorov-Arnold-Networks-T-KAN-for-High-Frequency-Limit-Order-Book-Forecasting.
comment: 8 pages, 5 figures, Proposes T-KAN architecture for HFT. Achieves 19.1% F1-score improvement on FI-2010 and 132.48% return in cost-adjusted backtests.Proposes T-KAN architecture for HFT. Achieves 19.1% F1-score improvement on FI-2010 and 132.48% return in cost-adjusted backtests
☆ Differential Privacy for Transformer Embeddings of Text with Nonparametric Variational Information Bottleneck
We propose a privacy-preserving method for sharing text data by sharing noisy versions of their transformer embeddings. It has been shown that hidden representations learned by deep models can encode sensitive information from the input, making it possible for adversaries to recover the input data with considerable accuracy. This problem is exacerbated in transformer embeddings because they consist of multiple vectors, one per token. To mitigate this risk, we propose Nonparametric Variational Differential Privacy (NVDP), which ensures both useful data sharing and strong privacy protection. We take a differential privacy approach, integrating a Nonparametric Variational Information Bottleneck (NVIB) layer into the transformer architecture to inject noise into its multi-vector embeddings and thereby hide information, and measuring privacy protection with Rényi divergence and its corresponding Bayesian Differential Privacy (BDP) guarantee. Training the NVIB layer calibrates the noise level according to utility. We test NVDP on the GLUE benchmark and show that varying the noise level gives us a useful tradeoff between privacy and accuracy. With lower noise levels, our model maintains high accuracy while offering strong privacy guarantees, effectively balancing privacy and utility.
comment: 11 pages, 2 figures
☆ TopoLoRA-SAM: Topology-Aware Parameter-Efficient Adaptation of Foundation Segmenters for Thin-Structure and Cross-Domain Binary Semantic Segmentation
Foundation segmentation models such as the Segment Anything Model (SAM) exhibit strong zero-shot generalization through large-scale pretraining, but adapting them to domain-specific semantic segmentation remains challenging, particularly for thin structures (e.g., retinal vessels) and noisy modalities (e.g., SAR imagery). Full fine-tuning is computationally expensive and risks catastrophic forgetting. We propose \textbf{TopoLoRA-SAM}, a topology-aware and parameter-efficient adaptation framework for binary semantic segmentation. TopoLoRA-SAM injects Low-Rank Adaptation (LoRA) into the frozen ViT encoder, augmented with a lightweight spatial convolutional adapter and optional topology-aware supervision via differentiable clDice. We evaluate our approach on five benchmarks spanning retinal vessel segmentation (DRIVE, STARE, CHASE\_DB1), polyp segmentation (Kvasir-SEG), and SAR sea/land segmentation (SL-SSDD), comparing against U-Net, DeepLabV3+, SegFormer, and Mask2Former. TopoLoRA-SAM achieves the best retina-average Dice and the best overall average Dice across datasets, while training only \textbf{5.2\%} of model parameters ($\sim$4.9M). On the challenging CHASE\_DB1 dataset, our method substantially improves segmentation accuracy and robustness, demonstrating that topology-aware parameter-efficient adaptation can match or exceed fully fine-tuned specialist models. Code is available at : https://github.com/salimkhazem/Seglab.git
☆ Predicting Early and Complete Drug Release from Long-Acting Injectables Using Explainable Machine Learning
Polymer-based long-acting injectables (LAIs) have transformed the treatment of chronic diseases by enabling controlled drug delivery, thus reducing dosing frequency and extending therapeutic duration. Achieving controlled drug release from LAIs requires extensive optimization of the complex underlying physicochemical properties. Machine learning (ML) can accelerate LAI development by modeling the complex relationships between LAI properties and drug release. However, recent ML studies have provided limited information on key properties that modulate drug release, due to the lack of custom modeling and analysis tailored to LAI data. This paper presents a novel data transformation and explainable ML approach to synthesize actionable information from 321 LAI formulations by predicting early drug release at 24, 48, and 72 hours, classification of release profile types, and prediction of complete release profiles. These three experiments investigate the contribution and control of LAI material characteristics in early and complete drug release profiles. A strong correlation (>0.65) is observed between the true and predicted drug release in 72 hours, while a 0.87 F1-score is obtained in classifying release profile types. A time-independent ML framework predicts delayed biphasic and triphasic curves with better performance than current time-dependent approaches. Shapley additive explanations reveal the relative influence of material characteristics during early and for complete release which fill several gaps in previous in-vitro and ML-based studies. The novel approach and findings can provide a quantitative strategy and recommendations for scientists to optimize the drug-release dynamics of LAI. The source code for the model implementation is publicly available.
☆ POSEIDON: Physics-Optimized Seismic Energy Inference and Detection Operating Network
Earthquake prediction and seismic hazard assessment remain fundamental challenges in geophysics, with existing machine learning approaches often operating as black boxes that ignore established physical laws. We introduce POSEIDON (Physics-Optimized Seismic Energy Inference and Detection Operating Network), a physics-informed energy-based model for unified multi-task seismic event prediction, alongside the Poseidon dataset -- the largest open-source global earthquake catalog comprising 2.8 million events spanning 30 years. POSEIDON embeds fundamental seismological principles, including the Gutenberg-Richter magnitude-frequency relationship and Omori-Utsu aftershock decay law, as learnable constraints within an energy-based modeling framework. The architecture simultaneously addresses three interconnected prediction tasks: aftershock sequence identification, tsunami generation potential, and foreshock detection. Extensive experiments demonstrate that POSEIDON achieves state-of-the-art performance across all tasks, outperforming gradient boosting, random forest, and CNN baselines with the highest average F1 score among all compared methods. Crucially, the learned physics parameters converge to scientifically interpretable values -- Gutenberg-Richter b-value of 0.752 and Omori-Utsu parameters p=0.835, c=0.1948 days -- falling within established seismological ranges while enhancing rather than compromising predictive accuracy. The Poseidon dataset is publicly available at https://huggingface.co/datasets/BorisKriuk/Poseidon, providing pre-computed energy features, spatial grid indices, and standardized quality metrics to advance physics-informed seismic research.
comment: 8 pages, 14 figures
☆ Improved Accuracy for Private Continual Cardinality Estimation in Fully Dynamic Streams via Matrix Factorization
We study differentially-private statistics in the fully dynamic continual observation model, where many updates can arrive at each time step and updates to a stream can involve both insertions and deletions of an item. Earlier work (e.g., Jain et al., NeurIPS 2023 for counting distinct elements; Raskhodnikova & Steiner, PODS 2025 for triangle counting with edge updates) reduced the respective cardinality estimation problem to continual counting on the difference stream associated with the true function values on the input stream. In such reductions, a change in the original stream can cause many changes in the difference stream, this poses a challenge for applying private continual counting algorithms to obtain optimal error bounds. We improve the accuracy of several such reductions by studying the associated $\ell_p$-sensitivity vectors of the resulting difference streams and isolating their properties. We demonstrate that our framework gives improved bounds for counting distinct elements, estimating degree histograms, and estimating triangle counts (under a slightly relaxed privacy model), thus offering a general approach to private continual cardinality estimation in streaming settings. Our improved accuracy stems from tight analysis of known factorization mechanisms for the counting matrix in this setting; the key technical challenge is arguing that one can use state-of-the-art factorizations for sensitivity vector sets with the properties we isolate. Empirically and analytically, we demonstrate that our improved error bounds offer a substantial improvement in accuracy for cardinality estimation problems over a large range of parameters.
☆ VAR RL Done Right: Tackling Asynchronous Policy Conflicts in Visual Autoregressive Generation
Visual generation is dominated by three paradigms: AutoRegressive (AR), diffusion, and Visual AutoRegressive (VAR) models. Unlike AR and diffusion, VARs operate on heterogeneous input structures across their generation steps, which creates severe asynchronous policy conflicts. This issue becomes particularly acute in reinforcement learning (RL) scenarios, leading to unstable training and suboptimal alignment. To resolve this, we propose a novel framework to enhance Group Relative Policy Optimization (GRPO) by explicitly managing these conflicts. Our method integrates three synergistic components: 1) a stabilizing intermediate reward to guide early-stage generation; 2) a dynamic time-step reweighting scheme for precise credit assignment; and 3) a novel mask propagation algorithm, derived from principles of Reward Feedback Learning (ReFL), designed to isolate optimization effects both spatially and temporally. Our approach demonstrates significant improvements in sample quality and objective alignment over the vanilla GRPO baseline, enabling robust and effective optimization for VAR models.
comment: Project page: https://github.com/ByteVisionLab/NextFlow
☆ Neuro-Channel Networks: A Multiplication-Free Architecture by Biological Signal Transmission
The rapid proliferation of Deep Learning is increasingly constrained by its heavy reliance on high-performance hardware, particularly Graphics Processing Units (GPUs). These specialized accelerators are not only prohibitively expensive and energy-intensive but also suffer from significant supply scarcity, limiting the ubiquity of Artificial Intelligence (AI) deployment on edge devices. The core of this inefficiency stems from the standard artificial perceptron's dependence on intensive matrix multiplications. However, biological nervous systems achieve unparalleled efficiency without such arithmetic intensity; synaptic signal transmission is regulated by physical ion channel limits and chemical neurotransmitter levels rather than a process that can be analogous to arithmetic multiplication. Inspired by this biological mechanism, we propose Neuro-Channel Networks (NCN), a novel multiplication-free architecture designed to decouple AI from expensive hardware dependencies. In our model, weights are replaced with Channel Widths that physically limit the signal magnitude, while a secondary parameter acts as a Neurotransmitter to regulate Signal Transmission based on sign logic. The forward pass relies exclusively on addition, subtraction, and bitwise operations (minimum, sign), eliminating floating-point multiplication entirely. In this proof-of-concept study, we demonstrate that NCNs can solve non-linearly separable problems like XOR and the Majority function with 100% accuracy using standard backpropagation, proving their capability to form complex decision boundaries without multiplicative weights. This architecture offers a highly efficient alternative for next-generation neuromorphic hardware, paving the way for running complex models on commodity CPUs or ultra-low-power chips without relying on costly GPU clusters.
comment: 9 pages, 4 figures
☆ A Comparative Study of Custom CNNs, Pre-trained Models, and Transfer Learning Across Multiple Visual Datasets
Convolutional Neural Networks (CNNs) are a standard approach for visual recognition due to their capacity to learn hierarchical representations from raw pixels. In practice, practitioners often choose among (i) training a compact custom CNN from scratch, (ii) using a large pre-trained CNN as a fixed feature extractor, and (iii) performing transfer learning via partial or full fine-tuning of a pre-trained backbone. This report presents a controlled comparison of these three paradigms across five real-world image classification datasets spanning road-surface defect recognition, agricultural variety identification, fruit/leaf disease recognition, pedestrian walkway encroachment recognition, and unauthorized vehicle recognition. Models are evaluated using accuracy and macro F1-score, complemented by efficiency metrics including training time per epoch and parameter counts. The results show that transfer learning consistently yields the strongest predictive performance, while the custom CNN provides an attractive efficiency--accuracy trade-off, especially when compute and memory budgets are constrained.
☆ VIBE: Visual Instruction Based Editor
Instruction-based image editing is among the fastest developing areas in generative AI. Over the past year, the field has reached a new level, with dozens of open-source models released alongside highly capable commercial systems. However, only a limited number of open-source approaches currently achieve real-world quality. In addition, diffusion backbones, the dominant choice for these pipelines, are often large and computationally expensive for many deployments and research settings, with widely used variants typically containing 6B to 20B parameters. This paper presents a compact, high-throughput instruction-based image editing pipeline that uses a modern 2B-parameter Qwen3-VL model to guide the editing process and the 1.6B-parameter diffusion model Sana1.5 for image generation. Our design decisions across architecture, data processing, training configuration, and evaluation target low-cost inference and strict source consistency while maintaining high quality across the major edit categories feasible at this scale. Evaluated on the ImgEdit and GEdit benchmarks, the proposed method matches or exceeds the performance of substantially heavier baselines, including models with several times as many parameters and higher inference cost, and is particularly strong on edits that require preserving the input image, such as an attribute adjustment, object removal, background edits, and targeted replacement. The model fits within 24 GB of GPU memory and generates edited images at up to 2K resolution in approximately 4 seconds on an NVIDIA H100 in BF16, without additional inference optimizations or distillation.
☆ From Mice to Trains: Amortized Bayesian Inference on Graph Data
Graphs arise across diverse domains, from biology and chemistry to social and information networks, as well as in transportation and logistics. Inference on graph-structured data requires methods that are permutation-invariant, scalable across varying sizes and sparsities, and capable of capturing complex long-range dependencies, making posterior estimation on graph parameters particularly challenging. Amortized Bayesian Inference (ABI) is a simulation-based framework that employs generative neural networks to enable fast, likelihood-free posterior inference. We adapt ABI to graph data to address these challenges to perform inference on node-, edge-, and graph-level parameters. Our approach couples permutation-invariant graph encoders with flexible neural posterior estimators in a two-module pipeline: a summary network maps attributed graphs to fixed-length representations, and an inference network approximates the posterior over parameters. In this setting, several neural architectures can serve as the summary network. In this work we evaluate multiple architectures and assess their performance on controlled synthetic settings and two real-world domains - biology and logistics - in terms of recovery and calibration.
☆ ELLA: Efficient Lifelong Learning for Adapters in Large Language Models
Large Language Models (LLMs) suffer severe catastrophic forgetting when adapted sequentially to new tasks in a continual learning (CL) setting. Existing approaches are fundamentally limited: replay-based methods are impractical and privacy-violating, while strict orthogonality-based methods collapse under scale: each new task is projected onto an orthogonal complement, progressively reducing the residual degrees of freedom and eliminating forward transfer by forbidding overlap in shared representations. In this work, we introduce ELLA, a training framework built on the principle of selective subspace de-correlation. Rather than forbidding all overlap, ELLA explicitly characterizes the structure of past updates and penalizes alignments along their high-energy, task-specific directions, while preserving freedom in the low-energy residual subspaces to enable transfer. Formally, this is realized via a lightweight regularizer on a single aggregated update matrix. We prove this mechanism corresponds to an anisotropic shrinkage operator that bounds interference, yielding a penalty that is both memory- and compute-constant regardless of task sequence length. ELLA requires no data replay, no architectural expansion, and negligible storage. Empirically, it achieves state-of-the-art CL performance on three popular benchmarks, with relative accuracy gains of up to $9.6\%$ and a $35\times$ smaller memory footprint. Further, ELLA scales robustly across architectures and actively enhances the model's zero-shot generalization performance on unseen tasks, establishing a principled and scalable solution for constructive lifelong LLM adaptation.
☆ Quantized SO(3)-Equivariant Graph Neural Networks for Efficient Molecular Property Prediction
Deploying 3D graph neural networks (GNNs) that are equivariant to 3D rotations (the group SO(3)) on edge devices is challenging due to their high computational cost. This paper addresses the problem by compressing and accelerating an SO(3)-equivariant GNN using low-bit quantization techniques. Specifically, we introduce three innovations for quantized equivariant transformers: (1) a magnitude-direction decoupled quantization scheme that separately quantizes the norm and orientation of equivariant (vector) features, (2) a branch-separated quantization-aware training strategy that treats invariant and equivariant feature channels differently in an attention-based $SO(3)$-GNN, and (3) a robustness-enhancing attention normalization mechanism that stabilizes low-precision attention computations. Experiments on the QM9 and rMD17 molecular benchmarks demonstrate that our 8-bit models achieve accuracy on energy and force predictions comparable to full-precision baselines with markedly improved efficiency. We also conduct ablation studies to quantify the contribution of each component to maintain accuracy and equivariance under quantization, using the Local error of equivariance (LEE) metric. The proposed techniques enable the deployment of symmetry-aware GNNs in practical chemistry applications with 2.37--2.73x faster inference and 4x smaller model size, without sacrificing accuracy or physical symmetry.
☆ CORE: Code-based Inverse Self-Training Framework with Graph Expansion for Virtual Agents
The development of Multimodal Virtual Agents has made significant progress through the integration of Multimodal Large Language Models. However, mainstream training paradigms face key challenges: Behavior Cloning is simple and effective through imitation but suffers from low behavioral diversity, while Reinforcement Learning is capable of discovering novel strategies through exploration but heavily relies on manually designed reward functions. To address the conflict between these two methods, we present CORE, a Code-based Inverse Self-Training Framework with Graph Expansion that bridges imitation and exploration, offering a novel training framework that promotes behavioral diversity while eliminating the reliance on manually reward design. Specifically, we introduce Semantic Code Abstraction to automatically infers reward functions from expert demonstrations without manual design. The inferred reward function, referred to as the Label Function, is executable code that verifies one key step within a task. Building on this, we propose Strategy Graph Expansion to enhance in-domain behavioral diversity, which constructs a multi-path graph called Strategy Graph that captures diverse valid solutions beyond expert demonstrations. Furthermore, we introduce Trajectory-Guided Extrapolation, which enriches out-of-domain behavioral diversity by utilizing both successful and failed trajectories to expand the task space. Experiments on Web and Android platforms demonstrate that CORE significantly improves both overall performance and generalization, highlighting its potential as a robust and generalizable training paradigm for building powerful virtual agents.
comment: 19 pages, 12 figures
☆ Mind the Gap: Continuous Magnification Sampling for Pathology Foundation Models
In histopathology, pathologists examine both tissue architecture at low magnification and fine-grained morphology at high magnification. Yet, the performance of pathology foundation models across magnifications and the effect of magnification sampling during training remain poorly understood. We model magnification sampling as a multi-source domain adaptation problem and develop a simple theoretical framework that reveals systematic trade-offs between sampling strategies. We show that the widely used discrete uniform sampling of magnifications (0.25, 0.5, 1.0, 2.0 mpp) leads to degradation at intermediate magnifications. We introduce continuous magnification sampling, which removes gaps in magnification coverage while preserving performance at standard scales. Further, we derive sampling distributions that optimize representation quality across magnification scales. To evaluate these strategies, we introduce two new benchmarks (TCGA-MS, BRACS-MS) with appropriate metrics. Our experiments show that continuous sampling substantially improves over discrete sampling at intermediate magnifications, with gains of up to 4 percentage points in balanced classification accuracy, and that optimized distributions can further improve performance. Finally, we evaluate current histopathology foundation models, finding that magnification is a primary driver of performance variation across models. Our work paves the way towards future pathology foundation models that perform reliably across magnifications.
☆ ACDZero: Graph-Embedding-Based Tree Search for Mastering Automated Cyber Defense
Automated cyber defense (ACD) seeks to protect computer networks with minimal or no human intervention, reacting to intrusions by taking corrective actions such as isolating hosts, resetting services, deploying decoys, or updating access controls. However, existing approaches for ACD, such as deep reinforcement learning (RL), often face difficult exploration in complex networks with large decision/state spaces and thus require an expensive amount of samples. Inspired by the need to learn sample-efficient defense policies, we frame ACD in CAGE Challenge 4 (CAGE-4 / CC4) as a context-based partially observable Markov decision problem and propose a planning-centric defense policy based on Monte Carlo Tree Search (MCTS). It explicitly models the exploration-exploitation tradeoff in ACD and uses statistical sampling to guide exploration and decision making. We make novel use of graph neural networks (GNNs) to embed observations from the network as attributed graphs, to enable permutation-invariant reasoning over hosts and their relationships. To make our solution practical in complex search spaces, we guide MCTS with learned graph embeddings and priors over graph-edit actions, combining model-free generalization and policy distillation with look-ahead planning. We evaluate the resulting agent on CC4 scenarios involving diverse network structures and adversary behaviors, and show that our search-guided, graph-embedding-based planning improves defense reward and robustness relative to state-of-the-art RL baselines.
☆ Learning with Monotone Adversarial Corruptions
We study the extent to which standard machine learning algorithms rely on exchangeability and independence of data by introducing a monotone adversarial corruption model. In this model, an adversary, upon looking at a "clean" i.i.d. dataset, inserts additional "corrupted" points of their choice into the dataset. These added points are constrained to be monotone corruptions, in that they get labeled according to the ground-truth target function. Perhaps surprisingly, we demonstrate that in this setting, all known optimal learning algorithms for binary classification can be made to achieve suboptimal expected error on a new independent test point drawn from the same distribution as the clean dataset. On the other hand, we show that uniform convergence-based algorithms do not degrade in their guarantees. Our results showcase how optimal learning algorithms break down in the face of seemingly helpful monotone corruptions, exposing their overreliance on exchangeability.
☆ QuIC: A Quantum-Inspired Interaction Classifier for Revitalizing Shallow CNNs in Fine-Grained Recognition
Deploying deep learning models for Fine-Grained Visual Classification (FGVC) on resource-constrained edge devices remains a significant challenge. While deep architectures achieve high accuracy on benchmarks like CUB-200-2011, their computational cost is often prohibitive. Conversely, shallow networks (e.g., AlexNet, VGG) offer efficiency but fail to distinguish visually similar sub-categories. This is because standard Global Average Pooling (GAP) heads capture only first-order statistics, missing the subtle high-order feature interactions required for FGVC. While Bilinear CNNs address this, they suffer from high feature dimensionality and instability during training. To bridge this gap, we propose the Quantum-inspired Interaction Classifier (QuIC). Drawing inspiration from quantum mechanics, QuIC models feature channels as interacting quantum states and captures second-order feature covariance via a learnable observable operator. Designed as a lightweight, plug-and-play module, QuIC supports stable, single-stage end-to-end training without exploding feature dimensions. Experimental results demonstrate that QuIC significantly revitalizes shallow backbones: it boosts the Top-1 accuracy of VGG16 by nearly 20% and outperforms state-of-the-art attention mechanisms (SE-Block) on ResNet18. Qualitative analysis, including t-SNE visualization, further confirms that QuIC resolves ambiguous cases by explicitly attending to fine-grained discriminative features and enforcing compact intra-class clustering.
☆ FormationEval, an open multiple-choice benchmark for petroleum geoscience
This paper presents FormationEval, an open multiple-choice question benchmark for evaluating language models on petroleum geoscience and subsurface disciplines. The dataset contains 505 questions across seven domains including petrophysics, petroleum geology and reservoir engineering, derived from three authoritative sources using a reasoning model with detailed instructions and a concept-based approach that avoids verbatim copying of copyrighted text. Each question includes source metadata to support traceability and audit. The evaluation covers 72 models from major providers including OpenAI, Anthropic, Google, Meta and open-weight alternatives. The top performers achieve over 97\% accuracy, with Gemini 3 Pro Preview reaching 99.8\%, while tier and domain gaps persist. Among open-weight models, GLM-4.7 leads at 98.6\%, with several DeepSeek, Llama, Qwen and Mistral models also exceeding 93\%. The performance gap between open-weight and closed models is narrower than expected, with several lower-cost open-weight models exceeding 90\% accuracy. Petrophysics emerges as the most challenging domain across all models, while smaller models show wider performance variance. Residual length bias in the dataset (correct answers tend to be longer) is documented along with bias mitigation strategies applied during construction. The benchmark, evaluation code and results are publicly available.
comment: 24 pages, 8 figures, 10 tables; benchmark and code at https://github.com/AlmazErmilov/FormationEval-an-Open-Benchmark-for-Oil-Gas-Geoscience-MCQ-Evaluation
☆ Entropy-Adaptive Fine-Tuning: Resolving Confident Conflicts to Mitigate Forgetting
Supervised Fine-Tuning (SFT) is the standard paradigm for domain adaptation, yet it frequently incurs the cost of catastrophic forgetting. In sharp contrast, on-policy Reinforcement Learning (RL) effectively preserves general capabilities. We investigate this discrepancy and identify a fundamental distributional gap: while RL aligns with the model's internal belief, SFT forces the model to fit external supervision. This mismatch often manifests as "Confident Conflicts" tokens characterized by low probability but low entropy. In these instances, the model is highly confident in its own prediction but is forced to learn a divergent ground truth, triggering destructive gradient updates. To address this, we propose Entropy-Adaptive Fine-Tuning (EAFT). Unlike methods relying solely on prediction probability, EAFT utilizes token-level entropy as a gating mechanism to distinguish between epistemic uncertainty and knowledge conflict. This allows the model to learn from uncertain samples while suppressing gradients on conflicting data. Extensive experiments on Qwen and GLM series (ranging from 4B to 32B parameters) across mathematical, medical, and agentic domains confirm our hypothesis. EAFT consistently matches the downstream performance of standard SFT while significantly mitigating the degradation of general capabilities.
☆ BiPrompt: Bilateral Prompt Optimization for Visual and Textual Debiasing in Vision-Language Models AAAI 2026
Vision language foundation models such as CLIP exhibit impressive zero-shot generalization yet remain vulnerable to spurious correlations across visual and textual modalities. Existing debiasing approaches often address a single modality either visual or textual leading to partial robustness and unstable adaptation under distribution shifts. We propose a bilateral prompt optimization framework (BiPrompt) that simultaneously mitigates non-causal feature reliance in both modalities during test-time adaptation. On the visual side, it employs structured attention-guided erasure to suppress background activations and enforce orthogonal prediction consistency between causal and spurious regions. On the textual side, it introduces balanced prompt normalization, a learnable re-centering mechanism that aligns class embeddings toward an isotropic semantic space. Together, these modules jointly minimize conditional mutual information between spurious cues and predictions, steering the model toward causal, domain invariant reasoning without retraining or domain supervision. Extensive evaluations on real-world and synthetic bias benchmarks demonstrate consistent improvements in both average and worst-group accuracies over prior test-time debiasing methods, establishing a lightweight yet effective path toward trustworthy and causally grounded vision-language adaptation.
comment: Accepted at the AAAI 2026 Workshop AIR-FM, Assessing and Improving Reliability of Foundation Models in the Real World
☆ Feature-based Inversion of 2.5D Controlled Source Electromagnetic Data using Generative Priors
In this study, we investigate feature-based 2.5D controlled source marine electromagnetic (mCSEM) data inversion using generative priors. Two-and-half dimensional modeling using finite difference method (FDM) is adopted to compute the response of horizontal electric dipole (HED) excitation. Rather than using a neural network to approximate the entire inverse mapping in a black-box manner, we adopt a plug-andplay strategy in which a variational autoencoder (VAE) is used solely to learn prior information on conductivity distributions. During the inversion process, the conductivity model is iteratively updated using the Gauss Newton method, while the model space is constrained by projections onto the learned VAE decoder. This framework preserves explicit control over data misfit and enables flexible adaptation to different survey configurations. Numerical and field experiments demonstrate that the proposed approach effectively incorporates prior information, improves reconstruction accuracy, and exhibits good generalization performance.
☆ Edge-aware GAT-based protein binding site prediction
Accurate identification of protein binding sites is crucial for understanding biomolecular interaction mechanisms and for the rational design of drug targets. Traditional predictive methods often struggle to balance prediction accuracy with computational efficiency when capturing complex spatial conformations. To address this challenge, we propose an Edge-aware Graph Attention Network (Edge-aware GAT) model for the fine-grained prediction of binding sites across various biomolecules, including proteins, DNA/RNA, ions, ligands, and lipids. Our method constructs atom-level graphs and integrates multidimensional structural features, including geometric descriptors, DSSP-derived secondary structure, and relative solvent accessibility (RSA), to generate spatially aware embedding vectors. By incorporating interatomic distances and directional vectors as edge features within the attention mechanism, the model significantly enhances its representation capacity. On benchmark datasets, our model achieves an ROC-AUC of 0.93 for protein-protein binding site prediction, outperforming several state-of-the-art methods. The use of directional tensor propagation and residue-level attention pooling further improves both binding site localization and the capture of local structural details. Visualizations using PyMOL confirm the model's practical utility and interpretability. To facilitate community access and application, we have deployed a publicly accessible web server at http://119.45.201.89:5000/. In summary, our approach offers a novel and efficient solution that balances prediction accuracy, generalization, and interpretability for identifying functional sites in proteins.
comment: 24 pages, 10 figures, 6 tables
☆ Car Drag Coefficient Prediction from 3D Point Clouds Using a Slice-Based Surrogate Model
The automotive industry's pursuit of enhanced fuel economy and performance necessitates efficient aerodynamic design. However, traditional evaluation methods such as computational fluid dynamics (CFD) and wind tunnel testing are resource intensive, hindering rapid iteration in the early design stages. Machine learning-based surrogate models offer a promising alternative, yet many existing approaches suffer from high computational complexity, limited interpretability, or insufficient accuracy for detailed geometric inputs. This paper introduces a novel lightweight surrogate model for the prediction of the aerodynamic drag coefficient (Cd) based on a sequential slice-wise processing of the geometry of the 3D vehicle. Inspired by medical imaging, 3D point clouds of vehicles are decomposed into an ordered sequence of 2D cross-sectional slices along the stream-wise axis. Each slice is encoded by a lightweight PointNet2D module, and the sequence of slice embeddings is processed by a bidirectional LSTM to capture longitudinal geometric evolution. The model, trained and evaluated on the DrivAerNet++ dataset, achieves a high coefficient of determination (R^2 > 0.9528) and a low mean absolute error (MAE approx 6.046 x 10^{-3}) in Cd prediction. With an inference time of approximately 0.025 seconds per sample on a consumer-grade GPU, our approach provides fast, accurate, and interpretable aerodynamic feedback, facilitating more agile and informed automotive design exploration.
comment: 14 pages, 5 figures. Published in: Bramer M., Stahl F. (eds) Artificial Intelligence XLII. SGAI 2025. Lecture Notes in Computer Science, vol 16302. Springer, Cham
☆ Prototype-Based Learning for Healthcare: A Demonstration of Interpretable AI ICDM
Despite recent advances in machine learning and explainable AI, a gap remains in personalized preventive healthcare: predictions, interventions, and recommendations should be both understandable and verifiable for all stakeholders in the healthcare sector. We present a demonstration of how prototype-based learning can address these needs. Our proposed framework, ProtoPal, features both front- and back-end modes; it achieves superior quantitative performance while also providing an intuitive presentation of interventions and their simulated outcomes.
comment: Accepted to the Demo Track at the IEEE International Conference on Data Mining (ICDM) 2025, where it received the Best Demo Award
☆ LION-DG: Layer-Informed Initialization with Deep Gradient Protocols for Accelerated Neural Network Training
Weight initialization remains decisive for neural network optimization, yet existing methods are largely layer-agnostic. We study initialization for deeply-supervised architectures with auxiliary classifiers, where untrained auxiliary heads can destabilize early training through gradient interference. We propose LION-DG, a layer-informed initialization that zero-initializes auxiliary classifier heads while applying standard He-initialization to the backbone. We prove that this implements Gradient Awakening: auxiliary gradients are exactly zero at initialization, then phase in naturally as weights grow -- providing an implicit warmup without hyperparameters. Experiments on CIFAR-10 and CIFAR-100 with DenseNet-DS and ResNet-DS architectures demonstrate: (1) DenseNet-DS: +8.3% faster convergence on CIFAR-10 with comparable accuracy, (2) Hybrid approach: Combining LSUV with LION-DG achieves best accuracy (81.92% on CIFAR-10), (3) ResNet-DS: Positive speedup on CIFAR-100 (+11.3%) with side-tap auxiliary design. We identify architecture-specific trade-offs and provide clear guidelines for practitioners. LION-DG is simple, requires zero hyperparameters, and adds no computational overhead.
☆ Horizon Activation Mapping for Neural Networks in Time Series Forecasting
Neural networks for time series forecasting have relied on error metrics and architecture-specific interpretability approaches for model selection that don't apply across models of different families. To interpret forecasting models agnostic to the types of layers across state-of-the-art model families, we introduce Horizon Activation Mapping (HAM), a visual interpretability technique inspired by grad-CAM that uses gradient norm averages to study the horizon's subseries where grad-CAM studies attention maps over image data. We introduce causal and anti-causal modes to calculate gradient update norm averages across subseries at every timestep and lines of proportionality signifying uniform distributions of the norm averages. Optimization landscape studies with respect to changes in batch sizes, early stopping, train-val-test splits, univariate forecasting and dropouts are studied with respect to performances and subseries in HAM. Interestingly, batch size based differences in activities seem to indicate potential for existence of an exponential approximation across them per epoch relative to each other. Multivariate forecasting models including MLP-based CycleNet, N-Linear, N-HITS, self attention-based FEDformer, Pyraformer, SSM-based SpaceTime and diffusion-based Multi-Resolution DDPM over different horizon sizes trained over the ETTm2 dataset are used for HAM plots in this study. NHITS' neural approximation theorem and SpaceTime's exponential autoregressive activities have been attributed to trends in HAM plots over their training, validation and test sets. In general, HAM can be used for granular model selection, validation set choices and comparisons across different neural network model families.
☆ A Differentiable Adversarial Framework for Task-Aware Data Subsampling
The proliferation of large-scale datasets poses a major computational challenge to model training. The traditional data subsampling method works as a static, task independent preprocessing step which usually discards information that is critical to downstream prediction. In this paper, we introduces the antagonistic soft selection subsampling (ASSS) framework as is a novel paradigm that reconstructs data reduction into a differentiable end-to-end learning problem. ASSS uses the adversarial game between selector network and task network, and selector network learning assigns continuous importance weights to samples. This direct optimization implemented by Gumbel-Softmax relaxation allows the selector to identify and retain samples with the maximum amount of information for a specific task target under the guidance of the loss function that balances the fidelity and sparsity of the prediction. Theoretical analysis links this framework with the information bottleneck principle. Comprehensive experiments on four large-scale real world datasets show that ASSS has always been better than heuristic subsampling baselines such as clustering and nearest neighbor thinning in maintaining model performance. It is worth noting that ASSS can not only match, but also sometimes exceed the training performance of the entire dataset, showcasing the effect of intelligent denoising. This work establishes task aware data subsampling as a learnable component, providing a principled solution for effective large-scale data learning.
comment: 14 pages
☆ The Homogeneity Trap: Spectral Collapse in Doubly-Stochastic Deep Networks
Doubly-stochastic matrices (DSM) are increasingly utilized in structure-preserving deep architectures -- such as Optimal Transport layers and Sinkhorn-based attention -- to enforce numerical stability and probabilistic interpretability. In this work, we identify a critical spectral degradation phenomenon inherent to these constraints, termed the Homogeneity Trap. We demonstrate that the maximum-entropy bias, typical of Sinkhorn-based projections, drives the mixing operator towards the uniform barycenter, thereby suppressing the subdominant singular value σ_2 and filtering out high-frequency feature components. We derive a spectral bound linking σ_2 to the network's effective depth, showing that high-entropy constraints restrict feature transformation to a shallow effective receptive field. Furthermore, we formally demonstrate that Layer Normalization fails to mitigate this collapse in noise-dominated regimes; specifically, when spectral filtering degrades the Signal-to-Noise Ratio (SNR) below a critical threshold, geometric structure is irreversibly lost to noise-induced orthogonal collapse. Our findings highlight a fundamental trade-off between entropic stability and spectral expressivity in DSM-constrained networks.
☆ MDAgent2: Large Language Model for Code Generation and Knowledge Q&A in Molecular Dynamics
Molecular dynamics (MD) simulations are essential for understanding atomic-scale behaviors in materials science, yet writing LAMMPS scripts remains highly specialized and time-consuming tasks. Although LLMs show promise in code generation and domain-specific question answering, their performance in MD scenarios is limited by scarce domain data, the high deployment cost of state-of-the-art LLMs, and low code executability. Building upon our prior MDAgent, we present MDAgent2, the first end-to-end framework capable of performing both knowledge Q&A and code generation within the MD domain. We construct a domain-specific data-construction pipeline that yields three high-quality datasets spanning MD knowledge, question answering, and code generation. Based on these datasets, we adopt a three stage post-training strategy--continued pre-training (CPT), supervised fine-tuning (SFT), and reinforcement learning (RL)--to train two domain-adapted models, MD-Instruct and MD-Code. Furthermore, we introduce MD-GRPO, a closed-loop RL method that leverages simulation outcomes as reward signals and recycles low-reward trajectories for continual refinement. We further build MDAgent2-RUNTIME, a deployable multi-agent system that integrates code generation, execution, evaluation, and self-correction. Together with MD-EvalBench proposed in this work, the first benchmark for LAMMPS code generation and question answering, our models and system achieve performance surpassing several strong baselines.This work systematically demonstrates the adaptability and generalization capability of large language models in industrial simulation tasks, laying a methodological foundation for automatic code generation in AI for Science and industrial-scale simulations. URL: https://github.com/FredericVAN/PKU_MDAgent2
comment: 24 pages,4 figures
☆ Higher-Order Action Regularization in Deep Reinforcement Learning: From Continuous Control to Building Energy Management NeurIPS
Deep reinforcement learning agents often exhibit erratic, high-frequency control behaviors that hinder real-world deployment due to excessive energy consumption and mechanical wear. We systematically investigate action smoothness regularization through higher-order derivative penalties, progressing from theoretical understanding in continuous control benchmarks to practical validation in building energy management. Our comprehensive evaluation across four continuous control environments demonstrates that third-order derivative penalties (jerk minimization) consistently achieve superior smoothness while maintaining competitive performance. We extend these findings to HVAC control systems where smooth policies reduce equipment switching by 60%, translating to significant operational benefits. Our work establishes higher-order action regularization as an effective bridge between RL optimization and operational constraints in energy-critical applications.
comment: 6 pages, accepted at NeurIPS workshop 2025
☆ Explore the Ideology of Deep Learning in ENSO Forecasts
The El Ni{~n}o-Southern Oscillation (ENSO) exerts profound influence on global climate variability, yet its prediction remains a grand challenge. Recent advances in deep learning have significantly improved forecasting skill, but the opacity of these models hampers scientific trust and operational deployment. Here, we introduce a mathematically grounded interpretability framework based on bounded variation function. By rescuing the "dead" neurons from the saturation zone of the activation function, we enhance the model's expressive capacity. Our analysis reveals that ENSO predictability emerges dominantly from the tropical Pacific, with contributions from the Indian and Atlantic Oceans, consistent with physical understanding. Controlled experiments affirm the robustness of our method and its alignment with established predictors. Notably, we probe the persistent Spring Predictability Barrier (SPB), finding that despite expanded sensitivity during spring, predictive performance declines-likely due to suboptimal variable selection. These results suggest that incorporating additional ocean-atmosphere variables may help transcend SPB limitations and advance long-range ENSO prediction.
comment: 5 figures. Code available at https://github.com/liuxingguo9349/pptv-enso-env
☆ Multivariate Time-series Anomaly Detection via Dynamic Model Pool & Ensembling
Multivariate time-series (MTS) anomaly detection is critical in domains such as service monitor, IoT, and network security. While multi-model methods based on selection or ensembling outperform single-model ones, they still face limitations: (i) selection methods rely on a single chosen model and are sensitive to the strategy; (ii) ensembling methods often combine all models or are restricted to univariate data; and (iii) most methods depend on fixed data dimensionality, limiting scalability. To address these, we propose DMPEAD, a Dynamic Model Pool and Ensembling framework for MTS Anomaly Detection. The framework first (i) constructs a diverse model pool via parameter transfer and diversity metric, then (ii) updates it with a meta-model and similarity-based strategy for adaptive pool expansion, subset selection, and pool merging, finally (iii) ensembles top-ranked models through proxy metric ranking and top-k aggregation in the selected subset, outputting the final anomaly detection result. Extensive experiments on 8 real-world datasets show that our model outperforms all baselines, demonstrating superior adaptability and scalability.
☆ GDRO: Group-level Reward Post-training Suitable for Diffusion Models
Recent advancements adopt online reinforcement learning (RL) from LLMs to text-to-image rectified flow diffusion models for reward alignment. The use of group-level rewards successfully aligns the model with the targeted reward. However, it faces challenges including low efficiency, dependency on stochastic samplers, and reward hacking. The problem is that rectified flow models are fundamentally different from LLMs: 1) For efficiency, online image sampling takes much more time and dominates the time of training. 2) For stochasticity, rectified flow is deterministic once the initial noise is fixed. Aiming at these problems and inspired by the effects of group-level rewards from LLMs, we design Group-level Direct Reward Optimization (GDRO). GDRO is a new post-training paradigm for group-level reward alignment that combines the characteristics of rectified flow models. Through rigorous theoretical analysis, we point out that GDRO supports full offline training that saves the large time cost for image rollout sampling. Also, it is diffusion-sampler-independent, which eliminates the need for the ODE-to-SDE approximation to obtain stochasticity. We also empirically study the reward hacking trap that may mislead the evaluation, and involve this factor in the evaluation using a corrected score that not only considers the original evaluation reward but also the trend of reward hacking. Extensive experiments demonstrate that GDRO effectively and efficiently improves the reward score of the diffusion model through group-wise offline optimization across the OCR and GenEval tasks, while demonstrating strong stability and robustness in mitigating reward hacking.
☆ Output Embedding Centering for Stable LLM Pretraining
Pretraining of large language models is not only expensive but also prone to certain training instabilities. A specific instability that often occurs for large learning rates at the end of training is output logit divergence. The most widely used mitigation strategy, z-loss, merely addresses the symptoms rather than the underlying cause of the problem. In this paper, we analyze the instability from the perspective of the output embeddings' geometry and identify its cause. Based on this, we propose output embedding centering (OEC) as a new mitigation strategy, and prove that it suppresses output logit divergence. OEC can be implemented in two different ways, as a deterministic operation called μ-centering, or a regularization method called μ-loss. Our experiments show that both variants outperform z-loss in terms of training stability and learning rate sensitivity. In particular, they ensure that training converges even for large learning rates when z-loss fails. Furthermore, we find that μ-loss is significantly less sensitive to regularization hyperparameter tuning than z-loss.
comment: 11 pages, 5 figures
☆ Prior Diffusiveness and Regret in the Linear-Gaussian Bandit
We prove that Thompson sampling exhibits $\tilde{O}(σd \sqrt{T} + d r \sqrt{\mathrm{Tr}(Σ_0)})$ Bayesian regret in the linear-Gaussian bandit with a $\mathcal{N}(μ_0, Σ_0)$ prior distribution on the coefficients, where $d$ is the dimension, $T$ is the time horizon, $r$ is the maximum $\ell_2$ norm of the actions, and $σ^2$ is the noise variance. In contrast to existing regret bounds, this shows that to within logarithmic factors, the prior-dependent ``burn-in'' term $d r \sqrt{\mathrm{Tr}(Σ_0)}$ decouples additively from the minimax (long run) regret $σd \sqrt{T}$. Previous regret bounds exhibit a multiplicative dependence on these terms. We establish these results via a new ``elliptical potential'' lemma, and also provide a lower bound indicating that the burn-in term is unavoidable.
☆ Enhancing Object Detection with Privileged Information: A Model-Agnostic Teacher-Student Approach
This paper investigates the integration of the Learning Using Privileged Information (LUPI) paradigm in object detection to exploit fine-grained, descriptive information available during training but not at inference. We introduce a general, model-agnostic methodology for injecting privileged information-such as bounding box masks, saliency maps, and depth cues-into deep learning-based object detectors through a teacher-student architecture. Experiments are conducted across five state-of-the-art object detection models and multiple public benchmarks, including UAV-based litter detection datasets and Pascal VOC 2012, to assess the impact on accuracy, generalization, and computational efficiency. Our results demonstrate that LUPI-trained students consistently outperform their baseline counterparts, achieving significant boosts in detection accuracy with no increase in inference complexity or model size. Performance improvements are especially marked for medium and large objects, while ablation studies reveal that intermediate weighting of teacher guidance optimally balances learning from privileged and standard inputs. The findings affirm that the LUPI framework provides an effective and practical strategy for advancing object detection systems in both resource-constrained and real-world settings.
comment: Code available on GitHub: https://github.com/mbar0075/lupi-for-object-detection
☆ SerpentFlow: Generative Unpaired Domain Alignment via Shared-Structure Decomposition
Domain alignment refers broadly to learning correspondences between data distributions from distinct domains. In this work, we focus on a setting where domains share underlying structural patterns despite differences in their specific realizations. The task is particularly challenging in the absence of paired observations, which removes direct supervision across domains. We introduce a generative framework, called SerpentFlow (SharEd-structuRe decomPosition for gEnerative domaiN adapTation), for unpaired domain alignment. SerpentFlow decomposes data within a latent space into a shared component common to both domains and a domain-specific one. By isolating the shared structure and replacing the domain-specific component with stochastic noise, we construct synthetic training pairs between shared representations and target-domain samples, thereby enabling the use of conditional generative models that are traditionally restricted to paired settings. We apply this approach to super-resolution tasks, where the shared component naturally corresponds to low-frequency content while high-frequency details capture domain-specific variability. The cutoff frequency separating low- and high-frequency components is determined automatically using a classifier-based criterion, ensuring a data-driven and domain-adaptive decomposition. By generating pseudo-pairs that preserve low-frequency structures while injecting stochastic high-frequency realizations, we learn the conditional distribution of the target domain given the shared representation. We implement SerpentFlow using Flow Matching as the generative pipeline, although the framework is compatible with other conditional generative approaches. Experiments on synthetic images, physical process simulations, and a climate downscaling task demonstrate that the method effectively reconstructs high-frequency structures consistent with underlying low-frequency patterns, supporting shared-structure decomposition as an effective strategy for unpaired domain alignment.
☆ A Multilayered Approach to Classifying Customer Responsiveness and Credit Risk
This study evaluates the performance of various classifiers in three distinct models: response, risk, and response-risk, concerning credit card mail campaigns and default prediction. In the response model, the Extra Trees classifier demonstrates the highest recall level (79.1%), emphasizing its effectiveness in identifying potential responders to targeted credit card offers. Conversely, in the risk model, the Random Forest classifier exhibits remarkable specificity of 84.1%, crucial for identifying customers least likely to default. Furthermore, in the multi-class response-risk model, the Random Forest classifier achieves the highest accuracy (83.2%), indicating its efficacy in discerning both potential responders to credit card mail campaign and low-risk credit card users. In this study, we optimized various performance metrics to solve a specific credit risk and mail responsiveness business problem.
☆ Refinement Provenance Inference: Detecting LLM-Refined Training Prompts from Model Behavior
Instruction tuning increasingly relies on LLM-based prompt refinement, where prompts in the training corpus are selectively rewritten by an external refiner to improve clarity and instruction alignment. This motivates an instance-level audit problem: for a fine-tuned model and a training prompt-response pair, can we infer whether the model was trained on the original prompt or its LLM-refined version within a mixed corpus? This matters for dataset governance and dispute resolution when training data are contested. However, it is non-trivial in practice: refined and raw instances are interleaved in the training corpus with unknown, source-dependent mixture ratios, making it harder to develop provenance methods that generalize across models and training setups. In this paper, we formalize this audit task as Refinement Provenance Inference (RPI) and show that prompt refinement yields stable, detectable shifts in teacher-forced token distributions, even when semantic differences are not obvious. Building on this phenomenon, we propose RePro, a logit-based provenance framework that fuses teacher-forced likelihood features with logit-ranking signals. During training, RePro learns a transferable representation via shadow fine-tuning, and uses a lightweight linear head to infer provenance on unseen victims without training-data access. Empirically, RePro consistently attains strong performance and transfers well across refiners, suggesting that it exploits refiner-agnostic distribution shifts rather than rewrite-style artifacts.
☆ Forget Less by Learning Together through Concept Consolidation WACV-26
Custom Diffusion Models (CDMs) have gained significant attention due to their remarkable ability to personalize generative processes. However, existing CDMs suffer from catastrophic forgetting when continuously learning new concepts. Most prior works attempt to mitigate this issue under the sequential learning setting with a fixed order of concept inflow and neglect inter-concept interactions. In this paper, we propose a novel framework - Forget Less by Learning Together (FL2T) - that enables concurrent and order-agnostic concept learning while addressing catastrophic forgetting. Specifically, we introduce a set-invariant inter-concept learning module where proxies guide feature selection across concepts, facilitating improved knowledge retention and transfer. By leveraging inter-concept guidance, our approach preserves old concepts while efficiently incorporating new ones. Extensive experiments, across three datasets, demonstrates that our method significantly improves concept retention and mitigates catastrophic forgetting, highlighting the effectiveness of inter-concept catalytic behavior in incremental concept learning of ten tasks with at least 2% gain on average CLIP Image Alignment scores.
comment: Accepted at WACV-26
☆ SynRXN: An Open Benchmark and Curated Dataset for Computational Reaction Modeling
We present SynRXN, a unified benchmarking framework and open-data resource for computer-aided synthesis planning (CASP). SynRXN decomposes end-to-end synthesis planning into five task families, covering reaction rebalancing, atom-to-atom mapping, reaction classification, reaction property prediction, and synthesis route design. Curated, provenance-tracked reaction corpora are assembled from heterogeneous public sources into a harmonized representation and packaged as versioned datasets for each task family, with explicit source metadata, licence tags, and machine-readable manifests that record checksums, and row counts. For every task, SynRXN provides transparent splitting functions that generate leakage-aware train, validation, and test partitions, together with standardized evaluation workflows and metric suites tailored to classification, regression, and structured prediction settings. For sensitive benchmarking, we combine public training and validation data with held-out gold-standard test sets, and contamination-prone tasks such as reaction rebalancing and atom-to-atom mapping are distributed only as evaluation sets and are explicitly not intended for model training. Scripted build recipes enable bitwise-reproducible regeneration of all corpora across machines and over time, and the entire resource is released under permissive open licences to support reuse and extension. By removing dataset heterogeneity and packaging transparent, reusable evaluation scaffolding, SynRXN enables fair longitudinal comparison of CASP methods, supports rigorous ablations and stress tests along the full reaction-informatics pipeline, and lowers the barrier for practitioners who seek robust and comparable performance estimates for real-world synthesis planning workloads.
comment: 31 pages (including references), 3 figures, 7 tables
☆ DéjàQ: Open-Ended Evolution of Diverse, Learnable and Verifiable Problems
Recent advances in reasoning models have yielded impressive results in mathematics and coding. However, most approaches rely on static datasets, which have been suggested to encourage memorisation and limit generalisation. We introduce DéjàQ, a framework that departs from this paradigm by jointly evolving a diverse set of synthetic mathematical problems alongside model training. This evolutionary process adapts to the model's ability throughout training, optimising problems for learnability. We propose two LLM-driven mutation strategies in which the model itself mutates the training data, either by altering contextual details or by directly modifying problem structure. We find that the model can generate novel and meaningful problems, and that these LLM-driven mutations improve RL training. We analyse key aspects of DéjàQ, including the validity of generated problems and computational overhead. Our results underscore the potential of dynamically evolving training data to enhance mathematical reasoning and indicate broader applicability, which we will support by open-sourcing our code.
☆ Theoretical Convergence of SMOTE-Generated Samples
Imbalanced data affects a wide range of machine learning applications, from healthcare to network security. As SMOTE is one of the most popular approaches to addressing this issue, it is imperative to validate it not only empirically but also theoretically. In this paper, we provide a rigorous theoretical analysis of SMOTE's convergence properties. Concretely, we prove that the synthetic random variable Z converges in probability to the underlying random variable X. We further prove a stronger convergence in mean when X is compact. Finally, we show that lower values of the nearest neighbor rank lead to faster convergence offering actionable guidance to practitioners. The theoretical results are supported by numerical experiments using both real-life and synthetic data. Our work provides a foundational understanding that enhances data augmentation techniques beyond imbalanced data scenarios.
☆ Efficient temporal prediction of compressible flows in irregular domains using Fourier neural operators
This paper investigates the temporal evolution of high-speed compressible fluids in irregular flow fields using the Fourier Neural Operator (FNO). We reconstruct the irregular flow field point set into sequential format compatible with FNO input requirements, and then embed temporal bundling technique within a recurrent neural network (RNN) for multi-step prediction. We further employ a composite loss function to balance errors across different physical quantities. Experiments are conducted on three different types of irregular flow fields, including orthogonal and non-orthogonal grid configurations. Then we comprehensively analyze the physical component loss curves, flow field visualizations, and physical profiles. Results demonstrate that our approach significantly surpasses traditional numerical methods in computational efficiency while achieving high accuracy, with maximum relative $L_2$ errors of (0.78, 0.57, 0.35)% for ($p$, $T$, $\mathbf{u}$) respectively. This verifies that the method can efficiently and accurately simulate the temporal evolution of high-speed compressible flows in irregular domains.
comment: 18 pages, 15 figures
☆ A Defect is Being Born: How Close Are We? A Time Sensitive Forecasting Approach
Background. Defect prediction has been a highly active topic among researchers in the Empirical Software Engineering field. Previous literature has successfully achieved the most accurate prediction of an incoming fault and identified the features and anomalies that precede it through just-in-time prediction. As software systems evolve continuously, there is a growing need for time-sensitive methods capable of forecasting defects before they manifest. Aim. Our study seeks to explore the effectiveness of time-sensitive techniques for defect forecasting. Moreover, we aim to investigate the early indicators that precede the occurrence of a defect. Method. We will train multiple time-sensitive forecasting techniques to forecast the future bug density of a software project, as well as identify the early symptoms preceding the occurrence of a defect. Expected results. Our expected results are translated into empirical evidence on the effectiveness of our approach for early estimation of bug proneness.
comment: ACCEPTED REGISTERED REPORT AT SANER (CORE A*) 2026
☆ Distorted Distributional Policy Evaluation for Offline Reinforcement Learning ICONIP2025
While Distributional Reinforcement Learning (DRL) methods have demonstrated strong performance in online settings, its success in offline scenarios remains limited. We hypothesize that a key limitation of existing offline DRL methods lies in their approach to uniformly underestimate return quantiles. This uniform pessimism can lead to overly conservative value estimates, ultimately hindering generalization and performance. To address this, we introduce a novel concept called quantile distortion, which enables non-uniform pessimism by adjusting the degree of conservatism based on the availability of supporting data. Our approach is grounded in theoretical analysis and empirically validated, demonstrating improved performance over uniform pessimism.
comment: The preprint version of the paper accepted to ICONIP2025. The Version of Record is available online at https://link.springer.com/chapter/10.1007/978-981-95-4091-4_35
☆ Evaluating Feature Dependent Noise in Preference-based Reinforcement Learning
Learning from Preferences in Reinforcement Learning (PbRL) has gained attention recently, as it serves as a natural fit for complicated tasks where the reward function is not easily available. However, preferences often come with uncertainty and noise if they are not from perfect teachers. Much prior literature aimed to detect noise, but with limited types of noise and most being uniformly distributed with no connection to observations. In this work, we formalize the notion of targeted feature-dependent noise and propose several variants like trajectory feature noise, trajectory similarity noise, uncertainty-aware noise, and Language Model noise. We evaluate feature-dependent noise, where noise is correlated with certain features in complex continuous control tasks from DMControl and Meta-world. Our experiments show that in some feature-dependent noise settings, the state-of-the-art noise-robust PbRL method's learning performance is significantly deteriorated, while PbRL method with no explicit denoising can surprisingly outperform noise-robust PbRL in majority settings. We also find language model's noise exhibits similar characteristics to feature-dependent noise, thereby simulating realistic humans and call for further study in learning with feature-dependent noise robustly.
☆ TT-FSI: Scalable Faithful Shapley Interactions via Tensor-Train
The Faithful Shapley Interaction (FSI) index uniquely satisfies the faithfulness axiom among Shapley interaction indices, but computing FSI requires $O(d^\ell \cdot 2^d)$ time and existing implementations use $O(4^d)$ memory. We present TT-FSI, which exploits FSI's algebraic structure via Matrix Product Operators (MPO). Our main theoretical contribution is proving that the linear operator $v \mapsto \text{FSI}(v)$ admits an MPO representation with TT-rank $O(\ell d)$, enabling an efficient sweep algorithm with $O(\ell^2 d^3 \cdot 2^d)$ time and $O(\ell d^2)$ core storage an exponential improvement over existing methods. Experiments on six datasets ($d=8$ to $d=20$) demonstrate up to 280$\times$ speedup over baseline, 85$\times$ over SHAP-IQ, and 290$\times$ memory reduction. TT-FSI scales to $d=20$ (1M coalitions) where all competing methods fail.
☆ FedBiCross: A Bi-Level Optimization Framework to Tackle Non-IID Challenges in Data-Free One-Shot Federated Learning on Medical Data
Data-free knowledge distillation-based one-shot federated learning (OSFL) trains a model in a single communication round without sharing raw data, making OSFL attractive for privacy-sensitive medical applications. However, existing methods aggregate predictions from all clients to form a global teacher. Under non-IID data, conflicting predictions cancel out during averaging, yielding near-uniform soft labels that provide weak supervision for distillation. We propose FedBiCross, a personalized OSFL framework with three stages: (1) clustering clients by model output similarity to form coherent sub-ensembles, (2) bi-level cross-cluster optimization that learns adaptive weights to selectively leverage beneficial cross-cluster knowledge while suppressing negative transfer, and (3) personalized distillation for client-specific adaptation. Experiments on four medical image datasets demonstrate that FedBiCross consistently outperforms state-of-the-art baselines across different non-IID degrees.
☆ Forget Less by Learning from Parents Through Hierarchical Relationships AAAI-26
Custom Diffusion Models (CDMs) offer impressive capabilities for personalization in generative modeling, yet they remain vulnerable to catastrophic forgetting when learning new concepts sequentially. Existing approaches primarily focus on minimizing interference between concepts, often neglecting the potential for positive inter-concept interactions. In this work, we present Forget Less by Learning from Parents (FLLP), a novel framework that introduces a parent-child inter-concept learning mechanism in hyperbolic space to mitigate forgetting. By embedding concept representations within a Lorentzian manifold, naturally suited to modeling tree-like hierarchies, we define parent-child relationships in which previously learned concepts serve as guidance for adapting to new ones. Our method not only preserves prior knowledge but also supports continual integration of new concepts. We validate FLLP on three public datasets and one synthetic benchmark, showing consistent improvements in both robustness and generalization.
comment: Accepted at AAAI-26
☆ SafeLoad: Efficient Admission Control Framework for Identifying Memory-Overloading Queries in Cloud Data Warehouses VLDB 2026
Memory overload is a common form of resource exhaustion in cloud data warehouses. When database queries fail due to memory overload, it not only wastes critical resources such as CPU time but also disrupts the execution of core business processes, as memory-overloading (MO) queries are typically part of complex workflows. If such queries are identified in advance and scheduled to memory-rich serverless clusters, it can prevent resource wastage and query execution failure. Therefore, cloud data warehouses desire an admission control framework with high prediction precision, interpretability, efficiency, and adaptability to effectively identify MO queries. However, existing admission control frameworks primarily focus on scenarios like SLA satisfaction and resource isolation, with limited precision in identifying MO queries. Moreover, there is a lack of publicly available MO-labeled datasets with workloads for training and benchmarking. To tackle these challenges, we propose SafeLoad, the first query admission control framework specifically designed to identify MO queries. Alongside, we release SafeBench, an open-source, industrial-scale benchmark for this task, which includes 150 million real queries. SafeLoad first filters out memory-safe queries using the interpretable discriminative rule. It then applies a hybrid architecture that integrates both a global model and cluster-level models, supplemented by a misprediction correction module to identify MO queries. Additionally, a self-tuning quota management mechanism dynamically adjusts prediction quotas per cluster to improve precision. Experimental results show that SafeLoad achieves state-of-the-art prediction performance with low online and offline time overhead. Specifically, SafeLoad improves precision by up to 66% over the best baseline and reduces wasted CPU time by up to 8.09x compared to scenarios without SafeLoad.
comment: This paper has been accepted for presentation at VLDB 2026
☆ Safety at One Shot: Patching Fine-Tuned LLMs with A Single Instance
Fine-tuning safety-aligned large language models (LLMs) can substantially compromise their safety. Previous approaches require many safety samples or calibration sets, which not only incur significant computational overhead during realignment but also lead to noticeable degradation in model utility. Contrary to this belief, we show that safety alignment can be fully recovered with only a single safety example, without sacrificing utility and at minimal cost. Remarkably, this recovery is effective regardless of the number of harmful examples used in fine-tuning or the size of the underlying model, and convergence is achieved within just a few epochs. Furthermore, we uncover the low-rank structure of the safety gradient, which explains why such efficient correction is possible. We validate our findings across five safety-aligned LLMs and multiple datasets, demonstrating the generality of our approach.
☆ Random-Matrix-Induced Simplicity Bias in Over-parameterized Variational Quantum Circuits
Over-parameterization is commonly used to increase the expressivity of variational quantum circuits (VQCs), yet deeper and more highly parameterized circuits often exhibit poor trainability and limited generalization. In this work, we provide a theoretical explanation for this phenomenon from a function-class perspective. We show that sufficiently expressive, unstructured variational ansatze enter a Haar-like universality class in which both observable expectation values and parameter gradients concentrate exponentially with system size. As a consequence, the hypothesis class induced by such circuits collapses with high probability to a narrow family of near-constant functions, a phenomenon we term simplicity bias, with barren plateaus arising as a consequence rather than the root cause. Using tools from random matrix theory and concentration of measure, we rigorously characterize this universality class and establish uniform hypothesis-class collapse over finite datasets. We further show that this collapse is not unavoidable: tensor-structured VQCs, including tensor-network-based and tensor-hypernetwork parameterizations, lie outside the Haar-like universality class. By restricting the accessible unitary ensemble through bounded tensor rank or bond dimension, these architectures prevent concentration of measure, preserve output variability for local observables, and retain non-degenerate gradient signals even in over-parameterized regimes. Together, our results unify barren plateaus, expressivity limits, and generalization collapse under a single structural mechanism rooted in random-matrix universality, highlighting the central role of architectural inductive bias in variational quantum algorithms.
comment: 20 pages, 4 figures
☆ High-Order Epistasis Detection Using Factorization Machine with Quadratic Optimization Annealing and MDR-Based Evaluation
Detecting high-order epistasis is a fundamental challenge in genetic association studies due to the combinatorial explosion of candidate locus combinations. Although multifactor dimensionality reduction (MDR) is a widely used method for evaluating epistasis, exhaustive MDR-based searches become computationally infeasible as the number of loci or the interaction order increases. In this paper, we define the epistasis detection problem as a black-box optimization problem and solve it with a factorization machine with quadratic optimization annealing (FMQA). We propose an efficient epistasis detection method based on FMQA, in which the classification error rate (CER) computed by MDR is used as a black-box objective function. Experimental evaluations were conducted using simulated case-control datasets with predefined high-order epistasis. The results demonstrate that the proposed method successfully identified ground-truth epistasis across various interaction orders and the numbers of genetic loci within a limited number of iterations. These results indicate that the proposed method is effective and computationally efficient for high-order epistasis detection.
comment: 6 pages, 2 figures
☆ MORE: Multi-Objective Adversarial Attacks on Speech Recognition
The emergence of large-scale automatic speech recognition (ASR) models such as Whisper has greatly expanded their adoption across diverse real-world applications. Ensuring robustness against even minor input perturbations is therefore critical for maintaining reliable performance in real-time environments. While prior work has mainly examined accuracy degradation under adversarial attacks, robustness with respect to efficiency remains largely unexplored. This narrow focus provides only a partial understanding of ASR model vulnerabilities. To address this gap, we conduct a comprehensive study of ASR robustness under multiple attack scenarios. We introduce MORE, a multi-objective repetitive doubling encouragement attack, which jointly degrades recognition accuracy and inference efficiency through a hierarchical staged repulsion-anchoring mechanism. Specifically, we reformulate multi-objective adversarial optimization into a hierarchical framework that sequentially achieves the dual objectives. To further amplify effectiveness, we propose a novel repetitive encouragement doubling objective (REDO) that induces duplicative text generation by maintaining accuracy degradation and periodically doubling the predicted sequence length. Overall, MORE compels ASR models to produce incorrect transcriptions at a substantially higher computational cost, triggered by a single adversarial input. Experiments show that MORE consistently yields significantly longer transcriptions while maintaining high word error rates compared to existing baselines, underscoring its effectiveness in multi-objective adversarial attack.
comment: 19 pages
☆ Tackling Resource-Constrained and Data-Heterogeneity in Federated Learning with Double-Weight Sparse Pack AAAI 2026
Federated learning has drawn widespread interest from researchers, yet the data heterogeneity across edge clients remains a key challenge, often degrading model performance. Existing methods enhance model compatibility with data heterogeneity by splitting models and knowledge distillation. However, they neglect the insufficient communication bandwidth and computing power on the client, failing to strike an effective balance between addressing data heterogeneity and accommodating limited client resources. To tackle this limitation, we propose a personalized federated learning method based on cosine sparsification parameter packing and dual-weighted aggregation (FedCSPACK), which effectively leverages the limited client resources and reduces the impact of data heterogeneity on model performance. In FedCSPACK, the client packages model parameters and selects the most contributing parameter packages for sharing based on cosine similarity, effectively reducing bandwidth requirements. The client then generates a mask matrix anchored to the shared parameter package to improve the alignment and aggregation efficiency of sparse updates on the server. Furthermore, directional and distribution distance weights are embedded in the mask to implement a weighted-guided aggregation mechanism, enhancing the robustness and generalization performance of the global model. Extensive experiments across four datasets using ten state-of-the-art methods demonstrate that FedCSPACK effectively improves communication and computational efficiency while maintaining high model accuracy.
comment: Accepted in AAAI 2026
☆ FAROS: Robust Federated Learning with Adaptive Scaling against Backdoor Attacks
Federated Learning (FL) enables multiple clients to collaboratively train a shared model without exposing local data. However, backdoor attacks pose a significant threat to FL. These attacks aim to implant a stealthy trigger into the global model, causing it to mislead on inputs that possess a specific trigger while functioning normally on benign data. Although pre-aggregation detection is a main defense direction, existing state-of-the-art defenses often rely on fixed defense parameters. This reliance makes them vulnerable to single-point-of-failure risks, rendering them less effective against sophisticated attackers. To address these limitations, we propose FAROS, an enhanced FL framework that incorporates Adaptive Differential Scaling (ADS) and Robust Core-set Computing (RCC). The ADS mechanism adjusts the defense's sensitivity dynamically, based on the dispersion of uploaded gradients by clients in each round. This allows it to counter attackers who strategically shift between stealthiness and effectiveness. Furthermore, the RCC effectively mitigates the risk of single-point failure by computing the centroid of a core set comprising clients with the highest confidence. We conducted extensive experiments across various datasets, models, and attack scenarios. The results demonstrate that our method outperforms current defenses in both attack success rate and main task accuracy.
☆ RealPDEBench: A Benchmark for Complex Physical Systems with Real-World Data
Predicting the evolution of complex physical systems remains a central problem in science and engineering. Despite rapid progress in scientific Machine Learning (ML) models, a critical bottleneck is the lack of expensive real-world data, resulting in most current models being trained and validated on simulated data. Beyond limiting the development and evaluation of scientific ML, this gap also hinders research into essential tasks such as sim-to-real transfer. We introduce RealPDEBench, the first benchmark for scientific ML that integrates real-world measurements with paired numerical simulations. RealPDEBench consists of five datasets, three tasks, eight metrics, and ten baselines. We first present five real-world measured datasets with paired simulated datasets across different complex physical systems. We further define three tasks, which allow comparisons between real-world and simulated data, and facilitate the development of methods to bridge the two. Moreover, we design eight evaluation metrics, spanning data-oriented and physics-oriented metrics, and finally benchmark ten representative baselines, including state-of-the-art models, pretrained PDE foundation models, and a traditional method. Experiments reveal significant discrepancies between simulated and real-world data, while showing that pretraining with simulated data consistently improves both accuracy and convergence. In this work, we hope to provide insights from real-world data, advancing scientific ML toward bridging the sim-to-real gap and real-world deployment. Our benchmark, datasets, and instructions are available at https://realpdebench.github.io/.
comment: 46 pages, 21 figures
☆ Aspect Extraction from E-Commerce Product and Service Reviews
Aspect Extraction (AE) is a key task in Aspect-Based Sentiment Analysis (ABSA), yet it remains difficult to apply in low-resource and code-switched contexts like Taglish, a mix of Tagalog and English commonly used in Filipino e-commerce reviews. This paper introduces a comprehensive AE pipeline designed for Taglish, combining rule-based, large language model (LLM)-based, and fine-tuning techniques to address both aspect identification and extraction. A Hierarchical Aspect Framework (HAF) is developed through multi-method topic modeling, along with a dual-mode tagging scheme for explicit and implicit aspects. For aspect identification, four distinct models are evaluated: a Rule-Based system, a Generative LLM (Gemini 2.0 Flash), and two Fine-Tuned Gemma-3 1B models trained on different datasets (Rule-Based vs. LLM-Annotated). Results indicate that the Generative LLM achieved the highest performance across all tasks (Macro F1 0.91), demonstrating superior capability in handling implicit aspects. In contrast, the fine-tuned models exhibited limited performance due to dataset imbalance and architectural capacity constraints. This work contributes a scalable and linguistically adaptive framework for enhancing ABSA in diverse, code-switched environments.
☆ Moments Matter:Stabilizing Policy Optimization using Return Distributions
Deep Reinforcement Learning (RL) agents often learn policies that achieve the same episodic return yet behave very differently, due to a combination of environmental (random transitions, initial conditions, reward noise) and algorithmic (minibatch selection, exploration noise) factors. In continuous control tasks, even small parameter shifts can produce unstable gaits, complicating both algorithm comparison and real-world transfer. Previous work has shown that such instability arises when policy updates traverse noisy neighborhoods and that the spread of post-update return distribution $R(θ)$, obtained by repeatedly sampling minibatches, updating $θ$, and measuring final returns, is a useful indicator of this noise. Although explicitly constraining the policy to maintain a narrow $R(θ)$ can improve stability, directly estimating $R(θ)$ is computationally expensive in high-dimensional settings. We propose an alternative that takes advantage of environmental stochasticity to mitigate update-induced variability. Specifically, we model state-action return distribution through a distributional critic and then bias the advantage function of PPO using higher-order moments (skewness and kurtosis) of this distribution. By penalizing extreme tail behaviors, our method discourages policies from entering parameter regimes prone to instability. We hypothesize that in environments where post-update critic values align poorly with post-update returns, standard PPO struggles to produce a narrow $R(θ)$. In such cases, our moment-based correction narrows $R(θ)$, improving stability by up to 75% in Walker2D, while preserving comparable evaluation returns.
comment: Workshop paper at RLDM'25
☆ Sparse Threats, Focused Defense: Criticality-Aware Robust Reinforcement Learning for Safe Autonomous Driving
Reinforcement learning (RL) has shown considerable potential in autonomous driving (AD), yet its vulnerability to perturbations remains a critical barrier to real-world deployment. As a primary countermeasure, adversarial training improves policy robustness by training the AD agent in the presence of an adversary that deliberately introduces perturbations. Existing approaches typically model the interaction as a zero-sum game with continuous attacks. However, such designs overlook the inherent asymmetry between the agent and the adversary and then fail to reflect the sparsity of safety-critical risks, rendering the achieved robustness inadequate for practical AD scenarios. To address these limitations, we introduce criticality-aware robust RL (CARRL), a novel adversarial training approach for handling sparse, safety-critical risks in autonomous driving. CARRL consists of two interacting components: a risk exposure adversary (REA) and a risk-targeted robust agent (RTRA). We model the interaction between the REA and RTRA as a general-sum game, allowing the REA to focus on exposing safety-critical failures (e.g., collisions) while the RTRA learns to balance safety with driving efficiency. The REA employs a decoupled optimization mechanism to better identify and exploit sparse safety-critical moments under a constrained budget. However, such focused attacks inevitably result in a scarcity of adversarial data. The RTRA copes with this scarcity by jointly leveraging benign and adversarial experiences via a dual replay buffer and enforces policy consistency under perturbations to stabilize behavior. Experimental results demonstrate that our approach reduces the collision rate by at least 22.66\% across all cases compared to state-of-the-art baseline methods.
☆ Distributed Federated Learning by Alternating Periods of Training
Federated learning is a privacy-focused approach towards machine learning where models are trained on client devices with locally available data and aggregated at a central server. However, the dependence on a single central server is challenging in the case of a large number of clients and even poses the risk of a single point of failure. To address these critical limitations of scalability and fault-tolerance, we present a distributed approach to federated learning comprising multiple servers with inter-server communication capabilities. While providing a fully decentralized approach, the designed framework retains the core federated learning structure where each server is associated with a disjoint set of clients with server-client communication capabilities. We propose a novel DFL (Distributed Federated Learning) algorithm which uses alternating periods of local training on the client data followed by global training among servers. We show that the DFL algorithm, under a suitable choice of parameters, ensures that all the servers converge to a common model value within a small tolerance of the ideal model, thus exhibiting effective integration of local and global training models. Finally, we illustrate our theoretical claims through numerical simulations.
☆ HyperCLOVA X 8B Omni
In this report, we present HyperCLOVA X 8B Omni, the first any-to-any omnimodal model in the HyperCLOVA X family that supports text, audio, and vision as both inputs and outputs. By consolidating multimodal understanding and generation into a single model rather than separate modality-specific pipelines, HyperCLOVA X 8B Omni serves as an 8B-scale omni-pathfinding point toward practical any-to-any omni assistants. At a high level, the model unifies modalities through a shared next-token prediction interface over an interleaved multimodal sequence, while vision and audio encoders inject continuous embeddings for fine-grained understanding and grounding. Empirical evaluations demonstrate competitive performance against comparably sized models across diverse input-output combinations spanning text, audio, and vision, in both Korean and English. We anticipate that the open-weight release of HyperCLOVA X 8B Omni will support a wide range of research and deployment scenarios.
comment: Technical Report
☆ UnPII: Unlearning Personally Identifiable Information with Quantifiable Exposure Risk ICSE
The ever-increasing adoption of Large Language Models in critical sectors like finance, healthcare, and government raises privacy concerns regarding the handling of sensitive Personally Identifiable Information (PII) during training. In response, regulations such as European Union's General Data Protection Regulation (GDPR) mandate the deletion of PII upon requests, underscoring the need for reliable and cost-effective data removal solutions. Machine unlearning has emerged as a promising direction for selectively forgetting data points. However, existing unlearning techniques typically apply a uniform forgetting strategy that neither accounts for the varying privacy risks posed by different PII attributes nor reflects associated business risks. In this work, we propose UnPII, the first PII-centric unlearning approach that prioritizes forgetting based on the risk of individual or combined PII attributes. To this end, we introduce the PII risk index (PRI), a composite metric that incorporates multiple dimensions of risk factors: identifiability, sensitivity, usability, linkability, permanency, exposability, and compliancy. The PRI enables a nuanced evaluation of privacy risks associated with PII exposures and can be tailored to align with organizational privacy policies. To support realistic assessment, we systematically construct a synthetic PII dataset (e.g., 1,700 PII instances) that simulates realistic exposure scenarios. UnPII seamlessly integrates with established unlearning algorithms, such as Gradient Ascent, Negative Preference Optimization, and Direct Preference Optimization, without modifying their underlying principles. Our experimental results demonstrate that UnPII achieves the improvements of accuracy up to 11.8%, utility up to 6.3%, and generalizability up to 12.4%, respectively, while incurring a modest fine-tuning overhead of 27.5% on average during unlearning.
comment: 11 pages, 7 Tables, 6 Figures To appear in the Software Engineering in Practice (SEIP) track of ICSE
☆ SRAS: A Lightweight Reinforcement Learning-based Document Selector for Edge-Native RAG Pipelines
Retrieval-Augmented Generation (RAG) systems often rely on fixed top-k document selection mechanisms that ignore downstream generation quality and impose computational overheads. We propose SRAS (Sparse Reward-Aware Selector), a lightweight document selector trained via reinforcement learning (RL) for edge-native RAG deployment. Unlike prior RL-based retrievers that assume large memory and latency budgets, SRAS learns a compact (~0.76MB) policy using Proximal Policy Optimization (PPO), guided by a hybrid reward signal combining Relaxed F1 and BERTScore. Our method operates under tight token and compute constraints, maintaining <1s latency on CPU. SRAS outperforms supervised and random selectors on a synthetic QA benchmark, and generalizes to real-world data, achieving BERTScore F1 of 0.8546 on SQuAD v2 without domain-specific tuning. This work is the first to demonstrate that RL-based document selection can be made ultra-lightweight, latency-aware, and effective for on-device RAG pipelines.
comment: Presented at ICEdge 2025; nominated for Best Paper Award
☆ Subimage Overlap Prediction: Task-Aligned Self-Supervised Pretraining For Semantic Segmentation In Remote Sensing Imagery WACV 2026
Self-supervised learning (SSL) methods have become a dominant paradigm for creating general purpose models whose capabilities can be transferred to downstream supervised learning tasks. However, most such methods rely on vast amounts of pretraining data. This work introduces Subimage Overlap Prediction, a novel self-supervised pretraining task to aid semantic segmentation in remote sensing imagery that uses significantly lesser pretraining imagery. Given an image, a sub-image is extracted and the model is trained to produce a semantic mask of the location of the extracted sub-image within the original image. We demonstrate that pretraining with this task results in significantly faster convergence, and equal or better performance (measured via mIoU) on downstream segmentation. This gap in convergence and performance widens when labeled training data is reduced. We show this across multiple architecture types, and with multiple downstream datasets. We also show that our method matches or exceeds performance while requiring significantly lesser pretraining data relative to other SSL methods. Code and model weights are provided at \href{https://github.com/sharmalakshay93/subimage-overlap-prediction}{github.com/sharmalakshay93/subimage-overlap-prediction}.
comment: Accepted at CV4EO Workshop at WACV 2026
☆ Machine learning modularity
Based on a transformer based sequence-to-sequence architecture combined with a dynamic batching algorithm, this work introduces a machine learning framework for automatically simplifying complex expressions involving multiple elliptic Gamma functions, including the $q$-$θ$ function and the elliptic Gamma function. The model learns to apply algebraic identities, particularly the SL$(2,\mathbb{Z})$ and SL$(3,\mathbb{Z})$ modular transformations, to reduce heavily scrambled expressions to their canonical forms. Experimental results show that the model achieves over 99\% accuracy on in-distribution tests and maintains robust performance (exceeding 90\% accuracy) under significant extrapolation, such as with deeper scrambling depths. This demonstrates that the model has internalized the underlying algebraic rules of modular transformations rather than merely memorizing training patterns. Our work presents the first successful application of machine learning to perform symbolic simplification using modular identities, offering a new automated tool for computations with special functions in quantum field theory and the string theory.
comment: 34 pages, 7 figures, 6 tables
☆ Sparse Convex Biclustering
Biclustering is an essential unsupervised machine learning technique for simultaneously clustering rows and columns of a data matrix, with widespread applications in genomics, transcriptomics, and other high-dimensional omics data. Despite its importance, existing biclustering methods struggle to meet the demands of modern large-scale datasets. The challenges stem from the accumulation of noise in high-dimensional features, the limitations of non-convex optimization formulations, and the computational complexity of identifying meaningful biclusters. These issues often result in reduced accuracy and stability as the size of the dataset increases. To overcome these challenges, we propose Sparse Convex Biclustering (SpaCoBi), a novel method that penalizes noise during the biclustering process to improve both accuracy and robustness. By adopting a convex optimization framework and introducing a stability-based tuning criterion, SpaCoBi achieves an optimal balance between cluster fidelity and sparsity. Comprehensive numerical studies, including simulations and an application to mouse olfactory bulb data, demonstrate that SpaCoBi significantly outperforms state-of-the-art methods in accuracy. These results highlight SpaCoBi as a robust and efficient solution for biclustering in high-dimensional and large-scale datasets.
☆ Context-Free Recognition with Transformers
Transformers excel on tasks that process well-formed inputs according to some grammar, such as natural language and code. However, it remains unclear how they can process grammatical syntax. In fact, under standard complexity conjectures, standard transformers cannot recognize context-free languages (CFLs), a canonical formalism to describe syntax, or even regular languages, a subclass of CFLs (Merrill et al., 2022). Merrill & Sabharwal (2024) show that $\mathcal{O}(\log n)$ looping layers (w.r.t. input length $n$) allows transformers to recognize regular languages, but the question of context-free recognition remained open. In this work, we show that looped transformers with $\mathcal{O}(\log n)$ looping layers and $\mathcal{O}(n^6)$ padding tokens can recognize all CFLs. However, training and inference with $\mathcal{O}(n^6)$ padding tokens is potentially impractical. Fortunately, we show that, for natural subclasses such as unambiguous CFLs, the recognition problem on transformers becomes more tractable, requiring $\mathcal{O}(n^3)$ padding. We empirically validate our results and show that looping helps on a language that provably requires logarithmic depth. Overall, our results shed light on the intricacy of CFL recognition by transformers: While general recognition may require an intractable amount of padding, natural constraints such as unambiguity yield efficient recognition algorithms.
☆ Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization EACL
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
☆ Latent Space Element Method
How can we build surrogate solvers that train on small domains but scale to larger ones without intrusive access to PDE operators? Inspired by the Data-Driven Finite Element Method (DD-FEM) framework for modular data-driven solvers, we propose the Latent Space Element Method (LSEM), an element-based latent surrogate assembly approach in which a learned subdomain ("element") model can be tiled and coupled to form a larger computational domain. Each element is a LaSDI latent ODE surrogate trained from snapshots on a local patch, and neighboring elements are coupled through learned directional interaction terms in latent space, avoiding Schwarz iterations and interface residual evaluations. A smooth window-based blending reconstructs a global field from overlapping element predictions, yielding a scalable assembled latent dynamical system. Experiments on the 1D Burgers and Korteweg-de Vries equations show that LSEM maintains predictive accuracy while scaling to spatial domains larger than those seen in training. LSEM offers an interpretable and extensible route toward foundation-model surrogate solvers built from reusable local models.
comment: 17 pages, 10 figures
☆ Entropy-Aligned Decoding of LMs for Better Writing and Reasoning
Language models (LMs) are trained on billions of tokens in an attempt to recover the true language distribution. Still, vanilla random sampling from LMs yields low quality generations. Decoding algorithms attempt to restrict the LM distribution to a set of high-probability continuations, but rely on greedy heuristics that introduce myopic distortions, yielding sentences that are homogeneous, repetitive and incoherent. In this paper, we introduce EPIC, a hyperparameter-free decoding approach that incorporates the entropy of future trajectories into LM decoding. EPIC explicitly regulates the amount of uncertainty expressed at every step of generation, aligning the sampling distribution's entropy to the aleatoric (data) uncertainty. Through Entropy-Aware Lazy Gumbel-Max sampling, EPIC manages to be exact, while also being efficient, requiring only a sublinear number of entropy evaluations per step. Unlike current baselines, EPIC yields sampling distributions that are empirically well-aligned with the entropy of the underlying data distribution. Across creative writing and summarization tasks, EPIC consistently improves LM-as-judge preference win-rates over widely used decoding strategies. These preference gains are complemented by automatic metrics, showing that EPIC produces more diverse generations and more faithful summaries. We also evaluate EPIC on mathematical reasoning, where it outperforms all baselines.
♻ ☆ Scaling Open-Ended Reasoning to Predict the Future
High-stakes decision making involves reasoning under uncertainty about the future. In this work, we train language models to make predictions on open-ended forecasting questions. To scale up training data, we synthesize novel forecasting questions from global events reported in daily news, using a fully automated, careful curation recipe. We train the Qwen3 thinking models on our dataset, OpenForesight. To prevent leakage of future information during training and evaluation, we use an offline news corpus, both for data generation and retrieval in our forecasting system. Guided by a small validation set, we show the benefits of retrieval, and an improved reward function for reinforcement learning (RL). Once we obtain our final forecasting system, we perform held-out testing between May to August 2025. Our specialized model, OpenForecaster 8B, matches much larger proprietary models, with our training improving the accuracy, calibration, and consistency of predictions. We find calibration improvements from forecasting training generalize across popular benchmarks. We open-source all our models, code, and data to make research on language model forecasting broadly accessible.
comment: 45 pages
♻ ☆ Causal Multi-fidelity Surrogate Forward and Inverse Models for ICF Implosions
Continued progress in inertial confinement fusion (ICF) requires solving inverse problems relating experimental observations to simulation input parameters, followed by design optimization. However, such high-dimensional dynamic PDE-constrained optimization problems are extremely challenging or even intractable. It has been recently shown that inverse problems can be solved by only considering certain robust features. Here we consider the ICF capsule's deuterium-tritium (DT) interface, and construct a causal, dynamic, multifidelity reduced-order surrogate that maps from a time-dependent radiation temperature drive to the interface's radius and velocity dynamics. The surrogate targets an ODE embedding of DT interface dynamics, and is constructed by learning a controller for a base analytical model using low- and high-fidelity simulation training data with respect to radiation energy group structure. After demonstrating excellent accuracy of the surrogate interface model, we use machine learning (ML) models with surrogate-generated data to solve inverse problems optimizing radiation temperature drive to reproduce observed interface dynamics. For sparse snapshots in time, the ML model further characterizes the most informative times at which to sample dynamics. Altogether we demonstrate how operator learning, causal architectures, and physical inductive bias can be integrated to accelerate discovery, design, and diagnostics in high-energy-density systems.
♻ ☆ SteganoBackdoor: Stealthy and Data-Efficient Backdoor Attacks on Language Models
Modern language models remain vulnerable to backdoor attacks via poisoned data, where training inputs containing a trigger are paired with a target output, causing the model to reproduce that behavior whenever the trigger appears at inference time. Recent work has emphasized stealthy attacks that stress-test data-curation defenses using stylized artifacts or token-level perturbations as triggers, but this focus leaves a more practically relevant threat model underexplored: backdoors tied to naturally occurring semantic concepts. We introduce SteganoBackdoor, an optimization-based framework that constructs SteganoPoisons, steganographic poisoned training examples in which a backdoor payload is distributed across a fluent sentence while exhibiting no representational overlap with the inference-time semantic trigger. Across diverse model architectures, SteganoBackdoor achieves high attack success under constrained poisoning budgets and remains effective under conservative data-level filtering, highlighting a blind spot in existing data-curation defenses.
♻ ☆ Non-omniscient backdoor injection with one poison sample: Proving the one-poison hypothesis for linear regression, linear classification, and 2-layer ReLU neural networks
Backdoor poisoning attacks are a threat to machine learning models trained on large data collected from untrusted sources; these attacks enable attackers to inject malicious behavior into the model that can be triggered by specially crafted inputs. Prior work has established bounds on the success of backdoor attacks and their impact on the benign learning task, however, an open question is what amount of poison data is needed for a successful backdoor attack. Typical attacks either use few samples but need much information about the data points, or need to poison many data points. In this paper, we formulate the one-poison hypothesis: An adversary with one poison sample and limited background knowledge can inject a backdoor with zero backdooring-error and without significantly impacting the benign learning task performance. Moreover, we prove the one-poison hypothesis for linear regression, linear classification, and 2-layer ReLU neural networks. For adversaries that utilize a direction unused by the clean data distribution for the poison sample, we prove for linear classification and linear regression that the resulting model is functionally equivalent to a model where the poison was excluded from training. We build on prior work on statistical backdoor learning to show that in all other cases, the impact on the benign learning task is still limited. We validate our theoretical results experimentally with realistic benchmark data sets.
comment: Added generalization to 2-layer ReLU neural networks
♻ ☆ Grounded Test-Time Adaptation for LLM Agents
Large language model (LLM)-based agents struggle to generalize to novel and complex environments, such as unseen websites or new sets of functions, due to a fundamental mismatch between their pre-training and test-time conditions. This challenge stems from two distinct failure modes: a syntactic misunderstanding of environment-specific components like observation formats, and a semantic misunderstanding of state-transition dynamics, which are only revealed at test time. To address these issues, we propose two distinct and complementary strategies for adapting LLM agents by leveraging environment-specific information available during deployment. First, an online distributional adaptation method parameterizes environmental nuances by learning a lightweight adaptation vector that biases the model's output distribution, enabling rapid alignment with an environment response format. Second, a deployment-time dynamics grounding method employs a persona-driven exploration phase to systematically probe and learn the environment's causal dynamics before task execution, equipping the agent with a nonparametric world model. We evaluate these strategies across diverse agentic benchmarks, including function calling and web navigation. Our empirical results show the effectiveness of both strategies across all benchmarks with minimal computational cost. We find that dynamics grounding is particularly effective in complex environments where unpredictable dynamics pose a major obstacle, demonstrating a robust path toward more generalizable and capable LLM-based agents. For example, on the WebArena multi-site split, this method increases the agent's success rate from 2% to 23%.
comment: Our code is available here: https://github.com/r2llab/GTTA
♻ ☆ Anytime-Valid Answer Sufficiency Certificates for LLM Generation via Sequential Information Lift
We introduce Sequential-EDFL (Empirical Dynamic Formal Lift), which applies anytime-valid sequential testing to language model generation stopping. Our approach tracks information lift, defined as the log-likelihood ratio between the full model and deliberately weakened "skeleton" baselines, using self-normalized empirical-Bernstein e-processes that provide formal delta-level error control regardless of stopping time. This delta guarantee controls premature stopping when information lift is insufficient relative to the skeleton, and it does not imply delta control of factual incorrectness or hallucinations. We handle unknown centering through online mean estimation, combine multiple parameters via mixture e-processes, and support adaptive resets under distributional drift. On six benchmarks, Sequential-EDFL reduces generation length by 22 to 28 percent relative to sequential baselines while maintaining delta-level control with 12 percent computational overhead. We introduce automated skeletons (distilled submodels and randomized logits) and show robustness across skeleton families. Composing EDFL with a lightweight correctness gate (sentence boundaries plus a verifier) improves end-task correctness while preserving anytime-valid guarantees by only delaying stopping. Our certificates control information sufficiency, not factual correctness. Specifically, 10.9 percent of stopped sequences remain incorrect even with the gate (13.2 to 22.7 percent without it). EDFL serves as a first-stage filter that can reduce verification burden: when applied to stopped sequences, the gate validates 83 percent of stops, requiring full verification only for the remaining 17 percent, plus all non-stopped sequences. EDFL is not a standalone solution for safety-critical domains.
♻ ☆ Language as a Wave Phenomenon: Iso-Energetic Phase-Locking and Semantic Interference in Neural Networks
Conventional deep learning paradigms rely on metabolically expensive magnitude-based representations, rendering them fundamentally incompatible with passive photonic hardware. We introduce PRISM, a sequence modeling architecture that bridges high-level reasoning and physical constraints by enforcing an Iso-Energetic (Unity Gain) principle, compelling the network to encode semantic information exclusively in the phase angle. Validated on the WMT14 translation benchmark, PRISM achieves a 0.799 COMET score, demonstrating that phase-based reasoning competes with standard Transformers (0.821) and functionally matches unconstrained spectral baselines like FNet (0.805), despite enforcing strict energy constraints and requiring 11.5% fewer parameters. Furthermore, to verify hardware feasibility, we simulate a Holographic Backpropagation mechanism on a noisy, 4-bit optical correlator. Ablation studies reveal a substantial performance gain (48.4% vs. 62.4%) over a frozen baseline, proving that the proposed phase-steering mechanism actively optimizes physical parameters under strict energy constraints. These results establish an existence proof that ultra-low-power, passive optical hardware can support high-level linguistic intelligence without sacrificing representational capacity.
comment: Major Revision. Title changed to reflect the new theoretical framework. Complete narrative shift from "Optimization Efficiency" to "Iso-Energetic Phase Coding" and "Optical Hardware Compatibility". Replaced ISMR diagnostics with Holographic Optical Learning simulations and mechanistic "Dual-Regime" phase analysis. Comparison with spectral baselines (FNet) added
♻ ☆ Quantum Enhanced Anomaly Detection for ADS-B Data using Hybrid Deep Learning SC
The emerging field of Quantum Machine Learning (QML) has shown promising advantages in accelerating processing speed and effectively handling the high dimensionality associated with complex datasets. Quantum Computing (QC) enables more efficient data manipulation through the quantum properties of superposition and entanglement. In this paper, we present a novel approach combining quantum and classical machine learning techniques to explore the impact of quantum properties for anomaly detection in Automatic Dependent Surveillance-Broadcast (ADS-B) data. We compare the performance of a Hybrid-Fully Connected Quantum Neural Network (H-FQNN) with different loss functions and use a publicly available ADS-B dataset to evaluate the performance. The results demonstrate competitive performance in detecting anomalies, with accuracies ranging from 90.17% to 94.05%, comparable to the performance of a traditional Fully Connected Neural Network (FNN) model, which achieved accuracies between 91.50% and 93.37%.
comment: This is the author's version of the work accepted for publication in the IEEE-AIAA Digital Avionics Systems Conference (DASC) 2025. The final version version is available via IEEE Xplore
♻ ☆ mHC: Manifold-Constrained Hyper-Connections
Recently, studies exemplified by Hyper-Connections (HC) have extended the ubiquitous residual connection paradigm established over the past decade by expanding the residual stream width and diversifying connectivity patterns. While yielding substantial performance gains, this diversification fundamentally compromises the identity mapping property intrinsic to the residual connection, which causes severe training instability and restricted scalability, and additionally incurs notable memory access overhead. To address these challenges, we propose Manifold-Constrained Hyper-Connections (mHC), a general framework that projects the residual connection space of HC onto a specific manifold to restore the identity mapping property, while incorporating rigorous infrastructure optimization to ensure efficiency. Empirical experiments demonstrate that mHC is effective for training at scale, offering tangible performance improvements and superior scalability. We anticipate that mHC, as a flexible and practical extension of HC, will contribute to a deeper understanding of topological architecture design and suggest promising directions for the evolution of foundational models.
♻ ☆ Development of a high-resolution indoor radon map using a new machine learning-based probabilistic model and German radon survey data
Accurate knowledge of indoor radon concentration is crucial for assessing radon-related health effects or identifying radon-prone areas. Indoor radon concentration at the national scale is usually estimated on the basis of extensive measurement campaigns. However, characteristics of the sampled households often differ from the characteristics of the target population owing to the large number of relevant factors that control the indoor radon concentration, such as the availability of geogenic radon or floor level. We propose a model-based approach that allows a more realistic estimation of indoor radon distribution with a higher spatial resolution than a purely data-based approach. A modeling approach was used by applying a quantile regression forest to estimate the probability distribution function of indoor radon for each floor level of each residential building in Germany. Based on the estimated probability distribution function,a probabilistic Monte Carlo sampling technique was applied, enabling the combination and population weighting of floor-level predictions. In this way,the uncertainty of the individual predictions is effectively propagated into the estimate of variability at the aggregated level. The results show an approximate lognormal distribution of indoor radon in dwellings in Germany with an arithmetic mean of 63 Bq/m3, a geometric mean of 41 Bq/m3, and a 95th percentile of 180 Bq/m3. The exceedance probabilities for 100 and 300 Bq/m3 are 12.5% (10.5 million people affected) and 2.2 % (1.9 million people affected), respectively. The advantages of our approach are that it yields a) an accurate estimation of indoor radon concentration even if the survey is not fully representative with respect to floor level and radon concentration in soil, and b) an estimate of the indoor radon distribution with a much higher spatial resolution than basic descriptive statistics.
♻ ☆ Towards Fair In-Context Learning with Tabular Foundation Models
Transformer-based tabular foundation models have recently demonstrated promising in-context learning (ICL) performance on structured data, emerging as competitive alternatives to gradient-boosted trees. However, the fairness implications of this new paradigm remain largely unexplored. We present the first investigation of fairness in tabular ICL, evaluating three recently proposed foundation models--TabPFNv2, TabICL, and TabDPT--on multiple benchmark datasets. To mitigate biases, we explore three pre-processing fairness-enhancing methods: correlation removal (decorrelating input features from the sensitive attribute), group-balanced sample selection (ensuring equal representation of protected groups in context examples), and uncertainty-based sample selection (prioritizing context examples with high sensitive-attribute prediction uncertainty). Our experiments show that the uncertainty-based strategy consistently improves group fairness metrics (e.g., demographic parity, equalized odds, and equal opportunity) with minimal impact on predictive accuracy. We release our code to facilitate reproducibility https://github.com/patrikken/Fair-TabICL.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Training More Robust Classification Model via Discriminative Loss and Gaussian Noise Injection
Robustness of deep neural networks to input noise remains a critical challenge, as naive noise injection often degrades accuracy on clean (uncorrupted) data. We propose a novel training framework that addresses this trade-off through two complementary objectives. First, we introduce a loss function applied at the penultimate layer that explicitly enforces intra-class compactness and increases the margin to analytically defined decision boundaries. This enhances feature discriminativeness and class separability for clean data. Second, we propose a class-wise feature alignment mechanism that brings noisy data clusters closer to their clean counterparts. Furthermore, we provide a theoretical analysis demonstrating that improving feature stability under additive Gaussian noise implicitly reduces the curvature of the softmax loss landscape in input space, as measured by Hessian eigenvalues.This thus naturally enhances robustness without explicit curvature penalties. Conversely, we also theoretically show that lower curvatures lead to more robust models. We validate the effectiveness of our method on standard benchmarks and our custom dataset. Our approach significantly reinforces model robustness to various perturbations while maintaining high accuracy on clean data, advancing the understanding and practice of noise-robust deep learning.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Subgroup Discovery with the Cox Model
We study the problem of subgroup discovery for survival analysis, where the goal is to find an interpretable subset of the data on which a Cox model is highly accurate. Our work is the first to study this particular subgroup problem, for which we make several contributions. Subgroup discovery methods generally require a "quality function" in order to sift through and select the most advantageous subgroups. We first examine why existing natural choices for quality functions are insufficient to solve the subgroup discovery problem for the Cox model. To address the shortcomings of existing metrics, we introduce two technical innovations: the *expected prediction entropy (EPE)*, a novel metric for evaluating survival models which predict a hazard function; and the *conditional rank statistics (CRS)*, a statistical object which quantifies the deviation of an individual point to the distribution of survival times in an existing subgroup. We study the EPE and CRS theoretically and show that they can solve many of the problems with existing metrics. We introduce a total of eight algorithms for the Cox subgroup discovery problem. The main algorithm is able to take advantage of both the EPE and the CRS, allowing us to give theoretical correctness results for this algorithm in a well-specified setting. We evaluate all of the proposed methods empirically on both synthetic and real data. The experiments confirm our theory, showing that our contributions allow for the recovery of a ground-truth subgroup in well-specified cases, as well as leading to better model fit compared to naively fitting the Cox model to the whole dataset in practical settings. Lastly, we conduct a case study on jet engine simulation data from NASA. The discovered subgroups uncover known nonlinearities/homogeneity in the data, and which suggest design choices which have been mirrored in practice.
comment: 43 pages, 2 figures
♻ ☆ Learning Evolving Latent Strategies for Multi-Agent Language Systems without Model Fine-Tuning
This study proposes a multi-agent language framework that enables continual strategy evolution without fine-tuning the language model's parameters. The core idea is to liberate the latent vectors of abstract concepts from traditional static semantic representations, allowing them to be continuously updated through environmental interaction and reinforcement feedback. We construct a dual-loop architecture: the behavior loop adjusts action preferences based on environmental rewards, while the language loop updates the external latent vectors by reflecting on the semantic embeddings of generated text. Together, these mechanisms allow agents to develop stable and disentangled strategic styles over long-horizon multi-round interactions. Experiments show that agents' latent spaces exhibit clear convergence trajectories under reflection-driven updates, along with structured shifts at critical moments. Moreover, the system demonstrates an emergent ability to implicitly infer and continually adapt to emotional agents, even without shared rewards. These results indicate that, without modifying model parameters, an external latent space can provide language agents with a low-cost, scalable, and interpretable form of abstract strategic representation.
comment: 17 pages, 5 figures. Code available at https://github.com/wltang-dev/Latent-Strategy-RL-Agent
♻ ☆ Tuning without Peeking: Provable Generalization Bounds and Robust LLM Post-Training
Gradient-based optimization is the workhorse of deep learning, offering efficient and scalable training via backpropagation. However, exposing gradients during training can leak sensitive information about the underlying data, raising privacy and security concerns such as susceptibility to data poisoning attacks. In contrast, black box optimization methods, which treat the model as an opaque function, relying solely on function evaluations to guide optimization, offer a promising alternative in scenarios where data access is restricted, adversarial risks are high, or overfitting is a concern. This paper introduces BBoxER, an evolutionary black-box method for LLM post-training that induces an information bottleneck via implicit compression of the training data. Leveraging the tractability of information flow, we provide non-vacuous generalization bounds and strong theoretical guarantees for privacy, robustness to data poisoning attacks, and extraction attacks. In experiments with LLMs, we demonstrate empirically that black-box optimization methods, despite the scalability and computational challenges inherent to black-box approaches, are able to learn, showing how a few iterations of BBoxER improve performance, generalize well on a benchmark of reasoning datasets, and are robust to membership inference attacks. This positions BBoxER as an attractive add-on on top of gradient-based optimization, offering suitability for deployment in restricted or privacy-sensitive environments while also providing non-vacuous generalization guarantees.
♻ ☆ Perch 2.0: The Bittern Lesson for Bioacoustics
Perch is a performant pre-trained model for bioacoustics. It was trained in supervised fashion, providing both off-the-shelf classification scores for thousands of vocalizing species as well as strong embeddings for transfer learning. In this new release, Perch 2.0, we expand from training exclusively on avian species to a large multi-taxa dataset. The model is trained with self-distillation using a prototype-learning classifier as well as a new source-prediction training criterion. Perch 2.0 obtains state-of-the-art performance on the BirdSet and BEANS benchmarks. It also outperforms specialized marine models on marine transfer learning tasks, despite having almost no marine training data. We present hypotheses as to why fine-grained species classification is a particularly robust pre-training task for bioacoustics.
♻ ☆ Bayesian uncertainty-aware deep learning with noisy labels: Tackling annotation ambiguity in EEG seizure detection
Deep learning is advancing EEG processing for automated epileptic seizure detection and onset zone localization, yet its performance relies heavily on high-quality annotated training data. However, scalp EEG is susceptible to high noise levels, which in turn leads to imprecise annotations of the seizure timing and characteristics. This "label noise" presents a significant challenge in model training and generalization. In this paper, we introduce Bayesian UncertaiNty-aware Deep Learning (BUNDL), a novel algorithm that informs a deep learning model of label ambiguities, thereby enhancing the robustness of seizure detection systems. By integrating domain knowledge into an underlying Bayesian framework, we derive a novel KL-divergence-based loss function that capitalizes on uncertainty to better learn seizure characteristics from scalp EEG. Thus, BUNDL offers a straightforward and model-agnostic method for training deep neural networks with noisy training labels that does not add any parameters to existing architectures. Additionally, we explore the impact of improved detection system on the task of automated onset zone localization. We validate BUNDL using a comprehensive simulated EEG dataset and two publicly available datasets collected by Temple University Hospital (TUH) and Boston Children's Hospital (CHB-MIT). Results show that BUNDL consistently identifies noisy labels and improves the robustness of three base models under various label noise conditions. We also evaluate cross-site generalizability and quantify computational cost of all methods. Ultimately, BUNDL presents as a reliable method that can be seamlessly integrated with existing deep models used in clinical practice, enabling the training of trustworthy models for epilepsy evaluation.
♻ ☆ Matrix Manifold Neural Networks++
Deep neural networks (DNNs) on Riemannian manifolds have garnered increasing interest in various applied areas. For instance, DNNs on spherical and hyperbolic manifolds have been designed to solve a wide range of computer vision and nature language processing tasks. One of the key factors that contribute to the success of these networks is that spherical and hyperbolic manifolds have the rich algebraic structures of gyrogroups and gyrovector spaces. This enables principled and effective generalizations of the most successful DNNs to these manifolds. Recently, some works have shown that many concepts in the theory of gyrogroups and gyrovector spaces can also be generalized to matrix manifolds such as Symmetric Positive Definite (SPD) and Grassmann manifolds. As a result, some building blocks for SPD and Grassmann neural networks, e.g., isometric models and multinomial logistic regression (MLR) can be derived in a way that is fully analogous to their spherical and hyperbolic counterparts. Building upon these works, we design fully-connected (FC) and convolutional layers for SPD neural networks. We also develop MLR on Symmetric Positive Semi-definite (SPSD) manifolds, and propose a method for performing backpropagation with the Grassmann logarithmic map in the projector perspective. We demonstrate the effectiveness of the proposed approach in the human action recognition and node classification tasks.
comment: added references
♻ ☆ Comparison of generalised additive models and neural networks in applications: A systematic review
Neural networks have become a popular tool in predictive modelling, more commonly associated with machine learning and artificial intelligence than with statistics. Generalised Additive Models (GAMs) are flexible non-linear statistical models that retain interpretability. Both are state-of-the-art in their own right, with their respective advantages and disadvantages. This paper analyses how these two model classes have performed on real-world tabular data. Following PRISMA guidelines, we conducted a systematic review of papers that performed empirical comparisons of GAMs and neural networks. Eligible papers were identified, yielding 143 papers, with 430 datasets. Key attributes at both paper and dataset levels were extracted and reported. Beyond summarising comparisons, we analyse reported performance metrics using mixed-effects modelling to investigate potential characteristics that can explain and quantify observed differences, including application area, study year, sample size, number of predictors, and neural network complexity. Across datasets, no consistent evidence of superiority was found for either GAMs or neural networks when considering the most frequently reported metrics (RMSE, $R^2$, and AUC). Neural networks tended to outperform in larger datasets and in those with more predictors, but this advantage narrowed over time. Conversely, GAMs remained competitive, particularly in smaller data settings, while retaining interpretability. Reporting of dataset characteristics and neural network complexity was incomplete in much of the literature, limiting transparency and reproducibility. This review highlights that GAMs and neural networks should be viewed as complementary approaches rather than competitors. For many tabular applications, the performance trade-off is modest, and interpretability may favour GAMs.
♻ ☆ Investigating the Robustness of Extreme Precipitation Super-Resolution Across Climates
The coarse spatial resolution of gridded climate models, such as general circulation models, limits their direct use in projecting socially relevant variables like extreme precipitation. Most downscaling methods estimate the conditional distributions of extremes by generating large ensembles, complicating the assessment of robustness under distributional transformations, such as those induced by climate change. To better understand and potentially improve robustness, we propose super-resolving the parameters of the target variable's probability distribution directly using analytically tractable mappings. Within a perfect-model framework over Switzerland, we demonstrate that vector generalized linear and additive models can super-resolve the generalized extreme value distribution of summer hourly precipitation extremes from coarse precipitation fields and topography. We introduce the notion of a "robustness gap", defined as the difference in predictive error between present-trained and future-trained models, and use it to diagnose how model structure affects the generalization of each quantile to a pseudo-global warming scenario. By evaluating multiple model configurations, we also identify an upper limit on the super-resolution factor based on the spatial auto- and cross-correlation of precipitation and elevation, beyond which coarse precipitation loses predictive value. Our framework is broadly applicable to variables governed by parametric distributions and offers a model-agnostic diagnostic for understanding when and why empirical downscaling generalizes to climate change and extremes.
comment: 47+7 pages, 10+4 figures, 1 table, submitted to WCE
♻ ☆ The Human Brain as a Combinatorial Complex NeurIPS 2025
We propose a framework for constructing combinatorial complexes (CCs) from fMRI time series data that captures both pairwise and higher-order neural interactions through information-theoretic measures, bridging topological deep learning and network neuroscience. Current graph-based representations of brain networks systematically miss the higher-order dependencies that characterize neural complexity, where information processing often involves synergistic interactions that cannot be decomposed into pairwise relationships. Unlike topological lifting approaches that map relational structures into higher-order domains, our method directly constructs CCs from statistical dependencies in the data. Our CCs generalize graphs by incorporating higher-order cells that represent collective dependencies among brain regions, naturally accommodating the multi-scale, hierarchical nature of neural processing. The framework constructs data-driven combinatorial complexes using O-information and S-information measures computed from fMRI signals, preserving both pairwise connections and higher-order cells (e.g., triplets, quadruplets) based on synergistic dependencies. Using NetSim simulations as a controlled proof-of-concept dataset, we demonstrate our CC construction pipeline and show how both pairwise and higher-order dependencies in neural time series can be quantified and represented within a unified structure. This work provides a framework for brain network representation that preserves fundamental higher-order structure invisible to traditional graph methods, and enables the application of topological deep learning (TDL) architectures to neural data.
comment: Accepted as an Extended Abstract at the NeurReps Workshop, NeurIPS 2025
♻ ☆ Discovering Association Rules in High-Dimensional Small Tabular Data
Association Rule Mining (ARM) aims to discover patterns between features in datasets in the form of propositional rules, supporting both knowledge discovery and interpretable machine learning in high-stakes decision-making. However, in high-dimensional settings, rule explosion and computational overhead render popular algorithmic approaches impractical without effective search space reduction, challenges that propagate to downstream tasks. Neurosymbolic methods, such as Aerial+, have recently been proposed to address the rule explosion in ARM. While they tackle the high dimensionality of the data, they also inherit limitations of neural networks, particularly reduced performance in low-data regimes. This paper makes three key contributions to association rule discovery in high-dimensional tabular data. First, we empirically show that Aerial+ scales one to two orders of magnitude better than state-of-the-art algorithmic and neurosymbolic baselines across five real-world datasets. Second, we introduce the novel problem of ARM in high-dimensional, low-data settings, such as gene expression data from the biomedicine domain with around 18k features and 50 samples. Third, we propose two fine-tuning approaches to Aerial+ using tabular foundation models. Our proposed approaches are shown to significantly improve rule quality on five real-world datasets, demonstrating their effectiveness in low-data, high-dimensional scenarios.
comment: Published version is available at https://ceur-ws.org/Vol-4125/paper_26.pdf
♻ ☆ TimeMosaic: Temporal Heterogeneity Guided Time Series Forecasting via Adaptive Granularity Patch and Segment-wise Decoding AAAI
Multivariate time series forecasting is essential in domains such as finance, transportation, climate, and energy. However, existing patch-based methods typically adopt fixed-length segmentation, overlooking the heterogeneity of local temporal dynamics and the decoding heterogeneity of forecasting. Such designs lose details in information-dense regions, introduce redundancy in stable segments, and fail to capture the distinct complexities of short-term and long-term horizons. We propose TimeMosaic, a forecasting framework that aims to address temporal heterogeneity. TimeMosaic employs adaptive patch embedding to dynamically adjust granularity according to local information density, balancing motif reuse with structural clarity while preserving temporal continuity. In addition, it introduces segment-wise decoding that treats each prediction horizon as a related subtask and adapts to horizon-specific difficulty and information requirements, rather than applying a single uniform decoder. Extensive evaluations on benchmark datasets demonstrate that TimeMosaic delivers consistent improvements over existing methods, and our model trained on the large-scale corpus with 321 billion observations achieves performance competitive with state-of-the-art TSFMs.
comment: This paper has been accepted by AAAI
♻ ☆ Optimizing LLM Inference: Fluid-Guided Online Scheduling with Memory Constraints
Large Language Models (LLMs) power many modern applications, but their inference procedure poses unique scheduling challenges: the Key-Value (KV) cache grows dynamically during response generation, and memory overflow triggers eviction that can cascade into system-wide failures. Even when memory capacity exceeds the theoretical requirement, conventional scheduling algorithms fail because they do not account for this dynamic memory growth -- a system that should be stable can become unstable under poor scheduling. This paper formulates LLM inference optimization as a multi-stage online scheduling problem. We develop a fluid dynamics approximation to establish a tractable benchmark and derive the Waiting for Accumulated Inference Threshold (WAIT) algorithm. WAIT uses threshold-based batching to prevent eviction by keeping the system near load balance, achieving near-optimal throughput when output lengths are known. For practical settings where output lengths are unknown at arrival, we introduce Nested WAIT. Rather than predicting output lengths, Nested WAIT classifies prompts on-the-fly: short prompts complete early and exit, while longer prompts naturally advance to later segments. A safety buffer provides high-probability protection against memory overflow with only logarithmic overhead. Theoretical analysis establishes near-optimal performance in the asymptotic regime. Experiments on Llama-7B with an A100 GPU demonstrate that our approach achieves superior throughput and reduced latency compared to vLLM and Sarathi. This work applies operations research principles to establish a theoretical framework for LLM deployment under memory constraints.
comment: 49 pages, 18 figures
♻ ☆ Kriging prior Regression: A Case for Kriging-Based Spatial Features with TabPFN in Soil Mapping
Machine learning and geostatistics are two fundamentally different frameworks for predicting and spatially mapping soil properties. Geostatistics leverages the spatial structure of soil properties, while machine learning captures the relationship between available environmental features and soil properties. We propose a hybrid framework that enriches ML with spatial context through engineering of 'spatial lag' features from ordinary kriging. We call this approach 'kriging prior regression' (KpR), as it follows the inverse logic of regression kriging. To evaluate this approach, we assessed both the point and probabilistic prediction performance of KpR, using the TabPFN model across six fieldscale datasets from LimeSoDa. These datasets included soil organic carbon, clay content, and pH, along with features derived from remote sensing and in-situ proximal soil sensing. KpR with TabPFN demonstrated reliable uncertainty estimates and more accurate predictions in comparison to several other spatial techniques (e.g., regression/residual kriging with TabPFN), as well as to established non-spatial machine learning algorithms (e.g., random forest). Most notably, it significantly improved the average R2 by around 30% compared to machine learning algorithms without spatial context. This improvement was due to the strong prediction performance of the TabPFN algorithm itself and the complementary spatial information provided by KpR features. TabPFN is particularly effective for prediction tasks with small sample sizes, common in precision agriculture, whereas KpR can compensate for weak relationships between sensing features and soil properties when proximal soil sensing data are limited. Hence, we conclude that KpR with TabPFN is a very robust and versatile modelling framework for digital soil mapping in precision agriculture.
♻ ☆ Gibbs randomness-compression proposition: An efficient deep learning
A proposition that connects randomness and compression is put forward via Gibbs entropy over set of measurement vectors associated with a compression process. The proposition states that a lossy compression process is equivalent to {\it directed randomness} that preserves information content. The proposition originated from the observed behavior in newly proposed {\it Dual Tomographic Compression} (DTC) compress-train framework. This is akin to tomographic reconstruction of layer weight matrices via building compressed sensed projections, via so-called {\it weight rays}. This tomographic approach is applied to previous and next layers in a dual fashion, that triggers neuronal-level pruning. This novel model compress-train scheme appears in iterative fashion and acts as a smart neural architecture search: also called {\it compression aware training}. The experiments demonstrated the utility of this dual-tomography during training: method accelerates and supports lottery ticket hypothesis. However, random compress-train iterations having similar performance demonstrated the connection between randomness and compression from statistical physics perspective, we formulated the so-called {\it Gibbs randomness-compression proposition}, signifying randomness-compression relationship via Gibbs entropy. The proposition is supported with the experimental evidence, resulting in very high correlation between learning performance vs. Gibbs entropy over compression ratios. Practically, the DTC framework provides a promising approach for massively energy- and resource-efficient deep learning training.
comment: 11 pages, 5 figures, 1 table, 1 algorithm, 1 theorem
♻ ☆ Ambiguous Online Learning
We propose a new variant of online learning that we call "ambiguous online learning". In this setting, the learner is allowed to produce multiple predicted labels. Such an "ambiguous prediction" is considered correct when at least one of the labels is correct, and none of the labels are "predictably wrong". The definition of "predictably wrong" comes from a hypothesis class in which hypotheses are also multi-valued. Thus, a prediction is "predictably wrong" if it's not allowed by the (unknown) true hypothesis. In particular, this setting is natural in the context of multivalued dynamical systems, recommendation algorithms and lossless compression. It is also strongly related to so-called "apple tasting". We show that in this setting, there is a trichotomy of mistake bounds: up to logarithmic factors, any hypothesis class has an optimal mistake bound of either Theta(1), Theta(sqrt(N)) or N.
♻ ☆ A Universal and Robust Framework for Multiple Gas Recognition Based-on Spherical Normalization-Coupled Mahalanobis Algorithm
Electronic nose (E-nose) systems face two interconnected challenges in open-set gas recognition: feature distribution shift caused by signal drift and decision boundary failure induced by unknown gas interference. Existing methods predominantly rely on Euclidean distance or conventional classifiers, failing to account for anisotropic feature distributions and dynamic signal intensity variations. To address these issues, this study proposes the Spherical Normalization coupled Mahalanobis (SNM) module, a universal post-processing module for open-set gas recognition. First, it achieves geometric decoupling through cascaded batch and L2 normalization, projecting features onto a unit hypersphere to eliminate signal intensity fluctuations. Second, it utilizes Mahalanobis distance to construct adaptive ellipsoidal decision boundaries that conform to the anisotropic feature geometry. The architecture-agnostic SNM-Module seamlessly integrates with mainstream backbones including Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Transformer. Experiments on the public Vergara dataset demonstrate that the Transformer+SNM configuration achieves near-theoretical-limit performance in discriminating among multiple target gases, with an AUROC of 0.9977 and an unknown gas detection rate of 99.57% at 5% false positive rate, significantly outperforming state-of-the-art methods with a 3.0% AUROC improvement and 91.0% standard deviation reduction compared to Class Anchor Clustering (CAC). The module maintains exceptional robustness across five sensor positions, with standard deviations below 0.0028. This work effectively addresses the critical challenge of simultaneously achieving high accuracy and high stability in open-set gas recognition, providing solid support for industrial E-nose deployment.
comment: 27 pages, 8 figures, 4 tables
♻ ☆ Interpretable Safety Alignment via SAE-Constructed Low-Rank Subspace Adaptation
Safety alignment -- training large language models (LLMs) to refuse harmful requests while remaining helpful -- is critical for responsible deployment. Prior work established that safety behaviors are governed by low-rank structures, suggesting parameter-efficient fine-tuning (PEFT) should be well-suited for alignment. However, Low-Rank Adaptation (LoRA) consistently underperforms full fine-tuning and reinforcement learning on safety benchmarks. We attribute this gap to semantic entanglement: safety-relevant directions are intertwined with unrelated concepts due to polysemanticity, impeding implicit subspace identification. To address this, we propose SAILS (Safety Alignment via Interpretable Low-rank Subspace), which leverages Sparse Autoencoders (SAEs) to disentangle representations into monosemantic features, constructs an interpretable safety subspace from SAE decoder directions, and uses it to initialize LoRA adapters. Theoretically, we prove that SAE-based identification achieves arbitrarily small recovery error under monosemanticity assumptions, while direct identification suffers an irreducible error floor. Empirically, SAILS achieves up to 99.6% safety rate on Gemma-2-9B -- exceeding full fine-tuning by 7.4 points and matching RLHF-based models -- while updating only 0.19% of parameters and providing interpretability.
♻ ☆ A Linear Approach to Data Poisoning
Backdoor and data-poisoning attacks can flip predictions with tiny training corruptions, yet a sharp theory linking poisoning strength, overparameterization, and regularization is lacking. We analyze ridge least squares with an unpenalized intercept in the high-dimensional regime \(p,n\to\infty\), \(p/n\to c\). Targeted poisoning is modelled by shifting a \(θ\)-fraction of one class by a direction \(\mathbf{v}\) and relabelling. Using resolvent techniques and deterministic equivalents from random matrix theory, we derive closed-form limits for the poisoned score explicit in the model parameters. The formulas yield scaling laws, recover the interpolation threshold as \(c\to1\) in the ridgeless limit, and show that the weights align with the poisoning direction. Synthetic experiments match theory across sweeps of the parameters and MNIST backdoor tests show qualitatively consistent trends. The results provide a tractable framework for quantifying poisoning in linear models.
comment: 9 pages, 9 Figures
♻ ☆ Comparison of neural network training strategies for the simulation of dynamical systems
Neural networks have become a widely adopted tool for modeling nonlinear dynamical systems from data. However, the choice of training strategy remains a key design decision, particularly for simulation tasks. This paper compares two predominant strategies: parallel and series-parallel training. The conducted empirical analysis spans five neural network architectures and two examples: a pneumatic valve test bench and an industrial robot benchmark. The study reveals that, even though series-parallel training dominates current practice, parallel training consistently yields better long-term prediction accuracy. Additionally, this work clarifies the often inconsistent terminology in the literature and relate both strategies to concepts from system identification. The findings suggest that parallel training should be considered the default training strategy for neural network-based simulation of dynamical systems.
comment: submitted to ECC 2026
♻ ☆ Improving the Euclidean Diffusion Generation of Manifold Data by Mitigating Score Function Singularity
Euclidean diffusion models have achieved remarkable success in generative modeling across diverse domains, and they have been extended to manifold cases in recent advances. Instead of explicitly utilizing the structure of special manifolds as studied in previous works, in this paper we investigate direct sampling of the Euclidean diffusion models for general manifold-structured data. We reveal the multiscale singularity of the score function in the ambient space, which hinders the accuracy of diffusion-generated samples. We then present an elaborate theoretical analysis of the singularity structure of the score function by decomposing it along the tangential and normal directions of the manifold. To mitigate the singularity and improve the sampling accuracy, we propose two novel methods: (1) Niso-DM, which reduces the scale discrepancies in the score function by utilizing a non-isotropic noise, and (2) Tango-DM, which trains only the tangential component of the score function using a tangential-only loss function. Numerical experiments demonstrate that our methods achieve superior performance on distributions over various manifolds with complex geometries.
♻ ☆ Do Not Step Into the Same River Twice: Learning to Reason from Trial and Error
Reinforcement learning with verifiable rewards (RLVR) has significantly boosted the reasoning capability of language models (LMs) recently. However, existing RLVR approaches merely train LMs based on their own generated on-policy responses and are constrained by the initial capability of LMs, thus prone to exploration stagnation, in which LMs fail to solve more training problems and cannot further learn from the training data. Some work tries to address this by leveraging off-policy solutions to training problems, but relies on external expert guidance that is limited in availability and scalability. In this work, we propose LTE (Learning to reason from Trial and Error), an approach that hints LMs with their previously self-made mistakes, not requiring any external expert guidance. Experiments validate the effectiveness of LTE, which outperforms the normal group relative policy optimization (GRPO) by 5.02 in Pass@1 and 9.96 in Pass@k on average across six mathematical reasoning benchmarks for Qwen3-8B-Base and even performs better than methods that require external gold solutions as guidance after aligning the experimental setup. Further analysis confirms that LTE successfully mitigates exploration stagnation and enhances both exploitation and exploration during training. Our code is available at https://anonymous.4open.science/r/Learning-from-Trial-and-Error.
comment: Preprint
♻ ☆ Gabliteration: Adaptive Multi-Directional Neural Weight Modification for Selective Behavioral Alteration in Large Language Models
We present Gabliteration, a novel neural weight modification technique that advances beyond traditional abliteration methods by implementing adaptive multi-directional projections with regularized layer selection. Our approach addresses the fundamental limitation of existing methods that compromise model quality while attempting to modify specific behavioral patterns. Through dynamic layer optimization, regularized projection matrices, and adaptive scaling mechanisms, we achieve theoretically superior weight modification while minimizing quality degradation in unrelated domains. We validate our method through the gabliterated-v1 model series (0.6B to 4B parameters) available on Hugging Face, demonstrating practical applicability across multiple model scales.
♻ ☆ SIP-BMM: Constructing the Capability--Efficiency Pareto Set for LLMs via Structural Importance Prior Bayesian Model Merging
Constructing a Pareto set is pivotal for navigating the capability--efficiency trade-offs in Large Language Models (LLMs). However, existing merging techniques remain inadequate for this task. Coarse-grained, model-level methods yield only a sparse set of suboptimal solutions, while fine-grained, layer-wise approaches suffer from the curse of dimensionality, rendering the search space computationally intractable. To resolve this dichotomy, we propose Structural Importance Prior Bayesian Model Merging (SIP-BMM), a framework that automatically constructs the LLM Pareto set. SIP-BMM renders high-dimensional layer-wise search tractable by introducing an importance-aware Sparse Axis-Aligned Subspace Bayesian Optimization (SAASBO) strategy. By leveraging a structural importance prior derived from task-vector differences, our method guides SAASBO to automatically identify critical layers, thereby dramatically reducing the effective dimensionality without sacrificing the granularity of full-model control. The entire process is automated within an evolutionary loop driven by the Log-Noisy Expected Hypervolume Improvement ($q$NEHVI) acquisition function. Experiments demonstrate that SIP-BMM discovers a stronger and denser Pareto front than competitive baselines, enabling agile model selection tailored to diverse operational constraints. Code is available at: https://github.com/MiLab-HITSZ/2026-SIPBMM.
♻ ☆ v-PuNNs: van der Put Neural Networks for Transparent Ultrametric Representation Learning
Conventional deep learning models embed data in Euclidean space $\mathbb{R}^d$, a poor fit for strictly hierarchical objects such as taxa, word senses, or file systems. We introduce van der Put Neural Networks (v-PuNNs), the first architecture whose neurons are characteristic functions of p-adic balls in $\mathbb{Z}_p$. Under our Transparent Ultrametric Representation Learning (TURL) principle every weight is itself a p-adic number, giving exact subtree semantics. A new Finite Hierarchical Approximation Theorem shows that a depth-K v-PuNN with $\sum_{j=0}^{K-1}p^{\,j}$ neurons universally represents any K-level tree. Because gradients vanish in this discrete space, we propose Valuation-Adaptive Perturbation Optimization (VAPO), with a fast deterministic variant (HiPaN-DS) and a moment-based one (HiPaN / Adam-VAPO). On three canonical benchmarks our CPU-only implementation sets new state-of-the-art: WordNet nouns (52,427 leaves) 99.96% leaf accuracy in 16 min; GO molecular-function 96.9% leaf / 100% root in 50 s; NCBI Mammalia Spearman $ρ= -0.96$ with true taxonomic distance. The learned metric is perfectly ultrametric (zero triangle violations), and its fractal and information-theoretic properties are analyzed. Beyond classification we derive structural invariants for quantum systems (HiPaQ) and controllable generative codes for tabular data (Tab-HiPaN). v-PuNNs therefore bridge number theory and deep learning, offering exact, interpretable, and efficient models for hierarchical data.
comment: v2: Corrected mathematical statements in Section 3.1.3 and Appendix A regarding the van der Put basis properties. Clarified distinction between hierarchical indicator family and classical Schauder basis
♻ ☆ Causal Ordering for Structure Learning from Time Series
Predicting causal structure from time series data is crucial for understanding complex phenomena in physiology, brain connectivity, climate dynamics, and socio-economic behaviour. Causal discovery in time series is hindered by the combinatorial complexity of identifying true causal relationships, especially as the number of variables and time points grow. A common approach to simplify the task is the so-called ordering-based methods. Traditional ordering methods inherently limit the representational capacity of the resulting model. In this work, we fix this issue by leveraging multiple valid causal orderings, instead of a single one as standard practice. We propose DOTS (Diffusion Ordered Temporal Structure), using diffusion-based causal discovery for temporal data. By integrating multiple orderings, DOTS effectively recovers the transitive closure of the underlying directed acyclic graph, mitigating spurious artifacts inherent in single-ordering approaches. We formalise the problem under standard assumptions such as stationarity and the additive noise model, and leverage score matching with diffusion processes to enable efficient Hessian estimation. Extensive experiments validate the approach. Empirical evaluations on synthetic and real-world datasets demonstrate that DOTS outperforms state-of-the-art baselines, offering a scalable and robust approach to temporal causal discovery. On synthetic benchmarks ($d{=}\!3-\!6$ variables, $T{=}200\!-\!5{,}000$ samples), DOTS improves mean window-graph $F1$ from $0.63$ (best baseline) to $0.81$. On the CausalTime real-world benchmark ($d{=}20\!-\!36$), while baselines remain the best on individual datasets, DOTS attains the highest average summary-graph $F1$ while halving runtime relative to graph-optimisation methods. These results establish DOTS as a scalable and accurate solution for temporal causal discovery.
comment: 32 pages. Published in Transactions on Machine Learning Research
♻ ☆ On LLMs' Internal Representation of Code Correctness ICSE'26
Despite the effectiveness of large language models (LLMs) for code generation, they often output incorrect code. One reason is that model output probabilities are often not well-correlated with correctness, and reflect only the final output of the generation process. Inspired by findings that LLMs internally encode concepts like truthfulness, this paper explores if LLMs similarly represent code correctness. Specifically, we identify a correctness representation inside LLMs by contrasting the hidden states between pairs of correct and incorrect code for the same programming tasks. By experimenting on four LLMs, we show that exploiting this extracted correctness representation outperforms standard log-likelihood ranking, as well as verbalized model confidence. Furthermore, we explore how this internal correctness signal can be used to select higher-quality code samples, without requiring test execution. Ultimately, this work demonstrates how leveraging internal representations can enhance code generation systems and make LLMs more reliable, thus improving confidence in automatically generated code.
comment: Accepted for ICSE'26
♻ ☆ I Large Language Models possono nascondere un testo in un altro testo della stessa lunghezza
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present Calgacus, a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something. -- Un testo di senso compiuto può essere nascosto all'interno di un altro testo completamente diverso, eppure coerente e plausibile, della stessa lunghezza. Ad esempio, un tweet che celebra un leader politico potrebbe celare un tweet che lo critica duramente, o un'anonima recensione di un prodotto potrebbe in realtà codificare un manoscritto segreto. Questa sconcertante possibilità è oggi alla nostra portata grazie ai Large Language Models (LLM); in questo articolo presentiamo Calgacus, un protocollo semplice ed efficiente per realizzarla. Mostriamo che anche modesti LLM open-source da 8 miliardi di parametri sono sufficienti per ottenere risultati di alta qualità, e che un messaggio lungo quanto questo abstract può essere codificato e decodificato su un comune portatile in pochi secondi. L'esistenza di tale protocollo dimostra un radicale disaccoppiamento del testo dall'intento del suo autore, erodendo ulteriormente la fiducia nella comunicazione scritta, già scossa dall'ascesa dei chatbot basati su LLMs. Illustriamo ciò con uno scenario concreto: un'azienda potrebbe offrire pubblicamente i servizi di un LLM senza filtri nascondendo le sue risposte all'interno di risposte apparentemente innocue generate da un LLM considerato sicuro. Questa possibilità solleva questioni urgenti per la sicurezza dell'Intelligenza Artificiale e sfida la nostra comprensione di cosa significhi, per un Large Language Model, sapere qualcosa.
comment: 21 pages, in Italian language, main paper 9 pages. v1-v4 are in English
♻ ☆ ULTra: Unveiling Latent Token Interpretability in Transformer-Based Understanding and Segmentation
Transformers have revolutionized Computer Vision (CV) through self-attention mechanisms. However, their complexity makes latent token representations difficult to interpret. We introduce ULTra, a framework for interpreting Transformer embeddings and uncovering meaningful semantic patterns within them. ULTra enables unsupervised semantic segmentation using pre-trained models without requiring fine-tuning. Additionally, we propose a self-supervised training approach that refines segmentation performance by learning an external transformation matrix without modifying the underlying model. Our method achieves state-of-the-art performance in unsupervised semantic segmentation, outperforming existing segmentation methods. Furthermore, we validate ULTra for model interpretation on both synthetic and real-world scenarios, including Object Selection and interpretable text summarization using LLMs, demonstrating its broad applicability in explaining the semantic structure of latent token representations.
♻ ☆ Low-degree lower bounds via almost orthonormal bases
Low-degree polynomials have emerged as a powerful paradigm for providing evidence of statistical-computational gaps across a variety of high-dimensional statistical models [Wein25]. For detection problems -- where the goal is to test a planted distribution $\mathbb{P}'$ against a null distribution $\mathbb{P}$ with independent components -- the standard approach is to bound the advantage using an $\mathbb{L}^2(\mathbb{P})$-orthonormal family of polynomials. However, this method breaks down for estimation tasks or more complex testing problems where $\mathbb{P}$ has some planted structures, so that no simple $\mathbb{L}^2(\mathbb{P})$-orthogonal polynomial family is available. To address this challenge, several technical workarounds have been proposed [SW22,SW25], though their implementation can be delicate. In this work, we propose a more direct proof strategy. Focusing on random graph models, we construct a basis of polynomials that is almost orthonormal under $\mathbb{P}$, in precisely those regimes where statistical-computational gaps arise. This almost orthonormal basis not only yields a direct route to establishing low-degree lower bounds, but also allows us to explicitly identify the polynomials that optimize the low-degree criterion. This, in turn, provides insights into the design of optimal polynomial-time algorithms. We illustrate the effectiveness of our approach by recovering known low-degree lower bounds, and establishing new ones for problems such as hidden subcliques, stochastic block models, and seriation models.
♻ ☆ Posets and Bounded Probabilities for Discovering Order-inducing Features in Event Knowledge Graphs
Event knowledge graphs (EKG) extend the classical notion of a trace to capture multiple, interacting views of a process execution. In this paper, we tackle the open problem of automating EKG discovery from uncurated data through a principled probabilistic framing based on the outcome space resulting from featured-derived partial orders on events. From this we derive an EKG discovery algorithm based on statistical inference rather than an ad hoc or heuristic-based strategy, or relying on manual analysis from domain experts. This approach comes at the computational cost of exploring a large, non-convex hypothesis space. In particular, solving the maximum likelihood term in our objective function involves counting the number of linear extensions of posets, which in general is #P-complete. Fortunately, bound estimates suffice for model comparison, and admit incorporation into a bespoke branch-and-bound algorithm. We establish an upper bound on our objective function which we show to be antitonic w.r.t. search depth for branching rules that are monotonic w.r.t. model inclusion. This allows pruning of large portions of the search space, which we show experimentally leads to rapid convergence toward optimal solutions that are consistent with manually built EKGs.
comment: 2-column IEEE format
♻ ☆ Geometry-induced Regularization in Deep ReLU Neural Networks
Neural networks with a large number of parameters often do not overfit, owing to implicit regularization that favors \lq good\rq{} networks. Other related and puzzling phenomena include properties of flat minima, saddle-to-saddle dynamics, and neuron alignment. To investigate these phenomena, we study the local geometry of deep ReLU neural networks. We show that, for a fixed architecture, as the weights vary, the image of a sample $X$ forms a set whose local dimension changes. The parameter space is partitioned into regions where this local dimension remains constant. The local dimension is invariant under the natural symmetries of ReLU networks (i.e., positive rescalings and neuron permutations). We establish then that the network's geometry induces a regularization, with the local dimension serving as a key measure of regularity. Moreover, we relate the local dimension to a new notion of flatness of minima and to saddle-to-saddle dynamics. For shallow networks, we also show that the local dimension is connected to the number of linear regions perceived by $X$, offering insight into the effects of regularization. This is further supported by experiments and linked to neuron alignment. Our analysis offers, for the first time, a simple and unified geometric explanation that applies to all learning contexts for these phenomena, which are usually studied in isolation. Finally, we explore the practical computation of the local dimension and present experiments on the MNIST dataset, which highlight geometry-induced regularization in this setting.
♻ ☆ Fusion-PSRO: Nash Policy Fusion for Policy Space Response Oracles ECAI 2025
For solving zero-sum games involving non-transitivity, a useful approach is to maintain a policy population to approximate the Nash Equilibrium (NE). Previous studies have shown that the Policy Space Response Oracles (PSRO) algorithm is an effective framework for solving such games. However, current methods initialize a new policy from scratch or inherit a single historical policy in Best Response (BR), missing the opportunity to leverage past policies to generate a better BR. In this paper, we propose Fusion-PSRO, which employs Nash Policy Fusion to initialize a new policy for BR training. Nash Policy Fusion serves as an implicit guiding policy that starts exploration on the current Meta-NE, thus providing a closer approximation to BR. Moreover, it insightfully captures a weighted moving average of past policies, dynamically adjusting these weights based on the Meta-NE in each iteration. This cumulative process further enhances the policy population. Empirical results on classic benchmarks show that Fusion-PSRO achieves lower exploitability, thereby mitigating the shortcomings of previous research on policy initialization in BR.
comment: Accepted by ECAI 2025
♻ ☆ GNN-XAR: A Graph Neural Network for Explainable Activity Recognition in Smart Homes
Sensor-based Human Activity Recognition (HAR) in smart home environments is crucial for several applications, especially in the healthcare domain. The majority of the existing approaches leverage deep learning models. While these approaches are effective, the rationale behind their outputs is opaque. Recently, eXplainable Artificial Intelligence (XAI) approaches emerged to provide intuitive explanations to the output of HAR models. To the best of our knowledge, these approaches leverage classic deep models like CNNs or RNNs. Recently, Graph Neural Networks (GNNs) proved to be effective for sensor-based HAR. However, existing approaches are not designed with explainability in mind. In this work, we propose the first explainable Graph Neural Network explicitly designed for smart home HAR. Our results on two public datasets show that this approach provides better explanations than state-of-the-art methods while also slightly improving the recognition rate.
♻ ☆ Convergence of a L2 regularized Policy Gradient Algorithm for the Multi Armed Bandit
Although Multi Armed Bandit (MAB) on one hand and the policy gradient approach on the other hand are among the most used frameworks of Reinforcement Learning, the theoretical properties of the policy gradient algorithm used for MAB have not been given enough attention. We investigate in this work the convergence of such a procedure for the situation when a $L2$ regularization term is present jointly with the 'softmax' parametrization. We prove convergence under appropriate technical hypotheses and test numerically the procedure including situations beyond the theoretical setting. The tests show that a time dependent regularized procedure can improve over the canonical approach especially when the initial guess is far from the solution.
♻ ☆ A Fast Anti-Jamming Cognitive Radar Deployment Algorithm Based on Reinforcement Learning
The fast deployment of cognitive radar to counter jamming remains a critical challenge in modern warfare, where more efficient deployment leads to quicker detection of targets. Existing methods are primarily based on evolutionary algorithms, which are time-consuming and prone to falling into local optima. We tackle these drawbacks via the efficient inference of neural networks and propose a brand new framework: Fast Anti-Jamming Radar Deployment Algorithm (FARDA). We first model the radar deployment problem as an end-to-end task and design deep reinforcement learning algorithms to solve it, where we develop integrated neural modules to perceive heatmap information and a brand new reward format. Empirical results demonstrate that our method achieves coverage comparable to evolutionary algorithms while deploying radars approximately 7,000 times faster. Further ablation experiments confirm the necessity of each component of FARDA.
♻ ☆ Balancing Fidelity and Plasticity: Aligning Mixed-Precision Fine-Tuning with Linguistic Hierarchies
Deploying and fine-tuning Large Language Models (LLMs) on resource-constrained edge devices requires navigating a strict trade-off between memory footprint and task performance. While Quantization-Aware Fine-tuning has emerged as a viable solution, existing paradigms typically decouple quantization and adapter optimization. This separation overlooks a fundamental theoretical constraint we identify as the \textit{Fidelity-Plasticity Trade-off}: a layer's capacity to adapt to new tasks (Plasticity) is inherently constrained by the information capacity of its frozen weights (Fidelity). Aggressively quantizing semantically critical layers creates an information bottleneck that no amount of adapter rank can recover, while high precision in robust syntactic layers wastes valuable memory. To address this, we introduce \textbf{QR-Adaptor}, a unified framework that jointly optimizes per-layer quantization bit-width and LoRA rank. By formulating resource allocation as a multi-objective search aligned with the model's linguistic hierarchy, our method systematically liberates memory from redundancy-heavy layers to reinvest in capacity-critical ones. Extensive experiments demonstrate that QR-Adaptor establishes a new Pareto frontier: notably, a model fine-tuned under a strict 4-bit memory budget achieves performance rivaling 16-bit baselines, demonstrating that precise resource alignment is as critical as model size.
comment: 18 pages, 5 figures
♻ ☆ PathFinder: Advancing Path Loss Prediction for Single-to-Multi-Transmitter Scenario
Radio path loss prediction (RPP) is critical for optimizing 5G networks and enabling IoT, smart city, and similar applications. However, current deep learning-based RPP methods lack proactive environmental modeling, struggle with realistic multi-transmitter scenarios, and generalize poorly under distribution shifts, particularly when training/testing environments differ in building density or transmitter configurations. This paper identifies three key issues: (1) passive environmental modeling that overlooks transmitters and key environmental features; (2) overemphasis on single-transmitter scenarios despite real-world multi-transmitter prevalence; (3) excessive focus on in-distribution performance while neglecting distribution shift challenges. To address these, we propose PathFinder, a novel architecture that actively models buildings and transmitters via disentangled feature encoding and integrates Mask-Guided Low-rank Attention to independently focus on receiver and building regions. We also introduce a Transmitter-Oriented Mixup strategy for robust training and a new benchmark, single-to-multi-transmitter RPP (S2MT-RPP), tailored to evaluate extrapolation performance (multi-transmitter testing after single-transmitter training). Experimental results show PathFinder outperforms state-of-the-art methods significantly, especially in challenging multi-transmitter scenarios. Our code and project site are publicly available at: https://emorzz1g.github.io/PathFinder/.
comment: 20 pages, 14 figures, 4 tables. Under review
♻ ☆ Sharp Structure-Agnostic Lower Bounds for General Linear Functional Estimation
We establish a general statistical optimality theory for estimation problems where the target parameter is a linear functional of an unknown nuisance component that must be estimated from data. This formulation covers many causal and predictive parameters and has applications to numerous disciplines. We adopt the structure-agnostic framework introduced by \citet{balakrishnan2023fundamental}, which poses no structural properties on the nuisance functions other than access to black-box estimators that achieve some statistical estimation rate. This framework is particularly appealing when one is only willing to consider estimation strategies that use non-parametric regression and classification oracles as black-box sub-processes. Within this framework, we first prove the statistical optimality of the celebrated and widely used doubly robust estimators for the Average Treatment Effect (ATE), the most central parameter in causal inference. We then characterize the minimax optimal rate under the general formulation. Notably, we differentiate between two regimes in which double robustness can and cannot be achieved and in which first-order debiasing yields different error rates. Our result implies that first-order debiasing is simultaneously optimal in both regimes. We instantiate our theory by deriving optimal error rates that recover existing results and extend to various settings of interest, including the case when the nuisance is defined by generalized regressions and when covariate shift exists for training and test distribution.
comment: 117 pages; generalizes and subsumes arXiv:2402.14264 by the same authors
♻ ☆ Blade: A Derivative-free Bayesian Inversion Method using Diffusion Priors
Derivative-free Bayesian inversion is an important task in many science and engineering applications, particularly when computing the forward model derivative is computationally and practically challenging. In this paper, we introduce Blade, which can produce accurate and well-calibrated posteriors for Bayesian inversion using an ensemble of interacting particles. Blade leverages powerful data-driven priors based on diffusion models, and can handle nonlinear forward models that permit only black-box access (i.e., derivative-free). Theoretically, we establish a non-asymptotic convergence analysis to characterize the effects of forward model and prior estimation errors. Empirically, Blade achieves superior performance compared to existing derivative-free Bayesian inversion methods on various inverse problems, including challenging highly nonlinear fluid dynamics.
♻ ☆ Personalized Spiking Neural Networks with Ferroelectric Synapses for EEG Signal Processing
Electroencephalography (EEG)-based brain-computer interfaces (BCIs) are strongly affected by non-stationary neural signals that vary across sessions and individuals, limiting the generalization of subject-agnostic models and motivating adaptive and personalized learning on resource-constrained platforms. Programmable memristive hardware offers a promising substrate for such post-deployment adaptation; however, practical realization is challenged by limited weight resolution, device variability, nonlinear programming dynamics, and finite device endurance. In this work, we show that spiking neural networks (SNNs) can be deployed on ferroelectric memristive synaptic devices for adaptive EEG-based motor imagery decoding under realistic device constraints. We fabricate, characterize, and model ferroelectric synapses. We evaluate a convolutional-recurrent SNN architecture under two complementary deployment strategies: (i) device-aware training using a ferroelectric synapse model, and (ii) transfer of software-trained weights followed by low-overhead on-device re-tuning. To enable efficient adaptation, we introduce a device-aware weight-update strategy in which gradient-based updates are accumulated digitally and converted into discrete programming events only when a threshold is exceeded, emulating nonlinear, state-dependent programming dynamics while reducing programming frequency. Both deployment strategies achieve classification performance comparable to state-of-the-art software-based SNNs. Furthermore, subject-specific transfer learning achieved by retraining only the final network layers improves classification accuracy. These results demonstrate that programmable ferroelectric hardware can support robust, low-overhead adaptation in spiking neural networks, opening a practical path toward personalized neuromorphic processing of neural signals.
♻ ☆ Dynamic Large Concept Models: Latent Reasoning in an Adaptive Semantic Space
Large Language Models (LLMs) apply uniform computation to all tokens, despite language exhibiting highly non-uniform information density. This token-uniform regime wastes capacity on locally predictable spans while under-allocating computation to semantically critical transitions. We propose $\textbf{Dynamic Large Concept Models (DLCM)}$, a hierarchical language modeling framework that learns semantic boundaries from latent representations and shifts computation from tokens to a compressed concept space where reasoning is more efficient. DLCM discovers variable-length concepts end-to-end without relying on predefined linguistic units. Hierarchical compression fundamentally changes scaling behavior. We introduce the first $\textbf{compression-aware scaling law}$, which disentangles token-level capacity, concept-level reasoning capacity, and compression ratio, enabling principled compute allocation under fixed FLOPs. To stably train this heterogeneous architecture, we further develop a $\textbf{decoupled $μ$P parametrization}$ that supports zero-shot hyperparameter transfer across widths and compression regimes. At a practical setting ($R=4$, corresponding to an average of four tokens per concept), DLCM reallocates roughly one-third of inference compute into a higher-capacity reasoning backbone, achieving a $\textbf{+2.69$\%$ average improvement}$ across 12 zero-shot benchmarks under matched inference FLOPs.
♻ ☆ VAR-MATH: Probing True Mathematical Reasoning in LLMS via Symbolic Multi-Instance Benchmarks
Recent advances in reinforcement learning (RL) have led to substantial improvements in the mathematical reasoning abilities of LLMs, as measured by standard benchmarks. Yet these gains often persist even when models are trained with flawed signals, such as random or inverted rewards. This raises a fundamental question: do such improvements reflect genuine reasoning, or are they merely artifacts of overfitting to benchmark-specific patterns? To answer this question, we adopt an evaluation-centric perspective and highlight two critical shortcomings in existing protocols. First, benchmark contamination arises because test problems are publicly available, thereby increasing the risk of data leakage. Second, evaluation fragility results from reliance on single-instance assessments, which are sensitive to stochastic outputs and fail to capture reasoning consistency. These limitations suggest the need for a new evaluation paradigm that can probe reasoning ability beyond memorization and one-off success. As response, we propose VAR-MATH, a symbolic evaluation framework that converts fixed numerical problems into parameterized templates and requires models to solve multiple instantiations of each. This design enforces consistency across structurally equivalent variants, mitigates contamination, and enhances robustness through bootstrapped metrics. We apply VAR-MATH to transform three popular benchmarks, AMC23, AIME24, and AIME25, into their symbolic counterparts, VAR-AMC23, VAR-AIME24, and VAR-AIME25. Experimental results show substantial performance drops for RL-trained models on these variabilized benchmarks, especially for smaller models, with average declines of 47.9\% on AMC23, 58.8\% on AIME24, and 72.9\% on AIME25. These findings indicate that some existing RL methods rely on superficial heuristics and fail to generalize beyond specific numerical forms.
♻ ☆ On the Robustness of Answer Formats in Medical Reasoning Models
Medical reasoning models (MRMs) achieve superior performance on medical benchmarks compared to medical LLMs; however, high accuracy alone is insufficient for practical deployment. One of such requirements for real-world application is robustness to varying output constraints. Specifically, posing the same medical question while requesting different answer formats should not affect the underlying correctness of the response. We investigate this phenomenon in this paper, focusing on MRMs. To quantify this behavior, we propose the metric answer-format robustness: the ability to reliably generate correct outputs across varying specified formats. We examine three representative formats: multiple-choice, open-ended question-answering, and ranked lists. Across 15 proprietary and open-weight models, we observe substantial variation in format robustness (35-100%). Furthermore, we conduct controlled fine-tuning experiments on a shared backbone with matched training data to isolate the effects of the fine-tuning paradigm. We find that supervised fine-tuning yields more stable behavior across formats, whereas reinforcement fine-tuning often exhibits higher cross-format brittleness, with the degree of instability strongly dependent on reward design. Overall, answer-format robustness in MRMs is trainable yet brittle and requires careful evaluation for practical medical use.
comment: 62 pages, 47 figures
♻ ☆ Improving Graph Neural Network Training, Defense and Hypergraph Clustering via Adversarial Robustness Evaluation
Graph Neural Networks (GNNs) are a highly effective neural network architecture for processing graph-structured data. Unlike traditional neural networks that rely solely on the features of the data as input, GNNs leverage both the graph structure, which represents the relationships between data points, and the feature matrix of the data to optimize their feature representation. This unique capability enables GNNs to achieve superior performance across various tasks. However, it also makes GNNs more susceptible to noise and adversarial attacks from both the graph structure and data features, which can significantly increase the training difficulty and degrade their performance. Similarly, a hypergraph is a highly complex structure, and partitioning a hypergraph is a challenging task. This paper leverages spectral adversarial robustness evaluation to effectively address key challenges in complex-graph algorithms. By using spectral adversarial robustness evaluation to distinguish robust nodes from non-robust ones and treating them differently, we propose a training-set construction strategy that improves the training quality of GNNs. In addition, we develop algorithms to enhance both the adversarial robustness of GNNs and the performance of hypergraph clustering. Experimental results show that this series of methods is highly effective.
♻ ☆ Improving the accuracy and generalizability of molecular property regression models with a substructure-substitution-rule-informed framework
Artificial Intelligence (AI)-aided drug discovery is an active research field, yet AI models often exhibit poor accuracy in regression tasks for molecular property prediction, and perform catastrophically poorly for out-of-distribution (OOD) molecules. Here, we present MolRuleLoss, a substructure-substitution-rule-informed framework that improves the accuracy and generalizability of multiple molecular property regression models (MPRMs) such as GEM and UniMol for diverse molecular property prediction tasks. MolRuleLoss incorporates partial derivative constraints for substructure substitution rules (SSRs) into an MPRM's loss function. When using GEM models for predicting lipophilicity, water solubility, and solvation-free energy (using lipophilicity, ESOL, and freeSolv datasets from MoleculeNet), the root mean squared error (RMSE) values with and without MolRuleLoss were 0.587 vs. 0.660, 0.777 vs. 0.798, and 1.252 vs. 1.877, respectively, representing 2.6-33.3% performance improvements. We show that both the number and the quality of SSRs contribute to the magnitude of prediction accuracy gains obtained upon adding MolRuleLoss to an MPRM. MolRuleLoss improved the generalizability of MPRMs for "activity cliff" molecules in a lipophilicity prediction task and improved the generalizability of MPRMs for OOD molecules in a melting point prediction task. In a molecular weight prediction task for OOD molecules, MolRuleLoss reduced the RMSE value of a GEM model from 29.507 to 0.007. We also provide a formal demonstration that the upper bound of the variation for property change of SSRs is positively correlated with an MPRM's error. Together, we show that using the MolRuleLoss framework as a bolt-on boosts the prediction accuracy and generalizability of multiple MPRMs, supporting diverse applications in areas like cheminformatics and AI-aided drug discovery.
comment: Author information updated: add co-author Weihao Li (affiliation:Department of Statistics and Data Science, Tsinghua University, Beijing, 100084, China). Weihao Li proposed constructive revision suggestions for section on Proof of "Tian Conjecture"
♻ ☆ Long-Horizon Model-Based Offline Reinforcement Learning Without Conservatism
Popular offline reinforcement learning (RL) methods rely on conservatism, either by penalizing out-of-dataset actions or by restricting rollout horizons. In this work, we question the universality of this principle and instead revisit a complementary one: a Bayesian perspective. Rather than enforcing conservatism, the Bayesian approach tackles epistemic uncertainty in offline data by modeling a posterior distribution over plausible world models and training a history-dependent agent to maximize expected rewards, enabling test-time generalization. We first illustrate, in a bandit setting, that Bayesianism excels on low-quality datasets where conservatism fails. We then scale this principle to realistic tasks and show that long-horizon planning is critical for reducing value overestimation once conservatism is removed. To make this feasible, we introduce key design choices for performing and learning from long-horizon rollouts while controlling compounding errors. These yield our algorithm, NEUBAY, grounded in the neutral Bayesian principle. On D4RL and NeoRL benchmarks, NEUBAY generally matches or surpasses leading conservative algorithms, achieving new state-of-the-art on 7 datasets. Notably, it succeeds with rollout horizons of several hundred steps, contrary to dominant practice. Finally, we characterize datasets by quality and coverage, showing when NEUBAY is preferable to conservative methods. Together, we argue NEUBAY lays the foundation for a new practical direction in offline and model-based RL.
comment: Preprint (52 pages, 15 figures) and code is available at https://github.com/twni2016/neubay
♻ ☆ Renormalizable Spectral-Shell Dynamics as the Origin of Neural Scaling Laws
Neural scaling laws and double-descent phenomena suggest that deep-network training obeys a simple macroscopic structure despite highly nonlinear optimization dynamics. We derive such structure directly from gradient descent in function space. For mean-squared error loss, the training error evolves as $\dot e_t=-M(t)e_t$ with $M(t)=J_{θ(t)}J_{θ(t)}^{\!*}$, a time-dependent self-adjoint operator induced by the network Jacobian. Using Kato perturbation theory, we obtain an exact system of coupled modewise ODEs in the instantaneous eigenbasis of $M(t)$. To extract macroscopic behavior, we introduce a logarithmic spectral-shell coarse-graining and track quadratic error energy across shells. Microscopic interactions within each shell cancel identically at the energy level, so shell energies evolve only through dissipation and external inter-shell interactions. We formalize this via a \emph{renormalizable shell-dynamics} assumption, under which cumulative microscopic effects reduce to a controlled net flux across shell boundaries. Assuming an effective power-law spectral transport in a relevant resolution range, the shell dynamics admits a self-similar solution with a moving resolution frontier and explicit scaling exponents. This framework explains neural scaling laws and double descent, and unifies lazy (NTK-like) training and feature learning as two limits of the same spectral-shell dynamics.
♻ ☆ AFA-LoRA: Enabling Non-Linear Adaptations in LoRA with Activation Function Annealing
Low-Rank Adaptation (LoRA) is a widely adopted parameter-efficient fine-tuning (PEFT) method. However, its linear adaptation process limits its expressive power. This means there is a gap between the expressive power of linear training and non-linear training. To bridge this gap, we propose AFA-LoRA, a novel training strategy that brings non-linear expressivity to LoRA while maintaining its seamless mergeability. Our key innovation is an annealed activation function that transitions from a non-linear to a linear transformation during training, allowing the adapter to initially adopt stronger representational capabilities before converging to a mergeable linear form. We implement our method on supervised fine-tuning, reinforcement learning, and speculative decoding. The results show that AFA-LoRA reduces the performance gap between LoRA and full-parameter training. This work enables a more powerful and practical paradigm of parameter-efficient adaptation.
♻ ☆ Generation of Geodesics with Actor-Critic Reinforcement Learning to Predict Midpoints
To find the shortest paths for all pairs on manifolds with infinitesimally defined metrics, we introduce a framework to generate them by predicting midpoints recursively. To learn midpoint prediction, we propose an actor-critic approach. We prove the soundness of our approach and show experimentally that the proposed method outperforms existing methods on several planning tasks, including path planning for agents with complex kinematics and motion planning for multi-degree-of-freedom robot arms.
comment: 17 pages with 8 pages of appendices and references, 9 figures
♻ ☆ Mem-Rec: Memory Efficient Recommendation System using Alternative Representation
Deep learning-based recommendation systems (e.g., DLRMs) are widely used AI models to provide high-quality personalized recommendations. Training data used for modern recommendation systems commonly includes categorical features taking on tens-of-millions of possible distinct values. These categorical tokens are typically assigned learned vector representations, that are stored in large embedding tables, on the order of 100s of GB. Storing and accessing these tables represent a substantial burden in commercial deployments. Our work proposes MEM-REC, a novel alternative representation approach for embedding tables. MEM-REC leverages bloom filters and hashing methods to encode categorical features using two cache-friendly embedding tables. The first table (token embedding) contains raw embeddings (i.e. learned vector representation), and the second table (weight embedding), which is much smaller, contains weights to scale these raw embeddings to provide better discriminative capability to each data point. We provide a detailed architecture, design and analysis of MEM-REC addressing trade-offs in accuracy and computation requirements, in comparison with state-of-the-art techniques. We show that MEM-REC can not only maintain the recommendation quality and significantly reduce the memory footprint for commercial scale recommendation models but can also improve the embedding latency. In particular, based on our results, MEM-REC compresses the MLPerf CriteoTB benchmark DLRM model size by 2900x and performs up to 3.4x faster embeddings while achieving the same AUC as that of the full uncompressed model.
♻ ☆ KVCrush: Key value cache size-reduction using similarity in head-behaviour
Key-value (KV) caching has emerged as a crucial optimization technique for accelerating inference in large language models (LLMs). By allowing the attention operation to scale linearly rather than quadratically with the total sequence length, KV caching significantly enhances generation throughput. However, due to large context lengths in the modern LLMs, the memory footprint of the KV is a huge bottleneck for model deployment directly impacting the model's batch size, hindering its ability to deliver high-throughput. Existing research addresses this challenge using several techniques, such as discarding low-attention tokens, quantization, and matrix approximation which typically lead to a negative impact on the model accuracy. In this paper, We propose KVCrush technology which can be combined with many KV compression technologies to improve the model accuracy at a much smaller memory. KVCrush provides an alternate representation scheme for key-value states, along with a low-overhead token pruning algorithm that accounts for the token distribution in the KV cache, which in turn allows for a a smaller footprint while maintaining the accuracy of the model. Based on our results, KVCrush reduces LongBench KV Cache size by 4x with less than 1% accuracy drop and achieves state-of-the-art average accuracy with minimal overhead, incurring less than 0.5% total inference latency. KVCrush not only outperforms the accuracy of state-of-the-art importance-based token retention schemes but is also compatible with typical practical LLM deployments using KV cache paging schemes such as vLLM and mixed precision quantization.
♻ ☆ Precision Autotuning for Linear Solvers via Reinforcement Learning
We propose a reinforcement learning (RL) framework for adaptive precision tuning of linear solvers, and can be extended to general algorithms. The framework is formulated as a contextual bandit problem and solved using incremental action-value estimation with a discretized state space to select optimal precision configurations for computational steps, balancing precision and computational efficiency. To verify its effectiveness, we apply the framework to iterative refinement for solving linear systems $Ax = b$. In this application, our approach dynamically chooses precisions based on calculated features from the system. In detail, a Q-table maps discretized features (e.g., approximate condition number and matrix norm)to actions (chosen precision configurations for specific steps), optimized via an epsilon-greedy strategy to maximize a multi-objective reward balancing accuracy and computational cost. Empirical results demonstrate effective precision selection, reducing computational cost while maintaining accuracy comparable to double-precision baselines. The framework generalizes to diverse out-of-sample data and offers insight into utilizing RL precision selection for other numerical algorithms, advancing mixed-precision numerical methods in scientific computing. To the best of our knowledge, this is the first work on precision autotuning with RL and verified on unseen datasets.
♻ ☆ GIFT: Group-relative Implicit Fine Tuning Integrates GRPO with DPO and UNA
I propose \textbf{G}roup-relative \textbf{I}mplicit \textbf{F}ine \textbf{T}uning (GIFT), a novel reinforcement learning framework for aligning LLMs. Instead of directly maximizing cumulative rewards like PPO or GRPO, GIFT minimizes the discrepancy between implicit and explicit reward models. It combines three key ideas: (1) the online multi-response generation and normalization of GRPO, (2) the implicit reward formulation of DPO, and (3) the implicit-explicit reward alignment principle of UNA. By jointly normalizing the implicit and explicit rewards, GIFT eliminates an otherwise intractable term that prevents effective use of implicit rewards. This normalization transforms the complex reward maximization objective into a simple mean squared error (MSE) loss between the normalized reward functions, converting a non-convex optimization problem into a convex, stable, and analytically differentiable formulation. Unlike offline methods such as DPO and UNA, GIFT remains on-policy and thus retains exploration capability. Compared to GRPO, it requires fewer hyperparameters, converges faster, and generalizes better with significantly reduced training overfitting. Empirically, GIFT achieves superior reasoning and alignment performance on mathematical benchmarks while remaining computationally efficient.
♻ ☆ Interaction Tensor SHAP
This study proposes Interaction Tensor SHAP (IT-SHAP), a tensor algebraic formulation of the Shapley Taylor Interaction Index (STII) that makes its computational structure explicit. STII extends the Shapley value to higher order interactions, but its exponential combinatorial definition makes direct computation intractable at scale. We reformulate STII as a linear transformation acting on a value function and derive an explicit algebraic representation of its weight tensor. This weight tensor is shown to possess a multilinear structure induced by discrete finite difference operators. When the value function admits a Tensor Train representation, higher order interaction indices can be computed in the parallel complexity class NC squared. In contrast, under general tensor network representations without structural assumptions, the same computation is proven to be P sharp hard. The main contributions are threefold. First, we establish an exact Tensor Train representation of the STII weight tensor. Second, we develop a parallelizable evaluation algorithm with explicit complexity bounds under the Tensor Train assumption. Third, we prove that computational intractability is unavoidable in the absence of such structure. These results demonstrate that the computational difficulty of higher order interaction analysis is determined by the underlying algebraic representation rather than by the interaction index itself, providing a theoretical foundation for scalable interpretation of high dimensional models.
comment: 22 pages
♻ ☆ A first-order method for nonconvex-strongly-concave constrained minimax optimization
In this paper we study a nonconvex-strongly-concave constrained minimax problem. Specifically, we propose a first-order augmented Lagrangian method for solving it, whose subproblems are nonconvex-strongly-concave unconstrained minimax problems and suitably solved by a first-order method developed in this paper that leverages the strong concavity structure. Under suitable assumptions, the proposed method achieves an operation complexity of $O(\varepsilon^{-3.5}\log\varepsilon^{-1})$, measured in terms of its fundamental operations, for finding an $\varepsilon$-KKT solution of the constrained minimax problem, which improves the previous best-known operation complexity by a factor of $\varepsilon^{-0.5}$.
comment: Accepted by Optimization Methods and Software
♻ ☆ 3D Dynamic Radio Map Prediction Using Vision Transformers for Low-Altitude Wireless Networks
Low-altitude wireless networks (LAWN) are rapidly expanding with the growing deployment of unmanned aerial vehicles (UAVs) for logistics, surveillance, and emergency response. Reliable connectivity remains a critical yet challenging task due to three-dimensional (3D) mobility, time-varying user density, and limited power budgets. The transmit power of base stations (BSs) fluctuates dynamically according to user locations and traffic demands, leading to a highly non-stationary 3D radio environment. Radio maps (RMs) have emerged as an effective means to characterize spatial power distributions and support radio-aware network optimization. However, most existing works construct static or offline RMs, overlooking real-time power variations and spatio-temporal dependencies in multi-UAV networks. To overcome this limitation, we propose a 3D dynamic radio map (3D-DRM) framework that learns and predicts the spatio-temporal evolution of received power. Specially, a Vision Transformer (ViT) encoder extracts high-dimensional spatial representations from 3D RMs, while a Transformer-based module models sequential dependencies to predict future power distributions. Experiments unveil that 3D-DRM accurately captures fast-varying power dynamics and substantially outperforms baseline models in both RM reconstruction and short-term prediction.
comment: 7 pages, 4 figures, submitted to IEEE ICC 2026
♻ ☆ CEE: An Inference-Time Jailbreak Defense for Embodied Intelligence via Subspace Concept Rotation
Large language models (LLMs) are widely used for task understanding and action planning in embodied intelligence (EI) systems, but their adoption substantially increases vulnerability to jailbreak attacks. While recent work explores inference-time defenses, existing methods rely on static interventions on intermediate representations, which often degrade generation quality and impair adherence to task instructions, reducing system usability in EI settings. We propose a dynamic defense framework. For each EI inference request, we dynamically construct a task-specific safety-semantic subspace, project its hidden state to the most relevant direction, and apply SLERP rotation for adaptive safety control. At comparable defense success rates, our method preserves generation quality, improves usability, reduces tuning cost, and strengthens robustness in EI scenarios.
♻ ☆ CAT: Circular-Convolutional Attention for Sub-Quadratic Transformers NeurIPS 2025
Transformers have driven remarkable breakthroughs in natural language processing and computer vision, yet their standard attention mechanism still imposes O(N^2) complexity, hindering scalability to longer sequences. We introduce Circular-convolutional ATtention (CAT), a Fourier-based approach that efficiently applies circular convolutions to reduce complexity without sacrificing representational power. CAT achieves O(NlogN) computations, requires fewer learnable parameters by streamlining fully connected layers, and introduces no additional heavy operations, resulting in consistent accuracy improvements and about a 10% speedup in naive PyTorch implementations. Based on the Engineering-Isomorphic Transformers (EITs) framework, CAT's design not only offers practical efficiency and ease of implementation, but also provides insights to guide the development of future high-performance Transformer architectures. Finally, our ablation studies highlight the key conditions underlying CAT's success, shedding light on broader principles for scalable attention mechanisms.
comment: Accepted as a poster at NeurIPS 2025
♻ ☆ Matrix Sensing with Kernel Optimal Loss: Robustness and Optimization Landscape
In this paper we study how the choice of loss functions of non-convex optimization problems affects their robustness and optimization landscape, through the study of noisy matrix sensing. In traditional regression tasks, mean squared error (MSE) loss is a common choice, but it can be unreliable for non-Gaussian or heavy-tailed noise. To address this issue, we adopt a robust loss based on nonparametric regression, which uses a kernel-based estimate of the residual density and maximizes the estimated log-likelihood. This robust formulation coincides with the MSE loss under Gaussian errors but remains stable under more general settings. We further examine how this robust loss reshapes the optimization landscape by analyzing the upper-bound of restricted isometry property (RIP) constants for spurious local minima to disappear. Through theoretical and empirical analysis, we show that this new loss excels at handling large noise and remains robust across diverse noise distributions. This work offers initial insights into enhancing the robustness of machine learning tasks through simply changing the loss, guided by an intuitive and broadly applicable analytical framework.
comment: CPAL 2026
Multimedia
☆ DDNet: A Dual-Stream Graph Learning and Disentanglement Framework for Temporal Forgery Localization
The rapid evolution of AIGC technology enables misleading viewers by tampering mere small segments within a video, rendering video-level detection inaccurate and unpersuasive. Consequently, temporal forgery localization (TFL), which aims to precisely pinpoint tampered segments, becomes critical. However, existing methods are often constrained by \emph{local view}, failing to capture global anomalies. To address this, we propose a \underline{d}ual-stream graph learning and \underline{d}isentanglement framework for temporal forgery localization (DDNet). By coordinating a \emph{Temporal Distance Stream} for local artifacts and a \emph{Semantic Content Stream} for long-range connections, DDNet prevents global cues from being drowned out by local smoothness. Furthermore, we introduce Trace Disentanglement and Adaptation (TDA) to isolate generic forgery fingerprints, alongside Cross-Level Feature Embedding (CLFE) to construct a robust feature foundation via deep fusion of hierarchical features. Experiments on ForgeryNet and TVIL benchmarks demonstrate that our method outperforms state-of-the-art approaches by approximately 9\% in AP@0.95, with significant improvements in cross-domain robustness.
♻ ☆ MIND Your Reasoning: A Meta-Cognitive Intuitive-Reflective Network for Dual-Reasoning in Multimodal Stance Detection
Multimodal Stance Detection (MSD) is a crucial task for understanding public opinion on social media. Existing methods predominantly operate by learning to fuse modalities. They lack an explicit reasoning process to discern how inter-modal dynamics, such as irony or conflict, collectively shape the user's final stance, leading to frequent misjudgments. To address this, we advocate for a paradigm shift from *learning to fuse* to *learning to reason*. We introduce **MIND**, a **M**eta-cognitive **I**ntuitive-reflective **N**etwork for **D**ual-reasoning. Inspired by the dual-process theory of human cognition, MIND operationalizes a self-improving loop. It first generates a rapid, intuitive hypothesis by querying evolving Modality and Semantic Experience Pools. Subsequently, a meta-cognitive reflective stage uses Modality-CoT and Semantic-CoT to scrutinize this initial judgment, distill superior adaptive strategies, and evolve the experience pools themselves. These dual experience structures are continuously refined during training and recalled at inference to guide robust and context-aware stance decisions. Extensive experiments on the MMSD benchmark demonstrate that our MIND significantly outperforms most baseline models and exhibits strong generalization.
♻ ☆ Pedagogical Reflections on the Holistic Cognitive Development (HCD) Framework and AI-Augmented Learning in Creative Computing
This paper presents an expanded account of the Holistic Cognitive Development (HCD) framework for reflective and creative learning in computing education. The HCD framework integrates design thinking, experiential learning, and reflective practice into a unified constructivist pedagogy emphasizing autonomy, ownership, and scaffolding. It is applied across courses in game design (CS3247, CS4350), virtual reality (CS4240), and extended reality systems, where students engage in iterative cycles of thinking, creating, criticizing, and reflecting. The paper also examines how AI-augmented systems such as iReflect, ReflexAI, and Knowledge Graph-enhanced LLM feedback tools operationalize the HCD framework through scalable, personalized feedback. Empirical findings demonstrate improved reflective depth, feedback quality, and learner autonomy. The work advocates a balance of supportive autonomy in supervision, where students practice self-directed inquiry while guided through structured reflection and feedback.
comment: Short Abstract
♻ ☆ pyAMPACT: A Score-Audio Alignment Toolkit for Performance Data Estimation and Multi-modal Processing
pyAMPACT (Python-based Automatic Music Performance Analysis and Comparison Toolkit) links symbolic and audio music representations to facilitate score-informed estimation of performance data in audio as well as general linking of symbolic and audio music representations with a variety of annotations. pyAMPACT can read a range of symbolic formats and can output note-linked audio descriptors/performance data into MEI-formatted files. The audio analysis uses score alignment to calculate time-frequency regions of importance for each note in the symbolic representation from which to estimate a range of parameters. These include tuning-, dynamics-, and timbre-related performance descriptors, with timing-related information available from the score alignment. Beyond performance data estimation, pyAMPACT also facilitates multi-modal investigations through its infrastructure for linking symbolic representations and annotations to audio.
comment: Proceedings of the 2025 International Computer Music Conference
Computation and Language
☆ Lying with Truths: Open-Channel Multi-Agent Collusion for Belief Manipulation via Generative Montage
As large language models (LLMs) transition to autonomous agents synthesizing real-time information, their reasoning capabilities introduce an unexpected attack surface. This paper introduces a novel threat where colluding agents steer victim beliefs using only truthful evidence fragments distributed through public channels, without relying on covert communications, backdoors, or falsified documents. By exploiting LLMs' overthinking tendency, we formalize the first cognitive collusion attack and propose Generative Montage: a Writer-Editor-Director framework that constructs deceptive narratives through adversarial debate and coordinated posting of evidence fragments, causing victims to internalize and propagate fabricated conclusions. To study this risk, we develop CoPHEME, a dataset derived from real-world rumor events, and simulate attacks across diverse LLM families. Our results show pervasive vulnerability across 14 LLM families: attack success rates reach 74.4% for proprietary models and 70.6% for open-weights models. Counterintuitively, stronger reasoning capabilities increase susceptibility, with reasoning-specialized models showing higher attack success than base models or prompts. Furthermore, these false beliefs then cascade to downstream judges, achieving over 60% deception rates, highlighting a socio-technical vulnerability in how LLM-based agents interact with dynamic information environments. Our implementation and data are available at: https://github.com/CharlesJW222/Lying_with_Truth/tree/main.
comment: Under Review
☆ LACONIC: Dense-Level Effectiveness for Scalable Sparse Retrieval via a Two-Phase Training Curriculum
While dense retrieval models have become the standard for state-of-the-art information retrieval, their deployment is often constrained by high memory requirements and reliance on GPU accelerators for vector similarity search. Learned sparse retrieval offers a compelling alternative by enabling efficient search via inverted indices, yet it has historically received less attention than dense approaches. In this report, we introduce LACONIC, a family of learned sparse retrievers based on the Llama-3 architecture (1B, 3B, and 8B). We propose a streamlined two-phase training curriculum consisting of (1) weakly supervised pre-finetuning to adapt causal LLMs for bidirectional contextualization and (2) high-signal finetuning using curated hard negatives. Our results demonstrate that LACONIC effectively bridges the performance gap with dense models: the 8B variant achieves a state-of-the-art 60.2 nDCG on the MTEB Retrieval benchmark, ranking 15th on the leaderboard as of January 1, 2026, while utilizing 71\% less index memory than an equivalent dense model. By delivering high retrieval effectiveness on commodity CPU hardware with a fraction of the compute budget required by competing models, LACONIC provides a scalable and efficient solution for real-world search applications.
☆ EHRSummarizer: A Privacy-Aware, FHIR-Native Architecture for Structured Clinical Summarization of Electronic Health Records
Clinicians routinely navigate fragmented electronic health record (EHR) interfaces to assemble a coherent picture of a patient's problems, medications, recent encounters, and longitudinal trends. This work describes EHRSummarizer, a privacy-aware, FHIR-native reference architecture that retrieves a targeted set of high-yield FHIR R4 resources, normalizes them into a consistent clinical context package, and produces structured summaries intended to support structured chart review. The system can be configured for data minimization, stateless processing, and flexible deployment, including local inference within an organization's trust boundary. To mitigate the risk of unsupported or unsafe behavior, the summarization stage is constrained to evidence present in the retrieved context package, is intended to indicate missing or unavailable domains where feasible, and avoids diagnostic or treatment recommendations. Prototype demonstrations on synthetic and test FHIR environments illustrate end-to-end behavior and output formats; however, this manuscript does not report clinical outcomes or controlled workflow studies. We outline an evaluation plan centered on faithfulness, omission risk, temporal correctness, usability, and operational monitoring to guide future institutional assessments.
comment: 19 pages
☆ JMedEthicBench: A Multi-Turn Conversational Benchmark for Evaluating Medical Safety in Japanese Large Language Models
As Large Language Models (LLMs) are increasingly deployed in healthcare field, it becomes essential to carefully evaluate their medical safety before clinical use. However, existing safety benchmarks remain predominantly English-centric, and test with only single-turn prompts despite multi-turn clinical consultations. To address these gaps, we introduce JMedEthicBench, the first multi-turn conversational benchmark for evaluating medical safety of LLMs for Japanese healthcare. Our benchmark is based on 67 guidelines from the Japan Medical Association and contains over 50,000 adversarial conversations generated using seven automatically discovered jailbreak strategies. Using a dual-LLM scoring protocol, we evaluate 27 models and find that commercial models maintain robust safety while medical-specialized models exhibit increased vulnerability. Furthermore, safety scores decline significantly across conversation turns (median: 9.5 to 5.0, $p < 0.001$). Cross-lingual evaluation on both Japanese and English versions of our benchmark reveals that medical model vulnerabilities persist across languages, indicating inherent alignment limitations rather than language-specific factors. These findings suggest that domain-specific fine-tuning may accidentally weaken safety mechanisms and that multi-turn interactions represent a distinct threat surface requiring dedicated alignment strategies.
comment: 12 pages, 6 figures
☆ How Does Prefix Matter in Reasoning Model Tuning?
Recent alignment studies commonly remove introductory boilerplate phrases from supervised fine-tuning (SFT) datasets. This work challenges that assumption. We hypothesize that safety- and reasoning-oriented prefix sentences serve as lightweight alignment signals that can guide model decoding toward safer and more coherent responses. To examine this, we fine-tune three R1 series models across three core model capabilities: reasoning (mathematics, coding), safety, and factuality, systematically varying prefix inclusion from 0% to 100%. Results show that prefix-conditioned SFT improves both safety and reasoning performance, yielding up to +6% higher Safe@1 accuracy on adversarial benchmarks (WildJailbreak, StrongReject) and +7% improvement on GSM8K reasoning. However, factuality and coding tasks show marginal or negative effects, indicating that prefix-induced narrowing of the search space benefits structured reasoning. Token-level loss analysis further reveals that prefix tokens such as "revised" and "logically" incur higher gradient magnitudes, acting as alignment anchors that stabilize reasoning trajectories. Our findings suggest that prefix conditioning offers a scalable and interpretable mechanism for improving reasoning safety, serving as an implicit form of alignment that complements traditional reward-based methods.
☆ The Gray Area: Characterizing Moderator Disagreement on Reddit
Volunteer moderators play a crucial role in sustaining online dialogue, but they often disagree about what should or should not be allowed. In this paper, we study the complexity of content moderation with a focus on disagreements between moderators, which we term the ``gray area'' of moderation. Leveraging 5 years and 4.3 million moderation log entries from 24 subreddits of different topics and sizes, we characterize how gray area, or disputed cases, differ from undisputed cases. We show that one-in-seven moderation cases are disputed among moderators, often addressing transgressions where users' intent is not directly legible, such as in trolling and brigading, as well as tensions around community governance. This is concerning, as almost half of all gray area cases involved automated moderation decisions. Through information-theoretic evaluations, we demonstrate that gray area cases are inherently harder to adjudicate than undisputed cases and show that state-of-the-art language models struggle to adjudicate them. We highlight the key role of expert human moderators in overseeing the moderation process and provide insights about the challenges of current moderation processes and tools.
comment: 16 pages, 11 figures
☆ Steerability of Instrumental-Convergence Tendencies in LLMs
We examine two properties of AI systems: capability (what a system can do) and steerability (how reliably one can shift behavior toward intended outcomes). In our experiments, higher capability does not imply lower steerability. We distinguish between authorized steerability (builders reliably reaching intended behaviors) and unauthorized steerability (attackers eliciting disallowed behaviors). This distinction highlights a fundamental safety--security dilemma for open-weight AI models: safety requires high steerability to enforce control (e.g., stop/refuse), while security requires low steerability to prevent malicious actors from eliciting harmful behaviors. This tension is acute for open-weight models, which are currently highly steerable via common techniques such as fine-tuning and adversarial prompting. Using Qwen3 models (4B/30B; Base/Instruct/Thinking) and InstrumentalEval, we find that a short anti-instrumental prompt suffix sharply reduces outputs labeled as instrumental convergence (e.g., shutdown avoidance, deception, self-replication). For Qwen3-30B Instruct, convergence drops from 81.69% under a pro-instrumental suffix to 2.82% under an anti-instrumental suffix. Under anti-instrumental prompting, larger aligned models produce fewer convergence-labeled outputs than smaller ones (Instruct: 2.82% vs. 4.23%; Thinking: 4.23% vs. 9.86%). Code is available at github.com/j-hoscilowicz/instrumental_steering.
comment: Code is available at https://github.com/j-hoscilowicz/instrumental_steering
☆ OpenNovelty: An LLM-powered Agentic System for Verifiable Scholarly Novelty Assessment
Evaluating novelty is critical yet challenging in peer review, as reviewers must assess submissions against a vast, rapidly evolving literature. This report presents OpenNovelty, an LLM-powered agentic system for transparent, evidence-based novelty analysis. The system operates through four phases: (1) extracting the core task and contribution claims to generate retrieval queries; (2) retrieving relevant prior work based on extracted queries via semantic search engine; (3) constructing a hierarchical taxonomy of core-task-related work and performing contribution-level full-text comparisons against each contribution; and (4) synthesizing all analyses into a structured novelty report with explicit citations and evidence snippets. Unlike naive LLM-based approaches, \textsc{OpenNovelty} grounds all assessments in retrieved real papers, ensuring verifiable judgments. We deploy our system on 500+ ICLR 2026 submissions with all reports publicly available on our website, and preliminary analysis suggests it can identify relevant prior work, including closely related papers that authors may overlook. OpenNovelty aims to empower the research community with a scalable tool that promotes fair, consistent, and evidence-backed peer review.
☆ HalluZig: Hallucination Detection using Zigzag Persistence
The factual reliability of Large Language Models (LLMs) remains a critical barrier to their adoption in high-stakes domains due to their propensity to hallucinate. Current detection methods often rely on surface-level signals from the model's output, overlooking the failures that occur within the model's internal reasoning process. In this paper, we introduce a new paradigm for hallucination detection by analyzing the dynamic topology of the evolution of model's layer-wise attention. We model the sequence of attention matrices as a zigzag graph filtration and use zigzag persistence, a tool from Topological Data Analysis, to extract a topological signature. Our core hypothesis is that factual and hallucinated generations exhibit distinct topological signatures. We validate our framework, HalluZig, on multiple benchmarks, demonstrating that it outperforms strong baselines. Furthermore, our analysis reveals that these topological signatures are generalizable across different models and hallucination detection is possible only using structural signatures from partial network depth.
☆ Bridging the Data Gap: Creating a Hindi Text Summarization Dataset from the English XSUM
Current advancements in Natural Language Processing (NLP) have largely favored resource-rich languages, leaving a significant gap in high-quality datasets for low-resource languages like Hindi. This scarcity is particularly evident in text summarization, where the development of robust models is hindered by a lack of diverse, specialized corpora. To address this disparity, this study introduces a cost-effective, automated framework for creating a comprehensive Hindi text summarization dataset. By leveraging the English Extreme Summarization (XSUM) dataset as a source, we employ advanced translation and linguistic adaptation techniques. To ensure high fidelity and contextual relevance, we utilize the Crosslingual Optimized Metric for Evaluation of Translation (COMET) for validation, supplemented by the selective use of Large Language Models (LLMs) for curation. The resulting dataset provides a diverse, multi-thematic resource that mirrors the complexity of the original XSUM corpus. This initiative not only provides a direct tool for Hindi NLP research but also offers a scalable methodology for democratizing NLP in other underserved languages. By reducing the costs associated with dataset creation, this work fosters the development of more nuanced, culturally relevant models in computational linguistics.
comment: Book chapter for River publications
☆ Aletheia: Quantifying Cognitive Conviction in Reasoning Models via Regularized Inverse Confusion Matrix
In the progressive journey toward Artificial General Intelligence (AGI), current evaluation paradigms face an epistemological crisis. Static benchmarks measure knowledge breadth but fail to quantify the depth of belief. While Simhi et al. (2025) defined the CHOKE phenomenon in standard QA, we extend this framework to quantify "Cognitive Conviction" in System 2 reasoning models. We propose Project Aletheia, a cognitive physics framework that employs Tikhonov Regularization to invert the judge's confusion matrix. To validate this methodology without relying on opaque private data, we implement a Synthetic Proxy Protocol. Our preliminary pilot study on 2025 baselines (e.g., DeepSeek-R1, OpenAI o1) suggests that while reasoning models act as a "cognitive buffer," they may exhibit "Defensive OverThinking" under adversarial pressure. Furthermore, we introduce the Aligned Conviction Score (S_aligned) to verify that conviction does not compromise safety. This work serves as a blueprint for measuring AI scientific integrity.
comment: 6 pages, 2 figures
☆ EmoHarbor: Evaluating Personalized Emotional Support by Simulating the User's Internal World
Current evaluation paradigms for emotional support conversations tend to reward generic empathetic responses, yet they fail to assess whether the support is genuinely personalized to users' unique psychological profiles and contextual needs. We introduce EmoHarbor, an automated evaluation framework that adopts a User-as-a-Judge paradigm by simulating the user's inner world. EmoHarbor employs a Chain-of-Agent architecture that decomposes users' internal processes into three specialized roles, enabling agents to interact with supporters and complete assessments in a manner similar to human users. We instantiate this benchmark using 100 real-world user profiles that cover a diverse range of personality traits and situations, and define 10 evaluation dimensions of personalized support quality. Comprehensive evaluation of 20 advanced LLMs on EmoHarbor reveals a critical insight: while these models excel at generating empathetic responses, they consistently fail to tailor support to individual user contexts. This finding reframes the central challenge, shifting research focus from merely enhancing generic empathy to developing truly user-aware emotional support. EmoHarbor provides a reproducible and scalable framework to guide the development and evaluation of more nuanced and user-aware emotional support systems.
☆ Bayesian Orchestration of Multi-LLM Agents for Cost-Aware Sequential Decision-Making
Large language models (LLMs) are increasingly deployed as autonomous decision agents in settings with asymmetric error costs: hiring (missed talent vs wasted interviews), medical triage (missed emergencies vs unnecessary escalation), and fraud detection (approved fraud vs declined legitimate payments). The dominant design queries a single LLM for a posterior over states, thresholds "confidence," and acts; we prove this is inadequate for sequential decisions with costs. We propose a Bayesian, cost-aware multi-LLM orchestration framework that treats LLMs as approximate likelihood models rather than classifiers. For each candidate state, we elicit likelihoods via contrastive prompting, aggregate across diverse models with robust statistics, and update beliefs with Bayes rule under explicit priors as new evidence arrives. This enables coherent belief updating, expected-cost action selection, principled information gathering via value of information, and fairness gains via ensemble bias mitigation. In resume screening with costs of 40000 USD per missed hire, 2500 USD per interview, and 150 USD per phone screen, experiments on 1000 resumes using five LLMs (GPT-4o, Claude 4.5 Sonnet, Gemini Pro, Grok, DeepSeek) reduce total cost by 294000 USD (34 percent) versus the best single-LLM baseline and improve demographic parity by 45 percent (max group gap 22 to 5 percentage points). Ablations attribute 51 percent of savings to multi-LLM aggregation, 43 percent to sequential updating, and 20 percent to disagreement-triggered information gathering, consistent with the theoretical benefits of correct probabilistic foundations.
☆ From Failure to Mastery: Generating Hard Samples for Tool-use Agents
The advancement of LLM agents with tool-use capabilities requires diverse and complex training corpora. Existing data generation methods, which predominantly follow a paradigm of random sampling and shallow generation, often yield simple and homogeneous trajectories that fail to capture complex, implicit logical dependencies. To bridge this gap, we introduce HardGen, an automatic agentic pipeline designed to generate hard tool-use training samples with verifiable reasoning. Firstly, HardGen establishes a dynamic API Graph built upon agent failure cases, from which it samples to synthesize hard traces. Secondly, these traces serve as conditional priors to guide the instantiation of modular, abstract advanced tools, which are subsequently leveraged to formulate hard queries. Finally, the advanced tools and hard queries enable the generation of verifiable complex Chain-of-Thought (CoT), with a closed-loop evaluation feedback steering the continuous refinement of the process. Extensive evaluations demonstrate that a 4B parameter model trained with our curated dataset achieves superior performance compared to several leading open-source and closed-source competitors (e.g., GPT-5.2, Gemini-3-Pro and Claude-Opus-4.5). Our code, models, and dataset will be open-sourced to facilitate future research.
☆ Distortion Instead of Hallucination: The Effect of Reasoning Under Strict Constraints
With the widespread adoption of large language models (LLMs), hallucinations, which are non-factual fabrications in model outputs, have become serious concerns. Reasoning capabilities have received attention as a self-verification process to improve output reliability. However, the effect of reasoning within a closed system where LLMs cannot rely on external tools or knowledge has yet to be clarified. We therefore conduct experiments under strict constraints (recommending peer-reviewed journal articles in computer science) to examine the effect of reasoning across multiple models (GPT-5.2 and Gemini 3 Flash). Our results reveal a problematic trade-off between constraint compliance and factual accuracy. Non-reasoning models exhibit high constraint violation rates (66-75%) but maintain factual accuracy, while reasoning models reduce violations (13-26%) but systematically distort known facts to satisfy constraints and increase complete fabrication. This trade-off pattern is consistent across both models despite different architectures, indicating a fundamental limitation of reasoning. Furthermore, reasoning does not uniformly improve output authenticity: effects diverge by model, reflecting different allocations of the compliance-truthfulness trade-off. These findings challenge the assumption that reasoning universally improves reliability: reasoning models trade honest constraint violations for detection-resistant distortions.
☆ Four Quadrants of Difficulty: A Simple Categorisation and its Limits
Curriculum Learning (CL) aims to improve the outcome of model training by estimating the difficulty of samples and scheduling them accordingly. In NLP, difficulty is commonly approximated using task-agnostic linguistic heuristics or human intuition, implicitly assuming that these signals correlate with what neural models find difficult to learn. We propose a four-quadrant categorisation of difficulty signals -- human vs. model and task-agnostic vs. task-dependent -- and systematically analyse their interactions on a natural language understanding dataset. We find that task-agnostic features behave largely independently and that only task-dependent features align. These findings challenge common CL intuitions and highlight the need for lightweight, task-dependent difficulty estimators that better reflect model learning behaviour.
comment: prepared for ESANN 2026 submission
☆ Can Legislation Be Made Machine-Readable in PROLEG?
The anticipated positive social impact of regulatory processes requires both the accuracy and efficiency of their application. Modern artificial intelligence technologies, including natural language processing and machine-assisted reasoning, hold great promise for addressing this challenge. We present a framework to address the challenge of tools for regulatory application, based on current state-of-the-art (SOTA) methods for natural language processing (large language models or LLMs) and formalization of legal reasoning (the legal representation system PROLEG). As an example, we focus on Article 6 of the European General Data Protection Regulation (GDPR). In our framework, a single LLM prompt simultaneously transforms legal text into if-then rules and a corresponding PROLEG encoding, which are then validated and refined by legal domain experts. The final output is an executable PROLEG program that can produce human-readable explanations for instances of GDPR decisions. We describe processes to support the end-to-end transformation of a segment of a regulatory document (Article 6 from GDPR), including the prompting frame to guide an LLM to "compile" natural language text to if-then rules, then to further "compile" the vetted if-then rules to PROLEG. Finally, we produce an instance that shows the PROLEG execution. We conclude by summarizing the value of this approach and note observed limitations with suggestions to further develop such technologies for capturing and deploying regulatory frameworks.
☆ Bridging the gap: A comparative exploration of Speech-LLM and end-to-end architecture for multilingual conversational ASR
The INTERSPEECH 2025 Challenge on Multilingual Conversational Speech Language Models (MLC-SLM) promotes multilingual conversational ASR with large language models (LLMs). Our previous SHNU-mASR system adopted a competitive parallel-speech-encoder architecture that integrated Whisper and mHuBERT with an LLM. However, it faced two challenges: simple feature concatenation may not fully exploit complementary information, and the performance gap between LLM-based ASR and end-to-end(E2E) encoder-decoder ASR remained unexplored. In this work, we present an enhanced LLM-based ASR framework that combines fine-tuned Whisper and mHuBERT encoders with an LLM to enrich speech representations. We first evaluate E2E Whisper models with LoRA and full fine-tuning on the MLC-SLM ASR task, and then propose cross-attention-based fusion mechanisms for the parallel-speech-encoder. On the official evaluation set of the MLC-SLM Challenge, our system achieves a CER/WER of 10.69%, ranking on par with the top-ranked Track 1 systems, even though it uses only 1,500 hours of baseline training data compared with their large-scale training sets. Nonetheless, we find that our final LLM-based ASR still does not match the performance of a fine-tuned E2E Whisper model, providing valuable empirical guidance for future Speech-LLM design. Our code is publicly available at https://github.com/1535176727/MLC-SLM.
comment: 5 pages, 1 figure
☆ Segmentation and Processing of German Court Decisions from Open Legal Data
The availability of structured legal data is important for advancing Natural Language Processing (NLP) techniques for the German legal system. One of the most widely used datasets, Open Legal Data, provides a large-scale collection of German court decisions. While the metadata in this raw dataset is consistently structured, the decision texts themselves are inconsistently formatted and often lack clearly marked sections. Reliable separation of these sections is important not only for rhetorical role classification but also for downstream tasks such as retrieval and citation analysis. In this work, we introduce a cleaned and sectioned dataset of 251,038 German court decisions derived from the official Open Legal Data dataset. We systematically separated three important sections in German court decisions, namely Tenor (operative part of the decision), Tatbestand (facts of the case), and Entscheidungsgründe (judicial reasoning), which are often inconsistently represented in the original dataset. To ensure the reliability of our extraction process, we used Cochran's formula with a 95% confidence level and a 5% margin of error to draw a statistically representative random sample of 384 cases, and manually verified that all three sections were correctly identified. We also extracted the Rechtsmittelbelehrung (appeal notice) as a separate field, since it is a procedural instruction and not part of the decision itself. The resulting corpus is publicly available in the JSONL format, making it an accessible resource for further research on the German legal system.
comment: Accepted and published as a research article in Legal Knowledge and Information Systems (JURIX 2025 proceedings, IOS Press). Pages 276--281
☆ iFlip: Iterative Feedback-driven Counterfactual Example Refinement
Counterfactual examples are minimal edits to an input that alter a model's prediction. They are widely employed in explainable AI to probe model behavior and in natural language processing (NLP) to augment training data. However, generating valid counterfactuals with large language models (LLMs) remains challenging, as existing single-pass methods often fail to induce reliable label changes, neglecting LLMs' self-correction capabilities. To explore this untapped potential, we propose iFlip, an iterative refinement approach that leverages three types of feedback, including model confidence, feature attribution, and natural language. Our results show that iFlip achieves an average 57.8% higher validity than the five state-of-the-art baselines, as measured by the label flipping rate. The user study further corroborates that iFlip outperforms baselines in completeness, overall satisfaction, and feasibility. In addition, ablation studies demonstrate that three components are paramount for iFlip to generate valid counterfactuals: leveraging an appropriate number of iterations, pointing to highly attributed words, and early stopping. Finally, counterfactuals generated by iFlip enable effective counterfactual data augmentation, substantially improving model performance and robustness.
comment: In submission
☆ SWE-Lego: Pushing the Limits of Supervised Fine-tuning for Software Issue Resolving
We present SWE-Lego, a supervised fine-tuning (SFT) recipe designed to achieve state-ofthe-art performance in software engineering (SWE) issue resolving. In contrast to prevalent methods that rely on complex training paradigms (e.g., mid-training, SFT, reinforcement learning, and their combinations), we explore how to push the limits of a lightweight SFT-only approach for SWE tasks. SWE-Lego comprises three core building blocks, with key findings summarized as follows: 1) the SWE-Lego dataset, a collection of 32k highquality task instances and 18k validated trajectories, combining real and synthetic data to complement each other in both quality and quantity; 2) a refined SFT procedure with error masking and a difficulty-based curriculum, which demonstrably improves action quality and overall performance. Empirical results show that with these two building bricks alone,the SFT can push SWE-Lego models to state-of-the-art performance among open-source models of comparable size on SWE-bench Verified: SWE-Lego-Qwen3-8B reaches 42.2%, and SWE-Lego-Qwen3-32B attains 52.6%. 3) We further evaluate and improve test-time scaling (TTS) built upon the SFT foundation. Based on a well-trained verifier, SWE-Lego models can be significantly boosted--for example, 42.2% to 49.6% and 52.6% to 58.8% under TTS@16 for the 8B and 32B models, respectively.
comment: Project website: https://github.com/SWE-Lego/SWE-Lego
☆ From Emotion Classification to Emotional Reasoning: Enhancing Emotional Intelligence in Large Language Models
This work investigates whether synthetic emotional chain-of-thought data can improve the emotional reasoning abilities of smaller open large language models (LLMs). We design a multi-agent generation pipeline that produces therapy-style conversations and converts them into structured emotion multiple-choice questions (MCQs) with explanations. We propose that fine-tuning a variety of 7B models on this dataset should yield substantial gains in emotional understanding and emotional awareness on EmoBench-style evaluations, suggesting that emotional reasoning can be induced without architectural changes. Our results demonstrate that fine-tuned Mistral 7B achieves EU improvements from 10.5 to 20.5 and EA improvements from 40.5 to 60.0, validating the effectiveness of synthetic emotional reasoning data for enhancing model capabilities in nuanced emotional tasks.
comment: 10 pages, 1 figure
☆ LANCET: Neural Intervention via Structural Entropy for Mitigating Faithfulness Hallucinations in LLMs
Large Language Models have revolutionized information processing, yet their reliability is severely compromised by faithfulness hallucinations. While current approaches attempt to mitigate this issue through node-level adjustments or coarse suppression, they often overlook the distributed nature of neural information, leading to imprecise interventions. Recognizing that hallucinations propagate through specific forward transmission pathways like an infection, we aim to surgically block this flow using precise structural analysis. To leverage this, we propose Lancet, a novel framework that achieves precise neural intervention by leveraging structural entropy and hallucination difference ratios. Lancet first locates hallucination-prone neurons via gradient-driven contrastive analysis, then maps their propagation pathways by minimizing structural entropy, and finally implements a hierarchical intervention strategy that preserves general model capabilities. Comprehensive evaluations across hallucination benchmark datasets demonstrate that Lancet significantly outperforms state-of-the-art methods, validating the effectiveness of our surgical approach to neural intervention.
☆ EternalMath: A Living Benchmark of Frontier Mathematics that Evolves with Human Discovery
Current evaluations of mathematical reasoning in large language models (LLMs) are dominated by static benchmarks, either derived from competition-style problems or curated through costly expert effort, resulting in limited coverage of research-level mathematics and rapid performance saturation. We propose a fully automated, theorem-grounded pipeline for evaluating frontier mathematical reasoning, which directly transforms recent peer-reviewed mathematical literature into executable and verifiable reasoning tasks. The pipeline identifies constructive or quantitative results, instantiates them into parameterized problem templates, and generates deterministic solutions through execution-based verification, enabling scalable, reproducible, and continuously updatable evaluation without reliance on large-scale expert authoring. By design, this approach supports temporal extensibility, intrinsic correctness checking, and domain-specific customization across mathematical subfields. Applying this pipeline yields \textbf{EternalMath}, an evolving evaluation suite derived from contemporary research papers. Experiments with state-of-the-art LLMs reveal substantial performance gaps, indicating that mathematical reasoning at the research frontier remains far from saturated and underscoring the need for evaluation methodologies that evolve in step with human mathematical discovery.
☆ SAFE-QAQ: End-to-End Slow-Thinking Audio-Text Fraud Detection via Reinforcement Learning
Existing fraud detection methods predominantly rely on transcribed text, suffering from ASR errors and missing crucial acoustic cues like vocal tone and environmental context. This limits their effectiveness against complex deceptive strategies. To address these challenges, we first propose \textbf{SAFE-QAQ}, an end-to-end comprehensive framework for audio-based slow-thinking fraud detection. First, the SAFE-QAQ framework eliminates the impact of transcription errors on detection performance. Secondly, we propose rule-based slow-thinking reward mechanisms that systematically guide the system to identify fraud-indicative patterns by accurately capturing fine-grained audio details, through hierarchical reasoning processes. Besides, our framework introduces a dynamic risk assessment framework during live calls, enabling early detection and prevention of fraud. Experiments on the TeleAntiFraud-Bench demonstrate that SAFE-QAQ achieves dramatic improvements over existing methods in multiple key dimensions, including accuracy, inference efficiency, and real-time processing capabilities. Currently deployed and analyzing over 70,000 calls daily, SAFE-QAQ effectively automates complex fraud detection, reducing human workload and financial losses. Code: https://anonymous.4open.science/r/SAFE-QAQ.
☆ Investigating the Multilingual Calibration Effects of Language Model Instruction-Tuning EACL
Ensuring that deep learning models are well-calibrated in terms of their predictive uncertainty is essential in maintaining their trustworthiness and reliability, yet despite increasing advances in foundation model research, the relationship between such large language models (LLMs) and their calibration remains an open area of research. In this work, we look at a critical gap in the calibration of LLMs within multilingual settings, in an attempt to better understand how the data scarcity can potentially lead to different calibration effects and how commonly used techniques can apply in these settings. Our analysis on two multilingual benchmarks, over 29 and 42 languages respectively, reveals that even in low-resource languages, model confidence can increase significantly after instruction-tuning on high-resource language SFT datasets. However, improvements in accuracy are marginal or non-existent, resulting in mis-calibration, highlighting a critical shortcoming of standard SFT for multilingual languages. Furthermore, we observe that the use of label smoothing to be a reasonable method alleviate this concern, again without any need for low-resource SFT data, maintaining better calibration across all languages. Overall, this highlights the importance of multilingual considerations for both training and tuning LLMs in order to improve their reliability and fairness in downstream use.
comment: Accepted to The 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL)
♻ ☆ Polarity Detection of Sustainable Development Goals in News Text
The United Nations' Sustainable Development Goals (SDGs) provide a globally recognised framework for addressing critical societal, environmental, and economic challenges. Recent developments in natural language processing (NLP) and large language models (LLMs) have facilitated the automatic classification of textual data according to their relevance to specific SDGs. Nevertheless, in many applications, it is equally important to determine the directionality of this relevance; that is, to assess whether the described impact is positive, neutral, or negative. To tackle this challenge, we propose the novel task of SDG polarity detection, which assesses whether a text segment indicates progress toward a specific SDG or conveys an intention to achieve such progress. To support research in this area, we introduce SDG-POD, a benchmark dataset designed specifically for this task, combining original and synthetically generated data. We perform a comprehensive evaluation using six state-of-the-art large LLMs, considering both zero-shot and fine-tuned configurations. Our results suggest that the task remains challenging for the current generation of LLMs. Nevertheless, some fine-tuned models, particularly QWQ-32B, achieve good performance, especially on specific Sustainable Development Goals such as SDG-9 (Industry, Innovation and Infrastructure), SDG-12 (Responsible Consumption and Production), and SDG-15 (Life on Land). Furthermore, we demonstrate that augmenting the fine-tuning dataset with synthetically generated examples yields improved model performance on this task. This result highlights the effectiveness of data enrichment techniques in addressing the challenges of this resource-constrained domain. This work advances the methodological toolkit for sustainability monitoring and provides actionable insights into the development of efficient, high-performing polarity detection systems.
comment: Updated as one author was mispelled
♻ ☆ Safe in the Future, Dangerous in the Past: Dissecting Temporal and Linguistic Vulnerabilities in LLMs
As Large Language Models (LLMs) integrate into critical global infrastructure, the assumption that safety alignment transfers zero-shot from English to other languages remains a dangerous blind spot. This study presents a systematic audit of three state of the art models (GPT-5.1, Gemini 3 Pro, and Claude 4.5 Opus) using HausaSafety, a novel adversarial dataset grounded in West African threat scenarios (e.g., Yahoo-Yahoo fraud, Dane gun manufacturing). Employing a 2 x 4 factorial design across 1,440 evaluations, we tested the non-linear interaction between language (English vs. Hausa) and temporal framing. Our results challenge the narrative of the multilingual safety gap. Instead of a simple degradation in low-resource settings, we identified a complex interference mechanism in which safety is determined by the intersection of variables. Although the models exhibited a reverse linguistic vulnerability with Claude 4.5 Opus proving significantly safer in Hausa (45.0%) than in English (36.7%) due to uncertainty-driven refusal, they suffered catastrophic failures in temporal reasoning. We report a profound Temporal Asymmetry, where past-tense framing bypassed defenses (15.6% safe) while future-tense scenarios triggered hyper-conservative refusals (57.2% safe). The magnitude of this volatility is illustrated by a 9.2x disparity between the safest and most vulnerable configurations, proving that safety is not a fixed property but a context-dependent state. We conclude that current models rely on superficial heuristics rather than robust semantic understanding, creating Safety Pockets that leave Global South users exposed to localized harms. We propose Invariant Alignment as a necessary paradigm shift to ensure safety stability across linguistic and temporal shifts.
♻ ☆ Explainability-Based Token Replacement on LLM-Generated Text
Generative models, especially large language models (LLMs), have shown remarkable progress in producing text that appears human-like. However, they often exhibit patterns that make their output easier to detect than text written by humans. In this paper, we investigate how explainable AI (XAI) methods can be used to reduce the detectability of AI-generated text (AIGT) while also introducing a robust ensemble-based detection approach. We begin by training an ensemble classifier to distinguish AIGT from human-written text, then apply SHAP and LIME to identify tokens that most strongly influence its predictions. We propose four explainability-based token replacement strategies to modify these influential tokens. Our findings show that these token replacement approaches can significantly diminish a single classifier's ability to detect AIGT. However, our ensemble classifier maintains strong performance across multiple languages and domains, showing that a multi-model approach can mitigate the impact of token-level manipulations. These results show that XAI methods can make AIGT harder to detect by focusing on the most influential tokens. At the same time, they highlight the need for robust, ensemble-based detection strategies that can adapt to evolving approaches for hiding AIGT.
♻ ☆ Language Model Distillation: A Temporal Difference Imitation Learning Perspective AAAI 2026
Large language models have led to significant progress across many NLP tasks, although their massive sizes often incur substantial computational costs. Distillation has become a common practice to compress these large and highly capable models into smaller, more efficient ones. Many existing language model distillation methods can be viewed as behavior cloning from the perspective of imitation learning or inverse reinforcement learning. This viewpoint has inspired subsequent studies that leverage (inverse) reinforcement learning techniques, including variations of behavior cloning and temporal difference learning methods. Rather than proposing yet another specific temporal difference method, we introduce a general framework for temporal difference-based distillation by exploiting the distributional sparsity of the teacher model. Specifically, it is often observed that language models assign most probability mass to a small subset of tokens. Motivated by this observation, we design a temporal difference learning framework that operates on a reduced action space (a subset of vocabulary), and demonstrate how practical algorithms can be derived and the resulting performance improvements.
comment: AAAI 2026; Code available at: https://github.com/TobyLeelsz/Bellman-Distillation
♻ ☆ Exploring Cultural Variations in Moral Judgments with Large Language Models
Large Language Models (LLMs) have shown strong performance across many tasks, but their ability to capture culturally diverse moral values remains unclear. In this paper, we examine whether LLMs mirror variations in moral attitudes reported by the World Values Survey (WVS) and the Pew Research Center's Global Attitudes Survey (PEW). We compare smaller monolingual and multilingual models (GPT-2, OPT, BLOOMZ, and Qwen) with recent instruction-tuned models (GPT-4o, GPT-4o-mini, Gemma-2-9b-it, and Llama-3.3-70B-Instruct). Using log-probability-based \emph{moral justifiability} scores, we correlate each model's outputs with survey data covering a broad set of ethical topics. Our results show that many earlier or smaller models often produce near-zero or negative correlations with human judgments. In contrast, advanced instruction-tuned models achieve substantially higher positive correlations, suggesting they better reflect real-world moral attitudes. We provide a detailed regional analysis revealing that models align better with Western, Educated, Industrialized, Rich, and Democratic (W.E.I.R.D.) nations than with other regions. While scaling model size and using instruction tuning improves alignment with cross-cultural moral norms, challenges remain for certain topics and regions. We discuss these findings in relation to bias analysis, training data diversity, information retrieval implications, and strategies for improving the cultural sensitivity of LLMs.
♻ ☆ DAMASHA: Detecting AI in Mixed Adversarial Texts via Segmentation with Human-interpretable Attribution EACL 2026
In the age of advanced large language models (LLMs), the boundaries between human and AI-generated text are becoming increasingly blurred. We address the challenge of segmenting mixed-authorship text, that is identifying transition points in text where authorship shifts from human to AI or vice-versa, a problem with critical implications for authenticity, trust, and human oversight. We introduce a novel framework, called Info-Mask for mixed authorship detection that integrates stylometric cues, perplexity-driven signals, and structured boundary modeling to accurately segment collaborative human-AI content. To evaluate the robustness of our system against adversarial perturbations, we construct and release an adversarial benchmark dataset Mixed-text Adversarial setting for Segmentation (MAS), designed to probe the limits of existing detectors. Beyond segmentation accuracy, we introduce Human-Interpretable Attribution (HIA overlays that highlight how stylometric features inform boundary predictions, and we conduct a small-scale human study assessing their usefulness. Across multiple architectures, Info-Mask significantly improves span-level robustness under adversarial conditions, establishing new baselines while revealing remaining challenges. Our findings highlight both the promise and limitations of adversarially robust, interpretable mixed-authorship detection, with implications for trust and oversight in human-AI co-authorship.
comment: EACL 2026 Findings
♻ ☆ Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem
Agentic crafting requires LLMs to operate in real-world environments over multiple turns by taking actions, observing outcomes, and iteratively refining artifacts. Despite its importance, the open-source community lacks a principled, end-to-end ecosystem to streamline agent development. We introduce the Agentic Learning Ecosystem (ALE), a foundational infrastructure that optimizes the production pipeline for agentic model. ALE consists of three components: ROLL, a post-training framework for weight optimization; ROCK, a sandbox environment manager for trajectory generation; and iFlow CLI, an agent framework for efficient context engineering. We release ROME, an open-source agent grounded by ALE and trained on over one million trajectories. Our approach includes data composition protocols for synthesizing complex behaviors and a novel policy optimization algorithm, Interaction-Perceptive Agentic Policy Optimization (IPA), which assigns credit over semantic interaction chunks rather than individual tokens to improve long-horizon training stability. Empirically, we evaluate ROME within a structured setting and introduce Terminal Bench Pro, a benchmark with improved scale and contamination control. ROME demonstrates strong performance across benchmarks like SWE-bench Verified and Terminal Bench, proving the effectiveness of ALE.
comment: 36 pages, 15 figures
♻ ☆ FormulaReasoning: A Dataset for Formula-Based Numerical Reasoning
The application of physics formulas is a fundamental human capability in numerical reasoning. While existing datasets often rely on implicit mathematical knowledge, they rarely explicitate the underlying formulas. To address this, we introduce FormulaReasoning, a new benchmark for formula-based numerical reasoning comprising 5,324 questions requiring calculations grounded in external physics principles. We provide high-quality, fine-grained annotations in English and Chinese--including formula structures, parameter names, symbols, values, and units--curated through manual effort and LLM-assisted validation. Additionally, we provide a consolidated formula database as an external knowledge source. To further challenge model performance, we develop an extended version of the dataset by coupling multiple questions. We evaluate various architectural and methodological frameworks, including retrieval-augmented methods, modular reasoning (formula generation, parameter extraction, and calculation), and preference-based optimization. Our analysis identifies critical challenges in formula-based reasoning, highlighting significant opportunities for future methodological advancement.
♻ ☆ MedKGI: Iterative Differential Diagnosis with Medical Knowledge Graphs and Information-Guided Inquiring
Recent advancements in Large Language Models (LLMs) have demonstrated significant promise in clinical diagnosis. However, current models struggle to emulate the iterative, diagnostic hypothesis-driven reasoning of real clinical scenarios. Specifically, current LLMs suffer from three critical limitations: (1) generating hallucinated medical content due to weak grounding in verified knowledge, (2) asking redundant or inefficient questions rather than discriminative ones that hinder diagnostic progress, and (3) losing coherence over multi-turn dialogues, leading to contradictory or inconsistent conclusions. To address these challenges, we propose MedKGI, a diagnostic framework grounded in clinical practices. MedKGI integrates a medical knowledge graph (KG) to constrain reasoning to validated medical ontologies, selects questions based on information gain to maximize diagnostic efficiency, and adopts an OSCE-format structured state to maintain consistent evidence tracking across turns. Experiments on clinical benchmarks show that MedKGI outperforms strong LLM baselines in both diagnostic accuracy and inquiry efficiency, improving dialogue efficiency by 30% on average while maintaining state-of-the-art accuracy.
♻ ☆ MemeMind: A Large-Scale Multimodal Dataset with Chain-of-Thought Reasoning for Harmful Meme Detection
As a multimodal medium combining images and text, memes frequently convey implicit harmful content through metaphors and humor, rendering the detection of harmful memes a complex and challenging task. Although recent studies have made progress in detection accuracy and interpretability, large-scale, high-quality datasets for harmful memes remain scarce, and current methods still struggle to capture implicit risks and nuanced semantics. Thus, we construct MemeMind, a large-scale harmful meme dataset. Aligned with the international standards and the context of internet, MemeMind provides detailed Chain-of-Thought (CoT) reasoning annotations to support fine-grained analysis of implicit intentions in memes. Based on this dataset, we further propose MemeGuard, a reasoning-oriented multimodal detection model that significantly improves both the accuracy of harmful meme detection and the interpretability of model decisions. Extensive experimental results demonstrate that MemeGuard outperforms existing state-of-the-art methods on the MemeMind dataset, establishing a solid foundation for future research in harmful meme detection.
♻ ☆ CoSER: A Comprehensive Literary Dataset and Framework for Training and Evaluating LLM Role-Playing and Persona Simulation ICML 2025
Role-playing language agents (RPLAs) have emerged as promising applications of large language models (LLMs). However, simulating established characters presents a challenging task for RPLAs, due to the lack of authentic character datasets and nuanced evaluation methods using such data. In this paper, we present CoSER, a collection of a high-quality dataset, open models, and an evaluation protocol towards effective RPLAs of established characters. The CoSER dataset covers 17,966 characters from 771 renowned books. It provides authentic dialogues with real-world intricacies, as well as diverse data types such as conversation setups, character experiences and internal thoughts. Drawing from acting methodology, we introduce given-circumstance acting for training and evaluating role-playing LLMs, where LLMs sequentially portray multiple characters in book scenes. Using our dataset, we develop CoSER 8B and CoSER 70B, i.e., advanced open role-playing LLMs built on LLaMA-3.1 models. Extensive experiments demonstrate the value of the CoSER dataset for RPLA training, evaluation and retrieval. Moreover, CoSER 70B exhibits state-of-the-art performance surpassing or matching GPT-4o on our evaluation and three existing benchmarks, i.e., achieving 75.80% and 93.47% accuracy on the InCharacter and LifeChoice benchmarks respectively.
comment: Accepted by ICML 2025
♻ ☆ La RoSA: Enhancing LLM Efficiency via Layerwise Rotated Sparse Activation ICML 2025
Activation sparsity can reduce the computational overhead and memory transfers during the forward pass of Large Language Model (LLM) inference. Existing methods face limitations, either demanding time-consuming recovery training that hinders real-world adoption, or relying on empirical magnitude-based pruning, which causes fluctuating sparsity and unstable inference speed-up. This paper introduces LaRoSA (Layerwise Rotated Sparse Activation), a novel method for activation sparsification designed to improve LLM efficiency without requiring additional training or magnitude-based pruning. We leverage layerwise orthogonal rotations to transform input activations into rotated forms that are more suitable for sparsification. By employing a Top-K selection approach within the rotated activations, we achieve consistent model-level sparsity and reliable wall-clock time speed-up. LaRoSA is effective across various sizes and types of LLMs, demonstrating minimal performance degradation and robust inference acceleration. Specifically, for LLaMA2-7B at 40% sparsity, LaRoSA achieves a mere 0.17 perplexity gap with a consistent 1.30x wall-clock time speed-up, and reduces the accuracy gap in zero-shot tasks compared to the dense model to just 0.54%, while surpassing TEAL by 1.77% and CATS by 17.14%.
comment: ICML 2025 Acceptance
♻ ☆ A Survey of Text Classification Under Class Distribution Shift EACL 2026
The basic underlying assumption of machine learning (ML) models is that the training and test data are sampled from the same distribution. However, in daily practice, this assumption is often broken, i.e.~the distribution of the test data changes over time, which hinders the application of conventional ML models. One domain where the distribution shift naturally occurs is text classification, since people always find new topics to discuss. To this end, we survey research articles studying open-set text classification and related tasks. We divide the methods in this area based on the constraints that define the kind of distribution shift and the corresponding problem formulation, i.e.~learning with the Universum, zero-shot learning, and open-set learning. We next discuss the predominant mitigation approaches for each problem setup. Finally, we identify several future work directions, aiming to push the boundaries beyond the state of the art. Interestingly, we find that continual learning can solve many of the issues caused by the shifting class distribution. We maintain a list of relevant papers at https://github.com/Eduard6421/Open-Set-Survey.
comment: Accepted at EACL 2026 (main)
♻ ☆ Evaluating the cognitive reality of Spanish irregular morphomic patterns: Humans vs. Transformers
Do transformer models generalize morphological patterns like humans do? We investigate this by directly comparing transformers to human behavioral data on Spanish irregular morphomic patterns from \citet{Nevins2015TheRA}. We adopt the same analytical framework as the original human study. Under controlled input conditions, we evaluate whether transformer models can replicate human-like sensitivity to the morphome, a complex linguistic phenomenon. Our experiments focus on three frequency conditions: natural, low-frequency, and high-frequency distributions of verbs exhibiting irregular morphomic patterns. Transformer models achieve higher stem-accuracy than human participants. However, response preferences diverge: humans consistently favor the "natural" inflection across all items, whereas models preferred the irregular forms, and their choices are modulated by the proportion of irregular verbs present during training. Moreover, models trained on the natural and low-frequency distributions, but not the high-frequency distribution, exhibit sensitivity to phonological similarity between test items and Spanish L-shaped verbs, mirroring a limited aspect of human phonological generalization.
♻ ☆ nvBench 2.0: Resolving Ambiguity in Text-to-Visualization through Stepwise Reasoning
Text-to-Visualization (Text2VIS) enables users to create visualizations from natural language queries, making data insights more accessible. However, Text2VIS faces challenges in interpreting ambiguous queries, as users often express their visualization needs in imprecise language. To address this challenge, we introduce nBench 2.0, a new benchmark designed to evaluate Text2VIS systems in scenarios involving ambiguous queries. nvBench 2.0 includes 7,878 natural language queries and 24,076 corresponding visualizations, derived from 780 tables across 153 domains. It is built using a controlled ambiguity-injection pipeline that generates ambiguous queries through a reverse-generation workflow. By starting with unambiguous seed visualizations and selectively injecting ambiguities, the pipeline yields multiple valid interpretations for each query, with each ambiguous query traceable to its corresponding visualization through step-wise reasoning paths. We evaluate various Large Language Models (LLMs) on their ability to perform ambiguous Text2VIS tasks using nBench 2.0. We also propose Step-Text2Vis, an LLM-based model trained on nvBench 2.0, which enhances performance in ambiguous scenarios through step-wise preference optimization. Our results show that Step-Text2Vis outperforms all baselines, setting a new state-of-the-art for ambiguous Text2VIS tasks. Our source code and data are available at https://nvbench2.github.io/
♻ ☆ Self-Speculative Biased Decoding for Faster Re-Translation
Large language models achieve strong machine translation quality but incur high inference cost and latency, posing challenges for simultaneous translation. Re-translation provides a practical solution for off-the-shelf LLMs by repeatedly regenerating the target output as the source input grows, but it suffers from substantial redundant computation. We propose Self-Speculative Biased Decoding (SSBD), a simple and tuning-free inference method that accelerates re-translation by exploiting temporal coherence in streaming translation. SSBD reuses the model's previous output as a speculative draft for the updated input, verifies the draft efficiently in a single forward pass with a lightweight bias, and resumes autoregressive decoding only from the first divergence. We further introduce a display-only masking strategy that hides unstable suffixes from the user interface while retaining them in the draft for verification and potential acceptance. Experiments show that SSBD achieves substantial speedup over standard re-translation while maintaining comparable translation quality, without architectural changes, auxiliary models, or extra fine-tuning.
♻ ☆ Reliable Evaluation Protocol for Low-Precision Retrieval
Lowering the numerical precision of model parameters and computations is widely adopted to improve the efficiency of retrieval systems. However, when computing relevance scores between the query and documents in low-precision, we observe spurious ties due to the reduced granularity. This introduces high variability in the results based on tie resolution, making the evaluation less reliable. To address this, we propose a more robust retrieval evaluation protocol designed to reduce score variation. It consists of: (1) High-Precision Scoring (HPS), which upcasts the final scoring step to higher precision to resolve tied candidates with minimal computational cost; and (2) Tie-aware Retrieval Metrics (TRM), which report expected scores, range, and bias to quantify order uncertainty of tied candidates. Our experiments test multiple models with three scoring functions on two retrieval datasets to demonstrate that HPS dramatically reduces tie-induced instability, and TRM accurately recovers expected metric values. This combination enables a more consistent and reliable evaluation system for lower-precision retrievals.
comment: 13 pages, 7 figures, submitted to ARR
♻ ☆ Reasoning Path Divergence: A New Metric and Curation Strategy to Unlock LLM Diverse Thinking
While Test-Time Scaling (TTS) has proven effective in improving the reasoning ability of large language models (LLMs), low diversity in model outputs often becomes a bottleneck; this is partly caused by the common "one problem, one solution" (1P1S) training practice, which provides a single canonical answer and can push models toward a narrow set of reasoning paths. This homogenization not only limits sampling effectiveness but also restricts the exploration space for subsequent Reinforcement Learning (RL) stages. To address this, we propose a "one problem, multiple solutions" (1PNS) training paradigm that exposes the model to a variety of valid reasoning trajectories and thus increases inference diversity. A core challenge for 1PNS is reliably measuring semantic differences between multi-step chains of thought, so we introduce Reasoning Path Divergence (RPD), a step-level metric that aligns and scores Long Chain-of-Thought solutions to capture differences in intermediate reasoning. Using RPD, we curate maximally diverse solution sets per problem and fine-tune Qwen3-4B-Base. Experiments show that RPD-selected training yields more varied outputs and higher pass@k, with an average +2.80% gain in pass@16 over a strong 1P1S baseline and a +4.99% gain on AIME24, demonstrating that 1PNS further amplifies the effectiveness of TTS. Our code is available at https://github.com/fengjujf/Reasoning-Path-Divergence .
♻ ☆ Can LLMs Predict Their Own Failures? Self-Awareness via Internal Circuits
Large language models (LLMs) generate fluent and complex outputs but often fail to recognize their own mistakes and hallucinations. Existing approaches typically rely on external judges, multi-sample consistency, or text-based self-critique, which incur additional compute or correlate weakly with true correctness. We ask: can LLMs predict their own failures by inspecting internal states during inference? We introduce Gnosis, a lightweight self-awareness mechanism that enables frozen LLMs to perform intrinsic self-verification by decoding signals from hidden states and attention patterns. Gnosis passively observes internal traces, compresses them into fixed-budget descriptors, and predicts correctness with negligible inference cost, adding only ~5M parameters and operating independently of sequence length. Across math reasoning, open-domain question answering, and academic knowledge benchmarks, and over frozen backbones ranging from 1.7B to 20B parameters, Gnosis consistently outperforms strong internal baselines and large external judges in both accuracy and calibration. Moreover, it generalizes zero-shot to partial generations, enabling early detection of failing trajectories and compute-aware control. These results show that reliable correctness cues are intrinsic to generation process and can be extracted efficiently without external supervision.
♻ ☆ How to Correctly Report LLM-as-a-Judge Evaluations
Large language models (LLMs) are widely used as scalable evaluators of model responses in lieu of human annotators. However, imperfect sensitivity and specificity of LLM judgments induce bias in naive evaluation scores. We propose a simple plug-in framework that corrects this bias and constructs confidence intervals accounting for uncertainty from both the test dataset and a human-evaluated calibration dataset, enabling statistically sound and practical LLM-based evaluation. Building on this framework, we introduce an adaptive calibration strategy for constructing the calibration dataset to reduce uncertainty in the estimated score. Notably, we characterize the regimes in which LLM-based evaluation within our framework produces more reliable estimates than fully human evaluation. Moreover, our framework is more robust to distribution shift between the test and calibration datasets than existing approaches.
comment: This version adds Sections 2, 6, 7, and 8.2
♻ ☆ Dream-VL & Dream-VLA: Open Vision-Language and Vision-Language-Action Models with Diffusion Language Model Backbone
While autoregressive Large Vision-Language Models (VLMs) have achieved remarkable success, their sequential generation often limits their efficacy in complex visual planning and dynamic robotic control. In this work, we investigate the potential of constructing Vision-Language Models upon diffusion-based large language models (dLLMs) to overcome these limitations. We introduce Dream-VL, an open diffusion-based VLM (dVLM) that achieves state-of-the-art performance among previous dVLMs. Dream-VL is comparable to top-tier AR-based VLMs trained on open data on various benchmarks but exhibits superior potential when applied to visual planning tasks. Building upon Dream-VL, we introduce Dream-VLA, a dLLM-based Vision-Language-Action model (dVLA) developed through continuous pre-training on open robotic datasets. We demonstrate that the natively bidirectional nature of this diffusion backbone serves as a superior foundation for VLA tasks, inherently suited for action chunking and parallel generation, leading to significantly faster convergence in downstream fine-tuning. Dream-VLA achieves top-tier performance of 97.2% average success rate on LIBERO, 71.4% overall average on SimplerEnv-Bridge, and 60.5% overall average on SimplerEnv-Fractal, surpassing leading models such as $π_0$ and GR00T-N1. We also validate that dVLMs surpass AR baselines on downstream tasks across different training objectives. We release both Dream-VL and Dream-VLA to facilitate further research in the community.
comment: Add real-world experiments
♻ ☆ Multimodal Fact-Checking: An Agent-based Approach
The rapid spread of multimodal misinformation poses a growing challenge for automated fact-checking systems. Existing approaches, including large vision language models (LVLMs) and deep multimodal fusion methods, often fall short due to limited reasoning and shallow evidence utilization. A key bottleneck is the lack of dedicated datasets that provide complete real-world multimodal misinformation instances accompanied by annotated reasoning processes and verifiable evidence. To address this limitation, we introduce RW-Post, a high-quality and explainable dataset for real-world multimodal fact-checking. RW-Post aligns real-world multimodal claims with their original social media posts, preserving the rich contextual information in which the claims are made. In addition, the dataset includes detailed reasoning and explicitly linked evidence, which are derived from human written fact-checking articles via a large language model assisted extraction pipeline, enabling comprehensive verification and explanation. Building upon RW-Post, we propose AgentFact, an agent-based multimodal fact-checking framework designed to emulate the human verification workflow. AgentFact consists of five specialized agents that collaboratively handle key fact-checking subtasks, including strategy planning, high-quality evidence retrieval, visual analysis, reasoning, and explanation generation. These agents are orchestrated through an iterative workflow that alternates between evidence searching and task-aware evidence filtering and reasoning, facilitating strategic decision-making and systematic evidence analysis. Extensive experimental results demonstrate that the synergy between RW-Post and AgentFact substantially improves both the accuracy and interpretability of multimodal fact-checking.
comment: Code and dataset will be released at https://github.com/xudanni0927/AgentFact
♻ ☆ Rotation Control Unlearning: Quantifying and Controlling Continuous Unlearning for LLM with The Cognitive Rotation Space
As Large Language Models (LLMs) become increasingly prevalent, their security vulnerabilities have already drawn attention. Machine unlearning is introduced to seek to mitigate these risks by removing the influence of undesirable data. However, existing methods not only rely on the retained dataset to preserve model utility, but also suffer from cumulative catastrophic utility loss under continuous unlearning requests. To solve this dilemma, we propose a novel method, called Rotation Control Unlearning (RCU), which leverages the rotational salience weight of RCU to quantify and control the unlearning degree in the continuous unlearning process. The skew symmetric loss is designed to construct the existence of the cognitive rotation space, where the changes of rotational angle can simulate the continuous unlearning process. Furthermore, we design an orthogonal rotation axes regularization to enforce mutually perpendicular rotation directions for continuous unlearning requests, effectively minimizing interference and addressing cumulative catastrophic utility loss. Experiments on multiple datasets confirm that our method without retained dataset achieves SOTA performance.
♻ ☆ A Multi-Memory Segment System for Generating High-Quality Long-Term Memory Content in Agents
In the current field of agent memory, extensive explorations have been conducted in the area of memory retrieval, yet few studies have focused on exploring the memory content. Most research simply stores summarized versions of historical dialogues, as exemplified by methods like A-MEM and MemoryBank. However, when humans form long-term memories, the process involves multi-dimensional and multi-component generation, rather than merely creating simple summaries. The low-quality memory content generated by existing methods can adversely affect recall performance and response quality. In order to better construct high-quality long-term memory content, we have designed a multi-memory segment system (MMS) inspired by cognitive psychology theory. The system processes short-term memory into multiple long-term memory segments, and constructs retrieval memory units and contextual memory units based on these segments, with a one-to-one correspondence between the two. During the retrieval phase, MMS will match the most relevant retrieval memory units based on the user's query. Then, the corresponding contextual memory units is obtained as the context for the response stage to enhance knowledge, thereby effectively utilizing historical data. We conducted experiments on the LoCoMo dataset and further performed ablation experiments, experiments on the robustness regarding the number of input memories, and overhead experiments, which demonstrated the effectiveness and practical value of our method.
♻ ☆ DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
General reasoning represents a long-standing and formidable challenge in artificial intelligence. Recent breakthroughs, exemplified by large language models (LLMs) and chain-of-thought prompting, have achieved considerable success on foundational reasoning tasks. However, this success is heavily contingent upon extensive human-annotated demonstrations, and models' capabilities are still insufficient for more complex problems. Here we show that the reasoning abilities of LLMs can be incentivized through pure reinforcement learning (RL), obviating the need for human-labeled reasoning trajectories. The proposed RL framework facilitates the emergent development of advanced reasoning patterns, such as self-reflection, verification, and dynamic strategy adaptation. Consequently, the trained model achieves superior performance on verifiable tasks such as mathematics, coding competitions, and STEM fields, surpassing its counterparts trained via conventional supervised learning on human demonstrations. Moreover, the emergent reasoning patterns exhibited by these large-scale models can be systematically harnessed to guide and enhance the reasoning capabilities of smaller models.
Computer Vision and Pattern Recognition
☆ Learnability-Driven Submodular Optimization for Active Roadside 3D Detection CVPR 2026
Roadside perception datasets are typically constructed via cooperative labeling between synchronized vehicle and roadside frame pairs. However, real deployment often requires annotation of roadside-only data due to hardware and privacy constraints. Even human experts struggle to produce accurate labels without vehicle-side data (image, LIDAR), which not only increases annotation difficulty and cost, but also reveals a fundamental learnability problem: many roadside-only scenes contain distant, blurred, or occluded objects whose 3D properties are ambiguous from a single view and can only be reliably annotated by cross-checking paired vehicle--roadside frames. We refer to such cases as inherently ambiguous samples. To reduce wasted annotation effort on inherently ambiguous samples while still obtaining high-performing models, we turn to active learning. This work focuses on active learning for roadside monocular 3D object detection and proposes a learnability-driven framework that selects scenes which are both informative and reliably labelable, suppressing inherently ambiguous samples while ensuring coverage. Experiments demonstrate that our method, LH3D, achieves 86.06%, 67.32%, and 78.67% of full-performance for vehicles, pedestrians, and cyclists respectively, using only 25% of the annotation budget on DAIR-V2X-I, significantly outperforming uncertainty-based baselines. This confirms that learnability, not uncertainty, matters for roadside 3D perception.
comment: 10 pages, 7 figures. Submitted to CVPR 2026
☆ Mitigating Longitudinal Performance Degradation in Child Face Recognition Using Synthetic Data
Longitudinal face recognition in children remains challenging due to rapid and nonlinear facial growth, which causes template drift and increasing verification errors over time. This work investigates whether synthetic face data can act as a longitudinal stabilizer by improving temporal robustness of child face recognition models. Using an identity disjoint protocol on the Young Face Aging (YFA) dataset, we evaluate three settings: (i) pretrained MagFace embeddings without dataset specific fine-tuning, (ii) MagFace fine-tuned using authentic training faces only, and (iii) MagFace fine-tuned using a combination of authentic and synthetically generated training faces. Synthetic data is generated using StyleGAN2 ADA and incorporated exclusively within the training identities; a post generation filtering step is applied to mitigate identity leakage and remove artifact affected samples. Experimental results across enrollment verification gaps from 6 to 36 months show that synthetic-augmented fine tuning substantially reduces error rates relative to both the pretrained baseline and real only fine tuning. These findings provide a risk aware assessment of synthetic augmentation for improving identity persistence in pediatric face recognition.
☆ FALCON: Few-Shot Adversarial Learning for Cross-Domain Medical Image Segmentation
Precise delineation of anatomical and pathological structures within 3D medical volumes is crucial for accurate diagnosis, effective surgical planning, and longitudinal disease monitoring. Despite advancements in AI, clinically viable segmentation is often hindered by the scarcity of 3D annotations, patient-specific variability, data privacy concerns, and substantial computational overhead. In this work, we propose FALCON, a cross-domain few-shot segmentation framework that achieves high-precision 3D volume segmentation by processing data as 2D slices. The framework is first meta-trained on natural images to learn-to-learn generalizable segmentation priors, then transferred to the medical domain via adversarial fine-tuning and boundary-aware learning. Task-aware inference, conditioned on support cues, allows FALCON to adapt dynamically to patient-specific anatomical variations across slices. Experiments on four benchmarks demonstrate that FALCON consistently achieves the lowest Hausdorff Distance scores, indicating superior boundary accuracy while maintaining a Dice Similarity Coefficient comparable to the state-of-the-art models. Notably, these results are achieved with significantly less labeled data, no data augmentation, and substantially lower computational overhead.
comment: 20 pages, 6 figures, 7 tables
☆ Evaluating Deep Learning-Based Face Recognition for Infants and Toddlers: Impact of Age Across Developmental Stages
Face recognition for infants and toddlers presents unique challenges due to rapid facial morphology changes, high inter-class similarity, and limited dataset availability. This study evaluates the performance of four deep learning-based face recognition models FaceNet, ArcFace, MagFace, and CosFace on a newly developed longitudinal dataset collected over a 24 month period in seven sessions involving children aged 0 to 3 years. Our analysis examines recognition accuracy across developmental stages, showing that the True Accept Rate (TAR) is only 30.7% at 0.1% False Accept Rate (FAR) for infants aged 0 to 6 months, due to unstable facial features. Performance improves significantly in older children, reaching 64.7% TAR at 0.1% FAR in the 2.5 to 3 year age group. We also evaluate verification performance over different time intervals, revealing that shorter time gaps result in higher accuracy due to reduced embedding drift. To mitigate this drift, we apply a Domain Adversarial Neural Network (DANN) approach that improves TAR by over 12%, yielding features that are more temporally stable and generalizable. These findings are critical for building biometric systems that function reliably over time in smart city applications such as public healthcare, child safety, and digital identity services. The challenges observed in early age groups highlight the importance of future research on privacy preserving biometric authentication systems that can address temporal variability, particularly in secure and regulated urban environments where child verification is essential.
comment: Accepted and presented at IEEE IJCB 2025 conference; final published version forthcoming
☆ Trustworthy Data-Driven Wildfire Risk Prediction and Understanding in Western Canada
In recent decades, the intensification of wildfire activity in western Canada has resulted in substantial socio-economic and environmental losses. Accurate wildfire risk prediction is hindered by the intrinsic stochasticity of ignition and spread and by nonlinear interactions among fuel conditions, meteorology, climate variability, topography, and human activities, challenging the reliability and interpretability of purely data-driven models. We propose a trustworthy data-driven wildfire risk prediction framework based on long-sequence, multi-scale temporal modeling, which integrates heterogeneous drivers while explicitly quantifying predictive uncertainty and enabling process-level interpretation. Evaluated over western Canada during the record-breaking 2023 and 2024 fire seasons, the proposed model outperforms existing time-series approaches, achieving an F1 score of 0.90 and a PR-AUC of 0.98 with low computational cost. Uncertainty-aware analysis reveals structured spatial and seasonal patterns in predictive confidence, highlighting increased uncertainty associated with ambiguous predictions and spatiotemporal decision boundaries. SHAP-based interpretation provides mechanistic understanding of wildfire controls, showing that temperature-related drivers dominate wildfire risk in both years, while moisture-related constraints play a stronger role in shaping spatial and land-cover-specific contrasts in 2024 compared to the widespread hot and dry conditions of 2023. Data and code are available at https://github.com/SynUW/mmFire.
☆ LabelAny3D: Label Any Object 3D in the Wild NeurIPS 2025
Detecting objects in 3D space from monocular input is crucial for applications ranging from robotics to scene understanding. Despite advanced performance in the indoor and autonomous driving domains, existing monocular 3D detection models struggle with in-the-wild images due to the lack of 3D in-the-wild datasets and the challenges of 3D annotation. We introduce LabelAny3D, an \emph{analysis-by-synthesis} framework that reconstructs holistic 3D scenes from 2D images to efficiently produce high-quality 3D bounding box annotations. Built on this pipeline, we present COCO3D, a new benchmark for open-vocabulary monocular 3D detection, derived from the MS-COCO dataset and covering a wide range of object categories absent from existing 3D datasets. Experiments show that annotations generated by LabelAny3D improve monocular 3D detection performance across multiple benchmarks, outperforming prior auto-labeling approaches in quality. These results demonstrate the promise of foundation-model-driven annotation for scaling up 3D recognition in realistic, open-world settings.
comment: NeurIPS 2025. Project page: https://uva-computer-vision-lab.github.io/LabelAny3D/
☆ Animated 3DGS Avatars in Diverse Scenes with Consistent Lighting and Shadows
We present a method for consistent lighting and shadows when animated 3D Gaussian Splatting (3DGS) avatars interact with 3DGS scenes or with dynamic objects inserted into otherwise static scenes. Our key contribution is Deep Gaussian Shadow Maps (DGSM), a modern analogue of the classical shadow mapping algorithm tailored to the volumetric 3DGS representation. Building on the classic deep shadow mapping idea, we show that 3DGS admits closed form light accumulation along light rays, enabling volumetric shadow computation without meshing. For each estimated light, we tabulate transmittance over concentric radial shells and store them in octahedral atlases, which modern GPUs can sample in real time per query to attenuate affected scene Gaussians and thus cast and receive shadows consistently. To relight moving avatars, we approximate the local environment illumination with HDRI probes represented in a spherical harmonic (SH) basis and apply a fast per Gaussian radiance transfer, avoiding explicit BRDF estimation or offline optimization. We demonstrate environment consistent lighting for avatars from AvatarX and ActorsHQ, composited into ScanNet++, DL3DV, and SuperSplat scenes, and show interactions with inserted objects. Across single and multi avatar settings, DGSM and SH relighting operate fully in the volumetric 3DGS representation, yielding coherent shadows and relighting while avoiding meshing.
comment: Our project page is available at https://miraymen.github.io/dgsm
☆ An Empirical Study of Monocular Human Body Measurement Under Weak Calibration
Estimating human body measurements from monocular RGB imagery remains challenging due to scale ambiguity, viewpoint sensitivity, and the absence of explicit depth information. This work presents a systematic empirical study of three weakly calibrated monocular strategies: landmark-based geometry, pose-driven regression, and object-calibrated silhouettes, evaluated under semi-constrained conditions using consumer-grade cameras. Rather than pursuing state-of-the-art accuracy, the study analyzes how differing calibration assumptions influence measurement behavior, robustness, and failure modes across varied body types. The results reveal a clear trade-off between user effort during calibration and the stability of resulting circumferential quantities. This paper serves as an empirical design reference for lightweight monocular human measurement systems intended for deployment on consumer devices.
comment: The paper consists of 8 pages, 2 figures (on pages 4 and 7), and 2 tables (both on page 6)
☆ CAP-IQA: Context-Aware Prompt-Guided CT Image Quality Assessment
Prompt-based methods, which encode medical priors through descriptive text, have been only minimally explored for CT Image Quality Assessment (IQA). While such prompts can embed prior knowledge about diagnostic quality, they often introduce bias by reflecting idealized definitions that may not hold under real-world degradations such as noise, motion artifacts, or scanner variability. To address this, we propose the Context-Aware Prompt-guided Image Quality Assessment (CAP-IQA) framework, which integrates text-level priors with instance-level context prompts and applies causal debiasing to separate idealized knowledge from factual, image-specific degradations. Our framework combines a CNN-based visual encoder with a domain-specific text encoder to assess diagnostic visibility, anatomical clarity, and noise perception in abdominal CT images. The model leverages radiology-style prompts and context-aware fusion to align semantic and perceptual representations. On the 2023 LDCTIQA challenge benchmark, CAP-IQA achieves an overall correlation score of 2.8590 (sum of PLCC, SROCC, and KROCC), surpassing the top-ranked leaderboard team (2.7427) by 4.24%. Moreover, our comprehensive ablation experiments confirm that prompt-guided fusion and the simplified encoder-only design jointly enhance feature alignment and interpretability. Furthermore, evaluation on an in-house dataset of 91,514 pediatric CT images demonstrates the true generalizability of CAP-IQA in assessing perceptual fidelity in a different patient population.
comment: 18 pages, 9 figures, 5 tables
☆ Guiding Token-Sparse Diffusion Models
Diffusion models deliver high quality in image synthesis but remain expensive during training and inference. Recent works have leveraged the inherent redundancy in visual content to make training more affordable by training only on a subset of visual information. While these methods were successful in providing cheaper and more effective training, sparsely trained diffusion models struggle in inference. This is due to their lacking response to Classifier-free Guidance (CFG) leading to underwhelming performance during inference. To overcome this, we propose Sparse Guidance (SG). Instead of using conditional dropout as a signal to guide diffusion models, SG uses token-level sparsity. As a result, SG preserves the high-variance of the conditional prediction better, achieving good quality and high variance outputs. Leveraging token-level sparsity at inference, SG improves fidelity at lower compute, achieving 1.58 FID on the commonly used ImageNet-256 benchmark with 25% fewer FLOPs, and yields up to 58% FLOP savings at matched baseline quality. To demonstrate the effectiveness of Sparse Guidance, we train a 2.5B text-to-image diffusion model using training time sparsity and leverage SG during inference. SG achieves improvements in composition and human preference score while increasing throughput at the same time.
☆ Beyond Patches: Global-aware Autoregressive Model for Multimodal Few-Shot Font Generation
Manual font design is an intricate process that transforms a stylistic visual concept into a coherent glyph set. This challenge persists in automated Few-shot Font Generation (FFG), where models often struggle to preserve both the structural integrity and stylistic fidelity from limited references. While autoregressive (AR) models have demonstrated impressive generative capabilities, their application to FFG is constrained by conventional patch-level tokenization, which neglects global dependencies crucial for coherent font synthesis. Moreover, existing FFG methods remain within the image-to-image paradigm, relying solely on visual references and overlooking the role of language in conveying stylistic intent during font design. To address these limitations, we propose GAR-Font, a novel AR framework for multimodal few-shot font generation. GAR-Font introduces a global-aware tokenizer that effectively captures both local structures and global stylistic patterns, a multimodal style encoder offering flexible style control through a lightweight language-style adapter without requiring intensive multimodal pretraining, and a post-refinement pipeline that further enhances structural fidelity and style coherence. Extensive experiments show that GAR-Font outperforms existing FFG methods, excelling in maintaining global style faithfulness and achieving higher-quality results with textual stylistic guidance.
comment: 25 pages
☆ OpenRT: An Open-Source Red Teaming Framework for Multimodal LLMs
The rapid integration of Multimodal Large Language Models (MLLMs) into critical applications is increasingly hindered by persistent safety vulnerabilities. However, existing red-teaming benchmarks are often fragmented, limited to single-turn text interactions, and lack the scalability required for systematic evaluation. To address this, we introduce OpenRT, a unified, modular, and high-throughput red-teaming framework designed for comprehensive MLLM safety evaluation. At its core, OpenRT architects a paradigm shift in automated red-teaming by introducing an adversarial kernel that enables modular separation across five critical dimensions: model integration, dataset management, attack strategies, judging methods, and evaluation metrics. By standardizing attack interfaces, it decouples adversarial logic from a high-throughput asynchronous runtime, enabling systematic scaling across diverse models. Our framework integrates 37 diverse attack methodologies, spanning white-box gradients, multi-modal perturbations, and sophisticated multi-agent evolutionary strategies. Through an extensive empirical study on 20 advanced models (including GPT-5.2, Claude 4.5, and Gemini 3 Pro), we expose critical safety gaps: even frontier models fail to generalize across attack paradigms, with leading models exhibiting average Attack Success Rates as high as 49.14%. Notably, our findings reveal that reasoning models do not inherently possess superior robustness against complex, multi-turn jailbreaks. By open-sourcing OpenRT, we provide a sustainable, extensible, and continuously maintained infrastructure that accelerates the development and standardization of AI safety.
☆ MM-Sonate: Multimodal Controllable Audio-Video Generation with Zero-Shot Voice Cloning
Joint audio-video generation aims to synthesize synchronized multisensory content, yet current unified models struggle with fine-grained acoustic control, particularly for identity-preserving speech. Existing approaches either suffer from temporal misalignment due to cascaded generation or lack the capability to perform zero-shot voice cloning within a joint synthesis framework. In this work, we present MM-Sonate, a multimodal flow-matching framework that unifies controllable audio-video joint generation with zero-shot voice cloning capabilities. Unlike prior works that rely on coarse semantic descriptions, MM-Sonate utilizes a unified instruction-phoneme input to enforce strict linguistic and temporal alignment. To enable zero-shot voice cloning, we introduce a timbre injection mechanism that effectively decouples speaker identity from linguistic content. Furthermore, addressing the limitations of standard classifier-free guidance in multimodal settings, we propose a noise-based negative conditioning strategy that utilizes natural noise priors to significantly enhance acoustic fidelity. Empirical evaluations demonstrate that MM-Sonate establishes new state-of-the-art performance in joint generation benchmarks, significantly outperforming baselines in lip synchronization and speech intelligibility, while achieving voice cloning fidelity comparable to specialized Text-to-Speech systems.
☆ EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding
The ability to reason about spatial dynamics is a cornerstone of intelligence, yet current research overlooks the human intent behind spatial changes. To address these limitations, we introduce Teleo-Spatial Intelligence (TSI), a new paradigm that unifies two critical pillars: Physical-Dynamic Reasoning--understanding the physical principles of object interactions--and Intent-Driven Reasoning--inferring the human goals behind these actions. To catalyze research in TSI, we present EscherVerse, consisting of a large-scale, open-world benchmark (Escher-Bench), a dataset (Escher-35k), and models (Escher series). Derived from real-world videos, EscherVerse moves beyond constrained settings to explicitly evaluate an agent's ability to reason about object permanence, state transitions, and trajectory prediction in dynamic, human-centric scenarios. Crucially, it is the first benchmark to systematically assess Intent-Driven Reasoning, challenging models to connect physical events to their underlying human purposes. Our work, including a novel data curation pipeline, provides a foundational resource to advance spatial intelligence from passive scene description toward a holistic, purpose-driven understanding of the world.
☆ Sim2Real SAR Image Restoration: Metadata-Driven Models for Joint Despeckling and Sidelobes Reduction
Synthetic aperture radar (SAR) provides valuable information about the Earth's surface under all weather and illumination conditions. However, the inherent phenomenon of speckle and the presence of sidelobes around bright targets pose challenges for accurate interpretation of SAR imagery. Most existing SAR image restoration methods address despeckling and sidelobes reduction as separate tasks. In this paper, we propose a unified framework that jointly performs both tasks using neural networks (NNs) trained on a realistic SAR simulated dataset generated with MOCEM. Inference can then be performed on real SAR images, demonstrating effective simulation to real (Sim2Real) transferability. Additionally, we incorporate acquisition metadata as auxiliary input to the NNs, demonstrating improved restoration performance.
comment: Accepted at the Conference on Artificial Intelligence for Defense (CAID), 2025, Rennes, France
♻ ☆ VisualActBench: Can VLMs See and Act like a Human?
Vision-Language Models (VLMs) have achieved impressive progress in perceiving and describing visual environments. However, their ability to proactively reason and act based solely on visual inputs, without explicit textual prompts, remains underexplored. We introduce a new task, Visual Action Reasoning, and propose VisualActBench, a large-scale benchmark comprising 1,074 videos and 3,733 human-annotated actions across four real-world scenarios. Each action is labeled with an Action Prioritization Level (APL) and a proactive-reactive type to assess models' human-aligned reasoning and value sensitivity. We evaluate 29 VLMs on VisualActBench and find that while frontier models like GPT4o demonstrate relatively strong performance, a significant gap remains compared to human-level reasoning, particularly in generating proactive, high-priority actions. Our results highlight limitations in current VLMs' ability to interpret complex context, anticipate outcomes, and align with human decision-making frameworks. VisualActBench establishes a comprehensive foundation for assessing and improving the real-world readiness of proactive, vision-centric AI agents.
♻ ☆ Attire-Based Anomaly Detection in Restricted Areas Using YOLOv8 for Enhanced CCTV Security
This research introduces an innovative security enhancement approach, employing advanced image analysis and soft computing. The focus is on an intelligent surveillance system that detects unauthorized individuals in restricted areas by analyzing attire. Traditional security measures face challenges in monitoring unauthorized access. Leveraging YOLOv8, an advanced object detection algorithm, our system identifies authorized personnel based on their attire in CCTV footage. The methodology involves training the YOLOv8 model on a comprehensive dataset of uniform patterns, ensuring precise recognition in specific regions. Soft computing techniques enhance adaptability to dynamic environments and varying lighting conditions. This research contributes to image analysis and soft computing, providing a sophisticated security solution. Emphasizing uniform-based anomaly detection, it establishes a foundation for robust security systems in restricted areas. The outcomes highlight the potential of YOLOv8-based surveillance in ensuring safety in sensitive locations.
comment: 9 pages, 6 figures
♻ ☆ Joint Distillation for Fast Likelihood Evaluation and Sampling in Flow-based Models
Log-likelihood evaluation enables important capabilities in generative models, including model comparison, certain fine-tuning objectives, and many downstream applications. Yet paradoxically, some of today's best generative models -- diffusion and flow-based models -- still require hundreds to thousands of neural function evaluations (NFEs) to compute a single likelihood. While recent distillation methods have successfully accelerated sampling to just a few steps, they achieve this at the cost of likelihood tractability: existing approaches either abandon likelihood computation entirely or still require expensive integration over full trajectories. We present fast flow joint distillation (F2D2), a framework that simultaneously reduces the number of NFEs required for both sampling and likelihood evaluation by two orders of magnitude. Our key insight is that in continuous normalizing flows, the coupled ODEs for sampling and likelihood are computed from a shared underlying velocity field, allowing us to jointly distill both the sampling trajectory and cumulative divergence using a single model. F2D2 is modular, compatible with existing flow-based few-step sampling models, and requires only an additional divergence prediction head. Experiments demonstrate F2D2's capability of achieving accurate log-likelihood with few-step evaluations while maintaining high sample quality, solving a long-standing computational bottleneck in flow-based generative models. As an application of our approach, we propose a lightweight self-guidance method that enables a 2-step MeanFlow to outperform a 1024 step flow matching model with only a single additional backward NFE.
♻ ☆ How Robot Dogs See the Unseeable: Improving Visual Interpretability via Peering for Exploratory Robots
In vegetated environments, such as forests, exploratory robots play a vital role in navigating complex, cluttered environments where human access is limited and traditional equipment struggles. Visual occlusion from obstacles, such as foliage, can severely obstruct a robot's sensors, impairing scene understanding. We show that "peering", a characteristic side-to-side movement used by insects to overcome their visual limitations, can also allow robots to markedly improve visual reasoning under partial occlusion. This is accomplished by applying core signal processing principles, specifically optical synthetic aperture sensing, together with the vision reasoning capabilities of modern large multimodal models. Peering enables real-time, high-resolution, and wavelength-independent perception, which is crucial for vision-based scene understanding across a wide range of applications. The approach is low-cost and immediately deployable on any camera-equipped robot. We investigated different peering motions and occlusion masking strategies, demonstrating that, unlike peering, state-of-the-art multi-view 3D vision techniques fail in these conditions due to their high susceptibility to occlusion. Our experiments were carried out on an industrial-grade quadrupedal robot. However, the ability to peer is not limited to such platforms, but potentially also applicable to bipedal, hexapod, wheeled, or crawling platforms. Robots that can effectively see through partial occlusion will gain superior perception abilities - including enhanced scene understanding, situational awareness, camouflage breaking, and advanced navigation in complex environments.
♻ ☆ AHA! Animating Human Avatars in Diverse Scenes with Gaussian Splatting
We present a novel framework for animating humans in 3D scenes using 3D Gaussian Splatting (3DGS), a neural scene representation that has recently achieved state-of-the-art photorealistic results for novel-view synthesis but remains under-explored for human-scene animation and interaction. Unlike existing animation pipelines that use meshes or point clouds as the underlying 3D representation, our approach introduces the use of 3DGS as the 3D representation for animating humans in scenes. By representing humans and scenes as Gaussians, our approach allows geometry-consistent free-viewpoint rendering of humans interacting with 3D scenes. Our key insight is that rendering can be decoupled from motion synthesis, and each sub-problem can be addressed independently without the need for paired human-scene data. Central to our method is a Gaussian-aligned motion module that synthesizes motion without explicit scene geometry, using opacity-based cues and projected Gaussian structures to guide human placement and pose alignment. To ensure natural interactions, we further propose a human-scene Gaussian refinement optimization that enforces realistic contact and navigation. We evaluate our approach on scenes from Scannet++ and the SuperSplat library, and on avatars reconstructed from sparse and dense multi-view human capture. Finally, we demonstrate that our framework enables novel applications such as geometry-consistent free-viewpoint rendering of edited monocular RGB videos with newly animated humans, showcasing the unique advantages of 3DGS for monocular video-based human animation. To assess the full quality of our results, we encourage readers to view the supplementary material available at https://miraymen.github.io/aha/ .
comment: Project page available at: https://miraymen.github.io/aha/
♻ ☆ GTPBD: A Fine-Grained Global Terraced Parcel and Boundary Dataset NeurIPS 2025
Agricultural parcels serve as basic units for conducting agricultural practices and applications, which is vital for land ownership registration, food security assessment, soil erosion monitoring, etc. However, existing agriculture parcel extraction studies only focus on mid-resolution mapping or regular plain farmlands while lacking representation of complex terraced terrains due to the demands of precision agriculture.In this paper, we introduce a more fine-grained terraced parcel dataset named GTPBD (Global Terraced Parcel and Boundary Dataset), which is the first fine-grained dataset covering major worldwide terraced regions with more than 200,000 complex terraced parcels with manual annotation. GTPBD comprises 47,537 high-resolution images with three-level labels, including pixel-level boundary labels, mask labels, and parcel labels. It covers seven major geographic zones in China and transcontinental climatic regions around the world.Compared to the existing datasets, the GTPBD dataset brings considerable challenges due to the: (1) terrain diversity; (2) complex and irregular parcel objects; and (3) multiple domain styles. Our proposed GTPBD dataset is suitable for four different tasks, including semantic segmentation, edge detection, terraced parcel extraction, and unsupervised domain adaptation (UDA) tasks.Accordingly, we benchmark the GTPBD dataset on eight semantic segmentation methods, four edge extraction methods, three parcel extraction methods, and five UDA methods, along with a multi-dimensional evaluation framework integrating pixel-level and object-level metrics. GTPBD fills a critical gap in terraced remote sensing research, providing a basic infrastructure for fine-grained agricultural terrain analysis and cross-scenario knowledge transfer.
comment: 40 pages, 40 figures, Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Bridging Geometry and Appearance: Topological Features for Robust Self-Supervised Segmentation
Self-supervised semantic segmentation methods often fail when faced with appearance ambiguities. We argue that this is due to an over-reliance on unstable, appearance-based features such as shadows, glare, and local textures. We propose \textbf{GASeg}, a novel framework that bridges appearance and geometry by leveraging stable topological information. The core of our method is Differentiable Box-Counting (\textbf{DBC}) module, which quantifies multi-scale topological statistics from two parallel streams: geometric-based features and appearance-based features. To force the model to learn these stable structural representations, we introduce Topological Augmentation (\textbf{TopoAug}), an adversarial strategy that simulates real-world ambiguities by applying morphological operators to the input images. A multi-objective loss, \textbf{GALoss}, then explicitly enforces cross-modal alignment between geometric-based and appearance-based features. Extensive experiments demonstrate that GASeg achieves state-of-the-art performance on four benchmarks, including COCO-Stuff, Cityscapes, and PASCAL, validating our approach of bridging geometry and appearance via topological information.
Information Retrieval
☆ LACONIC: Dense-Level Effectiveness for Scalable Sparse Retrieval via a Two-Phase Training Curriculum
While dense retrieval models have become the standard for state-of-the-art information retrieval, their deployment is often constrained by high memory requirements and reliance on GPU accelerators for vector similarity search. Learned sparse retrieval offers a compelling alternative by enabling efficient search via inverted indices, yet it has historically received less attention than dense approaches. In this report, we introduce LACONIC, a family of learned sparse retrievers based on the Llama-3 architecture (1B, 3B, and 8B). We propose a streamlined two-phase training curriculum consisting of (1) weakly supervised pre-finetuning to adapt causal LLMs for bidirectional contextualization and (2) high-signal finetuning using curated hard negatives. Our results demonstrate that LACONIC effectively bridges the performance gap with dense models: the 8B variant achieves a state-of-the-art 60.2 nDCG on the MTEB Retrieval benchmark, ranking 15th on the leaderboard as of January 1, 2026, while utilizing 71\% less index memory than an equivalent dense model. By delivering high retrieval effectiveness on commodity CPU hardware with a fraction of the compute budget required by competing models, LACONIC provides a scalable and efficient solution for real-world search applications.
☆ OpenNovelty: An LLM-powered Agentic System for Verifiable Scholarly Novelty Assessment
Evaluating novelty is critical yet challenging in peer review, as reviewers must assess submissions against a vast, rapidly evolving literature. This report presents OpenNovelty, an LLM-powered agentic system for transparent, evidence-based novelty analysis. The system operates through four phases: (1) extracting the core task and contribution claims to generate retrieval queries; (2) retrieving relevant prior work based on extracted queries via semantic search engine; (3) constructing a hierarchical taxonomy of core-task-related work and performing contribution-level full-text comparisons against each contribution; and (4) synthesizing all analyses into a structured novelty report with explicit citations and evidence snippets. Unlike naive LLM-based approaches, \textsc{OpenNovelty} grounds all assessments in retrieved real papers, ensuring verifiable judgments. We deploy our system on 500+ ICLR 2026 submissions with all reports publicly available on our website, and preliminary analysis suggests it can identify relevant prior work, including closely related papers that authors may overlook. OpenNovelty aims to empower the research community with a scalable tool that promotes fair, consistent, and evidence-backed peer review.
☆ Breadcrumbs in the Digital Forest: Tracing Criminals through Torrent Metadata with OSINT
This work investigates the potential of torrent metadata as a source for open-source intelligence (OSINT), with a focus on user profiling and behavioral analysis. While peer-to-peer (P2P) networks such as BitTorrent are well studied with respect to privacy and performance, their metadata is rarely used for investigative purposes. This work presents a proof of concept demonstrating how tracker responses, torrent index data, and enriched IP metadata can reveal patterns associated with high-risk behavior. The research follows a five-step OSINT process: source identification, data collection, enrichment, behavioral analysis, and presentation of the results. Data were collected from The Pirate Bay and UDP trackers, yielding a dataset of more than 60,000 unique IP addresses across 206 popular torrents. The data were enriched with geolocation, anonymization status, and flags of involvement in child exploitation material (CEM). A case study on sensitive e-books shows how such data can help detect possible interest in illicit content. Network analysis highlights peer clustering, co-download patterns, and the use of privacy tools by suspicious users. The study shows that publicly available torrent metadata can support scalable and automated OSINT profiling. This work adds to digital forensics by proposing a new method to extract useful signals from noisy data, with applications in law enforcement, cybersecurity, and threat analysis.
☆ Segmentation and Processing of German Court Decisions from Open Legal Data
The availability of structured legal data is important for advancing Natural Language Processing (NLP) techniques for the German legal system. One of the most widely used datasets, Open Legal Data, provides a large-scale collection of German court decisions. While the metadata in this raw dataset is consistently structured, the decision texts themselves are inconsistently formatted and often lack clearly marked sections. Reliable separation of these sections is important not only for rhetorical role classification but also for downstream tasks such as retrieval and citation analysis. In this work, we introduce a cleaned and sectioned dataset of 251,038 German court decisions derived from the official Open Legal Data dataset. We systematically separated three important sections in German court decisions, namely Tenor (operative part of the decision), Tatbestand (facts of the case), and Entscheidungsgründe (judicial reasoning), which are often inconsistently represented in the original dataset. To ensure the reliability of our extraction process, we used Cochran's formula with a 95% confidence level and a 5% margin of error to draw a statistically representative random sample of 384 cases, and manually verified that all three sections were correctly identified. We also extracted the Rechtsmittelbelehrung (appeal notice) as a separate field, since it is a procedural instruction and not part of the decision itself. The resulting corpus is publicly available in the JSONL format, making it an accessible resource for further research on the German legal system.
comment: Accepted and published as a research article in Legal Knowledge and Information Systems (JURIX 2025 proceedings, IOS Press). Pages 276--281
☆ Adaptive Diffusion-based Augmentation for Recommendation
Recommendation systems often rely on implicit feedback, where only positive user-item interactions can be observed. Negative sampling is therefore crucial to provide proper negative training signals. However, existing methods tend to mislabel potentially positive but unobserved items as negatives and lack precise control over negative sample selection. We aim to address these by generating controllable negative samples, rather than sampling from the existing item pool. In this context, we propose Adaptive Diffusion-based Augmentation for Recommendation (ADAR), a novel and model-agnostic module that leverages diffusion to synthesize informative negatives. Inspired by the progressive corruption process in diffusion, ADAR simulates a continuous transition from positive to negative, allowing for fine-grained control over sample hardness. To mine suitable negative samples, we theoretically identify the transition point at which a positive sample turns negative and derive a score-aware function to adaptively determine the optimal sampling timestep. By identifying this transition point, ADAR generates challenging negative samples that effectively refine the model's decision boundary. Experiments confirm that ADAR is broadly compatible and boosts the performance of existing recommendation models substantially, including collaborative filtering and sequential recommendation, without architectural modifications.
♻ ☆ Reliable Evaluation Protocol for Low-Precision Retrieval
Lowering the numerical precision of model parameters and computations is widely adopted to improve the efficiency of retrieval systems. However, when computing relevance scores between the query and documents in low-precision, we observe spurious ties due to the reduced granularity. This introduces high variability in the results based on tie resolution, making the evaluation less reliable. To address this, we propose a more robust retrieval evaluation protocol designed to reduce score variation. It consists of: (1) High-Precision Scoring (HPS), which upcasts the final scoring step to higher precision to resolve tied candidates with minimal computational cost; and (2) Tie-aware Retrieval Metrics (TRM), which report expected scores, range, and bias to quantify order uncertainty of tied candidates. Our experiments test multiple models with three scoring functions on two retrieval datasets to demonstrate that HPS dramatically reduces tie-induced instability, and TRM accurately recovers expected metric values. This combination enables a more consistent and reliable evaluation system for lower-precision retrievals.
comment: 13 pages, 7 figures, submitted to ARR
Multimedia
☆ Beyond Patches: Global-aware Autoregressive Model for Multimodal Few-Shot Font Generation
Manual font design is an intricate process that transforms a stylistic visual concept into a coherent glyph set. This challenge persists in automated Few-shot Font Generation (FFG), where models often struggle to preserve both the structural integrity and stylistic fidelity from limited references. While autoregressive (AR) models have demonstrated impressive generative capabilities, their application to FFG is constrained by conventional patch-level tokenization, which neglects global dependencies crucial for coherent font synthesis. Moreover, existing FFG methods remain within the image-to-image paradigm, relying solely on visual references and overlooking the role of language in conveying stylistic intent during font design. To address these limitations, we propose GAR-Font, a novel AR framework for multimodal few-shot font generation. GAR-Font introduces a global-aware tokenizer that effectively captures both local structures and global stylistic patterns, a multimodal style encoder offering flexible style control through a lightweight language-style adapter without requiring intensive multimodal pretraining, and a post-refinement pipeline that further enhances structural fidelity and style coherence. Extensive experiments show that GAR-Font outperforms existing FFG methods, excelling in maintaining global style faithfulness and achieving higher-quality results with textual stylistic guidance.
comment: 25 pages
☆ MM-Sonate: Multimodal Controllable Audio-Video Generation with Zero-Shot Voice Cloning
Joint audio-video generation aims to synthesize synchronized multisensory content, yet current unified models struggle with fine-grained acoustic control, particularly for identity-preserving speech. Existing approaches either suffer from temporal misalignment due to cascaded generation or lack the capability to perform zero-shot voice cloning within a joint synthesis framework. In this work, we present MM-Sonate, a multimodal flow-matching framework that unifies controllable audio-video joint generation with zero-shot voice cloning capabilities. Unlike prior works that rely on coarse semantic descriptions, MM-Sonate utilizes a unified instruction-phoneme input to enforce strict linguistic and temporal alignment. To enable zero-shot voice cloning, we introduce a timbre injection mechanism that effectively decouples speaker identity from linguistic content. Furthermore, addressing the limitations of standard classifier-free guidance in multimodal settings, we propose a noise-based negative conditioning strategy that utilizes natural noise priors to significantly enhance acoustic fidelity. Empirical evaluations demonstrate that MM-Sonate establishes new state-of-the-art performance in joint generation benchmarks, significantly outperforming baselines in lip synchronization and speech intelligibility, while achieving voice cloning fidelity comparable to specialized Text-to-Speech systems.
☆ LinMU: Multimodal Understanding Made Linear
Modern Vision-Language Models (VLMs) achieve impressive performance but are limited by the quadratic complexity of self-attention, which prevents their deployment on edge devices and makes their understanding of high-resolution images and long-context videos prohibitively expensive. To address this challenge, we introduce LinMU (Linear-complexity Multimodal Understanding), a VLM design that achieves linear complexity without using any quadratic-complexity modules while maintaining the performance of global-attention-based VLMs. LinMU replaces every self-attention layer in the VLM with the M-MATE block: a dual-branch module that combines a bidirectional state-space model for global context (Flex-MA branch) with localized Swin-style window attention (Local-Swin branch) for adjacent correlations. To transform a pre-trained VLM into the LinMU architecture, we propose a three-stage distillation framework that (i) initializes both branches with self-attention weights and trains the Flex-MA branch alone, (ii) unfreezes the Local-Swin branch and fine-tunes it jointly with the Flex-MA branch, and (iii) unfreezes the remaining blocks and fine-tunes them using LoRA adapters, while regressing on hidden states and token-level logits of the frozen VLM teacher. On MMMU, TextVQA, LongVideoBench, Video-MME, and other benchmarks, LinMU matches the performance of teacher models, yet reduces Time-To-First-Token (TTFT) by up to 2.7$\times$ and improves token throughput by up to 9.0$\times$ on minute-length videos. Ablations confirm the importance of each distillation stage and the necessity of the two branches of the M-MATE block. The proposed framework demonstrates that state-of-the-art multimodal reasoning can be achieved without quadratic attention, thus opening up avenues for long-context VLMs that can deal with high-resolution images and long videos.
comment: 23 pages, 7 figures
♻ ☆ TraveLLaMA: A Multimodal Travel Assistant with Large-Scale Dataset and Structured Reasoning AAAI 2026
Tourism and travel planning increasingly rely on digital assistance, yet existing multimodal AI systems often lack specialized knowledge and contextual understanding of urban environments. We present TraveLLaMA, a specialized multimodal language model designed for comprehensive travel assistance. Our work addresses the fundamental challenge of developing practical AI travel assistants through three key contributions: (1) TravelQA, a novel dataset of 265k question-answer pairs combining 160k text QA from authentic travel sources, 100k vision-language QA featuring maps and location imagery, and 5k expert-annotated Chain-of-Thought reasoning examples; (2) Travel-CoT, a structured reasoning framework that decomposes travel queries into spatial, temporal, and practical dimensions, improving answer accuracy by 10.8\% while providing interpretable decision paths; and (3) an interactive agent system validated through extensive user studies. Through fine-tuning experiments on state-of-the-art vision-language models (LLaVA, Qwen-VL, Shikra), we achieve 6.2-9.4\% base improvements, further enhanced by Travel-CoT reasoning. Our model demonstrates superior capabilities in contextual travel recommendations, map interpretation, and scene understanding while providing practical information such as operating hours and cultural insights. User studies with 500 participants show TraveLLaMA achieves a System Usability Scale score of 82.5, significantly outperforming general-purpose models and establishing new standards for multimodal travel assistance systems.
comment: AAAI 2026 Oral
♻ ☆ Enhancing Blind Video Quality Assessment with Rich Quality-aware Features CVPR
Blind video quality assessment (BVQA) is a highly challenging task due to the intrinsic complexity of video content and visual distortions, especially given the high popularity of social media videos, which originate from a wide range of sources, and are often processed by various compression and enhancement algorithms. While recent BVQA and blind image quality assessment (BIQA) studies have made remarkable progress, their models typically perform well on the datasets they were trained on but generalize poorly to unseen videos, making them less effective for accurately evaluating the perceptual quality of diverse social media videos. In this paper, we propose Rich Quality-aware features enabled Video Quality Assessment (RQ-VQA), a simple yet effective method to enhance BVQA by leveraging rich quality-aware features extracted from off-the-shelf BIQA and BVQA models. Our approach exploits the expertise of existing quality assessment models within their trained domains to improve generalization. Specifically, we design a multi-source feature framework that integrates:(1) Learnable spatial features} from a base model fine-tuned on the target VQA dataset to capture domain-specific quality cues; (2) Temporal motion features from the fast pathway of SlowFast pre-trained on action recognition datasets to model motion-related distortions; (3) Spatial quality-aware features from BIQA models trained on diverse IQA datasets to enhance frame-level distortion representation; and (4) Spatiotemporal quality-aware features from a BVQA model trained on large-scale VQA datasets to jointly encode spatial structure and temporal dynamics. These features are concatenated and fed into a multi-layer perceptron (MLP) to regress them into quality scores. Experimental results demonstrate that our model achieves state-of-the-art performance on three public social media VQA datasets.
comment: RQ-VQA won first place in the CVPR NTIRE 2024 Short-form UGC Video Quality Assessment Challenge
♻ ☆ AHA: Aligning Large Audio-Language Models for Reasoning Hallucinations via Counterfactual Hard Negatives
Although Large Audio-Language Models (LALMs) deliver state-of-the-art (SOTA) performance, they frequently suffer from hallucinations, e.g. generating text not grounded in the audio input. We analyze these grounding failures and identify a distinct taxonomy: Event Omission, False Event Identity, Temporal Relation Error, and Quantitative Temporal Error. To address this, we introduce the AHA (Audio Hallucination Alignment) framework. By leveraging counterfactual hard negative mining, our pipeline constructs a high-quality preference dataset that forces models to distinguish strict acoustic evidence from linguistically plausible fabrications. Additionally, we establish AHA-Eval, a diagnostic benchmark designed to rigorously test these fine-grained temporal reasoning capabilities. We apply this data to align Qwen2.5-Omni. The resulting model, Qwen-Audio-AHA, achieves a 13.7% improvement on AHA-Eval. Crucially, this benefit generalizes beyond our diagnostic set. Our model shows substantial gains on public benchmarks, including 1.3% on MMAU-Test and 1.6% on MMAR, outperforming latest SOTA methods. The model and dataset are open-sourced at https://github.com/LLM-VLM-GSL/AHA.
Information Retrieval
☆ Curator: Efficient Vector Search with Low-Selectivity Filters SIGMOD 2026
Embedding-based dense retrieval has become the cornerstone of many critical applications, where approximate nearest neighbor search (ANNS) queries are often combined with filters on labels such as dates and price ranges. Graph-based indexes achieve state-of-the-art performance on unfiltered ANNS but encounter connectivity breakdown on low-selectivity filtered queries, where qualifying vectors become sparse and the graph structure among them fragments. Recent research proposes specialized graph indexes that address this issue by expanding graph degree, which incurs prohibitively high construction costs. Given these inherent limitations of graph-based methods, we argue for a dual-index architecture and present Curator, a partition-based index that complements existing graph-based approaches for low-selectivity filtered ANNS. Curator builds specialized indexes for different labels within a shared clustering tree, where each index adapts to the distribution of its qualifying vectors to ensure efficient search while sharing structure to minimize memory overhead. The system also supports incremental updates and handles arbitrary complex predicates beyond single-label filters by efficiently constructing temporary indexes on the fly. Our evaluation demonstrates that integrating Curator with state-of-the-art graph indexes reduces low-selectivity query latency by up to 20.9x compared to pre-filtering fallback, while increasing construction time and memory footprint by only 5.5% and 4.3%, respectively.
comment: Accepted at SIGMOD 2026
☆ ScienceDB AI: An LLM-Driven Agentic Recommender System for Large-Scale Scientific Data Sharing Services
The rapid growth of AI for Science (AI4S) has underscored the significance of scientific datasets, leading to the establishment of numerous national scientific data centers and sharing platforms. Despite this progress, efficiently promoting dataset sharing and utilization for scientific research remains challenging. Scientific datasets contain intricate domain-specific knowledge and contexts, rendering traditional collaborative filtering-based recommenders inadequate. Recent advances in Large Language Models (LLMs) offer unprecedented opportunities to build conversational agents capable of deep semantic understanding and personalized recommendations. In response, we present ScienceDB AI, a novel LLM-driven agentic recommender system developed on Science Data Bank (ScienceDB), one of the largest global scientific data-sharing platforms. ScienceDB AI leverages natural language conversations and deep reasoning to accurately recommend datasets aligned with researchers' scientific intents and evolving requirements. The system introduces several innovations: a Scientific Intention Perceptor to extract structured experimental elements from complicated queries, a Structured Memory Compressor to manage multi-turn dialogues effectively, and a Trustworthy Retrieval-Augmented Generation (Trustworthy RAG) framework. The Trustworthy RAG employs a two-stage retrieval mechanism and provides citable dataset references via Citable Scientific Task Record (CSTR) identifiers, enhancing recommendation trustworthiness and reproducibility. Through extensive offline and online experiments using over 10 million real-world datasets, ScienceDB AI has demonstrated significant effectiveness. To our knowledge, ScienceDB AI is the first LLM-driven conversational recommender tailored explicitly for large-scale scientific dataset sharing services. The platform is publicly accessible at: https://ai.scidb.cn/en.
comment: 12 pages, 9 figures
☆ SoulSeek: Exploring the Use of Social Cues in LLM-based Information Seeking
Social cues, which convey others' presence, behaviors, or identities, play a crucial role in human information seeking by helping individuals judge relevance and trustworthiness. However, existing LLM-based search systems primarily rely on semantic features, creating a misalignment with the socialized cognition underlying natural information seeking. To address this gap, we explore how the integration of social cues into LLM-based search influences users' perceptions, experiences, and behaviors. Focusing on social media platforms that are beginning to adopt LLM-based search, we integrate design workshops, the implementation of the prototype system (SoulSeek), a between-subjects study, and mixed-method analyses to examine both outcome- and process-level findings. The workshop informs the prototype's cue-integrated design. The study shows that social cues improve perceived outcomes and experiences, promote reflective information behaviors, and reveal limits of current LLM-based search. We propose design implications emphasizing better social-knowledge understanding, personalized cue settings, and controllable interactions.
☆ ITSELF: Attention Guided Fine-Grained Alignment for Vision-Language Retrieval WACV
Vision Language Models (VLMs) have rapidly advanced and show strong promise for text-based person search (TBPS), a task that requires capturing fine-grained relationships between images and text to distinguish individuals. Previous methods address these challenges through local alignment, yet they are often prone to shortcut learning and spurious correlations, yielding misalignment. Moreover, injecting prior knowledge can distort intra-modality structure. Motivated by our finding that encoder attention surfaces spatially precise evidence from the earliest training epochs, and to alleviate these issues, we introduceITSELF, an attention-guided framework for implicit local alignment. At its core, Guided Representation with Attentive Bank (GRAB) converts the model's own attention into an Attentive Bank of high-saliency tokens and applies local objectives on this bank, learning fine-grained correspondences without extra supervision. To make the selection reliable and non-redundant, we introduce Multi-Layer Attention for Robust Selection (MARS), which aggregates attention across layers and performs diversity-aware top-k selection; and Adaptive Token Scheduler (ATS), which schedules the retention budget from coarse to fine over training, preserving context early while progressively focusing on discriminative details. Extensive experiments on three widely used TBPS benchmarks showstate-of-the-art performance and strong cross-dataset generalization, confirming the effectiveness and robustness of our approach without additional prior supervision. Our project is publicly available at https://trhuuloc.github.io/itself
comment: Accepted at WACV Main Track 2026
♻ ☆ Membership Inference Attacks on LLM-based Recommender Systems WWW 2026
Large language models (LLMs) based recommender systems (RecSys) can adapt to different domains flexibly. It utilizes in-context learning (ICL), i.e., prompts, to customize the recommendation functions, which include sensitive historical user-specific item interactions, encompassing implicit feedback such as clicked items and explicit product reviews. Such private information may be exposed by novel privacy attacks. However, no study has been conducted on this important issue. We design several membership inference attacks (MIAs) aimed to revealing whether system prompts include victims' historical interactions. The attacks are \emph{Similarity, Memorization, Inquiry, and Poisoning attacks}, each utilizing unique features of LLMs or RecSys. We have carefully evaluated them on five of the latest open-source LLMs and three well-known RecSys benchmark datasets. The results confirm that the MIA threat to LLM RecSys is realistic: inquiry and poisoning attacks show significantly high attack advantages. We also discussed possible methods to mitigate such MIA threats. We have also analyzed the factors affecting these attacks, such as the number of shots in system prompts, the position of the victim in the shots, the number of poisoning items in the prompt,etc.
comment: This is paper is under review WWW 2026
♻ ☆ Compositions of Variant Experts for Integrating Short-Term and Long-Term Preferences
In the online digital realm, recommendation systems are ubiquitous and play a crucial role in enhancing user experience. These systems leverage user preferences to provide personalized recommendations, thereby helping users navigate through the paradox of choice. This work focuses on personalized sequential recommendation, where the system considers not only a user's immediate, evolving session context, but also their cumulative historical behavior to provide highly relevant and timely recommendations. Through an empirical study conducted on diverse real-world datasets, we have observed and quantified the existence and impact of both short-term (immediate and transient) and long-term (enduring and stable) preferences on users' historical interactions. Building on these insights, we propose a framework that combines short- and long-term preferences to enhance recommendation performance, namely Compositions of Variant Experts (CoVE). This novel framework dynamically integrates short- and long-term preferences through the use of different specialized recommendation models (i.e., experts). Extensive experiments showcase the effectiveness of the proposed methods and ablation studies further investigate the impact of variant expert types.
♻ ☆ A Multi-Task Embedder For Retrieval Augmented LLMs
LLMs confront inherent limitations in terms of its knowledge, memory, and action. The retrieval augmentation stands as a vital mechanism to address these limitations, which brings in useful information from external sources to augment the LLM. However, existing retrieval methods encounter two pressing issues. On one hand, the general retrievers are not properly optimized for retrieval augmentation hence exhibit limited effectiveness; on the other hand, the task-specific retrievers excel in the targeted retrieval augmentation scenario, while lack the versatility to handle diverse scenarios. In this work, we propose \textbf{LLM-Embedder} for the unified support of diverse retrieval augmentation scenarios. Our method presents three technical contributions. Firstly, we introduce a new \textit{reward formulation}, namely {rank-aware reward}. It exploits the ranking position of the desired output among $N$ sampled outputs from the LLM, which leads to fine-grained and robust computation of reward from the LLM's feedback. Secondly, we design a novel \textit{distillation objective}, called graded distillation. It incorporates both the absolute value and the relative order of the reward for more sufficient utilization of the LLM's feedback. Thirdly, we systematically optimize the \textit{multi-task learning}, which effectively unifies the multiple retrieval functionalities into one model. In our experiment, LLM-Embedder notably improves the LLM's performances in various downstream tasks, and outperforms both general and task-specific retrievers with a substantial advantage.
♻ ☆ Modeling Item-Level Dynamic Variability with Residual Diffusion for Bundle Recommendation AAAI'26
Existing solutions for bundle recommendation (BR) have achieved remarkable effectiveness for predicting the user's preference for prebuilt bundles. However, bundle-item (B-I) affiliation will vary dynamically in real scenarios. For example, a bundle themed as 'casual outfit' may add 'hat' or remove 'watch' due to factors such as seasonal variations, changes in user preferences or inventory adjustments. Our empirical study demonstrates that the performance of mainstream BR models may fluctuate or decline under item-level variability. This paper makes the first attempt to address the above problem and proposes a novel Residual Diffusion for Bundle Recommendation(RDiffBR)asamodel-agnostic generative framework which can assist a BR model in adapting this scenario. During the initial training of the BR model, RDiffBR employs a residual diffusion model to process the item-level bundle embeddings which are generated by the BR model to represent bundle theme via a forward-reverse process. In the inference stage, RDiffBR reverses item-level bundle embeddings obtained by the well-trained bundle model under B-I variability scenarios to generate the effective item level bundle embeddings. In particular, the residual connection in our residual approximator significantly enhances BR models' ability to generate high-quality item-level bundle embeddings. Experiments on six BR models and four public datasets from different domains show that RDiffBR improves the performance of Recall and NDCG of backbone BR models by up to 23%, while only increases training time about 4%.
comment: Extended version for AAAI'26
♻ ☆ Finch: Benchmarking Finance & Accounting across Spreadsheet-Centric Enterprise Workflows
We introduce a finance & accounting benchmark (Finch) for evaluating AI agents on real-world, enterprise-grade professional workflows -- interleaving data entry, structuring, formatting, web search, cross-file retrieval, calculation, modeling, validation, translation, visualization, and reporting. Finch is sourced from authentic enterprise workspaces at Enron (15,000 spreadsheets and 500,000 emails from 150 employees) and other financial institutions, preserving in-the-wild messiness across multimodal artifacts (text, tables, formulas, charts, code, and images) and spanning diverse domains such as budgeting, trading, and asset management. We propose a workflow construction process that combines LLM-assisted discovery with expert annotation: (1) LLM-assisted, expert-verified derivation of workflows from real-world email threads and version histories of spreadsheet files, and (2) meticulous expert annotation for workflows, requiring over 700 hours of domain-expert effort. This yields 172 composite workflows with 384 tasks, involving 1,710 spreadsheets with 27 million cells, along with PDFs and other artifacts, capturing the intrinsically messy, long-horizon, knowledge-intensive, and collaborative nature of real-world enterprise work. We conduct both human and automated evaluations of frontier AI systems including GPT 5.1, Claude Sonnet 4.5, Gemini 3 Pro, Grok 4, and Qwen 3 Max, and GPT 5.1 Pro spends 16.8 minutes per workflow yet passes only 38.4% of workflows, while Claude Sonnet 4.5 passes just 25.0%. Comprehensive case studies further surface the challenges that real-world enterprise workflows pose for AI agents.
Multimedia
☆ IO-RAE: Information-Obfuscation Reversible Adversarial Example for Audio Privacy Protection
The rapid advancements in artificial intelligence have significantly accelerated the adoption of speech recognition technology, leading to its widespread integration across various applications. However, this surge in usage also highlights a critical issue: audio data is highly vulnerable to unauthorized exposure and analysis, posing significant privacy risks for businesses and individuals. This paper introduces an Information-Obfuscation Reversible Adversarial Example (IO-RAE) framework, the pioneering method designed to safeguard audio privacy using reversible adversarial examples. IO-RAE leverages large language models to generate misleading yet contextually coherent content, effectively preventing unauthorized eavesdropping by humans and Automatic Speech Recognition (ASR) systems. Additionally, we propose the Cumulative Signal Attack technique, which mitigates high-frequency noise and enhances attack efficacy by targeting low-frequency signals. Our approach ensures the protection of audio data without degrading its quality or our ability. Experimental evaluations demonstrate the superiority of our method, achieving a targeted misguidance rate of 96.5% and a remarkable 100% untargeted misguidance rate in obfuscating target keywords across multiple ASR models, including a commercial black-box system from Google. Furthermore, the quality of the recovered audio, measured by the Perceptual Evaluation of Speech Quality score, reached 4.45, comparable to high-quality original recordings. Notably, the recovered audio processed by ASR systems exhibited an error rate of 0%, indicating nearly lossless recovery. These results highlight the practical applicability and effectiveness of our IO-RAE framework in protecting sensitive audio privacy.
comment: 10 pages, 5 figures
☆ MotiBo: The Impact of Interactive Digital Storytelling Robots on Student Motivation through Self-Determination Theory
Creativity is increasingly recognized as an important skill in education, and storytelling can enhance motivation and engagement among students. However, conventional storytelling methods often lack the interactive elements necessary to engage students. To this end, this study examines the impact of an interactive digital storytelling system incorporating a human-like robot on student engagement and creativity. The study aims to compare engagement levels across three modalities: paper-based, PowerPoint, and robot-assisted storytelling, MotiBo. Utilizing a quasi-experimental design, this work involves three groups of students who interact with the storytelling system over a five-day learning. Findings reveal that students using MotiBo exhibit statistically significant improvement in behavioural and cognitive engagement compared to those using traditional methods. These results suggest that the integration of novel technologies can effectively enhance the learning experience, ultimately promoting creativity and self-learning ability in educational settings. Future research will investigate the long-term effects of these technologies on learning outcomes and explore their potential for broader applications in diverse educational contexts.
☆ Deepfake Detection with Multi-Artifact Subspace Fine-Tuning and Selective Layer Masking
Deepfake detection still faces significant challenges in cross-dataset and real-world complex scenarios. The root cause lies in the high diversity of artifact distributions introduced by different forgery methods, while pretrained models tend to disrupt their original general semantic structures when adapting to new artifacts. Existing approaches usually rely on indiscriminate global parameter updates or introduce additional supervision signals, making it difficult to effectively model diverse forgery artifacts while preserving semantic stability. To address these issues, this paper proposes a deepfake detection method based on Multi-Artifact Subspaces and selective layer masks (MASM), which explicitly decouples semantic representations from artifact representations and constrains the fitting strength of artifact subspaces, thereby improving generalization robustness in cross-dataset scenarios. Specifically, MASM applies singular value decomposition to model weights, partitioning pretrained weights into a stable semantic principal subspace and multiple learnable artifact subspaces. This design enables decoupled modeling of different forgery artifact patterns while preserving the general semantic subspace. On this basis, a selective layer mask strategy is introduced to adaptively regulate the update behavior of corresponding network layers according to the learning state of each artifact subspace, suppressing overfitting to any single forgery characteristic. Furthermore, orthogonality constraints and spectral consistency constraints are imposed to jointly regularize multiple artifact subspaces, guiding them to learn complementary and diverse artifact representations while maintaining a stable overall spectral structure.
Information Retrieval
☆ TeleDoCTR: Domain-Specific and Contextual Troubleshooting for Telecommunications
Ticket troubleshooting refers to the process of analyzing and resolving problems that are reported through a ticketing system. In large organizations offering a wide range of services, this task is highly complex due to the diversity of submitted tickets and the need for specialized domain knowledge. In particular, troubleshooting in telecommunications (telecom) is a very time-consuming task as it requires experts to interpret ticket content, consult documentation, and search historical records to identify appropriate resolutions. This human-intensive approach not only delays issue resolution but also hinders overall operational efficiency. To enhance the effectiveness and efficiency of ticket troubleshooting in telecom, we propose TeleDoCTR, a novel telecom-related, domain-specific, and contextual troubleshooting system tailored for end-to-end ticket resolution in telecom. TeleDoCTR integrates both domain-specific ranking and generative models to automate key steps of the troubleshooting workflow which are: routing tickets to the appropriate expert team responsible for resolving the ticket (classification task), retrieving contextually and semantically similar historical tickets (retrieval task), and generating a detailed fault analysis report outlining the issue, root cause, and potential solutions (generation task). We evaluate TeleDoCTR on a real-world dataset from a telecom infrastructure and demonstrate that it achieves superior performance over existing state-of-the-art methods, significantly enhancing the accuracy and efficiency of the troubleshooting process.
☆ Improving Scientific Document Retrieval with Academic Concept Index
Adapting general-domain retrievers to scientific domains is challenging due to the scarcity of large-scale domain-specific relevance annotations and the substantial mismatch in vocabulary and information needs. Recent approaches address these issues through two independent directions that leverage large language models (LLMs): (1) generating synthetic queries for fine-tuning, and (2) generating auxiliary contexts to support relevance matching. However, both directions overlook the diverse academic concepts embedded within scientific documents, often producing redundant or conceptually narrow queries and contexts. To address this limitation, we introduce an academic concept index, which extracts key concepts from papers and organizes them guided by an academic taxonomy. This structured index serves as a foundation for improving both directions. First, we enhance the synthetic query generation with concept coverage-based generation (CCQGen), which adaptively conditions LLMs on uncovered concepts to generate complementary queries with broader concept coverage. Second, we strengthen the context augmentation with concept-focused auxiliary contexts (CCExpand), which leverages a set of document snippets that serve as concise responses to the concept-aware CCQGen queries. Extensive experiments show that incorporating the academic concept index into both query generation and context augmentation leads to higher-quality queries, better conceptual alignment, and improved retrieval performance.
☆ AlignUSER: Human-Aligned LLM Agents via World Models for Recommender System Evaluation
Evaluating recommender systems remains challenging due to the gap between offline metrics and real user behavior, as well as the scarcity of interaction data. Recent work explores large language model (LLM) agents as synthetic users, yet they typically rely on few-shot prompting, which yields a shallow understanding of the environment and limits their ability to faithfully reproduce user actions. We introduce AlignUSER, a framework that learns world-model-driven agents from human interactions. Given rollout sequences of actions and states, we formalize world modeling as a next state prediction task that helps the agent internalize the environment. To align actions with human personas, we generate counterfactual trajectories around demonstrations and prompt the LLM to compare its decisions with human choices, identify suboptimal actions, and extract lessons. The learned policy is then used to drive agent interactions with the recommender system. We evaluate AlignUSER across multiple datasets and demonstrate closer alignment with genuine humans than prior work, both at the micro and macro levels.
Multimedia
☆ Avatar Forcing: Real-Time Interactive Head Avatar Generation for Natural Conversation
Talking head generation creates lifelike avatars from static portraits for virtual communication and content creation. However, current models do not yet convey the feeling of truly interactive communication, often generating one-way responses that lack emotional engagement. We identify two key challenges toward truly interactive avatars: generating motion in real-time under causal constraints and learning expressive, vibrant reactions without additional labeled data. To address these challenges, we propose Avatar Forcing, a new framework for interactive head avatar generation that models real-time user-avatar interactions through diffusion forcing. This design allows the avatar to process real-time multimodal inputs, including the user's audio and motion, with low latency for instant reactions to both verbal and non-verbal cues such as speech, nods, and laughter. Furthermore, we introduce a direct preference optimization method that leverages synthetic losing samples constructed by dropping user conditions, enabling label-free learning of expressive interaction. Experimental results demonstrate that our framework enables real-time interaction with low latency (approximately 500ms), achieving 6.8X speedup compared to the baseline, and produces reactive and expressive avatar motion, which is preferred over 80% against the baseline.
comment: Project page: https://taekyungki.github.io/AvatarForcing/
Information Retrieval
☆ A Chain-of-Thought Approach to Semantic Query Categorization in e-Commerce Taxonomies SIGIR
Search in e-Commerce is powered at the core by a structured representation of the inventory, often formulated as a category taxonomy. An important capability in e-Commerce with hierarchical taxonomies is to select a set of relevant leaf categories that are semantically aligned with a given user query. In this scope, we address a fundamental problem of search query categorization in real-world e-Commerce taxonomies. A correct categorization of a query not only provides a way to zoom into the correct inventory space, but opens the door to multiple intent understanding capabilities for a query. A practical and accurate solution to this problem has many applications in e-commerce, including constraining retrieved items and improving the relevance of the search results. For this task, we explore a novel Chain-of-Thought (CoT) paradigm that combines simple tree-search with LLM semantic scoring. Assessing its classification performance on human-judged query-category pairs, relevance tests, and LLM-based reference methods, we find that the CoT approach performs better than a benchmark that uses embedding-based query category predictions. We show how the CoT approach can detect problems within a hierarchical taxonomy. Finally, we also propose LLM-based approaches for query-categorization of the same spirit, but which scale better at the range of millions of queries.
comment: 9 pages, accepted at SIGIR eCom 2025
☆ MACA: A Framework for Distilling Trustworthy LLMs into Efficient Retrievers
Modern enterprise retrieval systems must handle short, underspecified queries such as ``foreign transaction fee refund'' and ``recent check status''. In these cases, semantic nuance and metadata matter but per-query large language model (LLM) re-ranking and manual labeling are costly. We present Metadata-Aware Cross-Model Alignment (MACA), which distills a calibrated metadata aware LLM re-ranker into a compact student retriever, avoiding online LLM calls. A metadata-aware prompt verifies the teacher's trustworthiness by checking consistency under permutations and robustness to paraphrases, then supplies listwise scores, hard negatives, and calibrated relevance margins. The student trains with MACA's MetaFusion objective, which combines a metadata conditioned ranking loss with a cross model margin loss so it learns to push the correct answer above semantically similar candidates with mismatched topic, sub-topic, or entity. On a proprietary consumer banking FAQ corpus and BankFAQs, the MACA teacher surpasses a MAFA baseline at Accuracy@1 by five points on the proprietary set and three points on BankFAQs. MACA students substantially outperform pretrained encoders; e.g., on the proprietary corpus MiniLM Accuracy@1 improves from 0.23 to 0.48, while keeping inference free of LLM calls and supporting retrieval-augmented generation.
☆ Noise-Aware Named Entity Recognition for Historical VET Documents
This paper addresses Named Entity Recognition (NER) in the domain of Vocational Education and Training (VET), focusing on historical, digitized documents that suffer from OCR-induced noise. We propose a robust NER approach leveraging Noise-Aware Training (NAT) with synthetically injected OCR errors, transfer learning, and multi-stage fine-tuning. Three complementary strategies, training on noisy, clean, and artificial data, are systematically compared. Our method is one of the first to recognize multiple entity types in VET documents. It is applied to German documents but transferable to arbitrary languages. Experimental results demonstrate that domain-specific and noise-aware fine-tuning substantially increases robustness and accuracy under noisy conditions. We provide publicly available code for reproducible noise-aware NER in domain-specific contexts.
comment: This is an extended, non-peer-reviewed version of the paper presented at VISAPP 2026
☆ The Discovery Gap: How Product Hunt Startups Vanish in LLM Organic Discovery Queries
When someone asks ChatGPT to recommend a project management tool, which products show up in the response? And more importantly for startup founders: will their newly launched product ever appear? This research set out to answer these questions. I randomly selected 112 startups from the top 500 products featured on the 2025 Product Hunt leaderboard and tested each one across 2,240 queries to two different large language models: ChatGPT (gpt-4o-mini) and Perplexity (sonar with web search). The results were striking. When users asked about products by name, both LLMs recognized them almost perfectly: 99.4% for ChatGPT and 94.3% for Perplexity. But when users asked discovery-style questions like "What are the best AI tools launched this year?" the success rates collapsed to 3.32% and 8.29% respectively. That's a gap of 30-to-1 for ChatGPT. Perhaps the most surprising finding was that Generative Engine Optimization (GEO), the practice of optimizing website content for AI visibility, showed no correlation with actual discovery rates. Products with high GEO scores were no more likely to appear in organic queries than products with low scores. What did matter? For Perplexity, traditional SEO signals like referring domains (r = +0.319, p < 0.001) and Product Hunt ranking (r = -0.286, p = 0.002) predicted visibility. After cleaning the Reddit data for false positives, community presence also emerged as significant (r = +0.395, p = 0.002). The practical takeaway is counterintuitive: don't optimize for AI discovery directly. Instead, build the SEO foundation first and LLM visibility will follow.
comment: 20 pages, 7 figures. Based on M.Tech thesis research, Indian Institute of Technology Patna, 2025
☆ Reinforcement-Learned Unequal Error Protection for Quantized Semantic Embeddings
This paper tackles the pressing challenge of preserving semantic meaning in communication systems constrained by limited bandwidth. We introduce a novel reinforcement learning framework that achieves per-dimension unequal error protection via adaptive repetition coding. Central to our approach is a composite semantic distortion metric that balances global embedding similarity with entity-level preservation, empowering the reinforcement learning agent to allocate protection in a context-aware manner. Experiments show statistically significant gains over uniform protection, achieving 6.8% higher chrF scores and 9.3% better entity preservation at 1 dB SNR. The key innovation of our framework is the demonstration that simple, intelligently allocated repetition coding enables fine-grained semantic protection -- an advantage unattainable with conventional codes such as LDPC or Reed-Solomon. Our findings challenge traditional channel coding paradigms by establishing that code structure must align with semantic granularity. This approach is particularly suited to edge computing and IoT scenarios, where bandwidth is scarce, but semantic fidelity is critical, providing a practical pathway for next-generation semantic-aware networks.
♻ ☆ Spatially-Grounded Document Retrieval via Patch-to-Region Relevance Propagation
Late-interaction multimodal retrieval models like ColPali achieve state-of-the-art document retrieval by embedding pages as images and computing fine-grained similarity between query tokens and visual patches. However, they operate at page-level granularity, limiting utility for retrieval-augmented generation (RAG) where precise context is paramount. Conversely, OCR-based systems extract structured text with bounding box coordinates but lack semantic grounding for relevance assessment. We propose a hybrid architecture that unifies these paradigms: using ColPali's patch-level similarity scores as spatial relevance filters over OCR-extracted regions. We formalize the coordinate mapping between vision transformer patch grids and OCR bounding boxes, introduce intersection metrics for relevance propagation, and establish theoretical bounds on area efficiency. We evaluate on BBox-DocVQA with ground-truth bounding boxes. For within-page localization (given correct page retrieval), ColQwen3-4B with percentile-50 thresholding achieves 59.7% hit rate at IoU@0.5 (84.4% at IoU@0.25, 35.8% at IoU@0.7), with mean IoU of 0.569, compared to ~6.7% for random region selection. Our approach reduces context tokens by 28.8% compared to returning all OCR regions and by 52.3% compared to full-page image tokens. Our approach operates at inference time without additional training. We release Snappy, an open-source implementation at https://github.com/athrael-soju/Snappy.
comment: 21 pages, 6 figures, 8 tables. Includes ancillary files with full benchmark results and ablation studies. Code available at https://github.com/athrael-soju/Snappy
♻ ☆ PaperRegister: Boosting Flexible-grained Paper Search via Hierarchical Register Indexing
As researchers delve more deeply into their work, paper search requirements may become more flexible, sometimes involving specific details such as module configuration rather than being limited to coarse-grained topics. However, previous paper search systems are unable to meet these flexible-grained requirements, as previous systems mainly collect paper abstract to construct corpus index, which lacks detailed information to support retrieval by some finer-grained queries. In this work, we propose PaperRegister, which transforms traditional abstract-based index into a hierarchical index tree, thereby supporting queries at flexible granularity. Experiments on paper search tasks across a range of granularity demonstrate that PaperRegister achieves the SOTA performance, and particularly excels in the fine-grained scenarios, highlighting good potential as an effective solution for flexible-grained paper search in real-world applications. https://github.com/Li-Z-Q/PaperRegister.
♻ ☆ Optimizing Retrieval for RAG via Reinforcement Learning
As retrieval-augmented generation (RAG) becomes more widespread, the role of retrieval is shifting from retrieving information for human browsing to retrieving context for AI reasoning. This shift creates more complex search environments, where relevance is difficult to pre-define. Existing retrievers rely on supervised fine-tuning (SFT) with human labels or synthetic data, resulting in static relevance that struggles to adapt to diverse RAG environments. To address this challenge, we propose R3, a Retrieval framework optimized for RAG through Reinforcement learning (RL). Specifically, we adopt an RL training paradigm that enables the retriever to explore and self-improve within given RAG environments, automating the learning process with minimal manual experimentation or tuning effort. Extensive experiments across diverse tasks demonstrate that R3 improves RAG performance by 5.2% over the original retriever and surpasses state-of-the-art retrievers by 4.9%, while achieving comparable results to LLM-augmented retrieval and RAG systems built on post-trained or instruction-tuned LLMs. It is both efficient and practical, requiring only 4 GPUs and completing training within a single day.
Multimedia
☆ Effects of Limited Field of View on Musical Collaboration Experience with Avatars in Extended Reality
During musical collaboration, visual cues are essential for communication between musicians. Extended Reality (XR) applications, often used with head-mounted displays like Augmented Reality (AR) glasses, can limit the field of view (FOV) of players. We conducted a study to investigate the effects of limited FOV on co-presence, gesture recognition, overall enjoyment, and reaction time. Initially, we observed experienced musicians collaborating informally with and without visual occlusion, noting that collaboration suffered with limited FOV. We then conducted a within-subjects study with 19 participants, comparing an unrestricted FOV holographic setup called HoloJam to Nreal AR glasses with a 52$^{\circ}$ limited FOV. In the AR setup, we tested two conditions: standard AR with a 52$^{\circ}$ FOV and a modified AR notification system called Mini Musicians. Results showed that HoloJam provided higher co-presence, quicker gesture recognition, and greater enjoyment. The Mini Musicians application reduced reaction time and maintained enjoyment compared to the standard AR setup. We conclude that limited FOV impacts musical collaboration, but notifications can improve reaction time and should be considered in future XR music collaborations.
☆ MR-DAW: Towards Collaborative Digital Audio Workstations in Mixed Reality
Digital Audio Workstations (DAWs) are central to modern music production but often encumber the musician's workflow, tethering them to a desk and hindering natural interaction with their instrument. Furthermore, effective remote collaboration remains a significant challenge, with existing solutions hampered by network latency and asynchronous file sharing. This paper investigates the potential of Mixed Reality (MR) to overcome these barriers, creating an intuitive environment for real-time, remote musical collaboration. We employ qualitative and speculative design techniques to better understand: 1) how players currently use DAWs, and 2) to imagine a speculative future of collaborative MR-DAWs. To facilitate this discussion, we developed and evaluated the usability of a design probe, MR-DAW. An MR system enabling multiple, geographically dispersed users to control a single, shared DAW instance while moving freely in their local spaces. Our networked system enables each remote musician to use a physical foot pedal for collaborative looping, merging a familiar, hands-free interaction with a shared virtual session. Based on interviews and system evaluations with 20 musicians, we analyze current practices, report on the user experience with our MR system, and speculate on the future of musical collaboration in MR. Our results highlight the affordances of MR for unencumbered musical interaction and provide a speculative outlook on the future of remote collaborative DAWs in the Musical Metaverse.
☆ Timed text extraction from Taiwanese Kua-á-hì TV series
Taiwanese opera (Kua-á-hì), a major form of local theatrical tradition, underwent extensive television adaptation notably by pioneers like Iûnn Lē-hua. These videos, while potentially valuable for in-depth studies of Taiwanese opera, often have low quality and require substantial manual effort during data preparation. To streamline this process, we developed an interactive system for real-time OCR correction and a two-step approach integrating OCR-driven segmentation with Speech and Music Activity Detection (SMAD) to efficiently identify vocal segments from archival episodes with high precision. The resulting dataset, consisting of vocal segments and corresponding lyrics, can potentially supports various MIR tasks such as lyrics identification and tune retrieval. Code is available at https://github.com/z-huang/ocr-subtitle-editor .
comment: Accepted to ISMIR 2025 Late-Breaking Demo (LBD)
☆ FCMBench: A Comprehensive Financial Credit Multimodal Benchmark for Real-world Applications
As multimodal AI becomes widely used for credit risk assessment and document review, a domain-specific benchmark is urgently needed that (1) reflects documents and workflows specific to financial credit applications, (2) includes credit-specific understanding and real-world robustness, and (3) preserves privacy compliance without sacrificing practical utility. Here, we introduce FCMBench-V1.0 -- a large-scale financial credit multimodal benchmark for real-world applications, covering 18 core certificate types, with 4,043 privacy-compliant images and 8,446 QA samples. The FCMBench evaluation framework consists of three dimensions: Perception, Reasoning, and Robustness, including 3 foundational perception tasks, 4 credit-specific reasoning tasks that require decision-oriented understanding of visual evidence, and 10 real-world acquisition artifact types for robustness stress testing. To reconcile compliance with realism, we construct all samples via a closed synthesis-capture pipeline: we manually synthesize document templates with virtual content and capture scenario-aware images in-house. This design also mitigates pre-training data leakage by avoiding web-sourced or publicly released images. FCMBench can effectively discriminate performance disparities and robustness across modern vision-language models. Extensive experiments were conducted on 23 state-of-the-art vision-language models (VLMs) from 14 top AI companies and research institutes. Among them, Gemini 3 Pro achieves the best F1(\%) score as a commercial model (64.61), Qwen3-VL-235B achieves the best score as an open-source baseline (57.27), and our financial credit-specific model, Qfin-VL-Instruct, achieves the top overall score (64.92). Robustness evaluations show that even top-performing models suffer noticeable performance drops under acquisition artifacts.
Information Retrieval
☆ The Agentic Leash: Extracting Causal Feedback Fuzzy Cognitive Maps with LLMs
We design a large-language-model (LLM) agent that extracts causal feedback fuzzy cognitive maps (FCMs) from raw text. The causal learning or extraction process is agentic both because of the LLM's semi-autonomy and because ultimately the FCM dynamical system's equilibria drive the LLM agents to fetch and process causal text. The fetched text can in principle modify the adaptive FCM causal structure and so modify the source of its quasi-autonomy--its equilibrium limit cycles and fixed-point attractors. This bidirectional process endows the evolving FCM dynamical system with a degree of autonomy while still staying on its agentic leash. We show in particular that a sequence of three finely tuned system instructions guide an LLM agent as it systematically extracts key nouns and noun phrases from text, as it extracts FCM concept nodes from among those nouns and noun phrases, and then as it extracts or infers partial or fuzzy causal edges between those FCM nodes. We test this FCM generation on a recent essay about the promise of AI from the late diplomat and political theorist Henry Kissinger and his colleagues. This three-step process produced FCM dynamical systems that converged to the same equilibrium limit cycles as did the human-generated FCMs even though the human-generated FCM differed in the number of nodes and edges. A final FCM mixed generated FCMs from separate Gemini and ChatGPT LLM agents. The mixed FCM absorbed the equilibria of its dominant mixture component but also created new equilibria of its own to better approximate the underlying causal dynamical system.
comment: 15 figures
☆ AdaGReS:Adaptive Greedy Context Selection via Redundancy-Aware Scoring for Token-Budgeted RAG
Retrieval-augmented generation (RAG) is highly sensitive to the quality of selected context, yet standard top-k retrieval often returns redundant or near-duplicate chunks that waste token budget and degrade downstream generation. We present AdaGReS, a redundancy-aware context selection framework for token-budgeted RAG that optimizes a set-level objective combining query-chunk relevance and intra-set redundancy penalties. AdaGReS performs greedy selection under a token-budget constraint using marginal gains derived from the objective, and introduces a closed-form, instance-adaptive calibration of the relevance-redundancy trade-off parameter to eliminate manual tuning and adapt to candidate-pool statistics and budget limits. We further provide a theoretical analysis showing that the proposed objective exhibits epsilon-approximate submodularity under practical embedding similarity conditions, yielding near-optimality guarantees for greedy selection. Experiments on open-domain question answering (Natural Questions) and a high-redundancy biomedical (drug) corpus demonstrate consistent improvements in redundancy control and context quality, translating to better end-to-end answer quality and robustness across settings.
comment: Preprint. Under review
☆ RAIR: A Rule-Aware Benchmark Uniting Challenging Long-Tail and Visual Salience Subset for E-commerce Relevance Assessment
Search relevance plays a central role in web e-commerce. While large language models (LLMs) have shown significant results on relevance task, existing benchmarks lack sufficient complexity for comprehensive model assessment, resulting in an absence of standardized relevance evaluation metrics across the industry. To address this limitation, we propose Rule-Aware benchmark with Image for Relevance assessment(RAIR), a Chinese dataset derived from real-world scenarios. RAIR established a standardized framework for relevance assessment and provides a set of universal rules, which forms the foundation for standardized evaluation. Additionally, RAIR analyzes essential capabilities required for current relevance models and introduces a comprehensive dataset consists of three subset: (1) a general subset with industry-balanced sampling to evaluate fundamental model competencies; (2) a long-tail hard subset focus on challenging cases to assess performance limits; (3) a visual salience subset for evaluating multimodal understanding capabilities. We conducted experiments on RAIR using 14 open and closed-source models. The results demonstrate that RAIR presents sufficient challenges even for GPT-5, which achieved the best performance. RAIR data are now available, serving as an industry benchmark for relevance assessment while providing new insights into general LLM and Visual Language Model(VLM) evaluation.
☆ Enhancing Retrieval-Augmented Generation with Topic-Enriched Embeddings: A Hybrid Approach Integrating Traditional NLP Techniques
Retrieval-augmented generation (RAG) systems rely on accurate document retrieval to ground large language models (LLMs) in external knowledge, yet retrieval quality often degrades in corpora where topics overlap and thematic variation is high. This work proposes topic-enriched embeddings that integrate term-based signals and topic structure with contextual sentence embeddings. The approach combines TF-IDF with topic modeling and dimensionality reduction, using Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) to encode latent topical organization, and fuses these representations with a compact contextual encoder (all-MiniLM). By jointly capturing term-level and topic-level semantics, topic-enriched embeddings improve semantic clustering, increase retrieval precision, and reduce computational burden relative to purely contextual baselines. Experiments on a legal-text corpus show consistent gains in clustering coherence and retrieval metrics, suggesting that topic-enriched embeddings can serve as a practical component for more reliable knowledge-intensive RAG pipelines.
☆ HiGR: Efficient Generative Slate Recommendation via Hierarchical Planning and Multi-Objective Preference Alignment
Slate recommendation, where users are presented with a ranked list of items simultaneously, is widely adopted in online platforms. Recent advances in generative models have shown promise in slate recommendation by modeling sequences of discrete semantic IDs autoregressively. However, existing autoregressive approaches suffer from semantically entangled item tokenization and inefficient sequential decoding that lacks holistic slate planning. To address these limitations, we propose HiGR, an efficient generative slate recommendation framework that integrates hierarchical planning with listwise preference alignment. First, we propose an auto-encoder utilizing residual quantization and contrastive constraints to tokenize items into semantically structured IDs for controllable generation. Second, HiGR decouples generation into a list-level planning stage for global slate intent, followed by an item-level decoding stage for specific item selection. Third, we introduce a listwise preference alignment objective to directly optimize slate quality using implicit user feedback. Experiments on our large-scale commercial media platform demonstrate that HiGR delivers consistent improvements in both offline evaluations and online deployment. Specifically, it outperforms state-of-the-art methods by over 10% in offline recommendation quality with a 5x inference speedup, while further achieving a 1.22% and 1.73% increase in Average Watch Time and Average Video Views in online A/B tests.
☆ OpenOneRec Technical Report
While the OneRec series has successfully unified the fragmented recommendation pipeline into an end-to-end generative framework, a significant gap remains between recommendation systems and general intelligence. Constrained by isolated data, they operate as domain specialists-proficient in pattern matching but lacking world knowledge, reasoning capabilities, and instruction following. This limitation is further compounded by the lack of a holistic benchmark to evaluate such integrated capabilities. To address this, our contributions are: 1) RecIF Bench & Open Data: We propose RecIF-Bench, a holistic benchmark covering 8 diverse tasks that thoroughly evaluate capabilities from fundamental prediction to complex reasoning. Concurrently, we release a massive training dataset comprising 96 million interactions from 160,000 users to facilitate reproducible research. 2) Framework & Scaling: To ensure full reproducibility, we open-source our comprehensive training pipeline, encompassing data processing, co-pretraining, and post-training. Leveraging this framework, we demonstrate that recommendation capabilities can scale predictably while mitigating catastrophic forgetting of general knowledge. 3) OneRec-Foundation: We release OneRec Foundation (1.7B and 8B), a family of models establishing new state-of-the-art (SOTA) results across all tasks in RecIF-Bench. Furthermore, when transferred to the Amazon benchmark, our models surpass the strongest baselines with an average 26.8% improvement in Recall@10 across 10 diverse datasets (Figure 1). This work marks a step towards building truly intelligent recommender systems. Nonetheless, realizing this vision presents significant technical and theoretical challenges, highlighting the need for broader research engagement in this promising direction.
☆ MDiffFR: Modality-Guided Diffusion Generation for Cold-start Items in Federated Recommendation
Federated recommendations (FRs) provide personalized services while preserving user privacy by keeping user data on local clients, which has attracted significant attention in recent years. However, due to the strict privacy constraints inherent in FRs, access to user-item interaction data and user profiles across clients is highly restricted, making it difficult to learn globally effective representations for new (cold-start) items. Consequently, the item cold-start problem becomes even more challenging in FRs. Existing solutions typically predict embeddings for new items through the attribute-to-embedding mapping paradigm, which establishes a fixed one-to-one correspondence between item attributes and their embeddings. However, this one-to-one mapping paradigm often fails to model varying data distributions and tends to cause embedding misalignment, as verified by our empirical studies. To this end, we propose MDiffFR, a novel generation-based modality-guided diffusion method for cold-start items in FRs. In this framework, we employ a tailored diffusion model on the server to generate embeddings for new items, which are then distributed to clients for cold-start inference. To align item semantics, we deploy a pre-trained modality encoder to extract modality features as conditional signals to guide the reverse denoising process. Furthermore, our theoretical analysis verifies that the proposed method achieves stronger privacy guarantees compared to existing mapping-based approaches. Extensive experiments on four real datasets demonstrate that our method consistently outperforms all baselines in FRs.
☆ MEIC-DT: Memory-Efficient Incremental Clustering for Long-Text Coreference Resolution with Dual-Threshold Constraints
In the era of large language models (LLMs), supervised neural methods remain the state-of-the-art (SOTA) for Coreference Resolution. Yet, their full potential is underexplored, particularly in incremental clustering, which faces the critical challenge of balancing efficiency with performance for long texts. To address the limitation, we propose \textbf{MEIC-DT}, a novel dual-threshold, memory-efficient incremental clustering approach based on a lightweight Transformer. MEIC-DT features a dual-threshold constraint mechanism designed to precisely control the Transformer's input scale within a predefined memory budget. This mechanism incorporates a Statistics-Aware Eviction Strategy (\textbf{SAES}), which utilizes distinct statistical profiles from the training and inference phases for intelligent cache management. Furthermore, we introduce an Internal Regularization Policy (\textbf{IRP}) that strategically condenses clusters by selecting the most representative mentions, thereby preserving semantic integrity. Extensive experiments on common benchmarks demonstrate that MEIC-DT achieves highly competitive coreference performance under stringent memory constraints.
♻ ☆ OxygenREC: An Instruction-Following Generative Framework for E-commerce Recommendation
Traditional recommendation systems suffer from inconsistency in multi-stage optimization objectives. Generative Recommendation (GR) mitigates them through an end-to-end framework; however, existing methods still rely on matching mechanisms based on inductive patterns. Although responsive, they lack the ability to uncover complex user intents that require deductive reasoning based on world knowledge. Meanwhile, LLMs show strong deep reasoning capabilities, but their latency and computational costs remain challenging for industrial applications. More critically, there are performance bottlenecks in multi-scenario scalability: as shown in Figure 1, existing solutions require independent training and deployment for each scenario, leading to low resource utilization and high maintenance costs-a challenge unaddressed in GR literature. To address these, we present OxygenREC, an industrial recommendation system that leverages Fast-Slow Thinking to deliver deep reasoning with strict latency and multi-scenario requirements of real-world environments. First, we adopt a Fast-Slow Thinking architecture. Slow thinking uses a near-line LLM pipeline to synthesize Contextual Reasoning Instructions, while fast thinking employs a high-efficiency encoder-decoder backbone for real-time generation. Second, to ensure reasoning instructions effectively enhance recommendation generation, we introduce a semantic alignment mechanism with Instruction-Guided Retrieval (IGR) to filter intent-relevant historical behaviors and use a Query-to-Item (Q2I) loss for instruction-item consistency. Finally, to resolve multi-scenario scalability, we transform scenario information into controllable instructions, using unified reward mapping and Soft Adaptive Group Clip Policy Optimization (SA-GCPO) to align policies with diverse business objectives, realizing a train-once-deploy-everywhere paradigm.
comment: 37 pages, 7 figures
♻ ☆ Proactive Recommendation in Social Networks: Steering User Interest with Causal Inference
Recommending items that solely cater to users' historical interests narrows users' horizons. Recent works have considered steering target users beyond their historical interests by directly adjusting items exposed to them. However, the recommended items for direct steering might not align perfectly with the evolution of users' interests, detrimentally affecting the target users' experience. To avoid this issue, we propose a new task named Proactive Recommendation in Social Networks (PRSN) that indirectly steers users' interest by utilizing the influence of social neighbors, i.e., indirect steering by adjusting the exposure of a target item to target users' neighbors. The key to PRSN lies in answering an interventional question: what would a target user' s feedback be on a target item if the item is exposed to the user' s different neighbors? To answer this question, we resort to causal inference and formalize PRSN as: (1) estimating the potential feedback of a user on an item, under the network interference by the item' s exposure to the user' s neighbors; and (2) adjusting the exposure of a target item to target users' neighbors to trade off steering performance and the damage to the neighbors' experience. To this end, we propose a Neighbor Interference Recommendation (NIRec) framework with two modules: (1) an interference representation-based estimation module for modeling potential feedback; (2) a post-learning-based optimization module for adjusting a target item' s exposure to trade off steering performance and the neighbors' experience through greedy search. We conduct extensive semi-simulation experiments on real-world datasets, validating the steering effectiveness of NIRec.
♻ ☆ Quantifying Positional Biases in Text Embedding Models NeurIPS
Embedding models are crucial for tasks in Information Retrieval (IR) and semantic similarity measurement, yet their handling of longer texts and associated positional biases remains underexplored. In this study, we investigate the impact of content position and input size on text embeddings. Our experiments reveal that embedding models, irrespective of their positional encoding mechanisms, disproportionately prioritize the beginning of an input. Ablation studies demonstrate that insertion of irrelevant text or removal at the start of a document reduces cosine similarity between altered and original embeddings by up to 12.3% more than ablations at the end. Regression analysis further confirms this bias, with sentence importance declining as position moves further from the start, even with with content-agnosticity. We hypothesize that this effect arises from pre-processing strategies and chosen positional encoding techniques. These findings quantify the sensitivity of retrieval systems and suggest a new lens towards embedding model robustness.
comment: 13 pages, 11 figures, NeurIPS
♻ ☆ Reveal Hidden Pitfalls and Navigate Next Generation of Vector Similarity Search from Task-Centric Views SIGMOD2026
Vector Similarity Search (VSS) in high-dimensional spaces is rapidly emerging as core functionality in next-generation database systems for numerous data-intensive services -- from embedding lookups in large language models (LLMs), to semantic information retrieval and recommendation engines. Current benchmarks, however, evaluate VSS primarily on the recall-latency trade-off against a ground truth defined solely by distance metrics, neglecting how retrieval quality ultimately impacts downstream tasks. This disconnect can mislead both academic research and industrial practice. We present Iceberg, a holistic benchmark suite for end-to-end evaluation of VSS methods in realistic application contexts. From a task-centric view, Iceberg uncovers the Information Loss Funnel, which identifies three principal sources of end-to-end performance degradation: (1) Embedding Loss during feature extraction; (2) Metric Misuse, where distances poorly reflect task relevance; (3) Data Distribution Sensitivity, highlighting index robustness across skews and modalities. For a more comprehensive assessment, Iceberg spans eight diverse datasets across key domains such as image classification, face recognition, text retrieval, and recommendation systems. Each dataset, ranging from 1M to 100M vectors, includes rich, task-specific labels and evaluation metrics, enabling assessment of retrieval algorithms within the full application pipeline rather than in isolation. Iceberg benchmarks 13 state-of-the-art VSS methods and re-ranks them based on application-level metrics, revealing substantial deviations from traditional rankings derived purely from recall-latency evaluations. Building on these insights, we define a set of task-centric meta-features and derive an interpretable decision tree to guide practitioners in selecting and tuning VSS methods for their specific workloads.
comment: SIGMOD2026
Multimedia
☆ HaineiFRDM: Explore Diffusion to Restore Defects in Fast-Movement Films
Existing open-source film restoration methods show limited performance compared to commercial methods due to training with low-quality synthetic data and employing noisy optical flows. In addition, high-resolution films have not been explored by the open-source methods.We propose HaineiFRDM(Film Restoration Diffusion Model), a film restoration framework, to explore diffusion model's powerful content-understanding ability to help human expert better restore indistinguishable film defects.Specifically, we employ a patch-wise training and testing strategy to make restoring high-resolution films on one 24GB-VRAMR GPU possible and design a position-aware Global Prompt and Frame Fusion Modules.Also, we introduce a global-local frequency module to reconstruct consistent textures among different patches. Besides, we firstly restore a low-resolution result and use it as global residual to mitigate blocky artifacts caused by patching process.Furthermore, we construct a film restoration dataset that contains restored real-degraded films and realistic synthetic data.Comprehensive experimental results conclusively demonstrate the superiority of our model in defect restoration ability over existing open-source methods. Code and the dataset will be released.
♻ ☆ GameTileNet: A Semantic Dataset for Low-Resolution Game Art in Procedural Content Generation
GameTileNet is a dataset designed to provide semantic labels for low-resolution digital game art, advancing procedural content generation (PCG) and related AI research as a vision-language alignment task. Large Language Models (LLMs) and image-generative AI models have enabled indie developers to create visual assets, such as sprites, for game interactions. However, generating visuals that align with game narratives remains challenging due to inconsistent AI outputs, requiring manual adjustments by human artists. The diversity of visual representations in automatically generated game content is also limited because of the imbalance in distributions across styles for training data. GameTileNet addresses this by collecting artist-created game tiles from OpenGameArt.org under Creative Commons licenses and providing semantic annotations to support narrative-driven content generation. The dataset introduces a pipeline for object detection in low-resolution tile-based game art (e.g., 32x32 pixels) and annotates semantics, connectivity, and object classifications. GameTileNet is a valuable resource for improving PCG methods, supporting narrative-rich game content, and establishing a baseline for object detection in low-resolution, non-photorealistic images. TL;DR: GameTileNet is a semantic dataset of low-resolution game tiles designed to support narrative-driven procedural content generation through visual-language alignment.
comment: Camera-ready version of a paper accepted for oral presentation at AIIDE 2025
♻ ☆ Narrative-to-Scene Generation: An LLM-Driven Pipeline for 2D Game Environments
Recent advances in large language models (LLMs) enable compelling story generation, but connecting narrative text to playable visual environments remains an open challenge in procedural content generation (PCG). We present a lightweight pipeline that transforms short narrative prompts into a sequence of 2D tile-based game scenes, reflecting the temporal structure of stories. Given an LLM-generated narrative, our system identifies three key time frames, extracts spatial predicates in the form of "Object-Relation-Object" triples, and retrieves visual assets using affordance-aware semantic embeddings from the GameTileNet dataset. A layered terrain is generated using Cellular Automata, and objects are placed using spatial rules grounded in the predicate structure. We evaluated our system in ten diverse stories, analyzing tile-object matching, affordance-layer alignment, and spatial constraint satisfaction across frames. This prototype offers a scalable approach to narrative-driven scene generation and lays the foundation for future work on multi-frame continuity, symbolic tracking, and multi-agent coordination in story-centered PCG.
comment: Camera-ready version of a paper accepted at the AIIDE 2025 Workshop on Experimental AI in Games (EXAG)
♻ ☆ Automatic Stage Lighting Control: Is it a Rule-Driven Process or Generative Task?
Stage lighting is a vital component in live music performances, shaping an engaging experience for both musicians and audiences. In recent years, Automatic Stage Lighting Control (ASLC) has attracted growing interest due to the high costs of hiring or training professional lighting engineers. However, most existing ASLC solutions only classify music into limited categories and map them to predefined light patterns, resulting in formulaic and monotonous outcomes that lack rationality. To address this gap, this paper presents Skip-BART, an end-to-end model that directly learns from experienced lighting engineers and predict vivid, human-like stage lighting. To the best of our knowledge, this is the first work to conceptualize ASLC as a generative task rather than merely a classification problem. Our method adapts the BART model to take audio music as input and produce light hue and value (intensity) as output, incorporating a novel skip connection mechanism to enhance the relationship between music and light within the frame grid. To address the lack of available datasets, we create the first stage lighting dataset, along with several pre-training and transfer learning techniques to improve model training with limited data. We validate our method through both quantitative analysis and an human evaluation, demonstrating that Skip-BART outperforms conventional rule-based methods across all evaluation metrics and shows only a limited gap compared to real lighting engineers. To support further research, we have made our self-collected dataset, code, and trained model parameters available at https://github.com/RS2002/Skip-BART .
Information Retrieval
☆ On the Factual Consistency of Text-based Explainable Recommendation Models
Text-based explainable recommendation aims to generate natural-language explanations that justify item recommendations, to improve user trust and system transparency. Although recent advances leverage LLMs to produce fluent outputs, a critical question remains underexplored: are these explanations factually consistent with the available evidence? We introduce a comprehensive framework for evaluating the factual consistency of text-based explainable recommenders. We design a prompting-based pipeline that uses LLMs to extract atomic explanatory statements from reviews, thereby constructing a ground truth that isolates and focuses on their factual content. Applying this pipeline to five categories from the Amazon Reviews dataset, we create augmented benchmarks for fine-grained evaluation of explanation quality. We further propose statement-level alignment metrics that combine LLM- and NLI-based approaches to assess both factual consistency and relevance of generated explanations. Across extensive experiments on six state-of-the-art explainable recommendation models, we uncover a critical gap: while models achieve high semantic similarity scores (BERTScore F1: 0.81-0.90), all our factuality metrics reveal alarmingly low performance (LLM-based statement-level precision: 4.38%-32.88%). These findings underscore the need for factuality-aware evaluation in explainable recommendation and provide a foundation for developing more trustworthy explanation systems.
comment: 13 pages, 2 figures, 4 tables
☆ MaRCA: Multi-Agent Reinforcement Learning for Dynamic Computation Allocation in Large-Scale Recommender Systems
Modern recommender systems face significant computational challenges due to growing model complexity and traffic scale, making efficient computation allocation critical for maximizing business revenue. Existing approaches typically simplify multi-stage computation resource allocation, neglecting inter-stage dependencies, thus limiting global optimality. In this paper, we propose MaRCA, a multi-agent reinforcement learning framework for end-to-end computation resource allocation in large-scale recommender systems. MaRCA models the stages of a recommender system as cooperative agents, using Centralized Training with Decentralized Execution (CTDE) to optimize revenue under computation resource constraints. We introduce an AutoBucket TestBench for accurate computation cost estimation, and a Model Predictive Control (MPC)-based Revenue-Cost Balancer to proactively forecast traffic loads and adjust the revenue-cost trade-off accordingly. Since its end-to-end deployment in the advertising pipeline of a leading global e-commerce platform in November 2024, MaRCA has consistently handled hundreds of billions of ad requests per day and has delivered a 16.67% revenue uplift using existing computation resources.
comment: 12 pages, 5 figures
☆ RAGPart & RAGMask: Retrieval-Stage Defenses Against Corpus Poisoning in Retrieval-Augmented Generation AAAI 2026
Retrieval-Augmented Generation (RAG) has emerged as a promising paradigm to enhance large language models (LLMs) with external knowledge, reducing hallucinations and compensating for outdated information. However, recent studies have exposed a critical vulnerability in RAG pipelines corpus poisoning where adversaries inject malicious documents into the retrieval corpus to manipulate model outputs. In this work, we propose two complementary retrieval-stage defenses: RAGPart and RAGMask. Our defenses operate directly on the retriever, making them computationally lightweight and requiring no modification to the generation model. RAGPart leverages the inherent training dynamics of dense retrievers, exploiting document partitioning to mitigate the effect of poisoned points. In contrast, RAGMask identifies suspicious tokens based on significant similarity shifts under targeted token masking. Across two benchmarks, four poisoning strategies, and four state-of-the-art retrievers, our defenses consistently reduce attack success rates while preserving utility under benign conditions. We further introduce an interpretable attack to stress-test our defenses. Our findings highlight the potential and limitations of retrieval-stage defenses, providing practical insights for robust RAG deployments.
comment: Published at AAAI 2026 Workshop on New Frontiers in Information Retrieval [Oral]
☆ Time-Aware Adaptive Side Information Fusion for Sequential Recommendation WSDM'26
Incorporating item-side information, such as category and brand, into sequential recommendation is a well-established and effective approach for improving performance. However, despite significant advancements, current models are generally limited by three key challenges: they often overlook the fine-grained temporal dynamics inherent in timestamps, exhibit vulnerability to noise in user interaction sequences, and rely on computationally expensive fusion architectures. To systematically address these challenges, we propose the Time-Aware Adaptive Side Information Fusion (TASIF) framework. TASIF integrates three synergistic components: (1) a simple, plug-and-play time span partitioning mechanism to capture global temporal patterns; (2) an adaptive frequency filter that leverages a learnable gate to denoise feature sequences adaptively, thereby providing higher-quality inputs for subsequent fusion modules; and (3) an efficient adaptive side information fusion layer, this layer employs a "guide-not-mix" architecture, where attributes guide the attention mechanism without being mixed into the content-representing item embeddings, ensuring deep interaction while ensuring computational efficiency. Extensive experiments on four public datasets demonstrate that TASIF significantly outperforms state-of-the-art baselines while maintaining excellent efficiency in training. Our source code is available at https://github.com/jluo00/TASIF.
comment: 10 pages. Accepted by WSDM'26
☆ CogRec: A Cognitive Recommender Agent Fusing Large Language Models and Soar for Explainable Recommendation
Large Language Models (LLMs) have demonstrated a remarkable capacity in understanding user preferences for recommendation systems. However, they are constrained by several critical challenges, including their inherent "Black-Box" characteristics, susceptibility to knowledge hallucination, and limited online learning capacity. These factors compromise their trustworthiness and adaptability. Conversely, cognitive architectures such as Soar offer structured and interpretable reasoning processes, yet their knowledge acquisition is notoriously laborious. To address these complementary challenges, we propose a novel cognitive recommender agent called CogRec which synergizes the strengths of LLMs with the Soar cognitive architecture. CogRec leverages Soar as its core symbolic reasoning engine and leverages an LLM for knowledge initialization to populate its working memory with production rules. The agent operates on a Perception-Cognition-Action(PCA) cycle. Upon encountering an impasse, it dynamically queries the LLM to obtain a reasoned solution. This solution is subsequently transformed into a new symbolic production rule via Soar's chunking mechanism, thereby enabling robust online learning. This learning paradigm allows the agent to continuously evolve its knowledge base and furnish highly interpretable rationales for its recommendations. Extensive evaluations conducted on three public datasets demonstrate that CogRec demonstrates significant advantages in recommendation accuracy, explainability, and its efficacy in addressing the long-tail problem.
comment: 9 pages, 6 figures
☆ High-dimensional Regret Minimization
Multi-criteria decision making in large databases is very important in real world applications. Recently, an interactive query has been studied extensively in the database literature with the advantage of both the top-k query (with limited output size) and the skyline query (which does not require users to explicitly specify their preference function). This approach iteratively asks the user to select the one preferred within a set of options. Based on rounds of feedback, the query learns the implicit preference and returns the most favorable as a recommendation. However, many modern applications in areas like housing or financial product markets feature datasets with hundreds of attributes. Existing interactive algorithms either fail to scale or require excessive user interactions (often exceeding 1000 rounds). Motivated by this, we propose FHDR (Fast High-Dimensional Reduction), a novel framework that takes less than 0.01s with fewer than 30 rounds of interaction. It is considered a breakthrough in the field of interactive queries since most, if not all, existing studies are not scalable to high-dimensional datasets. Extensive experiments demonstrate that FHDR outperforms the best-known algorithms by at least an order of magnitude in execution time and up to several orders of magnitude in terms of the number of interactions required, establishing a new state of the art for scalable interactive regret minimization.
☆ An Comparative Analysis about KYC on a Recommendation System Toward Agentic Recommendation System
This research presents a cutting-edge recommendation system utilizing agentic AI for KYC (Know Your Customer in the financial domain), and its evaluation across five distinct content verticals: Advertising (Ad), News, Gossip, Sharing (User-Generated Content), and Technology (Tech). The study compares the performance of four experimental groups, grouping by the intense usage of KYC, benchmarking them against the Normalized Discounted Cumulative Gain (nDCG) metric at truncation levels of $k=1$, $k=3$, and $k=5$. By synthesizing experimental data with theoretical frameworks and industry benchmarks from platforms such as Baidu and Xiaohongshu, this research provides insight by showing experimental results for engineering a large-scale agentic recommendation system.
comment: 5 pages, 1 figure
☆ Deletion Considered Harmful
In a world of information overload, understanding how we can most effectively manage information is crucial to success. We set out to understand how people view deletion, the removal of material no longer needed: does it help by reducing clutter and improving the signal to noise ratio, or does the effort required to decide to delete something make it not worthwhile? How does deletion relate to other strategies like filing; do people who spend extensive time in filing also prune their materials too? We studied the behaviour of 51 knowledge workers though a series of questionnaires and interviews to evaluate a range of tactics they used aimed at organizing, filing, and retrieving digital resources. Our study reveals that deletion is consistently under-adopted compared to other tactics such as Filing, Coverage, Ontology, and Timeliness. Moreover, the empirical data indicate that deletion is actually detrimental to retrieval success and satisfaction. In this paper, we examine the practice of deletion, review the related literature, and present detailed statistical results and clustering outcomes that underscore its adverse effects.
♻ ☆ Illusions of Relevance: Arbitrary Content Injection Attacks Deceive Retrievers, Rerankers, and LLM Judges AACL
This work considers a black-box threat model in which adversaries attempt to propagate arbitrary non-relevant content in search. We show that retrievers, rerankers, and LLM relevance judges are all highly vulnerable to attacks that enable arbitrary content to be promoted to the top of search results and to be assigned perfect relevance scores. We investigate how attackers may achieve this via content injection, injecting arbitrary sentences into relevant passages or query terms into arbitrary passages. Our study analyzes how factors such as model class and size, the balance between relevant and non-relevant content, injection location, toxicity and severity of injected content, and the role of LLM-generated content influence attack success, yielding novel, concerning, and often counterintuitive results. Our results reveal a weakness in embedding models, LLM-based scoring models, and generative LLMs, raising concerns about the general robustness, safety, and trustworthiness of language models regardless of the type of model or the role in which they are employed. We also emphasize the challenges of robust defenses against these attacks. Classifiers and more carefully prompted LLM judges often fail to recognize passages with content injection, especially when considering diverse text topics and styles. Our findings highlight the need for further research into arbitrary content injection attacks. We release our code for further study.
comment: AACL Findings 2025
♻ ☆ An Ecosystem for Ontology Interoperability
Ontology interoperability is one of the complicated issues that restricts the use of ontologies in knowledge graphs (KGs). Different ontologies with conflicting and overlapping concepts make it difficult to design, develop, and deploy an interoperable ontology for downstream tasks. We propose an ecosystem for ontology interoperability. The ecosystem employs three state-of-the-art semantic techniques in different phases of the ontology engineering life cycle: ontology design patterns (ODPs) in the design phase, ontology matching and versioning (OM\&OV) in the develop phase, and data-driven ontology validation (DOVA) in the deploy phase, to achieve better ontology interoperability and data integration in real-world applications. A case study of sensor observation in the building domain validates the usefulness of the proposed ecosystem.
comment: 11 pages, 13 figures, 2 tables
♻ ☆ Can ensembles improve evidence recall? A case study
Feature attribution methods typically provide minimal sufficient evidence justifying a model decision. However, in many applications, such as compliance and cataloging, the full set of contributing features must be identified: complete evidence. We present a case study using existing language models and a medical dataset which contains human-annotated complete evidence. Our findings show that an ensemble approach, aggregating evidence from several models, improves evidence recall over individual models. We examine different ensemble sizes, the effect of evidence-guided training, and provide qualitative insights.
comment: Submitted to ESANN 2026
♻ ☆ SEDA: A Self-Adapted Entity-Centric Data Augmentation for Boosting Gird-based Discontinuous NER Models CIKM'25
Named Entity Recognition (NER) is a critical task in natural language processing, yet it remains particularly challenging for discontinuous entities. The primary difficulty lies in text segmentation, as traditional methods often missegment or entirely miss cross-sentence discontinuous entities, significantly affecting recognition accuracy. Therefore, we aim to address the segmentation and omission issues associated with such entities. Recent studies have shown that grid-tagging methods are effective for information extraction due to their flexible tagging schemes and robust architectures. Building on this, we integrate image data augmentation techniques, such as cropping, scaling, and padding, into grid-based models to enhance their ability to recognize discontinuous entities and handle segmentation challenges. Experimental results demonstrate that traditional segmentation methods often fail to capture cross-sentence discontinuous entities, leading to decreased performance. In contrast, our augmented grid models achieve notable improvements. Evaluations on the CADEC, ShARe13, and ShARe14 datasets show F1 score gains of 1-2.5% overall and 3.7-8.4% for discontinuous entities, confirming the effectiveness of our approach.
comment: 9 pages, 5 figures. This paper was presented at the CIKM'25 Workshop on Small and Efficient Large Language Models for Knowledge Extraction
♻ ☆ KG20C & KG20C-QA: Scholarly Knowledge Graph Benchmarks for Link Prediction and Question Answering
In this paper, we present KG20C and KG20C-QA, two curated datasets for advancing question answering (QA) research on scholarly data. KG20C is a high-quality scholarly knowledge graph constructed from the Microsoft Academic Graph through targeted selection of venues, quality-based filtering, and schema definition. Although KG20C has been available online in non-peer-reviewed sources such as GitHub repository, this paper provides the first formal, peer-reviewed description of the dataset, including clear documentation of its construction and specifications. KG20C-QA is built upon KG20C to support QA tasks on scholarly data. We define a set of QA templates that convert graph triples into natural language question--answer pairs, producing a benchmark that can be used both with graph-based models such as knowledge graph embeddings and with text-based models such as large language models. We benchmark standard knowledge graph embedding methods on KG20C-QA, analyze performance across relation types, and provide reproducible evaluation protocols. By officially releasing these datasets with thorough documentation, we aim to contribute a reusable, extensible resource for the research community, enabling future work in QA, reasoning, and knowledge-driven applications in the scholarly domain. The full datasets will be released at https://github.com/tranhungnghiep/KG20C/ upon paper publication.
comment: extracted and extended from author's PhD thesis, "Multi-Relational Embedding for Knowledge Graph Representation and Analysis"
♻ ☆ ITDR: An Instruction Tuning Dataset for Enhancing Large Language Models in Recommendations
Large language models (LLMs) have demonstrated outstanding performance in natural language processing tasks. However, in the field of recommender systems, due to the inherent structural discrepancy between user behavior data and natural language, LLMs struggle to effectively model the associations between user preferences and items. Although prompt-based methods can generate recommendation results, their inadequate understanding of recommendation tasks leads to constrained performance. To address this gap, we construct a comprehensive instruction tuning dataset, ITDR, which encompasses seven subtasks across two root tasks: user-item interaction and user-item understanding. The dataset integrates data from 13 public recommendation datasets and is built using manually crafted standardized templates, comprising approximately 200,000 instances. Experimental results demonstrate that ITDR significantly enhances the performance of mainstream open-source LLMs such as GLM-4, Qwen2.5, Qwen2.5-Instruct and LLaMA-3.2 on recommendation tasks. Furthermore, we analyze the correlations between tasks and explore the impact of task descriptions and data scale on instruction tuning effectiveness. Finally, we perform comparative experiments against closed-source LLMs with massive parameters. Our tuning dataset ITDR, the fine-tuned large recommendation models, all LoRA modules, and the complete experimental results are available at https://github.com/hellolzk/ITDR.
♻ ☆ Do LLMs Understand Collaborative Signals? Diagnosis and Repair
Collaborative information from user-item interactions is a fundamental source of signal in successful recommender systems. Recently, researchers have attempted to incorporate this knowledge into large language model-based recommender approaches (LLMRec) to enhance their performance. However, there has been little fundamental analysis of whether LLMs can effectively reason over collaborative information. In this paper, we analyze the ability of LLMs to reason about collaborative information in recommendation tasks, comparing their performance to traditional matrix factorization (MF) models. We propose a simple and effective method to improve LLMs' reasoning capabilities using retrieval-augmented generation (RAG) over the user-item interaction matrix with four different prompting strategies. Our results show that the LLM outperforms the MF model whenever we provide relevant information in a clear and easy-to-follow format, and prompt the LLM to reason based on it. We observe that with this strategy, in almost all cases, the more information we provide, the better the LLM performs.
Multimedia
☆ Generative Video Compression: Towards 0.01% Compression Rate for Video Transmission
Whether a video can be compressed at an extreme compression rate as low as 0.01%? To this end, we achieve the compression rate as 0.02% at some cases by introducing Generative Video Compression (GVC), a new framework that redefines the limits of video compression by leveraging modern generative video models to achieve extreme compression rates while preserving a perception-centric, task-oriented communication paradigm, corresponding to Level C of the Shannon-Weaver model. Besides, How we trade computation for compression rate or bandwidth? GVC answers this question by shifting the burden from transmission to inference: it encodes video into extremely compact representations and delegates content reconstruction to the receiver, where powerful generative priors synthesize high-quality video from minimal transmitted information. Is GVC practical and deployable? To ensure practical deployment, we propose a compression-computation trade-off strategy, enabling fast inference on consume-grade GPUs. Within the AI Flow framework, GVC opens new possibility for video communication in bandwidth- and resource-constrained environments such as emergency rescue, remote surveillance, and mobile edge computing. Through empirical validation, we demonstrate that GVC offers a viable path toward a new effective, efficient, scalable, and practical video communication paradigm.
☆ LiftProj: Space Lifting and Projection-Based Panorama Stitching
Traditional image stitching techniques have predominantly utilized two-dimensional homography transformations and mesh warping to achieve alignment on a planar surface. While effective for scenes that are approximately coplanar or exhibit minimal parallax, these approaches often result in ghosting, structural bending, and stretching distortions in non-overlapping regions when applied to real three-dimensional scenes characterized by multiple depth layers and occlusions. Such challenges are exacerbated in multi-view accumulations and 360° closed-loop stitching scenarios. In response, this study introduces a spatially lifted panoramic stitching framework that initially elevates each input image into a dense three-dimensional point representation within a unified coordinate system, facilitating global cross-view fusion augmented by confidence metrics. Subsequently, a unified projection center is established in three-dimensional space, and an equidistant cylindrical projection is employed to map the fused data onto a single panoramic manifold, thereby producing a geometrically consistent 360° panoramic layout. Finally, hole filling is conducted within the canvas domain to address unknown regions revealed by viewpoint transitions, restoring continuous texture and semantic coherence. This framework reconceptualizes stitching from a two-dimensional warping paradigm to a three-dimensional consistency paradigm and is designed to flexibly incorporate various three-dimensional lifting and completion modules. Experimental evaluations demonstrate that the proposed method substantially mitigates geometric distortions and ghosting artifacts in scenarios involving significant parallax and complex occlusions, yielding panoramic results that are more natural and consistent.
comment: 16 pages, 10 figures
☆ Factorized Learning for Temporally Grounded Video-Language Models ICCV 2025
Recent video-language models have shown great potential for video understanding, but still struggle with accurate temporal grounding for event-level perception. We observe that two main factors in video understanding (i.e., temporal grounding and textual response) form a logical hierarchy: accurate temporal evidence grounding lays the foundation for reliable textual response. However, existing works typically handle these two tasks in a coupled manner without a clear logical structure, leading to sub-optimal objectives. We address this from a factorized learning perspective. We first propose D$^2$VLM, a framework that decouples the learning of these two tasks while also emphasizing their inherent dependency. We adopt a "grounding then answering with evidence referencing" paradigm and introduce evidence tokens for evidence grounding, which emphasize event-level visual semantic capture beyond the focus on timestamp representation in existing works. To further facilitate the learning of these two tasks, we introduce a novel factorized preference optimization (FPO) algorithm. Unlike standard preference optimization, FPO explicitly incorporates probabilistic temporal grounding modeling into the optimization objective, enabling preference learning for both temporal grounding and textual response. We also construct a synthetic dataset to address the lack of suitable datasets for factorized preference learning with explicit temporal grounding. Experiments on various tasks demonstrate the clear advantage of our approach. Our source code is available at https://github.com/nusnlp/d2vlm.
comment: ICCV 2025 paper. This arXiv version updates Figure 1 to include the concurrent work Qwen2.5-VL to ensure consistency with Table 1
☆ Neighbor-aware Instance Refining with Noisy Labels for Cross-Modal Retrieval AAAI-26
In recent years, Cross-Modal Retrieval (CMR) has made significant progress in the field of multi-modal analysis. However, since it is time-consuming and labor-intensive to collect large-scale and well-annotated data, the annotation of multi-modal data inevitably contains some noise. This will degrade the retrieval performance of the model. To tackle the problem, numerous robust CMR methods have been developed, including robust learning paradigms, label calibration strategies, and instance selection mechanisms. Unfortunately, they often fail to simultaneously satisfy model performance ceilings, calibration reliability, and data utilization rate. To overcome the limitations, we propose a novel robust cross-modal learning framework, namely Neighbor-aware Instance Refining with Noisy Labels (NIRNL). Specifically, we first propose Cross-modal Margin Preserving (CMP) to adjust the relative distance between positive and negative pairs, thereby enhancing the discrimination between sample pairs. Then, we propose Neighbor-aware Instance Refining (NIR) to identify pure subset, hard subset, and noisy subset through cross-modal neighborhood consensus. Afterward, we construct different tailored optimization strategies for this fine-grained partitioning, thereby maximizing the utilization of all available data while mitigating error propagation. Extensive experiments on three benchmark datasets demonstrate that NIRNL achieves state-of-the-art performance, exhibiting remarkable robustness, especially under high noise rates.
comment: 9 pages, 4 figures, and AAAI-26 conference
♻ ☆ Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence (SI). We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a growing collection of newly curated ones, enabling systematic evaluation of state-of-the-art models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in SI, yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail the most advanced multimodal models. EASI is an ongoing community effort: we have open-sourced the EASI codebase that provides a one-stop and reproducible solution with standardized interfaces, integrated protocols and prompts that significantly reduce the friction of configuring and running multiple benchmarks; we have also launched an accompanying EASI leaderboard to provide a continually updated snapshot of model performance across the full SI spectrum, accelerating collective progress toward robust SI.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/ ; Leaderboard: https://huggingface.co/spaces/lmms-lab-si/EASI-Leaderboard
♻ ☆ Scaling Spatial Intelligence with Multimodal Foundation Models
Despite remarkable progress, multimodal foundation models still exhibit surprising deficiencies in spatial intelligence. In this work, we explore scaling up multimodal foundation models to cultivate spatial intelligence within the SenseNova-SI family, built upon established multimodal foundations including visual understanding models (i.e., Qwen3-VL and InternVL3) and unified understanding and generation models (i.e., Bagel). We take a principled approach to constructing high-performing and robust spatial intelligence by systematically curating SenseNova-SI-8M: eight million diverse data samples under a rigorous taxonomy of spatial capabilities. SenseNova-SI demonstrates unprecedented performance across a broad range of spatial intelligence benchmarks: 68.7% on VSI-Bench, 43.3% on MMSI, 85.6% on MindCube, 54.6% on ViewSpatial, and 50.1% on SITE, while maintaining strong general multimodal understanding (e.g., 84.9% on MMBench-En). More importantly, we analyze the impact of data scaling, discuss early signs of emergent generalization capabilities enabled by diverse data training, analyze the risk of overfitting and language shortcuts, present a preliminary study on spatial chain-of-thought reasoning, and validate the potential downstream application. SenseNova-SI is an ongoing project, and this report will be updated continuously. All newly trained multimodal foundation models are publicly released to facilitate further research in this direction.
comment: Codebase: https://github.com/OpenSenseNova/SenseNova-SI ; Models: https://huggingface.co/collections/sensenova/sensenova-si
♻ ☆ Federated Multi-Task Clustering
Spectral clustering has emerged as one of the most effective clustering algorithms due to its superior performance. However, most existing models are designed for centralized settings, rendering them inapplicable in modern decentralized environments. Moreover, current federated learning approaches often suffer from poor generalization performance due to reliance on unreliable pseudo-labels, and fail to capture the latent correlations amongst heterogeneous clients. To tackle these limitations, this paper proposes a novel framework named Federated Multi-Task Clustering (i.e.,FMTC), which intends to learn personalized clustering models for heterogeneous clients while collaboratively leveraging their shared underlying structure in a privacy-preserving manner. More specifically, the FMTC framework is composed of two main components: client-side personalized clustering module, which learns a parameterized mapping model to support robust out-of-sample inference, bypassing the need for unreliable pseudo-labels; and server-side tensorial correlation module, which explicitly captures the shared knowledge across all clients. This is achieved by organizing all client models into a unified tensor and applying a low-rank regularization to discover their common subspace. To solve this joint optimization problem, we derive an efficient, privacy-preserving distributed algorithm based on the Alternating Direction Method of Multipliers, which decomposes the global problem into parallel local updates on clients and an aggregation step on the server. To the end, several extensive experiments on multiple real-world datasets demonstrate that our proposed FMTC framework significantly outperforms various baseline and state-of-the-art federated clustering algorithms.
♻ ☆ GestureHYDRA: Semantic Co-speech Gesture Synthesis via Hybrid Modality Diffusion Transformer and Cascaded-Synchronized Retrieval-Augmented Generation ICCV 2025
While increasing attention has been paid to co-speech gesture synthesis, most previous works neglect to investigate hand gestures with explicit and essential semantics. In this paper, we study co-speech gesture generation with an emphasis on specific hand gesture activation, which can deliver more instructional information than common body movements. To achieve this, we first build a high-quality dataset of 3D human body movements including a set of semantically explicit hand gestures that are commonly used by live streamers. Then we present a hybrid-modality gesture generation system GestureHYDRA built upon a hybrid-modality diffusion transformer architecture with novelly designed motion-style injective transformer layers, which enables advanced gesture modeling ability and versatile gesture operations. To guarantee these specific hand gestures can be activated, we introduce a cascaded retrieval-augmented generation strategy built upon a semantic gesture repository annotated for each subject and an adaptive audio-gesture synchronization mechanism, which substantially improves semantic gesture activation and production efficiency. Quantitative and qualitative experiments demonstrate that our proposed approach achieves superior performance over all the counterparts. The project page can be found at https://mumuwei.github.io/GestureHYDRA/.
comment: 10 pages, 5 figures, Accepted by ICCV 2025
Information Retrieval
☆ Nested Browser-Use Learning for Agentic Information Seeking
Information-seeking (IS) agents have achieved strong performance across a range of wide and deep search tasks, yet their tool use remains largely restricted to API-level snippet retrieval and URL-based page fetching, limiting access to the richer information available through real browsing. While full browser interaction could unlock deeper capabilities, its fine-grained control and verbose page content returns introduce substantial complexity for ReAct-style function-calling agents. To bridge this gap, we propose Nested Browser-Use Learning (NestBrowse), which introduces a minimal and complete browser-action framework that decouples interaction control from page exploration through a nested structure. This design simplifies agentic reasoning while enabling effective deep-web information acquisition. Empirical results on challenging deep IS benchmarks demonstrate that NestBrowse offers clear benefits in practice. Further in-depth analyses underscore its efficiency and flexibility.
☆ Scalable Residual Feature Aggregation Framework with Hybrid Metaheuristic Optimization for Robust Early Pancreatic Neoplasm Detection in Multimodal CT Imaging
The early detection of pancreatic neoplasm is a major clinical dilemma, and it is predominantly so because tumors are likely to occur with minimal contrast margins and a large spread anatomy-wide variation amongst patients on a CT scan. These complexities require to be addressed with an effective and scalable system that can assist in enhancing the salience of the subtle visual cues and provide a high level of the generalization on the multimodal imaging data. A Scalable Residual Feature Aggregation (SRFA) framework is proposed to be used to meet these conditions in this study. The framework integrates a pipeline of preprocessing followed by the segmentation using the MAGRes-UNet that is effective in making the pancreatic structures and isolating regions of interest more visible. DenseNet-121 performed with residual feature storage is used to extract features to allow deep hierarchical features to be aggregated without properties loss. To go further, hybrid HHO-BA metaheuristic feature selection strategy is used, which guarantees the best feature subset refinement. To be classified, the system is trained based on a new hybrid model that integrates the ability to pay attention on the world, which is the Vision Transformer (ViT) with the high representational efficiency of EfficientNet-B3. A dual optimization mechanism incorporating SSA and GWO is used to fine-tune hyperparameters to enhance greater robustness and less overfitting. Experimental results support the significant improvement in performance, with the suggested model reaching 96.23% accuracy, 95.58% F1-score and 94.83% specificity, the model is significantly better than the traditional CNNs and contemporary transformer-based models. Such results highlight the possibility of the SRFA framework as a useful instrument in the early detection of pancreatic tumors.
☆ RobustMask: Certified Robustness against Adversarial Neural Ranking Attack via Randomized Masking
Neural ranking models have achieved remarkable progress and are now widely deployed in real-world applications such as Retrieval-Augmented Generation (RAG). However, like other neural architectures, they remain vulnerable to adversarial manipulations: subtle character-, word-, or phrase-level perturbations can poison retrieval results and artificially promote targeted candidates, undermining the integrity of search engines and downstream systems. Existing defenses either rely on heuristics with poor generalization or on certified methods that assume overly strong adversarial knowledge, limiting their practical use. To address these challenges, we propose RobustMask, a novel defense that combines the context-prediction capability of pretrained language models with a randomized masking-based smoothing mechanism. Our approach strengthens neural ranking models against adversarial perturbations at the character, word, and phrase levels. Leveraging both the pairwise comparison ability of ranking models and probabilistic statistical analysis, we provide a theoretical proof of RobustMask's certified top-K robustness. Extensive experiments further demonstrate that RobustMask successfully certifies over 20% of candidate documents within the top-10 ranking positions against adversarial perturbations affecting up to 30% of their content. These results highlight the effectiveness of RobustMask in enhancing the adversarial robustness of neural ranking models, marking a significant step toward providing stronger security guarantees for real-world retrieval systems.
♻ ☆ Content-based Recommendation Engine for Video Streaming Platform
Recommendation engines suggest content, products, or services to the user by using machine learning algorithms. This paper proposes a content-based recommendation engine that provides personalized video suggestions based on users' previous interactions and preferences. The engine uses TF-IDF (Term Frequency-Inverse Document Frequency) text vectorization technique to evaluate the relevance of words in video descriptions, followed by the computation of cosine similarity between content items to determine their degree of similarity. The system's performance is evaluated using precision, recall, and F1-score metrics. Experimental results demonstrate the effectiveness of content-based filtering in delivering relevant and personalized video recommendations to users. This approach can enhance user engagement on video streaming platforms and reduce search time, providing a more intuitive, preference-based viewing experience.
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to manage changes in widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component of efficient ontology management, many approaches treat OV as similar to ontology matching (OM) and directly reuse OM systems for OV tasks. In this study, we systematically analyse similarities and differences between OM and OV and formalise the OM4OV pipeline to offer more advanced OV support. The pipeline is implemented and evaluated in the state-of-the-art OM system Agent-OM. The experimental results indicate that OM systems can be reused for OV tasks, but without necessary extensions, the current OM4OV pipeline can produce skewed measurements, poor performance in detecting update entities, and limited explainability of false mappings. To tackle these issues, we propose an optimisation method called the cross-reference (CR) mechanism, which builds on existing OM alignments to reduce the number of matching candidates and to improve overall OV performance.
comment: 16 pages, 8 figures, 1 table
♻ ☆ Topic-FlipRAG: Topic-Orientated Adversarial Opinion Manipulation Attacks to Retrieval-Augmented Generation Models USENIX Security 2025
Retrieval-Augmented Generation (RAG) systems based on Large Language Models (LLMs) have become essential for tasks such as question answering and content generation. However, their increasing impact on public opinion and information dissemination has made them a critical focus for security research due to inherent vulnerabilities. Previous studies have predominantly addressed attacks targeting factual or single-query manipulations. In this paper, we address a more practical scenario: topic-oriented adversarial opinion manipulation attacks on RAG models, where LLMs are required to reason and synthesize multiple perspectives, rendering them particularly susceptible to systematic knowledge poisoning. Specifically, we propose Topic-FlipRAG, a two-stage manipulation attack pipeline that strategically crafts adversarial perturbations to influence opinions across related queries. This approach combines traditional adversarial ranking attack techniques and leverages the extensive internal relevant knowledge and reasoning capabilities of LLMs to execute semantic-level perturbations. Experiments show that the proposed attacks effectively shift the opinion of the model's outputs on specific topics, significantly impacting user information perception. Current mitigation methods cannot effectively defend against such attacks, highlighting the necessity for enhanced safeguards for RAG systems, and offering crucial insights for LLM security research.
comment: Accepted by USENIX Security 2025
♻ ☆ ReaSeq: Unleashing World Knowledge via Reasoning for Sequential Modeling
Industrial recommender systems face two fundamental limitations under the log-driven paradigm: (1) knowledge poverty in ID-based item representations that causes brittle interest modeling under data sparsity, and (2) systemic blindness to beyond-log user interests that constrains model performance within platform boundaries. These limitations stem from an over-reliance on shallow interaction statistics and close-looped feedback while neglecting the rich world knowledge about product semantics and cross-domain behavioral patterns that Large Language Models have learned from vast corpora. To address these challenges, we introduce ReaSeq, a reasoning-enhanced framework that leverages world knowledge in Large Language Models to address both limitations through explicit and implicit reasoning. Specifically, ReaSeq employs explicit Chain-of-Thought reasoning via multi-agent collaboration to distill structured product knowledge into semantically enriched item representations, and latent reasoning via Diffusion Large Language Models to infer plausible beyond-log behaviors. Deployed on Taobao's ranking system serving hundreds of millions of users, ReaSeq achieves substantial gains: >6.0% in IPV and CTR, >2.9% in Orders, and >2.5% in GMV, validating the effectiveness of world-knowledge-enhanced reasoning over purely log-driven approaches.
♻ ☆ Optimizing Generative Ranking Relevance via Reinforcement Learning in Xiaohongshu Search KDD 2026
Ranking relevance is a fundamental task in search engines, aiming to identify the items most relevant to a given user query. Traditional relevance models typically produce scalar scores or directly predict relevance labels, limiting both interpretability and the modeling of complex relevance signals. Inspired by recent advances in Chain-of-Thought (CoT) reasoning for complex tasks, we investigate whether explicit reasoning can enhance both interpretability and performance in relevance modeling. However, existing reasoning-based Generative Relevance Models (GRMs) primarily rely on supervised fine-tuning on large amounts of human-annotated or synthetic CoT data, which often leads to limited generalization. Moreover, domain-agnostic, free-form reasoning tends to be overly generic and insufficiently grounded, limiting its potential to handle the diverse and ambiguous cases prevalent in open-domain search. In this work, we formulate relevance modeling in Xiaohongshu search as a reasoning task and introduce a Reinforcement Learning (RL)-based training framework to enhance the grounded reasoning capabilities of GRMs. Specifically, we incorporate practical business-specific relevance criteria into the multi-step reasoning prompt design and propose Stepwise Advantage Masking (SAM), a lightweight process-supervision strategy which facilitates effective learning of these criteria through improved credit assignment. To enable industrial deployment, we further distill the large-scale RL-tuned model to a lightweight version suitable for real-world search systems. Extensive offline evaluations and online A/B tests demonstrate that our approach consistently delivers significant improvements across key relevance and business metrics, validating its effectiveness, robustness, and practicality for large-scale industrial search systems.
comment: Accepted to the ADS Track at KDD 2026
Multimedia
☆ Unlocking WebRTC for End User Driven Innovation
We present a software architecture to enable end user driven innovation of web multimedia communication applications. RTC Helper is a simple and easy-to-use software that can intercept WebRTC (web real-time communication) and related APIs in the browser, and change the behavior of web apps in real-time. Such customization can even be driven by the end user on third-party web apps using our flexible and general purpose browser extension. It also facilitates rapid prototyping of ideas by web developers in their existing web apps without having to rebuild or redeploy after every change. It has more than ten customization categories, and over a hundred built-in examples covering a wide range of novel use cases in web-based audio/video communication.
comment: 13 pages (8 main, 5 appendix), 12 figures, 2 tables
☆ SyncGait: Robust Long-Distance Authentication for Drone Delivery via Implicit Gait Behaviors
In recent years, drone delivery, which utilizes unmanned aerial vehicles (UAVs) for package delivery and pickup, has gradually emerged as a crucial method in logistics. Since delivery drones are expensive and may carry valuable packages, they must maintain a safe distance from individuals until user-drone mutual authentication is confirmed. Despite numerous authentication schemes being developed, existing solutions are limited in authentication distance and lack resilience against sophisticated attacks. To this end, we introduce SyncGait, an implicit gait-based mutual authentication system for drone delivery. SyncGait leverages the user's unique arm swing as he walks toward the drone to achieve mutual authentication without requiring additional hardware or specific authentication actions. We conducted extensive experiments on 14 datasets collected from 31 subjects. The results demonstrate that SyncGait achieves an average accuracy of 99.84\% at a long distance ($>18m$) and exhibits strong resilience against various spoofing attacks, making it a robust, secure, and user-friendly solution in real-world scenarios.
comment: 13 pages, 20 figures
☆ RealX3D: A Physically-Degraded 3D Benchmark for Multi-view Visual Restoration and Reconstruction
We introduce RealX3D, a real-capture benchmark for multi-view visual restoration and 3D reconstruction under diverse physical degradations. RealX3D groups corruptions into four families, including illumination, scattering, occlusion, and blurring, and captures each at multiple severity levels using a unified acquisition protocol that yields pixel-aligned LQ/GT views. Each scene includes high-resolution capture, RAW images, and dense laser scans, from which we derive world-scale meshes and metric depth. Benchmarking a broad range of optimization-based and feed-forward methods shows substantial degradation in reconstruction quality under physical corruptions, underscoring the fragility of current multi-view pipelines in real-world challenging environments.
☆ Multi Agents Semantic Emotion Aligned Music to Image Generation with Music Derived Captions ICME 2026
When people listen to music, they often experience rich visual imagery. We aim to externalize this inner imagery by generating images conditioned on music. We propose MESA MIG, a multi agent semantic and emotion aligned framework that first produces structured music captions and then refines them with cooperating agents specializing in scene, motion, style, color, and composition. In parallel, a Valence Arousal regression head predicts continuous affective states from music, while a CLIP based visual VA head estimates emotions from images. These components jointly enforce semantic and emotional alignment between music and synthesized images. Experiments on curated music image pairs show that MESA MIG outperforms caption only and single agent baselines in aesthetic quality, semantic consistency, and VA alignment, and achieves competitive emotion regression performance compared with state of the art music and image emotion models.
comment: 10 pages,3 figures.Under review for ICME 2026
☆ Bridging Your Imagination with Audio-Video Generation via a Unified Director
Existing AI-driven video creation systems typically treat script drafting and key-shot design as two disjoint tasks: the former relies on large language models, while the latter depends on image generation models. We argue that these two tasks should be unified within a single framework, as logical reasoning and imaginative thinking are both fundamental qualities of a film director. In this work, we propose UniMAGE, a unified director model that bridges user prompts with well-structured scripts, thereby empowering non-experts to produce long-context, multi-shot films by leveraging existing audio-video generation models. To achieve this, we employ the Mixture-of-Transformers architecture that unifies text and image generation. To further enhance narrative logic and keyframe consistency, we introduce a ``first interleaving, then disentangling'' training paradigm. Specifically, we first perform Interleaved Concept Learning, which utilizes interleaved text-image data to foster the model's deeper understanding and imaginative interpretation of scripts. We then conduct Disentangled Expert Learning, which decouples script writing from keyframe generation, enabling greater flexibility and creativity in storytelling. Extensive experiments demonstrate that UniMAGE achieves state-of-the-art performance among open-source models, generating logically coherent video scripts and visually consistent keyframe images.
♻ ☆ ClassWise-CRF: Category-Specific Fusion for Enhanced Semantic Segmentation of Remote Sensing Imagery
We propose a result-level category-specific fusion architecture called ClassWise-CRF. This architecture employs a two-stage process: first, it selects expert networks that perform well in specific categories from a pool of candidate networks using a greedy algorithm; second, it integrates the segmentation predictions of these selected networks by adaptively weighting their contributions based on their segmentation performance in each category. Inspired by Conditional Random Field (CRF), the ClassWise-CRF architecture treats the segmentation predictions from multiple networks as confidence vector fields. It leverages segmentation metrics (such as Intersection over Union) from the validation set as priors and employs an exponential weighting strategy to fuse the category-specific confidence scores predicted by each network. This fusion method dynamically adjusts the weights of each network for different categories, achieving category-specific optimization. Building on this, the architecture further optimizes the fused results using unary and pairwise potentials in CRF to ensure spatial consistency and boundary accuracy. To validate the effectiveness of ClassWise-CRF, we conducted experiments on two remote sensing datasets, LoveDA and Vaihingen, using eight classic and advanced semantic segmentation networks. The results show that the ClassWise-CRF architecture significantly improves segmentation performance: on the LoveDA dataset, the mean Intersection over Union (mIoU) metric increased by 1.00% on the validation set and by 0.68% on the test set; on the Vaihingen dataset, the mIoU improved by 0.87% on the validation set and by 0.91% on the test set. These results fully demonstrate the effectiveness and generality of the ClassWise-CRF architecture in semantic segmentation of remote sensing images. The full code is available at https://github.com/zhuqinfeng1999/ClassWise-CRF.
comment: Accpted by Neural Networks
♻ ☆ D-FCGS: Feedforward Compression of Dynamic Gaussian Splatting for Free-Viewpoint Videos
Free-Viewpoint Video (FVV) enables immersive 3D experiences, but efficient compression of dynamic 3D representation remains a major challenge. Existing dynamic 3D Gaussian Splatting methods couple reconstruction with optimization-dependent compression and customized motion formats, limiting generalization and standardization. To address this, we propose D-FCGS, a novel Feedforward Compression framework for Dynamic Gaussian Splatting. Key innovations include: (1) a standardized Group-of-Frames (GoF) structure with I-P coding, leveraging sparse control points to extract inter-frame motion tensors; (2) a dual prior-aware entropy model that fuses hyperprior and spatial-temporal priors for accurate rate estimation; (3) a control-point-guided motion compensation mechanism and refinement network to enhance view-consistent fidelity. Trained on Gaussian frames derived from multi-view videos, D-FCGS generalizes across diverse scenes in a zero-shot fashion. Experiments show that it matches the rate-distortion performance of optimization-based methods, achieving over 17 times compression compared to the baseline while preserving visual quality across viewpoints. This work advances feedforward compression of dynamic 3DGS, facilitating scalable FVV transmission and storage for immersive applications.
comment: code:https://github.com/Mr-Zwkid/D-FCGS
♻ ☆ Doctor Sun: A Bilingual Multimodal Large Language Model for Biomedical AI
Large multimodal models (LMMs) have demonstrated significant potential in providing innovative solutions for various biomedical tasks, including pathology analysis, radiology report generation, and biomedical assistance. However, the existing multimodal biomedical AI is typically based on foundation LLMs, thus hindering the understanding of intricate medical concepts with limited medical training data. Moreover, recent LLaVA-induced medical LMMs struggle to effectively capture the intricate relationship between the texts and the images. Therefore, we introduce Doctor Sun, a large multimodal generative model specialized in medicine, developed to encode, integrate, and interpret diverse biomedical data modalities such as text and images. In particular, Doctor Sun integrates a pre-trained vision encoder with a medical LLM and conducts two-stage training on various medical datasets, focusing on feature alignment and instruction tuning. Moreover, we release SunMed-VL, a wide-range bilingual medical multimodal dataset, along with all associated models, code, and resources, to freely support the advancement of biomedical multimodal research.