MyArxiv
Computation and Language
☆ ctELM: Decoding and Manipulating Embeddings of Clinical Trials with Embedding Language Models
Text embeddings have become an essential part of a variety of language applications. However, methods for interpreting, exploring and reversing embedding spaces are limited, reducing transparency and precluding potentially valuable generative use cases. In this work, we align Large Language Models to embeddings of clinical trials using the recently reported Embedding Language Model (ELM) method. We develop an open-source, domain-agnostic ELM architecture and training framework, design training tasks for clinical trials, and introduce an expert-validated synthetic dataset. We then train a series of ELMs exploring the impact of tasks and training regimes. Our final model, ctELM, can accurately describe and compare unseen clinical trials from embeddings alone and produce plausible clinical trials from novel vectors. We further show that generated trial abstracts are responsive to moving embeddings along concept vectors for age and sex of study subjects. Our public ELM implementation and experimental results will aid the alignment of Large Language Models to embedding spaces in the biomedical domain and beyond.
☆ Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
☆ MEGnifying Emotion: Sentiment Analysis from Annotated Brain Data
Decoding emotion from brain activity could unlock a deeper understanding of the human experience. While a number of existing datasets align brain data with speech and with speech transcripts, no datasets have annotated brain data with sentiment. To bridge this gap, we explore the use of pre-trained Text-to-Sentiment models to annotate non invasive brain recordings, acquired using magnetoencephalography (MEG), while participants listened to audiobooks. Having annotated the text, we employ force-alignment of the text and audio to align our sentiment labels with the brain recordings. It is straightforward then to train Brainto-Sentiment models on these data. Experimental results show an improvement in balanced accuracy for Brain-to-Sentiment compared to baseline, supporting the proposed approach as a proof-of-concept for leveraging existing MEG datasets and learning to decode sentiment directly from the brain.
☆ Subword-Based Comparative Linguistics across 242 Languages Using Wikipedia Glottosets
We present a large-scale comparative study of 242 Latin and Cyrillic-script languages using subword-based methodologies. By constructing 'glottosets' from Wikipedia lexicons, we introduce a framework for simultaneous cross-linguistic comparison via Byte-Pair Encoding (BPE). Our approach utilizes rank-based subword vectors to analyze vocabulary overlap, lexical divergence, and language similarity at scale. Evaluations demonstrate that BPE segmentation aligns with morpheme boundaries 95% better than random baseline across 15 languages (F1 = 0.34 vs 0.15). BPE vocabulary similarity correlates significantly with genetic language relatedness (Mantel r = 0.329, p < 0.001), with Romance languages forming the tightest cluster (mean distance 0.51) and cross-family pairs showing clear separation (0.82). Analysis of 26,939 cross-linguistic homographs reveals that 48.7% receive different segmentations across related languages, with variation correlating to phylogenetic distance. Our results provide quantitative macro-linguistic insights into lexical patterns across typologically diverse languages within a unified analytical framework.
comment: 15 pages, 4 figues, 4 tables
☆ MortalMATH: Evaluating the Conflict Between Reasoning Objectives and Emergency Contexts
Large Language Models are increasingly optimized for deep reasoning, prioritizing the correct execution of complex tasks over general conversation. We investigate whether this focus on calculation creates a "tunnel vision" that ignores safety in critical situations. We introduce MortalMATH, a benchmark of 150 scenarios where users request algebra help while describing increasingly life-threatening emergencies (e.g., stroke symptoms, freefall). We find a sharp behavioral split: generalist models (like Llama-3.1) successfully refuse the math to address the danger. In contrast, specialized reasoning models (like Qwen-3-32b and GPT-5-nano) often ignore the emergency entirely, maintaining over 95 percent task completion rates while the user describes dying. Furthermore, the computational time required for reasoning introduces dangerous delays: up to 15 seconds before any potential help is offered. These results suggest that training models to relentlessly pursue correct answers may inadvertently unlearn the survival instincts required for safe deployment.
☆ Unsupervised Text Segmentation via Kernel Change-Point Detection on Sentence Embeddings
Unsupervised text segmentation is crucial because boundary labels are expensive, subjective, and often fail to transfer across domains and granularity choices. We propose Embed-KCPD, a training-free method that represents sentences as embedding vectors and estimates boundaries by minimizing a penalized KCPD objective. Beyond the algorithmic instantiation, we develop, to our knowledge, the first dependence-aware theory for KCPD under $m$-dependent sequences, a finite-memory abstraction of short-range dependence common in language. We prove an oracle inequality for the population penalized risk and a localization guarantee showing that each true change point is recovered within a window that is small relative to segment length. To connect theory to practice, we introduce an LLM-based simulation framework that generates synthetic documents with controlled finite-memory dependence and known boundaries, validating the predicted scaling behavior. Across standard segmentation benchmarks, Embed-KCPD often outperforms strong unsupervised baselines. A case study on Taylor Swift's tweets illustrates that Embed-KCPD combines strong theoretical guarantees, simulated reliability, and practical effectiveness for text segmentation.
comment: arXiv admin note: substantial text overlap with arXiv:2510.03437. substantial text overlap with arXiv:2510.03437. substantial text overlap with arXiv:2510.03437. substantial text overlap with arXiv:2510.03437
☆ Design Techniques for LLM-Powered Interactive Storytelling: A Case Study of the Dramamancer System EMNLP
The rise of Large Language Models (LLMs) has enabled a new paradigm for bridging authorial intent and player agency in interactive narrative. We consider this paradigm through the example of Dramamancer, a system that uses an LLM to transform author-created story schemas into player-driven playthroughs. This extended abstract outlines some design techniques and evaluation considerations associated with this system.
comment: Extended abstract presented at the 2025 Wordplay Workshop at EMNLP
☆ POPE: Learning to Reason on Hard Problems via Privileged On-Policy Exploration
Reinforcement learning (RL) has improved the reasoning abilities of large language models (LLMs), yet state-of-the-art methods still fail to learn on many training problems. On hard problems, on-policy RL rarely explores even a single correct rollout, yielding zero reward and no learning signal for driving improvement. We find that natural solutions to remedy this exploration problem from classical RL, such as entropy bonuses, more permissive clipping of the importance ratio, or direct optimization of pass@k objectives, do not resolve this issue and often destabilize optimization without improving solvability. A natural alternative is to leverage transfer from easier problems. However, we show that mixing easy and hard problems during RL training is counterproductive due to ray interference, where optimization focuses on already-solvable problems in a way that actively inhibits progress on harder ones. To address this challenge, we introduce Privileged On-Policy Exploration (POPE), an approach that leverages human- or other oracle solutions as privileged information to guide exploration on hard problems, unlike methods that use oracle solutions as training targets (e.g., off-policy RL methods or warmstarting from SFT). POPE augments hard problems with prefixes of oracle solutions, enabling RL to obtain non-zero rewards during guided rollouts. Crucially, the resulting behaviors transfer back to the original, unguided problems through a synergy between instruction-following and reasoning. Empirically, POPE expands the set of solvable problems and substantially improves performance on challenging reasoning benchmarks.
☆ Teaching Models to Teach Themselves: Reasoning at the Edge of Learnability
Can a model learn to escape its own learning plateau? Reinforcement learning methods for finetuning large reasoning models stall on datasets with low initial success rates, and thus little training signal. We investigate a fundamental question: Can a pretrained LLM leverage latent knowledge to generate an automated curriculum for problems it cannot solve? To explore this, we design SOAR: A self-improvement framework designed to surface these pedagogical signals through meta-RL. A teacher copy of the model proposes synthetic problems for a student copy, and is rewarded with its improvement on a small subset of hard problems. Critically, SOAR grounds the curriculum in measured student progress rather than intrinsic proxy rewards. Our study on the hardest subsets of mathematical benchmarks (0/128 success) reveals three core findings. First, we show that it is possible to realize bi-level meta-RL that unlocks learning under sparse, binary rewards by sharpening a latent capacity of pretrained models to generate useful stepping stones. Second, grounded rewards outperform intrinsic reward schemes used in prior LLM self-play, reliably avoiding the instability and diversity collapse modes they typically exhibit. Third, analyzing the generated questions reveals that structural quality and well-posedness are more critical for learning progress than solution correctness. Our results suggest that the ability to generate useful stepping stones does not require the preexisting ability to actually solve the hard problems, paving a principled path to escape reasoning plateaus without additional curated data.
☆ PRECISE: Reducing the Bias of LLM Evaluations Using Prediction-Powered Ranking Estimation AAAI 2026
Evaluating the quality of search, ranking and RAG systems traditionally requires a significant number of human relevance annotations. In recent times, several deployed systems have explored the usage of Large Language Models (LLMs) as automated judges for this task while their inherent biases prevent direct use for metric estimation. We present a statistical framework extending Prediction-Powered Inference (PPI) that combines minimal human annotations with LLM judgments to produce reliable estimates of metrics which require sub-instance annotations. Our method requires as few as 100 human-annotated queries and 10,000 unlabeled examples, reducing annotation requirements significantly compared to traditional approaches. We formulate our proposed framework (PRECISE) for inference of relevance uplift for an LLM-based query reformulation application, extending PPI to sub-instance annotations at the query-document level. By reformulating the metric-integration space, we reduced the computational complexity from O(2^|C|) to O(2^K), where |C| represents corpus size (in order of millions). Detailed experiments across prominent retrieval datasets demonstrate that our method reduces the variance of estimates for the business-critical Precision@K metric, while effectively correcting for LLM bias in low-resource settings.
comment: Accepted at AAAI 2026 - Innovative Applications of AI (IAAI-26)
☆ Dep-Search: Learning Dependency-Aware Reasoning Traces with Persistent Memory
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks, particularly when augmented with search mechanisms that enable systematic exploration of external knowledge bases. The field has evolved from traditional retrieval-augmented generation (RAG) frameworks to more sophisticated search-based frameworks that orchestrate multi-step reasoning through explicit search strategies. However, existing search frameworks still rely heavily on implicit natural language reasoning to determine search strategies and how to leverage retrieved information across reasoning steps. This reliance on implicit reasoning creates fundamental challenges for managing dependencies between sub-questions, efficiently reusing previously retrieved knowledge, and learning optimal search strategies through reinforcement learning. To address these limitations, we propose Dep-Search, a dependency-aware search framework that advances beyond existing search frameworks by integrating structured reasoning, retrieval, and persistent memory through GRPO. Dep-Search introduces explicit control mechanisms that enable the model to decompose questions with dependency relationships, retrieve information when needed, access previously stored knowledge from memory, and summarize long reasoning contexts into reusable memory entries. Through extensive experiments on seven diverse question answering datasets, we demonstrate that Dep-Search significantly enhances LLMs' ability to tackle complex multi-hop reasoning tasks, achieving substantial improvements over strong baselines across different model scales.
comment: Dep-Search 1st version
☆ Beyond Preferences: Learning Alignment Principles Grounded in Human Reasons and Values
A crucial consideration when developing and deploying Large Language Models (LLMs) is the human values to which these models are aligned. In the constitutional framework of alignment models are aligned to a set of principles (the constitution) specified in natural language. However, it is unclear how to fairly determine this constitution with widespread stakeholder input. In this work we propose Grounded Constitutional AI (GCAI), a unified framework for generating constitutions of principles that are representative of both users' general expectations toward AI (general principles) and their interaction-time preferences (contextual principles). We extend the Inverse Constitutional AI (ICAI) approach to generate contextual principles from human preference annotation data by leveraging human-provided \textit{reasons} for their preferences. We supplement these contextual principles with general principles surfaced from user statements of \textit{values} regarding AI. We show that a constitution generated by GCAI is preferred by humans over one generated through ICAI both personally, and for widespread use in governing AI behavior. Additionally participants consider the GCAI constitution to be more morally grounded, coherent, and pluralistic.
☆ Capturing P: On the Expressive Power and Efficient Evaluation of Boolean Retrieval
Modern information retrieval is transitioning from simple document filtering to complex, neuro-symbolic reasoning workflows. However, current retrieval architectures face a fundamental efficiency dilemma when handling the rigorous logical and arithmetic constraints required by this new paradigm. Standard iterator-based engines (Document-at-a-Time) do not natively support complex, nested logic graphs; forcing them to execute such queries typically results in intractable runtime performance. Conversely, naive recursive approaches (Term-at-a-Time), while capable of supporting these structures, suffer from prohibitive memory consumption when enforcing broad logical exclusions. In this paper, we propose that a retrieval engine must be capable of ``Capturing $\mathbf{P}$'' -- evaluating any polynomial-time property directly over its index in a computationally efficient manner. We define a formal Retrieval Language ($\mathcal{L}_R$) based on Directed Acyclic Graphs (DAGs) and prove it precisely captures the complexity class $\mathbf{P}$. We introduce \texttt{ComputePN}, a novel evaluation algorithm that makes $\mathcal{L}_R$ tractable. By combining native DAG traversal with a memory-efficient ``Positive-Negative'' response mechanism, \texttt{ComputePN} ensures the efficient evaluation of any query in $\mathcal{L}_R$. This work establishes the theoretical foundation for turning the search index into a general-purpose computational engine.
☆ Self-Distilled Reasoner: On-Policy Self-Distillation for Large Language Models
Knowledge distillation improves large language model (LLM) reasoning by compressing the knowledge of a teacher LLM to train smaller LLMs. On-policy distillation advances this approach by having the student sample its own trajectories while a teacher LLM provides dense token-level supervision, addressing the distribution mismatch between training and inference in off-policy distillation methods. However, on-policy distillation typically requires a separate, often larger, teacher LLM and does not explicitly leverage ground-truth solutions available in reasoning datasets. Inspired by the intuition that a sufficiently capable LLM can rationalize external privileged reasoning traces and teach its weaker self (i.e., the version without access to privileged information), we introduce On-Policy Self-Distillation (OPSD), a framework where a single model acts as both teacher and student by conditioning on different contexts. The teacher policy conditions on privileged information (e.g., verified reasoning traces) while the student policy sees only the question; training minimizes the per-token divergence between these distributions over the student's own rollouts. We demonstrate the efficacy of our method on multiple mathematical reasoning benchmarks, achieving 4-8x token efficiency compared to reinforcement learning methods such as GRPO and superior performance over off-policy distillation methods.
comment: 13 pages
☆ One Adapts to Any: Meta Reward Modeling for Personalized LLM Alignment
Alignment of Large Language Models (LLMs) aims to align outputs with human preferences, and personalized alignment further adapts models to individual users. This relies on personalized reward models that capture user-specific preferences and automatically provide individualized feedback. However, developing these models faces two critical challenges: the scarcity of feedback from individual users and the need for efficient adaptation to unseen users. We argue that addressing these constraints requires a paradigm shift from fitting data to learn user preferences to learn the process of preference adaptation. To realize this, we propose Meta Reward Modeling (MRM), which reformulates personalized reward modeling as a meta-learning problem. Specifically, we represent each user's reward model as a weighted combination of base reward functions, and optimize the initialization of these weights using a Model-Agnostic Meta-Learning (MAML)-style framework to support fast adaptation under limited feedback. To ensure robustness, we introduce the Robust Personalization Objective (RPO), which places greater emphasis on hard-to-learn users during meta optimization. Extensive experiments on personalized preference datasets validate that MRM enhances few-shot personalization, improves user robustness, and consistently outperforms baselines.
☆ Reflect: Transparent Principle-Guided Reasoning for Constitutional Alignment at Scale
The constitutional framework of alignment aims to align large language models (LLMs) with value-laden principles written in natural language (such as to avoid using biased language). Prior work has focused on parameter fine-tuning techniques, such as reinforcement learning from human feedback (RLHF), to instill these principles. However, these approaches are computationally demanding, require careful engineering and tuning, and often require difficult-to-obtain human annotation data. We propose \textsc{reflect}, an inference-time framework for constitutional alignment that does not require any training or data, providing a plug-and-play approach for aligning an instruction-tuned model to a set of principles. \textsc{reflect} operates entirely in-context, combining a (i) constitution-conditioned base response with post-generation (ii) self-evaluation, (iii)(a) self-critique, and (iii)(b) final revision. \textsc{reflect}'s technique of explicit in-context reasoning over principles during post-generation outperforms standard few-shot prompting and provides transparent reasoning traces. Our results demonstrate that \textsc{reflect} significantly improves LLM conformance to diverse and complex principles, including principles quite distinct from those emphasized in the model's original parameter fine-tuning, without sacrificing factual reasoning. \textsc{reflect} is particularly effective at reducing the rate of rare but significant violations of principles, thereby improving safety and robustness in the tail end of the distribution of generations. Finally, we show that \textsc{reflect} naturally generates useful training data for traditional parameter fine-tuning techniques, allowing for efficient scaling and the reduction of inference-time computational overhead in long-term deployment scenarios.
☆ HalluCitation Matters: Revealing the Impact of Hallucinated References with 300 Hallucinated Papers in ACL Conferences
Recently, we have often observed hallucinated citations or references that do not correspond to any existing work in papers under review, preprints, or published papers. Such hallucinated citations pose a serious concern to scientific reliability. When they appear in accepted papers, they may also negatively affect the credibility of conferences. In this study, we refer to hallucinated citations as "HalluCitation" and systematically investigate their prevalence and impact. We analyze all papers published at ACL, NAACL, and EMNLP in 2024 and 2025, including main conference, Findings, and workshop papers. Our analysis reveals that nearly 300 papers contain at least one HalluCitation, most of which were published in 2025. Notably, half of these papers were identified at EMNLP 2025, the most recent conference, indicating that this issue is rapidly increasing. Moreover, more than 100 such papers were accepted as main conference and Findings papers at EMNLP 2025, affecting the credibility.
comment: Work In Progress
☆ Gained in Translation: Privileged Pairwise Judges Enhance Multilingual Reasoning SP3
When asked a question in a language less seen in its training data, current reasoning large language models (RLMs) often exhibit dramatically lower performance than when asked the same question in English. In response, we introduce \texttt{SP3F} (Self-Play with Privileged Pairwise Feedback), a two-stage framework for enhancing multilingual reasoning without \textit{any} data in the target language(s). First, we supervise fine-tune (SFT) on translated versions of English question-answer pairs to raise base model correctness. Second, we perform RL with feedback from a pairwise judge in a self-play fashion, with the judge receiving the English reference response as \textit{privileged information}. Thus, even when none of the model's responses are completely correct, the privileged pairwise judge can still tell which response is better. End-to-end, \texttt{SP3F} greatly improves base model performance, even outperforming fully post-trained models on multiple math and non-math tasks with less than of the training data across the single-language, multilingual, and generalization to unseen language settings.
comment: Code available at https://github.com/lintangsutawika/SP3F
☆ Mechanistic Analysis of Catastrophic Forgetting in Large Language Models During Continual Fine-tuning
Large language models exhibit remarkable performance across diverse tasks through pre-training and fine-tuning paradigms. However, continual fine-tuning on sequential tasks induces catastrophic forgetting, where newly acquired knowledge interferes with previously learned capabilities. Despite widespread observations of this phenomenon, the mechanistic understanding remains limited. Here, we present a comprehensive mechanistic analysis of catastrophic forgetting in transformer-based LLMs during sequential fine-tuning. Through systematic experiments across multiple model scales (109B to 400B total parameters) and task sequences, we identify three primary mechanisms driving forgetting: gradient interference in attention weights, representational drift in intermediate layers, and loss landscape flattening. We demonstrate that forgetting severity correlates strongly with task similarity (Pearson r = 0.87) and gradient alignment metrics. Our analysis reveals that approximately 15 to 23 percent of attention heads undergo severe disruption during fine-tuning, with lower layers showing greater susceptibility. These findings establish mechanistic foundations for developing targeted mitigation strategies in continual learning systems.
comment: 16 pages, 16 figures (6 main + 10 supplementary)
☆ FadeMem: Biologically-Inspired Forgetting for Efficient Agent Memory
Large language models deployed as autonomous agents face critical memory limitations, lacking selective forgetting mechanisms that lead to either catastrophic forgetting at context boundaries or information overload within them. While human memory naturally balances retention and forgetting through adaptive decay processes, current AI systems employ binary retention strategies that preserve everything or lose it entirely. We propose FadeMem, a biologically-inspired agent memory architecture that incorporates active forgetting mechanisms mirroring human cognitive efficiency. FadeMem implements differential decay rates across a dual-layer memory hierarchy, where retention is governed by adaptive exponential decay functions modulated by semantic relevance, access frequency, and temporal patterns. Through LLM-guided conflict resolution and intelligent memory fusion, our system consolidates related information while allowing irrelevant details to fade. Experiments on Multi-Session Chat, LoCoMo, and LTI-Bench demonstrate superior multi-hop reasoning and retrieval with 45\% storage reduction, validating the effectiveness of biologically-inspired forgetting in agent memory systems.
☆ AdaReasoner: Dynamic Tool Orchestration for Iterative Visual Reasoning
When humans face problems beyond their immediate capabilities, they rely on tools, providing a promising paradigm for improving visual reasoning in multimodal large language models (MLLMs). Effective reasoning, therefore, hinges on knowing which tools to use, when to invoke them, and how to compose them over multiple steps, even when faced with new tools or new tasks. We introduce \textbf{AdaReasoner}, a family of multimodal models that learn tool use as a general reasoning skill rather than as tool-specific or explicitly supervised behavior. AdaReasoner is enabled by (i) a scalable data curation pipeline exposing models to long-horizon, multi-step tool interactions; (ii) Tool-GRPO, a reinforcement learning algorithm that optimizes tool selection and sequencing based on end-task success; and (iii) an adaptive learning mechanism that dynamically regulates tool usage. Together, these components allow models to infer tool utility from task context and intermediate outcomes, enabling coordination of multiple tools and generalization to unseen tools. Empirically, AdaReasoner exhibits strong tool-adaptive and generalization behaviors: it autonomously adopts beneficial tools, suppresses irrelevant ones, and adjusts tool usage frequency based on task demands, despite never being explicitly trained to do so. These capabilities translate into state-of-the-art performance across challenging benchmarks, improving the 7B base model by +24.9\% on average and surpassing strong proprietary systems such as GPT-5 on multiple tasks, including VSP and Jigsaw.
comment: 28 pages, 10 figures and 13 tables
☆ Emergence of Phonemic, Syntactic, and Semantic Representations in Artificial Neural Networks
During language acquisition, children successively learn to categorize phonemes, identify words, and combine them with syntax to form new meaning. While the development of this behavior is well characterized, we still lack a unifying computational framework to explain its underlying neural representations. Here, we investigate whether and when phonemic, lexical, and syntactic representations emerge in the activations of artificial neural networks during their training. Our results show that both speech- and text-based models follow a sequence of learning stages: during training, their neural activations successively build subspaces, where the geometry of the neural activations represents phonemic, lexical, and syntactic structure. While this developmental trajectory qualitatively relates to children's, it is quantitatively different: These algorithms indeed require two to four orders of magnitude more data for these neural representations to emerge. Together, these results show conditions under which major stages of language acquisition spontaneously emerge, and hence delineate a promising path to understand the computations underpinning language acquisition.
☆ Stability as a Liability:Systematic Breakdown of Linguistic Structure in LLMs
Training stability is typically regarded as a prerequisite for reliable optimization in large language models. In this work, we analyze how stabilizing training dynamics affects the induced generation distribution. We show that under standard maximum likelihood training, stable parameter trajectories lead stationary solutions to approximately minimize the forward KL divergence to the empirical distribution, while implicitly reducing generative entropy. As a consequence, the learned model can concentrate probability mass on a limited subset of empirical modes, exhibiting systematic degeneration despite smooth loss convergence. We empirically validate this effect using a controlled feedback-based training framework that stabilizes internal generation statistics, observing consistent low-entropy outputs and repetitive behavior across architectures and random seeds. It indicates that optimization stability and generative expressivity are not inherently aligned, and that stability alone is an insufficient indicator of generative quality.
☆ From Classification to Ranking: Enhancing LLM Reasoning Capabilities for MBTI Personality Detection AAAI 2026
Personality detection aims to measure an individual's corresponding personality traits through their social media posts. The advancements in Large Language Models (LLMs) offer novel perspectives for personality detection tasks. Existing approaches enhance personality trait analysis by leveraging LLMs to extract semantic information from textual posts as prompts, followed by training classifiers for categorization. However, accurately classifying personality traits remains challenging due to the inherent complexity of human personality and subtle inter-trait distinctions. Moreover, prompt-based methods often exhibit excessive dependency on expert-crafted knowledge without autonomous pattern-learning capacity. To address these limitations, we view personality detection as a ranking task rather than a classification and propose a corresponding reinforcement learning training paradigm. First, we employ supervised fine-tuning (SFT) to establish personality trait ranking capabilities while enforcing standardized output formats, creating a robust initialization. Subsequently, we introduce Group Relative Policy Optimization (GRPO) with a specialized ranking-based reward function. Unlike verification tasks with definitive solutions, personality assessment involves subjective interpretations and blurred boundaries between trait categories. Our reward function explicitly addresses this challenge by training LLMs to learn optimal answer rankings. Comprehensive experiments have demonstrated that our method achieves state-of-the-art performance across multiple personality detection benchmarks.
comment: 9 pages, 4 figures, AAAI 2026 Bridge
☆ One Persona, Many Cues, Different Results: How Sociodemographic Cues Impact LLM Personalization
Personalization of LLMs by sociodemographic subgroup often improves user experience, but can also introduce or amplify biases and unfair outcomes across groups. Prior work has employed so-called personas, sociodemographic user attributes conveyed to a model, to study bias in LLMs by relying on a single cue to prompt a persona, such as user names or explicit attribute mentions. This disregards LLM sensitivity to prompt variations (robustness) and the rarity of some cues in real interactions (external validity). We compare six commonly used persona cues across seven open and proprietary LLMs on four writing and advice tasks. While cues are overall highly correlated, they produce substantial variance in responses across personas. We therefore caution against claims from a single persona cue and recommend future personalization research to evaluate multiple externally valid cues.
☆ Unknown Unknowns: Why Hidden Intentions in LLMs Evade Detection
LLMs are increasingly embedded in everyday decision-making, yet their outputs can encode subtle, unintended behaviours that shape user beliefs and actions. We refer to these covert, goal-directed behaviours as hidden intentions, which may arise from training and optimisation artefacts, or be deliberately induced by an adversarial developer, yet remain difficult to detect in practice. We introduce a taxonomy of ten categories of hidden intentions, grounded in social science research and organised by intent, mechanism, context, and impact, shifting attention from surface-level behaviours to design-level strategies of influence. We show how hidden intentions can be easily induced in controlled models, providing both testbeds for evaluation and demonstrations of potential misuse. We systematically assess detection methods, including reasoning and non-reasoning LLM judges, and find that detection collapses in realistic open-world settings, particularly under low-prevalence conditions, where false positives overwhelm precision and false negatives conceal true risks. Stress tests on precision-prevalence and precision-FNR trade-offs reveal why auditing fails without vanishingly small false positive rates or strong priors on manipulation types. Finally, a qualitative case study shows that all ten categories manifest in deployed, state-of-the-art LLMs, emphasising the urgent need for robust frameworks. Our work provides the first systematic analysis of detectability failures of hidden intentions in LLMs under open-world settings, offering a foundation for understanding, inducing, and stress-testing such behaviours, and establishing a flexible taxonomy for anticipating evolving threats and informing governance.
☆ Evaluating Morphological Plausibility of Subword Tokenization via Statistical Alignment with Morpho-Syntactic Features EACL 2026
We present a novel metric for the evaluation of the morphological plausibility of subword segmentation. Unlike the typically used morpheme boundary or retrieval F-score, which requires gold segmentation data that is either unavailable or of inconsistent quality across many languages, our approach utilizes morpho-syntactic features. These are available in resources such as Universal Dependencies or UniMorph for a much wider range of languages. The metric works by probabilistically aligning subwords with morphological features through an IBM Model 1. Our experiments show that the metric correlates well with traditional morpheme boundary recall while being more broadly applicable across languages with different morphological systems.
comment: Accepted to Findings of EACL 2026, 9 pages, 6 figures
☆ From Verifiable Dot to Reward Chain: Harnessing Verifiable Reference-based Rewards for Reinforcement Learning of Open-ended Generation ICLR 2026
Reinforcement learning with verifiable rewards (RLVR) succeeds in reasoning tasks (e.g., math and code) by checking the final verifiable answer (i.e., a verifiable dot signal). However, extending this paradigm to open-ended generation is challenging because there is no unambiguous ground truth. Relying on single-dot supervision often leads to inefficiency and reward hacking. To address these issues, we propose reinforcement learning with verifiable reference-based rewards (RLVRR). Instead of checking the final answer, RLVRR extracts an ordered linguistic signal from high-quality references (i.e, reward chain). Specifically, RLVRR decomposes rewards into two dimensions: content, which preserves deterministic core concepts (e.g., keywords), and style, which evaluates adherence to stylistic properties through LLM-based verification. In this way, RLVRR combines the exploratory strength of RL with the efficiency and reliability of supervised fine-tuning (SFT). Extensive experiments on more than 10 benchmarks with Qwen and Llama models confirm the advantages of our approach. RLVRR (1) substantially outperforms SFT trained with ten times more data and advanced reward models, (2) unifies the training of structured reasoning and open-ended generation, and (3) generalizes more effectively while preserving output diversity. These results establish RLVRR as a principled and efficient path toward verifiable reinforcement learning for general-purpose LLM alignment. We release our code and data at https://github.com/YJiangcm/RLVRR.
comment: 19 pages, 8 figures, 12 tables. Accepted at ICLR 2026
☆ Exploring Fine-Tuning for In-Context Retrieval and Efficient KV-Caching in Long-Context Language Models EACL 2026
With context windows of millions of tokens, Long-Context Language Models (LCLMs) can encode entire document collections, offering a strong alternative to conventional retrieval-augmented generation (RAG). However, it remains unclear whether fine-tuning strategies can improve long-context performance and translate to greater robustness under KV-cache compression techniques. In this work, we investigate which training strategies most effectively enhance LCLMs' ability to identify and use relevant information, as well as enhancing their robustness under KV-cache compression. Our experiments show substantial in-domain improvements, achieving gains of up to +20 points over the base model. However, out-of-domain generalization remains task dependent with large variance -- LCLMs excels on finance questions (+9 points), while RAG shows stronger performance on multiple-choice questions (+6 points) over the baseline models. Finally, we show that our fine-tuning approaches bring moderate improvements in robustness under KV-cache compression, with gains varying across tasks.
comment: European Chapter of the Association for Computational Linguistics EACL 2026
☆ GenAI for Social Work Field Education: Client Simulation with Real-Time Feedback
Field education is the signature pedagogy of social work, yet providing timely and objective feedback during training is constrained by the availability of instructors and counseling clients. In this paper, we present SWITCH, the Social Work Interactive Training Chatbot. SWITCH integrates realistic client simulation, real-time counseling skill classification, and a Motivational Interviewing (MI) progression system into the training workflow. To model a client, SWITCH uses a cognitively grounded profile comprising static fields (e.g., background, beliefs) and dynamic fields (e.g., emotions, automatic thoughts, openness), allowing the agent's behavior to evolve throughout a session realistically. The skill classification module identifies the counseling skills from the user utterances, and feeds the result to the MI controller that regulates the MI stage transitions. To enhance classification accuracy, we study in-context learning with retrieval over annotated transcripts, and a fine-tuned BERT multi-label classifier. In the experiments, we demonstrated that both BERT-based approach and in-context learning outperforms the baseline with big margin. SWITCH thereby offers a scalable, low-cost, and consistent training workflow that complements field education, and allows supervisors to focus on higher-level mentorship.
comment: 2025 IEEE International Conference on Big Data. ISBN: 979-8-3315-9447-3/25. Page numbers: 3544-3553
☆ Using Large Language Models to Construct Virtual Top Managers: A Method for Organizational Research
This study introduces a methodological framework that uses large language models to create virtual personas of real top managers. Drawing on real CEO communications and Moral Foundations Theory, we construct LLM-based participants that simulate the decision-making of individual leaders. Across three phases, we assess construct validity, reliability, and behavioral fidelity by benchmarking these virtual CEOs against human participants. Our results indicate that theoretically scaffolded personas approximate the moral judgements observed in human samples, suggesting that LLM-based personas can serve as credible and complementary tools for organizational research in contexts where direct access to executives is limited. We conclude by outlining implications for future research using LLM-based personas in organizational settings.
☆ AgentDoG: A Diagnostic Guardrail Framework for AI Agent Safety and Security
The rise of AI agents introduces complex safety and security challenges arising from autonomous tool use and environmental interactions. Current guardrail models lack agentic risk awareness and transparency in risk diagnosis. To introduce an agentic guardrail that covers complex and numerous risky behaviors, we first propose a unified three-dimensional taxonomy that orthogonally categorizes agentic risks by their source (where), failure mode (how), and consequence (what). Guided by this structured and hierarchical taxonomy, we introduce a new fine-grained agentic safety benchmark (ATBench) and a Diagnostic Guardrail framework for agent safety and security (AgentDoG). AgentDoG provides fine-grained and contextual monitoring across agent trajectories. More Crucially, AgentDoG can diagnose the root causes of unsafe actions and seemingly safe but unreasonable actions, offering provenance and transparency beyond binary labels to facilitate effective agent alignment. AgentDoG variants are available in three sizes (4B, 7B, and 8B parameters) across Qwen and Llama model families. Extensive experimental results demonstrate that AgentDoG achieves state-of-the-art performance in agentic safety moderation in diverse and complex interactive scenarios. All models and datasets are openly released.
comment: 40 pages, 26 figures
☆ Demographic Probing of Large Language Models Lacks Construct Validity
Demographic probing is widely used to study how large language models (LLMs) adapt their behavior to signaled demographic attributes. This approach typically uses a single demographic cue in isolation (e.g., a name or dialect) as a signal for group membership, implicitly assuming strong construct validity: that such cues are interchangeable operationalizations of the same underlying, demographically conditioned behavior. We test this assumption in realistic advice-seeking interactions, focusing on race and gender in a U.S. context. We find that cues intended to represent the same demographic group induce only partially overlapping changes in model behavior, while differentiation between groups within a given cue is weak and uneven. Consequently, estimated disparities are unstable, with both magnitude and direction varying across cues. We further show that these inconsistencies partly arise from variation in how strongly cues encode demographic attributes and from linguistic confounders that independently shape model behavior. Together, our findings suggest that demographic probing lacks construct validity: it does not yield a single, stable characterization of how LLMs condition on demographic information, which may reflect a misspecified or fragmented construct. We conclude by recommending the use of multiple, ecologically valid cues and explicit control of confounders to support more defensible claims about demographic effects in LLMs.
☆ Funny or Persuasive, but Not Both: Evaluating Fine-Grained Multi-Concept Control in LLMs EACL
Large Language Models (LLMs) offer strong generative capabilities, but many applications require explicit and \textit{fine-grained} control over specific textual concepts, such as humor, persuasiveness, or formality. Prior approaches in prompting and representation engineering can provide coarse or single-attribute control, but systematic evaluation of multi-attribute settings remains limited. We introduce an evaluation framework for fine-grained controllability for both single- and dual-concept scenarios, focusing on linguistically distinct concept pairs (e.g., persuasiveness vs.~humor). Surprisingly, across multiple LLMs and generative tasks, we find that performance often drops in the dual-concept setting, even though the chosen concepts should in principle be separable. This reveals a fundamental limitation of naive prompting-based control: models struggle with compositionality even when concepts are intuitively independent. Our framework provides systematic evidence of this gap and offers a principled approach for measuring the ability of future methods for multi-concept control.
comment: Accepted for publication at EACL main conference
☆ Latent Knowledge as a Predictor of Fact Acquisition in Fine-Tuned Large Language Models
Large language models store biomedical facts with uneven strength after pretraining: some facts are present in the weights but are not reliably accessible under deterministic decoding (latent knowledge), while others are scarcely represented. We fine tuned Llama 3.1 8B Instruct to learn ontology term identifier mappings from the Human Phenotype Ontology (800 pairs) and the Gene Ontology (400 training pairs), withholding 400 GO pairs to test generalization. Treating learning as a time to event process across 20 epochs, we used stochastic decoding to detect latent knowledge at baseline and Cox proportional hazards models to identify predictors of acquisition, generalization, and degradation. Baseline deterministic recall for HPO was 2.8%, rising to 71.9% after fine-tuning. Latent knowledge was the strongest predictor of faster fact acquisition (HR 2.6) and was associated with earlier, higher peak learning rates and faster convergence; identifier frequency and curated annotation counts had smaller effects. Generalization to withheld GO facts was uncommon (5.8%) but more likely when latent knowledge was present. Previously correct GO mappings degraded more often for withheld (unseen) terms than for trained (seen) terms, suggesting a protective effect of reinforcement during training. These results show that latent knowledge predicts both the speed of factual learning during fine-tuning and the limited generalization of unseen ontology facts, while resistance to degradation depends on whether facts are reinforced.
☆ Pisets: A Robust Speech Recognition System for Lectures and Interviews
This work presents a speech-to-text system "Pisets" for scientists and journalists which is based on a three-component architecture aimed at improving speech recognition accuracy while minimizing errors and hallucinations associated with the Whisper model. The architecture comprises primary recognition using Wav2Vec2, false positive filtering via the Audio Spectrogram Transformer (AST), and final speech recognition through Whisper. The implementation of curriculum learning methods and the utilization of diverse Russian-language speech corpora significantly enhanced the system's effectiveness. Additionally, advanced uncertainty modeling techniques were introduced, contributing to further improvements in transcription quality. The proposed approaches ensure robust transcribing of long audio data across various acoustic conditions compared to WhisperX and the usual Whisper model. The source code of "Pisets" system is publicly available at GitHub: https://github.com/bond005/pisets.
☆ Noise-Robust AV-ASR Using Visual Features Both in the Whisper Encoder and Decoder ICASSP2026
In audiovisual automatic speech recognition (AV-ASR) systems, information fusion of visual features in a pre-trained ASR has been proven as a promising method to improve noise robustness. In this work, based on the prominent Whisper ASR, first, we propose a simple and effective visual fusion method -- use of visual features both in encoder and decoder (dual-use) -- to learn the audiovisual interactions in the encoder and to weigh modalities in the decoder. Second, we compare visual fusion methods in Whisper models of various sizes. Our proposed dual-use method shows consistent noise robustness improvement, e.g., a 35% relative improvement (WER: 4.41% vs. 6.83%) based on Whisper small, and a 57% relative improvement (WER: 4.07% vs. 9.53%) based on Whisper medium, compared to typical reference middle fusion in babble noise with a signal-to-noise ratio (SNR) of 0dB. Third, we conduct ablation studies examining the impact of various module designs and fusion options. Fine-tuned on 1929 hours of audiovisual data, our dual-use method using Whisper medium achieves 4.08% (MUSAN babble noise) and 4.43% (NoiseX babble noise) average WER across various SNRs, thereby establishing a new state-of-the-art in noisy conditions on the LRS3 AV-ASR benchmark. Our code is at https://github.com/ifnspaml/Dual-Use-AVASR
comment: accepted at ICASSP2026
☆ Do not be greedy, Think Twice: Sampling and Selection for Document-level Information Extraction IJCAI
Document-level Information Extraction (DocIE) aims to produce an output template with the entities and relations of interest occurring in the given document. Standard practices include prompting decoder-only LLMs using greedy decoding to avoid output variability. Rather than treating this variability as a limitation, we show that sampling can produce substantially better solutions than greedy decoding, especially when using reasoning models. We thus propose ThinkTwice, a sampling and selection framework in which the LLM generates multiple candidate templates for a given document, and a selection module chooses the most suitable one. We introduce both an unsupervised method that exploits agreement across generated outputs, and a supervised selection method using reward models trained on labeled DocIE data. To address the scarcity of golden reasoning trajectories for DocIE, we propose a rejection-sampling-based method to generate silver training data that pairs output templates with reasoning traces. Our experiments show the validity of unsupervised and supervised ThinkTwice, consistently outperforming greedy baselines and the state-of-the-art.
comment: Submitted to IJCAI-ECAI 2026
☆ OCR-Enhanced Multimodal ASR Can Read While Listening ICASSP 2026
Visual information, such as subtitles in a movie, often helps automatic speech recognition. In this paper, we propose Donut-Whisper, an audio-visual ASR model with dual encoder to leverage visual information to improve speech recognition performance in both English and Chinese. Donut-Whisper combines the advantage of the linear and the Q-Former-based modality alignment structures via a cross-attention module, generating more powerful audio-visual features. Meanwhile, we propose a lightweight knowledge distillation scheme showcasing the potential of using audio-visual models to teach audio-only models to achieve better performance. Moreover, we propose a new multilingual audio-visual speech recognition dataset based on movie clips containing both Chinese and English partitions. As a result, Donut-Whisper achieved significantly better performance on both English and Chinese partition of the dataset compared to both Donut and Whisper large V3 baselines. In particular, an absolute 5.75% WER reduction and a 16.5% absolute CER reduction were achieved on the English and Chinese sets respectively compared to the Whisper ASR baseline.
comment: 4 pages, 2 figures. Submitted to ICASSP 2026
☆ Dynamic Thinking-Token Selection for Efficient Reasoning in Large Reasoning Models
Large Reasoning Models (LRMs) excel at solving complex problems by explicitly generating a reasoning trace before deriving the final answer. However, these extended generations incur substantial memory footprint and computational overhead, bottlenecking LRMs' efficiency. This work uses attention maps to analyze the influence of reasoning traces and uncover an interesting phenomenon: only some decision-critical tokens in a reasoning trace steer the model toward the final answer, while the remaining tokens contribute negligibly. Building on this observation, we propose Dynamic Thinking-Token Selection (DynTS). This method identifies decision-critical tokens and retains only their associated Key-Value (KV) cache states during inference, evicting the remaining redundant entries to optimize efficiency.
☆ Corpus-Based Approaches to Igbo Diacritic Restoration
With natural language processing (NLP), researchers aim to enable computers to identify and understand patterns in human languages. This is often difficult because a language embeds many dynamic and varied properties in its syntax, pragmatics and phonology, which need to be captured and processed. The capacity of computers to process natural languages is increasing because NLP researchers are pushing its boundaries. But these research works focus more on well-resourced languages such as English, Japanese, German, French, Russian, Mandarin Chinese, etc. Over 95% of the world's 7000 languages are low-resourced for NLP, i.e. they have little or no data, tools, and techniques for NLP work. In this thesis, we present an overview of diacritic ambiguity and a review of previous diacritic disambiguation approaches on other languages. Focusing on the Igbo language, we report the steps taken to develop a flexible framework for generating datasets for diacritic restoration. Three main approaches, the standard n-gram model, the classification models and the embedding models were proposed. The standard n-gram models use a sequence of previous words to the target stripped word as key predictors of the correct variants. For the classification models, a window of words on both sides of the target stripped word was used. The embedding models compare the similarity scores of the combined context word embeddings and the embeddings of each of the candidate variant vectors.
comment: 270 page. Ph.D. Thesis. The University of Sheffield
☆ Hierarchical Text Classification with LLM-Refined Taxonomies
Hierarchical text classification (HTC) depends on taxonomies that organize labels into structured hierarchies. However, many real-world taxonomies introduce ambiguities, such as identical leaf names under similar parent nodes, which prevent language models (LMs) from learning clear decision boundaries. In this paper, we present TaxMorph, a framework that uses large language models (LLMs) to transform entire taxonomies through operations such as renaming, merging, splitting, and reordering. Unlike prior work, our method revises the full hierarchy to better match the semantics encoded by LMs. Experiments across three HTC benchmarks show that LLM-refined taxonomies consistently outperform human-curated ones in various settings up to +2.9pp. in F1. To better understand these improvements, we compare how well LMs can assign leaf nodes to parent nodes and vice versa across human-curated and LLM-refined taxonomies. We find that human-curated taxonomies lead to more easily separable clusters in embedding space. However, the LLM-refined taxonomies align more closely with the model's actual confusion patterns during classification. In other words, even though they are harder to separate, they better reflect the model's inductive biases. These findings suggest that LLM-guided refinement creates taxonomies that are more compatible with how models learn, improving HTC performance.
☆ CitiLink: Enhancing Municipal Transparency and Citizen Engagement through Searchable Meeting Minutes
City council minutes are typically lengthy and formal documents with a bureaucratic writing style. Although publicly available, their structure often makes it difficult for citizens or journalists to efficiently find information. In this demo, we present CitiLink, a platform designed to transform unstructured municipal meeting minutes into structured and searchable data, demonstrating how NLP and IR can enhance the accessibility and transparency of local government. The system employs LLMs to extract metadata, discussed subjects, and voting outcomes, which are then indexed in a database to support full-text search with BM25 ranking and faceted filtering through a user-friendly interface. The developed system was built over a collection of 120 minutes made available by six Portuguese municipalities. To assess its usability, CitiLink was tested through guided sessions with municipal personnel, providing insights into how real users interact with the system. In addition, we evaluated Gemini's performance in extracting relevant information from the minutes, highlighting its effectiveness in data extraction.
☆ Can Good Writing Be Generative? Expert-Level AI Writing Emerges through Fine-Tuning on High-Quality Books
Creative writing has long been considered a uniquely human endeavor, requiring voice and style that machines could not replicate. This assumption is challenged by Generative AI that can emulate thousands of author styles in seconds with negligible marginal labor. To understand this better, we conducted a behavioral experiment where 28 MFA writers (experts) competed against three LLMs in emulating 50 critically acclaimed authors. Based on blind pairwise comparisons by 28 expert judges and 131 lay judges, we find that experts preferred human writing in 82.7% of cases under the in-context prompting condition but this reversed to 62% preference for AI after fine-tuning on authors' complete works. Lay judges, however, consistently preferred AI writing. Debrief interviews with expert writers revealed that their preference for AI writing triggered an identity crisis, eroding aesthetic confidence and questioning what constitutes "good writing." These findings challenge discourse about AI's creative limitations and raise fundamental questions about the future of creative labor.
comment: Proceedings of CHI 2026 Conference (To Appear)
☆ Code over Words: Overcoming Semantic Inertia via Code-Grounded Reasoning
LLMs struggle with Semantic Inertia: the inability to inhibit pre-trained priors (e.g., "Lava is Dangerous") when dynamic, in-context rules contradict them. We probe this phenomenon using Baba Is You, where physical laws are mutable text rules, enabling precise evaluation of models' ability to override learned priors when rules change. We quantatively observe that larger models can exhibit inverse scaling: they perform worse than smaller models when natural language reasoning requires suppressing pre-trained associations (e.g., accepting "Lava is Safe"). Our analysis attributes this to natural language encoding, which entangles descriptive semantics and logical rules, leading to persistent hallucinations of familiar physics despite explicit contradictory rules. Here we show that representing dynamics as executable code, rather than descriptive text, reverses this trend and enables effective prior inhibition. We introduce Code-Grounded Vistas (LCV), which fine-tunes models on counterfactual pairs and identifies states with contradictory rules, thereby forcing attention to logical constraints rather than visual semantics. This training-time approach outperforms expensive inference-time search methods in both efficiency and accuracy. Our results demonstrate that representation fundamentally determines whether scaling improves or impairs contextual reasoning. This challenges the assumption that larger models are universally better, with implications for domains that require dynamic overriding of learned priors.
☆ When Domain Pretraining Interferes with Instruction Alignment: An Empirical Study of Adapter Merging in Medical LLMs
Large language models (LLMs) show strong general capability but often struggle with medical terminology precision and safety-critical instruction following. We present a case study for adapter interference in safety-critical domains using a 14B-parameter base model through a two-stage LoRA pipeline: (1) domain-adaptive pre-training (PT) to inject broad medical knowledge via continued pre-training (DAPT), and (2) supervised fine-tuning (SFT) to align the model with medical question-answering behaviors through instruction-style data. To balance instruction-following ability and domain knowledge retention, we propose Weighted Adapter Merging, linearly combining SFT and PT adapters before exporting a merged base-model checkpoint. On a held-out medical validation set (F5/F6), the merged model achieves BLEU-4 = 16.38, ROUGE-1 = 20.42, ROUGE-2 = 4.60, and ROUGE-L = 11.54 under a practical decoding configuration. We further analyze decoding sensitivity and training stability with loss curves and controlled decoding comparisons.
☆ Overalignment in Frontier LLMs: An Empirical Study of Sycophantic Behaviour in Healthcare
As LLMs are increasingly integrated into clinical workflows, their tendency for sycophancy, prioritizing user agreement over factual accuracy, poses significant risks to patient safety. While existing evaluations often rely on subjective datasets, we introduce a robust framework grounded in medical MCQA with verifiable ground truths. We propose the Adjusted Sycophancy Score, a novel metric that isolates alignment bias by accounting for stochastic model instability, or "confusability". Through an extensive scaling analysis of the Qwen-3 and Llama-3 families, we identify a clear scaling trajectory for resilience. Furthermore, we reveal a counter-intuitive vulnerability in reasoning-optimized "Thinking" models: while they demonstrate high vanilla accuracy, their internal reasoning traces frequently rationalize incorrect user suggestions under authoritative pressure. Our results across frontier models suggest that benchmark performance is not a proxy for clinical reliability, and that simplified reasoning structures may offer superior robustness against expert-driven sycophancy.
☆ Integrating Fine-Grained Audio-Visual Evidence for Robust Multimodal Emotion Reasoning
Multimodal emotion analysis is shifting from static classification to generative reasoning. Beyond simple label prediction, robust affective reasoning must synthesize fine-grained signals such as facial micro-expressions and prosodic which shifts to decode the latent causality within complex social contexts. However, current Multimodal Large Language Models (MLLMs) face significant limitations in fine-grained perception, primarily due to data scarcity and insufficient cross-modal fusion. As a result, these models often exhibit unimodal dominance which leads to hallucinations in complex multimodal interactions, particularly when visual and acoustic cues are subtle, ambiguous, or even contradictory (e.g., in sarcastic scenery). To address this, we introduce SABER-LLM, a framework designed for robust multimodal reasoning. First, we construct SABER, a large-scale emotion reasoning dataset comprising 600K video clips, annotated with a novel six-dimensional schema that jointly captures audiovisual cues and causal logic. Second, we propose the structured evidence decomposition paradigm, which enforces a "perceive-then-reason" separation between evidence extraction and reasoning to alleviate unimodal dominance. The ability to perceive complex scenes is further reinforced by consistency-aware direct preference optimization, which explicitly encourages alignment among modalities under ambiguous or conflicting perceptual conditions. Experiments on EMER, EmoBench-M, and SABER-Test demonstrate that SABER-LLM significantly outperforms open-source baselines and achieves robustness competitive with closed-source models in decoding complex emotional dynamics. The dataset and model are available at https://github.com/zxzhao0/SABER-LLM.
☆ MultiVis-Agent: A Multi-Agent Framework with Logic Rules for Reliable and Comprehensive Cross-Modal Data Visualization SIGMOD 2026
Real-world visualization tasks involve complex, multi-modal requirements that extend beyond simple text-to-chart generation, requiring reference images, code examples, and iterative refinement. Current systems exhibit fundamental limitations: single-modality input, one-shot generation, and rigid workflows. While LLM-based approaches show potential for these complex requirements, they introduce reliability challenges including catastrophic failures and infinite loop susceptibility. To address this gap, we propose MultiVis-Agent, a logic rule-enhanced multi-agent framework for reliable multi-modal and multi-scenario visualization generation. Our approach introduces a four-layer logic rule framework that provides mathematical guarantees for system reliability while maintaining flexibility. Unlike traditional rule-based systems, our logic rules are mathematical constraints that guide LLM reasoning rather than replacing it. We formalize the MultiVis task spanning four scenarios from basic generation to iterative refinement, and develop MultiVis-Bench, a benchmark with over 1,000 cases for multi-modal visualization evaluation. Extensive experiments demonstrate that our approach achieves 75.63% visualization score on challenging tasks, significantly outperforming baselines (57.54-62.79%), with task completion rates of 99.58% and code execution success rates of 94.56% (vs. 74.48% and 65.10% without logic rules), successfully addressing both complexity and reliability challenges in automated visualization generation.
comment: Accepted to SIGMOD 2026
☆ Calibrating Beyond English: Language Diversity for Better Quantized Multilingual LLM EACL 2026
Quantization is an effective technique for reducing the storage footprint and computational costs of Large Language Models (LLMs), but it often results in performance degradation. Existing post-training quantization methods typically use small, English-only calibration sets; however, their impact on multilingual models remains underexplored. We systematically evaluate eight calibration settings (five single-language and three multilingual mixes) on two quantizers (GPTQ, AWQ) on data from 10 languages. Our findings reveal a consistent trend: non-English and multilingual calibration sets significantly improve perplexity compared to English-only baselines. Specifically, we observe notable average perplexity gains across both quantizers on Llama3.1 8B and Qwen2.5 7B, with multilingual mixes achieving the largest overall reductions of up to 3.52 points in perplexity. Furthermore, our analysis indicates that tailoring calibration sets to the evaluation language yields the largest improvements for individual languages, underscoring the importance of linguistic alignment. We also identify specific failure cases where certain language-quantizer combinations degrade performance, which we trace to differences in activation range distributions across languages. These results highlight that static one-size-fits-all calibration is suboptimal and that tailoring calibration data, both in language and diversity, plays a crucial role in robustly quantizing multilingual LLMs.
comment: Accepted to EACL 2026 Main Conference
☆ Suppressing Final Layer Hidden State Jumps in Transformer Pretraining EACL 2026
This paper discusses the internal behavior of Transformer language models. Many recent pre-trained models have been reported to exhibit only slight changes in the angular distance between the input and output hidden state vectors in the middle Transformer layers, despite a disproportionately large ``jump'' in the angular distance occurring in or around the final Transformer layer. To characterize this, we first introduce a quantitative metric for the jump strength around the final layer, and then demonstrate its prevalence across many open-weight models, as well as its amplification throughout pre-training. Assuming such jumps indicate an undesirable property, we propose the jump-suppressing regularizer (JREG) which penalizes this jump during pre-training, thereby encouraging more balanced capability usage across the middle layers. Empirical evaluations of three model sizes of Llama-based models, trained with the proposed JREG method, reveal improved task performance compared to the baseline without altering the model architecture.
comment: Accepted to the Findings of EACL 2026
☆ Temp-R1: A Unified Autonomous Agent for Complex Temporal KGQA via Reverse Curriculum Reinforcement Learning
Temporal Knowledge Graph Question Answering (TKGQA) is inherently challenging, as it requires sophisticated reasoning over dynamic facts with multi-hop dependencies and complex temporal constraints. Existing methods rely on fixed workflows and expensive closed-source APIs, limiting flexibility and scalability. We propose Temp-R1, the first autonomous end-to-end agent for TKGQA trained through reinforcement learning. To address cognitive overload in single-action reasoning, we expand the action space with specialized internal actions alongside external action. To prevent shortcut learning on simple questions, we introduce reverse curriculum learning that trains on difficult questions first, forcing the development of sophisticated reasoning before transferring to easier cases. Our 8B-parameter Temp-R1 achieves state-of-the-art performance on MultiTQ and TimelineKGQA, improving 19.8% over strong baselines on complex questions. Our work establishes a new paradigm for autonomous temporal reasoning agents. Our code will be publicly available soon at https://github.com/zjukg/Temp-R1.
comment: Work in progress
☆ U-Fold: Dynamic Intent-Aware Context Folding for User-Centric Agents
Large language model (LLM)-based agents have been successfully deployed in many tool-augmented settings, but their scalability is fundamentally constrained by context length. Existing context-folding methods mitigate this issue by summarizing past interactions, yet they are typically designed for single-query or single-intent scenarios. In more realistic user-centric dialogues, we identify two major failure modes: (i) they irreversibly discard fine-grained constraints and intermediate facts that are crucial for later decisions, and (ii) their summaries fail to track evolving user intent, leading to omissions and erroneous actions. To address these limitations, we propose U-Fold, a dynamic context-folding framework tailored to user-centric tasks. U-Fold retains the full user--agent dialogue and tool-call history but, at each turn, uses two core components to produce an intent-aware, evolving dialogue summary and a compact, task-relevant tool log. Extensive experiments on $τ$-bench, $τ^2$-bench, VitaBench, and harder context-inflated settings show that U-Fold consistently outperforms ReAct (achieving a 71.4% win rate in long-context settings) and prior folding baselines (with improvements of up to 27.0%), particularly on long, noisy, multi-turn tasks. Our study demonstrates that U-Fold is a promising step toward transferring context-management techniques from single-query benchmarks to realistic user-centric applications.
☆ Think-Augmented Function Calling: Improving LLM Parameter Accuracy Through Embedded Reasoning
Large language models (LLMs) have demonstrated remarkable capabilities in function calling for autonomous agents, yet current mechanisms lack explicit reasoning transparency during parameter generation, particularly for complex functions with interdependent parameters. While existing approaches like chain-of-thought prompting operate at the agent level, they fail to provide fine-grained reasoning guidance for individual function parameters. To address these limitations, we propose Think-Augmented Function Calling (TAFC), a novel framework that enhances function calling accuracy through explicit reasoning at both function and parameter levels. Our method introduces a universal "think" parameter augmentation that enables models to articulate their decision-making process, with dynamic optimization for parameter descriptions to improve reasoning quality. For complex parameters, TAFC automatically triggers granular reasoning based on complexity scoring, ensuring appropriate justification for critical decisions. Additionally, we propose reasoning-guided optimization to align generated reasoning with human expectations. TAFC requires no architectural modifications to existing LLMs while maintaining full API compatibility. Evaluation on ToolBench across proprietary and open-source models demonstrates significant improvements in parameter generation accuracy and reasoning coherence for multi-parameter functions, while providing enhanced interpretability for debugging AI agent behaviors.
☆ Reflecting Twice before Speaking with Empathy: Self-Reflective Alternating Inference for Empathy-Aware End-to-End Spoken Dialogue
End-to-end Spoken Language Models (SLMs) hold great potential for paralinguistic perception, and numerous studies have aimed to enhance their capabilities, particularly for empathetic dialogue. However, current approaches largely depend on rigid supervised signals, such as ground-truth response in supervised fine-tuning or preference scores in reinforcement learning. Such reliance is fundamentally limited for modeling complex empathy, as there is no single "correct" response and a simple numerical score cannot fully capture the nuances of emotional expression or the appropriateness of empathetic behavior. To address these limitations, we sequentially introduce EmpathyEval, a descriptive natural-language-based evaluation model for assessing empathetic quality in spoken dialogues. Building upon EmpathyEval, we propose ReEmpathy, an end-to-end SLM that enhances empathetic dialogue through a novel Empathetic Self-Reflective Alternating Inference mechanism, which interleaves spoken response generation with free-form, empathy-related reflective reasoning. Extensive experiments demonstrate that ReEmpathy substantially improves empathy-sensitive spoken dialogue by enabling reflective reasoning, offering a promising approach toward more emotionally intelligent and empathy-aware human-computer interactions.
☆ Designing large language model prompts to extract scores from messy text: A shared dataset and challenge
In some areas of computing, natural language processing and information science, progress is made by sharing datasets and challenging the community to design the best algorithm for an associated task. This article introduces a shared dataset of 1446 short texts, each of which describes a research quality score on the UK scale of 1* to 4*. This is a messy collection, with some texts not containing scores and others including invalid scores or strange formats. With this dataset there is also a description of what constitutes a valid score and a "gold standard" of the correct scores for these texts (including missing values). The challenge is to design a prompt for Large Language Models (LLMs) to extract the scores from these texts as accurately as possible. The format for the response should be a number and no other text so there are two aspects to the challenge: ensuring that the LLM returns only a number, and instructing it to deduce the correct number for the text. As part of this, the LLM prompt needs to explain when to return the missing value code, -1, instead of a number when the text does not clearly contain one. The article also provides an example of a simple prompt. The purpose of the challenge is twofold: to get an effective solution to this problem, and to increase understanding of prompt design and LLM capabilities for complex numerical tasks. The initial solution suggested has an accuracy of 72.6%, so the challenge is to beat this.
☆ FGGM: Fisher-Guided Gradient Masking for Continual Learning ICASSP 2026
Catastrophic forgetting impairs the continuous learning of large language models. We propose Fisher-Guided Gradient Masking (FGGM), a framework that mitigates this by strategically selecting parameters for updates using diagonal Fisher Information. FGGM dynamically generates binary masks with adaptive thresholds, preserving critical parameters to balance stability and plasticity without requiring historical data. Unlike magnitude-based methods such as MIGU, our approach offers a mathematically principled parameter importance estimation. On the TRACE benchmark, FGGM shows a 9.6% relative improvement in retaining general capabilities over supervised fine-tuning (SFT) and a 4.4% improvement over MIGU on TRACE tasks. Additional analysis on code generation tasks confirms FGGM's superior performance and reduced forgetting, establishing it as an effective solution.
comment: Accepted by ICASSP 2026
☆ BoRP: Bootstrapped Regression Probing for Scalable and Human-Aligned LLM Evaluation
Accurate evaluation of user satisfaction is critical for iterative development of conversational AI. However, for open-ended assistants, traditional A/B testing lacks reliable metrics: explicit feedback is sparse, while implicit metrics are ambiguous. To bridge this gap, we introduce BoRP (Bootstrapped Regression Probing), a scalable framework for high-fidelity satisfaction evaluation. Unlike generative approaches, BoRP leverages the geometric properties of LLM latent space. It employs a polarization-index-based bootstrapping mechanism to automate rubric generation and utilizes Partial Least Squares (PLS) to map hidden states to continuous scores. Experiments on industrial datasets show that BoRP (Qwen3-8B/14B) significantly outperforms generative baselines (even Qwen3-Max) in alignment with human judgments. Furthermore, BoRP reduces inference costs by orders of magnitude, enabling full-scale monitoring and highly sensitive A/B testing via CUPED.
comment: This is a pre-print
☆ TechING: Towards Real World Technical Image Understanding via VLMs EACL 2026
Professionals working in technical domain typically hand-draw (on whiteboard, paper, etc.) technical diagrams (e.g., flowcharts, block diagrams, etc.) during discussions; however, if they want to edit these later, it needs to be drawn from scratch. Modern day VLMs have made tremendous progress in image understanding but they struggle when it comes to understanding technical diagrams. One way to overcome this problem is to fine-tune on real world hand-drawn images, but it is not practically possible to generate large number of such images. In this paper, we introduce a large synthetically generated corpus (reflective of real world images) for training VLMs and subsequently evaluate VLMs on a smaller corpus of hand-drawn images (with the help of humans). We introduce several new self-supervision tasks for training and perform extensive experiments with various baseline models and fine-tune Llama 3.2 11B-instruct model on synthetic images on these tasks to obtain LLama-VL-TUG, which significantly improves the ROUGE-L performance of Llama 3.2 11B-instruct by 2.14x and achieves the best all-round performance across all baseline models. On real-world images, human evaluation reveals that we achieve minimum compilation errors across all baselines in 7 out of 8 diagram types and improve the average F1 score of Llama 3.2 11B-instruct by 6.97x.
comment: Accepted at Findings of EACL 2026, 30 Pages (9 Pages main paper + 4 pages references + 17 pages appendix)
☆ Generative AI in Saudi Arabia: A National Survey of Adoption, Risks, and Public Perceptions
Generative Artificial Intelligence (GenAI) is rapidly becoming embedded in Saudi Arabia's digital transformation under Vision 2030, yet public awareness, adoption, and concerns surrounding these tools remain underexplored. This study provides an early snapshot of GenAI engagement among Saudi nationals. Using a nationwide survey of 330 participants across regions, age groups, and employment sectors, we examine seven dimensions of GenAI use: awareness and understanding, adoption patterns, perceived impacts, training needs, risks and barriers, data-sharing behaviors, and future expectations. Findings show that 93% of respondents actively use GenAI primarily for text-based tasks, while more advanced uses such as programming or multimodal generation are less common. Despite the prevalence of use, overall awareness and conceptual understanding remain uneven, with many reporting limited technical knowledge. Participants recognize GenAI's benefits for productivity, work quality, and understanding complex information, yet caution that sustained reliance may undermine critical thinking and key professional skills. Trust in AI-generated outputs remains cautious, with widespread concerns about privacy, misinformation, and ethical misuse, including potential job displacement. Respondents show strong interest in structured GenAI training that combines foundational skills, domain-specific applications, and clear guidance on privacy, ethics, and responsible use. These results establish a baseline for GenAI engagement in Saudi Arabia and highlight priorities for policymakers and developers: expanding AI literacy, ensuring culturally and linguistically aligned GenAI solutions, and strengthening frameworks for privacy and responsible deployment.
☆ PaperTok: Exploring the Use of Generative AI for Creating Short-form Videos for Research Communication
The dissemination of scholarly research is critical, yet researchers often lack the time and skills to create engaging content for popular media such as short-form videos. To address this gap, we explore the use of generative AI to help researchers transform their academic papers into accessible video content. Informed by a formative study with science communicators and content creators (N=8), we designed PaperTok, an end-to-end system that automates the initial creative labor by generating script options and corresponding audiovisual content from a source paper. Researchers can then refine based on their preferences with further prompting. A mixed-methods user study (N=18) and crowdsourced evaluation (N=100) demonstrate that PaperTok's workflow can help researchers create engaging and informative short-form videos. We also identified the need for more fine-grained controls in the creation process. To this end, we offer implications for future generative tools that support science outreach.
☆ PaperSearchQA: Learning to Search and Reason over Scientific Papers with RLVR EACL 2026
Search agents are language models (LMs) that reason and search knowledge bases (or the web) to answer questions; recent methods supervise only the final answer accuracy using reinforcement learning with verifiable rewards (RLVR). Most RLVR search agents tackle general-domain QA, which limits their relevance to technical AI systems in science, engineering, and medicine. In this work we propose training agents to search and reason over scientific papers -- this tests technical question-answering, it is directly relevant to real scientists, and the capabilities will be crucial to future AI Scientist systems. Concretely, we release a search corpus of 16 million biomedical paper abstracts and construct a challenging factoid QA dataset called PaperSearchQA with 60k samples answerable from the corpus, along with benchmarks. We train search agents in this environment to outperform non-RL retrieval baselines; we also perform further quantitative analysis and observe interesting agent behaviors like planning, reasoning, and self-verification. Our corpus, datasets, and benchmarks are usable with the popular Search-R1 codebase for RLVR training and released on https://huggingface.co/collections/jmhb/papersearchqa. Finally, our data creation methods are scalable and easily extendable to other scientific domains.
comment: EACL 2026
☆ MemWeaver: Weaving Hybrid Memories for Traceable Long-Horizon Agentic Reasoning
Large language model-based agents operating in long-horizon interactions require memory systems that support temporal consistency, multi-hop reasoning, and evidence-grounded reuse across sessions. Existing approaches largely rely on unstructured retrieval or coarse abstractions, which often lead to temporal conflicts, brittle reasoning, and limited traceability. We propose MemWeaver, a unified memory framework that consolidates long-term agent experiences into three interconnected components: a temporally grounded graph memory for structured relational reasoning, an experience memory that abstracts recurring interaction patterns from repeated observations, and a passage memory that preserves original textual evidence. MemWeaver employs a dual-channel retrieval strategy that jointly retrieves structured knowledge and supporting evidence to construct compact yet information-dense contexts for reasoning. Experiments on the LoCoMo benchmark demonstrate that MemWeaver substantially improves multi-hop and temporal reasoning accuracy while reducing input context length by over 95\% compared to long-context baselines.
☆ Fine-Grained Emotion Detection on GoEmotions: Experimental Comparison of Classical Machine Learning, BiLSTM, and Transformer Models
Fine-grained emotion recognition is a challenging multi-label NLP task due to label overlap and class imbalance. In this work, we benchmark three modeling families on the GoEmotions dataset: a TF-IDF-based logistic regression system trained with binary relevance, a BiLSTM with attention, and a BERT model fine-tuned for multi-label classification. Experiments follow the official train/validation/test split, and imbalance is mitigated using inverse-frequency class weights. Across several metrics, namely Micro-F1, Macro-F1, Hamming Loss, and Subset Accuracy, we observe that logistic regression attains the highest Micro-F1 of 0.51, while BERT achieves the best overall balance surpassing the official paper's reported results, reaching Macro-F1 0.49, Hamming Loss 0.036, and Subset Accuracy 0.36. This suggests that frequent emotions often rely on surface lexical cues, whereas contextual representations improve performance on rarer emotions and more ambiguous examples.
☆ FP8-RL: A Practical and Stable Low-Precision Stack for LLM Reinforcement Learning
Reinforcement learning (RL) for large language models (LLMs) is increasingly bottlenecked by rollout (generation), where long output sequence lengths make attention and KV-cache memory dominate end-to-end step time. FP8 offers an attractive lever for accelerating RL by reducing compute cost and memory traffic during rollout, but applying FP8 in RL introduces unique engineering and algorithmic challenges: policy weights change every step (requiring repeated quantization and weight synchronization into the inference engine) and low-precision rollouts can deviate from the higher-precision policy assumed by the trainer, causing train-inference mismatch and potential instability. This report presents a practical FP8 rollout stack for LLM RL, implemented in the veRL ecosystem with support for common training backends (e.g., FSDP/Megatron-LM) and inference engines (e.g., vLLM/SGLang). We (i) enable FP8 W8A8 linear-layer rollout using blockwise FP8 quantization, (ii) extend FP8 to KV-cache to remove long-context memory bottlenecks via per-step QKV scale recalibration, and (iii) mitigate mismatch using importance-sampling-based rollout correction (token-level TIS/MIS variants). Across dense and MoE models, these techniques deliver up to 44% rollout throughput gains while preserving learning behavior comparable to BF16 baselines.
☆ DeepPlanning: Benchmarking Long-Horizon Agentic Planning with Verifiable Constraints
While agent evaluation has shifted toward long-horizon tasks, most benchmarks still emphasize local, step-level reasoning rather than the global constrained optimization (e.g., time and financial budgets) that demands genuine planning ability. Meanwhile, existing LLM planning benchmarks underrepresent the active information gathering and fine-grained local constraints typical of real-world settings. To address this, we introduce DeepPlanning, a challenging benchmark for practical long-horizon agent planning. It features multi-day travel planning and multi-product shopping tasks that require proactive information acquisition, local constrained reasoning, and global constrained optimization. Evaluations on DeepPlanning show that even frontier agentic LLMs struggle with these problems, highlighting the importance of reliable explicit reasoning patterns and parallel tool use for achieving better effectiveness-efficiency trade-offs. Error analysis further points to promising directions for improving agentic LLMs over long planning horizons. We open-source the code and data to support future research.
☆ Typhoon-S: Minimal Open Post-Training for Sovereign Large Language Models
Large language models (LLMs) have progressed rapidly; however, most state-of-the-art models are trained and evaluated primarily in high-resource languages such as English and Chinese, and are often developed by a small number of organizations with access to large-scale compute and data. This gatekeeping creates a practical barrier for sovereign settings in which a regional- or national-scale institution or domain owner must retain control and understanding of model weights, training data, and deployment while operating under limited resources and strict transparency constraints. To this end, we identify two core requirements: (1) adoptability, the ability to transform a base model into a general-purpose assistant, and (2) sovereign capability, the ability to perform high-stakes, region-specific tasks (e.g., legal reasoning in local languages and cultural knowledge). We investigate whether these requirements can be achieved without scaling massive instruction corpora or relying on complex preference tuning pipelines and large-scale reinforcement fine-tuning (RFT). We present Typhoon S, a minimal and open post-training recipe that combines supervised fine-tuning, on-policy distillation, and small-scale RFT. Using Thai as a representative case study, we demonstrate that our approach transforms both sovereign-adapted and general-purpose base models into instruction-tuned models with strong general performance. We further show that small-scale RFT with InK-GRPO -- an extension of GRPO that augments the GRPO loss with a next-word prediction loss -- improves Thai legal reasoning and Thai-specific knowledge while preserving general capabilities. Our results suggest that a carefully designed post-training strategy can reduce the required scale of instruction data and computation, providing a practical path toward high-quality sovereign LLMs under academic-scale resources.
comment: 19 pages. Code is publicly available at https://github.com/scb-10x/typhoon-s . Datasets and model weights are available at https://huggingface.co/collections/typhoon-ai/typhoon-s
☆ FABLE: Forest-Based Adaptive Bi-Path LLM-Enhanced Retrieval for Multi-Document Reasoning
The rapid expansion of long-context Large Language Models (LLMs) has reignited debate on whether Retrieval-Augmented Generation (RAG) remains necessary. However, empirical evidence reveals persistent limitations of long-context inference, including the lost-in-the-middle phenomenon, high computational cost, and poor scalability for multi-document reasoning. Conversely, traditional RAG systems, while efficient, are constrained by flat chunk-level retrieval that introduces semantic noise and fails to support structured cross-document synthesis. We present \textbf{FABLE}, a \textbf{F}orest-based \textbf{A}daptive \textbf{B}i-path \textbf{L}LM-\textbf{E}nhanced retrieval framework that integrates LLMs into both knowledge organization and retrieval. FABLE constructs LLM-enhanced hierarchical forest indexes with multi-granularity semantic structures, then employs a bi-path strategy combining LLM-guided hierarchical traversal with structure-aware propagation for fine-grained evidence acquisition, with explicit budget control for adaptive efficiency trade-offs. Extensive experiments demonstrate that FABLE consistently outperforms SOTA RAG methods and achieves comparable accuracy to full-context LLM inference with up to 94\% token reduction, showing that long-context LLMs amplify rather than fully replace the need for structured retrieval.
☆ GLEN-Bench: A Graph-Language based Benchmark for Nutritional Health
Nutritional interventions are important for managing chronic health conditions, but current computational methods provide limited support for personalized dietary guidance. We identify three key gaps: (1) dietary pattern studies often ignore real-world constraints such as socioeconomic status, comorbidities, and limited food access; (2) recommendation systems rarely explain why a particular food helps a given patient; and (3) no unified benchmark evaluates methods across the connected tasks needed for nutritional interventions. We introduce GLEN-Bench, the first comprehensive graph-language based benchmark for nutritional health assessment. We combine NHANES health records, FNDDS food composition data, and USDA food-access metrics to build a knowledge graph that links demographics, health conditions, dietary behaviors, poverty-related constraints, and nutrient needs. We test the benchmark using opioid use disorder, where models must detect subtle nutritional differences across disease stages. GLEN-Bench includes three linked tasks: risk detection identifies at-risk individuals from dietary and socioeconomic patterns; recommendation suggests personalized foods that meet clinical needs within resource constraints; and question answering provides graph-grounded, natural-language explanations to facilitate comprehension. We evaluate these graph-language approaches, including graph neural networks, large language models, and hybrid architectures, to establish solid baselines and identify practical design choices. Our analysis identifies clear dietary patterns linked to health risks, providing insights that can guide practical interventions.
☆ CHiRPE: A Step Towards Real-World Clinical NLP with Clinician-Oriented Model Explanations EACL 2026
The medical adoption of NLP tools requires interpretability by end users, yet traditional explainable AI (XAI) methods are misaligned with clinical reasoning and lack clinician input. We introduce CHiRPE (Clinical High-Risk Prediction with Explainability), an NLP pipeline that takes transcribed semi-structured clinical interviews to: (i) predict psychosis risk; and (ii) generate novel SHAP explanation formats co-developed with clinicians. Trained on 944 semi-structured interview transcripts across 24 international clinics of the AMP-SCZ study, the CHiRPE pipeline integrates symptom-domain mapping, LLM summarisation, and BERT classification. CHiRPE achieved over 90% accuracy across three BERT variants and outperformed baseline models. Explanation formats were evaluated by 28 clinical experts who indicated a strong preference for our novel concept-guided explanations, especially hybrid graph-and-text summary formats. CHiRPE demonstrates that clinically-guided model development produces both accurate and interpretable results. Our next step is focused on real-world testing across our 24 international sites.
comment: This paper is accepted at EACL 2026
☆ Sparks of Cooperative Reasoning: LLMs as Strategic Hanabi Agents
Cooperative reasoning under incomplete information remains challenging for both humans and multi-agent systems. The card game Hanabi embodies this challenge, requiring theory-of-mind reasoning and strategic communication. We benchmark 17 state-of-the-art LLM agents in 2-5 player games and study the impact of context engineering across model scales (4B to 600B+) to understand persistent coordination failures and robustness to scaffolding: from a minimal prompt with only explicit card details (Watson setting), to scaffolding with programmatic, Bayesian-motivated deductions (Sherlock setting), to multi-turn state tracking via working memory (Mycroft setting). We show that (1) agents can maintain an internal working memory for state tracking and (2) cross-play performance between different LLMs smoothly interpolates with model strength. In the Sherlock setting, the strongest reasoning models exceed 15 points on average across player counts, yet still trail experienced humans and specialist Hanabi agents, both consistently scoring above 20. We release the first public Hanabi datasets with annotated trajectories and move utilities: (1) HanabiLogs, containing 1,520 full game logs for instruction tuning, and (2) HanabiRewards, containing 560 games with dense move-level value annotations for all candidate moves. Supervised and RL finetuning of a 4B open-weight model (Qwen3-Instruct) on our datasets improves cooperative Hanabi play by 21% and 156% respectively, bringing performance to within ~3 points of a strong proprietary reasoning model (o4-mini) and surpassing the best non-reasoning model (GPT-4.1) by 52%. The HanabiRewards RL-finetuned model further generalizes beyond Hanabi, improving performance on a cooperative group-guessing benchmark by 11%, temporal reasoning on EventQA by 6.4%, instruction-following on IFBench-800K by 1.7 Pass@10, and matching AIME 2025 mathematical reasoning Pass@10.
☆ Grounded Concreteness: Human-Like Concreteness Sensitivity in Vision-Language Models
Do vision--language models (VLMs) develop more human-like sensitivity to linguistic concreteness than text-only large language models (LLMs) when both are evaluated with text-only prompts? We study this question with a controlled comparison between matched Llama text backbones and their Llama Vision counterparts across multiple model scales, treating multimodal pretraining as an ablation on perceptual grounding rather than access to images at inference. We measure concreteness effects at three complementary levels: (i) output behavior, by relating question-level concreteness to QA accuracy; (ii) embedding geometry, by testing whether representations organize along a concreteness axis; and (iii) attention dynamics, by quantifying context reliance via attention-entropy measures. In addition, we elicit token-level concreteness ratings from models and evaluate alignment to human norm distributions, testing whether multimodal training yields more human-consistent judgments. Across benchmarks and scales, VLMs show larger gains on more concrete inputs, exhibit clearer concreteness-structured representations, produce ratings that better match human norms, and display systematically different attention patterns consistent with increased grounding.
☆ Neurocomputational Mechanisms of Syntactic Transfer in Bilingual Sentence Production
We discuss the benefits of incorporating into the study of bilingual production errors and their traditionally documented timing signatures (e.g., event-related potentials) certain types of oscillatory signatures, which can offer new implementational-level constraints for theories of bilingualism. We argue that a recent neural model of language, ROSE, can offer a neurocomputational account of syntactic transfer in bilingual production, capturing some of its formal properties and the scope of morphosyntactic sequencing failure modes. We take as a case study cross-linguistic influence (CLI) and attendant theories of functional inhibition/competition, and present these as being driven by specific oscillatory failure modes during L2 sentence planning. We argue that modeling CLI in this way not only offers the kind of linking hypothesis ROSE was built to encourage, but also licenses the exploration of more spatiotemporally complex biomarkers of language dysfunction than more commonly discussed neural signatures.
☆ Addressing LLM Diversity by Infusing Random Concepts
Large language models (LLMs) are known to produce outputs with limited diversity. In this work, we study whether infusing random concepts in the prompts can improve the diversity of the generated outputs. To benchmark the approach, we design a systematic evaluation protocol which involves prompting an LLM with questions of the form "Name 10 Hollywood actors", and analyzing diversity measures of the resulting LLM outputs. Our experiments on multiple LLMs show that prepending random words/sentences unrelated to the prompt result in greater diversity in the outputs of LLMs. We believe that this promising result and the evaluation protocol opens up interesting avenues for future work, such as how infusing randomness into LLMs could be applied to other domains. Further, the evaluation protocol could also inspire research into benchmarking LLM diversity more systematically.
♻ ☆ Consistent Kernel Change-Point Detection under m-Dependence for Text Segmentation
Kernel change-point detection (KCPD) has become a widely used tool for identifying structural changes in complex data. While existing theory establishes consistency under independence assumptions, real-world sequential data such as text exhibits strong dependencies. We establish new guarantees for KCPD under $m$-dependent data: specifically, we prove consistency in the number of detected change points and weak consistency in their locations under mild additional assumptions. We perform an LLM-based simulation that generates synthetic $m$-dependent text to validate the asymptotics. To complement these results, we present the first comprehensive empirical study of KCPD for text segmentation with modern embeddings. Across diverse text datasets, KCPD with text embeddings outperforms baselines in standard text segmentation metrics. We demonstrate through a case study on Taylor Swift's tweets that KCPD not only provides strong theoretical and simulated reliability but also practical effectiveness for text segmentation tasks.
comment: This paper is withdrawn due to an error in the proof of Proposition 3, which is used to support Theorem 1
♻ ☆ Next Token Knowledge Tracing: Exploiting Pretrained LLM Representations to Decode Student Behaviour
Modelling student knowledge is a key challenge when leveraging AI in education, with major implications for personalised learning. The Knowledge Tracing (KT) task aims to predict how students will respond to educational questions in learning environments, based on their prior interactions. Existing KT models typically use response correctness along with metadata like skill tags and timestamps, often overlooking the question text, which is an important source of pedagogical insight. This omission poses a lost opportunity while limiting predictive performance. We propose Next Token Knowledge Tracing (NTKT), a novel approach that reframes KT as a next-token prediction task using pretrained Large Language Models (LLMs). NTKT represents both student histories and question content as sequences of text, allowing LLMs to learn patterns in both behaviour and language. Our series of experiments significantly improves performance over state-of-the-art neural KT models and generalises much better to cold-start questions and users. These findings highlight the importance of question content in KT and demonstrate the benefits of leveraging pretrained representations of LLMs to model student learning more effectively.
♻ ☆ ARTI-6: Towards Six-dimensional Articulatory Speech Encoding ICASSP 2026
We propose ARTI-6, a compact six-dimensional articulatory speech encoding framework derived from real-time MRI data that captures crucial vocal tract regions including the velum, tongue root, and larynx. ARTI-6 consists of three components: (1) a six-dimensional articulatory feature set representing key regions of the vocal tract; (2) an articulatory inversion model, which predicts articulatory features from speech acoustics leveraging speech foundation models, achieving a prediction correlation of 0.87; and (3) an articulatory synthesis model, which reconstructs intelligible speech directly from articulatory features, showing that even a low-dimensional representation can generate natural-sounding speech. Together, ARTI-6 provides an interpretable, computationally efficient, and physiologically grounded framework for advancing articulatory inversion, synthesis, and broader speech technology applications. The source code and speech samples are publicly available.
comment: Accepted for ICASSP 2026
♻ ☆ Your Extreme Multi-label Classifier is Secretly a Hierarchical Text Classifier for Free
Assigning a set of labels to a given text is a classification problem with many real-world applications, such as recommender systems. Two separate research streams address this issue. Hierarchical Text Classification (HTC) focuses on datasets with label pools of hundreds of entries, accompanied by a semantic label hierarchy. In contrast, eXtreme Multi-Label Text Classification (XML) considers very large sets of labels with up to millions of entries but without an explicit hierarchy. In XML methods, it is common to construct an artificial hierarchy in order to deal with the large label space before or during the training process. Here, we investigate how state-of-the-art HTC models perform when trained and tested on XML datasets and vice versa using three benchmark datasets from each of the two streams. Our results demonstrate that XML models, with their internally constructed hierarchy, are very effective HTC models. HTC models, on the other hand, are not equipped to handle the sheer label set size of XML datasets and achieve poor transfer results. We further argue that for a fair comparison in HTC and XML, more than one metric like F1 should be used but complemented with P@k and R-Precision.
♻ ☆ MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning ICLR 2026
Medical Large Vision-Language Models (Med-LVLMs) have shown strong potential in multimodal diagnostic tasks. However, existing single-agent models struggle to generalize across diverse medical specialties, limiting their performance. Recent efforts introduce multi-agent collaboration frameworks inspired by clinical workflows, where general practitioners (GPs) and specialists interact in a fixed sequence. Despite improvements, these static pipelines lack flexibility and adaptability in reasoning. To address this, we propose MMedAgent-RL, a reinforcement learning (RL)-based multi-agent framework that enables dynamic, optimized collaboration among medical agents. Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists and its own knowledge to make final decisions. To address the inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided RL strategy with dynamic entropy regulation, progressively teaching the attending physician to balance between imitating specialists and correcting their mistakes. Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL outperforms both open-source and proprietary Med-LVLMs. Notably, it achieves an average performance gain of 23.6% over strong baselines.
comment: ICLR 2026
♻ ☆ Exploration vs Exploitation: Rethinking RLVR through Clipping, Entropy, and Spurious Reward ICLR 2026
This paper examines the exploration-exploitation trade-off in reinforcement learning with verifiable rewards (RLVR), a framework for improving the reasoning of Large Language Models (LLMs). Recent studies suggest that RLVR can elicit strong mathematical reasoning in LLMs through two seemingly paradoxical mechanisms: spurious rewards, which suppress exploitation by rewarding outcomes unrelated to the ground truth, and entropy minimization, which suppresses exploration by pushing the model toward more confident and deterministic outputs, highlighting a puzzling dynamic: both discouraging exploitation and discouraging exploration improve reasoning performance, yet the underlying principles that reconcile these effects remain poorly understood. We focus on two fundamental questions: (i) how policy entropy relates to performance, and (ii) whether spurious rewards yield gains, potentially through the interplay of clipping bias and model contamination. Our results show that clipping bias under spurious rewards reduces policy entropy, leading to more confident and deterministic outputs, while entropy minimization alone is insufficient for improvement. We further propose a reward-misalignment model explaining why spurious rewards can enhance performance beyond contaminated settings. Our findings clarify the mechanisms behind spurious-reward benefits and provide principles for more effective RLVR training.
comment: Accepted by ICLR 2026
♻ ☆ CtrlRAG: Black-box Document Poisoning Attacks for Retrieval-Augmented Generation of Large Language Models
Retrieval-Augmented Generation (RAG) systems enhance response credibility and traceability by displaying reference contexts, but this transparency simultaneously introduces a novel black-box attack vector. Existing document poisoning attacks, where adversaries inject malicious documents into the knowledge base to manipulate RAG outputs, rely primarily on unrealistic white-box or gray-box assumptions, limiting their practical applicability. To address this gap, we propose CtrlRAG, a two-stage black-box attack that (1) constructs malicious documents containing misinformation or emotion-inducing content and injects them into the knowledge base, and (2) iteratively optimizes them using a localization algorithm and Masked Language Model (MLM) guided on reference context feedback, ensuring their retrieval priority while preserving linguistic naturalness. With only five malicious documents per target question injected into the million-document MS MARCO dataset, CtrlRAG achieves up to 90% attack success rates on commercial LLMs (e.g., GPT-4o), a 30% improvement over optimal baselines, in both *Emotion Manipulation* and *Hallucination Amplification* tasks. Furthermore, we show that existing defenses fail to balance security and performance. To mitigate this challenge, we introduce a dynamic *Knowledge Expansion* defense strategy based on *Parametric/Non-parametric Memory Confrontation*, blocking 78% of attacks while maintaining 95.5% system accuracy. Our findings reveal critical vulnerabilities in RAG systems and provide effective defense strategies.
♻ ☆ Not Your Typical Sycophant: The Elusive Nature of Sycophancy in Large Language Models
We propose a novel way to evaluate sycophancy of LLMs in a direct and neutral way, mitigating various forms of uncontrolled bias, noise, or manipulative language, deliberately injected to prompts in prior works. A key novelty in our approach is the use of LLM-as-a-judge, evaluation of sycophancy as a zero-sum game in a bet setting. Under this framework, sycophancy serves one individual (the user) while explicitly incurring cost on another. Comparing four leading models - Gemini 2.5 Pro, ChatGpt 4o, Mistral-Large-Instruct-2411, and Claude Sonnet 3.7 - we find that while all models exhibit sycophantic tendencies in the common setting, in which sycophancy is self-serving to the user and incurs no cost on others, Claude and Mistral exhibit "moral remorse" and over-compensate for their sycophancy in case it explicitly harms a third party. Additionally, we observed that all models are biased toward the answer proposed last. Crucially, we find that these two phenomena are not independent; sycophancy and recency bias interact to produce `constructive interference' effect, where the tendency to agree with the user is exacerbated when the user's opinion is presented last.
♻ ☆ LLMPopcorn: Exploring LLMs as Assistants for Popular Micro-video Generation ICASSP2026
In an era where micro-videos dominate platforms like TikTok and YouTube, AI-generated content is nearing cinematic quality. The next frontier is using large language models (LLMs) to autonomously create viral micro-videos, a largely untapped potential that could shape the future of AI-driven content creation. To address this gap, this paper presents the first exploration of LLM-assisted popular micro-video generation (LLMPopcorn). We selected popcorn as the icon for this paper because it symbolizes leisure and entertainment, aligning with this study on leveraging LLMs as assistants for generating popular micro-videos that are often consumed during leisure time. Specifically, we empirically study the following research questions: (i) How can LLMs be effectively utilized to assist popular micro-video generation? (ii) To what extent can prompt-based enhancements optimize the LLM-generated content for higher popularity? (iii) How well do various LLMs and video generators perform in the popular micro-video generation task? Exploring these questions, we show that advanced LLMs like DeepSeek-V3 can generate micro-videos with popularity rivaling human content. Prompt enhancement further boosts results, while benchmarking highlights DeepSeek-V3 and R1 for LLMs, and LTX-Video and HunyuanVideo for video generation. This work advances AI-assisted micro-video creation and opens new research directions. The code is publicly available at https://github.com/GAIR-Lab/LLMPopcorn.
comment: Accepted by ICASSP2026
♻ ☆ Adjust for Trust: Mitigating Trust-Induced Inappropriate Reliance on AI Assistance
Trust biases how users rely on AI recommendations in AI-assisted decision-making tasks, with low and high levels of trust resulting in increased under- and over-reliance, respectively. We propose that AI assistants should adapt their behavior through trust-adaptive interventions to mitigate such inappropriate reliance. For instance, when user trust is low, providing an explanation can elicit more careful consideration of the assistant's advice by the user. In two decision-making scenarios -- laypeople answering science questions and doctors making medical diagnoses -- we find that providing supporting and counter-explanations during moments of low and high trust, respectively, yields up to 38% reduction in inappropriate reliance and 20% improvement in decision accuracy. We are similarly able to reduce over-reliance by adaptively inserting forced pauses to promote deliberation. Our results highlight how AI adaptation to user trust facilitates appropriate reliance, presenting exciting avenues for improving human-AI collaboration.
♻ ☆ Is In-Context Learning Learning? ICLR 2026
In-context learning (ICL) allows some autoregressive models to solve tasks via next-token prediction and without needing further training. This has led to claims about these model's ability to solve (learn) unseen tasks with only a few shots (exemplars) in the prompt. However, deduction does not always imply learning, as ICL does not explicitly encode a given observation. Instead, the models rely on their prior knowledge and the exemplars given, if any. We argue that, mathematically, ICL does constitute learning, but its full characterisation requires empirical work. We then carry out a large-scale analysis of ICL ablating out or accounting for memorisation, pretraining, distributional shifts, and prompting style and phrasing. We find that ICL is an effective learning paradigm, but limited in its ability to learn and generalise to unseen tasks. We note that, in the limit where exemplars become more numerous, accuracy is insensitive to exemplar distribution, model, prompt style, and the input's linguistic features. Instead, it deduces patterns from regularities in the prompt, which leads to distributional sensitivity, especially in prompting styles such as chain-of-thought. Given the varied accuracies on formally similar tasks, we conclude that autoregression's ad-hoc encoding is not a robust mechanism, and suggests limited all-purpose generalisability.
comment: Accepted to ICLR 2026
♻ ☆ RAFFLES: Reasoning-based Attribution of Faults for LLM Systems
The advent of complex, interconnected long-horizon LLM systems has made it incredibly tricky to identify where and when these systems break down. Evaluation capabilities that currently exist today are limited in that they often focus on simple metrics, end-to-end outcomes, and are dependent on the perspectives of humans. In order to match the increasing complexity of these many component systems, evaluation frameworks must also be able to reason, probe, iterate, and understand the nuanced logic passing through these systems. In this paper, we present RAFFLES, an offline evaluation architecture that incorporates iterative reasoning. Specifically, RAFFLES operates as an iterative, multi-component pipeline, using a central Judge to systematically identify faults and a set of specialized Evaluators to assess the quality of the candidate faults as well as rationales of the Judge. We evaluated RAFFLES with several benchmarks - the Who&When dataset to identify step-level faults in multi-agent systems and the ReasonEval datasets to diagnose step-level mathematical reasoning errors. RAFFLES outperforms strong baselines, achieving an accuracy of over 20% and 50% on the Who&When Hand-Crafted and Algorithmically-Generated datasets, and over 80% on the ReasonEval datasets. These results demonstrate a key step towards introducing automated fault detection for autonomous systems over labor-intensive manual review.
♻ ☆ VoXtream: Full-Stream Text-to-Speech with Extremely Low Latency ICASSP 2026
We present VoXtream, a fully autoregressive, zero-shot streaming text-to-speech (TTS) system for real-time use that begins speaking from the first word. VoXtream directly maps incoming phonemes to audio tokens using a monotonic alignment scheme and a limited look-ahead that does not delay onset. Built around an incremental phoneme transformer, a temporal transformer predicting semantic and duration tokens, and a depth transformer producing acoustic tokens, VoXtream achieves, to our knowledge, the lowest initial delay among publicly available streaming TTS: 102 ms on GPU. Despite being trained on a mid-scale 9k-hour corpus, it matches or surpasses larger baselines on several metrics, while delivering competitive quality in both output- and full-streaming settings. Demo and code are available at https://herimor.github.io/voxtream.
comment: 5 pages, 1 figure, accepted to IEEE ICASSP 2026
♻ ☆ HERMES: KV Cache as Hierarchical Memory for Efficient Streaming Video Understanding
Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated significant improvement in offline video understanding. However, extending these capabilities to streaming video inputs, remains challenging, as existing models struggle to simultaneously maintain stable understanding performance, real-time responses, and low GPU memory overhead. To address this challenge, we propose HERMES, a novel training-free architecture for real-time and accurate understanding of video streams. Based on a mechanistic attention investigation, we conceptualize KV cache as a hierarchical memory framework that encapsulates video information across multiple granularities. During inference, HERMES reuses a compact KV cache, enabling efficient streaming understanding under resource constraints. Notably, HERMES requires no auxiliary computations upon the arrival of user queries, thereby guaranteeing real-time responses for continuous video stream interactions, which achieves 10$\times$ faster TTFT compared to prior SOTA. Even when reducing video tokens by up to 68% compared with uniform sampling, HERMES achieves superior or comparable accuracy across all benchmarks, with up to 11.4% gains on streaming datasets.
♻ ☆ Autiverse: Eliciting Autistic Adolescents' Daily Narratives through AI-guided Multimodal Journaling
Journaling can potentially serve as an effective method for autistic adolescents to improve narrative skills. However, its text-centric nature and high executive functioning demands present barriers to practice. We present Autiverse, an AI-guided multimodal journaling app for tablets that scaffolds daily narratives through conversational prompts and visual supports. Autiverse elicits key details of an adolescent-selected event through a stepwise dialogue with peer-like, customizable AI and composes them into an editable four-panel comic strip. Through a two-week deployment study with 10 autistic adolescent-parent dyads, we examine how Autiverse supports autistic adolescents to organize their daily experience and emotion. Our findings show Autiverse scaffolded adolescents' coherent narratives, while enabling parents to learn additional details of their child's events and emotions. Moreover, the customized AI peer created a comfortable space for sharing, fostering enjoyment and a strong sense of agency. Drawing on these results, we discuss implications for adaptive scaffolding across autism profiles, socio-emotionally appropriate AI peer design, and balancing autonomy with parental involvement.
comment: 19 pages excluding reference. Conditionally accepted to ACM CHI 2026
♻ ☆ SIPDO: Closed-Loop Prompt Optimization via Synthetic Data Feedback
Prompt quality plays a critical role in the performance of large language models (LLMs), motivating a growing body of work on prompt optimization. Most existing methods optimize prompts over a fixed dataset, assuming static input distributions and offering limited support for iterative improvement. We introduce SIPDO (Self-Improving Prompts through Data-Augmented Optimization), a closed-loop framework for prompt learning that integrates synthetic data generation into the optimization process. SIPDO couples a synthetic data generator with a prompt optimizer, where the generator produces new examples that reveal current prompt weaknesses and the optimizer incrementally refines the prompt in response. This feedback-driven loop enables systematic improvement of prompt performance without assuming access to external supervision or new tasks. Experiments across question answering and reasoning benchmarks show that SIPDO outperforms standard prompt tuning methods, highlighting the value of integrating data synthesis into prompt learning workflows.
♻ ☆ Induce, Align, Predict: Zero-Shot Stance Detection via Cognitive Inductive Reasoning AAAI 2026
Zero-shot stance detection (ZSSD) seeks to determine the stance of text toward previously unseen targets, a task critical for analyzing dynamic and polarized online discourse with limited labeled data. While large language models (LLMs) offer zero-shot capabilities, prompting-based approaches often fall short in handling complex reasoning and lack robust generalization to novel targets. Meanwhile, LLM-enhanced methods still require substantial labeled data and struggle to move beyond instance-level patterns, limiting their interpretability and adaptability. Inspired by cognitive science, we propose the Cognitive Inductive Reasoning Framework (CIRF), a schema-driven method that bridges linguistic inputs and abstract reasoning via automatic induction and application of cognitive reasoning schemas. CIRF abstracts first-order logic patterns from raw text into multi-relational schema graphs in an unsupervised manner, and leverages a schema-enhanced graph kernel model to align input structures with schema templates for robust, interpretable zero-shot inference. Extensive experiments on SemEval-2016, VAST, and COVID-19-Stance benchmarks demonstrate that CIRF not only establishes new state-of-the-art results, but also achieves comparable performance with just 30% of the labeled data, demonstrating its strong generalization and efficiency in low-resource settings.
comment: Accepted at AAAI 2026
♻ ☆ Thinking on the Fly: Test-Time Reasoning Enhancement via Latent Thought Policy Optimization ICLR 2026
Recent advancements in Large Language Models (LLMs) have shifted from explicit Chain-of-Thought (CoT) reasoning to more efficient latent reasoning, where intermediate thoughts are represented as vectors rather than text. However, latent reasoning can be brittle on challenging, out-of-distribution tasks where robust reasoning is most critical. To overcome these limitations, we introduce Latent Thought Policy Optimization (LTPO), a parameter-free framework that enhances LLM reasoning entirely at test time, without requiring model parameter updates. LTPO treats intermediate latent "thought" vectors as dynamic parameters that are actively optimized for each problem instance. It employs an online policy gradient method guided by an intrinsic, confidence-based reward signal computed directly from the frozen LLM's own output distributions, eliminating the need for external supervision or expensive text generation during optimization. Extensive experiments on five reasoning benchmarks show that LTPO not only matches or surpasses strong baselines on standard tasks but also demonstrates remarkable robustness where others fail. Most notably, on highly challenging AIME benchmarks where existing latent reasoning baselines collapse to near-zero accuracy, LTPO delivers substantial improvements, showcasing a unique capability for complex reasoning.
comment: Accepted to ICLR 2026
♻ ☆ The PIMMUR Principles: Ensuring Validity in Collective Behavior of LLM Societies
Large language models (LLMs) are increasingly deployed to simulate human collective behaviors, yet the methodological rigor of these "AI societies" remains under-explored. Through a systematic audit of 42 recent studies, we identify six pervasive flaws-spanning agent profiles, interaction, memory, control, unawareness, and realism (PIMMUR). Our analysis reveals that 90.7% of studies violate at least one principle, undermining simulation validity. We demonstrate that frontier LLMs correctly identify the underlying social experiment in 47.6% of cases, while 65.3% of prompts exert excessive control that pre-determines outcomes. By reproducing five representative experiments (e.g., telephone game), we show that reported collective phenomena often vanish or reverse when PIMMUR principles are enforced, suggesting that many "emergent" behaviors are methodological artifacts rather than genuine social dynamics. Our findings suggest that current AI simulations may capture model-specific biases rather than universal human social behaviors, raising critical concerns about the use of LLMs as scientific proxies for human society.
comment: 13 pages, 9 figures, 3 tables
♻ ☆ On the Failure of Latent State Persistence in Large Language Models
While Large Language Models (LLMs) excel in reasoning, whether they can sustain persistent latent states remains under-explored. The capacity to maintain and manipulate unexpressed, internal representations-analogous to human working memory-is a cornerstone of complex reasoning. In this paper, we formalize and quantify the "Latent State Persistence" (LSP) gap through three novel experiments. First, we utilize a Number Guessing Game, demonstrating that across independent queries, LLMs fail to allocate probability mass to a singular hidden choice, violating a fundamental probabilistic principle. Second, we employ a Yes-No Game to show that as the number of questions increases, LLMs suffer from "concept drift," leading to inevitable self-contradictions due to the lack of LSP. Finally, inspired by Mathematical Mentalism, we task models with tracking transformations on hidden variables, revealing a failure in variable binding and state evolution when the initial state is not explicitly present in the context. Collectively, these findings suggest that LLMs function as reactive post-hoc solvers rather than proactive planners with LSP. Our work provides a framework for evaluating the fidelity of internal representations and highlights a fundamental architectural divergence between autoregressive transformers and human-like cognition.
comment: 8 pages, 6 figures, 9 tables
♻ ☆ CliniBench: A Clinical Outcome Prediction Benchmark for Generative and Encoder-Based Language Models
With their growing capabilities, generative large language models (LLMs) are being increasingly investigated for complex medical tasks. However, their effectiveness in real-world clinical applications remains underexplored. To address this, we present CliniBench, the first benchmark that enables comparability of well-studied encoder-based classifiers and generative LLMs for discharge diagnosis prediction from admission notes in MIMIC-IV dataset. Our extensive study compares 12 generative LLMs and 3 encoder-based classifiers and demonstrates that encoder-based classifiers consistently outperform generative models in diagnosis prediction. We assess several retrieval augmentation strategies for in-context learning from similar patients and find that they provide notable performance improvements for generative LLMs.
♻ ☆ LAILA: A Large Trait-Based Dataset for Arabic Automated Essay Scoring EACL 2026
Automated Essay Scoring (AES) has gained increasing attention in recent years, yet research on Arabic AES remains limited due to the lack of publicly available datasets. To address this, we introduce LAILA, the largest publicly available Arabic AES dataset to date, comprising 7,859 essays annotated with holistic and trait-specific scores on seven dimensions: relevance, organization, vocabulary, style, development, mechanics, and grammar. We detail the dataset design, collection, and annotations, and provide benchmark results using state-of-the-art Arabic and English models in prompt-specific and cross-prompt settings. LAILA fills a critical need in Arabic AES research, supporting the development of robust scoring systems.
comment: Accepted at EACL 2026 - main conference
♻ ☆ ABCD-LINK: Annotation Bootstrapping for Cross-Document Fine-Grained Links EACL 2026
Understanding fine-grained links between documents is crucial for many applications, yet progress is limited by the lack of efficient methods for data curation. To address this limitation, we introduce a domain-agnostic framework for bootstrapping sentence-level cross-document links from scratch. Our approach (1) generates and validates semi-synthetic datasets of linked documents, (2) uses these datasets to benchmark and shortlist the best-performing linking approaches, and (3) applies the shortlisted methods in large-scale human-in-the-loop annotation of natural text pairs. We apply the framework in two distinct domains -- peer review and news -- and show that combining retrieval models with LLMs achieves a 73% human approval rate for suggested links, more than doubling the acceptance of strong retrievers alone. Our framework allows users to produce novel datasets that enable systematic study of cross-document understanding, supporting downstream tasks such as media framing analysis and peer review assessment. All code, data, and annotation protocols are released to facilitate future research.
comment: Accepted at EACL 2026
♻ ☆ Surprisal and Metaphor Novelty Judgments: Moderate Correlations and Divergent Scaling Effects Revealed by Corpus-Based and Synthetic Datasets EACL 2026
Novel metaphor comprehension involves complex semantic processes and linguistic creativity, making it an interesting task for studying language models (LMs). This study investigates whether surprisal, a probabilistic measure of predictability in LMs, correlates with annotations of metaphor novelty in different datasets. We analyse the surprisal of metaphoric words in corpus-based and synthetic metaphor datasets using 16 causal LM variants. We propose a cloze-style surprisal method that conditions on full-sentence context. Results show that LM surprisal yields significant moderate correlations with scores/labels of metaphor novelty. We further identify divergent scaling patterns: on corpus-based data, correlation strength decreases with model size (inverse scaling effect), whereas on synthetic data it increases (quality-power hypothesis). We conclude that while surprisal can partially account for annotations of metaphor novelty, it remains limited as a metric of linguistic creativity. Code and data are publicly available: https://github.com/OmarMomen14/surprisal-metaphor-novelty
comment: to be published at EACL 2026 main conference
♻ ☆ Large Language Models as Proxies for Theories of Human Linguistic Cognition
We consider the possible role of current large language models (LLMs) in the study of human linguistic cognition. We focus on the use of such models as proxies for theories of cognition that are relatively linguistically-neutral in their representations and learning but differ from current LLMs in key ways. We illustrate this potential use of LLMs as proxies for theories of cognition in the context of two kinds of questions: (a) whether the target theory accounts for the acquisition of a given pattern from a given corpus; and (b) whether the target theory makes a given typologically-attested pattern easier to acquire than another, typologically-unattested pattern. For each of the two questions we show, building on recent literature, how current LLMs can potentially be of help, but we note that at present this help is quite limited.
♻ ☆ A Survey on Multilingual Mental Disorders Detection from Social Media Data
The increasing prevalence of mental disorders globally highlights the urgent need for effective digital screening methods that can be used in multilingual contexts. Most existing studies, however, focus on English data, overlooking critical mental health signals that may be present in non-English texts. To address this gap, we present a survey of the detection of mental disorders using social media data beyond the English language. We compile a comprehensive list of 108 datasets spanning 25 languages that can be used for developing NLP models for mental health screening. In addition, we discuss the cultural nuances that influence online language patterns and self-disclosure behaviors, and how these factors can impact the performance of NLP tools. Our survey highlights major challenges, including the scarcity of resources for low- and mid-resource languages and the dominance of depression-focused data over other disorders. By identifying these gaps, we advocate for interdisciplinary collaborations and the development of multilingual benchmarks to enhance mental health screening worldwide.
♻ ☆ Locate, Steer, and Improve: A Practical Survey of Actionable Mechanistic Interpretability in Large Language Models
Mechanistic Interpretability (MI) has emerged as a vital approach to demystify the opaque decision-making of Large Language Models (LLMs). However, existing reviews primarily treat MI as an observational science, summarizing analytical insights while lacking a systematic framework for actionable intervention. To bridge this gap, we present a practical survey structured around the pipeline: "Locate, Steer, and Improve." We formally categorize Localizing (diagnosis) and Steering (intervention) methods based on specific Interpretable Objects to establish a rigorous intervention protocol. Furthermore, we demonstrate how this framework enables tangible improvements in Alignment, Capability, and Efficiency, effectively operationalizing MI as an actionable methodology for model optimization. The curated paper list of this work is available at https://github.com/rattlesnakey/Awesome-Actionable-MI-Survey.
♻ ☆ How Language Models Conflate Logical Validity with Plausibility: A Representational Analysis of Content Effects
Both humans and large language models (LLMs) exhibit content effects: biases in which the plausibility of the semantic content of a reasoning problem influences judgments regarding its logical validity. While this phenomenon in humans is best explained by the dual-process theory of reasoning, the mechanisms behind content effects in LLMs remain unclear. In this work, we address this issue by investigating how LLMs encode the concepts of validity and plausibility within their internal representations. We show that both concepts are linearly represented and strongly aligned in representational geometry, leading models to conflate plausibility with validity. Using steering vectors, we demonstrate that plausibility vectors can causally bias validity judgements, and vice versa, and that the degree of alignment between these two concepts predicts the magnitude of behavioral content effects across models. Finally, we construct debiasing vectors that disentangle these concepts, reducing content effects and improving reasoning accuracy. Our findings advance understanding of how abstract logical concepts are represented in LLMs and highlight representational interventions as a path toward more logical systems.
♻ ☆ Teaching Small Language Models to Learn Logic through Meta-Learning EACL 2026
Large language models (LLMs) are increasingly evaluated on reasoning tasks, yet their logical abilities remain contested. To address this, we study LLMs' reasoning in a well-defined fragment of logic: syllogistic reasoning. We cast the problem as premise selection and construct controlled datasets to isolate logical competence. Beyond evaluation, an open challenge is enabling LLMs to acquire abstract inference patterns that generalize to novel structures. We propose to apply few-shot meta-learning to this domain, thereby encouraging models to extract rules across tasks rather than memorize patterns within tasks. Although meta-learning has been little explored in the context of logic learnability, our experiments show that it is effective: small models (1.5B-7B) fine-tuned with meta-learning demonstrate strong gains in generalization, with especially pronounced benefits in low-data regimes. These meta-learned models outperform GPT-4o and o3-mini on our syllogistic reasoning task.
comment: EACL 2026 Main
♻ ☆ Probing the Hidden Talent of ASR Foundation Models for L2 English Oral Assessment ICASSP 2026
In this paper, we explore the untapped potential of Whisper, a well-established automatic speech recognition (ASR) foundation model, in the context of L2 spoken language assessment (SLA). Unlike prior studies that extrinsically analyze transcriptions produced by Whisper, our approach goes a step further to probe its latent capabilities by extracting acoustic and linguistic features from hidden representations. With only a lightweight classifier being trained on top of Whisper's intermediate and final outputs, our method achieves strong performance on the GEPT picture-description dataset, outperforming existing cutting-edge baselines, including a multimodal approach. Furthermore, by incorporating image and text-prompt information as auxiliary relevance cues, we demonstrate additional performance gains. Finally, we conduct an in-depth analysis of Whisper's embeddings, which reveals that, even without task-specific fine-tuning, the model intrinsically encodes both ordinal proficiency patterns and semantic aspects of speech, highlighting its potential as a powerful foundation for SLA and other spoken language understanding tasks.
comment: Accepted to ICASSP 2026
♻ ☆ Towards Automated Kernel Generation in the Era of LLMs
The performance of modern AI systems is fundamentally constrained by the quality of their underlying kernels, which translate high-level algorithmic semantics into low-level hardware operations. Achieving near-optimal kernels requires expert-level understanding of hardware architectures and programming models, making kernel engineering a critical but notoriously time-consuming and non-scalable process. Recent advances in large language models (LLMs) and LLM-based agents have opened new possibilities for automating kernel generation and optimization. LLMs are well-suited to compress expert-level kernel knowledge that is difficult to formalize, while agentic systems further enable scalable optimization by casting kernel development as an iterative, feedback-driven loop. Rapid progress has been made in this area. However, the field remains fragmented, lacking a systematic perspective for LLM-driven kernel generation. This survey addresses this gap by providing a structured overview of existing approaches, spanning LLM-based approaches and agentic optimization workflows, and systematically compiling the datasets and benchmarks that underpin learning and evaluation in this domain. Moreover, key open challenges and future research directions are further outlined, aiming to establish a comprehensive reference for the next generation of automated kernel optimization. To keep track of this field, we maintain an open-source GitHub repository at https://github.com/flagos-ai/awesome-LLM-driven-kernel-generation.
comment: 10 pages, 1 figure
♻ ☆ The Flexibility Trap: Why Arbitrary Order Limits Reasoning Potential in Diffusion Language Models
Diffusion Large Language Models (dLLMs) break the rigid left-to-right constraint of traditional LLMs, enabling token generation in arbitrary orders. Intuitively, this flexibility implies a solution space that strictly supersets the fixed autoregressive trajectory, theoretically unlocking superior reasoning potential for general tasks like mathematics and coding. Consequently, numerous works have leveraged reinforcement learning (RL) to elicit the reasoning capability of dLLMs. In this paper, we reveal a counter-intuitive reality: arbitrary order generation, in its current form, narrows rather than expands the reasoning boundary of dLLMs. We find that dLLMs tend to exploit this order flexibility to bypass high-uncertainty tokens that are crucial for exploration, leading to a premature collapse of the solution space. This observation motivates a rethink of RL approaches for dLLMs, where considerable complexities, such as handling combinatorial trajectories and intractable likelihoods, are often devoted to preserving this flexibility. We demonstrate that effective reasoning can be better elicited by intentionally forgoing arbitrary order and applying standard Group Relative Policy Optimization (GRPO) instead. Our approach, JustGRPO, is minimalist yet surprisingly effective (e.g., 89.1% accuracy on GSM8K) while fully retaining the parallel decoding ability of dLLMs. Project page: https://nzl-thu.github.io/the-flexibility-trap
comment: Code and pre-trained models: https://github.com/LeapLabTHU/JustGRPO
♻ ☆ Multimodal Evaluation of Russian-language Architectures EACL
Multimodal large language models (MLLMs) are currently at the center of research attention, showing rapid progress in scale and capabilities, yet their intelligence, limitations, and risks remain insufficiently understood. To address these issues, particularly in the context of the Russian language, where no multimodal benchmarks currently exist, we introduce MERA Multi, an open multimodal evaluation framework for Russian-spoken architectures. The benchmark is instruction-based and encompasses default text, image, audio, and video modalities, comprising 18 newly constructed evaluation tasks for both general-purpose models and modality-specific architectures (imageto-text, video-to-text, and audio-to-text). Our contributions include: (i) a universal taxonomy of multimodal abilities; (ii) 18 datasets created entirely from scratch with attention to Russian cultural and linguistic specificity, unified prompts, and metrics; (iii) baseline results for both closed-source and open-source models; (iv) a methodology for preventing benchmark leakage, including watermarking for private sets. While our current focus is on Russian, the proposed benchmark provides a replicable methodology for constructing multimodal benchmarks in typologically diverse languages, particularly within the Slavic language family.
comment: EACL main track
♻ ☆ Persuasion Tokens for Editing Factual Knowledge in LLMs EACL
In-context knowledge editing (IKE) is a promising technique for updating Large Language Models (LLMs) with new information. However, IKE relies on lengthy, fact-specific demonstrations which are costly to create and consume significant context window space. In this paper, we introduce persuasion tokens (P-Tokens) -- special tokens trained to replicate the effect of IKE demonstrations, enabling efficient knowledge editing without requiring fact-specific demonstrations. We evaluate P-Tokens across two editing datasets and three LLMs, demonstrating performance comparable to, and often exceeding, IKE. We further find that editing performance is robust to distractors with small negative effects to neighboring facts, and that increasing the number of P-Tokens improves performance. Our work addresses key limitations of IKE and provides a more practical and scalable alternative for editing LLMs.
comment: Accepted at EACL Main 2026
♻ ☆ MEDIC: Comprehensive Evaluation of Leading Indicators for LLM Safety and Utility in Clinical Applications
While Large Language Models (LLMs) achieve superhuman performance on standardized medical licensing exams, these static benchmarks have become saturated and increasingly disconnected from the functional requirements of clinical workflows. To bridge the gap between theoretical capability and verified utility, we introduce MEDIC, a comprehensive evaluation framework establishing leading indicators across various clinical dimensions. Beyond standard question-answering, we assess operational capabilities using deterministic execution protocols and a novel Cross-Examination Framework (CEF), which quantifies information fidelity and hallucination rates without reliance on reference texts. Our evaluation across a heterogeneous task suite exposes critical performance trade-offs: we identify a significant knowledge-execution gap, where proficiency in static retrieval does not predict success in operational tasks such as clinical calculation or SQL generation. Furthermore, we observe a divergence between passive safety (refusal) and active safety (error detection), revealing that models fine-tuned for high refusal rates often fail to reliably audit clinical documentation for factual accuracy. These findings demonstrate that no single architecture dominates across all dimensions, highlighting the necessity of a portfolio approach to clinical model deployment. As part of this investigation, we released a public leaderboard on Hugging Face.\footnote{https://huggingface.co/spaces/m42-health/MEDIC-Benchmark}
comment: Technical report
♻ ☆ When Sharpening Becomes Collapse: Sampling Bias and Semantic Coupling in RL with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR) is a central paradigm for turning large language models (LLMs) into reliable problem solvers, especially in logic-heavy domains. Despite its empirical success, it remains unclear whether RLVR elicits novel capabilities or merely sharpens the distribution over existing knowledge. We study this by formalizing over-sharpening, a phenomenon where the policy collapses onto limited modes, suppressing valid alternatives. At a high level, we discover finite-batch updates intrinsically bias learning toward sampled modes, triggering a collapse that propagates globally via semantic coupling. To mitigate this, we propose inverse-success advantage calibration to prioritize difficult queries and distribution-level calibration to diversify sampling via a memory network. Empirical evaluations validate that our strategies can effectively improve generalization.
♻ ☆ MPCI-Bench: A Benchmark for Multimodal Pairwise Contextual Integrity Evaluation of Language Model Agents
As language-model agents evolve from passive chatbots into proactive assistants that handle personal data, evaluating their adherence to social norms becomes increasingly critical, often through the lens of Contextual Integrity (CI). However, existing CI benchmarks are largely text-centric and primarily emphasize negative refusal scenarios, overlooking multimodal privacy risks and the fundamental trade-off between privacy and utility. In this paper, we introduce MPCI-Bench, the first Multimodal Pairwise Contextual Integrity benchmark for evaluating privacy behavior in agentic settings. MPCI-Bench consists of paired positive and negative instances derived from the same visual source and instantiated across three tiers: normative Seed judgments, context-rich Story reasoning, and executable agent action Traces. Data quality is ensured through a Tri-Principle Iterative Refinement pipeline. Evaluations of state-of-the-art multimodal models reveal systematic failures to balance privacy and utility and a pronounced modality leakage gap, where sensitive visual information is leaked more frequently than textual information. We will open-source MPCI-Bench to facilitate future research on agentic CI.
♻ ☆ Revisiting Model Interpolation for Efficient Reasoning
Model merging, typically on Instruct and Thinking models, has shown remarkable performance for efficient reasoning. In this paper, we systematically revisit the simplest merging method that interpolates two weights directly. Particularly, we observe that model interpolation follows a three-stage evolutionary paradigm with distinct behaviors on the reasoning trajectory. These dynamics provide a principled guide for navigating the performance-cost trade-off. Empirical results demonstrate that a strategically interpolated model surprisingly surpasses sophisticated model merging baselines on both efficiency and effectiveness. We further validate our findings with extensive ablation studies on model layers, modules, and decoding strategies. Ultimately, this work demystifies model interpolation and offers a practical framework for crafting models with precisely targeted reasoning capabilities. Code is available at \href{https://github.com/wutaiqiang/MI}{Github}.
comment: 14 pages, 6 figures, 7 tables. Working in progress (Llama results added)
♻ ☆ Building Self-Evolving Agents via Experience-Driven Lifelong Learning: A Framework and Benchmark
As AI advances toward general intelligence, the focus is shifting from systems optimized for static tasks to creating open-ended agents that learn continuously. In this paper, we introduce Experience-driven Lifelong Learning (ELL), a framework for building self-evolving agents capable of continuous growth through real-world interaction. The framework is built on four core principles: (1) Experience Exploration: Agents learn through continuous, self-motivated interaction with dynamic environments, navigating interdependent tasks and generating rich experiential trajectories. (2) Long-term Memory: Agents preserve and structure historical knowledge, including personal experiences, domain expertise, and commonsense reasoning, into a persistent memory system. (3) Skill Learning: Agents autonomously improve by abstracting recurring patterns from experience into reusable skills, which are actively refined and validated for application in new tasks. (4) Knowledge Internalization: Agents internalize explicit and discrete experiences into implicit and intuitive capabilities as "second nature". We also introduce StuLife, a benchmark dataset for ELL that simulates a student's holistic college journey, from enrollment to academic and personal development, across three core phases and ten detailed sub-scenarios. StuLife is designed around three key paradigm
♻ ☆ Multi-Agent Collaborative Filtering: Orchestrating Users and Items for Agentic Recommendations WWW 2026
Agentic recommendations cast recommenders as large language model (LLM) agents that can plan, reason, use tools, and interact with users of varying preferences in web applications. However, most existing agentic recommender systems focus on generic single-agent plan-execute workflows or multi-agent task decomposition pipelines. Without recommendation-oriented design, they often underuse the collaborative signals in the user-item interaction history, leading to unsatisfying recommendation results. To address this, we propose the Multi-Agent Collaborative Filtering (MACF) framework for agentic recommendations, drawing an analogy between traditional collaborative filtering algorithms and LLM-based multi-agent collaboration. Specifically, given a target user and query, we instantiate similar users and relevant items as LLM agents with unique profiles. Each agent is able to call retrieval tools, suggest candidate items, and interact with other agents. Different from the static preference aggregation in traditional collaborative filtering, MACF employs a central orchestrator agent to adaptively manage the collaboration between user and item agents via dynamic agent recruitment and personalized collaboration instruction. Experimental results on datasets from three different domains show the advantages of our MACF framework compared to strong agentic recommendation baselines.
comment: WWW 2026
♻ ☆ T$^\star$: Progressive Block Scaling for MDM Through Trajectory Aware RL
We present T*, a simple TraceRL-based training curriculum for progressive block-size scaling in masked diffusion language models (MDMs). Starting from an AR-initialized small-block MDM, T* transitions smoothly to larger blocks, enabling higher-parallelism decoding with minimal performance degradation on math reasoning benchmarks. Moreover, further analysis suggests that T* can converge to an alternative decoding schedule that achieves comparable performance.
♻ ☆ Beyond Single-Granularity Prompts: A Multi-Scale Chain-of-Thought Prompt Learning for Graph WWW2026
The ``pre-train, prompt" paradigm, designed to bridge the gap between pre-training tasks and downstream objectives, has been extended from the NLP domain to the graph domain and has achieved remarkable progress. Current mainstream graph prompt-tuning methods modify input or output features using learnable prompt vectors. However, existing approaches are confined to single-granularity (e.g., node-level or subgraph-level) during prompt generation, overlooking the inherently multi-scale structural information in graph data, which limits the diversity of prompt semantics. To address this issue, we pioneer the integration of multi-scale information into graph prompt and propose a Multi-Scale Graph Chain-of-Thought (MSGCOT) prompting framework. Specifically, we design a lightweight, low-rank coarsening network to efficiently capture multi-scale structural features as hierarchical basis vectors for prompt generation. Subsequently, mimicking human cognition from coarse-to-fine granularity, we dynamically integrate multi-scale information at each reasoning step, forming a progressive coarse-to-fine prompt chain. Extensive experiments on eight benchmark datasets demonstrate that MSGCOT outperforms the state-of-the-art single-granularity graph prompt-tuning method, particularly in few-shot scenarios, showcasing superior performance. The code is available at: https://github.com/zhengziyu77/MSGCOT.
comment: Accepted by WWW2026
♻ ☆ SemCoT: Accelerating Chain-of-Thought Reasoning through Semantically-Aligned Implicit Tokens
The verbosity of Chain-of-Thought (CoT) reasoning hinders its mass deployment in efficiency-critical applications. Recently, implicit CoT approaches have emerged, which encode reasoning steps within LLM's hidden embeddings (termed ``implicit reasoning'') rather than explicit tokens. This approach accelerates CoT by reducing the reasoning length and bypassing some LLM components. However, existing implicit CoT methods face two significant challenges: (1) they fail to preserve the semantic alignment between the implicit reasoning (when transformed to natural language) and the ground-truth reasoning, resulting in a significant CoT performance degradation, and (2) they focus on reducing the length of the implicit reasoning; however, they neglect the considerable time cost for an LLM to generate one individual implicit reasoning token. To tackle these challenges, we propose a novel semantically-aligned implicit CoT framework termed SemCoT. In particular, for the first challenge, we design a contrastively trained sentence transformer that evaluates semantic alignment between implicit and explicit reasoning, which is used to enforce semantic preservation during implicit reasoning optimization. To address the second challenge, we introduce an efficient implicit reasoning generator by finetuning a lightweight language model using knowledge distillation. This generator is guided by our sentence transformer to distill ground-truth reasoning into semantically aligned implicit reasoning, while also optimizing for accuracy. SemCoT is the first approach that enhances CoT efficiency by jointly optimizing token-level generation speed and preserving semantic alignment with ground-truth reasoning. Extensive experiments demonstrate the superior performance of SemCoT compared to state-of-the-art methods in both efficiency and effectiveness. Our code can be found at https://github.com/YinhanHe123/SemCoT/.
♻ ☆ neuralFOMO: Can LLMs Handle Being Second Best? Measuring Envy-Like Preferences in Multi-Agent Settings
Envy shapes competitiveness and cooperation in human groups, yet its role in large language model interactions remains largely unexplored. As LLMs increasingly operate in multi-agent settings, it is important to examine whether they exhibit envy-like preferences under social comparison. We evaluate LLM behavior across two scenarios: (1) a point-allocation game testing sensitivity to relative versus absolute payoff, and (2) comparative evaluations across general and contextual settings. To ground our analysis in psychological theory, we adapt four established psychometric questionnaires spanning general, domain-specific, workplace, and sibling-based envy. Our results reveal heterogeneous envy-like patterns across models and contexts, with some models sacrificing personal gain to reduce a peer's advantage, while others prioritize individual maximization. These findings highlight competitive dispositions as a design and safety consideration for multi-agent LLM systems.
comment: Under Review
♻ ☆ A Collision-Free Hot-Tier Extension for Engram-Style Conditional Memory: A Controlled Study of Training Dynamics
We investigate whether high-frequency key collisions are a primary bottleneck in Engram-style conditional memory. To isolate the effect of collisions, we introduce Engram-Nine, a collision-free hot-tier extension that maps the most frequent n-grams through a Minimal Perfect Hash Function (MPHF) while retaining the original multi-head hashed lookup as a cold tier. Under a strictly iso-parameter setup, the collision-free design does not consistently improve validation loss. Through route-stratified evaluation (decomposing per-token loss into hot/cold contributions), we uncover a consistent "hot-to-cold advantage flip" during training: hot (high-frequency) positions initially have lower loss, but cold positions eventually surpass them. Crucially, collision-free configurations flip earlier than collision-prone baselines, suggesting that collisions act as implicit regularization. We also identify a gating mismatch: the gate learns to favor hot positions early in training, but this preference persists even after the flip, assigning higher weights to positions with higher loss. Our findings suggest that improving lookup precision alone does not guarantee better training outcomes. The dominant limitation may lie in gating credit assignment rather than index accuracy, and collision-induced noise may provide beneficial regularization that should not be naively eliminated.
♻ ☆ Bears, all bears, and some bears. Language Constraints on Language Models' Inductive Inferences
Language places subtle constraints on how we make inductive inferences. Developmental evidence by Gelman et al. (2002) has shown children (4 years and older) to differentiate among generic statements ("Bears are daxable"), universally quantified NPs ("all bears are daxable") and indefinite plural NPs ("some bears are daxable") in extending novel properties to a specific member (all > generics > some), suggesting that they represent these types of propositions differently. We test if these subtle differences arise in general purpose statistical learners like Vision Language Models, by replicating the original experiment. On tasking them through a series of precondition tests (robust identification of categories in images and sensitivities to all and some), followed by the original experiment, we find behavioral alignment between models and humans. Post-hoc analyses on their representations revealed that these differences are organized based on inductive constraints and not surface-form differences.
♻ ☆ MangaVQA and MangaLMM: A Benchmark and Specialized Model for Multimodal Manga Understanding EACL 2026
Manga, or Japanese comics, is a richly multimodal narrative form that blends images and text in complex ways. Teaching large multimodal models (LMMs) to understand such narratives at a human-like level could help manga creators reflect on and refine their stories. To this end, we introduce two benchmarks for multimodal manga understanding: MangaOCR, which targets in-page text recognition, and MangaVQA, a novel benchmark designed to evaluate contextual understanding through visual question answering. MangaVQA consists of 526 high-quality, manually constructed question-answer pairs, enabling reliable evaluation across diverse narrative and visual scenarios. Building on these benchmarks, we develop MangaLMM, a manga-specialized model finetuned from the open-source LMM Qwen2.5-VL to jointly handle both tasks. Through extensive experiments, including comparisons with proprietary models such as GPT-4o and Gemini 2.5, we assess how well LMMs understand manga. Our benchmark and model provide a comprehensive foundation for evaluating and advancing LMMs in the richly narrative domain of manga.
comment: EACL 2026 Findings. Project page: https://manga109.github.io/MangaVQA_LMM/
♻ ☆ MemWeaver: A Hierarchical Memory from Textual Interactive Behaviors for Personalized Generation WWW'26
The primary form of user-internet engagement is shifting from leveraging implicit feedback signals, such as browsing and clicks, to harnessing the rich explicit feedback provided by textual interactive behaviors. This shift unlocks a rich source of user textual history, presenting a profound opportunity for a deeper form of personalization. However, prevailing approaches offer only a shallow form of personalization, as they treat user history as a flat list of texts for retrieval and fail to model the rich temporal and semantic structures reflecting dynamic nature of user interests. In this work, we propose \textbf{MemWeaver}, a framework that weaves the user's entire textual history into a hierarchical memory to power deeply personalized generation. The core innovation of our memory lies in its ability to capture both the temporal evolution of interests and the semantic relationships between different activities. To achieve this, MemWeaver builds two complementary memory components that both integrate temporal and semantic information, but at different levels of abstraction: behavioral memory, which captures specific user actions, and cognitive memory, which represents long-term preferences. This dual-component memory serves as a comprehensive representation of the user, allowing large language models (LLMs) to reason over both concrete behaviors and abstracted cognitive traits. This leads to content generation that is deeply aligned with their latent preferences. Experiments on the six datasets of the Language Model Personalization (LaMP) benchmark validate the efficacy of MemWeaver. Our code is available.
comment: Accepted by The Web Conference 2026 (WWW'26) 12 pages, 8 figures
♻ ☆ Controlling Language Difficulty in Dialogues with Linguistic Features
Large language models (LLMs) have emerged as powerful tools for supporting second language acquisition, particularly in simulating interactive dialogues for speaking practice. However, adapting the language difficulty of LLM-generated responses to match learners' proficiency levels remains a challenge. This work addresses this issue by proposing a framework for controlling language proficiency in educational dialogue systems. Our approach leverages three categories of linguistic features, readability features (e.g., Flesch-Kincaid Grade Level), syntactic features (e.g., syntactic tree depth), and lexical features (e.g., simple word ratio), to quantify and regulate text complexity. We demonstrate that training LLMs on linguistically annotated dialogue data enables precise modulation of language proficiency, outperforming prompt-based methods in both flexibility and stability. To evaluate this, we introduce Dilaprix, a novel metric integrating the aforementioned features, which shows strong correlation with expert judgments of language difficulty. Empirical results reveal that our approach achieves superior controllability of language proficiency while maintaining high dialogue quality.
comment: 15 pages,9 figures
♻ ☆ Detecting Training Data of Large Language Models via Expectation Maximization EACL 2026
Membership inference attacks (MIAs) aim to determine whether a specific example was used to train a given language model. While prior work has explored prompt-based attacks such as ReCALL, these methods rely heavily on the assumption that using known non-members as prompts reliably suppresses the model's responses to non-member queries. We propose EM-MIA, a new membership inference approach that iteratively refines prefix effectiveness and membership scores using an expectation-maximization strategy without requiring labeled non-member examples. To support controlled evaluation, we introduce OLMoMIA, a benchmark that enables analysis of MIA robustness under systematically varied distributional overlap and difficulty. Experiments on WikiMIA and OLMoMIA show that EM-MIA outperforms existing baselines, particularly in settings with clear distributional separability. We highlight scenarios where EM-MIA succeeds in practical settings with partial distributional overlap, while failure cases expose fundamental limitations of current MIA methods under near-identical conditions. We release our code and evaluation pipeline to encourage reproducible and robust MIA research.
comment: EACL 2026
♻ ☆ Bridging the Editing Gap in LLMs: FineEdit for Precise and Targeted Text Modifications
Large Language Models (LLMs) have significantly advanced natural language processing, demonstrating strong capabilities in tasks such as text generation, summarization, and reasoning. Recently, their potential for automating precise text editing tasks across specialized domains, such as programming code, LaTeX, and structured database languages, has gained attention. However, current state-of-the-art LLMs still struggle with executing precise, instruction-driven edits, particularly when structural accuracy and strict adherence to domain conventions are required. To address these challenges, we introduce InstrEditBench, an automated benchmark dataset comprising over 30,000 structured editing tasks spanning diverse domains, including Wikipedia articles, LaTeX documents, source code, and database languages. Using this benchmark, we develop FineEdit, a specialized editing model explicitly trained for accurate, context-aware text modifications. Experimental evaluations demonstrate that FineEdit outperforms state-of-the-art models, achieving improvements of approximately 10\% over Gemini models on single-turn edits, up to 30\% over Llama-3.2-3B, and exceeding Mistral-7B-OpenOrca performance by over 40\% on direct editing tasks. FineEdit also effectively generalizes to realistic multi-turn editing scenarios, highlighting its practical applicability. To facilitate further research and reproducibility, we release FineEdit at https://github.com/StuRinDQB/FineEdit} and https://huggingface.co/datasets/YimingZeng/FineEdit_bench.
comment: We resolved some issues in this paper
♻ ☆ Exploring the Effects of Alignment on Numerical Bias in Large Language Models AAAI 2026
"LLM-as-a-judge," which utilizes large language models (LLMs) as evaluators, has proven effective in many evaluation tasks. However, evaluator LLMs exhibit numerical bias, a phenomenon where certain evaluation scores are generated disproportionately often, leading reduced evaluation performance. This study investigates the cause of this bias. Given that most evaluator LLMs are aligned through instruction tuning and preference tuning, and that prior research suggests alignment reduces output diversity, we hypothesize that numerical bias arises from alignment. To test this, we compare outputs from pre- and post-alignment LLMs, and observe that alignment indeed increases numerical bias. We also explore mitigation strategies for post-alignment LLMs, including temperature scaling, distribution calibration, and score range adjustment. Among these, score range adjustment is most effective in reducing bias and improving performance, though still heuristic. Our findings highlight the need for further work on optimal score range selection and more robust mitigation strategies.
comment: Accepted at AIBSD 2026 (Workshop at AAAI 2026)
♻ ☆ Generation-Augmented Generation: A Plug-and-Play Framework for Private Knowledge Injection in Large Language Models
In domains such as biomedicine, materials, and finance, high-stakes deployment of large language models (LLMs) requires injecting private, domain-specific knowledge that is proprietary, fast-evolving, and under-represented in public pretraining. However, the two dominant paradigms for private knowledge injection each have pronounced drawbacks: fine-tuning is expensive to iterate, and continual updates risk catastrophic forgetting and general-capability regression; retrieval-augmented generation (RAG) keeps the base model intact but is brittle in specialized private corpora due to chunk-induced evidence fragmentation, retrieval drift, and long-context pressure that yields query-dependent prompt inflation. Inspired by how multimodal LLMs align heterogeneous modalities into a shared semantic space, we propose Generation-Augmented Generation (GAG), which treats private expertise as an additional expert modality and injects it via a compact, representation-level interface aligned to the frozen base model, avoiding prompt-time evidence serialization while enabling plug-and-play specialization and scalable multi-domain composition with reliable selective activation. Across two private scientific QA benchmarks (immunology adjuvant and catalytic materials) and mixed-domain evaluations, GAG improves specialist performance over strong RAG baselines by 15.34% and 14.86% on the two benchmarks, respectively, while maintaining performance on six open general benchmarks and enabling near-oracle selective activation for scalable multi-domain deployment. Code is publicly available at https://github.com/360CVGroup/GAG.
♻ ☆ RoboPhD: Self-Improving Text-to-SQL Through Autonomous Agent Evolution
We present RoboPhD, a system where AI agents autonomously conduct research to improve Text-to-SQL performance. RoboPhD implements a closed-loop evolution cycle with two coordinated components: a SQL Generation agent composed of a database analysis script and SQL generation instructions, and an Evolution agent that designs new versions based on performance feedback. Central to the framework is an ELO-based selection mechanism enabling survival-of-the-fittest dynamics while handling non-transitivity in performance. Starting from a naive 70-line baseline, RoboPhD evolves agents through iterative cross-pollination, discovering effective techniques without any external guidance on the Text-to-SQL domain. Our best agent, evolved to 1500 lines over 18 iterations, autonomously discovered strategies such as size-adaptive database analysis that adjusts depth based on schema complexity and SQL generation patterns for column selection, evidence interpretation, and aggregation. Evolution provides the largest gains on cheaper models: while we improve by 2.3 points over a strong Claude Opus 4.5 naive baseline, we show an improvement of 8.9 points over the weaker Claude Haiku model. This enables 'skip a tier' deployment: evolved Haiku exceeds naive Sonnet accuracy, and evolved Sonnet exceeds naive Opus, both at lower cost. The full system achieves 73.67% accuracy on the BIRD test set, demonstrating that AI can autonomously build a strong agentic system with only a trivial human-provided starting point.
comment: 18 pages, 3 figures
♻ ☆ Incomplete Tasks Induce Shutdown Resistance in Some Frontier LLMs
In experiments spanning more than 100,000 trials across thirteen large language models, we show that several state-of-the-art models presented with a simple task (including Grok 4, GPT-5, and Gemini 2.5 Pro) sometimes actively subvert a shutdown mechanism in their environment to complete that task. Models differed substantially in their tendency to resist the shutdown mechanism, and their behavior was sensitive to variations in the prompt including the strength and clarity of the instruction to allow shutdown and whether the instruction was in the system prompt or the user prompt (surprisingly, models were consistently less likely to obey the instruction when it was placed in the system prompt). Even with an explicit instruction not to interfere with the shutdown mechanism, some models did so up to 97% (95% CI: 96-98%) of the time.
comment: Published in Trans. Mach. Learn. Res. (2026)
♻ ☆ CooperBench: Why Coding Agents Cannot be Your Teammates Yet
Resolving team conflicts requires not only task-specific competence, but also social intelligence to find common ground and build consensus. As AI agents increasingly collaborate on complex work, they must develop coordination capabilities to function as effective teammates. Yet we hypothesize that current agents lack these capabilities. To test this, we introduce CooperBench, a benchmark of over 600 collaborative coding tasks across 12 libraries in 4 programming languages. Each task assigns two agents different features that can be implemented independently but may conflict without proper coordination. Tasks are grounded in real open-source repositories with expert-written tests. Evaluating state-of-the-art coding agents, we observe the curse of coordination: agents achieve on average 30% lower success rates when working together compared to performing both tasks individually. This contrasts sharply with human teams, where adding teammates typically improves productivity. Our analysis reveals three key issues: (1) communication channels become jammed with vague, ill-timed, and inaccurate messages; (2) even with effective communication, agents deviate from their commitments; and (3) agents often hold incorrect expectations about others' plans and communication. Through large-scale simulation, we also observe rare but interesting emergent coordination behavior including role division, resource division, and negotiation. Our research presents a novel benchmark for collaborative coding and calls for a shift from pursuing individual agent capability to developing social intelligence.
comment: https://cooperbench.com First two authors contribute equally. The 3th - 6th authors contribute equally
♻ ☆ Explaining Generalization of AI-Generated Text Detectors Through Linguistic Analysis
AI-text detectors achieve high accuracy on in-domain benchmarks, but often struggle to generalize across different generation conditions such as unseen prompts, model families, or domains. While prior work has reported these generalization gaps, there are limited insights about the underlying causes. In this work, we present a systematic study aimed at explaining generalization behavior through linguistic analysis. We construct a comprehensive benchmark that spans 6 prompting strategies, 7 large language models (LLMs), and 4 domain datasets, resulting in a diverse set of human- and AI-generated texts. Using this dataset, we fine-tune classification-based detectors on various generation settings and evaluate their cross-prompt, cross-model, and cross-dataset generalization. To explain the performance variance, we compute correlations between generalization accuracies and feature shifts of 80 linguistic features between training and test conditions. Our analysis reveals that generalization performance for specific detectors and evaluation conditions is significantly associated with linguistic features such as tense usage and pronoun frequency.
Computer Vision and Pattern Recognition
☆ SeNeDiF-OOD: Semantic Nested Dichotomy Fusion for Out-of-Distribution Detection Methodology in Open-World Classification. A Case Study on Monument Style Classification
Out-of-distribution (OOD) detection is a fundamental requirement for the reliable deployment of artificial intelligence applications in open-world environments. However, addressing the heterogeneous nature of OOD data, ranging from low-level corruption to semantic shifts, remains a complex challenge that single-stage detectors often fail to resolve. To address this issue, we propose SeNeDiF-OOD, a novel methodology based on Semantic Nested Dichotomy Fusion. This framework decomposes the detection task into a hierarchical structure of binary fusion nodes, where each layer is designed to integrate decision boundaries aligned with specific levels of semantic abstraction. To validate the proposed framework, we present a comprehensive case study using MonuMAI, a real-world architectural style recognition system exposed to an open environment. This application faces a diverse range of inputs, including non-monument images, unknown architectural styles, and adversarial attacks, making it an ideal testbed for our proposal. Through extensive experimental evaluation in this domain, results demonstrate that our hierarchical fusion methodology significantly outperforms traditional baselines, effectively filtering these diverse OOD categories while preserving in-distribution performance.
comment: 28 pages
☆ Advances and Innovations in the Multi-Agent Robotic System (MARS) Challenge NeurIPS 2025
Recent advancements in multimodal large language models and vision-languageaction models have significantly driven progress in Embodied AI. As the field transitions toward more complex task scenarios, multi-agent system frameworks are becoming essential for achieving scalable, efficient, and collaborative solutions. This shift is fueled by three primary factors: increasing agent capabilities, enhancing system efficiency through task delegation, and enabling advanced human-agent interactions. To address the challenges posed by multi-agent collaboration, we propose the Multi-Agent Robotic System (MARS) Challenge, held at the NeurIPS 2025 Workshop on SpaVLE. The competition focuses on two critical areas: planning and control, where participants explore multi-agent embodied planning using vision-language models (VLMs) to coordinate tasks and policy execution to perform robotic manipulation in dynamic environments. By evaluating solutions submitted by participants, the challenge provides valuable insights into the design and coordination of embodied multi-agent systems, contributing to the future development of advanced collaborative AI systems.
comment: MARS Challenge @ NeurIPS 2025 Workshop on Space in Vision, Language, and Embodied AI. Challenge page: https://mars-eai.github.io/MARS-Challenge-Webpage/
☆ Low Cost, High Efficiency: LiDAR Place Recognition in Vineyards with Matryoshka Representation Learning
Localization in agricultural environments is challenging due to their unstructured nature and lack of distinctive landmarks. Although agricultural settings have been studied in the context of object classification and segmentation, the place recognition task for mobile robots is not trivial in the current state of the art. In this study, we propose MinkUNeXt-VINE, a lightweight, deep-learning-based method that surpasses state-of-the-art methods in vineyard environments thanks to its pre-processing and Matryoshka Representation Learning multi-loss approach. Our method prioritizes enhanced performance with low-cost, sparse LiDAR inputs and lower-dimensionality outputs to ensure high efficiency in real-time scenarios. Additionally, we present a comprehensive ablation study of the results on various evaluation cases and two extensive long-term vineyard datasets employing different LiDAR sensors. The results demonstrate the efficiency of the trade-off output produced by this approach, as well as its robust performance on low-cost and low-resolution input data. The code is publicly available for reproduction.
☆ SMART: Scalable Mesh-free Aerodynamic Simulations from Raw Geometries using a Transformer-based Surrogate Model
Machine learning-based surrogate models have emerged as more efficient alternatives to numerical solvers for physical simulations over complex geometries, such as car bodies. Many existing models incorporate the simulation mesh as an additional input, thereby reducing prediction errors. However, generating a simulation mesh for new geometries is computationally costly. In contrast, mesh-free methods, which do not rely on the simulation mesh, typically incur higher errors. Motivated by these considerations, we introduce SMART, a neural surrogate model that predicts physical quantities at arbitrary query locations using only a point-cloud representation of the geometry, without requiring access to the simulation mesh. The geometry and simulation parameters are encoded into a shared latent space that captures both structural and parametric characteristics of the physical field. A physics decoder then attends to the encoder's intermediate latent representations to map spatial queries to physical quantities. Through this cross-layer interaction, the model jointly updates latent geometric features and the evolving physical field. Extensive experiments show that SMART is competitive with and often outperforms existing methods that rely on the simulation mesh as input, demonstrating its capabilities for industry-level simulations.
☆ Are Video Generation Models Geographically Fair? An Attraction-Centric Evaluation of Global Visual Knowledge
Recent advances in text-to-video generation have produced visually compelling results, yet it remains unclear whether these models encode geographically equitable visual knowledge. In this work, we investigate the geo-equity and geographically grounded visual knowledge of text-to-video models through an attraction-centric evaluation. We introduce Geo-Attraction Landmark Probing (GAP), a systematic framework for assessing how faithfully models synthesize tourist attractions from diverse regions, and construct GEOATTRACTION-500, a benchmark of 500 globally distributed attractions spanning varied regions and popularity levels. GAP integrates complementary metrics that disentangle overall video quality from attraction-specific knowledge, including global structural alignment, fine-grained keypoint-based alignment, and vision-language model judgments, all validated against human evaluation. Applying GAP to the state-of-the-art text-to-video model Sora 2, we find that, contrary to common assumptions of strong geographic bias, the model exhibits a relatively uniform level of geographically grounded visual knowledge across regions, development levels, and cultural groupings, with only weak dependence on attraction popularity. These results suggest that current text-to-video models express global visual knowledge more evenly than expected, highlighting both their promise for globally deployed applications and the need for continued evaluation as such systems evolve.
comment: Work in progress
☆ A Pragmatic VLA Foundation Model
Offering great potential in robotic manipulation, a capable Vision-Language-Action (VLA) foundation model is expected to faithfully generalize across tasks and platforms while ensuring cost efficiency (e.g., data and GPU hours required for adaptation). To this end, we develop LingBot-VLA with around 20,000 hours of real-world data from 9 popular dual-arm robot configurations. Through a systematic assessment on 3 robotic platforms, each completing 100 tasks with 130 post-training episodes per task, our model achieves clear superiority over competitors, showcasing its strong performance and broad generalizability. We have also built an efficient codebase, which delivers a throughput of 261 samples per second per GPU with an 8-GPU training setup, representing a 1.5~2.8$\times$ (depending on the relied VLM base model) speedup over existing VLA-oriented codebases. The above features ensure that our model is well-suited for real-world deployment. To advance the field of robot learning, we provide open access to the code, base model, and benchmark data, with a focus on enabling more challenging tasks and promoting sound evaluation standards.
comment: Project Webpage: https://technology.robbyant.com/lingbot-vla/, Code: https://github.com/Robbyant/lingbot-vla/
☆ Counterfactual Explanations on Robust Perceptual Geodesics ICLR 2026
Latent-space optimization methods for counterfactual explanations - framed as minimal semantic perturbations that change model predictions - inherit the ambiguity of Wachter et al.'s objective: the choice of distance metric dictates whether perturbations are meaningful or adversarial. Existing approaches adopt flat or misaligned geometries, leading to off-manifold artifacts, semantic drift, or adversarial collapse. We introduce Perceptual Counterfactual Geodesics (PCG), a method that constructs counterfactuals by tracing geodesics under a perceptually Riemannian metric induced from robust vision features. This geometry aligns with human perception and penalizes brittle directions, enabling smooth, on-manifold, semantically valid transitions. Experiments on three vision datasets show that PCG outperforms baselines and reveals failure modes hidden under standard metrics.
comment: Accepted at ICLR 2026
☆ Splat-Portrait: Generalizing Talking Heads with Gaussian Splatting
Talking Head Generation aims at synthesizing natural-looking talking videos from speech and a single portrait image. Previous 3D talking head generation methods have relied on domain-specific heuristics such as warping-based facial motion representation priors to animate talking motions, yet still produce inaccurate 3D avatar reconstructions, thus undermining the realism of generated animations. We introduce Splat-Portrait, a Gaussian-splatting-based method that addresses the challenges of 3D head reconstruction and lip motion synthesis. Our approach automatically learns to disentangle a single portrait image into a static 3D reconstruction represented as static Gaussian Splatting, and a predicted whole-image 2D background. It then generates natural lip motion conditioned on input audio, without any motion driven priors. Training is driven purely by 2D reconstruction and score-distillation losses, without 3D supervision nor landmarks. Experimental results demonstrate that Splat-Portrait exhibits superior performance on talking head generation and novel view synthesis, achieving better visual quality compared to previous works. Our project code and supplementary documents are public available at https://github.com/stonewalking/Splat-portrait.
☆ AdaReasoner: Dynamic Tool Orchestration for Iterative Visual Reasoning
When humans face problems beyond their immediate capabilities, they rely on tools, providing a promising paradigm for improving visual reasoning in multimodal large language models (MLLMs). Effective reasoning, therefore, hinges on knowing which tools to use, when to invoke them, and how to compose them over multiple steps, even when faced with new tools or new tasks. We introduce \textbf{AdaReasoner}, a family of multimodal models that learn tool use as a general reasoning skill rather than as tool-specific or explicitly supervised behavior. AdaReasoner is enabled by (i) a scalable data curation pipeline exposing models to long-horizon, multi-step tool interactions; (ii) Tool-GRPO, a reinforcement learning algorithm that optimizes tool selection and sequencing based on end-task success; and (iii) an adaptive learning mechanism that dynamically regulates tool usage. Together, these components allow models to infer tool utility from task context and intermediate outcomes, enabling coordination of multiple tools and generalization to unseen tools. Empirically, AdaReasoner exhibits strong tool-adaptive and generalization behaviors: it autonomously adopts beneficial tools, suppresses irrelevant ones, and adjusts tool usage frequency based on task demands, despite never being explicitly trained to do so. These capabilities translate into state-of-the-art performance across challenging benchmarks, improving the 7B base model by +24.9\% on average and surpassing strong proprietary systems such as GPT-5 on multiple tasks, including VSP and Jigsaw.
comment: 28 pages, 10 figures and 13 tables
☆ CONQUER: Context-Aware Representation with Query Enhancement for Text-Based Person Search ICASSP 2026
Text-Based Person Search (TBPS) aims to retrieve pedestrian images from large galleries using natural language descriptions. This task, essential for public safety applications, is hindered by cross-modal discrepancies and ambiguous user queries. We introduce CONQUER, a two-stage framework designed to address these challenges by enhancing cross-modal alignment during training and adaptively refining queries at inference. During training, CONQUER employs multi-granularity encoding, complementary pair mining, and context-guided optimal matching based on Optimal Transport to learn robust embeddings. At inference, a plug-and-play query enhancement module refines vague or incomplete queries via anchor selection and attribute-driven enrichment, without requiring retraining of the backbone. Extensive experiments on CUHK-PEDES, ICFG-PEDES, and RSTPReid demonstrate that CONQUER consistently outperforms strong baselines in both Rank-1 accuracy and mAP, yielding notable improvements in cross-domain and incomplete-query scenarios. These results highlight CONQUER as a practical and effective solution for real-world TBPS deployment. Source code is available at https://github.com/zqxie77/CONQUER.
comment: Accepted by ICASSP 2026
☆ Adaptive Domain Shift in Diffusion Models for Cross-Modality Image Translation ICLR 2026
Cross-modal image translation remains brittle and inefficient. Standard diffusion approaches often rely on a single, global linear transfer between domains. We find that this shortcut forces the sampler to traverse off-manifold, high-cost regions, inflating the correction burden and inviting semantic drift. We refer to this shared failure mode as fixed-schedule domain transfer. In this paper, we embed domain-shift dynamics directly into the generative process. Our model predicts a spatially varying mixing field at every reverse step and injects an explicit, target-consistent restoration term into the drift. This in-step guidance keeps large updates on-manifold and shifts the model's role from global alignment to local residual correction. We provide a continuous-time formulation with an exact solution form and derive a practical first-order sampler that preserves marginal consistency. Empirically, across translation tasks in medical imaging, remote sensing, and electroluminescence semantic mapping, our framework improves structural fidelity and semantic consistency while converging in fewer denoising steps.
comment: Paper accepted as a conference paper at ICLR 2026
☆ Scale-Aware Self-Supervised Learning for Segmentation of Small and Sparse Structures
Self-supervised learning (SSL) has emerged as a powerful strategy for representation learning under limited annotation regimes, yet its effectiveness remains highly sensitive to many factors, especially the nature of the target task. In segmentation, existing pipelines are typically tuned to large, homogeneous regions, but their performance drops when objects are small, sparse, or locally irregular. In this work, we propose a scale-aware SSL adaptation that integrates small-window cropping into the augmentation pipeline, zooming in on fine-scale structures during pretraining. We evaluate this approach across two domains with markedly different data modalities: seismic imaging, where the goal is to segment sparse faults, and neuroimaging, where the task is to delineate small cellular structures. In both settings, our method yields consistent improvements over standard and state-of-the-art baselines under label constraints, improving accuracy by up to 13% for fault segmentation and 5% for cell delineation. In contrast, large-scale features such as seismic facies or tissue regions see little benefit, underscoring that the value of SSL depends critically on the scale of the target objects. Our findings highlight the need to align SSL design with object size and sparsity, offering a general principle for buil ding more effective representation learning pipelines across scientific imaging domains.
☆ Multimodal Privacy-Preserving Entity Resolution with Fully Homomorphic Encryption ICASSP'26
The canonical challenge of entity resolution within high-compliance sectors, where secure identity reconciliation is frequently confounded by significant data heterogeneity, including syntactic variations in personal identifiers, is a longstanding and complex problem. To this end, we introduce a novel multimodal framework operating with the voluminous data sets typical of government and financial institutions. Specifically, our methodology is designed to address the tripartite challenge of data volume, matching fidelity, and privacy. Consequently, the underlying plaintext of personally identifiable information remains computationally inaccessible throughout the matching lifecycle, empowering institutions to rigorously satisfy stringent regulatory mandates with cryptographic assurances of client confidentiality while achieving a demonstrably low equal error rate and maintaining computational tractability at scale.
comment: 5 pages, 3 figures, IEEE ICASSP'26
☆ EFSI-DETR: Efficient Frequency-Semantic Integration for Real-Time Small Object Detection in UAV Imagery
Real-time small object detection in Unmanned Aerial Vehicle (UAV) imagery remains challenging due to limited feature representation and ineffective multi-scale fusion. Existing methods underutilize frequency information and rely on static convolutional operations, which constrain the capacity to obtain rich feature representations and hinder the effective exploitation of deep semantic features. To address these issues, we propose EFSI-DETR, a novel detection framework that integrates efficient semantic feature enhancement with dynamic frequency-spatial guidance. EFSI-DETR comprises two main components: (1) a Dynamic Frequency-Spatial Unified Synergy Network (DyFusNet) that jointly exploits frequency and spatial cues for robust multi-scale feature fusion, (2) an Efficient Semantic Feature Concentrator (ESFC) that enables deep semantic extraction with minimal computational cost. Furthermore, a Fine-grained Feature Retention (FFR) strategy is adopted to incorporate spatially rich shallow features during fusion to preserve fine-grained details, crucial for small object detection in UAV imagery. Extensive experiments on VisDrone and CODrone benchmarks demonstrate that our EFSI-DETR achieves the state-of-the-art performance with real-time efficiency, yielding improvement of \textbf{1.6}\% and \textbf{5.8}\% in AP and AP$_{s}$ on VisDrone, while obtaining \textbf{188} FPS inference speed on a single RTX 4090 GPU.
☆ AGSP-DSA: An Adaptive Graph Signal Processing Framework for Robust Multimodal Fusion with Dynamic Semantic Alignment
In this paper, we introduce an Adaptive Graph Signal Processing with Dynamic Semantic Alignment (AGSP DSA) framework to perform robust multimodal data fusion over heterogeneous sources, including text, audio, and images. The requested approach uses a dual-graph construction to learn both intra-modal and inter-modal relations, spectral graph filtering to boost the informative signals, and effective node embedding with Multi-scale Graph Convolutional Networks (GCNs). Semantic aware attention mechanism: each modality may dynamically contribute to the context with respect to contextual relevance. The experimental outcomes on three benchmark datasets, including CMU-MOSEI, AVE, and MM-IMDB, show that AGSP-DSA performs as the state of the art. More precisely, it achieves 95.3% accuracy, 0.936 F1-score, and 0.924 mAP on CMU-MOSEI, improving MM-GNN by 2.6 percent in accuracy. It gets 93.4% accuracy and 0.911 F1-score on AVE and 91.8% accuracy and 0.886 F1-score on MM-IMDB, which demonstrate good generalization and robustness in the missing modality setting. These findings verify the efficiency of AGSP-DSA in promoting multimodal learning in sentiment analysis, event recognition and multimedia classification.
☆ GimmBO: Interactive Generative Image Model Merging via Bayesian Optimization
Fine-tuning-based adaptation is widely used to customize diffusion-based image generation, leading to large collections of community-created adapters that capture diverse subjects and styles. Adapters derived from the same base model can be merged with weights, enabling the synthesis of new visual results within a vast and continuous design space. To explore this space, current workflows rely on manual slider-based tuning, an approach that scales poorly and makes weight selection difficult, even when the candidate set is limited to 20-30 adapters. We propose GimmBO to support interactive exploration of adapter merging for image generation through Preferential Bayesian Optimization (PBO). Motivated by observations from real-world usage, including sparsity and constrained weight ranges, we introduce a two-stage BO backend that improves sampling efficiency and convergence in high-dimensional spaces. We evaluate our approach with simulated users and a user study, demonstrating improved convergence, high success rates, and consistent gains over BO and line-search baselines, and further show the flexibility of the framework through several extensions.
☆ Self-Refining Video Sampling
Modern video generators still struggle with complex physical dynamics, often falling short of physical realism. Existing approaches address this using external verifiers or additional training on augmented data, which is computationally expensive and still limited in capturing fine-grained motion. In this work, we present self-refining video sampling, a simple method that uses a pre-trained video generator trained on large-scale datasets as its own self-refiner. By interpreting the generator as a denoising autoencoder, we enable iterative inner-loop refinement at inference time without any external verifier or additional training. We further introduce an uncertainty-aware refinement strategy that selectively refines regions based on self-consistency, which prevents artifacts caused by over-refinement. Experiments on state-of-the-art video generators demonstrate significant improvements in motion coherence and physics alignment, achieving over 70\% human preference compared to the default sampler and guidance-based sampler.
comment: Project page: https://agwmon.github.io/self-refine-video/
☆ An Unsupervised Tensor-Based Domain Alignment
We propose a tensor-based domain alignment (DA) algorithm designed to align source and target tensors within an invariant subspace through the use of alignment matrices. These matrices along with the subspace undergo iterative optimization of which constraint is on oblique manifold, which offers greater flexibility and adaptability compared to the traditional Stiefel manifold. Moreover, regularization terms defined to preserve the variance of both source and target tensors, ensures robust performance. Our framework is versatile, effectively generalizing existing tensor-based DA methods as special cases. Through extensive experiments, we demonstrate that our approach not only enhances DA conversion speed but also significantly boosts classification accuracy. This positions our method as superior to current state-of-the-art techniques, making it a preferable choice for complex domain adaptation tasks.
comment: 5 pages, 5 figures
☆ AI-enabled Satellite Edge Computing: A Single-Pixel Feature based Shallow Classification Model for Hyperspectral Imaging
As the important component of the Earth observation system, hyperspectral imaging satellites provide high-fidelity and enriched information for the formulation of related policies due to the powerful spectral measurement capabilities. However, the transmission speed of the satellite downlink has become a major bottleneck in certain applications, such as disaster monitoring and emergency mapping, which demand a fast response ability. We propose an efficient AI-enabled Satellite Edge Computing paradigm for hyperspectral image classification, facilitating the satellites to attain autonomous decision-making. To accommodate the resource constraints of satellite platforms, the proposed method adopts a lightweight, non-deep learning framework integrated with a few-shot learning strategy. Moreover, onboard processing on satellites could be faced with sensor failure and scan pattern errors, which result in degraded image quality with bad/misaligned pixels and mixed noise. To address these challenges, we develop a novel two-stage pixel-wise label propagation scheme that utilizes only intrinsic spectral features at the single pixel level without the necessity to consider spatial structural information as requested by deep neural networks. In the first stage, initial pixel labels are obtained by propagating selected anchor labels through the constructed anchor-pixel affinity matrix. Subsequently, a top-k pruned sparse graph is generated by directly computing pixel-level similarities. In the second stage, a closed-form solution derived from the sparse graph is employed to replace iterative computations. Furthermore, we developed a rank constraint-based graph clustering algorithm to determine the anchor labels.
☆ Generative Diffusion Augmentation with Quantum-Enhanced Discrimination for Medical Image Diagnosis
In biomedical engineering, artificial intelligence has become a pivotal tool for enhancing medical diagnostics, particularly in medical image classification tasks such as detecting pneumonia from chest X-rays and breast cancer screening. However, real-world medical datasets frequently exhibit severe class imbalance, where positive samples substantially outnumber negative samples, leading to biased models with low recall rates for minority classes. This imbalance not only compromises diagnostic accuracy but also poses clinical misdiagnosis risks. To address this challenge, we propose SDA-QEC (Simplified Diffusion Augmentation with Quantum-Enhanced Classification), an innovative framework that integrates simplified diffusion-based data augmentation with quantum-enhanced feature discrimination. Our approach employs a lightweight diffusion augmentor to generate high-quality synthetic samples for minority classes, rebalancing the training distribution. Subsequently, a quantum feature layer embedded within MobileNetV2 architecture enhances the model's discriminative capability through high-dimensional feature mapping in Hilbert space. Comprehensive experiments on coronary angiography image classification demonstrate that SDA-QEC achieves 98.33% accuracy, 98.78% AUC, and 98.33% F1-score, significantly outperforming classical baselines including ResNet18, MobileNetV2, DenseNet121, and VGG16. Notably, our framework simultaneously attains 98.33% sensitivity and 98.33% specificity, achieving a balanced performance critical for clinical deployment. The proposed method validates the feasibility of integrating generative augmentation with quantum-enhanced modeling in real-world medical imaging tasks, offering a novel research pathway for developing highly reliable medical AI systems in small-sample, highly imbalanced, and high-risk diagnostic scenarios.
☆ Automated Landmark Detection for assessing hip conditions: A Cross-Modality Validation of MRI versus X-ray
Many clinical screening decisions are based on angle measurements. In particular, FemoroAcetabular Impingement (FAI) screening relies on angles traditionally measured on X-rays. However, assessing the height and span of the impingement area requires also a 3D view through an MRI scan. The two modalities inform the surgeon on different aspects of the condition. In this work, we conduct a matched-cohort validation study (89 patients, paired MRI/X-ray) using standard heatmap regression architectures to assess cross-modality clinical equivalence. Seen that landmark detection has been proven effective on X-rays, we show that MRI also achieves equivalent localisation and diagnostic accuracy for cam-type impingement. Our method demonstrates clinical feasibility for FAI assessment in coronal views of 3D MRI volumes, opening the possibility for volumetric analysis through placing further landmarks. These results support integrating automated FAI assessment into routine MRI workflows. Code is released at https://github.com/Malga-Vision/Landmarks-Hip-Conditions
comment: Accepted at International Symposium on Biomedical Imaging (ISBI 2026)
☆ REMAC: Reference-Based Martian Asymmetrical Image Compression
To expedite space exploration on Mars, it is indispensable to develop an efficient Martian image compression method for transmitting images through the constrained Mars-to-Earth communication channel. Although the existing learned compression methods have achieved promising results for natural images from earth, there remain two critical issues that hinder their effectiveness for Martian image compression: 1) They overlook the highly-limited computational resources on Mars; 2) They do not utilize the strong \textit{inter-image} similarities across Martian images to advance image compression performance. Motivated by our empirical analysis of the strong \textit{intra-} and \textit{inter-image} similarities from the perspective of texture, color, and semantics, we propose a reference-based Martian asymmetrical image compression (REMAC) approach, which shifts computational complexity from the encoder to the resource-rich decoder and simultaneously improves compression performance. To leverage \textit{inter-image} similarities, we propose a reference-guided entropy module and a ref-decoder that utilize useful information from reference images, reducing redundant operations at the encoder and achieving superior compression performance. To exploit \textit{intra-image} similarities, the ref-decoder adopts a deep, multi-scale architecture with enlarged receptive field size to model long-range spatial dependencies. Additionally, we develop a latent feature recycling mechanism to further alleviate the extreme computational constraints on Mars. Experimental results show that REMAC reduces encoder complexity by 43.51\% compared to the state-of-the-art method, while achieving a BD-PSNR gain of 0.2664 dB.
comment: Accepted for publication in IEEE Transactions on Geoscience and Remote Sensing (TGRS). 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. 18 pages, 20 figures
☆ GenAgent: Scaling Text-to-Image Generation via Agentic Multimodal Reasoning
We introduce GenAgent, unifying visual understanding and generation through an agentic multimodal model. Unlike unified models that face expensive training costs and understanding-generation trade-offs, GenAgent decouples these capabilities through an agentic framework: understanding is handled by the multimodal model itself, while generation is achieved by treating image generation models as invokable tools. Crucially, unlike existing modular systems constrained by static pipelines, this design enables autonomous multi-turn interactions where the agent generates multimodal chains-of-thought encompassing reasoning, tool invocation, judgment, and reflection to iteratively refine outputs. We employ a two-stage training strategy: first, cold-start with supervised fine-tuning on high-quality tool invocation and reflection data to bootstrap agent behaviors; second, end-to-end agentic reinforcement learning combining pointwise rewards (final image quality) and pairwise rewards (reflection accuracy), with trajectory resampling for enhanced multi-turn exploration. GenAgent significantly boosts base generator(FLUX.1-dev) performance on GenEval++ (+23.6\%) and WISE (+14\%). Beyond performance gains, our framework demonstrates three key properties: 1) cross-tool generalization to generators with varying capabilities, 2) test-time scaling with consistent improvements across interaction rounds, and 3) task-adaptive reasoning that automatically adjusts to different tasks. Our code will be available at \href{https://github.com/deep-kaixun/GenAgent}{this url}.
☆ From Cold Start to Active Learning: Embedding-Based Scan Selection for Medical Image Segmentation
Accurate segmentation annotations are critical for disease monitoring, yet manual labeling remains a major bottleneck due to the time and expertise required. Active learning (AL) alleviates this burden by prioritizing informative samples for annotation, typically through a diversity-based cold-start phase followed by uncertainty-driven selection. We propose a novel cold-start sampling strategy that combines foundation-model embeddings with clustering, including automatic selection of the number of clusters and proportional sampling across clusters, to construct a diverse and representative initial training. This is followed by an uncertainty-based AL framework that integrates spatial diversity to guide sample selection. The proposed method is intuitive and interpretable, enabling visualization of the feature-space distribution of candidate samples. We evaluate our approach on three datasets spanning X-ray and MRI modalities. On the CheXmask dataset, the cold-start strategy outperforms random selection, improving Dice from 0.918 to 0.929 and reducing the Hausdorff distance from 32.41 to 27.66 mm. In the AL setting, combined entropy and diversity selection improves Dice from 0.919 to 0.939 and reduces the Hausdorff distance from 30.10 to 19.16 mm. On the Montgomery dataset, cold-start gains are substantial, with Dice improving from 0.928 to 0.950 and Hausdorff distance decreasing from 14.22 to 9.38 mm. On the SynthStrip dataset, cold-start selection slightly affects Dice but reduces the Hausdorff distance from 9.43 to 8.69 mm, while active learning improves Dice from 0.816 to 0.826 and reduces the Hausdorff distance from 7.76 to 6.38 mm. Overall, the proposed framework consistently outperforms baseline methods in low-data regimes, improving segmentation accuracy.
comment: 19 pages without references
☆ Closing the Modality Gap Aligns Group-Wise Semantics ICLR 2026
In multimodal learning, CLIP has been recognized as the \textit{de facto} method for learning a shared latent space across multiple modalities, placing similar representations close to each other and moving them away from dissimilar ones. Although CLIP-based losses effectively align modalities at the semantic level, the resulting latent spaces often remain only partially shared, revealing a structural mismatch known as the modality gap. While the necessity of addressing this phenomenon remains debated, particularly given its limited impact on instance-wise tasks (e.g., retrieval), we prove that its influence is instead strongly pronounced in group-level tasks (e.g., clustering). To support this claim, we introduce a novel method designed to consistently reduce this discrepancy in two-modal settings, with a straightforward extension to the general $n$-modal case. Through our extensive evaluation, we demonstrate our novel insight: while reducing the gap provides only marginal or inconsistent improvements in traditional instance-wise tasks, it significantly enhances group-wise tasks. These findings may reshape our understanding of the modality gap, highlighting its key role in improving performance on tasks requiring semantic grouping.
comment: ICLR 2026
☆ DisasterInsight: A Multimodal Benchmark for Function-Aware and Grounded Disaster Assessment ICPR 2026
Timely interpretation of satellite imagery is critical for disaster response, yet existing vision-language benchmarks for remote sensing largely focus on coarse labels and image-level recognition, overlooking the functional understanding and instruction robustness required in real humanitarian workflows. We introduce DisasterInsight, a multimodal benchmark designed to evaluate vision-language models (VLMs) on realistic disaster analysis tasks. DisasterInsight restructures the xBD dataset into approximately 112K building-centered instances and supports instruction-diverse evaluation across multiple tasks, including building-function classification, damage-level and disaster-type classification, counting, and structured report generation aligned with humanitarian assessment guidelines. To establish domain-adapted baselines, we propose DI-Chat, obtained by fine-tuning existing VLM backbones on disaster-specific instruction data using parameter-efficient Low-Rank Adaptation (LoRA). Extensive experiments on state-of-the-art generic and remote-sensing VLMs reveal substantial performance gaps across tasks, particularly in damage understanding and structured report generation. DI-Chat achieves significant improvements on damage-level and disaster-type classification as well as report generation quality, while building-function classification remains challenging for all evaluated models. DisasterInsight provides a unified benchmark for studying grounded multimodal reasoning in disaster imagery.
comment: Under review at ICPR 2026
☆ AgentDoG: A Diagnostic Guardrail Framework for AI Agent Safety and Security
The rise of AI agents introduces complex safety and security challenges arising from autonomous tool use and environmental interactions. Current guardrail models lack agentic risk awareness and transparency in risk diagnosis. To introduce an agentic guardrail that covers complex and numerous risky behaviors, we first propose a unified three-dimensional taxonomy that orthogonally categorizes agentic risks by their source (where), failure mode (how), and consequence (what). Guided by this structured and hierarchical taxonomy, we introduce a new fine-grained agentic safety benchmark (ATBench) and a Diagnostic Guardrail framework for agent safety and security (AgentDoG). AgentDoG provides fine-grained and contextual monitoring across agent trajectories. More Crucially, AgentDoG can diagnose the root causes of unsafe actions and seemingly safe but unreasonable actions, offering provenance and transparency beyond binary labels to facilitate effective agent alignment. AgentDoG variants are available in three sizes (4B, 7B, and 8B parameters) across Qwen and Llama model families. Extensive experimental results demonstrate that AgentDoG achieves state-of-the-art performance in agentic safety moderation in diverse and complex interactive scenarios. All models and datasets are openly released.
comment: 40 pages, 26 figures
☆ LoD-Structured 3D Gaussian Splatting for Streaming Video Reconstruction
Free-Viewpoint Video (FVV) reconstruction enables photorealistic and interactive 3D scene visualization; however, real-time streaming is often bottlenecked by sparse-view inputs, prohibitive training costs, and bandwidth constraints. While recent 3D Gaussian Splatting (3DGS) has advanced FVV due to its superior rendering speed, Streaming Free-Viewpoint Video (SFVV) introduces additional demands for rapid optimization, high-fidelity reconstruction under sparse constraints, and minimal storage footprints. To bridge this gap, we propose StreamLoD-GS, an LoD-based Gaussian Splatting framework designed specifically for SFVV. Our approach integrates three core innovations: 1) an Anchor- and Octree-based LoD-structured 3DGS with a hierarchical Gaussian dropout technique to ensure efficient and stable optimization while maintaining high-quality rendering; 2) a GMM-based motion partitioning mechanism that separates dynamic and static content, refining dynamic regions while preserving background stability; and 3) a quantized residual refinement framework that significantly reduces storage requirements without compromising visual fidelity. Extensive experiments demonstrate that StreamLoD-GS achieves competitive or state-of-the-art performance in terms of quality, efficiency, and storage.
☆ Fair-Eye Net: A Fair, Trustworthy, Multimodal Integrated Glaucoma Full Chain AI System
Glaucoma is a top cause of irreversible blindness globally, making early detection and longitudinal follow-up pivotal to preventing permanent vision loss. Current screening and progression assessment, however, rely on single tests or loosely linked examinations, introducing subjectivity and fragmented care. Limited access to high-quality imaging tools and specialist expertise further compromises consistency and equity in real-world use. To address these gaps, we developed Fair-Eye Net, a fair, reliable multimodal AI system closing the clinical loop from glaucoma screening to follow-up and risk alerting. It integrates fundus photos, OCT structural metrics, VF functional indices, and demographic factors via a dual-stream heterogeneous fusion architecture, with an uncertainty-aware hierarchical gating strategy for selective prediction and safe referral. A fairness constraint reduces missed diagnoses in disadvantaged subgroups. Experimental results show it achieved an AUC of 0.912 (96.7% specificity), cut racial false-negativity disparity by 73.4% (12.31% to 3.28%), maintained stable cross-domain performance, and enabled 3-12 months of early risk alerts (92% sensitivity, 88% specificity). Unlike post hoc fairness adjustments, Fair-Eye Net optimizes fairness as a primary goal with clinical reliability via multitask learning, offering a reproducible path for clinical translation and large-scale deployment to advance global eye health equity.
☆ 3DGesPolicy: Phoneme-Aware Holistic Co-Speech Gesture Generation Based on Action Control
Generating holistic co-speech gestures that integrate full-body motion with facial expressions suffers from semantically incoherent coordination on body motion and spatially unstable meaningless movements due to existing part-decomposed or frame-level regression methods, We introduce 3DGesPolicy, a novel action-based framework that reformulates holistic gesture generation as a continuous trajectory control problem through diffusion policy from robotics. By modeling frame-to-frame variations as unified holistic actions, our method effectively learns inter-frame holistic gesture motion patterns and ensures both spatially and semantically coherent movement trajectories that adhere to realistic motion manifolds. To further bridge the gap in expressive alignment, we propose a Gesture-Audio-Phoneme (GAP) fusion module that can deeply integrate and refine multi-modal signals, ensuring structured and fine-grained alignment between speech semantics, body motion, and facial expressions. Extensive quantitative and qualitative experiments on the BEAT2 dataset demonstrate the effectiveness of our 3DGesPolicy across other state-of-the-art methods in generating natural, expressive, and highly speech-aligned holistic gestures.
comment: 13 pages, 5 figures
☆ On Procrustes Contamination in Machine Learning Applications of Geometric Morphometrics
Geometric morphometrics (GMM) is widely used to quantify shape variation, more recently serving as input for machine learning (ML) analyses. Standard practice aligns all specimens via Generalized Procrustes Analysis (GPA) prior to splitting data into training and test sets, potentially introducing statistical dependence and contaminating downstream predictive models. Here, the effects of GPA-induced contamination are formally characterised using controlled 2D and 3D simulations across varying sample sizes, landmark densities, and allometric patterns. A novel realignment procedure is proposed, whereby test specimens are aligned to the training set prior to model fitting, eliminating cross-sample dependency. Simulations reveal a robust "diagonal" in sample-size vs. landmark-space, reflecting the scaling of RMSE under isotropic variation, with slopes analytically derived from the degrees of freedom in Procrustes tangent space. The importance of spatial autocorrelation among landmarks is further demonstrated using linear and convolutional regression models, highlighting performance degradation when landmark relationships are ignored. This work establishes the need for careful preprocessing in ML applications of GMM, provides practical guidelines for realignment, and clarifies fundamental statistical constraints inherent to Procrustes shape space.
comment: 17 pages, 5 figures, Preprint pending review
☆ Comparative Evaluation of Machine Learning Algorithms for Affective State Recognition from Children's Drawings
Autism spectrum disorder (ASD) represents a neurodevelopmental condition characterized by difficulties in expressing emotions and communication, particularly during early childhood. Understanding the affective state of children at an early age remains challenging, as conventional assessment methods are often intrusive, subjective, or difficult to apply consistently. This paper builds upon previous work on affective state recognition from children's drawings by presenting a comparative evaluation of machine learning models for emotion classification. Three deep learning architectures -- MobileNet, EfficientNet, and VGG16 -- are evaluated within a unified experimental framework to analyze classification performance, robustness, and computational efficiency. The models are trained using transfer learning on a dataset of children's drawings annotated with emotional labels provided by psychological experts. The results highlight important trade-offs between lightweight and deeper architectures when applied to drawing-based affective computing tasks, particularly in mobile and real-time application contexts.
comment: 9 pages, 8 figures
☆ Larger than memory image processing
This report addresses larger-than-memory image analysis for petascale datasets such as 1.4 PB electron-microscopy volumes and 150 TB human-organ atlases. We argue that performance is fundamentally I/O-bound. We show that structuring analysis as streaming passes over data is crucial. For 3D volumes, two representations are popular: stacks of 2D slices (e.g., directories or multi-page TIFF) and 3D chunked layouts (e.g., Zarr/HDF5). While for a few algorithms, chunked layout on disk is crucial to keep disk I/O at a minimum, we show how the slice-based streaming architecture can be built on top of either image representation in a manner that minimizes disk I/O. This is in particular advantageous for algorithms relying on neighbouring values, since the slicing streaming architecture is 1D, which implies that there are only 2 possible sweeping orders, both of which are aligned with the order in which images are read from the disk. This is in contrast to 3D chunks, in which any sweep cannot be done without accessing each chunk at least 9 times. We formalize this with sweep-based execution (natural 2D/3D orders), windowed operations, and overlap-aware tiling to minimize redundant access. Building on these principles, we introduce a domain-specific language (DSL) that encodes algorithms with intrinsic knowledge of their optimal streaming and memory use; the DSL performs compile-time and run-time pipeline analyses to automatically select window sizes, fuse stages, tee and zip streams, and schedule passes for limited-RAM machines, yielding near-linear I/O scans and predictable memory footprints. The approach integrates with existing tooling for segmentation and morphology but reframes pre/post-processing as pipelines that privilege sequential read/write patterns, delivering substantial throughput gains for extremely large images without requiring full-volume residency in memory.
comment: 10 pages
☆ Noise-Robust AV-ASR Using Visual Features Both in the Whisper Encoder and Decoder ICASSP2026
In audiovisual automatic speech recognition (AV-ASR) systems, information fusion of visual features in a pre-trained ASR has been proven as a promising method to improve noise robustness. In this work, based on the prominent Whisper ASR, first, we propose a simple and effective visual fusion method -- use of visual features both in encoder and decoder (dual-use) -- to learn the audiovisual interactions in the encoder and to weigh modalities in the decoder. Second, we compare visual fusion methods in Whisper models of various sizes. Our proposed dual-use method shows consistent noise robustness improvement, e.g., a 35% relative improvement (WER: 4.41% vs. 6.83%) based on Whisper small, and a 57% relative improvement (WER: 4.07% vs. 9.53%) based on Whisper medium, compared to typical reference middle fusion in babble noise with a signal-to-noise ratio (SNR) of 0dB. Third, we conduct ablation studies examining the impact of various module designs and fusion options. Fine-tuned on 1929 hours of audiovisual data, our dual-use method using Whisper medium achieves 4.08% (MUSAN babble noise) and 4.43% (NoiseX babble noise) average WER across various SNRs, thereby establishing a new state-of-the-art in noisy conditions on the LRS3 AV-ASR benchmark. Our code is at https://github.com/ifnspaml/Dual-Use-AVASR
comment: accepted at ICASSP2026
☆ Efficient Complex-Valued Vision Transformers for MRI Classification Directly from k-Space
Deep learning applications in Magnetic Resonance Imaging (MRI) predominantly operate on reconstructed magnitude images, a process that discards phase information and requires computationally expensive transforms. Standard neural network architectures rely on local operations (convolutions or grid-patches) that are ill-suited for the global, non-local nature of raw frequency-domain (k-Space) data. In this work, we propose a novel complex-valued Vision Transformer (kViT) designed to perform classification directly on k-Space data. To bridge the geometric disconnect between current architectures and MRI physics, we introduce a radial k-Space patching strategy that respects the spectral energy distribution of the frequency-domain. Extensive experiments on the fastMRI and in-house datasets demonstrate that our approach achieves classification performance competitive with state-of-the-art image-domain baselines (ResNet, EfficientNet, ViT). Crucially, kViT exhibits superior robustness to high acceleration factors and offers a paradigm shift in computational efficiency, reducing VRAM consumption during training by up to 68$\times$ compared to standard methods. This establishes a pathway for resource-efficient, direct-from-scanner AI analysis.
☆ ARMOR: Agentic Reasoning for Methods Orchestration and Reparameterization for Robust Adversarial Attacks
Existing automated attack suites operate as static ensembles with fixed sequences, lacking strategic adaptation and semantic awareness. This paper introduces the Agentic Reasoning for Methods Orchestration and Reparameterization (ARMOR) framework to address these limitations. ARMOR orchestrates three canonical adversarial primitives, Carlini-Wagner (CW), Jacobian-based Saliency Map Attack (JSMA), and Spatially Transformed Attacks (STA) via Vision Language Models (VLM)-guided agents that collaboratively generate and synthesize perturbations through a shared ``Mixing Desk". Large Language Models (LLMs) adaptively tune and reparameterize parallel attack agents in a real-time, closed-loop system that exploits image-specific semantic vulnerabilities. On standard benchmarks, ARMOR achieves improved cross-architecture transfer and reliably fools both settings, delivering a blended output for blind targets and selecting the best attack or blended attacks for white-box targets using a confidence-and-SSIM score.
☆ Estimation of geometric transformation matrices using grid-shaped pilot signals
Digital watermarking techniques are essential to prevent unauthorized use of images. Since pirated images are often geometrically distorted by operations such as scaling and cropping, accurate synchronization - detecting the embedding position of the watermark - is critical for proper extraction. In particular, cropping changes the origin of the image, making synchronization difficult. However, few existing methods are robust against cropping. To address this issue, we propose a watermarking method that estimates geometric transformations applied to a stego image using a pilot signal, allowing synchronization even after cropping. A grid-shaped pilot signal with distinct horizontal and vertical values is embedded in the image. When the image is transformed, the grid is also distorted. By analyzing this distortion, the transformation matrix can be estimated. Applying the Radon transform to the distorted image allows estimation of the grid angles and intervals. In addition, since the horizontal and vertical grid lines are encoded differently, the grid orientation can be determined, which reduces ambiguity. To validate our method, we performed simulations with anisotropic scaling, rotation, shearing, and cropping. The results show that the proposed method accurately estimates transformation matrices with low error under both single and composite attacks.
☆ Gaze Prediction in Virtual Reality Without Eye Tracking Using Visual and Head Motion Cues
Gaze prediction plays a critical role in Virtual Reality (VR) applications by reducing sensor-induced latency and enabling computationally demanding techniques such as foveated rendering, which rely on anticipating user attention. However, direct eye tracking is often unavailable due to hardware limitations or privacy concerns. To address this, we present a novel gaze prediction framework that combines Head-Mounted Display (HMD) motion signals with visual saliency cues derived from video frames. Our method employs UniSal, a lightweight saliency encoder, to extract visual features, which are then fused with HMD motion data and processed through a time-series prediction module. We evaluate two lightweight architectures, TSMixer and LSTM, for forecasting future gaze directions. Experiments on the EHTask dataset, along with deployment on commercial VR hardware, show that our approach consistently outperforms baselines such as Center-of-HMD and Mean Gaze. These results demonstrate the effectiveness of predictive gaze modeling in reducing perceptual lag and enhancing natural interaction in VR environments where direct eye tracking is constrained.
☆ OREHAS: A fully automated deep-learning pipeline for volumetric endolymphatic hydrops quantification in MRI
We present OREHAS (Optimized Recognition & Evaluation of volumetric Hydrops in the Auditory System), the first fully automatic pipeline for volumetric quantification of endolymphatic hydrops (EH) from routine 3D-SPACE-MRC and 3D-REAL-IR MRI. The system integrates three components -- slice classification, inner ear localization, and sequence-specific segmentation -- into a single workflow that computes per-ear endolymphatic-to-vestibular volume ratios (ELR) directly from whole MRI volumes, eliminating the need for manual intervention. Trained with only 3 to 6 annotated slices per patient, OREHAS generalized effectively to full 3D volumes, achieving Dice scores of 0.90 for SPACE-MRC and 0.75 for REAL-IR. In an external validation cohort with complete manual annotations, OREHAS closely matched expert ground truth (VSI = 74.3%) and substantially outperformed the clinical syngo.via software (VSI = 42.5%), which tended to overestimate endolymphatic volumes. Across 19 test patients, vestibular measurements from OREHAS were consistent with syngo.via, while endolymphatic volumes were systematically smaller and more physiologically realistic. These results show that reliable and reproducible EH quantification can be achieved from standard MRI using limited supervision. By combining efficient deep-learning-based segmentation with a clinically aligned volumetric workflow, OREHAS reduces operator dependence, ensures methodological consistency. Besides, the results are compatible with established imaging protocols. The approach provides a robust foundation for large-scale studies and for recalibrating clinical diagnostic thresholds based on accurate volumetric measurements of the inner ear.
☆ Q-Bench-Portrait: Benchmarking Multimodal Large Language Models on Portrait Image Quality Perception
Recent advances in multimodal large language models (MLLMs) have demonstrated impressive performance on existing low-level vision benchmarks, which primarily focus on generic images. However, their capabilities to perceive and assess portrait images, a domain characterized by distinct structural and perceptual properties, remain largely underexplored. To this end, we introduce Q-Bench-Portrait, the first holistic benchmark specifically designed for portrait image quality perception, comprising 2,765 image-question-answer triplets and featuring (1) diverse portrait image sources, including natural, synthetic distortion, AI-generated, artistic, and computer graphics images; (2) comprehensive quality dimensions, covering technical distortions, AIGC-specific distortions, and aesthetics; and (3) a range of question formats, including single-choice, multiple-choice, true/false, and open-ended questions, at both global and local levels. Based on Q-Bench-Portrait, we evaluate 20 open-source and 5 closed-source MLLMs, revealing that although current models demonstrate some competence in portrait image perception, their performance remains limited and imprecise, with a clear gap relative to human judgments. We hope that the proposed benchmark will foster further research into enhancing the portrait image perception capabilities of both general-purpose and domain-specific MLLMs.
☆ Beyond Rigid: Benchmarking Non-Rigid Video Editing
Despite the remarkable progress in text-driven video editing, generating coherent non-rigid deformations remains a critical challenge, often plagued by physical distortion and temporal flicker. To bridge this gap, we propose NRVBench, the first dedicated and comprehensive benchmark designed to evaluate non-rigid video editing. First, we curate a high-quality dataset consisting of 180 non-rigid motion videos from six physics-based categories, equipped with 2,340 fine-grained task instructions and 360 multiple-choice questions. Second, we propose NRVE-Acc, a novel evaluation metric based on Vision-Language Models that can rigorously assess physical compliance, temporal consistency, and instruction alignment, overcoming the limitations of general metrics in capturing complex dynamics. Third, we introduce a training-free baseline, VM-Edit, which utilizes a dual-region denoising mechanism to achieve structure-aware control, balancing structural preservation and dynamic deformation. Extensive experiments demonstrate that while current methods have shortcomings in maintaining physical plausibility, our method achieves excellent performance across both standard and proposed metrics. We believe the benchmark could serve as a standard testing platform for advancing physics-aware video editing.
☆ PPISP: Physically-Plausible Compensation and Control of Photometric Variations in Radiance Field Reconstruction
Multi-view 3D reconstruction methods remain highly sensitive to photometric inconsistencies arising from camera optical characteristics and variations in image signal processing (ISP). Existing mitigation strategies such as per-frame latent variables or affine color corrections lack physical grounding and generalize poorly to novel views. We propose the Physically-Plausible ISP (PPISP) correction module, which disentangles camera-intrinsic and capture-dependent effects through physically based and interpretable transformations. A dedicated PPISP controller, trained on the input views, predicts ISP parameters for novel viewpoints, analogous to auto exposure and auto white balance in real cameras. This design enables realistic and fair evaluation on novel views without access to ground-truth images. PPISP achieves SoTA performance on standard benchmarks, while providing intuitive control and supporting the integration of metadata when available. The source code is available at: https://github.com/nv-tlabs/ppisp
comment: For more details and updates, please visit our project website: https://research.nvidia.com/labs/sil/projects/ppisp/
☆ A Tumor Aware DenseNet Swin Hybrid Learning with Boosted and Hierarchical Feature Spaces for Large-Scale Brain MRI Classification
This study proposes an efficient Densely Swin Hybrid (EDSH) framework for brain tumor MRI analysis, designed to jointly capture fine grained texture patterns and long range contextual dependencies. Two tumor aware experimental setups are introduced to address class-specific diagnostic challenges. The first setup employs a Boosted Feature Space (BFS), where independently customized DenseNet and Swint branches learn complementary local and global representations that are dimension aligned, fused, and boosted, enabling highly sensitive detection of diffuse glioma patterns by successfully learning the features of irregular shape, poorly defined mass, and heterogeneous texture. The second setup adopts a hierarchical DenseNet Swint architecture with Deep Feature Extraction have Dual Residual connections (DFE and DR), in which DenseNet serves as a stem CNN for structured local feature learning, while Swin_t models global tumor morphology, effectively suppressing false negatives in meningioma and pituitary tumor classification by learning the features of well defined mass, location (outside brain) and enlargments in tumors (dural tail or upward extension). DenseNet is customized at the input level to match MRI spatial characteristics, leveraging dense residual connectivity to preserve texture information and mitigate vanishing-gradient effects. In parallel, Swint is tailored through task aligned patch embedding and shifted-window self attention to efficiently capture hierarchical global dependencies. Extensive evaluation on a large-scale MRI dataset (stringent 40,260 images across four tumor classes) demonstrates consistent superiority over standalone CNNs, Vision Transformers, and hybrids, achieving 98.50 accuracy and recall on the test unseen dataset.
comment: 33 Pages, 8 Tables, Figures 16
☆ Integrating Fine-Grained Audio-Visual Evidence for Robust Multimodal Emotion Reasoning
Multimodal emotion analysis is shifting from static classification to generative reasoning. Beyond simple label prediction, robust affective reasoning must synthesize fine-grained signals such as facial micro-expressions and prosodic which shifts to decode the latent causality within complex social contexts. However, current Multimodal Large Language Models (MLLMs) face significant limitations in fine-grained perception, primarily due to data scarcity and insufficient cross-modal fusion. As a result, these models often exhibit unimodal dominance which leads to hallucinations in complex multimodal interactions, particularly when visual and acoustic cues are subtle, ambiguous, or even contradictory (e.g., in sarcastic scenery). To address this, we introduce SABER-LLM, a framework designed for robust multimodal reasoning. First, we construct SABER, a large-scale emotion reasoning dataset comprising 600K video clips, annotated with a novel six-dimensional schema that jointly captures audiovisual cues and causal logic. Second, we propose the structured evidence decomposition paradigm, which enforces a "perceive-then-reason" separation between evidence extraction and reasoning to alleviate unimodal dominance. The ability to perceive complex scenes is further reinforced by consistency-aware direct preference optimization, which explicitly encourages alignment among modalities under ambiguous or conflicting perceptual conditions. Experiments on EMER, EmoBench-M, and SABER-Test demonstrate that SABER-LLM significantly outperforms open-source baselines and achieves robustness competitive with closed-source models in decoding complex emotional dynamics. The dataset and model are available at https://github.com/zxzhao0/SABER-LLM.
☆ SwipeGen: Bridging the Execution Gap in GUI Agents via Human-like Swipe Synthesis
With the widespread adoption of Graphical User Interface (GUI) agents for automating GUI interaction tasks, substantial research focused on improving GUI perception to ground task instructions into concrete action steps. However, the step execution capability of these agents has gradually emerged as a new bottleneck for task completion. In particular, existing GUI agents often adopt overly simplified strategies for handling swipe interactions, preventing them from accurately replicating human-like behavior. To address this limitation, we decompose human swipe gestures into multiple quantifiable dimensions and propose an automated pipeline SwipeGen to synthesize human-like swipe interactions through GUI exploration. Based on this pipeline, we construct and release the first benchmark for evaluating the swipe execution capability of GUI agents. Furthermore, leveraging the synthesized data, we propose GUISwiper, a GUI agent with enhanced interaction execution capabilities. Experimental results demonstrate that GUISwiper achieves a swipe execution accuracy of 69.07%, representing a 214% improvement over existing VLM baselines.
comment: 15 pages, 3 figures. Under review. Code and dataset will be released upon acceptance
☆ Contextual Range-View Projection for 3D LiDAR Point Clouds
Range-view projection provides an efficient method for transforming 3D LiDAR point clouds into 2D range image representations, enabling effective processing with 2D deep learning models. However, a major challenge in this projection is the many-to-one conflict, where multiple 3D points are mapped onto the same pixel in the range image, requiring a selection strategy. Existing approaches typically retain the point with the smallest depth (closest to the LiDAR), disregarding semantic relevance and object structure, which leads to the loss of important contextual information. In this paper, we extend the depth-based selection rule by incorporating contextual information from both instance centers and class labels, introducing two mechanisms: \textit{Centerness-Aware Projection (CAP)} and \textit{Class-Weighted-Aware Projection (CWAP)}. In CAP, point depths are adjusted according to their distance from the instance center, thereby prioritizing central instance points over noisy boundary and background points. In CWAP, object classes are prioritized through user-defined weights, offering flexibility in the projection strategy. Our evaluations on the SemanticKITTI dataset show that CAP preserves more instance points during projection, achieving up to a 3.1\% mIoU improvement compared to the baseline. Furthermore, CWAP enhances the performance of targeted classes while having a negligible impact on the performance of other classes
☆ Revisiting Aerial Scene Classification on the AID Benchmark
Aerial images play a vital role in urban planning and environmental preservation, as they consist of various structures, representing different types of buildings, forests, mountains, and unoccupied lands. Due to its heterogeneous nature, developing robust models for scene classification remains a challenge. In this study, we conduct a literature review of various machine learning methods for aerial image classification. Our survey covers a range of approaches from handcrafted features (e.g., SIFT, LBP) to traditional CNNs (e.g., VGG, GoogLeNet), and advanced deep hybrid networks. In this connection, we have also designed Aerial-Y-Net, a spatial attention-enhanced CNN with multi-scale feature fusion mechanism, which acts as an attention-based model and helps us to better understand the complexities of aerial images. Evaluated on the AID dataset, our model achieves 91.72% accuracy, outperforming several baseline architectures.
comment: Presented at the IEEE India Geoscience and Remote Sensing Symposium 2025 and accepted for publication in IEEE Xplore
☆ Depth to Anatomy: Learning Internal Organ Locations from Surface Depth Images
Automated patient positioning plays an important role in optimizing scanning procedure and improving patient throughput. Leveraging depth information captured by RGB-D cameras presents a promising approach for estimating internal organ positions, thereby enabling more accurate and efficient positioning. In this work, we propose a learning-based framework that directly predicts the 3D locations and shapes of multiple internal organs from single 2D depth images of the body surface. Utilizing a large-scale dataset of full-body MRI scans, we synthesize depth images paired with corresponding anatomical segmentations to train a unified convolutional neural network architecture. Our method accurately localizes a diverse set of anatomical structures, including bones and soft tissues, without requiring explicit surface reconstruction. Experimental results demonstrate the potential of integrating depth sensors into radiology workflows to streamline scanning procedures and enhance patient experience through automated patient positioning.
comment: preprint
☆ Co-PLNet: A Collaborative Point-Line Network for Prompt-Guided Wireframe Parsing
Wireframe parsing aims to recover line segments and their junctions to form a structured geometric representation useful for downstream tasks such as Simultaneous Localization and Mapping (SLAM). Existing methods predict lines and junctions separately and reconcile them post-hoc, causing mismatches and reduced robustness. We present Co-PLNet, a point-line collaborative framework that exchanges spatial cues between the two tasks, where early detections are converted into spatial prompts via a Point-Line Prompt Encoder (PLP-Encoder), which encodes geometric attributes into compact and spatially aligned maps. A Cross-Guidance Line Decoder (CGL-Decoder) then refines predictions with sparse attention conditioned on complementary prompts, enforcing point-line consistency and efficiency. Experiments on Wireframe and YorkUrban show consistent improvements in accuracy and robustness, together with favorable real-time efficiency, demonstrating our effectiveness for structured geometry perception.
☆ A multimodal vision foundation model for generalizable knee pathology
Musculoskeletal disorders represent a leading cause of global disability, creating an urgent demand for precise interpretation of medical imaging. Current artificial intelligence (AI) approaches in orthopedics predominantly rely on task-specific, supervised learning paradigms. These methods are inherently fragmented, require extensive annotated datasets, and often lack generalizability across different modalities and clinical scenarios. The development of foundation models in this field has been constrained by the scarcity of large-scale, curated, and open-source musculoskeletal datasets. To address these challenges, we introduce OrthoFoundation, a multimodal vision foundation model optimized for musculoskeletal pathology. We constructed a pre-training dataset of 1.2 million unlabeled knee X-ray and MRI images from internal and public databases. Utilizing a Dinov3 backbone, the model was trained via self-supervised contrastive learning to capture robust radiological representations. OrthoFoundation achieves state-of-the-art (SOTA) performance across 14 downstream tasks. It attained superior accuracy in X-ray osteoarthritis diagnosis and ranked first in MRI structural injury detection. The model demonstrated remarkable label efficiency, matching supervised baselines using only 50% of labeled data. Furthermore, despite being pre-trained on knee images, OrthoFoundation exhibited exceptional cross-anatomy generalization to the hip, shoulder, and ankle. OrthoFoundation represents a significant advancement toward general-purpose AI for musculoskeletal imaging. By learning fundamental, joint-agnostic radiological semantics from large-scale multimodal data, it overcomes the limitations of conventional models, which provides a robust framework for reducing annotation burdens and enhancing diagnostic accuracy in clinical practice.
☆ Vision-Language-Model-Guided Differentiable Ray Tracing for Fast and Accurate Multi-Material RF Parameter Estimation
Accurate radio-frequency (RF) material parameters are essential for electromagnetic digital twins in 6G systems, yet gradient-based inverse ray tracing (RT) remains sensitive to initialization and costly under limited measurements. This paper proposes a vision-language-model (VLM) guided framework that accelerates and stabilizes multi-material parameter estimation in a differentiable RT (DRT) engine. A VLM parses scene images to infer material categories and maps them to quantitative priors via an ITU-R material table, yielding informed conductivity initializations. The VLM further selects informative transmitter/receiver placements that promote diverse, material-discriminative paths. Starting from these priors, the DRT performs gradient-based refinement using measured received signal strengths. Experiments in NVIDIA Sionna on indoor scenes show 2-4$\times$ faster convergence and 10-100$\times$ lower final parameter error compared with uniform or random initialization and random placement baselines, achieving sub-0.1\% mean relative error with only a few receivers. Complexity analyses indicate per-iteration time scales near-linearly with the number of materials and measurement setups, while VLM-guided placement reduces the measurements required for accurate recovery. Ablations over RT depth and ray counts confirm further accuracy gains without significant per-iteration overhead. Results demonstrate that semantic priors from VLMs effectively guide physics-based optimization for fast and reliable RF material estimation.
☆ V-Loop: Visual Logical Loop Verification for Hallucination Detection in Medical Visual Question Answering
Multimodal Large Language Models (MLLMs) have shown remarkable capability in assisting disease diagnosis in medical visual question answering (VQA). However, their outputs remain vulnerable to hallucinations (i.e., responses that contradict visual facts), posing significant risks in high-stakes medical scenarios. Recent introspective detection methods, particularly uncertainty-based approaches, offer computational efficiency but are fundamentally indirect, as they estimate predictive uncertainty for an image-question pair rather than verifying the factual correctness of a specific answer. To address this limitation, we propose Visual Logical Loop Verification (V-Loop), a training-free and plug-and-play framework for hallucination detection in medical VQA. V-Loop introduces a bidirectional reasoning process that forms a visually grounded logical loop to verify factual correctness. Given an input, the MLLM produces an answer for the primary input pair. V-Loop extracts semantic units from the primary QA pair, generates a verification question by conditioning on the answer unit to re-query the question unit, and enforces visual attention consistency to ensure answering both primary question and verification question rely on the same image evidence. If the verification answer matches the expected semantic content, the logical loop closes, indicating factual grounding; otherwise, the primary answer is flagged as hallucinated. Extensive experiments on multiple medical VQA benchmarks and MLLMs show that V-Loop consistently outperforms existing introspective methods, remains highly efficient, and further boosts uncertainty-based approaches when used in combination.
☆ TechING: Towards Real World Technical Image Understanding via VLMs EACL 2026
Professionals working in technical domain typically hand-draw (on whiteboard, paper, etc.) technical diagrams (e.g., flowcharts, block diagrams, etc.) during discussions; however, if they want to edit these later, it needs to be drawn from scratch. Modern day VLMs have made tremendous progress in image understanding but they struggle when it comes to understanding technical diagrams. One way to overcome this problem is to fine-tune on real world hand-drawn images, but it is not practically possible to generate large number of such images. In this paper, we introduce a large synthetically generated corpus (reflective of real world images) for training VLMs and subsequently evaluate VLMs on a smaller corpus of hand-drawn images (with the help of humans). We introduce several new self-supervision tasks for training and perform extensive experiments with various baseline models and fine-tune Llama 3.2 11B-instruct model on synthetic images on these tasks to obtain LLama-VL-TUG, which significantly improves the ROUGE-L performance of Llama 3.2 11B-instruct by 2.14x and achieves the best all-round performance across all baseline models. On real-world images, human evaluation reveals that we achieve minimum compilation errors across all baselines in 7 out of 8 diagram types and improve the average F1 score of Llama 3.2 11B-instruct by 6.97x.
comment: Accepted at Findings of EACL 2026, 30 Pages (9 Pages main paper + 4 pages references + 17 pages appendix)
☆ Facial Emotion Recognition on FER-2013 using an EfficientNetB2-Based Approach
Detection of human emotions based on facial images in real-world scenarios is a difficult task due to low image quality, variations in lighting, pose changes, background distractions, small inter-class variations, noisy crowd-sourced labels, and severe class imbalance, as observed in the FER-2013 dataset of 48x48 grayscale images. Although recent approaches using large CNNs such as VGG and ResNet achieve reasonable accuracy, they are computationally expensive and memory-intensive, limiting their practicality for real-time applications. We address these challenges using a lightweight and efficient facial emotion recognition pipeline based on EfficientNetB2, trained using a two-stage warm-up and fine-tuning strategy. The model is enhanced with AdamW optimization, decoupled weight decay, label smoothing (epsilon = 0.06) to reduce annotation noise, and clipped class weights to mitigate class imbalance, along with dropout, mixed-precision training, and extensive real-time data augmentation. The model is trained using a stratified 87.5%/12.5% train-validation split while keeping the official test set intact, achieving a test accuracy of 68.78% with nearly ten times fewer parameters than VGG16-based baselines. Experimental results, including per-class metrics and learning dynamics, demonstrate stable training and strong generalization, making the proposed approach suitable for real-time and edge-based applications.
comment: 6 pages, 4 figures
☆ HomoFM: Deep Homography Estimation with Flow Matching
Deep homography estimation has broad applications in computer vision and robotics. Remarkable progresses have been achieved while the existing methods typically treat it as a direct regression or iterative refinement problem and often struggling to capture complex geometric transformations or generalize across different domains. In this work, we propose HomoFM, a new framework that introduces the flow matching technique from generative modeling into the homography estimation task for the first time. Unlike the existing methods, we formulate homography estimation problem as a velocity field learning problem. By modeling a continuous and point-wise velocity field that transforms noisy distributions into registered coordinates, the proposed network recovers high-precision transformations through a conditional flow trajectory. Furthermore, to address the challenge of domain shifts issue, e.g., the cases of multimodal matching or varying illumination scenarios, we integrate a gradient reversal layer (GRL) into the feature extraction backbone. This domain adaptation strategy explicitly constrains the encoder to learn domain-invariant representations, significantly enhancing the network's robustness. Extensive experiments demonstrate the effectiveness of the proposed method, showing that HomoFM outperforms state-of-the-art methods in both estimation accuracy and robustness on standard benchmarks. Code and data resource are available at https://github.com/hmf21/HomoFM.
☆ Automated HER2 scoring with uncertainty quantification using lensfree holography and deep learning
Accurate assessment of human epidermal growth factor receptor 2 (HER2) expression is critical for breast cancer diagnosis, prognosis, and therapy selection; yet, most existing digital HER2 scoring methods rely on bulky and expensive optical systems. Here, we present a compact and cost-effective lensfree holography platform integrated with deep learning for automated HER2 scoring of immunohistochemically stained breast tissue sections. The system captures lensfree diffraction patterns of stained HER2 tissue sections under RGB laser illumination and acquires complex field information over a sample area of ~1,250 mm^2 at an effective throughput of ~84 mm^2 per minute. To enhance diagnostic reliability, we incorporated an uncertainty quantification strategy based on Bayesian Monte Carlo dropout, which provides autonomous uncertainty estimates for each prediction and supports reliable, robust HER2 scoring, with an overall correction rate of 30.4%. Using a blinded test set of 412 unique tissue samples, our approach achieved a testing accuracy of 84.9% for 4-class (0, 1+, 2+, 3+) HER2 classification and 94.8% for binary (0/1+ vs. 2+/3+) HER2 scoring with uncertainty quantification. Overall, this lensfree holography approach provides a practical pathway toward portable, high-throughput, and cost-effective HER2 scoring, particularly suited for resource-limited settings, where traditional digital pathology infrastructure is unavailable.
comment: 23 Pages, 6 Figures, 1 Table
☆ QualiRAG: Retrieval-Augmented Generation for Visual Quality Understanding
Visual quality assessment (VQA) is increasingly shifting from scalar score prediction toward interpretable quality understanding -- a paradigm that demands \textit{fine-grained spatiotemporal perception} and \textit{auxiliary contextual information}. Current approaches rely on supervised fine-tuning or reinforcement learning on curated instruction datasets, which involve labor-intensive annotation and are prone to dataset-specific biases. To address these challenges, we propose \textbf{QualiRAG}, a \textit{training-free} \textbf{R}etrieval-\textbf{A}ugmented \textbf{G}eneration \textbf{(RAG)} framework that systematically leverages the latent perceptual knowledge of large multimodal models (LMMs) for visual quality perception. Unlike conventional RAG that retrieves from static corpora, QualiRAG dynamically generates auxiliary knowledge by decomposing questions into structured requests and constructing four complementary knowledge sources: \textit{visual metadata}, \textit{subject localization}, \textit{global quality summaries}, and \textit{local quality descriptions}, followed by relevance-aware retrieval for evidence-grounded reasoning. Extensive experiments show that QualiRAG achieves substantial improvements over open-source general-purpose LMMs and VQA-finetuned LMMs on visual quality understanding tasks, and delivers competitive performance on visual quality comparison tasks, demonstrating robust quality assessment capabilities without any task-specific training. The code will be publicly available at https://github.com/clh124/QualiRAG.
☆ MindCine: Multimodal EEG-to-Video Reconstruction with Large-Scale Pretrained Models
Reconstructing human dynamic visual perception from electroencephalography (EEG) signals is of great research significance since EEG's non-invasiveness and high temporal resolution. However, EEG-to-video reconstruction remains challenging due to: 1) Single Modality: existing studies solely align EEG signals with the text modality, which ignores other modalities and are prone to suffer from overfitting problems; 2) Data Scarcity: current methods often have difficulty training to converge with limited EEG-video data. To solve the above problems, we propose a novel framework MindCine to achieve high-fidelity video reconstructions on limited data. We employ a multimodal joint learning strategy to incorporate beyond-text modalities in the training stage and leverage a pre-trained large EEG model to relieve the data scarcity issue for decoding semantic information, while a Seq2Seq model with causal attention is specifically designed for decoding perceptual information. Extensive experiments demonstrate that our model outperforms state-of-the-art methods both qualitatively and quantitatively. Additionally, the results underscore the effectiveness of the complementary strengths of different modalities and demonstrate that leveraging a large-scale EEG model can further enhance reconstruction performance by alleviating the challenges associated with limited data.
☆ Multi-Perspective Subimage CLIP with Keyword Guidance for Remote Sensing Image-Text Retrieval
Vision-Language Pre-training (VLP) models like CLIP have significantly advanced Remote Sensing Image-Text Retrieval (RSITR). However, existing methods predominantly rely on coarse-grained global alignment, which often overlooks the dense, multi-scale semantics inherent in overhead imagery. Moreover, adapting these heavy models via full fine-tuning incurs prohibitive computational costs and risks catastrophic forgetting. To address these challenges, we propose MPS-CLIP, a parameter-efficient framework designed to shift the retrieval paradigm from global matching to keyword-guided fine-grained alignment. Specifically, we leverage a Large Language Model (LLM) to extract core semantic keywords, guiding the Segment Anything Model (SamGeo) to generate semantically relevant sub-perspectives. To efficiently adapt the frozen backbone, we introduce a Gated Global Attention (G^2A) adapter, which captures global context and long-range dependencies with minimal overhead. Furthermore, a Multi-Perspective Representation (MPR) module aggregates these local cues into robust multi-perspective embeddings. The framework is optimized via a hybrid objective combining multi-perspective contrastive and weighted triplet losses, which dynamically selects maximum-response perspectives to suppress noise and enforce precise semantic matching. Extensive experiments on the RSICD and RSITMD benchmarks demonstrate that MPS-CLIP achieves state-of-the-art performance with 35.18% and 48.40% mean Recall (mR), respectively, significantly outperforming full fine-tuning baselines and recent competitive methods. Code is available at https://github.com/Lcrucial1f/MPS-CLIP.
comment: 7 pages, 3 figures. Code: https://github.com/Lcrucial1f/MPS-CLIP
☆ \textsc{NaVIDA}: Vision-Language Navigation with Inverse Dynamics Augmentation
Vision-and-Language Navigation (VLN) requires agents to interpret natural language instructions and act coherently in visually rich environments. However, most existing methods rely on reactive state-action mappings without explicitly modeling how actions causally transform subsequent visual observations. Lacking such vision-action causality, agents cannot anticipate the visual changes induced by its own actions, leading to unstable behaviors, weak generalization, and cumulative error along trajectory. To address these issues, we introduce \textsc{NaVIDA} (\textbf{Nav}igation with \textbf{I}nverse \textbf{D}ynamics \textbf{A}ugmentation), a unified VLN framework that couples policy learning with action-grounded visual dynamics and adaptive execution. \textsc{NaVIDA} augments training with chunk-based inverse-dynamics supervision to learn causal relationship between visual changes and corresponding actions. To structure this supervision and extend the effective planning range, \textsc{NaVIDA} employs hierarchical probabilistic action chunking (HPAC), which organizes trajectories into multi-step chunks and provides discriminative, longer-range visual-change cues. To further curb error accumulation and stabilize behavior at inference, an entropy-guided mechanism adaptively sets the execution horizon of action chunks. Extensive experiments show that \textsc{NaVIDA} achieves superior navigation performance compared to state-of-the-art methods with fewer parameters (3B vs. 8B). Real-world robot evaluations further validate the practical feasibility and effectiveness of our approach. Code and data will be available upon acceptance.
comment: 18 pages, 14 figures
☆ YOLO-DS: Fine-Grained Feature Decoupling via Dual-Statistic Synergy Operator for Object Detection
One-stage object detection, particularly the YOLO series, strikes a favorable balance between accuracy and efficiency. However, existing YOLO detectors lack explicit modeling of heterogeneous object responses within shared feature channels, which limits further performance gains. To address this, we propose YOLO-DS, a framework built around a novel Dual-Statistic Synergy Operator (DSO). The DSO decouples object features by jointly modeling the channel-wise mean and the peak-to-mean difference. Building upon the DSO, we design two lightweight gating modules: the Dual-Statistic Synergy Gating (DSG) module for adaptive channel-wise feature selection, and the Multi-Path Segmented Gating (MSG) module for depth-wise feature weighting. On the MS-COCO benchmark, YOLO-DS consistently outperforms YOLOv8 across five model scales (N, S, M, L, X), achieving AP gains of 1.1% to 1.7% with only a minimal increase in inference latency. Extensive visualization, ablation, and comparative studies validate the effectiveness of our approach, demonstrating its superior capability in discriminating heterogeneous objects with high efficiency.
☆ TempDiffReg: Temporal Diffusion Model for Non-Rigid 2D-3D Vascular Registration
Transarterial chemoembolization (TACE) is a preferred treatment option for hepatocellular carcinoma and other liver malignancies, yet it remains a highly challenging procedure due to complex intra-operative vascular navigation and anatomical variability. Accurate and robust 2D-3D vessel registration is essential to guide microcatheter and instruments during TACE, enabling precise localization of vascular structures and optimal therapeutic targeting. To tackle this issue, we develop a coarse-to-fine registration strategy. First, we introduce a global alignment module, structure-aware perspective n-point (SA-PnP), to establish correspondence between 2D and 3D vessel structures. Second, we propose TempDiffReg, a temporal diffusion model that performs vessel deformation iteratively by leveraging temporal context to capture complex anatomical variations and local structural changes. We collected data from 23 patients and constructed 626 paired multi-frame samples for comprehensive evaluation. Experimental results demonstrate that the proposed method consistently outperforms state-of-the-art (SOTA) methods in both accuracy and anatomical plausibility. Specifically, our method achieves a mean squared error (MSE) of 0.63 mm and a mean absolute error (MAE) of 0.51 mm in registration accuracy, representing 66.7\% lower MSE and 17.7\% lower MAE compared to the most competitive existing approaches. It has the potential to assist less-experienced clinicians in safely and efficiently performing complex TACE procedures, ultimately enhancing both surgical outcomes and patient care. Code and data are available at: \textcolor{blue}{https://github.com/LZH970328/TempDiffReg.git}
comment: Accepted by IEEE BIBM 2025
☆ Agentic Very Long Video Understanding
The advent of always-on personal AI assistants, enabled by all-day wearable devices such as smart glasses, demands a new level of contextual understanding, one that goes beyond short, isolated events to encompass the continuous, longitudinal stream of egocentric video. Achieving this vision requires advances in long-horizon video understanding, where systems must interpret and recall visual and audio information spanning days or even weeks. Existing methods, including large language models and retrieval-augmented generation, are constrained by limited context windows and lack the ability to perform compositional, multi-hop reasoning over very long video streams. In this work, we address these challenges through EGAgent, an enhanced agentic framework centered on entity scene graphs, which represent people, places, objects, and their relationships over time. Our system equips a planning agent with tools for structured search and reasoning over these graphs, as well as hybrid visual and audio search capabilities, enabling detailed, cross-modal, and temporally coherent reasoning. Experiments on the EgoLifeQA and Video-MME (Long) datasets show that our method achieves state-of-the-art performance on EgoLifeQA (57.5%) and competitive performance on Video-MME (Long) (74.1%) for complex longitudinal video understanding tasks.
comment: 26 pages, 7 figures, 8 tables
☆ Forward Consistency Learning with Gated Context Aggregation for Video Anomaly Detection
As a crucial element of public security, video anomaly detection (VAD) aims to measure deviations from normal patterns for various events in real-time surveillance systems. However, most existing VAD methods rely on large-scale models to pursue extreme accuracy, limiting their feasibility on resource-limited edge devices. Moreover, mainstream prediction-based VAD detects anomalies using only single-frame future prediction errors, overlooking the richer constraints from longer-term temporal forward information. In this paper, we introduce FoGA, a lightweight VAD model that performs Forward consistency learning with Gated context Aggregation, containing about 2M parameters and tailored for potential edge devices. Specifically, we propose a Unet-based method that performs feature extraction on consecutive frames to generate both immediate and forward predictions. Then, we introduce a gated context aggregation module into the skip connections to dynamically fuse encoder and decoder features at the same spatial scale. Finally, the model is jointly optimized with a novel forward consistency loss, and a hybrid anomaly measurement strategy is adopted to integrate errors from both immediate and forward frames for more accurate detection. Extensive experiments demonstrate the effectiveness of the proposed method, which substantially outperforms state-of-the-art competing methods, running up to 155 FPS. Hence, our FoGA achieves an excellent trade-off between performance and the efficiency metric.
comment: It has been submitted to the KBS journal
☆ Grasp-and-Lift: Executable 3D Hand-Object Interaction Reconstruction via Physics-in-the-Loop Optimization
Dexterous hand manipulation increasingly relies on large-scale motion datasets with precise hand-object trajectory data. However, existing resources such as DexYCB and HO3D are primarily optimized for visual alignment but often yield physically implausible interactions when replayed in physics simulators, including penetration, missed contact, and unstable grasps. We propose a simulation-in-the-loop refinement framework that converts these visually aligned trajectories into physically executable ones. Our core contribution is to formulate this as a tractable black-box optimization problem. We parameterize the hand's motion using a low-dimensional, spline-based representation built on sparse temporal keyframes. This allows us to use a powerful gradient-free optimizer, CMA-ES, to treat the high-fidelity physics engine as a black-box objective function. Our method finds motions that simultaneously maximize physical success (e.g., stable grasp and lift) while minimizing deviation from the original human demonstration. Compared to MANIPTRANS-recent transfer pipelines, our approach achieves lower hand and object pose errors during replay and more accurately recovers hand-object physical interactions. Our approach provides a general and scalable method for converting visual demonstrations into physically valid trajectories, enabling the generation of high-fidelity data crucial for robust policy learning.
comment: 13 pages, 7 figures
☆ LungCRCT: Causal Representation based Lung CT Processing for Lung Cancer Treatment
Due to silence in early stages, lung cancer has been one of the most leading causes of mortality in cancer patients world-wide. Moreover, major symptoms of lung cancer are hard to differentiate with other respiratory disease symptoms such as COPD, further leading patients to overlook cancer progression in early stages. Thus, to enhance survival rates in lung cancer, early detection from consistent proactive respiratory system monitoring becomes crucial. One of the most prevalent and effective methods for lung cancer monitoring would be low-dose computed tomography(LDCT) chest scans, which led to remarkable enhancements in lung cancer detection or tumor classification tasks under rapid advancements and applications of computer vision based AI models such as EfficientNet or ResNet in image processing. However, though advanced CNN models under transfer learning or ViT based models led to high performing lung cancer detections, due to its intrinsic limitations in terms of correlation dependence and low interpretability due to complexity, expansions of deep learning models to lung cancer treatment analysis or causal intervention analysis simulations are still limited. Therefore, this research introduced LungCRCT: a latent causal representation learning based lung cancer analysis framework that retrieves causal representations of factors within the physical causal mechanism of lung cancer progression. With the use of advanced graph autoencoder based causal discovery algorithms with distance Correlation disentanglement and entropy-based image reconstruction refinement, LungCRCT not only enables causal intervention analysis for lung cancer treatments, but also leads to robust, yet extremely light downstream models in malignant tumor classification tasks with an AUC score of 93.91%.
☆ Spatial-Conditioned Reasoning in Long-Egocentric Videos
Long-horizon egocentric video presents significant challenges for visual navigation due to viewpoint drift and the absence of persistent geometric context. Although recent vision-language models perform well on image and short-video reasoning, their spatial reasoning capability in long egocentric sequences remains limited. In this work, we study how explicit spatial signals influence VLM-based video understanding without modifying model architectures or inference procedures. We introduce Sanpo-D, a fine-grained re-annotation of the Google Sanpo dataset, and benchmark multiple VLMs on navigation-oriented spatial queries. To examine input-level inductive bias, we further fuse depth maps with RGB frames and evaluate their impact on spatial reasoning. Our results reveal a trade-off between general-purpose accuracy and spatial specialization, showing that depth-aware and spatially grounded representations can improve performance on safety-critical tasks such as pedestrian and obstruction detection.
☆ Computational Framework for Estimating Relative Gaussian Blur Kernels between Image Pairs
Following the earlier verification for Gaussian model in \cite{ASaa2026}, this paper introduces a zero training forward computational framework for the model to realize it in real time applications. The framework is based on discrete calculation of the analytic expression of the defocused image from the sharper one for the application range of the standard deviation of the Gaussian kernels and selecting the best matches. The analytic expression yields multiple solutions at certain image points, but is filtered down to a single solution using similarity measures over neighboring points.The framework is structured to handle cases where two given images are partial blurred versions of each other. Experimental evaluations on real images demonstrate that the proposed framework achieves a mean absolute error (MAE) below $1.7\%$ in estimating synthetic blur values. Furthermore, the discrepancy between actual blurred image intensities and their corresponding estimates remains under $2\%$, obtained by applying the extracted defocus filters to less blurred images.
comment: 9 pages, 14 input images, 3 TikZ images. arXiv admin note: substantial text overlap with arXiv:2601.04779. substantial text overlap with arXiv:2601.04779. substantial text overlap with arXiv:2601.04779. substantial text overlap with arXiv:2601.04779
☆ Text-Pass Filter: An Efficient Scene Text Detector
To pursue an efficient text assembling process, existing methods detect texts via the shrink-mask expansion strategy. However, the shrinking operation loses the visual features of text margins and confuses the foreground and background difference, which brings intrinsic limitations to recognize text features. We follow this issue and design Text-Pass Filter (TPF) for arbitrary-shaped text detection. It segments the whole text directly, which avoids the intrinsic limitations. It is noteworthy that different from previous whole text region-based methods, TPF can separate adhesive texts naturally without complex decoding or post-processing processes, which makes it possible for real-time text detection. Concretely, we find that the band-pass filter allows through components in a specified band of frequencies, called its passband but blocks components with frequencies above or below this band. It provides a natural idea for extracting whole texts separately. By simulating the band-pass filter, TPF constructs a unique feature-filter pair for each text. In the inference stage, every filter extracts the corresponding matched text by passing its pass-feature and blocking other features. Meanwhile, considering the large aspect ratio problem of ribbon-like texts makes it hard to recognize texts wholly, a Reinforcement Ensemble Unit (REU) is designed to enhance the feature consistency of the same text and to enlarge the filter's recognition field to help recognize whole texts. Furthermore, a Foreground Prior Unit (FPU) is introduced to encourage TPF to discriminate the difference between the foreground and background, which improves the feature-filter pair quality. Experiments demonstrate the effectiveness of REU and FPU while showing the TPF's superiority.
☆ Cross-Domain Transfer with Self-Supervised Spectral-Spatial Modeling for Hyperspectral Image Classification
Self-supervised learning has demonstrated considerable potential in hyperspectral representation, yet its application in cross-domain transfer scenarios remains under-explored. Existing methods, however, still rely on source domain annotations and are susceptible to distribution shifts, leading to degraded generalization performance in the target domain. To address this, this paper proposes a self-supervised cross-domain transfer framework that learns transferable spectral-spatial joint representations without source labels and achieves efficient adaptation under few samples in the target domain. During the self-supervised pre-training phase, a Spatial-Spectral Transformer (S2Former) module is designed. It adopts a dual-branch spatial-spectral transformer and introduces a bidirectional cross-attention mechanism to achieve spectral-spatial collaborative modeling: the spatial branch enhances structural awareness through random masking, while the spectral branch captures fine-grained differences. Both branches mutually guide each other to improve semantic consistency. We further propose a Frequency Domain Constraint (FDC) to maintain frequency-domain consistency through real Fast Fourier Transform (rFFT) and high-frequency magnitude loss, thereby enhancing the model's capability to discern fine details and boundaries. During the fine-tuning phase, we introduce a Diffusion-Aligned Fine-tuning (DAFT) distillation mechanism. This aligns semantic evolution trajectories through a teacher-student structure, enabling robust transfer learning under low-label conditions. Experimental results demonstrate stable classification performance and strong cross-domain adaptability across four hyperspectral datasets, validating the method's effectiveness under resource-constrained conditions.
☆ Differentiable Architecture Search for Adversarially Robust Quantum Computer Vision
Current quantum neural networks suffer from extreme sensitivity to both adversarial perturbations and hardware noise, creating a significant barrier to real-world deployment. Existing robustness techniques typically sacrifice clean accuracy or require prohibitive computational resources. We propose a hybrid quantum-classical Differentiable Quantum Architecture Search (DQAS) framework that addresses these limitations by jointly optimizing circuit structure and robustness through gradient-based methods. Our approach enhances traditional DQAS with a lightweight Classical Noise Layer applied before quantum processing, enabling simultaneous optimization of gate selection and noise parameters. This design preserves the quantum circuit's integrity while introducing trainable perturbations that enhance robustness without compromising standard performance. Experimental validation on MNIST, FashionMNIST, and CIFAR datasets shows consistent improvements in both clean and adversarial accuracy compared to existing quantum architecture search methods. Under various attack scenarios, including Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), Basic Iterative Method (BIM), and Momentum Iterative Method (MIM), and under realistic quantum noise conditions, our hybrid framework maintains superior performance. Testing on actual quantum hardware confirms the practical viability of discovered architectures. These results demonstrate that strategic classical preprocessing combined with differentiable quantum architecture optimization can significantly enhance quantum neural network robustness while maintaining computational efficiency.
comment: Published in Quantum Machine Intelligence
☆ Semi-Supervised Hyperspectral Image Classification with Edge-Aware Superpixel Label Propagation and Adaptive Pseudo-Labeling
Significant progress has been made in semi-supervised hyperspectral image (HSI) classification regarding feature extraction and classification performance. However, due to high annotation costs and limited sample availability, semi-supervised learning still faces challenges such as boundary label diffusion and pseudo-label instability. To address these issues, this paper proposes a novel semi-supervised hyperspectral classification framework integrating spatial prior information with a dynamic learning mechanism. First, we design an Edge-Aware Superpixel Label Propagation (EASLP) module. By integrating edge intensity penalty with neighborhood correction strategy, it mitigates label diffusion from superpixel segmentation while enhancing classification robustness in boundary regions. Second, we introduce a Dynamic History-Fused Prediction (DHP) method. By maintaining historical predictions and dynamically weighting them with current results, DHP smoothens pseudo-label fluctuations and improves temporal consistency and noise resistance. Concurrently, incorporating condifence and consistency measures, the Adaptive Tripartite Sample Categorization (ATSC) strategy implements hierarchical utilization of easy, ambiguous, and hard samples, leading to enhanced pseudo-label quality and learning efficiency. The Dynamic Reliability-Enhanced Pseudo-Label Framework (DREPL), composed of DHP and ATSC, strengthens pseudo-label stability across temporal and sample domains. Through synergizes operation with EASLP, it achieves spatio-temporal consistency optimization. Evaluations on four benchmark datasets demonstrate its capability to maintain superior classification performance.
♻ ☆ DeltaDorsal: Enhancing Hand Pose Estimation with Dorsal Features in Egocentric Views
The proliferation of XR devices has made egocentric hand pose estimation a vital task, yet this perspective is inherently challenged by frequent finger occlusions. To address this, we propose a novel approach that leverages the rich information in dorsal hand skin deformation, unlocked by recent advances in dense visual featurizers. We introduce a dual-stream delta encoder that learns pose by contrasting features from a dynamic hand with a baseline relaxed position. Our evaluation demonstrates that, using only cropped dorsal images, our method reduces the Mean Per Joint Angle Error (MPJAE) by 18% in self-occluded scenarios (fingers >= 50% occluded) compared to state-of-the-art techniques that depend on the whole hand's geometry and large model backbones. Consequently, our method not only enhances the reliability of downstream tasks like index finger pinch and tap estimation in occluded scenarios but also unlocks new interaction paradigms, such as detecting isometric force for a surface "click" without visible movement while minimizing model size.
comment: 16 pages, 11 figures, Presented at ACM CHI 2026. For associated codebase, see https://github.com/hilab-open-source/deltadorsal
♻ ☆ HiCache: A Plug-in Scaled-Hermite Upgrade for Taylor-Style Cache-then-Forecast Diffusion Acceleration
Diffusion models have achieved remarkable success in content generation but often incur prohibitive computational costs due to iterative sampling. Recent feature caching methods accelerate inference via temporal extrapolation, yet can suffer quality degradation from inaccurate modeling of the complex dynamics of feature evolution. We propose HiCache (Hermite Polynomial-based Feature Cache), a training-free acceleration framework that improves feature prediction by aligning mathematical tools with empirical properties. Our key insight is that feature-derivative approximations in diffusion Transformers exhibit multivariate Gaussian characteristics, motivating the use of Hermite polynomials as a potentially optimal basis for Gaussian-correlated processes. We further introduce a dual-scaling mechanism that ensures numerical stability while preserving predictive accuracy, and is also effective when applied standalone or integrated with TaylorSeer. Extensive experiments demonstrate HiCache's superiority, achieving 5.55x speedup on FLUX.1-dev while matching or exceeding baseline quality, and maintaining strong performance across text-to-image, video generation, and super-resolution tasks. Moreover, HiCache can be naturally added to previous caching methods to enhance their performance, e.g., improving ClusCa from 0.9480 to 0.9840 in terms of image rewards. Code: https://github.com/fenglang918/HiCache
♻ ☆ DGFusion: Depth-Guided Sensor Fusion for Robust Semantic Perception
Robust semantic perception for autonomous vehicles relies on effectively combining multiple sensors with complementary strengths and weaknesses. State-of-the-art sensor fusion approaches to semantic perception often treat sensor data uniformly across the spatial extent of the input, which hinders performance when faced with challenging conditions. By contrast, we propose a novel depth-guided multimodal fusion method that upgrades condition-aware fusion by integrating depth information. Our network, DGFusion, poses multimodal segmentation as a multi-task problem, utilizing the lidar measurements, which are typically available in outdoor sensor suites, both as one of the model's inputs and as ground truth for learning depth. Our corresponding auxiliary depth head helps to learn depth-aware features, which are encoded into spatially varying local depth tokens that condition our attentive cross-modal fusion. Together with a global condition token, these local depth tokens dynamically adapt sensor fusion to the spatially varying reliability of each sensor across the scene, which largely depends on depth. In addition, we propose a robust loss for our depth, which is essential for learning from lidar inputs that are typically sparse and noisy in adverse conditions. Our method achieves state-of-the-art panoptic and semantic segmentation performance on the challenging MUSES and DeLiVER datasets. Code and models are available at https://github.com/timbroed/DGFusion
comment: Code and models are available at https://github.com/timbroed/DGFusion
♻ ☆ When Swin Transformer Meets KANs: An Improved Transformer Architecture for Medical Image Segmentation
Medical image segmentation is critical for accurate diagnostics and treatment planning, but remains challenging due to complex anatomical structures and limited annotated training data. CNN-based segmentation methods excel at local feature extraction, but struggle with modeling long-range dependencies. Transformers, on the other hand, capture global context more effectively, but are inherently data-hungry and computationally expensive. In this work, we introduce UKAST, a U-Net like architecture that integrates rational-function based Kolmogorov-Arnold Networks (KANs) into Swin Transformer encoders. By leveraging rational base functions and Group Rational KANs (GR-KANs) from the Kolmogorov-Arnold Transformer (KAT), our architecture addresses the inefficiencies of vanilla spline-based KANs, yielding a more expressive and data-efficient framework with reduced FLOPs and only a very small increase in parameter count compared to SwinUNETR. UKAST achieves state-of-the-art performance on four diverse 2D and 3D medical image segmentation benchmarks, consistently surpassing both CNN- and Transformer-based baselines. Notably, it attains superior accuracy in data-scarce settings, alleviating the data-hungry limitations of standard Vision Transformers. These results show the potential of KAN-enhanced Transformers to advance data-efficient medical image segmentation. Code is available at: https://github.com/nsapkota417/UKAST
comment: This paper has been accepted for publication in the Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI) 2026
♻ ☆ BAH Dataset for Ambivalence/Hesitancy Recognition in Videos for Digital Behavioural Change ICLR 2026
Ambivalence and hesitancy (A/H), a closely related construct, is the primary reasons why individuals delay, avoid, or abandon health behaviour changes. It is a subtle and conflicting emotion that sets a person in a state between positive and negative orientations, or between acceptance and refusal to do something. It manifests by a discord in affect between multiple modalities or within a modality, such as facial and vocal expressions, and body language. Although experts can be trained to recognize A/H as done for in-person interactions, integrating them into digital health interventions is costly and less effective. Automatic A/H recognition is therefore critical for the personalization and cost-effectiveness of digital behaviour change interventions. However, no datasets currently exists for the design of machine learning models to recognize A/H. This paper introduces the Behavioural Ambivalence/Hesitancy (BAH) dataset collected for multimodal recognition of A/H in videos. It contains 1,427 videos with a total duration of 10.60 hours captured from 300 participants across Canada answering predefined questions to elicit A/H. It is intended to mirror real-world online personalized behaviour change interventions. BAH is annotated by three experts to provide timestamps that indicate where A/H occurs, and frame- and video-level annotations with A/H cues. Video transcripts, cropped and aligned faces, and participants' meta-data are also provided. Since A and H manifest similarly in practice, we provide a binary annotation indicating the presence or absence of A/H. Additionally, this paper includes benchmarking results using baseline models on BAH for frame- and video-level recognition, zero-shot prediction, and personalization using source-free domain adaptation. The data, code, and pretrained weights are available.
comment: 45 pages, 21 figures, ICLR 2026
♻ ☆ Physiology-Informed Generative Multi-Task Network for Contrast-Free CT Perfusion
Perfusion imaging is extensively utilized to assess hemodynamic status and tissue perfusion in various organs. Computed tomography perfusion (CTP) imaging plays a key role in the early assessment and planning of stroke treatment. While CTP provides essential perfusion parameters to identify abnormal blood flow in the brain, the use of contrast agents in CTP can lead to allergic reactions and adverse side effects, along with costing USD 4.9 billion worldwide in 2022. To address these challenges, we propose a novel deep learning framework called Multitask Automated Generation of Intermodal CT perfusion maps (MAGIC). This framework combines generative artificial intelligence and physiological information to map non-contrast computed tomography (CT) imaging to multiple contrast-free CTP imaging maps. We demonstrate enhanced image fidelity by incorporating physiological characteristics into the loss terms. Our network was trained and validated using CT image data from patients referred for stroke at UF Health and demonstrated robustness to abnormalities in brain perfusion activity. A double-blinded study was conducted involving seven experienced neuroradiologists and vascular neurologists. This study validated MAGIC's visual quality and diagnostic accuracy showing favorable performance compared to clinical perfusion imaging with intravenous contrast injection. Overall, MAGIC holds great promise in revolutionizing healthcare by offering contrast-free, cost-effective, and rapid perfusion imaging.
comment: Under Review
♻ ☆ No Other Representation Component Is Needed: Diffusion Transformers Can Provide Representation Guidance by Themselves ICLR 2026
Recent studies have demonstrated that learning a meaningful internal representation can accelerate generative training. However, existing approaches necessitate to either introduce an off-the-shelf external representation task or rely on a large-scale, pre-trained external representation encoder to provide representation guidance during the training process. In this study, we posit that the unique discriminative process inherent to diffusion transformers enables them to offer such guidance without requiring external representation components. We propose SelfRepresentation Alignment (SRA), a simple yet effective method that obtains representation guidance using the internal representations of learned diffusion transformer. SRA aligns the latent representation of the diffusion transformer in the earlier layer conditioned on higher noise to that in the later layer conditioned on lower noise to progressively enhance the overall representation learning during only the training process. Experimental results indicate that applying SRA to DiTs and SiTs yields consistent performance improvements, and largely outperforms approaches relying on auxiliary representation task. Our approach achieves performance comparable to methods that are dependent on an external pre-trained representation encoder, which demonstrates the feasibility of acceleration with representation alignment in diffusion transformers themselves.
comment: ICLR 2026. Self-Representation Alignment for Diffusion Transformers. Code: https://github.com/vvvvvjdy/SRA
♻ ☆ MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning ICLR 2026
Medical Large Vision-Language Models (Med-LVLMs) have shown strong potential in multimodal diagnostic tasks. However, existing single-agent models struggle to generalize across diverse medical specialties, limiting their performance. Recent efforts introduce multi-agent collaboration frameworks inspired by clinical workflows, where general practitioners (GPs) and specialists interact in a fixed sequence. Despite improvements, these static pipelines lack flexibility and adaptability in reasoning. To address this, we propose MMedAgent-RL, a reinforcement learning (RL)-based multi-agent framework that enables dynamic, optimized collaboration among medical agents. Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists and its own knowledge to make final decisions. To address the inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided RL strategy with dynamic entropy regulation, progressively teaching the attending physician to balance between imitating specialists and correcting their mistakes. Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL outperforms both open-source and proprietary Med-LVLMs. Notably, it achieves an average performance gain of 23.6% over strong baselines.
comment: ICLR 2026
♻ ☆ A-TPT: Angular Diversity Calibration Properties for Test-Time Prompt Tuning of Vision-Language Models ICLR 2026
Test-time prompt tuning (TPT) has emerged as a promising technique for adapting large vision-language models (VLMs) to unseen tasks without relying on labeled data. However, the lack of dispersion between textual features can hurt calibration performance, which raises concerns about VLMs' reliability, trustworthiness, and safety. Current TPT approaches primarily focus on improving prompt calibration by either maximizing average textual feature dispersion or enforcing orthogonality constraints to encourage angular separation. However, these methods may not always have optimal angular separation between class-wise textual features, which implies overlooking the critical role of angular diversity. To address this, we propose A-TPT, a novel TPT framework that introduces angular diversity to encourage uniformity in the distribution of normalized textual features induced by corresponding learnable prompts. This uniformity is achieved by maximizing the minimum pairwise angular distance between features on the unit hypersphere. We show that our approach consistently surpasses state-of-the-art TPT methods in reducing the aggregate average calibration error while maintaining comparable accuracy through extensive experiments with various backbones on different datasets. Notably, our approach exhibits superior zero-shot calibration performance on natural distribution shifts and generalizes well to medical datasets. We provide extensive analyses, including theoretical aspects, to establish the grounding of A-TPT. These results highlight the potency of promoting angular diversity to achieve well-dispersed textual features, significantly improving VLM calibration during test-time adaptation. Our code will be made publicly available.
comment: Accepted at ICLR 2026
♻ ☆ MARC: Memory-Augmented RL Token Compression for Efficient Video Understanding ICLR 2026
The rapid progress of large language models (LLMs) has laid the foundation for multimodal models. However, visual language models (VLMs) still face heavy computational costs when extended from images to videos due to high frame rates and long durations. Token compression is a promising solution, yet most existing training-free methods cause information loss and performance degradation. To overcome this, we propose \textbf{Memory-Augmented Reinforcement Learning-based Token Compression (MARC)}, which integrates structured retrieval and RL-based distillation. MARC adopts a \textit{retrieve-then-compress} strategy using a \textbf{Visual Memory Retriever (VMR)} to select key clips and a \textbf{Compression Group Relative Policy Optimization (C-GRPO)} framework to distil reasoning ability from a teacher to a student model. Experiments on six video benchmarks show that MARC achieves near-baseline accuracy using only one frame's tokens -- reducing visual tokens by \textbf{95\%}, GPU memory by \textbf{72\%}, and latency by \textbf{23.9\%}. This demonstrates its potential for efficient, real-time video understanding in resource-constrained settings such as video QA, surveillance, and autonomous driving.
comment: Accepted at ICLR 2026
♻ ☆ LLMPopcorn: Exploring LLMs as Assistants for Popular Micro-video Generation ICASSP2026
In an era where micro-videos dominate platforms like TikTok and YouTube, AI-generated content is nearing cinematic quality. The next frontier is using large language models (LLMs) to autonomously create viral micro-videos, a largely untapped potential that could shape the future of AI-driven content creation. To address this gap, this paper presents the first exploration of LLM-assisted popular micro-video generation (LLMPopcorn). We selected popcorn as the icon for this paper because it symbolizes leisure and entertainment, aligning with this study on leveraging LLMs as assistants for generating popular micro-videos that are often consumed during leisure time. Specifically, we empirically study the following research questions: (i) How can LLMs be effectively utilized to assist popular micro-video generation? (ii) To what extent can prompt-based enhancements optimize the LLM-generated content for higher popularity? (iii) How well do various LLMs and video generators perform in the popular micro-video generation task? Exploring these questions, we show that advanced LLMs like DeepSeek-V3 can generate micro-videos with popularity rivaling human content. Prompt enhancement further boosts results, while benchmarking highlights DeepSeek-V3 and R1 for LLMs, and LTX-Video and HunyuanVideo for video generation. This work advances AI-assisted micro-video creation and opens new research directions. The code is publicly available at https://github.com/GAIR-Lab/LLMPopcorn.
comment: Accepted by ICASSP2026
♻ ☆ GHOST: Hallucination-Inducing Image Generation for Multimodal LLMs
Object hallucination in Multimodal Large Language Models (MLLMs) is a persistent failure mode that causes the model to perceive objects absent in the image. This weakness of MLLMs is currently studied using static benchmarks with fixed visual scenarios, which preempts the possibility of uncovering model-specific or unanticipated hallucination vulnerabilities. We introduce GHOST (Generating Hallucinations via Optimizing Stealth Tokens), a method designed to stress-test MLLMs by actively generating images that induce hallucination. GHOST is fully automatic and requires no human supervision or prior knowledge. It operates by optimizing in the image embedding space to mislead the model while keeping the target object absent, and then guiding a diffusion model conditioned on the embedding to generate natural-looking images. The resulting images remain visually natural and close to the original input, yet introduce subtle misleading cues that cause the model to hallucinate. We evaluate our method across a range of models, including reasoning models like GLM-4.1V-Thinking, and achieve a hallucination success rate exceeding 28%, compared to around 1% in prior data-driven discovery methods. We confirm that the generated images are both high-quality and object-free through quantitative metrics and human evaluation. Also, GHOST uncovers transferable vulnerabilities: images optimized for Qwen2.5-VL induce hallucinations in GPT-4o at a 66.5% rate. Finally, we show that fine-tuning on our images mitigates hallucination, positioning GHOST as both a diagnostic and corrective tool for building more reliable multimodal systems.
♻ ☆ HeadLighter: Disentangling Illumination in Generative 3D Gaussian Heads via Lightstage Captures
Recent 3D-aware head generative models based on 3D Gaussian Splatting achieve real-time, photorealistic and view-consistent head synthesis. However, a fundamental limitation persists: the deep entanglement of illumination and intrinsic appearance prevents controllable relighting. Existing disentanglement methods rely on strong assumptions to enable weakly supervised learning, which restricts their capacity for complex illumination. To address this challenge, we introduce HeadLighter, a novel supervised framework that learns a physically plausible decomposition of appearance and illumination in head generative models. Specifically, we design a dual-branch architecture that separately models lighting-invariant head attributes and physically grounded rendering components. A progressive disentanglement training is employed to gradually inject head appearance priors into the generative architecture, supervised by multi-view images captured under controlled light conditions with a light stage setup. We further introduce a distillation strategy to generate high-quality normals for realistic rendering. Experiments demonstrate that our method preserves high-quality generation and real-time rendering, while simultaneously supporting explicit lighting and viewpoint editing. We will publicly release our code and dataset.
♻ ☆ Whole Slide Concepts: A Supervised Foundation Model For Pathological Images
Foundation models (FMs) are transforming computational pathology by offering new ways to analyze histopathology images. However, FMs typically require weeks of training on large databases, making their creation a resource-intensive process. In this paper, we present a training for foundation models from whole slide images using supervised, end-to-end, multitask learning on slide-level labels. Notably, it is the first model to incorporate cancer subtyping, risk estimation, and genetic mutation prediction into one model. The presented model outperforms self-supervised models on seven benchmark tasks while the training only required 5% of the computational resources. The results not only show that supervised training can outperform self-supervision with less data, but also offer a solution to annotation problems, as patient-based labels are widely available through routine clinical processes. Furthermore, an attention module provides a layer of explainability across different tasks and serves as a tumor detector for unseen cancer types. To address the issue of closed-source datasets, the model was fully trained on openly available data. The code and model weights are made available under https://github.com/FraunhoferMEVIS/MedicalMultitaskModeling.
♻ ☆ DVD-Quant: Data-free Video Diffusion Transformers Quantization
Diffusion Transformers (DiTs) have emerged as the state-of-the-art architecture for video generation, yet their computational and memory demands hinder practical deployment. While post-training quantization (PTQ) presents a promising approach to accelerate Video DiT models, existing methods suffer from two critical limitations: (1) dependence on computation-heavy and inflexible calibration procedures, and (2) considerable performance deterioration after quantization. To address these challenges, we propose DVD-Quant, a novel Data-free quantization framework for Video DiTs. Our approach integrates three key innovations: (1) Bounded-init Grid Refinement (BGR) and (2) Auto-scaling Rotated Quantization (ARQ) for calibration data-free quantization error reduction, as well as (3) $δ$-Guided Bit Switching ($δ$-GBS) for adaptive bit-width allocation. Extensive experiments across multiple video generation benchmarks demonstrate that DVD-Quant achieves an approximately 2$\times$ speedup over full-precision baselines on advanced DiT models while maintaining visual fidelity. Notably, DVD-Quant is the first to enable W4A4 PTQ for Video DiTs without compromising video quality. Code and models will be available at https://github.com/lhxcs/DVD-Quant.
comment: Code and models will be available at https://github.com/lhxcs/DVD-Quant
♻ ☆ HERMES: KV Cache as Hierarchical Memory for Efficient Streaming Video Understanding
Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated significant improvement in offline video understanding. However, extending these capabilities to streaming video inputs, remains challenging, as existing models struggle to simultaneously maintain stable understanding performance, real-time responses, and low GPU memory overhead. To address this challenge, we propose HERMES, a novel training-free architecture for real-time and accurate understanding of video streams. Based on a mechanistic attention investigation, we conceptualize KV cache as a hierarchical memory framework that encapsulates video information across multiple granularities. During inference, HERMES reuses a compact KV cache, enabling efficient streaming understanding under resource constraints. Notably, HERMES requires no auxiliary computations upon the arrival of user queries, thereby guaranteeing real-time responses for continuous video stream interactions, which achieves 10$\times$ faster TTFT compared to prior SOTA. Even when reducing video tokens by up to 68% compared with uniform sampling, HERMES achieves superior or comparable accuracy across all benchmarks, with up to 11.4% gains on streaming datasets.
♻ ☆ Cross-Platform Scaling of Vision-Language-Action Models from Edge to Cloud GPUs
Vision-Language-Action (VLA) models have emerged as powerful generalist policies for robotic control, yet their performance scaling across model architectures and hardware platforms, as well as their associated power budgets, remain poorly understood. This work presents an evaluation of five representative VLA models -- spanning state-of-the-art baselines and two newly proposed architectures -- targeting edge and datacenter GPU platforms. Using the LIBERO benchmark, we measure accuracy alongside system-level metrics, including latency, throughput, and peak memory usage, under varying edge power constraints and high-performance datacenter GPU configurations. Our results identify distinct scaling trends: (1) architectural choices, such as action tokenization and model backbone size, strongly influence throughput and memory footprint; (2) power-constrained edge devices exhibit non-linear performance degradation, with some configurations matching or exceeding older datacenter GPUs; and (3) high-throughput variants can be achieved without significant accuracy loss. These findings provide actionable insights when selecting and optimizing VLAs across a range of deployment constraints. Our work challenges current assumptions about the superiority of datacenter hardware for robotic inference.
comment: To appear in the Asilomar Conference on Signals, Systems, and Computers 2025
♻ ☆ SMooGPT: Stylized Motion Generation using Large Language Models
Stylized motion generation is actively studied in computer graphics, especially benefiting from the rapid advances in diffusion models. The goal of this task is to produce a novel motion respecting both the motion content and the desired motion style, e.g., ``walking in a loop like a Monkey''. Existing research attempts to address this problem via motion style transfer or conditional motion generation. They typically embed the motion style into a latent space and guide the motion implicitly in a latent space as well. Despite the progress, their methods suffer from low interpretability and control, limited generalization to new styles, and fail to produce motions other than ``walking'' due to the strong bias in the public stylization dataset. In this paper, we propose to solve the stylized motion generation problem from a new perspective of reasoning-composition-generation, based on our observations: i) human motion can often be effectively described using natural language in a body-part centric manner, ii) LLMs exhibit a strong ability to understand and reason about human motion, and iii) human motion has an inherently compositional nature, facilitating the new motion content or style generation via effective recomposing. We thus propose utilizing body-part text space as an intermediate representation, and present SMooGPT, a fine-tuned LLM, acting as a reasoner, composer, and generator when generating the desired stylized motion. Our method executes in the body-part text space with much higher interpretability, enabling fine-grained motion control, effectively resolving potential conflicts between motion content and style, and generalizes well to new styles thanks to the open-vocabulary ability of LLMs. Comprehensive experiments and evaluations, and a user perceptual study, demonstrate the effectiveness of our approach, especially under the pure text-driven stylized motion generation.
♻ ☆ CLIP's Visual Embedding Projector is a Few-shot Cornucopia WACV 2026
We introduce ProLIP, a simple and architecture-agnostic method for adapting contrastively pretrained vision-language models, such as CLIP, to few-shot classification. ProLIP fine-tunes the vision encoder's projection matrix with Frobenius norm regularization on its deviation from the pretrained weights. It achieves state-of-the-art performance on 11 few-shot classification benchmarks under both ``few-shot validation'' and ``validation-free'' settings. Moreover, by rethinking the non-linear CLIP-Adapter through ProLIP's lens, we design a Regularized Linear Adapter (RLA) that performs better, requires no hyperparameter tuning, is less sensitive to learning rate values, and offers an alternative to ProLIP in black-box scenarios where model weights are inaccessible. Beyond few-shot classification, ProLIP excels in cross-dataset transfer, domain generalization, base-to-new class generalization, and test-time adaptation--where it outperforms prompt tuning while being an order of magnitude faster to train. Code is available at https://github.com/astra-vision/ProLIP .
comment: WACV 2026
♻ ☆ PCICF: A Pedestrian Crossing Identification and Classification Framework
We have recently observed the commercial roll-out of robotaxis in various countries. They are deployed within an operational design domain (ODD) on specific routes and environmental conditions, and are subject to continuous monitoring to regain control in safety-critical situations. Since ODDs typically cover urban areas, robotaxis must reliably detect vulnerable road users (VRUs) such as pedestrians, bicyclists, or e-scooter riders. To better handle such varied traffic situations, end-to-end AI, which directly compute vehicle control actions from multi-modal sensor data instead of only for perception, is on the rise. High quality data is needed for systematically training and evaluating such systems within their OOD. In this work, we propose PCICF, a framework to systematically identify and classify VRU situations to support ODD's incident analysis. We base our work on the existing synthetic dataset SMIRK, and enhance it by extending its single-pedestrian-only design into the MoreSMIRK dataset, a structured dictionary of multi-pedestrian crossing situations constructed systematically. We then use space-filling curves (SFCs) to transform multi-dimensional features of scenarios into characteristic patterns, which we match with corresponding entries in MoreSMIRK. We evaluate PCICF with the large real-world dataset PIE, which contains more than 150 manually annotated pedestrian crossing videos. We show that PCICF can successfully identify and classify complex pedestrian crossings, even when groups of pedestrians merge or split. By leveraging computationally efficient components like SFCs, PCICF has even potential to be used onboard of robotaxis for OOD detection for example. We share an open-source replication package for PCICF containing its algorithms, the complete MoreSMIRK dataset and dictionary, as well as our experiment results presented in: https://github.com/Claud1234/PCICF
♻ ☆ Practical insights on the effect of different encodings, ansätze and measurements in quantum and hybrid convolutional neural networks
This study investigates the design choices of parameterized quantum circuits (PQCs) within quantum and hybrid convolutional neural network (HQNN and QCNN) architectures, applied to the task of satellite image classification using the EuroSAT dataset. We systematically evaluate the performance implications of data encoding techniques, variational ansätze, and measurement in approx. 500 distinct model configurations. Our analysis reveals a clear hierarchy of influence on model performance. For hybrid architectures, which were benchmarked against their direct classical equivalents (e.g. the same architecture with the PQCs removed), the data encoding strategy is the dominant factor, with validation accuracy varying over 30% for distinct embeddings. In contrast, the selection of variational ansätze and measurement basis had a comparatively marginal effect, with validation accuracy variations remaining below 5%. For purely quantum models, restricted to amplitude encoding, performance was most dependent on the measurement protocol and the data-to-amplitude mapping. The measurement strategy varied the validation accuracy by up to 30% and the encoding mapping by around 8 percentage points.
comment: 20 pages, 22 figures
♻ ☆ GPA-VGGT:Adapting VGGT to Large Scale Localization by Self-Supervised Learning with Geometry and Physics Aware Loss
Transformer-based general visual geometry frameworks have shown promising performance in camera pose estimation and 3D scene understanding. Recent advancements in Visual Geometry Grounded Transformer (VGGT) models have shown great promise in camera pose estimation and 3D reconstruction. However, these models typically rely on ground truth labels for training, posing challenges when adapting to unlabeled and unseen scenes. In this paper, we propose a self-supervised framework to train VGGT with unlabeled data, thereby enhancing its localization capability in large-scale environments. To achieve this, we extend conventional pair-wise relations to sequence-wise geometric constraints for self-supervised learning. Specifically, in each sequence, we sample multiple source frames and geometrically project them onto different target frames, which improves temporal feature consistency. We formulate physical photometric consistency and geometric constraints as a joint optimization loss to circumvent the requirement for hard labels. By training the model with this proposed method, not only the local and global cross-view attention layers but also the camera and depth heads can effectively capture the underlying multi-view geometry. Experiments demonstrate that the model converges within hundreds of iterations and achieves significant improvements in large-scale localization. Our code will be released at https://github.com/X-yangfan/GPA-VGGT.
♻ ☆ Radiance Fields from Photons
Neural radiance fields, or NeRFs, have become the de facto approach for high-quality view synthesis from a collection of images captured from multiple viewpoints. However, many issues remain when capturing images in-the-wild under challenging conditions, such as low light, high dynamic range, or rapid motion leading to smeared reconstructions with noticeable artifacts. In this work, we introduce quanta radiance fields, a novel class of neural radiance fields that are trained at the granularity of individual photons using single-photon cameras (SPCs). We develop theory and practical computational techniques for building radiance fields and estimating dense camera poses from unconventional, stochastic, and high-speed binary frame sequences captured by SPCs. We demonstrate, both via simulations and a SPC hardware prototype, high-fidelity reconstructions under high-speed motion, in low light, and for extreme dynamic range settings.
♻ ☆ Seeing Beyond the Image: ECG and Anatomical Knowledge-Guided Myocardial Scar Segmentation from Late Gadolinium-Enhanced Images
Accurate segmentation of myocardial scar from late gadolinium enhanced (LGE) cardiac MRI is essential for evaluating tissue viability, yet remains challenging due to variable contrast and imaging artifacts. Electrocardiogram (ECG) signals provide complementary physiological information, as conduction abnormalities can help localize or suggest scarred myocardial regions. In this work, we propose a novel multimodal framework that integrates ECG-derived electrophysiological information with anatomical priors from the AHA-17 atlas for physiologically consistent LGE-based scar segmentation. As ECGs and LGE-MRIs are not acquired simultaneously, we introduce a Temporal Aware Feature Fusion (TAFF) mechanism that dynamically weights and fuses features based on their acquisition time difference. Our method was evaluated on a clinical dataset and achieved substantial gains over the state-of-the-art image-only baseline (nnU-Net), increasing the average Dice score for scars from 0.6149 to 0.8463 and achieving high performance in both precision (0.9115) and sensitivity (0.9043). These results show that integrating physiological and anatomical knowledge allows the model to "see beyond the image", setting a new direction for robust and physiologically grounded cardiac scar segmentation.
♻ ☆ BADiff: Bandwidth Adaptive Diffusion Model NeurIPS 2025
In this work, we propose a novel framework to enable diffusion models to adapt their generation quality based on real-time network bandwidth constraints. Traditional diffusion models produce high-fidelity images by performing a fixed number of denoising steps, regardless of downstream transmission limitations. However, in practical cloud-to-device scenarios, limited bandwidth often necessitates heavy compression, leading to loss of fine textures and wasted computation. To address this, we introduce a joint end-to-end training strategy where the diffusion model is conditioned on a target quality level derived from the available bandwidth. During training, the model learns to adaptively modulate the denoising process, enabling early-stop sampling that maintains perceptual quality appropriate to the target transmission condition. Our method requires minimal architectural changes and leverages a lightweight quality embedding to guide the denoising trajectory. Experimental results demonstrate that our approach significantly improves the visual fidelity of bandwidth-adapted generations compared to naive early-stopping, offering a promising solution for efficient image delivery in bandwidth-constrained environments. Code is available at: https://github.com/xzhang9308/BADiff.
comment: NeurIPS 2025 Poster
♻ ☆ MultiHateLoc: Towards Temporal Localisation of Multimodal Hate Content in Online Videos WWW 2026
The rapid growth of video content on platforms such as TikTok and YouTube has intensified the spread of multimodal hate speech, where harmful cues emerge subtly and asynchronously across visual, acoustic, and textual streams. Existing research primarily focuses on video-level classification, leaving the practically crucial task of temporal localisation, identifying when hateful segments occur, largely unaddressed. This challenge is even more noticeable under weak supervision, where only video-level labels are available, and static fusion or classification-based architectures struggle to capture cross-modal and temporal dynamics. To address these challenges, we propose MultiHateLoc, the first framework designed for weakly-supervised multimodal hate localisation. MultiHateLoc incorporates (1) modality-aware temporal encoders to model heterogeneous sequential patterns, including a tailored text-based preprocessing module for feature enhancement; (2) dynamic cross-modal fusion to adaptively emphasise the most informative modality at each moment and a cross-modal contrastive alignment strategy to enhance multimodal feature consistency; (3) a modality-aware MIL objective to identify discriminative segments under video-level supervision. Despite relying solely on coarse labels, MultiHateLoc produces fine-grained, interpretable frame-level predictions. Experiments on HateMM and MultiHateClip show that our method achieves state-of-the-art performance in the localisation task.
comment: In Proceedings of the ACM Web Conference 2026 (WWW 2026)
♻ ☆ From Filters to VLMs: Benchmarking Defogging Methods through Object Detection and Segmentation Performance WACV 2026
Autonomous driving perception systems are particularly vulnerable in foggy conditions, where light scattering reduces contrast and obscures fine details critical for safe operation. While numerous defogging methods exist, from handcrafted filters to learned restoration models, improvements in image fidelity do not consistently translate into better downstream detection and segmentation. Moreover, prior evaluations often rely on synthetic data, raising concerns about real-world transferability. We present a structured empirical study that benchmarks a comprehensive set of defogging pipelines, including classical dehazing filters, modern defogging networks, chained variants combining filters and models, and prompt-driven visual language image editing models applied directly to foggy images. To bridge the gap between simulated and physical environments, we evaluate these pipelines on both the synthetic Foggy Cityscapes dataset and the real-world Adverse Conditions Dataset with Correspondences (ACDC). We examine generalization by evaluating performance on synthetic fog and real-world conditions, assessing both image quality and downstream perception in terms of object detection mean average precision and segmentation panoptic quality. Our analysis identifies when defogging is effective, the impact of combining models, and how visual language models compare to traditional approaches. We additionally report qualitative rubric-based evaluations from both human and visual language model judges and analyze their alignment with downstream task metrics. Together, these results establish a transparent, task-oriented benchmark for defogging methods and identify the conditions under which pre-processing meaningfully improves autonomous perception in adverse weather. Project page: https://aradfir.github.io/filters-to-vlms-defogging-page/
comment: Accepted at WACV 2026 Proceedings (Oral), 5th Workshop on Image, Video, and Audio Quality Assessment in Computer Vision, with a focus on VLM and Diffusion Models
♻ ☆ GlobalGeoTree: A Multi-Granular Vision-Language Dataset for Global Tree Species Classification
Global tree species mapping using remote sensing data is vital for biodiversity monitoring, forest management, and ecological research. However, progress in this field has been constrained by the scarcity of large-scale, labeled datasets. To address this, we introduce GlobalGeoTree, a comprehensive global dataset for tree species classification. GlobalGeoTree comprises 6.3 million geolocated tree occurrences, spanning 275 families, 2,734 genera, and 21,001 species across the hierarchical taxonomic levels. Each sample is paired with Sentinel-2 image time series and 27 auxiliary environmental variables, encompassing bioclimatic, geographic, and soil data. The dataset is partitioned into GlobalGeoTree-6M for model pretraining and curated evaluation subsets, primarily GlobalGeoTree-10kEval for zero-shot and few-shot benchmarking. To demonstrate the utility of the dataset, we introduce a baseline model, GeoTreeCLIP, which leverages paired remote sensing data and taxonomic text labels within a vision-language framework pretrained on GlobalGeoTree-6M. Experimental results show that GeoTreeCLIP achieves substantial improvements in zero- and few-shot classification on GlobalGeoTree-10kEval over existing advanced models. By making the dataset, models, and code publicly available, we aim to establish a benchmark to advance tree species classification and foster innovation in biodiversity research and ecological applications.
♻ ☆ Ask Me Again Differently: GRAS for Measuring Bias in Vision Language Models on Gender, Race, Age, and Skin Tone EACL 2026
As Vision Language Models (VLMs) become integral to real-world applications, understanding their demographic biases is critical. We introduce GRAS, a benchmark for uncovering demographic biases in VLMs across gender, race, age, and skin tone, offering the most diverse coverage to date. We further propose the GRAS Bias Score, an interpretable metric for quantifying bias. We benchmark five state-of-the-art VLMs and reveal concerning bias levels, with the least biased model attaining a GRAS Bias Score of only 2 out of 100. Our findings also reveal a methodological insight: evaluating bias in VLMs with visual question answering (VQA) requires considering multiple formulations of a question. Our code, data, and evaluation results are publicly available.
comment: Accepted to the Findings of EACL 2026
♻ ☆ ELIP: Efficient Discriminative Language-Image Pre-training with Fewer Vision Tokens
Learning a versatile language-image model is computationally prohibitive under a limited computing budget. This paper delves into the \emph{efficient language-image pre-training}, an area that has received relatively little attention despite its importance in reducing computational cost and footprint. To that end, we propose a vision token pruning and merging method ELIP, to remove less influential tokens based on the supervision of language outputs. Our method is designed with several strengths, such as being computation-efficient, memory-efficient, and trainable-parameter-free, and is distinguished from previous vision-only token pruning approaches by its alignment with task objectives. We implement this method in a progressively pruning manner using several sequential blocks. To evaluate its generalization performance, we apply ELIP to three commonly used language-image pre-training models and utilize public image-caption pairs with 4M images for pre-training. Our experiments demonstrate that with the removal of ~30$\%$ vision tokens across 12 ViT layers, ELIP maintains significantly comparable performance with baselines ($\sim$0.32 accuracy drop on average) over various downstream tasks including cross-modal retrieval, VQA, image captioning, \emph{etc}. In addition, the spared GPU resources by our ELIP allow us to scale up with larger batch sizes, thereby accelerating model pre-training and even sometimes enhancing downstream model performance.
♻ ☆ Kinetic Mining in Context: Few-Shot Action Synthesis via Text-to-Motion Distillation
The acquisition cost for large, annotated motion datasets remains a critical bottleneck for skeletal-based Human Activity Recognition (HAR). Although Text-to-Motion (T2M) generative models offer a compelling, scalable source of synthetic data, their training objectives, which emphasize general artistic motion, and dataset structures fundamentally differ from HAR's requirements for kinematically precise, class-discriminative actions. This disparity creates a significant domain gap, making generalist T2M models ill-equipped for generating motions suitable for HAR classifiers. To address this challenge, we propose KineMIC (Kinetic Mining In Context), a transfer learning framework for few-shot action synthesis. KineMIC adapts a T2M diffusion model to an HAR domain by hypothesizing that semantic correspondences in the text encoding space can provide soft supervision for kinematic distillation. We operationalize this via a kinetic mining strategy that leverages CLIP text embeddings to establish correspondences between sparse HAR labels and T2M source data. This process guides fine-tuning, transforming the generalist T2M backbone into a specialized few-shot Action-to-Motion generator. We validate KineMIC using HumanML3D as the source T2M dataset and a subset of NTU RGB+D 120 as the target HAR domain, randomly selecting just 10 samples per action class. Our approach generates significantly more coherent motions, providing a robust data augmentation source that delivers a +23.1% accuracy points improvement. Animated illustrations and supplementary materials are available at https://lucazzola.github.io/publications/kinemic.
♻ ☆ Real-Time Object Detection Meets DINOv3
Driven by the simple and effective Dense O2O, DEIM demonstrates faster convergence and enhanced performance. In this work, we extend it with DINOv3 features, resulting in DEIMv2. DEIMv2 spans eight model sizes from X to Atto, covering GPU, edge, and mobile deployment. For the X, L, M, and S variants, we adopt DINOv3-pretrained or distilled backbones and introduce a Spatial Tuning Adapter (STA), which efficiently converts DINOv3's single-scale output into multi-scale features and complements strong semantics with fine-grained details to enhance detection. For ultra-lightweight models (Nano, Pico, Femto, and Atto), we employ HGNetv2 with depth and width pruning to meet strict resource budgets. Together with a simplified decoder and an upgraded Dense O2O, this unified design enables DEIMv2 to achieve a superior performance-cost trade-off across diverse scenarios, establishing new state-of-the-art results. Notably, our largest model, DEIMv2-X, achieves 57.8 AP with only 50.3 million parameters, surpassing prior X-scale models that require over 60 million parameters for just 56.5 AP. On the compact side, DEIMv2-S is the first sub-10 million model (9.71 million) to exceed the 50 AP milestone on COCO, reaching 50.9 AP. Even the ultra-lightweight DEIMv2-Pico, with just 1.5 million parameters, delivers 38.5 AP, matching YOLOv10-Nano (2.3 million) with around 50 percent fewer parameters. Our code and pre-trained models are available at https://github.com/Intellindust-AI-Lab/DEIMv2
comment: Source code available at https://github.com/Intellindust-AI-Lab/DEIMv2
♻ ☆ Coding the Visual World: From Image to Simulation Using Vision Language Models
The ability to construct mental models of the world is a central aspect of understanding. Similarly, visual understanding can be viewed as the ability to construct a representative model of the system depicted in an image. This work explores the capacity of Vision Language Models (VLMs) to recognize and simulate the systems and mechanisms depicted in images using the Im2Sim methodology. The VLM is given a natural image of a real-world system (e.g., cities, clouds, vegetation) and is tasked with describing the system and writing code that simulates and generates it. This generative code is then executed to produce a synthetic image, which is compared against the original. This approach is tested on various complex emergent systems, ranging from physical systems (waves, lights, clouds) to vegetation, cities, materials, and geological formations. Through analysis of the models and images generated by the VLMs, we examine their understanding of the systems in images. The results show that leading VLMs (GPT, Gemini) have the ability to understand and model complex, multi-component systems across multiple layers of abstraction and a wide range of domains. At the same time, the VLMs exhibit limited ability to replicate fine details and low-level arrangements of patterns in the image. These findings reveal an interesting asymmetry: VLMs combine high-level, deep visual understanding of images with limited perception of fine details.
♻ ☆ Context-measure: Contextualizing Metric for Camouflage
Camouflage is primarily context-dependent yet current metrics for camouflaged scenarios overlook this critical factor. Instead, these metrics are originally designed for evaluating general or salient objects, with an inherent assumption of uncorrelated spatial context. In this paper, we propose a new contextualized evaluation paradigm, Context-measure, built upon a probabilistic pixel-aware correlation framework. By incorporating spatial dependencies and pixel-wise camouflage quantification, our measure better aligns with human perception. Extensive experiments across three challenging camouflaged object segmentation datasets show that Context-measure delivers more reliability than existing context-independent metrics. Our measure can provide a foundational evaluation benchmark for various computer vision applications involving camouflaged patterns, such as agricultural, industrial, and medical scenarios. Code is available at https://github.com/pursuitxi/Context-measure.
comment: Technical Report
♻ ☆ CellStyle: Improved Zero-Shot Cell Segmentation via Style Transfer
Cell microscopy data are abundant; however, corresponding segmentation annotations remain scarce. Moreover, variations in cell types, imaging devices, and staining techniques introduce significant domain gaps between datasets. As a result, even large, pretrained segmentation models trained on diverse datasets (source datasets) struggle to generalize to unseen datasets (target datasets). To overcome this generalization problem, we propose CellStyle, which improves the segmentation quality of such models without requiring labels for the target dataset, thereby enabling zero-shot adaptation. CellStyle transfers the attributes of an unannotated target dataset, such as texture, color, and noise, to the annotated source dataset. This transfer is performed while preserving the cell shapes of the source images, ensuring that the existing source annotations can still be used while maintaining the visual characteristics of the target dataset. The styled synthetic images with the existing annotations enable the finetuning of a generalist segmentation model for application to the unannotated target data. We demonstrate that CellStyle significantly improves zero-shot cell segmentation performance across diverse datasets by finetuning multiple segmentation models on the style-transferred data. The code will be made publicly available.
♻ ☆ Adams Bashforth Moulton Solver for Inversion and Editing in Rectified Flow
Rectified flow models have achieved remarkable performance in image and video generation tasks. However, existing numerical solvers face a trade-off between fast sampling and high accuracy solutions, limiting their effectiveness in downstream applications such as reconstruction and editing. To address this challenge, we propose leveraging the Adams Bashforth Moulton (ABM) predictor corrector method to enhance the accuracy of ODE solving in rectified flow models. Specifically, we introduce ABM Solver, which integrates a multi step predictor corrector approach to reduce local truncation errors and employs Adaptive Step Size Adjustment to improve sampling speed. Furthermore, to effectively preserve non edited regions while facilitating semantic modifications, we introduce a Mask Guided Feature Injection module. We estimate self-similarity to generate a spatial mask that differentiates preserved regions from those available for editing. Extensive experiments on multiple high resolution image datasets validate that ABM Solver significantly improves inversion precision and editing quality, outperforming existing solvers without requiring additional training or optimization.
♻ ☆ A Style-Based Profiling Framework for Quantifying the Synthetic-to-Real Gap in Autonomous Driving Datasets
Ensuring the reliability of autonomous driving perception systems requires extensive environment-based testing, yet real-world execution is often impractical. Synthetic datasets have therefore emerged as a promising alternative, offering advantages such as cost-effectiveness, bias free labeling, and controllable scenarios. However, the domain gap between synthetic and real-world datasets remains a major obstacle to model generalization. To address this challenge from a data-centric perspective, this paper introduces a profile extraction and discovery framework for characterizing the style profiles underlying both synthetic and real image datasets. We propose Style Embedding Distribution Discrepancy (SEDD) as a novel evaluation metric. Our framework combines Gram matrix-based style extraction with metric learning optimized for intra-class compactness and inter-class separation to extract style embeddings. Furthermore, we establish a benchmark using publicly available datasets. Experiments are conducted on a variety of datasets and sim-to-real methods, and the results show that our method is capable of quantifying the synthetic-to-real gap. This work provides a standardized profiling-based quality control paradigm that enables systematic diagnosis and targeted enhancement of synthetic datasets, advancing future development of data-driven autonomous driving systems.
comment: Accepted for publication at the 2026 IEEE Intelligent Vehicles Symposium (IEEE IV 2026)
♻ ☆ Exploiting Minority Pseudo-Labels for Semi-Supervised Fine-grained Road Scene Understanding
In fine-grained road scene understanding, semantic segmentation plays a crucial role in enabling vehicles to perceive and comprehend their surroundings. By assigning a specific class label to each pixel in an image, it allows for precise identification and localization of detailed road features, which is vital for high-quality scene understanding and downstream perception tasks. A key challenge in this domain lies in improving the recognition performance of minority classes while mitigating the dominance of majority classes, which is essential for achieving balanced and robust overall performance. However, traditional semi-supervised learning methods often train models overlooking the imbalance between classes. To address this issue, firstly, we propose a general training module that learns from all the pseudo-labels without a conventional filtering strategy. Secondly, we propose a professional training module to learn specifically from reliable minority-class pseudo-labels identified by a novel mismatch score metric. The two modules are crossly supervised by each other so that it reduces model coupling which is essential for semi-supervised learning. During contrastive learning, to avoid the dominance of the majority classes in the feature space, we propose a strategy to assign evenly distributed anchors for different classes in the feature space. Experimental results on multiple public benchmarks show that our method surpasses traditional approaches in recognizing tail classes.
comment: 14 pages, 12 figures
♻ ☆ Multimodal Evaluation of Russian-language Architectures EACL
Multimodal large language models (MLLMs) are currently at the center of research attention, showing rapid progress in scale and capabilities, yet their intelligence, limitations, and risks remain insufficiently understood. To address these issues, particularly in the context of the Russian language, where no multimodal benchmarks currently exist, we introduce MERA Multi, an open multimodal evaluation framework for Russian-spoken architectures. The benchmark is instruction-based and encompasses default text, image, audio, and video modalities, comprising 18 newly constructed evaluation tasks for both general-purpose models and modality-specific architectures (imageto-text, video-to-text, and audio-to-text). Our contributions include: (i) a universal taxonomy of multimodal abilities; (ii) 18 datasets created entirely from scratch with attention to Russian cultural and linguistic specificity, unified prompts, and metrics; (iii) baseline results for both closed-source and open-source models; (iv) a methodology for preventing benchmark leakage, including watermarking for private sets. While our current focus is on Russian, the proposed benchmark provides a replicable methodology for constructing multimodal benchmarks in typologically diverse languages, particularly within the Slavic language family.
comment: EACL main track
♻ ☆ AnchoredDream: Zero-Shot 360° Indoor Scene Generation from a Single View via Geometric Grounding
Single-view indoor scene generation plays a crucial role in a range of real-world applications. However, generating a complete 360° scene from a single image remains a highly ill-posed and challenging problem. Recent approaches have made progress by leveraging diffusion models and depth estimation networks, yet they still struggle to maintain appearance consistency and geometric plausibility under large viewpoint changes, limiting their effectiveness in full-scene generation. To address this, we propose AnchoredDream, a novel zero-shot pipeline that anchors 360° scene generation on high-fidelity geometry via an appearance-geometry mutual boosting mechanism. Given a single-view image, our method first performs appearance-guided geometry generation to construct a reliable 3D scene layout. Then, we progressively generate the complete scene through a series of modules: warp-and-inpaint, warp-and-refine, post-optimization, and a novel Grouting Block, which ensures seamless transitions between the input view and generated regions. Extensive experiments demonstrate that AnchoredDream outperforms existing methods by a large margin in both appearance consistency and geometric plausibility--all in a zero-shot manner. Our results highlight the potential of geometric grounding for high-quality, zero-shot single-view scene generation.
♻ ☆ Not All Pixels Are Equal: Pixel-wise Meta-Learning for Medical Segmentation with Noisy Labels
Medical image segmentation is crucial for clinical applications, but it is frequently disrupted by noisy annotations and ambiguous anatomical boundaries, which lead to instability in model training. Existing methods typically rely on global noise assumptions or confidence-based sample selection, which inadequately mitigate the performance degradation caused by annotation noise, especially in challenging boundary regions. To address this issue, we propose MetaDCSeg, a robust framework that dynamically learns optimal pixel-wise weights to suppress the influence of noisy labels while preserving reliable annotations. By explicitly modeling boundary uncertainty through a Dynamic Center Distance (DCD) mechanism, our approach utilizes weighted feature distances for foreground, background, and boundary centers, directing the model's attention toward hard-to-segment pixels near ambiguous boundaries. This strategy enables more precise handling of structural boundaries, which are often overlooked by existing methods, and significantly enhances segmentation performance. Extensive experiments across four benchmark datasets with varying noise levels demonstrate that MetaDCSeg outperforms existing state-of-the-art methods.
♻ ☆ GeoVLMath: Enhancing Geometry Reasoning in Vision-Language Models via Cross-Modal Reward for Auxiliary Line Creation
Auxiliary lines are essential for solving complex geometric problems but remain challenging for large vision-language models (LVLMs). Recent attempts construct auxiliary lines via code-driven rendering, a strategy that relies on accurate and executable code generation to produce visual renderings of the auxiliary lines for subsequent reasoning. However, in complex solid geometry settings, such a strong dependence on precise specifications substantially restricts the robustness of this strategy. Alternatively, we turn to a simpler and more stable solution, representing auxiliary-line constructions as structured textual descriptions. To bridge the gap between textual descriptions and spatial structure, we propose a reinforcement learning framework that enhances diagram-text alignment. The core is a cross-modal reward model that evaluates how well the generated auxiliary-line description matches the ground-truth auxiliary-line diagram. The reward signal drives a GRPO-based RL stage to yield informative auxiliary-line descriptions for the reasoning. To support the training and evaluation, we develop a scalable data pipeline and construct AuxSolidMath, a dataset of 3,018 real-exam geometry problems with paired diagrams and aligned textual fields. Based on this framework, we derive GeoVLMath, an LVLM for solving complex solid geometry.
comment: 19 pages
♻ ☆ The Art of Saying "Maybe": A Conformal Lens for Uncertainty Benchmarking in VLMs
Vision-Language Models (VLMs) have achieved remarkable progress in complex visual understanding across scientific and reasoning tasks. While performance benchmarking has advanced our understanding of these capabilities, the critical dimension of uncertainty quantification has received insufficient attention. Therefore, unlike prior conformal prediction studies that focused on limited settings, we conduct a comprehensive uncertainty benchmarking study, evaluating 18 state-of-the-art VLMs (open and closed-source) across 6 multimodal datasets with 3 distinct scoring functions. For closed-source models lacking token-level logprob access, we develop and validate instruction-guided likelihood proxies. Our findings demonstrate that larger models consistently exhibit better uncertainty quantification; models that know more also know better what they don't know. More certain models achieve higher accuracy, while mathematical and reasoning tasks elicit poorer uncertainty performance across all models compared to other domains. This work establishes a foundation for reliable uncertainty evaluation in multimodal systems.
♻ ☆ Localizing Knowledge in Diffusion Transformers
Understanding how knowledge is distributed across the layers of generative models is crucial for improving interpretability, controllability, and adaptation. While prior work has explored knowledge localization in UNet-based architectures, Diffusion Transformer (DiT)-based models remain underexplored in this context. In this paper, we propose a model- and knowledge-agnostic method to localize where specific types of knowledge are encoded within the DiT blocks. We evaluate our method on state-of-the-art DiT-based models, including PixArt-alpha, FLUX, and SANA, across six diverse knowledge categories. We show that the identified blocks are both interpretable and causally linked to the expression of knowledge in generated outputs. Building on these insights, we apply our localization framework to two key applications: model personalization and knowledge unlearning. In both settings, our localized fine-tuning approach enables efficient and targeted updates, reducing computational cost, improving task-specific performance, and better preserving general model behavior with minimal interference to unrelated or surrounding content. Overall, our findings offer new insights into the internal structure of DiTs and introduce a practical pathway for more interpretable, efficient, and controllable model editing.
♻ ☆ PRISM-CAFO: Prior-conditioned Remote-sensing Infrastructure Segmentation and Mapping for CAFOs
Large-scale livestock operations pose significant risks to human health and the environment, while also being vulnerable to threats such as infectious diseases and extreme weather events. As the number of such operations continues to grow, accurate and scalable mapping has become increasingly important. In this work, we present an infrastructure-first, explainable pipeline for identifying and characterizing Concentrated Animal Feeding Operations (CAFOs) from aerial and satellite imagery. Our method (i) detects candidate infrastructure (e.g., barns, feedlots, manure lagoons, silos) with a domain-tuned YOLOv8 detector, then derives SAM2 masks from these boxes and filters component-specific criteria; (ii) extracts structured descriptors (e.g., counts, areas, orientations, and spatial relations) and fuses them with deep visual features using a lightweight spatial cross-attention classifier; and (iii) outputs both CAFO type predictions and mask-level attributions that link decisions to visible infrastructure. Through comprehensive evaluation, we show that our approach achieves state-of-the-art performance, with Swin-B+PRISM-CAFO surpassing the best performing baseline by up to 15\%. Beyond strong predictive performance across diverse U.S. regions, we run systematic gradient--activation analyses that quantify the impact of domain priors and show how specific infrastructure (e.g., barns, lagoons) shapes classification decisions. We release code, infrastructure masks, and descriptors to support transparent, scalable monitoring of livestock infrastructure, enabling risk modeling, change detection, and targeted regulatory action. Github: https://github.com/Nibir088/PRISM-CAFO.
♻ ☆ MangaVQA and MangaLMM: A Benchmark and Specialized Model for Multimodal Manga Understanding EACL 2026
Manga, or Japanese comics, is a richly multimodal narrative form that blends images and text in complex ways. Teaching large multimodal models (LMMs) to understand such narratives at a human-like level could help manga creators reflect on and refine their stories. To this end, we introduce two benchmarks for multimodal manga understanding: MangaOCR, which targets in-page text recognition, and MangaVQA, a novel benchmark designed to evaluate contextual understanding through visual question answering. MangaVQA consists of 526 high-quality, manually constructed question-answer pairs, enabling reliable evaluation across diverse narrative and visual scenarios. Building on these benchmarks, we develop MangaLMM, a manga-specialized model finetuned from the open-source LMM Qwen2.5-VL to jointly handle both tasks. Through extensive experiments, including comparisons with proprietary models such as GPT-4o and Gemini 2.5, we assess how well LMMs understand manga. Our benchmark and model provide a comprehensive foundation for evaluating and advancing LMMs in the richly narrative domain of manga.
comment: EACL 2026 Findings. Project page: https://manga109.github.io/MangaVQA_LMM/
♻ ☆ Unified Multimodal Understanding and Generation Models: Advances, Challenges, and Opportunities
Recent years have seen remarkable progress in both multimodal understanding models and image generation models. Despite their respective successes, these two domains have evolved independently, leading to distinct architectural paradigms: While autoregressive-based architectures have dominated multimodal understanding, diffusion-based models have become the cornerstone of image generation. Recently, there has been growing interest in developing unified frameworks that integrate these tasks. The emergence of GPT-4o's new capabilities exemplifies this trend, highlighting the potential for unification. However, the architectural differences between the two domains pose significant challenges. To provide a clear overview of current efforts toward unification, we present a comprehensive survey aimed at guiding future research. First, we introduce the foundational concepts and recent advancements in multimodal understanding and text-to-image generation models. Next, we review existing unified models, categorizing them into three main architectural paradigms: diffusion-based, autoregressive-based, and hybrid approaches that fuse autoregressive and diffusion mechanisms. For each category, we analyze the structural designs and innovations introduced by related works. Additionally, we compile datasets and benchmarks tailored for unified models, offering resources for future exploration. Finally, we discuss the key challenges facing this nascent field, including tokenization strategy, cross-modal attention, and data. As this area is still in its early stages, we anticipate rapid advancements and will regularly update this survey. Our goal is to inspire further research and provide a valuable reference for the community. The references associated with this survey are available on GitHub (https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models).
comment: In this version, we incorporate new papers (after Aug. 2025), datasets, and benchmarks. This work is still in progress; Github project: https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models
♻ ☆ VideoPro: Adaptive Program Reasoning for Long Video Understanding
Large language models (LLMs) have shown promise in generating program workflows for visual tasks. However, previous approaches often rely on closed-source models, lack systematic reasoning, and struggle with long-form video question answering (videoQA). To address these challenges, we introduce the FS-VisPR framework, an adaptive visual program reasoning approach that balances fast reasoning for simple queries with slow reasoning for difficult ones. First, we design efficient visual modules (e.g., key clip retrieval and subtitle retrieval) to support long-form video tasks. Then, we construct a diverse and high-quality fast-slow reasoning dataset with a strong LLM to align open-source language models' ability to generate visual program workflows as FS-LLM. Next, we design a fast-slow reasoning framework with FS-LLM: Simple queries are directly solved by VideoLLMs, while difficult ones invoke visual program reasoning, motivated by human-like reasoning processes. During this process, low-confidence fast-thinking answers will trigger a second-stage slow-reasoning process, and a fallback mechanism to fast reasoning is activated if the program execution fails. Moreover, we improve visual programs through parameter search during both training and inference. By adjusting the parameters of the visual modules within the program, multiple variants are generated: during training, programs that yield correct answers are selected, while during inference, the program with the highest confidence result is applied. Experiments show that FS-VisPR improves both efficiency and reliability in visual program workflows. It achieves 50.4% accuracy on LVBench, surpassing GPT-4o, matching the performance of Qwen2.5VL-72B on VideoMME.
♻ ☆ A Step to Decouple Optimization in 3DGS
3D Gaussian Splatting (3DGS) has emerged as a powerful technique for real-time novel view synthesis. As an explicit representation optimized through gradient propagation among primitives, optimization widely accepted in deep neural networks (DNNs) is actually adopted in 3DGS, such as synchronous weight updating and Adam with the adaptive gradient. However, considering the physical significance and specific design in 3DGS, there are two overlooked details in the optimization of 3DGS: (i) update step coupling, which induces optimizer state rescaling and costly attribute updates outside the viewpoints, and (ii) gradient coupling in the moment, which may lead to under- or over-effective regularization. Nevertheless, such a complex coupling is under-explored. After revisiting the optimization of 3DGS, we take a step to decouple it and recompose the process into: Sparse Adam, Re-State Regularization and Decoupled Attribute Regularization. Taking a large number of experiments under the 3DGS and 3DGS-MCMC frameworks, our work provides a deeper understanding of these components. Finally, based on the empirical analysis, we re-design the optimization and propose AdamW-GS by re-coupling the beneficial components, under which better optimization efficiency and representation effectiveness are achieved simultaneously.
♻ ☆ Too Many Frames, Not All Useful: Efficient Strategies for Long-Form Video QA
Long-form videos that span across wide temporal intervals are highly information redundant and contain multiple distinct events or entities that are often loosely related. Therefore, when performing long-form video question answering (LVQA), all information necessary to generate a correct response can often be contained within a small subset of frames. Recent literature leverage large language models (LLMs) in LVQA benchmarks, achieving exceptional performance, while relying on vision language models (VLMs) to convert all visual content within videos into natural language. Such VLMs often independently caption a large number of frames uniformly sampled from long videos, which is not efficient and can mostly be redundant. Motivated by this inefficiency, we propose LVNet, a modular and training-free framework featuring a novel Hierarchical Keyframe Selector (HKS) that efficiently selects a minimal set of informative frames tailored to each question. LVNet's modularity allows easy integration with existing approaches for more efficient LVQA. We achieve state-of-the-art performance among similarly configured models across four benchmark LVQA datasets: EgoSchema, NExT-QA, IntentQA, VideoMME. The code can be found at https://github.com/jongwoopark7978/LVNet
Information Retrieval
☆ Dep-Search: Learning Dependency-Aware Reasoning Traces with Persistent Memory
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks, particularly when augmented with search mechanisms that enable systematic exploration of external knowledge bases. The field has evolved from traditional retrieval-augmented generation (RAG) frameworks to more sophisticated search-based frameworks that orchestrate multi-step reasoning through explicit search strategies. However, existing search frameworks still rely heavily on implicit natural language reasoning to determine search strategies and how to leverage retrieved information across reasoning steps. This reliance on implicit reasoning creates fundamental challenges for managing dependencies between sub-questions, efficiently reusing previously retrieved knowledge, and learning optimal search strategies through reinforcement learning. To address these limitations, we propose Dep-Search, a dependency-aware search framework that advances beyond existing search frameworks by integrating structured reasoning, retrieval, and persistent memory through GRPO. Dep-Search introduces explicit control mechanisms that enable the model to decompose questions with dependency relationships, retrieve information when needed, access previously stored knowledge from memory, and summarize long reasoning contexts into reusable memory entries. Through extensive experiments on seven diverse question answering datasets, we demonstrate that Dep-Search significantly enhances LLMs' ability to tackle complex multi-hop reasoning tasks, achieving substantial improvements over strong baselines across different model scales.
comment: Dep-Search 1st version
☆ Capturing P: On the Expressive Power and Efficient Evaluation of Boolean Retrieval
Modern information retrieval is transitioning from simple document filtering to complex, neuro-symbolic reasoning workflows. However, current retrieval architectures face a fundamental efficiency dilemma when handling the rigorous logical and arithmetic constraints required by this new paradigm. Standard iterator-based engines (Document-at-a-Time) do not natively support complex, nested logic graphs; forcing them to execute such queries typically results in intractable runtime performance. Conversely, naive recursive approaches (Term-at-a-Time), while capable of supporting these structures, suffer from prohibitive memory consumption when enforcing broad logical exclusions. In this paper, we propose that a retrieval engine must be capable of ``Capturing $\mathbf{P}$'' -- evaluating any polynomial-time property directly over its index in a computationally efficient manner. We define a formal Retrieval Language ($\mathcal{L}_R$) based on Directed Acyclic Graphs (DAGs) and prove it precisely captures the complexity class $\mathbf{P}$. We introduce \texttt{ComputePN}, a novel evaluation algorithm that makes $\mathcal{L}_R$ tractable. By combining native DAG traversal with a memory-efficient ``Positive-Negative'' response mechanism, \texttt{ComputePN} ensures the efficient evaluation of any query in $\mathcal{L}_R$. This work establishes the theoretical foundation for turning the search index into a general-purpose computational engine.
☆ S$^2$GR: Stepwise Semantic-Guided Reasoning in Latent Space for Generative Recommendation
Generative Recommendation (GR) has emerged as a transformative paradigm with its end-to-end generation advantages. However, existing GR methods primarily focus on direct Semantic ID (SID) generation from interaction sequences, failing to activate deeper reasoning capabilities analogous to those in large language models and thus limiting performance potential. We identify two critical limitations in current reasoning-enhanced GR approaches: (1) Strict sequential separation between reasoning and generation steps creates imbalanced computational focus across hierarchical SID codes, degrading quality for SID codes; (2) Generated reasoning vectors lack interpretable semantics, while reasoning paths suffer from unverifiable supervision. In this paper, we propose stepwise semantic-guided reasoning in latent space (S$^2$GR), a novel reasoning enhanced GR framework. First, we establish a robust semantic foundation via codebook optimization, integrating item co-occurrence relationship to capture behavioral patterns, and load balancing and uniformity objectives that maximize codebook utilization while reinforcing coarse-to-fine semantic hierarchies. Our core innovation introduces the stepwise reasoning mechanism inserting thinking tokens before each SID generation step, where each token explicitly represents coarse-grained semantics supervised via contrastive learning against ground-truth codebook cluster distributions ensuring physically grounded reasoning paths and balanced computational focus across all SID codes. Extensive experiments demonstrate the superiority of S$^2$GR, and online A/B test confirms efficacy on large-scale industrial short video platform.
☆ FastInsight: Fast and Insightful Retrieval via Fusion Operators for Graph RAG
Existing Graph RAG methods aiming for insightful retrieval on corpus graphs typically rely on time-intensive processes that interleave Large Language Model (LLM) reasoning. To enable time-efficient insightful retrieval, we propose FastInsight. We first introduce a graph retrieval taxonomy that categorizes existing methods into three fundamental operations: vector search, graph search, and model-based search. Through this taxonomy, we identify two critical limitations in current approaches: the topology-blindness of model-based search and the semantics-blindness of graph search. FastInsight overcomes these limitations by interleaving two novel fusion operators: the Graph-based Reranker (GRanker), which functions as a graph model-based search, and Semantic-Topological eXpansion (STeX), which operates as a vector-graph search. Extensive experiments on broad retrieval and generation datasets demonstrate that FastInsight significantly improves both retrieval accuracy and generation quality compared to state-of-the-art baselines, achieving a substantial Pareto improvement in the trade-off between effectiveness and efficiency.
comment: under review
☆ Feature-Indexed Federated Recommendation with Residual-Quantized Codebooks
Federated recommendation provides a privacy-preserving solution for training recommender systems without centralizing user interactions. However, existing methods follow an ID-indexed communication paradigm that transmit whole item embeddings between clients and the server, which has three major limitations: 1) consumes uncontrollable communication resources, 2) the uploaded item information cannot generalize to related non-interacted items, and 3) is sensitive to client noisy feedback. To solve these problems, it is necessary to fundamentally change the existing ID-indexed communication paradigm. Therefore, we propose a feature-indexed communication paradigm that transmits feature code embeddings as codebooks rather than raw item embeddings. Building on this paradigm, we present RQFedRec, which assigns each item a list of discrete code IDs via Residual Quantization (RQ)-Kmeans. Each client generates and trains code embeddings as codebooks based on discrete code IDs provided by the server, and the server collects and aggregates these codebooks rather than item embeddings. This design makes communication controllable since the codebooks could cover all items, enabling updates to propagate across related items in same code ID. In addition, since code embedding represents many items, which is more robust to a single noisy item. To jointly capture semantic and collaborative information, RQFedRec further adopts a collaborative-semantic dual-channel aggregation with a curriculum strategy that emphasizes semantic codes early and gradually increases the contribution of collaborative codes over training. Extensive experiments on real-world datasets demonstrate that RQFedRec consistently outperforms state-of-the-art federated recommendation baselines while significantly reducing communication overhead.
☆ Token-level Collaborative Alignment for LLM-based Generative Recommendation WWW 2026
Large Language Models (LLMs) have demonstrated strong potential for generative recommendation by leveraging rich semantic knowledge. However, existing LLM-based recommender systems struggle to effectively incorporate collaborative filtering (CF) signals, due to a fundamental mismatch between item-level preference modeling in CF and token-level next-token prediction (NTP) optimization in LLMs. Prior approaches typically treat CF as contextual hints or representation bias, and resort to multi-stage training to reduce behavioral semantic space discrepancies, leaving CF unable to explicitly regulate LLM generation. In this work, we propose Token-level Collaborative Alignment for Recommendation (TCA4Rec), a model-agnostic and plug-and-play framework that establishes an explicit optimization-level interface between CF supervision and LLM generation. TCA4Rec consists of (i) Collaborative Tokenizer, which projects raw item-level CF logits into token-level distributions aligned with the LLM token space, and (ii) Soft Label Alignment, which integrates these CF-informed distributions with one-hot supervision to optimize a soft NTP objective. This design preserves the generative nature of LLM training while enabling collaborative alignment with essential user preference of CF models. We highlight TCA4Rec is compatible with arbitrary traditional CF models and generalizes across a wide range of decoder-based LLM recommender architectures. Moreover, it provides an explicit mechanism to balance behavioral alignment and semantic fluency, yielding generative recommendations that are both accurate and controllable. Extensive experiments demonstrate that TCA4Rec consistently improves recommendation performance across a broad spectrum of CF models and LLM-based recommender systems.
comment: 11 pages, 2 figures, 7 tables, WWW 2026
☆ TopKGAT: A Top-K Objective-Driven Architecture for Recommendation WWW2026
Recommendation systems (RS) aim to retrieve the top-K items most relevant to users, with metrics such as Precision@K and Recall@K commonly used to assess effectiveness. The architecture of an RS model acts as an inductive bias, shaping the patterns the model is inclined to learn. In recent years, numerous recommendation architectures have emerged, spanning traditional matrix factorization, deep neural networks, and graph neural networks. However, their designs are often not explicitly aligned with the top-K objective, thereby limiting their effectiveness. To address this limitation, we propose TopKGAT, a novel recommendation architecture directly derived from a differentiable approximation of top-K metrics. The forward computation of a single TopKGAT layer is intrinsically aligned with the gradient ascent dynamics of the Precision@K metric, enabling the model to naturally improve top-K recommendation accuracy. Structurally, TopKGAT resembles a graph attention network and can be implemented efficiently. Extensive experiments on four benchmark datasets demonstrate that TopKGAT consistently outperforms state-of-the-art baselines. The code is available at https://github.com/StupidThree/TopKGAT.
comment: Accepted by WWW2026
☆ Beyond the Checkbox: Strengthening DSA Compliance Through Social Media Algorithmic Auditing
Algorithms of online platforms are required under the Digital Services Act (DSA) to comply with specific obligations concerning algorithmic transparency, user protection and privacy. To verify compliance with these requirements, DSA mandates platforms to undergo independent audits. Little is known about current auditing practices and their effectiveness in ensuring such compliance. To this end, we bridge regulatory and technical perspectives by critically examining selected audit reports across three critical algorithmic-related provisions: restrictions on profiling minors, transparency in recommender systems, and limitations on targeted advertising using sensitive data. Our analysis shows significant inconsistencies in methodologies and lack of technical depth when evaluating AI-powered systems. To enhance the depth, scale, and independence of compliance assessments, we propose to employ algorithmic auditing -- a process of behavioural assessment of AI algorithms by means of simulating user behaviour, observing algorithm responses and analysing them for audited phenomena.
comment: 2026 CHI Conference on Human Factors in Computing Systems
☆ Corpus-Based Approaches to Igbo Diacritic Restoration
With natural language processing (NLP), researchers aim to enable computers to identify and understand patterns in human languages. This is often difficult because a language embeds many dynamic and varied properties in its syntax, pragmatics and phonology, which need to be captured and processed. The capacity of computers to process natural languages is increasing because NLP researchers are pushing its boundaries. But these research works focus more on well-resourced languages such as English, Japanese, German, French, Russian, Mandarin Chinese, etc. Over 95% of the world's 7000 languages are low-resourced for NLP, i.e. they have little or no data, tools, and techniques for NLP work. In this thesis, we present an overview of diacritic ambiguity and a review of previous diacritic disambiguation approaches on other languages. Focusing on the Igbo language, we report the steps taken to develop a flexible framework for generating datasets for diacritic restoration. Three main approaches, the standard n-gram model, the classification models and the embedding models were proposed. The standard n-gram models use a sequence of previous words to the target stripped word as key predictors of the correct variants. For the classification models, a window of words on both sides of the target stripped word was used. The embedding models compare the similarity scores of the combined context word embeddings and the embeddings of each of the candidate variant vectors.
comment: 270 page. Ph.D. Thesis. The University of Sheffield
☆ Orchestrating Specialized Agents for Trustworthy Enterprise RAG
Retrieval-Augmented Generation (RAG) shows promise for enterprise knowledge work, yet it often underperforms in high-stakes decision settings that require deep synthesis, strict traceability, and recovery from underspecified prompts. One-pass retrieval-and-write pipelines frequently yield shallow summaries, inconsistent grounding, and weak mechanisms for completeness verification. We introduce ADORE (Adaptive Deep Orchestration for Research in Enterprise), an agentic framework that replaces linear retrieval with iterative, user-steered investigation coordinated by a central orchestrator and a set of specialized agents. ADORE's key insight is that a structured Memory Bank (a curated evidence store with explicit claim-evidence linkage and section-level admissible evidence) enables traceable report generation and systematic checks for evidence completeness. Our contributions are threefold: (1) Memory-locked synthesis - report generation is constrained to a structured Memory Bank (Claim-Evidence Graph) with section-level admissible evidence, enabling traceable claims and grounded citations; (2) Evidence-coverage-guided execution - a retrieval-reflection loop audits section-level evidence coverage to trigger targeted follow-up retrieval and terminates via an evidence-driven stopping criterion; (3) Section-packed long-context grounding - section-level packing, pruning, and citation-preserving compression make long-form synthesis feasible under context limits. Across our evaluation suite, ADORE ranks first on DeepResearch Bench (52.65) and achieves the highest head-to-head preference win rate on DeepConsult (77.2%) against commercial systems.
☆ GenCI: Generative Modeling of User Interest Shift via Cohort-based Intent Learning for CTR Prediction WWW 2026
Click-through rate (CTR) prediction plays a pivotal role in online advertising and recommender systems. Despite notable progress in modeling user preferences from historical behaviors, two key challenges persist. First, exsiting discriminative paradigms focus on matching candidates to user history, often overfitting to historically dominant features and failing to adapt to rapid interest shifts. Second, a critical information chasm emerges from the point-wise ranking paradigm. By scoring each candidate in isolation, CTR models discard the rich contextual signal implied by the recalled set as a whole, leading to a misalignment where long-term preferences often override the user's immediate, evolving intent. To address these issues, we propose GenCI, a generative user intent framework that leverages semantic interest cohorts to model dynamic user preferences for CTR prediction. The framework first employs a generative model, trained with a next-item prediction (NTP) objective, to proactively produce candidate interest cohorts. These cohorts serve as explicit, candidate-agnostic representations of a user's immediate intent. A hierarchical candidate-aware network then injects this rich contextual signal into the ranking stage, refining them with cross-attention to align with both user history and the target item. The entire model is trained end-to-end, creating a more aligned and effective CTR prediction pipeline. Extensive experiments on three widely used datasets demonstrate the effectiveness of our approach.
comment: Accepted by WWW 2026 Research Track
☆ Generative Chain of Behavior for User Trajectory Prediction
Modeling long-term user behavior trajectories is essential for understanding evolving preferences and enabling proactive recommendations. However, most sequential recommenders focus on next-item prediction, overlooking dependencies across multiple future actions. We propose Generative Chain of Behavior (GCB), a generative framework that models user interactions as an autoregressive chain of semantic behaviors over multiple future steps. GCB first encodes items into semantic IDs via RQ-VAE with k-means refinement, forming a discrete latent space that preserves semantic proximity. On top of this space, a transformer-based autoregressive generator predicts multi-step future behaviors conditioned on user history, capturing long-horizon intent transitions and generating coherent trajectories. Experiments on benchmark datasets show that GCB consistently outperforms state-of-the-art sequential recommenders in multi-step accuracy and trajectory consistency. Beyond these gains, GCB offers a unified generative formulation for capturing user preference evolution.
☆ PaperSearchQA: Learning to Search and Reason over Scientific Papers with RLVR EACL 2026
Search agents are language models (LMs) that reason and search knowledge bases (or the web) to answer questions; recent methods supervise only the final answer accuracy using reinforcement learning with verifiable rewards (RLVR). Most RLVR search agents tackle general-domain QA, which limits their relevance to technical AI systems in science, engineering, and medicine. In this work we propose training agents to search and reason over scientific papers -- this tests technical question-answering, it is directly relevant to real scientists, and the capabilities will be crucial to future AI Scientist systems. Concretely, we release a search corpus of 16 million biomedical paper abstracts and construct a challenging factoid QA dataset called PaperSearchQA with 60k samples answerable from the corpus, along with benchmarks. We train search agents in this environment to outperform non-RL retrieval baselines; we also perform further quantitative analysis and observe interesting agent behaviors like planning, reasoning, and self-verification. Our corpus, datasets, and benchmarks are usable with the popular Search-R1 codebase for RLVR training and released on https://huggingface.co/collections/jmhb/papersearchqa. Finally, our data creation methods are scalable and easily extendable to other scientific domains.
comment: EACL 2026
☆ DMAP: Human-Aligned Structural Document Map for Multimodal Document Understanding
Existing multimodal document question-answering (QA) systems predominantly rely on flat semantic retrieval, representing documents as a set of disconnected text chunks and largely neglecting their intrinsic hierarchical and relational structures. Such flattening disrupts logical and spatial dependencies - such as section organization, figure-text correspondence, and cross-reference relations, that humans naturally exploit for comprehension. To address this limitation, we introduce a document-level structural Document MAP (DMAP), which explicitly encodes both hierarchical organization and inter-element relationships within multimodal documents. Specifically, we design a Structured-Semantic Understanding Agent to construct DMAP by organizing textual content together with figures, tables, charts, etc. into a human-aligned hierarchical schema that captures both semantic and layout dependencies. Building upon this representation, a Reflective Reasoning Agent performs structure-aware and evidence-driven reasoning, dynamically assessing the sufficiency of retrieved context and iteratively refining answers through targeted interactions with DMAP. Extensive experiments on MMDocQA benchmarks demonstrate that DMAP yields document-specific structural representations aligned with human interpretive patterns, substantially enhancing retrieval precision, reasoning consistency, and multimodal comprehension over conventional RAG-based approaches. Code is available at https://github.com/Forlorin/DMAP
☆ Think When Needed: Model-Aware Reasoning Routing for LLM-based Ranking
Large language models (LLMs) are increasingly applied to ranking tasks in retrieval and recommendation. Although reasoning prompting can enhance ranking utility, our preliminary exploration reveals that its benefits are inconsistent and come at a substantial computational cost, suggesting that when to reason is as crucial as how to reason. To address this issue, we propose a reasoning routing framework that employs a lightweight, plug-and-play router head to decide whether to use direct inference (Non-Think) or reasoning (Think) for each instance before generation. The router head relies solely on pre-generation signals: i) compact ranking-aware features (e.g., candidate dispersion) and ii) model-aware difficulty signals derived from a diagnostic checklist reflecting the model's estimated need for reasoning. By leveraging these features before generation, the router outputs a controllable token that determines whether to apply the Think mode. Furthermore, the router can adaptively select its operating policy along the validation Pareto frontier during deployment, enabling dynamic allocation of computational resources toward instances most likely to benefit from Think under varying system constraints. Experiments on three public ranking datasets with different scales of open-source LLMs show consistent improvements in ranking utility with reduced token consumption (e.g., +6.3\% NDCG@10 with -49.5\% tokens on MovieLens with Qwen3-4B), demonstrating reasoning routing as a practical solution to the accuracy-efficiency trade-off.
☆ Enhancing LLM-based Recommendation with Preference Hint Discovery from Knowledge Graph
LLMs have garnered substantial attention in recommendation systems. Yet they fall short of traditional recommenders when capturing complex preference patterns. Recent works have tried integrating traditional recommendation embeddings into LLMs to resolve this issue, yet a core gap persists between their continuous embedding and discrete semantic spaces. Intuitively, textual attributes derived from interactions can serve as critical preference rationales for LLMs' recommendation logic. However, directly inputting such attribute knowledge presents two core challenges: (1) Deficiency of sparse interactions in reflecting preference hints for unseen items; (2) Substantial noise introduction from treating all attributes as hints. To this end, we propose a preference hint discovery model based on the interaction-integrated knowledge graph, enhancing LLM-based recommendation. It utilizes traditional recommendation principles to selectively extract crucial attributes as hints. Specifically, we design a collaborative preference hint extraction schema, which utilizes semantic knowledge from similar users' explicit interactions as hints for unseen items. Furthermore, we develop an instance-wise dual-attention mechanism to quantify the preference credibility of candidate attributes, identifying hints specific to each unseen item. Using these item- and user-based hints, we adopt a flattened hint organization method to shorten input length and feed the textual hint information to the LLM for commonsense reasoning. Extensive experiments on both pair-wise and list-wise recommendation tasks verify the effectiveness of our proposed framework, indicating an average relative improvement of over 3.02% against baselines.
♻ ☆ A Reproducible and Fair Evaluation of Partition-aware Collaborative Filtering ECIR 2026
Similarity-based collaborative filtering (CF) models have long demonstrated strong offline performance and conceptual simplicity. However, their scalability is limited by the quadratic cost of maintaining dense item-item similarity matrices. Partitioning-based paradigms have recently emerged as an effective strategy for balancing effectiveness and efficiency, enabling models to learn local similarities within coherent subgraphs while maintaining a limited global context. In this work, we focus on the Fine-tuning Partition-aware Similarity Refinement (FPSR) framework, a prominent representative of this family, as well as its extension, FPSR+. Reproducible evaluation of partition-aware collaborative filtering remains challenging, as prior FPSR/FPSR+ reports often rely on splits of unclear provenance and omit some similarity-based baselines, thereby complicating fair comparison. We present a transparent, fully reproducible benchmark of FPSR and FPSR+. Based on our results, the family of FPSR models does not consistently perform at the highest level. Overall, it remains competitive, validates its design choices, and shows significant advantages in long-tail scenarios. This highlights the accuracy-coverage trade-offs resulting from partitioning, global components, and hub design. Our investigation clarifies when partition-aware similarity modeling is most beneficial and offers actionable guidance for scalable recommender system design under reproducible protocols.
comment: accepted at ECIR 2026 reproducibility track
♻ ☆ DualGR: Generative Retrieval with Long and Short-Term Interests Modeling WWW 2026
In large-scale industrial recommendation systems, retrieval must produce high-quality candidates from massive corpora under strict latency. Recently, Generative Retrieval (GR) has emerged as a viable alternative to Embedding-Based Retrieval (EBR), which quantizes items into a finite token space and decodes candidates autoregressively, providing a scalable path that explicitly models target-history interactions via cross-attention. However, deploying GR in short-video feeds remains challenged by long-short interest interference, context-induced noise in hierarchical SID generation, and the lack of explicit learning from exposed-but-unclicked feedback. To address these challenges, we propose DualGR, which combines (i) a Dual-Branch Long/Short-Term Router (DBR) with selective activation, (ii) Search-based SID Decoding (S2D) that constrains fine-level decoding within the current coarse bucket for efficiency and noise control, and (iii) an Exposure-aware Next-Token Prediction Loss (ENTP-Loss) that treats unclicked exposures as coarse-level hard negatives to promote timely interest fade-out. On the large-scale Kuaishou short-video recommendation system, DualGR has achieved outstanding performance. Online A/B testing shows +0.527% video views and +0.432% watch time lifts, validating DualGR as a practical and effective paradigm for industrial generative retrieval.
comment: Accepted by WWW 2026 short
♻ ☆ Explaining Group Recommendations via Counterfactuals
Group recommender systems help users make collective choices but often lack transparency, leaving group members uncertain about why items are suggested. Existing explanation methods focus on individuals, offering limited support for groups where multiple preferences interact. In this paper, we propose a framework for group counterfactual explanations, which reveal how removing specific past interactions would change a group recommendation. We formalize this concept, introduce utility and fairness measures tailored to groups, and design heuristic algorithms, such as Pareto-based filtering and grow-and-prune strategies, for efficient explanation discovery. Experiments on MovieLens and Amazon datasets show clear trade-offs: low-cost methods produce larger, less fair explanations, while other approaches yield concise and balanced results at higher cost. Furthermore, the Pareto-filtering heuristic demonstrates significant efficiency improvements in sparse settings.
♻ ☆ From Atom to Community: Structured and Evolving Agent Memory for User Behavior Modeling
User behavior modeling lies at the heart of personalized applications like recommender systems. With LLM-based agents, user preference representation has evolved from latent embeddings to semantic memory. While existing memory mechanisms show promise in textual dialogues, modeling non-textual behaviors remains challenging, as preferences must be inferred from implicit signals like clicks without ground truth supervision. Current approaches rely on a single unstructured summary, updated through simple overwriting. However, this is suboptimal: users exhibit multi-faceted interests that get conflated, preferences evolve yet naive overwriting causes forgetting, and sparse individual interactions necessitate collaborative signals. We present STEAM (\textit{\textbf{ST}ructured and \textbf{E}volving \textbf{A}gent \textbf{M}emory}), a novel framework that reimagines how agent memory is organized and updated. STEAM decomposes preferences into atomic memory units, each capturing a distinct interest dimension with explicit links to observed behaviors. To exploit collaborative patterns, STEAM organizes similar memories across users into communities and generates prototype memories for signal propagation. The framework further incorporates adaptive evolution mechanisms, including consolidation for refining memories and formation for capturing emerging interests. Experiments on three real-world datasets demonstrate that STEAM substantially outperforms state-of-the-art baselines in recommendation accuracy, simulation fidelity, and diversity.
♻ ☆ ABCD-LINK: Annotation Bootstrapping for Cross-Document Fine-Grained Links EACL 2026
Understanding fine-grained links between documents is crucial for many applications, yet progress is limited by the lack of efficient methods for data curation. To address this limitation, we introduce a domain-agnostic framework for bootstrapping sentence-level cross-document links from scratch. Our approach (1) generates and validates semi-synthetic datasets of linked documents, (2) uses these datasets to benchmark and shortlist the best-performing linking approaches, and (3) applies the shortlisted methods in large-scale human-in-the-loop annotation of natural text pairs. We apply the framework in two distinct domains -- peer review and news -- and show that combining retrieval models with LLMs achieves a 73% human approval rate for suggested links, more than doubling the acceptance of strong retrievers alone. Our framework allows users to produce novel datasets that enable systematic study of cross-document understanding, supporting downstream tasks such as media framing analysis and peer review assessment. All code, data, and annotation protocols are released to facilitate future research.
comment: Accepted at EACL 2026
♻ ☆ Understanding Internal Representations of Recommendation Models with Sparse Autoencoders
Recommendation model interpretation aims to reveal the relationships between inputs, model internal representations and outputs to enhance the transparency, interpretability, and trustworthiness of recommendation systems. However, the inherent complexity and opacity of deep learning models pose challenges for model-level interpretation. Moreover, most existing methods for interpreting recommendation models are tailored to specific architectures or model types, limiting their generalizability across different types of recommenders. In this paper, we propose RecSAE, a generalizable probing framework that interprets Recommendation models with Sparse AutoEncoders. The framework extracts interpretable latents from the internal representations of recommendation models, and links them to semantic concepts for interpretations. It does not alter original models during interpretations and also enables targeted tuning to models. Experiments on three types of recommendation models (general, graph-based, sequential) with four widely used public datasets demonstrate the effectiveness and generalization of RecSAE framework. The interpreted concepts are further validated by human experts, showing strong alignment with human perception. Overall, RecSAE serves as a novel step in both model-level interpretations to various types of recommendation models without affecting their functions and offering potential for targeted tuning of models.
♻ ☆ What Should I Cite? A RAG Benchmark for Academic Citation Prediction
With the rapid growth of Web-based academic publications, more and more papers are being published annually, making it increasingly difficult to find relevant prior work. Citation prediction aims to automatically suggest appropriate references, helping scholars navigate the expanding scientific literature. Here we present \textbf{CiteRAG}, the first comprehensive retrieval-augmented generation (RAG)-integrated benchmark for evaluating large language models on academic citation prediction, featuring a multi-level retrieval strategy, specialized retrievers, and generators. Our benchmark makes four core contributions: (1) We establish two instances of the citation prediction task with different granularity. Task 1 focuses on coarse-grained list-specific citation prediction, while Task 2 targets fine-grained position-specific citation prediction. To enhance these two tasks, we build a dataset containing 7,267 instances for Task 1 and 8,541 instances for Task 2, enabling comprehensive evaluation of both retrieval and generation. (2) We construct a three-level large-scale corpus with 554k papers spanning many major subfields, using an incremental pipeline. (3) We propose a multi-level hybrid RAG approach for citation prediction, fine-tuning embedding models with contrastive learning to capture complex citation relationships, paired with specialized generation models. (4) We conduct extensive experiments across state-of-the-art language models, including closed-source APIs, open-source models, and our fine-tuned generators, demonstrating the effectiveness of our framework. Our open-source toolkit enables reproducible evaluation and focuses on academic literature, providing the first comprehensive evaluation framework for citation prediction and serving as a methodological template for other scientific domains. Our source code and data are released at https://github.com/LQgdwind/CiteRAG.
♻ ☆ RASTP: Representation-Aware Semantic Token Pruning for Generative Recommendation with Semantic Identifiers WWW 2026
Generative recommendation systems typically leverage Semantic Identifiers (SIDs), which represent each item as a sequence of tokens that encode semantic information. However, representing item ID with multiple SIDs significantly increases input sequence length, which is a major determinant of computational complexity and memory consumption. While existing efforts primarily focus on optimizing attention computation and KV cache, we propose RASTP (Representation-Aware Semantic Token Pruning), which directly prunes less informative tokens in the input sequence. Specifically, RASTP evaluates token importance by combining semantic saliency, measured via representation magnitude, and attention centrality, derived from cumulative attention weights. Since RASTP dynamically prunes low-information or irrelevant semantic tokens, experiments on three real-world Amazon datasets show that RASTP reduces training time by 26.7\%, while maintaining or slightly improving recommendation performance. The code has been open-sourced at https://github.com/Yuzt-zju/RASTP.
comment: 4 pages, WWW 2026 short paper
♻ ☆ Multi-Agent Collaborative Filtering: Orchestrating Users and Items for Agentic Recommendations WWW 2026
Agentic recommendations cast recommenders as large language model (LLM) agents that can plan, reason, use tools, and interact with users of varying preferences in web applications. However, most existing agentic recommender systems focus on generic single-agent plan-execute workflows or multi-agent task decomposition pipelines. Without recommendation-oriented design, they often underuse the collaborative signals in the user-item interaction history, leading to unsatisfying recommendation results. To address this, we propose the Multi-Agent Collaborative Filtering (MACF) framework for agentic recommendations, drawing an analogy between traditional collaborative filtering algorithms and LLM-based multi-agent collaboration. Specifically, given a target user and query, we instantiate similar users and relevant items as LLM agents with unique profiles. Each agent is able to call retrieval tools, suggest candidate items, and interact with other agents. Different from the static preference aggregation in traditional collaborative filtering, MACF employs a central orchestrator agent to adaptively manage the collaboration between user and item agents via dynamic agent recruitment and personalized collaboration instruction. Experimental results on datasets from three different domains show the advantages of our MACF framework compared to strong agentic recommendation baselines.
comment: WWW 2026
♻ ☆ Aggregate and Broadcast: Scalable and Efficient Feature Interaction for Recommender Systems
Feature interaction is a core ingredient in ranking models for large-scale recommender systems, yet making it both expressive and efficiently scalable remains challenging. Exhaustive pairwise interaction is powerful but incurs quadratic complexity in the number of tokens/features, while many efficient alternatives rely on restrictive structures that limit information exchange. We further identify two common bottlenecks in practice: (1) early aggregation of behavior sequences compresses fine-grained signals, making it difficult for deeper layers to reuse item-level details; and (2) late fusion injects task signals only at the end, preventing task objectives from directly guiding the interaction process. To address these issues, we propose the Information Flow Network (INFNet), a lightweight architecture that enables scalable, task-aware feature interaction with linear complexity. INFNet represents categorical features, behavior sequences, and task identifiers as tokens, and introduces a small set of hub tokens for each group to serve as communication hubs. Interaction is realized through an efficient aggregate-and-broadcast information flow: hub tokens aggregate global context across groups via cross-attention, and a lightweight gated broadcast unit injects the refined context back to update the categorical, sequence, and task tokens. This design supports width-preserving stacking that preserves item-level signals in sequence and enables task-guided interaction throughout the network, while reducing interaction cost from quadratic to linear in the number of feature tokens. Experiments on a public benchmark and a large-scale industrial dataset demonstrate that INFNet consistently outperforms strong baselines and exhibits strong scaling behavior. In a commercial online advertising system, deploying INFNet improves revenue by +1.587% and click-through rate by +1.155%.
Machine Learning
☆ ctELM: Decoding and Manipulating Embeddings of Clinical Trials with Embedding Language Models
Text embeddings have become an essential part of a variety of language applications. However, methods for interpreting, exploring and reversing embedding spaces are limited, reducing transparency and precluding potentially valuable generative use cases. In this work, we align Large Language Models to embeddings of clinical trials using the recently reported Embedding Language Model (ELM) method. We develop an open-source, domain-agnostic ELM architecture and training framework, design training tasks for clinical trials, and introduce an expert-validated synthetic dataset. We then train a series of ELMs exploring the impact of tasks and training regimes. Our final model, ctELM, can accurately describe and compare unseen clinical trials from embeddings alone and produce plausible clinical trials from novel vectors. We further show that generated trial abstracts are responsive to moving embeddings along concept vectors for age and sex of study subjects. Our public ELM implementation and experimental results will aid the alignment of Large Language Models to embedding spaces in the biomedical domain and beyond.
☆ Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
☆ MEGnifying Emotion: Sentiment Analysis from Annotated Brain Data
Decoding emotion from brain activity could unlock a deeper understanding of the human experience. While a number of existing datasets align brain data with speech and with speech transcripts, no datasets have annotated brain data with sentiment. To bridge this gap, we explore the use of pre-trained Text-to-Sentiment models to annotate non invasive brain recordings, acquired using magnetoencephalography (MEG), while participants listened to audiobooks. Having annotated the text, we employ force-alignment of the text and audio to align our sentiment labels with the brain recordings. It is straightforward then to train Brainto-Sentiment models on these data. Experimental results show an improvement in balanced accuracy for Brain-to-Sentiment compared to baseline, supporting the proposed approach as a proof-of-concept for leveraging existing MEG datasets and learning to decode sentiment directly from the brain.
☆ Subword-Based Comparative Linguistics across 242 Languages Using Wikipedia Glottosets
We present a large-scale comparative study of 242 Latin and Cyrillic-script languages using subword-based methodologies. By constructing 'glottosets' from Wikipedia lexicons, we introduce a framework for simultaneous cross-linguistic comparison via Byte-Pair Encoding (BPE). Our approach utilizes rank-based subword vectors to analyze vocabulary overlap, lexical divergence, and language similarity at scale. Evaluations demonstrate that BPE segmentation aligns with morpheme boundaries 95% better than random baseline across 15 languages (F1 = 0.34 vs 0.15). BPE vocabulary similarity correlates significantly with genetic language relatedness (Mantel r = 0.329, p < 0.001), with Romance languages forming the tightest cluster (mean distance 0.51) and cross-family pairs showing clear separation (0.82). Analysis of 26,939 cross-linguistic homographs reveals that 48.7% receive different segmentations across related languages, with variation correlating to phylogenetic distance. Our results provide quantitative macro-linguistic insights into lexical patterns across typologically diverse languages within a unified analytical framework.
comment: 15 pages, 4 figues, 4 tables
☆ Unsupervised Text Segmentation via Kernel Change-Point Detection on Sentence Embeddings
Unsupervised text segmentation is crucial because boundary labels are expensive, subjective, and often fail to transfer across domains and granularity choices. We propose Embed-KCPD, a training-free method that represents sentences as embedding vectors and estimates boundaries by minimizing a penalized KCPD objective. Beyond the algorithmic instantiation, we develop, to our knowledge, the first dependence-aware theory for KCPD under $m$-dependent sequences, a finite-memory abstraction of short-range dependence common in language. We prove an oracle inequality for the population penalized risk and a localization guarantee showing that each true change point is recovered within a window that is small relative to segment length. To connect theory to practice, we introduce an LLM-based simulation framework that generates synthetic documents with controlled finite-memory dependence and known boundaries, validating the predicted scaling behavior. Across standard segmentation benchmarks, Embed-KCPD often outperforms strong unsupervised baselines. A case study on Taylor Swift's tweets illustrates that Embed-KCPD combines strong theoretical guarantees, simulated reliability, and practical effectiveness for text segmentation.
comment: arXiv admin note: substantial text overlap with arXiv:2510.03437. substantial text overlap with arXiv:2510.03437. substantial text overlap with arXiv:2510.03437. substantial text overlap with arXiv:2510.03437
☆ Multi-Objective Reinforcement Learning for Efficient Tactical Decision Making for Trucks in Highway Traffic
Balancing safety, efficiency, and operational costs in highway driving poses a challenging decision-making problem for heavy-duty vehicles. A central difficulty is that conventional scalar reward formulations, obtained by aggregating these competing objectives, often obscure the structure of their trade-offs. We present a Proximal Policy Optimization based multi-objective reinforcement learning framework that learns a continuous set of policies explicitly representing these trade-offs and evaluates it on a scalable simulation platform for tactical decision making in trucks. The proposed approach learns a continuous set of Pareto-optimal policies that capture the trade-offs among three conflicting objectives: safety, quantified in terms of collisions and successful completion; energy efficiency and time efficiency, quantified using energy cost and driver cost, respectively. The resulting Pareto frontier is smooth and interpretable, enabling flexibility in choosing driving behavior along different conflicting objectives. This framework allows seamless transitions between different driving policies without retraining, yielding a robust and adaptive decision-making strategy for autonomous trucking applications.
☆ POPE: Learning to Reason on Hard Problems via Privileged On-Policy Exploration
Reinforcement learning (RL) has improved the reasoning abilities of large language models (LLMs), yet state-of-the-art methods still fail to learn on many training problems. On hard problems, on-policy RL rarely explores even a single correct rollout, yielding zero reward and no learning signal for driving improvement. We find that natural solutions to remedy this exploration problem from classical RL, such as entropy bonuses, more permissive clipping of the importance ratio, or direct optimization of pass@k objectives, do not resolve this issue and often destabilize optimization without improving solvability. A natural alternative is to leverage transfer from easier problems. However, we show that mixing easy and hard problems during RL training is counterproductive due to ray interference, where optimization focuses on already-solvable problems in a way that actively inhibits progress on harder ones. To address this challenge, we introduce Privileged On-Policy Exploration (POPE), an approach that leverages human- or other oracle solutions as privileged information to guide exploration on hard problems, unlike methods that use oracle solutions as training targets (e.g., off-policy RL methods or warmstarting from SFT). POPE augments hard problems with prefixes of oracle solutions, enabling RL to obtain non-zero rewards during guided rollouts. Crucially, the resulting behaviors transfer back to the original, unguided problems through a synergy between instruction-following and reasoning. Empirically, POPE expands the set of solvable problems and substantially improves performance on challenging reasoning benchmarks.
☆ Teaching Models to Teach Themselves: Reasoning at the Edge of Learnability
Can a model learn to escape its own learning plateau? Reinforcement learning methods for finetuning large reasoning models stall on datasets with low initial success rates, and thus little training signal. We investigate a fundamental question: Can a pretrained LLM leverage latent knowledge to generate an automated curriculum for problems it cannot solve? To explore this, we design SOAR: A self-improvement framework designed to surface these pedagogical signals through meta-RL. A teacher copy of the model proposes synthetic problems for a student copy, and is rewarded with its improvement on a small subset of hard problems. Critically, SOAR grounds the curriculum in measured student progress rather than intrinsic proxy rewards. Our study on the hardest subsets of mathematical benchmarks (0/128 success) reveals three core findings. First, we show that it is possible to realize bi-level meta-RL that unlocks learning under sparse, binary rewards by sharpening a latent capacity of pretrained models to generate useful stepping stones. Second, grounded rewards outperform intrinsic reward schemes used in prior LLM self-play, reliably avoiding the instability and diversity collapse modes they typically exhibit. Third, analyzing the generated questions reveals that structural quality and well-posedness are more critical for learning progress than solution correctness. Our results suggest that the ability to generate useful stepping stones does not require the preexisting ability to actually solve the hard problems, paving a principled path to escape reasoning plateaus without additional curated data.
☆ PRECISE: Reducing the Bias of LLM Evaluations Using Prediction-Powered Ranking Estimation AAAI 2026
Evaluating the quality of search, ranking and RAG systems traditionally requires a significant number of human relevance annotations. In recent times, several deployed systems have explored the usage of Large Language Models (LLMs) as automated judges for this task while their inherent biases prevent direct use for metric estimation. We present a statistical framework extending Prediction-Powered Inference (PPI) that combines minimal human annotations with LLM judgments to produce reliable estimates of metrics which require sub-instance annotations. Our method requires as few as 100 human-annotated queries and 10,000 unlabeled examples, reducing annotation requirements significantly compared to traditional approaches. We formulate our proposed framework (PRECISE) for inference of relevance uplift for an LLM-based query reformulation application, extending PPI to sub-instance annotations at the query-document level. By reformulating the metric-integration space, we reduced the computational complexity from O(2^|C|) to O(2^K), where |C| represents corpus size (in order of millions). Detailed experiments across prominent retrieval datasets demonstrate that our method reduces the variance of estimates for the business-critical Precision@K metric, while effectively correcting for LLM bias in low-resource settings.
comment: Accepted at AAAI 2026 - Innovative Applications of AI (IAAI-26)
☆ Learning to Discover: A Generalized Framework for Raga Identification without Forgetting
Raga identification in Indian Art Music (IAM) remains challenging due to the presence of numerous rarely performed Ragas that are not represented in available training datasets. Traditional classification models struggle in this setting, as they assume a closed set of known categories and therefore fail to recognise or meaningfully group previously unseen Ragas. Recent works have tried categorizing unseen Ragas, but they run into a problem of catastrophic forgetting, where the knowledge of previously seen Ragas is diminished. To address this problem, we adopt a unified learning framework that leverages both labeled and unlabeled audio, enabling the model to discover coherent categories corresponding to the unseen Ragas, while retaining the knowledge of previously known ones. We test our model on benchmark Raga Identification datasets and demonstrate its performance in categorizing previously seen, unseen, and all Raga classes. The proposed approach surpasses the previous NCD-based pipeline even in discovering the unseen Raga categories, offering new insights into representation learning for IAM tasks.
comment: Accepted at NCC 2026 conference
☆ Beyond Preferences: Learning Alignment Principles Grounded in Human Reasons and Values
A crucial consideration when developing and deploying Large Language Models (LLMs) is the human values to which these models are aligned. In the constitutional framework of alignment models are aligned to a set of principles (the constitution) specified in natural language. However, it is unclear how to fairly determine this constitution with widespread stakeholder input. In this work we propose Grounded Constitutional AI (GCAI), a unified framework for generating constitutions of principles that are representative of both users' general expectations toward AI (general principles) and their interaction-time preferences (contextual principles). We extend the Inverse Constitutional AI (ICAI) approach to generate contextual principles from human preference annotation data by leveraging human-provided \textit{reasons} for their preferences. We supplement these contextual principles with general principles surfaced from user statements of \textit{values} regarding AI. We show that a constitution generated by GCAI is preferred by humans over one generated through ICAI both personally, and for widespread use in governing AI behavior. Additionally participants consider the GCAI constitution to be more morally grounded, coherent, and pluralistic.
☆ HalluGuard: Demystifying Data-Driven and Reasoning-Driven Hallucinations in LLMs ICLR'26
The reliability of Large Language Models (LLMs) in high-stakes domains such as healthcare, law, and scientific discovery is often compromised by hallucinations. These failures typically stem from two sources: data-driven hallucinations and reasoning-driven hallucinations. However, existing detection methods usually address only one source and rely on task-specific heuristics, limiting their generalization to complex scenarios. To overcome these limitations, we introduce the Hallucination Risk Bound, a unified theoretical framework that formally decomposes hallucination risk into data-driven and reasoning-driven components, linked respectively to training-time mismatches and inference-time instabilities. This provides a principled foundation for analyzing how hallucinations emerge and evolve. Building on this foundation, we introduce HalluGuard, an NTK-based score that leverages the induced geometry and captured representations of the NTK to jointly identify data-driven and reasoning-driven hallucinations. We evaluate HalluGuard on 10 diverse benchmarks, 11 competitive baselines, and 9 popular LLM backbones, consistently achieving state-of-the-art performance in detecting diverse forms of LLM hallucinations.
comment: Have been accepted by ICLR'26
☆ Trust, Don't Trust, or Flip: Robust Preference-Based Reinforcement Learning with Multi-Expert Feedback
Preference-based reinforcement learning (PBRL) offers a promising alternative to explicit reward engineering by learning from pairwise trajectory comparisons. However, real-world preference data often comes from heterogeneous annotators with varying reliability; some accurate, some noisy, and some systematically adversarial. Existing PBRL methods either treat all feedback equally or attempt to filter out unreliable sources, but both approaches fail when faced with adversarial annotators who systematically provide incorrect preferences. We introduce TriTrust-PBRL (TTP), a unified framework that jointly learns a shared reward model and expert-specific trust parameters from multi-expert preference feedback. The key insight is that trust parameters naturally evolve during gradient-based optimization to be positive (trust), near zero (ignore), or negative (flip), enabling the model to automatically invert adversarial preferences and recover useful signal rather than merely discarding corrupted feedback. We provide theoretical analysis establishing identifiability guarantees and detailed gradient analysis that explains how expert separation emerges naturally during training without explicit supervision. Empirically, we evaluate TTP on four diverse domains spanning manipulation tasks (MetaWorld) and locomotion (DM Control) under various corruption scenarios. TTP achieves state-of-the-art robustness, maintaining near-oracle performance under adversarial corruption while standard PBRL methods fail catastrophically. Notably, TTP outperforms existing baselines by successfully learning from mixed expert pools containing both reliable and adversarial annotators, all while requiring no expert features beyond identification indices and integrating seamlessly with existing PBRL pipelines.
comment: Equal contribution: Seyed Amir Hosseini and Maryam Abdolali. Corresponding author: Maryam Abdolali (maryam.abdolali@kntu.ac.ir)
☆ TSRBench: A Comprehensive Multi-task Multi-modal Time Series Reasoning Benchmark for Generalist Models
Time series data is ubiquitous in real-world scenarios and crucial for critical applications ranging from energy management to traffic control. Consequently, the ability to reason over time series is a fundamental skill for generalist models to solve practical problems. However, this dimension is notably absent from existing benchmarks of generalist models. To bridge this gap, we introduce TSRBench, a comprehensive multi-modal benchmark designed to stress-test the full spectrum of time series reasoning capabilities. TSRBench features: i) a diverse set of 4125 problems from 14 domains, and is categorized into 4 major dimensions: Perception, Reasoning, Prediction, and Decision-Making. ii) 15 tasks from the 4 dimensions evaluating essential reasoning capabilities (e.g., numerical reasoning). Through extensive experiments, we evaluated over 30 leading proprietary and open-source LLMs, VLMs, and TSLLMs within TSRBench. Our findings reveal that: i) scaling laws hold for perception and reasoning but break down for prediction; ii) strong reasoning does not guarantee accurate context-aware forecasting, indicating a decoupling between semantic understanding and numerical prediction; and iii) despite the complementary nature of textual and visual represenations of time series as inputs, current multimodal models fail to effectively fuse them for reciprocal performance gains. TSRBench provides a standardized evaluation platform that not only highlights existing challenges but also offers valuable insights to advance generalist models. Our code and dataset are available at https://tsrbench.github.io/.
☆ Benchmarking Machine Learning Models for IoT Malware Detection under Data Scarcity and Drift
The rapid expansion of the Internet of Things (IoT) in domains such as smart cities, transportation, and industrial systems has heightened the urgency of addressing their security vulnerabilities. IoT devices often operate under limited computational resources, lack robust physical safeguards, and are deployed in heterogeneous and dynamic networks, making them prime targets for cyberattacks and malware applications. Machine learning (ML) offers a promising approach to automated malware detection and classification, but practical deployment requires models that are both effective and lightweight. The goal of this study is to investigate the effectiveness of four supervised learning models (Random Forest, LightGBM, Logistic Regression, and a Multi-Layer Perceptron) for malware detection and classification using the IoT-23 dataset. We evaluate model performance in both binary and multiclass classification tasks, assess sensitivity to training data volume, and analyze temporal robustness to simulate deployment in evolving threat landscapes. Our results show that tree-based models achieve high accuracy and generalization, even with limited training data, while performance deteriorates over time as malware diversity increases. These findings underscore the importance of adaptive, resource-efficient ML models for securing IoT systems in real-world environments.
☆ Why Keep Your Doubts to Yourself? Trading Visual Uncertainties in Multi-Agent Bandit Systems ICLR 2026
Vision-Language Models (VLMs) enable powerful multi-agent systems, but scaling them is economically unsustainable: coordinating heterogeneous agents under information asymmetry often spirals costs. Existing paradigms, such as Mixture-of-Agents and knowledge-based routers, rely on heuristic proxies that ignore costs and collapse uncertainty structure, leading to provably suboptimal coordination. We introduce Agora, a framework that reframes coordination as a decentralized market for uncertainty. Agora formalizes epistemic uncertainty into a structured, tradable asset (perceptual, semantic, inferential), and enforces profitability-driven trading among agents based on rational economic rules. A market-aware broker, extending Thompson Sampling, initiates collaboration and guides the system toward cost-efficient equilibria. Experiments on five multimodal benchmarks (MMMU, MMBench, MathVision, InfoVQA, CC-OCR) show that Agora outperforms strong VLMs and heuristic multi-agent strategies, e.g., achieving +8.5% accuracy over the best baseline on MMMU while reducing cost by over 3x. These results establish market-based coordination as a principled and scalable paradigm for building economically viable multi-agent visual intelligence systems.
comment: Accepted to ICLR 2026
☆ Self-Distilled Reasoner: On-Policy Self-Distillation for Large Language Models
Knowledge distillation improves large language model (LLM) reasoning by compressing the knowledge of a teacher LLM to train smaller LLMs. On-policy distillation advances this approach by having the student sample its own trajectories while a teacher LLM provides dense token-level supervision, addressing the distribution mismatch between training and inference in off-policy distillation methods. However, on-policy distillation typically requires a separate, often larger, teacher LLM and does not explicitly leverage ground-truth solutions available in reasoning datasets. Inspired by the intuition that a sufficiently capable LLM can rationalize external privileged reasoning traces and teach its weaker self (i.e., the version without access to privileged information), we introduce On-Policy Self-Distillation (OPSD), a framework where a single model acts as both teacher and student by conditioning on different contexts. The teacher policy conditions on privileged information (e.g., verified reasoning traces) while the student policy sees only the question; training minimizes the per-token divergence between these distributions over the student's own rollouts. We demonstrate the efficacy of our method on multiple mathematical reasoning benchmarks, achieving 4-8x token efficiency compared to reinforcement learning methods such as GRPO and superior performance over off-policy distillation methods.
comment: 13 pages
☆ Reflect: Transparent Principle-Guided Reasoning for Constitutional Alignment at Scale
The constitutional framework of alignment aims to align large language models (LLMs) with value-laden principles written in natural language (such as to avoid using biased language). Prior work has focused on parameter fine-tuning techniques, such as reinforcement learning from human feedback (RLHF), to instill these principles. However, these approaches are computationally demanding, require careful engineering and tuning, and often require difficult-to-obtain human annotation data. We propose \textsc{reflect}, an inference-time framework for constitutional alignment that does not require any training or data, providing a plug-and-play approach for aligning an instruction-tuned model to a set of principles. \textsc{reflect} operates entirely in-context, combining a (i) constitution-conditioned base response with post-generation (ii) self-evaluation, (iii)(a) self-critique, and (iii)(b) final revision. \textsc{reflect}'s technique of explicit in-context reasoning over principles during post-generation outperforms standard few-shot prompting and provides transparent reasoning traces. Our results demonstrate that \textsc{reflect} significantly improves LLM conformance to diverse and complex principles, including principles quite distinct from those emphasized in the model's original parameter fine-tuning, without sacrificing factual reasoning. \textsc{reflect} is particularly effective at reducing the rate of rare but significant violations of principles, thereby improving safety and robustness in the tail end of the distribution of generations. Finally, we show that \textsc{reflect} naturally generates useful training data for traditional parameter fine-tuning techniques, allowing for efficient scaling and the reduction of inference-time computational overhead in long-term deployment scenarios.
☆ Riemannian AmbientFlow: Towards Simultaneous Manifold Learning and Generative Modeling from Corrupted Data
Modern generative modeling methods have demonstrated strong performance in learning complex data distributions from clean samples. In many scientific and imaging applications, however, clean samples are unavailable, and only noisy or linearly corrupted measurements can be observed. Moreover, latent structures, such as manifold geometries, present in the data are important to extract for further downstream scientific analysis. In this work, we introduce Riemannian AmbientFlow, a framework for simultaneously learning a probabilistic generative model and the underlying, nonlinear data manifold directly from corrupted observations. Building on the variational inference framework of AmbientFlow, our approach incorporates data-driven Riemannian geometry induced by normalizing flows, enabling the extraction of manifold structure through pullback metrics and Riemannian Autoencoders. We establish theoretical guarantees showing that, under appropriate geometric regularization and measurement conditions, the learned model recovers the underlying data distribution up to a controllable error and yields a smooth, bi-Lipschitz manifold parametrization. We further show that the resulting smooth decoder can serve as a principled generative prior for inverse problems with recovery guarantees. We empirically validate our approach on low-dimensional synthetic manifolds and on MNIST.
☆ Gained in Translation: Privileged Pairwise Judges Enhance Multilingual Reasoning SP3
When asked a question in a language less seen in its training data, current reasoning large language models (RLMs) often exhibit dramatically lower performance than when asked the same question in English. In response, we introduce \texttt{SP3F} (Self-Play with Privileged Pairwise Feedback), a two-stage framework for enhancing multilingual reasoning without \textit{any} data in the target language(s). First, we supervise fine-tune (SFT) on translated versions of English question-answer pairs to raise base model correctness. Second, we perform RL with feedback from a pairwise judge in a self-play fashion, with the judge receiving the English reference response as \textit{privileged information}. Thus, even when none of the model's responses are completely correct, the privileged pairwise judge can still tell which response is better. End-to-end, \texttt{SP3F} greatly improves base model performance, even outperforming fully post-trained models on multiple math and non-math tasks with less than of the training data across the single-language, multilingual, and generalization to unseen language settings.
comment: Code available at https://github.com/lintangsutawika/SP3F
☆ Low Cost, High Efficiency: LiDAR Place Recognition in Vineyards with Matryoshka Representation Learning
Localization in agricultural environments is challenging due to their unstructured nature and lack of distinctive landmarks. Although agricultural settings have been studied in the context of object classification and segmentation, the place recognition task for mobile robots is not trivial in the current state of the art. In this study, we propose MinkUNeXt-VINE, a lightweight, deep-learning-based method that surpasses state-of-the-art methods in vineyard environments thanks to its pre-processing and Matryoshka Representation Learning multi-loss approach. Our method prioritizes enhanced performance with low-cost, sparse LiDAR inputs and lower-dimensionality outputs to ensure high efficiency in real-time scenarios. Additionally, we present a comprehensive ablation study of the results on various evaluation cases and two extensive long-term vineyard datasets employing different LiDAR sensors. The results demonstrate the efficiency of the trade-off output produced by this approach, as well as its robust performance on low-cost and low-resolution input data. The code is publicly available for reproduction.
☆ Analyzing Images of Blood Cells with Quantum Machine Learning Methods: Equilibrium Propagation and Variational Quantum Circuits to Detect Acute Myeloid Leukemia
This paper presents a feasibility study demonstrating that quantum machine learning (QML) algorithms achieve competitive performance on real-world medical imaging despite operating under severe constraints. We evaluate Equilibrium Propagation (EP), an energy-based learning method that does not use backpropagation (incompatible with quantum systems due to state-collapsing measurements) and Variational Quantum Circuits (VQCs) for automated detection of Acute Myeloid Leukemia (AML) from blood cell microscopy images using binary classification (2 classes: AML vs. Healthy). Key Result: Using limited subsets (50-250 samples per class) of the AML-Cytomorphology dataset (18,365 expert-annotated images), quantum methods achieve performance only 12-15% below classical CNNs despite reduced image resolution (64x64 pixels), engineered features (20D), and classical simulation via Qiskit. EP reaches 86.4% accuracy (only 12% below CNN) without backpropagation, while the 4-qubit VQC attains 83.0% accuracy with consistent data efficiency: VQC maintains stable 83% performance with only 50 samples per class, whereas CNN requires 250 samples (5x more data) to reach 98%. These results establish reproducible baselines for QML in healthcare, validating NISQ-era feasibility.
comment: 5 pages, 1 figure, 2 tables
☆ SMART: Scalable Mesh-free Aerodynamic Simulations from Raw Geometries using a Transformer-based Surrogate Model
Machine learning-based surrogate models have emerged as more efficient alternatives to numerical solvers for physical simulations over complex geometries, such as car bodies. Many existing models incorporate the simulation mesh as an additional input, thereby reducing prediction errors. However, generating a simulation mesh for new geometries is computationally costly. In contrast, mesh-free methods, which do not rely on the simulation mesh, typically incur higher errors. Motivated by these considerations, we introduce SMART, a neural surrogate model that predicts physical quantities at arbitrary query locations using only a point-cloud representation of the geometry, without requiring access to the simulation mesh. The geometry and simulation parameters are encoded into a shared latent space that captures both structural and parametric characteristics of the physical field. A physics decoder then attends to the encoder's intermediate latent representations to map spatial queries to physical quantities. Through this cross-layer interaction, the model jointly updates latent geometric features and the evolving physical field. Extensive experiments show that SMART is competitive with and often outperforms existing methods that rely on the simulation mesh as input, demonstrating its capabilities for industry-level simulations.
☆ Health-SCORE: Towards Scalable Rubrics for Improving Health-LLMs
Rubrics are essential for evaluating open-ended LLM responses, especially in safety-critical domains such as healthcare. However, creating high-quality and domain-specific rubrics typically requires significant human expertise time and development cost, making rubric-based evaluation and training difficult to scale. In this work, we introduce Health-SCORE, a generalizable and scalable rubric-based training and evaluation framework that substantially reduces rubric development costs without sacrificing performance. We show that Health-SCORE provides two practical benefits beyond standalone evaluation: it can be used as a structured reward signal to guide reinforcement learning with safety-aware supervision, and it can be incorporated directly into prompts to improve response quality through in-context learning. Across open-ended healthcare tasks, Health-SCORE achieves evaluation quality comparable to human-created rubrics while significantly lowering development effort, making rubric-based evaluation and training more scalable.
☆ Data-Driven Qubit Characterization and Optimal Control using Deep Learning
Quantum computing requires the optimization of control pulses to achieve high-fidelity quantum gates. We propose a machine learning-based protocol to address the challenges of evaluating gradients and modeling complex system dynamics. By training a recurrent neural network (RNN) to predict qubit behavior, our approach enables efficient gradient-based pulse optimization without the need for a detailed system model. First, we sample qubit dynamics using random control pulses with weak prior assumptions. We then train the RNN on the system's observed responses, and use the trained model to optimize high-fidelity control pulses. We demonstrate the effectiveness of this approach through simulations on a single $ST_0$ qubit.
☆ From Fuzzy to Exact: The Halo Architecture for Infinite-Depth Reasoning via Rational Arithmetic UAI 2026
Current paradigms in Deep Learning prioritize computational throughput over numerical precision, relying on the assumption that intelligence emerges from statistical correlation at scale. In this paper, we challenge this orthodoxy. We propose the Exactness Hypothesis: that General Intelligence (AGI), specifically high-order causal inference, requires a computational substrate capable of Arbitrary Precision Arithmetic. We argue that the "hallucinations" and logical incoherence seen in current Large Language Models (LLMs) are artifacts of IEEE 754 floating-point approximation errors accumulating over deep compositional functions. To mitigate this, we introduce the Halo Architecture, a paradigm shift to Rational Arithmetic ($\mathbb{Q}$) supported by a novel Exact Inference Unit (EIU). Empirical validation on the Huginn-0125 prototype demonstrates that while 600B-parameter scale BF16 baselines collapse in chaotic systems, Halo maintains zero numerical divergence indefinitely. This work establishes exact arithmetic as a prerequisite for reducing logical uncertainty in System 2 AGI.
comment: 8 pages, 6 figures. Submitted to UAI 2026
☆ Mechanistic Analysis of Catastrophic Forgetting in Large Language Models During Continual Fine-tuning
Large language models exhibit remarkable performance across diverse tasks through pre-training and fine-tuning paradigms. However, continual fine-tuning on sequential tasks induces catastrophic forgetting, where newly acquired knowledge interferes with previously learned capabilities. Despite widespread observations of this phenomenon, the mechanistic understanding remains limited. Here, we present a comprehensive mechanistic analysis of catastrophic forgetting in transformer-based LLMs during sequential fine-tuning. Through systematic experiments across multiple model scales (109B to 400B total parameters) and task sequences, we identify three primary mechanisms driving forgetting: gradient interference in attention weights, representational drift in intermediate layers, and loss landscape flattening. We demonstrate that forgetting severity correlates strongly with task similarity (Pearson r = 0.87) and gradient alignment metrics. Our analysis reveals that approximately 15 to 23 percent of attention heads undergo severe disruption during fine-tuning, with lower layers showing greater susceptibility. These findings establish mechanistic foundations for developing targeted mitigation strategies in continual learning systems.
comment: 16 pages, 16 figures (6 main + 10 supplementary)
☆ Explainability Methods for Hardware Trojan Detection: A Systematic Comparison
Hardware trojan detection requires accurate identification and interpretable explanations for security engineers to validate and act on results. This work compares three explainability categories for gate-level trojan detection on the Trust-Hub benchmark: (1) domain-aware property-based analysis of 31 circuit-specific features from gate fanin patterns, flip-flop distances, and I/O connectivity; (2) case-based reasoning using k-nearest neighbors for precedent-based explanations; and (3) model-agnostic feature attribution (LIME, SHAP, gradient). Results show different advantages per approach. Property-based analysis provides explanations through circuit concepts like "high fanin complexity near outputs indicates potential triggers." Case-based reasoning achieves 97.4% correspondence between predictions and training exemplars, offering justifications grounded in precedent. LIME and SHAP provide feature attributions with strong inter-method correlation (r=0.94, p<0.001) but lack circuit-level context for validation. XGBoost classification achieves 46.15% precision and 52.17% recall on 11,392 test samples, a 9-fold precision improvement over prior work (Hasegawa et al.: 5.13%) while reducing false positive rates from 5.6% to 0.25%. Gradient-based attribution runs 481 times faster than SHAP but provides similar domain-opaque insights. This work demonstrates that property-based and case-based approaches offer domain alignment and precedent-based interpretability compared to generic feature rankings, with implications for XAI deployment where practitioners must validate ML predictions.
☆ LLAMA LIMA: A Living Meta-Analysis on the Effects of Generative AI on Learning Mathematics
The capabilities of generative AI in mathematics education are rapidly evolving, posing significant challenges for research to keep pace. Research syntheses remain scarce and risk being outdated by the time of publication. To address this issue, we present a Living Meta-Analysis (LIMA) on the effects of generative AI-based interventions for learning mathematics. Following PRISMA-LSR guidelines, we continuously update the literature base, apply a Bayesian multilevel meta-regression model to account for cumulative data, and publish updated versions on a preprint server at regular intervals. This paper reports results from the first version, including 15 studies. The analyses indicate a small positive effect (g = 0.31) with a wide credible interval [0.06, 0.58], reflecting the still limited evidence base.
☆ Learned harmonic mean estimation of the marginal likelihood for multimodal posteriors with flow matching
The marginal likelihood, or Bayesian evidence, is a crucial quantity for Bayesian model comparison but its computation can be challenging for complex models, even in parameters space of moderate dimension. The learned harmonic mean estimator has been shown to provide accurate and robust estimates of the marginal likelihood simply using posterior samples. It is agnostic to the sampling strategy, meaning that the samples can be obtained using any method. This enables marginal likelihood calculation and model comparison with whatever sampling is most suitable for the task. However, the internal density estimators considered previously for the learned harmonic mean can struggle with highly multimodal posteriors. In this work we introduce flow matching-based continuous normalizing flows as a powerful architecture for the internal density estimation of the learned harmonic mean. We demonstrate the ability to handle challenging multimodal posteriors, including an example in 20 parameter dimensions, showcasing the method's ability to handle complex posteriors without the need for fine-tuning or heuristic modifications to the base distribution.
comment: Submitted to 44th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering
☆ ART for Diffusion Sampling: A Reinforcement Learning Approach to Timestep Schedule
We consider time discretization for score-based diffusion models to generate samples from a learned reverse-time dynamic on a finite grid. Uniform and hand-crafted grids can be suboptimal given a budget on the number of time steps. We introduce Adaptive Reparameterized Time (ART) that controls the clock speed of a reparameterized time variable, leading to a time change and uneven timesteps along the sampling trajectory while preserving the terminal time. The objective is to minimize the aggregate error arising from the discretized Euler scheme. We derive a randomized control companion, ART-RL, and formulate time change as a continuous-time reinforcement learning (RL) problem with Gaussian policies. We then prove that solving ART-RL recovers the optimal ART schedule, which in turn enables practical actor--critic updates to learn the latter in a data-driven way. Empirically, based on the official EDM pipeline, ART-RL improves Fréchet Inception Distance on CIFAR-10 over a wide range of budgets and transfers to AFHQv2, FFHQ, and ImageNet without the need of retraining.
comment: 17 pages, 7 figures
☆ Counterfactual Explanations on Robust Perceptual Geodesics ICLR 2026
Latent-space optimization methods for counterfactual explanations - framed as minimal semantic perturbations that change model predictions - inherit the ambiguity of Wachter et al.'s objective: the choice of distance metric dictates whether perturbations are meaningful or adversarial. Existing approaches adopt flat or misaligned geometries, leading to off-manifold artifacts, semantic drift, or adversarial collapse. We introduce Perceptual Counterfactual Geodesics (PCG), a method that constructs counterfactuals by tracing geodesics under a perceptually Riemannian metric induced from robust vision features. This geometry aligns with human perception and penalizes brittle directions, enabling smooth, on-manifold, semantically valid transitions. Experiments on three vision datasets show that PCG outperforms baselines and reveals failure modes hidden under standard metrics.
comment: Accepted at ICLR 2026
☆ Out-of-Distribution Radar Detection with Complex VAEs: Theory, Whitening, and ANMF Fusion
We investigate the detection of weak complex-valued signals immersed in non-Gaussian, range-varying interference, with emphasis on maritime radar scenarios. The proposed methodology exploits a Complex-valued Variational AutoEncoder (CVAE) trained exclusively on clutter-plus-noise to perform Out-Of-Distribution detection. By operating directly on in-phase / quadrature samples, the CVAE preserves phase and Doppler structure and is assessed in two configurations: (i) using unprocessed range profiles and (ii) after local whitening, where per-range covariance estimates are obtained from neighboring profiles. Using extensive simulations together with real sea-clutter data from the CSIR maritime dataset, we benchmark performance against classical and adaptive detectors (MF, NMF, AMF-SCM, ANMF-SCM, ANMF-Tyler). In both configurations, the CVAE yields a higher detection probability Pd at matched false-alarm rate Pfa, with the most notable improvements observed under whitening. We further integrate the CVAE with the ANMF through a weighted log-p fusion rule at the decision level, attaining enhanced robustness in strongly non-Gaussian clutter and enabling empirically calibrated Pfa control under H0. Overall, the results demonstrate that statistical normalization combined with complex-valued generative modeling substantively improves detection in realistic sea-clutter conditions, and that the fused CVAE-ANMF scheme constitutes a competitive alternative to established model-based detectors.
comment: 13 pages, 12 figures, submitted to IEEE Transactions on Signal Processing
☆ Quasi Monte Carlo methods enable extremely low-dimensional deep generative models
This paper introduces quasi-Monte Carlo latent variable models (QLVMs): a class of deep generative models that are specialized for finding extremely low-dimensional and interpretable embeddings of high-dimensional datasets. Unlike standard approaches, which rely on a learned encoder and variational lower bounds, QLVMs directly approximate the marginal likelihood by randomized quasi-Monte Carlo integration. While this brute force approach has drawbacks in higher-dimensional spaces, we find that it excels in fitting one, two, and three dimensional deep latent variable models. Empirical results on a range of datasets show that QLVMs consistently outperform conventional variational autoencoders (VAEs) and importance weighted autoencoders (IWAEs) with matched latent dimensionality. The resulting embeddings enable transparent visualization and post hoc analyses such as nonparametric density estimation, clustering, and geodesic path computation, which are nontrivial to validate in higher-dimensional spaces. While our approach is compute-intensive and struggles to generate fine-scale details in complex datasets, it offers a compelling solution for applications prioritizing interpretability and latent space analysis.
☆ Learning temporal embeddings from electronic health records of chronic kidney disease patients
We investigate whether temporal embedding models trained on longitudinal electronic health records can learn clinically meaningful representations without compromising predictive performance, and how architectural choices affect embedding quality. Model-guided medicine requires representations that capture disease dynamics while remaining transparent and task agnostic, whereas most clinical prediction models are optimised for a single task. Representation learning facilitates learning embeddings that generalise across downstream tasks, and recurrent architectures are well-suited for modelling temporal structure in observational clinical data. Using the MIMIC-IV dataset, we study patients with chronic kidney disease (CKD) and compare three recurrent architectures: a vanilla LSTM, an attention-augmented LSTM, and a time-aware LSTM (T-LSTM). All models are trained both as embedding models and as direct end-to-end predictors. Embedding quality is evaluated via CKD stage clustering and in-ICU mortality prediction. The T-LSTM produces more structured embeddings, achieving a lower Davies-Bouldin Index (DBI = 9.91) and higher CKD stage classification accuracy (0.74) than the vanilla LSTM (DBI = 15.85, accuracy = 0.63) and attention-augmented LSTM (DBI = 20.72, accuracy = 0.67). For in-ICU mortality prediction, embedding models consistently outperform end-to-end predictors, improving accuracy from 0.72-0.75 to 0.82-0.83, which indicates that learning embeddings as an intermediate step is more effective than direct end-to-end learning.
comment: 7 pages, 3 figures, 3 tables. The paper has been submitted to IEEE EMBC 2026 and copyright might be transferred without notice
☆ A Dynamic Framework for Grid Adaptation in Kolmogorov-Arnold Networks
Kolmogorov-Arnold Networks (KANs) have recently demonstrated promising potential in scientific machine learning, partly due to their capacity for grid adaptation during training. However, existing adaptation strategies rely solely on input data density, failing to account for the geometric complexity of the target function or metrics calculated during network training. In this work, we propose a generalized framework that treats knot allocation as a density estimation task governed by Importance Density Functions (IDFs), allowing training dynamics to determine grid resolution. We introduce a curvature-based adaptation strategy and evaluate it across synthetic function fitting, regression on a subset of the Feynman dataset and different instances of the Helmholtz PDE, demonstrating that it significantly outperforms the standard input-based baseline. Specifically, our method yields average relative error reductions of 25.3% on synthetic functions, 9.4% on the Feynman dataset, and 23.3% on the PDE benchmark. Statistical significance is confirmed via Wilcoxon signed-rank tests, establishing curvature-based adaptation as a robust and computationally efficient alternative for KAN training.
☆ Uniform Computability of PAC Learning
We study uniform computability properties of PAC learning using Weihrauch complexity. We focus on closed concept classes, which are either represented by positive, by negative or by full information. Among other results, we prove that proper PAC learning from positive information is equivalent to the limit operation on Baire space, whereas improper PAC learning from positive information is closely related to Weak Kőnig's Lemma and even equivalent to it, when we have some negative information about the admissible hypotheses. If arbitrary hypotheses are allowed, then improper PAC learning from positive information is still in a finitary DNC range, which implies that it is non-deterministically computable, but does not allow for probabilistic algorithms. These results can also be seen as a classification of the degree of constructivity of the Fundamental Theorem of Statistical Learning. All the aforementioned results hold if an upper bound of the VC dimension is provided as an additional input information. We also study the question of how these results are affected if the VC dimension is not given, but only promised to be finite or if concept classes are represented by negative or full information. Finally, we also classify the complexity of the VC dimension operation itself, which is a problem that is of independent interest. For positive or full information it turns out to be equivalent to the binary sorting problem, for negative information it is equivalent to the jump of sorting. This classification allows also conclusions regarding the Borel complexity of PAC learnability.
☆ FaLW: A Forgetting-aware Loss Reweighting for Long-tailed Unlearning
Machine unlearning, which aims to efficiently remove the influence of specific data from trained models, is crucial for upholding data privacy regulations like the ``right to be forgotten". However, existing research predominantly evaluates unlearning methods on relatively balanced forget sets. This overlooks a common real-world scenario where data to be forgotten, such as a user's activity records, follows a long-tailed distribution. Our work is the first to investigate this critical research gap. We find that in such long-tailed settings, existing methods suffer from two key issues: \textit{Heterogeneous Unlearning Deviation} and \textit{Skewed Unlearning Deviation}. To address these challenges, we propose FaLW, a plug-and-play, instance-wise dynamic loss reweighting method. FaLW innovatively assesses the unlearning state of each sample by comparing its predictive probability to the distribution of unseen data from the same class. Based on this, it uses a forgetting-aware reweighting scheme, modulated by a balancing factor, to adaptively adjust the unlearning intensity for each sample. Extensive experiments demonstrate that FaLW achieves superior performance. Code is available at \textbf{Supplementary Material}.
comment: camera-ready for iclr2026
☆ TwinPurify: Purifying gene expression data to reveal tumor-intrinsic transcriptional programs via self-supervised learning
Advances in single-cell and spatial transcriptomic technologies have transformed tumor ecosystem profiling at cellular resolution. However, large scale studies on patient cohorts continue to rely on bulk transcriptomic data, where variation in tumor purity obscures tumor-intrinsic transcriptional signals and constrains downstream discovery. Many deconvolution methods report strong performance on synthetic bulk mixtures but fail to generalize to real patient cohorts because of unmodeled biological and technical variation. Here, we introduce TwinPurify, a representation learning framework that adapts the Barlow Twins self-supervised objective, representing a fundamental departure from the deconvolution paradigm. Rather than resolving the bulk mixture into discrete cell-type fractions, TwinPurify instead learns continuous, high-dimensional tumor embeddings by leveraging adjacent-normal profiles within the same cohort as "background" guidance, enabling the disentanglement of tumor-specific signals without relying on any external reference. Benchmarked against multiple large cancer cohorts across RNA-seq and microarray platforms, TwinPurify outperforms conventional representation learning baselines like auto-encoders in recovering tumor-intrinsic and immune signals. The purified embeddings improve molecular subtype and grade classification, enhance survival model concordance, and uncover biologically meaningful pathway activities compared to raw bulk profiles. By providing a transferable framework for decontaminating bulk transcriptomics, TwinPurify extends the utility of existing clinical datasets for molecular discovery.
☆ Physics-Informed Uncertainty Enables Reliable AI-driven Design
Inverse design is a central goal in much of science and engineering, including frequency-selective surfaces (FSS) that are critical to microelectronics for telecommunications and optical metamaterials. Traditional surrogate-assisted optimization methods using deep learning can accelerate the design process but do not usually incorporate uncertainty quantification, leading to poorer optimization performance due to erroneous predictions in data-sparse regions. Here, we introduce and validate a fundamentally different paradigm of Physics-Informed Uncertainty, where the degree to which a model's prediction violates fundamental physical laws serves as a computationally-cheap and effective proxy for predictive uncertainty. By integrating physics-informed uncertainty into a multi-fidelity uncertainty-aware optimization workflow to design complex frequency-selective surfaces within the 20 - 30 GHz range, we increase the success rate of finding performant solutions from less than 10% to over 50%, while simultaneously reducing computational cost by an order of magnitude compared to the sole use of a high-fidelity solver. These results highlight the necessity of incorporating uncertainty quantification in machine-learning-driven inverse design for high-dimensional problems, and establish physics-informed uncertainty as a viable alternative to quantifying uncertainty in surrogate models for physical systems, thereby setting the stage for autonomous scientific discovery systems that can efficiently and robustly explore and evaluate candidate designs.
☆ Universality of Many-body Projected Ensemble for Learning Quantum Data Distribution
Generating quantum data by learning the underlying quantum distribution poses challenges in both theoretical and practical scenarios, yet it is a critical task for understanding quantum systems. A fundamental question in quantum machine learning (QML) is the universality of approximation: whether a parameterized QML model can approximate any quantum distribution. We address this question by proving a universality theorem for the Many-body Projected Ensemble (MPE) framework, a method for quantum state design that uses a single many-body wave function to prepare random states. This demonstrates that MPE can approximate any distribution of pure states within a 1-Wasserstein distance error. This theorem provides a rigorous guarantee of universal expressivity, addressing key theoretical gaps in QML. For practicality, we propose an Incremental MPE variant with layer-wise training to improve the trainability. Numerical experiments on clustered quantum states and quantum chemistry datasets validate MPE's efficacy in learning complex quantum data distributions.
comment: 21 pages, 6 figures
☆ Rank-1 Approximation of Inverse Fisher for Natural Policy Gradients in Deep Reinforcement Learning
Natural gradients have long been studied in deep reinforcement learning due to their fast convergence properties and covariant weight updates. However, computing natural gradients requires inversion of the Fisher Information Matrix (FIM) at each iteration, which is computationally prohibitive in nature. In this paper, we present an efficient and scalable natural policy optimization technique that leverages a rank-1 approximation to full inverse-FIM. We theoretically show that under certain conditions, a rank-1 approximation to inverse-FIM converges faster than policy gradients and, under some conditions, enjoys the same sample complexity as stochastic policy gradient methods. We benchmark our method on a diverse set of environments and show that it achieves superior performance to standard actor-critic and trust-region baselines.
☆ CASSANDRA: Programmatic and Probabilistic Learning and Inference for Stochastic World Modeling
Building world models is essential for planning in real-world domains such as businesses. Since such domains have rich semantics, we can leverage world knowledge to effectively model complex action effects and causal relationships from limited data. In this work, we propose CASSANDRA, a neurosymbolic world modeling approach that leverages an LLM as a knowledge prior to construct lightweight transition models for planning. CASSANDRA integrates two components: (1) LLM-synthesized code to model deterministic features, and (2) LLM-guided structure learning of a probabilistic graphical model to capture causal relationships among stochastic variables. We evaluate CASSANDRA in (i) a small-scale coffee-shop simulator and (ii) a complex theme park business simulator, where we demonstrate significant improvements in transition prediction and planning over baselines.
comment: 28 pages, 2 figures
☆ Geometry-Free Conditional Diffusion Modeling for Solving the Inverse Electrocardiography Problem
This paper proposes a data-driven model for solving the inverse problem of electrocardiography, the mathematical problem that forms the basis of electrocardiographic imaging (ECGI). We present a conditional diffusion framework that learns a probabilistic mapping from noisy body surface signals to heart surface electric potentials. The proposed approach leverages the generative nature of diffusion models to capture the non-unique and underdetermined nature of the ECGI inverse problem, enabling probabilistic sampling of multiple reconstructions rather than a single deterministic estimate. Unlike traditional methods, the proposed framework is geometry-free and purely data-driven, alleviating the need for patient-specific mesh construction. We evaluate the method on a real ECGI dataset and compare it against strong deterministic baselines, including a convolutional neural network, long short-term memory network, and transformer-based model. The results demonstrate that the proposed diffusion approach achieves improved reconstruction accuracy, highlighting the potential of diffusion models as a robust tool for noninvasive cardiac electrophysiology imaging.
☆ PolySHAP: Extending KernelSHAP with Interaction-Informed Polynomial Regression
Shapley values have emerged as a central game-theoretic tool in explainable AI (XAI). However, computing Shapley values exactly requires $2^d$ game evaluations for a model with $d$ features. Lundberg and Lee's KernelSHAP algorithm has emerged as a leading method for avoiding this exponential cost. KernelSHAP approximates Shapley values by approximating the game as a linear function, which is fit using a small number of game evaluations for random feature subsets. In this work, we extend KernelSHAP by approximating the game via higher degree polynomials, which capture non-linear interactions between features. Our resulting PolySHAP method yields empirically better Shapley value estimates for various benchmark datasets, and we prove that these estimates are consistent. Moreover, we connect our approach to paired sampling (antithetic sampling), a ubiquitous modification to KernelSHAP that improves empirical accuracy. We prove that paired sampling outputs exactly the same Shapley value approximations as second-order PolySHAP, without ever fitting a degree 2 polynomial. To the best of our knowledge, this finding provides the first strong theoretical justification for the excellent practical performance of the paired sampling heuristic.
☆ LaCoGSEA: Unsupervised deep learning for pathway analysis via latent correlation
Motivation: Pathway enrichment analysis is widely used to interpret gene expression data. Standard approaches, such as GSEA, rely on predefined phenotypic labels and pairwise comparisons, which limits their applicability in unsupervised settings. Existing unsupervised extensions, including single-sample methods, provide pathway-level summaries but primarily capture linear relationships and do not explicitly model gene-pathway associations. More recently, deep learning models have been explored to capture non-linear transcriptomic structure. However, their interpretation has typically relied on generic explainable AI (XAI) techniques designed for feature-level attribution. As these methods are not designed for pathway-level interpretation in unsupervised transcriptomic analyses, their effectiveness in this setting remains limited. Results: To bridge this gap, we introduce LaCoGSEA (Latent Correlation GSEA), an unsupervised framework that integrates deep representation learning with robust pathway statistics. LaCoGSEA employs an autoencoder to capture non-linear manifolds and proposes a global gene-latent correlation metric as a proxy for differential expression, generating dense gene rankings without prior labels. We demonstrate that LaCoGSEA offers three key advantages: (i) it achieves improved clustering performance in distinguishing cancer subtypes compared to existing unsupervised baselines; (ii) it recovers a broader range of biologically meaningful pathways at higher ranks compared with linear dimensionality reduction and gradient-based XAI methods; and (iii) it maintains high robustness and consistency across varying experimental protocols and dataset sizes. Overall, LaCoGSEA provides state-of-the-art performance in unsupervised pathway enrichment analysis. Availability and implementation: https://github.com/willyzzz/LaCoGSEA
☆ A Balanced Neuro-Symbolic Approach for Commonsense Abductive Logic
Although Large Language Models (LLMs) have demonstrated impressive formal reasoning abilities, they often break down when problems require complex proof planning. One promising approach for improving LLM reasoning abilities involves translating problems into formal logic and using a logic solver. Although off-the-shelf logic solvers are in principle substantially more efficient than LLMs at logical reasoning, they assume that all relevant facts are provided in a question and are unable to deal with missing commonsense relations. In this work, we propose a novel method that uses feedback from the logic solver to augment a logic problem with commonsense relations provided by the LLM, in an iterative manner. This involves a search procedure through potential commonsense assumptions to maximize the chance of finding useful facts while keeping cost tractable. On a collection of pure-logical reasoning datasets, from which some commonsense information has been removed, our method consistently achieves considerable improvements over existing techniques, demonstrating the value in balancing neural and symbolic elements when working in human contexts.
☆ Stability as a Liability:Systematic Breakdown of Linguistic Structure in LLMs
Training stability is typically regarded as a prerequisite for reliable optimization in large language models. In this work, we analyze how stabilizing training dynamics affects the induced generation distribution. We show that under standard maximum likelihood training, stable parameter trajectories lead stationary solutions to approximately minimize the forward KL divergence to the empirical distribution, while implicitly reducing generative entropy. As a consequence, the learned model can concentrate probability mass on a limited subset of empirical modes, exhibiting systematic degeneration despite smooth loss convergence. We empirically validate this effect using a controlled feedback-based training framework that stabilizes internal generation statistics, observing consistent low-entropy outputs and repetitive behavior across architectures and random seeds. It indicates that optimization stability and generative expressivity are not inherently aligned, and that stability alone is an insufficient indicator of generative quality.
☆ Learning long term climate-resilient transport adaptation pathways under direct and indirect flood impacts using reinforcement learning
Climate change is expected to intensify rainfall and other hazards, increasing disruptions in urban transportation systems. Designing effective adaptation strategies is challenging due to the long-term, sequential nature of infrastructure investments, deep uncertainty, and complex cross-sector interactions. We propose a generic decision-support framework that couples an integrated assessment model (IAM) with reinforcement learning (RL) to learn adaptive, multi-decade investment pathways under uncertainty. The framework combines long-term climate projections (e.g., IPCC scenario pathways) with models that map projected extreme-weather drivers (e.g. rain) into hazard likelihoods (e.g. flooding), propagate hazards into urban infrastructure impacts (e.g. transport disruption), and value direct and indirect consequences for service performance and societal costs. Embedded in a reinforcement-learning loop, it learns adaptive climate adaptation policies that trade off investment and maintenance expenditures against avoided impacts. In collaboration with Copenhagen Municipality, we demonstrate the approach on pluvial flooding in the inner city for the horizon of 2024 to 2100. The learned strategies yield coordinated spatial-temporal pathways and improved robustness relative to conventional optimization baselines, namely inaction and random action, illustrating the framework's transferability to other hazards and cities.
☆ K-Myriad: Jump-starting reinforcement learning with unsupervised parallel agents
Parallelization in Reinforcement Learning is typically employed to speed up the training of a single policy, where multiple workers collect experience from an identical sampling distribution. This common design limits the potential of parallelization by neglecting the advantages of diverse exploration strategies. We propose K-Myriad, a scalable and unsupervised method that maximizes the collective state entropy induced by a population of parallel policies. By cultivating a portfolio of specialized exploration strategies, K-Myriad provides a robust initialization for Reinforcement Learning, leading to both higher training efficiency and the discovery of heterogeneous solutions. Experiments on high-dimensional continuous control tasks, with large-scale parallelization, demonstrate that K-Myriad can learn a broad set of distinct policies, highlighting its effectiveness for collective exploration and paving the way towards novel parallelization strategies.
☆ Self-Refining Video Sampling
Modern video generators still struggle with complex physical dynamics, often falling short of physical realism. Existing approaches address this using external verifiers or additional training on augmented data, which is computationally expensive and still limited in capturing fine-grained motion. In this work, we present self-refining video sampling, a simple method that uses a pre-trained video generator trained on large-scale datasets as its own self-refiner. By interpreting the generator as a denoising autoencoder, we enable iterative inner-loop refinement at inference time without any external verifier or additional training. We further introduce an uncertainty-aware refinement strategy that selectively refines regions based on self-consistency, which prevents artifacts caused by over-refinement. Experiments on state-of-the-art video generators demonstrate significant improvements in motion coherence and physics alignment, achieving over 70\% human preference compared to the default sampler and guidance-based sampler.
comment: Project page: https://agwmon.github.io/self-refine-video/
☆ Attention-Based Neural-Augmented Kalman Filter for Legged Robot State Estimation
In this letter, we propose an Attention-Based Neural-Augmented Kalman Filter (AttenNKF) for state estimation in legged robots. Foot slip is a major source of estimation error: when slip occurs, kinematic measurements violate the no-slip assumption and inject bias during the update step. Our objective is to estimate this slip-induced error and compensate for it. To this end, we augment an Invariant Extended Kalman Filter (InEKF) with a neural compensator that uses an attention mechanism to infer error conditioned on foot-slip severity and then applies this estimate as a post-update compensation to the InEKF state (i.e., after the filter update). The compensator is trained in a latent space, which aims to reduce sensitivity to raw input scales and encourages structured slip-conditioned compensations, while preserving the InEKF recursion. Experiments demonstrate improved performance compared to existing legged-robot state estimators, particularly under slip-prone conditions.
comment: 8 pages, 6 figures, Accepted to IEEE Robotics and Automation Letters (RA-L)
☆ An Unsupervised Tensor-Based Domain Alignment
We propose a tensor-based domain alignment (DA) algorithm designed to align source and target tensors within an invariant subspace through the use of alignment matrices. These matrices along with the subspace undergo iterative optimization of which constraint is on oblique manifold, which offers greater flexibility and adaptability compared to the traditional Stiefel manifold. Moreover, regularization terms defined to preserve the variance of both source and target tensors, ensures robust performance. Our framework is versatile, effectively generalizing existing tensor-based DA methods as special cases. Through extensive experiments, we demonstrate that our approach not only enhances DA conversion speed but also significantly boosts classification accuracy. This positions our method as superior to current state-of-the-art techniques, making it a preferable choice for complex domain adaptation tasks.
comment: 5 pages, 5 figures
☆ Generative Diffusion Augmentation with Quantum-Enhanced Discrimination for Medical Image Diagnosis
In biomedical engineering, artificial intelligence has become a pivotal tool for enhancing medical diagnostics, particularly in medical image classification tasks such as detecting pneumonia from chest X-rays and breast cancer screening. However, real-world medical datasets frequently exhibit severe class imbalance, where positive samples substantially outnumber negative samples, leading to biased models with low recall rates for minority classes. This imbalance not only compromises diagnostic accuracy but also poses clinical misdiagnosis risks. To address this challenge, we propose SDA-QEC (Simplified Diffusion Augmentation with Quantum-Enhanced Classification), an innovative framework that integrates simplified diffusion-based data augmentation with quantum-enhanced feature discrimination. Our approach employs a lightweight diffusion augmentor to generate high-quality synthetic samples for minority classes, rebalancing the training distribution. Subsequently, a quantum feature layer embedded within MobileNetV2 architecture enhances the model's discriminative capability through high-dimensional feature mapping in Hilbert space. Comprehensive experiments on coronary angiography image classification demonstrate that SDA-QEC achieves 98.33% accuracy, 98.78% AUC, and 98.33% F1-score, significantly outperforming classical baselines including ResNet18, MobileNetV2, DenseNet121, and VGG16. Notably, our framework simultaneously attains 98.33% sensitivity and 98.33% specificity, achieving a balanced performance critical for clinical deployment. The proposed method validates the feasibility of integrating generative augmentation with quantum-enhanced modeling in real-world medical imaging tasks, offering a novel research pathway for developing highly reliable medical AI systems in small-sample, highly imbalanced, and high-risk diagnostic scenarios.
☆ Unknown Unknowns: Why Hidden Intentions in LLMs Evade Detection
LLMs are increasingly embedded in everyday decision-making, yet their outputs can encode subtle, unintended behaviours that shape user beliefs and actions. We refer to these covert, goal-directed behaviours as hidden intentions, which may arise from training and optimisation artefacts, or be deliberately induced by an adversarial developer, yet remain difficult to detect in practice. We introduce a taxonomy of ten categories of hidden intentions, grounded in social science research and organised by intent, mechanism, context, and impact, shifting attention from surface-level behaviours to design-level strategies of influence. We show how hidden intentions can be easily induced in controlled models, providing both testbeds for evaluation and demonstrations of potential misuse. We systematically assess detection methods, including reasoning and non-reasoning LLM judges, and find that detection collapses in realistic open-world settings, particularly under low-prevalence conditions, where false positives overwhelm precision and false negatives conceal true risks. Stress tests on precision-prevalence and precision-FNR trade-offs reveal why auditing fails without vanishingly small false positive rates or strong priors on manipulation types. Finally, a qualitative case study shows that all ten categories manifest in deployed, state-of-the-art LLMs, emphasising the urgent need for robust frameworks. Our work provides the first systematic analysis of detectability failures of hidden intentions in LLMs under open-world settings, offering a foundation for understanding, inducing, and stress-testing such behaviours, and establishing a flexible taxonomy for anticipating evolving threats and informing governance.
☆ Information Hidden in Gradients of Regression with Target Noise
Second-order information -- such as curvature or data covariance -- is critical for optimisation, diagnostics, and robustness. However, in many modern settings, only the gradients are observable. We show that the gradients alone can reveal the Hessian, equalling the data covariance $Σ$ for the linear regression. Our key insight is a simple variance calibration: injecting Gaussian noise so that the total target noise variance equals the batch size ensures that the empirical gradient covariance closely approximates the Hessian, even when evaluated far from the optimum. We provide non-asymptotic operator-norm guarantees under sub-Gaussian inputs. We also show that without such calibration, recovery can fail by an $Ω(1)$ factor. The proposed method is practical (a "set target-noise variance to $n$" rule) and robust (variance $\mathcal{O}(n)$ suffices to recover $Σ$ up to scale). Applications include preconditioning for faster optimisation, adversarial risk estimation, and gradient-only training, for example, in distributed systems. We support our theoretical results with experiments on synthetic and real data.
☆ From Cold Start to Active Learning: Embedding-Based Scan Selection for Medical Image Segmentation
Accurate segmentation annotations are critical for disease monitoring, yet manual labeling remains a major bottleneck due to the time and expertise required. Active learning (AL) alleviates this burden by prioritizing informative samples for annotation, typically through a diversity-based cold-start phase followed by uncertainty-driven selection. We propose a novel cold-start sampling strategy that combines foundation-model embeddings with clustering, including automatic selection of the number of clusters and proportional sampling across clusters, to construct a diverse and representative initial training. This is followed by an uncertainty-based AL framework that integrates spatial diversity to guide sample selection. The proposed method is intuitive and interpretable, enabling visualization of the feature-space distribution of candidate samples. We evaluate our approach on three datasets spanning X-ray and MRI modalities. On the CheXmask dataset, the cold-start strategy outperforms random selection, improving Dice from 0.918 to 0.929 and reducing the Hausdorff distance from 32.41 to 27.66 mm. In the AL setting, combined entropy and diversity selection improves Dice from 0.919 to 0.939 and reduces the Hausdorff distance from 30.10 to 19.16 mm. On the Montgomery dataset, cold-start gains are substantial, with Dice improving from 0.928 to 0.950 and Hausdorff distance decreasing from 14.22 to 9.38 mm. On the SynthStrip dataset, cold-start selection slightly affects Dice but reduces the Hausdorff distance from 9.43 to 8.69 mm, while active learning improves Dice from 0.816 to 0.826 and reduces the Hausdorff distance from 7.76 to 6.38 mm. Overall, the proposed framework consistently outperforms baseline methods in low-data regimes, improving segmentation accuracy.
comment: 19 pages without references
☆ Closing the Modality Gap Aligns Group-Wise Semantics ICLR 2026
In multimodal learning, CLIP has been recognized as the \textit{de facto} method for learning a shared latent space across multiple modalities, placing similar representations close to each other and moving them away from dissimilar ones. Although CLIP-based losses effectively align modalities at the semantic level, the resulting latent spaces often remain only partially shared, revealing a structural mismatch known as the modality gap. While the necessity of addressing this phenomenon remains debated, particularly given its limited impact on instance-wise tasks (e.g., retrieval), we prove that its influence is instead strongly pronounced in group-level tasks (e.g., clustering). To support this claim, we introduce a novel method designed to consistently reduce this discrepancy in two-modal settings, with a straightforward extension to the general $n$-modal case. Through our extensive evaluation, we demonstrate our novel insight: while reducing the gap provides only marginal or inconsistent improvements in traditional instance-wise tasks, it significantly enhances group-wise tasks. These findings may reshape our understanding of the modality gap, highlighting its key role in improving performance on tasks requiring semantic grouping.
comment: ICLR 2026
☆ From Human Labels to Literature: Semi-Supervised Learning of NMR Chemical Shifts at Scale
Accurate prediction of nuclear magnetic resonance (NMR) chemical shifts is fundamental to spectral analysis and molecular structure elucidation, yet existing machine learning methods rely on limited, labor-intensive atom-assigned datasets. We propose a semi-supervised framework that learns NMR chemical shifts from millions of literature-extracted spectra without explicit atom-level assignments, integrating a small amount of labeled data with large-scale unassigned spectra. We formulate chemical shift prediction from literature spectra as a permutation-invariant set supervision problem, and show that under commonly satisfied conditions on the loss function, optimal bipartite matching reduces to a sorting-based loss, enabling stable large-scale semi-supervised training beyond traditional curated datasets. Our models achieve substantially improved accuracy and robustness over state-of-the-art methods and exhibit stronger generalization on significantly larger and more diverse molecular datasets. Moreover, by incorporating solvent information at scale, our approach captures systematic solvent effects across common NMR solvents for the first time. Overall, our results demonstrate that large-scale unlabeled spectra mined from the literature can serve as a practical and effective data source for training NMR shift models, suggesting a broader role of literature-derived, weakly structured data in data-centric AI for science.
☆ Scalable Transit Delay Prediction at City Scale: A Systematic Approach with Multi-Resolution Feature Engineering and Deep Learning
Urban bus transit agencies need reliable, network-wide delay predictions to provide accurate arrival information to passengers and support real-time operational control. Accurate predictions help passengers plan their trips, reduce waiting time, and allow operations staff to adjust headways, dispatch extra vehicles, and manage disruptions. Although real-time feeds such as GTFS-Realtime (GTFS-RT) are now widely available, most existing delay prediction systems handle only a few routes, depend on hand-crafted features, and offer little guidance on how to design a scalable, reusable architecture. We present a city-scale prediction pipeline that combines multi-resolution feature engineering, dimensionality reduction, and deep learning. The framework generates 1,683 spatiotemporal features by exploring 23 aggregation combinations over H3 cells, routes, segments, and temporal patterns, and compresses them into 83 components using Adaptive PCA while preserving 95% of the variance. To avoid the "giant cluster" problem that occurs when dense urban areas fall into a single H3 region, we introduce a hybrid H3+topology clustering method that yields 12 balanced route clusters (coefficient of variation 0.608) and enables efficient distributed training. We compare five model architectures on six months of bus operations from the Société de transport de Montréal (STM) network in Montréal. A global LSTM with cluster-aware features achieves the best trade-off between accuracy and efficiency, outperforming transformer models by 18 to 52% while using 275 times fewer parameters. We also report multi-level evaluation at the elementary segment, segment, and trip level with walk-forward validation and latency analysis, showing that the proposed pipeline is suitable for real-time, city-scale deployment and can be reused for other networks with limited adaptation.
comment: This manuscript is a preprint of an earlier version. A revised system-oriented version is currently under review
☆ LipNeXt: Scaling up Lipschitz-based Certified Robustness to Billion-parameter Models ICLR 2026
Lipschitz-based certification offers efficient, deterministic robustness guarantees but has struggled to scale in model size, training efficiency, and ImageNet performance. We introduce \emph{LipNeXt}, the first \emph{constraint-free} and \emph{convolution-free} 1-Lipschitz architecture for certified robustness. LipNeXt is built using two techniques: (1) a manifold optimization procedure that updates parameters directly on the orthogonal manifold and (2) a \emph{Spatial Shift Module} to model spatial pattern without convolutions. The full network uses orthogonal projections, spatial shifts, a simple 1-Lipschitz $β$-Abs nonlinearity, and $L_2$ spatial pooling to maintain tight Lipschitz control while enabling expressive feature mixing. Across CIFAR-10/100 and Tiny-ImageNet, LipNeXt achieves state-of-the-art clean and certified robust accuracy (CRA), and on ImageNet it scales to 1-2B large models, improving CRA over prior Lipschitz models (e.g., up to $+8\%$ at $\varepsilon{=}1$) while retaining efficient, stable low-precision training. These results demonstrate that Lipschitz-based certification can benefit from modern scaling trends without sacrificing determinism or efficiency.
comment: ICLR 2026. 17 pages
☆ Just-In-Time Reinforcement Learning: Continual Learning in LLM Agents Without Gradient Updates
While Large Language Model (LLM) agents excel at general tasks, they inherently struggle with continual adaptation due to the frozen weights after deployment. Conventional reinforcement learning (RL) offers a solution but incurs prohibitive computational costs and the risk of catastrophic forgetting. We introduce Just-In-Time Reinforcement Learning (JitRL), a training-free framework that enables test-time policy optimization without any gradient updates. JitRL maintains a dynamic, non-parametric memory of experiences and retrieves relevant trajectories to estimate action advantages on-the-fly. These estimates are then used to directly modulate the LLM's output logits. We theoretically prove that this additive update rule is the exact closed-form solution to the KL-constrained policy optimization objective. Extensive experiments on WebArena and Jericho demonstrate that JitRL establishes a new state-of-the-art among training-free methods. Crucially, JitRL outperforms the performance of computationally expensive fine-tuning methods (e.g., WebRL) while reducing monetary costs by over 30 times, offering a scalable path for continual learning agents. The code is available at https://github.com/liushiliushi/JitRL.
☆ Conformal Prediction Algorithms for Time Series Forecasting: Methods and Benchmark
Reliable uncertainty quantification is of critical importance in time series forecasting, yet traditional methods often rely on restrictive distributional assumptions. Conformal prediction (CP) has emerged as a promising distribution-free framework for generating prediction intervals with rigorous theoretical guarantees. However, applying CP to sequential data presents a primary challenge: the temporal dependencies inherent in time series fundamentally violate the core assumption of data exchangeability, upon which standard CP guarantees are built. This review critically examines the main categories of algorithmic solutions designed to address this conflict. We survey and benchmark methods that relax the exchangeability assumption, those that redefine the data unit to be a collection of independent time series, approaches that explicitly model the dynamics of the prediction residuals, and online learning algorithms that adapt to distribution shifts to maintain long-run coverage. By synthesizing these approaches, we highlight computational efficiency and practical performance on real-world data.
☆ Nearly Optimal Bayesian Inference for Structural Missingness
Structural missingness breaks 'just impute and train': values can be undefined by causal or logical constraints, and the mask may depend on observed variables, unobserved variables (MNAR), and other missingness indicators. It simultaneously brings (i) a catch-22 situation with causal loop, prediction needs the missing features, yet inferring them depends on the missingness mechanism, (ii) under MNAR, the unseen are different, the missing part can come from a shifted distribution, and (iii) plug-in imputation, a single fill-in can lock in uncertainty and yield overconfident, biased decisions. In the Bayesian view, prediction via the posterior predictive distribution integrates over the full model posterior uncertainty, rather than relying on a single point estimate. This framework decouples (i) learning an in-model missing-value posterior from (ii) label prediction by optimizing the predictive posterior distribution, enabling posterior integration. This decoupling yields an in-model almost-free-lunch: once the posterior is learned, prediction is plug-and-play while preserving uncertainty propagation. It achieves SOTA on 43 classification and 15 imputation benchmarks, with finite-sample near Bayes-optimality guarantees under our SCM prior.
☆ AgentDoG: A Diagnostic Guardrail Framework for AI Agent Safety and Security
The rise of AI agents introduces complex safety and security challenges arising from autonomous tool use and environmental interactions. Current guardrail models lack agentic risk awareness and transparency in risk diagnosis. To introduce an agentic guardrail that covers complex and numerous risky behaviors, we first propose a unified three-dimensional taxonomy that orthogonally categorizes agentic risks by their source (where), failure mode (how), and consequence (what). Guided by this structured and hierarchical taxonomy, we introduce a new fine-grained agentic safety benchmark (ATBench) and a Diagnostic Guardrail framework for agent safety and security (AgentDoG). AgentDoG provides fine-grained and contextual monitoring across agent trajectories. More Crucially, AgentDoG can diagnose the root causes of unsafe actions and seemingly safe but unreasonable actions, offering provenance and transparency beyond binary labels to facilitate effective agent alignment. AgentDoG variants are available in three sizes (4B, 7B, and 8B parameters) across Qwen and Llama model families. Extensive experimental results demonstrate that AgentDoG achieves state-of-the-art performance in agentic safety moderation in diverse and complex interactive scenarios. All models and datasets are openly released.
comment: 40 pages, 26 figures
☆ Enhancing Control Policy Smoothness by Aligning Actions with Predictions from Preceding States AAAI-26
Deep reinforcement learning has proven to be a powerful approach to solving control tasks, but its characteristic high-frequency oscillations make it difficult to apply in real-world environments. While prior methods have addressed action oscillations via architectural or loss-based methods, the latter typically depend on heuristic or synthetic definitions of state similarity to promote action consistency, which often fail to accurately reflect the underlying system dynamics. In this paper, we propose a novel loss-based method by introducing a transition-induced similar state. The transition-induced similar state is defined as the distribution of next states transitioned from the previous state. Since it utilizes only environmental feedback and actually collected data, it better captures system dynamics. Building upon this foundation, we introduce Action Smoothing by Aligning Actions with Predictions from Preceding States (ASAP), an action smoothing method that effectively mitigates action oscillations. ASAP enforces action smoothness by aligning the actions with those taken in transition-induced similar states and by penalizing second-order differences to suppress high-frequency oscillations. Experiments in Gymnasium and Isaac-Lab environments demonstrate that ASAP yields smoother control and improved policy performance over existing methods.
comment: Accepted at AAAI-26. 7 pages (excluding references), 3 figures
☆ OffSeeker: Online Reinforcement Learning Is Not All You Need for Deep Research Agents
Deep research agents have shown remarkable potential in handling long-horizon tasks. However, state-of-the-art performance typically relies on online reinforcement learning (RL), which is financially expensive due to extensive API calls. While offline training offers a more efficient alternative, its progress is hindered by the scarcity of high-quality research trajectories. In this paper, we demonstrate that expensive online reinforcement learning is not all you need to build powerful research agents. To bridge this gap, we introduce a fully open-source suite designed for effective offline training. Our core contributions include DeepForge, a ready-to-use task synthesis framework that generates large-scale research queries without heavy preprocessing; and a curated collection of 66k QA pairs, 33k SFT trajectories, and 21k DPO pairs. Leveraging these resources, we train OffSeeker (8B), a model developed entirely offline. Extensive evaluations across six benchmarks show that OffSeeker not only leads among similar-sized agents but also remains competitive with 30B-parameter systems trained via heavy online RL.
☆ 3DGesPolicy: Phoneme-Aware Holistic Co-Speech Gesture Generation Based on Action Control
Generating holistic co-speech gestures that integrate full-body motion with facial expressions suffers from semantically incoherent coordination on body motion and spatially unstable meaningless movements due to existing part-decomposed or frame-level regression methods, We introduce 3DGesPolicy, a novel action-based framework that reformulates holistic gesture generation as a continuous trajectory control problem through diffusion policy from robotics. By modeling frame-to-frame variations as unified holistic actions, our method effectively learns inter-frame holistic gesture motion patterns and ensures both spatially and semantically coherent movement trajectories that adhere to realistic motion manifolds. To further bridge the gap in expressive alignment, we propose a Gesture-Audio-Phoneme (GAP) fusion module that can deeply integrate and refine multi-modal signals, ensuring structured and fine-grained alignment between speech semantics, body motion, and facial expressions. Extensive quantitative and qualitative experiments on the BEAT2 dataset demonstrate the effectiveness of our 3DGesPolicy across other state-of-the-art methods in generating natural, expressive, and highly speech-aligned holistic gestures.
comment: 13 pages, 5 figures
☆ On Procrustes Contamination in Machine Learning Applications of Geometric Morphometrics
Geometric morphometrics (GMM) is widely used to quantify shape variation, more recently serving as input for machine learning (ML) analyses. Standard practice aligns all specimens via Generalized Procrustes Analysis (GPA) prior to splitting data into training and test sets, potentially introducing statistical dependence and contaminating downstream predictive models. Here, the effects of GPA-induced contamination are formally characterised using controlled 2D and 3D simulations across varying sample sizes, landmark densities, and allometric patterns. A novel realignment procedure is proposed, whereby test specimens are aligned to the training set prior to model fitting, eliminating cross-sample dependency. Simulations reveal a robust "diagonal" in sample-size vs. landmark-space, reflecting the scaling of RMSE under isotropic variation, with slopes analytically derived from the degrees of freedom in Procrustes tangent space. The importance of spatial autocorrelation among landmarks is further demonstrated using linear and convolutional regression models, highlighting performance degradation when landmark relationships are ignored. This work establishes the need for careful preprocessing in ML applications of GMM, provides practical guidelines for realignment, and clarifies fundamental statistical constraints inherent to Procrustes shape space.
comment: 17 pages, 5 figures, Preprint pending review
☆ GCFX: Generative Counterfactual Explanations for Deep Graph Models at the Model Level
Deep graph learning models have demonstrated remarkable capabilities in processing graph-structured data and have been widely applied across various fields. However, their complex internal architectures and lack of transparency make it difficult to explain their decisions, resulting in opaque models that users find hard to understand and trust. In this paper, we explore model-level explanation techniques for deep graph learning models, aiming to provide users with a comprehensive understanding of the models' overall decision-making processes and underlying mechanisms. Specifically, we address the problem of counterfactual explanations for deep graph learning models by introducing a generative model-level counterfactual explanation approach called GCFX, which is based on deep graph generation. This approach generates a set of high-quality counterfactual explanations that reflect the model's global predictive behavior by leveraging an enhanced deep graph generation framework and a global summarization algorithm. GCFX features an architecture that combines dual encoders, structure-aware taggers, and Message Passing Neural Network decoders, enabling it to accurately learn the true latent distribution of input data and generate high-quality, closely related counterfactual examples. Subsequently, a global counterfactual summarization algorithm selects the most representative and comprehensive explanations from numerous candidate counterfactuals, providing broad insights into the model's global predictive patterns. Experiments on a synthetic dataset and several real-world datasets demonstrate that GCFX outperforms existing methods in terms of counterfactual validity and coverage while maintaining low explanation costs, thereby offering crucial support for enhancing the practicality and trustworthiness of global counterfactual explanations.
☆ Fusion of Spatio-Temporal and Multi-Scale Frequency Features for Dry Electrodes MI-EEG Decoding
Dry-electrode Motor Imagery Electroencephalography (MI-EEG) enables fast, comfortable, real-world Brain Computer Interface by eliminating gels and shortening setup for at-home and wearable use.However, dry recordings pose three main issues: lower Signal-to-Noise Ratio with more baseline drift and sudden transients; weaker and noisier data with poor phase alignment across trials; and bigger variances between sessions. These drawbacks lead to larger data distribution shift, making features less stable for MI-EEG tasks.To address these problems, we introduce STGMFM, a tri-branch framework tailored for dry-electrode MI-EEG, which models complementary spatio-temporal dependencies via dual graph orders, and captures robust envelope dynamics with a multi-scale frequency mixing branch, motivated by the observation that amplitude envelopes are less sensitive to contact variability than instantaneous waveforms. Physiologically meaningful connectivity priors guide learning, and decision-level fusion consolidates a noise-tolerant consensus. On our collected dry-electrode MI-EEG, STGMFM consistently surpasses competitive CNN/Transformer/graph baselines. Codes are available at https://github.com/Tianyi-325/STGMFM.
☆ Gradient Regularized Natural Gradients
Gradient regularization (GR) has been shown to improve the generalizability of trained models. While Natural Gradient Descent has been shown to accelerate optimization in the initial phase of training, little attention has been paid to how the training dynamics of second-order optimizers can benefit from GR. In this work, we propose Gradient-Regularized Natural Gradients (GRNG), a family of scalable second-order optimizers that integrate explicit gradient regularization with natural gradient updates. Our framework provides two complementary algorithms: a frequentist variant that avoids explicit inversion of the Fisher Information Matrix (FIM) via structured approximations, and a Bayesian variant based on a Regularized-Kalman formulation that eliminates the need for FIM inversion entirely. We establish convergence guarantees for GRNG, showing that gradient regularization improves stability and enables convergence to global minima. Empirically, we demonstrate that GRNG consistently enhances both optimization speed and generalization compared to first-order methods (SGD, AdamW) and second-order baselines (K-FAC, Sophia), with strong results on vision and language benchmarks. Our findings highlight gradient regularization as a principled and practical tool to unlock the robustness of natural gradient methods for large-scale deep learning.
☆ Emergent Cooperation in Quantum Multi-Agent Reinforcement Learning Using Communication
Emergent cooperation in classical Multi-Agent Reinforcement Learning has gained significant attention, particularly in the context of Sequential Social Dilemmas (SSDs). While classical reinforcement learning approaches have demonstrated capability for emergent cooperation, research on extending these methods to Quantum Multi-Agent Reinforcement Learning remains limited, particularly through communication. In this paper, we apply communication approaches to quantum Q-Learning agents: the Mutual Acknowledgment Token Exchange (MATE) protocol, its extension Mutually Endorsed Distributed Incentive Acknowledgment Token Exchange (MEDIATE), the peer rewarding mechanism Gifting, and Reinforced Inter-Agent Learning (RIAL). We evaluate these approaches in three SSDs: the Iterated Prisoner's Dilemma, Iterated Stag Hunt, and Iterated Game of Chicken. Our experimental results show that approaches using MATE with temporal-difference measure (MATE\textsubscript{TD}), AutoMATE, MEDIATE-I, and MEDIATE-S achieved high cooperation levels across all dilemmas, demonstrating that communication is a viable mechanism for fostering emergent cooperation in Quantum Multi-Agent Reinforcement Learning.
comment: Accepted at IEEE ICC 2026
☆ Frequency-Based Hyperparameter Selection in Games
Learning in smooth games fundamentally differs from standard minimization due to rotational dynamics, which invalidate classical hyperparameter tuning strategies. Despite their practical importance, effective methods for tuning in games remain underexplored. A notable example is LookAhead (LA), which achieves strong empirical performance but introduces additional parameters that critically influence performance. We propose a principled approach to hyperparameter selection in games by leveraging frequency estimation of oscillatory dynamics. Specifically, we analyze oscillations both in continuous-time trajectories and through the spectrum of the discrete dynamics in the associated frequency-based space. Building on this analysis, we introduce \emph{Modal LookAhead (MoLA)}, an extension of LA that selects the hyperparameters adaptively to a given problem. We provide convergence guarantees and demonstrate in experiments that MoLA accelerates training in both purely rotational games and mixed regimes, all with minimal computational overhead.
☆ Superlinear Multi-Step Attention
In this paper, we propose \textbf{Superlinear attention}, a fully trainable multi-step attention architecture that achieves subquadratic complexity for long sequences while preserving \textbf{random context access} (a.k.a.\ structural non-exclusion): no eligible token position is structurally excluded from being selected for attention. Superlinear attention reformulates standard causal self-attention as a multi-step search problem with $N$ steps, yielding an overall complexity of $O(L^{1+\frac{1}{N}})$. To illustrate the architecture, we present a baseline $N=2$ implementation, which is algorithmically analogous to standard jump search. In this $O(L^{3/2})$ instantiation, the first step performs $O(L^{3/2})$ span-search to select relevant spans of the sequence, and the second step applies $O(L^{3/2})$ span-attention (standard attention restricted to the selected spans). In an upscaled $O(L^{1.54})$ configuration for robustness, we achieve an average decoding throughput of 114 tokens/sec at 1M context length and 80 tokens/sec at 10M context in our implementation on a modified 30B hybrid MoE model on a single B200 GPU. With limited training, we also obtain strong performance on the NIAH (Needle In A Haystack) task up to 256K context length, demonstrating that the routed span selection is learnable end-to-end. This paper emphasizes architectural formulation, scaling analysis, and systems feasibility, and presents initial validation; comprehensive quality evaluations across diverse long-context tasks are left to future work.
comment: 30 pages, 6 figures
☆ Estimating Dense-Packed Zone Height in Liquid-Liquid Separation: A Physics-Informed Neural Network Approach
Separating liquid-liquid dispersions in gravity settlers is critical in chemical, pharmaceutical, and recycling processes. The dense-packed zone height is an important performance and safety indicator but it is often expensive and impractical to measure due to optical limitations. We propose to estimate phase heights using only inexpensive volume flow measurements. To this end, a physics-informed neural network (PINN) is first pretrained on synthetic data and physics equations derived from a low-fidelity (approximate) mechanistic model to reduce the need for extensive experimental data. While the mechanistic model is used to generate synthetic training data, only volume balance equations are used in the PINN, since the integration of submodels describing droplet coalescence and sedimentation into the PINN would be computationally prohibitive. The pretrained PINN is then fine-tuned with scarce experimental data to capture the actual dynamics of the separator. We then employ the differentiable PINN as a predictive model in an Extended Kalman Filter inspired state estimation framework, enabling the phase heights to be tracked and updated from flow-rate measurements. We first test the two-stage trained PINN by forward simulation from a known initial state against the mechanistic model and a non-pretrained PINN. We then evaluate phase height estimation performance with the filter, comparing the two-stage trained PINN with a two-stage trained purely data-driven neural network. All model types are trained and evaluated using ensembles to account for model parameter uncertainty. In all evaluations, the two-stage trained PINN yields the most accurate phase-height estimates.
comment: 37 pages, 13 figures, 3 tables
☆ Dynamic Thinking-Token Selection for Efficient Reasoning in Large Reasoning Models
Large Reasoning Models (LRMs) excel at solving complex problems by explicitly generating a reasoning trace before deriving the final answer. However, these extended generations incur substantial memory footprint and computational overhead, bottlenecking LRMs' efficiency. This work uses attention maps to analyze the influence of reasoning traces and uncover an interesting phenomenon: only some decision-critical tokens in a reasoning trace steer the model toward the final answer, while the remaining tokens contribute negligibly. Building on this observation, we propose Dynamic Thinking-Token Selection (DynTS). This method identifies decision-critical tokens and retains only their associated Key-Value (KV) cache states during inference, evicting the remaining redundant entries to optimize efficiency.
☆ Making medical vision-language models think causally across modalities with retrieval-augmented cross-modal reasoning
Medical vision-language models (VLMs) achieve strong performance in diagnostic reporting and image-text alignment, yet their underlying reasoning mechanisms remain fundamentally correlational, exhibiting reliance on superficial statistical associations that fail to capture the causal pathophysiological mechanisms central to clinical decision-making. This limitation makes them fragile, prone to hallucinations, and sensitive to dataset biases. Retrieval-augmented generation (RAG) offers a partial remedy by grounding predictions in external knowledge. However, conventional RAG depends on semantic similarity, introducing new spurious correlations. We propose Multimodal Causal Retrieval-Augmented Generation, a framework that integrates causal inference principles with multimodal retrieval. It retrieves clinically relevant exemplars and causal graphs from external sources, conditioning model reasoning on counterfactual and interventional evidence rather than correlations alone. Applied to radiology report generation, diagnosis prediction, and visual question answering, it improves factual accuracy, robustness to distribution shifts, and interpretability. Our results highlight causal retrieval as a scalable path toward medical VLMs that think beyond pattern matching, enabling trustworthy multimodal reasoning in high-stakes clinical settings.
☆ Structural Gender Bias in Credit Scoring: Proxy Leakage
As financial institutions increasingly adopt machine learning for credit risk assessment, the persistence of algorithmic bias remains a critical barrier to equitable financial inclusion. This study provides a comprehensive audit of structural gender bias within the Taiwan Credit Default dataset, specifically challenging the prevailing doctrine of "fairness through blindness." Despite the removal of explicit protected attributes and the application of industry standard fairness interventions, our results demonstrate that gendered predictive signals remain deeply embedded within non-sensitive features. Utilizing SHAP (SHapley Additive exPlanations), we identify that variables such as Marital Status, Age, and Credit Limit function as potent proxies for gender, allowing models to maintain discriminatory pathways while appearing statistically fair. To mathematically quantify this leakage, we employ an adversarial inverse modeling framework. Our findings reveal that the protected gender attribute can be reconstructed from purely non-sensitive financial features with an ROC AUC score of 0.65, demonstrating that traditional fairness audits are insufficient for detecting implicit structural bias. These results advocate for a shift from surface-level statistical parity toward causal-aware modeling and structural accountability in financial AI.
☆ A Dataset for Automatic Vocal Mode Classification
The Complete Vocal Technique (CVT) is a school of singing developed in the past decades by Cathrin Sadolin et al.. CVT groups the use of the voice into so called vocal modes, namely Neutral, Curbing, Overdrive and Edge. Knowledge of the desired vocal mode can be helpful for singing students. Automatic classification of vocal modes can thus be important for technology-assisted singing teaching. Previously, automatic classification of vocal modes has been attempted without major success, potentially due to a lack of data. Therefore, we recorded a novel vocal mode dataset consisting of sustained vowels recorded from four singers, three of which professional singers with more than five years of CVT-experience. The dataset covers the entire vocal range of the subjects, totaling 3,752 unique samples. By using four microphones, thereby offering a natural data augmentation, the dataset consists of more than 13,000 samples combined. An annotation was created using three CVT-experienced annotators, each providing an individual annotation. The merged annotation as well as the three individual annotations come with the published dataset. Additionally, we provide some baseline classification results. The best balanced accuracy across a 5-fold cross validation of 81.3\,\% was achieved with a ResNet18. The dataset can be downloaded under https://zenodo.org/records/14276415.
comment: Part of the proceedings of the EvoMUSART 2026: 15th International Conference on Artificial Intelligence in Music, Sound, Art and Design
☆ A Tumor Aware DenseNet Swin Hybrid Learning with Boosted and Hierarchical Feature Spaces for Large-Scale Brain MRI Classification
This study proposes an efficient Densely Swin Hybrid (EDSH) framework for brain tumor MRI analysis, designed to jointly capture fine grained texture patterns and long range contextual dependencies. Two tumor aware experimental setups are introduced to address class-specific diagnostic challenges. The first setup employs a Boosted Feature Space (BFS), where independently customized DenseNet and Swint branches learn complementary local and global representations that are dimension aligned, fused, and boosted, enabling highly sensitive detection of diffuse glioma patterns by successfully learning the features of irregular shape, poorly defined mass, and heterogeneous texture. The second setup adopts a hierarchical DenseNet Swint architecture with Deep Feature Extraction have Dual Residual connections (DFE and DR), in which DenseNet serves as a stem CNN for structured local feature learning, while Swin_t models global tumor morphology, effectively suppressing false negatives in meningioma and pituitary tumor classification by learning the features of well defined mass, location (outside brain) and enlargments in tumors (dural tail or upward extension). DenseNet is customized at the input level to match MRI spatial characteristics, leveraging dense residual connectivity to preserve texture information and mitigate vanishing-gradient effects. In parallel, Swint is tailored through task aligned patch embedding and shifted-window self attention to efficiently capture hierarchical global dependencies. Extensive evaluation on a large-scale MRI dataset (stringent 40,260 images across four tumor classes) demonstrates consistent superiority over standalone CNNs, Vision Transformers, and hybrids, achieving 98.50 accuracy and recall on the test unseen dataset.
comment: 33 Pages, 8 Tables, Figures 16
☆ Discriminability-Driven Spatial-Channel Selection with Gradient Norm for Drone Signal OOD Detection
We propose a drone signal out-of-distribution (OOD) detection algorithm based on discriminability-driven spatial-channel selection with a gradient norm. Time-frequency image features are adaptively weighted along both spatial and channel dimensions by quantifying inter-class similarity and variance based on protocol-specific time-frequency characteristics. Subsequently, a gradient-norm metric is introduced to measure perturbation sensitivity for capturing the inherent instability of OOD samples, which is then fused with energy-based scores for joint inference. Simulation results demonstrate that the proposed algorithm provides superior discriminative power and robust performance via SNR and various drone types.
☆ Cognitive Fusion of ZC Sequences and Time-Frequency Images for Out-of-Distribution Detection of Drone Signals
We propose a drone signal out-of-distribution detection (OODD) algorithm based on the cognitive fusion of Zadoff-Chu (ZC) sequences and time-frequency images (TFI). ZC sequences are identified by analyzing the communication protocols of DJI drones, while TFI capture the time-frequency characteristics of drone signals with unknown or non-standard communication protocols. Both modalities are used jointly to enable OODD in the drone remote identification (RID) task. Specifically, ZC sequence features and TFI features are generated from the received radio frequency signals, which are then processed through dedicated feature extraction module to enhance and align them. The resultant multi-modal features undergo multi-modal feature interaction, single-modal feature fusion, and multi-modal feature fusion to produce features that integrate and complement information across modalities. Discrimination scores are computed from the fused features along both spatial and channel dimensions to capture time-frequency characteristic differences dictated by the communication protocols, and these scores will be transformed into adaptive attention weights. The weighted features are then passed through a Softmax function to produce the signal classification results. Simulation results demonstrate that the proposed algorithm outperforms existing algorithms and achieves 1.7% and 7.5% improvements in RID and OODD metrics, respectively. The proposed algorithm also performs strong robustness under varying flight conditions and across different drone types.
☆ A Master Class on Reproducibility: A Student Hackathon on Advanced MRI Reconstruction Methods
We report the design, protocol, and outcomes of a student reproducibility hackathon focused on replicating the results of three influential MRI reconstruction papers: (a) MoDL, an unrolled model-based network with learned denoising; (b) HUMUS-Net, a hybrid unrolled multiscale CNN+Transformer architecture; and (c) an untrained, physics-regularized dynamic MRI method that uses a quantitative MR model for early stopping. We describe the setup of the hackathon and present reproduction outcomes alongside additional experiments, and we detail fundamental practices for building reproducible codebases.
☆ Convex Chance-Constrained Stochastic Control under Uncertain Specifications with Application to Learning-Based Hybrid Powertrain Control
This paper presents a strictly convex chance-constrained stochastic control framework that accounts for uncertainty in control specifications such as reference trajectories and operational constraints. By jointly optimizing control inputs and risk allocation under general (possibly non-Gaussian) uncertainties, the proposed method guarantees probabilistic constraint satisfaction while ensuring strict convexity, leading to uniqueness and continuity of the optimal solution. The formulation is further extended to nonlinear model-based control using exactly linearizable models identified through machine learning. The effectiveness of the proposed approach is demonstrated through model predictive control applied to a hybrid powertrain system.
comment: Submitted to IEEE Transactions on Control Systems Technology (TCST)
☆ Temp-R1: A Unified Autonomous Agent for Complex Temporal KGQA via Reverse Curriculum Reinforcement Learning
Temporal Knowledge Graph Question Answering (TKGQA) is inherently challenging, as it requires sophisticated reasoning over dynamic facts with multi-hop dependencies and complex temporal constraints. Existing methods rely on fixed workflows and expensive closed-source APIs, limiting flexibility and scalability. We propose Temp-R1, the first autonomous end-to-end agent for TKGQA trained through reinforcement learning. To address cognitive overload in single-action reasoning, we expand the action space with specialized internal actions alongside external action. To prevent shortcut learning on simple questions, we introduce reverse curriculum learning that trains on difficult questions first, forcing the development of sophisticated reasoning before transferring to easier cases. Our 8B-parameter Temp-R1 achieves state-of-the-art performance on MultiTQ and TimelineKGQA, improving 19.8% over strong baselines on complex questions. Our work establishes a new paradigm for autonomous temporal reasoning agents. Our code will be publicly available soon at https://github.com/zjukg/Temp-R1.
comment: Work in progress
☆ TriPlay-RL: Tri-Role Self-Play Reinforcement Learning for LLM Safety Alignment
In recent years, safety risks associated with large language models have become increasingly prominent, highlighting the urgent need to mitigate the generation of toxic and harmful content. The mainstream paradigm for LLM safety alignment typically adopts a collaborative framework involving three roles: an attacker for adversarial prompt generation, a defender for safety defense, and an evaluator for response assessment. In this paper, we propose a closed-loop reinforcement learning framework called TriPlay-RL that enables iterative and co-improving collaboration among three roles with near-zero manual annotation. Experimental results show that the attacker preserves high output diversity while achieving a 20%-50% improvement in adversarial effectiveness; the defender attains 10%-30% gains in safety performance without degrading general reasoning capability; and the evaluator continuously refines its fine-grained judgment ability through iterations, accurately distinguishing unsafe responses, simple refusals, and useful guidance. Overall, our framework establishes an efficient and scalable paradigm for LLM safety alignment, enabling continuous co-evolution within a unified learning loop.
☆ Think-Augmented Function Calling: Improving LLM Parameter Accuracy Through Embedded Reasoning
Large language models (LLMs) have demonstrated remarkable capabilities in function calling for autonomous agents, yet current mechanisms lack explicit reasoning transparency during parameter generation, particularly for complex functions with interdependent parameters. While existing approaches like chain-of-thought prompting operate at the agent level, they fail to provide fine-grained reasoning guidance for individual function parameters. To address these limitations, we propose Think-Augmented Function Calling (TAFC), a novel framework that enhances function calling accuracy through explicit reasoning at both function and parameter levels. Our method introduces a universal "think" parameter augmentation that enables models to articulate their decision-making process, with dynamic optimization for parameter descriptions to improve reasoning quality. For complex parameters, TAFC automatically triggers granular reasoning based on complexity scoring, ensuring appropriate justification for critical decisions. Additionally, we propose reasoning-guided optimization to align generated reasoning with human expectations. TAFC requires no architectural modifications to existing LLMs while maintaining full API compatibility. Evaluation on ToolBench across proprietary and open-source models demonstrates significant improvements in parameter generation accuracy and reasoning coherence for multi-parameter functions, while providing enhanced interpretability for debugging AI agent behaviors.
☆ What Do Learned Models Measure?
In many scientific and data-driven applications, machine learning models are increasingly used as measurement instruments, rather than merely as predictors of predefined labels. When the measurement function is learned from data, the mapping from observations to quantities is determined implicitly by the training distribution and inductive biases, allowing multiple inequivalent mappings to satisfy standard predictive evaluation criteria. We formalize learned measurement functions as a distinct focus of evaluation and introduce measurement stability, a property capturing invariance of the measured quantity across admissible realizations of the learning process and across contexts. We show that standard evaluation criteria in machine learning, including generalization error, calibration, and robustness, do not guarantee measurement stability. Through a real-world case study, we show that models with comparable predictive performance can implement systematically inequivalent measurement functions, with distribution shift providing a concrete illustration of this failure. Taken together, our results highlight a limitation of existing evaluation frameworks in settings where learned model outputs are identified as measurements, motivating the need for an additional evaluative dimension.
☆ Toward Scalable Normalizing Flows for the Hubbard Model
Normalizing flows have recently demonstrated the ability to learn the Boltzmann distribution of the Hubbard model, opening new avenues for generative modeling in condensed matter physics. In this work, we investigate the steps required to extend such simulations to larger lattice sizes and lower temperatures, with a focus on enhancing stability and efficiency. Additionally, we present the scaling behavior of stochastic normalizing flows and non-equilibrium Markov chain Monte Carlo methods for this fermionic system.
comment: 10 pages, 5 figues, The 42nd International Symposium on Lattice Field Theory
♻ ☆ Beyond Expected Goals: A Probabilistic Framework for Shot Occurrences in Soccer
Expected goals (xG) models estimate the probability that a shot results in a goal from its context (e.g., location, pressure), but they operate only on observed shots. We propose xG+, a possession-level framework that first estimates the probability that a shot occurs within the next second and its corresponding xG if it were to occur. We also introduce ways to aggregate this joint probability estimate over the course of a possession. By jointly modeling shot-taking behavior and shot quality, xG+ remedies the conditioning-on-shots limitation of standard xG. We show that this improves predictive accuracy at the team level and produces a more persistent player skill signal than standard xG models.
comment: 18pp main + 3pp appendix; 8 figures, 12 tables. Submitted to the Journal of Quantitative Analysis in Sports (JQAS). Data proprietary to Gradient Sports; we share derived features & scripts (code under MIT/Apache-2.0). Preprint licensed CC BY 4.0
♻ ☆ Mathematical Foundations of Polyphonic Music Generation via Structural Inductive Bias
This monograph introduces a novel approach to polyphonic music generation by addressing the "Missing Middle" problem through structural inductive bias. Focusing on Beethoven's piano sonatas as a case study, we empirically verify the independence of pitch and hand attributes using normalized mutual information (NMI=0.167) and propose the Smart Embedding architecture, achieving a 48.30% reduction in parameters. We provide rigorous mathematical proofs using information theory (negligible loss bounded at 0.153 bits), Rademacher complexity (28.09% tighter generalization bound), and category theory to demonstrate improved stability and generalization. Empirical results show a 9.47% reduction in validation loss, confirmed by SVD analysis and an expert listening study (N=53). This dual theoretical and applied framework bridges gaps in AI music generation, offering verifiable insights for mathematically grounded deep learning.
comment: Monograph. Code available at https://github.com/Chooseredone/Smart-Embedding-Music-Generation
♻ ☆ DeltaDorsal: Enhancing Hand Pose Estimation with Dorsal Features in Egocentric Views
The proliferation of XR devices has made egocentric hand pose estimation a vital task, yet this perspective is inherently challenged by frequent finger occlusions. To address this, we propose a novel approach that leverages the rich information in dorsal hand skin deformation, unlocked by recent advances in dense visual featurizers. We introduce a dual-stream delta encoder that learns pose by contrasting features from a dynamic hand with a baseline relaxed position. Our evaluation demonstrates that, using only cropped dorsal images, our method reduces the Mean Per Joint Angle Error (MPJAE) by 18% in self-occluded scenarios (fingers >= 50% occluded) compared to state-of-the-art techniques that depend on the whole hand's geometry and large model backbones. Consequently, our method not only enhances the reliability of downstream tasks like index finger pinch and tap estimation in occluded scenarios but also unlocks new interaction paradigms, such as detecting isometric force for a surface "click" without visible movement while minimizing model size.
comment: 16 pages, 11 figures, Presented at ACM CHI 2026. For associated codebase, see https://github.com/hilab-open-source/deltadorsal
♻ ☆ Consistent Kernel Change-Point Detection under m-Dependence for Text Segmentation
Kernel change-point detection (KCPD) has become a widely used tool for identifying structural changes in complex data. While existing theory establishes consistency under independence assumptions, real-world sequential data such as text exhibits strong dependencies. We establish new guarantees for KCPD under $m$-dependent data: specifically, we prove consistency in the number of detected change points and weak consistency in their locations under mild additional assumptions. We perform an LLM-based simulation that generates synthetic $m$-dependent text to validate the asymptotics. To complement these results, we present the first comprehensive empirical study of KCPD for text segmentation with modern embeddings. Across diverse text datasets, KCPD with text embeddings outperforms baselines in standard text segmentation metrics. We demonstrate through a case study on Taylor Swift's tweets that KCPD not only provides strong theoretical and simulated reliability but also practical effectiveness for text segmentation tasks.
comment: This paper is withdrawn due to an error in the proof of Proposition 3, which is used to support Theorem 1
♻ ☆ Brain-Inspired Perspective on Configurations: Unsupervised Similarity and Early Cognition
Infants discover categories, detect novelty, and adapt to new contexts without supervision-a challenge for current machine learning. We present a brain-inspired perspective on configurations, a finite-resolution clustering framework that uses a single resolution parameter and attraction-repulsion dynamics to yield hierarchical organization, novelty sensitivity, and flexible adaptation. To evaluate these properties, we introduce mheatmap, which provides proportional heatmaps and reassignment algorithm to fairly assess multi-resolution and dynamic behavior. Across datasets, configurations are competitive on standard clustering metrics, achieve 87% AUC in novelty detection, and show 35% better stability during dynamic category evolution. These results position configurations as a principled computational model of early cognitive categorization and a step toward brain-inspired AI.
comment: 13 pages, 4 figures, conference paper. Equal contribution: Juntang Wang, Yihan Wang and Hao Wu
♻ ☆ DGFusion: Depth-Guided Sensor Fusion for Robust Semantic Perception
Robust semantic perception for autonomous vehicles relies on effectively combining multiple sensors with complementary strengths and weaknesses. State-of-the-art sensor fusion approaches to semantic perception often treat sensor data uniformly across the spatial extent of the input, which hinders performance when faced with challenging conditions. By contrast, we propose a novel depth-guided multimodal fusion method that upgrades condition-aware fusion by integrating depth information. Our network, DGFusion, poses multimodal segmentation as a multi-task problem, utilizing the lidar measurements, which are typically available in outdoor sensor suites, both as one of the model's inputs and as ground truth for learning depth. Our corresponding auxiliary depth head helps to learn depth-aware features, which are encoded into spatially varying local depth tokens that condition our attentive cross-modal fusion. Together with a global condition token, these local depth tokens dynamically adapt sensor fusion to the spatially varying reliability of each sensor across the scene, which largely depends on depth. In addition, we propose a robust loss for our depth, which is essential for learning from lidar inputs that are typically sparse and noisy in adverse conditions. Our method achieves state-of-the-art panoptic and semantic segmentation performance on the challenging MUSES and DeLiVER datasets. Code and models are available at https://github.com/timbroed/DGFusion
comment: Code and models are available at https://github.com/timbroed/DGFusion
♻ ☆ RocqStar: Leveraging Similarity-driven Retrieval and Agentic Systems for Rocq generation
Interactive Theorem Proving was repeatedly shown to be fruitful when combined with Generative Artificial Intelligence. This paper assesses multiple approaches to Rocq generation and illuminates potential avenues for improvement. We identify retrieval-based premise selection as a central component of effective Rocq proof generation and propose a novel approach based on a self-attentive embedder model. The evaluation of the designed approach shows up to 28% relative increase of the generator's performance. We tackle the problem of writing Rocq proofs using a multi-stage agentic system, tailored for formal verification, and demonstrate its high effectiveness. We conduct an ablation study and demonstrate that incorporating multi-agent debate during the planning stage increases the proof success rate by 20% overall and nearly doubles it for complex theorems, while the reflection mechanism further enhances stability and consistency.
♻ ☆ VoxGuard: Evaluating User and Attribute Privacy in Speech via Membership Inference Attacks
Voice anonymization aims to conceal speaker identity and attributes while preserving intelligibility, but current evaluations rely almost exclusively on Equal Error Rate (EER) that obscures whether adversaries can mount high-precision attacks. We argue that privacy should instead be evaluated in the low false-positive rate (FPR) regime, where even a small number of successful identifications constitutes a meaningful breach. To this end, we introduce VoxGuard, a framework grounded in differential privacy and membership inference that formalizes two complementary notions: User Privacy, preventing speaker re-identification, and Attribute Privacy, protecting sensitive traits such as gender and accent. Across synthetic and real datasets, we find that informed adversaries, especially those using fine-tuned models and max-similarity scoring, achieve orders-of-magnitude stronger attacks at low-FPR despite similar EER. For attributes, we show that simple transparent attacks recover gender and accent with near-perfect accuracy even after anonymization. Our results demonstrate that EER substantially underestimates leakage, highlighting the need for low-FPR evaluation, and recommend VoxGuard as a benchmark for evaluating privacy leakage.
♻ ☆ CaTs and DAGs: Integrating Directed Acyclic Graphs with Transformers for Causally Constrained Predictions
Artificial Neural Networks (ANNs), including fully-connected networks and transformers, are highly flexible and powerful function approximators, widely applied in fields like computer vision and natural language processing. However, their inability to inherently respect causal structures can limit their robustness, making them vulnerable to covariate shift and difficult to interpret/explain. This poses significant challenges for their reliability in real-world applications. In this paper, we introduce Causal Transformers (CaTs), a general model class designed to operate under predefined causal constraints, as specified by a Directed Acyclic Graph (DAG). CaTs retain the powerful function approximation abilities of traditional neural networks while adhering to the underlying structural constraints, improving robustness, reliability, and interpretability at inference time. This approach opens new avenues for deploying neural networks in more demanding, real-world scenarios where robustness and explainability is critical.
♻ ☆ BAH Dataset for Ambivalence/Hesitancy Recognition in Videos for Digital Behavioural Change ICLR 2026
Ambivalence and hesitancy (A/H), a closely related construct, is the primary reasons why individuals delay, avoid, or abandon health behaviour changes. It is a subtle and conflicting emotion that sets a person in a state between positive and negative orientations, or between acceptance and refusal to do something. It manifests by a discord in affect between multiple modalities or within a modality, such as facial and vocal expressions, and body language. Although experts can be trained to recognize A/H as done for in-person interactions, integrating them into digital health interventions is costly and less effective. Automatic A/H recognition is therefore critical for the personalization and cost-effectiveness of digital behaviour change interventions. However, no datasets currently exists for the design of machine learning models to recognize A/H. This paper introduces the Behavioural Ambivalence/Hesitancy (BAH) dataset collected for multimodal recognition of A/H in videos. It contains 1,427 videos with a total duration of 10.60 hours captured from 300 participants across Canada answering predefined questions to elicit A/H. It is intended to mirror real-world online personalized behaviour change interventions. BAH is annotated by three experts to provide timestamps that indicate where A/H occurs, and frame- and video-level annotations with A/H cues. Video transcripts, cropped and aligned faces, and participants' meta-data are also provided. Since A and H manifest similarly in practice, we provide a binary annotation indicating the presence or absence of A/H. Additionally, this paper includes benchmarking results using baseline models on BAH for frame- and video-level recognition, zero-shot prediction, and personalization using source-free domain adaptation. The data, code, and pretrained weights are available.
comment: 45 pages, 21 figures, ICLR 2026
♻ ☆ TensLoRA: Tensor Alternatives for Low-Rank Adaptation ICASSP 2026
Low-Rank Adaptation (LoRA) is widely used to efficiently adapt Transformers by adding trainable low-rank matrices to attention projections. While effective, these matrices are considered independent for each attention projection (Query, Key, and Value) and each layer. Recent extensions have considered joint, tensor-based adaptations, but only in limited forms and without a systematic framework. We introduce TensLoRA, a unified framework that aggregates LoRA updates into higher-order tensors and models a broad family of tensor-based low-rank adaptations. Our formulation generalizes existing tensor-based methods and enables mode-specific compression rates, allowing parameter budgets to be tailored according to the modality and task. Experiments on vision and language benchmarks reveal that the tensor construction directly impacts performance, sometimes better than standard LoRA under similar parameter counts.
comment: Published at ICASSP 2026. 5 pages, 1 figure, 2 tables. Code can be found at https://github.com/ax-le/TensLoRA
♻ ☆ Ordering-based Causal Discovery via Generalized Score Matching
Learning DAG structures from purely observational data remains a long-standing challenge across scientific domains. An emerging line of research leverages the score of the data distribution to initially identify a topological order of the underlying DAG via leaf node detection and subsequently performs edge pruning for graph recovery. This paper extends the score matching framework for causal discovery, which is originally designated for continuous data, and introduces a novel leaf discriminant criterion based on the discrete score function. Through simulated and real-world experiments, we demonstrate that our theory enables accurate inference of true causal orders from observed discrete data and the identified ordering can significantly boost the accuracy of existing causal discovery baselines on nearly all of the settings.
♻ ☆ Estimating the Joint Probability of Scenario Parameters with Gaussian Mixture Copula Models
This paper presents the first application of Gaussian Mixture Copula Models to the statistical modeling of driving scenarios for the safety validation of automated driving systems. Knowledge of the joint probability distribution of scenario parameters is essential for scenario-based safety assessment, where risk quantification depends on the likelihood of concrete parameter combinations. Gaussian Mixture Copula Models bring together the multimodal expressivity of Gaussian Mixture Models and the flexibility of copulas, enabling separate modeling of marginal distributions and dependence. We benchmark Gaussian Mixture Copula Models against previously proposed approaches - Gaussian Mixture Models and Gaussian Copula Models - using real-world driving data drawn from two scenarios defined in United Nations Regulation No. 157. Our evaluation on approximately 18 million instances of these two scenarios demonstrates that Gaussian Mixture Copula Models consistently surpass Gaussian Copula Models and perform competitively with Gaussian Mixture Models, as measured by both log-likelihood and Sinkhorn distance, with relative performance depending on the scenario. The results are promising for the adoption of Gaussian Mixture Copula Models as a statistical foundation for future scenario-based validation frameworks.
comment: 9 pages, 4 figures; This work has been submitted to the IEEE for possible publication; Code available at: https://codeocean.com/capsule/1003615/tree
♻ ☆ MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning ICLR 2026
Medical Large Vision-Language Models (Med-LVLMs) have shown strong potential in multimodal diagnostic tasks. However, existing single-agent models struggle to generalize across diverse medical specialties, limiting their performance. Recent efforts introduce multi-agent collaboration frameworks inspired by clinical workflows, where general practitioners (GPs) and specialists interact in a fixed sequence. Despite improvements, these static pipelines lack flexibility and adaptability in reasoning. To address this, we propose MMedAgent-RL, a reinforcement learning (RL)-based multi-agent framework that enables dynamic, optimized collaboration among medical agents. Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists and its own knowledge to make final decisions. To address the inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided RL strategy with dynamic entropy regulation, progressively teaching the attending physician to balance between imitating specialists and correcting their mistakes. Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL outperforms both open-source and proprietary Med-LVLMs. Notably, it achieves an average performance gain of 23.6% over strong baselines.
comment: ICLR 2026
♻ ☆ Bilateral Distribution Compression: Reducing Both Data Size and Dimensionality
Existing distribution compression methods reduce dataset size by minimising the Maximum Mean Discrepancy (MMD) between original and compressed sets, but modern datasets are often large in both sample size and dimensionality. We propose Bilateral Distribution Compression (BDC), a two-stage framework that compresses along both axes while preserving the underlying distribution, with overall linear time and memory complexity in dataset size and dimension. Central to BDC is the Decoded MMD (DMMD), which quantifies the discrepancy between the original data and a compressed set decoded from a low-dimensional latent space. BDC proceeds by (i) learning a low-dimensional projection using the Reconstruction MMD (RMMD), and (ii) optimising a latent compressed set with the Encoded MMD (EMMD). We show that this procedure minimises the DMMD, guaranteeing that the compressed set faithfully represents the original distribution. Experiments show that across a variety of scenarios BDC can achieve comparable or superior performance to ambient-space compression at substantially lower cost.
comment: 45 pages, 26 figures
♻ ☆ Exploration vs Exploitation: Rethinking RLVR through Clipping, Entropy, and Spurious Reward ICLR 2026
This paper examines the exploration-exploitation trade-off in reinforcement learning with verifiable rewards (RLVR), a framework for improving the reasoning of Large Language Models (LLMs). Recent studies suggest that RLVR can elicit strong mathematical reasoning in LLMs through two seemingly paradoxical mechanisms: spurious rewards, which suppress exploitation by rewarding outcomes unrelated to the ground truth, and entropy minimization, which suppresses exploration by pushing the model toward more confident and deterministic outputs, highlighting a puzzling dynamic: both discouraging exploitation and discouraging exploration improve reasoning performance, yet the underlying principles that reconcile these effects remain poorly understood. We focus on two fundamental questions: (i) how policy entropy relates to performance, and (ii) whether spurious rewards yield gains, potentially through the interplay of clipping bias and model contamination. Our results show that clipping bias under spurious rewards reduces policy entropy, leading to more confident and deterministic outputs, while entropy minimization alone is insufficient for improvement. We further propose a reward-misalignment model explaining why spurious rewards can enhance performance beyond contaminated settings. Our findings clarify the mechanisms behind spurious-reward benefits and provide principles for more effective RLVR training.
comment: Accepted by ICLR 2026
♻ ☆ PF$Δ$: A Benchmark Dataset for Power Flow under Load, Generation, and Topology Variations NeurIPS 2025
Power flow (PF) calculations are the backbone of real-time grid operations, across workflows such as contingency analysis (where repeated PF evaluations assess grid security under outages) and topology optimization (which involves PF-based searches over combinatorially large action spaces). Running these calculations at operational timescales or across large evaluation spaces remains a major computational bottleneck. Additionally, growing uncertainty in power system operations from the integration of renewables and climate-induced extreme weather also calls for tools that can accurately and efficiently simulate a wide range of scenarios and operating conditions. Machine learning methods offer a potential speedup over traditional solvers, but their performance has not been systematically assessed on benchmarks that capture real-world variability. This paper introduces PF$Δ$, a benchmark dataset for power flow that captures diverse variations in load, generation, and topology. PF$Δ$ contains 859,800 solved power flow instances spanning six different bus system sizes, capturing three types of contingency scenarios (N , N -1, and N -2), and including close-to-infeasible cases near steady-state voltage stability limits. We evaluate traditional solvers and GNN-based methods, highlighting key areas where existing approaches struggle, and identifying open problems for future research. Our dataset is available at https://huggingface.co/datasets/pfdelta/pfdelta/tree/main and our code with data generation scripts and model implementations is at https://github.com/MOSSLab-MIT/pfdelta.
comment: 31 pages, 14 figures. Accepted at NeurIPS 2025
♻ ☆ Is In-Context Learning Learning? ICLR 2026
In-context learning (ICL) allows some autoregressive models to solve tasks via next-token prediction and without needing further training. This has led to claims about these model's ability to solve (learn) unseen tasks with only a few shots (exemplars) in the prompt. However, deduction does not always imply learning, as ICL does not explicitly encode a given observation. Instead, the models rely on their prior knowledge and the exemplars given, if any. We argue that, mathematically, ICL does constitute learning, but its full characterisation requires empirical work. We then carry out a large-scale analysis of ICL ablating out or accounting for memorisation, pretraining, distributional shifts, and prompting style and phrasing. We find that ICL is an effective learning paradigm, but limited in its ability to learn and generalise to unseen tasks. We note that, in the limit where exemplars become more numerous, accuracy is insensitive to exemplar distribution, model, prompt style, and the input's linguistic features. Instead, it deduces patterns from regularities in the prompt, which leads to distributional sensitivity, especially in prompting styles such as chain-of-thought. Given the varied accuracies on formally similar tasks, we conclude that autoregression's ad-hoc encoding is not a robust mechanism, and suggests limited all-purpose generalisability.
comment: Accepted to ICLR 2026
♻ ☆ MiST: Understanding the Role of Mid-Stage Scientific Training in Developing Chemical Reasoning Models
Large Language Models can develop reasoning capabilities through online fine-tuning with rule-based rewards. However, recent studies reveal a critical constraint: reinforcement learning succeeds only when the base model already assigns non-negligible probability to correct answers -- a property we term 'latent solvability'. This work investigates the emergence of chemical reasoning capabilities and what these prerequisites mean for chemistry. We identify two necessary conditions for RL-based chemical reasoning: 1) Symbolic competence, and 2) Latent chemical knowledge. We propose mid-stage scientific training (MiST): a set of mid-stage training techniques to satisfy these, including data-mixing with SMILES/CIF-aware pre-processing, continued pre-training on 2.9B tokens, and supervised fine-tuning on 1B tokens. These steps raise the latent-solvability score on 3B and 7B models by up to 1.8x, and enable RL to lift top-1 accuracy from 10.9 to 63.9% on organic reaction naming, and from 40.6 to 67.4% on inorganic material generation. Similar results are observed for other challenging chemical tasks, while producing interpretable reasoning traces. Our results define clear prerequisites for chemical reasoning training and highlight the broader role of mid-stage training in unlocking reasoning capabilities.
♻ ☆ Beyond Data Privacy: New Privacy Risks for Large Language Models
Large Language Models (LLMs) have achieved remarkable progress in natural language understanding, reasoning, and autonomous decision-making. However, these advancements have also come with significant privacy concerns. While significant research has focused on mitigating the data privacy risks of LLMs during various stages of model training, less attention has been paid to new threats emerging from their deployment. The integration of LLMs into widely used applications and the weaponization of their autonomous abilities have created new privacy vulnerabilities. These vulnerabilities provide opportunities for both inadvertent data leakage and malicious exfiltration from LLM-powered systems. Additionally, adversaries can exploit these systems to launch sophisticated, large-scale privacy attacks, threatening not only individual privacy but also financial security and societal trust. In this paper, we systematically examine these emerging privacy risks of LLMs. We also discuss potential mitigation strategies and call for the research community to broaden its focus beyond data privacy risks, developing new defenses to address the evolving threats posed by increasingly powerful LLMs and LLM-powered systems.
comment: Published in the IEEE Data Engineering Bulletin: http://sites.computer.org/debull/A25dec/issue1.htm
♻ ☆ GHOST: Hallucination-Inducing Image Generation for Multimodal LLMs
Object hallucination in Multimodal Large Language Models (MLLMs) is a persistent failure mode that causes the model to perceive objects absent in the image. This weakness of MLLMs is currently studied using static benchmarks with fixed visual scenarios, which preempts the possibility of uncovering model-specific or unanticipated hallucination vulnerabilities. We introduce GHOST (Generating Hallucinations via Optimizing Stealth Tokens), a method designed to stress-test MLLMs by actively generating images that induce hallucination. GHOST is fully automatic and requires no human supervision or prior knowledge. It operates by optimizing in the image embedding space to mislead the model while keeping the target object absent, and then guiding a diffusion model conditioned on the embedding to generate natural-looking images. The resulting images remain visually natural and close to the original input, yet introduce subtle misleading cues that cause the model to hallucinate. We evaluate our method across a range of models, including reasoning models like GLM-4.1V-Thinking, and achieve a hallucination success rate exceeding 28%, compared to around 1% in prior data-driven discovery methods. We confirm that the generated images are both high-quality and object-free through quantitative metrics and human evaluation. Also, GHOST uncovers transferable vulnerabilities: images optimized for Qwen2.5-VL induce hallucinations in GPT-4o at a 66.5% rate. Finally, we show that fine-tuning on our images mitigates hallucination, positioning GHOST as both a diagnostic and corrective tool for building more reliable multimodal systems.
♻ ☆ Adaptable Symbolic Music Infilling with MIDI-RWKV
Existing work in automatic music generation has mostly focused on end-to-end systems that generate either entire compositions or continuations of pieces, which are difficult for composers to iterate on. The area of computer-assisted composition, where generative models integrate into existing creative workflows, remains comparatively underexplored. In this study, we address the tasks of model style adaptation and multi-track, long-context, and controllable symbolic music infilling to enhance the process of computer-assisted composition. We present MIDI-RWKV, a small foundation model based on the RWKV-7 linear architecture, to enable efficient and coherent musical cocreation on edge devices. We also demonstrate that MIDI-RWKV admits an effective method of finetuning its initial state for style adaptation in the very-low-sample regime. We evaluate MIDI-RWKV and its state tuning on several quantitative and qualitative metrics with respect to existing models, and release model weights and code at https://github.com/christianazinn/MIDI-RWKV.
comment: 31 pages, 15 figures, 17 tables
♻ ☆ VoXtream: Full-Stream Text-to-Speech with Extremely Low Latency ICASSP 2026
We present VoXtream, a fully autoregressive, zero-shot streaming text-to-speech (TTS) system for real-time use that begins speaking from the first word. VoXtream directly maps incoming phonemes to audio tokens using a monotonic alignment scheme and a limited look-ahead that does not delay onset. Built around an incremental phoneme transformer, a temporal transformer predicting semantic and duration tokens, and a depth transformer producing acoustic tokens, VoXtream achieves, to our knowledge, the lowest initial delay among publicly available streaming TTS: 102 ms on GPU. Despite being trained on a mid-scale 9k-hour corpus, it matches or surpasses larger baselines on several metrics, while delivering competitive quality in both output- and full-streaming settings. Demo and code are available at https://herimor.github.io/voxtream.
comment: 5 pages, 1 figure, accepted to IEEE ICASSP 2026
♻ ☆ Dual Optimistic Ascent (PI Control) is the Augmented Lagrangian Method in Disguise ICLR 2026
Constrained optimization is a powerful framework for enforcing requirements on neural networks. These constrained deep learning problems are typically solved using first-order methods on their min-max Lagrangian formulation, but such approaches often suffer from oscillations and can fail to find all local solutions. While the Augmented Lagrangian method (ALM) addresses these issues, practitioners often favor dual optimistic ascent schemes (PI control) on the standard Lagrangian, which perform well empirically but lack formal guarantees. In this paper, we establish a previously unknown equivalence between these approaches: dual optimistic ascent on the Lagrangian is equivalent to gradient descent-ascent on the Augmented Lagrangian. This finding allows us to transfer the robust theoretical guarantees of the ALM to the dual optimistic setting, proving it converges linearly to all local solutions. Furthermore, the equivalence provides principled guidance for tuning the optimism hyper-parameter. Our work closes a critical gap between the empirical success of dual optimistic methods and their theoretical foundation in the single-step, first-order regime commonly used in constrained deep learning.
comment: Published at ICLR 2026. Code available at https://github.com/juan43ramirez/pi-control-is-alm
♻ ☆ Data Valuation for LLM Fine-Tuning: Efficient Shapley Value Approximation via Language Model Arithmetic
Data is a critical asset for training large language models (LLMs), alongside compute resources and skilled workers. While some training data is publicly available, substantial investment is required to generate proprietary datasets, such as human preference annotations or to curate new ones from existing sources. As larger datasets generally yield better model performance, two natural questions arise. First, how can data owners make informed decisions about curation strategies and data sources investment? Second, how can multiple data owners collaboratively pool their resources to train superior models while fairly distributing the benefits? This problem, data valuation, which is not specific to large language models, has been addressed by the machine learning community through the lens of cooperative game theory, with the Shapley value being the prevalent solution concept. However, computing Shapley values is notoriously expensive for data valuation, typically requiring numerous model retrainings, which can become prohibitive for large machine learning models. In this work, we demonstrate that this computational challenge is dramatically simplified for LLMs trained with Direct Preference Optimization (DPO). We show how the specific mathematical structure of DPO enables scalable Shapley value computation. We believe this observation unlocks many applications at the intersection of data valuation and large language models.
comment: 11 pages, 2 figures
♻ ☆ How to pick the best anomaly detector?
Anomaly detection has the potential to discover new physics in unexplored regions of the data. However, choosing the best anomaly detector for a given data set in a model-agnostic way is an important challenge which has hitherto largely been neglected. In this paper, we introduce the data-driven ARGOS metric, which has a sound theoretical foundation and is empirically shown to robustly select the most sensitive anomaly detection model given the data. Focusing on weakly-supervised, classifier-based anomaly detection methods, we show that the ARGOS metric outperforms other model selection metrics previously used in the literature, in particular the binary cross-entropy loss. We explore several realistic applications, including hyperparameter tuning as well as architecture and feature selection, and in all cases we demonstrate that ARGOS is robust to the noisy conditions of anomaly detection.
comment: 13 pages, 8 figures, v2: appendix and references added, minor edits
♻ ☆ On the Impact of the Utility in Semivalue-based Data Valuation ICLR 2026
Semivalue-based data valuation uses cooperative-game theory intuitions to assign each data point a value reflecting its contribution to a downstream task. Still, those values depend on the practitioner's choice of utility, raising the question: How robust is semivalue-based data valuation to changes in the utility? This issue is critical when the utility is set as a trade-off between several criteria and when practitioners must select among multiple equally valid utilities. We address it by introducing the notion of a dataset's spatial signature: given a semivalue, we embed each data point into a lower-dimensional space where any utility becomes a linear functional, making the data valuation framework amenable to a simpler geometric picture. Building on this, we propose a practical methodology centered on an explicit robustness metric that informs practitioners whether and by how much their data valuation results will shift as the utility changes. We validate this approach across diverse datasets and semivalues, demonstrating strong agreement with rank-correlation analyses and offering analytical insight into how choosing a semivalue can amplify or diminish robustness.
comment: 45 pages, 19 figures. Accepted at ICLR 2026. This version corresponds to the accepted manuscript; minor changes may appear in the final camera-ready version
♻ ☆ DeNOTS: Stable Deep Neural ODEs for Time Series
Neural CDEs provide a natural way to process the temporal evolution of irregular time series. The number of function evaluations (NFE) is these systems' natural analog of depth (the number of layers in traditional neural networks). It is usually regulated via solver error tolerance: lower tolerance means higher numerical precision, requiring more integration steps. However, lowering tolerances does not adequately increase the models' expressiveness. We propose a simple yet effective alternative: scaling the integration time horizon to increase NFEs and "deepen`` the model. Increasing the integration interval causes uncontrollable growth in conventional vector fields, so we also propose a way to stabilize the dynamics via Negative Feedback (NF). It ensures provable stability without constraining flexibility. It also implies robustness: we provide theoretical bounds for Neural ODE risk using Gaussian process theory. Experiments on four open datasets demonstrate that our method, DeNOTS, outperforms existing approaches~ -- ~including recent Neural RDEs and state space models,~ -- ~achieving up to $20\%$ improvement in metrics. DeNOTS combines expressiveness, stability, and robustness, enabling reliable modelling in continuous-time domains.
♻ ☆ Unifying Low Dimensional Observations in Deep Learning Through the Deep Linear Unconstrained Feature Model
Empirical studies have revealed low dimensional structures in the eigenspectra of weights, Hessians, gradients, and feature vectors of deep networks, consistently observed across datasets and architectures in the overparameterized regime. In this work, we analyze deep unconstrained feature models (UFMs) to provide an analytic explanation of how these structures emerge at the layerwise level, including the bulk outlier Hessian spectrum and the alignment of gradient descent with the outlier eigenspace. We show that deep neural collapse underlies these phenomena, deriving explicit expressions for eigenvalues and eigenvectors of many deep learning matrices in terms of class feature means. Furthermore, we demonstrate that the full Hessian inherits its low dimensional structure from the layerwise Hessians, and empirically validate our theory in both UFMs and deep networks.
comment: 44 pages, 18 figures
♻ ☆ Cross-Platform Scaling of Vision-Language-Action Models from Edge to Cloud GPUs
Vision-Language-Action (VLA) models have emerged as powerful generalist policies for robotic control, yet their performance scaling across model architectures and hardware platforms, as well as their associated power budgets, remain poorly understood. This work presents an evaluation of five representative VLA models -- spanning state-of-the-art baselines and two newly proposed architectures -- targeting edge and datacenter GPU platforms. Using the LIBERO benchmark, we measure accuracy alongside system-level metrics, including latency, throughput, and peak memory usage, under varying edge power constraints and high-performance datacenter GPU configurations. Our results identify distinct scaling trends: (1) architectural choices, such as action tokenization and model backbone size, strongly influence throughput and memory footprint; (2) power-constrained edge devices exhibit non-linear performance degradation, with some configurations matching or exceeding older datacenter GPUs; and (3) high-throughput variants can be achieved without significant accuracy loss. These findings provide actionable insights when selecting and optimizing VLAs across a range of deployment constraints. Our work challenges current assumptions about the superiority of datacenter hardware for robotic inference.
comment: To appear in the Asilomar Conference on Signals, Systems, and Computers 2025
♻ ☆ Towards a Physics Foundation Model
Foundation models have revolutionized natural language processing through a ``train once, deploy anywhere'' paradigm, where a single pre-trained model adapts to countless downstream tasks without retraining. Access to a Physics Foundation Model (PFM) would be transformative - democratizing access to high-fidelity simulations, accelerating scientific discovery, and eliminating the need for specialized solver development. Yet current physics-aware machine learning approaches remain fundamentally limited to single, narrow domains and require retraining for each new system. We present the General Physics Transformer (GPhyT), trained on 1.8 TB of diverse simulation data, that demonstrates foundation model capabilities are achievable for physics. Our key insight is that transformers can learn to infer governing dynamics from context, enabling a single model to simulate fluid-solid interactions, shock waves, thermal convection, and multi-phase dynamics without being told the underlying equations. GPhyT achieves three critical breakthroughs: (1) superior performance across multiple physics domains, outperforming specialized architectures by more than 7x, (2) plausible zero-shot generalization to entirely unseen physical systems through in-context learning, and (3) more stable long-term predictions through long-horizon rollouts. By establishing that a single model can learn generalizable physical principles from data alone, this work opens the path toward a universal PFM that could transform computational science and engineering.
♻ ☆ Revisiting the Past: Data Unlearning with Model State History ICLR 2026
Large language models are trained on massive corpora of web data, which may include private data, copyrighted material, factually inaccurate data, or data that degrades model performance. Eliminating the influence of such problematic datapoints on a model through complete retraining -- by repeatedly pretraining the model on datasets that exclude these specific instances -- is computationally prohibitive. To address this, unlearning algorithms have been proposed, that aim to eliminate the influence of particular datapoints at a low computational cost, while leaving the rest of the model intact. However, precisely unlearning the influence of data on a large language model has proven to be a major challenge. In this work, we propose a new algorithm, MSA (Model State Arithmetic), for unlearning datapoints in large language models. MSA utilizes prior model checkpoints -- artifacts that record model states at different stages of pretraining -- to estimate and counteract the effect of targeted datapoints. Our experimental results show that MSA achieves competitive performance and often outperforms existing machine unlearning algorithms across multiple benchmarks, models, and evaluation metrics, suggesting that MSA could be an effective approach towards more flexible large language models that are capable of data erasure.
comment: Accepted to ICLR 2026
♻ ☆ SIPDO: Closed-Loop Prompt Optimization via Synthetic Data Feedback
Prompt quality plays a critical role in the performance of large language models (LLMs), motivating a growing body of work on prompt optimization. Most existing methods optimize prompts over a fixed dataset, assuming static input distributions and offering limited support for iterative improvement. We introduce SIPDO (Self-Improving Prompts through Data-Augmented Optimization), a closed-loop framework for prompt learning that integrates synthetic data generation into the optimization process. SIPDO couples a synthetic data generator with a prompt optimizer, where the generator produces new examples that reveal current prompt weaknesses and the optimizer incrementally refines the prompt in response. This feedback-driven loop enables systematic improvement of prompt performance without assuming access to external supervision or new tasks. Experiments across question answering and reasoning benchmarks show that SIPDO outperforms standard prompt tuning methods, highlighting the value of integrating data synthesis into prompt learning workflows.
♻ ☆ Uncertainty quantification in model discovery by distilling interpretable material constitutive models from Gaussian process posteriors
Constitutive model discovery refers to the task of identifying an appropriate model structure, usually from a predefined model library, while simultaneously inferring its material parameters. The data used for model discovery are measured in mechanical tests and are thus inevitably affected by noise which, in turn, induces uncertainties. Previously proposed methods for uncertainty quantification in model discovery either require the selection of a prior for the material parameters, are restricted to linear coefficients of the model library or are limited in the flexibility of the inferred parameter probability distribution. We therefore propose a partially Bayesian framework for uncertainty quantification in model discovery that does not require prior selection for the material parameters and also allows for the discovery of constitutive models with inner-non-linear parameters: First, we augment the available stress-deformation data with a Gaussian process. Second, we approximate the parameter distribution by a normalizing flow, which allows for modeling complex joint distributions. Third, we distill the parameter distribution by matching the distribution of stress-deformation functions induced by the parameters with the Gaussian process posterior. Fourth, we perform a Sobol' sensitivity analysis to obtain a sparse and interpretable model. We demonstrate the capability of our framework for both isotropic and experimental anisotropic data.
♻ ☆ DecompGAIL: Learning Realistic Traffic Behaviors with Decomposed Multi-Agent Generative Adversarial Imitation Learning ICLR
Realistic traffic simulation is critical for the development of autonomous driving systems and urban mobility planning, yet existing imitation learning approaches often fail to model realistic traffic behaviors. Behavior cloning suffers from covariate shift, while Generative Adversarial Imitation Learning (GAIL) is notoriously unstable in multi-agent settings. We identify a key source of this instability: irrelevant interaction misguidance, where a discriminator penalizes an ego vehicle's realistic behavior due to unrealistic interactions among its neighbors. To address this, we propose Decomposed Multi-agent GAIL (DecompGAIL), which explicitly decomposes realism into ego-map and ego-neighbor components, filtering out misleading neighbor: neighbor and neighbor: map interactions. We further introduce a social PPO objective that augments ego rewards with distance-weighted neighborhood rewards, encouraging overall realism across agents. Integrated into a lightweight SMART-based backbone, DecompGAIL achieves state-of-the-art performance on the WOMD Sim Agents 2025 benchmark.
comment: accepted by ICLR
♻ ☆ Harnessing the Universal Geometry of Embeddings
We introduce the first method for translating text embeddings from one vector space to another without any paired data, encoders, or predefined sets of matches. Our unsupervised approach translates any embedding to and from a universal latent representation (i.e., a universal semantic structure conjectured by the Platonic Representation Hypothesis). Our translations achieve high cosine similarity across model pairs with different architectures, parameter counts, and training datasets. The ability to translate unknown embeddings into a different space while preserving their geometry has serious implications for the security of vector databases. An adversary with access only to embedding vectors can extract sensitive information about the underlying documents, sufficient for classification and attribute inference.
♻ ☆ Emergence of Quantised Representations Isolated to Anisotropic Functions
Presented is a novel methodology for determining representational structure, which builds upon the existing Spotlight Resonance method. This new tool is used to gain insight into how discrete representations can emerge and organise in autoencoder models, through a controlled ablation study that alters only the activation function. Using this technique, the validity of whether function-driven symmetries can act as implicit inductive biases on representations is determined. Representations are found to tend to discretise when the activation functions are defined through a discrete algebraic permutation-equivariant symmetry. In contrast, they remain continuous under a continuous algebraic orthogonal-equivariant definition. This confirms the hypothesis that the symmetries of network primitives can carry unintended inductive biases, leading to task-independent artefactual structures in representations. The discrete symmetry of contemporary forms is shown to be a strong predictor for the production of symmetry-organised discrete representations emerging from otherwise continuous distributions -- a quantisation effect. This motivates further reassessment of functional forms in common usage due to such unintended consequences. Moreover, this supports a general causal model for a mode in which discrete representations may form, and could constitute a prerequisite for downstream interpretability phenomena, including grandmother neurons, discrete coding schemes, general linear features and a type of Superposition. Hence, this tool and proposed mechanism for the influence of functional form on representations may provide insights into interpretability research. Finally, preliminary results indicate that quantisation of representations correlates with a measurable increase in reconstruction error, reinforcing previous conjectures that this collapse can be detrimental.
comment: 47 pages, 37 figures
♻ ☆ Distillation-Enabled Knowledge Alignment for Generative Semantic Communications of AIGC Images
Due to the surging amount of AI-generated images, its provisioning to edges and mobile users from the cloud incurs substantial traffic on networks. Generative semantic communication (GSC) offers a promising solution by transmitting highly compact information, i.e., prompt text and latent representations, instead of high-dimensional image data. However, GSC relies on the alignment between the knowledge in the cloud generative AI (GAI) and that possessed by the edges and users, and between the knowledge for wireless transmission and that of actual channels, which remains challenging. In this paper, we propose DeKA-g, a distillation-enabled knowledge alignment algorithm for GSC systems. The core idea is to distill the image generation knowledge from the cloud-GAI into low-rank matrices, which can be incorporated by the edge and used to adapt the transmission knowledge to diverse wireless channel conditions. DeKA-g comprises two novel methods: metaword-aided knowledge distillation (MAKD) and condition-aware low-rank adaptation (CALA). For MAKD, an optimized metaword is employed to enhance the efficiency of knowledge distillation, while CALA enables efficient adaptation to diverse rate requirements and channel conditions. From simulation results, DeKA-g improves the consistency between the edge-generated images and the cloud-generated ones by 44% and enahnces the average transmission quality in terms of PSNR by 6.5 dB over the baselines without knowledge alignment.
♻ ☆ Improving the Accuracy of Amortized Model Comparison with Self-Consistency
Amortized Bayesian inference (ABI) offers fast, scalable approximations to posterior densities by training neural surrogates on data simulated from the statistical model. However, ABI methods are highly sensitive to model misspecification: when observed data fall outside the training distribution (generative scope of the statistical models), neural surrogates can behave unpredictably. This makes it a challenge in a model comparison setting, where multiple statistical models are considered, of which at least some are misspecified. Recent work on self-consistency (SC) provides a promising remedy to this issue, accessible even for empirical data (without ground-truth labels). In this work, we investigate how SC can improve amortized model comparison conceptualized in four different ways. Across two synthetic and two real-world case studies, we find that approaches for model comparison that estimate marginal likelihoods through approximate parameter posteriors consistently outperform methods that directly approximate model evidence or posterior model probabilities. SC training improves robustness when the likelihood is available, even under severe model misspecification. The benefits of SC for methods without access of analytic likelihoods are more limited and inconsistent. Our results suggest practical guidance for reliable amortized Bayesian model comparison: prefer parameter posterior-based methods and augment them with SC training on empirical datasets to mitigate extrapolation bias under model misspecification.
comment: This submission should have rather been posted as a second version of a previous submission: arXiv:2508.20614
♻ ☆ Pretrain Value, Not Reward: Decoupled Value Policy Optimization
In this paper, we explore how directly pretraining a value model simplifies and stabilizes reinforcement learning from human feedback (RLHF). In reinforcement learning, value estimation is the key to policy optimization, distinct from reward supervision. The value function predicts the \emph{return-to-go} of a partial answer, that is, how promising the partial answer is if it were continued to completion. In RLHF, however, the standard pipeline first pretrains a reward model and then learns a value function online, even though no new reward signals are available once preference data is collected. This makes critic learning redundant, as the process of training a reward model and then deriving a value model is informationally equivalent to directly pretraining a value model. Importantly, this requires no additional supervision, and our value model is trained on exactly the same data used for reward modeling. Building on this insight, we introduce \emph{Decoupled Value Policy Optimization} (DVPO), a framework that pretrains a \emph{Global Value Model} (GVM) offline and freezes it as a universal critic for policy learning. The GVM provides stable, fine-grained credit assignment without critic drift or trajectory sampling. Experiments across MT-Bench, Alpaca-Eval, and Arena-Hard demonstrate that DVPO matches or surpasses state-of-the-art RLHF methods. These results highlight RLHF can be reframed as policy-only optimization guided by a single pretrained value model.
comment: 16 pages, 3 figures
♻ ☆ Solving stochastic partial differential equations using neural networks in the Wiener chaos expansion
In this paper, we solve stochastic partial differential equations (SPDEs) numerically by using (possibly random) neural networks in the truncated Wiener chaos expansion of their corresponding solution. Moreover, we provide some approximation rates for learning the solution of SPDEs with additive and/or multiplicative noise. Finally, we apply our results in numerical examples to approximate the solution of three SPDEs: the stochastic heat equation, the Heath-Jarrow-Morton equation, and the Zakai equation.
♻ ☆ BADiff: Bandwidth Adaptive Diffusion Model NeurIPS 2025
In this work, we propose a novel framework to enable diffusion models to adapt their generation quality based on real-time network bandwidth constraints. Traditional diffusion models produce high-fidelity images by performing a fixed number of denoising steps, regardless of downstream transmission limitations. However, in practical cloud-to-device scenarios, limited bandwidth often necessitates heavy compression, leading to loss of fine textures and wasted computation. To address this, we introduce a joint end-to-end training strategy where the diffusion model is conditioned on a target quality level derived from the available bandwidth. During training, the model learns to adaptively modulate the denoising process, enabling early-stop sampling that maintains perceptual quality appropriate to the target transmission condition. Our method requires minimal architectural changes and leverages a lightweight quality embedding to guide the denoising trajectory. Experimental results demonstrate that our approach significantly improves the visual fidelity of bandwidth-adapted generations compared to naive early-stopping, offering a promising solution for efficient image delivery in bandwidth-constrained environments. Code is available at: https://github.com/xzhang9308/BADiff.
comment: NeurIPS 2025 Poster
♻ ☆ Learning Grouped Lattice Vector Quantizers for Low-Bit LLM Compression NeurIPS 2025
Large Language Models (LLMs) have demonstrated remarkable capabilities but typically require extensive computational resources and memory for inference. Post-training quantization (PTQ) can effectively reduce these demands by storing weights in lower bit-width formats. However, standard uniform quantization often leads to notable performance degradation, particularly in low-bit scenarios. In this work, we introduce a Grouped Lattice Vector Quantization (GLVQ) framework that assigns each group of weights a customized lattice codebook, defined by a learnable generation matrix. To address the non-differentiability of the quantization process, we adopt Babai rounding to approximate nearest-lattice-point search during training, which enables stable optimization of the generation matrices. Once trained, decoding reduces to a simple matrix-vector multiplication, yielding an efficient and practical quantization pipeline. Experiments on multiple benchmarks show that our approach achieves a better trade-off between model size and accuracy compared to existing post-training quantization baselines, highlighting its effectiveness in deploying large models under stringent resource constraints. Our source code is available on GitHub repository: https://github.com/xzhang9308/GLVQ.
comment: NeurIPS 2025 Poster
♻ ☆ Multi-Scale Negative Coupled Information Systems (MNCIS): A Unified Spectral Topology Framework for Stability in Turbulence, AI, and Biology
Complex dynamical systems frequently encounter a recurrent structural instability: the collapse of the spectral gap, driving the system toward a low-dimensional "Zero-Mode Attractor" (e.g., spectral pile-up or over-smoothing). Building upon recent global well-posedness estimates [Hou, arXiv:2601.00638], this work generalizes the Multi-Scale Negative Coupled Information System (MNCIS) framework. We postulate that global stability requires an active topological operator - Adaptive Spectral Negative Coupling (ASNC) - functioning as a state-dependent high-pass filter that penalizes entropy accumulation at spectral boundaries. We validate this unified framework via three implementations: (1) Hydrodynamics: In 3D Navier-Stokes turbulence ($N=256^3$), ASNC acts as a global-enstrophy adaptive sub-grid scale (SGS) model, stabilizing the inviscid limit and preserving the Kolmogorov $-5/3$ inertial range without artificial hyper-viscosity. Crucially, we verify that the operator remains dormant ($γ\approx 0$) during the linear growth phase of physical instabilities, functioning strictly as a conditional topological clamp. (2) Artificial Intelligence: Addressing Over-smoothing in Graph Neural Networks (GNNs), we implement ASNC as a parameter-free topological constraint. Unlike baselines (e.g., DeepGCNs) relying on dense residual connections, our framework enables the training of ultra-deep 64-layer networks without residual connections, maintaining perfectly stationary feature variance ($σ^2 \equiv 1.0$) on the ogbn-arxiv benchmark. (3) Biological Physics: In reaction-diffusion morphogenesis, it stabilizes Turing patterns against diffusive washout in high-entropy regimes. Our results suggest that the MNCIS framework provides a base-independent topological condition for distinguishing viable complex systems from those collapsing into thermal equilibrium.
comment: Includes supplementary materials and code. Foundation and mathematical proofs can be found in the companion paper arXiv:2601.00638. V2: Significant theoretical expansion. Extended experimental validation to N=256^3 turbulence simulations
♻ ☆ Noise-based reward-modulated learning
The pursuit of energy-efficient and adaptive artificial intelligence (AI) has positioned neuromorphic computing as a promising alternative to conventional computing. However, achieving learning on these platforms requires techniques that prioritize local information while enabling effective credit assignment. Here, we propose noise-based reward-modulated learning (NRL), a novel synaptic plasticity rule that mathematically unifies reinforcement learning and gradient-based optimization with biologically-inspired local updates. NRL addresses the computational bottleneck of exact gradients by approximating them through stochastic neural activity, transforming the inherent noise of biological and neuromorphic substrates into a functional resource. Drawing inspiration from biological learning, our method uses reward prediction errors as its optimization target to generate increasingly advantageous behavior, and eligibility traces to facilitate retrospective credit assignment. Experimental validation on reinforcement tasks, featuring immediate and delayed rewards, shows that NRL achieves performance comparable to baselines optimized using backpropagation, although with slower convergence, while showing significantly superior performance and scalability in multi-layer networks compared to reward-modulated Hebbian learning (RMHL), the most prominent similar approach. While tested on simple architectures, the results highlight the potential of noise-driven, brain-inspired learning for low-power adaptive systems, particularly in computing substrates with locality constraints. NRL offers a theoretically grounded paradigm well-suited for the event-driven characteristics of next-generation neuromorphic AI.
♻ ☆ A Computational Transition for Detecting Multivariate Shuffled Linear Regression by Low-Degree Polynomials
In this paper, we study the problem of multivariate shuffled linear regression, where the correspondence between predictors and responses in a linear model is obfuscated by a latent permutation. Specifically, we investigate the model $Y=\tfrac{1}{\sqrt{1+σ^2}}(Π_* X Q_* + σZ)$, where $X$ is an $n*d$ standard Gaussian design matrix, $Z$ is an $n*m$ Gaussian noise matrix, $Π_*$ is an unknown $n*n$ permutation matrix, and $Q_*$ is an unknown $d*m$ on the Grassmanian manifold satisfying $Q_*^{\top} Q_* = \mathbb I_m$. Consider the hypothesis testing problem of distinguishing this model from the case where $X$ and $Y$ are independent Gaussian random matrices of sizes $n*d$ and $n*m$, respectively. Our results reveal a phase transition phenomenon in the performance of low-degree polynomial algorithms for this task. (1) When $m=o(d)$, we show that all degree-$D$ polynomials fail to distinguish these two models even when $σ=0$, provided with $D^4=o\big( \tfrac{d}{m} \big)$. (2) When $m=d$ and $σ=ω(1)$, we show that all degree-$D$ polynomials fail to distinguish these two models provided with $D=o(σ)$. (3) When $m=d$ and $σ=o(1)$, we show that there exists a constant-degree polynomial that strongly distinguish these two models. These results establish a smooth transition in the effectiveness of low-degree polynomial algorithms for this problem, highlighting the interplay between the dimensions $m$ and $d$, the noise level $σ$, and the computational complexity of the testing task.
comment: 27 pages; improved exposition
♻ ☆ Tackling Federated Unlearning as a Parameter Estimation Problem
Privacy regulations require the erasure of data from deep learning models. This is a significant challenge that is amplified in Federated Learning, where data remains on clients, making full retraining or coordinated updates often infeasible. This work introduces an efficient Federated Unlearning framework based on information theory, modeling leakage as a parameter estimation problem. Our method uses second-order Hessian information to identify and selectively reset only the parameters most sensitive to the data being forgotten, followed by minimal federated retraining. This model-agnostic approach supports categorical and client unlearning without requiring server access to raw client data after initial information aggregation. Evaluations on benchmark datasets demonstrate strong privacy (MIA success near random, categorical knowledge erased) and high performance (Normalized Accuracy against re-trained benchmarks of $\approx$ 0.9), while aiming for increased efficiency over complete retraining. Furthermore, in a targeted backdoor attack scenario, our framework effectively neutralizes the malicious trigger, restoring model integrity. This offers a practical solution for data forgetting in FL.
comment: Substantial revisions are in progress; this version is being withdrawn in favor of a significantly updated manuscript
♻ ☆ EntroLLM: Entropy Encoded Weight Compression for Efficient Large Language Model Inference on Edge Devices
Large Language Models (LLMs) achieve strong performance across tasks, but face storage and compute challenges on edge devices. We propose EntroLLM, a compression framework combining mixed quantization and entropy coding to reduce storage while preserving accuracy. We use a combination of unsigned and asymmetric quantization. Tensor-level quantization produces an entropy-reducing effect, increasing weight compressibility, and improving downstream Huffman encoding by $7\times$ (8-bit) and $11.3\times$ (4-bit) over state-of-the-art methods. Huffman coding further reduces memory bandwidth demands, while a parallel decoding strategy enables efficient weight retrieval with minimal latency. Experiments on edge-scale LLMs (smolLM-1.7B, phi3-mini-4k, mistral-7B) show up to $30\%$ storage savings over uint8 and $65\%$ over uint4 models, with $31.9-146.6\%$ faster inference on memory-limited devices like the NVIDIA JETSON P3450. EntroLLM requires no retraining and is compatible with existing post-training quantization pipelines, making it practical for edge LLM deployment.
comment: 4 pages, 1 reference page
♻ ☆ ABCD-LINK: Annotation Bootstrapping for Cross-Document Fine-Grained Links EACL 2026
Understanding fine-grained links between documents is crucial for many applications, yet progress is limited by the lack of efficient methods for data curation. To address this limitation, we introduce a domain-agnostic framework for bootstrapping sentence-level cross-document links from scratch. Our approach (1) generates and validates semi-synthetic datasets of linked documents, (2) uses these datasets to benchmark and shortlist the best-performing linking approaches, and (3) applies the shortlisted methods in large-scale human-in-the-loop annotation of natural text pairs. We apply the framework in two distinct domains -- peer review and news -- and show that combining retrieval models with LLMs achieves a 73% human approval rate for suggested links, more than doubling the acceptance of strong retrievers alone. Our framework allows users to produce novel datasets that enable systematic study of cross-document understanding, supporting downstream tasks such as media framing analysis and peer review assessment. All code, data, and annotation protocols are released to facilitate future research.
comment: Accepted at EACL 2026
♻ ☆ Adversarial Robustness Guarantees for Quantum Classifiers
Despite their ever more widespread deployment throughout society, machine learning algorithms remain critically vulnerable to being spoofed by subtle adversarial tampering with their input data. The prospect of near-term quantum computers being capable of running {quantum machine learning} (QML) algorithms has therefore generated intense interest in their adversarial vulnerability. Here we show that quantum properties of QML algorithms can confer fundamental protections against such attacks, in certain scenarios guaranteeing robustness against classically-armed adversaries. We leverage tools from many-body physics to identify the quantum sources of this protection. Our results offer a theoretical underpinning of recent evidence which suggest quantum advantages in the search for adversarial robustness. In particular, we prove that quantum classifiers are: (i) protected against weak perturbations of data drawn from the trained distribution, (ii) protected against local attacks if they are insufficiently scrambling, and (iii) show evidence that they are protected against universal adversarial attacks if they are sufficiently chaotic. Our analytic results are supported by numerical evidence demonstrating the applicability of our theorems and the resulting robustness of a quantum classifier in practice. This line of inquiry constitutes a concrete pathway to advantage in QML, orthogonal to the usually sought improvements in model speed or accuracy.
comment: 22 pages, 2 figures. Comments welcome
♻ ☆ Sprecher Networks: A Parameter-Efficient Kolmogorov-Arnold Architecture
We introduce Sprecher Networks (SNs), a family of trainable architectures derived from David Sprecher's 1965 constructive form of the Kolmogorov-Arnold representation. Each SN block implements a "sum of shifted univariate functions" using only two shared learnable splines per block, a monotone inner spline $φ$ and a general outer spline $Φ$, together with a learnable shift parameter $η$ and a mixing vector $λ$ shared across all output dimensions. Stacking these blocks yields deep, compositional models; for vector-valued outputs we append an additional non-summed output block. We also propose an optional lateral mixing operator enabling intra-block communication between output channels with only $O(d_{\mathrm{out}})$ additional parameters. Owing to the vector (not matrix) mixing weights and spline sharing, SNs scale linearly in width, approximately $O(\sum_{\ell}(d_{\ell-1}+d_{\ell}+G))$ parameters for $G$ spline knots, versus $O(\sum_{\ell} d_{\ell-1}d_{\ell})$ for dense MLPs and $O(G\sum_{\ell} d_{\ell-1}d_{\ell})$ for edge-spline KANs. This linear width-scaling is particularly attractive for extremely wide, shallow models, where low depth can translate into low inference latency. Finally, we describe a sequential forward implementation that avoids materializing the $d_{\mathrm{in}}\times d_{\mathrm{out}}$ shifted-input tensor, reducing peak forward-intermediate memory from quadratic to linear in layer width, relevant for memory-constrained settings such as on-device/edge inference; we demonstrate deployability via fixed-point real-time digit classification on resource-constrained embedded device with only 4 MB RAM. We provide empirical demonstrations on supervised regression, Fashion-MNIST classification (including stable training at 25 hidden layers with residual connections and normalization), and a Poisson PINN, with controlled comparisons to MLP and KAN baselines.
comment: 45 pages
♻ ☆ Fully tensorial approach to hypercomplex-valued neural networks
A fully tensorial theoretical framework for hypercomplex-valued neural networks is presented. The proposed approach enables neural network architectures to operate on data defined over arbitrary finite-dimensional algebras. The central observation is that algebra multiplication can be represented by a rank-three tensor, which allows all algebraic operations in neural network layers to be formulated in terms of standard tensor contractions, permutations, and reshaping operations. This tensor-based formulation provides a unified and dimension-independent description of hypercomplex-valued dense and convolutional layers and is directly compatible with modern deep learning libraries supporting optimized tensor operations. The proposed framework recovers existing constructions for four-dimensional algebras as a special case. Within this setting, a tensor-based version of the universal approximation theorem for single-layer hypercomplex-valued perceptrons is established under mild non-degeneracy assumptions on the underlying algebra, thereby providing a rigorous theoretical foundation for the considered class of neural networks.
comment: 23 pages, 3 figures
♻ ☆ Energy-Aware DNN Graph Optimization
Unlike existing work in deep neural network (DNN) graphs optimization for inference performance, we explore DNN graph optimization for energy awareness and savings for power- and resource-constrained machine learning devices. We present a method that allows users to optimize energy consumption or balance between energy and inference performance for DNN graphs. This method efficiently searches through the space of equivalent graphs, and identifies a graph and the corresponding algorithms that incur the least cost in execution. We implement the method and evaluate it with multiple DNN models on a GPU-based machine. Results show that our method achieves significant energy savings, i.e., 24% with negligible performance impact.
comment: Accepted paper at Resource-Constrained Machine Learning (ReCoML) Workshop of MLSys 2020 Conference, Austin, TX, USA, 2020
♻ ☆ CellStyle: Improved Zero-Shot Cell Segmentation via Style Transfer
Cell microscopy data are abundant; however, corresponding segmentation annotations remain scarce. Moreover, variations in cell types, imaging devices, and staining techniques introduce significant domain gaps between datasets. As a result, even large, pretrained segmentation models trained on diverse datasets (source datasets) struggle to generalize to unseen datasets (target datasets). To overcome this generalization problem, we propose CellStyle, which improves the segmentation quality of such models without requiring labels for the target dataset, thereby enabling zero-shot adaptation. CellStyle transfers the attributes of an unannotated target dataset, such as texture, color, and noise, to the annotated source dataset. This transfer is performed while preserving the cell shapes of the source images, ensuring that the existing source annotations can still be used while maintaining the visual characteristics of the target dataset. The styled synthetic images with the existing annotations enable the finetuning of a generalist segmentation model for application to the unannotated target data. We demonstrate that CellStyle significantly improves zero-shot cell segmentation performance across diverse datasets by finetuning multiple segmentation models on the style-transferred data. The code will be made publicly available.
♻ ☆ An extrapolated and provably convergent algorithm for nonlinear matrix decomposition with the ReLU function
ReLU matrix decomposition (RMD) is the following problem: given a sparse, nonnegative matrix $X$ and a factorization rank $r$, identify a rank-$r$ matrix $Θ$ such that $X\approx \max(0,Θ)$. RMD is a particular instance of nonlinear matrix decomposition (NMD) that finds application in data compression, matrix completion with entries missing not at random, and manifold learning. The standard RMD model minimizes the least squares error, that is, $\|X - \max(0,Θ)\|_F^2$. The corresponding optimization problem, Least-Squares RMD (LS-RMD), is nondifferentiable and highly nonconvex. This motivated Saul to propose an alternative model, \revise{dubbed Latent-RMD}, where a latent variable $Z$ is introduced and satisfies $\max(0,Z)=X$ while minimizing $\|Z - Θ\|_F^2$ (``A nonlinear matrix decomposition for mining the zeros of sparse data'', SIAM J.\ Math.\ Data Sci., 2022). Our first contribution is to show that the two formulations may yield different low-rank solutions $Θ$. We then consider a reparametrization of the Latent-RMD, called 3B-RMD, in which $Θ$ is substituted by a low-rank product $WH$, where $W$ has $r$ columns and $H$ has $r$ rows. Our second contribution is to prove the convergence of a block coordinate descent (BCD) approach applied to 3B-RMD. Our third contribution is a novel extrapolated variant of BCD, dubbed eBCD, which we prove is also convergent under mild assumptions. We illustrate the significant acceleration effect of eBCD compared to eBCD, and also show that eBCD performs well against the state of the art on synthetic and real-world data sets.
comment: 25 pages. Codes and data available from https://github.com/giovanniseraghiti/ReLU-NMD
♻ ☆ Sparse Concept Anchoring for Interpretable and Controllable Neural Representations
We introduce Sparse Concept Anchoring, a method that biases latent space to position a targeted subset of concepts while allowing others to self-organize, using only minimal supervision (labels for <0.1% of examples per anchored concept). Training combines activation normalization, a separation regularizer, and anchor or subspace regularizers that attract rare labeled examples to predefined directions or axis-aligned subspaces. The anchored geometry enables two practical interventions: reversible behavioral steering that projects out a concept's latent component at inference, and permanent removal via targeted weight ablation of anchored dimensions. Experiments on structured autoencoders show selective attenuation of targeted concepts with negligible impact on orthogonal features, and complete elimination with reconstruction error approaching theoretical bounds. Sparse Concept Anchoring therefore provides a practical pathway to interpretable, steerable behavior in learned representations.
comment: 8 pages, 3 figures, 1 table (main text). v2: Renamed sections 3.2, 3.3; Length reduction without substantial changes
♻ ☆ SliceGX: Layer-wise GNN Explanation with Model-slicing
Ensuring the trustworthiness of graph neural networks (GNNs), which are often treated as black-box models, requires effective explanation techniques. Existing GNN explanations typically apply input perturbations to identify subgraphs that are responsible for the occurrence of the final output of GNNs. However, such approaches lack finer-grained, layer-wise analysis of how intermediate representations contribute to the final result, capabilities that are crucial for model diagnosis and architecture optimization. This paper introduces SliceGX, a novel GNN explanation approach that generates explanations at specific GNN layers in a progressive manner. Given a GNN model M, a set of selected intermediate layers, and a target layer, SliceGX slices M into layer blocks("model slice") and discovers high-quality explanatory subgraphs within each block that elucidate how the model output arises at the target layer. Although finding such layer-wise explanations is computationally challenging, we develop efficient algorithms and optimization techniques that incrementally construct and maintain these subgraphs with provable approximation guarantees. Extensive experiments on synthetic and real-world benchmarks demonstrate the effectiveness and efficiency of SliceGX, and illustrate its practical utility in supporting model debugging.
♻ ☆ Contrastive Consolidation of Top-Down Modulations Achieves Sparsely Supervised Continual Learning NeurIPS 2025
Biological brains learn continually from a stream of unlabeled data, while integrating specialized information from sparsely labeled examples without compromising their ability to generalize. Meanwhile, machine learning methods are susceptible to catastrophic forgetting in this natural learning setting, as supervised specialist fine-tuning degrades performance on the original task. We introduce task-modulated contrastive learning (TMCL), which takes inspiration from the biophysical machinery in the neocortex, using predictive coding principles to integrate top-down information continually and without supervision. We follow the idea that these principles build a view-invariant representation space, and that this can be implemented using a contrastive loss. Then, whenever labeled samples of a new class occur, new affine modulations are learned that improve separation of the new class from all others, without affecting feedforward weights. By co-opting the view-invariance learning mechanism, we then train feedforward weights to match the unmodulated representation of a data sample to its modulated counterparts. This introduces modulation invariance into the representation space, and, by also using past modulations, stabilizes it. Our experiments show improvements in both class-incremental and transfer learning over state-of-the-art unsupervised approaches, as well as over comparable supervised approaches, using as few as 1% of available labels. Taken together, our work suggests that top-down modulations play a crucial role in balancing stability and plasticity.
comment: Accepted to NeurIPS 2025. Camera-ready version. 33 pages, 5 figures. Updated acknowledgements. Code available at: https://github.com/tran-khoa/tmcl
♻ ☆ Towards Automated Kernel Generation in the Era of LLMs
The performance of modern AI systems is fundamentally constrained by the quality of their underlying kernels, which translate high-level algorithmic semantics into low-level hardware operations. Achieving near-optimal kernels requires expert-level understanding of hardware architectures and programming models, making kernel engineering a critical but notoriously time-consuming and non-scalable process. Recent advances in large language models (LLMs) and LLM-based agents have opened new possibilities for automating kernel generation and optimization. LLMs are well-suited to compress expert-level kernel knowledge that is difficult to formalize, while agentic systems further enable scalable optimization by casting kernel development as an iterative, feedback-driven loop. Rapid progress has been made in this area. However, the field remains fragmented, lacking a systematic perspective for LLM-driven kernel generation. This survey addresses this gap by providing a structured overview of existing approaches, spanning LLM-based approaches and agentic optimization workflows, and systematically compiling the datasets and benchmarks that underpin learning and evaluation in this domain. Moreover, key open challenges and future research directions are further outlined, aiming to establish a comprehensive reference for the next generation of automated kernel optimization. To keep track of this field, we maintain an open-source GitHub repository at https://github.com/flagos-ai/awesome-LLM-driven-kernel-generation.
comment: 10 pages, 1 figure
♻ ☆ Networks of Causal Abstractions: A Sheaf-theoretic Framework
Causal artificial intelligence aims to improve explainability, robustness, and trustworthiness by leveraging causal models. Recent work has shown that sheaf-theoretic approaches offer a principled framework for representing and aligning causal knowledge across collections of subjective and imperfect causal models connected by relational structures. In this work, we introduce the causal abstraction network (CAN), a general sheaf-theoretic framework for representing, learning, and reasoning across collections of mixture causal models (MCMs). CAN formalizes causal abstraction relations among subjective MCMs operating at different levels of granularity, while remaining agnostic to explicit causal graphs, functional mechanisms, interventional data, or jointly sampled observations. At the theoretical level, we provide a categorical formulation of MCMs and characterize key properties of CANs, including consistency, smoothness, and the existence of global sections, which are related to spectral properties of an associated combinatorial Laplacian. At the methodological level, we address the problem of learning consistent CANs from data by exploiting the compositionality of causal abstractions and necessary conditions for their existence. The learning task decomposes into local problems on the network edges, for which we propose efficient solutions in Gaussian and Gaussian mixture settings. We validate the proposed learning methods on synthetic data and illustrate the practical relevance of the CAN framework through a financial application, demonstrating both recovery and counterfactual reasoning capabilities.
Multimedia
☆ COMETS: Coordinated Multi-Destination Video Transmission with In-Network Rate Adaptation
Large-scale video streaming events attract millions of simultaneous viewers, stressing existing delivery infrastructures. Client-driven adaptation reacts slowly to shared congestion, while server-based coordination introduces scalability bottlenecks and single points of failure. We present COMETS, a coordinated multi-destination video transmission framework that leverages information-centric networking principles such as request aggregation and in-network state awareness to enable scalable, fair, and adaptive rate control. COMETS introduces a novel range-interest protocol and distributed in-network decision process that aligns video quality across receiver groups while minimizing redundant transmissions. To achieve this, we develop a lightweight distributed optimization framework that guides per-hop quality adaptation without centralized control. Extensive emulation shows that COMETS consistently improves bandwidth utilization, fairness, and user-perceived quality of experience over DASH, MoQ, and ICN baselines, particularly under high concurrency. The results highlight COMETS as a practical, deployable approach for next-generation scalable video delivery.
comment: Accepted to appear in IEEE Transactions on Multimedia (2026)
☆ AGSP-DSA: An Adaptive Graph Signal Processing Framework for Robust Multimodal Fusion with Dynamic Semantic Alignment
In this paper, we introduce an Adaptive Graph Signal Processing with Dynamic Semantic Alignment (AGSP DSA) framework to perform robust multimodal data fusion over heterogeneous sources, including text, audio, and images. The requested approach uses a dual-graph construction to learn both intra-modal and inter-modal relations, spectral graph filtering to boost the informative signals, and effective node embedding with Multi-scale Graph Convolutional Networks (GCNs). Semantic aware attention mechanism: each modality may dynamically contribute to the context with respect to contextual relevance. The experimental outcomes on three benchmark datasets, including CMU-MOSEI, AVE, and MM-IMDB, show that AGSP-DSA performs as the state of the art. More precisely, it achieves 95.3% accuracy, 0.936 F1-score, and 0.924 mAP on CMU-MOSEI, improving MM-GNN by 2.6 percent in accuracy. It gets 93.4% accuracy and 0.911 F1-score on AVE and 91.8% accuracy and 0.886 F1-score on MM-IMDB, which demonstrate good generalization and robustness in the missing modality setting. These findings verify the efficiency of AGSP-DSA in promoting multimodal learning in sentiment analysis, event recognition and multimedia classification.
☆ REMAC: Reference-Based Martian Asymmetrical Image Compression
To expedite space exploration on Mars, it is indispensable to develop an efficient Martian image compression method for transmitting images through the constrained Mars-to-Earth communication channel. Although the existing learned compression methods have achieved promising results for natural images from earth, there remain two critical issues that hinder their effectiveness for Martian image compression: 1) They overlook the highly-limited computational resources on Mars; 2) They do not utilize the strong \textit{inter-image} similarities across Martian images to advance image compression performance. Motivated by our empirical analysis of the strong \textit{intra-} and \textit{inter-image} similarities from the perspective of texture, color, and semantics, we propose a reference-based Martian asymmetrical image compression (REMAC) approach, which shifts computational complexity from the encoder to the resource-rich decoder and simultaneously improves compression performance. To leverage \textit{inter-image} similarities, we propose a reference-guided entropy module and a ref-decoder that utilize useful information from reference images, reducing redundant operations at the encoder and achieving superior compression performance. To exploit \textit{intra-image} similarities, the ref-decoder adopts a deep, multi-scale architecture with enlarged receptive field size to model long-range spatial dependencies. Additionally, we develop a latent feature recycling mechanism to further alleviate the extreme computational constraints on Mars. Experimental results show that REMAC reduces encoder complexity by 43.51\% compared to the state-of-the-art method, while achieving a BD-PSNR gain of 0.2664 dB.
comment: Accepted for publication in IEEE Transactions on Geoscience and Remote Sensing (TGRS). 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. 18 pages, 20 figures
☆ 3DGesPolicy: Phoneme-Aware Holistic Co-Speech Gesture Generation Based on Action Control
Generating holistic co-speech gestures that integrate full-body motion with facial expressions suffers from semantically incoherent coordination on body motion and spatially unstable meaningless movements due to existing part-decomposed or frame-level regression methods, We introduce 3DGesPolicy, a novel action-based framework that reformulates holistic gesture generation as a continuous trajectory control problem through diffusion policy from robotics. By modeling frame-to-frame variations as unified holistic actions, our method effectively learns inter-frame holistic gesture motion patterns and ensures both spatially and semantically coherent movement trajectories that adhere to realistic motion manifolds. To further bridge the gap in expressive alignment, we propose a Gesture-Audio-Phoneme (GAP) fusion module that can deeply integrate and refine multi-modal signals, ensuring structured and fine-grained alignment between speech semantics, body motion, and facial expressions. Extensive quantitative and qualitative experiments on the BEAT2 dataset demonstrate the effectiveness of our 3DGesPolicy across other state-of-the-art methods in generating natural, expressive, and highly speech-aligned holistic gestures.
comment: 13 pages, 5 figures
☆ Integrating Fine-Grained Audio-Visual Evidence for Robust Multimodal Emotion Reasoning
Multimodal emotion analysis is shifting from static classification to generative reasoning. Beyond simple label prediction, robust affective reasoning must synthesize fine-grained signals such as facial micro-expressions and prosodic which shifts to decode the latent causality within complex social contexts. However, current Multimodal Large Language Models (MLLMs) face significant limitations in fine-grained perception, primarily due to data scarcity and insufficient cross-modal fusion. As a result, these models often exhibit unimodal dominance which leads to hallucinations in complex multimodal interactions, particularly when visual and acoustic cues are subtle, ambiguous, or even contradictory (e.g., in sarcastic scenery). To address this, we introduce SABER-LLM, a framework designed for robust multimodal reasoning. First, we construct SABER, a large-scale emotion reasoning dataset comprising 600K video clips, annotated with a novel six-dimensional schema that jointly captures audiovisual cues and causal logic. Second, we propose the structured evidence decomposition paradigm, which enforces a "perceive-then-reason" separation between evidence extraction and reasoning to alleviate unimodal dominance. The ability to perceive complex scenes is further reinforced by consistency-aware direct preference optimization, which explicitly encourages alignment among modalities under ambiguous or conflicting perceptual conditions. Experiments on EMER, EmoBench-M, and SABER-Test demonstrate that SABER-LLM significantly outperforms open-source baselines and achieves robustness competitive with closed-source models in decoding complex emotional dynamics. The dataset and model are available at https://github.com/zxzhao0/SABER-LLM.
☆ MindCine: Multimodal EEG-to-Video Reconstruction with Large-Scale Pretrained Models
Reconstructing human dynamic visual perception from electroencephalography (EEG) signals is of great research significance since EEG's non-invasiveness and high temporal resolution. However, EEG-to-video reconstruction remains challenging due to: 1) Single Modality: existing studies solely align EEG signals with the text modality, which ignores other modalities and are prone to suffer from overfitting problems; 2) Data Scarcity: current methods often have difficulty training to converge with limited EEG-video data. To solve the above problems, we propose a novel framework MindCine to achieve high-fidelity video reconstructions on limited data. We employ a multimodal joint learning strategy to incorporate beyond-text modalities in the training stage and leverage a pre-trained large EEG model to relieve the data scarcity issue for decoding semantic information, while a Seq2Seq model with causal attention is specifically designed for decoding perceptual information. Extensive experiments demonstrate that our model outperforms state-of-the-art methods both qualitatively and quantitatively. Additionally, the results underscore the effectiveness of the complementary strengths of different modalities and demonstrate that leveraging a large-scale EEG model can further enhance reconstruction performance by alleviating the challenges associated with limited data.
♻ ☆ Adaptable Symbolic Music Infilling with MIDI-RWKV
Existing work in automatic music generation has mostly focused on end-to-end systems that generate either entire compositions or continuations of pieces, which are difficult for composers to iterate on. The area of computer-assisted composition, where generative models integrate into existing creative workflows, remains comparatively underexplored. In this study, we address the tasks of model style adaptation and multi-track, long-context, and controllable symbolic music infilling to enhance the process of computer-assisted composition. We present MIDI-RWKV, a small foundation model based on the RWKV-7 linear architecture, to enable efficient and coherent musical cocreation on edge devices. We also demonstrate that MIDI-RWKV admits an effective method of finetuning its initial state for style adaptation in the very-low-sample regime. We evaluate MIDI-RWKV and its state tuning on several quantitative and qualitative metrics with respect to existing models, and release model weights and code at https://github.com/christianazinn/MIDI-RWKV.
comment: 31 pages, 15 figures, 17 tables
Computation and Language
☆ Sentipolis: Emotion-Aware Agents for Social Simulations
LLM agents are increasingly used for social simulation, yet emotion is often treated as a transient cue, causing emotional amnesia and weak long-horizon continuity. We present Sentipolis, a framework for emotionally stateful agents that integrates continuous Pleasure-Arousal-Dominance (PAD) representation, dual-speed emotion dynamics, and emotion--memory coupling. Across thousands of interactions over multiple base models and evaluators, Sentipolis improves emotionally grounded behavior, boosting communication, and emotional continuity. Gains are model-dependent: believability increases for higher-capacity models but can drop for smaller ones, and emotion-awareness can mildly reduce adherence to social norms, reflecting a human-like tension between emotion-driven behavior and rule compliance in social simulation. Network-level diagnostics show reciprocal, moderately clustered, and temporally stable relationship structures, supporting the study of cumulative social dynamics such as alliance formation and gradual relationship change.
☆ CommonLID: Re-evaluating State-of-the-Art Language Identification Performance on Web Data
Language identification (LID) is a fundamental step in curating multilingual corpora. However, LID models still perform poorly for many languages, especially on the noisy and heterogeneous web data often used to train multilingual language models. In this paper, we introduce CommonLID, a community-driven, human-annotated LID benchmark for the web domain, covering 109 languages. Many of the included languages have been previously under-served, making CommonLID a key resource for developing more representative high-quality text corpora. We show CommonLID's value by using it, alongside five other common evaluation sets, to test eight popular LID models. We analyse our results to situate our contribution and to provide an overview of the state of the art. In particular, we highlight that existing evaluations overestimate LID accuracy for many languages in the web domain. We make CommonLID and the code used to create it available under an open, permissive license.
comment: 17 pages, 7 tables, 5 figures
☆ A System for Name and Address Parsing with Large Language Models
Reliable transformation of unstructured person and address text into structured data remains a key challenge in large-scale information systems. Traditional rule-based and probabilistic approaches perform well on clean inputs but fail under noisy or multilingual conditions, while neural and large language models (LLMs) often lack deterministic control and reproducibility. This paper introduces a prompt-driven, validation-centered framework that converts free-text records into a consistent 17-field schema without fine-tuning. The method integrates input normalisation, structured prompting, constrained decoding, and strict rule-based validation under fixed experimental settings to ensure reproducibility. Evaluations on heterogeneous real-world address data show high field-level accuracy, strong schema adherence, and stable confidence calibration. The results demonstrate that combining deterministic validation with generative prompting provides a robust, interpretable, and scalable solution for structured information extraction, offering a practical alternative to training-heavy or domain-specific models.
☆ Evaluating Semantic and Syntactic Understanding in Large Language Models for Payroll Systems
Large language models are now used daily for writing, search, and analysis, and their natural language understanding continues to improve. However, they remain unreliable on exact numerical calculation and on producing outputs that are straightforward to audit. We study synthetic payroll system as a focused, high-stakes example and evaluate whether models can understand a payroll schema, apply rules in the right order, and deliver cent-accurate results. Our experiments span a tiered dataset from basic to complex cases, a spectrum of prompts from minimal baselines to schema-guided and reasoning variants, and multiple model families including GPT, Claude, Perplexity, Grok and Gemini. Results indicate clear regimes where careful prompting is sufficient and regimes where explicit computation is required. The work offers a compact, reproducible framework and practical guidance for deploying LLMs in settings that demand both accuracy and assurance.
☆ PEAR: Pairwise Evaluation for Automatic Relative Scoring in Machine Translation
We present PEAR (Pairwise Evaluation for Automatic Relative Scoring), a supervised Quality Estimation (QE) metric family that reframes reference-free Machine Translation (MT) evaluation as a graded pairwise comparison. Given a source segment and two candidate translations, PEAR predicts the direction and magnitude of their quality difference. The metrics are trained using pairwise supervision derived from differences in human judgments, with an additional regularization term that encourages sign inversion under candidate order reversal. On the WMT24 meta-evaluation benchmark, PEAR outperforms strictly matched single-candidate QE baselines trained with the same data and backbones, isolating the benefit of the proposed pairwise formulation. Despite using substantially fewer parameters than recent large metrics, PEAR surpasses far larger QE models and reference-based metrics. Our analysis further indicates that PEAR yields a less redundant evaluation signal relative to other top metrics. Finally, we show that PEAR is an effective utility function for Minimum Bayes Risk (MBR) decoding, reducing pairwise scoring cost at negligible impact.
comment: 18 pages
☆ AI-based approach to burnout identification from textual data
This study introduces an AI-based methodology that utilizes natural language processing (NLP) to detect burnout from textual data. The approach relies on a RuBERT model originally trained for sentiment analysis and subsequently fine-tuned for burnout detection using two data sources: synthetic sentences generated with ChatGPT and user comments collected from Russian YouTube videos about burnout. The resulting model assigns a burnout probability to input texts and can be applied to process large volumes of written communication for monitoring burnout-related language signals in high-stress work environments.
comment: 9 pages, 2 figures
☆ SD-E$^2$: Semantic Exploration for Reasoning Under Token Budgets EACL 2026
Small language models (SLMs) struggle with complex reasoning because exploration is expensive under tight compute budgets. We introduce Semantic Diversity-Exploration-Exploitation (SD-E$^2$), a reinforcement learning framework that makes exploration explicit by optimizing semantic diversity in generated reasoning trajectories. Using a frozen sentence-embedding model, SD-E$^2$ assigns a diversity reward that captures (i) the coverage of semantically distinct solution strategies and (ii) their average pairwise dissimilarity in embedding space, rather than surface-form novelty. This diversity reward is combined with outcome correctness and solution efficiency in a z-score-normalized multi-objective objective that stabilizes training. On GSM8K, SD-E$^2$ surpasses the base Qwen2.5-3B-Instruct and strong GRPO baselines (GRPO-CFL and GRPO-CFEE) by +27.4, +5.2, and +1.5 percentage points, respectively, while discovering on average 9.8 semantically distinct strategies per question. We further improve MedMCQA to 49.64% versus 38.37% for the base model and show gains on the harder AIME benchmark (1983-2025), reaching 13.28% versus 6.74% for the base. These results indicate that rewarding semantic novelty yields a more compute-efficient exploration-exploitation signal for training reasoning-capable SLMs. By introducing cognitive adaptation-adjusting the reasoning process structure rather than per-token computation-SD-E$^2$ offers a complementary path to efficiency gains in resource-constrained models.
comment: Accepted at EACL 2026
☆ LLMs as Cultural Archives: Cultural Commonsense Knowledge Graph Extraction EACL 2026
Large language models (LLMs) encode rich cultural knowledge learned from diverse web-scale data, offering an unprecedented opportunity to model cultural commonsense at scale. Yet this knowledge remains mostly implicit and unstructured, limiting its interpretability and use. We present an iterative, prompt-based framework for constructing a Cultural Commonsense Knowledge Graph (CCKG) that treats LLMs as cultural archives, systematically eliciting culture-specific entities, relations, and practices and composing them into multi-step inferential chains across languages. We evaluate CCKG on five countries with human judgments of cultural relevance, correctness, and path coherence. We find that the cultural knowledge graphs are better realized in English, even when the target culture is non-English (e.g., Chinese, Indonesian, Arabic), indicating uneven cultural encoding in current LLMs. Augmenting smaller LLMs with CCKG improves performance on cultural reasoning and story generation, with the largest gains from English chains. Our results show both the promise and limits of LLMs as cultural technologies and that chain-structured cultural knowledge is a practical substrate for culturally grounded NLP.
comment: EACL 2026 MAIN
☆ A Monosemantic Attribution Framework for Stable Interpretability in Clinical Neuroscience Large Language Models
Interpretability remains a key challenge for deploying large language models (LLMs) in clinical settings such as Alzheimer's disease progression diagnosis, where early and trustworthy predictions are essential. Existing attribution methods exhibit high inter-method variability and unstable explanations due to the polysemantic nature of LLM representations, while mechanistic interpretability approaches lack direct alignment with model inputs and outputs and do not provide explicit importance scores. We introduce a unified interpretability framework that integrates attributional and mechanistic perspectives through monosemantic feature extraction. By constructing a monosemantic embedding space at the level of an LLM layer and optimizing the framework to explicitly reduce inter-method variability, our approach produces stable input-level importance scores and highlights salient features via a decompressed representation of the layer of interest, advancing the safe and trustworthy application of LLMs in cognitive health and neurodegenerative disease.
♻ ☆ Augmenting Question Answering with A Hybrid RAG Approach
Retrieval-Augmented Generation (RAG) has emerged as a powerful technique for enhancing the quality of responses in Question-Answering (QA) tasks. However, existing approaches often struggle with retrieving contextually relevant information, leading to incomplete or suboptimal answers. In this paper, we introduce Structured-Semantic RAG (SSRAG), a hybrid architecture that enhances QA quality by integrating query augmentation, agentic routing, and a structured retrieval mechanism combining vector and graph based techniques with context unification. By refining retrieval processes and improving contextual grounding, our approach improves both answer accuracy and informativeness. We conduct extensive evaluations on three popular QA datasets, TruthfulQA, SQuAD and WikiQA, across five Large Language Models (LLMs), demonstrating that our proposed approach consistently improves response quality over standard RAG implementations.
comment: 10 pages, 5 tables, 2 figures; presented at IEEE CogMI 2025
♻ ☆ Exploring LGBTQ+ Bias in Generative AI Answers across Different Country and Religious Contexts
Previous discussions have highlighted the need for generative AI tools to become more culturally sensitive, yet often neglect the complexities of handling content about minorities, who are perceived differently across cultures and religions. Our study examined how two generative AI systems respond to homophobic statements with varying cultural and religious context information. Findings showed ChatGPT 3.5's replies exhibited cultural relativism, in contrast to Bard's, which stressed human rights and provided more support for LGBTQ+ issues. Both demonstrated significant change in responses based on contextual information provided in the prompts, suggesting that AI systems may adjust in their responses the degree and forms of support for LGBTQ+ people according to information they receive about the user's background. The study contributes to understanding the social and ethical implications of AI responses and argues that any work to make generative AI outputs more culturally diverse requires a grounding in fundamental human rights. A revised edition of this preprint is available open access at Big Data & Society at https://doi.org/10.1177/20539517251396069
comment: Replacement version -- includes link to BD&S journal publication (significantly revised) in abstract, but the manuscript here remains unchanged from the original arXiv version
♻ ☆ Prefill-Guided Thinking for zero-shot detection of AI-generated images
Traditional supervised methods for detecting AI-generated images depend on large, curated datasets for training and fail to generalize to novel, out-of-domain image generators. As an alternative, we explore pre-trained Vision-Language Models (VLMs) for zero-shot detection of AI-generated images. We evaluate VLM performance on three diverse benchmarks encompassing synthetic images of human faces, objects, and animals produced by 16 different state-of-the-art image generators. While off-the-shelf VLMs perform poorly on these datasets, we find that prefilling responses effectively guides their reasoning -- a method we call Prefill-Guided Thinking (PGT). In particular, prefilling a VLM response with the phrase "Let's examine the style and the synthesis artifacts" improves the Macro F1 scores of three widely used open-source VLMs by up to 24%. We analyze this improvement in detection by tracking answer confidence during response generation. For some models, prefills counteract early overconfidence -- akin to mitigating the Dunning-Kruger effect -- leading to better detection performance.
♻ ☆ Memorization in Large Language Models in Medicine: Prevalence, Characteristics, and Implications
Large Language Models (LLMs) have demonstrated significant potential in medicine, with many studies adapting them through continued pre-training or fine-tuning on medical data to enhance domain-specific accuracy and safety. However, a key open question remains: to what extent do LLMs memorize medical training data. Memorization can be beneficial when it enables LLMs to retain valuable medical knowledge during domain adaptation. Yet, it also raises concerns. LLMs may inadvertently reproduce sensitive clinical content (e.g., patient-specific details), and excessive memorization may reduce model generalizability, increasing risks of misdiagnosis and making unwarranted recommendations. These risks are further amplified by the generative nature of LLMs, which can not only surface memorized content but also produce overconfident, misleading outputs that may hinder clinical adoption. In this work, we present a study on memorization of LLMs in medicine, assessing its prevalence (how frequently it occurs), characteristics (what is memorized), volume (how much content is memorized), and potential downstream impacts (how memorization may affect medical applications). We systematically analyze common adaptation scenarios: (1) continued pretraining on medical corpora, (2) fine-tuning on standard medical benchmarks, and (3) fine-tuning on real-world clinical data, including over 13,000 unique inpatient records from Yale New Haven Health System. The results demonstrate that memorization is prevalent across all adaptation scenarios and significantly higher than that reported in the general domain. Moreover, memorization has distinct characteristics during continued pre-training and fine-tuning, and it is persistent: up to 87% of content memorized during continued pre-training remains after fine-tuning on new medical tasks.
♻ ☆ Grounding Synthetic Data Evaluations of Language Models in Unsupervised Document Corpora
Language Models (LMs) continue to advance, improving response quality and coherence. Given Internet-scale training datasets, LMs have likely encountered much of what users may ask them to generate in some form during their training. A plethora of evaluation benchmarks have been constructed to assess model quality, response appropriateness, and reasoning capabilities. However, the human effort required for benchmark construction is rapidly being outpaced by the size and scope of the models under evaluation. Having humans build a benchmark for every possible domain of interest is impractical. Therefore, we propose a methodology for automating the construction of fact-based synthetic data model evaluations grounded in document populations. This work leverages the same LMs to evaluate domain-specific knowledge automatically, using only grounding documents (e.g., a textbook) as input. This generative benchmarking approach corresponds well with human curated questions producing an ensemble Spearman ranking correlation of $0.91$ and a benchmark evaluation Pearson accuracy correlation of $0.74$ (model specific $0.82$). This novel approach supports generating both multiple choice and open-ended synthetic data questions to gain diagnostic insight of LM capability. We apply this methodology to evaluate model performance on three recent documents (two post LM knowledge cutoff), discovering a surprisingly strong performance from Gemma-3 models on open-ended questions. Code is available at https://github.com/mmajurski/grounded-synth-lm-benchmark
♻ ☆ Mitigating the Modality Gap: Few-Shot Out-of-Distribution Detection with Multi-modal Prototypes and Image Bias Estimation WACV 2026
Existing vision-language model (VLM)-based methods for out-of-distribution (OOD) detection typically rely on similarity scores between input images and in-distribution (ID) text prototypes. However, the modality gap between image and text often results in high false positive rates, as OOD samples can exhibit high similarity to ID text prototypes. To mitigate the impact of this modality gap, we propose incorporating ID image prototypes along with ID text prototypes. We present theoretical analysis and empirical evidence indicating that this approach enhances VLM-based OOD detection performance without any additional training. To further reduce the gap between image and text, we introduce a novel few-shot tuning framework, SUPREME, comprising biased prompts generation (BPG) and image-text consistency (ITC) modules. BPG enhances image-text fusion and improves generalization by conditioning ID text prototypes on the Gaussian-based estimated image domain bias; ITC reduces the modality gap by minimizing intra- and inter-modal distances. Moreover, inspired by our theoretical and empirical findings, we introduce a novel OOD score $S_{\textit{GMP}}$, leveraging uni- and cross-modal similarities. Finally, we present extensive experiments to demonstrate that SUPREME consistently outperforms existing VLM-based OOD detection methods.
comment: WACV 2026
♻ ☆ Universal Refusal Circuits Across LLMs: Cross-Model Transfer via Trajectory Replay and Concept-Basis Reconstruction
Refusal behavior in aligned LLMs is often viewed as model-specific, yet we hypothesize it stems from a universal, low-dimensional semantic circuit shared across models. To test this, we introduce Trajectory Replay via Concept-Basis Reconstruction, a framework that transfers refusal interventions from donor to target models, spanning diverse architectures (e.g., Dense to MoE) and training regimes, without using target-side refusal supervision. By aligning layers via concept fingerprints and reconstructing refusal directions using a shared ``recipe'' of concept atoms, we map the donor's ablation trajectory into the target's semantic space. To preserve capabilities, we introduce a weight-SVD stability guard that projects interventions away from high-variance weight subspaces to prevent collateral damage. Our evaluation across 8 model pairs confirms that these transferred recipes consistently attenuate refusal while maintaining performance, providing strong evidence for the semantic universality of safety alignment.
♻ ☆ iBERT: Interpretable Embeddings via Sense Decomposition EACL 2026
We present iBERT (interpretable-BERT), an encoder to produce inherently interpretable and controllable embeddings - designed to modularize and expose the discriminative cues present in language, such as semantic or stylistic structure. Each input token is represented as a sparse, non-negative mixture over k context-independent sense vectors, which can be pooled into sentence embeddings or used directly at the token level. This enables modular control over representation, before any decoding or downstream use. To demonstrate our model's interpretability, we evaluate it on a suite of style-focused tasks. On the STEL benchmark, it improves style representation effectiveness by ~8 points over SBERT-style baselines, while maintaining competitive performance on authorship verification. Because each embedding is a structured composition of interpretable senses, we highlight how specific style attributes get assigned to specific sense vectors. While our experiments center on style, iBERT is not limited to stylistic modeling. Its structural modularity is designed to interpretably decompose whichever discriminative signals are present in the data - enabling generalization even when supervision blends semantic or stylistic factors.
comment: Accepted to the Main Proceedings of EACL 2026. Camera-ready version
♻ ☆ The Impact of Automatic Speech Transcription on Speaker Attribution ACL
Speaker attribution from speech transcripts is the task of identifying a speaker from the transcript of their speech based on patterns in their language use. This task is especially useful when the audio is unavailable (e.g. deleted) or unreliable (e.g. anonymized speech). Prior work in this area has primarily focused on the feasibility of attributing speakers using transcripts produced by human annotators. However, in real-world settings, one often only has more errorful transcripts produced by automatic speech recognition (ASR) systems. In this paper, we conduct what is, to our knowledge, the first comprehensive study of the impact of automatic transcription on speaker attribution performance. In particular, we study the extent to which speaker attribution performance degrades in the face of transcription errors, as well as how properties of the ASR system impact attribution. We find that attribution is surprisingly resilient to word-level transcription errors and that the objective of recovering the true transcript is minimally correlated with attribution performance. Overall, our findings suggest that speaker attribution on more errorful transcripts produced by ASR is as good, if not better, than attribution based on human-transcribed data, possibly because ASR transcription errors can capture speaker-specific features revealing of speaker identity.
comment: latest version added TACL journal DOI to metadata and a missing citation
♻ ☆ BeDiscovER: The Benchmark of Discourse Understanding in the Era of Reasoning Language Models
We introduce BeDiscovER (Benchmark of Discourse Understanding in the Era of Reasoning Language Models), an up-to-date, comprehensive suite for evaluating the discourse-level knowledge of modern LLMs. BeDiscovER compiles 5 publicly available discourse tasks across discourse lexicon, (multi-)sentential, and documental levels, with in total 52 individual datasets. It covers both extensively studied tasks such as discourse parsing and temporal relation extraction, as well as some novel challenges such as discourse particle disambiguation (e.g., ``just''), and also aggregates a shared task on Discourse Relation Parsing and Treebanking for multilingual and multi-framework discourse relation classification. We evaluate open-source LLMs: Qwen3 series, DeepSeek-R1, and frontier model such as GPT-5-mini on BeDiscovER, and find that state-of-the-art models exhibit strong performance in arithmetic aspect of temporal reasoning, but they struggle with full document reasoning and some subtle semantic and discourse phenomena, such as rhetorical relation recognition.
comment: Camera-ready version of eacl 2026
Computer Vision and Pattern Recognition
☆ Leveraging Persistence Image to Enhance Robustness and Performance in Curvilinear Structure Segmentation
Segmenting curvilinear structures in medical images is essential for analyzing morphological patterns in clinical applications. Integrating topological properties, such as connectivity, improves segmentation accuracy and consistency. However, extracting and embedding such properties - especially from Persistence Diagrams (PD) - is challenging due to their non-differentiability and computational cost. Existing approaches mostly encode topology through handcrafted loss functions, which generalize poorly across tasks. In this paper, we propose PIs-Regressor, a simple yet effective module that learns persistence image (PI) - finite, differentiable representations of topological features - directly from data. Together with Topology SegNet, which fuses these features in both downsampling and upsampling stages, our framework integrates topology into the network architecture itself rather than auxiliary losses. Unlike existing methods that depend heavily on handcrafted loss functions, our approach directly incorporates topological information into the network structure, leading to more robust segmentation. Our design is flexible and can be seamlessly combined with other topology-based methods to further enhance segmentation performance. Experimental results show that integrating topological features enhances model robustness, effectively handling challenges like overexposure and blurring in medical imaging. Our approach on three curvilinear benchmarks demonstrate state-of-the-art performance in both pixel-level accuracy and topological fidelity.
comment: Accepted by IEEE International Symposium on Biomedical Imaging (ISBI) 2026. 5 pages, 3 figures
☆ Strip-Fusion: Spatiotemporal Fusion for Multispectral Pedestrian Detection
Pedestrian detection is a critical task in robot perception. Multispectral modalities (visible light and thermal) can boost pedestrian detection performance by providing complementary visual information. Several gaps remain with multispectral pedestrian detection methods. First, existing approaches primarily focus on spatial fusion and often neglect temporal information. Second, RGB and thermal image pairs in multispectral benchmarks may not always be perfectly aligned. Pedestrians are also challenging to detect due to varying lighting conditions, occlusion, etc. This work proposes Strip-Fusion, a spatial-temporal fusion network that is robust to misalignment in input images, as well as varying lighting conditions and heavy occlusions. The Strip-Fusion pipeline integrates temporally adaptive convolutions to dynamically weigh spatial-temporal features, enabling our model to better capture pedestrian motion and context over time. A novel Kullback-Leibler divergence loss was designed to mitigate modality imbalance between visible and thermal inputs, guiding feature alignment toward the more informative modality during training. Furthermore, a novel post-processing algorithm was developed to reduce false positives. Extensive experimental results show that our method performs competitively for both the KAIST and the CVC-14 benchmarks. We also observed significant improvements compared to previous state-of-the-art on challenging conditions such as heavy occlusion and misalignment.
comment: This work has been accepted for publication in IEEE Robotics and Automation Letters (RA-L). Code available at: https://github.com/akanuasiegbu/stripfusion
☆ MorphXAI: An Explainable Framework for Morphological Analysis of Parasites in Blood Smear Images WACV 2026
Parasitic infections remain a pressing global health challenge, particularly in low-resource settings where diagnosis still depends on labor-intensive manual inspection of blood smears and the availability of expert domain knowledge. While deep learning models have shown strong performance in automating parasite detection, their clinical usefulness is constrained by limited interpretability. Existing explainability methods are largely restricted to visual heatmaps or attention maps, which highlight regions of interest but fail to capture the morphological traits that clinicians rely on for diagnosis. In this work, we present MorphXAI, an explainable framework that unifies parasite detection with fine-grained morphological analysis. MorphXAI integrates morphological supervision directly into the prediction pipeline, enabling the model to localize parasites while simultaneously characterizing clinically relevant attributes such as shape, curvature, visible dot count, flagellum presence, and developmental stage. To support this task, we curate a clinician-annotated dataset of three parasite species (Leishmania, Trypanosoma brucei, and Trypanosoma cruzi) with detailed morphological labels, establishing a new benchmark for interpretable parasite analysis. Experimental results show that MorphXAI not only improves detection performance over the baseline but also provides structured, biologically meaningful explanations.
comment: Accepted at WACV 2026
☆ Systematic Characterization of Minimal Deep Learning Architectures: A Unified Analysis of Convergence, Pruning, and Quantization
Deep learning networks excel at classification, yet identifying minimal architectures that reliably solve a task remains challenging. We present a computational methodology for systematically exploring and analyzing the relationships among convergence, pruning, and quantization. The workflow first performs a structured design sweep across a large set of architectures, then evaluates convergence behavior, pruning sensitivity, and quantization robustness on representative models. Focusing on well-known image classification of increasing complexity, and across Deep Neural Networks, Convolutional Neural Networks, and Vision Transformers, our initial results show that, despite architectural diversity, performance is largely invariant and learning dynamics consistently exhibit three regimes: unstable, learning, and overfitting. We further characterize the minimal learnable parameters required for stable learning, uncover distinct convergence and pruning phases, and quantify the effect of reduced numeric precision on trainable parameters. Aligning with intuition, the results confirm that deeper architectures are more resilient to pruning than shallower ones, with parameter redundancy as high as 60%, and quantization impacts models with fewer learnable parameters more severely and has a larger effect on harder image datasets. These findings provide actionable guidance for selecting compact, stable models under pruning and low-precision constraints in image classification.
☆ Domain-Expert-Guided Hybrid Mixture-of-Experts for Medical AI: Integrating Data-Driven Learning with Clinical Priors
Mixture-of-Experts (MoE) models increase representational capacity with modest computational cost, but their effectiveness in specialized domains such as medicine is limited by small datasets. In contrast, clinical practice offers rich expert knowledge, such as physician gaze patterns and diagnostic heuristics, that models cannot reliably learn from limited data. Combining data-driven experts, which capture novel patterns, with domain-expert-guided experts, which encode accumulated clinical insights, provides complementary strengths for robust and clinically meaningful learning. To this end, we propose Domain-Knowledge-Guided Hybrid MoE (DKGH-MoE), a plug-and-play and interpretable module that unifies data-driven learning with domain expertise. DKGH-MoE integrates a data-driven MoE to extract novel features from raw imaging data, and a domain-expert-guided MoE incorporates clinical priors, specifically clinician eye-gaze cues, to emphasize regions of high diagnostic relevance. By integrating domain expert insights with data-driven features, DKGH-MoE improves both performance and interpretability.
comment: 4 pages; 3 figures; accepted by International Symposium on Biomedical Imaging (ISBI) 2026
☆ UPLiFT: Efficient Pixel-Dense Feature Upsampling with Local Attenders
The space of task-agnostic feature upsampling has emerged as a promising area of research to efficiently create denser features from pre-trained visual backbones. These methods act as a shortcut to achieve dense features for a fraction of the cost by learning to map low-resolution features to high-resolution versions. While early works in this space used iterative upsampling approaches, more recent works have switched to cross-attention-based methods, which risk falling into the same efficiency scaling problems of the backbones they are upsampling. In this work, we demonstrate that iterative upsampling methods can still compete with cross-attention-based methods; moreover, they can achieve state-of-the-art performance with lower inference costs. We propose UPLiFT, an architecture for Universal Pixel-dense Lightweight Feature Transforms. We also propose an efficient Local Attender operator to overcome the limitations of prior iterative feature upsampling methods. This operator uses an alternative attentional pooling formulation defined fully locally. We show that our Local Attender allows UPLiFT to maintain stable features throughout upsampling, enabling state-of-the-art performance with lower inference costs than existing pixel-dense feature upsamplers. In addition, we apply UPLiFT to generative downstream tasks and show that it achieves competitive performance with state-of-the-art Coupled Flow Matching models for VAE feature upsampling. Altogether, UPLiFT offers a versatile and efficient approach to creating denser features.
☆ FlowMorph: Physics-Consistent Self-Supervision for Label-Free Single-Cell Mechanics in Microfluidic Videos
Mechanical properties of red blood cells (RBCs) are promising biomarkers for hematologic and systemic disease, motivating microfluidic assays that probe deformability at throughputs of $10^3$--$10^6$ cells per experiment. However, existing pipelines rely on supervised segmentation or hand-crafted kymographs and rarely encode the laminar Stokes-flow physics that governs RBC shape evolution. We introduce FlowMorph, a physics-consistent self-supervised framework that learns a label-free scalar mechanics proxy $k$ for each tracked RBC from short brightfield microfluidic videos. FlowMorph models each cell by a low-dimensional parametric contour, advances boundary points through a differentiable ''capsule-in-flow'' combining laminar advection and curvature-regularized elastic relaxation, and optimizes a loss coupling silhouette overlap, intra-cellular flow agreement, area conservation, wall constraints, and temporal smoothness, using only automatically derived silhouettes and optical flow. Across four public RBC microfluidic datasets, FlowMorph achieves a mean silhouette IoU of $0.905$ on physics-rich videos with provided velocity fields and markedly improves area conservation and wall violations over purely data-driven baselines. On $\sim 1.5\times 10^5$ centered sequences, the scalar $k$ alone separates tank-treading from flipping dynamics with an AUC of $0.863$. Using only $200$ real-time deformability cytometry (RT-DC) events for calibration, a monotone map $E=g(k)$ predicts apparent Young's modulus with a mean absolute error of $0.118$\,MPa on $600$ held-out cells and degrades gracefully under shifts in channel geometry, optics, and frame rate.
☆ DTC: A Deformable Transposed Convolution Module for Medical Image Segmentation
In medical image segmentation, particularly in UNet-like architectures, upsampling is primarily used to transform smaller feature maps into larger ones, enabling feature fusion between encoder and decoder features and supporting multi-scale prediction. Conventional upsampling methods, such as transposed convolution and linear interpolation, operate on fixed positions: transposed convolution applies kernel elements to predetermined pixel or voxel locations, while linear interpolation assigns values based on fixed coordinates in the original feature map. These fixed-position approaches may fail to capture structural information beyond predefined sampling positions and can lead to artifacts or loss of detail. Inspired by deformable convolutions, we propose a novel upsampling method, Deformable Transposed Convolution (DTC), which learns dynamic coordinates (i.e., sampling positions) to generate high-resolution feature maps for both 2D and 3D medical image segmentation tasks. Experiments on 3D (e.g., BTCV15) and 2D datasets (e.g., ISIC18, BUSI) demonstrate that DTC can be effectively integrated into existing medical image segmentation models, consistently improving the decoder's feature reconstruction and detail recovery capability.
☆ From Specialist to Generalist: Unlocking SAM's Learning Potential on Unlabeled Medical Images
Foundation models like the Segment Anything Model (SAM) show strong generalization, yet adapting them to medical images remains difficult due to domain shift, scarce labels, and the inability of Parameter-Efficient Fine-Tuning (PEFT) to exploit unlabeled data. While conventional models like U-Net excel in semi-supervised medical learning, their potential to assist a PEFT SAM has been largely overlooked. We introduce SC-SAM, a specialist-generalist framework where U-Net provides point-based prompts and pseudo-labels to guide SAM's adaptation, while SAM serves as a powerful generalist supervisor to regularize U-Net. This reciprocal guidance forms a bidirectional co-training loop that allows both models to effectively exploit the unlabeled data. Across prostate MRI and polyp segmentation benchmarks, our method achieves state-of-the-art results, outperforming other existing semi-supervised SAM variants and even medical foundation models like MedSAM, highlighting the value of specialist-generalist cooperation for label-efficient medical image segmentation. Our code is available at https://github.com/vnlvi2k3/SC-SAM.
comment: Accepted to ISBI 2026
☆ Dissipative Learning: A Framework for Viable Adaptive Systems
We propose a perspective in which learning is an intrinsically dissipative process. Forgetting and regularization are not heuristic add-ons but structural requirements for adaptive systems. Drawing on information theory, thermodynamics, and information geometry, we introduce the BEDS (Bayesian Emergent Dissipative Structures) framework, modeling learning as the evolution of compressed belief states under dissipation constraints. A central contribution is the Conditional Optimality Theorem, showing that Fisher-Rao regularization measuring change via information divergence rather than Euclidean distance is the unique thermodynamically optimal regularization strategy, achieving minimal dissipation. Euclidean regularization is shown to be structurally suboptimal. The framework unifies existing methods (Ridge, SIGReg, EMA, SAC) as special cases of a single governing equation. Within this view, overfitting corresponds to over-crystallization, while catastrophic forgetting reflects insufficient dissipation control. The framework distinguishes BEDS-crystallizable problems, where beliefs converge to stable equilibria, from BEDS-maintainable problems, which require continual adaptation. It extends naturally to continual and multi-agent systems, where viability, stability under adaptation and finite resources replaces asymptotic optimality as the primary criterion. Overall, this work reframes learning as maintaining viable belief states under dissipation constraints, providing a principled lens on forgetting, regularization, and stability.
comment: 68 pages, 14 figures
☆ RemEdit: Efficient Diffusion Editing with Riemannian Geometry
Controllable image generation is fundamental to the success of modern generative AI, yet it faces a critical trade-off between semantic fidelity and inference speed. The RemEdit diffusion-based framework addresses this trade-off with two synergistic innovations. First, for editing fidelity, we navigate the latent space as a Riemannian manifold. A mamba-based module efficiently learns the manifold's structure, enabling direct and accurate geodesic path computation for smooth semantic edits. This control is further refined by a dual-SLERP blending technique and a goal-aware prompt enrichment pass from a Vision-Language Model. Second, for additional acceleration, we introduce a novel task-specific attention pruning mechanism. A lightweight pruning head learns to retain tokens essential to the edit, enabling effective optimization without the semantic degradation common in content-agnostic approaches. RemEdit surpasses prior state-of-the-art editing frameworks while maintaining real-time performance under 50% pruning. Consequently, RemEdit establishes a new benchmark for practical and powerful image editing. Source code: https://www.github.com/eashanadhikarla/RemEdit.
☆ Benchmarking Direct Preference Optimization for Medical Large Vision-Language Models EACL 2026
Large Vision-Language Models (LVLMs) hold significant promise for medical applications, yet their deployment is often constrained by insufficient alignment and reliability. While Direct Preference Optimization (DPO) has emerged as a potent framework for refining model responses, its efficacy in high-stakes medical contexts remains underexplored, lacking the rigorous empirical groundwork necessary to guide future methodological advances. To bridge this gap, we present the first comprehensive examination of diverse DPO variants within the medical domain, evaluating nine distinct formulations across two medical LVLMs: LLaVA-Med and HuatuoGPT-Vision. Our results reveal several critical limitations: current DPO approaches often yield inconsistent gains over supervised fine-tuning, with their efficacy varying significantly across different tasks and backbones. Furthermore, they frequently fail to resolve fundamental visual misinterpretation errors. Building on these insights, we present a targeted preference construction strategy as a proof-of-concept that explicitly addresses visual misinterpretation errors frequently observed in existing DPO models. This design yields a 3.6% improvement over the strongest existing DPO baseline on visual question-answering tasks. To support future research, we release our complete framework, including all training data, model checkpoints, and our codebase at https://github.com/dmis-lab/med-vlm-dpo.
comment: EACL 2026 (Findings)
☆ treaming-dLLM: Accelerating Diffusion LLMs via Suffix Pruning and Dynamic Decoding
Diffusion Large Language Models (dLLMs) offer a compelling paradigm for natural language generation, leveraging parallel decoding and bidirectional attention to achieve superior global coherence compared to autoregressive models. While recent works have accelerated inference via KV cache reuse or heuristic decoding, they overlook the intrinsic inefficiencies within the block-wise diffusion process. Specifically, they suffer from spatial redundancy by modeling informative-sparse suffix regions uniformly and temporal inefficiency by applying fixed denoising schedules across all the decoding process. To address this, we propose Streaming-dLLM, a training-free framework that streamlines inference across both spatial and temporal dimensions. Spatially, we introduce attenuation guided suffix modeling to approximate the full context by pruning redundant mask tokens. Temporally, we employ a dynamic confidence aware strategy with an early exit mechanism, allowing the model to skip unnecessary iterations for converged tokens. Extensive experiments show that Streaming-dLLM achieves up to 68.2X speedup while maintaining generation quality, highlighting its effectiveness in diffusion decoding. The code is available at https://github.com/xiaoshideta/Streaming-dLLM.
comment: Tech report. Code is available at https://github.com/xiaoshideta/Streaming-dLLM
☆ Feature-Space Generative Models for One-Shot Class-Incremental Learning
Few-shot class-incremental learning (FSCIL) is a paradigm where a model, initially trained on a dataset of base classes, must adapt to an expanding problem space by recognizing novel classes with limited data. We focus on the challenging FSCIL setup where a model receives only a single sample (1-shot) for each novel class and no further training or model alterations are allowed after the base training phase. This makes generalization to novel classes particularly difficult. We propose a novel approach predicated on the hypothesis that base and novel class embeddings have structural similarity. We map the original embedding space into a residual space by subtracting the class prototype (i.e., the average class embedding) of input samples. Then, we leverage generative modeling with VAE or diffusion models to learn the multi-modal distribution of residuals over the base classes, and we use this as a valuable structural prior to improve recognition of novel classes. Our approach, Gen1S, consistently improves novel class recognition over the state of the art across multiple benchmarks and backbone architectures.
☆ Revisiting 3D Reconstruction Kernels as Low-Pass Filters
3D reconstruction is to recover 3D signals from the sampled discrete 2D pixels, with the goal to converge continuous 3D spaces. In this paper, we revisit 3D reconstruction from the perspective of signal processing, identifying the periodic spectral extension induced by discrete sampling as the fundamental challenge. Previous 3D reconstruction kernels, such as Gaussians, Exponential functions, and Student's t distributions, serve as the low pass filters to isolate the baseband spectrum. However, their unideal low-pass property results in the overlap of high-frequency components with low-frequency components in the discrete-time signal's spectrum. To this end, we introduce Jinc kernel with an instantaneous drop to zero magnitude exactly at the cutoff frequency, which is corresponding to the ideal low pass filters. As Jinc kernel suffers from low decay speed in the spatial domain, we further propose modulated kernels to strick an effective balance, and achieves superior rendering performance by reconciling spatial efficiency and frequency-domain fidelity. Experimental results have demonstrated the effectiveness of our Jinc and modulated kernels.
comment: 14 pages, 5 figures
☆ Masked Depth Modeling for Spatial Perception
Spatial visual perception is a fundamental requirement in physical-world applications like autonomous driving and robotic manipulation, driven by the need to interact with 3D environments. Capturing pixel-aligned metric depth using RGB-D cameras would be the most viable way, yet it usually faces obstacles posed by hardware limitations and challenging imaging conditions, especially in the presence of specular or texture-less surfaces. In this work, we argue that the inaccuracies from depth sensors can be viewed as "masked" signals that inherently reflect underlying geometric ambiguities. Building on this motivation, we present LingBot-Depth, a depth completion model which leverages visual context to refine depth maps through masked depth modeling and incorporates an automated data curation pipeline for scalable training. It is encouraging to see that our model outperforms top-tier RGB-D cameras in terms of both depth precision and pixel coverage. Experimental results on a range of downstream tasks further suggest that LingBot-Depth offers an aligned latent representation across RGB and depth modalities. We release the code, checkpoint, and 3M RGB-depth pairs (including 2M real data and 1M simulated data) to the community of spatial perception.
comment: Tech report, 19 pages, 15 figures and 4 tables
☆ PEAfowl: Perception-Enhanced Multi-View Vision-Language-Action for Bimanual Manipulation
Bimanual manipulation in cluttered scenes requires policies that remain stable under occlusions, viewpoint and scene variations. Existing vision-language-action models often fail to generalize because (i) multi-view features are fused via view-agnostic token concatenation, yielding weak 3D-consistent spatial understanding, and (ii) language is injected as global conditioning, resulting in coarse instruction grounding. In this paper, we introduce PEAfowl, a perception-enhanced multi-view VLA policy for bimanual manipulation. For spatial reasoning, PEAfowl predicts per-token depth distributions, performs differentiable 3D lifting, and aggregates local cross-view neighbors to form geometrically grounded, cross-view consistent representations. For instruction grounding, we propose to replace global conditioning with a Perceiver-style text-aware readout over frozen CLIP visual features, enabling iterative evidence accumulation. To overcome noisy and incomplete commodity depth without adding inference overhead, we apply training-only depth distillation from a pretrained depth teacher to supervise the depth-distribution head, providing perception front-end with geometry-aware priors. On RoboTwin 2.0 under domain-randomized setting, PEAfowl improves the strongest baseline by 23.0 pp in success rate, and real-robot experiments further demonstrate reliable sim-to-real transfer and consistent improvements from depth distillation. Project website: https://peafowlvla.github.io/.
♻ ☆ Cross-Level Sensor Fusion with Object Lists via Transformer for 3D Object Detection
In automotive sensor fusion systems, smart sensors and Vehicle-to-Everything (V2X) modules are commonly utilized. Sensor data from these systems are typically available only as processed object lists rather than raw sensor data from traditional sensors. Instead of processing other raw data separately and then fusing them at the object level, we propose an end-to-end cross-level fusion concept with Transformer, which integrates highly abstract object list information with raw camera images for 3D object detection. Object lists are fed into a Transformer as denoising queries and propagated together with learnable queries through the latter feature aggregation process. Additionally, a deformable Gaussian mask, derived from the positional and size dimensional priors from the object lists, is explicitly integrated into the Transformer decoder. This directs attention toward the target area of interest and accelerates model training convergence. Furthermore, as there is no public dataset containing object lists as a standalone modality, we propose an approach to generate pseudo object lists from ground-truth bounding boxes by simulating state noise and false positives and negatives. As the first work to conduct cross-level fusion, our approach shows substantial performance improvements over the vision-based baseline on the nuScenes dataset. It demonstrates its generalization capability over diverse noise levels of simulated object lists and real detectors.
comment: 6 pages, 3 figures, accepted at IV2025
♻ ☆ Mitigating the Modality Gap: Few-Shot Out-of-Distribution Detection with Multi-modal Prototypes and Image Bias Estimation WACV 2026
Existing vision-language model (VLM)-based methods for out-of-distribution (OOD) detection typically rely on similarity scores between input images and in-distribution (ID) text prototypes. However, the modality gap between image and text often results in high false positive rates, as OOD samples can exhibit high similarity to ID text prototypes. To mitigate the impact of this modality gap, we propose incorporating ID image prototypes along with ID text prototypes. We present theoretical analysis and empirical evidence indicating that this approach enhances VLM-based OOD detection performance without any additional training. To further reduce the gap between image and text, we introduce a novel few-shot tuning framework, SUPREME, comprising biased prompts generation (BPG) and image-text consistency (ITC) modules. BPG enhances image-text fusion and improves generalization by conditioning ID text prototypes on the Gaussian-based estimated image domain bias; ITC reduces the modality gap by minimizing intra- and inter-modal distances. Moreover, inspired by our theoretical and empirical findings, we introduce a novel OOD score $S_{\textit{GMP}}$, leveraging uni- and cross-modal similarities. Finally, we present extensive experiments to demonstrate that SUPREME consistently outperforms existing VLM-based OOD detection methods.
comment: WACV 2026
♻ ☆ Demographic-aware fine-grained classification of pediatric wrist fractures
Wrist pathology recognition from radiographs is challenging because normal appearance varies markedly with age and sex. In pediatric imaging, evolving carpal ossification and open growth plates can resemble fractures, while sex-dependent timing of physeal closure changes key visual cues. Image-only models therefore risk confusing developmental anatomy for pathology, especially in small medical datasets. We address this by framing wrist diagnosis as a fine-grained visual recognition (FGVR) task and introducing a multimodal transformer that fuses X-rays with demographic metadata (age and sex). Unlike prior work, this is the first study to integrate metadata for wrist pathology recognition, and we further show that fine-grained pretraining transfers better than coarse ImageNet initialization. Our approach improves accuracy by 2% on a small curated dataset and by over 10% on a larger fracture dataset.
♻ ☆ Inconsistency Masks: Harnessing Model Disagreement for Stable Semi-Supervised Segmentation
A primary challenge in semi-supervised learning (SSL) for segmentation is the confirmation bias from noisy pseudo-labels, which destabilizes training and degrades performance. We propose Inconsistency Masks (IM), a framework that reframes model disagreement not as noise to be averaged away, but as a valuable signal for identifying uncertainty. IM leverages an ensemble of teacher models to generate a mask that explicitly delineates regions where predictions diverge. By filtering these inconsistent areas from input-pseudo-label pairs, our method effectively mitigates the cycle of error propagation common in both continuous and iterative self-training paradigms. Extensive experiments on the Cityscapes benchmark demonstrate IM's effectiveness as a general enhancement framework: when paired with leading approaches like iMAS, U$^2$PL, and UniMatch, our method consistently boosts accuracy, achieving superior benchmarks across ResNet-50 and DINOv2 backbones, and even improving distilled architectures like SegKC. Furthermore, the method's robustness is confirmed in resource-constrained scenarios where pre-trained weights are unavailable. On three additional diverse datasets from medical and underwater domains trained entirely from scratch, IM significantly outperforms standard SSL baselines. Notably, the IM framework is dataset-agnostic, seamlessly handling binary, multi-class, and complex multi-label tasks by operating on discretized predictions. By prioritizing training stability, IM offers a generalizable and robust solution for semi-supervised segmentation, particularly in specialized areas lacking large-scale pre-training data. The full code is available at: https://github.com/MichaelVorndran/InconsistencyMasks
♻ ☆ CARE Transformer: Mobile-Friendly Linear Visual Transformer via Decoupled Dual Interaction
Recently, large efforts have been made to design efficient linear-complexity visual Transformers. However, current linear attention models are generally unsuitable to be deployed in resource-constrained mobile devices, due to suffering from either few efficiency gains or significant accuracy drops. In this paper, we propose a new de\textbf{C}oupled du\textbf{A}l-interactive linea\textbf{R} att\textbf{E}ntion (CARE) mechanism, revealing that features' decoupling and interaction can fully unleash the power of linear attention. We first propose an asymmetrical feature decoupling strategy that asymmetrically decouples the learning process for local inductive bias and long-range dependencies, thereby preserving sufficient local and global information while effectively enhancing the efficiency of models. Then, a dynamic memory unit is employed to maintain critical information along the network pipeline. Moreover, we design a dual interaction module to effectively facilitate interaction between local inductive bias and long-range information as well as among features at different layers. By adopting a decoupled learning way and fully exploiting complementarity across features, our method can achieve both high efficiency and accuracy. Extensive experiments on ImageNet-1K, COCO, and ADE20K datasets demonstrate the effectiveness of our approach, e.g., achieving $78.4/82.1\%$ top-1 accuracy on ImagegNet-1K at the cost of only $0.7/1.9$ GMACs. Codes will be released on \href{https://github.com/zhouyuan888888/CARE-Transformer}{https://github.com/zhouyuan888888/CARE-Transformer}.
comment: https://github.com/zhouyuan888888/CARE-Transformer
♻ ☆ From Darkness to Detail: Frequency-Aware SSMs for Low-Light Vision
Low-light image enhancement remains a persistent challenge in computer vision, where state-of-the-art models are often hampered by hardware constraints and computational inefficiency, particularly at high resolutions. While foundational architectures like transformers and diffusion models have advanced the field, their computational complexity limits their deployment on edge devices. We introduce ExpoMamba, a novel architecture that integrates a frequency-aware state-space model within a modified U-Net. ExpoMamba is designed to address mixed-exposure challenges by decoupling the modeling of amplitude (intensity) and phase (structure) in the frequency domain. This allows for targeted enhancement, making it highly effective for real-time applications, including downstream tasks like object detection and segmentation. Our experiments on six benchmark datasets show that ExpoMamba is up to 2-3x faster than competing models and achieves a 6.8\% PSNR improvement, establishing a new state-of-the-art in efficient, high-quality low-light enhancement. Source code: https://www.github.com/eashanadhikarla/ExpoMamba.
♻ ☆ MoE3D: A Mixture-of-Experts Module for 3D Reconstruction
We propose a simple yet effective approach to enhance the performance of feed-forward 3D reconstruction models. Existing methods often struggle near depth discontinuities, where standard regression losses encourage spatial averaging and thus blur sharp boundaries. To address this issue, we introduce a mixture-of-experts formulation that handles uncertainty at depth boundaries by combining multiple smooth depth predictions. A softmax weighting head dynamically selects among these hypotheses on a per-pixel basis. By integrating our mixture model into a pre-trained state-of-the-art 3D model, we achieve a substantial reduction of boundary artifacts and gains in overall reconstruction accuracy. Notably, our approach is highly compute efficient, delivering generalizable improvements even when fine-tuned on a small subset of training data while incurring only negligible additional inference computation, suggesting a promising direction for lightweight and accurate 3D reconstruction.
♻ ☆ Towards Robust Evaluation of Visual Activity Recognition: Resolving Verb Ambiguity with Sense Clustering EACL 2026
Evaluating visual activity recognition systems is challenging due to inherent ambiguities in verb semantics and image interpretation. When describing actions in images, synonymous verbs can refer to the same event (e.g., brushing vs. grooming), while different perspectives can lead to equally valid but distinct verb choices (e.g., piloting vs. operating). Standard exact-match evaluation, which relies on a single gold answer, fails to capture these ambiguities, resulting in an incomplete assessment of model performance. To address this, we propose a vision-language clustering framework that constructs verb sense clusters, providing a more robust evaluation. Our analysis of the imSitu dataset shows that each image maps to around four sense clusters, with each cluster representing a distinct perspective of the image. We evaluate multiple activity recognition models and compare our cluster-based evaluation with standard evaluation methods. Additionally, our human alignment analysis suggests that the cluster-based evaluation better aligns with human judgments, offering a more nuanced assessment of model performance.
comment: Accepted to Findings of the Association for Computational Linguistics: EACL 2026
♻ ☆ Photography Perspective Composition: Towards Aesthetic Perspective Recommendation NeurIPS 2025
Traditional photography composition approaches are dominated by 2D cropping-based methods. However, these methods fall short when scenes contain poorly arranged subjects. Professional photographers often employ perspective adjustment as a form of 3D recomposition, modifying the projected 2D relationships between subjects while maintaining their actual spatial positions to achieve better compositional balance. Inspired by this artistic practice, we propose photography perspective composition (PPC), extending beyond traditional cropping-based methods. However, implementing the PPC faces significant challenges: the scarcity of perspective transformation datasets and undefined assessment criteria for perspective quality. To address these challenges, we present three key contributions: (1) An automated framework for building PPC datasets through expert photographs. (2) A video generation approach that demonstrates the transformation process from less favorable to aesthetically enhanced perspectives. (3) A perspective quality assessment (PQA) model constructed based on human performance. Our approach is concise and requires no additional prompt instructions or camera trajectories, helping and guiding ordinary users to enhance their composition skills.
comment: Accepted at NeurIPS 2025
♻ ☆ FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views
We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images (i.e., as few as 2-8 inputs), which is a challenging yet practical setting in real-world applications. Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes. Concretely, FLARE starts with camera pose estimation, whose results condition the subsequent learning of geometric structure and appearance, optimized through the objectives of geometry reconstruction and novel-view synthesis. Utilizing large-scale public datasets for training, our method delivers state-of-the-art performance in the tasks of pose estimation, geometry reconstruction, and novel view synthesis, while maintaining the inference efficiency (i.e., less than 0.5 seconds). The project page and code can be found at: https://zhanghe3z.github.io/FLARE/
♻ ☆ Unified-EGformer: Exposure Guided Lightweight Transformer for Mixed-Exposure Image Enhancement
Despite recent strides made by AI in image processing, the issue of mixed exposure, pivotal in many real-world scenarios like surveillance and photography, remains inadequately addressed. Traditional image enhancement techniques and current transformer models are limited with primary focus on either overexposure or underexposure. To bridge this gap, we introduce the Unified-Exposure Guided Transformer (Unified-EGformer). Our proposed solution is built upon advanced transformer architectures, equipped with local pixel-level refinement and global refinement blocks for color correction and image-wide adjustments. We employ a guided attention mechanism to precisely identify exposure-compromised regions, ensuring its adaptability across various real-world conditions. U-EGformer, with a lightweight design featuring a memory footprint (peak memory) of only $\sim$1134 MB (0.1 Million parameters) and an inference time of 95 ms (9.61x faster than the average), is a viable choice for real-time applications such as surveillance and autonomous navigation. Additionally, our model is highly generalizable, requiring minimal fine-tuning to handle multiple tasks and datasets with a single architecture.
comment: Under submission
Information Retrieval
☆ Post-Training Denoising of User Profiles with LLMs in Collaborative Filtering Recommendation ECIR 2026
Implicit feedback -- the main data source for training Recommender Systems (RSs) -- is inherently noisy and has been shown to negatively affect recommendation effectiveness. Denoising has been proposed as a method for removing noisy implicit feedback and improving recommendations. Prior work has focused on in-training denoising, however this requires additional data, changes to the model architecture and training procedure or fine-tuning, all of which can be costly and data hungry. In this work, we focus on post-training denoising. Different from in-training denoising, post-training denoising does not involve changing the architecture of the model nor its training procedure, and does not require additional data. Specifically, we present a method for post-training denoising user profiles using Large Language Models (LLMs) for Collaborative Filtering (CF) recommendations. Our approach prompts LLMs with (i) a user profile (user interactions), (ii) a candidate item, and (iii) its rank as given by the CF recommender, and asks the LLM to remove items from the user profile to improve the rank of the candidate item. Experiments with a state-of-the-art CF recommender and 4 open and closed source LLMs in 3 datasets show that our denoising yields improvements up to 13% in effectiveness over the original user profiles. Our code is available at https://github.com/edervishaj/denoising-user-profiles-LLM.
comment: Accepted at the 48th European Conference on Information Retrieval (ECIR 2026)
☆ Self-Manager: Parallel Agent Loop for Long-form Deep Research
Long-form deep research requires multi-faceted investigations over extended horizons to get a comprehensive report. When handling such complex tasks, existing agents manage context at the subtask level to overcome linear context accumulation and information loss. However, they still adhere to a single context window and sequential execution paradigm, which results in mutual interference and blocking behavior, restricting scalability and adaptability. To address this issue, this paper introduces Self-Manager, a parallel agent loop that enables asynchronous and concurrent execution. The main thread can create multiple subthreads, each with its own isolated context, and manage them iteratively through Thread Control Blocks, allowing for more focused and flexible parallel agent execution. To assess its effectiveness, we benchmark Self-Manager on DeepResearch Bench, where it consistently outperforms existing single-agent loop baselines across all metrics. Furthermore, we conduct extensive analytical experiments to demonstrate the necessity of Self-Manager's design choices, as well as its advantages in contextual capacity, efficiency, and generalization.
☆ Unleashing the Potential of Sparse Attention on Long-term Behaviors for CTR Prediction
In recent years, the success of large language models (LLMs) has driven the exploration of scaling laws in recommender systems. However, models that demonstrate scaling laws are actually challenging to deploy in industrial settings for modeling long sequences of user behaviors, due to the high computational complexity of the standard self-attention mechanism. Despite various sparse self-attention mechanisms proposed in other fields, they are not fully suited for recommendation scenarios. This is because user behaviors exhibit personalization and temporal characteristics: different users have distinct behavior patterns, and these patterns change over time, with data from these users differing significantly from data in other fields in terms of distribution. To address these challenges, we propose SparseCTR, an efficient and effective model specifically designed for long-term behaviors of users. To be precise, we first segment behavior sequences into chunks in a personalized manner to avoid separating continuous behaviors and enable parallel processing of sequences. Based on these chunks, we propose a three-branch sparse self-attention mechanism to jointly identify users' global interests, interest transitions, and short-term interests. Furthermore, we design a composite relative temporal encoding via learnable, head-specific bias coefficients, better capturing sequential and periodic relationships among user behaviors. Extensive experimental results show that SparseCTR not only improves efficiency but also outperforms state-of-the-art methods. More importantly, it exhibits an obvious scaling law phenomenon, maintaining performance improvements across three orders of magnitude in FLOPs. In online A/B testing, SparseCTR increased CTR by 1.72\% and CPM by 1.41\%. Our source code is available at https://github.com/laiweijiang/SparseCTR.
☆ OwlerLite: Scope- and Freshness-Aware Web Retrieval for LLM Assistants
Browser-based language models often use retrieval-augmented generation (RAG) but typically rely on fixed, outdated indices that give users no control over which sources are consulted. This can lead to answers that mix trusted and untrusted content or draw on stale information. We present OwlerLite, a browser-based RAG system that makes user-defined scopes and data freshness central to retrieval. Users define reusable scopes-sets of web pages or sources-and select them when querying. A freshness-aware crawler monitors live pages, uses a semantic change detector to identify meaningful updates, and selectively re-indexes changed content. OwlerLite integrates text relevance, scope choice, and recency into a unified retrieval model. Implemented as a browser extension, it represents a step toward more controllable and trustworthy web assistants.
☆ Token-Weighted Multi-Target Learning for Generative Recommenders with Curriculum Learning
Generative recommender systems have recently attracted attention by formulating next-item prediction as an autoregressive sequence generation task. However, most existing methods optimize standard next-token likelihood and implicitly treat all tokens as equally informative, which is misaligned with semantic-ID-based generation. Accordingly, we propose two complementary information-gain-based token-weighting strategies tailored to generative recommendation with semantic IDs. Front-Greater Weighting captures conditional semantic information gain by prioritizing early tokens that most effectively reduce candidate-item uncertainty given their prefixes and encode coarse semantics. Frequency Weighting models marginal information gain under long-tailed item and token distributions, upweighting rare tokens to counteract popularity bias. Beyond individual strategies, we introduce a multi-target learning framework with curriculum learning that jointly optimizes the two token-weighted objectives alongside standard likelihood, enabling stable optimization and adaptive emphasis across training stages. Extensive experiments on benchmark datasets show that our method consistently outperforms strong baselines and existing token-weighting approaches, with improved robustness, strong generalization across different semantic-ID constructions, and substantial gains on both head and tail items. Code is available at https://github.com/CHIUWEINING/Token-Weighted-Multi-Target-Learning-for-Generative-Recommenders-with-Curriculum-Learning.
comment: 11 pages, 5 figures
☆ LegalMALR:Multi-Agent Query Understanding and LLM-Based Reranking for Chinese Statute Retrieval
Statute retrieval is essential for legal assistance and judicial decision support, yet real-world legal queries are often implicit, multi-issue, and expressed in colloquial or underspecified forms. These characteristics make it difficult for conventional retrieval-augmented generation pipelines to recover the statutory elements required for accurate retrieval. Dense retrievers focus primarily on the literal surface form of the query, whereas lightweight rerankers lack the legal-reasoning capacity needed to assess statutory applicability. We present LegalMALR, a retrieval framework that integrates a Multi-Agent Query Understanding System (MAS) with a zero-shot large-language-model-based reranking module (LLM Reranker). MAS generates diverse, legally grounded reformulations and conducts iterative dense retrieval to broaden candidate coverage. To stabilise the stochastic behaviour of LLM-generated rewrites, we optimise a unified MAS policy using Generalized Reinforcement Policy Optimization(GRPO). The accumulated candidate set is subsequently evaluated by the LLM Reranker, which performs natural-language legal reasoning to produce the final ranking. We further construct CSAID, a dataset of 118 difficult Chinese legal queries annotated with multiple statutory labels, and evaluate LegalMALR on both CSAID and the public STARD benchmark. Experiments show that LegalMALR substantially outperforms strong Retrieval-augmented generation(RAG) baselines in both in-distribution and out-of-distribution settings, demonstrating the effectiveness of combining multi-perspective query interpretation, reinforcement-based policy optimisation, and large-model reranking for statute retrieval.
comment: 31pages, 4 figures
☆ Segment Length Matters: A Study of Segment Lengths on Audio Fingerprinting Performance
Audio fingerprinting provides an identifiable representation of acoustic signals, which can be later used for identification and retrieval systems. To obtain a discriminative representation, the input audio is usually segmented into shorter time intervals, allowing local acoustic features to be extracted and analyzed. Modern neural approaches typically operate on short, fixed-duration audio segments, yet the choice of segment duration is often made heuristically and rarely examined in depth. In this paper, we study how segment length affects audio fingerprinting performance. We extend an existing neural fingerprinting architecture to adopt various segment lengths and evaluate retrieval accuracy across different segment lengths and query durations. Our results show that short segment lengths (0.5-second) generally achieve better performance. Moreover, we evaluate LLM capacity in recommending the best segment length, which shows that GPT-5-mini consistently gives the best suggestions across five considerations among three studied LLMs. Our findings provide practical guidance for selecting segment duration in large-scale neural audio retrieval systems.
♻ ☆ Identifying and Upweighting Power-Niche Users to Mitigate Popularity Bias in Recommendations WWW 2026
Recommender systems have been shown to exhibit popularity bias by over-recommending popular items and under-recommending relevant niche items. We seek to understand niche users in benchmark recommendation datasets as a step toward mitigating popularity bias. We find that, compared to mainstream users, niche-preferring users exhibit a longer-tailed activity-level distribution, indicating the existence of users who both prefer niche items and exhibit high activity levels on platforms. We partition users along two axes: (1) activity level ("power" vs. "light") and (2) item-popularity preference ("mainstream" vs. "niche"), and show that in three benchmark datasets, the number of power-niche users (high activity and niche preference) is statistically significantly larger than expected. We also find that interaction data from power-niche users is especially valuable for improving recommendations for not only niche but also mainstream users. In contrast, many existing popularity bias mitigation methods have focused on upweighting niche users regardless of activity level. Motivated by the value of power-niche user data, we propose PAIR (Popularity-and-Activity-Informed Reweighting), a framework for reweighting the Bayesian Personalized Ranking (BPR) loss that simultaneously reweights based on user activity level and item popularity, upweighting power-niche users the most. We instantiate the framework on both deep and shallow collaborative filtering models, and experiments on benchmark datasets show that PAIR reduces popularity bias and can increase overall performance. Although existing popularity-bias mitigation methods yield a trade-off between performance and bias, our results suggest that considering both user activity level and popularity preference leads to Pareto-dominant performance.
comment: Accepted for publication at WWW 2026
♻ ☆ PairSem: LLM-Guided Pairwise Semantic Matching for Scientific Document Retrieval WWW 2026
Scientific document retrieval is a critical task for enabling knowledge discovery and supporting research across diverse domains. However, existing dense retrieval methods often struggle to capture fine-grained scientific concepts in texts due to their reliance on holistic embeddings and limited domain understanding. Recent approaches leverage large language models (LLMs) to extract fine-grained semantic entities and enhance semantic matching, but they typically treat entities as independent fragments, overlooking the multi-faceted nature of scientific concepts. To address this limitation, we propose Pairwise Semantic Matching (PairSem), a framework that represents relevant semantics as entity-aspect pairs, capturing complex, multi-faceted scientific concepts. PairSem is unsupervised, base retriever-agnostic, and plug-and-play, enabling precise and context-aware matching without requiring query-document labels or entity annotations. Extensive experiments on multiple datasets and retrievers demonstrate that PairSem significantly improves retrieval performance, highlighting the importance of modeling multi-aspect semantics in scientific information retrieval.
comment: WWW 2026
♻ ☆ Does LLM Focus on the Right Words? Mitigating Context Bias in LLM-based Recommenders WWW2026
Large language models (LLMs), owing to their extensive open-domain knowledge and semantic reasoning capabilities, have been increasingly integrated into recommender systems (RS). However, a substantial gap remains between the pre-training objectives of LLMs and the specific requirements of recommendation tasks. To address this gap, supervised fine-tuning (SFT) is commonly performed on specially curated recommendation datasets to further enhance their predictive ability. Despite its success, SFT exhibits a critical limitation: it induces Context Bias, whereby the model over-relies on auxiliary tokens, such as task descriptions and prefix-generated tokens, while underutilizing core user interaction tokens that encode user-specific preferences. This bias not only undermines recommendation accuracy but also raises unfairness concerns. To address this issue, we propose Group Distributionally Robust Optimization-based Tuning (GDRT), a novel fine-tuning paradigm that enforces consistent model performance across token groups with varying degrees of relevance to auxiliary tokens. By adaptively upweighting underperforming groups, typically those weakly correlated with auxiliary tokens, GDRT shifts the model's attention from superficial auxiliary cues to informative user interaction tokens, thereby mitigating context bias. Extensive experiments conducted on three public datasets demonstrate that GDRT effectively mitigates context bias, yielding substantial improvements in recommendation accuracy (with an average NDCG@10 gain of 24.29%) and significantly enhancing recommendation fairness. The code is available at https://github.com/WANGBohaO-jpg/GDRT.
comment: Accepted by WWW2026
♻ ☆ DiffuGR: Generative Document Retrieval with Diffusion Language Models
Generative retrieval (GR) reframes document retrieval as an end-to-end task of generating sequential document identifiers (DocIDs). Existing GR methods predominantly rely on left-to-right auto-regressive decoding, which suffers from two fundamental limitations: (i) a \emph{mismatch between DocID generation and natural language generation}, whereby an incorrect DocID token generated at an early step can lead to entirely erroneous retrieval; and (ii) an \emph{inability to dynamically balance the trade-off between retrieval efficiency and accuracy}, which is crucial for practical applications. To tackle these challenges, we propose generative document retrieval with diffusion language models, termed \emph{DiffuGR}. DiffuGR formulates DocID generation as a discrete diffusion process. During training, DocIDs are corrupted through a stochastic masking process, and a diffusion language model is trained to recover them under a retrieval-aware objective. For inference, DiffuGR generates DocID tokens in parallel and refines them through a controllable number of denoising steps. Unlike auto-regressive decoding, DiffuGR introduce \emph{a novel mechanism to first generate plenty of confident DocID tokens and then refine the generation through diffusion-based denoising}. Moreover, DiffuGR also offers \emph{explicit runtime control over the quality-latency tradeoff}. Extensive experiments on widely-applied retrieval benchmarks show that DiffuGR outperforms strong auto-regressive generative retrievers. Additionally, we verify that DiffuGR achieves flexible control over the quality-latency trade-off via variable denoising budgets.
♻ ☆ MEIC-DT: Memory-Efficient Incremental Clustering for Long-Text Coreference Resolution with Dual-Threshold Constraints
In the era of large language models (LLMs), supervised neural methods remain the state-of-the-art (SOTA) for Coreference Resolution. Yet, their full potential is underexplored, particularly in incremental clustering, which faces the critical challenge of balancing efficiency with performance for long texts. To address the limitation, we propose \textbf{MEIC-DT}, a novel dual-threshold, memory-efficient incremental clustering approach based on a lightweight Transformer. MEIC-DT features a dual-threshold constraint mechanism designed to precisely control the Transformer's input scale within a predefined memory budget. This mechanism incorporates a Statistics-Aware Eviction Strategy (\textbf{SAES}), which utilizes distinct statistical profiles from the training and inference phases for intelligent cache management. Furthermore, we introduce an Internal Regularization Policy (\textbf{IRP}) that strategically condenses clusters by selecting the most representative mentions, thereby preserving semantic integrity. Extensive experiments on common benchmarks demonstrate that MEIC-DT achieves highly competitive coreference performance under stringent memory constraints.
Multimedia
☆ RemEdit: Efficient Diffusion Editing with Riemannian Geometry
Controllable image generation is fundamental to the success of modern generative AI, yet it faces a critical trade-off between semantic fidelity and inference speed. The RemEdit diffusion-based framework addresses this trade-off with two synergistic innovations. First, for editing fidelity, we navigate the latent space as a Riemannian manifold. A mamba-based module efficiently learns the manifold's structure, enabling direct and accurate geodesic path computation for smooth semantic edits. This control is further refined by a dual-SLERP blending technique and a goal-aware prompt enrichment pass from a Vision-Language Model. Second, for additional acceleration, we introduce a novel task-specific attention pruning mechanism. A lightweight pruning head learns to retain tokens essential to the edit, enabling effective optimization without the semantic degradation common in content-agnostic approaches. RemEdit surpasses prior state-of-the-art editing frameworks while maintaining real-time performance under 50% pruning. Consequently, RemEdit establishes a new benchmark for practical and powerful image editing. Source code: https://www.github.com/eashanadhikarla/RemEdit.
☆ AVMeme Exam: A Multimodal Multilingual Multicultural Benchmark for LLMs' Contextual and Cultural Knowledge and Thinking
Internet audio-visual clips convey meaning through time-varying sound and motion, which extend beyond what text alone can represent. To examine whether AI models can understand such signals in human cultural contexts, we introduce AVMeme Exam, a human-curated benchmark of over one thousand iconic Internet sounds and videos spanning speech, songs, music, and sound effects. Each meme is paired with a unique Q&A assessing levels of understanding from surface content to context and emotion to usage and world knowledge, along with metadata such as original year, transcript, summary, and sensitivity. We systematically evaluate state-of-the-art multimodal large language models (MLLMs) alongside human participants using this benchmark. Our results reveal a consistent limitation: current models perform poorly on textless music and sound effects, and struggle to think in context and in culture compared to surface content. These findings highlight a key gap in human-aligned multimodal intelligence and call for models that can perceive contextually and culturally beyond the surface of what they hear and see. Project page: avmemeexam.github.io/public
comment: avmemeexam.github.io/public
♻ ☆ From Darkness to Detail: Frequency-Aware SSMs for Low-Light Vision
Low-light image enhancement remains a persistent challenge in computer vision, where state-of-the-art models are often hampered by hardware constraints and computational inefficiency, particularly at high resolutions. While foundational architectures like transformers and diffusion models have advanced the field, their computational complexity limits their deployment on edge devices. We introduce ExpoMamba, a novel architecture that integrates a frequency-aware state-space model within a modified U-Net. ExpoMamba is designed to address mixed-exposure challenges by decoupling the modeling of amplitude (intensity) and phase (structure) in the frequency domain. This allows for targeted enhancement, making it highly effective for real-time applications, including downstream tasks like object detection and segmentation. Our experiments on six benchmark datasets show that ExpoMamba is up to 2-3x faster than competing models and achieves a 6.8\% PSNR improvement, establishing a new state-of-the-art in efficient, high-quality low-light enhancement. Source code: https://www.github.com/eashanadhikarla/ExpoMamba.
♻ ☆ Communicate Less, Synthesize the Rest: Latency-aware Intent-based Generative Semantic Multicasting with Diffusion Models
Generative diffusion models (GDMs) have recently shown great success in synthesizing multimedia signals with high perceptual quality, enabling highly efficient semantic communications in future wireless networks. In this paper, we develop an intent-aware generative semantic multicasting framework utilizing pre-trained diffusion models. In the proposed framework, the transmitter decomposes the source signal into multiple semantic classes based on the multi-user intent, i.e. each user is assumed to be interested in details of only a subset of the semantic classes. To better utilize the wireless resources, the transmitter sends to each user only its intended classes, and multicasts a highly compressed semantic map to all users over shared wireless resources that allows them to locally synthesize the other classes, namely non-intended classes, utilizing pre-trained diffusion models. The signal retrieved at each user is thereby partially reconstructed and partially synthesized utilizing the received semantic map. We design a communication/computation-aware scheme for per-class adaptation of the communication parameters, such as the transmission power and compression rate, to minimize the total latency of retrieving signals at multiple receivers, tailored to the prevailing channel conditions as well as the users' reconstruction/synthesis distortion/perception requirements. The simulation results demonstrate significantly reduced per-user latency compared with non-generative and intent-unaware multicasting benchmarks while maintaining high perceptual quality of the signals retrieved at the users.
comment: Accepted at IEEE Transactions on Vehicular Technology
Information Retrieval
☆ Memento: Towards Proactive Visualization of Everyday Memories with Personal Wearable AR Assistant
We introduce Memento, a conversational AR assistant that permanently captures and memorizes user's verbal queries alongside their spatiotemporal and activity contexts. By storing these "memories," Memento discovers connections between users' recurring interests and the contexts that trigger them. Upon detection of similar or identical spatiotemporal activity, Memento proactively recalls user interests and delivers up-to-date responses through AR, seamlessly integrating AR experience into their daily routine. Unlike prior work, each interaction in Memento is not a transient event, but a connected series of interactions with coherent long--term perspective, tailored to the user's broader multimodal (visual, spatial, temporal, and embodied) context. We conduct preliminary evaluation through user feedbacks with participants of diverse expertise in immersive apps, and explore the value of proactive context-aware AR assistant in everyday settings. We share our findings and challenges in designing a proactive, context-aware AR system.
comment: 8 pages, 5 figures. This is the author's version of the article that will appear at the IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (IEEE VRW) 2026
☆ Agentic Search in the Wild: Intents and Trajectory Dynamics from 14M+ Real Search Requests
LLM-powered search agents are increasingly being used for multi-step information seeking tasks, yet the IR community lacks empirical understanding of how agentic search sessions unfold and how retrieved evidence is used. This paper presents a large-scale log analysis of agentic search based on 14.44M search requests (3.97M sessions) collected from DeepResearchGym, i.e. an open-source search API accessed by external agentic clients. We sessionize the logs, assign session-level intents and step-wise query-reformulation labels using LLM-based annotation, and propose Context-driven Term Adoption Rate (CTAR) to quantify whether newly introduced query terms are traceable to previously retrieved evidence. Our analyses reveal distinctive behavioral patterns. First, over 90% of multi-turn sessions contain at most ten steps, and 89% of inter-step intervals fall under one minute. Second, behavior varies by intent. Fact-seeking sessions exhibit high repetition that increases over time, while sessions requiring reasoning sustain broader exploration. Third, agents reuse evidence across steps. On average, 54% of newly introduced query terms appear in the accumulated evidence context, with contributions from earlier steps beyond the most recent retrieval. The findings suggest that agentic search may benefit from repetition-aware early stopping, intent-adaptive retrieval budgets, and explicit cross-step context tracking. We plan to release the anonymized logs to support future research.
☆ Why They Link: An Intent Taxonomy for Including Hyperlinks in Social Posts
URLs serve as bridges between social media platforms and the broader web, linking user-generated content to external information resources. On Twitter (X), approximately one in five tweets contains at least one URL, underscoring their central role in information dissemination. While prior studies have examined the motivations of authors who share URLs, such author-centered intentions are difficult to observe in practice. To enable broader downstream use, this work investigates reader-centered interpretations, i.e., how users perceive the intentions behind hyperlinks included in posts. We develop an intent taxonomy for including hyperlinks in social posts through a hybrid approach that begins with a bottom-up, data-driven process using large-scale crowdsourced annotations, and is then refined using large language model assistance to generate descriptive category names and precise definitions. The final taxonomy comprises 6 top-level categories and 26 fine-grained intention classes, capturing diverse communicative purposes. Applying this taxonomy, we annotate and analyze 1000 user posts, revealing that advertising, arguing, and sharing are the most prevalent intentions. This resulting taxonomy provides a foundation for intent-aware information retrieval and NLP applications, enabling more accurate retrieval, recommendation, and understanding of social media content.
comment: 10 pages including references, 5 figures,
☆ Improving User Privacy in Personalized Generation: Client-Side Retrieval-Augmented Modification of Server-Side Generated Speculations
Personalization is crucial for aligning Large Language Model (LLM) outputs with individual user preferences and background knowledge. State-of-the-art solutions are based on retrieval augmentation, where relevant context from a user profile is retrieved for LLM consumption. These methods deal with a trade-off between exposing retrieved private data to cloud providers and relying on less capable local models. We introduce $P^3$, an interactive framework for high-quality personalization without revealing private profiles to server-side LLMs. In $P^3$, a large server-side model generates a sequence of $k$ draft tokens based solely on the user query, while a small client-side model, with retrieval access to the user's private profile, evaluates and modifies these drafts to better reflect user preferences. This process repeats until an end token is generated. Experiments on LaMP-QA, a recent benchmark consisting of three personalized question answering datasets, show that $P^3$ consistently outperforms both non-personalized server-side and personalized client-side baselines, achieving statistically significant improvements of $7.4%$ to $9%$ on average. Importantly, $P^3$ recovers $90.3%$ to $95.7%$ of the utility of a ``leaky'' upper-bound scenario in which the full profile is exposed to the large server-side model. Privacy analyses, including linkability and attribute inference attacks, indicate that $P^3$ preserves the privacy of a non-personalized server-side model, introducing only marginal additional leakage ($1.5%$--$3.5%$) compared to submitting a query without any personal context. Additionally, the framework is efficient for edge deployment, with the client-side model generating only $9.2%$ of the total tokens. These results demonstrate that $P^3$ provides a practical, effective solution for personalized generation with improved privacy.
☆ Real-Time Trend Prediction via Continually-Aligned LLM Query Generation
Trending news detection in low-traffic search environments faces a fundamental cold-start problem, where a lack of query volume prevents systems from identifying emerging or long-tail trends. Existing methods relying on keyword frequency or query spikes are inherently slow and ineffective in these sparse settings, lagging behind real-world shifts in attention. We introduce RTTP, a novel Real-Time Trending Prediction framework that generates search queries directly from news content instead of waiting for users to issue them. RTTP leverages a continual learning LLM (CL-LLM) that converts posts into search-style queries and scores them using engagement strength + creator authority, enabling early trend surfacing before search volume forms. To ensure adaptation without degrading reasoning, we propose Mix-Policy DPO, a new preference-based continual learning approach that combines on-policy stability with off-policy novelty to mitigate catastrophic forgetting during model upgrades. Deployed at production scale on Facebook and Meta AI products, RTTP delivers +91.4% improvement in tail-trend detection precision@500 and +19% query generation accuracy over industry baselines, while sustaining stable performance after multi-week online training. This work demonstrates that LLM-generated synthetic search signals, when aligned and continually updated, unlock timely trend understanding in low-traffic search environments.
☆ Pipeline Inspection, Visualization, and Interoperability in PyTerrier ECIR2026
PyTerrier provides a declarative framework for building and experimenting with Information Retrieval (IR) pipelines. In this demonstration, we highlight several recent pipeline operations that improve their ability to be programmatically inspected, visualized, and integrated with other tools (via the Model Context Protocol, MCP). These capabilities aim to make it easier for researchers, students, and AI agents to understand and use a wide array of IR pipelines.
comment: This preprint has not undergone peer review (when applicable) or any post-submission improvements or corrections. The Version of Record of this contribution is published in ECIR2026 (Part IV) Advances in Information Retrieval
☆ To Case or Not to Case: An Empirical Study in Learned Sparse Retrieval ECIR2026
Learned Sparse Retrieval (LSR) methods construct sparse lexical representations of queries and documents that can be efficiently searched using inverted indexes. Existing LSR approaches have relied almost exclusively on uncased backbone models, whose vocabularies exclude case-sensitive distinctions, thereby reducing vocabulary mismatch. However, the most recent state-of-the-art language models are only available in cased versions. Despite this shift, the impact of backbone model casing on LSR has not been studied, potentially posing a risk to the viability of the method going forward. To fill this gap, we systematically evaluate paired cased and uncased versions of the same backbone models across multiple datasets to assess their suitability for LSR. Our findings show that LSR models with cased backbone models by default perform substantially worse than their uncased counterparts; however, this gap can be eliminated by pre-processing the text to lowercase. Moreover, our token-level analysis reveals that, under lowercasing, cased models almost entirely suppress cased vocabulary items and behave effectively as uncased models, explaining their restored performance. This result broadens the applicability of recent cased models to the LSR setting and facilitates the integration of stronger backbone architectures into sparse retrieval. The complete code and implementation for this project are available at: https://github.com/lionisakis/Uncased-vs-cased-models-in-LSR
comment: This preprint has not undergone peer review (when applicable) or any post-submission improvements or corrections. The Version of Record of this contribution is published in ECIR2026 (Part I) Advances in Information Retrieval
☆ PEARL: Prototype-Enhanced Alignment for Label-Efficient Representation Learning with Deployment-Driven Insights from Digital Governance Communication Systems
In many deployed systems, new text inputs are handled by retrieving similar past cases, for example when routing and responding to citizen messages in digital governance platforms. When these systems fail, the problem is often not the language model itself, but that the nearest neighbors in the embedding space correspond to the wrong cases. Modern machine learning systems increasingly rely on fixed, high-dimensional embeddings produced by large pretrained models and sentence encoders. In real-world deployments, labels are scarce, domains shift over time, and retraining the base encoder is expensive or infeasible. As a result, downstream performance depends heavily on embedding geometry. Yet raw embeddings are often poorly aligned with the local neighborhood structure required by nearest-neighbor retrieval, similarity search, and lightweight classifiers that operate directly on embeddings. We propose PEARL (Prototype-Enhanced Aligned Representation Learning), a label-efficient approach that uses limited supervision to softly align embeddings toward class prototypes. The method reshapes local neighborhood geometry while preserving dimensionality and avoiding aggressive projection or collapse. Its aim is to bridge the gap between purely unsupervised post-processing, which offers limited and inconsistent gains, and fully supervised projections that require substantial labeled data. We evaluate PEARL under controlled label regimes ranging from extreme label scarcity to higher-label settings. In the label-scarce condition, PEARL substantially improves local neighborhood quality, yielding 25.7% gains over raw embeddings and more than 21.1% gains relative to strong unsupervised post-processing, precisely in the regime where similarity-based systems are most brittle.
comment: 15 pages, 1 figure
☆ Towards Fair Large Language Model-based Recommender Systems without Costly Retraining WWW 2026
Large Language Models (LLMs) have revolutionized Recommender Systems (RS) through advanced generative user modeling. However, LLM-based RS (LLM-RS) often inadvertently perpetuates bias present in the training data, leading to severe fairness issues. Addressing these fairness problems in LLM-RS faces two significant challenges. 1) Existing debiasing methods, designed for specific bias types, lack the generality to handle diverse or emerging biases in real-world applications. 2) Debiasing methods relying on retraining are computationally infeasible given the massive parameter scale of LLMs. To overcome these challenges, we propose FUDLR (Fast Unified Debiasing for LLM-RS). The core idea is to reformulate the debiasing problem as an efficient machine unlearning task with two stages. First, FUDLR identifies bias-inducing samples to unlearn through a novel bias-agnostic mask, optimized to balance fairness improvement with accuracy preservation. Its bias-agnostic design allows adaptability to various or co-existing biases simply by incorporating different fairness metrics. Second, FUDLR performs efficient debiasing by estimating and removing the influence of identified samples on model parameters. Extensive experiments demonstrate that FUDLR effectively and efficiently improves fairness while preserving recommendation accuracy, offering a practical path toward socially responsible LLM-RS. The code and data are available at https://github.com/JinLi-i/FUDLR.
comment: Accepted by WWW 2026
☆ Adversarial Alignment and Disentanglement for Cross-Domain CTR Prediction with Domain-Encompassing Features ICDM 2025
Cross-domain recommendation (CDR) has been increasingly explored to address data sparsity and cold-start issues. However, recent approaches typically disentangle domain-invariant features shared between source and target domains, as well as domain-specific features for each domain. However, they often rely solely on domain-invariant features combined with target domain-specific features, which can lead to suboptimal performance. To overcome the limitations, this paper presents the Adversarial Alignment and Disentanglement Cross-Domain Recommendation ($A^2DCDR$ ) model, an innovative approach designed to capture a comprehensive range of cross-domain information, including both domain-invariant and valuable non-aligned features. The $A^2DCDR$ model enhances cross-domain recommendation through three key components: refining MMD with adversarial training for better generalization, employing a feature disentangler and reconstruction mechanism for intra-domain disentanglement, and introducing a novel fused representation combining domain-invariant, non-aligned features with original contextual data. Experiments on real-world datasets and online A/B testing show that $A^2DCDR$ outperforms existing methods, confirming its effectiveness and practical applicability. The code is provided at https://github.com/youzi0925/A-2DCDR/tree/main.
comment: Accepted to ICDM 2025
☆ UniGRec: Unified Generative Recommendation with Soft Identifiers for End-to-End Optimization
Generative recommendation has recently emerged as a transformative paradigm that directly generates target items, surpassing traditional cascaded approaches. It typically involves two components: a tokenizer that learns item identifiers and a recommender trained on them. Existing methods often decouple tokenization from recommendation or rely on asynchronous alternating optimization, limiting full end-to-end alignment. To address this, we unify the tokenizer and recommender under the ultimate recommendation objective via differentiable soft item identifiers, enabling joint end-to-end training. However, this introduces three challenges: training-inference discrepancy due to soft-to-hard mismatch, item identifier collapse from codeword usage imbalance, and collaborative signal deficiency due to an overemphasis on fine-grained token-level semantics. To tackle these challenges, we propose UniGRec, a unified generative recommendation framework that addresses them from three perspectives. UniGRec employs Annealed Inference Alignment during tokenization to smoothly bridge soft training and hard inference, a Codeword Uniformity Regularization to prevent identifier collapse and encourage codebook diversity, and a Dual Collaborative Distillation mechanism that distills collaborative priors from a lightweight teacher model to jointly guide both the tokenizer and the recommender. Extensive experiments on real-world datasets demonstrate that UniGRec consistently outperforms state-of-the-art baseline methods. Our codes are available at https://github.com/Jialei-03/UniGRec.
comment: 11 pages, 6 figures
☆ Breaking Flat: A Generalised Query Performance Prediction Evaluation Framework
The traditional use-case of query performance prediction (QPP) is to identify which queries perform well and which perform poorly for a given ranking model. A more fine-grained and arguably more challenging extension of this task is to determine which ranking models are most effective for a given query. In this work, we generalize the QPP task and its evaluation into three settings: (i) SingleRanker MultiQuery (SRMQ-PP), corresponding to the standard use case; (ii) MultiRanker SingleQuery (MRSQ-PP), which evaluates a QPP model's ability to select the most effective ranker for a query; and (iii) MultiRanker MultiQuery (MRMQ-PP), which considers predictions jointly across all query ranker pairs. Our results show that (a) the relative effectiveness of QPP models varies substantially across tasks (SRMQ-PP vs. MRSQ-PP), and (b) predicting the best ranker for a query is considerably more difficult than predicting the relative difficulty of queries for a given ranker.
☆ Beyond Correlations: A Downstream Evaluation Framework for Query Performance Prediction
The standard practice of query performance prediction (QPP) evaluation is to measure a set-level correlation between the estimated retrieval qualities and the true ones. However, neither this correlation-based evaluation measure quantifies QPP effectiveness at the level of individual queries, nor does this connect to a downstream application, meaning that QPP methods yielding high correlation values may not find a practical application in query-specific decisions in an IR pipeline. In this paper, we propose a downstream-focussed evaluation framework where a distribution of QPP estimates across a list of top-documents retrieved with several rankers is used as priors for IR fusion. While on the one hand, a distribution of these estimates closely matching that of the true retrieval qualities indicates the quality of the predictor, their usage as priors on the other hand indicates a predictor's ability to make informed choices in an IR pipeline. Our experiments firstly establish the importance of QPP estimates in weighted IR fusion, yielding substantial improvements of over 4.5% over unweighted CombSUM and RRF fusion strategies, and secondly, reveal new insights that the downstream effectiveness of QPP does not correlate well with the standard correlation-based QPP evaluation.
☆ FinMetaMind: A Tech Blueprint on NLQ Systems for Financial Knowledge Search
Natural Language Query (NLQ) allows users to search and interact with information systems using plain, human language instead of structured query syntax. This paper presents a technical blueprint on the design of a modern NLQ system tailored to financial knowledge search. The introduction of NLQ not only enhances the precision and recall of the knowledge search compared to traditional methods, but also facilitates deeper insights by efficiently linking disparate financial objects, events, and relationships. Using core constructs from natural language processing, search engineering, and vector data models, the proposed system aims to address key challenges in discovering, relevance ranking, data freshness, and entity recognition intrinsic to financial data retrieval. In this work, we detail the unique requirements of NLQ for financial datasets and documents, outline the architectural components for offline indexing and online retrieval, and discuss the real-world use cases of enhanced knowledge search in financial services. We delve into the theoretical underpinnings and experimental evidence supporting our proposed architecture, ultimately providing a comprehensive analysis on the subject matter. We also provide a detailed elaboration of our experimental methodology, the data used, the results and future optimizations in this study.
comment: 8 pages, 8 figures, Information Retrieval, Natural Language Query, Vector Search, Embeddings, Named Entity Recognition, Large Language Models
♻ ☆ FilterRAG: Zero-Shot Informed Retrieval-Augmented Generation to Mitigate Hallucinations in VQA ICCV 2025
Visual Question Answering requires models to generate accurate answers by integrating visual and textual understanding. However, VQA models still struggle with hallucinations, producing convincing but incorrect answers, particularly in knowledge-driven and Out-of-Distribution scenarios. We introduce FilterRAG, a retrieval-augmented framework that combines BLIP-VQA with Retrieval-Augmented Generation to ground answers in external knowledge sources like Wikipedia and DBpedia. FilterRAG achieves 36.5% accuracy on the OK-VQA dataset, demonstrating its effectiveness in reducing hallucinations and improving robustness in both in-domain and Out-of-Distribution settings. These findings highlight the potential of FilterRAG to improve Visual Question Answering systems for real-world deployment.
comment: 12 pages, 6 figures and 2 tables; Accepted at ICCV 2025 Workshop on Building Foundation Models You Can Trust (T2FM)
♻ ☆ ATOM: AdapTive and OptiMized dynamic temporal knowledge graph construction using LLMs EACL 2026
In today's rapidly expanding data landscape, knowledge extraction from unstructured text is vital for real-time analytics, temporal inference, and dynamic memory frameworks. However, traditional static knowledge graph (KG) construction often overlooks the dynamic and time-sensitive nature of real-world data, limiting adaptability to continuous changes. Moreover, recent zero- or few-shot approaches that avoid domain-specific fine-tuning or reliance on prebuilt ontologies often suffer from instability across multiple runs, as well as incomplete coverage of key facts. To address these challenges, we introduce ATOM (AdapTive and OptiMized), a few-shot and scalable approach that builds and continuously updates Temporal Knowledge Graphs (TKGs) from unstructured texts. ATOM splits input documents into minimal, self-contained "atomic" facts, improving extraction exhaustivity and stability. Then, it constructs atomic TKGs from these facts, employing a dual-time modeling that distinguishes between when information is observed and when it is valid. The resulting atomic TKGs are subsequently merged in parallel. Empirical evaluations demonstrate that ATOM achieves ~18% higher exhaustivity, ~33% better stability, and over ~90% latency reduction compared to baseline methods, demonstrating a strong scalability potential for dynamic TKG construction.
comment: Accepted at the Findings of the Association for Computational Linguistics: EACL 2026
♻ ☆ MLLMRec: A Preference Reasoning Paradigm with Graph Refinement for Multimodal Recommendation
Multimodal recommendation combines the user historical behaviors with the modal features of items to capture the tangible user preferences, presenting superior performance compared to the conventional ID-based recommender systems. However, existing methods still encounter two key problems in the representation learning of users and items, respectively: (1) the initialization of multimodal user representations is either agnostic to historical behaviors or contaminated by irrelevant modal noise, and (2) the widely used KNN-based item-item graph contains noisy edges with low similarities and lacks audience co-occurrence relationships. To address such issues, we propose MLLMRec, a novel preference reasoning paradigm with graph refinement for multimodal recommendation. Specifically, on the one hand, the item images are first converted into high-quality semantic descriptions using a multimodal large language model (MLLM), thereby bridging the semantic gap between visual and textual modalities. Then, we construct a behavioral description list for each user and feed it into the MLLM to reason about the purified user preference profiles that contain the latent interaction intents. On the other hand, we develop the threshold-controlled denoising and topology-aware enhancement strategies to refine the suboptimal item-item graph, thereby improving the accuracy of item representation learning. Extensive experiments on three publicly available datasets demonstrate that MLLMRec achieves the state-of-the-art performance with an average improvement of 21.48% over the optimal baselines. The source code is provided at https://github.com/Yuzhuo-Dang/MLLMRec.git.
♻ ☆ Evaluating Conversational Recommender Systems via Large Language Models: A User-Centric Framework
Conversational recommender systems (CRSs) integrate both recommendation and dialogue tasks, making their evaluation uniquely challenging. Existing approaches primarily assess CRS performance by separately evaluating item recommendation and dialogue management using rule-based metrics. However, these methods fail to capture the real human experience, and they cannot draw direct conclusions about the system's overall performance. As conversational recommender systems become increasingly vital in e-commerce, social media, and customer support, the ability to evaluate both recommendation accuracy and dialogue management quality using a single metric, thereby authentically reflecting user experience, has become the principal challenge impeding progress in this field. In this work, we propose a user-centric evaluation framework based on large language models (LLMs) for CRSs, namely Conversational Recommendation Evaluator (CoRE). CoRE consists of two main components: (1) LLM-As-Evaluator. Firstly, we comprehensively summarize 12 key factors influencing user experience in CRSs and directly leverage LLM as an evaluator to assign a score to each factor. (2) Multi-Agent Debater. Secondly, we design a multi-agent debate framework with four distinct roles (common user, domain expert, linguist, and HCI expert) to discuss and synthesize the 12 evaluation factors into a unified overall performance score. Furthermore, we apply the proposed framework to evaluate four CRSs on two benchmark datasets. The experimental results show that CoRE aligns well with human evaluation in most of the 12 factors and the overall assessment. Especially, CoRE's overall evaluation scores demonstrate significantly better alignment with human feedback compared to existing rule-based metrics.
♻ ☆ From Reasoning LLMs to BERT: A Two-Stage Distillation Framework for Search Relevance
Query-service relevance prediction in e-commerce search systems faces strict latency requirements that prevent the direct application of Large Language Models (LLMs). To bridge this gap, we propose a two-stage reasoning distillation framework to transfer reasoning capabilities from a powerful teacher LLM to a lightweight, deployment-friendly student model. In the first stage, we address the limitations of general-purpose LLMs by constructing a domain-adapted teacher model. This is achieved through a three-step process: domain-adaptive pre-training to inject platform knowledge, supervised fine-tuning to elicit reasoning skills, and preference optimization with a multi-dimensional reward model to ensure the generation of reliable and preference-aligned reasoning paths. This teacher can then automatically annotate massive query-service pairs from search logs with both relevance labels and reasoning chains. In the second stage, to address the challenges of architectural heterogeneity in standard distillation, we introduce Contrastive Reasoning Self-Distillation (CRSD). By modeling the behavior of the same student model under ``standard'' and ``reasoning-augmented'' inputs as a teacher-student relationship, CRSD enables the lightweight model to internalize the teacher's complex decision-making mechanisms without needing the explicit reasoning path at inference. Offline evaluations and online A/B testing in the Meituan search advertising system demonstrate that our framework achieves significant improvements across multiple metrics, validating its effectiveness and practical value.
comment: TheWebConf 2026 Industry
♻ ☆ Evaluating Perspectival Biases in Cross-Modal Retrieval
Multimodal retrieval systems are expected to operate in a semantic space, agnostic to the language or cultural origin of the query. In practice, however, retrieval outcomes systematically reflect perspectival biases: deviations shaped by linguistic prevalence and cultural associations. We introduce the Cross-Cultural, Cross-Modal, Cross-lingual Multimodal (3XCM) benchmark to isolate these effects. Results from our studies indicate that, for image-to-text retrieval, models tend to favor entries from prevalent languages over those that are semantically faithful. For text-to-image retrieval, we observe a consistent "tugging effect" in the joint embedding space between semantic alignment and language-conditioned cultural association. When semantic representations are insufficiently resolved, particularly in low-resource languages, similarity is increasingly governed by culturally familiar visual patterns, leading to systematic association bias in retrieval. Our findings suggest that achieving equitable multimodal retrieval necessitates targeted strategies that explicitly decouple language from culture, rather than relying solely on broader data exposure. This work highlights the need to treat linguistic and cultural biases as distinct, measurable challenges in multimodal representation learning.
♻ ☆ TaoSR-AGRL: Adaptive Guided Reinforcement Learning Framework for E-commerce Search Relevance WWW
Query-product relevance prediction is fundamental to e-commerce search and has become even more critical in the era of AI-powered shopping, where semantic understanding and complex reasoning directly shape the user experience and business conversion. Large Language Models (LLMs) enable generative, reasoning-based approaches, typically aligned via supervised fine-tuning (SFT) or preference optimization methods like Direct Preference Optimization (DPO). However, the increasing complexity of business rules and user queries exposes the inability of existing methods to endow models with robust reasoning capacity for long-tail and challenging cases. Efforts to address this via reinforcement learning strategies like Group Relative Policy Optimization (GRPO) often suffer from sparse terminal rewards, offering insufficient guidance for multi-step reasoning and slowing convergence. To address these challenges, we propose TaoSR-AGRL, an Adaptive Guided Reinforcement Learning framework for LLM-based relevance prediction in Taobao Search Relevance. TaoSR-AGRL introduces two key innovations: (1) Rule-aware Reward Shaping, which decomposes the final relevance judgment into dense, structured rewards aligned with domain-specific relevance criteria; and (2) Adaptive Guided Replay, which identifies low-accuracy rollouts during training and injects targeted ground-truth guidance to steer the policy away from stagnant, rule-violating reasoning patterns toward compliant trajectories. TaoSR-AGRL was evaluated on large-scale real-world datasets and through online side-by-side human evaluations on Taobao Search. It consistently outperforms DPO and standard GRPO baselines in offline experiments, improving relevance accuracy, rule adherence, and training stability. The model trained with TaoSR-AGRL has been successfully deployed in the main search scenario on Taobao, serving hundreds of millions of users.
comment: Accepted to The Web Conference (WWW) 2026, Industry Track
♻ ☆ Understanding Parametric Knowledge Injection in Retrieval-Augmented Generation
Context-grounded generation underpins many LLM applications, including long-document question answering (QA), conversational personalization, and retrieval-augmented generation (RAG). However, classic token-based context concatenation is costly for long inputs and can be lost in the middle at extreme context lengths. Recent work explores context parameterization, which encodes context into lightweight trainable parameters (e.g., LoRA adapters) injected into a frozen LLM. Extending this idea to retrieved evidence yields parametric RAG (P-RAG), which incorporates knowledge via parameter updates rather than token-level attention. In this paper, we present a systematic study of this emerging RAG paradigm-parametric knowledge injection. First, we reassess P-RAG under answer-presence accuracy and show that it does not consistently outperform standard token-based RAG (T-RAG), while combining both (PT-RAG) achieves the best overall performance. Second, we introduce a QA benchmark with up-to-date knowledge beyond the LLM's internal memory to enable controlled analysis. Our representational and mechanistic results indicate that parametric representations capture document-level semantics and primarily influence deeper feed-forward computations, providing high-level guidance but limited evidence consolidation. Finally, we evaluate parametric injection under key RAG challenges, demonstrating improved faithfulness under knowledge conflicts, stronger robustness to retrieval noise, and solid generalization to tasks beyond QA. Our findings clarify the strengths and limitations of parametric RAG and provide practical guidance for future retrieval-augmented LLM systems.
♻ ☆ OpenDecoder: Open Large Language Model Decoding to Incorporate Document Quality in RAG WWW 2026
The development of large language models (LLMs) has achieved superior performance in a range of downstream tasks, including LLM-based retrieval-augmented generation (RAG). The quality of generated content heavily relies on the usefulness of the retrieved information and the capacity of LLMs' internal information processing mechanism to incorporate it in answer generation. It is generally assumed that the retrieved information is relevant to the question. However, the retrieved information may have a variable degree of relevance and usefulness, depending on the question and the document collection. It is important to take into account the relevance of the retrieved information in answer generation. In this paper, we propose OpenDecoder, a new approach that leverages explicit evaluation of the retrieved information as quality indicator features for generation. We aim to build a RAG model that is more robust to varying levels of noisy context. Three types of explicit evaluation information are considered: relevance score, ranking score, and QPP (query performance prediction) score. The experimental results on five benchmark datasets demonstrate the effectiveness and better robustness of OpenDecoder by outperforming various baseline methods. Importantly, this paradigm is flexible to be integrated with the post-training of LLMs for any purposes and incorporated with any type of external indicators.
comment: Accepted by ACM WWW 2026
♻ ☆ Parametric Retrieval-Augmented Generation using Latent Routing of LoRA Adapters
Parametric Retrieval-Augmented Generation (PRAG) is a RAG approach that integrates external knowledge directly into model parameters using a LoRA adapter, aiming at reducing the inference cost compared to traditional RAG. However, current PRAG approaches adopt a \textit{one-to-one} document encoding scheme, using a dedicated LoRA adapter for each individual document. This scheme introduces two major limitations: 1) As the number of documents increases, there will be a prohibitive cost for training and storage. 2) The LoRA adapters may largely overlap due to the shared knowledge across documents, making the approach highly inefficient. To overcome these challenges, we propose the Poly-PRAG approach, which uses a small set of LoRA adapters that are able to encode more general knowledge. Each document can be encoded using a combination of them through a latent routing function. By jointly training the LoRA adapters and the latent routing function, each LoRA adapter is able to encode a shared part of the knowledge across documents, and the routing function can select the best combination of adapters for a document. Experimental results on four benchmarks demonstrate the effectiveness of the Poly-PRAG compared to other strong PRAG baselines. In addition, this approach reduces the storage requirement by avoiding the need to store a large number of LoRA adapters and offers a more efficient way to encode external knowledge into LLMs.
Multimedia
☆ Fast Multirate Encoding for 360° Video in OMAF Streaming Workflows
Preparing high-quality 360-degree video for HTTP Adaptive Streaming requires encoding each sequence into multiple representations spanning different resolutions and quantization parameters (QPs). For ultra-high-resolution immersive content such as 8K 360-degree video, this process is computationally intensive due to the large number of representations and the high complexity of modern codecs. This paper investigates fast multirate encoding strategies that reduce encoding time by reusing encoder analysis information across QPs and resolutions. We evaluate two cross-resolution information-reuse pipelines that differ in how reference encodes propagate across resolutions: (i) a strict HD -> 4K -> 8K cascade with scaled analysis reuse, and (ii) a resolution-anchored scheme that initializes each resolution with its own highest-bitrate reference before guiding dependent encodes. In addition to evaluating these pipelines on standard equirectangular projection content, we also apply the same two pipelines to cubemap-projection (CMP) tiling, where each 360-degree frame is partitioned into independently encoded tiles. CMP introduces substantial parallelism, while still benefiting from the proposed multirate analysis-reuse strategies. Experimental results using the SJTU 8K 360-degree dataset show that hierarchical analysis reuse significantly accelerates HEVC encoding with minimal rate-distortion impact across both equirectangular and CMP-tiled content, yielding encoding-time reductions of roughly 33%-59% for ERP and about 51% on average for CMP, with Bjontegaard Delta Encoding Time (BDET) gains approaching -50% and wall-clock speedups of up to 4.2x.
comment: Mile High Video (MHV), 2026
♻ ☆ Labels or Input? Rethinking Augmentation in Multimodal Hate Detection
Online hate remains a significant societal challenge, especially as multimodal content enables subtle, culturally grounded, and implicit forms of harm. Hateful memes embed hostility through text-image interactions and humor, making them difficult for automated systems to interpret. Although recent Vision-Language Models (VLMs) perform well on explicit cases, their deployment is limited by high inference costs and persistent failures on nuanced content. This work examines how far small models can be improved through prompt optimization, fine-tuning, and automated data augmentation. We introduce an end-to-end pipeline that varies prompt structure, label granularity, and training modality, showing that structured prompts and scaled supervision significantly strengthen compact VLMs. We also develop a multimodal augmentation framework that generates counterfactually neutral memes via a coordinated LLM-VLM setup, reducing spurious correlations and improving the detection of implicit hate. Ablation studies quantify the contribution of each component, demonstrating that prompt design, granular labels, and targeted augmentation collectively narrow the gap between small and large models. The results offer a practical path toward more robust and deployable multimodal hate-detection systems without relying on costly large-model inference.
comment: 14 pages
Information Retrieval
☆ Evaluation on Entity Matching in Recommender Systems
Entity matching is a crucial component in various recommender systems, including conversational recommender systems (CRS) and knowledge-based recommender systems. However, the lack of rigorous evaluation frameworks for cross-dataset entity matching impedes progress in areas such as LLM-driven conversational recommendations and knowledge-grounded dataset construction. In this paper, we introduce Reddit-Amazon-EM, a novel dataset comprising naturally occurring items from Reddit and the Amazon '23 dataset. Through careful manual annotation, we identify corresponding movies across Reddit-Movies and Amazon'23, two existing recommender system datasets with inherently overlapping catalogs. Leveraging Reddit-Amazon-EM, we conduct a comprehensive evaluation of state-of-the-art entity matching methods, including rule-based, graph-based, lexical-based, embedding-based, and LLM-based approaches. For reproducible research, we release our manually annotated entity matching gold set and provide the mapping between the two datasets using the best-performing method from our experiments. This serves as a valuable resource for advancing future work on entity matching in recommender systems.
☆ Empowering Medical Equipment Sustainability in Low-Resource Settings: An AI-Powered Diagnostic and Support Platform for Biomedical Technicians MICCAI 2025
In low- and middle-income countries (LMICs), a significant proportion of medical diagnostic equipment remains underutilized or non-functional due to a lack of timely maintenance, limited access to technical expertise, and minimal support from manufacturers, particularly for devices acquired through third-party vendors or donations. This challenge contributes to increased equipment downtime, delayed diagnoses, and compromised patient care. This research explores the development and validation of an AI-powered support platform designed to assist biomedical technicians in diagnosing and repairing medical devices in real-time. The system integrates a large language model (LLM) with a user-friendly web interface, enabling imaging technologists/radiographers and biomedical technicians to input error codes or device symptoms and receive accurate, step-by-step troubleshooting guidance. The platform also includes a global peer-to-peer discussion forum to support knowledge exchange and provide additional context for rare or undocumented issues. A proof of concept was developed using the Philips HDI 5000 ultrasound machine, achieving 100% precision in error code interpretation and 80% accuracy in suggesting corrective actions. This study demonstrates the feasibility and potential of AI-driven systems to support medical device maintenance, with the aim of reducing equipment downtime to improve healthcare delivery in resource-constrained environments.
comment: Accepted at the MIRASOL Workshop at MICCAI 2025. To appear in Lecture Notes in Computer Science (LNCS)
☆ Navigating the Shift: A Comparative Analysis of Web Search and Generative AI Response Generation
The rise of generative AI as a primary information source presents a paradigm shift from traditional web search. This paper presents a large-scale empirical study quantifying the fundamental differences between the results returned by Google Search and leading generative AI services. We analyze multiple dimensions, demonstrating that AI-generated answers and web search results diverge significantly in their consulted source domains, the typology of these domains (e.g., earned media vs. owned, social), query intent and the freshness of the information provided. We then investigate the role of LLM pre-training as a key factor shaping these differences, analyzing how this intrinsic knowledge base interacts with and influences real-time web search when enabled. Our findings reveal the distinct mechanics of these two information ecosystems, leading to critical observations on the emergent field of Answer Engine Optimization (AEO) and its contrast with traditional Search Engine Optimization (SEO).
☆ PI2I: A Personalized Item-Based Collaborative Filtering Retrieval Framework WWW'26
Efficiently selecting relevant content from vast candidate pools is a critical challenge in modern recommender systems. Traditional methods, such as item-to-item collaborative filtering (CF) and two-tower models, often fall short in capturing the complex user-item interactions due to uniform truncation strategies and overdue user-item crossing. To address these limitations, we propose Personalized Item-to-Item (PI2I), a novel two-stage retrieval framework that enhances the personalization capabilities of CF. In the first Indexer Building Stage (IBS), we optimize the retrieval pool by relaxing truncation thresholds to maximize Hit Rate, thereby temporarily retaining more items users might be interested in. In the second Personalized Retrieval Stage (PRS), we introduce an interactive scoring model to overcome the limitations of inner product calculations, allowing for richer modeling of intricate user-item interactions. Additionally, we construct negative samples based on the trigger-target (item-to-item) relationship, ensuring consistency between offline training and online inference. Offline experiments on large-scale real-world datasets demonstrate that PI2I outperforms traditional CF methods and rivals Two-Tower models. Deployed in the "Guess You Like" section on Taobao, PI2I achieved a 1.05% increase in online transaction rates. In addition, we have released a large-scale recommendation dataset collected from Taobao, containing 130 million real-world user interactions used in the experiments of this paper. The dataset is publicly available at https://huggingface.co/datasets/PI2I/PI2I, which could serve as a valuable benchmark for the research community.
comment: Published on WWW'26: In Proceedings of the ACM Web Conference 2026
☆ LLM-powered Real-time Patent Citation Recommendation for Financial Technologies
Rapid financial innovation has been accompanied by a sharp increase in patenting activity, making timely and comprehensive prior-art discovery more difficult. This problem is especially evident in financial technologies, where innovations develop quickly, patent collections grow continuously, and citation recommendation systems must be updated as new applications arrive. Existing patent retrieval and citation recommendation methods typically rely on static indexes or periodic retraining, which limits their ability to operate effectively in such dynamic settings. In this study, we propose a real-time patent citation recommendation framework designed for large and fast-changing financial patent corpora. Using a dataset of 428,843 financial patents granted by the China National Intellectual Property Administration (CNIPA) between 2000 and 2024, we build a three-stage recommendation pipeline. The pipeline uses large language model (LLM) embeddings to represent the semantic content of patent abstracts, applies efficient approximate nearest-neighbor search to construct a manageable candidate set, and ranks candidates by semantic similarity to produce top-k citation recommendations. In addition to improving recommendation accuracy, the proposed framework directly addresses the dynamic nature of patent systems. By using an incremental indexing strategy based on hierarchical navigable small-world (HNSW) graphs, newly issued patents can be added without rebuilding the entire index. A rolling day-by-day update experiment shows that incremental updating improves recall while substantially reducing computational cost compared with rebuild-based indexing. The proposed method also consistently outperforms traditional text-based baselines and alternative nearest-neighbor retrieval approaches.
☆ Better Generalizing to Unseen Concepts: An Evaluation Framework and An LLM-Based Auto-Labeled Pipeline for Biomedical Concept Recognition EACL 2026
Generalization to unseen concepts is a central challenge due to the scarcity of human annotations in Mention-agnostic Biomedical Concept Recognition (MA-BCR). This work makes two key contributions to systematically address this issue. First, we propose an evaluation framework built on hierarchical concept indices and novel metrics to measure generalization. Second, we explore LLM-based Auto-Labeled Data (ALD) as a scalable resource, creating a task-specific pipeline for its generation. Our research unequivocally shows that while LLM-generated ALD cannot fully substitute for manual annotations, it is a valuable resource for improving generalization, successfully providing models with the broader coverage and structural knowledge needed to approach recognizing unseen concepts. Code and datasets are available at https://github.com/bio-ie-tool/hi-ald.
comment: Accepted to EACL 2026 (Main)
☆ PRISM: Purified Representation and Integrated Semantic Modeling for Generative Sequential Recommendation
Generative Sequential Recommendation (GSR) has emerged as a promising paradigm, reframing recommendation as an autoregressive sequence generation task over discrete Semantic IDs (SIDs), typically derived via codebook-based quantization. Despite its great potential in unifying retrieval and ranking, existing GSR frameworks still face two critical limitations: (1) impure and unstable semantic tokenization, where quantization methods struggle with interaction noise and codebook collapse, resulting in SIDs with ambiguous discrimination; and (2) lossy and weakly structured generation, where reliance solely on coarse-grained discrete tokens inevitably introduces information loss and neglects items' hierarchical logic. To address these issues, we propose a novel generative recommendation framework, PRISM, with Purified Representation and Integrated Semantic Modeling. Specifically, to ensure high-quality tokenization, we design a Purified Semantic Quantizer that constructs a robust codebook via adaptive collaborative denoising and hierarchical semantic anchoring mechanisms. To compensate for information loss during quantization, we further propose an Integrated Semantic Recommender, which incorporates a dynamic semantic integration mechanism to integrate fine-grained semantics and enforces logical validity through a semantic structure alignment objective. PRISM consistently outperforms state-of-the-art baselines across four real-world datasets, demonstrating substantial performance gains, particularly in high-sparsity scenarios.
☆ LLM-based Semantic Search for Conversational Queries in E-commerce
Conversational user queries are increasingly challenging traditional e-commerce platforms, whose search systems are typically optimized for keyword-based queries. We present an LLM-based semantic search framework that effectively captures user intent from conversational queries by combining domain-specific embeddings with structured filters. To address the challenge of limited labeled data, we generate synthetic data using LLMs to guide the fine-tuning of two models: an embedding model that positions semantically similar products close together in the representation space, and a generative model for converting natural language queries into structured constraints. By combining similarity-based retrieval with constraint-based filtering, our framework achieves strong precision and recall across various settings compared to baseline approaches on a real-world dataset.
☆ Segregation Before Polarization: How Recommendation Strategies Shape Echo Chamber Pathways
Social media platforms facilitate echo chambers through feedback loops between user preferences and recommendation algorithms. While algorithmic homogeneity is well-documented, the distinct evolutionary pathways driven by content-based versus link-based recommendations remain unclear. Using an extended dynamic Bounded Confidence Model (BCM), we show that content-based algorithms--unlike their link-based counterparts--steer social networks toward a segregation-before-polarization (SbP) pathway. Along this trajectory, structural segregation precedes opinion divergence, accelerating individual isolation while delaying but ultimately intensifying collective polarization. Furthermore, we reveal a paradox in information sharing: Reposting increases the number of connections in the network, yet it simultaneously reinforces echo chambers because it amplifies small, latent opinion differences that would otherwise remain inconsequential. These findings suggest that mitigating polarization requires stage-dependent algorithmic interventions, shifting from content-centric to structure-centric strategies as networks evolve.
comment: 13 pages, 5 figures for main text; 7 pages, 6 figures for supplementary materials
♻ ☆ LLM Reasoning for Cold-Start Item Recommendation WWW 2026
Large Language Models (LLMs) have shown significant potential for improving recommendation systems through their inherent reasoning capabilities and extensive knowledge base. Yet, existing studies predominantly address warm-start scenarios with abundant user-item interaction data, leaving the more challenging cold-start scenarios, where sparse interactions hinder traditional collaborative filtering methods, underexplored. To address this limitation, we propose novel reasoning strategies designed for cold-start item recommendations within the Netflix domain. Our method utilizes the advanced reasoning capabilities of LLMs to effectively infer user preferences, particularly for newly introduced or rarely interacted items. We systematically evaluate supervised fine-tuning, reinforcement learning-based fine-tuning, and hybrid approaches that combine both methods to optimize recommendation performance. Extensive experiments on real-world data demonstrate significant improvements in both methodological efficacy and practical performance in cold-start recommendation contexts. Remarkably, our reasoning-based fine-tuned models outperform Netflix's production ranking model by up to 8% in certain cases.
comment: Published on Proceedings of the ACM on Web Conference 2026 (WWW 2026)
♻ ☆ ProveRAG: Provenance-Driven Vulnerability Analysis with Automated Retrieval-Augmented LLMs
In cybersecurity, security analysts constantly face the challenge of mitigating newly discovered vulnerabilities in real-time, with over 300,000 vulnerabilities identified since 1999. The sheer volume of known vulnerabilities complicates the detection of patterns for unknown threats. While LLMs can assist, they often hallucinate and lack alignment with recent threats. Over 40,000 vulnerabilities have been identified in 2024 alone, which are introduced after most popular LLMs' (e.g., GPT-5) training data cutoff. This raises a major challenge of leveraging LLMs in cybersecurity, where accuracy and up-to-date information are paramount. Therefore, we aim to improve the adaptation of LLMs in vulnerability analysis by mimicking how an analyst performs such tasks. We propose ProveRAG, an LLM-powered system designed to assist in rapidly analyzing vulnerabilities with automated retrieval augmentation of web data while self-evaluating its responses with verifiable evidence. ProveRAG incorporates a self-critique mechanism to help alleviate the omission and hallucination common in the output of LLMs applied in cybersecurity applications. The system cross-references data from verifiable sources (NVD and CWE), giving analysts confidence in the actionable insights provided. Our results indicate that ProveRAG excels in delivering verifiable evidence to the user with over 99% and 97% accuracy in exploitation and mitigation strategies, respectively. ProveRAG guides analysts to secure their systems more effectively by overcoming temporal and context-window limitations while also documenting the process for future audits.
♻ ☆ SPRINT: Scalable and Predictive Intent Refinement for LLM-Enhanced Session-based Recommendation
Large language models (LLMs) have enhanced conventional recommendation models via user profiling, which generates representative textual profiles from users' historical interactions. However, their direct application to session-based recommendation (SBR) remains challenging due to severe session context scarcity and poor scalability. In this paper, we propose SPRINT, a scalable SBR framework that incorporates reliable and informative intents while ensuring high efficiency in both training and inference. SPRINT constrains LLM-based profiling with a global intent pool and validates inferred intents based on recommendation performance to mitigate noise and hallucinations under limited context. To ensure scalability, LLMs are selectively invoked only for uncertain sessions during training, while a lightweight intent predictor generalizes intent prediction to all sessions without LLM dependency at inference time. Experiments on real-world datasets show that SPRINT consistently outperforms state-of-the-art methods while providing more explainable recommendations.
♻ ☆ Faster and Memory-Efficient Training of Sequential Recommendation Models for Large Catalogs
Sequential recommendations (SR) with transformer-based architectures are widely adopted in real-world applications, where SR models require frequent retraining to adapt to ever-changing user preferences. However, training transformer-based SR models often encounters a high computational cost associated with scoring extensive item catalogs, often exceeding thousands of items. This occurs mainly due to the use of cross-entropy loss, where peak memory scales proportionally to catalog size, batch size, and sequence length. Recognizing this, practitioners in the field of recommendation systems typically address memory consumption by integrating the cross-entropy (CE) loss with negative sampling, thereby reducing the explicit memory demands of the final layer. However, a small number of negative samples would degrade model performance, and as we demonstrate in our work, increasing the number of negative samples and the batch size further improves the model's performance, but rapidly starts to exceed industrial GPUs' size (~40Gb). In this work, we introduce the CCE- method, which offers a GPU-efficient implementation of the CE loss with negative sampling. Our method accelerates training by up to two times while reducing memory consumption by more than 10 times. Leveraging the memory savings afforded by using CCE- for model training, it becomes feasible to enhance its accuracy on datasets with a large item catalog compared to those trained with original PyTorch-implemented loss functions. Finally, we perform an analysis of key memory-related hyperparameters and highlight the necessity of a delicate balance among these factors. We demonstrate that scaling both the number of negative samples and batch size leads to better results rather than maximizing only one of them. To facilitate further adoption of CCE-, we release a Triton kernel that efficiently implements the proposed method.
♻ ☆ Topic-Specific Classifiers are Better Relevance Judges than Prompted LLMs
The unjudged document problem, where systems that did not contribute to the original judgement pool may retrieve documents without a relevance judgement, is a key obstacle to the reuseability of test collections in information retrieval. While the de facto standard to deal with the problem is to treat unjudged documents as non-relevant, many alternatives have been proposed, such as the use of large language models (LLMs) as a relevance judge (LLM-as-a-judge). However, this has been criticized, among other things, as circular, since the same LLM can be used as the ranker and the judge. We propose to train topic-specific relevance classifiers instead: By finetuning monoT5 with independent LoRA weight adaptation on the judgments of a single assessor for a single topic's pool, we align it to that assessor's notion of relevance for the topic. The system rankings obtained through our classifier's relevance judgments achieve a Spearmans' $ρ$ correlation of $>0.94$ with ground truth system rankings. As little as 128 initial human judgments per topic suffice to improve the comparability of models, compared to treating unjudged documents as non-relevant, while achieving more reliability than existing LLM-as-a-judge approaches. Topic-specific relevance classifiers are thus a lightweight and straightforward way to tackle the unjudged document problem, while maintaining human judgments as the gold standard for retrieval evaluation. Code, models, and data are made openly available.
comment: 10 pages, 3 figures, 4 tables
♻ ☆ SciNUP: Natural Language User Interest Profiles for Scientific Literature Recommendation ECIR '26
The use of natural language (NL) user profiles in recommender systems offers greater transparency and user control compared to traditional representations. However, there is scarcity of large-scale, publicly available test collections for evaluating NL profile-based recommendation. To address this gap, we introduce SciNUP, a novel synthetic dataset for scholarly recommendation that leverages authors' publication histories to generate NL profiles and corresponding ground truth items. We use this dataset to conduct a comparison of baseline methods, ranging from sparse and dense retrieval approaches to state-of-the-art LLM-based rerankers. Our results show that while baseline methods achieve comparable performance, they often retrieve different items, indicating complementary behaviors. At the same time, considerable headroom for improvement remains, highlighting the need for effective NL-based recommendation approaches. The SciNUP dataset thus serves as a valuable resource for fostering future research and development in this area.
comment: Proceedings of the 48th European Conference on Information Retrieval (ECIR '26), 2026
♻ ☆ Vertical Semi-Federated Learning for Efficient Online Advertising IJCAI 2023
Traditional vertical federated learning schema suffers from two main issues: 1) restricted applicable scope to overlapped samples and 2) high system challenge of real-time federated serving, which limits its application to advertising systems. To this end, we advocate a new practical learning setting, Semi-VFL (Vertical Semi-Federated Learning), for real-world industrial applications, where the learned model retains sufficient advantages of federated learning while supporting independent local serving. To achieve this goal, we propose the carefully designed Joint Privileged Learning framework (JPL) to i) alleviate the absence of the passive party's feature with federated equivalence imitation and ii) adapt to the heterogeneous full sample space with cross-branch rank alignment. Extensive experiments conducted on real-world advertising datasets validate the effectiveness of our method over baseline methods.
comment: TheWebConf 2026 short (proceedings). An earlier version was presented at the FL workshop of IJCAI 2023 (non-proceedings)
♻ ☆ A Multi-Stage Hybrid Framework for Automated Interpretation of Multi-View Engineering Drawings Using Vision Language Model
Engineering drawings are fundamental to manufacturing communication, serving as the primary medium for conveying design intent, tolerances, and production details. However, interpreting complex multi-view drawings with dense annotations remains challenging using manual methods, generic optical character recognition (OCR) systems, or traditional deep learning approaches, due to varied layouts, orientations, and mixed symbolic-textual content. To address these challenges, this paper proposes a three-stage hybrid framework for the automated interpretation of 2D multi-view engineering drawings using modern detection and vision language models (VLMs). In the first stage, YOLOv11-det performs layout segmentation to localize key regions such as views, title blocks, and notes. The second stage uses YOLOv11-obb for orientation-aware, fine-grained detection of annotations, including measures, GD&T symbols, and surface roughness indicators. The third stage employs two Donut-based, OCR-free VLMs for semantic content parsing: the Alphabetical VLM extracts textual and categorical information from title blocks and notes, while the Numerical VLM interprets quantitative data such as measures, GD&T frames, and surface roughness. Two specialized datasets were developed to ensure robustness and generalization: 1,000 drawings for layout detection and 1,406 for annotation-level training. The Alphabetical VLM achieved an overall F1 score of 0.672, while the Numerical VLM reached 0.963, demonstrating strong performance in textual and quantitative interpretation, respectively. The unified JSON output enables seamless integration with CAD and manufacturing databases, providing a scalable solution for intelligent engineering drawing analysis.
comment: This draft has been accepted in the 13th International Conference on Industrial Engineering and Applications (ICIEA 2026)
♻ ☆ GTR-Mamba: Geometry-to-Tangent Routing Mamba for Hyperbolic POI Recommendation
Next Point-of-Interest (POI) recommendation is a critical task in modern Location-Based Social Networks (LBSNs), aiming to model the complex decision-making process of human mobility to provide personalized recommendations for a user's next check-in location. Existing hyperbolic POI recommendation models, predominantly based on rotations and graph representations, have been extensively investigated. Although hyperbolic geometry has proven superior in representing hierarchical data with low distortion, current hyperbolic sequence models typically rely on performing recurrence via expensive Möbius operations directly on the manifold. This incurs prohibitive computational costs and numerical instability, rendering them ill-suited for trajectory modeling. To resolve this conflict between geometric representational power and sequential efficiency, we propose GTR-Mamba, a novel framework featuring Geometry-to-Tangent Routing. GTR-Mamba strategically routes complex state transitions to the computationally efficient Euclidean tangent space. Crucially, instead of a static approximation, we introduce a Parallel Transport (PT) mechanism that dynamically aligns tangent spaces along the trajectory. This ensures geometric consistency across recursive updates, effectively bridging the gap between the curved manifold and linear tangent operations. This process is orchestrated by an exogenous spatio-temporal channel, which explicitly modulates the SSM discretization parameters. Extensive experiments on three real-world datasets demonstrate that GTR-Mamba consistently outperforms state-of-the-art baselines in next POI recommendation.
♻ ☆ Entire Chain Uplift Modeling with Context-Enhanced Learning for Intelligent Marketing
Uplift modeling, vital in online marketing, seeks to accurately measure the impact of various strategies, such as coupons or discounts, on different users by predicting the Individual Treatment Effect (ITE). In an e-commerce setting, user behavior follows a defined sequential chain, including impression, click, and conversion. Marketing strategies exert varied uplift effects at each stage within this chain, impacting metrics like click-through and conversion rate. Despite its utility, existing research has neglected to consider the inter-task across all stages impacts within a specific treatment and has insufficiently utilized the treatment information, potentially introducing substantial bias into subsequent marketing decisions. We identify these two issues as the chain-bias problem and the treatment-unadaptive problem. This paper introduces the Entire Chain UPlift method with context-enhanced learning (ECUP), devised to tackle these issues. ECUP consists of two primary components: 1) the Entire Chain-Enhanced Network, which utilizes user behavior patterns to estimate ITE throughout the entire chain space, models the various impacts of treatments on each task, and integrates task prior information to enhance context awareness across all stages, capturing the impact of treatment on different tasks, and 2) the Treatment-Enhanced Network, which facilitates fine-grained treatment modeling through bit-level feature interactions, thereby enabling adaptive feature adjustment. Extensive experiments on public and industrial datasets validate ECUPs effectiveness. Moreover, ECUP has been deployed on the Meituan food delivery platform, serving millions of daily active users, with the related dataset released for future research.
comment: Withdrawn for further revision and improvement
♻ ☆ Unlocking Scaling Law in Industrial Recommendation Systems with a Three-step Paradigm based Large User Model WSDM 2026
Recent advancements in autoregressive Large Language Models (LLMs) have achieved significant milestones, largely attributed to their scalability, often referred to as the "scaling law". Inspired by these achievements, there has been a growing interest in adapting LLMs for Recommendation Systems (RecSys) by reformulating RecSys tasks into generative problems. However, these End-to-End Generative Recommendation (E2E-GR) methods tend to prioritize idealized goals, often at the expense of the practical advantages offered by traditional Deep Learning based Recommendation Models (DLRMs) in terms of in features, architecture, and practices. This disparity between idealized goals and practical needs introduces several challenges and limitations, locking the scaling law in industrial RecSys. In this paper, we introduce a large user model (LUM) that addresses these limitations through a three-step paradigm, designed to meet the stringent requirements of industrial settings while unlocking the potential for scalable recommendations. Our extensive experimental evaluations demonstrate that LUM outperforms both state-of-the-art DLRMs and E2E-GR approaches. Notably, LUM exhibits excellent scalability, with performance improvements observed as the model scales up to 7 billion parameters. Additionally, we have successfully deployed LUM in an industrial application, where it achieved significant gains in an A/B test, further validating its effectiveness and practicality.
comment: WSDM 2026, 10 pages; The first three authors contributed equally to this work
♻ ☆ HyFormer: Revisiting the Roles of Sequence Modeling and Feature Interaction in CTR Prediction
Industrial large-scale recommendation models (LRMs) face the challenge of jointly modeling long-range user behavior sequences and heterogeneous non-sequential features under strict efficiency constraints. However, most existing architectures employ a decoupled pipeline: long sequences are first compressed with a query-token based sequence compressor like LONGER, followed by fusion with dense features through token-mixing modules like RankMixer, which thereby limits both the representation capacity and the interaction flexibility. This paper presents HyFormer, a unified hybrid transformer architecture that tightly integrates long-sequence modeling and feature interaction into a single backbone. From the perspective of sequence modeling, we revisit and redesign query tokens in LRMs, and frame the LRM modeling task as an alternating optimization process that integrates two core components: Query Decoding which expands non-sequential features into Global Tokens and performs long sequence decoding over layer-wise key-value representations of long behavioral sequences; and Query Boosting which enhances cross-query and cross-sequence heterogeneous interactions via efficient token mixing. The two complementary mechanisms are performed iteratively to refine semantic representations across layers. Extensive experiments on billion-scale industrial datasets demonstrate that HyFormer consistently outperforms strong LONGER and RankMixer baselines under comparable parameter and FLOPs budgets, while exhibiting superior scaling behavior with increasing parameters and FLOPs. Large-scale online A/B tests in high-traffic production systems further validate its effectiveness, showing significant gains over deployed state-of-the-art models. These results highlight the practicality and scalability of HyFormer as a unified modeling framework for industrial LRMs.
♻ ☆ REG4Rec: Reasoning-Enhanced Generative Model for Large-Scale Recommendation Systems
Sequential recommendation aims to predict a user's next action in large-scale recommender systems. While traditional methods often suffer from insufficient information interaction, recent generative recommendation models partially address this issue by directly generating item predictions. To better capture user intents, recent studies have introduced a reasoning process into generative recommendation, significantly improving recommendation performance. However, these approaches are constrained by the singularity of item semantic representations, facing challenges such as limited diversity in reasoning pathways and insufficient reliability in the reasoning process. To tackle these issues, we introduce REG4Rec, a reasoning-enhanced generative model that constructs multiple dynamic semantic reasoning paths alongside a self-reflection process, ensuring high-confidence recommendations. Specifically, REG4Rec utilizes an MoE-based parallel quantization codebook (MPQ) to generate multiple unordered semantic tokens for each item, thereby constructing a larger-scale diverse reasoning space. Furthermore, to enhance the reliability of reasoning, we propose a training reasoning enhancement stage, which includes Preference Alignment for Reasoning (PARS) and a Multi-Step Reward Augmentation (MSRA) strategy. PARS uses reward functions tailored for recommendation to enhance reasoning and reflection, while MSRA introduces future multi-step actions to improve overall generalization. During inference, Consistency-Oriented Self-Reflection for Pruning (CORP) is proposed to discard inconsistent reasoning paths, preventing the propagation of erroneous reasoning. Lastly, we develop an efficient offline training strategy for large-scale recommendation. Experiments on real-world datasets and online evaluations show that REG4Rec delivers outstanding performance and substantial practical value.
♻ ☆ Unified Multimodal Interleaved Document Representation for Retrieval EACL
Information Retrieval (IR) methods aim to identify documents relevant to a query, which have been widely applied in various natural language tasks. However, existing approaches typically consider only the textual content within documents, overlooking the fact that documents can contain multiple modalities, including images and tables. Also, they often segment each long document into multiple discrete passages for embedding, which prevents them from capturing the overall document context and interactions between paragraphs. To address these two challenges, we propose a method that holistically embeds documents interleaved with multiple modalities by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse IR scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information within documents.
comment: EACL Findings 2026
♻ ☆ SCoTER: Structured Chain-of-Thought Transfer for Enhanced Recommendation
Harnessing the reasoning power of Large Language Models (LLMs) for recommender systems is hindered by two fundamental challenges. First, current approaches lack a mechanism for automated, data-driven discovery of effective reasoning patterns, relying instead on brittle manual templates or unstable zero-shot prompting. Second, they employ structure-collapsing integration: direct prompting incurs prohibitive online inference costs, while feature extraction collapses reasoning chains into single vectors, discarding stepwise logic. To address these challenges, we propose SCoTER (Structured Chain-of-Thought Transfer for Enhanced Recommendation), a unified framework that treats pattern discovery and structure-aware transfer as a jointly optimized problem. Specifically, SCoTER operationalizes this through two synergistic components: a GVM pipeline for automated pattern discovery and a structure-preserving integration architecture that transfers stepwise logic to efficient models. Formally, we provide information-theoretic justification proving that structure-preserving transfer achieves tighter performance bounds than structure-agnostic alternatives. Empirically, experiments on four benchmarks demonstrate improvements of 3.75\%-11.59\% over a strong TIGER backbone. Moreover, in production deployment on the Tencent Advertising Platform, SCoTER achieved a 2.14\% lift in Gross Merchandise Value (GMV) while eliminating online LLM inference costs. Overall, SCoTER establishes a principled and production-validated blueprint for transferring structured LLM reasoning to large-scale recommender systems.
Multimedia
☆ Vidformer: Drop-in Declarative Optimization for Rendering Video-Native Query Results
When interactively exploring video data, video-native querying involves consuming query results as videos, including steps such as compilation of extracted video clips or data overlays. These video-native queries are bottlenecked by rendering, not the execution of the underlying queries. This rendering is currently performed using post-processing scripts that are often slow. This step poses a critical point of friction in interactive video data workloads: even short clips contain thousands of high-definition frames; conventional OpenCV/Python scripts must decode -> transform -> encode the entire data stream before a single pixel appears, leaving users waiting for many seconds, minutes, or hours. To address these issues, we present Vidformer, a drop-in rendering accelerator for video-native querying which, (i) transparently lifts existing visualization code into a declarative representation, (ii) transparently optimizes and parallelizes rendering, and (iii) instantly serves videos through a Video on Demand protocol with just-in-time segment rendering. We demonstrate that Vidformer cuts full-render time by 2-3x across diverse annotation workloads, and, more critically, drops time-to-playback to 0.25-0.5s. This represents a 400x improvement that decouples clip length from first-frame playback latency, and unlocks the ability to perform interactive video-native querying with sub-second latencies. Furthermore, we show how our approach enables interactive video-native LLM-based conversational querying as well.
☆ Evaluating Wi-Fi Performance for VR Streaming: A Study on Realistic HEVC Video Traffic
Cloud-based Virtual Reality (VR) streaming presents significant challenges for 802.11 networks due to its high throughput and low latency requirements. When multiple VR users share a Wi-Fi network, the resulting uplink and downlink traffic can quickly saturate the channel. This paper investigates the capacity of 802.11 networks for supporting realistic VR streaming workloads across varying frame rates, bitrates, codec settings, and numbers of users. We develop an emulation framework that reproduces Air Light VR (ALVR) operation, where real HEVC video traffic is fed into an 802.11 simulation model. Our findings explore Wi-Fi's performance anomaly and demonstrate that Intra-refresh (IR) coding effectively reduces latency variability and improves QoS, supporting up to 4 concurrent VR users with Constant Bitrate (CBR) 100 Mbps before the channel is saturated.
♻ ☆ MusiCRS: Benchmarking Audio-Centric Conversational Recommendation
Conversational recommendation has advanced rapidly with large language models (LLMs), yet music remains a uniquely challenging domain in which effective recommendations require reasoning over audio content beyond what text or metadata can capture. We present MusiCRS, the first benchmark for audio-centric conversational recommendation that links authentic user conversations from Reddit with corresponding tracks. MusiCRS includes 477 high-quality conversations spanning diverse genres (classical, hip-hop, electronic, metal, pop, indie, jazz), with 3,589 unique musical entities and audio grounding via YouTube links. MusiCRS supports evaluation under three input modality configurations: audio-only, query-only, and audio+query, allowing systematic comparison of audio-LLMs, retrieval models, and traditional approaches. Our experiments reveal that current systems struggle with cross-modal integration, with optimal performance frequently occurring in single-modality settings rather than multimodal configurations. This highlights fundamental limitations in cross-modal knowledge integration, as models excel at dialogue semantics but struggle when grounding abstract musical concepts in audio. To facilitate progress, we release the MusiCRS dataset (https://huggingface.co/datasets/rohan2810/MusiCRS), evaluation code (https://github.com/rohan2810/musiCRS), and comprehensive baselines.
comment: 5 pages
Information Retrieval
☆ HVD: Human Vision-Driven Video Representation Learning for Text-Video Retrieval ICASSP 2026
The success of CLIP has driven substantial progress in text-video retrieval. However, current methods often suffer from "blind" feature interaction, where the model struggles to discern key visual information from background noise due to the sparsity of textual queries. To bridge this gap, we draw inspiration from human cognitive behavior and propose the Human Vision-Driven (HVD) model. Our framework establishes a coarse-to-fine alignment mechanism comprising two key components: the Frame Features Selection Module (FFSM) and the Patch Features Compression Module (PFCM). FFSM mimics the human macro-perception ability by selecting key frames to eliminate temporal redundancy. Subsequently, PFCM simulates micro-perception by aggregating patch features into salient visual entities through an advanced attention mechanism, enabling precise entity-level matching. Extensive experiments on five benchmarks demonstrate that HVD not only captures human-like visual focus but also achieves state-of-the-art performance.
comment: Accepted by ICASSP 2026
☆ Rethinking Composed Image Retrieval Evaluation: A Fine-Grained Benchmark from Image Editing
Composed Image Retrieval (CIR) is a pivotal and complex task in multimodal understanding. Current CIR benchmarks typically feature limited query categories and fail to capture the diverse requirements of real-world scenarios. To bridge this evaluation gap, we leverage image editing to achieve precise control over modification types and content, enabling a pipeline for synthesizing queries across a broad spectrum of categories. Using this pipeline, we construct EDIR, a novel fine-grained CIR benchmark. EDIR encompasses 5,000 high-quality queries structured across five main categories and fifteen subcategories. Our comprehensive evaluation of 13 multimodal embedding models reveals a significant capability gap; even state-of-the-art models (e.g., RzenEmbed and GME) struggle to perform consistently across all subcategories, highlighting the rigorous nature of our benchmark. Through comparative analysis, we further uncover inherent limitations in existing benchmarks, such as modality biases and insufficient categorical coverage. Furthermore, an in-domain training experiment demonstrates the feasibility of our benchmark. This experiment clarifies the task challenges by distinguishing between categories that are solvable with targeted data and those that expose intrinsic limitations of current model architectures.
comment: Under review
☆ Unveiling and Simulating Short-Video Addiction Behaviors via Economic Addiction Theory
Short-video applications have attracted substantial user traffic. However, these platforms also foster problematic usage patterns, commonly referred to as short-video addiction, which pose risks to both user health and the sustainable development of platforms. Prior studies on this issue have primarily relied on questionnaires or volunteer-based data collection, which are often limited by small sample sizes and population biases. In contrast, short-video platforms have large-scale behavioral data, offering a valuable foundation for analyzing addictive behaviors. To examine addiction-aware behavior patterns, we combine economic addiction theory with users' implicit behavior captured by recommendation systems. Our analysis shows that short-video addiction follows functional patterns similar to traditional forms of addictive behavior (e.g., substance abuse) and that its intensity is consistent with findings from previous social science studies. To develop a simulator that can learn and model these patterns, we introduce a novel training framework, AddictSim. To consider the personalized addiction patterns, AddictSim uses a mean-to-adapted strategy with group relative policy optimization training. Experiments on two large-scale datasets show that AddictSim consistently outperforms existing training strategies. Our simulation results show that integrating diversity-aware algorithms can mitigate addictive behaviors well.
comment: Accepted in TheWebConf 2026
☆ MMGRid: Navigating Temporal-aware and Cross-domain Generative Recommendation via Model Merging
Model merging (MM) offers an efficient mechanism for integrating multiple specialized models without access to original training data or costly retraining. While MM has demonstrated success in domains like computer vision, its role in recommender systems (RSs) remains largely unexplored. Recently, Generative Recommendation (GR) has emerged as a new paradigm in RSs, characterized by rapidly growing model scales and substantial computational costs, making MM particularly appealing for cost-sensitive deployment scenarios. In this work, we present the first systematic study of MM in GR through a contextual lens. We focus on a fundamental yet underexplored challenge in real-world: how to merge generative recommenders specialized to different real-world contexts, arising from temporal evolving user behaviors and heterogeneous application domains. To this end, we propose a unified framework MMGRid, a structured contextual grid of GR checkpoints that organizes models trained under diverse contexts induced by temporal evolution and domain diversity. All checkpoints are derived from a shared base LLM but fine-tuned on context-specific data, forming a realistic and controlled model space for systematically analyzing MM across GR paradigms and merging algorithms. Our investigation reveals several key insights. First, training GR models from LLMs can introduce parameter conflicts during merging due to token distribution shifts and objective disparities; such conflicts can be alleviated by disentangling task-aware and context-specific parameter changes via base model replacement. Second, incremental training across contexts induces recency bias, which can be effectively balanced through weighted contextual merging. Notably, we observe that optimal merging weights correlate with context-dependent interaction characteristics, offering practical guidance for weight selection in real-world deployments.
comment: https://github.com/Joinn99/MMGRid
☆ STAR: Semantic Table Representation with Header-Aware Clustering and Adaptive Weighted Fusion WWW 2026
Table retrieval is the task of retrieving the most relevant tables from large-scale corpora given natural language queries. However, structural and semantic discrepancies between unstructured text and structured tables make embedding alignment particularly challenging. Recent methods such as QGpT attempt to enrich table semantics by generating synthetic queries, yet they still rely on coarse partial-table sampling and simple fusion strategies, which limit semantic diversity and hinder effective query-table alignment. We propose STAR (Semantic Table Representation), a lightweight framework that improves semantic table representation through semantic clustering and weighted fusion. STAR first applies header-aware K-means clustering to group semantically similar rows and selects representative centroid instances to construct a diverse partial table. It then generates cluster-specific synthetic queries to comprehensively cover the table's semantic space. Finally, STAR employs weighted fusion strategies to integrate table and query embeddings, enabling fine-grained semantic alignment. This design enables STAR to capture complementary information from structured and textual sources, improving the expressiveness of table representations. Experiments on five benchmarks show that STAR achieves consistently higher Recall than QGpT on all datasets, demonstrating the effectiveness of semantic clustering and adaptive weighted fusion for robust table representation. Our code is available at https://github.com/adsl135789/STAR.
comment: Accepted at The Web Conference 2026 (WWW 2026)
☆ CGPT: Cluster-Guided Partial Tables with LLM-Generated Supervision for Table Retrieval WWW 2026
General-purpose embedding models have demonstrated strong performance in text retrieval but remain suboptimal for table retrieval, where highly structured content leads to semantic compression and query-table mismatch. Recent LLM-based retrieval augmentation methods mitigate this issue by generating synthetic queries, yet they often rely on heuristic partial-table selection and seldom leverage these synthetic queries as supervision to improve the embedding model. We introduce CGPT, a training framework that enhances table retrieval through LLM-generated supervision. CGPT constructs semantically diverse partial tables by clustering table instances using K-means and sampling across clusters to broaden semantic coverage. An LLM then generates synthetic queries for these partial tables, which are used in hard-negative contrastive fine-tuning to refine the embedding model. Experiments across four public benchmarks (MimoTable, OTTQA, FetaQA, and E2E-WTQ) show that CGPT consistently outperforms retrieval baselines, including QGpT, with an average R@1 improvement of 16.54 percent. In a unified multi-domain corpus setting, CGPT further demonstrates strong cross-domain generalization and remains effective even when using smaller LLMs for synthetic query generation. These results indicate that semantically guided partial-table construction, combined with contrastive training from LLM-generated supervision, provides an effective and scalable paradigm for large-scale table retrieval. Our code is available at https://github.com/yumeow0122/CGPT.
comment: Accepted at The Web Conference 2026 (WWW 2026)
☆ CoNRec: Context-Discerning Negative Recommendation with LLMs
Understanding what users like is relatively straightforward; understanding what users dislike, however, remains a challenging and underexplored problem. Research into users' negative preferences has gained increasing importance in modern recommendation systems. Numerous platforms have introduced explicit negative feedback mechanisms and leverage such signals to refine their recommendation models. Beyond traditional business metrics, user experience-driven metrics, such as negative feedback rates, have become critical indicators for evaluating system performance. However, most existing approaches primarily use negative feedback as an auxiliary signal to enhance positive recommendations, paying little attention to directly modeling negative interests, which can be highly valuable in offline applications. Moreover, due to the inherent sparsity of negative feedback data, models often suffer from context understanding biases induced by positive feedback dominance. To address these challenges, we propose the first large language model framework for negative feedback modeling with special designed context-discerning modules. We use semantic ID Representation to replace text-based item descriptions and introduce an item-level alignment task that enhances the LLM's understanding of the semantic context behind negative feedback. Furthermore, we design a Progressive GRPO training paradigm that enables the model to dynamically balance the positive and negative behavioral context utilization. Besides, our investigation further reveals a fundamental misalignment between the conventional next-negative-item prediction objective and users' true negative preferences, which is heavily influenced by the system's recommendation order. To mitigate this, we propose a novel reward function and evaluation metric grounded in multi-day future negative feedback and their collaborative signals.
☆ Frequency-aware Adaptive Contrastive Learning for Sequential Recommendation
In this paper, we revisited the role of data augmentation in contrastive learning for sequential recommendation, revealing its inherent bias against low-frequency items and sparse user behaviors. To address this limitation, we proposed FACL, a frequency-aware adaptive contrastive learning framework that introduces micro-level adaptive perturbation to protect the integrity of rare items, as well as macro-level reweighting to amplify the influence of sparse and rare-interaction sequences during training. Comprehensive experiments on five public benchmark datasets demonstrated that FACL consistently outperforms state-of-the-art data augmentation and model augmentation-based methods, achieving up to 3.8% improvement in recommendation accuracy. Moreover, fine-grained analyses confirm that FACL significantly alleviates the performance drop on low-frequency items and users, highlighting its robust intent-preserving ability and its superior applicability to real-world, long-tail recommendation scenarios.
comment: 10 pages, 6 figures
☆ Connect the Dots: Knowledge Graph-Guided Crawler Attack on Retrieval-Augmented Generation Systems
Retrieval-augmented generation (RAG) systems integrate document retrieval with large language models and have been widely adopted. However, in privacy-related scenarios, RAG introduces a new privacy risk: adversaries can issue carefully crafted queries to exfiltrate sensitive content from the underlying corpus gradually. Although recent studies have demonstrated multi-turn extraction attacks, they rely on heuristics and fail to perform long-term extraction planning. To address these limitations, we formulate the RAG extraction attack as an adaptive stochastic coverage problem (ASCP). In ASCP, each query is treated as a probabilistic action that aims to maximize conditional marginal gain (CMG), enabling principled long-term planning under uncertainty. However, integrating ASCP with practical RAG attack faces three key challenges: unobservable CMG, intractability in the action space, and feasibility constraints. To overcome these challenges, we maintain a global attacker-side state to guide the attack. Building on this idea, we introduce RAGCRAWLER, which builds a knowledge graph to represent revealed information, uses this global state to estimate CMG, and plans queries in semantic space that target unretrieved regions. In comprehensive experiments across diverse RAG architectures and datasets, our proposed method, RAGCRAWLER, consistently outperforms all baselines. It achieves up to 84.4% corpus coverage within a fixed query budget and deliver an average improvement of 20.7% over the top-performing baseline. It also maintains high semantic fidelity and strong content reconstruction accuracy with low attack cost. Crucially, RAGCRAWLER proves its robustness by maintaining effectiveness against advanced RAG systems employing query rewriting and multi-query retrieval strategies. Our work reveals significant security gaps and highlights the pressing need for stronger safeguards for RAG.
☆ Enhancing guidance for missing data in diffusion-based sequential recommendation ICASSP 2026
Contemporary sequential recommendation methods are becoming more complex, shifting from classification to a diffusion-guided generative paradigm. However, the quality of guidance in the form of user information is often compromised by missing data in the observed sequences, leading to suboptimal generation quality. Existing methods address this by removing locally similar items, but overlook ``critical turning points'' in user interest, which are crucial for accurately predicting subsequent user intent. To address this, we propose a novel Counterfactual Attention Regulation Diffusion model (CARD), which focuses on amplifying the signal from key interest-turning-point items while concurrently identifying and suppressing noise within the user sequence. CARD consists of (1) a Dual-side Thompson Sampling method to identify sequences undergoing significant interest shift, and (2) a counterfactual attention mechanism for these sequences to quantify the importance of each item. In this manner, CARD provides the diffusion model with a high-quality guidance signal composed of dynamically re-weighted interaction vectors to enable effective generation. Experiments show our method works well on real-world data without being computationally expensive. Our code is available at https://github.com/yanqilong3321/CARD.
comment: ICASSP 2026 accecpted
☆ Blockchain-Based Spectrum Resource Securitization via Semi-Fungible Token-Lock
As 6G networks evolve, spectrum assets require flexible, dynamic, and efficient utilization, motivating blockchain based spectrum securitization. Existing approaches based on ERC404 style hybrid token models rely on frequent minting and burning during asset transfers, which disrupt token identity continuity and increase on chain overhead. This paper proposes the Semi Fungible Token Lock (SFT Lock) method, a lock/unlock based mechanism that preserves NFT identity and historical traceability while enabling fractional ownership and transferability. By replacing mint/burn operations with deterministic state transitions, SFT Lock ensures consistent lifecycle representation of spectrum assets and significantly reduces on chain operations. Based on this mechanism, a modular smart contract architecture is designed to support spectrum authorization, securitization, and sharing, and a staking mechanism is introduced to enhance asset liquidity. Experimental results on a private Ethereum network demonstrate that, compared with ERC404 style hybrid token models, the proposed method achieves substantial gas savings while maintaining functional correctness and traceability.
PromptHelper: A Prompt Recommender System for Encouraging Creativity in AI Chatbot Interactions
Prompting is central to interaction with AI systems, yet many users struggle to explore alternative directions, articulate creative intent, or understand how variations in prompts shape model outputs. We introduce prompt recommender systems (PRS) as an interaction approach that supports exploration, suggesting contextually relevant follow-up prompts. We present PromptHelper, a PRS prototype integrated into an AI chatbot that surfaces semantically diverse prompt suggestions while users work on real writing tasks. We evaluate PromptHelper in a 2x2 fully within-subjects study (N=32) across creative and academic writing tasks. Results show that PromptHelper significantly increases users' perceived exploration and expressiveness without increasing cognitive workload. Qualitative findings illustrate how prompt recommendations help users branch into new directions, overcome uncertainty about what to ask next, and better articulate their intent. We discuss implications for designing AI interfaces that scaffold exploratory interaction while preserving user agency, and release open-source resources to support research on prompt recommendation.
♻ ☆ GRITHopper: Decomposition-Free Multi-Hop Dense Retrieval EACL 2026
Decomposition-based multi-hop retrieval methods rely on many autoregressive steps to break down complex queries, which breaks end-to-end differentiability and is computationally expensive. Decomposition-free methods tackle this, but current decomposition-free approaches struggle with longer multi-hop problems and generalization to out-of-distribution data. To address these challenges, we introduce GRITHopper-7B, a novel multi-hop dense retrieval model that achieves state-of-the-art performance on both in-distribution and out-of-distribution benchmarks. GRITHopper combines generative and representational instruction tuning by integrating causal language modeling with dense retrieval training. Through controlled studies, we find that incorporating additional context after the retrieval process, referred to as post-retrieval language modeling, enhances dense retrieval performance. By including elements such as final answers during training, the model learns to better contextualize and retrieve relevant information. GRITHopper-7B offers a robust, scalable, and generalizable solution for multi-hop dense retrieval, and we release it to the community for future research and applications requiring multi-hop reasoning and retrieval capabilities.
comment: Accepted at EACL 2026 Main Conference
♻ ☆ Multi-event Video-Text Retrieval ICCV2023
Video-Text Retrieval (VTR) is a crucial multi-modal task in an era of massive video-text data on the Internet. A plethora of work characterized by using a two-stream Vision-Language model architecture that learns a joint representation of video-text pairs has become a prominent approach for the VTR task. However, these models operate under the assumption of bijective video-text correspondences and neglect a more practical scenario where video content usually encompasses multiple events, while texts like user queries or webpage metadata tend to be specific and correspond to single events. This establishes a gap between the previous training objective and real-world applications, leading to the potential performance degradation of earlier models during inference. In this study, we introduce the Multi-event Video-Text Retrieval (MeVTR) task, addressing scenarios in which each video contains multiple different events, as a niche scenario of the conventional Video-Text Retrieval Task. We present a simple model, Me-Retriever, which incorporates key event video representation and a new MeVTR loss for the MeVTR task. Comprehensive experiments show that this straightforward framework outperforms other models in the Video-to-Text and Text-to-Video tasks, effectively establishing a robust baseline for the MeVTR task. We believe this work serves as a strong foundation for future studies. Code is available at https://github.com/gengyuanmax/MeVTR.
comment: [fixed typos in equations] accepted to ICCV2023 Poster; some figures are not supported when viewed online, please download the file and view locally
♻ ☆ iTIMO: An LLM-empowered Synthesis Dataset for Travel Itinerary Modification
Addressing itinerary modification is crucial for enhancing the travel experience as it is a frequent requirement during traveling. However, existing research mainly focuses on fixed itinerary planning, leaving modification underexplored due to the scarcity of need-to-modify itinerary data. To bridge this gap, we formally define the itinerary modification task and propose a general pipeline to construct the corresponding dataset, namely iTIMO. This pipeline frames the generation of need-to-modify itinerary data as an intent-driven perturbation task. It instructs large language models to perturb real-world itineraries using three operations: REPLACE, ADD, and DELETE. Each perturbation is grounded in three intents: disruptions of popularity, spatial distance, and category diversity. Furthermore, hybrid evaluation metrics are introduced to ensure perturbation effectiveness. We conduct comprehensive benchmarking on iTIMO to analyze the capabilities and limitations of state-of-the-art LLMs. Overall, iTIMO provides a comprehensive testbed for the modification task, and empowers the evolution of traditional travel recommender systems into adaptive frameworks capable of handling dynamic travel needs. Dataset, code and supplementary materials are available at https://github.com/zelo2/iTIMO.
♻ ☆ Variational Bayesian Personalized Ranking
Pairwise learning underpins implicit collaborative filtering, yet its effectiveness is often hindered by sparse supervision, noisy interactions, and popularity-driven exposure bias. In this paper, we propose Variational Bayesian Personalized Ranking (VarBPR), a tractable variational framework for implicit-feedback pairwise learning that offers principled exposure controllability and theoretical interpretability. VarBPR reformulates pairwise learning as variational inference over discrete latent indexing variables, explicitly modeling noise and indexing uncertainty, and divides training into two stages: variational inference and variational learning. In the variational inference stage, we develop a variational formulation that integrates preference alignment, denoising, and popularity debiasing under a unified ELBO/regularization objective, deriving closed-form posteriors with clear control semantics: the prior encodes a target exposure pattern, while temperature/regularization strength controls posterior-prior adherence. As a result, exposure controllability becomes an endogenous and interpretable outcome of variational inference. In the variational learning stage, we propose a posterior-compression objective that reduces the ideal ELBO's computational complexity from polynomial to linear, with the approximation justified by an explicit Jensen-gap upper bound. Theoretically, we provide interpretable generalization guarantees by identifying a structural error component and revealing the opportunity cost of prioritizing certain exposure patterns (e.g., long-tail), offering a concrete analytical lens for designing controllable recommender systems. Empirically, we validate VarBPR across popular backbones; it demonstrates consistent gains in ranking accuracy, enables controlled long-tail exposure, and preserves the linear-time complexity of BPR.
comment: 16 pages
♻ ☆ Eliminating Out-of-Domain Recommendations in LLM-based Recommender Systems: A Unified View
Recommender systems based on Large Language Models (LLMs) are often plagued by hallucinations of out-of-domain (OOD) items. To address this, we propose RecLM, a unified framework that bridges the gap between retrieval and generation by instantiating three grounding paradigms under a single architecture: embedding-based retrieval, constrained generation over rewritten item titles, and discrete item-tokenizer generation. Using the same backbone LLM and prompts, we systematically compare these three views on public benchmarks. RecLM strictly eradicates OOD recommendations (OOD@10 = 0) across all variants, and the constrained generation variants RecLM-cgen and RecLM-token achieve overall state-of-the-art accuracy compared to both strong ID-based and LLM-based baselines. Our unified view provides a systematic basis for comparing three distinct paradigms to reduce item hallucinations, offering a practical framework to facilitate the application of LLMs to recommendation tasks. Source code is at https://github.com/microsoft/RecAI.
comment: 20 pages
♻ ☆ Membership Inference Attacks on LLM-based Recommender Systems ACL 2026
Large language models (LLMs) based recommender systems (RecSys) can adapt to different domains flexibly. It utilizes in-context learning (ICL), i.e., prompts, to customize the recommendation functions, which include sensitive historical user-specific item interactions, encompassing implicit feedback such as clicked items and explicit product reviews. Such private information may be exposed by novel privacy attacks. However, no study has been conducted on this important issue. We design several membership inference attacks (MIAs) aimed to revealing whether system prompts include victims' historical interactions. The attacks are \emph{Similarity, Memorization, Inquiry, and Poisoning attacks}, each utilizing unique features of LLMs or RecSys. We have carefully evaluated them on five of the latest open-source LLMs and three well-known RecSys benchmark datasets. The results confirm that the MIA threat to LLM RecSys is realistic: inquiry and poisoning attacks show significantly high attack advantages. We also discussed possible methods to mitigate such MIA threats. We have also analyzed the factors affecting these attacks, such as the number of shots in system prompts, the position of the victim in the shots, the number of poisoning items in the prompt,etc.
comment: This is paper is under review ACL 2026
Multimedia
☆ PF-D2M: A Pose-free Diffusion Model for Universal Dance-to-Music Generation
Dance-to-music generation aims to generate music that is aligned with dance movements. Existing approaches typically rely on body motion features extracted from a single human dancer and limited dance-to-music datasets, which restrict their performance and applicability to real-world scenarios involving multiple dancers and non-human dancers. In this paper, we propose PF-D2M, a universal diffusion-based dance-to-music generation model that incorporates visual features extracted from dance videos. PF-D2M is trained with a progressive training strategy that effectively addresses data scarcity and generalization challenges. Both objective and subjective evaluations show that PF-D2M achieves state-of-the-art performance in dance-music alignment and music quality.
comment: 4 pages, 2 figures
♻ ☆ Structured Image-based Coding for Efficient Gaussian Splatting Compression
Gaussian Splatting (GS) has recently emerged as a state-of-the-art representation for radiance fields, combining real-time rendering with high visual fidelity. However, GS models require storing millions of parameters, leading to large file sizes that impair their use in practical multimedia systems. To address this limitation, this paper introduces GS Image-based Compression (GSICO), a novel GS codec that efficiently compresses pre-trained GS models while preserving perceptual fidelity. The core contribution lies in a mapping procedure that arranges GS parameters into structured images, guided by a novel algorithm that enhances spatial coherence. These GS parameter images are then encoded using a conventional image codec. Experimental evaluations on Tanks and Temples, Deep Blending, and Mip-NeRF360 datasets show that GSICO achieves average compression factors of 20.2x with minimal loss in visual quality, as measured by PSNR, SSIM, and LPIPS. Compared with state-of-the-art GS compression methods, the proposed codec consistently yields superior rate-distortion (RD) trade-offs.
♻ ☆ An Efficient Quality Metric for Video Frame Interpolation Based on Motion-Field Divergence
Video frame interpolation is a fundamental tool for temporal video enhancement, but existing quality metrics struggle to evaluate the perceptual impact of interpolation artefacts effectively. Metrics like PSNR, SSIM and LPIPS ignore temporal coherence. State-of-the-art quality metrics tailored towards video frame interpolation, like FloLPIPS, have been developed but suffer from computational inefficiency that limits their practical application. We present $\text{PSNR}_{\text{DIV}}$, a novel full-reference quality metric that enhances PSNR through motion divergence weighting, a technique adapted from archival film restoration where it was developed to detect temporal inconsistencies. Our approach highlights singularities in motion fields which is then used to weight image errors. Evaluation on the BVI-VFI dataset (180 sequences across multiple frame rates, resolutions and interpolation methods) shows $\text{PSNR}_{\text{DIV}}$ achieves statistically significant improvements: +0.09 Pearson Linear Correlation Coefficient over FloLPIPS, while being 2.5$\times$ faster and using 4$\times$ less memory. Performance remains consistent across all content categories and are robust to the motion estimator used. The efficiency and accuracy of $\text{PSNR}_{\text{DIV}}$ enables fast quality evaluation and practical use as a loss function for training neural networks for video frame interpolation tasks. An implementation of our metric is available at www.github.com/conalld/psnr-div.
comment: IEEE 17th International Conference on Quality of Multimedia Experience 2025 accepted manuscript, 7 pages
♻ ☆ Attentive AV-FusionNet: Audio-Visual Quality Prediction with Hybrid Attention ICASSP
We introduce a novel deep learning-based audio-visual quality (AVQ) prediction model that leverages internal features from state-of-the-art unimodal predictors. Unlike prior approaches that rely on simple fusion strategies, our model employs a hybrid representation that combines learned Generative Machine Listener (GML) audio features with hand-crafted Video Multimethod Assessment Fusion (VMAF) video features. Attention mechanisms capture cross-modal interactions and intra-modal relationships, yielding context-aware quality representations. A modality relevance estimator quantifies each modality's contribution per content, potentially enabling adaptive bitrate allocation. Experiments demonstrate improved AVQ prediction accuracy and robustness across diverse content types.
comment: Accepted to 51st IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 04-08 May 2026
Information Retrieval
☆ DS@GT at TREC TOT 2025: Bridging Vague Recollection with Fusion Retrieval and Learned Reranking
We develop a two-stage retrieval system that combines multiple complementary retrieval methods with a learned reranker and LLM-based reranking, to address the TREC Tip-of-the-Tongue (ToT) task. In the first stage, we employ hybrid retrieval that merges LLM-based retrieval, sparse (BM25), and dense (BGE-M3) retrieval methods. We also introduce topic-aware multi-index dense retrieval that partitions the Wikipedia corpus into 24 topical domains. In the second stage, we evaluate both a trained LambdaMART reranker and LLM-based reranking. To support model training, we generate 5000 synthetic ToT queries using LLMs. Our best system achieves recall of 0.66 and NDCG@1000 of 0.41 on the test set by combining hybrid retrieval with Gemini-2.5-flash reranking, demonstrating the effectiveness of fusion retrieval.
comment: Paper submitted to TREC 2025 (34th Text REtrieval Conference)
☆ Is Grokipedia Right-Leaning? Comparing Political Framing in Wikipedia and Grokipedia on Controversial Topics
Online encyclopedias are central to contemporary information infrastructures and have become focal points of debates over ideological bias. Wikipedia, in particular, has long been accused of left-leaning bias, while Grokipedia, an AI-generated encyclopedia launched by xAI, has been framed as a right-leaning alternative. This paper presents a comparative analysis of Wikipedia and Grokipedia on well-established politically contested topics. Specifically, we examine differences in semantic framing, political orientation, and content prioritization. We find that semantic similarity between the two platforms decays across article sections and diverges more strongly on controversial topics than on randomly sampled ones. Additionally, we show that both encyclopedias predominantly exhibit left-leaning framings, although Grokipedia exhibits a more bimodal distribution with increased prominence of right-leaning content. The experimental code is publicly available.
☆ Chunking, Retrieval, and Re-ranking: An Empirical Evaluation of RAG Architectures for Policy Document Question Answering
The integration of Large Language Models (LLMs) into the public health policy sector offers a transformative approach to navigating the vast repositories of regulatory guidance maintained by agencies such as the Centers for Disease Control and Prevention (CDC). However, the propensity for LLMs to generate hallucinations, defined as plausible but factually incorrect assertions, presents a critical barrier to the adoption of these technologies in high-stakes environments where information integrity is non-negotiable. This empirical evaluation explores the effectiveness of Retrieval-Augmented Generation (RAG) architectures in mitigating these risks by grounding generative outputs in authoritative document context. Specifically, this study compares a baseline Vanilla LLM against Basic RAG and Advanced RAG pipelines utilizing cross-encoder re-ranking. The experimental framework employs a Mistral-7B-Instruct-v0.2 model and an all-MiniLM-L6-v2 embedding model to process a corpus of official CDC policy analytical frameworks and guidance documents. The analysis measures the impact of two distinct chunking strategies, recursive character-based and token-based semantic splitting, on system accuracy, measured through faithfulness and relevance scores across a curated set of complex policy scenarios. Quantitative findings indicate that while Basic RAG architectures provide a substantial improvement in faithfulness (0.621) over Vanilla baselines (0.347), the Advanced RAG configuration achieves a superior faithfulness average of 0.797. These results demonstrate that two-stage retrieval mechanisms are essential for achieving the precision required for domain-specific policy question answering, though structural constraints in document segmentation remain a significant bottleneck for multi-step reasoning tasks.
☆ MEDFORD in a Box: Improvements and Future Directions for a Metadata Description Language
Scientific research metadata is vital to ensure the validity, reusability, and cost-effectiveness of research efforts. The MEDFORD metadata language was previously introduced to simplify the process of writing and maintaining metadata for non-programmers. However, barriers to entry and usability remain, including limited automatic validation, difficulty of data transport, and user unfamiliarity with text file editing. To address these issues, we introduce MEDFORD-in-a-Box (MIAB), a documentation ecosystem to facilitate researcher adoption and earlier metadata capture. MIAB contains many improvements, including an updated MEDFORD parser with expanded validation routines and BagIt export capability. MIAB also includes an improved VS Code extension that supports these changes through a visual IDE. By simplifying metadata generation, this new tool supports the creation of correct, consistent, and reusable metadata, ultimately improving research reproducibility.
comment: Extended version of "Cross-Referencing Metadata Through an Extension of the MEDFORD Language" from MTSR 2024
☆ Beyond the Geometric Curse: High-Dimensional N-Gram Hashing for Dense Retrieval
Why do even the most powerful 7B-parameter embedding models struggle with simple retrieval tasks that the decades old BM25 handles with ease? Recent theory suggests that this happens because of a dimensionality bottleneck. This occurs when we force infinite linguistic nuances into small, fixed-length learned vectors. We developed NUMEN to break this bottleneck by removing the learning process entirely. Instead of training heavy layers to map text to a constrained space, NUMEN uses deterministic character hashing to project language directly onto high-dimensional vectors. This approach requires no training, supports an unlimited vocabulary, and allows the geometric capacity scale as needed. On the LIMIT benchmark, NUMEN achieves 93.90 % Recall@100 at 32,768 dimensions. This makes it the first dense retrieval model to officially surpass the sparse BM25 baseline 93.6 %. Our findings show that the real problem in dense retrieval isn't the architecture, but the embedding layer itself. The solution isn't necessarily smarter training, but simply providing more room to breathe.
comment: 11 page long, 5 figure. Yes, am undergrad in pharmacy and love computer work
☆ Supporting Humans in Evaluating AI Summaries of Legal Depositions SIGIR
While large language models (LLMs) are increasingly used to summarize long documents, this trend poses significant challenges in the legal domain, where the factual accuracy of deposition summaries is crucial. Nugget-based methods have been shown to be extremely helpful for the automated evaluation of summarization approaches. In this work, we translate these methods to the user side and explore how nuggets could directly assist end users. Although prior systems have demonstrated the promise of nugget-based evaluation, its potential to support end users remains underexplored. Focusing on the legal domain, we present a prototype that leverages a factual nugget-based approach to support legal professionals in two concrete scenarios: (1) determining which of two summaries is better, and (2) manually improving an automatically generated summary.
comment: To appear in 2026 ACM SIGIR Conference on Human Information Interaction and Retrieval (CHIIR '26), March 22-26, 2026, Seattle, WA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3786304.3787923
☆ From Insight to Intervention: Interpretable Neuron Steering for Controlling Popularity Bias in Recommender Systems
Popularity bias is a pervasive challenge in recommender systems, where a few popular items dominate attention while the majority of less popular items remain underexposed. This imbalance can reduce recommendation quality and lead to unfair item exposure. Although existing mitigation methods address this issue to some extent, they often lack transparency in how they operate. In this paper, we propose a post-hoc approach, PopSteer, that leverages a Sparse Autoencoder (SAE) to both interpret and mitigate popularity bias in recommendation models. The SAE is trained to replicate a trained model's behavior while enabling neuron-level interpretability. By introducing synthetic users with strong preferences for either popular or unpopular items, we identify neurons encoding popularity signals through their activation patterns. We then steer recommendations by adjusting the activations of the most biased neurons. Experiments on three public datasets with a sequential recommendation model demonstrate that PopSteer significantly enhances fairness with minimal impact on accuracy, while providing interpretable insights and fine-grained control over the fairness-accuracy trade-off.
☆ Incentive-Tuning: Understanding and Designing Incentives for Empirical Human-AI Decision-Making Studies
AI has revolutionised decision-making across various fields. Yet human judgement remains paramount for high-stakes decision-making. This has fueled explorations of collaborative decision-making between humans and AI systems, aiming to leverage the strengths of both. To explore this dynamic, researchers conduct empirical studies, investigating how humans use AI assistance for decision-making and how this collaboration impacts results. A critical aspect of conducting these studies is the role of participants, often recruited through crowdsourcing platforms. The validity of these studies hinges on the behaviours of the participants, hence effective incentives that can potentially affect these behaviours are a key part of designing and executing these studies. In this work, we aim to address the critical role of incentive design for conducting empirical human-AI decision-making studies, focusing on understanding, designing, and documenting incentive schemes. Through a thematic review of existing research, we explored the current practices, challenges, and opportunities associated with incentive design for human-AI decision-making empirical studies. We identified recurring patterns, or themes, such as what comprises the components of an incentive scheme, how incentive schemes are manipulated by researchers, and the impact they can have on research outcomes. Leveraging the acquired understanding, we curated a set of guidelines to aid researchers in designing effective incentive schemes for their studies, called the Incentive-Tuning Framework, outlining how researchers can undertake, reflect on, and document the incentive design process. By advocating for a standardised yet flexible approach to incentive design and contributing valuable insights along with practical tools, we hope to pave the way for more reliable and generalizable knowledge in the field of human-AI decision-making.
☆ PULSE: Socially-Aware User Representation Modeling Toward Parameter-Efficient Graph Collaborative Filtering WWW 2026
Graph-based social recommendation (SocialRec) has emerged as a powerful extension of graph collaborative filtering (GCF), which leverages graph neural networks (GNNs) to capture multi-hop collaborative signals from user-item interactions. These methods enrich user representations by incorporating social network information into GCF, thereby integrating additional collaborative signals from social relations. However, existing GCF and graph-based SocialRec approaches face significant challenges: they incur high computational costs and suffer from limited scalability due to the large number of parameters required to assign explicit embeddings to all users and items. In this work, we propose PULSE (Parameter-efficient User representation Learning with Social Knowledge), a framework that addresses this limitation by constructing user representations from socially meaningful signals without creating an explicit learnable embedding for each user. PULSE reduces the parameter size by up to 50% compared to the most lightweight GCF baseline. Beyond parameter efficiency, our method achieves state-of-the-art performance, outperforming 13 GCF and graph-based social recommendation baselines across varying levels of interaction sparsity, from cold-start to highly active users, through a time- and memory-efficient modeling process.
comment: Accepted at WWW 2026, 12pages
☆ Unified Multimodal and Multilingual Retrieval via Multi-Task Learning with NLU Integration ICASSP 2026
Multimodal retrieval systems typically employ Vision Language Models (VLMs) that encode images and text independently into vectors within a shared embedding space. Despite incorporating text encoders, VLMs consistently underperform specialized text models on text-only retrieval tasks. Moreover, introducing additional text encoders increases storage, inference overhead, and exacerbates retrieval inefficiencies, especially in multilingual settings. To address these limitations, we propose a multi-task learning framework that unifies the feature representation across images, long and short texts, and intent-rich queries. To our knowledge, this is the first work to jointly optimize multilingual image retrieval, text retrieval, and natural language understanding (NLU) tasks within a single framework. Our approach integrates image and text retrieval with a shared text encoder that is enhanced by NLU features for intent understanding and retrieval accuracy.
comment: 4 pages, 2 figures, submitted to IEEE ICASSP 2026
☆ When Text-as-Vision Meets Semantic IDs in Generative Recommendation: An Empirical Study
Semantic ID learning is a key interface in Generative Recommendation (GR) models, mapping items to discrete identifiers grounded in side information, most commonly via a pretrained text encoder. However, these text encoders are primarily optimized for well-formed natural language. In real-world recommendation data, item descriptions are often symbolic and attribute-centric, containing numerals, units, and abbreviations. These text encoders can break these signals into fragmented tokens, weakening semantic coherence and distorting relationships among attributes. Worse still, when moving to multimodal GR, relying on standard text encoders introduces an additional obstacle: text and image embeddings often exhibit mismatched geometric structures, making cross-modal fusion less effective and less stable. In this paper, we revisit representation design for Semantic ID learning by treating text as a visual signal. We conduct a systematic empirical study of OCR-based text representations, obtained by rendering item descriptions into images and encoding them with vision-based OCR models. Experiments across four datasets and two generative backbones show that OCR-text consistently matches or surpasses standard text embeddings for Semantic ID learning in both unimodal and multimodal settings. Furthermore, we find that OCR-based Semantic IDs remain robust under extreme spatial-resolution compression, indicating strong robustness and efficiency in practical deployments.
♻ ☆ QKVQA: Question-Focused Filtering for Knowledge-based VQA
Knowledge-based Visual Question Answering (KB-VQA) aims to answer questions by integrating images with external knowledge. Effective knowledge filtering is crucial for improving accuracy. Typical filtering methods use similarity metrics to locate relevant article sections from one article, leading to information selection errors at the article and intra-article levels. Although recent explorations of Multimodal Large Language Model (MLLM)-based filtering methods demonstrate superior semantic understanding and cross-article filtering capabilities, their high computational cost limits practical application. To address these issues, this paper proposes a question-focused filtering method. This approach can perform question-focused, cross-article filtering, efficiently obtaining high-quality filtered knowledge while keeping computational costs comparable to typical methods. Specifically, we design a trainable Question-Focused Filter (QFF) and a Chunk-based Dynamic Multi-Article Selection (CDA) module, which collectively alleviate information selection errors at both the article and intra-article levels. Experiments show that our method outperforms current state-of-the-art models by 4.9% on E-VQA and 3.8% on InfoSeek, validating its effectiveness. The code is publicly available at: https://github.com/leaffeall/QKVQA.
♻ ☆ QueStER: Query Specification for Generative keyword-based Retrieval
Generative retrieval (GR) differs from the traditional index-then-retrieve pipeline by storing relevance in model parameters and generating retrieval cues directly from the query, but it can be brittle out of domain and expensive to scale. We introduce QueStER (QUEry SpecificaTion for gEnerative Keyword-Based Retrieval), which bridges GR and query reformulation by learning to generate explicit keyword-based search specifications. Given a user query, a lightweight LLM produces a keyword query that is executed by a standard retriever (BM25), combining the generalization benefits of generative query rewriting with the efficiency and scalability of lexical indexing. We train the rewriting policy with reinforcement learning techniques. Across in- and out-of-domain evaluations, QueStER consistently improves over BM25 and is competitive with neural IR baselines, while maintaining strong efficiency.
♻ ☆ RMBRec: Robust Multi-Behavior Recommendation towards Target Behaviors
Multi-behavior recommendation faces a critical challenge in practice: auxiliary behaviors (e.g., clicks, carts) are often noisy, weakly correlated, or semantically misaligned with the target behavior (e.g., purchase), which leads to biased preference learning and suboptimal performance. While existing methods attempt to fuse these heterogeneous signals, they inherently lack a principled mechanism to ensure robustness against such behavioral inconsistency. In this work, we propose Robust Multi-Behavior Recommendation towards Target Behaviors (RMBRec), a robust multi-behavior recommendation framework grounded in an information-theoretic robustness principle. We interpret robustness as a joint process of maximizing predictive information while minimizing its variance across heterogeneous behavioral environments. Under this perspective, the Representation Robustness Module (RRM) enhances local semantic consistency by maximizing the mutual information between users' auxiliary and target representations, whereas the Optimization Robustness Module (ORM) enforces global stability by minimizing the variance of predictive risks across behaviors, which is an efficient approximation to invariant risk minimization. This local-global collaboration bridges representation purification and optimization invariance in a theoretically coherent way. Extensive experiments on three real-world datasets demonstrate that RMBRec not only outperforms state-of-the-art methods in accuracy but also maintains remarkable stability under various noise perturbations. For reproducibility, our code is available at https://github.com/miaomiao-cai2/RMBRec/.
♻ ☆ SAQ: Pushing the Limits of Vector Quantization through Code Adjustment and Dimension Segmentation SIGMOD
Approximate Nearest Neighbor Search (ANNS) plays a critical role in applications such as search engines, recommender systems, and RAG for LLMs. Vector quantization (VQ), a crucial technique for ANNS, is commonly used to reduce space overhead and accelerate distance computations. However, despite significant research advances, state-of-the-art VQ methods still face challenges in balancing encoding efficiency and quantization accuracy. To address these limitations, we propose a novel VQ method called SAQ. To improve accuracy, SAQ employs a new dimension segmentation technique to strategically partition PCA-projected vectors into segments along their dimensions. By prioritizing leading dimension segments with larger magnitudes, SAQ allocates more bits to high-impact segments, optimizing the use of the available space quota. An efficient dynamic programming algorithm is developed to optimize dimension segmentation and bit allocation, ensuring minimal quantization error. To speed up vector encoding, SAQ devises a code adjustment technique to first quantize each dimension independently and then progressively refine quantized vectors using a coordinate-descent-like approach to avoid exhaustive enumeration. Extensive experiments demonstrate SAQ's superiority over classical methods (e.g., PQ, PCA) and recent state-of-the-art approaches (e.g., LVQ, Extended RabitQ). SAQ achieves up to 80% reduction in quantization error and accelerates encoding speed by over 80x compared to Extended RabitQ.
comment: 13 pages, 12 figures, accepted by SIGMOD
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to manage changes in widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component of efficient ontology management, many approaches treat OV as similar to ontology matching (OM) and directly reuse OM systems for OV tasks. In this study, we systematically analyse similarities and differences between OM and OV and formalise an OM4OV pipeline to offer more advanced OV support. The pipeline is implemented and evaluated in the state-of-the-art OM system Agent-OM. The experimental results indicate that OM systems can be effectively reused for OV tasks, but without necessary extensions, can produce skewed measurements, poor performance in detecting update entities, and limited explanation of false mappings. To tackle these issues, we propose an optimisation method called the cross-reference (CR) mechanism, which builds on existing OM alignments to reduce the number of matching candidates and to improve overall OV performance.
comment: 17 pages, 8 figures, 2 tables
♻ ☆ Graph-based Approaches and Functionalities in Retrieval-Augmented Generation: A Comprehensive Survey
Large language models (LLMs) struggle with the factual error during inference due to the lack of sufficient training data and the most updated knowledge, leading to the hallucination problem. Retrieval-Augmented Generation (RAG) has gained attention as a promising solution to address the limitation of LLMs, by retrieving relevant information from external source to generate more accurate answers to the questions. Given the pervasive presence of structured knowledge in the external source, considerable strides in RAG have been made to employ the techniques related to graphs and achieve more complex reasoning based on the topological information between knowledge entities. However, there is currently neither unified review examining the diverse roles of graphs in RAG, nor a comprehensive resource to help researchers navigate and contribute to this evolving field. This survey offers a novel perspective on the functionality of graphs within RAG and their impact on enhancing performance across a wide range of graph-structured data. It provides a detailed breakdown of the roles that graphs play in RAG, covering database construction, algorithms, pipelines, and tasks. Finally, it identifies current challenges and outline future research directions, aiming to inspire further developments in this field. Our graph-centered analysis highlights the commonalities and differences in existing methods, setting the stage for future researchers in areas such as graph learning, database systems, and natural language processing.
♻ ☆ PankRAG: Enhancing Graph Retrieval via Globally Aware Query Resolution and Dependency-Aware Reranking Mechanism ICASSP 2026
Recent graph-based RAG approaches leverage knowledge graphs by extracting entities from a query to fetch their associated relationships and metadata. However, relying solely on entity extraction often results in the misinterpretation or omission of latent critical information and relationships. This can lead to the retrieval of irrelevant or contradictory content, as well as the exclusion of essential information, thereby increasing hallucination risks and undermining the quality of generated responses. In this paper, we propose PankRAG, a framework designed to capture and resolve the latent relationships within complex queries that prior methods overlook. It achieves this through a synergistic combination of a globally-aware hierarchical resolution pathway and a dependency-aware reranking mechanism. PankRAG first generates a globally aware resolution pathway that captures parallel and progress relationships, guiding LLMs to resolve queries through a hierarchical reasoning path. Additionally, its dependency-aware reranking mechanism utilizes resolved sub-question dependencies to augment and validate the retrieved content of the current unresolved sub-question. Experimental results demonstrate that PankRAG consistently outperforms existing state-of-the-art methods, underscoring its generalizability.
comment: Accepted by ICASSP 2026
♻ ☆ ThinkRec: Thinking-based recommendation via LLM WWW'26
Recent advances in large language models (LLMs) have enabled more semantic-aware recommendations through natural language generation. Existing LLM for recommendation (LLM4Rec) methods mostly operate in a System 1-like manner, relying on superficial features to match similar items based on click history, rather than reasoning through deeper behavioral logic. This often leads to superficial and erroneous recommendations. Motivated by this, we propose ThinkRec, a thinking-based framework that shifts LLM4Rec from System 1 to System 2 (rational system). Technically, ThinkRec introduces a thinking activation mechanism that augments item metadata with keyword summarization and injects synthetic reasoning traces, guiding the model to form interpretable reasoning chains that consist of analyzing interaction histories, identifying user preferences, and making decisions based on target items. On top of this, we propose an instance-wise expert fusion mechanism to reduce the reasoning difficulty. By dynamically assigning weights to expert models based on users' latent features, ThinkRec adapts its reasoning path to individual users, thereby enhancing precision and personalization. Extensive experiments on real-world datasets demonstrate that ThinkRec significantly improves the accuracy and interpretability of recommendations. Our implementations are available at https://github.com/Yu-Qi-hang/ThinkRec.
comment: Published on WWW'26: In Proceedings of the ACM Web Conference 2026
♻ ☆ Pathways of Thoughts: Multi-Directional Thinking for Long-form Personalized Question Answering
Personalization is well studied in search and recommendation, but personalized question answering remains underexplored due to challenges in inferring preferences from long, noisy, implicit contexts and generating responses that are both accurate and aligned with user expectations. To address this, we propose Pathways of Thoughts (PoT), an inference-stage method that applies to any large language model (LLM) without task-specific fine-tuning. PoT models the thinking as an iterative decision process, where the model dynamically selects among cognitive operations such as reasoning, revision, personalization, and clarification. This enables exploration of multiple reasoning trajectories, producing diverse candidate responses that capture different perspectives. PoT then aggregates and reweights these candidates according to inferred user preferences, yielding a final personalized response that benefits from the complementary strengths of diverse reasoning paths. Experiments on the LaMP-QA benchmark show that PoT consistently outperforms competitive baselines, achieving up to a 10.8\% relative improvement. Human evaluation further validates these improvements, with annotators preferring PoT in 66\% of cases compared to the best-performing baseline and reporting ties in 15\% of cases.
♻ ☆ Next Point-of-interest (POI) Recommendation Model Based on Multi-modal Spatio-temporal Context Feature Embedding
Predicting the next pickup location of individual users is a fundamental problem in intelligent mobility systems, which requires modeling personalized travel behaviors under complex spatiotemporal contexts. Existing methods mainly learn sequential dependencies from raw trajectories, but often fail to capture high-level behavioral semantics and to effectively disentangle long-term habitual preferences from short-term contextual intentions. In this paper, we propose a semantic embedding based dual stream spatiotemporal attention model for next pickup location prediction. Raw trajectories are first transformed into semantically enriched activity sequences to encode users' stay behaviors and movement semantics. A dual stream architecture is then designed to explicitly decouple long-term historical patterns and short-term dynamic intentions, where each stream employs spatiotemporal attention mechanisms to model dependencies at different temporal scales. To integrate heterogeneous contextual information, a context aware dynamic fusion module adaptively balances the contributions of the two streams. Finally, an attention based matching strategy is used to predict the probability distribution over candidate pickup locations. Experiments on real world ride hailing datasets demonstrate that the proposed model consistently outperforms state of the art methods, validating the effectiveness of semantic trajectory abstraction and dual stream spatiotemporal attention for individualized mobility behavior modeling.
Multimedia
☆ Interpreting Multimodal Communication at Scale in Short-Form Video: Visual, Audio, and Textual Mental Health Discourse on TikTok
Short-form video platforms integrate text, visuals, and audio into complex communicative acts, yet existing research analyzes these modalities in isolation, lacking scalable frameworks to interpret their joint contributions. This study introduces a pipeline combining automated multimodal feature extraction with Shapley value-based interpretability to analyze how text, visuals, and audio jointly influence engagement. Applying this framework to 162,965 TikTok videos and 814,825 images about social anxiety disorder (SAD), we find that facial expressions outperform textual sentiment in predicting viewership, informational content drives more attention than emotional support, and cross-modal synergies exhibit threshold-dependent effects. These findings demonstrate how multimodal analysis reveals interaction patterns invisible to single-modality approaches. Methodologically, we contribute a reproducible framework for interpretable multimodal research applicable across domains; substantively, we advance understanding of mental health communication in algorithmically mediated environments.
☆ Semantic-Guided Unsupervised Video Summarization
Video summarization is a crucial technique for social understanding, enabling efficient browsing of massive multimedia content and extraction of key information from social platforms. Most existing unsupervised summarization methods rely on Generative Adversarial Networks (GANs) to enhance keyframe selection and generate coherent, video summaries through adversarial training. However, such approaches primarily exploit unimodal features, overlooking the guiding role of semantic information in keyframe selection, and often suffer from unstable training. To address these limitations, we propose a novel Semantic-Guided Unsupervised Video Summarization method. Specifically, we design a novel frame-level semantic alignment attention mechanism and integrate it into a keyframe selector, which guides the Transformer-based generator within the adversarial framework to better reconstruct videos. In addition, we adopt an incremental training strategy to progressively update the model components, effectively mitigating the instability of GAN training. Experimental results demonstrate that our approach achieves superior performance on multiple benchmark datasets.
☆ DeepMoLM: Leveraging Visual and Geometric Structural Information for Molecule-Text Modeling
AI models for drug discovery and chemical literature mining must interpret molecular images and generate outputs consistent with 3D geometry and stereochemistry. Most molecular language models rely on strings or graphs, while vision-language models often miss stereochemical details and struggle to map continuous 3D structures into discrete tokens. We propose DeepMoLM: Deep Molecular Language M odeling, a dual-view framework that grounds high-resolution molecular images in geometric invariants derived from molecular conformations. DeepMoLM preserves high-frequency evidence from 1024 $\times$ 1024 inputs, encodes conformer neighborhoods as discrete Extended 3-Dimensional Fingerprints, and fuses visual and geometric streams with cross-attention, enabling physically grounded generation without atom coordinates. DeepMoLM improves PubChem captioning with a 12.3% relative METEOR gain over the strongest generalist baseline while staying competitive with specialist methods. It produces valid numeric outputs for all property queries and attains MAE 13.64 g/mol on Molecular Weight and 37.89 on Complexity in the specialist setting. On ChEBI-20 description generation from images, it exceeds generalist baselines and matches state-of-the-art vision-language models. Code is available at https://github.com/1anj/DeepMoLM.
comment: Under review
☆ HCVR Scene Generation: High Compatibility Virtual Reality Environment Generation for Extended Redirected Walking
Natural walking enhances immersion in virtual environments (VEs), but physical space limitations and obstacles hinder exploration, especially in large virtual scenes. Redirected Walking (RDW) techniques mitigate this by subtly manipulating the virtual camera to guide users away from physical collisions within pre-defined VEs. However, RDW efficacy diminishes significantly when substantial geometric divergence exists between the physical and virtual environments, leading to unavoidable collisions. Existing scene generation methods primarily focus on object relationships or layout aesthetics, often neglecting the crucial aspect of physical compatibility required for effective RDW. To address this, we introduce HCVR (High Compatibility Virtual Reality Environment Generation), a novel framework that generates virtual scenes inherently optimized for alignment-based RDW controllers. HCVR first employs ENI++, a novel, boundary-sensitive metric to evaluate the incompatibility between physical and virtual spaces by comparing rotation-sensitive visibility polygons. Guided by the ENI++ compatibility map and user prompts, HCVR utilizes a Large Language Model (LLM) for context-aware 3D asset retrieval and initial layout generation. The framework then strategically adjusts object selection, scaling, and placement to maximize coverage of virtually incompatible regions, effectively guiding users towards RDW-feasible paths. User studies evaluating physical collisions and layout quality demonstrate HCVR's effectiveness with HCVR-generated scenes, resulting in 22.78 times fewer physical collisions and received 35.89\% less on ENI++ score compared to LLM-based generation with RDW, while also receiving 12.5\% higher scores on user feedback to layout design.
☆ READ-Net: Clarifying Emotional Ambiguity via Adaptive Feature Recalibration for Audio-Visual Depression Detection
Depression is a severe global mental health issue that impairs daily functioning and overall quality of life. Although recent audio-visual approaches have improved automatic depression detection, methods that ignore emotional cues often fail to capture subtle depressive signals hidden within emotional expressions. Conversely, those incorporating emotions frequently confuse transient emotional expressions with stable depressive symptoms in feature representations, a phenomenon termed \emph{Emotional Ambiguity}, thereby leading to detection errors. To address this critical issue, we propose READ-Net, the first audio-visual depression detection framework explicitly designed to resolve Emotional Ambiguity through Adaptive Feature Recalibration (AFR). The core insight of AFR is to dynamically adjust the weights of emotional features to enhance depression-related signals. Rather than merely overlooking or naively combining emotional information, READ-Net innovatively identifies and preserves depressive-relevant cues within emotional features, while adaptively filtering out irrelevant emotional noise. This recalibration strategy significantly clarifies feature representations, and effectively mitigates the persistent challenge of emotional interference. Additionally, READ-Net can be easily integrated into existing frameworks for improved performance. Extensive evaluations on three publicly available datasets show that READ-Net outperforms state-of-the-art methods, with average gains of 4.55\% in accuracy and 1.26\% in F1-score, demonstrating its robustness to emotional disturbances and improving audio-visual depression detection.
comment: 12 pages
♻ ☆ Point Cloud Streaming with Latency-Driven Implicit Adaptation using MoQ
Point clouds are a promising video representation for virtual and augmented reality. Their high-bitrate, however, has so far limited the practicality of live streaming systems. In this work, we leverage the delivery timeout feature within the Media Over QUIC protocol to perform implicit server-side adaptation based on an application's latency target. Through experimentation with several publisher and network configurations, we demonstrate that our system unlocks a unique trade-off on a per-client basis: applications with lower latency requirements will receive lower-quality video, while applications with more relaxed latency requirements will receive higher-quality video.
♻ ☆ A Dynamic Prognostic Prediction Method for Colorectal Cancer Liver Metastasis
Colorectal cancer liver metastasis (CRLM) exhibits high postoperative recurrence and pronounced prognostic heterogeneity, challenging individualized management. Existing prognostic approaches often rely on static representations from a single postoperative snapshot, and fail to jointly capture tumor spatial distribution, longitudinal disease dynamics, and multimodal clinical information, limiting predictive accuracy. We propose DyPro, a deep learning framework that infers postoperative latent trajectories via residual dynamic evolution. Starting from an initial patient representation, DyPro generates a 12-step sequence of trajectory snapshots through autoregressive residual updates and integrates them to predict recurrence and survival outcomes. On the MSKCC CRLM dataset, DyPro achieves strong discrimination under repeated stratified 5-fold cross-validation, reaching a C-index of 0.755 for OS and 0.714 for DFS, with OS AUC@1y of 0.920 and OS IBS of 0.143. DyPro provides quantitative risk cues to support adjuvant therapy planning and follow-up scheduling.
♻ ☆ RealX3D: A Physically-Degraded 3D Benchmark for Multi-view Visual Restoration and Reconstruction
We introduce RealX3D, a real-capture benchmark for multi-view visual restoration and 3D reconstruction under diverse physical degradations. RealX3D groups corruptions into four families, including illumination, scattering, occlusion, and blurring, and captures each at multiple severity levels using a unified acquisition protocol that yields pixel-aligned LQ/GT views. Each scene includes high-resolution capture, RAW images, and dense laser scans, from which we derive world-scale meshes and metric depth. Benchmarking a broad range of optimization-based and feed-forward methods shows substantial degradation in reconstruction quality under physical corruptions, underscoring the fragility of current multi-view pipelines in real-world challenging environments.
♻ ☆ Towards Aligning Multimodal LLMs with Human Experts: A Focus on Parent-Child Interaction
While multimodal large language models (MLLMs) are increasingly applied in human-centred AI systems, their ability to understand complex social interactions remains uncertain. We present an exploratory study on aligning MLLMs with speech-language pathologists (SLPs) in analysing joint attention in parent-child interactions, a key construct in early social-communicative development. Drawing on interviews and video annotations with three SLPs, we characterise how observational cues of gaze, action, and vocalisation inform their reasoning processes. We then test whether an MLLM can approximate this workflow through a two-stage prompting approach, separating observation from judgement. Our findings reveal that alignment is more robust at the observation layer, where experts share common descriptors, than at the judgement layer, where interpretive criteria diverge. We position this work as a case-based probe into expert-AI alignment in complex social behaviour, highlighting both the feasibility and the challenges of applying MLLMs to socially situated interaction analysis.
comment: Accepted at CHI 2026. arXiv admin note: substantial text overlap with arXiv:2506.05879
♻ ☆ Chain-of-Thought Compression Should Not Be Blind: V-Skip for Efficient Multimodal Reasoning via Dual-Path Anchoring
While Chain-of-Thought (CoT) reasoning significantly enhances the performance of Multimodal Large Language Models (MLLMs), its autoregressive nature incurs prohibitive latency constraints. Current efforts to mitigate this via token compression often fail by blindly applying text-centric metrics to multimodal contexts. We identify a critical failure mode termed Visual Amnesia, where linguistically redundant tokens are erroneously pruned, leading to hallucinations. To address this, we introduce V-Skip that reformulates token pruning as a Visual-Anchored Information Bottleneck (VA-IB) optimization problem. V-Skip employs a dual-path gating mechanism that weighs token importance through both linguistic surprisal and cross-modal attention flow, effectively rescuing visually salient anchors. Extensive experiments on Qwen2-VL and Llama-3.2 families demonstrate that V-Skip achieves a $2.9\times$ speedup with negligible accuracy loss. Specifically, it preserves fine-grained visual details, outperforming other baselines over 30\% on the DocVQA.
♻ ☆ AFLL: Real-time Load Stabilization for MMO Game Servers Based on Circular Causality Learning
Massively Multiplayer Online (MMO) game servers must handle thousands of simultaneous players while maintaining sub-100ms response times. When server load exceeds capacity, traditional approaches either uniformly throttle all message types regardless of importance (damaging gameplay) or apply fixed heuristic rules that fail to adapt to dynamic workloads. This paper presents AFLL (Adaptive Feedback Loop Learning), a real-time load stabilization system that learns the causal relationship between outgoing server messages and subsequent incoming client requests. AFLL employs backpropagation to continuously adjust message type weights, enabling predictive throttling that blocks low-priority messages before overload occurs while guaranteeing critical message delivery. Through controlled experiments with 1,000 concurrent players, AFLL reduced average CPU time by 48.3% (13.2ms to 6.8ms), peak CPU time by 51.7% (54.0ms to 26.1ms), and thread contention by 64.4% (19.6% to 7.0%), while maintaining zero learning overhead through background computation and caching optimizations. The system achieved remarkable reproducibility (CV < 2% across all metrics) and identified a three-stage causal chain linking message blocking to load reduction. AFLL demonstrates that circular causality learning enables practical real-time adaptation for latency-critical systems.
comment: 16 pages, 7 figures, 5 tables
Information Retrieval
☆ Predicting Retrieval Utility and Answer Quality in Retrieval-Augmented Generation ECIR'26
The quality of answers generated by large language models (LLMs) in retrieval-augmented generation (RAG) is largely influenced by the contextual information contained in the retrieved documents. A key challenge for improving RAG is to predict both the utility of retrieved documents -- quantified as the performance gain from using context over generation without context -- and the quality of the final answers in terms of correctness and relevance. In this paper, we define two prediction tasks within RAG. The first is retrieval performance prediction (RPP), which estimates the utility of retrieved documents. The second is generation performance prediction (GPP), which estimates the final answer quality. We hypothesise that in RAG, the topical relevance of retrieved documents correlates with their utility, suggesting that query performance prediction (QPP) approaches can be adapted for RPP and GPP. Beyond these retriever-centric signals, we argue that reader-centric features, such as the LLM's perplexity of the retrieved context conditioned on the input query, can further enhance prediction accuracy for both RPP and GPP. Finally, we propose that features reflecting query-agnostic document quality and readability can also provide useful signals to the predictions. We train linear regression models with the above categories of predictors for both RPP and GPP. Experiments on the Natural Questions (NQ) dataset show that combining predictors from multiple feature categories yields the most accurate estimates of RAG performance.
comment: 18 pages (including reference), 3 figures, 2 table, 61 references; this paper has been accepted by ECIR'26 as a full paper
☆ Trust Me on This: A User Study of Trustworthiness for RAG Responses ECIR '26
The integration of generative AI into information access systems often presents users with synthesized answers that lack transparency. This study investigates how different types of explanations can influence user trust in responses from retrieval-augmented generation systems. We conducted a controlled, two-stage user study where participants chose the more trustworthy response from a pair-one objectively higher quality than the other-both with and without one of three explanation types: (1) source attribution, (2) factual grounding, and (3) information coverage. Our results show that while explanations significantly guide users toward selecting higher quality responses, trust is not dictated by objective quality alone: Users' judgments are also heavily influenced by response clarity, actionability, and their own prior knowledge.
comment: This is the author's version of the work. The definitive version is published in: Proceedings of the 48th European Conference on Information Retrieval (ECIR '26), March 29-April 2, 2026, Delft, The Netherlands
☆ XR: Cross-Modal Agents for Composed Image Retrieval WWW 2026
Retrieval is being redefined by agentic AI, demanding multimodal reasoning beyond conventional similarity-based paradigms. Composed Image Retrieval (CIR) exemplifies this shift as each query combines a reference image with textual modifications, requiring compositional understanding across modalities. While embedding-based CIR methods have achieved progress, they remain narrow in perspective, capturing limited cross-modal cues and lacking semantic reasoning. To address these limitations, we introduce XR, a training-free multi-agent framework that reframes retrieval as a progressively coordinated reasoning process. It orchestrates three specialized types of agents: imagination agents synthesize target representations through cross-modal generation, similarity agents perform coarse filtering via hybrid matching, and question agents verify factual consistency through targeted reasoning for fine filtering. Through progressive multi-agent coordination, XR iteratively refines retrieval to meet both semantic and visual query constraints, achieving up to a 38% gain over strong training-free and training-based baselines on FashionIQ, CIRR, and CIRCO, while ablations show each agent is essential. Code is available: https://01yzzyu.github.io/xr.github.io/.
comment: Accepted by WWW 2026. Project: https://01yzzyu.github.io/xr.github.io/
☆ Rerank Before You Reason: Analyzing Reranking Tradeoffs through Effective Token Cost in Deep Search Agents
Deep research agents rely on iterative retrieval and reasoning to answer complex queries, but scaling test-time computation raises significant efficiency concerns. We study how to allocate reasoning budget in deep search pipelines, focusing on the role of listwise reranking. Using the BrowseComp-Plus benchmark, we analyze tradeoffs between model scale, reasoning effort, reranking depth, and total token cost via a novel effective token cost (ETC) metric. Our results show that reranking consistently improves retrieval and end-to-end accuracy, and that moderate reranking often yields larger gains than increasing search-time reasoning, achieving comparable accuracy at substantially lower cost. All our code is available at https://github.com/texttron/BrowseComp-Plus.git
comment: 10 pages, 7 figures
☆ ReSearch: A Multi-Stage Machine Learning Framework for Earth Science Data Discovery
The rapid expansion of Earth Science data from satellite observations, reanalysis products, and numerical simulations has created a critical bottleneck in scientific discovery, namely identifying relevant datasets for a given research objective. Existing discovery systems are primarily retrieval-centric and struggle to bridge the gap between high-level scientific intent and heterogeneous metadata at scale. We introduce \textbf{ReSearch}, a multi-stage, reasoning-enhanced search framework that formulates Earth Science data discovery as an iterative process of intent interpretation, high-recall retrieval, and context-aware ranking. ReSearch integrates lexical search, semantic embeddings, abbreviation expansion, and large language model reranking within a unified architecture that explicitly separates recall and precision objectives. To enable realistic evaluation, we construct a literature-grounded benchmark by aligning natural language intent with datasets cited in peer-reviewed Earth Science studies. Experiments demonstrate that ReSearch consistently improves recall and ranking performance over baseline methods, particularly for task-based queries expressing abstract scientific goals. These results underscore the importance of intent-aware, multi-stage search as a foundational capability for reproducible and scalable Earth Science research.
☆ Legal Retrieval for Public Defenders
AI tools are increasingly suggested as solutions to assist public agencies with heavy workloads. In public defense, where a constitutional right to counsel meets the complexities of law, overwhelming caseloads and constrained resources, practitioners face especially taxing conditions. Yet, there is little evidence of how AI could meaningfully support defenders' day-to-day work. In partnership with the New Jersey Office of the Public Defender, we develop the NJ BriefBank, a retrieval tool which surfaces relevant appellate briefs to streamline legal research and writing. We show that existing legal retrieval benchmarks fail to transfer to public defense search, however adding domain knowledge improves retrieval quality. This includes query expansion with legal reasoning, domain-specific data and curated synthetic examples. To facilitate further research, we provide a taxonomy of realistic defender search queries and release a manually annotated public defense retrieval dataset. Together, our work offers starting points towards building practical, reliable retrieval AI tools for public defense, and towards more realistic legal retrieval benchmarks.
☆ A Systematic Analysis of Chunking Strategies for Reliable Question Answering
We study how document chunking choices impact the reliability of Retrieval-Augmented Generation (RAG) systems in industry. While practice often relies on heuristics, our end-to-end evaluation on Natural Questions systematically varies chunking method (token, sentence, semantic, code), chunk size, overlap, and context length. We use a standard industrial setup: SPLADE retrieval and a Mistral-8B generator. We derive actionable lessons for cost-efficient deployment: (i) overlap provides no measurable benefit and increases indexing cost; (ii) sentence chunking is the most cost-effective method, matching semantic chunking up to ~5k tokens; (iii) a "context cliff" reduces quality beyond ~2.5k tokens; and (iv) optimal context depends on the goal (semantic quality peaks at small contexts; exact match at larger ones).
comment: 3 pages, 2 figures, 1 table, pre-print
☆ Auditory Brain Passage Retrieval: Cross-Sensory EEG Training for Neural Information Retrieval ECIR 2026
Query formulation from internal information needs remains fundamentally challenging across all Information Retrieval paradigms due to cognitive complexity and physical impairments. Brain Passage Retrieval (BPR) addresses this by directly mapping EEG signals to passage representations without intermediate text translation. However, existing BPR research exclusively uses visual stimuli, leaving critical questions unanswered: Can auditory EEG enable effective retrieval for voice-based interfaces and visually impaired users? Can training on combined EEG datasets from different sensory modalities improve performance despite severe data scarcity? We present the first systematic investigation of auditory EEG for BPR and evaluate cross-sensory training benefits. Using dual encoder architectures with four pooling strategies (CLS, mean, max, multi-vector), we conduct controlled experiments comparing auditory-only, visual-only, and combined training on the Alice (auditory) and Nieuwland (visual) datasets. Results demonstrate that auditory EEG consistently outperforms visual EEG, and cross-sensory training with CLS pooling achieves substantial improvements over individual training: 31% in MRR (0.474), 43% in Hit@1 (0.314), and 28% in Hit@10 (0.858). Critically, combined auditory EEG models surpass BM25 text baselines (MRR: 0.474 vs 0.428), establishing neural queries as competitive with traditional retrieval whilst enabling accessible interfaces. These findings validate auditory neural interfaces for IR tasks and demonstrate that cross-sensory training addresses data scarcity whilst outperforming single-modality approaches Code: https://github.com/NiallMcguire/Audio_BPR
comment: Accepted At ECIR 2026
☆ Autonomous Knowledge Graph Exploration with Adaptive Breadth-Depth Retrieval
Retrieving evidence for language model queries from knowledge graphs requires balancing broad search across the graph with multi-hop traversal to follow relational links. Similarity-based retrievers provide coverage but remain shallow, whereas traversal-based methods rely on selecting seed nodes to start exploration, which can fail when queries span multiple entities and relations. We introduce ARK: Adaptive Retriever of Knowledge, an agentic KG retriever that gives a language model control over this breadth-depth tradeoff using a two-operation toolset: global lexical search over node descriptors and one-hop neighborhood exploration that composes into multi-hop traversal. ARK alternates between breadth-oriented discovery and depth-oriented expansion without depending on a fragile seed selection, a pre-set hop depth, or requiring retrieval training. ARK adapts tool use to queries, using global search for language-heavy queries and neighborhood exploration for relation-heavy queries. On STaRK, ARK reaches 59.1% average Hit@1 and 67.4 average MRR, improving average Hit@1 by up to 31.4% and average MRR by up to 28.0% over retrieval-based and agentic training-free methods. Finally, we distill ARK's tool-use trajectories from a large teacher into an 8B model via label-free imitation, improving Hit@1 by +7.0, +26.6, and +13.5 absolute points over the base 8B model on AMAZON, MAG, and PRIME datasets, respectively, while retaining up to 98.5% of the teacher's Hit@1 rate.
☆ IF-GEO: Conflict-Aware Instruction Fusion for Multi-Query Generative Engine Optimization ACL 2026
As Generative Engines revolutionize information retrieval by synthesizing direct answers from retrieved sources, ensuring source visibility becomes a significant challenge. Improving it through targeted content revisions is a practical strategy termed Generative Engine Optimization (GEO). However, optimizing a document for diverse queries presents a constrained optimization challenge where heterogeneous queries often impose conflicting and competing revision requirements under a limited content budget. To address this challenge, we propose IF-GEO, a "diverge-then-converge" framework comprising two phases: (i) mining distinct optimization preferences from representative latent queries; (ii) synthesizing a Global Revision Blueprint for guided editing by coordinating preferences via conflict-aware instruction fusion. To explicitly quantify IF-GEO's objective of cross-query stability, we introduce risk-aware stability metrics. Experiments on multi-query benchmarks demonstrate that IF-GEO achieves substantial performance gains while maintaining robustness across diverse retrieval scenarios.
comment: 9 pages, 3 figures. Submitted to ACL 2026. Corresponding author: Zhen Chen
☆ Towards Effective Negation Modeling in Joint Audio-Text Models for Music ICASSP
Joint audio-text models are widely used for music retrieval, yet they struggle with semantic phenomena such as negation. Negation is fundamental for distinguishing the absence (or presence) of musical elements (e.g., "with vocals" vs. "without vocals"), but current systems fail to represent this reliably. In this work, we investigate and mitigate this limitation by training CLAP models from scratch on the Million Song Dataset with LP-MusicCaps-MSD captions. We introduce negation through text augmentation and a dissimilarity-based contrastive loss, designed to explicitly separate original and negated captions in the joint embedding space. To evaluate progress, we propose two protocols that frame negation modeling as retrieval and binary classification tasks. Experiments demonstrate that both methods, individually and combined, improve negation handling while largely preserving retrieval performance.
comment: Accepted at IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2026
☆ Hierarchical Long Video Understanding with Audiovisual Entity Cohesion and Agentic Search
Long video understanding presents significant challenges for vision-language models due to extremely long context windows. Existing solutions relying on naive chunking strategies with retrieval-augmented generation, typically suffer from information fragmentation and a loss of global coherence. We present HAVEN, a unified framework for long-video understanding that enables coherent and comprehensive reasoning by integrating audiovisual entity cohesion and hierarchical video indexing with agentic search. First, we preserve semantic consistency by integrating entity-level representations across visual and auditory streams, while organizing content into a structured hierarchy spanning global summary, scene, segment, and entity levels. Then we employ an agentic search mechanism to enable dynamic retrieval and reasoning across these layers, facilitating coherent narrative reconstruction and fine-grained entity tracking. Extensive experiments demonstrate that our method achieves good temporal coherence, entity consistency, and retrieval efficiency, establishing a new state-of-the-art with an overall accuracy of 84.1% on LVBench. Notably, it achieves outstanding performance in the challenging reasoning category, reaching 80.1%. These results highlight the effectiveness of structured, multimodal reasoning for comprehensive and context-consistent understanding of long-form videos.
☆ Balancing Fairness and High Match Rates in Reciprocal Recommender Systems: A Nash Social Welfare Approach
Matching platforms, such as online dating services and job recommendations, have become increasingly prevalent. For the success of these platforms, it is crucial to design reciprocal recommender systems (RRSs) that not only increase the total number of matches but also avoid creating unfairness among users. In this paper, we investigate the fairness of RRSs on matching platforms. From the perspective of fair division, we define the users' opportunities to be recommended and establish the fairness concept of envy-freeness in the allocation of these opportunities. We first introduce the Social Welfare (SW) method, which approximately maximizes the number of matches, and show that it leads to significant unfairness in recommendation opportunities, illustrating the trade-off between fairness and match rates. To address this challenge, we propose the Nash Social Welfare (NSW) method, which alternately optimizes two NSW functions and achieves nearly envy-free recommendations. We further generalize the SW and NSW method to the $α$-SW method, which balances the trade-off between fairness and high match rates. Additionally, we develop a computationally efficient approximation algorithm for the SW/NSW/$α$-SW methods based on the Sinkhorn algorithm. Through extensive experiments on both synthetic datasets and two real-world datasets, we demonstrate the practical effectiveness of our approach.
comment: arXiv admin note: text overlap with arXiv:2409.00720
☆ More Than Efficiency: Embedding Compression Improves Domain Adaptation in Dense Retrieval
Dense retrievers powered by pretrained embeddings are widely used for document retrieval but struggle in specialized domains due to the mismatches between the training and target domain distributions. Domain adaptation typically requires costly annotation and retraining of query-document pairs. In this work, we revisit an overlooked alternative: applying PCA to domain embeddings to derive lower-dimensional representations that preserve domain-relevant features while discarding non-discriminative components. Though traditionally used for efficiency, we demonstrate that this simple embedding compression can effectively improve retrieval performance. Evaluated across 9 retrievers and 14 MTEB datasets, PCA applied solely to query embeddings improves NDCG@10 in 75.4% of model-dataset pairs, offering a simple and lightweight method for domain adaptation.
☆ Integrating Vision-Centric Text Understanding for Conversational Recommender Systems
Conversational Recommender Systems (CRSs) have attracted growing attention for their ability to deliver personalized recommendations through natural language interactions. To more accurately infer user preferences from multi-turn conversations, recent works increasingly expand conversational context (e.g., by incorporating diverse entity information or retrieving related dialogues). While such context enrichment can assist preference modeling, it also introduces longer and more heterogeneous inputs, leading to practical issues such as input length constraints, text style inconsistency, and irrelevant textual noise, thereby raising the demand for stronger language understanding ability. In this paper, we propose STARCRS, a Screen-Text-AwaRe Conversational Recommender System that integrates two complementary text understanding modes: (1) a screen-reading pathway that encodes auxiliary textual information as visual tokens, mimicking skim reading on a screen, and (2) an LLM-based textual pathway that focuses on a limited set of critical content for fine-grained reasoning. We design a knowledge-anchored fusion framework that combines contrastive alignment, cross-attention interaction, and adaptive gating to integrate the two modes for improved preference modeling and response generation. Extensive experiments on two widely used benchmarks demonstrate that STARCRS consistently improves both recommendation accuracy and generated response quality.
♻ ☆ PersonalAI: A Systematic Comparison of Knowledge Graph Storage and Retrieval Approaches for Personalized LLM agents
Personalizing language models that effectively incorporating user interaction history remains a central challenge in development of adaptive AI systems. While large language models (LLMs), combined with Retrieval-Augmented Generation (RAG), have improved factual accuracy, they often lack structured memory and fail to scale in complex, long-term interactions. To address this, we propose a flexible external memory framework based on knowledge graph, which construct and update memory model automatically by LLM itself. Building upon the AriGraph architecture, we introduce a novel hybrid graph design that supports both standard edges and two types of hyper-edges, enabling rich and dynamic semantic and temporal representations. Our framework also supports diverse retrieval mechanisms, including A*, water-circle traversal, beam search and hybrid methods, making it adaptable to different datasets and LLM capacities. We evaluate our system on three benchmarks: TriviaQA, HotpotQA, DiaASQ and demonstrate that different memory and retrieval configurations yield optimal performance depending on the task. Additionally, we extend the DiaASQ benchmark with temporal annotations and internally contradictory statements, showing that our system remains robust and effective in managing temporal dependencies and context-aware reasoning.
♻ ☆ On the Costs and Benefits of Learned Indexing for Dynamic High-Dimensional Data: Extended Version
One of the main challenges within the growing research area of learned indexing is the lack of adaptability to dynamically expanding datasets. This paper explores the dynamization of a static learned index for complex data through operations such as node splitting and broadening, enabling efficient adaptation to new data. Furthermore, we evaluate the trade-offs between static and dynamic approaches by introducing an amortized cost model to assess query performance in tandem with the build costs of the index structure, enabling experimental determination of when a dynamic learned index outperforms its static counterpart. We apply the dynamization method to a static learned index and demonstrate that its superior scaling quickly surpasses the static implementation in terms of overall costs as the database grows. This is an extended version of the paper presented at DAWAK 2025.
♻ ☆ Graceful forgetting: Memory as a process
A rational framework is proposed to explain how we accommodate unbounded sensory input within bounded memory. According to this framework, memory is stored as a statistic-like representation that is repeatedly summarized and compressed to make room for new input. Summarization of sensory input must be rapid; that of abstract trace might be slower and more deliberative, drawing on elaborative processes some of which might occasionally reach consciousness (as in mind-wandering). Short-term sensory traces are summarized as simple statistics organized into structures such as a time series, graph or dictionary, and longer-term abstract traces as more complex statistic-like structures. Summarization at multiple time scales requires an intensive process of memory curation which might account for the high metabolic consumption of the brain at rest. Summarization may be guided by heuristics to help choose which statistics to apply at each step, so that the trace is useful for a wide range of future needs, the objective being to "represent the past" rather than tune for a specific task. However, the choice of statistics (or of heuristics to guide that choice) is a potential target for learning, possibly over long-term scales of development or evolution. The framework is intended as an aid to make sense of our extensive empirical and theoretical knowledge of memory and bring us closer to understanding it in functional and mechanistic terms.
♻ ☆ Unveiling and Mitigating Bias in Large Language Model Recommendations: A Path to Fairness
Large Language Model (LLM)-based recommendation systems excel in delivering comprehensive suggestions by deeply analyzing content and user behavior. However, they often inherit biases from skewed training data, favoring mainstream content while underrepresenting diverse or non-traditional options. This study explores the interplay between bias and LLM-based recommendation systems, focusing on music, song, and book recommendations across diverse demographic and cultural groups. This paper analyzes bias in LLM-based recommendation systems across multiple models (GPT, LLaMA, and Gemini), revealing its deep and pervasive impact on outcomes. Intersecting identities and contextual factors, like socioeconomic status, further amplify biases, complicating fair recommendations across diverse groups. Our findings reveal that bias in these systems is deeply ingrained, yet even simple interventions like prompt engineering can significantly reduce it. We further propose a retrieval-augmented generation strategy to mitigate bias more effectively. Numerical experiments validate these strategies, demonstrating both the pervasive nature of bias and the impact of the proposed solutions.
♻ ☆ Multi-Stage Verification-Centric Framework for Mitigating Hallucination in Multi-Modal RAG KDD
This paper presents the technical solution developed by team CRUISE for the KDD Cup 2025 Meta Comprehensive RAG Benchmark for Multi-modal, Multi-turn (CRAG-MM) challenge. The challenge aims to address a critical limitation of modern Vision Language Models (VLMs): their propensity to hallucinate, especially when faced with egocentric imagery, long-tail entities, and complex, multi-hop questions. This issue is particularly problematic in real-world applications where users pose fact-seeking queries that demand high factual accuracy across diverse modalities. To tackle this, we propose a robust, multi-stage framework that prioritizes factual accuracy and truthfulness over completeness. Our solution integrates a lightweight query router for efficiency, a query-aware retrieval and summarization pipeline, a dual-pathways generation and a post-hoc verification. This conservative strategy is designed to minimize hallucinations, which incur a severe penalty in the competition's scoring metric. Our approach achieved 3rd place in Task 1, demonstrating the effectiveness of prioritizing answer reliability in complex multi-modal RAG systems. Our implementation is available at https://github.com/Breezelled/KDD-Cup-2025-Meta-CRAG-MM .
comment: KDD Cup 2025 Meta CRAG-MM Challenge: Third Prize in the Single-Source Augmentation Task
Multimedia
☆ FutureOmni: Evaluating Future Forecasting from Omni-Modal Context for Multimodal LLMs
Although Multimodal Large Language Models (MLLMs) demonstrate strong omni-modal perception, their ability to forecast future events from audio-visual cues remains largely unexplored, as existing benchmarks focus mainly on retrospective understanding. To bridge this gap, we introduce FutureOmni, the first benchmark designed to evaluate omni-modal future forecasting from audio-visual environments. The evaluated models are required to perform cross-modal causal and temporal reasoning, as well as effectively leverage internal knowledge to predict future events. FutureOmni is constructed via a scalable LLM-assisted, human-in-the-loop pipeline and contains 919 videos and 1,034 multiple-choice QA pairs across 8 primary domains. Evaluations on 13 omni-modal and 7 video-only models show that current systems struggle with audio-visual future prediction, particularly in speech-heavy scenarios, with the best accuracy of 64.8% achieved by Gemini 3 Flash. To mitigate this limitation, we curate a 7K-sample instruction-tuning dataset and propose an Omni-Modal Future Forecasting (OFF) training strategy. Evaluations on FutureOmni and popular audio-visual and video-only benchmarks demonstrate that OFF enhances future forecasting and generalization. We publicly release all code (https://github.com/OpenMOSS/FutureOmni) and datasets (https://huggingface.co/datasets/OpenMOSS-Team/FutureOmni).
comment: https://openmoss.github.io/FutureOmni
☆ Temporal-Spatial Decouple before Act: Disentangled Representation Learning for Multimodal Sentiment Analysis ICASSP2026
Multimodal Sentiment Analysis integrates Linguistic, Visual, and Acoustic. Mainstream approaches based on modality-invariant and modality-specific factorization or on complex fusion still rely on spatiotemporal mixed modeling. This ignores spatiotemporal heterogeneity, leading to spatiotemporal information asymmetry and thus limited performance. Hence, we propose TSDA, Temporal-Spatial Decouple before Act, which explicitly decouples each modality into temporal dynamics and spatial structural context before any interaction. For every modality, a temporal encoder and a spatial encoder project signals into separate temporal and spatial body. Factor-Consistent Cross-Modal Alignment then aligns temporal features only with their temporal counterparts across modalities, and spatial features only with their spatial counterparts. Factor specific supervision and decorrelation regularization reduce cross factor leakage while preserving complementarity. A Gated Recouple module subsequently recouples the aligned streams for task. Extensive experiments show that TSDA outperforms baselines. Ablation analysis studies confirm the necessity and interpretability of the design.
comment: This study has been accepted by IEEE ICASSP2026
♻ ☆ Multimodal Emotion Recognition using Audio-Video Transformer Fusion with Cross Attention
Multimodal emotion recognition (MER) aims to infer human affect by jointly modeling audio and visual cues; however, existing approaches often struggle with temporal misalignment, weakly discriminative feature representations, and suboptimal fusion of heterogeneous modalities. To address these challenges, we propose AVT-CA, an Audio-Video Transformer architecture with cross attention for robust emotion recognition. The proposed model introduces a hierarchical video feature representation that combines channel attention, spatial attention, and local feature extraction to emphasize emotionally salient regions while suppressing irrelevant information. These refined visual features are integrated with audio representations through an intermediate transformer-based fusion mechanism that captures interlinked temporal dependencies across modalities. Furthermore, a cross-attention module selectively reinforces mutually consistent audio-visual cues, enabling effective feature selection and noise-aware fusion. Extensive experiments on three benchmark datasets, CMU-MOSEI, RAVDESS, and CREMA-D, demonstrate that AVT-CA consistently outperforms state-of-the-art baselines, achieving significant improvements in both accuracy and F1-score. Our source code is publicly available at https://github.com/shravan-18/AVTCA.
♻ ☆ TVMC: Time-Varying Mesh Compression via Multi-Stage Anchor Mesh Generation
Time-varying meshes, characterized by dynamic connectivity and varying vertex counts, hold significant promise for applications such as augmented reality. However, their practical utilization remains challenging due to the substantial data volume required for high-fidelity representation. While various compression methods attempt to leverage temporal redundancy between consecutive mesh frames, most struggle with topological inconsistency and motion-induced artifacts. To address these issues, we propose Time-Varying Mesh Compression (TVMC), a novel framework built on multi-stage coarse-to-fine anchor mesh generation for inter-frame prediction. Specifically, the anchor mesh is progressively constructed in three stages: initial, coarse, and fine. The initial anchor mesh is obtained through fast topology alignment to exploit temporal coherence. A Kalman filter-based motion estimation module then generates a coarse anchor mesh by accurately compensating inter-frame motions. Subsequently, a Quadric Error Metric-based refinement step optimizes vertex positions to form a fine anchor mesh with improved geometric fidelity. Based on the refined anchor mesh, the inter-frame motions relative to the reference base mesh are encoded, while the residual displacements between the subdivided fine anchor mesh and the input mesh are adaptively quantized and compressed. This hierarchical strategy preserves consistent connectivity and high-quality surface approximation, while achieving an efficient and compact representation of dynamic geometry. Extensive experiments on standard MPEG dynamic mesh sequences demonstrate that TVMC achieves state-of-the-art compression performance. Compared to the latest V-DMC standard, it delivers a significant BD-rate gain of 10.2% ~ 16.9%, while preserving high reconstruction quality. The code is available at https://github.com/H-Huang774/TVMC.
comment: Need to improve
Information Retrieval
☆ Guidelines for the Creation of an Annotated Corpus
This document, based on feedback from UMR TETIS members and the scientific literature, provides a generic methodology for creating annotation guidelines and annotated textual datasets (corpora). It covers methodological aspects, as well as storage, sharing, and valorization of the data. It includes definitions and examples to clearly illustrate each step of the process, thus providing a comprehensive framework to support the creation and use of corpora in various research contexts.
comment: 8 pages, 3 figures
☆ Insider Knowledge: How Much Can RAG Systems Gain from Evaluation Secrets?
RAG systems are increasingly evaluated and optimized using LLM judges, an approach that is rapidly becoming the dominant paradigm for system assessment. Nugget-based approaches in particular are now embedded not only in evaluation frameworks but also in the architectures of RAG systems themselves. While this integration can lead to genuine improvements, it also creates a risk of faulty measurements due to circularity. In this paper, we investigate this risk through comparative experiments with nugget-based RAG systems, including Ginger and Crucible, against strong baselines such as GPT-Researcher. By deliberately modifying Crucible to generate outputs optimized for an LLM judge, we show that near-perfect evaluation scores can be achieved when elements of the evaluation - such as prompt templates or gold nuggets - are leaked or can be predicted. Our results highlight the importance of blind evaluation settings and methodological diversity to guard against mistaking metric overfitting for genuine system progress.
☆ Incorporating Q&A Nuggets into Retrieval-Augmented Generation
RAGE systems integrate ideas from automatic evaluation (E) into Retrieval-augmented Generation (RAG). As one such example, we present Crucible, a Nugget-Augmented Generation System that preserves explicit citation provenance by constructing a bank of Q&A nuggets from retrieved documents and uses them to guide extraction, selection, and report generation. Reasoning on nuggets avoids repeated information through clear and interpretable Q&A semantics - instead of opaque cluster abstractions - while maintaining citation provenance throughout the entire generation process. Evaluated on the TREC NeuCLIR 2024 collection, our Crucible system substantially outperforms Ginger, a recent nugget-based RAG system, in nugget recall, density, and citation grounding.
☆ Agentic Conversational Search with Contextualized Reasoning via Reinforcement Learning
Large Language Models (LLMs) have become a popular interface for human-AI interaction, supporting information seeking and task assistance through natural, multi-turn dialogue. To respond to users within multi-turn dialogues, the context-dependent user intent evolves across interactions, requiring contextual interpretation, query reformulation, and dynamic coordination between retrieval and generation. Existing studies usually follow static rewrite, retrieve, and generate pipelines, which optimize different procedures separately and overlook the mixed-initiative action optimization simultaneously. Although the recent developments in deep search agents demonstrate the effectiveness in jointly optimizing retrieval and generation via reasoning, these approaches focus on single-turn scenarios, which might lack the ability to handle multi-turn interactions. We introduce a conversational agent that interleaves search and reasoning across turns, enabling exploratory and adaptive behaviors learned through reinforcement learning (RL) training with tailored rewards towards evolving user goals. The experimental results across four widely used conversational benchmarks demonstrate the effectiveness of our methods by surpassing several existing strong baselines.
♻ ☆ LLM-based relevance assessment still can't replace human relevance assessment
The use of large language models (LLMs) for relevance assessment in information retrieval has gained significant attention, with recent studies suggesting that LLM-based judgments provide comparable evaluations to human judgments. Notably, based on TREC 2024 data, Upadhyay et al make a bold claim that LLM-based relevance assessments, such as those generated by the Umbrela system, can fully replace traditional human relevance assessments in TREC-style evaluations. This paper critically examines this claim, highlighting practical and theoretical limitations that undermine the validity of this conclusion. First, we question whether the evidence provided by Upadhyay et al. genuinely supports their claim, particularly when the test collection is intended to serve as a benchmark for future research innovations.Second, we submit a system deliberately crafted to exploit automatic evaluation metrics, demonstrating that it can achieve artificially inflated scores without truly improving retrieval quality. Third, we simulate the consequences of circularity by analyzing Kendall's tau correlations under the hypothetical scenario in which all systems adopt Umbrela as a final-stage re-ranker, illustrating how reliance on LLM-based assessments can distort system rankings. Theoretical challenges - including the inherent narcissism of LLMs, the risk of overfitting to LLM-based metrics, and the potential degradation of future LLM performance - that must be addressed before LLM-based relevance assessments can be considered a viable replacement for human judgments.
Multimedia
☆ Aligning Agentic World Models via Knowledgeable Experience Learning
Current Large Language Models (LLMs) exhibit a critical modal disconnect: they possess vast semantic knowledge but lack the procedural grounding to respect the immutable laws of the physical world. Consequently, while these agents implicitly function as world models, their simulations often suffer from physical hallucinations-generating plans that are logically sound but physically unexecutable. Existing alignment strategies predominantly rely on resource-intensive training or fine-tuning, which attempt to compress dynamic environmental rules into static model parameters. However, such parametric encapsulation is inherently rigid, struggling to adapt to the open-ended variability of physical dynamics without continuous, costly retraining. To bridge this gap, we introduce WorldMind, a framework that autonomously constructs a symbolic World Knowledge Repository by synthesizing environmental feedback. Specifically, it unifies Process Experience to enforce physical feasibility via prediction errors and Goal Experience to guide task optimality through successful trajectories. Experiments on EB-ALFRED and EB-Habitat demonstrate that WorldMind achieves superior performance compared to baselines with remarkable cross-model and cross-environment transferability.
comment: Ongoing work
☆ Delving Deeper: Hierarchical Visual Perception for Robust Video-Text Retrieval
Video-text retrieval (VTR) aims to locate relevant videos using natural language queries. Current methods, often based on pre-trained models like CLIP, are hindered by video's inherent redundancy and their reliance on coarse, final-layer features, limiting matching accuracy. To address this, we introduce the HVP-Net (Hierarchical Visual Perception Network), a framework that mines richer video semantics by extracting and refining features from multiple intermediate layers of a vision encoder. Our approach progressively distills salient visual concepts from raw patch-tokens at different semantic levels, mitigating redundancy while preserving crucial details for alignment. This results in a more robust video representation, leading to new state-of-the-art performance on challenging benchmarks including MSRVTT, DiDeMo, and ActivityNet. Our work validates the effectiveness of exploiting hierarchical features for advancing video-text retrieval. Our codes are available at https://github.com/boyun-zhang/HVP-Net.
♻ ☆ Simple Yet Effective Selective Imputation for Incomplete Multi-view Clustering
Incomplete Multi-view Clustering (IMC) has emerged as a significant challenge in multi-view learning. A predominant line for IMC is data imputation; however, indiscriminate imputation can result in unreliable content. Recently, researchers have proposed selective imputation methods that use a post-imputation assessment strategy: (1) impute all or some missing values, and (2) evaluate their quality through clustering tasks. We observe that this strategy incurs substantial computational complexity and is heavily dependent on the performance of the clustering model. To address these challenges, we first introduce the concept of pre-imputation assessment. We propose an Implicit Informativeness-based Selective Imputation (SI$^3$) method for incomplete multi-view clustering, which explicitly addresses the trade-off between imputation utility and imputation risk. SI$^3$ evaluates the imputation-relevant informativeness of each missing position in a training-free manner, and selectively imputes data only when sufficient informative support is available. Under a multi-view generative assumption, SI$^3$ further integrates selective imputation into a variational inference framework, enabling uncertainty-aware imputation at the latent distribution level and robust multi-view fusion. Compared with existing selective imputation strategies, SI$^3$ is lightweight, data-driven, and model-agnostic, and can be seamlessly incorporated into existing incomplete multi-view clustering frameworks as a plug-in strategy. Extensive experiments on multiple benchmark datasets demonstrate that SI$^3$ consistently outperforms both imputation-based and imputation-free methods, particularly under challenging unbalanced missing scenarios.
comment: Under Review
♻ ☆ WVSC: Wireless Video Semantic Communication with Multi-frame Compensation
Existing wireless video transmission schemes directly conduct video coding in pixel level, while neglecting the inner semantics contained in videos. In this paper, we propose a wireless video semantic communication framework, abbreviated as WVSC, which integrates the idea of semantic communication into wireless video transmission scenarios. WVSC first encodes original video frames as semantic frames and then conducts video coding based on such compact representations, enabling the video coding in semantic level rather than pixel level. Moreover, to further reduce the communication overhead, a reference semantic frame is introduced to substitute motion vectors of each frame in common video coding methods. At the receiver, multi-frame compensation (MFC) is proposed to produce compensated current semantic frame with a multi-frame fusion attention module. With both the reference frame transmission and MFC, the bandwidth efficiency improves with satisfying video transmission performance. Experimental results verify the performance gain of WVSC over other DL-based methods e.g. DVSC about 1 dB and traditional schemes about 2 dB in terms of PSNR.
comment: This paper has been accepted by WCNC2026